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1     Introduction 

Given a correspondence between a set of image features 
and model features, a general problem in recognition is 
to evaluate the correspondence and improve it if nec- 
essary.   For instance, for object recognition the model 
may be a sparse set of 3D points and line segments. For 
aerial images, the model may be a terrain elevation map 
that includes the world locations of a small set of land- 
marks. In some applications, a user may supply the ini- 
tial correspondence,  leaving the computer to estimate 
and refine the model pose (position and orientation). In 
other cases, the computer must find the initial corre- 
spondence as well; this may be done through a combina- 
tion of grouping, indexing, and raw search.   Important 
computations involved in evaluating and improving the 
correspondence include (1) deciding whether the corre- 
spondence provides an accurate alignment, (2) determin- 
ing which image features could correspond to each un- 
matched model feature, and (3) choosing a new match 
to extend the correspondence.  These computations are 
intertwined with the issue of error propagation, that is, 
the issue of how error in a set of matched image fea- 
tures propagates to uncertainty in the predicted image 
locations of the remaining model features. We call these 
predicted image locations the uncertainty regions of the 
model features, and we derive either bounds on these re- 
gions or probability distributions on them, depending on 
our model of error. 

There are several reasons why it is useful to care- 
fully understand the propagation of uncertainty, as op- 
posed to assuming some small, simple uncertainty re- 
gion and using it in all cases. First, as we will show, 
uncertainty regions can vary quite a bit in size, and 
may be quite large for the predicted model features, re- 
sulting in many candidate image features for each pre- 
diction. In particular, grouping techniques commonly 
find image features that are close together on an object 
(e.g., [11, 8, 25, 31, 27, 29]), and we will see that this 
easily can lead to large uncertainty regions. Even when 
the matched features are far apart in the image, the un- 
certainty regions of the unmatched points may still be 
large, due to the depth of the 3D model. Second, both 
when the image features are nearby and when they are 
far apart, there are situations in which the pose of the 
model is unstable, and the uncertainty regions assume 
surprising shapes. By understanding the propagation of 
uncertainty, then, we can determine exactly where to 
look for features, and we can evaluate the stability of 
the pose produced by the initial correspondence. 

1.1     Summary of Results 

Given a set of matched image and model points, we de- 
termine an unmatched model point's uncertainty region. 
We consider this problem for the case in which corre- 
spondences are based on point features. We handle both 
scaled-orthographic and perspective projection models. 
We also consider two different models of error. First, 
we consider image points detected with errors that have 
known, independent Gaussian distributions. Second, we 
consider a bounded error model, in which we suppose 
that the error distributions are unknown.  In this case   . 

we make only the weak assumption that the magnitude 
of the error vectors can be bounded by some maximum 
number of pixels e. Given no other information, Gaus- 
sians may be the preferred error distribution, since image 
features are displaced by a sum of error vectors, incurred 
over a series of processes such as digitization, smoothing, 
and edge detection. A bounded error model may be use- 
ful, however, when errors contain a consistent bias that 
results in distributions that are significantly skewed from 
Gaussian. In the first case, we show how Gaussian error 
in matched image points propagates to an uncertainty 
region with a Gaussian distribution for an unmatched 
point. In the second case, we show how bounded error 
in image points propagates to a bounded uncertainty 
region describing the possible location of an additional 
model point. 

First we compute the uncertainty regions for sets of 
three matched points. We derive a simple linear ex- 
pression that approximates the relationship between the 
matched and unmatched points. This relationship allows 
us to show that, for bounded error, the uncertainty re- 
gion for a fourth point is circular, and to derive analytic 
expressions for the center and radius of the circle. For 
Gaussian error, this relationship implies that the prop- 
agated distribution of uncertainty is also Gaussian, and 
provides analytic expressions for the center and standard 
deviation. We perform experiments to verify that these 
expressions are accurate for the amount of error that is 
of interest in most recognition applications. 

We also take advantage of the linear relationship by 
introducing a new algorithm that allows us to determine 
the uncertainty region for any number of matched points. 
To do this we approximate our bounded error regions 
with convex polygons, and then show that we can use 
linear programming to derive a convex polygon that de- 
scribes the uncertainty region of the unmatched model 
point. We experiment with both synthetic images and 
a real image to observe the accuracy of the uncertainty 
regions that we compute, and to determine the extent to 
which they shrink as we match more points. 

Finally, we show how to extend previous work for lin- 
ear projection models to the cases of scaled-orthographic 
and perspective projections. Using the linear approxi- 
mation we show that we can use Baird's [6] algorithm to 
tell whether a set of matches between image and model 
points are geometrically consistent, and that we can ap- 
ply Cass' [12] and Breuel's [10] algorithms to find, in 
polynomial time, the model pose that aligns the max- 
imum number of model and image features to within 
error bounds. We also extend Jacobs' [28] and Sarachik 
and Grimson's [39] planar alignment algorithms to 3D 
objects. 

1.2    Projection Models 

For reference, we review the models of projection that 
we refer to in this paper. For perspective projection, we 
can write the corresponding image position (z, y) of a 
3D model point (x,y, z) in terms of a 3D, rigid rotation 
matrix R, a 3D translation vector u, and a camera focal 



length /. Letting r^ be the elements of R, we have 

=    / 
rgx + ri2y + ri3z + ux 

r-3iz + r32y + r33z + uz ' 

r21x + r22y + r^zz + v-y 

^312 + r32y + r33z + uz ' 

(1) 

(2) 

where the rows of R are orthonormal, and where we as- 
sume the origin is at the center of projection. When the 
focal length / is known, there are six degrees of freedom, 
and consequently three corresponding model and image 
points are "minimal" to determine the transformation. 
Given three corresponding points, there exist up to four 
solutions for the model pose [17]. 

This paper extensively considers scaled-orthographic 
(also known as weak-perspective) projection, in which a 
3D object is scaled down and projected orthographically 
into the image. This projection model is appropriate 
when the camera is far from the objects being viewed 
with respect to their sizes. In this case, the image posi- 
tion of (x, y, z) can be written in terms of the first two 
rows of a scaled, 3D rotation matrix, S = sR, and of 
a scaled, 3D translation vector, b. Letting 3{j be the 
elements of S, we have 

(3) 
(4) 

x    =    suz + S123/ + si3z + bx, 

y    =    s2{x + S22V + s23z + byt 

where || (sül Si2, s13) ||=|| (s2i, «22, «23) || and 
(«ii, «121*13) • (*2i, «22, «23) = 0. There are six degrees 
of freedom in the scaled-orthographic model-to-image 
transformation, and consequently three corresponding 
points are minimal to determine the transformation. 
Given three corresponding points, the transformation al- 
ways exists if the model points are not collinear and it 
generally has two solutions [27, 2]; in particular, the scale 
factor and translation are always unique, and the rigid 
rotation matrix is unique up to a reflection of the rotated 
model about a plane parallel to the image. 

For 3D linear projection, we remove the two non- 
linear constraints on the rotation parameters in the 
scaled-orthographic projection model. This transfor- 
mation is equivalent to applying a scaled-orthographic 
transformation to the model, and then applying a scaled- 
orthographic transformation to the resulting image; in 
total, this is like taking a picture of a photograph [29]. 
There are eight degrees of freedom in linear projection, 
and four corresponding points are minimal to determine 
the transformation. Given a minimal set of matches, this 
is the only transformation of the three in which the un- 
matched model points can be written linearly in terms 
of the matched image points. In particular, let the four 
image and model points be (xi,yi) and (xi,yi,Zi), re- 
spectively, for i = 1,2, 3, 4. Then we can obtain the first 
row of the transformation by solving 

(5) 

A similar equation holds for the second row of the trans- 
formation.   These equations give linear expressions for 

" Xi " " Zl Vl      «I  1 " *u 
x2 X2 y2   
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the transformation parameters in terms of the image 
point coordinates. Since multiplying a matrix by a vec- 
tor is a linear operation, applying the computed trans- 
formation to any unmatched model point gives a linear 
expression for the model point's image position in terms 
of the matched image points. 

1.3     Background 

Due to the value of top-down knowledge in model-based 
vision, it is common to generate hypotheses about an 
object's pose based on a small amount of information, 
and then to look for evidence to confirm or reject the 
hypotheses. In the alignment approach, a small number 
of image features are matched to model features to de- 
termine the object's pose. This pose is used to project 
additional model features into the image, which are 
matched to nearby image features for verification (e.g., 
Roberts [37], Clark et al. [13], Fischler and Bolles [17], 
Lowe [34], Ayache and Faugeras [5], Huttenlocher and 
Ullman [27]). In interpretation-tree search, additional 
matches between model and image features are then 
used to look for more matches, backtracking if enough 
valid matches cannot be found (e.g., Bolles and Cain [8], 
Goad [18], Grimsonand Lozano-Perez [23], Horaud [25]). 
To obtain the object's pose, some approaches use mini- 
mal sets of matches between model and image features 
(e.g., Clark et al. [13], Fischler and Bolles [17], Ayache 
and Faugeras [5], Horaud [25], Huttenlocher and Ull- 
man [27]). Other approaches use indexing to match more 
than the minimal number before looking for confirm- 
ing features (e.g., Rothwell et al. [38], Thompson and 
Mundy [43], Lamdan et al. [32], Jacobs [29]). 

Most recognition systems take an ad-hoc approach to 
the problem of accounting for the effects of sensing er- 
ror on the projected positions of unmatched model fea- 
tures. Some systems match projected model features to 
image features if they are separated by a distance that 
is less than some threshold (e.g., Clark et al. [13], Fis- 
chler and Bolles [17], Brooks [11], Bolles and Cain [8], 
Huttenlocher and Ullman [27]). Other systems rank the 
unmatched image features using heuristics involving dis- 
tance and orientation, and then pick the feature with 
highest rank (e.g., Ayache and Faugeras [5], Lowe [34]). 
Many questions remain concerning the performance of 
these systems. For example, although we know the min- 
imal number of features needed to generate a model pose, 
we do not know how accurate the pose must be to al- 
low us to identify the object. In addition, some authors 
stress the importance of using a minimal set of features 
[17, 27], while others contend that this will not produce 
a sufficiently accurate pose for recognition [34]. It is — 
in general difficult to characterize the conditions under j^_ 
which these systems will succeed or fail, or to evaluate 
the relative effectiveness of the different strategies for 
recognition, or to understand the extent to which each 
approach makes the best possible use of the information 
available. A careful understanding of the effects of sens- 
ing error is a prerequisite to doing all of these. 

1.3.1     Two-dimensional objects 
Recently, there has been considerable effort aimed at 

better understanding the effects of error on the match- T* 

a 
a 



ing process. Some of this work attempts to design algo- 
rithms that are guaranteed to perform well in the pres- 
ence of error (e.g., Baird [6], Cass [12], Breuel [10]), but 
most relevant to this paper is work that also examines 
the propagation of error in recognition systems. 

Huttenlocher [26] examined the effects of bounded 
error on the alignment approach to recognition. This 
analysis considered planar objects viewed from arbitrary 
3D positions, assuming scaled-orthographic projection. 
Pose was determined by matching three model and im- 
age points. For some situations, Huttenlocher placed 
approximate bounds on the uncertainty regions. 

Subsequently, Jacobs [28] showed that the true uncer- 
tainty regions are discs, and gave analytic expressions 
for their centers and radii. These regions are circular 
because in this case the projection model is linear in 
such a way that error in any of the three matched image 
points causes error in a projected model point that is 
identical but scaled by a constant factor. This constant 
factor depends on the model structure, but not on the 
viewpoint. Consequently, the sizes of the uncertainty 
regions are independent of how far apart in the image 
are the three matched points, which means the uncer- 
tainty is independent of the pose of the model. Jacobs' 
result was used by Grimson et al. [22] to analyze the 
false-positive sensitivity of planar alignment. 

A number of researchers have also considered the ef- 
fect of Gaussian error on alignment methods. As men- 
tioned above, for planar objects, each predicted model 
point can be written as a linear combination of the 
matched image points. Therefore, Gaussian error in the 
image points leads to Gaussian uncertainty in every pre- 
dicted point (e.g., [42]). Sarachik and Grimson [39] used 
this observation to propose a new method of perform- 
ing and evaluating alignment approaches to recognition. 
Beveridge et al. [7] use a robust method to evaluate par- 
ticular model poses. 

Error propagation has also been studied in the context 
of Geometric Hashing approaches to recognition. Costa 
et al. [15] considered the distribution of uncertainty re- 
gions in terms of the affine invariant parameters that de- 
scribe the image points. Rigoutsos and Hummel [35, 36] 
also considered this issue for Gaussian and uniform er- 
ror. Both Costa et al. and Rigoutsos and Hummel then 
considered the implications of these results for recog- 
nition schemes. Lamdan and Wolfson [33] considered 
the related problem of determining when three image 
points provide an unstable basis for Geometric Hashing. 
Grimson and Huttenlocher [20] considered the effects of 
bounded error on Geometric Hashing, and provided loose 
bounds on this effect. Jacobs [28] determined exactly 
how bounded error effects Geometric Hashing indices. 
Grimson et al. [22] then further developed this result and 
used it to analyze the performance of Geometric Hash- 
ing algorithms. Sarachik and Grimson's [39] results also 
apply to Geometric Hashing. 

1.3.2     Three-dimensional objects 

Error propagation is more complex in recognition 
systems that deal with fully three-dimensional objects. 
Bolles et al. [9] studied how error propagates from the 

parameters of a model-to-image transformation to the 
predicted model points. Bolles et al. assumed that the 
errors in the parameters were independent and normally- 
distributed and that estimates of the distributions would 
be available. Unlike other previous work, Bolles et al. 
dealt with perspective projection, which made the rela- 
tionship between the error vectors in the transformation 
parameters and the predicted points non-linear. In fact, 
their analysis is the most similar to our own, because 
they took a (first-order) approximation that linearizes 
the error-vector relationship. As a result they obtained 
Gaussian uncertainty distributions. The main difference 
with our work, in addition to our treatment of bounded 
error, is that we will let the error be in the matched 
image points, instead of assuming we know the distribu- 
tions for all of the transformation parameters. Further- 
more, we will derive direct expressions for the predicted 
points in terms of the matched points, so that we do not 
explicitly go through a rigid transformation. 

Recently, Grimson et al. [21] presented a formal analy- 
sis of error propagation starting from the matched image 
points, for three-dimensional objects. They considered 
scaled-orthographic projection and bounded, circular er- 
ror. Starting from three matched points, they provided 
a numerical method of bounding the uncertainty in the 
transformation parameters. Then they used the bounds 
on the parameters to obtain complicated, loose bounds 
on the uncertainty regions of the predicted points. Via 
these bounds, they analyzed the false-positive sensitivity 
of 3D-from-2D alignment and transformation clustering, 
in the domain of point features. The numerical tech- 
nique is less practical, however, for use at run-time in a 
recognition system. 

Using the same projection and error models as Grim- 
son et al. [21], Alter and Grimson [4] presented experi- 
ments that show that the true uncertainty regions tend 

' to be circular to a good approximation, and presented a 
numeric method for more accurately bounding the uncer- 
tainty regions. This technique was used to study again 
the false-positive sensitivity of 3D-from-2D alignment, 
except also using line features for verification. Alter 
and Grimson demonstrated that using points for gen- 
erating hypotheses and lines for verification could lead 
to robust recognition. As before, the numerical error- 
propagation technique is less practical for a real-time 
system. Furthermore, the two weak-perspective solu- 
tions lead to two distinct uncertainty regions, which is 
not true when the model is planar. Alter and Grimson's 
technique sometimes performed poorly when the two re- 
gions overlapped, because it had difficulty distinguishing 
them. 

Also for 3D objects, Weinshall and Basri [46] pro- 
vided analytic bounds on the amount of error in a least- 
squares solution that is used to match four model and 
image points. This is useful because, currently, the least- 
squares solution itself can be found only through itera- 
tive methods. 

For both 3D and 2D objects, Wells [47, 48] used a 
Bayesian approach and Gaussian error assumptions to 
derive an evaluation function that measures the likeli- 
hood of any given pose. Wells then used heuristic search 



and gradient descent methods to find the most probable 
pose. 

Finally, there has been a great deal of work on find- 
ing a pose that minimizes error, when enough image and 
model features have been matched to overdetermine the 
pose. Some of this work analyzes the effect that errors 
in image features have on the accuracy of the result- 
ing pose, including Kumar and Hanson [30] and Hel-Or 
and Werman [24]. The work of Hel-Or and Werman is 
particularly relevant to us, because they also consider 
how error propagates through the pose to the projec- 
tions of unmatched feature points. Assuming Gaussian 
error, they use an extended Kaiman filter to find the 
minimal error pose resulting from a match between any 
number of image and model points. The Kaiman filter 
then allows them to compute a Mahalanobis distance 
that indicates the likelihood that error can account for 
the apparent deviation between a projected model point 
and a potentially matching image point. 

In summary, there are simple analytic solutions for 
how error propagates from three matched image points, 
when the objects are two-dimensional and undergo 
scaled-orthographic projection. This is true both when 
the image-point error is bounded by circles and when it 
is normally distributed. In the case of circular error, ev- 
ery propagated uncertainty region is a circle, whose size 
is independent of the camera viewpoint. 

For three-dimensional objects, it appears empirically 
that circular error again propagates to circular uncer- 
tainty regions. Nevertheless, there is no analytic solu- 
tion, which would be preferred for building an efficient 
system. As well, current numerical solutions either sig- 
nificantly overestimate the uncertainty regions or can 
break down when the two regions that arise from the 
two weak-perspective solutions overlap. Further, it is 
not known whether the uncertainty regions are exactly 
or approximately circles, or whether the sizes of the re- 
gions depend on the viewpoint. If the regions are circles 
only approximately, one would like to know which config- 
urations of the model and image points cause the regions 
to deviate from circularity. Although much progress has 
been made in understanding the effects of propagated 
error, there are significant problems that are not yet un- 
derstood. 

Finally, there have been a number of sensitivity anal- 
yses that determine the susceptibility of recognition sys- 
tems to false-positive errors. Most of these analyses 
are restricted to two-dimensional objects, because this 
is where error propagation is most readily understood. 
Nonetheless, there do exist sensitivity analyses for three- 
dimensional objects, which use numerical techniques to 
get a handle on the propagated error. 

2    Fourth-Point Uncertainty Region 

In this section, we address the following problem: Given 
exactly three matching point pairs, (i0,mo), (ii,fni), 

and (t2,7712), where the locations of io, ii, and ij contain 
small amounts of error, what is the error in the computed 
image position of a fourth model point, 7713? This sec- 
tion presents an analytic solution to this problem, which 

m 

Figure 1: Every model point has unique (di, rit Tj) co- 
ordinates, unless it is on the line through rooi, where 
Ti is unrestricted. Note that r< = 0 for points in the 
basis plane. 

is based on a first-order approximation, and results in 
a linear relationship between the errors in the matched 
(basis) image points and the error in an unmatched, pro- 
jected model point. Here we consider weak-perspective 
projection, and in a later section we extend the results 
to perspective. 

For weak-perspective projection, we show that the lin- 
ear relationship takes a simple form that can be used to 
predict the uncertainty region for an unmatched model 
point when there is bounded error or Gaussian error in 
the image points. When we allow the three basis image 
points to be perturbed within bounded error regions, the 
resulting uncertainty region is also bounded. When we 
allow for Gaussian error in the image points, the uncer- 
tainty region is a probability distribution. Previously 
these uncertainty regions were known analytically only 
for planar objects [28, 39]. Our results have no such re- 
striction, and they reduce to the known solutions when 
the model is planar. Furthermore, when the error in the 
image points is bounded by circles, the region takes the 
form of a circle centered at the "nominal point," which 
is the point that 7713 projects onto when there is no error 
in the basis points. This result agrees with the experi- 
mental observations of Alter and Grimson [4]. 

2.1    The Basic Geometry 

We begin by examining the propagated uncertainty when 
there is error in exactly one of three matched image 
points, i2. To do this, we introduce a particular rep- 
resentation for any third model point that allows us to 
see how a change in the location of the third image point 
affects the projected location of any unmatched model 
point. In this representation, we let the origin of the 
image coordinate system be at io, the z direction be or- 
thogonal to the image plane, and the x axis point in the 
same direction as ioi, where toi = i\ — io- 

Furthermore, we use the following representation of 
3D model points in terms of the three basis model points 
(see Fig. 1): Originally, the model points lie in some 
model coordinate system. For any model point m*, i > 0, 



Figure 2:    The out-of-plane rotations:    a rotation 
about the y axis and a rotation about the vector moi. Figure 3: The image position of m2 is a function of 

the out-of-plane rotations 9 and <f>. 

let ri be the length of the perpendicular from rhi to the 
infinite line containing mo and mj, let d, be the distance 
from rho to the intersection of the perpendicular and the 
line, and let TJ be the rotation off the basis plane (the 
plane containing the three basis points). 

A view of a 3D model is determined by choosing 
the six parameters of a weak-perspective transformation 
that will be applied to the model. (There are two pa- 
rameters for in-plane translation, three for rotation, and 
one for scale.) In this section we have fixed io and »i. By- 
fixing the locations in the image where two of the model 
points project, we have determined four of the trans- 
formation's parameters. In particular, we initially can 
rigidly transform and scale the model so that rho = *o, 
mi = ii, and m2 is in the z = 0 plane—in so doing, the 
model is scaled by 

«0 
*oi 

moi (6) 

In order to keep mo and mi projecting onto to and ii, 
respectively, there can be no further in-plane translation 
nor in-plane rotation. As shown in Fig. 2, we still are 
free to rotate about the y axis as long as mi continues 
to project onto ii, which means that any such rotation 
about the y axis determines the scale factor. After ro- 
tating about the y axis and rescaling, the only remaining 
degree of freedom is a rotation about the vector moi. 

Next we derive an expression for the image position 
of m2 as a function of the two free parameters. As illus- 
trated in Fig. 2, the model is scaled by s, then rotated 
by <j> about the x axis, and then rotated by 9 about the 
y axis (denoted by K^<yy). This aligns the projections 
of the three model points with their corresponding im- 
age points. As in Fig. 1, we let m2's coordinates relative 
to the basis model points be (d2,r2,r2) = (d, r, 0)—the 
last element is 0 since m2 is in the basis plane.    So 

m2   =  R{9|y}(sd, srcos<f>, arsin^), where <j>  G   [0, 2TT), 

which gives 

m2 

cos0    0 — sin 9 r    sd    ■ 
0       1 0 sr cos <j> 

sin0    0 COSÖ sr sin <j> 

dcoaO — rsin9sin<j> 
s r cos (j> 

d sin 6 + r cos 9 sin <j> 
(7) 

By our choice of image coordinate system, 9 £ [0, ir/2). 
Project orthographically: 

m2 = (x>y) = (sd cos 9,0) + sr(—sin 9 sin <j>, cos <l>). 

As mi rotates around the y axis, the scale factor is 
constrained to keep rfii projecting onto i\. From Fig. 2, 
this constraint is s \\ moi || cos0 =|| ioi ||> which implies 

*oi *o 

moi    cos 9 \9 

Consequently, 

(x,y) = (s0d, 0) + s0r (- tan 9 sin <f>, 
cos <j> 

cos 9 )• 

(8) 

(9) 

which gives the image position of m2 as a function of 
the "out-of-plane" rotation angles 9 and (f>. Fig. 3 shows 
graphically the successive rotations of m2 by 9 and <f>, 
followed by the orthographic projection. 

By setting (x, y) in Equation 9 to the nominal loca- 

tion of i2, we could solve for the nominal values of 9 and 
(p. If done, this would provide a solution to the problem 
of recovering 3D pose from three corresponding points. 
There are several solutions to this problem already, how- 
ever, and instead we could apply one of them and then 
use the solution to compute 9 and <j> (see [3] for a review 
of the solutions). 



2.2     First-Order Approximation 

Next we allow for error in one of the basis points, i2. The 
problem is to determine how mj changes as a function 

of i2, with i0 and ii remaining fixed. In Section 2.4, 
we explain how to extend the result to the case where 
all three points can move. The out-of-plane rotations, 0 

and <f>, and the scale will change as i2 moves in the plane. 
If the changes in 0 and <j> are sufficiently small, then the 
changes in x and yasa function of 0 and (f> will be given 
by their first derivatives. From Equation 9, 

-s0r 
1 dx 

~d9 

9y    _   
39    ~    S°rcos20 

cos20 
sin0 

sin</>, 

dx 10 

d<f> cos 9 
dy_ 
d<t> 

=    -sQr 
cos 9 

cos <j>, 

cos <f>, 

sin<j>. 

(10) 

(11) 

(12) 

(13) 

u = (ff, H) a*d C = (ff> U) «e the taneent 

vectors at the point (z, y) to the image curves that are 
traced out by changing 9 and <j>. 

y'sin2 4> + sin2 0 cos2 <j>      (14) t» 

*♦!!   = 

sc-r 
20 cos 

spr 

COS0 
ysin2 </> + sin2 0 cos2 <f>       (15) 

For a small change in 0, let ae represent the direction 
in which the image point i2 moves, measured counter- 
clockwise from the x axis, and similarly for <j> and a^. 
Then 

a« tan 
! (dy_ dx\ 

\de' 89) 

tan-1(sin0cos<£, — sin<^) (16) 

_x fdy   dx\ a* = tan   \WW 
=    tan-1(— sin<f>, — sin0cos<£) (17) 

The dot product of the arguments to the inverse tangent 

is 0, and so the tangent vectors t« and tj, are perpen- 
dicular. We can use the normalized cross product of the 

arguments to see whether the angle between tg and tj, 
is ±90°: sin(ct^, - ae) = 

(-sm(f>)(- sin i^) - (sin 0 cos <f>)(- sin 0 cos <j>) 

|| (-sin<£, sinöcosi^) ||j| (-sin0cos<£, -sin<£) || ' 

which equals 1. Thus a^, = ag + 90°. 

2.3    Relative Error between the Third and 
Fourth Points 

We still are considering the case where only i2 moves. 
This section shows that if the projected third model 
point moves by a small amount, then any projected 
fourth model point moves by a constant factor times 

that small amount, and in an analogous direction. We 
also show that the two weak-perspective solutions lead 
to different constant factors. 

Equations 14 and 15 give the magnitude of the 
changes in m2 for small changes in 0 and <j>. The only 
differences for m£ are in the relative coordinates of the 
model points (Fig. 1). For m2, the coordinates are 
(r2,d2,T2) = (r,d,0). For m3, let the coordinates be 
(r3,d3,T3) = (r',d',T'). Consequently, in the expres- 
sions, we change r —► r' and d —* d'. Further, 0 and s0 

do not change since they are measured with respect to 
rho and rhi, and do not depend on whether we are con- 
sidering rh2 or rn,3. However, <j> is the amount of rotation 
of fa2 away from the plane of the wedge in Fig. 3. For 
any other model point, A3, the amount of rotation away 
from the wedge is given by <j> + r', since, according to 
Fig. 1, T' is the amount of rotation of 77x3 away from rn2. 
Hence for m3, we change 4> -* <j> + r'. All together, we 
get 

cos20 
-Jsm2(<f> + T>) + sm29cos2(<j> + r') 

-y/sm2 (cf> + T>) + sin2 0 cos2(<£ + r') 
spr 

COS0 

Note that || t'e || / || U ||=|| *; II / II U II • Therefore, 
when either <f> or 0 changes, the ratio of the size of the 
change in mj to the size of change in rh2 equals 

S = 
r'   lsin2{<j> + T') + sin2 9 cos2(</> + T>) 

sin2 <j> + sin2 0 cos2 <f> 
(18) 

Note that due to 9 and <f>, this expression depends on 
the viewpoint the model is observed from, which is not 
true in the planar case [28]. In the planar case r' = 0, 
because all model points are in the basis plane (Fig. 1), 

and Equation 18 reduces to ^-. 
Recall that there are two reflective solutions to the 

weak-perspective geometry [2]. The two solutions corre- 
spond to a reflection of the basis model points about the 
image plane. From Fig. 3, this reflection corresponds 
to negating 0 and <j>. Plugging into Equation 18, the 
constant scaling factors for the two solutions are 

T^_   lsm2{a<t> + T') + sin2(o-0) cos2(o-0 + r') 

r\j sin2((T<£)-|-sin2(<r0)cos2(a-0) 

where <r = ±1 

t.   /sin2(o-</> + T') + sin2 0cos2(tr4> + T') 

r V sin2 <f> + sin2 0 cos2 <j> 

Thus the two weak-perspective solutions give different 
scaling constants. Again, this differs from the planar 

case, in which the scaling constant in both cases is y. 
More generally, in the planar case the two solutions col- 
lapse to one when projected onto the image, and so the 
existence of two solutions makes no difference. 

From Equations 16 and 17, 

a'e    =    tan-1(-sin(<A + r'),sin0cos(^ + r'))   (20) 

a'f    =    tan-1(-sin0cos(^ + r')1-sin(^ + r'))(21) 



Through the same calculation that showed sin(a^ — 
ag) = 1, we can calculate that sin(a^, — o^) = 1, so 
that 

a'^-a'g -a^-ag = 90°. (22) 

Thus the angles between the tangent vectors and their 
relative sizes are the same for mj and mj. As a note, 
this implies that the mapping between curves traced out 
by changing 9 and <j> for mj and mj is conformal [1]. 

Since we are making a first-order approximation, any 
movement of mj in the image plane can be viewed as 
the sum of the effects of changes in d and cj>.    From 

II *f II / II Jo 11=11 <f II / II h II, we see that for any 
change in m£ by some small amount, there is a change 
in mj by that amount times a constant, given by Equa- 
tion 18. Furthermore, as 6 changes, mj and mf each 
moves in some direction, by some amount. Then as <p 
changes, Equation 22 implies that the two points move 
at right angles to their previous directions. Hence any 
change in TOJ produces a change in mj that is scaled 
and rotated by fixed amounts. Consequently, any er- 
ror region about the nominal position of mj results in 
a mathematically similar error region about the nomi- 
nal position of rraj, which means they are related by an 
image plane translation, rotation, and scaling. 

We can explicitly write the relationship between the 
errors in m£ and mj using a 2 x 2 scaled rotation matrix 
A. (A is a similarity transform with zero translation. In 
the sequel we will refer to A interchangeably as a scaled 
rotation matrix or a similarity transform.) A must sat- 
isfy 

T9 = AM     and    if = A«7, (23) 

which gives four equations in four unknowns. Actually 
only two of the equations are needed: In general, let an, 
ai2i 02i, and a22 be the elements of a 2 x 2 matrix A. 
Then for a similarity transform, 021 = —flia and 022 = 
an. Solving the equations leads to (Appendix A) 

on    =    ä:(COST' - cos2 0cos ^cos(<£ + r'))    (24) 

ai2    =    —isinr'sinö, (25) 

1 (26) 
r ) 1 — cos2 d cos2 <j> 

0<i<3 >3 

Figure 4: For each model point m*, there are three 
points of interest in the image: (1) its nominal (de- 

tected) position U, which is determined by the feature 
detector, (2) its no-error (true) position TO.', which 

would equal U if there were no error, and (3) its pre- 
dicted position TO*, which is computed using the first 
three point pairs to compute the pose and project TO* 

into the image. For i < 3, mj = ii. For any i, we 
define ei to be the correction vector from rhj to m\. 

position of mj to its true position (see Fig. 4). Then the 
error in mj is given by the following linear relationship: 

e*3 = Ae*o + Be*i + Ce2 (27) 

The two weak-perspective pose solutions, ±(6, <j>), lead 
to two possibilities for each of A, B, and C, and for 
the error in the fourth point e*3. When we combine the 
errors in Equation 27, we must be sure to use the same 
weak-perspective solution for the three matrices. 

Suppose now that the error in each image point is 
bounded by some amount e. This results in some 
bounded uncertainty region about TOJ. From Section 2.3, 
for each image point separately its e-circle propagates to 
a circle around m£ that is scaled by 5 (Equation 18), 
which gives a radius of 5e. The error in each im- 
age point affects the fourth point independently, and 
so the uncertainty region around the fourth point is a 
circle centered at mj, and the three radii simply sum 
together (where we must be careful to use the radii 
from the same weak-perspective solution). In Equa- 

tion 27, let Sp = v/aii + °i2, Si  =  \Aii + 6i2> and 

Note that the constant scale S from Equation 18 must       J.-Ü ^fk^-f12'   ^^ ^ PadiUS °f ^ UnCertainty 

equal \/aii + ai2 • 
circle for mj is 

2.4     General Formula for the Fourth Point 
Error 

We can use Equations 24-26 to obtain a formula for the 
error in TO3 as a function of the error in io or ii in the 
same way. This gives three scaled rotation matrices re- 
lating the individual errors in the basis points to the 
error in rrij. Under a first-order approximation, these 
errors affect the error in TO3 independently and the total 
error in rh% is the sum of the individual errors. Let A 

be the scaled rotation matrix between io and rh^, B be 
the scaled rotation matrix between ii and mj, and C 

be the scaled rotation matrix between i2 and mj. Also 
let e*o, ei, and e*2 be the errors in the basis points, and, 
for i > 3, let e< be the error vector from the nominal 

R = SQ€Q + Si€i + S2€2 + e3, (28) 

where €3 is added to account for error in sensing i3 (an 
image point that corresponds to rnj). 

When the error in the image points is normally 
distributed, the linear relationship allows us to deter- 
mine the propagated uncertainty distribution about any 
fourth point. If the Gaussian error in the zth image point 
has standard deviation <Tj, then the uncertainty distri- 
bution about 7713* is normally distributed with standard 
deviation (Appendix C) 

a = y/S^al + S\<r\ + Slcr* + <72. (29) 

In summary, we have explained why Alter and Grim- 
son found that the uncertainty regions for three matched 



points are circular. Moreover, we have provided a sim- 
ple, analytic expression for those uncertainty regions. To 
illustrate the value of this expression, we outline a robust 
version of Huttenlocher and Ullman's 3D-from-2D align- 
ment algorithm [27]. Given a model and a cluttered im- 
age of a scene containing the model, the following steps 
are repeated until the model is identified: 

1. Hypothesize a pairing of three model and image 
points. 

2. Using the hypothesis, project all of the model line 
segments into the image. 

3. Use Equation 28 to compute the uncertainty circles 
for the two endpoints of every projected line seg- 
ment. Then construct a tight overestimate of every 
line segment's uncertainty region from the two un- 
certainty circles, as in Alter and Grimson [4] (see 
Fig. 5). 

4. Accept or reject the hypothesis, based on the num- 
ber of line segments for which there exist candidate 
image segments, and on the sizes of the uncertainty 
regions (as in [4]). If accepted, return the identified 
model and pose. 

[4] demonstrated that this algorithm is expected to be 
insensitive to false positives in cluttered scenes. 

3    A Study of Uncertainty from One 
Basis Point 

We showed in Section 2 that for any shape traced out by 
the third model point, the fourth model point traces out 
a mathematically similar shape, up to an approximation. 
This section provides a study of the true shape of the un- 
certainty region. We begin by considering exactly how 
larger changes in 8 and <j> effect the appearance of each 
additional model point. Using Equation 9, it is straight- 
forward to see that, as 4> changes with 9 held constant, 
(z, y) traces out an ellipse, with center at (s0d, 0) and 
with the major axis parallel to the y axis. We rewrite 
this equation as 

(x,y) = (sod,0) +(-a sin <f>,b cos <j>), (30) 

with minor axis a — sprtanfl, major axis 6 = s0r sec 9, 
and eccentricity e = y/b2 - a2 = s0r. For 0 = 0, the 
ellipse equation becomes (x, y) — (sod, 0) + (0, s0r cos <p), 
which forms a line segment between the points (so^i *or) 
and (s0^i -*o'"). As 9 increases from 0, the center of 
the ellipse is unchanged; Fig. 6 shows the 3D interpreta- 
tion. In addition, as 9 increases both axes o and b grow, 

Figure 6: As 9 changes, rnoi is scaled so that mi al- 
ways projects onto ii. The figure shows that any point 
on the line through rho\ always projects onto the same 
location in the image. When <j> changes, m2 rotates 
about a point on this line, and that point projects to 
the ellipse center; therefore the ellipse center does not 
change. 

and the ratio a/b = sm6 approaches 1. Consequently 
increasing 9 sweeps out a growing family of concentric 
ellipses that become increasingly circular. 

As 9 changes, (x,y) traces out a hyperbola, which we 
can see by eliminating 9 from Equation 9. From the x 
and y coordinates, we have respectively: 

s0d 
SQT sin tj> 

- tan2 9, 
sor cos 4> 

sec2 9. 

Using 1 + tan2 9 = sec2 9, 

_(fLL^y+(_v y=i.   (3D 
\s0rsm<pj        \30rcos<p/ 

This equation is a hyperbola centered at (sod, 0), with 
focii (sod,±sor), vertices (s0d,±s0r cos <f>), and asymp- 
totes x = ±yta.n<j> + s0d. For (j> = 0,7T, the hyperbola 
becomes (x,y) = {s0d,Q) ± (0,^), which gives two 
vertically infinite half-lines starting at the focii. As 4> 
increases, the center and focii are unchanged, and the 
asymptotes rotate about (s0d, 0), becoming increasingly 
parallel to the x axis. Consequently, changing <j> from 0 
or 7T sweeps out a concentric family of hyperbolas that 
reach the x axis at tj> — \, ^f. 

By a simple translation and scale of (z, y), we get the 
equation 

(X,Y)   =    —((x,y)-(s0,d)) 
SQT 

■ tan 9 sin <f>, 
cos <j> 
cos 9 

(32) 

Fig. 7 plots families of curves for changing <j> and 9 for 
this equation. The elliptical curves are functions of <f>, 
and the hyperbolic curves are functions of 9. The four 
plots show the same figure at different scales and for dif- 
ferent ranges of 9. In left-to-right, top-to-bottom order, 
each plot is a close-up of the center area in the next plot. 
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Figure 7: Plots of (X,Y) for different ranges of 9. Upper left: 9 6 [0,12]deg. Upper right: 9 6 [0,45]deg. Lower 
left: 6 £ [0,60]deg. Lower right: 9 6 [5, 85] deg. The curves are separated by changes in angle of 4deg, 5deg, 6deg, 
and 10 deg (in left-to-right, top-to-bottom order). 

The plots in Fig. 7 are for mj translated and scaled. 
For raj we get 

(*'.y')    =    A((*'>2/')-(so,<0) 

■tangimfr + T')l
CO'(' + r,)\33) 

cos a      / 

This involves a different scale factor and translation, but 
otherwise, the only difference for the fourth model point 
is in T'. That is, varying <f> causes the third and fourth 
model points to traverse ellipses that may differ in trans- 
lation and scale, but that do not differ in shape. In 
Fig. 7, we vary 6 and <\> and show the image regions 
that the projected points mj and mj occupy as a re- 
sult. Since we normalize the plots of the two points, as 
the third model varies along an ellipse, the fourth model 
point projects onto the same ellipse. If (X, Y) moves 
along the curves in Fig. 7 and traces out a closed region, 

then so will (X',Y'). The two filled-in areas in each 
plot illustrate a different pair of bounded error regions 
that could be traced out simultaneously by some (X, Y) 
and {X', Y')\ {X, Y) or (X', Y') could be either error re- 
gion. In this case, as one point varies within one of the 
bounded error regions, the other point will vary within 
the other error region, illustrating how uncertainty prop- 
agates. 

In the figure, there are two distinguished points where 
the grid collapses. These points are the hyperbola focii 
(0, ±1), which were (sod,±$or) in the original (x,y) 
curve. These focii correspond to (9, <j>) = (0,0) and 
(0, IT), which occur when the plane containing the ba- 
sis model points is parallel to the image. From the areas 
around (0,1) in Figs. 7 and 8, it is clear that an (X', Y') 
uncertainty region may not be simply a scaled and ro- 
tated version of the (X, Y) region. Therefore, circular 
error in the third point in general will not produce cir- 
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Figure 8: Close-up where <j> £ [0, 90] deg. In both plots, 6 G [0,16] deg and the curves are separated by changes in 
and 4> of 8 deg.   

cular uncertainty, exactly, in the fourth point. In fact, 
we can see from Fig. 8-left that when 6 and <f> are small, 
uncertainty in the third image point can lead to strange 
shapes for the propagated uncertainty region: Suppose 
that (X, Y) traces out the large region on the right (re- 
gion A). If T' = 128deg, then (X',Y') traces out the 
similar-looking, large region on the left (region B). But 
if r' = 72 deg, then (X'tY') traces out the non-convex, 
curved region on top (region C). It should be kept in 
mind that the shapes not the sizes of these regions are 
what matters here, since the plot is normalized: After 
being scaled by — , the region on top may be significantly 
larger than then the region on the right, but its unusual 
shape would be unchanged. As a result, odd-shaped un- 
certainty regions can occur even when there is little error 
in the basis points. 

When the third point's error region contains one of 
the focii, then the two uncertainty regions for the fourth 
point's two weak-perspective pose solutions are one and 
the same; otherwise the regions will be distinct, although 
they may overlap. As an example, in Fig. 8-left suppose 
now that region C is traced out by (X, Y). If r' = 72 deg, 
then the two large regions correspond to the two weak- 
perspective solutions for the (X1, Y') region, obtained by 
alternating the sign of (6, <f>). If r' = 8 deg, then the two 
uncertainty regions for the two solutions would overlap, 
but they still would be distinct. On the other hand, 
suppose that the region traced by (X, Y) additionally 
includes the point (0,1), as in Fig. 8-right (region D). 
Then when T' = 72 deg the two large regions merge into 
the single, "H"-shaped uncertainty region shown in the 
figure (region E). So we see that the similarity transform 
can be a poor approximation for poses with small values 
of 9 and (f> even with small amounts of error. 

For large 6 (bottom, right picture in Fig. 7), the el- 
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lipses become concentric circles, and the hyperbolas be- 
come straight lines. In this circumstance, any (X',Y') 
region is the same as the corresponding (X, Y) region, 
except for a rotation about the origin. In this case, a 
similarity transform will exactly relate the errors, and 
will be independent of the model pose (as it was for pla- 
nar objects). 

Another conclusion we can draw applies when the 
third point has a bounded error region that is very large. 
Suppose there is circular error of radius e in the third 
point. As e grows, the error circle will include the point 
where the two pose solutions merge, and the boundaries 
of the error circle and the fourth point's propagated un- 
certainty region will reach the range of 6 where they are 
related by a similarity transformation. For large enough 
e, then, the error in the third point will result in a single, 
circular uncertainty region for the fourth point, regard- 
less of where the image and model points are nominally 
located. This is surprising because one might expect 
that the error incurred by using the similarity-transform 
approximation grows as e grows. Even though this may 
be true when e is small, for large enough e the error will 
decrease. 

Finally, the above discussion shows that the 
similarity-transform approximation may hold further 
than the two first-order approximations that we used 
to compute it. To obtain an analytic expression for the 
propagated uncertainty, Section 2 took first-order ap- 
proximations to the errors in the third and fourth points 
in terms of the 3D pose parameters, 0 and <f>. Then 
these approximations were combined to get a similarity 
transform that directly relates the errors in the points. 
This similarity transform may hold further than the two 
first-order approximations. For instance, for high val- 
ues of 6, where the similarity transform holds exactly, 
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Figure 9: For large 0, the ellipses traced out by chang- 
ing <f> are circles. In this case, changing <f> causes 
movements in (X, Y) and (X',Y') that are exactly 
related by a similarity transform. First-order approx- 
imations to the movements, however, assume that the 
two points move along the tangent lines at (X, Y) and 
(X',Y'), which is correct only if the movements are 
small. 

the first-order approximations do not (see Fig. 9). This 
suggests that higher-order error terms may be cancelling 
when we combine the two first-order approximations to 
get a similarity transform. Section 4.3 empirically shows 
that the similarity transform can hold further than the 
first-order approximation. This indicates that it may be 
wise to propagate errors directly in image space rather 
than from transformation space, as was done for example 
in [21]. 

4    Experiments 

We have run three experiments to test the results in Sec- 
tions 2 and 3. The first experiment compares our results 
to those of Alter and Grimson [4], who studied the case 
of bounded, e error. In particular, we test our formula 
for the radius of the fourth point error circle. The sec- 
ond experiment looks more generally at the accuracy of 
the similarity transforms in Equation 27 for predicting 
where the fourth point moves when there is error in the 
basis points. This experiment is repeated for uniform 
and Gaussian error. The third experiment compares the 
accuracy of the similarity transform with the first order 
approximation used to derive it. 

4.1     Comparison to past results 

Alter and Grimson assumed bounded error in the image 
points using circles of radius e. They showed experimen- 
tally that the uncertainty region for a fourth model point 
is closely approximated by a circle centered at the nomi- 
nal point, which is the uncertainty region we derived an- 
alytically in Section 2.4. Following Alter and Grimson, 
we refer to these fourth-point error circles as uncertainty 
circles. Alter and Grimson computed the radius of an 
uncertainty circle by densely sampling the fourth-point 
uncertainty region, and then took the radius to be the 
maximum distance from the nominal point to a sampled 
point. As a result, the computed uncertainty circle was 
an upper bound on the uncertainty region, up to the 
fineness of the sampling. 

To see how our uncertainty circles compare to Alter 
and Grimson's, we run a series of trials like those in [4]: 
At each trial, we randomly generate three pairs of model 
and image points and a set of seven unmatched model 
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points. We let e = 5 pixels. For each unmatched model 
point, we use Equation 28 to compute our predicted ra- 
dius (Rf). To compute the "maximum radius" (RM) as 
in [4], we take 25 samples along the boundary of each 
e-circle, and then take all triples between the samples 
to get 15,625 triples. For each triple, we solve for the 
model pose and use the pose to project each unmatched 
model point into the image. This gives 15,625 projected 
model points per uncertainty region. For each uncer- 
tainty region, we compute the maximum distance from 
the nominal point to any of its projected model points. 
For an error measure, we use the relative error from our 

radius to the maximum radius, that is,    *^~   ! . 

We tested 1,163 uncertainty circles, over which the 
average relative error was 1.45%. Table 1 shows the 
percent of uncertainty circles for which relative er- 
ror was less than some threshold. The results show 
that our circles reasonably approximate the maximum- 
radius circles from Alter and Grimson, who showed that 
the maximum-radius circles reasonably approximate the 
true regions. The results also show that the maximum- 
radius circles can at times overestimate our circles by a 
significant amount. For instance, 1.2% of the time our 
circles will be 10% smaller than the maximum-radius 
circles. 

Table 1 could be used to determine a correction factor 
for the circle radius: Suppose that a recognition system 
has matched three model and image points and is using 
the analytic solution for the uncertainty circles to de- 
cide what region in the image to search for additional 
matches. Suppose further that we want the system to 
conservatively estimate the effects of error, so that it can 
give some guarantee of no false negatives (i.e., that no 
valid image points will be missed) some high percentage 
of the time, while at the same time increasing the chance 
of false positives as little as possible. Then, for a chosen 
percent of the uncertainty circles, the percent relative er- 
ror in the table tells us by how much to increase the radii 
of the circles so that all points in the true uncertainty 
region are included. 

4.2     Accuracy of the similarity transform 

Section 2.4 showed how we can approximate the effects 
of error in the basis points using three similarity trans- 
forms. Equation 27 gives the error in the fourth point as 
a function of the errors in the basis points. The next ex- 
periment estimates how well this approximation works 
when the error in the image points is distributed uni- 
formly, or according to a Gaussian. We run a series of 
trials like those in the previous experiment, where at 
each trial we generate a random model and a random 
image triple. Assuming uniform error for now, we then 
uniformly perturb each image point within a circle of 
radius e. Using the perturbed image points, we com- 
pute the distances between where the similarity trans- 
forms predict the fourth model point will appear and its 
actual projected location. For each unmatched model 
point, there are two such distances corresponding to the 
two weak-perspective solutions. For each trial, there are 
seven unmatched model points, giving fourteen distances 
per trial. Over 10,000 trials, 140,000 unmatched model 



Percent relative error 2 4 6 8 10 12 
Percent of uncertainty circles 86.7 94.2 97.1 98.2 98.8 99.0 

Table 1: The percent of uncertainty circles for which the relative error between the circles predicted by our formula i 
and by Alter and Grimson's method is less than a given percent. 

Allowed distance error (px) 1 2 3 4 5 
Uniform error (percent) 98.25 99.60 99.79 99.87 99.90 
Gaussian error (percent) 98.53 99.64 99.82 99.88 99.91 

Table 2:  For uniform and Gaussian error, the percent of unmatched model points for which the distance between 
the similarity point and the true point is less than some tolerated number of pixels. 

points were tested. 
For uniform error, the average distance between the 

similarity point (the point predicted by the similarity 
transforms) and the true point was .06 pixels. Table 2 
gives the percent of unmatched points for which the dis- 
tance is less than various amounts of tolerated error. 
The results show that the similarity transforms very ac- 
curately predict the movement of the fourth point, with 
98% probability of being in error by less than one pixel. 

For Gaussian error, we run the same experiment but 
instead sample a 2D Gaussian distribution, using a stan- 
dard deviation of 2.5 pixels as was done by Sarachik and 
Grimson [39]. We still use a bound of e = 5 pixels on 
the allowed error in the image points to guarantee that 
Gaussian error will lead to better results than uniform 
error. In fact, we might expect the results to be sig- 
nificantly better, since the sampled points will tend to 
contain less error. It turns out, however, that the results 
are only slightly better than for uniform (see Table 2), 
with the same average error of .06 pixels. It appears that 
for Gaussian error to improve over simple uniform error, 
the Gaussian distributions would have to be significantly 
more peaked around their nominal positions. 

In conclusion, the two experiments on random model 
and image points indicate that the linear approxima- 
tion is reasonably accurate for up to five pixels of error. 
Fig. 10 shows circular uncertainty regions that we com- 
puted using a real model and image of a telephone. By 
hand, we measured corners of the telephone to obtain 
a model and selected corresponding corners in the im- 
age. The three smaller circles are the error bounds for 
the matched image points. The remaining circles are the 
correct search regions for finding additional matches. 

4.3     Similarity transform vs. a first-order 
approximation 

We have used two first-order approximations. One re- 
lates changes in mj to changes in pose. The second 
relates changes in pose to changes in mj. When we use 
both approximations, we obtain a similarity transform. 
We will now compare this to the results of using an ex- 
act determination of the effect of changes in mj on pose, 
along with a first-order approximation to the subsequent 
effect of pose changes on mj. If the effects of these two 
first-order approximations are uncorrelated, we would 
expect to obtain more accurate results when we replace 
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one with an exact value. On the other hand, if error in 
the first-order approximations tends to cancel, the sim- 
ilarity transform that follows from both approximations 
will tend to be more accurate. Section 3 showed analyt- 
ically that this can happen in some circumstances. We 
now explore this possibility experimentally. 

In the same way as in the previous experiment, we 
generate trials of random models and image triples, and 
project the random unmatched model points into the 
image. As in Section 3, we put error in only one of the 
basis points, say i2- To better compare the first-order 
and similarity approximations, at each trial we generate 
an error basis point as follows: We change either <f> or 
9 from its value at the nominal pose until %2 moves 5 
pixels from its nominal position. This gives us an error 
vector in the third image point. For each of the pro- 
jected, unmatched model points we compute the scaled 
rotation matrix A as in Equation 23, and apply it to this 
error vector. This gives the error point predicted by the 
similarity transform. 

To compute the error point predicted by a first-order 
approximation from pose space, we move the projected 

point along one of the tangent lines t'^ or t'g, defined 
in Section 2.3. The amount we move is determined by 
which pose parameter we changed to compute the error 

in ij. In particular, for changing <j> the first-order error 

vector is A^t'^, and for changing 6 it is A6t'g, where 
we know A<j> and AÖ exactly from our generation of the 
error basis point. 

To measure propagated error, we first use the error 
basis point to calculate the two possible locations where 
the fourth point actually goes. To measure the error in 
the similarity transform, we calculate the distance from 
the point predicted by the similarity transform to the 
closer of the two actual points, and similarly for the first- 
order approximation. Table 3 shows the results from 
histogramming the error data over a series of 10,000 tri- 
als with 7 projected points per trial. In the table the 
similarity transform is about two to five times more ac- 
curate than the first-order approximation. This suggests 
that better results may be obtained by propagating er- 
ror directly from the basis image points to the predicted 
locations of the fourth points. By first estimating the 
errors in pose space and then propagating these errors 
back to image space, some accuracy may be lost, un- 



Figure 10: Circular uncertainty regions computed for points at the corners of a telephone. The three smaller circles 
show error regions of five pixels about the three points used to generate the model pose. The remaining, larger circles 
show uncertainty circles. Small crosses show the actual locations of the image points, which were selected by hand 
but are still a bit noisy. Small dots show the projected locations of the model points in the determined pose. 

Absolute error (px) 99%:    Changing       tj>         6 90%:   Changing      <f>        6 
Similarity trans. 0.57    0.51 0.09    0.09 
lst-order approx. 1.02    1.67 0.26    0.45 

Table 3: The amount of error allowed in the fourth point that includes 99% or 90% of the tested points. The error is 
the distance from the true location of the fourth point to the location predicted by the similarity transform (which is 
the approximation we suggest) or the location predicted by the first-order approximation. In this experiment there 
was error in one basis point, which was moved 5 pixels by changing either <f> or 9 from its nominal value. 

less special care is taken to make sure the appropriate 
high-order error terms cancel. 

5    Perspective Projection 
In this section we apply the same technique to perspec- 
tive projection to obtain again a linear relationship be- 
tween the errors, but in this case the form of the linear 
relationship is much more complicated. As before, we 
begin by looking at the effects of error in exactly one of 
the basis points. We assume we know the camera focal 
length / and the center of projection c. 

We introduce a similar representation for any third 
model point to the one we used in the scaled- 
orthographic case. Since z<> and ii are fixed, the line 
segment between mo and rh\ is free to rotate and trans- 
late in the plane through (c, io,ii), as long as TUQ and 
rhi remain on the lines through (c, io) and (c, ii), respec- 
tively (see Fig. 11). After this rotation and translation, 
the only remaining degree of freedom is a rotation about 
the line through (mo, mi). 

Initially, we rigidly transform the model so that rho = 
io, moi points in the same direction as ioi, and mj is in 
the 2 = 0 plane. For the image coordinate system, we 
let the origin be at io, the z direction be orthogonal to 
the image plane, and the positive x axis be along toi. 
Also, we let n be the unit vector that is normal to the 
plane through (c, i0, ii). Next the model is rotated by 
<j> about the x axis, then rotated by 6 about n (denoted 

m2 

/       J^ 
-/~^^)% 

o\     1 

V 

'o*—— 

*, w. 
V 
c 

Figure 11: a, b, and L are the distances from c to *o. 
ii, and mo respectively. 
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by R, ~J, and then translated by u. Let p equal the 

second model point after the <fi rotation. Then using the 
relative coordinates for the model points from Fig. 1, 
p = (d, r cos (j>, rsin$), so that 

m,2 Ü+R{9,n}P- (34) 

For the translation ü, let L be the distance from c 
to mo, and let v be the unit vector pointing from c to 
i0 = (0, 0, 0), which implies v = -c/ \\ c ||. Then ü = 
c+ Lv, where L must still be determined. In Fig. 11, 
let ip be the angle between c — io and i\ — io, and let 

#oi be the angle between io — c and ii — c. Also let Äoi 
be the distance betweeen mo and mj. Through some 
trigonometry, Appendix B computes that 

L = 8m(& + i, + e0i)(-ß%-). (35) 
\sm60ij 

Let rhi = (x,y,z). Since the image coordinate sys- 

tem is based at io with the camera center point at 
c = {cx,cy, -/), projecting m2 into the image gives 

% = {*,v)=[f + Cx,   f 
y + c, (36) 

z + f • ~" ' z + f 

From this equation, we can compute the partial deriva- 

tives of x and y with respect 8 and <f>, which give tg 

and t+.   By substituting r' for r, d' for d, and <j> + T' 

for <j>, we can analogously compute t'g and t'^. Then we 
can solve Equation 23 for A, and we will get a linear 
transform relating the error in i2 to the error in m£ (see 

Appendix B): Let xg = §f, yg = f§, and similarly for 
3*i y+, x'e, yg, x'f, and y^. Then 

1 

z«y* - x<t>ye 

y+x'g - ygx'j, 

y^y'g - yey'j, 

-XjXg + Xgx'f 

-3*2/9 + W* 
(37) 

If there is bounded, circular error in ij, the linear 
transform will produce an elliptical uncertainty region 
for mj, whose parameters could be determined analyt- 
ically. This differs from the scaled-orthographic case, 
where the uncertainty region is a disc. To handle circu- 
lar error in all three points for scaled-orthographic pro- 
jection, we had to convolve together three circles. For 
perspective, we would have to convolve three ellipses. 
To handle bounded error in three basis points using per- 
spective projection, we can apply the algorithm that will 
be proposed in Section 6. 

For Gaussian error, on the other hand, the method 
in Appendix C applies equally well to linear transforms 
as to similarity transforms. As before, we get an an- 
alytic solution for the uncertainty region of a projected 
model point, and that uncertainty region is normally dis- 
tributed. The only difference is that the normal distri- 
bution need not be circularly symmetric. 

6    nth-Point Uncertainty Region 

It has been shown [21] that recognition algorithms that 
use a small number of randomly-matched points to de- 
termine pose are sensitive to false positive identifications 
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of objects, because these poses are not sufficiently stable 
and lead to large uncertainty regions. One solution is to 
use poses based on more information to derive smaller 
uncertainty regions. Assuming a bounded error model, 
this section shows how to compute the uncertainty region 
of an n + l'st model point given n matched model and 
image points, for any value of n. Our linearized models 
of projection allow us to determine linear constraints on 
the set of feasible error vectors consistent with a match 
between model and image points. Having expressed our 
knowledge about pose using linear constraints, we ap- 
ply linear programming to optimize a set of objective 
functions whose solution tightly bounds the uncertainty 
region. In general, this technique applies to any linear 
projection model, including affine models and including 
the linearized perspective and weak-perspective models 
that we derived in this paper. 

To demonstrate the idea, we suppose that the error 
in each image point is bounded by a square of width 
2e. We emphasize, however, that the same reasoning 
will apply to any convex, polygonal error bound, so that 
we may approximate a circle, or any other convex error 
bound, as closely as we wish. With square error bounds, 
a match between image and model points can be con- 
sistent only if there exists a pose that brings the x- and 
y-coordinates of all matched points to within e pixels of 
each other. Let m* = (a;f,!/f) be the projection of the 
i'th matched model point, in some nominal pose. Let 
ii = (xi,yi) be the location of the corresponding image 
point. Also, let e} = {x\, y') be a vector representing the 
deviation between a model point's projected position in 
the nominal pose and its true position (see Fig. 4). Since 
we choose a pose by aligning the first three model points 
with image points, for 0 < i < 2 this deviation is also the 
actual error that occurred in sensing the image points. 
For i > 3, £ does not depend on where we have sensed 
the i'th image point, but rather is a function of the sens- 
ing error in the first three image points. We then model 
error by assuming a model point's true position, mj + ?{, 

is within e of its corresponding image point, ij. That is, 

Xi-e<xJ + as? < Xi + e (38) 

W-e<y?+l/'<W+« (39) 
Previously, we used the matrices A, B, C to represent 

linear transformations between error in the first three 
points and the fourth point.  We now let Aj, Bj, Cj be 
the corresponding matrices for the i + l'st point (e.g., 

A3 = A).   We let a} and of be the first and second 

rows of the matrix Aj, and define 6j, b?, c*, c? similarly. 
In both the cases of scaled-orthographic and perspective 
projections, we know that we can write 

ei = {a~l-eo, d}-e0)+{b} -ei, bj -ei)+(c$ -e2, cj -e2), (40) 

for 3 < i < n — 1. Consequently, for matched points 3 
through n — 1, we may substitute a linear combination 
of the first three error vectors for e*j, giving us additional 
constraints that the first three points must meet in or- 
der to lead to a consistent solution. In all, we get the 
following constraints: For i G [0, 2], 

-e < x? < e, -e < y? < e, 



and for i £ [3, n — 1], 

Xi - e < x* + a,1 • e*o + &• • e*i + c,1 ■ <T2 < x< + e, 

W - e < yf + o- • e*0 + i,2 • e*i + c2 • e2 < Vi + e. 

This set of constraints can be satisfied if and only if 
there is a set of error vectors for the first three points 
that will bring all projected model points to within the 
error bounds of their matching image points. 

We have formulated our knowledge of model pose, 
based on a match between n image and model points, 
in terms of linear constraints on the components of the 
three error vectors e*o, ei, and e2. We may now use linear 
programming to maximize any linear objective function, 
subject to these constraints. In particular, we can for- 
mulate linear objective functions that express, for several 
directions, the errors in an additional model point's pre- 
dicted position, and then extremize these functions. For 
example, if we maximize the linear objective function 

xl=al e*o+ b\ -ei + 4 -e2, (41) 

we will find the maximum x displacement that the pro- 
jection of the n + l'st model point can have from its 
nominal position. By maximizing the negation of this 
expression, and similar expressions for the y values, we 
may put a rectangle about the possible locations of the 
n+ l'st point. 

Using a similar method, we can in general place a 
convex polygon of any shape about the possible locations 
of the n + l'st point. Suppose we wish to bound the 
location of the n + l'st point in some direction other 
than along the x or y axis. Let (Ax, Ay) be a vector in 
that direction. Then we may achieve this by maximizing 
the objective function formed by taking the dot product 
of (Ax, Ay) and e*n. By substituting our expression for 
en as a linear combination of the first three error vectors, 
we get a linear expression in these values. By finding the 
extreme values of the feasible positions of the n + l'st 
model point, we may put a convex polygon about these 
positions which will be more accurate than a square. 

We should note that linear programming is very ef- 
ficient. It is known to be polynomial time in the 
worst case. In practice, for problems with / variables 
and m constraints, the most common algorithm, sim- 
plex, is found to usually take time proportional to lm2 

(Strang [41]), and many highly optimized commercial 
implementations of simplex exist. Our problem has 6 
variables and 4n constraints when n points are matched. 
When the number of variables in a problem is fixed and 
only the number of constraints grows, as in our case, 
there are algorithms that take linear expected time (see 
Seidel [40], for example). 

When the errors in the image points are Gaussian dis- 
tributed and there are more than three matched points, 
the Kaiman filter can be used to recursively compute 
Gaussian distributions for the error vectors e*o, c*i, and 
e*2, similar to Hel-Or and Werman [24]. Given Gaus- 
sian distributions for e0, e\, and e2, Appendix C shows 
how to obtain a Gaussian distribution for the possible 
locations of any n + l'st point. 
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These methods could be quite useful to the indexing or 
alignment approaches to recognition that we previously 
described. To illustrate, a recognition system that uses 
the linear programming method might work as follows: 

1. Match k image and model points, using a search or 
indexing method. Assume that the error in each 
image point is bounded by some m-sided polygon. 

2. Use the matches to generate km linear constraints 
on the possible errors in the first three matched 
points. 

3. For each unmatched model point, run I linear pro- 
grams to compute an l-gon bounding the point's 
possible image locations. Look there for a match- 
ing image point. 

Recognition systems commonly use more complex fea- 
tures such as line segments for verification, instead of 
points. It would be straightforward to use our results to 
bound the uncertainty regions of line segments by find- 
ing the uncertainty regions of their endpoints (as in [4]). 
Additionally, our results allow us to measure experimen- 
tally the extent to which additional point matches de- 
crease our uncertainty about the location of unmatched 
points. We discuss this in the next section. 

7    Experiments 

To demonstrate the value of narrowing the feasible region 
in which model points may appear by using additional 
matches, we have implemented a test system for the case 
of weak-perspective projection. In this system, we match 
some image and model points. We then examine the 
regions in which additional points might appear. We 
can see how much smaller these feasible regions become 
as we derive additional constraints from more matches. 

We first describe the results of this system on syn- 
thetic data. This allows us to systematically explore two 
key issues. First, since our linear transformation is only 
an approximation, how often might it cause us to make 
errors? Second, how much can the addition of further 
matches reduce the space in which we must search for 
even more matches? 

We use the following experimental conditions. First, 
we generate random sets of seven model points inside 
a cube. We form an image by projecting these points 
orthographically, scaling so that the cube projects to a 
1000 x 1000 square image. We then add error so that 
each sensed point shows up inside a circle of radius five 
pixels centered at the projected position of the point. 
For error, a uniform random distribution is used. 

We then match the first three noisy image points and 
model points, and use this match to generate a noisy 
pose of the model. This pose is then used to compute 
the linear transformations describing the location of each 
additional model point as a function of the error in the 
first three image points. Of the two possible model poses 
that can be derived using a match of three points, we 
automatically select the one that is closer to the cor- 
rect pose. In a real system, of course, we would have 
to explore both possibilities, and see which led to more 
confirming evidence. 



Error 
Allowed for 

Num. Points 
Matched 

Rectangle 
Average Area 

Percentage 
Correct 

5.0 3 16,700 98.9 
4 1,460 97.6 
5 823 96.2 
6 699 94.6 

5.25 3 18,300 99.0 
4 1,600 97.8 
5 898 96.7 
6 655 95.5 

5.5 3 10,800 98.9 
4 1,750 98.0 
5 969 97.0 
6 730 96.4 

6.0 3 12,700 99.2 
4 2,200 98.8 
5 1,370 98.4 
6 948 97.9 

6.5 3 12,400 99.2 
4 2,380 98.7 
5 1,410 98.4 
6 1,080 98.0 

7.0 3 16,600 99.4 
4 2,960 99.Ö 
5 1,740 98.9 
6 1,350 98.8 

Table 4: This shows the size of error regions computed as more points are matched, and the frequency with which 
noisy model points fail to appear in these error regions. Image points are always perturbed by a uniform error 
bounded by five pixels. The first column gives half the width of the square error bound that we allow for in each 
image point. The second column gives the number of matches used in computing the error region for an additional 
point. The third column gives the average size of this error region, and the fourth column gives the percentage of 
times that a model point's image shows up in this predicted error region. 

Given these linear transformations, we allow for a 
square error bound of width 10 pixels around each error 
circle. As described above, we then compute a rectangu- 
lar bound on the image location of each additional model 
point using linear programming. Next we check to see 
which image points actually appear within the predicted 
rectangular boundary. Since we have perturbed the im- 
age points within their error circles, any time we fail to 
find a model's image point in the predicted rectangle, 
this mistake must be due to limitations in our linear ap- 
proximation. When we do find an image point, we record 
the size of the rectangle in which we looked. 

We then augment our hypothesis by matching the 
fourth image and model points, and, using the additional 
constraints, we further narrow down the location of the 
remaining model points in the image. Again we keep 
track of how often we fail to find a model point in a 
predicted rectangle, and we record the areas of the suc- 
cessful rectangles. We continue this process with addi- 
tional matched points. We repeat this experiment 2,500 
times, continuing to perturb each image point by up to 
five pixels, but allowing for varying levels of error in our 
predictions. We can use these results to see how many 
mistakes of the system could be eliminated by overesti- 
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mating the expected error, and how much of a price we 
would pay for this by producing larger rectangles. 

Table 4 lists the results. There are several conclu- 
sions we may draw. First, we see that few overall mis- 
takes are made. The predictions are generally between 
95% and 99% accurate. The significance of this will de- 
pend on exactly how we incorporate these error regions 
into a recognition algorithm. But typically, recognition 
systems search through many hypothetical matches be- 
tween image and model points, and it is understood that 
a system may have to consider more than one correct 
hypothesis before recognizing an object. This is because 
even a correct set of matches may lead to an inaccu- 
rate pose. We can quantitatively see that our method 
of computing error regions leads to few such unstable 
poses. 

Second, we can see that additional matches do pro- 
vide considerable extra constraint in determining the lo- 
cations of unmatched points. The most dramatic effect 
occurs when one matches a fourth point. This can reduce 
the size of possible error regions by a factor of fifteen or 
more. But even after the fourth point, there is a con- 
tinuing significant benefit in using additional matches to 
constrain the error regions.   These results also help us 



to in general assess the stability of poses generated by 
a small number of feature matches. We can see that if 
we use three points to compute a pose, small changes in 
these points can result in large changes in the locations 
of additional points. Poses computed from more points 
would be much more stable. 

The error regions we compute are in general quite 
large. Several factors, however, may have exaggerated 
the sizes of the error regions. First, if we truly wish to 
consider error as bounded within a disc we should use 
polygonal error regions that more closely approximate 
a circle. Rectangles were used in this example only for 
the sake of simplicity. Second, a uniform error distribu- 
tion bounded by five pixels may be pessimistic. In real 
systems, sensed image points probably tend to cluster 
around the point's true, error-free position, and the er- 
ror may well be less than five pixels. Therefore a system 
that allowed for less error may produce much smaller er- 
ror regions, without making many mistakes. Of course, 
allowing for less error should only make our linear ap- 
proximation more accurate. 

It is also interesting to note that the accuracy of the 
error regions drops a bit as we add more point matches. 
It seems that errors in the linear approximation accumu- 
late as we compute the feasible set of error vectors. One 
way to compensate for this effect would be to allow for 
slightly more error as we use more matched points. For 
example, if we allow for 5 pixels of error when we match 
three points, we might allow for 6 pixels when matching 
four points. This would allow us to significantly reduce 
the size of the error regions, while keeping the error rate 
essentially constant. 

As before, we have run this system on a real model and 
image to further illustrate its performance. Fig. 12 shows 
the resulting rectangular error regions for e = 5.25. The 
figure demonstrates how the uncertainty regions shrink 
as we match more points, while still containing the true 
image points. 

In summary, we have used linear programming to 
compute the propagated uncertainty regions in simula- 
tion and in a real image for matches with more than three 
model and image points. The experiments demonstrate 
that additional matched points can significantly reduce 
the uncertainty regions with little loss in accuracy. 

8    Applications 

We have shown how to approximate the effect of changes 
in model pose using a linear relationship between the er- 
ror vectors. For predicting the locations of unmatched 
points, we have demonstrated that this approximation is 
quite good within the range of error usually considered 
by object recognition systems. This suggests that for 
many recognition applications we may model this rela- 
tionship linearly. 

In past research, the use of linear projection models 
has led to algorithmic simplicity. Projection of a 3D 
object may be approximated as a 3D-to-2D affine trans- 
formation to gain the advantages of linearity, at the loss 
of fully capturing the rigidity of objects. Also, scaled- 
orthographic projection of a planar object is equivalent 
to a 2D affine transformation of the object, which is lin- 
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ear. Many algorithms have taken advantage of this lin- 
earity, either to find matches that are consistent with a 
bounded error model (e.g., [6, 12, 10, 28]) or to find 
likely sets of matches assuming Gaussian error (e.g., 
[36, 39, 47, 7]). We can now extend some of these algo- 
rithms to full 3D-from-2D recognition while maintaining 
object rigidity. 

In Section 6, we outlined an algorithm which could 
be useful to most alignment and indexing approaches 
to recognition. Some alignment approaches use group- 
ing methods to generate an initial match of more than 
three points (such as Lowe's [34], Roberts' [37], Ja- 
cobs' [29], and Wayner's [45]), and some alignment ap- 
proaches create an initial alignment using only three 
points [37, 17, 34, 27, 44]. In the latter case, a recog- 
nition system might attempt to add matches, and use 
these additional matches to narrow the area in which 
it must search for still more consistent matches. Addi- 
tionally, the algorithm from Section 6 may be useful in 
methods that match image to model features by index- 
ing, and then verify these matches [32, 14, 29, 43, 38, 45]. 
In these approaches, some model features are matched 
to image features to determine a model pose, and then 
this pose is used to find matches for additional model 
features. Our results show exactly where to search for 
these matches when we have matched three image and 
model points. 

As mentioned above, other approaches to recognition 
have derived linear constraints on model poses using lin- 
ear projection models. The linear constraints were used 
to robustly match models and images in the presence of 
bounded uncertainty. This line of work originated with 
Baird [6], who considered models of 2D points under- 
going 2D rotation, translation, and scaling. Baird used 
convex polygons to bound the errors in the image points. 
He then showed that, when we match an image point to 
a model point, each side of the polygon places a lin- 
ear constraint on the set of feasible model poses, if the 
transformation from matched image points to projected, 
unmatched model points is linear. 

Baird used these constraints as part of an 
interpretation-tree approach to recognition. His sys- 
tem searched a tree that represented all possible ways 
of matching image and model points. At each node of 
the tree, linear programming was used to decide whether 
the proposed matches were consistent with the polygo- 
nal error bounds. In Section 6, we went beyond Baird, 
not only in handling the scaled-orthographic projection 
of 3D objects, but also in showing how to use linear pro- 
gramming to find the uncertainty regions of unmatched 
points. 

Breuel [10] used a modification of Baird's approach 
to produce a tree-search algorithm that in the worst 
case runs in polynomial time. Cass [12] used linear con- 
straints to show that finding the pose of the model that 
aligns the most image and model features to within er- 
ror bounds is inherently a polynomial time problem. Ja- 
cobs [28] showed how to perform a Hough transform in 
error space, instead of model pose space, by discretely 
computing the feasible region in error space (the space 
formed by the cross product of the error vectors in the 



Figure 12: Rectangular uncertainty regions from matching more points. The rectangles in the top left image were 
computed after matching only three points. The following images show the rectangles that resulted from successively 
matching one more point. When an additional point was matched, we stopped computing rectangles for that point. 

first three image points). 
Jacobs makes use of a linear relationship between er- 

ror vectors that exists for the case of affine transfor- 
mations of 2D objects. Our linearized perspective and 
weak-perspective models give us a linear relationship for 
3D objects as well. As a consequence, Jacobs' method 
readily can be extended to 3D objects, and without in- 
creasing in the dimensionality of the problem. 

In addition to Jacobs' method, our linear relationship 
can be used to extend any of the above methods. To il- 
lustrate, we extend Cass' approach to the case of scaled- 
orthographic projection. Suppose we match three image 
to three model points and wish to know which pose will 
match the most additional model and image points. We 
know that these three matches give us simple linear con- 
straints on the first three error vectors, just from the 
image points' error bounds. Now match each additional 
model point to each additional image point. These give 
us more linear constraints. Each linear constraint de- 
scribes a 5D hyperplane in a 6D space of the possible er- 
ror values: e{o,3!},e{o,»},e{i,a.},e{iiy},e{2)a.},e{j)j,}. If we 
take each set of six linear constraints, the constraints in 
general will intersect at a point. This point corresponds 
to a set of error vectors for the first three points, and 
hence to a possible pose of the object. As Cass showed, 
if we now consider all of these poses, we will be guaran- 
teed to find one that matches the most model points to 
image points. In fact we will find all poses that match 
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the model to different collections of image points. 
Cass has developed efficient heuristic algorithms for 

exploring the space of poses in the case of a rigid 2D 
rotation and translation. For 3D recognition, the al- 
gorithm becomes costly, however. In our case, if we 
have m model points and n image points, for each of 
the 0(m3n3) initial matches we must consider 0(m6n6) 
poses. Hopefully, however, a polynomial time formula- 
tion of matching for scaled-orthographic projection may 
lead to more efficient heuristic solutions, such as the ones 
that Cass has found in other domains. Alternately, Ja- 
cobs' approach of performing a Hough transform in er- 
ror space may be more effective since error space is more 
compact. 

9    Conclusion 

This work will allow recognition systems to accurately 
take account of the effects of sensing error, during a 
process that finds supporting evidence to confirm a hy- 
pothetical set of matches. We showed that a linear 
approximation to scaled-orthographic projection is ac- 
curate when reasonable amounts of sensing error have 
occurred. In addition, we showed how to compute the 
propagated uncertainty regions for the rigid projection 
of a 3D model into a 2D image. The uncertainty re- 
gions for three matched points are described by a sim- 
ple analytic expression,  for the projection and error 



Uncertainty Region Solution 
Scaled-orthographic, Gaussian 
Scaled-orthographic, Bounded 

Perspective, Gaussian 
Perspective, Bounded 

3 matched points 
Circularly-symmetric Gaussian 

Circle 
Gaussian 

Linear Programming 

> 3 matched points 
Gaussian 

Linear Programming 
Gaussian 

Linear Programming 

Table 5: Propagated uncertainty regions for circularly-symmetric Gaussian and bounded errors in the image points. 
Our solution for the uncertainty region either is analytic, in which case a description of the analytic solution is given, 
or is numerical, in which case the solution can be found by Linear Programming. 

model cases of (scaled-orthographic, Gaussian), (scaled- 
orthographic, bounded), and (perspective, Gaussian). 
When more points are matched, there are simple and ef- 
ficient algorithms for computing the uncertainty regions. 
Table 5 summarizes the results. 

Both analytic results and experiments have demon- 
strated the value of accurately computing the uncer- 
tainty regions. The uncertainty region of a point can 
vary greatly depending on both the model geometry and 
pose. Therefore, any naive approach that uses an hy- 
pothesized pose to match additional model and image 
points is likely either to match many of the model points 
to image points they could not have produced, or to miss 
many image points they could have produced. 

We found that uncertainty regions based on randomly 
matching only three points tend to be quite large, sup- 
porting past work [21, 4] that they will lead to many 
false matches. We also observed, however, that uncer- 
tainty regions shrink dramatically when we match even 
one more point, and still further when we match more. 
This demonstrates that matching larger sets of points, 
while being careful about error, can produce much more 
accurate recognition systems. 

Finally, we extended several existing approaches to 
handling error in recognition systems, which were previ- 
ously restricted to domains with linear projection mod- 
els. For future work, we are looking to implement the 
robust recognition systems outlined in Sections 2 and 6. 

Availability 

To facilitate the use of the results in this paper, we have 
made available our C code for computing the 3D pose 
solution implied by 3 point correspondences under weak 
perspective, the three scaled rotation matrices (Equa- 
tion 27), and the uncertainty circles (Equation 28). To 
retrieve the code, ftp to "ftp.ai.mit.edu," then log in as 
"anonymous," then cd to "pub/users/tda/," and then 
get and uncompress "alignment-code.tar.Z." 

A    Scaled-Orthographic Similarity 
Transform 

This appendix solves the following equations for A. 

t'g =AU     and    t', = At, *i 

Let te = (xg,ye), ** = (s*.y*), t'g = (x'g,yg), *'* = 
{x'^yL). Expanding the first row of each equation gives 
x'g = anXg+ai2Xg and x'^ = ouB^+any^, which implies 

[oil    o12]T = T-^x'g    x'<j)}
T, where T = 

Then from Equations 10-13, 

xg    yg 
z*   y* 

l-i — sin <f> sin 9 cos <f> 
— cos 9 sin 9 cos <f>    — cos 9 sin <j> 

1 

cos20 

cos20\ 

sor  J cos 0(sin2 <f> + sin2 9 cos2 <j>) 

— cos 9 sin <j>      — sin 9 cos <j> 
cos 9 sin 9 cos <f>        — sin <j> 

J s0r{l 
cos 9 cos2« 

«o'" / •»()»•( 1 — cos2 9 cos2 $) 

— cos 9 sin <t>      — sin 9 cos <j> 
cos 9 sin 9 cos <j>        — sin <j> 

Lastly we multiply T  l by 

"* J cos2 9 
— sin(<j> + T') 

— cos 9 sin 9 cos{<j> + r') 

to get 

on 
Oi2 

spr' \ / cos0 
cos2«/ \sor(l — cos29cos2 <i>) 

— cos 9 sin <f>      — sin 9 cos <j> 
cos 9 sin 9 cos <j>        — sin <j> 

— sin(<^ + r') 
■ cos 9 sin 9 cos(<b + r') 

= rL( I ) 
r  \ 1 — cos2 9 cos2 <j> ) 

cos T' — cos2 9 cos 4> cos(<£ + r') 
— sin T' sin 9 

This equation gives A, since 021 = —012 and 022 = an. 

B    Derivation of the Perspective Linear 
Transform 

Using perspective projection, this appendix derives a lin- 
ear transform that relates the errors in third and fourth 
points. First we compute the 3D position of nij in cam- 
era coordinates, as given in Equation 34. In Fig. 11, let 
the normal to the plane through (c, to, ii) be 
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CXti 

CX»! 
(Q,riy,nz) (42) 



By Rodriguez' formula, 

R{9n}P    =    (cosfl)p+(l - cos9)(n-p)n + sin8(n x p) 

=    (dcos9 + r sin6(ny sin<£ — nz cos<f>), 

rcostpcosO + r(l — cos 9){ny cos<j> 

+nz sin<f>)ny + nzdsm9, 

r sin <j> cos 9 + r(l - cos 6){ny cos </> 

+nz sin 4>)nz -riyd sin 0) (43) 

To compute the translation ü, let o and & be the 
(known) distances from c to io and from c to i\, re- 
spectively. From the Law of Cosines, 

*- = »-(^^).       '«> 

■0    =    cos 

\ 2ab 

->(b2-*2-jky     (45) 
2ad, 01 

where 0oi> ip € (0,7r). From the Law of Sines, 

L    =   sin (v - {8+ j>)-0oi) (-?%-) \sm8oiJ 

'Vsinfloi/ 

In total, we have 

(5, y, z)    =    m2 

=    c + Lv + K.g-^Ad, rcos<j>, rsin<£)(46) 

Substituting x, y, and z into Equation 36 gives mj. 
Next we take a first approximation to x and y in Equa- 

tion 36 with respect to 9 and <j>. Let xg = ||, y$ = 3$, 
and similarly for ac^, y^, z«, yfl, y^, y^, and I9. From 
Equation 36, 

xe  -  HiT7" (* + /)2 J'       (47) 

For x^ and y^,, we substitute ^ for 8 in these equations. 
Using Equations 43-46, 

xg    =    -dsinö + rcosö(nj, sin^ — n,cos<£) + Lgvx 

ye    =    — rcos^sinö + rsinö(nj, cos<f> + nz sm<j>)riy 

+nz d cos 9 + LgVy 

zg    =    -rsm(j>sin9+ r sin9(ny cos (f> + nz sin <t>)nz 

—nydcos9 + Lgvz 

Lg    =    cOS(9 + rl> + 9oi)(-ß%-) 
\sin0oi/ 

xj,   =    rsinö(nvcos^ + n»sin0) 

yx    =    — r sin ^ cos 0 + r(l — cos 9) 

(—rty sin <j> + nz cos <f>)riy 

Z4,    =    rcos<j>cos9+ r(l — cos9) 

(—ny sin <£ + n, cos <j>)nz 

The above equations give tg and i^. By substituting 

r' for r, d' for d, and <j> + r' for <£, we get  ^  and t' . 
Solving Equation 23 leads to 

A = V<t>x'g ~ Vex'*    -Xfx'g + xex* 
"-'g-yeUt    -x+Vg + xgy^ X9V4> - x<t>ye 

C    Gaussian Error Propagation 

For this appendix, we adopt Therrian's notation [42]. 
In general, let £ be a Gaussian random vector and let 

y = Ms? + b, where M is n x m. For random vectors x 
and y, respectively, denote their expected values by m, 
and rhy and their covariance matrices by Kx and Ky. 
Then 

Pv (?) 
J e(-i(v-"i»)TKy  l (?-*»)) 

(2*-)* |Ky|3 

where ni, = Mm, + b and Ky = MKXMT [42]. In 
our case, we have four two-dimensional Gaussian dis- 
tributions, corresponding to the errors in three matched 
image points and one unmatched image point. This gives 
eight uncorrelated Gaussian random variables, of which 
we are taking a linear combination. When io, ii, %2, and 
13 are normally distributed with standard deviations oo, 
CTI, cr2, and 0-3, respectively, Kx is a diagonol matrix 
with on-diagonol elements (erg, a%, cr\, cr\, erj, a\, 03, cr|). 
Further, the linear combination in Equation 27 is given 

by 

M 
an    012    fen    612    cu    C12    1    0 
021     <*22      &21      &22      c21      C22      0      1 

(49) 

where n = 2 and m = 8. Expanding MKXMT leads to 

Kv    = -I 

+»? 

+<r| 

+<T\ 

°11 + °12 
onOai + ai2ü22 

6?i + &?2 
&X1&21 + &12&22 

au02i + O12O22 

*21 + a. 22 

&H&21 + &12&22 

&21 + &22 
cll + c12     CUC21 + C12C22 

CHC21 + C12C22 

1  0 
0  1 

c21 + c22 

(50) 

Under weak-perspective projection, 021 = —012, 
022 = on, 621 = -&12, &22 = hi, C21 = -C12, and 

C22 = cu. Letting 50 = \/
0ii + a?2> ^1 = V/6ii + &i2i 

and 52 = \/cii + ci2' ^e expression for Ky simplifies 
to 

Ky = (Slal + SW+ S2
2crl + <r\) 

1    0 
0    1 

(51) 

Then 

Pa (?) = S 2T<T 

IH-*vll 
-e       >' 

where 
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* = |Ky|* = ^/Sgo-g + ^«r» + S\a\ + , (52) 
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