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INTRODUCTION

This is a collection of five papers that concern applications of ideas from proof theory
to problems in the semantics of types and concurrency. In the order they are arranged,
the articles are

1. Inheritance as implicit coercion. Val Breazu-Tannen, Thierry Coquand, Carl A.

Gunter, and Andre Scedrov. Information and Computation, vol. 93 (1991),
pp. 172-221 by invitation from the papers presented at the 1989 Symposium on

Logic in Computer Science.

2. Computing with coercions, Val Breazu-Tannen, Carl A. Gunter, and Andre Sce-
drov. In: Conference on Lisp and Functional Programming, edited by
M. Wand, Nice, France. July 1990. pp. 44-60.

3. Nets as tensor theories (preliminary report), Carl A. Gunter and Vijay Gehlot.
In: Conference on Application and Theory of Petri Nets, edited by G. De
Michelis, Bonn, F.R.G.. June 1989, pp. 174-191.

4. Normal process representatives. Vijay Gehlot and Carl A. Gunter. In: Sympo-
sium on Logic in Computer Science, edited by J. Mitchell, IEEE Computer
Society Press, Philadelphia. Pennsylvania, June 1990. pp. 200-207.

5. Reference counting as a. computational interpretation of linear logic, Jawahar Chir-
imar, Carl A. Gunter. and Jon Riecke. To appear in: Journal of Functional
Programming.

For further reading on the coherence issues studied in the first two articles, one may
consult the MIT Press collection Theoretical Aspects of Object Oriented Pro-
gramming Languages: Types, Semantics, and Language Design. edited by
John C. Mitchell and Carl A. Gunter. Further details about the third and fourth topics
can be found in Vijay Gehlot's 1992 University of Pennsylvania Ph.D. dissertation, A
Proof-Theoretic Approach to Semantics of Concurrency.
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INHERITANCE AS IMPLICIT COERCION'

Val Breazu-Tannen Thierry Coquand Carl A. Gunter Andre Scedrov2

Abstract. We present a method for providing semantic interpretations for languages with a
type system featuring inheritance polymorphism. Our approach is illustrated on an extension of
the language Fun of Cardelli and Wegner, which we interpret via a translation into an extended
polymorphic lambda calculus. Our goal is to interpret inheritances in Fun via coercion functions
which are definable in the target of the translation. Existing techniques in the theory of semantic
domains can be then used to interpret the extended polymorphic lambda calculus, thus providing
many models for the original language. This technique makes it possible to model a rich type
discipline which includes parametric polymorphism and recursive types as well as inheritance.

A central difficulty in providing interpretations for explicit type disciplines featuring inheritance
in the sense discussed in this paper arises from the fact that programs can type-check in more
than one way. Since interpretations follow the type-checking derivations, coherence theorems
are required: that is, one must prove that the meaning of a program does not depend on the
way it was type-checked. The proof of such theorems for our proposed interpretation are the
basic technical results of this paper. Interestingly, proving coherence in the presence of recursive
types, variants, and abstract types forced us to reexamine fundamental equational properties
that arise in proof theory (in the form of commutative reductions) and domain theory (in the
form of strict vs. non-strict functions).

1 Introduction

In this paper we will discuss an approach to the semantics of a particular form of inheritance which
has been promoted by John Reynolds and Luca Cardelli. This inheritance system is based on the
idea that one may axiomatize a relation < between type expressions in such a way that whenever
the inheritance judgement s < t is provable for type expressions s and t, then an expression of type

s can be "considered as" an expression of type t. This property is expressed by the inheritance
rule (sometimes also called the subsumption rule), which states that if an expression e is of type s
and s < t, then e also has type t. The consequences from a semantic point of view of the inclusion
of this form of typing rule are significant. It is our goal in this paper to look carefully at what we
consider to be a robust and intuitive approach to systems which have this form of inheritance and
examine in some detail the semantic implications of the inclusion of inheritance judgements and
the inheritance rule in a type discipline.

Several attempts have been made recently to express some of the distinctive features of object-
oriented programming, principally inheritance, in the framework of a rich type discipline which
can accommodate strong static type-checking. This endeavor searches for a language that offers
some of the flexibility of object-oriented programming [GR83] while maintaining the reliability, and

sometimes increased efficiency of programs which type-check at compile-time (see [BBG88] for a
related comparison).

1Appears in Information and Computation vol. 93 (1991), pp. 172-221.
2Author's addresses. Breazu-Tannen and Gunter: Department of Computer and Information Sciences, University

of Pennsylvania, Philadelphia PA 19104, USA. Coquand: INRIA, Domaine de Voluceau, 78150 Rocquencourt, France.
Scedrov: Department of Mathematics, University of Pennsylvania, Philadelphia PA 19104, USA.



2 Breazu-Tannen, Coquand, Gunter, Scedrov

A type system of Reynolds introduced in [Rey80] captured some basic intuitions about in-
heritance relations between familiar type expressions built from records, variants (sums) and
higher types. A language which exploited this form of type discipline was developed by Cardelli
in [Car84, Car88a] where the first attempt was made to describe a rigorous form of mathematical

semantics for such a system. His approach uses ideals and it is shown that the type discipline is
consistent with the semantics in the sense that type-checking is shown to "prevent type errors". Sub-

sequent work has aimed at combining inheritance with richer type disciplines, in particular featuring

parametric polymorphism. One direction of research [Wan87, JM88, OB88, StaB8], has investigated

expressing inheritance and type inference mechanisms, similarly to the way in which parametric

polymorphism is expressed in ML-like languages. Another direction of research investigates express-
ing inheritance through explicit subtyping mechanisms which are part of the type-checking systems,
such as in Cardelli and Wegner's language Fun [CW85] and further work [Car88b, Car89a, CM89].

Cardelli and Wegner sketch a model for Fun based on ideals. An extensional model for Fun was
subsequently described by Bruce and Longo [BL88]. Their model interprets inheritances as identity

relations between partial equivalence relations (PER's). Another model of Fun, using the interval

interpretation of Cartwright [Car85] has been given by Martini [Mar88]. In Martini's semantics,

inheritance is interpreted as a form of inclusion between intervals. This model also includes a

general recursion operator for functions (but not types).

In this paper we present a novel approach to the problem of developing a simple mathematical
semantics for languages which feature inheritance in the sense of Reynolds and Cardelli. The form

of semantics that we propose will take a significant departure from the characteristic shared by

the semantics mentioned above. We will not attempt to model inheritance as a binary relation

on a family of types. In particular, our interpretation will not use anything like an inclusion

relation between types. Instead, we interpret the inheritance relation between type expressions as
indicating a certain coercion which remains implicit in instances in which the inheritance is used in

type-checking. 'We show how these coercions can be made explicit using definable terms of a calculus
without inheritance, and thus depart from the "relational" interpretation of the inheritance concept.

Using this idea, we are able to show how many of the models of polymorphism and recursive types
which have no relevant concept of type inclusion, can nevertheless be seen as models for a calculus

with inheritance.
We illustrate our approach on the language Fun of Cardelli and Wegner extended with recursive

types but, the kind of results we obtain are non-trivial for any calculus that combines inheritance,
parametric polymorphism, and recursive types. The method we propose proceeds first with a trans-

lation of Fun into an extended polymorphic lambda calculus with recursive types. As we mentioned

above, this translation interprets inheritances in Fun as coercion functions already definable in the
extended polymorphic lambda calculus. Then, we can use existing techniques for modeling poly-

morphism and recursion (such as those described in [ABL86, Gir86, CGW87, CGW89]) to interpret

the extended polymorphic lambda calculus, thus providing models for the original language with
inheritance. This method achieves simultaneous modeling of parametric polymorphism, recursive
types, and inheritance. In the process, the paradigm "inheritance as definable coercion" proves

itself remarkably robust, which makes us confident that it will apply to a large class of rich type

disciplines with inheritance.
The paper is divided into seven sections. Following this introduction, the second section pro-

vides some general examples and motivation to prepare the reader for the technical details in the

subsequent sections. The third section discusses how our semantics applies to a calculus SOURCE
which has inheritance, exponentials, records, generics and recursive types. We show how this is

translated into a calculus TARGET without inheritance and state our results about the coherence
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of the translation. We hope that the results in this simpler setting will help the reader get an idea
of what our program is before we proceed to a more interesting calculus in the remainder of the

paper. The fourth section is devoted to developing a translation for an expanded calculus which

adds variants. Fundamental equational properties of variants lead us to develop a target language
which has a type of coercions. The fifth section, which contains the difficult technical results of the

paper, shows that our translation is coherent. In the sixth section we discuss mathematical models
for the full calculus. Since most of the work has already been done, we are able to produce many

models using standard domain-theoretic techniques. The concluding section makes some remarks
about what we feel has been achieved and what new challenges still need to be confronted.

2 Inheritance as implicit coercion.

A simple analogy will help explain our translation-based technique. Consider how the ordinary
untyped A-calculus is interpreted semantically in such sources as [Sco80, Mey82, Koy82, Bar84]. One

begins by postulating the existence of a semantic domain D and a pair of arrows 1b: D - (D -- D)

and T: (D -- D) -- D such that - o IQ is the identity on D -- D. Certain conditions are required

of D -+ D to insure that "enough" functions are present. To interpret an untyped A-term, one
defines a translation M - M* on terms which takes an untyped term M and creates a typed term

M*. This operation is defined by induction:

"* for a variable, x* _ x: D,

"• for an application, M(N)* - 4)(M*)(N*) and,

"* for an abstraction, (Ax. M)* =_ T(Ax: D. M*)

(where we use - for syntactic equality of expressions). For example, the familiar term

Af. (Ax. f(xx))(Ax. f(xx))

translates to

,Q(Af: D. 4ý(T(Ax: D. 4(f)(-t(x)(x))))(TJ(Ax: D. 4b(f)(4P(x)(x))))).

The fact that the latter term is unreadable is perhaps an indication of why we use the former

term in which the semantic coercions are implicit. Nevertheless, this translation provides us with

the desired semantics for the untyped term since we have converted that term into a term in a
calculus which we know how to interpret. Of course, this assumes that we really do know how to
provide a semantics for the typed calculus supplemented with triples such as D, 4, 1Q. Moreover,

there are some equations we must check to show that the translation is sound. But, at the end

of the day, we have a simple, intuitive explanation of the interpretation of untyped A-terms based
on our understanding of a certain simply typed A-theory. In this paper we show how a similar

technique may be used to provide an intuitive interpretation for inheritance, even in the presence
of parametric polymorphism and type recursion. As mentioned earlier, our interpretation is carried

out by translating the full calculus into a calculus without inheritance (the target calculus) whose
semantics we already understand. However, our idea differs significantly from the interpretation

of the untyped A-calculus as described above in at least one important respect: typically, the

coercions (such as 1 and T above) which we introduce will be definable in the target calculus.

Hence our target calculus needs to be an extension of the ordinary polymorphic A-calculus with
records, variants, abstract types, and recursive types. But it need not have any inheritance.
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From this lead, we may now propose a way to explain the semantics of an expression in a
language with inheritance. Our semantics interprets typing judgements, i.e. assertions r I- e: s
that expression e has type s in context r. Ordinarily such a judgement is assigned a semantics

inductively in the proof of the judgement using the typing rules. However, the system we are
considering may also include instances of the inheritance rule which says that if e has type s and s

is a subtype of t, then e has type t. How are we to relate the interpretation of the type expressions
s and t so that the meaning of e can be viewed as living in both places? Our proposal: the proof
that s is a subtype of t generates a coercion P from s into t. The inheritance (subsumption) rule
is interpreted by the application of the coercion P to the interpretation of e as an element of s. It
will be seen below that this technique can be made to work very smoothly since the language we

are interpreting may have a familiar inheritance-free fragment in which coercions such as P can
be defined. In effect, we can therefore "project" the language onto an inheritance-free fragment of

itself.
For further illustration, let us now look at an example which combines parametric polymorphism

and inheritance. In the polymorphic A-calculus, it is possible to form expressions in which there are
abstractions over type variables. For example, the term e A_ Aa. Ax: a. x is an operator which takes
a type s as an argument and returns the identity function Ax: s. x on that type as a value. The type
of e is indicated by the expression Va. a - a. Semantically, one may think of the meaning of this
expression as an indexed product where a ranges over all types. Although this explanation is a bit
too simple as it stands, it does help with the basic intuition. If one wishes to make an abstraction
over the subtypes of a given type, one may use the concept of a bounded quantification [CW85].
Consider, for example, the term

e' = Aa < {l:s}. Ax:a. (x.l)

where {l: s} is a record expression which has one field, labelled 1, with type s. The expression e'

denotes an operator which takes a subtype t of {1: s} (we write t < {l: s}) and returns as value a
function from t to s. (The reader should not confuse a, a type variable, with t, a type expression.)
Intuitively, a subtype of {l: s} is a record which has an I field whose type is a subtype of s. The
type of e' is indicated by the expression u' _ Va < {l: s}. a -- s. How should we think of this type

semantically? Taking an analogy with the intuitive semantics of polymorphic quantification, we
want to think of the meaning of u' as some kind of indexed product. But indexed over what? In

this paper we argue that one may get an intuitive semantics of bounded quantification by thinking

of a type expression such as u' as a family of types indexed over coercions (i.e. certain functions)
from a type a into the type s.

To support this intuition we must explain the meaning of the application e'(t) of the expression
e' to a type expression t which is a subtype of {f: s}. The key fact is this: given type expressions

v and w and a proof that v is a subtype of w, there is a canonical coercion from v into w. Hence,
the application e'(t) has, as its meaning, the element of t - s obtained by applying the meaning
of e'-which is an element of an indexed product-to the canonical coercion from t to {l: s}. This

leads us to consider u' as the type

Va. (a o--*{l: s})-- a , s

where a o-+{l: s} is a "type of coercions". In category-theoretic jargon: the meaning of a bounded
quantification with bound v will be an adjoint to a fibration over the slice category over v. This
follows the analogy with models of polymorphism which are based on adjoints to fibrations over
the category of all domains (as in [CGW89] for example).



Inheritance as Implicit Coercion 5

Although we believe that the translation just illustrated is intuitive, we need to show that it
is coherent. In other words, we must show that the semantic function is well defined. The need
for coherence comes from the fact that a typing judgement may have many different derivations.
In general, it is customary to present the semantics of typed lambda calculi as a map defined
inductively on type-checking derivations. Such a method would therefore assign a meaning to

each derivation tree. We do believe though, that the language consists of the derivable typing
judgements, rather than of the derivation trees. For many calculi, such as the simply typed or the
polymorphic lambda calculus, there is at most one derivation for any typing judgement. Therefore,

in such calculi, giving meaning to derivations is the same as giving meaning to derivable judgements.
But for other calculi, such as Martin-Lhf's Intuitionistic Type Theory (ITT) [Mar84] (see [Sal88]),
and the Calculus of Constructions [CH88] (see [Str88]), and-of immediate concern to us-Cardelli
and Wegner's Fun, this is not so, and one must prove that derivations yielding the same judgement

are given the same meaning. This idea has also appeared in the context of category theory and our
use of the term "coherence" is partially inspired by its use there, where it means the uniqueness
of certain canonical morphisms (see e.g. [KL71] and [LP85]). Although we have not attempted
a rigorous connection in this paper, the possibility of unifying coherence results for a variety of
different calculi offers an interesting direction of investigation. In the case of Fun, we show the
coherence of our semantic approach by proving that translations of any two derivations of the same
typing judgement are equated in the target calculus.

Hence, the coherence of a given translation is a property of the equational theory of the target
calculus. When the target calculus is the polymorphic lambda calculus extended with records and
recursive types, the standard axiomatization of its equational theory is sufficient for the coherence

theorem. But when we add variants, the standard axiomatization of these features, while sufficient
for coherence, clashes with the standard axiomatization of recursive types, yielding an inconsistent

theory (see [Law69, HP89a] for variants, that is, coproducts). The solution lies in two observations:
(1) the (too) strong axioms are only needed for "coercion terms", and (2) in the various models we
examined these coercion terms have special interpretations (such as strict, or linear maps), so special

in fact, that they satisfy the corresponding restrictions of the strong axioms! Correspondingly, one
has to restrict the domains over which "coercion variables" can range, which leads naturally to the
type of coercions mentioned above.

3 Translation for a fragment of the calculus

For pedagogical reasons, we begin by considering a language whose type structure features function
spaces (exponentials), record types, bounded generic types (an inheritance-generalized form of
universal polymorphism), recursive types, and, of course, inheritance. In the next section we will
enrich this calculus by the addition of variants. As we have mentioned before, this leads to some
(interesting) complications which we avoid by restricting ourselves to the simpler calculus of this
section. Since the calculus in the next section is stronger, we omit details for the proofs of results
in this section. They resemble the proofs for the calculus with variants, but the calculations are
simpler. Rather than generate four different names for the calculi which we shall consider in
this section and the next we simply refer to the calculus with inheritance as SOURCE and the
inheritance-free calculus into which it is translated as TARGET. The fragment of the calculus
which we consider in this section is fully described in the appendices to the paper.

We provide semantics to SOURCE via a translation into a language for which several well-
understood semantics already exist. This "target" language, which we shall call TARGET, is an
extension with record and recursive types of the Girard-Reynolds polymorphic lambda calculus
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(see [CGW87] for the semantics of TARGET). Therefore, SOURCE extends with inheritance
and bounded generics TARGET, which is at its turn an extension of what Girard calls System
F in [Gir86]. Our translation takes derivations of inheritance and typing judgements in SOURCE
into derivations of typing judgements in TARGET. We translate the inheritance judgements of
SOURCE into definable terms of TARGET which can be thought of as canonical explicit coer-
cions. Bounded generics translate into usual generics, but of "higher" type, which take an additional
argument which can be thought of as an arbitrary coercion.

In arguing that this translation yields a semantics for SOURCE, we encounter, as mentioned
in the introduction, an important complication: as we shall see, in SOURCE as well as in Fun,
there may be several distinct derivations of the same typing judgement (or inheritance judgement,
for that matter). We consider, however, the language to consists of the derivable typing judgements,
rather than of the derivation trees. This distinction can be ignored in System F or TARGET,
where there is at most one derivation for any typing judgements, so giving meaning to derivations
is the same as giving meaning to derivable judgements. But for SOURCE and Fun, this is not so,
and one must show that derivations yielding the same judgement are given the same meaning. This
meaning is then defined to be the meaning of the judgement. This crucial problem was overlooked
by publications on the semantics of inheritance prior to [BCGS89].

We solve the problem as follows. It turns out that our translation takes syntactically distinct
derivations of the same SOURCE judgement into syntactically distinct derivations in TARGET.
But we give an equational axiomatization as an integral part of TARGET, and we show that
our translation takes derivations of the same SOURCE judgement into derivations of provably
equal judgements in TARGET. By this coherence result, any model of TARGET, being also a
model of its equational theory, will provide a well-defined semantics for the derivable judgements
of SOURCE.

The source calculus. For notation, we will follow the spirit of Fun [CW85] making precise only the
differences. The type expressions include type variables a and a distinguished constant Top. If s
and t are type expressions, then s -- t is the type of functions from s to t. If sl,..., s, are type
expressions, and I,,... , l1 is a collection of distinct labels, then {1i: s1 , .. . , In: sn} is a record type
expression. We make the syntactic assumption that the order of the labels is irrelevant. If s and t
are type expressions then Va < s. t is a bounded quantification which binds free occurrences of the
variable a in the type expression t (but not in s). Similarly, yia. t is a recursive type expression in
which the type variable a is bound in the type expression t. Intuitively, Ma. t is the solution of the
equation a = t. We will use [s/a]t for substitution. The raw terms of the language include (term)
variables x, applications d(e) and lambda abstractions Ax: t. e. An expression {ll = el,...., In= en}

is called a record with fields ll,. . .,In and the expression e.l is the selection of the field 1. Again,
we assume that the order of the fields of a record is irrelevant, but the labels must all be distinct.
We also have bounded type abstraction Aa < t. e and the corresponding application e(t). To form
terms of recursive type yta.t we have intro expressions intro[jta. t]e and they are eliminated from the
recursion by elim expressions elim e. See Appendix A to find a grammar for the type expressions
and raw terms of the fragment.

Raw terms are type-checked by deriving typing judgements, of the form r 1- e : t . where P is a
context. Contexts are defined recursively as follows: 0 is a context; if F is a context which does not
declare a, and the free variables of t are declared in 1, then P, a<t is a context; if F is a context
which does not declare x, and the free variables of t are declared in r, then r, x: t is a context.
The proof system for deriving typing judgments is the relevant fragment of the corresponding
proof system for Fun (see [CW85] on pages 519-520) enriched with two type-checking rules for the
introduction and elimination of recursive types [CGW87]. A complete list of these proof rules is in
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Appendix A under the heading Fragment.
Among these proof rules, the following two illustrate the effect of inheritance on type-checking:

[INH] F F e:s F F- s < t

r F e:t

[B-SPEC] I - e:Va<s.t F .- r < s

rF - e(r) : [r/a]t

They make use of inheritance judgements which have the form C F s < t where C is an
inheritance context. Inheritance contexts are contexts in which only declarations of the form a_< t
appear. If r is a context, we denote-by F teh inheritance context obtained from F by erasing the
declarations of the form x:t. The proof system for deriving inheritance judgments is, with the
exception of one rule, the same as the relevant fragment of the corresponding proof system for Fun
(see [CW85], on page 519). In this paper we do not attempt to enrich it with any rule deriving
inheritances between recursive types. A discussion of this issue appears in our conclusions. The
Appendix contains a complete list of these proof rules too.

In comparison with Fun, we would like to strengthen the rule deriving inheritances between
bounded generics, and we are able to do so for some of our results. Where Fun had just

(W-FORALL) C,a<_t F- u < v

C F- Va<t.u < Va<t.v

we will consider

C F- s < t C, a<s F- u < v

(FORALL) C F- Va<t.u < Va<s.v

This makes the system strictly stronger, allowing more inheritances to be derived, and thus more
terms to type-check.

Originally, we believed that coherence could be proved for a system that includes variants
and the stronger rule (FORALL) [BCGS89]. In dealing with the case construct for variant types,

however, our coherence proof uses an order-theoretic property (see Lemma 11) which fails for the
stronger system for deriving inheritances that uses (FORALL) (for a counterexample, see Giorgio

Gelli's dissertation [Ghe90]). Thus, we prove the coherence of the translation of variants (Theo-
rem 13) only for the weaker system with (W-FORALL). Note, however, that we prove coherence
in the presence of (FORALL) for the system without variants (Theorem 4) and for the system for
deriving inheritances between types, including variant types (Lemma 9).

Remark. Decidability of type-checking in the stronger system is a non-trivial question. The
question whether an algorithm of Luca Cardelli will decide the provability of judgements in this
calculus has only recently been settled by Ghelli [Ghe90].

The salient feature of bringing inheritance into a type system is that (in given contexts) terms
will not have a unique type any more. For example, due to the rule

(TOP) C F- t < Top

where the free variables of t are declared in C, by [INH], all terms that type-check with some type
will also type-check with type Top. This makes it possible to define ordinary generics as syntactic

s V efsugar: Va. t = Va•<_Top.t .
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The proof system for SOURCE, while quite intuitive, allows for the following complication:
there may be more than one derivation of the same typing judgement. In fact, we only need
record types, (RECD), [VAR], [SEL] and [INH] (see Appendix) to provide such an example: in the
context x: {11: Top, 12: Top} , we can either directly derive by [SEL] x.1 1 : Top , or we can derive
by [VAR] x : {1I: Top, 12 : Top} , then by (RECD) and [INH] x: {11: Top} , and finally by [SEL]
x.11 : Top. In view of this, for any semantics given by "induction on the rules", one needs to prove

that derivations of the same judgement have the same meaning.

The target calculus. As mentioned before, TARGET is the Girard-Reynolds polymorphic lambda
calculus, enriched with record and recursive types [CGW87, BC88, CGW89]. Here, we present it
as a simplification of SOURCE. Types are given by

a s t I Va. t I, I, : .} I pa. t

and terms by

x [M(N) I Ax:t. M IAa. M MI 2(t) I ll= ... ,l ,=M,} I M.1 Iintro[ta. t]M elim M

For n = 0 we get the the empty record type 1 def {} and the empty record, for which we will keep
the notation {} . Typing contexts are the obvious simplification of contexts in which only typing
judgements occur (there is no inheritance relation in TARGET). The rules for deriving typing
judgements in the fragment of TARGET discussed in this section can be found in Appendix B.
The following is a well-known fact:

Proposition 1 In TARGET, derivations of typing judgements are unique.

Proof: All the "elimination" rules, [APPL], [SEL], [SPEC], and [R-ELIM] are "cut" rules, in the
sense that there is information in the premisses that does not appear in the conclusion. Con-
sequently, they should in principle cause problems for the uniqueness of derivations. However,
the lost information is always in the type part, and types "should" be unique. This suggests the
strengthening of the induction hypothesis, which then passes trivially through these "cut" rules.

One proves therefore that for any two derivations A1 and A 2 , if A 1 ends in T F- M : t, and
A 2 ends in T I- M : t2 then A1 = A 2 (in particular, tl = t 2 ).

The proof can be done straightforwardly, either by induction on the maximum of the heights
of A1 and A 2 , or on the sum of those heights, or even on the structure of M (with a bit of
reformulation). I

A technical point: it turns out that type decorations are unnecessary on "elimination" con-
structs, but they are in fact necessary on some "introduction" constructs, such as lambda abstrac-
tion and the recursive type construct intro[]. Later on, with the addition of variants in section 4, we
will find that we need to differ with [CW85], and decorate with types the constructs that "inject"
into variant types (see Appendix B).

Equations are derived by a proof system (see [CGW87, BC88, CGW89]) which contains rules like
reflexivity, symmetry, transitivity, congruence with respect to function application, closure under
functional abstraction (i), congruence with respect to application to types, closure with respect to
type abstraction (type •). There are also the {BETA} and {ETA} rules for both functional and
type abstraction, rules saying that intro[ ] and elim are inverse to each other, as well as

{RECD-BETA} {ll= M I,.. n = 14i
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where n > 1, and

{RECD-ETA}. {l 1=M.1i,...,ln=M.l,} = M

where M : {l:sl,...,1,:ss,} .The last rule gives, for n = 0, the equation {} = M which

makes 1 into a terminator. Under our interpretation, the type Top will be nothing like a "universal

domain" which can be used to interpret Type:Type [CGW89, GJ90]. On the contrary, it will be
interpreted as a one point domain in the models we list below!

The translation. For any SOURCE item we will denote by item* its translation into TARGET.
We begin with the types. Note the translation of bounded generics and of Top.

a dd= a {ll: S,...,ln:sn}* ef {11: , '. . Sn}
Top* def (Va1s.t)* df

def S* d*
(s --+ t (pa. t)* L I. pa.t*

One shows immediately that ([sla]t)* - [s*/a]t* . We extend this to contexts and inheritance
contexts, which translate into just typing contexts in TARGET.

. d e__f 0

(F, a<t)* 4=f r*, a, f:a-.*t* (C, a<t)* =ef C*, a, f:a-+t*
(F, X: t)* -e f r*, X: t*

where f is a fresh variable for each a.
Next we will describe how we translate the derivations of judgments of SOURCE. The transla-

tion is defined by recursion on the structure of the derivation trees. Since these are freely generated

by the derivation rules, it is sufficient to provide for each derivation rule of SOURCE a correspond-
ing rule on trees of TARGET judgments. It will be a lemma (Lemma 2 to be precise) that these
corresponding rules are directly derivable in TARGET, therefore the translation takes derivations
in SOURCE into derivations in TARGET.

A SOURCE derivation yielding an inheritance judgment C F- s < t is translated as a tree
of TARGET judgments yielding C* b P : s* --* t* . We present three of the rules here; the full
list for the fragment appears in Appendix C. The coercion into Top is simply the constant map:

(TOP)* C* F Ax:t*. {} : t* I

To see how coercion works on types, assume that we are given a coercion P: s --* t from s into t
and a coercion Q: u --+ v from u into v. Then it is possible to coerce a function f: t -+ u into a
function from s to v as follows. Given an argument of type s, coerce it (using P) into an argument
of type t. Apply the function f to get a value of type u. Now coerce this value in u into a value
in v by applying Q. This describes a function of the desired type. More formally, we translate the
(ARROW) rule by

C* F P: s*--#t* C* F Q: u*-v*
(ARROW)* c* R R:

where R =_f Az: t* -* u*. P; z; Q . (We use ; as shorthand for composition. For example, P; z; Q
above stands for Ax: s*. Q(z(P(x))) where x is fresh.) Now, to translate the rule (FORALL)
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which describes the inheritance relation for the bounded quantification we view the quantification

as ranging over a type together with a coercion from that type into the bound:

C* F P: s*--+t* C, a, f:a - s* F- Q : u*-v*
(FORALL)* C* F R: (Va. (a- t*)-u*)-(Va.(a--s*)-.v)

def
where R = Az:(Va. (a-*t*)--+u*).Aa. Af:a---s*. Q(z(a)(f;P))

Now, a SOURCE derivation yielding an typing judgment r F- e : t is translated as a tree of

TARGET judgments yielding £* F- M : t* . For example, the inheritance rule is translated by

simply making the inheritance coercion "explicit":

J7* F- M : s* f* F- P :s*--.t

[r* F P(M): t*

The specialization of a bounded quantification is more subtle. The variable is instantiated by

substituting the type expression to which the abstraction is applied, but then the coercion from

the argument type to the bound type must be passed as an argument to the resulting function:

1P* F- M : Va. (a--s*)--+t* r* -- P s*
[B-SPEC] I* F- M(r*)(P): [r*/a]t*

The remaining rules for translating the fragment are given in Appendix C. It is possible to check

that the translated rules are derivable in the target language:

Lemma 2 The rules (TOP)* - (TRANS)* and [VAR]* - [INH]* are directly derivable in TAR-

GET. I

Coherence of the translation. For any derivation A in SOURCE, let A* be the TARGET deriva-

tion into which it is translated. The central result about inheritance judgements says that, given

a judgement s < t and a pair of proofs A, and A 2 of this judgement, the coercions induced by

these two proofs are provably equal in the equational theory of TARGET. More formally, we have

the following:

Lemma 3 (Coherence of the translation of inheritance) Let A1 and A 2 be two SOURCE

derivations of the same inheritance judgement, C F- s < t . Let A,, A* yield (coercion) terms

P 1 ,P 2 . Then, P1 = P2 is provable in TARGET.

The central result about typing judgements says that, given a judgement e: t and a pair of proofs

A1 and A 2 of this judgement, the translations of these proofs end in sequents (translations of e: t)

which are provably equal in the equational theory of TARGET, i.e. we have:

Theorem 4 (Coherence) Let A1 and A 2 be two SOURCE derivations yielding the same typing

judgement, r F e : t . Let A*, A* yield terms M 1 , M 2 . Then, M 1 = M 2  is provable in

TARGET.

The proofs of the lemma and theorem are almost as difficult as the ones we shall give for the

corresponding results in the full language. Since the proofs of these results for the fragment follow

similar lines to the proofs for the full language we omit the proofs of Lemma 3 and Theorem 4 in

favor of the proofs of Lemma 9 and Theorem 13 below.
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4 Between incoherence and inconsistency: adding variants

The calculus described so far does not deal with a crucial type constructor: variants. In particular,
it is very useful to have a combination of variant types with recursive types. On the other hand, the
combination of these operators in the same calculus is also problematic, especially for the equational
theory. The situation is familiar from both domain theory and proof theory. In this section we
propose an approach which will suffice to prove the coherence theorem which we need to show that
our semantic function is well-defined.

We extend the type formation rules of SOURCE by adding variant type expressions:
[11: tl,..., In: t,] where n > 1. We also extend the term formation rule by the formation of variant
terms [l: t, . . ., i- e, ... ,In: tn] and the case statement:

case e of 11 =- fl, . .•.1.,l =: f,

The inheritance judgement derivation rules are extended correspondingly with the rule:

(VAT)C ý- Sl :_ t, ... C sp <ý tp
C - [lx:si,...,lp:sp] • [11:it , ., Ip: p,...,lq:tq]

Note the "duality" between this rule and the inheritance rule (RECD) for records (see Appendix
A). While a record subtype has more fields, a variant subtype has fewer variations (summands).

Like before, we intend to translate this calculus into a calculus without inheritance and, nat-
urally, we extend TARGET with variants (see Appendix B). Note how the syntax of variant
injections differs from [CW85]. This is in order for the resulting system to enjoy the property of
having unique type derivations: the proof of Proposition 1 extends immediately to the variant con-
structs. Most importantly, we must extend the equational theory of TARGET in a manner that
insures the coherence of our translation. It is here that we encounter an interesting problem which
readers who know domain theory will find familiar. The following two axioms hold in a variety of
models:

{VART-BETA} case inj 1,(Mi) of l1 =• F1 ,..1. I = Fi(Mi)

where F1 : t --+t,..., Fn : t, --+t, Mi : ti and inj1, is shorthand for
Ax : ti. [/1: tl,. ., i X, ... ,IlI : t n].

{VART-ETA} case M of 11 =ý injiL,..., In =* injl, = M

where M : [l: tL,. . ., In: t,] . Unfortunately, these two axioms do not suffice to prove all the
identifications required by the coherence of our translation!

To see the problem, we start with an example. In SOURCE, suppose that t < s is derivable
in the context r, and that we have a derivation A of r F- e : [11:t1,12:h 2 ] and derivations Ai of
r F- fi : ti t t, i = 1,2. Consider then the following two SOURCE derivations of the typing
judgement P F- case e of 11 =ý f l , 12 = ' f 2 : s .

1. by A, A1 , A2 and the rule [CASE], one deduces F F- case e of 11 • fl,12 =>f : f . Since
f F- t < s by hypothesis, one infers by inheritance r F- case e of 11= >fl,12=> f2 : S.

2. from F F t < s we can deduce f F- (ti -- t) _ (ti -- s). Hence, by inheritance from

Ai, one deduces r F- fi : ti --+ s. Then, from A and by the rule [CASE], one deduces
F F- case eof 11i=:ffl,121 f2 : s.
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The coherence property requires that these two derivations have provably equal translations. With
the obvious translation for the variant type constructor and the rules [VART] and [CASE] (see
Appendix C) and with the translation of the rules [INH], (ARROW) and (REFL) as in Section 3,
this comes down to the following identity

P(case M of l1 =€" F1, l 2 =• F 2 ) - case M of 11 =. (F 1 ; P), 12 (F 2 ; P)

where P : t*-- s* is a "coercion term", M : [li:t, 12: t2] , Fi : t*-- t*, i = 1,2. Thus, we are
tempted to postulate

{VART-CRN?} P(case M of 11 Fl,...,I1,=ý.F,) = case M of 11 =* Fl;P,.. .,1,=ý F,; P

where M: [11: tl,... 1 1,l: t,], F1 :t1 -t, t,..., F,,: t,, -- t, P: t - s . This equation follows from the
equation that axiomatizes variants analogously to coproducts:

{VART-COP?} Q(M) = case M of l • (injll; Q),..., I,.l =: (injl; Q)

where M: [11: t,...., n1,: t•J, Q: [11: ti, . . ., ln: t,] -- t . More precisely, it is possible to check that the
system {VART-BETA}+{VART-COP} is equivalent to {VART-BETA}+{VART-CRN}+{VART-
ETA}. However, it is known [Law69, HP89a] that {VART-BETA}+{VART-COP} is inconsistent
with the existence of fixed-points. In fact, this may be refined:

Proposition 5 The system {VART-BETA}+{VART-CRN} is (equationally) inconsistent with the
existence of fixed-points.

Proof: The "categorical" equation { VART-COP } may be thought of as an "induction" princi-
ple on a sum: it reduces the proof of an equation P(M) = Q(M), M: [11: t1 , 12: t 2 ], to the proofs
of P(injl1 (x)) = Q(injl,(x)), for x:tl and P(injl 2(x)) = Q(injl 2 (x)), for x:t 2 . Indeed, we have
P(M) = case M of 11 => Ax. P(injl,(x)),l 2 > Ax. P(injl2 (x)) and Q(M) = case M of 11 =
Ax. Q(inj11(x)),1 2 => Ax. Q(inj12 (x)). Given a type t, it is possible to define a "negation-like"
operation on [ll:t, 12 :t] by neg(M) = case M of 11 => Ax.inj12 (x),1 2 => Ax.inj1 1(x). Given x,y:t,
it is easy enough to define an operation f(M,N):t, for M, N: [ll: t,12: t] in such a way that
f(inj11 (u), inj11 (u)) = f(inj1 2 (v), in1l2 (v)) = x, and f(inj1 (u), inj12 (v)) = f(injl2 (v), inj11 (u)) = y. We
deduce then from the "induction principle" that f(M, M) = x, and f((M, neg(M)) = y, identically
for M: [11: t, 12: t], hence the (equational) inconsistency when we have a fixed-point combinator.

The fact that we can use instead of {VART-COP?} + {VART-BETA} the weaker system
{VART-BETA} + {VART-CRN?} comes simply from the fact that we can "relativise" this reason-
ing to the elements of [11: t, 12: t] of the form case M of inj 11inj 12 , elements that satisfy the equation
{ VART-ETA }. I

Thus, a naive approach gives us an unattractive choice between incoherence and inconsistency!
We are saved from this by the observation that, at least in the example above, we do not seem to
need the "full" usage of {VART-CRN} but only those instances in which P is a term coming out
of a translation of an inheritance judgement, i.e., a "coercion term". Such terms are much simpler
than general terms. In particular, we note that in models based on continuous maps, such terms
denote strict maps, and in models based on stable maps, they denote linear maps. Appropriate
constructions for interpreting variants can be given in both cases, such that {VART-CRN} is sound,
as long as P ranges only over strict (or linear) maps.

Maintaining the same philosophy to our approach as in Section 3 we will try to abstractly
embody in TARGET a sufficient amount of formalism to insure the provable coherence of our
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translation. Thus, the previous discussion of variants leads us to introduce a new type constructor
s o-- t , the type of "coercions" from s to t. Consequently, the coercion assumptions a_< t that

occur in inheritance contexts must translate to variables ranging over types of coercions f: a o--+ t*.
As a consequence, the translation of bounded quantification must change:

(Va<s.t)* t'=f Va. ((aos*)=t*)

In order to express the correct versions of {VART-CRN}, we introduce a family of constants in

TARGET
tS,t : (s 0- t)--+ (s-*t)

called coercion-coercion combinators. With this, we have

{VART-CRN} t(P)(case M of 11 =. F1 ,..., 1, =>. F) = case M of l1 =e Fi; t(P),..., In Fn; t(P)

where M:[ll:it,...,In:tn], Fi:ti"- t,...,Fn::tn t, P:to-0 s .

(the complete list is in Appendix B).
In order to translate all inheritance judgements into coercion terms, we add a special set of con-

stants (coercion combinators) that "compute" the translations of the rules for deriving inheritance
judgements. To prove coherence, we axiomatize the behavior of the t-images of these combinators.

For example, the coercion combinator for the rule (ARROW) takes a pair of coercions as arguments
and yields a new coercion as value:

arrow[s, t,u,v]: (s:o-- t) (uo-+v)--+((t--+u)o--(s-v))

Since (ARROW) is a rule scheme, we naturally have a family of such combinators, indexed by
types. To simplify the notation, these types will be omitted whenever possible. The equational
property of the arrow combinator is given in terms of the coercion coercer:

t(arrow(P)(Q)) = Az: t - u. (t(P)); z; (t(Q))

where P:so-+÷t, Q:uo--+v. For the rule (TRANS), we introduce

trans[r, s, t]: (r o-+ s) - (s o-+ t) - (r o--+ t)

which, of course, behaves like composition, modulo the coercion coercer:

t(trans(P)(Q)) = t(P); t(Q)

where P: r o-+ s, Q: s o-+ t. The combinator for the rule (FORALL) is the most involved:

fora I [s, t, a, u, v] : (s o- t) -,Va. ((a o-- s) -, (u o, v)) - (Va. ((a o-- t) -- u) o- Va. ((a 0-- s) - v))

with the equational axiomatization

t(forall(P)(W)) = Az: (Va. (a o- t)--+ u). Aa. Af: a o-+ s. t(W(a)(f))(z(a)(trans(f)(P)))

where P: s o-- t, W: Va. (a o-- s) -* (u o-+ v). Of course, we have gone to the extra inconvenience
of introducing the type of coercions in order to provide a satisfactory account of variants. These
require a scheme of combinators having the types:

vart[s i,. s I ., t i,. . ,tq] : (s I 0-- t 1) " "-' (S p 0-'+ tp)-- (Q l1: s 1,. . Ip: s P] o- 11: tl, .... Ilp: tP, . , q: tq])
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And it is now possible to assert a consistent equation for these combinators:

t(vart(Ri)... (Rp)) = Aw: [11: s1 ,. ... , lp: sp]. case w of 11 =:- t(R 1 ); inj11 , . .. , lp :=, t(Rp); inj/P

where RI: sl o- t,. • ., Rp: sp o- tp . In order to prove equalities between terms of coercion type

one uses the following rule:

{IOTA-INJ} t(P) =(Q)
P=Q

which asserts that t is an injection. In fact, all of the models we give below will interpret t as an

inclusion. It is natural to ask whether the coercion coercer t could have been omitted from the

calculus in favor of a rule:
P: s o--+t

P:s -* t

This would have the unfortunate consequence that a typing judgement e: s would no longer uniquely

encode its proof and the coherence question would therefore arise again! The other combinators
and their equational properties are described in Appendix B.

We are now ready to explain how to translate our full language SOURCE (complete with

variants) into the language TARGET (with the coercion coercer and combinators). For starters,

the inheritance judgement for the function space is simply translated using the arrow combinator:

(ARROW)- C* -P F: s*o0--t* C* F- Q : u* o-v*

C* - arrow(P)(Q) : (t*- u*) -(s* -v*)

The translation of an inheritance between quantified types takes the induced coercion and a poly-
morphic function as its arguments:

C* F- P: S* o-+ t* C*, a, f: a o-s* F- Q : u* o-- v*
(FORALL)* C* F- forall(P)(Aa. Af: a o-+s*. Q): Va. ((a o•-,t*)-- u*) o-+ Va. ((a o--*s*) v*)

Other inheritance judgements are similarly translated. The real work is being done by equational

properties of the combinators.
The proofs of typing judgements are translated in a manner quite similar to how they were

translated in the fragment. For example,

P* F- M: Va.((aoo-- s*)--*t*) F- P: r* o--+ s*
[B-SPEC]s f* F- M(r*)(P) : [r*/a]t*

is affected only by indicating that the map into the bound must be a coercion. The inheritance

rule is translated by

[INH]- F* F- M: s* F* F-F : s* o- t*
P F- L(P)(M) : t*

since a coercion cannot be applied until it is made into a function by an application of the coercion

coercer. The full description of the translation of the full language is given in Appendix C. We now

turn to the proof of the central technical results of the paper.
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5 Coherence of the translation for the full calculus

In this section we prove first the coherence of the translation of inheritance judgements. This result
is then used to show the coherence of the translation of typing judgements.

The main cause for having distinct derivations of the same inheritance judgements is the rule
(TRANS). Our strategy is to show that the usage of (TRANS) can be coherently postponed to the
end of derivations (Lemma 6), and then to prove the coherence of the translation of (TRANS)-
postponed derivations (Lemma 8).

We introduce some convenient notations for the rest of this section. For any derivation A
in SOURCE, let A* be the TARGET derivation into which it is translated. We will write
C F r 0 _< ... _< r, instead of C F r0 _< r,...,C F- r,_ < r,. The composition of
coercions given by trans occurs so often that we will write P G Q instead of trans(P)(Q) . It is
easy to see, making essential use of the rule {IOTA-INJ}, that G is provably associative. We will
take advantage of this to unclutter the notation. We will also write I instead of refl . Again it is
easy to see that I is provably an identity for D ,that is, I G AM = M D I = M is provable in

TARGET.

Lemma 6 For any SOURCE derivation A yielding the inheritance judgement C F s < t
there exist types ro,. . ., r,, such that s = r0 , r. - t, and (TRANS)-free derivations A 1,..., An

yielding respectively

C ro < ... <_ r,

Moreover, if the translations A*,A7,...,A• yield respectively the (coercion) terms C* F
0 *• n o--+ r* thenP : s* t*, C* F- P1  r~ -*rt,..., C FP rn_1o- thn

C* F- P = P, 0'"P,

is provable in TARGET.

Proof: By induction on the height of the derivation A. The base is trivial since derivations
consisting of instances of (TOP), (VAR), or (REFL) are already (TRANS)-free. We present the
more interesting cases of the induction step.

Suppose A ends with an application of (ARROW). By induction hypothesis there are (TRANS)-
free derivations for

s--0 < ... < =m-t and u-wo •< ... < w=_v

(for simplicity, we omit the context). From these, using (REFL) and (ARROW) we get (TRANS)-
free derivations for

t-u- m4---u < . _o-U-s*Wo < ... < s-4w - vs-*v

(This is not most economical: one can get a derivation requiring only max(m, n), rather than
m + n, steps of (TRANS) at the end.) Proving the equality of the corresponding translations uses
the associativity of 0 and the fact that I acts like an identity, as well as

(1) arrow(P)(Q) 0 arrow(R)(S) = arrow(R 0 P)(Q 0 S)

which can be verified, in view of {IOTA-INJ}, by applying t to both sides, resulting in a simple
{BETA}-conversion.
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Suppose A ends with an application of (FORALL). By induction hypothesis there are (TRANS)-
free derivations for

C F- s=ro < ... <_ rm-t and Ca<sF- U Wo<_ ... <w, v

From these, using (REFL) and (FORALL) we get (TRANS)-free derivations for

C F- Va<t.u Va<rm.u < ... < Va<ro.u Va<s.u =-Va<s.wo < ... K Va<_s.w =-Va<s.v

Proving the equality of the corresponding translations uses

(2) forall(P)(Aa. Af: a o-+ s. Q) 0 forall(R)(Aa. Ag: a o-- t. S) =

- forall(R 0 P)(Aa. Ag: a o t. [g 0 R/f]Q 0 S)

and which can be verified by applying t to both sides.
Suppose A ends with an application of (VART). By induction hypothesis there are (TRANS)-

free derivations for
si =-r' < ... < r1 _--tl

0 n

sp-=rp < ... < rP -tp

(for simplicity, we omit the context). From these, using (REFL) and (VART) we get (TRANS)-free
derivations for
[11: Si, ..... , lp:sp] -- [11: r0• ll,:sp] _ . . < [11: r• I ,. . : s ] [11 r. I< l r , .. l:r ] _< ...

0_ nil,' ", ... n_ I.. ..

Proving the equality of the corresponding translations uses

(3) vart(Pi) ... (Pp) 0 vart(Q1) .- (Qq) = vart(Pi 0 Q1) ... (Pp (D Q p) (p K_ q).

To verify this, let L be the left hand side of the equation, R the right hand side and let w be a
fresh variable. By extensionality (or {ETA} and {XI}) and by {IOTA-INJ}, it is sufficient to show
t(L)(w) = t(R)(w). By {VART-COP}, this follows from

case w of 11 # (inj 1 ;L(L)),... , lp =: (injmu; L(L)) = case w of 11 =•- (i/ 11; L(R)),..., lp =:=- (inj 1,; L(R))

which is readily verified.

When A ends with (TRANS), we just concatenate the chains of (TRANS)-free derivations and
the equality of the translations is an immediate consequence of the associativity of 0. I

The following is used to handle one of the cases in Lemma 8 below.

Lemma 7 For any two derivations, A yielding C I- s < t and 0 yielding C, a < t F
u < v , there exists a derivation E yielding C, a < s I- u < v such that height(s) =

max(height(A), height(O)) . Moreover, if the translations A*, 0*, E* yield respectively

C' F-FP : s*&- t*, C*,a,g:ao--+ t* F- Q: uo-+ v*, C*,a,f:ao-+s* F- R: u*o--+*

then

C*,a,f:ao--+ s* F- R = [fG0P/g]Q

is provable in TARGET.
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Proof: By induction on the height of 0. 1

Lemma 8 Let A1 ,..., Am be (TRANS)-free derivations in SOURCE yielding respectively C V-

so •_ "" <_ Sm and On...,0,• be (TRANS)-free derivations yielding respectively C F- to K_
.. _ tn Let the translations A*,..., A*, e0,..., 0* yield respectively the (coercion) terms

• 1* C* P* C* *- QI: *o-+t* C* t*
C* ý- /P, s* 0- s* ,..- P- P.. s: ,* to ,.'0- n- -- tn

If so - to and s, - t, then

C* PiG ... Pm = Q1O ®...Qn

is provable in TARGET.

Proof. We begin with the following remarks:

"* If one of So,... ,sm,, to,. .. , t, is Top then the desired equality holds. Indeed, then sm

Top - t, and the equality follows from the identity

(4) P < top

which is verified by applying t to both sides (recall that 1 is a terminator).

"* Those derivations among A1,...,Am, 0 1,..., 0 n which consist entirely of one application of

(REFL) can be eliminated without loss of generality. Indeed, the corresponding coercion term
is I which acts as an identity for G.

" If none of the derivations among A 1 ,.. ., Am, 01,..., On consists of just (TOP), then those

derivations which consist of just (VAR) can also be eliminated without loss of generality.

Indeed, once we have eliminated the (REFL)'s, the (VAR)'s must form an initial segment of

both A1 ,...,Am and 01,..., On because whenever s < a is derivable, s must also be a

type variable. Let's say that so - ao,...,s =- ap- 1 , (p •i m), where A 1 ,.. .,Ap are all the

derivations consisting of just (VAR), and also that to - b,....,tq - bq-1 , (q _• n), where

01,. .. , Oq are all the derivations consisting of just of (VAR). Then, a0 <_a,..., ai <_ s8 as
well as b0obl,.. .,bq-liStq must all occur in C. But ao - so - to - b0 so by the uniqueness

of declarations in contexts, a, =- bl,..., etc. Suppose p < q. Then, sp = bp is a variable. Since

Ap+ 1 can't be just a (REFL) or a (TOP) is must be a (VAR) contradicting the maximality

of p. Thus p = q and sp = tq and the (VAR)'s can be eliminated.

We proceed to prove the lemma by induction on the maximum of the heights of the derivations

A 1 ,.. ., Am, 01,..., On. The basis of the induction is an immediate consequence of the remarks

above.
For the induction step, in the view of the remarks above, we can assume without loss

of generality that none of the derivations is just a (TOP), (VAR), or (REFL). Consequently,

A 1,..., Am, 1,.. ., e, must all end with the same rule, depending on the type construction used

in So - to .
If all derivations end in (ARROW), the desired equality follows from the induction hypothesis,

the associativity of G and the equation (1). Similarly for (VART) using the equation (3). The

desired equality in the case (FORALL) follows from the induction hypothesis using Lemma 7, from

the associativity of 0 and from the equation (2). The remaining cases are straight-forward. I
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This gives us the coherence of the translation of inheritance judgements. To state it we need
some terminology. We say that two SOURCE derivations which yield the same judgement are
congruent if their translations in TARGET yield provably equal terms. We will write A1 • A 2

for congruence of derivations. It is easy to check that ý- is in fact a congruence with respect to the
operations on derivations induced by the rules.

Lemma 9 (Coherence of the translation of inheritance) If A1 and A 2 are two SOURCE
derivations yielding the same inheritance judgement then A1  A 2  (their translations yield
provably equal terms in TARGET).

Proof: Immediate consequence of Lemmas 6 and 8 [

Before we turn to the coherence of the translation of typing judgements, we will note a few facts
about inheritance judgements that follow from Lemma 6 and that will be invoked subsequently.
These facts are closely related to the remarks opening the proof of Lemma 8.

Remark 10 If C H- s < t is derivable, s = a, a type variable, and t 0 a then

"* if t = b , also a type variable, there must exist type variables a0 ,... , a, , n > 1 such that
a -=_ao , b -=_a,, and ai-_ :_ai E C ,i= 1,...,n ;

"* if t is not a type variable, there must exist type variables ao, ... , an , n > 0 and a type u
such that a-ao, ai-:ai E C,i= 1,...,n, a.<u E C, and C F- u < t (of course,
this is trivial when t - Top );

If C F- s < t is derivable, and s is not a type variable variable, then t cannot be a type variable,
and if moreover t 0 Top , then s and t must both have the "same" outermost type constructor (as
detailed exhaustively below) and

"* ifs=S1-s8 2 and t-t 1 -- t 2 then C H-tl <_ s andC 1- 82 •5 t 2 ;

"* ifs- {ll:S1,...,lq:sq} andt I,{l:tl,...,lp:tp} then p • q and C H s, < t1 , ... ,C
s•_ tp ;

"* if s=-Va<sl.s 2 and t2-Va<t l .t 2 then C H- t 1 • s1 and C,a<tl - S2 • t 2 ;

"• if s and t are both recursive types then they must be identical;

"* if s -[ll:sl,...,lp:sp] and t- [l:t,. .. ,lq:tq] thenp< _q and C Hi s, :5 t, ... ,C H
sP < tpI

We turn now to the coherence of the translation of typing judgements, which is the central
technical result of the paper. As explained in section 3, we weaken the system by replacing the rule
(FORALL) with (W-FORALL) (see Appendix A). With this, we have the following order-theoretic
property about the inheritance judgments, which fails in the presence of (FORALL). The property
asserts the existence of conditional greatest lower bounds and of least upper bounds.

Lemma 11 Replace (FORALL) with (W-FORALL). Let C be an inheritance context and let t 1 , t 2

be types.

1. If there is an r with C H- r < ti , (i = 1,2), then there exists a type tl Fl t 2 such that



Inheritance as Implicit Coercion 19

* C F- tl r t2  4 Li, (i-1,2) and

* for anys such that C F- s < t , (i= 1,2) we have C F- s < tl rt 2 .3

2. There is a type t U Lt2 such that

* C F- tL • tULt2, (i= 1,2) and

* for anys such that C F- L: _ s , (i = 1,2) we have C F- tl Ut 2 • s.]

Proof: Because of the contravariance property of the first argument of the function space operator
manifest in the rule (ARROW), we will prove items 1 and 2 simultaneously. In view of Lemma 6, it
is sufficient to work with proofs where all instances of (TRANS) appear at the end. Since moreover
any two types have a common upper bound, Top, the statement of the lemma is equivalent to the
following formulation:

For any A\,..., Am, (TRANS)-free derivations in SOURCE yielding respectively C F uo <
•.< U" and any O1,...,On, (TRANS)-free derivations yielding respectively C F- vo <

• " Vn ,

1. if uo =_ vo, and let tL -um and t 2  v,, then there is a type tl F1 t 2 having the properties in
item 1 of the lemma;

2. if Um _ V,, and let tj - uo and t 2  vo, then there is a type tj Ui t 2 having the properties in
item 2 of the lemma.

This is shown by induction on the maximum of m, n and of the heights of
A1 , ... , Am, Ol,. . ., E). To be able to apply the induction hypothesis, a case analysis is per-
formed, depending on the structure of tL and t 2. We will only look at a few illustrative cases.
The facts listed in Remark 10 and the reasoning that produced these facts as well as the remarks
opening the proof of Lemma 8 are used throughout.

For example, if tL is a type variable in item 1, then ui is also a type variable for each i, and
ui- 1 •_ui EC,i= 1,...,n. Then, one of C ý- uo •5 -" _5 un or C b vo • .. • v, ,
must be an initial segment of the other, so tL and t 2 are comparable and tj Fl t 2 can be taken as
the smaller among them. For item 2, if tL is a type variable, then u0 5 ul E C and, by induction
hypothesis (m decreases), tL U_ t 2 can be taken to be U1 U t2 .

As another example, suppose that in item 1 tL has the form Va < s. rl. If uo = vo is a
type variable, then uo0  ul E C and vo0  vi E C hence ul =_ v, and we can apply the
induction hypothesis by eliminating A,, 01. Assume that uo - vo is not a type variable. By
Remark 10 (simplified to take into account the weakening of (FORALL)), it must have the form
Va < s. r. Again by Remark 10 t2 is either Top or has the form Va < s. r 2. If t 2 - Top then
tfl Lt2 can be taken to be tL. Otherwise, there are (TRANS)-free derivations A.,.. .,A' yielding
C, a< F u' < ... < u and E ... ,O yielding respectively C, a<u F- v' < ... < v'

where u - v' and u' = r, and v' = r 2, and where each of these derivations has strictly smaller
height than the corresponding one among A 1,... , Am, 01,. . ., On . By induction hypothesis we get
a type r, n r 2, and we can then take t nl t 2 to be Va_< s. r, n r 2. This calculation makes clear where
our proof breaks down if we were to use the more general rule (FORALL) instead of (W-FORALL).
Indeed, if the bounds on the type variables were allowed to differ, as in the more general case, we
would be unable to apply the induction hypothesis since the two contexts would differ between the
O's and the A's.

We omit the remaining cases, which use similar ideas. |
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We will use this property in the proof of Lemma 12, which is a slightly stronger result than
the actual coherence of the translation of typing judgements. Of course, the strengthening is

exploited in a proof by induction. First we introduce a definition and more convenient notations.

For derivations yielding typing judgements we define the essential height which is computed as the
usual height, with the proviso that [INH] and the rules yielding inheritance judgements do not

increase it. We will also use a special notation for describing "composition" of derivations via the
rules. We explain this notation through two examples. If E yields F F- e : s and 0 yields

f F s < t,then [INH](EO) yields r e: t. If A yields F,x:s F e: t then [ABS](A)
yields r F- Ax:s.e: s-*t.

In preparation for the proof of the next lemma, we have two remarks.

"* We have the following congruence

[INH] ( [INH] ( E , 0) , 02) Ž [INH] ( F , (TRANS) (01 , 02))

This follows from the fact that L(Q)(L(P)(M)) = t(POQ)(M) which is immediately verified.

"* Any SOURCE derivation is congruent to a derivation of the form [INH] (A, 0) where A
does not end with an application of the [INH] rule. This follows from the previous remark
and, in the case when the original derivation did not end in [INH], from

A c [INH] (A, (REFL))

which in turn follows from M = t()(M).

Lemma 12 Replace (FORALL) with (W-FORALL). For any two SOURCE derivations, Ai
yielding F F- e: ti , (i= 1,2) , there exists a type s, a derivation E yielding F F- e : s and two

derivations Oi yielding r F s < ti , (i = 1,2) such that

Ai -- [INH] (E ,O0i) , (i =1, 2).

Proof: By induction on the maximum of the essential heights of A1 , A 2 . In view of the previous
remarks, it is sufficient to prove the statement of the lemma assuming that neither A1 nor A 2

ends in [INH] (but we retain the actual statement of the lemma in the induction hypothesis). For
such derivations, A1 and A 2 must end with the same rule (which rule, depends on the structure of

e). We do a case analysis according to this last rule, and we include here only the cases which we
believe are important for the understanding of the result (even if their treatment is straightforward)
as well as some cases which are particularly complex. We will call the type s , whose existence is
the essence of the result, the common type.

Rule [VAR]. It must be the case that tl = t 2 = r where x: r occurs in r. Consequently, the
treatment of this rule is trivial: take the common type to be r , E =- [VAR] , and 01 = 02

(REFL).
The introduction rules are quite simple and we illustrate them with the rule [ABS]. Suppose

that Ai -[ABS] (A') and that Ai yields r F- Ax: s.e: s--ti (s is the same since it appears in

the term), thus Aý yields I, x: s F- e : ti , (i = 1,2). Apply the induction hypothesis to A', A'
obtaining r, E', 0', 0'. Also by induction hypothesis,

Ai [ABS]([INH](E',0)), (i = 1,2).

We claim that the right hand side is congruent to

[INH] ( [ABS] (V'), (APRROW) ( (REFL), 0')).
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This implies that the statement of the lemma holds for A1 , A 2 , with common type s -* r , with

E - [ABS] ( ') , and with Oi =- (ARROW) ((REFL), 0), (i = 1,2). The congruence claim

follows from
Ax: s. t(P)(M) = L(arrow(I)(P)(Ax: s. M)

which is readily verified.

Rule[B-SPEC]. To simplify the notation, we omit the contexts. Suppose that Ai
[B - SPEC] (At, Ei) and that Ai yields e(r) : [r/a]ti (r is the same since it appears in the

term and we can take the bound variable to be the same without loss of generality), thus A' yields

e : Va < si. ti and =i yields r < si , (i = 1, 2) . Apply the induction hypothesis to A',A'

obtaining w, E', 0', 0%. Also by induction hypothesis,

(5) Ai [B - SPEC] ( [INH] (V', Y) , , (i 1,2).

Since w < Va < si. ti , (i = 1,2) it follows from Remark 10 (simplified to take into account
the weakening of (FORALL)) that there must exist types u, v such that si - u , a< si s- v <

4, (i= 1,2) and w < Va K u. v are derivable. It follows that r < u ,and, by Lemma 7, that
a < r - v < ti , (i = 1, 2) are derivable. Next, we will use the following sublemma:

Sublernma For any derivation A yielding C, a< r F- s < t there exists a derivation

E yielding C I- [r/a]s < [r/a]t such that, if the translations A*, E* yield respectively

C*, a, f:ao--*r* F- P s* o)t* , C* - Q : [r*/a]s* o-,+[r*/a]t*

then

C* - Q = (Aa. Af: a o-+ r*. P)(r*)(I)

is provable in TARGET. |

The sublemma is proved by induction on the height of A and is omitted. The sublemma allows us

to obtain [r/a]v < [r/a]ti from a< r I- v < ti , (i = 1,2) . Let 0i be some derivation of
[r/a]v < [r/a]ti , (i = 1,2) . Let E be some derivation of r < u. Let £ be some derivation of

w < Va < u. v . One can readily verify that the right hand side of (5) is congruent to

[INH] ([B - SPEC] ([INH] ( E', l) , E-), Oi)

This implies that the statement of the lemma holds for A1 , A 2 , with common type [r/a]v , with
E =- [B - SPEC] ([INH] (V', £2), -) , and with Oi being just Oi, (i = 1,2). (Note. There is

no difficulty in dealing with (FORALL) instead of (W-FORALL) here: si =- u would be simply
replaced by si < u .)

Rule[R-ELIM]. Suppose that Ai - [R - ELIM] (A') and that Ai yields F r -
elim e : [jiai. ti/ai]ti , thus Aý yields r F- e : Ipai. ti , (i = 1,2);. Apply the induction

hypothesis to A', A' obtaining s', V', 0', 0'. Also by induction hypothesis,

Ai t- [R - ELIM] ([INH](' 0Oý), (i = 1, 2).

Since s' <K pai. ti , (i = 1, 2) are derivable, it follows from Remark 10 that there must exist a, t

such that pai. ti =,a. t , (i = 1, 2) and s' < Ma. t are derivable. Let 0' be any derivation of

S' < pia. t . Since by Lemma 9, 0' - 0' - 0' ,the statement of the lemma holds with common
type [ya. t/a]t , with E = [R - ELIM] ([INH] ( ', 0')), and with Oi =- (REFL) , (i = 1, 2).
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Rule[CASE]. Again, to simplify the notation, we omit the contexts. Suppose that Ai
[CASE] (A•, A~4,..., A'i) and that Ai yields case e of 11 tif,... f i, thus Aý yields
e : [I1: ti, In,.: t] , and Yi yield fj : tjit , (j = , ., n), (i = 1, 2) . Apply the induction
hypothesis to A, A' obtaining s, E', 0', 0. Also apply the induction hypothesis, to AY, A2

obtaining sj, E', O/1, Oj2 , (j = 1,..., n) . By induction hypothesis,
(6) A =[CASE]([INH](Y, Oý),[INH](E',Os),..., [INH](Y;,O®•)), (i- 1,2).

Since s < [l1:tl,.i..,lI:tni] , (i = 1,2) are derivable, it follows again from Remark 10 that
there must exist m < n and types rl,...,rm such that rl _< tli,...,rm < tmi , (i = 1,2)
and s _ [li:rl,. . .,lm:rm] are derivable. Again similarly, for each of j = 1,...,n, , since

Sj < tji -+ ti , (i = 1,2) are derivable, there must exist uj,vj such that tji < uj
and vj < ti, (i 1,2) as well as sj <_ j-- vj are derivable. Thus, we can derive
rj _ tji <_ uj ,(j -1, ... ,n), (i = 1,2). However, the fact that the vj's may be distinct causes
a problem when we want to apply [CASE]. This is resolved by Lemma 11. Since n > 1 , there
exists a common lower bound of t, and t2 (say vl) hence v = tl nl t 2 exists and we can derive
vj < v < ti , (j = 1,..., n), (i = 1,2) . We conclude that there exists a derivation 0" of
5_< [11: ul,.. . , ln: u�] ,that there exist derivations 05' of sj <_ uj-*v , (j= 1,...,n) and that
there exist derivations Oi of v < ti , (i = 1,2) . With these, we claim that the right hand side
of (6) is congruent to

[INH] ([CASE] ( [INH](E', 0"), [INH] ( E , 0') ,..., [INH] ( E' , E))) , OQ)

This implies that the statement of the lemma holds for AlA 2, with common type v , with
[CASE] ([INH] (E', 0"), [INH](E, 0('),..., [INH] (E' , 0")) , and with Oi being just Oi,

(i= 1, 2).
To prove the congruence claim we introduce notations for certain derivations of inheritance

judgements whose existence we have established. For each j = 1,.. ., n, i = 1,2, let --j be some
derivation for tji <_ uj . Then, (ARROW) (-Eji, 0%) is a derivation for uj v < tji--+ti. By
Lemma 9 we have
(7) Oi t (TRANS) (0)', (ARROW) (Eji, OQ))

Let E be some derivation of s < [l:ri,...,lm:rm] . For each j = 1,...,m, i = 1,2, let fQji be
some derivation for rj < tji . By Lemma 9 we have
(8) 0' (TRANS)( E, (VART)(%l,..., Slmi))

and

(9) 0" • (TRANS) (-=, (TRANS) ((VART) (Qfli,..., flmi), (VART) (EI•,..., ))) .

With these, the congruence claim follows from

case t(PGvart(Ql) ... (Qm))(M) of 11 • t(Rl(3arrow(Sl)(T))(F 1),. .. , 1, =2; t(Rn arrow(S,)(T))(Fn)=

= t(T)(case L(Povart(Qi) ... (Qm)Ovart(Si) . .(Sn))(M) of 11 :=• t(R 1 )(F 1 ),. .. , 1, ::> t(R,2 )(Fn))

By (3) and {VART-CRN} the right hand side equals

case t(P 0) vart(Ql G0 S) ..). (Qm 0 Sm))(M) of 11 :>( t(Ri)(F)); t(T) ., i:> t(Rn)(Fn); t(T)

and the equality is readily verified. I
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Theorem 13 (Coherence) Replace (FORALL) with (W-FORALL). If A, and A 2 are two
SOURCE derivations yielding the same typing judgement then Al - A 2  (their translations
yield provably equal terms in TARGET).

Proof: Take tl- =t 2 in Lemma 12. By Lemma 9, 01 02 . It follows that A1  A 2 .

6 Models

So far we have not actually given a model for the language SOURCE. In this section we correct
this omission. However, it is a central point of this paper that there is basically nothing new that

we need to do in this section, since calculi satisfying the equational theory of TARGET have been
thoroughly studied in the literature on the semantics of type systems. Domain-theoretic semantics
suggests natural candidates for a special class of maps with the properties needed to interpret the
operators - and o--*. Here we present list some of these semantic solutions; all of which apply
to abstract types as well as to variants. A syntactic version could also be given by a syntactic
translation into an extension of the target calculus of section 2, which expresses the properties

mentioned above and the consistency of which is ensured by our semantic considerations.
The domain-theoretic interpretations that we have examined so far are summarized in the

following table. The necessary properties for all but the last row can be found in [TT87, HP89b],

[CGW89],[ABL86], [CGW87], and [Gir87] respectively. The properties needed for the last row can
be checked in a manner similar to [Gir87].

TYPES TERMS COERCIONS VARIANTS
Algebraic lattices bistrict maps sep sum of lattices

Scott domains continuous maps strict maps
Finitary projections separated sums

dI domains strict stable maps
coherent spaces stable maps linear maps !AE!B

dI domains "

By a bistrict map of lattices we mean a continuous map which preserves both bottom and
top elements. A separated sum of lattices L and M is the disjoint sum of L and M together
with new top and bottom elements. Note that the category of Scott domains (finitary projections,

respectively) and strict maps does have finite coproducts, given by coalesced sums of domains, and
this implies that the required equation

{VART-CRN?} P(case M of l =F 1 ,...,l,, =F,) = case M of 1 =.F 1;P,...,1,,=.F,;P

holds if P is a strict map (in fact, a separated sum of domains A and B is just the coalesced sum
of the lifted domains A 1 and B±). Furthermore, it may be checked that strictness is preserved by
the formation of coercion maps from given ones according to the coercion rules given in section 3

and at the beginning of this section. This model satisfies also {VART-BETA}+{VART-ETA}. An
important property used in the case of Scott domains (finitary projections, respectively) is that the
continuous maps from C to D are in one-to-one correspondence with the strict maps from C± to

D. Analogous remarks hold for stable maps and linear maps, with !C instead of C1 (see [Gir89],

Chapter 8).
From a category-theoretic point of view, the main point is that we are dealing with two cate-

gories, one a reflective subcategory of the other, i.e. the inclusion functor has a left adjoint. The
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subcategory contains all objects of the larger category. While the larger category is cartesian closed,
the reflective subcategory (in which our coercions live) does have coproducts.

From a proof-theoretic point of view, it is interesting to note that our solution is similar to the
treatment of proof-theoretic commutation rules for disjunction (see [Tro73], 4.1.3, on page 279 for a
presentation of commutation rules). The so-called commutation rules for sums in proof theory are
closely related to the equations {VART-CRN?} where P is an "evaluation" map (see the Appendix
B of [Gir88]).

7 Conclusions and directions for further investigation

The development of calculi for the representation of inheritance polymorphism and the semantics
of such calculi is a growing and dynamic area of research investigation in programming languages.

We expect that the calculi considered in this paper are only a small sample of what is yet to
be developed. In this section we will speculate on a few of the most important directions for
further development which will play a significant role in future work of the authors of this paper
in particular and the research community in general.

Partial Equivalence Relations. Much of the research on the semantics of the system which we
have considered has been based on the use of PER's as described by Bruce and Longo [BL88]. It is
therefore worthwhile to compare the approach in this paper to this alternative approach. There is an
evident means of carrying out a technical comparison: since the PER model interprets the calculus
TARGET, it also interprets SOURCE via our translation. But the semantics in [BL88] gives the
interpretation (without recursion) directly using PER's. Could these two interpretations be the
same? For a certain fragment of SOURCE (including recursion but not bounded quantification),

Cardone has recently answered the question in the affirmative for his form of semantics [Car89b]
(where coherence is not an issue because the interpretation of a judgement e: s is given as the

equivalence class, in s, of the interpretation of the erasure of e-hence the meaning is not defined
inductively on a derivation). For the full calculus the answer is still unknown as this paper is being
written. Amadio's thesis contains some results about the relationship between explicit coercions
and PER inclusion [Ama9l].

Equational Theory. The reader has probably noted that we have never offered an equational theory
for SOURCE, only one for TARGET. At the current time, the proper equational theory for
SOURCE is still a subject of active research. However, our translation does suggest an equational
theory. One can prove that two terms of SOURCE are equal by showing that their translations
are equivalent in the equational theory for TARGET. Any of the models we have proposed will

satisfy the resulting equational theory. (Whether this is also true of the interpretation of [BL88]
may follow if this interpretation is the same as ours.) Since our translation is computable, it follows
that this reflected equational theory for SOURCE is recursively enumerable; it is natural to ask
for a reasonable axiomatization of this theory. Note, for example, if e = e': s holds in SOURCE
and s < t, then e = e': t also holds in the reflected theory. There are probably many similarly
interesting derived equational rules.

Recursion Any attempt to provide a model for a calculus which combines inheritance and recursion
must deal with the seemingly contradictory semantic characteristics of inheritance and recursion at
higher types. Ordinarily, the rule for inheritance between exponentials (function spaces) is given

as follows:
u<s t<v

s--* t < u---+ V
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where s, t, u, v are type expressions and < is the relation of inheritance (reading s < t as "s
inherits from t"). Note, in particular, the contravariance in the first argument of the -* operator.
In contrast, semantic domains which solve recursive domain equations such as D = D --* D are
generally constructed using a technique-adjoint pairs to be precise-which make it possible to
"order" types using a concept of approximation based on the rule

where 0 = (OL, OR) and 0 = (OL,€ R) are adjoint pairs and 0 -+ ? is the adjoint pair

(Af. 71L o f o OR, Af. OR o f o kL). Note, for this case, the covariance in the first argument of
the --* operator. Because of this difference, models such as the PER interpretation of Bruce and
Longo [BL88], which provides a semantics for inheritance and parametric polymorphism, do not
evidently extend to a semantics for recursive types. To provide for recursive types under this
interpretation M. Coppo and M. Zacchi [Cop85, CZ86] utilize an appeal to the structure of the un-
derlying universal domain, which is itself an inverse limit which solves a recursive equation. R. Ama-
dio [Ama89, Ama90] and F. Cardone [Car89b] have explored this approach in considerable detail.
There has also been progress on understanding the solution of recursive equations over domains
internally to the PER model which should provide further insights [FMRS89, Fre89]. On the other
hand, models such as those of Girard [Gir86] and Coquand, Gunter and Winskel [CGW87, CGW89],
which handle parametric polymorphism and recursive types, do not provide an evident interpreta-
tion for inheritance. It has been the purpose of this paper to resolve this problem by an appeal
to the paradigm of "inheritance and implicit coercion". However, this leaves open the question of
how recursive types can be treated with this technique if one is to include a more powerful set of
rules for deriving inheritance judgements between recursive types.

One complicating problem is to decide exactly what form of inheritance between recursive types
is desired. For example, it seems very reasonable that if s is a subtype of t then the type of lists
of s's should be a subtype of lists of t's. This is not actually derivable in the inheritance system
described in this paper since there are no rules for inheritance between recursive types. But care
must be taken: if s is a subtype if t then is the solution of the equations a = a -- s be a subtype of
the solution of a = a --* t? There are several possible approaches to answering this question. The
PER interpretation provides a good guide: we can ask whether the solutions of these two equations
have the desired relation in the PER model. Concerning the coercions approach we are forced to
ask whether there is any intuitive coercion between these two types. If there is, we have not seen
it! It is reasonable to conjecture that inheritance relations derived using the following rule will be
acceptable:

(REC) C, a< Top I- s < t

C -- pa.s < pa.t

where types s and t have only positive occurrences of the variable a. Unfortunately, this misses
many interesting inheritance relations that one would like to settle. Discussions of this problem
will appear in several future publications on this subject. A rather satisfactory treatment using
coercions has been described in [BGS89] by using the "Amber rule" of Cardelli [Car86].

Operational semantics. Despite its importance there is virtually no literature on theoretical issues
concerning the operational semantics of languages with inheritance polymorphism. In particular,
at the time we are writing there are no published discussions of the relationship (if any!) of the
denotational models which have been studied to the intended operational semantics of a program-
ming language based on the models. In fact, the operational semantics of no existing "practical"
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programming language is based on the kind of semantics discussed in this or any of the other papers
on the semantics of Fun. This is because there is a divergence between the "traditional" style of
semantics for the A-calculus and the way the evaluation mechanisms of modern functional program-
ming languages actually work. In particular, no functional programming language in common use
evaluates past a lambda abstraction. Hence the identification of the constantly divergent function
with the divergent element will cause the denotational semantics to fail to be computationally ad-
equate with respect to the evaluation. Another related problem concerns the use of the /3-rule and
call-by-value evaluation. Many of the functional programming languages now in use evaluate all
actual function parameters. This evaluation strategy immediately causes the full /3-rule to fail. For

example, the application of a constant function to a divergent argument will diverge in general.
Semantically, this means that terms of higher type must be interpreted as strict functions. In a sub-
sequent paper [BGS90], three of the authors of the current document have explored the operational
semantics of inheritance with a coercion semantics in a call-by-value setting. The results there are
intuitively pleasing, but there is much more that needs to be done. This direction of investigation
offers several opportunities for practical applications of the specification and implementation of
compilers and interpreters for new languages with inheritance.

Existentials. We have omitted discussion of existentials in this paper. We believe that the coherence
results we have described will extend to a suitable interpretation of the existential types using the
equational theory for weak sums, but did not choose to involve ourselves in additional cases that
this would mean for our proofs.

Order-sorted algebra. The use of coercions in a first-order setting has been investigated in work of
J. A. Goguen, J-P. Jouannaud and J. Meseguer on order-sorted algebras [GJM85, GM]. In partic-
ular, the implementation of OBJ2 utilized a form of "inheritance as implicit coercion" approach.
Related work by Bruce and Wegner appears in [BW90].

Abstract coherence. Since there are many different calculi for which a coherence theorem is inter-
esting, it is very useful to have a more abstract theory from which special instances of coherence
can be derived, thus making coherence a more routine part of a semantic theory for an inheritance
calculus such as the one we have discussed. We mentioned earlier that coherence was an issue in
category theory and this might provide a framework for a more general theory. (Although, the
results on coherence in the category theory literature are insufficient for the results of this paper
so further extensions will be needed). Using rewriting techniques, Curien and Ghelli have devel-
oped a type-theoretic approach to the abstract coherence problem for F< which is a subsystem
of SOURCE featuring only function and bounded generic types [CG90]. It would be interesting
to see this technique extended to all of SOURCE, especially in view of the complications we
encountered with variants.

Subtyping of bounded quantification. Our main coherence result was proved for a weaker version
of the system, one that uses the rule (W-FORALL) instead of (FORALL) (see Appendix A). We
believe that this is only a technical restriction that arose from our particular proof, and that
coherence holds for the stronger system. A proof would however require a way to circumvent the

usage of Lemma 11 in the treatment of the [CASE] rule in Lemma 12, since Lemma 11 fails when
(FORALL) is postulated (for a counterexample, see Giorgio Gell's dissertation [Ghe9O]). Perhaps

greatest lower bounds and least upper bounds can be replaced by some canonical choice of lower
and upper bounds, a choice that may result from the derivation of the typing judgement itself.

Record update. For practical applications of calculi such as Fun, a particularly important problem
concerns the semantics of "record update". The idea is this: given a function f: s - t and a record
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e with a field I of type s, we would like to modify or update the I field of e by replacing e.l by f(e.l)

without losing or modifying any of the other fields of e. The development of calculi which can deal
with this form of polymorphism and the ways in which Fun and related languages can be used to

represent similar techniques are an object of considerable current investigation. One recent effort

in this direction is [CM89] but several other efforts are under way. Despite its importance we have

not explored this issue in this paper since the discussion about it is very unsettled and it will merit

independent treatment at a later date.

We believe that the "inheritance as implicit coercion" method is quite robust. For example, it

easily extends to accommodate "constant" inheritances between base types, such as int < real,

as long as coherence conditions similar to the ones arising in the proofs of the relevant lemmas in

this paper hold between the the constant coercions which interpret these inheritances. Moreover,

we expect that our methods will extend to the functional part of Quest [Car89a] and to the language

described in [CM89], using the techniques of Coquand [Coq88] and Lamarche [Lam88]. Current
work on inheritance and subtyping such as [CHC90] and [Mit90] will provide new challenges. We

do not claim that every interesting aspect of inheritance can necessarily be handled in this way.
However, our treatment, by showing that inheritance can be uniformly eliminated in favor of

definable coercion, provides a challenge to formalisms which purport to introduce inheritance as a

fundamentally new concept. Moreover, our basic approach to the semantics of inheritance should

provide a useful contrast with other approaches.
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Appendix A: The language SOURCE

Type expressions:
Fragment: a I Top I s-t I {ll: 1,.. .,m:sm} I Va<s.t ya.t
Variants: I [ 1: ... , l,,: t,]
where a ranges over type variables, m, n > 1, and, in Va < s. t a cannot be free in s. We will

use [s/a]t for substitution.

Raw terms:
Fragment:

x Id(e) I Ax:t. e 1 {li=e1,...,1,=em} I e.l I Aa<t. e Ie(t) Iintro[yta. t]e I elim e

Variants:
[[/ltx, .. ,i~e, .. ,,•:,•] case e of 11 f , .,, f

where x ranges over (term) variables and m, n > 1. (Note the type decorations on variant
"injections"; this is necessary for the uniqueness of type derivations in the inheritance-less system
and it differs from [CW85].)

Raw terms are type-checked by deriving typing judgements, of the form r I- e : t . where
r is a context. Contexts are defined recursively as follows: 0 is a context; if r is a context which
does not declare a, and the free variables of t are declared in F, then r, a < t is a context; if r is
"a context which does not declare x, and the free variables of t are declared in r, then F, x: t is
"a context. The proof system for deriving typing judgements makes use of inheritance judgements
which have the form C I- s < t where C is an inheritance context. Inheritance contexts are
contexts in which only declarations of the form a < t appear. If r is a context, we denoted by
the inheritance context obtained from r by erasing the declarations of the form x: t.

Rules for deriving inheritance judgements:

Fragment:

(TOP) C F- t < Top

where the free variables of t are declared in C

(VAR) C1, a<t, C2 H- a < t

(ARROW) C I- s < t C F- u < V

C F t-u < s--v

C H- s 1 <_ t1  "" C .s. < t.
(RECD) C F- {l!:Sl,...,lp:Sp,...,lq:sq} < {l 1:tl,...,lp:tp}
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C F s < t C,a<s I- u < v
(FORALL) C I- Va<t.u < Va<s.v

For Lemmas 11 and 12, and for Theorem 13 this is replaced with the weaker

C,a<t F- u < v
(W-FORALL) C F- Va<t.u < Va<t.v

(REFL) C V- t < t

where the free variables of t are declared in C

C r <s CF-s<t
(TRANS) C ý- r < t

Variants:

(VR)C •-S _t, ... C f- sv <ý tP
( R )C P- [ll:Sl, . .. p: sp] :ý [ll: t1, . .. ,Ip:tP,...,l1q: tq]

Rules for deriving typing judgements:

Fragment:

[VAR] F1 , x: t, F2 F- x : t

[ABS] 
r, x: 5 F- e: t

r F- Ax:s.e: s--t

[APPL] r I- d: s-t r e:
F P- d(e): t

Dr el : t ... r P F em:, m
[RECD] I" F {l--el,...,lm-•em} {li:t,.. .,lm:tm}
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[SEL] r F- e: {ltl,..,lm: t,}
Fr e.1i t

[B-GEN] r a<s F- e : t
rBGN Aa <s. e Va <s. t

[B-SPEC] F I- e:Va <s. t f F-r < s
r e(r) :[r/a]t

[R-INTRP r e :[tia. t/a]t
[R-ITRr F F introfjia. t]e : pua. t

[R-ELIM] I'F e: pa. t
{R-EIr F F elim e: [pia. t/a]t

[INIL] rFPe :s f ý 8< t

Variants:

[VARTF F e t

r 1: 1,..l:~ F F fi tj.,I-itjF F f,.,

rCSE F-F case eof 11f,... ,=>f t
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Appendix B: The language TARGET

Type expressions:

Fragment: aI s--t I {ll:si,...,lm:sm} I Va. t I Ma.t

Variants: I [ 1 :t,. ,: t]

Coercion space: s o-* t

where a ranges over type variables and n > 1. For m = 0 we get the empty record type 1 {}.

Raw terms:
Fragment:

x I M(N) I Ax:t.M {l M1,..,m= Mm} I M.1 I Aa. M I M(t) i ntro[ta. t]M I elim M

Variants:
1 [/l: ti I...,l1i=M ,-... 7In: tn] I case M of 11=*.Fl,...,ln, :ý- F,

Coercion-coercion combinator:

I ts,t

Coercion combinators:

I top[t] I arrow[s, t, u, v] I recd[sl,.... I sq, t,..., tp] I forall[s, t, a, u, v]

vart~sl,... , sp, t1,..., tq] Irefl[t] Itrans[r, s, t]

where x ranges over (term) variables and n > 1. For m = 0 we get the empty record, for which

we will keep the notation {} . We will usually omit the cumbersome type tags on the coercion(-

coercion) combinators. We use [N/x]M for substitution.
Typing judgements, have the form T I- M : t , where T is a typing context. Typing contexts

are defined recursively as follows: 0 is a context; if T is a context which does not declare a, then
T, a is a typing context; if T is a context which does not declare x, and the free variables of t are
declared in T, then T, x: t is a typing context.

Rules for deriving typing judgements:

Fragment:

Same as in Appendix A: [VAR] , [ABS] , [APPL] , [RECD] (in particular, for n = 0, T I-
{} 1), [SEL].

(GEN] T,a P M: t

T F- Aa.M: Va.t

[SPEC] T P- M:Va.t

T F- M(s): [s/a]t

Same as in Appendix A: [R-INTRO] , [R-ELIM].
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Variants:

Same as in Appendix A: [VART] [CASE].

Coercion(-coercion) combinators:
We omit the typing contexts to simplify the notation.

Ls,t : (So--, t)-,(S- t)

top[t] : t o-l 1

arrow[s, t, u, v] : (sot)--(uov) tu) (sv))

recd[sl,. .. , sp, ti,. . ., tp]: (51 0- tl ) - -+ ---+ (Sp 0- tp) '• ( {/1: 81,...-, Ip: Sp,... -, 1q: Sq } 0- {/1: t1,..., lp: tp })

forall[s,tt,a, u, v] : (so---+ t)--+Va. ((a o--v s)-(uo--+ v))-:(Va. ((a o--) t)-- u)o-- Va. ((ao--+ S)--+ v))

vart[S1, ... , Sp, t i, . .- , tq] : (S1 0- t 1) - ' "" - (Sp 0- ' tp) - ([11: S1, .- 1p: Sp] o--- [/11: tl,... .I p: tp, ... , Ilq: tq])

refl [t] : t o-- t

transr,,] : t)

Equational theory:
Technically, equational judgements should all contain a typing context under which both terms

in the equation typecheck with the same type [CGW87, BC88, CGW89]. To simplify the notation,
we will in most cases omit these contexts.

Fragment:
We omit the simple rules for reflexivity, symmetry, transitivity, and congruence with respect

to function application, record formation, field selection, application to types, recursive type intro-
Aduction, and recursive type elimination.

T, x:s ý- M = N
T F- Ax: s.M Ax:s.N

T,aF-M=N
{TYPE-XI} T ,- Aa.M = Aa.N
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{BETA} (Ax:s.M)(N) = [N/X]AM

where N s

{ETA} Ax: s. M(x) = M

where M: s--+t and x not free in M.

{RECD-BETA} {1M 1 ,.1..,I=Mm.li = Mi

where mn > 1, Ml:ii,...,Mm:ttm

{RECD-ETA} {li =M.l,...,l=M.l,} = M

where M 1l: ti,. .,lIm} . For m= 0, this rule gives {} = M which makes 1 into a

terminator.

{FORALL-BETA} (Aa.M)(r) = [r/a]M

{FORALL-ETA} Aa. M(a) = M

where M: Va. t and a not free in M.

{R-BETA} elim (intro[pia. ti]M) = M

where M: pa.t.

{R-ETA} intro[pa. t](elim M) = M

where M : [ya. t/a]t.

Variants:

We omit the simple rules for congruence with respect to variant formation, and case analysis.
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{VART-BETA} case inj1,(MAl) of l F, ,l 2 F = Fi(Mt1J)

where F, t t,.., F,, t, --+ t, Mi ti and mi1.i is shorthand for

{VART-ETA} case Ml of 11 #- injl,....,4. M i ~

where Ml: [11:t 1 ,.. .,1In: t7 ]

{VART-CRN} t(P)(case Mof11 #. F1,..- , In 2 ý'Fn) = case Mlof11 Fi; t(P),... ,lIn =tF 2 ; I(P)

where M~: [11: t,...-,lIn: t 7 ], Fi:tii-'t,.-.-., Fn: t7 2 *t, P: to0-S
Alternatively, we could require instead of f VART-ETA } + f VART-CRN }:

{VART-COP} L(Q)(A/) = case Ml of 11 z=> (mi11l; t(Q)),. ... , In2 •:ý (mi1j; t(Q))

where Ml: [11: tj,. I,1In: t7 ], Q: [11: ti, In .1:t 72] 0- t

Coercion (-coercion) combinators:

t(top) = Ax: t. {

t(arrow(P)(Q)) =Az: t-*u.(tP)z; (t(Q))

where P:so---t, Q:uca--+v.

where R 1 : sio--*ti, .-. , RP: SPo--* tp

L(forall(P)(W)) = Az: (Va. (ao--#t)-÷u). Aa. Af:ao-*s. t(W(a)(f))(z(a)(trans(f)(P)))

where P: so-- i, W: Va. (a o-* s) -(u o-v).

t(vart(R1 ) ... (Rp)) = Aw:[Eli: si. ... I li,: Sp,. case w of 11 =ý'.t(RI); minj*,. . ., Ip=ý t(Rp); mij1

where RI: si o-ý tl,. .. , R2P: sP o--+*

t(refl) = Ax:t.x

L(trans(P)(Q)) =t(P); t(Q)

where P:ro--*s, Q:so--*t.

{ IOTA- INTJ} '(P) =t(Q)
P Q
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Appendix C: The translation

We present first the remaining of the translation of the fragment discussed in section 3.

(VAR)* C, a,f :a t*,C I- f: a t*

C* PP 31-t* ... C* P t

C* 1- P1 : s1-*tl C [-- P : S--t
(RECD)-*

C* [- R : - sl *,. .. , lp: 8*,...,Ilq: 3 {ll: tl,. .. ,Ip: t }

where R def Aw:{l:s,.. :s.,i . .. , }. l:, . . ., l,:PP(w.lP)}

(REFL)* C* P- Ax:t*.x : t* t*

where the free variables of t* are declared in C*

C* P P : r* Cs* 0* P Q : t*
(TRANS)* C* b P;Q: r*-+t*

The rules [VAR] , [ABS] , [APPL] , [RECD] , [SEL] , [R-INTRO] , [R-ELIM] are translated
straightforwardly, see below. Here is the translation of the only other rule left (the translations of
the other rules appears in section 3).

[B-GEN] r*, a, f:a s* P- M: t*

-* P Aa. Af:a-s*.M : Va.((a-+s*)--t*)

In the following, we present the translation for the full calculus. As before, for any SOURCE
item we will denote by item* its translation into TARGET . We begin with the types. Note the
translation of bounded generics and of Top.

a def a (Va<_s.t)* defVa.((ao--s*) t*)

* i *g deTop* 1 (Ma. t)* pa. t*

.e * = llf,. .

defr

where s x t = {left: s, right: t}
One shows immediately that ([s/a]t)* [s*/a]t* . We extend this to contexts and inheritance

contexts, which translate into just typing contexts in TARGET .

0 d e f 0 •*•. ef 0

(F, a<t)* def_ *, a, f:ao--,*t* (C, a<t)* C*, a, f:ao--+t*

(r,x:t)* =-f r*, x:t*
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where f is a fresh variable for each (a, f).
Next we will describe how we translate the derivations of judgments of SOURCE . The transla-

tion is defined by recursion on the structure of the derivation trees. Since these are freely generated
by the derivation rules, it is sufficient to provide for each derivation rule of SOURCE a corre-
sponding rule on trees of TARGET judgments. One then checks that these corresponding rules
are directly derivable in TARGET (Lemma 14 below), therefore the translation takes derivations
in SOURCE into derivations in TARGET.

A SOURCE derivation yielding an inheritance judgment C F- s < t is translated as a
tree of TARGET judgments yielding C* F- P : s* o-- t* . Here are the TARGET rules that
correspond to the rules for deriving inheritance judgements in SOURCE.

(TOP)* C* F- top : t* o-+ 1

(VAR)- C*, a, f:ao-+t*, C* F- f: ao&--t*

(ARROW) C* P- P : * o--* t* C* P- Q : u* o- v*
C* - arrow(P)(Q) (:* , u*) o--*(s* v*)

C* P- P, • - t* ... C* P- PP : sp 0--+ t*
(RECD)* 1 0 P P

C* P recd(Pi) .. (P): {/ll: s,...,lp: s;,...,lq:s }o--+{l::t,...,lp:t;}

C* F- P: s* o-t* C*, a, f: a o-* s F- Q: u*o--+ v*
C* F- forall(P)(Aa. Af: a o--+ s*. Q): Va. ((a o-- t*)-+u*) o-- Va. ((a o-+ s*) v*)

C* F- PI : sto-*t+ "" C* F- Pp : SpO-- t;(VART)- C* F- vart(PI)-.. (Pp) : [11: s*,..., l4: s*] o---*[l: t*,..., lp: t*,...,I lq: t]

(REFL)* C* I refl :t* &-- t*

where the free variables of t* are declared in C*

C* F- P: r*o--*s* C* F- Q: s*o-t*
(TRANS)* C* F- trans(P)(Q) : r* o--t*
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A SOURCE derivation yielding an typing judgment F I- e : t is translated as a tree of

TARGET judgments yielding F* F- M : t* . Here are the TARGET rules that correspond to
the rules for deriving typing judgements in SOURCE.

The rules [VAR] , [ABS] , [APPL] , [RECD] , [SEL] , [R-INTRO] , [R-ELIM] , [VART], [CASE]

all have direct correspondents in TARGET so their translation is straightforward. We ilustrate it

with two examples.

[VAR]* Ft, X:t*, F- x: t*

[ABS]* F*, X s* F- M :t*

[ ]F* - AX:s*.M: s*-*t*

Here is the translation of the other three rules.

[B-GEN] 1*, a, f:ao-- s* F M:t*

[F* ý- Aa. Af:ao--+s*.M: Va.((ao--*s*)-*t*)

P* F- M: Va.((ao-+s*)--t*) f1* F- P: r*o-+s*
[B-SPEC]* r" F- M(r-)(P): [r*/a]t*

[INH]f r* F- M: s* F*- P : s*o-+t*

r* F t(P)(M): t*

Lemma 14 The rules (TOP)* - (TRANS)* and [VAR]* - [INH]* are directly derivable in TAR-

GET.I
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COMPUTING WITH COERCIONS'
(Extended Abstract)

V. Breazu-Tannen C. A. Gunter A. Scedrov

University of Pennsylvania

Abstract. This paper relates two views of the operational semantics of a language with multiple
inheritance. It is shown that the introduction of explicit coercions as an interpretation for the
implicit coercion of inheritance does not affect the evaluation of a program in an essential
way. The result is proved by semantic means using a denotational model and a computational
adequacy result to relate the operational and denotational semantics.

1 Introduction

There have been a number of efforts to understand the denotational semantics of inheritance poly-
morphism and a variety of mathematical models for languages with subtle semantic features have
been discovered. However, as far as the authors of this paper know, no one has attempted to discuss
what, if anything, these denotational models have to do with the intended execution of programs in
the languages they model. For example, all of the published denotational models of the language
Fun of Cardelli Wegner [CW85] (including the work of authors of this paper) model this language
in way that corresponds to no reasonable interpretation of its operational semantics! No functional
programming language in common use diverges when evaluating the program Ax. e, even when the
expression e may diverge. Yet the models for Fun which have been studied identify the abstrac-
tion Ax. I_ with the divergent program 1. Besides this problem, all existing models satisfy the
unrestricted /3 rule, which fails to be a legitimate transformation in call-by-value languages. Since
call-by-value is the most common form of evaluation, one is led to ask whether this commitment
to ,3 was an important feature of the models concerned. In short, very little has been done to close
the gap between denotational and operational theories of inheritance. We see two basic things as
missing from the current theories: (1) a careful discussion of the structional operational semantics
of languages with inheritance type systems and (2) any account of the relationship between the
suggested models and a reasonable account of operational semantics.

Our goal in this paper is to attempt an account of problem (1) guided by an approach to (2).
We carry out this study in a simple, familiar context by using an extension of Plotkin's illustrative
language PCF [Plo77]. We develop a simple structural operational semantics for this language in
the spirit of the evaluation mechanisms of languages such as LISP and ML in which functions call
their parameters by value. Our extension, which we call PCF+, is obtained by adding record and
variant types. This language is extended to a new language, PCF++, by permitting the use of
a form of inheritance which allows more programs to be viewed as type correct. We then study
the question of the proper operational interpretation of PCF++. One possible approach is simple
to understand: after a PCF++ program is shown to be type correct, the type information in the
term is erased and the resulting term (which lives in an extended untyped lambda-calculus) is

'Appears in Conference on Lisp and Functional Programming, edited by M. Wand, Nice, France, July
1990, pp. 44-60.
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evaluated. However, in view of the form of semantics that we have studied in our work on Fun
and its relatives [BCGS89, BCGS90] there is another view of the proper operational semantics of
PCF++. Under this view, a term of PCF+± is translated into a PCF+ term by inserting explicit
coercions which "explain" the inheritance in the original PCF±+ program in an intuitive way. If
this "explanation" really is intuitive and the first form of evaluation (which is a common from of
implementation) is reasonable, then it seems that there must be some relationship between these
two views of program evaluation! Moreover, this latter approach is also not uncommon as a form
of evaluation, and therefore has independent interest. In this paper we will show that these two
forms of evaluation are essentially the same for observable types.

To give the reader an idea of what translation we have in mind let us look at an example of how
a simple program would be evaluated. Applying our semantic paradigm to PCF+÷, we translate.its
programs into PCF+ programs, essentially by inserting explicit coercion terms wherever inheritance
is used in type-checking. In anticipation of an exact definition of this translation (section 2), here
is an example. PCF++ type-checks the program P _ G(F) where

G Af: {l: num} , num. {ki = f({f = 0, l1 = 1}),k 2 = f(fl = 2,12 = false})}

F = Ax {l: num}. x.l

Note that G will not type-check in PCF+ because of the different types of the two arguments to
which f is applied.

The translation to PCF+ depends on the way P is type-checked. One possible translation is
P'=- G'(F) where

G' Af : {f : num} , num. {kx = f(1({l = 0,11 = 1})), k2 = f( 2({l = 2,12 = false}))}

where • and 62 are the following coercion terms

ý1 = "Axl : fl : num, 11 : num}. {l = xl.l} 62 =_ AX2 I/: num, 12 : bool}. {l = x 2 .l}

Another possible translation is P" - G"(F) where

G -= Af: {I : num} --+ num. {k, = Cl(f)({/= 0, 11 = 1}),k 2 = (2(f)({l = 2,12 = false})}

where

i =Af1 : {1: num} - num. Axl {l = num, l1 = num}. fl(•l(xl))

and

(2 Af 2 : {l: num} - num. Ax2 : {l = num,12 = bool}. f 2 (6 2 (x2 ))

The fact that the translation (more generally, the meaning) depends on the type-checking deriva-
tion entails the need for denotational coherence results [BCGS89]. In this paper, however, we will
examine the computational (operational) aspects of this translation. Notice that the "execution"
of both PF and P" yields the same result

{ki =0, k2 = 2}

More importantly, so does the direct execution of P. The "direct" operational semantics for PCF++
that we have in mind is just the same as that of PCF+. It is a simple but crucial observation that
the same evaluation rules work on programs allowed by the more permissive type discipline of
PCF++. Not surprisingly, this is the natural way to implement such languages (Cardelli, personal
communication about Quest [Car89]). Although it is may not be useful to fully translate a term
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before executing it, it is reasonable to ask whether translation would affect the evaluation. Since
coercions remove the "junk" in a term, they may play a useful role in efficient implementation.
However, our primary interest is in the abstract specification of the language and not the details
of its efficient implementation.

Our main result relates the direct execution of a PCF+± program phrase e to the execution of
any of its PCF+ translations, e*. We prove that

e terminates if and only if e* terminates.

If both e and e* terminate, what can we say about the relationship between the results of the two
computations? Of course, we are able to show that if the type of e is ground, (integer or boolean)
then the results are the exactly the same. In this language we are also interested in computing
with more complex objects, such as records/variants of records/variants of ground data (this is
particularly consistent with the way things are viewed in object-oriented database programming
applications [OBB89] for example). We call the types of such data observable types. Now, the
philosophy of PCF++ is that the type of program phrases is part of them, i.e., user-supplied in some
sense. (This is in contrast with the approaches based on type inference; see for example [Wan89].)
At observable types, we show that the results of the two computations have the same components
in those record fields which appear in the prescribed type of the program phrase. This is the best
we can hope for, since the introduction of coercions yields computations which may remove "junk"
fields, namely the fields not occurring in the prescribed type. Moral: if you specify a type for your
program, don't expect to observe more than what the type allows. Anyway, our conclusion is that
coercions make no essential difference to the computation.

While this result only relates our translation to the operational semantics, it can be used for
transfer of computational adequacy. Consider a denotational semantics D+ of PCF± for which our
translation is coherent. This yields a denotational semantics E)++ for PCF++ where a term is
interpreted by first translating it into PCF+ and then taking the D+-meaning of the translation.
Under some reasonable assumptions about D+, our main result implies that if D9+ is computa-
tionally adequate (i.e. the meaning of a term e is non-bottom iff the evaluation of e terminates)
for the operational semantics of PCF+ then V++ is computationally adequate for the operational
semantics of PCF++.

An interesting methodological twist is that our proof of the main result actually uses a specific
denotational semantics [J+ which is computationally adequate for PCF+ and for which this transfer
can be done! As it is, we show directly that [++ is computationally adequate for PCF++ and we
derive our main result from this. We regard this as a nice example of the use of a domain-theoretic
semantics for obtaining an essentially syntactic result.

Another comment on methodology. We have chosen to focus on call-by-value operational se-
mantics since this is the most common style of implementation for the languages we are studying
and because it offers a change of pace from our earlier results [BCGS89] where we focused on models
in which the unrestricted j3 axiom holds. We expect that results such as the ones we are proving in
this paper could be formulated for a call-by-name operational semantics, although this would call
for some changes in our concept of observability.

In section 2 we begin by introducing the syntax of PCF++ as an extension of PCF+. Then we
describe the translation back, from PCF++ to PCF+. Finally we give the call-by-value operational
semantics and state our main theorem. In section 3 we give a domain-theoretic denotational
semantics of PCF+ for which our translation is coherent and for which the operational semantics
of PCF+ is sound and computationally adequate. We prove that the operational semantics of
PCF++ is sound and computationally adequate for the induced denotational semantics and then
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we show how to derive from this our main theorem. The paper ends with a section of conclusions

and ideas for more work.

2 From PCF+ to PCF++ and back again.

In this section we introduce the two calculi on which the central result of the paper focuses.

2.1 Extending PCF+ to PCF++.

The following grammar defines the syntax of type expressions s and raw terms e of our calculi. We

assume primitive syntax classes of variables and labels:

x E Variable
I C Label
s := num ] bool{ s -, s I Ill s,..l :s,} 1[11 s,..I :s,]

e ::= 0 Succ(e) IPred(e) true false I IsZero(e){

x : s Ax : s. e j e(e) I ux : s. e jif e then e else e
I! I, e,...,1, e} I e.1 I [I e]] case e of 11 =:€" e,...,1, =:: e

For records {ll = el,. . .,l = en} and variants [ll = el,.. .,1,n = en], it is assumed that the labels
11, ... , ,i are all distinct. We assume that the reader can infer from our notation what is meant by
free and bound variables of raw terms. A raw term is said to be closed if it has no free variables.

A type context is a list x, : Sl,. •., x, n : Sn of pairs of variables and types. We assume that the
variables xi in such a context are distinct. A typing judgement is a sequent of the form H F- e : s
where H is a typing context which includes all of the free variables of the raw term e. A typing

judgement is said to be derivable in PCF+ if it can be proved using the axioms and rules listed in
Table 1. It is not hard to see that any derivable sequent has a unique derivation. This latter fact
will not be true of the calculus PCF++ which we now define. PCF++ is the extension of PCF+

to a calculus with multiple inheritance. First of all, we define a binary relation s < t of subtyping
between type expressions s and t using the rules in Table 2. The reader can check that < is a

preorder on type expressions. This relation is now incorporated into the typing system of PCF++
by the addition of the subsumption rule:

H Pe:s s<t
HI-e:t

2.2 Translation from PCF++ into PCF+.

Definition: Given types s and t such that s < t is provable, we define a PCF+ term coerce[s < t]
of type s --* t by induction on the proof of s < t as follows:

"* coerce[bool < bool] - Ax : bool. x and coerce[num < num] -- Ax : num. x.

"* coerce[s -- t < s' -- t'] = Af : s -, t. coerce[t < t'] o f o coerce[s' < s]

" c Say s c= cll :< t,...,ln: a.,{ilm :csm} and t=- xll : tl,... 1,n : t,} and s < t, then

coerce[s < t] =- Ax: s. Ill =-- coerce[sl < tl](X.ll),...In -= coerce[sl < tn](X-ln)}
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0: num false : bool true : bool

H [- e: num H k e: num H F- e: num

H F- Pred(e) num H H- Succ(e) : num H F- IsZero(e): bool

H, x:sF-e:t H -e:s-+t HFe':s
H F- Ax: s. e: t HF- e(e') : t

H, x:0s-e:s HF-e:bool HP-e':s H -e":s

H -x: s. e: s H ý- if e then e' else el : s

H el 8 : oI ... H •-en s n H ý- e f {/1 s ,. ,}n: n

H Ill11 el,...,lIn = en,} 1 {1 : 1,- n = sOn} H •-e.li s i

H F- ei: oi
H F [Ii e•]: [11 1, = So]

H e:[11 l,..In s,] H - I sl--+os ... H F- en :o -- s
H ý- case e of 11 A ... "In #=' fn :,S

Table 1: Typing rules for PCF+.

Sn<num o < t < t'
bool < bool S -- t < St --+ tl

S1 < ti ... on<in

{ l,: InTabl...e...,ln : or} < Ilnh: tr,.c rInu t
O1 < ti ... Sn < tn

(11l S1 7-.. ,In :OSn] < [11: ti,.- -- ,/In :tn7*,..,Im : tn]

Table 2: Inheritance rules.
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* Say s_[1 ::ss,...,l :sn] and t = [l1 :tl,...,In :tn,...,lm :tm] and s < t, then

coerce[s < t] - ,Ax : s. case x of 11 fl,.--, 1 J,

where fi Ay : si. [l• = coerce[si < ti](y)] for each i = 1,..., n. |

Lemma 1 Ifs < t is derivable, then so is F- coerce[s < t] : s t I

We will now describe how we translate the derivations of typing judgments of PCF++ into
derivations of PCF+. The translation is defined by recursion on the structure of the derivation
trees. Since these are freely generated by the typing rules, it is sufficient to provide for each
rule of PCF++ a corresponding rule on trees of PCF+ judgments. For the correspondence which
we describe, it is possible to show that these corresponding rules are directly derivable in PCF+,
therefore the translation takes derivations in PCF++ into derivations in PCF+.

A PCF++ derivation A yielding an inheritance judgment H F- e : s is translated as a tree TA
of PCF+ judgments yielding a translation T*A of the form H F- e* : s. All of the rules of PCF++
except the subsumption rule are translated "without change." For example, the axiom 0 : num is
translated as itself, whereas the rule

H F- e num

H F- Succ(e): num

is translated as

H F- e* :num

H F- Succ(e*) : num

where H F- e* : num is the root of the translation of the derivation of H F e num. Only the
subsumption rule is altered by the translation. In particular, the rule

HF-e:s s<t

HF- e:t

is translated by the rule
H F- e* : s coerce[s < t] s -- t

H F- coerce[s < t](e*) t

which "makes the implicit coercion explicit."

It is not hard to see that a PCF++ typing judgement may have many different derivations.
The reader may wish to look at different possible derivations for the term in the introduction to
get a sense of why this is the case. This presents a problem for the translation: is there any sense
in which two translations to PCF- of a given PCF+± term are related? In particular, this paper's
main theorem can be used to demonstrate a close relationship between the operational semantics
of the two translations.

2.3 Operational semantics and Main Theorem.

The operational semantics of the closed raw terms of is given by the least relation 4 between raw
terms and canonical forms which satisfies the rules and axioms in Table 3. Canonical froms are
defined as follows: 0, true, and false are canonical forms. For any expression e, Ax : s. e is a
canonical form. If c1 , ... cn, are canonical forms, then {11 = C1, . . .,I = c,} is a canonical form. If
c is a canonical form, then Succ(c) and [l = c] are canonical forms. We may also write e 4 if there
is a canonical form c such that e 4 c.
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0 4 0 true 4 true false 4 false

e 4 Succ(c) e 4 c e 4 0 e 4 Succ(c)
Pred(e) 4 c Succ(e) 4 Succ(c) IsZero(e) 4 true IsZero(e) 4 false

e 4 Ax : s. e" e' 4 c' [c'/x]e"4 c
xz : s. e 4 xz : S. e e(e') 4 c

el 4 true e2 4 C el 4 false e3 4•c

if el then e2 else e3 4 4c if el then e2 else e3 4 4c

ei4ci ." en,4cn e. 4 {l=cl,...,ln=Cn}

{l i -- el,. .. ,n = en} 4 {1, = c,..-,i ,, cn} e.li 4 Ci

e 4 c e 4 [lI= c'] fi(c')4 c
[I e] 4 [1 = c] case e of 11 => fj,.,l ,..., .. ,In:j f,4c

[lix. e/x]e 4 c
ix. e 4 c

Table 3: Call-by-value evaluation.

For raw terms e and e' we write [e'/x]e for the result of substituting e' for x in e. We demand
all of the usual assumptions about the renaming of bound variables in e to avoid capturing free
variables of e'. We assume that the substitution operation associates to the right and we may write

[ei,..., en/xl, X,]e for the simultaneous substitution of el,..., en for xl,..., x, respectively in
e. In the event that the terms ei are closed, note that this is the same as [e/xl]' ... [en/X,,]e and,
indeed, the order of the substitutions does not matter.

It is not hard to see that if e is a closed raw term such that e 4 c, then c is uniquely determined.
This can be proved by showing that, for a given term e, there is at most one axiom or rule
from Table 3 which applles to it. Hence the rules define a deterministic evaluation strategy. The
evaluation of function application is call-by-value, since the argument to the application is evaluated

before being substituted into the body of the applied procedure. There is no evaluation under a
lambda-abstraction, but note that records are eagerly evaluated. For example, the evaluation of
an expression {l = e, P' = e'}.l will result in the evaluation of e' as well as e even though e' is "not
needed" in the result. Putting aside efficiency issues, this is only significant if e' diverges since, in
that case, the evaluation of {l = e, P' = e'}.l will also diverge. Since evaluation is deterministic, we
may define a partial function £ on raw terms as follows

(e) f c e 4c if there is such a c
undefined otherwise
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We use the symbol L between mathematical expressions to indicate that one of the expressions
being related may be undefined. In general, for expressions E and E', E -_ E' means that if either
E or E' is defined, then so is the other and the values are the same.

Let F- e : s be a judgement which type-checks in PCF+ and suppose e 4 c. It is easy to show
that F- c : s also type-checks in PCF+. This fact is less obvious for PCF++. We express it in the
following:

Lemma 2 Suppose F- e : s is derivable in PCF++ and e 4 c, then F- c : s. |

This sort of result is closely related to the subject reduction theorems that appear in type theory
research.

Let e be raw term such that F- e : s is a derivable in PCF++ and suppose e* is a translation of
e into PCF+. Our central question is this: what, if anything, is the relationship between S(e) and
5(e*) ? Naturally, we might start by guessing that S(e) -_ E(e*) in the sense that when one of them
exists, then so does the other, and the results of evaluation are syntactically identical. However,
it does not take much looking to see that the syntactic identity may fail in some cases. First of
all, if 8(e) is a record, then it may contain some fields which do not appear in the result E(e*)
of evaluating the coerced term since the latter evaluation will include coercions which may strip
various fields in the course of the evaluation of e*. Moreover, if 8(e) is a lambda term, then 5(e")
may contain unexecuted coercions in its body which do not appear in 8(e). Worse yet, it seems that
even two different translations of e : s may have different canonical forms! Hence we cannot expect a
result as simple as the one just proposed and, indeed, we cannot expect a simple-minded statement
of an operational coherence result. Nevertheless, there are some obvious counter-observations to
the problems just mentioned. In the case of records, the extra fields which appear in S(e) may be
"junk fields" which were not mentioned in the type s. One might argue that it is not even desirable
that the result of the evaluation should have fields not included in the specified type s. Could it
be that S(e) and ((e*) share "essential" fields in common? Also, the problem with higher types
(lambda-abstractions) misses a central point: the "appearance" of a term at non-observable type is
not important. Since most interpreters do not display any description of a higher-order procedure,
we are interested only in the applicative behavior of such terms in observable contexts. Our goal is
therefore to define what we mean by an observable type and define a notion of essential observable
equivalence for PCF++ judgements at these types.

Definition: Types bool and num are ground types. A type s is observable if

* s is a ground type, or

* s f{l : sl,...,l , : s1} where s1,...,s,- are observable types, or

, s [11 : sl,...,l• : sn] where S s,...,s, are observable types. I

Definition: The relation =, between canonical forms of PCF++ observable type s is defined
inductively as follows:

* If s is a ground type, then c =, c' iff cc'.

* Let s = {1l : s1,..., ,, : S}, then

{1l = = c ,...,l .. } =s {ll = cl, ... = k }

iff ci-= cý for i = 1,...,n.
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e Let s = [11 : s 1, :s],then [l -=c]= [j -=c] iffc =, c'..

If E and E' are expressions that may be undefined, write E ý_, E' to mean that if one expression
exists, then so does the other and E =P E'. We may now express the desired result:

Main Theorem: Suppose P e : s is derivable in PCF++ and e* is any PCF+ term
which translates this sequent, then e 4 iff e* 4. Moreover, if s is observable, then
E(e) = S(e'). I

It seems difficult to prove this result directly because of the recursion case. This problem is resolved
by appealing to denotational models for PCF+ and PCF++ which we now describe.

3 A computationally adequate denotational semantics.

For technical reasons we have found that it is useful to appeal to some results relating PCF+ and
PCF++ to a specific denotational model which we will describe in this section. Although our goal
is to prove a purely syntactic result (the Main Theorem at the end of the previous section), the
semantic results which we will now establish are of independent interest.

We describe a domain-theoretic model for PCF+. The interpretation of types is as follows:

"* [bool] is the flat domain with three distinct elements tt, ff and least element I.

"* [numý is the fiat domain consisting of the numbers 0, 1, 2,... together with a least element
I_.

"* Ts -- tý = (s o--+ t)j, the lifted domain of strict (i.e. _-preserving) functions from fsJ into jtý.

f [ {ll : s 1,.. .,l", : s,,} I consists of a bottom element I, together with the set of tuples
{l = di,.. ., I, = d,} where each di is a non-bottom element of [sjj. The ordering is defined

by
11=di,..., 1, = d,,} E_ {11, = df,...,I1. = dl})

iff di 1_ dý for each i= 1,..., n and I E d for each record d.

* [ll : si,. . ., 1, : sn] ] consists of a bottom element 1, together with the set of pairs [li = di]
such that di is a non-bottom element of [sil. For two such pairs, [li = d] E [lj = d'] iff i = j
and d E d'.

Suppose H = x, : si,.... x, : s, is a type context. An H-environment is a function which assigns
to each variable xi an element p(xi) of the domain [sil. The PCF+ interpretation of a sequent
H - e : s is a function which assigns to each H-environment p a value [H I- e : sj++p in [s].

We will refrain from writing out all of the semantic equations for the sequents of PCF+. The
rules for the introduction and elimination operators for the record and variant types are straight-
forward, holding in mind that the interpretation of a record with a field which is I is itself equal
to I. Recursion is defined in the usual way using least fixed points. The function space requires
some explanation which we now provide.

The lift D, of a domain D is obtained by adding a new bottom element. There is a continuous
function up : D -- D± which sends elements of D to their images in the lifted domain. This function
is not strict, since it sends the bottom of D to an element of D± which dominates the "new" bottom
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element. There is a unique continuous strict function down : D1 -* D such that (down o up)(x) = x
for any x and (up o down)(y) = y for any y 0 1. This equational relationship between the two
functions plays an essential role in the computational adequacy result which we will state later.
Now, the meaning of a derivable typing judgement of the form H F- Ax. e : s , t is given as follows:

ýH F- Ax. e : s ---+ t+p = up(strictAd E JsJ. JH, x : s F- e : tl+p[d/x])

where p[d/x] is the H, x : s environment which is the same as p except it sends x to d (we assume
that x is a "fresh" variable which does not appear in H) and the second lambda abstraction is the
"semantic" notation for a function which takes an argument d E isJ. Since the interpretation a
function application to a program with value I should have value I to model call-by-value properly,
one must apply the function strict defined as

strict(f )(X) f(x) if x $31

The resulting strict function is lifted by the function up to insure that its value is non-bottom.
Again, this will be important later when we prove a correspondence between operational divergence
and having I as a meaning. Under our intended operational semantics, no lambda-abstraction is
a divergent program. The definition of application is given as follows:

JH F- e(e'): tlp = down(JH F e : s - tJ+p)(JH F- e' : shp)

We may now show how our model for PCF+ can be used to construct a model for PCF++.
Following ideas from [BCGS89] we use the following Semantic Coherence Theorem due to Rick
Blute:

Theorem 3 (Semantic Coherence) If F and A are PCF++ derivations of a sequent H 1- e : s,
then /H F- T*(r) : sj++ = IH F- T'(A) : s++. I

A similar result was a central objective of the work in [BCGS89] where the coherence is proved for
a class of models of an equational theory. The model here differs from the ones considered there
since the unrestricted 0 rule does not hold in the model we have described in the current paper.
The semantic function for sequents of PCF++ is now defined as follows: [H F- e : sF++p = iH F-
e : s]J+p where H F- e* : s is any translation of H F- e : s. If we note that any PCF+ derivation is
a PCF++ derivation, then we get the following corollary:

Corollary 4 If H F- e : s is a derivable judgment of PCF+, then JH F- e : sJ+p = TH F- e : s]++p
for any H-environment p. I

As we shall see later, this corollary permits us to transfer some hard-earned results about PCF++
to results about PCF+. In light of the corollary, we may sometimes omit the tags on the semantic
brackets for PCF+ derivable typing judgements.

We now wish to show that the semantics for PCF++ which we have just defined is closely
related to its operational semantics. Here is our first crucial relationship:

Theorem 5 (Soundness) If e : s is derivable in PCF++, and e 4b c, then Te : sJ++ = Fc : ,s++.

We have omitted the proof, which is straight-forward but tedious. We mention only the following
facts which are needed:
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Lemma 6 1. If r < s < t, then Icoerce[r < t]: r -- ti = ýcoerce[s < t]: s , t] o Icoerce[r < s]:
r - s

2. Ifs < t, then Jcoerce[s < t] : s -- tj(d) = I ii d = -L .

Lemma 7 If F- c : s is a derivable judgement of PCF+÷ and c is a canonical form, then [c
sI++ # J_ I

Most of the rest of this section is devoted to a proof of a kind of converse to the Soundness
Theorem which we will call computational adequacy (the term is suggested by Albert Meyer [Mey88],
although his definition includes soundness). For PCF++, it can be stated as follows:

Theorem 8 (Computational Adequacy.) Suppose e : s is derivable in PCF++. If [e : s]++ 5 -L
then e 4 c for some canonical form c.

We focus on explaining how the methods that one uses for results such as those above are
applied to a calculus with multiple inheritance. We will look at the proof of adequacy in some
detail. The proof requires a relation between program meanings and programs sometimes called
an "inclusive predicate". We define this relationship as follows:

Definition: Define a relation :S, between elements of Js| on the left and closed raw terms of type
s on the right as follows. d ;:5 e if d = I or e 4 c for some c and d ;!5 c where

* f ;S-t< Ax : r. e iff for each d C is]I and term c, d $<s c implies down(f)(d) <t [c/x]e.

* {li = d1 ,...,In = dn} <{1:sa...:sn} {l -= e1 ,.'.,Ira = e,} iff m > n and di <S, ci for
i =1,.•..n.

* [li = d] •<t:si.. : lj = c] iff i and d :, c.

* tt ;bool true and ff •bool false.

* 0 :num 0 and if n Snum c for a number n, then n + 1 •num Succ(c). |

Some of the essential semantic properties of ; are given in the following:

Lemma 9 1. If a E b;2, e, then a ;S e.

2. If ao E a, F_ a2 _ is an ascending chain and a, ;<s e for each n, then LUlno a, e.|

We are now ready to sketch the proof of the primary technical lemma which is needed for the proof
of PCF++ adequacy.

Lemma 10 Suppose H = Xi: S• xn : st and H F- et : st is derivable. If di E Istj and di ;t et
for i: 1,...,k, then [H Fet: stl++[dl, ... ,d/X, . .. ,Xk] :St [et,..., et/Xl,...,xk]et.

Proof: Let p be the environment [di,... ,d/xl,...x,] and o- be the substitution
[el,...,et/xi,...,x,]. Let A be a PCF++ derivation of the typing judgement H F- et : st. We
prove that JH F- et : st]++p <st act by an induction on A. Assume that the Theorem is known
for proofs of lesser height. There are eleven possibilities for the last step of A. Some of the more
interesting cases (subsumption in particular) are written out fully below.
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" Base case: H F- xi : s.

Suppose the sequent H F- et : st is an axiom of the form above (i.e. et = xi). Then we have

H- x:ý++, = di ! t ej E-crxi by assumption.

" Lambda abstraction: H, x s. e s t
H ý Ax s. e: s t

Suppose the last inference in A has the form above (in particular, et : st = Ax : s. e : s 0 t).
Let A' be part of the proof A which proves H, x : s Fe : t and suppose H, x : s F- e* t is
T*A'. Let f = IH -- Ax : s. e : s -- tý++p = JH F- Ax s. e* : s -' tJ+p and suppose d <S c.
We must show that

d' = down(f)(d) <t (o-Ax r. e)(c) (1)

If d' = I then there is no problem. Suppose d' ý ±, then down(f) 4 ±, so

d' = down(up(strictAd" C Tsý. H,:x s F- e*: tý+p[d"/x]))(d)
= (strictAd" E jsj. tH, x: s F- e* tý+p[d"/x])(d)

and there are two cases. if d = I, then d' = I ;t u[c/x]e as desired. However, if d $ -, then

d' = ýH, x s F- e* :tJ+p[d/x]
= ýHx:s Pe: tl++p[dx]
;:t o~c/x]e

by the induction hypothesis. Since d' 4 -, there is a canonical c' such that o[c/x]e 4 c' and
d' <t c'. Since [c/x]o-e =- o[c/x]e, we have (Ax :s. oe)(c) - (uAx : s. e)(c) so it must be the
case that (aAx : s. e)(c) 4 c' too, so 1 holds.

"H F- el: s -- t H F- e 2 :s*Application:HF-ee)
H ý- el(e2) : t

Let H F- e: s -* t and H F- e2 : s be translations dictated by A. If d' = TH F- el(e 2 )
t++p= H F e*(e*) : tý+p $ I, then f = H F- el : s - t]j++p = [H F- e: s * t+p 5 1
and d =H F- e2 : s++p = [H F- e2 : s]+ 3I (using the fact that all our functions are
strict!). By the induction hypothesis, f <st ae1 : s - t and d <S er 2 : s, so there is a term

e3 and a canonical form c such that

o'el 4 Ax : s. e3 and f Ss-t Ax : s. e3

oe 2 4 c and d <s c

Now d' = down(f)(d) <t [c/x]e 3 by the definition of <S--t, so there is a canonical c' such that
[c/x]e 3 4 c' and d' --t c. But [c/x]e 3 4 c' means (oel)(oe 2 ) 4 C'. Since (-ej)(`e 2 ) = a(e!(e2)),
we have d' <t C(ei(e 2 )) as desired.

"Recursion: H, x:sFe:s

H F- ,x :s. e s

Let H, x : s F- e* s be the translation dictated by A. Let do = I and di+1 = ýH,x
s F- e : s]++p[di/x] = ýH,x : s F- e* : s+p[di/x]. We show that di ;,:, : s. e for each
i. This is immediate for do = -. Suppose di <S oatx : s. e. By induction hypothesis,

dj+j = TH, x : s F- e: sý++p[dj/x] <, c[yzx: s.e/x]e. If dj+- 1  -L, then or[px : s. e/x]e 4 c for
some c such that di+1 ;s c. Now a[ox : s. e/x]e = [aoyx : s. e/x]ue =- [tx : s. ue/x]Cue. Hence
orpx : s. e =- yx : s. cre 4 c as well. Since [H F- x : s. e : sj++p = [H F- ix : s. e* sj+p

LJ11 di, the desired result follows.
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HF-e:s s<t
. Subsumption rule: H F e : t

The proof for this case is by induction on the height of the proof that s < t. Assume that
we know that the theorem holds for H F e : s and let H F e* : s be any translation of this
sequent to PCF+. There are four subcases:

- Base types: These are both obvious since the coercion is the identity map.
u < u v < v

- Functions:
U -- V < Ul -. + V/

Suppose s = u - v and t u' -- v'. Let •1 = down~coerce[u' < u]J and 62 =

down coerce[v < v']]. Then • down coerce[u -- v < u' -* v']J satisfies W(f) = 2 ofo0l
for f:I[u]o--*Jvý. Set f = down[H F e : sl++p. If d <S, c, then 62(d) <u c by

induction hypothesis on u' < u. Thus f(6 2 (d)) <•, (o-e)(c) by induction hypothesis
on H F e s. We may now apply the induction hypothesis on v < v' to conclude
that f(f) = 6 1(f(ý 2 (d))) <'v, (ae)(c). Since f(f) = JH F e : ti++p we conclude that
JH F e : tl++p <t ce.

- Records: Sl < ti ... Sn < tn

{ll Si,.. ., In Sn, ... ,I : Sim } < {Il : tl, -'in tn}"

Let ,i = downIcoerce[si < ti]J for i = 1,... n and let ý = down~coerce[s < t]J. By

induction hypothesis, we have d = ýH F e : s]J++p , o-e. If d = I, then ý(d) = JH F
e : T++p = I and we are done. If d -L, then d = {1I = dl,..., 1 -dm} where
dl,...,dm 5 -L and ce 4 c for some canonical c of the form c ={ l = cl,...,Il =
cj} such that j _> m and di •,i ci for i = 1,....m. By the induction hypothesis on
inheritance judgements, we must therefore have ýi(di) <ti ci for each i = 1,..., n. Hence
ý(d) = {l, = ý1(dl),...,In = G(dn)} ;<t {ll = cl,...,lj = cj} by the definition of <t

and we are done.

- Variants: S1 < tl ... sn < t4
[11 : 81,...,I, : Sn] < [11 : ti,...,7In : tn, ... ,ýIm : trn]"

Let • = downicoerce[si < tj]J for i = 1,.... n and let ý = down~coerce[s < t]]. By
induction hypothesis, we have d = ýH F e : s]++p <S ue. If d = -L, then ý(d) =

ýH F e :t]++p = I and we are done. If d $ 1, then d = [li = di] where di $ ±
and ae 4 c where ae 4 c and d <!E c. By the definition of <S,, the term c has the form
[l4 = ci] and di ;S, ci. By induction hypothesis on si < ti, we know that ýi(di) <ti ci so
ý(d) = [Ii = ýi(d)] ;St [li = ci]. I

We may now express the desired proof of Computational Adequacy for PCF++.

Proof: (of Theorem 8) By Lemma 10 we know that le : sl++ , e. Since the value on the left is
assumed to differ from ±, the Theorem follows immediately from the definition of <!E. I

The following theorem follows immediately from Soundness and Computational Adequacy for
PCF++ together with Corollary 4 of the Semantic Coherence Theorem for PCF++.

Theorem 11 (Soundness and Adequacy for PCF+) If F- e : s is derivable in PCF+, then

1. (Soundness) e 4 c implies ýe: sý = lie: sJ.

2. (Computational Adequacy) ýe : sJ+ $ 1 implies e 4 c for some canonical form c. |

The following lemma is needed for the proof of the Main Theorem:
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Lemma 12 Let c and c' be canonical forms such that ý- c : s and I- c' : s are derivable in PCF++
for an observable type s. Then ýc: s|++ = Jc': sý++ iff c =, c'.

Corollary 13 Let e and e' be raw terms such that I- e : s and I- e' s are derivable for an observable
type s. Then Je: s]++ = ýe': s++ iff E) , E(e').

Proof: This follows from Adequacy, Soundness and Lemma 12. |

Main Theorem: Suppose F- e : s is derivable in PCF++ and e* is any PCF+ term which translates
this sequent, then e 4 iff e* 4. Moreover, if s is observable, then S(e) _, $(e'). I

Proof: Suppose e 4 c. Then [e :s++ = ýc : sJ++ $ I by the Soundness Theorem for PCF++
and Lemma 7. Since Te : s]++ ± e* : s]+, we may conclude from Soundness and Adequacy for
PCF+ that there is a canonical form c' such that e* 4 c' and Tc' : sJ++ = c : sl++. If s is an
observable type then c =, c' by Lemma 12.

Suppose conversely that e* 4 c' for some canonical c'. By the Soundness for PCF±, e* : sý+
Vc : sJ+ #$ . Hence ýe" sJ++ - e* : s]+ I I. By Adequacy and Soundness for PCF++, there is
a canonical form c such that e 4 c and ýc : [c' : s++. Thus c =, c' by Lemma 12. |

4 Conclusions and directions for further research.

We have shown that inheritance-interpreted-as-definable-coercion semantic paradigm behaves well
with respect to operational semantics. More specifically, we have shown that the coercion terms

that we introduce in this interpretation, while possibly generating more computation, will only
generate "harmless" computation, in particular that no unexpected divergence can be introduced,
nor can expected divergence be lost. (In the process, we actually exhibited a nice domain-theoretic
model which is sound and computationally adequate for PCF++'s straightforward operational
semantics.)

There are at least two points where we can see improvements to our results. One problem
is that we would like to strengthen the main theorem so as to say something interesting about
the relationship between S(e) and $(e*) when their type is not necessarily observable. The other

problem is that the proof of Theorem 5 does not really use the particularities of the denotational
semantics but rather the fact that certain identities between PCF+ terms hold in it. These two

points are related and here is a conjectured improvement Which would solve both problems.
Suppose F- e : s type-checks in PCF++ and let e* be any PCF+ translation of it. Further

suppose that e 4 c for some canonical form c. By our main theorem, there is a canonical form c'
such that e* 4 c'. We would like to relate c and c' as PCF+ terms, but I- c : s may type-check in
PCF++ only. So, let c* be any PCF+ translation of it. What do we know about the relationship
between c* and c"? It is a consequence of the soundness results that the model we introduce in

section 3 equates them. But equality in this model is fl°-hard. Surely the relationship between c*
and c' is much simpler...

We believe that it is possible to formulate a reasonable logical theory about PCF+ terms, call
it 7 in which c* and c' can be shown to be provably equal. In fact, we believe that such a theory
would be closely related to the call-by-value lambda-calculi studied by Plotkin and Moggi [Mog88].
This result would have the following pleasant corollaries. Let D+ be any denotational model of
PCF+ in which the operational semantics and the axiomatization of T are sound (actually, we
expect that the soundness of the later will imply that of the former). One immediately concludes
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that our translation is denotationally coherent with respect to D+, which induces a model D++

of PCF++, and that the operational semantics of PCF++ terms is sound in D++. Of course, by

the main theorem of this paper, we can also get transfer of computational adequacy. Therefore,
we would be able to neatly concentrate in the axiomatization of T all the conditions needed by a
"good" model of PCF+ in order to become a model of PCF±+ in accordance to our paradigm.

An intriguing question is whether c* = c' will turn out to be more than an r.e. statement,
whether it is actually decidable? In other words, is full PCF+ computation required in order to

systematically disentangle the coercions we introduce?

Finally, we should restate that we expect that the results of this paper generalize to more

complicated type disciplines (Fun, Quest, etc.) and that analogs can be shown for call-by-name
operational semantics.
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Abstract

This report is intended to describe and motivate a relationship between a class of nets and
the fragment of linear logic built from the tensor connective. In this fragment of linear logic a net

may be represented as a theory and a computation on a net as a proof. A rigorous translation

is described and a soundness and completeness theorem is stated. The translation suggests

connections between concepts from concurrency such as causal dependency and concepts from

proof theory such as cut elimination. The main result of this report is a "cut reduction" theorem

which establishes that any proof of a sequent can be transformed into another proof of the same

sequent with the property that all cuts are "essential". A net-theoretic reading of this result tells

that unnecessary dependencies from a computation can be eliminated resulting in a maximally

concurrent computation. We note that it is possible to interpret proofs as arrows in the strictly

symmetric strict monoidal category freely generated by a net and establish soundness of our

proof reduction rules under this interpretation. Finally, we discuss how other linear connectives

may be related to the concepts of internal and external choice.

1 Introduction

In this paper we explore the idea of describing the operational semantics of a net (the so-called

"token game") in proof-theoretic terms. Under our approach, a net will correspond to a logical

theory, and the token games on the net will be represented as proof trees in the "logic" of the net.

This correspondence reveals an interesting relationship between concepts of proof theory (such as

cut elimination) and fundamental concepts in concurrency (such as causal dependency) as they are

*This is an extended and revised version of the preliminary report that appeared in: Application and Theory

of Petri Nets, edited by G. De Michelis, June 1989, pp. 174-191.
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illustrated by net theory. Our proof-theoretic representation works for a certain class of nets in

which events are uniquely determined by their pre and post conditions. Such nets are represented

as sets of sequents in a fragment of linear logic based on the tensor connective.

Linear logic is a system introduced by J. Y. Girard based on the inspiration of his work on a class

of mathematical domains called coherence spaces [7, 8]. One way of understanding propositional

linear logic is to see it as a modification of propositional logic which takes seriously the concept of

a resource. As such it is related to such systems as relevance logic which incorporate this concept

as well (see [3] for a full discussion). Resources are also a familiar aspect of the theory of Petri

nets. In what follows, we will attempt to convince the reader that the senses in which linear logic

and Petri nets deal with resources have many things in common. Indeed, we will demonstrate a

translation which characterizes the relationship exactly.

However, the way linear logic and nets represent resources is only a part of what we feel is a

much more important common characteristic of the two theories: the way in which they illustrate

true concurrency. It is well-known that nets provide an intuitive and pictorial way of seeing many

fundamental ideas of concurrent computation. In what follows, we will show how this intuition

may also be seen in the theories and proof trees of (a fragment of) linear logic.

Other researchers have independently looked at the relationship between Petri nets and linear

logic. The work of Asperti [1, 2] follows much the same basic intuition that we discuss below

for the tensor connective. Carolyn Brown at the University of Edinburgh has proven a result

similar to our soundness and completeness theorem and studied a fragement of linear logic formulae

with additional connectives [4]. Narciso Marti-Oliet and Jos4 Meseguer [11] have discussed the

relationship between Petri nets and linear logic from the point of view of category theory. We

would like to acknowledge the assistance of Jean Yves Girard, who provided much of the inspiration

for this investigation. We also thank Dexter Kozen, Prakash Panangaden, and Andre Scedrov for

ideas and encouragement and acknowledge helpful discussions with Eike Best, Ursula Goltz, Ugo

Montanari, and Wolfgang Reisig.

Throughout the rest of the paper we will assume some familiarity with net theory and proof

theory. Concepts and notations related to former can be found in [15] and [6]. For the latter, [18]

and [17] are excellent references.

2 Relating Nets and Theories

In this section we outline the fragment of linear logic on which this paper will be concentrating.

The theory will be given in the form of a Gentzen style sequent calculus.

A tensor formula is either a propositional atom or the tensor product A 0 B of tensor formulas

A and B. A tensor sequent is a pair r P A where F is a list of tensor formulae. A tensor theory

is a set of tensor sequents. Of course, any set of sequents T will generate a tensor theory Th(T)

which is the least set of sequents containing T and closed under the rules in Figure 1. We say that
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Structural Rules

F, A, B, A H- C (Exchange) A H (Identity) r H A A, A - B (cut)F, B,A, A T C A A r,A •-B

Logical Rules

rF-A AHB(OR) F,A, BHC (®L)
F,A FH A®B (,A)B , C

Figure 1: Structural and logical rules for a fragment of linear logic.

F H A is provable in T if F H- A is in Th(T). We say that F H- A is provable if it is in Th(0). Let

us say that a pair A H-H B is provable if A H B and B H- A are both provable. It is not hard to see

from these axioms that the tensor connective is associative and commutative:

Proposition 1 For any A, B, C, the sequents A 0 B H-i B 0 A and (A ® B) ® C H-H A ® (B ® C)

are provable. I

However, the tensor connective is not absorptive; for example, the sequent A®A H A is not provable.

It is therefore possible to think of a tensor formula as a multi-set (or "bag") of propositional atoms.

Given a tensor formula A, let M(A) be the multi-set of propositional atoms determined by A. It

follows from the proposition that tensor formulae A and B such that M(A) = M(B) are equivalent,

i.e. A H-ý B. Moreover, sequents r H- A and A H A are equivalent in the sense that each can be

derived from the other if the lists F and A determine the same multi-set of propositions. For this

reason, we will treat sequents as pairs F H A where F is a multi-set.

For the purposes of this paper, a net N is a set SN of places together with a set TN of pairs of

multi-sets over SN. A pair t = ('t, t') E N is called a transition of the net with pre-condition "t and

post-condition tV. Of course, this is only one of the many flavors of nets that have been studied in

the rich literature on such structures. Nets, as defined here, are similar to place/transition-systems

as defined, for example, in [15]. However, our notion of net has less structure since there are no

capacities and a transition is uniquely determined by its pre and post conditions. Moreover, a net

in our sense does not have a specified initial marking. One of the appealing characteristics of nets

is the way they lend themselves to pictorial representation. For example, the net No consisting of

the pairs ({A}, {B,B,C)Q and ({B}, {A}) is pictured as a labelled graph in Figure 2.

Before we offer a technical definition of just how a net determines a theory, we will attempt to

motivate the basic idea by means of examples. Consider the net N1 pictured in Figure 3. In this

net, if we are given a token on the condition A, then it is possible to fire the event r. Firing this

event, exhausts the token on A but provides a token on B. Logically, let us read the event r as an

axiom A H B meaning "from A it is possible to obtain B." Similar ideas apply to the events s, t

and u which we may read as B H D and A H C and C H- E respectively. Now, event v requires a
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B

A Q
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0
Figure 2: Net No.

r B S D

V

A0-C U EC

Figure 3: A net N, with concurrency and choice.

token on D and a token on £ in order to fire and produce a token on F. We might therefore take

D, E I- F as the logical content of v. In summary, let T, be the set of axioms

Al-B BI-D
D,E I- F

Al-C Cl-B

Do these axioms somehow characterize the net "logically"? If one interprets the comma between

the D and B in the way that one ordinarily does in logic, this tempts one to think of D, E I- F

as D A E F- F. But something is now wrong with the proposed "logical interpretation" of the net.

In particular, it is easy to check that A F- F is provable from the axioms T1. However, if one's

interpretation of A F- F is "from the resource A one is able to obtain the resource F," then the

deduction is evidently incorrect. The problem lies in the fact that ordinary propositional logic does

not support properly a concept of "proof resource." The culprit (in this case) is the rule from first

order logic which gives us:
AF-D Al-E

Al-DAE
This rule clearly does not reflect the desired intuition about resources. If I can use $1 to buy a
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OC

A' B'

C,

Figure 4: A net N2 with a critical region.

pepsi and $1 to buy a coke, then I can't expect to use $1 to buy both a pepsi and a coke. Of course,

one can also write the conjunction rule as

A -D AI-E
A,A I-DAE

but this only begs the issue, since some instance of the thinning rule:

rXX F- Y

r,xF Y
would be used at a later step in the proof to remove the second copy of A and this rule is just as

suspect as the earlier version of the conjunction rule. To deal with this problem, one needs a logic

in which the thinning rule is omitted and the second of the conjunction rules is used for the "and"

connective that we have in mind.

The proper rules are those given in Figure 1 for the linear logic tensor connective 0. These

rules keep track of the resources as needed. In linear logic, the sequent A F- F is not provable in T1.

However, it is possible to check that A, A F- F is provable in T1 , as we expect it should be. There

are, in fact, several proofs of A,A F- F in T1; three of these are listed in Figure 5 (on page 7). We

will come back to these proofs later to discuss how they relate to the net token games that move a

token from the marking A, A to the marking F.

To give a slightly larger example, which we hope will suffice in giving the reader the general idea,

consider the net N2 in Figure 4. This net corresponds to the tensor theory T2 with the following
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six axioms:
CODI-A BF-C

AF-BQD

A' I- B'& D

C'0 D - A' B'I - C'

As one might expect, it will never be the case that from starting marking C, C, D, the resource

A 0 A' is obtained. More precisely, one can show that C 0 C' 0 D V/A 0 A' 0 A for any choice of
linear proposition A.

A formal definition may be now be expressed as follows. Let N be a net and let S be the set of
places of N. These will be the propositional atoms over which we form a set of tensor sequents as

follows:

12(N) = {A F- B I M(A) = 't and M(B) = t' for some t E TN}

We will refer to C(N) as the tensor theory determined by N.

On the other hand, let T be a set of tensor sequents in a language with propositional atoms S.
The theory T determines a net AJ(T) as the set TK(T) of pairs (M(A), M(B)) such that A F- B is
in T. It is clear that Af(L(N)) = N for any net N. If A' F- B' is an element of the set T whenever

there is a sequent A F- B in T such that M(A) = M(A') and M(B) = M(B'), then it will also be the

case that 1(.Af(T)) = T. For example, the net N1 in Figure 3 has f2(N1 ) = {A F- B, B I- D, A I-

C, CF-E, D0EF-F, EODF-F}.

As the reader can guess from the examples, a marking M on a net N corresponds to a linear
proposition A such that M(A) = M. For example, the marking of the net N1 in Figure 4 is

represented by the proposition C 0 C'• D. In general, we have the following:

Theorem 2 (Soundness and Completeness) Given a net N and markings M and M', the

marking M' is in the forward marking set [M) of M if and only if the sequent A F- A' is provable in

the linear theory L(N) associated with N for any tensor formulae A and A' such that M(A) = M

and M(A') = M'. I

We may apply the Soundness and Completeness Theorem to show how a non-trivial result from
net theory leads to a result for a fragment of linear logic. Given a finite net N, it is decidable whether

M' E [M) for markings M and M'. This result is the culmination of a body of research which
began with van Leeuwen [19] and has been worked on by a number of researchers [16, 9, 12, 10, 13].

Here is an immediate consequence:

Corollary 3 Let N be a finite net and C(N) its associated linear theory. It is decidable whether

A F- B is provable in the theory 1(N) for tensor formulae A and B. I

Of course, the Corollary holds only for linear formulae in the small fragment of the system that we
have discussed. Getting an assessment of how this result compares to known results about linear
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logic involves expanding our discussion to a larger fragment of the calculus. Since rules from £(N)

may be used arbitrarily often, they must be represented as linear logic propositions using the "of

course" operator, written !A. (Given a linear proposition A, the proposition !A represents the "pure

propositional content" of A. In the current context we may think of it as an unlimited resource of

A's.) Linear propositional logic with the ! operator is not known to be decidable. The result above

suggests that the decision procedure for this calculus, if it exists, will not be easy to find.

Proof 1.

Al-C B-B
Al-A Al-B A, BlC®B BI-D Cl-C

A,Al-A®B A®B -C®B B,Cl-DOC Dl-D Cl-E
A,Al-C® B cut COBl D®C D,Cl-Do®E

Cut ®A, AI-D®C D®CI- D®E
A,AA-D®E Ct D®Ec- F

D E AA-F 
Cut

Proof 2.

BI-D CF-E
Al- B A "-C B,CF- D® E

A,AI-B®C B®Cl-D®E
A,AI-D®E Cut D®El-F

A,AF-FCu

Proof 3.

AF-B Bt-D Al-C Ct-E
AC-D cut A[-E Cut

A,A -D®E D®E-F
A, A I- F

Figure 5: Three proofs that A, A l- F.

3 Proofs as Computations

Let us return now to our discussion of the net N1 in Figure 3 (on page 4). This net displays some

of the intuitive representations of concepts which have made nets an appealing model for both

theoreticians and practitioners. The events r and t "compete" for the resource A and the events s

and u axe capable of running concurrently if they have the necessary resources B and C. There is

a causal dependency between r and s: if r fires then s will be enabled. A similar dependency holds

between t and u. If there is a line of computation which passes through r, s and another which
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passes through t,u, then these must "synchronize" before v is enabled. Most of these intuitions

are represented in one form or another in the proof trees of the linear theory C(N 1). In particular,

the cut rule corresponds to the concept of causal dependency or sequentialization. For example, to

prove that A F- D, it is essential to use a cut. This relates to the fact that the event r must take

place before the event s can be enabled. Basically, the only situation in which the cut rule is never

needed for a proof is for a net whose theory is trivial since only in this case are there no causal

dependencies! Hence, for the theory determined by a non-trivial net, we cannot expect that cut

elimination is possible.

Given an initial marking {A,A} on the net N1, consider the following sequence of firings to

produce F: first fire r, then fire t, then fire s, then fire u and then fire v. We can represent this by

the following expression:

((((lA 11 'r);(t 11 1B));(s 11 lc));(1D 11 U)); V

where the semi-colon represents sequentialization, the parallel operator represents concurrency and

an expression lx is the "idle event" on X. This computation is "maximally sequential" in the

sense that it makes no real use of the possibility of doing two things "at the same time." This

corresponds to a linear logic proof in which there are many applications of the cut rule. This proof

is given as Proof I in Figure 5. But there are other ways the firing sequence from A, A to F could

be carried out. For example: first fire r and t, then fire s and u, and after this, fire v. The following

expression represents this firing sequence:

((r t) ; ( u)) ;v.

This computation, which corresponds to Proof 2 in Figure 5, has still not made "maximal" use

of concurrency, although it is better than the first firing sequence. Although r and t are not

constrained to fire in any particular order, the event s, for example, is not permitted to fire until t

has fired. This restriction is not really intrinsic to the causal dependencies of the net. On the other

hand, it is clear that no firing sequence will allow v to be fired before both s and t have done so.

The "best" or most concurrent firing sequence is therefore the following: fire r and then s while

also firing t and then u, after this, fire v. This is represented by the expression:

((r;s)II (t;u));v

which corresponds the Proof 3 in Figure 5.

Following these intuitions, it is desirable to provide a set of rewrite rules which will take proofs

such as 1 and 2 and convert them to a "maximally concurrent" proof such as 3. This process

resembles the cut elimination results from proof theory, but must differ in some ways since the

cut elimination is being carried out in a theory in which cut elimination is impossible. A similar

situation arises for cut elimination in a theory with equality where all but the cuts involving
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equational axioms can be eliminated. However, the "maximally concurrent" proof we desire cannot

be obtained by a straight-forward translation of these ideas. Instead, it is necessary to rely on other

intuitions about the correct forms.

4 Cut reduction.

In this section, we formalize the concepts intuitively discussed in the previous section. Our goal is

to demonstrate a set of rewrite rules for transforming a given proof into a "maximally concurrent"

proof of the same sequent. We begin by defining essential cuts and then state and prove the cut

reduction theorem. The proof is based on giving a finite set of proof reduction rules which is shown

to be strongly normalizing.

Definition 1 An instance of the cut rule in a proof is trivial if at least one of the premisses is an

axiom of the form A I- A.

Definition 2 An instance of a cut rule in a proof is called essential if it is non-trivial and has the

form

FFA AFB

r[F-B cut

where A is a netformula.

Theorem 4 (Cut-Reduction) Given a net N and its associated deductive system 1(N). If a

sequent F I- A is provable in L(N), then there is a proof of this sequent in 1(N) such that all cuts

are essential.

Intuitively, essential cuts seem to capture dependencies exactly as dictated by the underlying

net. A proof is cut-reduced if all instances of cuts in it are essential.

We will give a collection of rewrite rules for proofs and show the existence of a normalizing

sequence. We will then strengthen this result by establishing that the set of reduction rules is

strongly normalizing . The theorem above will immediately follow from the proposition that every

normal proof is cut-reduced.

Remark: Prawitz [14] distinguishes "normal form theorem", "normalization theorem", and
"strong normalization theorem". In his terminology then, our cut-reduction theorem is a normal

form theorem, the second theorem will be a normalization theorem, and the last one will be a

strong normalization theorem.

We begin by enumerating transformations on proofs. Assume that a proof P ends with an

inessential cut, i.e. it has the following form:
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Fr-A A,Al-BB
r, A ý- B

We will refer to the left and right sub-proofs as P7 and P", respectively. The various transfor-

mations, based on the form of 7P and P", are:

1. Axioms. This case is applicable when at least one of the sub-proofs is an axiom.

1.1 P7 is an axiom. We have the following transformation:

Al-A PA A A, A L B
A,A F- B "AA ýB

1.2 P" is an axiom. We transform P as follows:

Fl-A AF-A
F,¢-A Cut:A IF F- A

2. Permutation. This rule is applied when at least one of the sub-proofs 7" and P" terminates

with a logical rule with the main formula being different from the cut formula A or with an essential

cut. Following are the various possibilities.

2.1 Endsequent of 7P" is obtained by an essential cut or a logical rule whose main formula is

different from the cut formula. We distinguish the following cases.

2.1.1 The last rule is a OL. We obtain the new proof as follows:

r,B,C F- A F,B,C l- A A,A F- D
F,B ® C l- A AA ý- D =AF,BC,A ý- D

F,B 0 C,A F- D r,B 0 C,A F- D

2.1.2 The last rule in 7P is an essential cut. Note that since we allow at most one formula in

the succedent of a sequent, the last rule of P7 cannot be a ®R in 2.1.

Fl-B Bt--A
Fl-A CutB Al-C

-C Cu:A

Bl-A Al-C
=Fl-B Bl-C

Fl-C Ct

Note in above that B is a netformula.

2.2 Similar to 2.1 above but for the sub-proof P'. We distinguish the following cases.

2.2.1 The last rule is a ®L.
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ACDAPB rPA A, C,D, A A B Cut:A

r- A A,C ® D,A I- A Cut:A rA,cD -B L

F,A,C ® D - B F,A,C ® D P B

2.2.2 The last rule is a ®R. We distinguish following two cases.

2.2.2.1 Cut formula A in upper left sequent of the last rule of P".

A', A - B A"l PC OR F A A', A -B CutA A/C
F-A AA", A f-B® C CORA B

F, Y, Y" -B ® C A F, A', A"-B®C

2.2.2.2 Cut formula A in upper right sequent of the last rule of 7P".

A'f-B A", A C ®R FlA AACCt:A
=lA>Z"AlBCt A'l-"B F,A"l-C

r-AAA, - r, c O ut R

F, Y,A" Y - B ® C F,Y,A" - B ® C

2.2.3 The last rule of P" is an essential cut. In this case, the cut formula cannot come from the

upper right sequent of the essential cut above. Thus we have only one case to consider.

A',A P B B-P C

FlA C,A C u:BF,A'P fC

Fl-A A',A•-B Bi B-
Cut:A

F,Al- BB C
T, Cut:B

F,A' F- C

Note once again that B belongs to some netaxiom in the two cases above.

3. Logical. This is the case where the cut formula is the main formula of a logical rule in both

P' and P'" and is introduced only by this instance of the rule. The transformation in this case

depends on the outermost logical symbol of the cut formula and since we only have one logical

connective, there is only one case to consider here.

F'r - A1  F"r A2 OR A 1,A 2, A P B OL

F',F" F A 1 ® A2  A 1,® A2 ,A f- B Cut:A,®A2

F',F",ŽA - B

F' - A1  A1, A2, A -BCA
F" f- A2  F', A2 , A -B Cut:A 2

F", F', A P B
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Remark: It may seem that the rule 2.1.2 does not appear in its most general form and one may

be tempted to consider the following as its most general form:

F17B Bk-A

AB Cut:ACu:

However, such a form is not only redundant but incorrect too. First, note that in the situation

as above, the comma suggests that A,A I- C is obtained by a OR or OL, and hence 2.2.1 or 2.2.2

would be applicable. An attempt to give a reduction rule based on the form above by permuting

the the two cuts will make the cut on B inessential (unless A is empty, in which case 2.1.2 applies),

thus destroying an important invariance property of these transformations. Also, note that in the

case 3 above, the transformation splits a cut into two cuts but with cut formulas with less number

of logical symbols. The transformation as presented first performs a cut on A1 and then on A 2.

However, we could have done a cut on A2 before A1 giving us another transformation. But including

one or the other or both does not affect our results.

The following lemma singles out an important property of the above transformations.

Lemma 5 Let P be a proof and let 7' be a proof obtained from P by the applications of the

transformations above, then the number of sequents (nodes) in 7P (viewed as a tree) is less than or

equal to the number of nodes in 7P, i.e., the number of nodes in a proof is never increased by the

application of the transformations above.

Proof: Immediate. I

Definition 3 A proof P is in normal form if there does not exist a proof 7' such that P =ý. 7P

(one step reduction) by the transformations above.

Lemma 6 A proof P is in normal form iff it is cut-reduced. |

Proof: (if part) Clearly P is trivially normal if it does not contain any inessential cut.

(only if part) Assume on the contrary that P is normal and contain inessential cuts. In P choose

an inessential cut above which there is no other inessential cut. Clearly then one of the reduction

rules given above is applicable to this (sub) proof 7' in P depending on how the premisses of the

(only) inessential cut in 7P are obtained. This contradicts the assumption that P is normal. Hence

a normal proof is cut-reduced. I

The following lemma is our main lemma which shows the existence of a normalizing sequence

of reduction.

Lemma 7 If P is a proof of F I- A which contains only one (inessential) cut occurring as the last

inference, then F I- A is provable with no inessential cut.
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The proof of the theorem then immediately follows from the above lemma by an easy induction

on the number of inessential cuts appearing in a proof. In any proof consider an inessential cut

above whose lower sequent no inessential cuts appear; thus satisfying the condition of the lemma.

According to the lemma this (sub) proof can be transformed into another (equivalent) proof which

does not contain this cut. In doing so, rest of the proof remains unchanged. We get a cut-reduced

(equivalent) proof by repeating this process until all the inessential cuts have been eliminated.

Proof: (of the main lemma) Easy induction on the number of nodes in a proof satisfying the

condition of the lemma.' I

The following is now immediate.

Theorem 8 Let P be a proof. Then there exists a sequence of reductions such that P =#* P', and

P' is in normal form. I

The following definition will be used in the proof of our next theorem.

Definition 4 The grade g of a formula A is the number of 0 contained in A. The grade of an

inessential cut is the grade of its cut formula.

Thus, by the definition above, grade of an essential cut is 0.

Theorem 9 (Strong Normalization) There is no infinite reduction sequence beginning with any

proof P'.

Proof: We define a measure on proofs and show that each one step transformation reduces this

measure.

Let the complexity of a proof be a pair (a, b), where

e a = sum of the grade g of cut formulas of all inessential cuts in the proof.

e b = sum of the nodes above all inessential cuts (including the premisses and conclusion of the

cut).

Clearly, a cut-reduced proof has complexity (0,0).

Now consider the three (main) classes of the transformations above. It is easy to see that

application of these transformations in each case to a proof reduces its complexity.

Axiom: Both a and b are reduced.

Permutation: b is reduced keeping a the same.

Logical: a is reduced.

Thus, all reduction sequences terminate. [

In Appendix A we have written out how the rewriting works on Proof I and 2 in Figure 5.
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5 Proofs as arrows.

A variety of publications have focused on the category-theoretic characteristics of Petri nets. In this

section we hope to demonstrate that the proof transformations which we describe in the previous

section are compatible with at least one elegant theory of nets as categories. To this end, we

note how proofs can be interpreted as arrows in the category T[AN] of Degano, Meseguer, and

Montanari [5] and then show that the proof reduction rules as presented above are sound with

respect to this interpretation, i.e. they transform arrows to equal arrows.

Let N be a net and L(Af) be the tensor theory determined by it. Also, let Proofs(N) denote

the class of proofs in the theory £(AX) and let Mor(N) denote the class of morphisms of the strictly

symmetric strict monoidal category T[Af] freely generated by N. We define our interpretation

I: Proofs(N) -- Mor(N) as follows, where in writing

II
Fl-A

we mean a proof H with conclusion F I- A.

1.

I(A I- A) = iA :A A

2.

I(Ai ® A2 ... ® A,, F- B ® B 2 ... ® Bm) = t : A,® A2 ... ® A,, B® B 2 ... Bm,

where t is in N.

3.

r ý-A A ý-B =~ :® -- A

F,A I- A®B

wheref:rF-- A=I( A)and g: A--* B = I 112

4.

rA,B -C =I(r,A,B F- C)
F,A®BB- C

5.

FIA AAH B =(f0iA)og:F r -A B,
r , A ýB
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H11 II2
where f :F --* A = I(rF- A) and g:A A ---* B = I(A,A I- B).

Proposition 10 The proof reduction rules are sound with respect to the interpretation above.

Proof: We just consider an illustrative case here. Consider the reduction rule 2.2.2.1. The function

I yields an arrow corresponding to the left hand side as follows. Let f : r --- A, g : A' 0 A -+ B,

and h : A" -* C. Then we have:

(f 0 i®.)o (g 0 h) : ro (A' o A"), - B 0 C
S(f 0(i, i,,)) o (g h)

- ((f i D) ia,,) o (g 0 h)

S((f® i,) o g) ® (i,, o h)

S((f® iA,) og) ® h

SI (right hand side) I

In view of the above proposition and the strong normalization theorem, the following is imme-

diate.

Corollary 11 Every proof reduces to a unique normal form modulo the interpretation. 3

It has long been argued by proof theorists that a notion of equivalence of proofs based on mere

provability is too extensional and inadequate. But the question of the right notion of equivalence of

proofs still remains open. Prawitz [14], for the system of Natural Deduction and his set of reduction

rules, conjectured that two derivations represent the same proof if and only if they reduce to the

same normal form. Now in view of corollary 11 above we may say something similar for the

identification of the derivations in a tensor theory. However, it seems that such an identification

does not quite capture the intuitive sense of equivalence (based on processes) that we have in mind

for net computations and is still too extensional. For example, proof 2 and proof 3 of section 3

would be identified as the corresponding arrows are equal because -0- is a bifunctor. However, the

process interpretation that we have in mind should not result in such an identification. Thus the

sense in which proof 3 is not equivalent to proof 2 (and in fact better) is lost in the denotational view

that we have presented in this section. We are currently looking at how to attach such intensional

interpretations to proofs in our setting. We have made some partial progress towards this, though

mostly via some ad hoc means.

6 Choice Situations

We have so far restricted attention to a rather small fragment of linear logic because this fragment

is already sufficient to illustrate several important concepts that suggest interesting relationships
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between concurrent computations and proofs. However, we believe that this is really only the

beginning of the story. To give the reader a taste of how the theory can be further developed, we

will give two simple examples that illustrate the potential role of the linear connectives known as

"direct product" and "direct sum."

Given linear formulas, A and B, the expression A & B is a linear formula pronounced "A direct

product B". The &R rule is
Fr-A Fr B

r F- A&B
Intuitively, A & B can be obtained from the resources F provided these resources can be used to

obtain A and can also be used to obtain B. Note carefully how this differs from the OR rule where

the resources must be divided in two parts-one part for proving A and the other for proving B.

The &L rules are r, AFPC F,AF- C

F,A&B F- C F,A&B - C

Intuitively, the resources C can be obtained from A & B provided they can be obtained either from

A or from B.

A B C

D E

Figure 6: A® B ®C F (D®C)&(AQE)

The intuitive explanations given above are meant to suggest to the reader the idea that the

direct product operator represents a form of choice. To see a very simple example which we hope

will be convincing enough to capture the reader's interest, consider the net pictured in Figure 6.

Following the theory that we have developed in the preceding sections, this net is represented by

the linear theory consisting of the sequents A 0 B ý- D and B 0 C F- E. Now, given a starting

marking of one token on each of A, B and C, it is clear that a token can be moved to at most one

of the conditions D and E. One might say that "D V E" is an obtainable marking, but "D A E"

is not. On the other hand, it seems that "D A E" is obtainable in the sense that either of the

conditions D and E may be fulfilled by some firing. In linear logic one may express this state of
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0 Coke

$1 0F

0 PQI

Figure 7: Coca Cola implements $1 t- coke E pepsi.

affairs with the formula (D ® C) &(A ® E). Here is a proof of the proper statment:

A®BI-D Cl-C®R AlA B®Cl-E&
A®B,C- D®C L A,BQC -A®E ®L
A®B®Cl--D C A®B®CI-AOEL

A ® B ®C -- (D®C)&(A 0 E) &R

It is our feeling that the direct product operator captures a form of external choice. On the other

hand, the linear disjunction captures a concept of internal choice. Given two linear propositions A

and B, one proves the linear disjunction A E B of A and B from hypotheses F by using one of the

following rules: Fl-A Fl-B

Fr-ADB Fl-AeB

In other words, the resource A E B can be obtained from F just in case either A or B can be. On

the other hand, if one wishes to obtain C from F and resource A E B, then it must be shown that

C can be obtained from both A and B. The rule is

F,A I- C F,B - C

F,AEB ý-C

SCoke

Figure 8: Pepsi Cola implements $1 l- coke E pepsi.

The internal/external distinction can be illustrated by a simple example which takes linear

propositions as a specification language. Let us assume that we wish to contract a vendor to build
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0 Coke

O Pepsi

Figure 9: An implementation with choice: $1 H- coke & pepsi.

us a machine for dispensing soft drinks for $1 and there are two possible flavors of drink that are

available: coke and pepsi. If we do not actually care which of these is dispensed when a dollar

is given to the machine, we may make the specification $1 [- coke E pepsi. The choice of which
beverage we are given in exchange for $1 will then be internal to the machine. For example, the

machine which the Coca Cola company might design is pictured in Figure 7 and would dispense
only coke. On the other hand, the Pepsi Cola company might design the machine in Figure 8 which

dispenses only pepsi. In both cases, the tensor theories determined by the nets are strong enough
that it is possible to prove the proposition $1 P coke e pepsi. Thus the machines have met the

specification. If, on the other hand, we wish to insure that there is an external choice so that a user
can pick the flavor of his preference, then we might have used the specification $1 H coke & pepsi.

This specification is not met by either of the machines in Figures 7 and 8 since this sequent is not
provable in either of the linear theories associated with these machines. On the other hand, the

net in Figure 9 does meet the specification, since its associated theory is strong enough to prove

the specifying sequent.

More research is needed to understand the possible significance of linear connectives in speci-

fication languages. While the example seems reasonable, it is worth keeping in mind that several
other nets would meet the desired specification. For example, the net associated with the following

theory
$1 P- coke

$1 H- pepsi

pepsi H- $1

which gives a $1 in exchange for a pepsi, also meets the specification! On the other hand, the net

associated with the sequent $1 H- coke & pepsi which dispenses both a coke and a pepsi for each $1

does not implement the specification.

There are several more linear connectives which we will not discuss. No account with which

we are familiar has addressed the linear logic negation, which seems to represent the dual of a

resource-a "debt" perhaps. A treatment of negation would lead to an understanding of the dual

of the tensor called the par which seems to represent a concept of "concurrent debts". We mentioned



Nets as tensor theories 19

earlier the unary operator ! which represents an unlimited resource. This operator plays a subtle

role in the theory we have exposited; work of Carolyn Brown [4] provides helpful insight. All of the

linear logic connectives seem to have their own significance in terms of computation on nets. (We

have included a list of some of the rules of linear logic in Appendix B.) Work on the exploitation

of these ideas is likely to be a profitable for the study of both concurrency and proof theory.
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A Sample Proof Transformation

We give some examples of cut-reduction below. At each step of the reduction, the inessential cut

to which a reduction rule is applied is denotedCut -. Other choices of inessential cuts, if any, at

a step to which a rule could have been applied are denoted Cut. Remaining inessential cuts are

denoted Cut.
Example 1

BI- D C- E
A -B AI-C B,C-D®EOE

A,AF-B®C B®Cl-D®E
A, Al-D®E CtD®E-FFE A,A-F DCut

BI-D CF-E
Al-B B,Cl-D®E

Al-C A,Cl-D®E cu.__t
A,A I- D®E D® E FC

A,A l- F

AlFB Bl-D
Al-D C C-E

2.2.2.1 A l C A,Cl- D® C El-

A,AF- D®E C.id D®E -F
AAI-FCutA, Aý- F

Al-B Bl-D Al-C Cl-E

222 Al-D Cut Al-E CuO
A, A-D®E D®El-F

AAl-FCut

Example 2.

Al-C Bl-B
Al-A Al-B A, B-C®B BI-D Cl-C

A,AI-A®B A®BI-C®Be--,L B,Cl-DOC OR D -D C--E
A,Al-C®B L C®Bl-D®C_ D,Cl-D®E

A,AF-D®C cut D0Cl- D®EL
Cut

A, Al-D®E -- D®El-FAA-F CuCut

Al-C Bl-B eR

Al-A A,Bl-C®B Bl-D Cl-COR
Al-B ABl-C®B Cut...A B,Cl-D®C L Dl-D Cl-EOR

SA,AC-C®B C®B-D®C Cu. D,C-_DE
A,A I- D®C D®Cl D®E Cut

A,AA-D®E -, D®El-F
AAl-FCut



22 Carl Gunter and Vijay Gehiot

Aý- B A, BF- C 9B B,Cý- D OC DF- D CF- E
A,AlF- Co®B Cu o CBý- D OC D,Cl-D®DE

A,Al-DOC fmtD ® Cl DP

AA[- OE A, Alý- F ctD( F Cut

Alý-C Alý-B CuR B,Cl-D 0C Dl-D Clý-ER

2.22 2 AAlý-C 0B C 0Bl-D oC D,Clý-D 0E
A,Alý-D (DC Cut D 0Clý-D 0E O

A,Aý- D (9E AAI-F Cut D®0El Fcu

Bl- D Clý-C -
Alý-C Alý-B B,Cl-DOC -Dl-D- Cl-E

1.2 A,Al-COB COBl-DoCE D,Cl-DOE
A,Al-® u D®DCl-D®E-c-

A,Al-DoE A,-F- CtDD®El-FCu

Al-C B,Cl-DOCr-, Dl-D Cl[-E
Al-B ABl-D 0C~ ut D,Clý-D(9E O

A ,ADl -CDu t ® ED ý- - D ® l -

A,ý- OEA,Alý- F L- F Cut

A -CAlý-CC -C Bl- D Dlý-D Clý-E

2221 Al-B A,Bl-DOC- _________O

A,Al-D®&C Ct& D(&Cý- D®&E Cut

A,-DE A,Alý-FL-DoE F Cut

OR
Alý-B A,Bý- Do Cn D,Clý-Do EL

A,Al-D oC - Cut-D( ( -D u~ o Eý u

A,Al-FCu

Cut C O
Al-C Alý-D ORD,Clý-Do E

2.2.2.2 A,Alý-D®oC Do Cl-Do®E

AA - D0 E A,Alý-F fu-JD9E F Cut
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Df-fD C[-E

Al-B Bl-D Al-C D,C-D E r

A,A-DD®E uD®El-F

A,AF PF

AF-C CI E
Al-B Bl-D Dl- D A[-E ut

2.2.2.2 Al-fD Cut OR

A,A -D®E D0®E- FAAl-FCutA, A F

Al-B Bl-f
Al D G ui D -I-fi AlC C- E

2.2.2.2 Al- DG Al-E Gut

A,Al-fD®E O D0®El-F
A,A -- F

Al-C Cl-E Al-B Blfl

. A-E Cut G A- GCut

A,Al-lD®E D EI®E-F
A,A l- F
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B Rules of Linear Logic

Structural Rules

F,A,B, - 0 Exchange r -A,O ) A,AF A Cu
,B, A, A -0 rA,A ý- O,A

Logical Rules

r, A r F- A, A L

r- A±, A r,AL ' A

rF P A,O A +- B,A F,A,B P A
P,A P- A ®B,O,AA®B P A

r P- A,A,B Y,A F- 0 A,B F- A
r f- A,A-YB rA,A2YB P 0,A

F,A F- B,A r I- A, A,B F- C,A L
r I- A--oB, A , ,A, A--- B I- C,OE, A

r FA,A F- B,A r,AF-A L,B_- A L
rF - A& B,A r,A&B I- A r,A&B t- A

Fr A, A r v- B, A r A,-A r,B F- A LL
Fr AeB,ALri FHAeB, RA F,AEB I- A
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Abstract

This paper discusses the relevance of a form of cut elimination theorem for linear logic tensor
theories to the concept of a process on a Petri net. We base our discussion on two definitions
of processes given by Best and Devillers. Their notions of process correspond to equivalence
relations on linear logic proofs. It is noted that the cut reduced proofs form a process under the
finer of these definitions. Using a strongly normalizing rewrite system and a weak Church-Rosser
theorem, we show that each class of the coarser process definition contains exactly one of these
finer classes which can therefore be viewed as a canonical or normal process representative. We
also discuss the relevance of our rewrite rules to the categorical approach of Degano, Meseguer,
and Montanari.

1 Introduction

It has often been useful to take ideas from proof theory and look at their computational significance.
One very fruitful line of investigation has been the use of the Curry-Howard correspondence-the
"propositions as types" idea-as a way of seeing proofs as programs and types as specifications.
This correspondence reveals an analogy between cut elimination in systems of natural deduction
and the reduction of lambda-terms, thus strongly connecting the study of a central proof-theoretic
idea (with a history dating back at least to the 1930's) with a central computational concept in
sequential functional programmming.

Another, more recent, line of investigation with a kinship to this sequential theory concerns the
relationship between certain kinds of proofs and concepts in concurrency. A number of authors
have discussed the idea of relating concurrent computations as represented by Petri nets to proofs
in linear logic [7]. One line of research seeks to use the fact that nets give rise to a monoid structure
and can therefore be used to model linear logic through the use of a phase semantics [6]. In this way
a net can be viewed as a model of the linear connectives in which there is a correspondence between
the truth of a linear sequent in the model and the reachability relation on the net. However, most of
the research [8, 9, 1, 4] has focused on the idea that a net may be viewed as a theory in a fragment
of linear logic (the tensor theory to be precise). In particular, when things are viewed in this way,
there is a precise correspondence between concurrent computations on a Petri net and linear logic

*Research of both authors is supported by the Office of Naval Research. Electronic mail addresses for the authors
are gunter~cis.upenn.edu and gehlot~cis.upenn.edu
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proofs in its associated theory. This opens a way to investigate a transfer of ideas between proof
theory and the theory of concurrent computation.

The purpose of this paper is to look at the significance of the cut elimination theorem of linear
logic tensor theories in the context of computations on Petri nets. The role of cut in this theory is
somewhat different from cut in the context of "propositions as types". A linear proof corresponds to
a net computation and the elimination of a cut corresponds to a transformation of that computation,
rather than an enactment of the computation. The authors of this paper have suggested before [8]
that cut elimination corresponds a form of optimization in which a computation is transformed
into a "more concurrent" computation. It is our goal in this paper to show how this view of the
significance of the cut fits into a theory of Petri net processes.

In particular, we show that linear logic cut elimination provides a way of understanding the
relationship between two definitions of the notion of a net process studied in Best and Devillers [3].
We will define a pair of relations S and T on linear logic proofs which corresponds to two of the
concepts of net process discussed in [3]. The relation T is coarser than S and relates some computa-
tions which display different levels of dependency in their descriptions (i.e. one description permits
two things to be done at the same time while the other description sequentializes them). What we
wish to show is that there is a unique S-equivalence class of processes in each T-equivalence class
r which can be viewed as a "maximally concurrent" representative of 7. Moreover, the members

of this S-equivalence class will be exactly the set of cut reduced proofs in r. Since we can demon-
strate a strongly normalizing rewrite system for linear proofs which preserves T-equivalence, we
can therefore view the distinguished S-equivalence class in 7 as a normal representative process for
it. In general, normal representatives of classes of T may be viewed as the "maximally concurrent"
computations on a net.

Our first primary technical result is a strong normalization theorem (Theorem 2) for a set of
rewrites which preserve T-equivalence. Termination for the rewrites can be proved using a measure
on cut formulas and the number of nodes in a proof tree. Our second primary technical result is
a weak Church-Rosser theorem (Theorem 3) for the action of the rewrite system on equivalence
classes of S. Confluence of our rewrite system therefore follows from Newman's Lemma. This result
is then used to show that there is a unique normal process representative in each equivalence class
of T(Theorem 4).

We begin by discussing some relevant work and definitions in section 2 where we also define the
two equivalence relations. In section 3 we give a set of rewrite rules on proofs which are shown to be
strongly normalizing. Section 4 contains our second main result where we prove the Church-Rosser
property for the induced rewrite rules on S-equivalent classes. We then define an equivalence
based on this notion of reduction and show that this equivalence coincides with T-equivalence
giving us the desired theorem about unique process representatives. Finally, in section 5 we discuss
relationship between reduction on proofs and rewrite rules for arrows which arise by interpreting
proofs as arrows.

2 Two theories of processes.

In this section we introduce the background on processes and linear logic needed to understand
the central results of the paper. First, let's start with an example. Consider the net pictured in
Figure 1. It has six places, drawn as circles and marked A, B, C, A', B', C' and it has five transitions,
written as rectangles and marked r, s, r', s', t. The two closed circles on the places A and A' are
tokens which indicate the availability of the "resources" A and A'. In the configuration in the
picture, the transitions r and r' are enabled by the fulfillment of their preconditions A and A'
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r B s

A 01 -- O 0 ý C

r' B' $°

Figure 1: Net N with two processes of type A ® A' , C ® C'.

respectively. Dynamically, computations proceed by the firing of transitions. If transition r fires,
for example, then the token is removed from A and placed on its postcondition B; the transition r
is now disabled since its precondition A is no longer filled. We may also speak of the concurrent
firing of r and r' in the starting configuration of Figure 1 since there is no dependency between
their pre-conditions.

For formal definitions we refer the reader to recent publications in LICS [10, 5]. For this paper
we will take it as a working definition that a net (or, to be more precise, a place/transition net) is a
set of pairs of multisets over a set S of places. This is really a special case of the definition of a net
in [10, 5] where distinct transitions with the same pre and post conditions are permitted, but the
restriction simplifies our notation since it avoids the need to label the linear sequents to preserve a
precise correspondence between nets and linear tensor theories. For this preliminary discussion, it
will be convenient to utilize their categorical treatment of nets and write transitions as arrows in
a category with a binary operator ® on its objects. In this notation, the transitions in the figure
may be viewed as arrows:

r : A- B s : B -- C
t:B®B' CC®C'

r/ : A -- B s' : B -- C

There are two operations on arrows. If f : X -- Y and g :Y --+ Z, then f;g :X --- Z is the
composition of f and g. If f : X - X' and g : Y -+ Y', then f ® g : X ® Y -- Y ® Y' is the tensor
product of f and g. Starting with the basic transitions, these operations generate a language of
computations on the net. Intuitively we read f;g as the sequentialization of f and g: "first do f
and then do g". We read f 0 g as the concurrent performance of operations f and g: "do f and g
at the same time".

Looking again at Figure 1, here are four sample computations of type A ® A' - C ® C' on the
net N:

f = (r®A');(s®n');(C®r');(C®s')
f (r= r');(s s')
g = (r®A');(B®r');t

= (rer');t

where the idle transition (identity map) on a place X is written simply as X. Much of the research
on nets (and, indeed, concurrency as a whole) has focused on the question of when two computations
such as the ones above are "essentially the same". In the case of the computations above, one may
well expect to distinguish between processes f and g, for example, since one of these computations
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Structural Rules

A HA (Identity) r P- A A, A H - B (Cut)

Logical Rules

Fr-A Al-B(OR) rA, B-C (OL)
F,A -- A0B r,(A r- B

Figure 2: Structural and logical rules for the tensor fragment of linear logic.

performs transitions s and s' but not t, while the other performs t but neither s nor s'. On the
other hand, it is debatable whether f and f' or g and g' should be identified. What this comes
down to is a question of whether 0 is a functor or not, i.e. is it the case that the equation

(u 0 v); (u' 0 v') = (u; u') 0 (v; v')

holds for arbitrary computations u, u , v, v' which make the equation type correct? Arguing one way,
this is a pleasing equational property which is supported by a computational intuition that the only
real difference between the left and right hand sides of this equality is the order in which things are
done. Arguing against functoriality, it seems that computations f' and g' are somehow "better"
than f and g, respectively, since they allow more independent computations to be performed
concurrently. For example, f does not perform the transition r' until after r is complete, but this
is unnecessary since r and r' can be done at the same time as in f'.

The dividing line between a theory of processes which identifies f with f' and g with g' and
a theory which does not make these identifications has been carefully examined in [3] and [5].
We will not introduce the theory in the form that they have done, but instead present it as an
equational theory of proofs. The reader can check that our presentations of the relations S and
T for proofs as given below correspond to the equational theories with these names presented by
Degano, Meseguer, and Montanari [5] in the last LICS symposium.

A linear tensor formula is either a propositional atom or has the form A ® B where A and B are
tensor formulas. A linear logic tensor sequent is a pair F F- A where A is a tensor formula and F is
a multiset. The rules for deriving sequents of this fragment of linear logic are given in Figure 2. A
tensor theory is a set of pairs A H- B where A and B are tensor formulas. Given a net N with places
S, the associated tensor theory is the set of all sequents A H- B where A and B are tensor formulas
formed over atoms from S such that the pair of multisets (M(A), M(B)) determined by A and B is
an element of the net N. There is a precise correspondence between computations on N and proofs
over the associated theory in which uses of axioms in a proof correspond to firings of transitions on
the net and uses of the rules for tensor on the right and cut correspond to the tensor and composition
of computations respectively. We omit a further discussion of this correspondence here since it has
been exposited adequately elsewhere ([9] provides a rigorous treatment for example). The remainder
of this paper will be concerned with computations as represented by proofs.

We now begin a more formal discussion of proofs and the cut rule. In the presence of proper
axioms it is not possible to eliminate cuts. Our concept of cut reduction will be based on a definition
of a normal form for proofs and a system of rewrite rules for proofs not in normal form. We say
that an instance of the cut rule in a proof is trivial if at least one of the premisses is an axiom of
the form A H- A. A linear formula A is said to be a netformula (of T) if it appears in one of the
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formulas of the theory T. An instance of a cut rule is said to be essential (in a proof in the theory
T) if it is non-trivial and has the form

Fl-A Al-B
F l B Cut

where A is a netformula. A proof is said to be in normal form if all of its cuts are essential. We
will discuss normalization of proofs in the next section.

Definition 1 Let N be a net. The equivalence relation S(N) on proofs is defined as the smallest
equivalence relation satisfying the following equations between proof trees.

HI H' HI

(1) F,B,C -D AI-E = F,B, Cl- D ®L Ht

F,B,C,Al-D E ®L F,B0CF-D AI E
F,B®C,Al- D®E®L F,B®C,Al-D®E

(2 H-II HI H(2) Fl-A Al-B = Al-B Fl-A
OR B ® R

F,AF-A®B A,Fl-B®A

H H
(3) F,B,C,A,D, E-F r, B,C,A,D,EI- F

F,B ® C,A,D,E- F®L F,B,C,A,D® E F- •L
F,B 0 C,A,D® El- F F,B 0 C,A,D® E - F

H IH' H' 1H"

(4) F-A Al-C H" H Al-C Al-C
r,A HA®B Al-C Fl-A A,Al-B®CR

F,A,Al-A®BQC r,A,Al- A® B ® C

H IIH' II' I"
(5Il- ,AB " = I1 A, At- B A,Bl-C

(5) r - A A,A - B 111/ AB Ct
F,Ab- B A,B•- C Fl•-A A,A,AI- CC

A, Cut AAA Cu

F,A,A -C C F,A,A l- C

H1 H' 1H
(6) F,B, C-D Dl e-cut r B, H/

F,B,C- E e F,B0C -D Dl- E
F,B®Cl- E F,B®C-H E
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In equation (6) above, 'e-cut' means that the corresponding cut is an essential one. The equa-
tions above may be read as defining associativity and commutativity of proofs in presence of proper
axioms. We now define another equivalence relation T(N) on proofs to be the least equivalence
relation generated by the equations defining S plus the following equation.

IT I" II II'
II II' AII-/C BF III/ II

(7)___ OR Fý- A Al- C J- B Bý- D(7) Fl-A AF-B A,BHC®D O - rF[-A C Cut rl- D CutrA F- F( B- COFO Cu ,- D-C DO

,A - CoF,A -C®D

This last rule corresponds to the functoriality of the tensor operation. Via translation, the
relations S(N) and T(N) as we have just defined them correspond to the theories S[N] and T[N]
as given in [5]. Their results there demonstrate the .correspondence between these equivalence
classes of proofs and the processes in [3]. We will therefore refer to equivalence classes of proofs in
S(N) and T(N) as S-processes and 7T-processes respectively (dropping the N when it is understood
as fixed).

3 Strongly normalizing cut reduction.

In this section we give a set of reduction rules for proofs and show that they are strongly normalizing.
This will provide the desired algorithm for finding the normal representative of a T-process.

Assume that a proof P' ends with an inessential cut and has the following form:

F A A, A BCut:A
r,: ,A - B

We will refer to the left and right sub-proofs as P' and 7", respectively. We will divide these
reduction rules in three classes-axiom, permutation, and logical-and give an illustrative trans-
formation in each class.

1. Axioms. This case is applicable when at least one of the sub-proofs is an axiom. When 7"
is an axiom, we have the following transformation:

- Cut:A A, A L- B
A,A H- B

2. Permutation. This rule is applied when at least one of the sub-proofs 7P and P" terminates
with a logical rule with the main formula being different from the cut formula A or with an essential
cut. For the case when the last rule of 7" is a OR and cut formula A is in upper left sequent of
the last rule of 7", we have the following rewrite:

A', A F- B All ý- C r ý- A A', A ý- B C

Fr - ,A A/,A- B C R F,A't -B t A" - C
F, A',A"t- B ®C CutA F, A" A"' - B C OR

3. Logical. This is the case where the cut formula is the main formula of a logical rule in both
7'" and 7'" and is introduced only by this instance of the rule. The transformation in this case
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depends on the outermost logical symbol of the cut formula and since we only have one logical
connective, there is only one case to consider here.

F' F- A1  F"' - A 2 OR AIA 2 ,A F-B _L
F, F" F- A1 9 A2  A1 0 A2 , A B Cut:Ai®A2

T, F", A F B

F' F- A1  A1,A2,A - BCut:Al

v, F -A2  F', A2 , A F- B
F", P, A F- B

The following property of the rewrite rules is not difficult to check:

Proposition 1 (Soundness of Rewrite Rules) The above rewrite rules preserve the T-
equivalence of proofs. I

We now show that the these reduction rules are strongly normalizing. We will need the following
definition in the proof of the strong normalization theorem.

Definition 2 The grade g of a formula A is the number of occurrences of 0 contained in A. The
grade of an inessential cut is the grade of its cut formula.

Thus, by the definition above, grade of an essential cut is 0.

Theorem 2 (Strong Normalization) There is no infinite reduction sequence beginning with any
proof P.

Proof: Let the complexity of a proof be a pair (a, b), where

"* a = sum of the grade g of cut formulas of all inessential cuts in the proof.

"* b = sum of the nodes above all inessential cuts (including the premisses and conclusion of the
cut).

Clearly, a cut-reduced proof has complexity (0,0). We now show that each step of reduction on
a proof reduces its complexity. Consider the three classes of the transformations above. It is easy
to see that application of these transformations in each case to a proof reduces its complexity.

Axiom: Both a and b are reduced.

Permutation: b is reduced keeping a the same.

Logical: a is reduced.

Thus, all reduction sequences terminate. |

In the following section we show that the induced reduction relation on the equivalence classes
modulo the relation S(N) on proofs enjoys the Church-Rosser property. We will then show that ev-
ery T- equivalence class has a unique normal process representative by showing that the equivalence
defined by the reduction relation on S-equivalence classes coincides with the relation T. The S-
equivalence class of normal forms will then be the unique process representative of a T-equivalence
class.
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4 Normal process representatives.

Let =, be the reduction relation on proofs and let S be the induced reduction relation on the
equivalence classes of proofs modulo the equivalence relation S. Our aim is to show that •S is
weakly Church-Rosser.

Theorem 3 (Weak Church-Rosser) The relation =•8 satisfies the weak diamond property, that
is

#1

it II"

Proof: (Sketch) The result is proved by induction on the structure of the proof tree by analyzing
the various cases that can arise. The case where the last rule used is a OL or a OR follows from
the induction hypothesis. The same holds when the last rule is an essential cut or when the last
rule is an inessential cut and a reduction cannot be applied to this last rule. The case where latter
does not hold is the only interesting case. In this case, a permutation rule may be applied in two
different ways. Analyzing different possibilities, we show the existence of ` above by applying
further reduction steps to II' and IT". For example, let 11 be of the form

11 I2 113
11= r, B, C-A -AA-D O'RE

F,B ® C - A A',A",A I- D 0 E
,B DC,At, - E GuD

then let 11' and H1" be obtained by application of the permutation rule for OL and OR, respectively.
That is,

112 113
II II',A OD

r,= FB, C F- A A', A", A I- D ® E
r, B , C, A ', A " ý- D 0 E CuL

r,B ® C, A,A" - D 0 E

and

I11

F,-B,C - A 11211"= F, BQ®C -A 0L tA D11[3

r, B ® C, A' I-D
F, B 0 C, A', A" H- D 0 E
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Now IT' can be reduced to

IT, 112
r,B, C -A A',AF-D 113

=F, B, C, OR-D"-E
F, B, C, A', A" F- D 0 E

r, B & C, A', A" I- D 0 E

by another application of a permutation rule and similarly 11" can be reduced to

HiI 11[2

r,B,C F- A A,A F- D
r=,B,C,A'I- D -L 113

F,B ®C,&F-D OR-E

r, B ® C, A', A" F- D R E

It is easy to see that E'SE" and thus the required existence of E has been shown. *

Since the reduction rules are strongly normalizing by Theorem 2, we use the Newman's Lemma
(see [2] on page 58) which says that WCR and SN implies CR to conclude that = satisfies the
following diamond property which will be used in the proof of Theorem 4 below.

II

11' 1I"

E

Definition 3 A normal process representative is an S-equivalence class of normal forms.

Theorem 4 (Unique Process Representative) Let N be a net. In every T-equivalence class,
there is a unique normal process representative.

Proof: Let 11 and I11 be two S-equivalent classes. Define 11 4 11' if they both reduce to same
normal form modulo the equivalence S. To prove the theorem, we only have to show that 1H 4 11' iff
11 TH',i.e. the two equivalences coincide. Since the only if part follows from the soundness of the
rewrite rules, we are only left with the if part. To prove the if part, we show that if two proofs are
equivalent by virtue of equation (7) in section 2, then there is a sequence of reduction * from one
to another. We thus rewrite the left-hand side of the equation (7) to a form which is S-equivalent
to the right-hand side of the equation.

" I, ///

11 11' AF-C BF-D
Fr-A F-B A,BF-C®D LOR ®

F,A F- A0B AOBF-C®D
F,A - C® D
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H A-C BF-D
H/ F- A A,B I- C 0 D -R

Al-B F,Bl-CoD

F,AF C-C D

H H"

Sr -A A l- C Cu "
Cut

H' FC B[-D
Al-B F,BF-CoD

r, C D

HI -i" II' HY"'
PFlA Al-Ce AlB BhD

Cut rCutFl-C Ph-D

F, A F C 0D

Thus we have shown the existence of a unique normal S-class for each T-class. 3

In the next section we briefly sketch how rewrites on proofs can be viewed as (typed) rewrite on
arrows in a suitable category. A detailed analysis of this relationship will be discussed elsewhere.

5 A note on arrows vs. proofs.

As we mentioned before, some authors have found it convenient to work with arrows (in strictly
symmetric strict monoidal categories to be exact) rather than proofs as we have done in this paper.
To some extent this is a matter of taste, but it can be illuminating to see things in both ways. For
example, the rewrite rules for proofs in section 3 are translated respectively as the following rewrite
on arrows.

1.
A-A ; fA-B fA-B

2.
(fG-A 0 iD®E-D®E) ;(gD®A-B hE-C) = ((f--.A ® iD-D) ; gDO®A-B) ® E-C

3.

((fG-A o gE--C) ® iD-D) ; hAOC@D--B =, - ® iG®D-GD) ;((fG-A 0 iOD--E®D) ; hA®COD-B)

These may at first sight seem rather unwieldy, but our proof-theoretic results show that they
will work. Moreover, we found that working with proofs helped us to get the right definition of
normal form. Concerning the rewrite system, the proof of Theorem 4 suggests that if one is given
associativity and commutativity of arrows for free, the following rewrite will work whenever the
right-hand side is defined.

(f 0 f2) ;(g9 0 g9) : (h ;g1) 0 (h ;g2)
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In other words, this rewrite rule will give a unique "normal" S[N] arrow for each T[N] equivalent
class of arrows of [5]. In the rewrite above, the left-hand side is always defined whenever the right-
hand side is defined but not vice-versa. In particular, subject reduction fails drastically, so the
rewrite system must maintain the types of the terms.
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Abstract

We develop formal methods for reasoning about memory usage at a level of abstraction
suitable for establishing or refuting claims about the potential applications of linear logic for
static analysis. In particular, we demonstrate a precise relationship between type correctness for
a language based on linear logic and the correctness of a reference-counting interpretation of the
primitives that the language draws from the rules for the 'of course' operation. Our semantics
is 'low-level' enough to express sharing and copying while still being 'high-level' enough to
abstract away from details of memory layout. This enables the formulation and proof of a result
describing the possible run-time reference counts of values of linear type.
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1 Introduction

There have been a variety of efforts to exploit ideas from linear logic for the design and analysis of
programming languages. It is our contention that a perspective on these proposals can be found in
the view that linear logic is a tool for analyzing a structure we call a memory graph which is used
to represent the run-time data of a program. A memory graph is simply a directed graph together
with a finite set of functions that map finite sets called roots into the nodes of the graph. It is a

mathematical abstraction of the run-time structure that holds such data as the activation records
of procedures, heap-allocated objects, and so on. We argue a programming language based on
linear logic yields fine-grained information about how the memory graph evolves at run-time, thus
providing information that could be exploited in program analysis. In particular, the information
provided by the linear connectives concerns the reference counts of nodes in the memory graph,
where the reference count of a node is the sum of the in-degree of the node in the graph and
the number of root elements mapped to it. Reference counting has a long [Col60, DB76], albeit
controversial [WHHO92, Bak88, App92], history as a technique for avoiding garbage collection.
But, aside from its direct use in managing memory, reference counting can offer a unifying view of
many code optimizations, and various code generation strategies can be seen as attempts to control
reference counts so that optimizations can be performed. For example, the correctness of in-place
updating relies on ensuring that the reference count of an object is one.

Attempts to study programming languages like the one in this paper fall roughly into two
groups. There are those that use some analog of the Curry-Howard correspondence [How80] as
the basis for the design of a language based on linear logic [Abr, Hoe88, Laf88, LM92, Mac9l], and
those that consider systems similar to linear logic (hereafter called 'LL') for specific applications (for
instance, [GH90] and [Wad9lb] consider systems to detect single-threading). The system presented
in this paper falls into the former category, except to the extent that we have added some additional
constructs, such as recursive functions, that bring us closer to traditional functional programming
languages.

To convey some of the spirit of the ideas and constructs discussed in the literature just men-
tioned, let us look at a concrete example. Consider the program on the left side of Table 1. The
code implements the addition function in terms of functions for incrementing and decrementing.
The syntax is that of SML using a set of familiar computational primitives such as recursive defini-
tion, branching conditional, and local definition. Looking closely at the definition of addition, it is
possible to note a difference between how the formal parameters of add, the variables x and y, are
used in the body of the definition. The value of x is needed in the test of the conditional, which
is always evaluated, and in the else branch of the conditional, which may not be evaluated, but
not in the then branch of the conditional. On the other hand, the variable y is needed regardless
of whether the then or else branch of the conditional in the body is taken. In particular, its value
is needed only once, not twice-as may be the case with x. This brings out two aspects of the
difference between x and y: first, that the two variables may be used a different number of times (y
exactly once and x either once or twice) and, second, that the value of x must be shared between
its two separate uses.

The program on the right is a version of the addition function written in a program with
'linear logic annotations' (using a slight simplifcation of the notation that we will define precisely
later). There are four new primitives used here: share, dispose, store, and fetch. The share
primitive indicates that x is needed twice: the first use is bound to the variable w and the second
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Table 1: Translating to a Linear-Logic-Based Language.

let fun add x y =

let fun add x y share w,z as x in
ifu X 0 if fetch w = 0
then y =then dispose z, add before y

else add (x-1) (y+l) else (fetch add)
e add (2 ( ) (store ((fetch z)-1))

in add 2 1 (y+1)
end in add (store 2) 1

end

to the variable z. These two variables share the value to which x is bound. The dispose primitive
indicates that one of these sharing variables, z, is not used in the first branch of the conditional. The
primitive store creates a sharable value and fetch obtains a shared value. In our interpretation,
the LL-specific operations share and dispose explicitly manage reference counts of the share'able
and dispose'able objects that are created and consulted by being store'd and fetch'ed. For the
example in Table 1, the occurence of share indicates that two pointers are needed for the value
associated with x (so the reference count of the associated value is incremented), but in the then
branch of the conditional, one of the pointers is no longer needed (so the reference count of the
associated value is decremented).

Analogs to the store and fetch operations are the delay and force operations that appear in
many functional programming languages. In such languages, the delay primitive postpones the
evaluation of a term until it is supplied to the force primitive as an argument. When this happens,
the value of the delayed term is computed, returned, and memoized for any other applications of
force. Abramsky [Abr] has argued that this is a natural way to view the operational semantics of
the store and fetch operations of LL; we will follow this approach as well. The dispose primitive
has an analog (and namesake) in several programming languages. Typically, an object is disposed
by being deallocated; this operation is unsafe because it can lead to dangling pointers. In our LL
language the primitive dispose will only deallocate memory if this is safe since its semantics will be
to decrement a reference count; deallocation only happens when this count falls to zero. The share
command is unique to LL, and its name accurately reflects the way in which it will be interpreted.

One of our primary goals in this paper is to offer an approach for rigorously expressing and
proving optimizations obtained by analyzing an LL-based language. In particular, there is an
adage that 'linear values have only one pointer to them' or 'linear values can be updated in place'.
Wadler [Wad90] has informally observed that these claims must be stated with some care: a
reference count of one can be maintained by copying, but this would negate the advantage of in-
place updating. Our operational semantics allows us to check the claim rigorously: in particular,
we show that linear variables may fail to have a count of one in our reference-counting operational
semantics, which uses sharing heavily; when this is the case, a linear variable does not have a
unique pointer to it and cannot safely be updated in place. The problem arises when a linear
variable falls within the scope of an abstraction over a non-linear variable. We express a theorem
asserting precisely when the value of a linear variable does indeed maintain a reference count of at
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most one.
A broader theme of our investigation is developing a level of abstraction in the semantics of

programming languages that permits 'low-level' concepts to be formalized in a clear and relevant
way. There has been significant progress in formulating theorems about programming languages
and memory ([GG92] and [W092] are recent examples treating garbage collection and run-time
storage representation respectively). It is our hope that we can contribute to a foundation for
further advances in this direction.

We will be concerned only with the question of a computational interpretation of intuitionistic
linear logic, the fragment of the language without negation and the 'par' operation. In fact, we will
restrict ourselves to the language obtained from the linear implication (s -o t) and 'of course' (!s)
operations, although our results can be extended to all of intuitionistic LL. For the rest of the paper,
read 'linear logic' to mean the implicational fragment of intuitionistic linear logic. We present our
language and its properties in stages. The second section of the paper discusses the operational
semantics of memoization with the aim of putting in place the basic notation and approach that
will be used in subsequent sections. The third section describes the syntax, typing rules, and
'high-level' operational semantics for our LL-based language. The fourth section describes the
'low-level' operational semantics of the language. The invariants that express the basic properties
of the memory graph in this semantics are precisely expressed and proved. The fifth section of the
paper demonstrates further basic properties of this semantics, including its correspondence to the
high-level semantics and its independence from the scheme used to allocate new memory. The sixth
section uses the operational semantics to prove a static condition under which a linear value will
always have a reference count of one; this shows that the LL-based language is indeed amenable to
analysis about memory usage. The seventh section discusses various aspects of the technical results
of the paper and attempts to provide additional perspective. Some of the most technical proofs
have been deferred to an appendix.
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2 Operational Semantics with Memory

Here we give a preview of the operational semantics of the LL-based language by describing the
familiar operational semantics of a simple functional language with store (delay) and fetch (force)

operations. We base this preliminary discussion on a language with the grammar

M ::= x[(Ax.M) I(MM)I

n true Ifalse I (succ M) I (pred M) I (zero? M)

(if M then M else M) I (fix M) I
(store M) I (fetch M)

where x and n are from primitive syntax classes of variables and numerals respectively. This is a

variant of PCF [Sco, Plo77, BGS90] augmented by primitive operations for forcing and delaying

evaluations. The expression (fix M) is used for recursive definitions.
The key to providing a semantics for this language is to represent the memoization used in

computing the fetch primitive so that certain recomputation is avioded. We aim to provide a
semantics at a fairly high level of abstraction using what is sometimes known as a natural seman-
tics [Des86, Kah87]. Such a semantics has been described in [PS91] using explicit substitution and
in [Lau93] through the use of an intermediate representation in which all function applications have
variables as arguments. Both of these approaches are appealingly simple but slightly more abstract

than we would like for our purposes in this paper. Our own approach, first described in [CGR92],
is based on a distinction between an environment which is an association of variables with loca-
tions and a store which is an association of values with locations. Sharing of computation results

is achieved through creating multiple references to a location that holds a delayed computation
called a thunk. When the value delayed in the thunk is needed, it is calculated and memoized for
future reference. To define this precisely we must begin with some notation and basic operations
for environments, stores, and memory allocation.

Fix an infinite set of locations Loc, with the letter I denoting elements of this set. Let us say
that a partial function is finite just in case its domain of definition is finite.

"* An environment is a finite partial function from variables to locations; p denotes an envi-
ronment, and Env denotes the set of all environments. The notation p(x) returns the location
associated with variable x in p, and to update an environment, we use the notation

I if X= y

(p[x { l() p(y) otherwise.

The symbol 0 denotes the empty environment; we also use [x '-4 1] as shorthand for O[x -* 1].

"* A value is a

- numeral k,

- boolean b,

- pointer susp(l) or rec(l, f), or

- closure closure(Ax. M, p) or recclosure(Ax. M, p).

The letter V denotes a value, and Value denotes the set of values.
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"* A storable object is either a value or a thunk thunk(M,p). We use Storable to denote the
set of storable objects.

"* A store is a finite partial function or from Loc to Storable. The symbol a denotes a store, 0
denotes the empty store, and Store denotes the set of stores. We will use the same notation
to update stores as for updating environments.

Given a store a and a location l, we define c[l ý-- S] to be the store obtained by updating U by
binding I to the storable object S. We also need a relation for allocating memory cells. A subsetR
of the product (Storable x Store) x (Loc x Store) is an allocation relation if, for any store or and
storable object S, there is an l' and ai' where (S, ca) R (1', a') and

"* ' P_ dom(ci) and dom(ci') = domn(c) U {l'};

"• for all locations l G dorm(c), c(l) = c'(); and

0 c'') S.

This definition abstracts away from the issue of exactly how new locations are found. For specificity,
we choose an allocation relation new that is a function, and write new(S, c) for the pair (1', c') such
that (S, ci) new (P', a'). Of course, our operational semantics should be independent of the choice
of allocation relation, a point we will formalize after describing the semantics of our LL-based
language below.

The operational rules for our language could be given using a natural semantics with rules of
the form (M, p, or) 4 (1, a') where the domain of p contains the set of free variables of M, and l is a
location in the domain of a' that holds the result of evaluation. Writing the semantics in the form
of rules (e.g., as in the appendix of [CGR92]) becomes somewhat cumbersome, so we use a kind of
primitive pseudo-code that can readily be translated into a natural semantics. As a first example,
consider how the store primitive is evaluated:

meminterp((store M), p, ui)=
let (Io, co) = new(thunk(M, p), o-)
in new(susp(lo), 0'0)

Read this as follows. To evaluate (store M) in the environment p and store c, first allocate a new
location holding a thunk composed of M and the environment p. Let 0'0 be the new store and l0

be the location in which the thunk is held. The result of the evaluation is a store obtained from
cc0 by allocating a new location holding the storable value susp(lo) paired with this new location.
Note, in particular, that M is not evaluated. The structure that has been added to the memory is
depicted in Figure 1.

The interesting part of the evaluator and the essence of memoization is given by the way in
which the fetch primitive is handled. The argument of fetch is evaluated to return a storable value of
the form susp(li). The content of location l1 is then examined to determine whether the suspension
has been evaluated to a value or whether it has not yet been evaluated, in which case it has the
form thunk(N, p). If the content is a value, a pointer to the value is returned, otherwise the thunk is
evaluated and l1 duly updated with its value. A pointer to the value of the thunk is then returned
as the result. Here is the pseudo-code description:
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lo0 susp(/1)

1F thunk(MW p)

Figure 1: Structure generated by (store M)

meminterp((fetch M), p, o) =
let (lo, o0) = meminterp(M, p, o)
in case oo(/o) of susp(11 ) =>

case o'0(11)
of thunk(N, p') =>

let (12, -1) = meminterp(N, p', ao)
in (12, 0-1[10 ý- susp(1 2)])

I => (li, o0)

Note that there is no clause for the case when ao(lo) is not a suspension. In this case, we assume
that the behavior of the interpreter on (fetch M) is undefined. This assumption simplifies the rules,

and allows us to ignore what are, in effect, run-time type errors. Our other rules will also ignore

run-time type errors.
There is another approach we might have taken to modelling memoization. The interpretation

of (store M) allocates a location 10 that holds a thunk, and returns a location 11 that holds a pointer

susp(lo) to this location. Could we instead have returned 1o as the value? That is, the rule could
read

meminterp'((store M), p, a) = new(thunk(M, p), a)

The answer to this question is instructive, since it relates to the way in which we will represent the
distinction between copying and sharing in our model. If we choose to return the location holding

the thunk as the value of the store (as opposed to returning a location holding the pointer to this
thunk), then this would require a change in the fetch command. In particular, when the location
12 is obtained there, it would be essential to put the value 0'(1 2 ) in the location where the value of

the thunk may be sought later:

meminterp'((fetch M), p, o)=
let (lo, ro) = meminterp'(M, Pi, o-)
in case 0"(10)

of thunk(N, p') =>
let (12, o1)) = meminterp'(N, p', 0o)
in (10, C1 [10 '- 0-1(12)])

I => (I0, 0-0)

Note that in the second line from the bottom of the program, the values of 10 and 12 in the store
are the same and we will say that the value of the thunk has been copied from location 12 to 1. In
the case that o,1(1 2 ) is a 'small' value, like an integer that occupies only a word of storage, there is
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little difference between copying the value from 12 to 1 versus returning a pointer to 12 as we did in
the earlier implementation. If the value U1(12) is 'large', however, then copying may be expensive.
In the language we are considering, this might involve copying a closure, which would be a modest
expense, but in a fuller language it might involve copying a string or functional array, which could
be very expensive. (If 91(12) is a mutable value, then the copying is probably incorrect-but this
is not a problem for the functional language at hand.) Our semantics does not directly represent
the cost associated with copying because it abstracts away from a measure of the size of a value;
instead, we will treat copying as if it is something to be avoided in favor of sharing (indirection)
whenever this is feasible. This suggests yet a third approach to the semantics of fetch where store
is implemented as with meminterp' but where the interpretation of fetch uses an indirection for the
returned value:

meminterp"((fetch M), p, o-)
let (Io, ao) =-meminterp"(M, Pi, o-)
in case uo0(/)

of thunk(N, p') =>
let (b2, a1)= meminterp"(N, p', 0-o)
in (10, [o10 ý- @12])

I => (1o, 0-o0)

where @12 is to be viewed as a boxed value. This is possibly closer to the way memoization would
be implemented in most compilers. For the semantics we use for the LL-based language in the next
section this approach complicates the semantics slightly and is less efficient because of the way the
reference counting is done. Otherwise, our approach could accomodate this alternative without
major changes.

The implementation of memoization involves the idea of mutating a store. Even the 'functional'
parts of the language must respect the potential side effects to the store that memoization may
cause. Hence these operations must pass the store along in an appropriate manner. Doing this
correctly may save recomputation. Here, for instance, is how the application operation is described:

meminterp((M N), p, o-) =
let (1o, oo) = meminterp(M, p, a)

(11, o-1) = meminterp(N, p, 0o)

in case u-(10) of closure(Ax. N, p') =>
meinterp(NV, p'[x - 11], ci)

The store resulting from evaluating M is used in evaluating N; similarly, the store resulting from
evaluating N is used in evaluating the application.

There are a variety of ways to implement recursion. A reasonably efficient approach is to create
a circular structure. This approach is simplified by restricting the interpreter to programs such
that, in constructs of the form (fix N), the term N has the form Af. Ax. M. The restriction is
not necessary, but it is typical for call-by-value programming languages. The semantics for such
recursions is given by

neminterp((fix Af. Ax. M), p ,) =
let (Io, oo) = new(O, 0-)

(11, o-1) = new(recdosure(Ax. M, p[f ý-4 lo]), co0)
in (lo, o-1[1o i-* rec(li, f)])
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0 [rec(li, f)

11 recclosure(Ax. M, p[f i-* 10])

Figure 2: Structure generated by (fix Af. Ax. M)

which creates the circular structure in Figure 2. For this language we could create a single cell
holding the recclosure that looped back to itself; we use two cells, though, since the additional
cell holding rec will be used in the semantics of the LL-based language to facilitate connections
with the type system. We also need here to change the semantics of applications so that if the
operator evaluates to a rec, the pointer is traced to a recclosure; in turn, if the operator evaluates
to a recclosure, the operator is used in the same way as a closure.

In the implementation of actual functional programming languages, a single recursion such as
the one above would probably make its recursive calls through a jump instruction. This would
be quite difficult to formalize with the source-code-based approach we are using to describe the
interpreter. The important thing, for our purposes, is that recursive calls to f do not allocate
further memory for the recursive closure. This means that, as far as memory is concerned, there
is little difference between implementing the recursion with the jump and implementing it with a
circular structure. The cycle created in this way introduces extra complexity into the structure of
memory, of course, but the cycles introduced in this way must have precisely the form pictured in
Figure 2.

It is easy to provide a clean type system for the language described above. One technical
convenience is to tag certain bindings with types (such as the binding occurence in an abstraction
Ax : s. M) to ensure that a given program has a unique type derivation. When it is not important for
the discussion at hand, we will often drop the tags on bound variables to reduce clutter. The types
for the language include ground types Nat and Bool for numbers and booleans respectively, higher
types (s -* t) for functions between s and t, and a unary operation !s for the delayed programs of
type s. The typing rules for store and fetch are introduction and elimination operations respectively:

M:s M :!s
(store M) : !s (fetch M) : s

These operations will also be found in our LL-based language with essentially the same types.
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3 A Programming Language Based on Linear Logic

Term assignment for linear logic.

If a programming language L is to be based on LL, it seems reasonable to attempt the completion
of an analogy based on the Curry-Howard correspondence: intuitionistic logic is to traditional
functional programming languages (such as ML or Haskell) as LL is to L. Basing a language on
the Curry-Howard correspondence for LL immediately becomes problematic, as LL was originally
described by Girard [Gir87] using a sequent calculus. Most programming languages have a syntax
and typing system like the natural deduction (hereafter called 'ND') formulation of intuitionistic
logic rather than its sequent calculus formulation, since type-checking algorithms are easier to
describe for ND formulations. Progress on an ND form for intuitionistic LL has been gradual, in
part because substitutivity fails for the obvious formulations:

Definition I A type system satisfies the substitutivity property if well-typed programs are closed
under substitution, i.e., if F F- m : t and A, x : t t- N : u and all variables in r and A are distinct,
then F,A I- N[x := M] : u.

Here M[x := N] denotes substitution of N for x in M with the bound variables of M renamed
to avoid capture of the free variables of N. SML [MTH90, MT91] is a prototypical example of a
language based on an ND presentation that satisfies the substitutivity property.

Merely coming up with a ND presentation of LL that satisfies substitutivity has been an out-
standing problem. In the absence of such a system, Lincoln and Mitchell [LM92], Mackie [Mac91],
Wadler [Wad9la], and the authors of this paper in a preceeding work [CGR92] employed approaches
that obtain some of the virtues of an ND system for LL. The system used in this paper is based
on a proposal of Benton, Bierman, de Paiva, and Hyland [BBdH92] that does satisfy the substi-
tutivity property, even though it lacks some of the desirable properties of the ND presentation of
intuitionistic logic (such as freedom from the need to use commuting conversions [GLT89]). We
refer the reader to their paper for a fuller discussion.

The propositions of the fragment of linear logic we consider are given by the grammar

s ::= a I(s -o s) I !

where a ranges over atomic propositions. The proofs of linear propositions are encoded by terms
in the grammar

M ::= xI(Ax:s.M) I(MM)[

(store M where x, = M1 ,.. .,x, = All,)(fetch M)[
(share x, y as M in M) I (dispose M before M).

Our notation here essentially corresponds to that in [CGR92, LM92] modulo incorporating adjust-
ments from [BBdH92]. The store operation,

(store M where x1 = A/ 1 ,..., xn = A ,

binds the variables X1 ,..., xn in the expression M and the share operation

(share x, y as M in N)
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Table 2: Natural deduction rules and term assignment for linear logic.

x:s I- x:s

r,x:s I- M:t r I- M:(s-ot) A I- N:s
r F (Ax:s.M):(s -ot) F,A F- (MN):t

F I- M:!s A F- N:t F F- M:!s A,x:!s,y:!s F- N:t
F,A F- (disposeMbeforeN):t F,A F- (share x, y as M in N): t

F1 F- M1 : !s, ... F, F- M, :!s x, : !sl,..., xn :!s, F- N: t

FI,...,r, F- (store N where x, = M 1,...,x, = MlI) : !t

F F- M : !s
F I- (fetch M) : s

binds the variables x and y in N. The notation for store can be somewhat unwieldy when writing
programs, but most programs involving store bind the variables in the where clause to other vari-
ables. Thus, if the free variables of M are xl,..., x, then (store M) is shorthand for the expression
(store M where x, = xZ,. . ., Xn = Xn).

The typing rules for the language appear in Table 2, where the symbols F and A denote type
assignments, which are lists of pairs x, : s1,.. .,xn : s,, where each xi is a distinct variable and
each si is a type. Each of the rules is built on the assumption that all left-hand sides of the F-
symbol are legal type assignments, e.g., in the rule for typing applications, the type assignments
F and A, which appear concatenated together in the conclusion of the rule, must have disjoint
variables. Each type-checking rule corresponds to a proof rule in the ND presentation of linear
logic. For instance, the rules for share and dispose essentially correspond to the proof rules generally
called contraction and weakening respectively, while those for store and fetch correspond to the
LL rules called promotion and dereliction. Due to the presence of explicit rules for weakening and
contraction-the rules for type-checking dispose and share-one can easily see that the free variables
of a well-typed term are exactly those contained in the type assignment. A particular note should
be taken of the form of the rule for store; this operation puts the value of its body with bindings
for its free variables in a location that can be shared by different terms during reduction-the type
changes correspondingly from t to !t. The construct (fetch M) corresponds to reading the stored
vahue-the type changes from !t to t.

There may be other ND presentations of LL on which one could base a type system. It is our
belief that results in this paper are robust with respect to the exact choice of term assignment and
type-checking rules. All of the results in this paper-including negative results that say that values
of linear type may have more than one pointer to them-hold in the system described in [CGR92],
and we expect that they are true for the languages described in [LM92] and [Mac9l].
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Table 3: Typing rules for non-logical constructs.

I- n : Nat F- true,false : Bool

r F- M:Nat r F- M:Nat
F F- (succ M): Nat r F- (pred MI): Nat

F F- M:Nat F M- M:!(!s--os)
F F- (zero? M): Bool F F- (fixM) :s

F F- L:Bool A F M:s A F- N:s
F, A F- (if L then M else N): s

A programming language based on linear logic.

To fully realize the ideas of LL as the basis for a programming language, it is essential to go
beyond the core language. First of all, the language could be extended to one that includes the
linear logic connectives for pairing and sums, namely tensor 0, plus E, and with &. Suitable ND
proof rules for these connectives and term assignments for proofs using these rules are described
in several places [Mac9l, LM92, BBdH92]. A more challenging question is how to extend the
language to include constructs for which the use of the Curry-Howard correspondence is less useful
as a guide. Examples that fall in this category are arrays, general recursive datatypes involving
linear implication, and recursive definitions of functions. In this paper we treat only recursive
function definitions; the question of the proper treatment of recursive definitions in an LL-based
language is likely to be simpler than that of general recursive datatypes, and more fundamental
than that of arrays.

Our language is essentially a synthesis of PCF and the term language for encoding LL natural
deduction proofs. The types are given by the following grammar:

s ::= Nat I Bool I (s -o s) I!s

Types without leading !'s, e.g., Nat and (Nat -o Bool), are called linear and those of the form !s
are called non-linear. We use the letters s, t, u, and v to denote types. The set of raw terms in
the language is given by the grammar

Ml ::= XI(AX:s .M) I(MM)j

n true false (succ M) I (pred M) I (zero? M) I (if M then M else M) I (fix M) I
(store M where x, = MI,..., x, = M,) I (fetch M) I
(share x, y as M in M) I (dispose M before M)

where the letter x denotes any variable, and n denotes a numeral in {0,1,2,,...}. The last four
operations correspond to the special rules of linear logic; the other term constructors are those of
PCF. The usual definitions of free and bound variables for PCF also apply here for the first three
lines of the grammar.
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The typing rules for our language are given by combining Tables 2 and 3. Two of these rules
deserve special explanation. First, the rule for checking the expression if L then M else N checks
both branches in the same type assignment, i.e., the terms M and N must contain the same free
variables. This is the only type-checking rule that allows variables to appear multiple times; it does

not, however, violate the intuition that variables are used once, since only one branch will be taken
during the execution of the program. Second, the slightly mysterious form of the typing rule for
recursions is related to the idea that the formal parameter of a recursive definition must be share'd
and dispose'd if there is to be anything interesting about it. Consider, for example, the rendering
of the program of Table I into our language:

(fix (store A add : !(!Nat-oNat-oNat). Ax : !Nat. Ay : Nat.
share w, z as x in

if zero? (fetch w)
then dispose z before dispose add before y
else (fetch add) (store (pred (fetch z))) (succ y)))

(store 2) 1

(where some liberties have been taken in dropping a few of the parentheses to improve readability).
The recursive function add being defined gets used only in one of the branches; thus, the recursive
call must have a non-linear type.

The definition of the addition function is a prototypical example of how one programs recursive
functions in this language. In fact, both the high-level and low-level semantics will only interpret
recursions (fix M) where M has the form

(store (A! : !s -o t. Ax: s. M) where x, = M 1,.. .,xn = M,).

This restriction is closely connected to the restriction on interpreting recursion mentioned in the
previous section; the only difference here is the occurrence of the store. As before, this restric-
tion is not essential, but it does simplify the semantic clause for the recursion somewhat without
compromising the way programs are generally written.

Natural semantics.

Tables 4 and 5 give a high-level description of an interpreter for our language, written using natural
semantics. A natural semantics describes a partial function 4 via proof trees. The notation M 4 c,

read 'the term M halts at the final result c', is used when there is a proof from the rules with the
conclusion being M 4 c. The terms at which the interpreter function halts are called canonical
forms; it is easy to see from the form of the rules that the canonical forms are n, true, false,
(Ax. M), and (store M).

The natural semantics in Tables 4 and 5 describes a call-by-value evaluation strategy. That is,
operands in applications are evaluated to canonical form before the substitution takes place. A
basic property of the semantics is that types are preserved under evaluation:

Theorem 2 Suppose H M : s and M 4 c, then [- c: s.

The proof can be carried out by an easy induction on the height of the proof tree of M 4 c.
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Table 4: Interpreting the Linear Core

M4Ax.P N4d P[x:=d]4c
•x. M4Ax.iV (M N)•4 c

M4d NW c M4d P[x,y:=d]4c

(dispose M before N) 4 c (share x, y as M in P) 4 c

Mlic .. C1 -/, 4 C"

(store N where x, = Ml,..., x, = M) 4 (store N[x1 := c,.. , x, := cD])

M 4 (store N) N 4 c
(fetch M) 4 c

Table 5: Interpreting the PCF Extensions

true 4 true false 4 false n 4 n

M4n M4(n+1) M40

(succ M) 4 (n + 1) (pred M) 4 n (pred M) 4 0

M40 M 4(n+ 1)

(zero? M) 4 true (zero? M) 4 false

L 4•true M4c L 4 false N 4 c

(if L then M else N) 4 c (if L then M'I else N) 4 c

M1 .4 c1 ... Mn -4 c. M'=-- M[X1 := c11,..., IXn := cn]

(fix (store (Af. Ax. M) where x1 = Ml,..., x, = Ma))

4 (Ax. M')[f := (store (fix (store Af. Ax. M')))]
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4 Semantics

The high-level natural semantics is useful as a specification for an intepreter for our language,
and for proving facts like Theorem 2. One would not want to implement the semantics directly,
however: explicit substitution into terms can be expensive, and one would therefore use some
standard representation of terms like closures or graphs in order to perform substitution more
efficiently. But there is another problem with the high-level semantics: it does not go very far in

providing a computational intuition for the LL primitives in the language. For example, the dispose
operation is treated essentially as 'no-op'. As such, there is no apparent relationship between these

connectives and memory; indeed, the semantics entirely suppresses the concept of memory.
In order to understand what the constructs of linear logic have to do with memory, we construct

a semantics that relates the LL primitives to reference counting. In this semantics, the linear logic
primitives dispose and share maintain reference counts. The basic structure of the reference-counting
interpreter is the same as the one outlined in Section 3. Environments, values, and storable objects
have the same definition as before. Because we now want to maintain reference counts, however,
the definition of stores must change. A store is now a function

a : Loc - (N x Storable),

where the left part of the returned pair denotes a reference count. Abusing notation, we use U(1) to

denote the storable object associated with location 1, and a[l ý-- S] to denote a new store which is
the same as a except at location 1, which now holds the storable object S with the reference count
of I left unaffected. The reference count of a cell is denoted by refcount(l, a). The domain of a

store a is the set
dom(a) = {l E Loc : refcount(l, a) > 1}.

The change in the definition of 'store' forces an adjustment in the definition of 'allocation relation'.
A subset R of the product (Storable x Store) x (Loc x Store) is an allocation relation if, for any
store a and storable object S, there is an P' and a' where (S, a) R (P', a') and

"* l' P dom(a) and dom(cr') = dom(a) U {l'};

"• for all locations I E dom(a), a(l) = a'(1) and refcount(l, a) = refcount(l, a'); and

" C'(l')= S and refcount(l', a') = 1.

The basic structure underlying a store may be captured abstractly by a graph. Formally, a
graph is a tuple (V, E, s, t) where V and E are sets of vertices and edges respectively and s, t are
functions from E to V called the source and target functions respectively. (Note that there may
be more than one edge with the same source and target; such 'multiple edge' graphs are sometimes
called multigraphs.) Given v E V, the in-degree of v is the number of elements e E E such that

t(e) = v. A vertex v is reachable from a vertex v' if v = v' or there is a path between them, that
is, there is a list of edges el,..., e., such that v = s(ei), v' = t(e•) and t(ei) = s(ei+1).

A memory graph 9 is a tuple (V,E,s,t,[pl,...,p,•]) where (V,E,s,t) is a graph together
with a list of functions pi such that each pi is a function with a finite domain and with V as its

codomain. The functions pi are called the root set of the memory graph. Given v ( V and pi,
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root set

Figure 3: A memory graph.

let [p7'(v)l be the number of elements x in the domain of pi such that pi(x) v. The reference
count of a vertex v E V is the sum

n

in-degree(v) + S Ip-'(v)l.
i=1

A vertex in a memory graph is said to be reachable from pi if it is reachable from an element in
the image of pi.

A state is a triple (o, -, o) where I is a list of locations, P3 is a list of environments and 0' is
a store. It is assumed that the set of locations in 1 and the image of each environment in p- are
contained in dom(a).

Definition 3 If S = (1, p, a) is a state where l [l,... Iln] and P = [pi,..., pm], then the memory

graph G(S) induced by S is defined as follows. The vertices of the graph are the locations in
dom(a), and the edges are determined by the following definition.

a If l E dom(c) is such that ca(l) = susp(l') or cr(l) = rec(l', f), there is an edge from I to 1'.

e Suppose l E dom(o-) is such that or(l) = closure(N,p) or thunk(N,p). Then for every x G
dom(p), there is an edge from I to p(z).

Let f : {1,..., n} - V be given by f : i - Ii. The root set of the induced memory graph is the
list [f, Pi,.--, P ]-

For instance, the state (1, p, co) where dom(p) = {x}, p(x) = l", u(l) = thunk(M, [y, z ý/- I']),
o-(f) = 3, o-(l") = susp(l".), and c.(l".) = true induces the memory graph in Figure 3. We will abuse

notation and sometimes write G(o) for the graph induced by ca alone (with no root set).
We are primarily concerned with states that satisfy a collection of basic invariants.

Definition 4 A state S = (, p, cr) is count-correct if, for each I E dorm(c), refcount(l, 0x) is equal

to the reference count of l in G(S).
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Definition 5 A state S = ( o,,t,,ci) is called regular, written R(S), provided the following condi-
tions hold:

R1 S is count-correct.

R2 dom(o) is finite.

R3 For each I E dom(o), if a-(l) = thunk(M, p), then refcount(l,0-) = 1.

R4 A cycle in the memory graph induced by S arises only in the form of a rec and recclosure
as in Figure 2: that is, it has two nodes 10 and l such that o(lo) = rec(l 1 , f) and o(11) =

recclosure(Ax. M, p[f '-4 1o]) for some f, x, M, and p.

R5 For each 1 E dom(o), if a(l) = thunk(M, p), then the domain of p is the set of free variables of
M, and M is typeable. Similarly, if a-(l) = closure(Ax. M, p) or recclosure(Ax. M, p), then the
domain of p is the set of free variables of Ax. M, and Ax. M is typeable.

Here, a term M is said to be typeable if there is some type context r and type t such that
F ý- M : t.

It is convenient to abuse notation slightly in denoting states by writing locations, environments,
and store without grouping them as in the official definition. For example, (l1, 12, p1 P0, 1, fi) should
be read as (11 :: 12 :: l,p :: P, U) (where :: is the 'cons' operation that puts a datum at the head of
a list). There is no chance of confusion so long as the lexical conventions distinguish the parts of
the tuple, and the locations and environments are properly ordered from left to right. However,
the order of these lists is irrelevant for regularity: if R(T, p, a.) and P', P' are permutations of T and
respectively, then R(l, p', a.). We will use this fact without explicit mention.

Basic reference-counting operations.

Our interpreter will need four auxiliary functions to manipulate reference counts. Two of these func-
tions, inc and dec, increment and decrement reference counts. More formally, inc(/, o-) increments
the reference count of I and returns the resultant store, while dec(l, a) decrements the reference
count of I and returns the resultant store. The other two operations, inc-env(p, o,) and dec-ptrs(l, a-),
increment or decrement the reference counts of multiple cells. The formal definition of the first of
these is

t {.,,, where the domain of p is {xj,...,x},, and

inc-env(p, a-) =a = inc(p(xl), o,)t- = inc(p(xi,), o,-)
In words, inc-env(p, a.) increments the reference counts of the locations in the range of p and returns
the resultant store. Note that a location's reference count may be incremented more than once by
this operation, since two variables xi, xj may map to the same location I according to p.

The operation dec-ptrs(l, a), which also returns an updated store, first decrements the reference
count of location 1. If the reference count falls to zero, it then recursively decrements the reference
counts of all cells pointed to by 1. The formal definition appears in Table 6; an example appears
in Figure 4 where the left side of Figure 4 (assumed to be part of the graph of the store 0-) is
transformed into the right side by calling dec-ptrs(l, a.). The operation dec-ptrs(1, a.) is the single
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Table 6: The Definition of dec-ptrs.

dec(l, a) if ca(l) = n, true, or false
dec-ptrs(l', dec(l, c)) if a(l) = susp(l'), refcount(l, or) 1
dec-ptrs-env(p, dec(1, or)) if c(l) =thunk(M, p), refcount(l, a)=1
dec-ptrs-env(p, dec(l, a,)) if a(l) = closure(Ax. Mv, p), refcount(l, ar)
dec-ptrs-env(p, if a(l) = recclosure(Ax. N, p[f ý-- I']),

dec-ptrs(l, a) =dec(l', dec(l, dec(1, ar)))) a(lP) = rec(l, f ),
refcount(l, ar) =2, refcount(l', a-) I

dec-ptrs-env(p, if a(l) =rec(l',f)

dec(l', dec(l, dec(l, a)))) a(l') recclosure(Ax. N, p[f *])

refcount(l, a) = 2, refcount(l', a) =1

dec(l, a) otherwise

a,,, where the domain of p is {xj, . . ,xj, and

dec-ptrs-env(P'0a) 1 =ecprpx),a

Un = dec-ptrs(P(xn), r.-I)

1 _ __1 0

2 __

Figure 4: An Example of the dec-ptrs Operation.
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most complex operation used in the interpreter. Other operations are 'local' to parts of the memory
graph and do not require a recursive definition. A key characteristic of our semantics is the fact
that dec-ptrs(l, o) is only used in the rule for evaluating (dispose M before N).

The basic laws that capture the relationships maintained by the reference-counting, allocation,
and update operations on states are given in Table 7. Most of the laws are proven in the appendix,
but we give the proof for the Attenuation Law Al here to show how the proofs go. Suppose
Rf(l, 1, f, oa), refcount(l, or) = 1 and a(l) = closure(Ax. N, p), recclosure(Ax. N, p), or thunk(N, p).
Note first that the state S' = (1, p, 5, dec(l, u)) is count-correct: the environment p has been placed in
the root set, accounting for the edges coming out of the closure or thunk which has now disappeared
from the memory graph. Thus, property R1 holds of state S'. Since dorm(a) ;? dorm(dec(l, a)), each
of the properties R2--5 follow directly from the hypothesis. Thus, R(S'). The property is called
an "attenuation law" because pointers previously held inside the store are drawn out to the root
set.

The next goal is to define an interpreter for the LL-based programming language. To understand
the interpreter it is essential to appreciate how the invariants influence its design. We therefore
describe the theorem that the interpreter is expected to satisfy, and mingle the proof of the theorem
with the definition of the interpreter itself. The interpreter is a function interp which takes as its
arguments a term M, an environment p, and a store a. It is assumed that the domain of p is the
set of free variables in M and that the image of p is contained in the domain of a. The result of
interp(M, p, a) is a pair (P', a') where a' is a store and P' is a location in the domain of a' such
that a'(l') is a value, which can be viewed as the result of the computation. We use a binary infix
© for appending two lists. The theorem is stated as follows:

Theorem 6 Let S = (p,a,-l, p) be a state and suppose M is a typeable term. If R?(S) and
interp(M, p, 7) = (l', '), then (l', o', [,p).

Moreover, if P = /51@/52, I = [11@2 and I E dom(a) is not reachable from p :: /5 or [1 in the
memory graph induced by S, then the contents and reference count of I remain unchanged and I is
not reachable from fil or P' :: F, in the memory graph induced by (P', a', TIP).

The first part of the theorem says that regularity is preserved under execution of typeable terms.
The second part of the theorem expresses what we will call the reachability property. The
special case of interest says that the evaluation of a program M in environment p and store a does
not affect locations in dom(a) that are not reachable from p. The extra complexity of the statement
is required to maintain a usable induction hypothesis in the proof of the property. A simplified
version of Theorem 6 can be expressed as follows:

Corollary 7 Suppose M is a closed, typeable term. If interp(M, 0, 0) = (P', a'), then R(/', a').

The assumption that M is typeable is crucial in the proof of the theorem, because untypeable
terms may not maintain reference counts correctly. For instance, the term

(Ax. (dispose x before x)) (store 1)

would cause a run-time error in the maintenance of reference counts-after the dispose, we would try
to access a portion of memory with reference count zero and get a 'dangling pointer' error. This
example shows that untypeable terms may cause premature deallocations. Another untypeable
term

(Ax. (share y, z as x in (dispose y before 2))) (store 1)
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Table 7: Memory Graph Laws.

Attenuation Laws Suppose R(1, l, p, u) and refcount(l, -) = 1.

Al If ar(l) = closure(Ax. N, p), recclosure(Ax. N, p), or thunk(N, p), then R(1, p, dec(l, a)).

A2 If a(l) = susp(P'), then R(l', P, 5, dec(l, o)).

Laws of Decrement

D1 If (l1, o-, ) and a(l) is a constant, then •R(l, , dec(l, a)).

D2 If (l1, a, a) and refcount(l, a) $ 1, then •R([, 5, dec(l, o)).

D3 If •R(1, a, a), then FR(T, f, dec-ptrs(l, a)).

Laws of Increment

il If R(1, f,,a) and I E dom(a), then R1(l, l, ,inc(l, o)).

12 Suppose R(T, f, or) and p(x) E dom(a) for all x E dom(p). Then R(T, p, ,inc-env(p, o)).

Environment Law

E Suppose x 0 dom(p). Then FR(1, , p,p, a) iff JR(l, p[x - l], p, 0a).

Allocation Laws

Ni If R•(-, p, a7) and (1', ar') = new(c, o-) for some constant c, then R(l', U,'p, a').

N2 Suppose R(1, p, fi, a-) and (1', a') is equal to new(closure(N, p), a), new(thunk(N, p), a), or
new(recclosure(N, p), a) where FV(N) = dom(p). If N is typeable, then •R(P', l, P, a').

N3 If (l1, -, a) and (1', a') = new(susp(l), a) or new(rec(l, f), a), then R(l', a, p, a').

Update Laws

Ul Suppose S = (lo, ,) and R(S) and a(l) is a constant and P' E dom(a).

"* If I is not reachable from P' in the memory graph induced by S, thenR(P', 1,, inc(l', o,[l ý- suspl'])

"* If a(l') = recclosure(Ax. N, p[f ý- 1]), then •R(l', 1, 5, inc(l', a[l -* rec(I', f)])).

U2 If R(Il,o,5,r), refcount(l,a) $ 1, a(l) = susp(l'), and a(l') = thunk(N,p), thenPL(p, ,/,dec(l', dec(l, or[l ý- c]))).
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causes a 'space leak', i.e., the reference count of the cell holding (store 1) is still greater than zero
even though it is garbage at the end of the execution.

Interpreting the linear core.

The proof of Theorem 6 is by induction on the number of calls to the interpreter. The proof
proceeds by considering each case for the program to be evaluated.

The interpretation of a variable is obtained by looking up the variable in the environment:

(1) interp(x, p, a) = (p(x), o)

That the store (p(x), a', p, ;) is regular is a consequence of the Environment Law E because of the
assumption that the domain of p is {x}. The reachability condition is clearly satisfied, since the
output store is the same as the input store.

To evaluate an abstraction we create a new closure, place it in a new cell, and return the location
together with the updated store:

(2) interp(Ax. P, p, o) = new(closure(Ax. P, p), o)

To prove that regularity of the state is preserved, suppose that (1', a') = new(closure(Ax. P, p), a),
then R(l', o', 1, f) by Allocation Law N2. The reachability condition is satisfied because the output
store differs from the input store only by extending it.

Given a term P and an environment p whose domain includes the free variables of P, let po P
be the restriction of the environment p to the free variables of P. The evaluation of an application
is given as follows:

(3) interp((P Q), p, o)=
let (lo, uo) = interp(P, pIP, o-)

(l1, -1) = interp(Q, pIQ, ao)
in case ai(lo) of closure(Ax. N, p') or recciosure(Ax. N, p') =>

if refcount(lo, 0-1) = 1
then interp(N, p'[x - 11], dec0o, a,))
else interp(N, p'[x ý- 1], inc-env(p', dec(l0, or-)))

The reader may compare this rule to the rule for application given in Section 3. The key difference in
the semantic clauses is the manipulation of reference counts: in the rule here, a conditional breaks
the evaluation of the function body into two cases based on the reference count of the location
that holds the value of the operator, and each branch of the conditional performs some reference-
counting arithmetic. The resulting semantics clause looks similar to a denotational semantics such
as that given in [Hud87] where information about reference counts is included in the semantics
clauses. Note that the environment p has been split between the two subterms P and Q. The fact
that (P Q) is typeable implies that p = (p I P) U (p I Q). In various forms this sort of property will
be used repeatedly in the semantic clauses below.

To prove the preservation of regularity of the state for application, we start with the as-
sumption that R(p, a, 1, p). This is equivalent to R(p IP, p I Q, a, l, p). Now R(1o, p IQ, ao, 1, P) and
R(1,looa, 1, p) both hold by induction hypothesis (let us abbreviate 'induction hypothesis' as
'IH'). Now, there are two possibilities for the reference count of 10 in a1 , either it is equal to
one or it is more than one. If refcount(lo, a,) = 1, then the first Attenuation Law, Al, says that
R(11 , p', dec(lo, o-1),l-,i). By the Environment Law, E, this implies that R(p'[x '-/ 11], dec(10, al),l, )
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and the desired conclusion then follows from III. If, on the other hand, refcount(lo, a,) $ 1, then
R(li,p', inc-env(p',dec(1,a)),l, ) by 12 and D2. Hence R(p'[x ý-4 11], inc-env(p',dec(l,o)),l,•) by E,
so we are done by III.

To see that the reachability property holds for the interpretation of application, suppose I E
dom(a) is unreachable from p :: i1 where P = plOP2 and unreachable from 11 where I = 11012.
If I is unreachable from (1,p :: 1), then it is unreachable from (1i,(pIP) :: (PIQ) :: pl), so,
by IH, it is unreachable from (10 :: 11, (p IQ) :: pl) in the memory graph induced by the state
resulting from the evaluation of P. A second application of IH allows us to conclude that it
is also unreachable from (ll :: 10 :: 11, px) in the memory graph induced by (l1,lo, o-, l, ,). By the
definition of the memory graph, this implies that I is unreachable from p' as well, so it is unreachable
from (1, p'[x ý- 11], P) in the memory graphs induced by the states (p'[x - ll], dec(lo, al), 1, p) and
(p'[x ý- I1], inc-env(p', dec(l, a)), 1, f). The desired conclusion therefore follows from IH. The proof
of the reachability is similar for all of the remaining cases, so we will omit arguing it in the rest of
the discussion.

The expression (store N where x1 = MI,...,x, = M,) is interpreted by first evaluating the
terms M 1 ,.. ., Mi to locations 11,. . ., I1, building an environment that maps xi to 1i for all i, creating
a thunk out of this environment and N, and finally returning a location holding a suspension of
this thunk:

(4) interp((store N where x, = Mz,...,x,• = Ma), p, o) =
let (11, o-1) = interp(Mi, p Mi, o)

(1,, o-.,) =interp(M,, p lM,, 0.n,-z)

p' = [XI,..., 1, -I , . ,d
(1,+1, on+i) = new(thunk(N, p'), o-)in new(susp(ln+1), a7+1)

To prove that the desired property is maintained, note that repeated application of the induction
hypothesis allows us to conclude that R(p', a,, f,-[). Therefore, R(In+i,ao+l,P,D by N2. Let

(1,+2, Or,+2) = new(susp(/,+l), an+i). Then R(ln+ 2 , aU+2, A, ) by N3.
The fetch of a suspended object is the most complex of all the operations. It must evaluate a

thunk if the suspension holds one. The code is again similar to that for the interpreter in Section 3
we examined earlier, but, in addition to the reference-counting arithmetic, there is a clause dealing
with recursion:

(5) interp((fetch P), p, a)=
let (lo, ao) = interp(P, p, a)
in case 0o(lo)

of susp( 1 ) =>
case ao(11)

of thunk(R, p') =>
if refcount(Io, ao) = 1
then interp(R, p, dec(li, dec(lo, ao)))
else let (12, a 1 ) = interp(R, p', dec(l1, dec(10, 00[o0 i---0])))

in (12, inc(12, U1[/0o ý- susp(l 2 )])))
S=> if refcount(Io, 0a0) 1 I

then (11, dec(lo, ao))
else (11, inc(li, dec(lo, ao)))

I rec(li, f) => (11, dec(lo, inc(l, ao)))
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By IH, we have ?(lo,ao,lp). Suppose oo(lo) = susp(li) and oo(li) = thunk(R,p'). If
refcount(lo, cro) = 1, then R(p', dec(t 1 , dec(/0, cro)), l, P) by Al and A2 so we are done by IH. Sup-
pose, on the other hand, that refcount(lo, oro) 5 1. By U2, R(p', dec(/ 1 , dec(/o, 7o[lo - 0])),/, P) so
R(12 , inc(/ 2, al[lo -0 susp(12 )]), l, pr) by IH and Ul; the reachability property is used to ensure the

applicability of U1. More specifically, in 0o the location to is not reachable from p'; thus, it is not
reachable from 12 in or either, and so crlIo ý- susp(1 2)] does not create an illegal loop in the memory
graph. The cases when uo(t1) is a value or oo(l0) = rec(I1, f) are left to the reader.

The share command increments the reference count of a location:

(6) interp((share x, y as P in Q), p, o-) =
let (1o, ao) = interp(P, pI P, o)
in interp(Q, (plQ)[x,y-/o], inc(lo, uo))

Rt(lo, p I Q, cro, 1, p) by Ill, so R(lo, 10, p I Q, inc(lo, os),/, 5) by I1. Thus it follows from the Environ-
ment Law E that ((pI Q)[x, y ý/- o], inc(lo, 0o), l, p), so the result follows from IH.

The dispose command decrements the reference count of a location. The requires calculating
the consequences of possibly removing a node from the memory graph if its reference count of the
disposed node falls to 0.

(7) interp((dispose P before Q), p, r) =
let (1o, cro)= interp(P, pIP, o)
in interp(Q, p I Q, dec-ptrs(lo, 0o))

Now, R(lo, pIQ, no, l, p) by IH, so R(pIQ, dec-ptrs(lo, ao),,) by D3. The result therefore follows
from IH.

Interpreting PCF extensions.

The interpreter evaluates a constant simply by creating a cell holding the value of the constant.

(8) interp(n, p, o') = new(n, o')

(9) interp(true, p, o) = new(true, u)

(10) interp(false, p, o) = new(false, o-)

That regularity is preserved for these cases follows immediately from N1.
The rules for the arithmetic and boolean operations of PCF mimic the rules of the high-level

operational semantics.

(11) interp((succ P), p, r)=
let (lo, cro) = interp(P, p, o-)
in new(cao(lo) + 1, dec(to, ao))

(12) interp((pred P), p, cr) =
let (to, a-o) = interp(P, p, a)

n = ao(/o)
in if n=0

then new(O, dec(lo, co))

else new(n--1, dec(Io, a-0 ))
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(13) interp((zero? P), p, o)
let (lo, 0o)= interp(P, p, o-)
in if aoo(1 0) = 0

then new(true, dec(1o, ao))
else new(false, dec(1o, ao0))

To prove the desired property for the successor operation, note that R(Io, u0, 1, p) follows from IH
so we are done by D1 and NI. Proofs for the other two cases are similar.

The conditional statement has the expected form, but the reference count of the condition must
be decremented in each of the branches:

(14) interp(if N then P else Q, p, a) =
let (Io, ao) = interp(N, pI N, a-)
in if ao(lo) = true

then interp(P, p IP, dec(1o, a-c))
else interp(Q, pIQ, dec(lo, co))

The IH implies R(lo, cro, 1, P). Whether or not cro(lo) = true, the desired conclusion follows from D1.
Finally, to interpret recursion, we will need a rule similar to the rule for interpreting store.

(15) interp((fix (store (Af. Ax. M) where x1 = Ml,.., xn =- M'ln)), p, a-)
let (1i, a-,) - interp(Mi, p M1 , a-)

P' = [X1,...- , r X. - l,... , In]

(l+,, o+,-l) = new(0, a-)
(ln+2, 0-,+2) = new(recclosure(Ax. M, p'[f ý- l+i]), a-+j)

in (1+2, inC(ln+2, a-n+2[ln+l - rec(l,+2, f)]))

As with the interpretation of store, repeated application of the IH and E implies that R(p', cU, 1, •).
By N1, E, and N2, we therefore also have R(ln+2,Orn+2,-[, ). The desired conclusion now follows
from U1.
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5 Properties of the Semantics

In order for the reference-counting interpreter to make sense, it must satisfy a number of invariants
and correctness criteria. In this section we describe these precisely.

No space leaks.

As a short example of the kind of property one expects the semantics to satisfy, let us consider
how the idea that 'there are no space leaks' can be expressed in our formalism. Given a state
S = (1, fi, a), we say that a location I is reachable from (1, f) if it is reachable in G(S) from some
Ii E 1 or from some pj e fi. The desired property can now be expressed as follows:

Theorem 8 Suppose (p, a, T, p) is a regular state such that each I E dom(Or) is reachable from
(p,l, ). If M is typeable and interp(M, p, o) = (l', a'), then every I e dom(a') is reachable from

The theorem is proved by induction on the number of calls to the interpreter.

Invariance under different allocation relations.

If the design of the interpreter is correct, the exact memory usage pattern should be unimportant
to the final answers returned by the interpreter. Since the allocation relation new completely
determines memory usage-i.e., which cell (with reference count 0) will be filled next-it should
not matter which allocation relation is used. We set this up formally as follows: if f is an allocation
relation, let interpf be the partial interpreter function defined by using f in the place of new. Recall
that the environment and store with empty domains are denoted by 0. Then we would like to prove
something like the following statement by induction on the number of calls to interpf:

Suppose f and g are allocation relations. If interpf(M, 0,0) = (ii,af), then
interp9 (M, 0, 0) = (ig, o-,). Moreover, if ao(li) = n, true, or false, then a-f(If) = a9 (1g).

A naive induction runs afoul, though, since the interpreter can return intermediate results that
are neither numbers nor booleans. We therefore need to strengthen the induction hypothesis. If
interpf returns a closure or suspension, the result returned by interpq may not literally be the
same: for instance, interpf may return a location holding susp(lo) and interp9 may return a
location holding susp(ll). Nevertheless, these values should be the same up to a renaming of the
locations in the domain of the returned store ao.

Formalizing the notion of when two stores are 'equivalent' up to renaming of their locations
can be done using the underlying graphs. Two stores are 'equivalent' if their underlying graph
representations are isomorphic via some function h, and the values held at the cells are 'equivalent'
under h. More formally,

Definition 9 Two states S = (1, 5, a) and S' = (1', p', a') are congruent if there is an isomorphism
h : G(a) --+ G(a') such that for any I E dom(a), refcount(l,a) = refcount(h(l),a') and for any
I C dorn(a),

1. For all i, h(li) = I';

2. For all i, dom(pi) = dorn(p') and for all x E dorn(pi), h(pi(x)) = pý(x);
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3. If a(l) = n, true, or false, then a(l) = o-'(h(1));

4. If o(l) susp(l'), then u'(h(l)) = susp(h(l'));

5. If u(l) = rec(l', f), then c'(h(l))= rec(h(l'), f);

6. If a(l) closure(Ax. P, p), then a'(h(l)) = closure(Ax. P, p'), dorm(p) = dom(p'), and for any
x E dorm(p), p'(x) = h(p(x));

7. If o(l) = recclosure(Ax. P, p), then o'(h(l)) = recclosure(Ax. P, p'), dom(p) = dom(p'), and for
any x E dorm(p), p'(x) = h(p(x)); and

8. If a(l)= thunk(P,p), then o'(h(l)) = thunk(Pp'), dorm(p) = dom(p'), and for any x E dorm(p),
p'(x) = h(p(x)).

Then one may prove

Lemma 10 Suppose (lpf,p',uf) and (l",p9 ,p",ag) are congruent. If interpf(M,pf,o-f)
(l/',0), then interp9 (M, p,oag) = (l,o-') and the resultant states (l,',p,•u, ) and (l'l",p", oq)
are congruent.

The proof is deferred to the appendix. From this lemma, the following theorem follows directly:

Theorem 11 Suppose f and g are allocation relations. If interpf(M, 0,0) = (lf, of), then
interp,(M, 1, 0) =(lg, g). Moreover, if af(If) = n, true, or false, then o-r(If) = 0-(lg).

Correctness of the interpreter.

Finally, we need to verify that the reference-counting semantics implements the natural semantics
of Tables 4 and 5, i.e., evaluating a closed term of base type yields the same result in either se-
mantics. The proof proceeds by induction on the number of steps in the evaluation (the height
of the proof tree for the (=*) direction, and the number of calls to interp for the (•) direc-
tion). We again need an expanded induction hypothesis to carry out the proof, one in which
we can relate the values held in memory locations to terms. To this end, we define the extrac-
tion functions valof(M,p, o) and valofcell(l, c). Intuitively, the function valofcell extracts a term
from the storable value held at location I in store u, and the function valof replaces the free vari-
ables of M with the extracted versions of the cells bound to the free variables according to p.
The idea is easy to understand intuitively from an example. Suppose, for instance, cell l0 holds
thunk((dispose x before y), [x 1-+ ll, y ` 12]), l1 holds susp(13), 13 holds 0, and 12 holds true in the
store o-. Then valofcell(lo,ci) = (dispose ((store 0)) before true). A larger example appears in
Figure 5 (where reference counts have been ignored); if o- is the store depicted there, then

valofcell(l, u) =
Af. (((Ah. Ay. (share hl, h2 as h in hj(h 2 y))) f) (store ((Ax. x) true)))

Formal defintions for valof and valofcell are given by simultaneous induction in Table 8 in the
appendix. A similar definition is given in [Plo75] for unwinding a closure relative to an SECD
machine state.

Since we will be interpreting terms of arbitrary type, the induction hypothesis must relate values
returned by the natural semantics to values returned by the reference-counting interpreter. The
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Ig closure(Ah. Ay. (share h l , h2 as h in h(h 2 y)), 0)

I closure(Af. ((g f) x), [g ý-* Ig, x ý- l])

Ix susp(lx,)

lX thunk((f true), [f ý- l'])

i' closure(Ax. x, 0)

Figure 5: Store for Example of the valofcell Operation.

key definition missing here is the definition of 'related values'. One might attempt to extend the
statement of the theorem directly-that is, for closed terms, M 4 c iff interp(M, 0,0) = (1', o')
and valofcell(l', a') = c. While this statement holds for basic values, it does not hold for values of
other types. The problem arises because the reference-counting interpreter memoizes the results of
evaluating under store's whereas the natural semantics does not. For instance, evaluating the term

(Ax. (share y, z as x in if (zero? (fetch y)) then z else z)) (store (succ 5))

in the natural semantics returns the value (store (succ 5)), whereas evaluating the expression in the
reference-counting semantics returns the value (after unwinding) (store 6). The proof thus requires
relating terms that are 'less evaluated' to terms that are 'more evaluated'.

Definition 12 M > N, read 'N requires less evaluation than M', iff M = C[M'], N = C[c], M'
is closed, and M' 4 c.

where C[] denotes a term with a missing subterm and C[M'] the term resulting from using M' for
that subterm. Let >* be the reflexive, transitive closure of >. This relation is necessary in order
to express the desired property:

Theorem 13 Suppose M is typeable, dorm(p) = FV(M), M' is closed, and M' >* valof(M,p, cr).
Suppose also that ([', p, p', a).

1. If M' .4 c, then interp(M, p, a) = (a',ci') and c >* valofcell(l', a').

2. If interp(M, p, a) = (1', a'), then M' 4 c >* valofcell(l', or').

The extra assumptions about the state (1', p, p', a')-namely that it satisfies the invariants above-
are used in constructing an execution in the reference-counting interpreter. The proof is deferred
to the appendix.
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6 Linear Logic and Memory

Let us now examine the question of the circumstances under which we are ensured that a location
holding a value of linear type will maintain a reference count of at most one. In general, there is
no guarantee that locations holding linear values will always have a reference count of one during
the evaluation of a program. Consider, for example, the term

(Aw. (share x, y as w in if (zero? (fetch y)) then x else x)) (store 5).

During evaluation, a suspension is placed in a location 1, which in turn holds a pointer to a location
I' holding a thunk containing the value 5. This location I is then passed to w, and two pointers
called x and y are then created by the share which reference 1. Pictorially,

y
x

l 2 susp (V')

I' 1 thunk (5, [])

When the evaluation continues to the point of (fetch y), the contents of the location P' are evaluated
to a location I" holding 5, the suspension in I is updated to point to I", and a pointer to I" is then
passed to the evaluation of zero?. Pictorially,

x

I1 1 susp (1'')

.2 5

Thus, the cell containing 5 now has two pointers to it, even though it has linear type, Nat.
Clearly the issue here is whether the location holding a linear value is accessible from a location

holding a non-linear one, like a susp. We would like a static condition under which we know that
this does not happen. This seems difficult because, on the face of it, there are circumstances where
a computation can alter the memory graph so that a linear value is brought into a location that is
referenced by a non-linear value. Consider the term:

M Ax : Nat. Af: Nat-o!Nat. (store y where y = (f x)) (1)

If N is a term of type Nat-cO!Nat, then the evaluation of ((M 0) N) may create a memory graph
in which the location holding 0 has been brought into precisely the circumstance above; so its
reference count might be increased by pointers passed through a susp. We need to know when this
can happen if we are to have any way to ensure that a linear value maintains a reference count of
at most one.
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There is some help on this point to be found in the proof theory of linear logic. Note, that the
problem with term M in (1) relies on having a term N of type Nat-o!Nat. From the stand-point
of linear logic and its translation under the Curry-Howard correspondence, this is a suspicious
assumption, however. The proposition A-o!A is not provable in LL, and the situation illustrated
by M runs contrary to proof-theoretic facts about what propositions are moved through 'boxes'
in a proof net during cut elimination [Gir87]. This does not directly prove that a static property
exists for the LL-based programming language, but it does suggest that there is hope.

To assert the desired property precisely, we will need some more terminology. Let us say that
a storable object is linear if it is a numeral, boolean, closure, or recclosure and say that it is non-
linear if it has the form susp(l), rec(l, f), or thunk(M, p). We say that a location I is non-linear
in store o if a(l) is a non-linear object; similarly, a location I is linear in store a if oa(1) is a
linear object. The key property concerns the nature of the path in the memory graph between a
location and the root set.

Definition 14 Suppose S = (1, o, ,) is a regular state and [ E dom(a). The location 1 is said to
be linear from I in S if there is a path p from I to 1 in G(S) such that each P' on p satisfies the
following two properties:

1. u(l') is linear and

2. refcount(l', 0o) = 1.

Note that the two conditions satisfied by the path p could only be satisfied by a unique path from I
to i; if there were more than one such path, condition (2) could not be satisfied. It will be convenient
to say that a path satisfying these conditions is linear. Given a regular state S = (p, a-, 1, P), we
also say that [ is linear from p in S if there is an x in the domain of p such that there is a (unique)
linear path from p(x) to i.

To prove the desired property we will need to know some basic facts about types and evaluation.
For the high-level semantics we already expressed the Subject Reduction Theorem 2 for the LL-
based programming language. In conjuction with the Correctness Theorem 13 we have a version
of the result for the low-level semantics as well:

Lemma 15 Suppose S = (1,0o, T, f) is a regular state, dom(p) = FV(M), H valof(M, p, a-) : t, and
interp(M, p, o-) = (l', a'). Then F- valofcell(l', a') : t.

The theorem we wish to express says that if a program is evaluated in an environment from
which a location 1 is linear, then the value at the location is either used and deallocated or not used
and linear from the location returned as the result of the evaluation. This statement is intended
to formally capture the idea that a location that is linear from an environment is used once or left
untouched with a reference count of one. Unfortunately, the assertion contains the term 'deallocate',
which needs to be made precise. If we assert instead that the reference count of the location is 0
or linear from the result at the end of the computation, then there is a problem in the case where
reference count falls to 0 because the allocation relation might reallocate the location 1 to hold a
value that is unrelated to the one placed there originally. This would make it impossible to assert
anything interesting about the outcome of the computation. To resolve this worry, we can make a
restriction on the allocation relation insisting that 1 is not in its range. This assumption is harmless
in a sense made precise by Theorem 10. The result of interest can now be asserted precisely as
follows:



30 Jawahar Chirimar, Carl A. Gunter, Jon G. Riecke

Theorem 16 Suppose S = (p,,-,l,) is a regular state, dom(p) = FV(M), and valof(M,Ip, a) is
typeable. If i is linear from p in S, and i is not in the range of new, and interp(M, p, a) = (1', (7'),
then one of the following two properties holds of the regular state S' = (1', o', , fi):

1. Either refcount(l, a') = 0, or

2. refcount(l, a') = 1 and I is linear from P' in S'.

Proof: The proof is by induction on the number of calls to interp. We exhibit only a few of the
key cases here and leave the others for the reader.

1. M = (P Q). The evaluation of M begins as follows:

interp(P, p I P, a) = (10, 0,0)
interp(Q,pIQ, co) = (11, c71)

a1(lo) = closure(Ax. N, p') or recclosure(Ax. N, p').

The fact that 1 is linear from p means that it is reachable from exactly one of p I P or p I Q.
We consider the two cases separately.

(a) 1 is reachable from p P. By the induction hypothesis ('IH'), one of the following two
subcases applies:

i. refcount(l, ao) = 0. By assumption, i is never reallocated by new, and hence it
follows that refcount(l, a') = 0.

ii. refcount(l, aro) = 1 and i is linear from l1. Then in the memory graph, there is a
linear path

10 = I

(where we list only the locations associated with the path since the fact the reference
counts are all equal to one means that the edges are uniquely determined). None of
the locations V$ can be reachable from p I Q since that would imply that the reference
count of at least one of them is greater than one. By Theorem 6, the contents and
reference counts of the locations l• therefore do not change during the evaluation of
Q. Now, 1is linear from lo in (li, 10, a1, l,p) and ai1(lo) has the form closure(Ax. N, p')
or recclosure(Ax. N, p'), so i must be linear from p' in (p'[x ý-* l], dec(lo, a,), I,/5) as
well. Since we know that refcount(lo, a,) = 1, we conclude that

interp(N, p'[x '-+ l], dec(lo, or,))= (1', a')

and the desired conclusion follows from IH.

(b) 1 is reachable from p I Q. By assumption, there is a linear path

such that l is in the image of p I Q. None of the locations on this path is reachable
from p IQ because they all have reference count equal to one. Thus, by Theorem 6, their
values are unchanged by the evaluation of P, and each lI is still unreachable from l1 in
co. By IH, there are two possibilities regarding the regular state (11, lo, al, l, p) obtained
after evaluating P and Q.
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i. refcount(l, oa) - 0. By assumption 1 is never reallocated by new, so refcount(l, r') - 0

as needed.

ii. refcount(l, o-1) - 1, In this case, the IH implies that there is a linear path from
11 to i. There are now two subcases to consider: either refcount(lo, co) = 1 or
refcount(lo, 0.) > 1. We consider only the second and leave the first to the reader.
By laws D2, 12, and E, we know that the state

S' = (p'[x ý'- 11], inc-env(p', dec(lo, o-1)), l, f)

is regular and it is not hard to check that [ is linear from p'[x ý-+ l1] in S'. Since we

must have
interp(N, p'[x - 11], inc-env(p', dec(lo, a1 ))) = (1', u')

we are done by IJ.

2. M = (store N where x, = Ml,...,x,, = Ma). In this case, 1 is reachable from exactly one of
the environments p I Mi. In the evaluation of M, we have

interp(Mi, pjMi,,0) = (I1, al)

interp(Mi, p Mi, 0.i-1) = (0, i)

By IH, there are two possibilities for the regular state

(1 - [ ,lPIM+.. Mn, 0.,, T,

arising after the evaluation of Mi. Either the reference count of 1 is zero in a, or it is one
and there is a linear path from l1 to i. If the first case holds, then we are done, since [ is not
reallocated in the remainder of the computation, and therefore the conclusion of the theorem
is satisfied. On the other hand, the second case is impossible: by Lemma 15, valofcell(li, ai)
has type !t and ao(l1 ) is a value, so it has the form susp(l") or rec(/", f). This contradicts the
assumption that [ is linear from Ii. Therefore reference count of I must be 0 in a"i and hence
we are done, since new never reallocates i.

3. M = (share x, y as P in Q). In the evaluation of M we compute

interp(P, p IP, a) = (10, ro)
interp(Q, (p I Q)[x, y - /o], inc(lo, ao-)) = (P', a')

Now i is reachable for exactly one of the environments p I P or p IQ. We consider the two
cases separately.

(a) 1 is reachable from p P. For the same reasons discussed in the case for store above, Ill
implies that refcount(l, o00) = 0, and thus we are done since new never reallocates i.

(b) 1 is reachable from p I Q. Then there is a linear path from p I Q to 1 which, by Theorem 6,
is unaffected by the evaluation of P. In particular, 1 is not reachable from 10, so it is
linear from pI Q in the regular state ((p I Q)[x, y - lo], inc(lo, ao), 1, P) so we are done by
IHI.
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The remaining cases are treated similarly. N

To see an example of how the theorem can be applied to reasoning about properties that depend
on the memory graph, suppose we want to evaluate add (store 2) 3 in the empty environment and
empty store. The key steps are

* add (store 2) evaluates to (lo, o0) with o0(lo) = cosure(Ax. N, p).

* 3 in o0 evaluates to (11, o-1) such that l(1l) = 3.

* The body of add is evaluated with y mapped to 11.

At this point the conditions required for the theorem above are true. Hence we know that the
reference count of 11 does not exceed one (so long as it is not deallocated and then reallocated).
This implies that it is safe to update y in place during the recursive call. Similar analysis applies
to definitions of multiplication and other recursive functions where we use a variable as an accu-
mulator to store the result. This technique of proof allows us to achieve goals like those for which
Hudak [Hud87] defined a collecting interpretation for reference counts.
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7 Discussion

For this paper we have chosen a particular natural deduction presentation of linear logic. Oth-

ers have proposed different formulations of linear logic, and it would be interesting to carry out
similar investigations for those formulations. For instance, Abramsky [Abr] has used the sequent

formulation of linear logic. His system satisfies substitutivity because this is essentially a rule of

the sequent presentation (the cut rule to be precise), but there is no clear means of doing type

inference for his language. Others [Mac9l, LM92] have attempted to reconcile the problems of type

inference and substitutivity by proposing restricted forms of these properties. Another approach

has been to modify linear logic by adding new assumptions. For instance, [Wad9la] and [O'H91]
propose taking !!A to be isomorphic to !A; from the perspective of this paper, such an identification

would collapse two levels of indirection and suspension into one and hence fundamentally change

the character of the language. Other approaches to the presentation of LL seem to have compatible

explanations within our framework, but might yield slightly different results. For example, there
is a way to present LL using judgements of the form r; A 1- s where r is a set of 'intuitionistic

assumptions' (types of non-linear variables) and A is a multi-set of 'linear assumptions' (types of

linear variables). This approach might suit the results of Section 6 better than the presentation we
used in this paper because it singles out the linear variables more clearly and provides what might
be a simpler term language. On the other hand, the connection with reference counts is less clear

for that formulation.

It is also possible to fold reference-counting operations into the interpretation of a garden variety
functional programming language (that is, one based on intuitionistic logic). The ways in which the

result differs from the semantics we have given for an LL-based language are illuminating. First of

all, there are several choices about how to do this. One approach is to maintain the invariant that
int erp is evaluated on triples (M, p, cr) where the domain of p is exactly the set of free variables

of M. When evaluating an application M = (P Q), for example, it is essential to account for the

possibility that some of the free variables of M are shared between P and Q. This means that
when P is interpreted, the reference counts of variables they have in common must be incremented

(otherwise they may be deallocated before the evaluation of Q begins):

interp((P Q), p, u) =
let (1o, ao) = interp(P, pIP, inc-env(pIPfnpIQ, o))

(1l, o-1) = interp(Q, p IQ, ao)
in case ol(lo) of closure(Ax.N, p') or recclosure(Ax.N, p') =>

if refcount(lo, 01) = 1
then interp(N, p'[x - l], dec(lo, o1))
else interp(N, p'[x ý- 11], inc-env(p', dec(1o, a,)))

The deallocation of variables is driven by the requirement that only the free variables of M can lie

in the domain of p; this arises particularly in the semantics for the conditional:

interp(if N then P else Q, p, o) =
let (Io, ao) = interp(N, p I N, inc-env(pIN n (pIP u p1Q), o))
in if 'o(lo) = true

then interp(P, pIP, dec(lo, dec-ptrs-env((pIP) - (pIQ), uo)))
else interp(Q, p Q, dec(lo, dec-ptrs-env((pIQ) - (pIP), Uo)))

An alternative approach to providing a reference-counting semantics for an intuitionistic language
would be to delay the deallocation of variables until 'the last minute' and permit the application



34 Jawahar Chirimar, Carl A. Gunter, Jon G. Riecke

of interp to triples (M, p, cr) where the domain of p includes the free variables of M but may also
include other variables. This makes it possible to simplify the interpretation of the conditional:

interp(if N then P else Q, p, o-) =
let (lo, co) interp(N, p, o)
in if 0o(lo) = true

then interp(P, p, dec(lo, cro))
else interp(Q, p, dec(lo, ao))

but the burden of disposal then shifts to the evaluation of constants:

interp(n, p, o-) =-new(n, dec-ptrs-env(p, o0))

The basic difference between a 'reference-counting interpretation of intuitionistic logic' following
one of the approaches just described versus reference counting and linear logic is the way in which
the LL primitives make many distinctions explicit in the code. The LL primitives make it possible
to describe certain kinds of 'code motion' that concern when memory is deallocated. For example,
the program

Ax : s. if B then (dispose x before P) else (dispose x before Q)

can be shown to be equivalent in the higher-level semantics to

Ax : s. (dispose x before if B then P else Q)

but the latter program can be viewed as preferable in the reference-counting semantics, because it
may deallocate the locations referenced by x sooner. As another example, the program

Ax : s. (dispose y before M)

is equivalent to
(dispose y before Ax : s. M)

if x and y are different variables. The transformation may be significant if the value of y would be
deallocated rather than needlessly held in a closure.

Proving that programs like the ones above are equivalent as far as the high-level semantics is
concerned can be facilitated by a fixed-point (denotational) semantics for the LL-based language.
A reasonable semantics of this kind can be given as an extension of the semantics of call-by-value
with the operation !s being interpreted as the lifting operation on domains. For such a semantics it
is possible to extend the adequacy result using the standard techniques (as in section 6.2 of [Gun92]
or 11.4 of [Win93]).

The question of whether an LL-based language could be useful as an intermediate language for
compiler analysis for intuitionistic programming languages is certainly related to the techniques
for translating between them. By analogy, there have been various studies of the subtleties of
transformation to CPS ([LD93] is a one recent example). A closer analogy is the translation of a
language meant to be executed in call-by-name into a call-by-value language with primitives for
delaying (store'ing) and forcing (fetch'ing). There is a standard translation for this purpose and
many of the issues that arise for that translation also arise in the translation from intuitionistic
to linear logic. For instance, a pair of programs that are strongly reminiscent of those in Table 1
appears in the discussion of the ALFL compiler in [BHY88] based on a sample from the test
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suite in [Gab85]. This problem is addressed by the technique of strictness analysis [AH87]: with
strictness analysis the translation can be made more efficient or the translated program can be
optimized. There are several techniques known for translating intuitionistic logic into linear logic.
To illustrate, consider the combinator S (here written in ML syntax):

fn x => fn y => fn z => (x z)(y z)

When we apply Girard's translation, the result (using a syntax similar to the one in Table 1) is the
following program:

fn x => fn y => fn z =>
share zl,z2 as z in

((fetch x) (store (fetch zi)))
(store ((fetch y) (store (fetch z2))))

However, another program having S as its 'erasure' is

fn x => fn y => fn z =>
share zl,z2 as z in (x zl)(y z2)

which is evidently a much simpler and more efficient program. An analog of strictness analysis that
applies to the LL translation is clearly needed if an LL intermediate language is to be of practical
significance in analyzing 'intuitionistic' programs.

Our reference-counting interpreter and the associated invariance properties can easily be ex-
tended to the linear connectives &, 0, and e (although it is unclear how to handle the 'classical'
connectives). Extending the results to dynamic allocation of references and arrays is not difficult
if such structures do not create cycles. For instance, it can be assumed that only integers and
booleans are assignable to mutable reference cells. To see this in a little more detail, if we assume
that o is Nat or Bool, then typing rules can be given as follows:

r F M: o r F- M: ref(o) N:o r H M: ref(o)
r F ref(M): ref(o) r F M := N: ref(o) r F !M:o

To create a reference cell initialized with the value of a term M, the term M is evaluated and its
value is copied into a new cell:

(16) interp(ref(M), p, c) =
let (lo, c0) = interp(M, pIM, a)
in new(o 0 (10), dec(lo, co))

The location 10 holds the immutable value of M; a new mutable cell must be created with the value
of M as its initial value. Assignment mutates the value associated with such a cell:

(17) interp(M := N, p, o-) =
let (lo, -0O) = interp(M, p IM, o-)

(1l, c1) = interp(N, pIN, ul)
in (10, dec(lI , o-i [lo F-+ alj (11)]))

To obtain the value held in a mutable cell denoted by M, the contents of the cell must be copied
to a new immutable cell:
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(18) interp(!M, p, o-)=
let (Io, o) =int erp(M, p IM, u)
in new(oo(!o), dec(lo, uo))

Although the code for creating a reference cell and the code for dereferencing look the same, they
are dual to one another in the sense that cell creation, ref(M), copies the contents of an immutable
cell to a mutable one while dereferencing, !M copies the contents of a mutable cell to an immutable
one. The language designed in this way is similar to Scheme with force and delay primitives, but
with restrictions like those of ML on which values are mutable. The restriction on the types of
elements held in reference cells is similar to those made for block-structured languages, which do
not permit higher-order procedures to be assigned to variables (reference cells).

In conclusion, we have demonstrated that a language whose design is guided by an analog of the
Curry-Howard correspondence applied to linear logic can be interpreted as providing fine-grained
information about reference counts in the memory graphs produced by the program during run-
time. As such, the LL-based language may be useful for detecting or proving the correctness of
forms of program analysis that rely on reference counts of nodes of memory graphs. As a secondary
theme we have illustrated an approach to expressing and proving properties of programs at a level
of abstraction in which properties of memory graphs are significant but some lower-level properties,
such as memory layout, are abstracted away. Isolating this level of abstraction could be useful for
correctness proofs of lower levels, such as the correctness of a memory allocation scheme.
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A Proofs of the Main Theorems

Verification of the Basic Laws in Table 7

Proposition 17 Each of the laws Al, A2, DI, D2 given in Section 4 hold.

Proof: The proof of Al may be found in Section 4, and the proof of A2 is similar. We thus need
only to verify D1 and D2.

D1 Suppose S = (l,l, p, a), R(S) holds, a(l) is a numeral or boolean, and S' = (l, dec(l, o-)).
Note that there are no outgoing edges from I in the memory graph induced by S; thus, even
if I € dom(dec(l, c)), the state S' is count-correct. Since domr(a) 2 dom(dec(l, a)), each of the
properties R2-R5 follow directly from the hypothesis. Thus, R(S').

D2 Suppose lR(l, ,/5, oa) and refcount(l, a) $ 1, and let S' = (T, p, f, dec(l, a)). By hypothesis, it
follows that refcount(l, a) > 1 since I is in the root set. Thus, refcount(l, dec(l, a)) >_ 1 and
hence S' is count-correct, satisfying R1. Since domr(a) = dom(dec(l, a)), each of the properties
R2-R5 follow directly from the hypothesis. Thus, R(S').

This completes the verification of each part. N

Proposition 18 Law D3 holds; more generally,

1. If R(l, 1, f, u), then l(l, fi, dec-ptrs(l, a)).

2. If R(l, p, p, a), then R(l, p, dec-ptrs-env(p, a)).

Proof: By induction on the total number of calls to dec-ptrs and dec-ptrs-env. In the basis, suppose
the number of calls is one; there are two cases:

1. dec-ptrs is called. Then there are three subcases:

(a) a(l) = n, true, or false. Then dec-ptrs(l, a) = dec(l, a). By D1, R(l, /, dec-ptrs(l, a)).

(b) a(l) = susp(l'), thunk(M,p), or closure(Ax.M,p), and refcount(l,a) > 1. Then
dec-ptrs(l,a) = dec(l, oa), and hence by D2, R(I, , dec-ptrs(l, a)).

(c) a(l) = rec(l', f) or recclosure(Ax. N, p), and refcount(l, a) > 2. Then dec-ptrs(l, a) =

dec(l, a), and hence by D2, R(l, f, dec-ptrs(l, a)).

2. dec-ptrs-env is called. Then since dec-ptrs is not called, dom(p) must be the empty set. Thus,
dec-ptrs-env(p, a) = a- and hence ?R(l, f, dec-ptrs-env(p, a)).

For the induction hypothesis, suppose the total number of calls to dec-ptrs and dec-ptrs-env is
greater than one. There are again two main cases:

1. dec-ptrs is called. There are five subcases depending on the reference count and the value
stored at 1.

(a) a(l) = susp(l') and refcount(l, a) = 1. Then dec-ptrs(l,oa) = dec-ptrs(l',dec(l, a)).
By A2, R(l',lP, i, dec(l,a)) and so by induction, R(l, p, dec-ptrs(l', dec(l, a))). Thus,
R(l fi, dec-pt rs (l, o,)).
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(b) c7(l) thunk(M,p), refcount(l, or) = 1. Then dec-ptrs(l, c7)= dec-ptrs-env(p, dec(l,(7)).

ByAl, f(lp,p,dec(l,(7)) and so by induction, lJ(l,1,dec-ptrs-env(p,dec(l,c7))). Thus,
{(2-, p5, dec-ptrs(l, o-)).

(c) ai(l) = closure(Ax. Mv, p) and refcount(l, or) = 1. Similar to the previous case.

(d) (7(I) = reccdosure(Ax.N,p[f -+ 1']), c7(l') = rec(l,f), refcount(l,(7) = 2, and
refcount(l', o-) = 1. Then dec-ptrs(l, u) = dec-ptrs-env(p, dec(l', dec(l, dec(l, or)))). Let

o-0 = dec(l', dec(l, dec(l, or))); then the state S = (1, p, P, coa) is count-correct, since both
I and 1P have disappeared from the memory graph. Also, S satisfies properties ]2-]5,
since dorm(ci0) g dom(ci). Thus, R(S), and hence by induction RJ(l, f, dec-ptrs-env(p, c0i)).Thus, R{(Tf, ,dec-ptrs(l, or)).

(e) a7(l) = rec(l',f), ci(l') = recclosure(Ax.N,p[f - 1]), refcount(l,(7) = 2, and
refcount(l', ci) = 1. Then dec-ptrs(l, ai) = dec-ptrs-env(p, dec(l', dec(l, dec(l, ai)))). Similar
to the previous case.

2. dec-ptrs-env is called. Since the number of calls is greater than one, dorm(p) = {xl,..., x,}
for n > 0. Since lR(p(xz),.. .,p(x,),l,pi, ci) and

dec-ptrs-env(p, ci) = dec-ptrs(p(Xn), dec-ptrs(... dec-ptrs(p(xi), -) ... )

it follows from repeated applications of the induction hypothesis that Rf(l, fi, dec-ptrs(p, ci)).

This completes the induction hypothesis and hence the proof. U

Proposition 19 Each of the laws I1, 12, E, NI, N2, N3, U1, and U2 in Section 4 hold.

Proof: We verify each law individually.

II Suppose {(T, fi, u) and I E dorm(c). Let S' = (l,l,fi, inc(l,ca)). Since there is one more
pointer to I in the root set of S' and the reference count has been incremented, S' is count-
correct. Since dorm(c) = dom(inc(l, ci)), each of the properties R2-]{5 follow directly from the
hypothesis. Thus, lR(S').

12 Suppose lR(T, f, c) and p(X) E dorm(c) for all x E dom(p). Then RJ(T, p, p, inc-env(p, ci)) follows
by an easy induction on the size of dorm(p) using an arguments similar to the last case.

E Suppose if(l, l,p,p, ci) and x V dorm(p), and let S' = (l,p[x -ý- l],P, ai). Then the root set
points of S and S' are identical, and the memory graph induced by S and S' are hence
identical. Thus, R?(S'). The converse is similar and omitted.

Ni Suppose lf(I-,aci) and (l',ci') = new(c, c) for some constant c, and let S' = (l'l, ,cio'). Since
new is an allocation relation, refcount(l', ci) = 0, refcount(l', ci') = 1, and for any location
1 5 i', ai(l) = ci(l') and refcount(l, ci) = refcount(l, ci'). First, note that S' is count-correct,
since the only location in ci' that is different from ci is 1', and that location has a pointer
in the root set. This verifies property RI. Since dorm(c) is finite, dorm(ci) is also finite and
so property RJ2 holds of S. Finally, since new does not create any additional cycles in the
memory graph or thunks or closures, properties R3-R5 hold in S'. Thus, R1(S').
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N2 Suppose •R(T, p, ý, o), (1', a') = new(closure(N, p), o-) or new(thunk(N, p), o), FV(N) = dorm(p),
and N is typeable, and let S' = (1', 1, f, a'). Since new is an allocation relation, refcount(l', a) =
0, refcount(l',u') = 1, and for any location I $ 1', a(l) = a(l') and refcount(l,o) =
refcount(l, or'). To see that property Rl--namely count-correctness-holds of S', note that all
of the pointers from p are accounted for in the closure or thunk stored in 1', and that I' only
has reference count 1. To see R2, dom(a') = donn(a) U {f'} is finite because donn(a) is. If V'
is a thunk, then refcount(l', a') = 1, which together with the hypothesis guarantees property
R3. No cycles are created in the induced memory graph by new, so R4 holds. Finally, R5
holds by hypothesis. Thus, R(S').

N3 Suppose R(l, i, o,-) and (l',a ') = new(susp(l), u) or new(rec(l, f), o). Then R(l', Tf, or') fol-
lows in a manner similar to the previous case.

U1 Suppose S = (1,p, oa) and •R(S), a(l) is a constant. We prove the first statement of U1 only;
the first follows similarly. So suppose I' E dorm(a), and I is not reachable from I' in the
memory graph induced by S, and let S' = (1, 5, inc(l', a[l •-* susp(l')])). In S' the in-degree of
I' is now one greater than in S; the in-degree of all other nodes remains the same. Thus, S'
satisfies property R%1. Since dom(a) = dom(o-'), the domain of oa' is finite, satisfying property
R2. No new thunks are created, so property lR3 holds of S. Since I is not reachable from I'
in S, there is no cycle through I in S'. Thus, S' satisfies property 1R4. Finally, property R5
holds since no thunks or closures are added to a. Thus, R(S').

U2 Suppose S = (l, l, f, a) and R(S), refcount(l, u) 5 1, a(l) = susp(l'), and U(l') = thunk(N, p),
and let S' = (p, 1, 5, dec(l', dec(l, a[l ý-4 c]))). To verify property lR1, note first that
refcount(l', a) = 1 by hypothesis. Thus, since the pointers from aI' are mentioned in the
root set of S', it follows that S' is count-correct. It is also clear that each of the properties
lR2-R5 hold of S'. Thus, R(S').

This completes the verification of each part. N

Proof of Lemma 10

Lemma 10 Suppose (P,pf, p',af) and (l",p9 ,p",a9 ) are congruent. If interpf(M,pf,of) =

(l' ,u' ), then interp,(M,pg,ag) = (l',a') and the resultant states (l',l',p',a'l) and (l'l",p",a.g)
are congruent.

Proof: By induction on the number of calls to interp. We cover the four cases in the core language
and leave the other cases to the reader. To make the cases easier to read, let h be the isomorphism
from g(cf) to g(ag) that makes the above states congruent.

1. M = x. Then interpf(M, pf, of) = (pf(x), af). Then also interpg(M, pg, ag) = (pg(x), a.),
and the resultant states (pf(x),l',p',a') and (pg(x),l",p",a.) are congruent via h.

2. M = (Ax.P). Then interpf(M, pf,a) = new(closure(Ax.P, pf),af) = (1, a'). Since f is
an allocation relation,

* l ' dom(af) and dom(a-) = dom(a 1 ) U {1'};

* for all locations 1 G dom(aj), a (1) = a'(1) and refcount(l, a1 ) = refcount(l, o'); and
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* oj(l/ ) = closure(Ax. P, pf) and refcount(l/,> )0 = 1.

Note that interpg(M,pg,,og) = new(closure(Ax.P,pg),o'g) Again, since g is an

allocation relation,

" P V dom(a.) and dom(or) = dom(og) U {lj};

"* for all locations I G dom(ag), cg(l) = ua,(1) and refcount(l, og) = refcount(l', a); and

"* or/(P) = closure(Ax. P,pg) and refcount(', ¢o) = 1.

Let h' = h[l' ý- l]. It is clear that h' is an isomorphism from G() to G(a'). Now

consider the resultant states (1• 1', p', osa) and , , Using the isomorphism h, the

first two conditions for congruence of states are satisfied, and so we just need to show that

the last six properties, stating the relationship between the values stored at locations, is

satisfied. But the contents of the cells in af and ag do not change, and for the new locations,

'(I') = closure(Ax. N, ps), o-g(h'( l'•)) = o(I) = closure(Ax.N, pg), dom(pf) = dom(pg),
and for all x E dom(pf), pg(x) = h'(pf(x)); the last two facts follow from the hypothesis.

Thus, the resultant states are congruent.

3. M = (P Q). Since interpf(M,pf,of)= (if,=c),

a interpj(P, P1 I P, 0-) = (If,o, '0,0);

* interpj(Q, P1 I Q, 01,O) = (If,,, oCf,);
* Of, (lo,0) = closure(Ax. N,p') or recclosure(Ax. N,p').

By hypothesis the environments pf and pg have the same domain, can also be divided into

pg I P and pg I Q. By two applications of the induction hypothesis,

"* int erpg(P, p_ I P, ag) = (l,,, oa,o) and

"• interpg(Q, pg I Q, arg,O) = (g,i, 0g,1),

and the states (,0o,, If,,, p', 07,l) and (19,o, lg,1, a",pi ,,) are congruent. In particular, note

that o_,o(l•,o) = closure(Ax. N, pg) or recclosure(Ax. N, p'). There are now two cases:

(a) refcount(lfo, o-,l) = 1. Then refcount(/q,o, u•) is also 1, since the two refer-

ence counts must be the same. Because the states ([,p,[x - l, 1,,p',cr 1 ,j) and

(1"',pg[x lgI], ', 0gl) are congruent, it follows from the induction hypothesis that
interpg(N, p'[x I g,1]dec(lo, o'9,1)) = (lg,aO') and and 1,p,) are

congruent. Putting the pieces together, we also see that interp,(M, Pg, %) = (lga%)

as desired.

(b) refcount(ljo, Cf,2) • 1. Then refcount(Ig,o, Ug,2) 0 1 also, since the two reference counts

must be the same. Since ([',p'[x ý- l* ],p',u 1 ) and (l•'[•[x ' /lP",o 9 ,l) are con-
gruent, by induction interp,(N, p,[x ý-I' ], inc-env(p/, dec(l9 ,o,a 9 1 )))= (I', o,) and

(f, 1', p', c' ) and (i, 1", p1", oa,) are congruent. Putting the pieces together, we also see

that interp9 (M, p, o-,) = (l1, a) as desired.
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4. M = (fetch P). Then interpL(P,pf,af) = (1f,o, of,o). By induction, interpg(P, pg,og) =

(lgo, ag,o) and the states (lj,0, 1', p', cj,o) and (lg,o, P", p", 0'g,o) are congruent. Now there are
two main cases: either af,o(lf,o) = susp(lf,l) or of,o(lf,o) = rec(lf,, x). We leave the second

case to the reader since it is relatively straightforward and consider only the first case.

Suppose af,o(lf,o) = susp(lf,1). By the definition of congruence, o.g,o(lq,o) = susp(lg,1). Now
there are two subcases depending on the object held at If,,:

(a) of,o(lf,1) = thunk(R,p'). Then by congruence, oa,o(lg,1) = thunk(R,p'). There are two
subcases depending on the reference count of lf,o:

i. refcount(lI,o, 0f,o) = 1. Since the above tuples are congruent, refcount(lg,o, org,o) 1.
Note that the states

(1", pg, p", dec(lg,1, dec(lg,o0,0, )))

are congruent since p' and p, must have the same domain and must match
via the multigraph isomorphism h on their domains. Thus, by induction,
interp9 (R,p',dec(lg,l,dec(lg,oog,o, ))) = (lb, o)and the states (ll', p',o') and

(lbI1/, lp,,ag) are congruent. Putting all the steps together, we also see that

interp,(M,pg,,1) = (lI,a')

ii. refcount(lf,1, af,l) 5 0. Similar to the previous case.

(b) of,o(lf,l) 0 thunk(R,p'). Then again there are two cases depending on the reference
count of l,0:

i. refcount(lj,o, oj,o) = 1; then refcount(g,0, oaq,o) = 1. Thus,

interp9 (M, pg, aig) = (lg,i, dec(lg,o, ag,o))

and the states (If,,, ', p', dec(1f,o, af,o)) and (g,Pl, R", dec(lg,o, o-g,o)) are congruent.

ii. refcount(11,o, of,o) $ 1. Similar to the previous case.

This completes the induction and hence the proof. U

Proof of Theorem 13

Recall from Section 5 that, in order to prove a correctness theorem, we needed a definition of how
to unwind a term from a store. The definition of two mutually-recursive functions for performing
this task, valof and valofcell, appears in Table 8. It is obvious from the definitions that only the
reachable cells affect the value returned by valof and valofcell. For instance, if I' is not reachable
from l in store a and o' = dec(l', a), then valofcell(l,oc) = valofcell(l,oa'). We will use this fact
throughout the arguments that follow.

Also essential to the proof of Theorem 13 is a notion of when one term is 'more evaluated' than
another. Section 5 defines a relation >* between terms which expresses this relationship. We can
prove three lemmas about the relationship of > and canonical forms.

Lemma 20 If c > P and c is a canonical form, then P is a canonical form. Moreover, c and P
have the same shape, i.e., if c is a numeral or boolean, then c = P; if c = Ax. Q, then P = Ax. Q';
and if c = (store Q), then P = (store Q').
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Table 8: Definitions of valof and valofcell.

valof(x, p, a) = valofcell(p(x), a)
valof(Ax. P, p, a) = Ax. valof(M, p, c), x ý dom(p)
valof((P Q), p, o) = (valof(P, p, a) valof(Q, p, o))

valof((fetch P),p,a) = (fetch valof(P, p, a))
valof((share x, y as P in Q), p, o) = (share x, y as valof(P, p, a) in valof(Q, p, a)),

where x, y ý dom(p)
valof((dispose P before Q), p, a) = (dispose valof(P, p, or) before valof(Q, p, a))

valof(n, p, a) = n
valof(true, p, a) = true
valof(false, p,or) = false

valof((succ P),p, o-) = (succ valof(P, p, a))
valof((pred P), p, a) = (pred valof(P, p, a))

valof((zero? P),p,a) = (zero? valof(P, p, o))
valof((fix P), p, a) = (fix valof(P, p, a))

valof((if N then P else Q), p, o) = if valof(N, p,a ) then valof(P, p, o) else valof(Q, p, a)

valof((store N where x1 = Ml,..., x, = M,), p, a)
- (store valof(N, p, oa) where x,1  valof(Mi, p, a)),..., Xn = valof(Mn, p, a)), x2i dom(p)

n if a(l) = n
true if a(l) = true
false if a(1) = false
Ax. valof(M, p, a) if a(l) = closure(Ax. M, p) or

a(l) = recclosure(Ax. M,p) and
valofcell(l, ca) = x ý dom(p)

(store valofcell(l', a)) if 0a(1) = susp(l')
valof(M, p, o) if a(l) = thunk(M, p)
valof((fix (store (Af. Ax. M))), p, a) if a(l) = rec(l', f),

a(l') = recclosure(Ax. M, p[f -i/ 1]),
x, f ý dom(p)
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Proof: There are two cases to consider: either c 4 P, or c = C[M], P = C[N], C[-] is nontrivial,
and M 4 N. In the first case, since c is canonical, c = P, and hence P is canonical. In the second
case, for c to be canonical it must be the case that C[.] = n, true, false, Ax. D[.], or (store C[.]).
Thus, P must be canonical as well, and must have the same shape as c. U

Lemma 21 If c is a canonical form and M > c, then M 4 d > c.

Proof: By the definition of M > c, we know that M = C[M'], c = C[d], and M' 4 d. In order for
c to be canonical, it must be the case that either C[.] = [-], n, true, false, Ax. D[-], or (store D[.]).
In the first case, M' = M and d = c, so M 4 c > c. For the other cases, M 4 M > c. U

Lemma 22 If c is a canonical form and M >* c, then M 4 d >* c.

Proof: An easy induction on the length of M = M1 _> ... > Mk >_ c using Lemma 20. E

We need a similar definition of one state in the reference-counting interpreter being 'more
evaluated' than another. Basically, one state is more evaluated than another if, tracing from the
root set, the storable objects held at nodes are identical or thunks have been replaced by more
evaluated forms. Formally,

Definition 23 We say (a, 5, a) _> (1, f, ci') if for all l reachable from the root set, I E dom(a) n

dom(o-') and

1. c(l) = n, true, false, closure(Ax. N,p), or recclosure(Ax. N, p), and U(l) = ci'(l) and (p,ci) a*
(p, 0');

2. a(l) = susp(lo) or rec(lo, f), a(lo) is not a thunk, a'(1) = susp(lo) and (10, a) Ž_* (lo, or'); or

3. a(l) = susp(lo), u(lo) = thunk(R,p) and either

(a) co'(l) = susp(lo), o'(lo) = thunk(R,p), and (p, a) >* (p, a'); or

(b) ci'(1) = susp(l'), o-'(l') is not a thunk, interp(R, p, o-) = (1', a"), and (i', ci") _* (i', c')

where (p, oi) >* (p, a') if for every x E dom(p), (p(x), oi) >* (p(x), oi').

It is not difficult to prove that >* is reflexive and transitive on states. It is also not difficult to
prove the following two lemmas:

Lemma 24 Suppose R(-, p,p, co) and interp(M, p, a) = (1', a'). Then ( o, ,i) >* (l, ,ca').

Lemma 25 If Q' >_ valof(Q,p,co) and (T',p,p',c) >* (l,p,p',0'), then Q' >* valof(Q,p, a').

The proof of the first is an easy induction on the number of calls to interp; the proof of the second
is an easy induction on the definition of valof.

We now have enough machinery to prove the main correctness theorem.

Theorem 13 Suppose M is typeable, dom(p) = FV(M), M' is closed, and M' >* valof(M, p, C).
Suppose also that R(P, p, p',c).

1. If M' 4 c, then interp(M, p, = (l',') and c >_ valofcell(l', a).
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2. if interp(Iv,p, a) = (1', '), then M''4 c >* valofcell(', a').

Proof: The first part is proven by induction on the height of the proof of M' 4 c. We consider
the cases for the core language and leave the cases for the PCF extensions to the reader. To ease
the readability of the various cases, we can separate each induction case into two cases based on
whether or not M is a variable or a canonical form. The first of these cases can be seen immediately.

If M is a canonical form or variable, then the form of the rules guarantees that interp(M, p, a,)
returns a result (1', u') and valofcell(l', a') = valof(M, p, a). Thus, by Lemma 22, it follows that c _>*

valofcell(l', a'). For instance, if M = (Ax. P), then interp(M, p, a) = new(closure(Ax. P, p), u)
(1', a'). Since R(', p, p', a) and P' dom(a), the new cell ' in c-' cannot be reached from a. Thus,

vawofcell(l', a') = valof(Ax. P, p, a') = valof(Ax. P, p, a)

as desired.

If, on the other hand, M is not a variable or canonical form, then there is some interpretation
required in the reference-counting interpreter. Now we divide into cases depending on the last rule
used in the proof of M' 4 c.

1. M' = (P' Q'), where P' 4 (Ax. N'), Q' 4 d, and N'[x := d] 4 c. The only case to consider
is M = (P Q), where P' >* valof(P, p, o) and Q' >_* valof(Q,p, a-). Since M is typeable, the
free variables of P and Q are disjoint. The first step is to evaluate the operator and operand.

By induction,
interp(P, p I P, a) = (/0, 0o0)

and (Ax. N') >_* valofcell(lo, ao). We need to show that l0 really holds a closure. By Lemma 20,
(Ax. N') and valofcell(lo, co.) must have the same shape. Since R(l',p I P, p I Q,p', a), by The-
orem 6 R(lo, V', p I Q, p-', a0) and so ao(lo) cannot be a thunk. Thus, the only possibility left is
that

ao(lo) = closure(Ax. N, p') or recclosure(Ax. N, p').

Next we need to evaluate the operand. By Lemma 24 we know (l',pIQ,p',a) >*
(1, pIQ, p', co). Since Q' >_* valof(Q,pIQ, a), by Lemma 25 we have Q' _>* valof(Q, pIQ, 0ao).
By the induction hypothesis,

interp(Q, p IQ, ao) = (1, 01)

where d >• valofcell(ll, al)._ Since interp(Q,pIQ, ao) = (11, a,), it follows from Lemma 24
that (1o, 1', p', co) Ž!* (lo, 1', p', a,); thus,

al (1o) = closure(Ax. N, p') or recclosure(Ax. N, p').

To evaluate the application, there are two subcases: either refcount(1o, a1 ) = 1 or
refcount(lo, al) > 1. We do the first case and leave the other case to the reader. If
refcount(lo, oa1 ) = 1, then R(P, p'[x ý- 11],p', dec(lo, a,)) by laws A2 and E. It follows from

(P p',o) >_* (1', p', al) )*(1', p', dec(lo, al))

and Lemma 25 that N'[x := d] >* valof(N,p'[x ' 11], dec(l0, or1 )). Thus, by induction,

interp(N, p'[x 1/1], dec(lo, a,)) = (1', a')

where c >_ valofcell(l', a'). This shows that interp(M, p, a) = (1', a') and c >* valofcell(l', o').



Proofs of the Main Theorems 45

2. M'= (store N' where x, = M,= M..), c = (store N'[xl,...,xn := d 1,...,dJ]), and
Mj 4 di. We only need to consider the case when M = (store N where x, = M1 ,. . .,x, =
M,), where N' >* valof(N, 0, o) and MJ >_* valof(Mi, p I lAi, or). Since M is typeable, the free
variables of each 11i are disjoint. Since M1 Ž__* valof(Mi, p I M1 , a), by induction

interp(Mi,pi,c0) = (a1,°1),

where d, _>* valofcell(1 1, a,). By Lemma 24,

(I',pIM 2,...,pIMn,O)Ž (I',PIM2,...,PIMn',0l)

and by Theorem 6, R(lI,1',pJM 2,...,pIMn,ao). Since M2 >_* valof(M 2 ,pjM 2 ,o-), by
Lemma 25, M[ Ž_* valof(M 2, p I M2 , al). Using similar repeated applications of the induc-
tion hypothesis,

interp(Mi, pi, ro--1) = (li, ji)

where di >_* valofcell(li, ao), and by Lemma 24,

(l ,. ., -• 1, 1', p', 7j_ l) > * i -.. , I"_ • P', O', )

Finally, let
P' = ¢[Xl, , X. - 11,...,In]
new(thunk(N, p'), an) = (ln+1,on+l)new(susp(In+i), Un+x) = (1', o')

Then using Lemma 25, we find that (store N'[xl,...,xn := dl,..., dn]) Ž* valofcell(/', a) as
desired.

3. M' = (fetch N'), where N' 4 (store Q') and Q' 4 c. Then the only case to consider is
M = (fetch N) where N' >_* valof(N, p, o). By induction,

interp(N, p, o') = (Io, o0)

where (store Q') _Ž* valofcell(/o,cro). By Theorem 6, R(lo,jl',p',ao). Since (store Q') _*
valofcell(lo, ao) and cro(/o) must be a value, it follows from Lemma 20 that uo(io) = susp(li)
or rec(/1, f) and Q' >* valofcell(li, co). We consider only the case when ao(lo) is susp(li) and
leave the other case to the reader. There are two subcases:

(a) cro(il) = thunk(R,p'). There are two subcases:

i. refcount(lo, o0) = 1. First, note that neither 1 nor 11 is reachable from p'-if either
were, the state S = (Io, P', pi', ao) would have a cycle that was not composed solely

of a rec and a recclosure-and this contradicts the regularity of the state S. Thus,

Q' >* valof(R, p', dec(/1, dec(lo, L7o))).

By laws Al and A2, R(P, p',p', dec(/1,dec(lo, ao))). Thus, it follows by induction
that interp(R, p', dec(/1, dec(/o, ao))) = (I', o') and c >* valofcell(l', a') as desired.
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ii. refcount(lo, uo) > 1. First, note that neither lo nor 11 is not reachable from p'-

if either were, there would be an illegal cycle in the memory graph induced by

S = (1o, Pp', 'o). Thus, Q' >* valof(R, p', dec(lI, dec(lo, co[lo - 0]))) still holds. By

law U2, R(11, p',p', dec(/1, dec(lo, 0o[10 ý- 0]))). Thus, it follows by induction that

int erp(R, p', dec(1l, dec(lo, Oo [/o ý- DIM) = (12, O1)

and c >_* valofcell(l 2 , 01). Since lo is not reachable from p' in dec(lo, oo[lo '-+ 0]),

by Theorem 6 it follows that 10 is not reachable from 12 in 01 . Thus, c _>*

valofcell(12, inc(12 , 01[lo `-+ susp(12 )])) as desired.

(b) ao(li) 5 thunk(R,p'). Then valofcell(li,Oo) is a value. There are two subcases:

i. refcount(lo, a 0 ) = 1. Since Q' >_* valofcell(ll, dec(lo, ao)), it follows by Lemma 22

that c >* valofcell(li, dec(lo, ao)).

ii. refcount(lo, 0o) > 1. Similar to the previous subcase and hence omitted.

4. M' = (share x, y as P' in Q'), where P' 4 d and Q'[x, y := d] 4 c. Then the only case to con-

sider is M = (share x, y as P in Q), where P' >* valof(P, p I P, a) and Q' Ž__ valof(Q, p IQ, a).

Since M is typeable, the free variables of P and Q are disjoint. Since P' >* valof(P, p I P, a),

it follows by induction that
interp(P, pIP, a) = (lo, Oo),

where d >* valofcell(lo, go). By Lemmas 24 and 25, Q' >* valof(Q,pIQ, go), and by Theo-

rem 6, (1, p IQ, p', 0o). By laws Ii and E,

( , (plI ) [x, y - o], p, In c(lo, a0)).

Since Q'[x, y := d] >_* valof(Q, (p I Q)[x, y t-4 1o], inc(lo, 0o)), it follows by induction that

int erp(Q, p IQ[x, y i-- lo], inc(lo, go)) = (1', a')

and c >_* valofceH(l', o') as desired.

5. M' = (dispose P' before Q'), where Q' 4 c. This case is similar to the previous case and hence

omitted.

This completes the proof of the first part. The second part is proven by induction on the number
of calls to interp. We consider the cases for the core of the language and leave the cases for the
PCF extensions to the reader.

1. M = x. Then interp(M, p, a) = (p(x),a) = (u',0'). Note that valofcell(l',o')

valof(M,p,a), and hence M' >_ valofcell(l',a').. Since l(l',p,p', o), U'(l') = a(p(x)) must

be a value, and hence valofcell(l', a') = d where d is a canonical form. Thus, by Lemma 22,

M' 4 c >* d = valofcell(l', a') as desired.

2. M = (Ax. N). Similar to the previous case.
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3. M = (P Q). Since interp(M,p, a) = (l', a'), it follows that

interp(P, p I P, or) = (10, a0 )
interp(Q, P IQ, 00) = (11, o1 )
al (1o) = closure(Ax. N, p) or recclosure(Ax. N, p')

Since M' >>* valof(M,p, a), it must be that M' = (P' Q') for some closed P' and Q', where
P' >* valof(P, p, c) and Q' >* valof(Q, p, a). By induction,

P' 4 d' _>* valofcell(lo, Oo)
Q' 4 d >* valofcell(ll, a1 )

By Lemmas 24 and 25, d' >* valofcell(lo, o1 ). Since o-(lo) is a closure, valofcell(lo, 01) must
be a A-abstraction, and so by Lemma 20 it follows that d' = (Ax. N') for some N'. If
refcount(lo, a,) = 1, then N'[x := d] Ž_* valof(N', p'[x ý-4 11], dec(lo, a,)). If, on the other
hand, refcount(lo, u1 ) > 1, then N'[x := d] >* valof(N', p'[x ý-* 11], inc-env(p', dec(lo, a 1))). In

either case, it follows by the induction hypothesis that

N'[x := d] 4 c >* valofcell(l', a').

Thus, we conclude M' 4 c >* valofcell(l', a').

4. M = (store N where x, = M 1,...,xxn = M,). Since M evaluates,

interp(Mi, p Mi, 0') = (l, cal)
interp(M2,p M 2 , a,) = (12 , 0 2 )

int erp(M., piMp, 'a-1) = (l, 0'.)
P, = O[X1 -- , . -• 1 ",.,l]
(ln+lo,+,) = new(thunk(N,p'),cu,)
(I', 0') = new(susp(ln+l), Cin+l)

Since M' > * valof(M, p, a), it follows that M' = (store N' where x, = Mi ,...., Xn = M) and
N' >* valof(N, 0, a) and M' >_* valof(M2,p I Mi, a). By induction, M 1 4 cl >_* valofcell(ll, a,).
To evaluate the next term in the sequence, note that

M2 Ž_* valof(M 2, P2, a) _Ž* valof(M 2 , P2, aI)

so by induction M/ 4 c2 _>* valofcell(12, U 2 ). Extending the induction hypothesis further yields
that Mi 4 ci >* valofcell(li, ci). Note also that by Lemmas 24 and 25, N' >* valof(N, , an);

it follows that

(store N'[xl, ... , x, := C1, c.., cn]) = c >* valof(N, p', cn) = valofcell(l', ca').

Thus Mi 4 ci and so M' 4 c >* valofcell(l', ca') as desired.

5. M = (fetch P). Since M evaluates, interp(Pp,uc) = (lo,cao) and by Theorem 6,
R(lol',p', Co). Since M' >* valof(M,p,a), it follows that M' = (fetch P') for some P'
and P' >* valof(P, p, a). By induction,

P' 4 d' >* valofcell(lo, cio).
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Note that co(lo) = susp(/ 1 ) or rec(li, f); we consider the first case here and leave the other
to the reader. Since oo(lo) is a suspension, it follows from Lemma 20 that valofcell(lo, ao0 )
(store Q) for some Q. Thus, d' = (store Q') for some Q'. There are now two subcases:

(a) oco(l/) = thunk(R, p'). There are two subcases depending on the reference count of 10.
i. refcount(lo,'o) = 1. Then interp(R,p',dec(I,dec(lo,ao))) = (lo-'). Since the

state S = (lo, 1', P', oo) is regular, it follows that 1 is not reachable from p'-
otherwise, there would be an illegal cycle in the memory graph induced by S. Thus,

Q = valof(R, p', o-o) = valof(R, p', dec(lo, Or)),

and hence by induction
Q' 4 c >* valofcell(1', oa).

Thus, M' 4 c >* valofcell(l', a#) as desired
ii. refcount(lo, 0-o) > 1. Then interp(R, p', dec(lI, dec(lo, 0o[l0 •- 0]))) = (12 , a,) and

(1', o0') = (12, inc(12 , 0'[ 1lo 0 susp(12 )])). Note that because the state S = (lo, 1, P', 0ro)
is regular, neither lo nor 11 is reachable from p'-otherwise, there would be an illegal
cycle in the memory graph induced by S. Thus,

Q = valof(R,p', oo) = valof(R,p',dec(lI,dec(lo, co[lo +-+ 0])))

and hence by induction
Q' 4 c >* valofcell(/ 2, a 1 ).

Since R(l, P, p', inc(l 2, 0i[1o `4 susp(l 2)])) holds by Theorem 6, 10 is not accessible
from 12. Thus,

valofcell(l 2 , Ul) = valofcell(l 2, inc(l 2 , oI1[lo •-* susp(l 2)])) = valofcell(l', a')

and so M' 4 c >* valofcell(', -') as desired.
(b) co(li) # thunk(R, p'). This case is straightforward and left to the reader.

6. M = (share x, y as P in Q). Since M evaluates,

interp(P, P I P, a)= (lo, Oo)
interp(Q, (p Q)[x, y +-+ lo], inc(lo, o0)) = (1', a')

Since M' > valof(M, p, u), it must be the case that M' = (share x, y as P' in Q') for some
terms P' >* valof(P, p I P, a) and Q' >* valof(Q, p IQ, a). By induction,

P' 4 d >* valofcell(lo, ao).

Let o-I = inc(lo, cro). By Lemmas 24 and 25,

Q' >* valof(Q, P2, a) _Ž* valof(Q, P2, inc(lo, ao)).

Hence, Q'[x, y := d] >* valof(Q, (p Q)[x, y - lo], inc(lo, oo)). By induction,

Q'[x, y := d] 4 c >*_ valofcel1(1', o').

Thus, M' 4 c >* valofcell(l', a') as desired.

7. M' = (dispose P before Q). Similar to the previous case and hence omitted.

This completes the proof of the second claim and hence the proof of the theorem. U
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