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This report addresses issues involved in the integration, enhancement and 

porting of two large knowledge-based systems - Constant False Alarm Rate 

Expert System (CFAR-ES) and Integrated Multi-Domain Radar Demonstra- 

tion Expert System (IMRD-ES) - to more current software/hardware plat- 

forms, using sound software engineering principles. Our objective is to for- 

mulate the set of desirable requirements for the new expert system shell to be 

used for implementing the integrated code. In order to achieve these goals, 

a careful analysis of the two systems had to be undertaken. Multi-viewpoint 

methodology was used for this purpose as it is able to abstract, structure 

and cluster a large knowledge-based system in a manner that facilitates its 

understanding, manipulation, testing and utilization. The multi-view point 

methodology is founded on the principle that no single structuring principle 

or abstraction hierarchy is sufficient to understand complex knowledge-bases. 

The presentation of a knowledge-based system from several different view- 

points gives very valuable leverage for various life-cycle activities by making 

the knowledge-based system more comprehensible and tractable. Much of 

any software life-cycle activities depend upon the right modularization for 

more efficient analysis. 

Initial study of the two systems revealed that the procedural aspects in 

both the systems are intermingled very tightly with the knowledge-based as- 

pects of the problem. In the IMRD-ES system a lot of procedural calls to 

Pascal software exists from Prolog. In the CFAR-ES code the rulebase por- 

tion of Gensym's G2 code are meshed in tightly with procedural code written 
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in C. Neither Gensym's G2 nor Prolog provides any structuring mechanisms 

for code, thus making it very difficult for long-term maintenance. We were 

able to analyze the AI aspects of the IMRD-ES code. However, CFAR-ES 

code could not be analyzed as the rules could not be separately extracted 

and analyzed. In any case, there were only a few embedded rules in the 

CFAR-ES code. 

We have used the results of our analysis of IMRD-ES along with doc- 

umentation for CFAR-ES to identify functional commonalities between the 

two systems and to suggest possible ways of integrating them. Our analy- 

sis also suggests that a more structured environment needs to be chosen for 

the integration and porting of the two systems. If AI aspects such as fuzzy 

logic, uncertainty, non-monotonic reasoning etc. has to be incorporated, at 

present or in future, then an expert system shell which incorporates these 

features needs to be chosen. There is ample evidence that radar returns are 

often contaminated enough by weather, clutter and jammers that a backward 

chaining system with fuzzy logic reasoning will be desirable. 

In this report we will first outline Rome Laboratories' two software sys- 

tems. Next we will outline our software analysis tool called MVP-CA (Multi- 

View Point - Clustering Analysis). We will then discuss the software engi- 

neering aspects of these systems as revealed by the MVP-CA tool, followed 

by suggestions for future enhancements in these codes. 



2     Structure of IMRD-ES and CFAR-ES 

Rome Laboratory utilizes two independently developed software systems in 

their radar target detection environment. The first is the Constant False 

Alarm Rate Expert System (CFAR-ES) that aids the radar surveillance sys- 

tem by choosing the appropriate CFAR algorithm for target detection with 

minimal false detections. The second is the Integrated Multi-Domain Radar 

Demonstration Expert System, which automatically controls various modes 

of operation and parameters for the multi-function C-Band phased array 

radar system. 

CFAR-ES adaptively selects the appropriate CFAR algorithm for accu- 

rate target detections. The selection process is dependent on the various 

characteristics of the observed radar data. Preprocessing routines classify 

the radar data into various homogeneous clutter regions. AI rules in CFAR- 

ES integrates this information with data from geographical maps, tracker 

information, as well as inputs from the user, to determine the appropriate 

CFAR algorithm to be executed for detection. It also determines the ap- 

propriate CFAR parameter values for the CFAR processor. CFAR-ES is 

currently written in Gensym's G2 shell with computations handled by re- 

mote C procedure calls. Very few rules are written in G2 and almost all of 

them are inside C procedures. 

IMRD-ES identifies interference in radar returns and recommends the 

appropriate responses for the next scan. The surveillance region is parti- 

tioned into threat zones prioritized by the importance of maintaining detec- 

tion within them. The beam dwell time is adaptively apportioned to different 



beams, subject to a desired scan time constraint. The objective is to iden- 

tify targets in the presence of clutter and jammer interference. Inputs to 

the IMRD-ES is the Beam Scan Data processed by the ST-100 array proces- 

sor. The knowledge-based adaptive controller in IMRD-ES (expressed as 337 

Prolog predicates) analyzes the data for sources of interference, determines 

the control changes to be made for the next scan to maximize the probabil- 

ity of detection in conjunction with the prioritized regions of coverage. The 

variable dwell time per beam is divided into three processing intervals: a 

passive listening interval, CPU, for detecting jammers and radio frequency 

interference sources; an active environmental assessment interval, CPI2, for 

detecting ground and weather clutter; and an adaptive target detection wave- 

form, CPI3, to apply appropriate electronic counter measures, as determined 

by the expert system. A single fixed-parameter CFAR algorithm is used for 

target detection in the present system. The expert system resides on a VAX 

currently and has been tested to perform with both real and simulated data. 

3    MVP-CA 

3.1     Motivation for Clustering Knowledge-Based Sys- 

tems Software 

Knowledge-based systems owe their appeal to the promise of utilizing exper- 

tise in the domain knowledge for the solution of difficult, poorly-understood, 

ill-structured problems. However, they must be subjected to rigorous ver- 

ification and validation (V&V) analyses before they can be accepted into 



real-world critical applications. Unfortunately, expert systems do not lend 

themselves to the traditional V&V techniques for highly reliable software. 

There is a need to formulate an acceptable set of V&V techniques which 

can assure their quality. Better knowledge-acquisition techniques as well as 

better management, understanding and enhancement of the knowledge base 

is critical to the success of such V&V activities. 

The difficulty in the V&V of large knowledge-based systems arises due to 

a number of reasons. Firstly, rapid prototyping and iterative development 

form key features of any expert system development activity. This has led 

to the development of ad-hoc techniques for expert system design without 

any software engineering guidelines. Moreover, due to the data-driven nature 

of expert systems, as the number of rules of an expert system increase, the 

number of possible interactions between the rules increases exponentially. 

The complexity of each pattern in a rule compounds the problem of V&V 

even further. As a result, large expert systems tend to be incomprehensible, 

difficult to debug or modify, and almost impossible to verify or validate. 

Compounding the problem further is the fact that most expert systems 

are built without much regard to defining the requirements or specifications. 

As any software, conventional or knowledge-based, becomes more complex, 

common errors are bound to occur through misunderstanding of specifica- 

tions and requirements. Large computer systems are typically built by mul- 

tiple teams who may have different, yet legitimate perspectives of the system 

design. Often, conflicting opinions on implementational aspects of the sys- 

tem will need to be resolved. Ambiguities and interpretational problems will 

always be inherent to large systems software development.   Human limita- 



tions in understanding and managing software complexity will give rise to 

deficiencies in software. In addition, since knowledge continues to remain 

in an evolving state for large systems, with new knowledge augmenting the 

software all the time, it is essential to provide a mechanism to check the con- 

ceptual aspects of the system from time to time. Studies have shown that the 

majority of time spent in maintaining existing systems lies in understanding 

the software and how it relates to the application domain. Too many systems 

were built with poor software engineering practices or have been changed so 

many times that gaining this understanding is very difficult and is one of the 

most common means by which faults are introduced into the system. 

Therefore, it is our belief that even if a software life cycle stresses specifi- 

cations and requirements upfront, that will not be enough to guarantee the 

right product for complicated systems. There are bound to be ambiguities 

and interpretational problems. What is needed is a complementary tool that 

is capable of exposing such ambiguities and misinterpretations so that correc- 

tive action can be taken before it is too late in the software life cycle. Having 

a semi-automated means of capturing and structuring the meta-knowledge 

in a rulebase and cross-checking it with the specifications and requirements 

at various stages of the software life cycle could certainly help in this effort. 

Conventional software yields more easily to verification efforts because 

control is explicitly represented as procedures which can be structured to 

encapsulate run-time abstractions. Modules can be designed in conven- 

tional software, each consisting of a manageable unit with a well-defined 

interface. Furthermore, procedures can be grouped into packages or objects 

which share an internal data structure.  These units can then be subjected 
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to unit/integration testing techniques. Isolating special-purpose variables in 

a knowledge-based system into smaller subknowledge bases can lead to a re- 

duction in the number of test cases to be designed. We have demonstrated 

this aspect through our experimental results which has been discussed in  [6]. 

Due to the declarative style of programming in knowledge-based systems, 

the generation of clusters to capture significant concepts in the domain seems 

more feasible than it would be for procedural software. By using knowledge- 

based programming techniques one is much closer to the domain knowledge 

of the problem than with procedural languages. The control aspects of the 

problem are abstracted away into the inference engine (or alternatively, the 

control rules are explicitly declared). The existence of a model of the do- 

main would benefit the analysis of other knowledge-based systems within 

that domain by providing seeds for cluster formation. Moreover, transfer of 

expertise from one problem domain to another related domain can be fa- 

cilitated through the factoring of common aspects across domains. Hence 

software reuse can be exploited through multiple structuring of a knowledge- 

based system. It is our contention that such activities will require that large 

complex knowledge-based systems to be viewed from several different, possi- 

bly orthogonal viewpoints. In addition, the use of a domain model to assist 

in the development of new knowledge-based systems is a promising research 

direction. 

Existing research indicates that misunderstandings of the domain are a 

primary cause of systems failures [1, 4, 13]. Often small oversights or mis- 

understood interactions between sources of expertise lead to catastrophic 

failures.    Even though language support for systems structuring has long 



been recognized as a key aspect of modern software and knowledge engineer- 

ing, it is our contention that no single structuring can simultaneously capture 

all the important concepts in complex knowledge-based systems. We believe 

that techniques, methodologies and supporting tools are needed to manage 

a complex system from multiple viewpoints and that the discovery of subtle 

interrelating concepts is critical for assuring the reliability of these systems. 

Multi-Viewpoint Clustering Analysis (MVP-CA) is a feasible and effective 

technique for structuring a rulebase in various meaningful ways so as to cap- 

ture its explicit as well as implicit knowledge. Preliminary results obtained 

by clustering several knowledge-bases have shown that no single structuring 

principle or abstraction hierarchy is sufficient to understand complex knowl- 

edge bases [9, 10, 11, 12]. Multi-ViewPoint-Clustering Analysis (MVP-CA) 

methodology provides multiple views of the same expert system. Signifi- 

cant structures within the rulebase are discovered by structuring the system 

both hierarchically (from detail to abstract) and orthogonally (from different 

perspectives). 

Our approach utilizes clustering analysis techniques to group rules which 

share significant common properties and to identify the concepts underly- 

ing in these groups. Cluster analysis is a kind of unsupervised learning in 

which (a potentially large volume of) information is grouped into a (usu- 

ally much smaller) set of clusters. If a simple description of the cluster is 

possible, then this description emphasizes critical features common to the 

cluster elements while suppressing irrelevant details. Thus, clustering has 

the potential to abstract from a large body of data, a set of underlying prin- 

ciples or concepts which organizes that data into meaningful classes.   This 
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knowledge acquisition process involves "mining" the rulebase for interesting 

concepts shared among the rules. Our research efforts address the feasibility 

of providing automated support in the identification of such meaningful rule- 

groups in knowledge-based systems software, so as to reflect the underlying 

subdomains of the problem. Partitioning rule-based systems into a num- 

ber of meaningful units can enhance the comprehensibility, maintainability, 

testability, and reliability of expert systems software significantly. 

The extraction of implicit, previously unknown, yet potentially useful in- 

formation from the rulebase can have considerable impact on various stages 

of the life cycle of knowledge-based systems software. It can expose var- 

ious design pitfalls during construction of the rulebase and the functional 

limitations of the software during its operation, as well as the subtle inter- 

relationships between subgroups of rules could prove very valuable in the 

testing and maintenance of the system. 

3.2    Overview of MVP-CA 

The MVP-CA tool is divided into two phases: the Cluster Generation Phase 

and the Cluster Analysis Phase. In the Cluster Generation Phase the focus 

is on generating meaningful clusters through statistical and semantics-based 

measures. In the Cluster Analysis Phase the focus is on performing a statisti- 

cal and functional analysis of the output generated from the previous phase. 

Results of this analysis are fed back into the clustering tool as better con- 

straints on the parameters for grouping, to improve the quality of subsequent 

clusterings.  A functional analysis of the clusters captures the key concepts 
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that underlie the generated clusters. Concepts are meaningful patterns in 

the rulebase along with their associated attributes or values. A set of key 

concepts constitutes a single viewpoint. Multiple clusterings present multiple 

viewpoints on the rulebase. 

A two-step procedure is utilized for extracting multiple viewpoints of a 

rulebase. First, the best possible cluster is formed using various measures, 

such as distance metric, dispersion, cohesion and coupling. When group 

cohesiveness is plotted against number of groups, plateau regions are gener- 

ated signifying stable values for cohesiveness in certain ranges of number of 

groups. These regions represent optimal partitionings for a particular level 

of conceptual abstraction. Insight into concepts dominating the various clus- 

ters can be obtained through an examination of the groups at select points 

on the plateau regions. A hierarchical view of the rulebase can then be gen- 

erated by repeating the above procedure for different plateau regions on the 

cohesiveness plots. 

Next, with this "best" cluster, a concept focus list is formed, to either 

sharpen a current viewpoint or expose an alternate viewpoint. The concept 

focus list is generated from dispersion statistics of patterns. Dispersion is 

based on shared concepts, i.e., how much a single concept is dispersed among 

the clusters. Low dispersion concepts are likely to represent concepts which 

characterize the clusters they are in. In fact, high dispersion noise concepts 

may interfere with the generation of highly cohesive clusters. Removing these 

concepts before clustering can help define the clusters more distinctly - a 

process which we call "sharpening." However, high dispersion concepts may 

represent legitimate alternate structurings of the knowledge base as well. By 
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selectively removing the low dispersion concepts, it is possible to reveal subtle 

alternate viewpoints - a concept we have termed multiview point clustering 

analysis [12]. Alternate viewpoints are also obtained by applying different 

distance metrics on the knowledge-based systems. 

In the Cluster Generation Phase, the rulebase, together with the concept 

focus list, feeds into the frontend interpreter. The clustering algorithm starts 

with all rules in their own clusters. At each step of the algorithm, the two 

groups which are the most similar are merged together to form a new group. 

This pattern of mergings forms a hierarchical cluster from the single-member 

rule clusters to a cluster containing all the rules. In order to aid in the analysis 

of this hierarchy and to highlight high and low dispersion concepts, various 

metrics have been defined and are measured during the Cluster Generation 

Phase. 

The following measures control and quantify the quality of clusters gen- 

erated. 

• distance metric 

• coupling measure 

• cohesiveness measure 

• dispersion measure 

3.2.1    Distance Metric 

Distance Metric measures the relatedness of two rules in a rulebase by cap- 

turing different types of information for different classes of expert systems. 
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The nature of a knowledge-based system plays an important role in defining 

the relatedness of two rules. 

The nature of the domain knowledge enforces a certain programming 

methodology on the developer of a rulebase [2]. Classification systems, have 

a hierarchical structure which yields easily to a data-flow grouping. The fun- 

damental characteristic of such systems is that the flow of data takes place 

from the consequent of one rule to antecedent of other rules. For this type 

of rulebase, it is appropriate to use a distance metric that captures informa- 

tion from only right-hand side of one rule and left-hand side of the other. 

A monitoring system issues different commands depending on the status of 

different components of the system being monitored. In such systems, the 

antecedents of the rules usually search for special values of sensors in the com- 

ponent system, and the consequents assert actions to be taken when different 

components fail. The bulk of domain information required for grouping is 

usually present in the antecedents of rules in a monitoring system. This gives 

rise to the antecedent distance metric that captures information only from 

the antecedents. Alternatively, grouping the rulebase on different component 

failures asserted or remedial actions advocated by the consequents, gives rise 

to the consequent metric. The kind of distance metric to be used is a func- 

tion both of the nature of the task performed by the rulebase (classification, 

diagnosis, control) as well as the nature of the analysis required by the user 

(restructuring, testing, comprehension, reuse, etc.). 

We have previously shown that meaningful clusters can be formed using 

the number of common patterns between two rules as a measure of similar- 

ity [5, 7, 8].   Each pattern can be a word, string or number present in the 
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rules. The distance between two rules, which could alternatively be looked 

upon as the similarity between two rules, rx and r2, is defined as 

. Total no. of patterns in rx and r2 
d{rur2)   =    TU 5 T, : 1  no. oj    common   patterns in v\ and r2 

where different definitions of "common" give rise to different distance metrics. 

When there are no common patterns between 7*1 and r2, d(ri,r2) is replaced 

by the maximum number of patterns allowed. 

3.2.2    Coupling Measure 

Our coupling measure is a measure of the average inter-group distance be- 

tween two clusters. This is the factor that currently controls the choice of 

clusters to be merged at the next stage. This measure is based upon the 

distance metric used, since the distance between two groups is dependent on 

the distance between rules, which in turn is dictated by the metric chosen 

for clustering the rulebase. 

The clustering algorithm starts with each rule in its own group. Groups 

are then merged based on the minimum inter-group distance. We define 

inter-group distance, D(Gi,Gj) as follows: 

d{rk,ri) 
D[GuGi)  =   £   £ 

rkjtrt 

rkzG,   rlcGj    
ni    *   Ui 

where n; and nj are the number of rules in groups G{ and Gj, respectively. 

Using this definition of inter-group distance, we form an automatic clus- 

tering algorithm as follows.   In this algorithm, the user provides the total 

number of groups, M, to be formed, which serves as a stopping criterion. 
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Even though only the total number of groups need to be specified for the 

clustering process, we have built zoom-in capabilities now that provide statis- 

tics when a range for the maximum number of groups to minimum number 

of groups is specified. 

A high level view of the algorithm is given below: 

Initialize each rule into its own group 

While (number of groups   >  M) 

Find groups G; and Gj with minimum inter-group distance 

D(Gi,Gj) 

Merge groups Gj and Gj 

The average inter-group distance for a clustering C with m groups, is 

defined as 

vaver[L) - 2.2,^ + (m_1))/2) 

since there are there are (m*(m-l))/2 distinct pairs of groups in such a 

clustering. 

3.2.3    Cohesiveness Measure 

For a given clustering, C, cohesiveness measure is an index of the similarity 

of rules belonging to the same group. Cohesiveness of a rule r^ with respect 

to the group Gj that it belongs to is the average number of concepts it shares 
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with the other rule members in the group G{. 

,     ,    . ^-^    I 2  *  common-concept sir ki rA I 
cohGt(rk)   =     2^   i 4 t    \ i    i    i * r   \\ 

<rla-) I concepts[rk) I  +  I concepts(ri) \ 

Cohesiveness of a group G{ is the average number of shared concepts over 

all rule pairs in the group, 

™ur\ v      cohGx{rk) 

r^Gini   *   (ni-1) 

where nt- is the number of rules in group G{. Overall cohesiveness of a clus- 

tering is the cohesiveness for each group averaged over all groups for a given 

clustering, 

overalLcoh(C)  =   - 
nc 

where nc is the number of groups in the clustering C. 

Note that cohesiveness is independent of the metric used to cluster the 

rulebase. The cohesion statistics feeds into a graphical tool which displays the 

overall cohesion of clustering at each merge point. In the preliminary stages 

of exploration of a knowledge-based system, cohesion plots give valuable 

insight into the range for optimal partitioning regions, Gmax to Gmin, to be 

examined. That is, it provides an intuitive feel for the optimal clusterings of 

the system where meaningful partitions exist. Removal of noise patterns from 

the rulebase helps sharpen the drop points of the plateaus on the cohesion 

plots. Distinct plateaus at different levels suggest different abstraction levels 

for a given viewpoint. Plateau towards the smaller number of groups suggest 

abstractions at higher conceptual levels. 
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3.2.4    Dispersion Measure 

The concept focus list which is input to the formatted rulebase helps guide 

the clustering process by filtering out select patterns from the rulebase. This 

list is formed from the dispersion statistics. Dispersion measures the degree 

to which a single pattern is dispersed among the clusters. It is defined in the 

following manner: 

For a single group Gt-, dispersion of a pattern, p, is: 

dispGl(p) = 
1    if p e Gi 

0   otherwise 

The overall dispersion of p is therefore 

"c 

disp(p) = ^2dispGt(p) 
j=i 

where nc is the number of groups in a clustering, C. 

At any point in the clustering process, the dispersion for all the patterns 

can be obtained. For each pattern, dispersion gives the number of its group 

affiliations. As the mergings progress, a group can become stable with re- 

spect to a certain pattern or combination of patterns. When this happens 

the pattern or pattern combination is flagged as having become stable. This 

means that the flagged pattern or pattern combination does not occur any- 

where else in the rulebase. Identification of such phenomena is very valuable 

in reducing the number of test cases that must be designed as this type of 

partitioning isolates concepts that belong together. Hence, a group-based 

testing strategy can be applied. 
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It is apparent that complete semantic information cannot be extracted 

from a syntactic analysis of the knowledge-based system. Thus, a fully auto- 

matic tool based on just syntactic analysis is limited by the syntactic struc- 

ture of the knowledge base. In fact, one of the significant potential benefits 

of automatic clustering is to reveal to the user, heretofore unseen structures 

in the knowledge-base that either give additional insight or indicate problems 

in its organization. In the MVP-CA methodology both syntactic and seman- 

tic criteria are used for obtaining meaningful partitionings. A framework is 

provided through the concept focus list, wherein the developer can identify 

meaningful semantic concepts within a particular knowledge base, which can 

then form the basis for further clustering. The concept-focus list thus allows 

a user now to control the patterns that go into defining the distance between 

rules. This provides for more control in the eventual clustering that takes 

place. Now one can either sharpen a current viewpoint (by identifying highly 

dispersed "noise" patterns and weeding them out of the clustering process) 

or filter primary concepts in the rulebase to allow secondary concepts to 

emerge. 

Our methodology for MVP-CA can be summarized as follows. First, 

form the best cluster possible (using statistical measures of cohesiveness and 

coupling) for a particular distance metric. If "almost" perfect groupings are 

obtained, identify the "noise" patterns that are interfering with the forma- 

tion of perfect groups. This is done by examining the dispersion statistics 

generated from the clustering. Next, with the "best" clustering(s), exam- 

ine the dispersion values of all patterns. Identify primary viewpoint for this 

clustering.   Remove the concept patterns that are responsible for the pri- 
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mary viewpoint from all the rules. Now repeat the clustering to find the 

secondary (tertiary, etc.) viewpoints. Run the knowledge base with other 

distance metrics applying the above procedure to get further viewpoints on 

the rulebase. 

4    Focus of this Project 

Currently both these systems, IMRD-ES and CFAR-ES, are used indepen- 

dently for target detection and radar control. It is the objective of Rome Labs 

to integrate the two systems on more current software/hardware platforms 

in such a way that: 

• Real-time constraints for radar control are observed through possibly 

parallelizing much of the signal processing code. 

• Artificial intelligence techniques from the two systems are merged and 

enhanced to make the system more adaptive for real world radar ap- 

plications. 

• Sound software engineering techniques are used in the integration pro- 

cess so that the system is easily maintainable and extensible. 

MVP-CA tool was chosen to be used to identify the common function- 

alities in IMRD-ES and CFAR-ES code by partitioning these codes into se- 

mantically meaningful clusters. The multi-viewpoint approach, as discussed 

in the previous section, utilizes clustering analysis techniques to group rules 

which share significant common properties and then it identifies the concepts 
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which underlie these groups. Exposing underlying domain and subdomain 

information of the systems in this manner increases the odds of detecting 

common regions of functionalities in the two codes. This leads to a better 

reuse of existing code. 

5    Application of MVP-CA to IMRD-ES and 

CFAR-ES 

5.1    Results of using MVP-CA on IMRD-ES 

Under this contract, Pragati, Inc. was successful in analyzing the structure 

of IMRD-ES using the MVP-CA tool. In order to run the MVP-CA tool on 

IMRD-ES, Prolog's BNF-grammar had to be acquired over the internet from 

Quintus Corporation. It took us about one month to build the frond-end 

interface to Pragati's clustering tool which could convert the Prolog code 

into the internal format for the tool. We also had to optimize the MVP-CA 

tool to enable large systems such as IMRD-ES to be analyzed faster and 

more efficiently. 

After the front-end was built, we combined all the rules from different 

Prolog files into one file. This was done to enable MVP-CA tool to come 

up with its own clusters that are purely domain knowledge dependent and 

did not incorporate the control aspects of the program. Our experience has 

shown that generally developers of knowledge-bases, tend to partition the 

knowledge-base according to the run-time or phase aspects of the system. It 

is important, however, to expose the static viewpoint of the knowledge-base 
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since a lot of functional commonalities across different files get discovered in 

this manner. 

The predicate clauses in IMRD-ES formed a very convenient basis for la- 

beling the rules so that the clusters could be analyzed for their semantic con- 

tent. In order to label forward chaining systems, we have had to abbreviate 

relevant domain knowledge in each rule. Only then a correct interpretation 

of the semantics of the the clusters could be made. In a backward chaining 

system such as Prolog, the goal predicate suggests very succintly the overall 

objective of the rule. Therefore we labeled all 337 rules with their left-hand 

side predicates. 

Next, we ran IMRD-ES with different distance metrics in the MVP-CA 

tool so as to find the most suitable one. The distance metric that resulted 

in the most meaningful clusters was the consequent metric. This is because 

Prolog is a backward chaining system with all the predicates or goals to be 

fulfilled present on the left-hand side. Hence all domain knowledge in such a 

system can be expected to reside on the right- hand side where how the goal 

is being fulfilled is being elaborated. 

Even though the consequent metric gave us some useful high-level clus- 

ters, it was not possible to get deeper into the code as most of the clauses on 

the right-hand-side were procedure calls to Pascal. All the control structure 

was found to reside in Prolog rules and the real computations were carried 

out in Pascal procedures. 

The rules in Prolog were structured approximately into the following clus- 

ters as discovered by the MVP-CA tool (also shown in Figure 1): 
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Figure 1: A viewpoint of the IMRD-ES Rulebase 
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• Control rules for performing initialization, control and termination of 

the program. 

• Input rules for reading file input as well as user input. 

• Jammer detection rules to find interferences and identify the types of 

jammers present. 

• Clutter detection rules to discriminate ground and weather clutter. 

• Counter-counter measure rules to set jammer as well as clutter elec- 

tronic counter counter measures (ECCM). 

• Radar resource allocation rules to apportion the resources of the radar 

according to the prioritization of the threat regions, as well as overall 

quality options set for the different priorities. 

• Output rules to display the radar control and AI outputs onto a screen. 

In the original partitioning of IMRD-ES by the developers, radar resource 

allocation rules, input-output rules and control rules were scattered across 

different files. Our clustering brought these rules into a single perspective. 

This clustering of the IMRD-ES rules allowed us to gain an understanding 

of the structure of the AI portion of IMRD-ES. However, MVP-CA tool 

currently works only on rulebases. Most of IMRD-ES domain knowledge 

is in the Pascal routines while the control knowledge is in the 337 Prolog 

predicates. Thus, MVP-CA could focus only on the control part. In order to 

perform more extensive analysis, mechanisms are needed which can include 
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the information about data accesses made by the Pascal routines offline and 

feed it into the multi-view point tool. 

5.2    Results of using MVP-CA on CFAR-ES 

The CFAR-ES system was developed using Gensym's G2, and could not be 

subjected to a similar study for the following reasons: G2 is a closed system 

storing all the rules in the internal format. It does not provide a mechanism 

for extraction of the rules to perform an offline study. This is the reason that 

the CFAR-ES tapes sent by Rome Laboratories could not be installed on our 

system. Since the CFAR-ES was built from within the Gensym shell, the first 

two tapes could not be read using the Unix environment. The ASCII version 

of the code had to be extracted through the "inspect" facility in Gensym. 

Finally, a readable version of the tape was received. However, there were 

only six rules to be installed and these could not be analyzed as they had 

been pulled out of their procedural environment. Hence they were out of 

context and analyzing them could give very misleading results. 

It became evident to us during our trip to Rome in May 1994 to get 

a demonstration of the CFAR-ES that none of the CFAR rules written in 

G2 were in a stand alone form, i.e., they were embedded in C procedure 

calls. This design possibly precluded the use of any efficient pattern matching 

scheme provided by G2's inference engine. 

We also tried to access CFAR-ES code through the internet connection 

and analyze it by running it on Rome Laboratories Sparc station. However, 

due to security reasons all such access had been suspended and we were 
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unable to run the software from off-site. 

6    Results of the Analysis 

6.1    Issues in Integration of IMRD-ES with CFAR-ES 

As discussed in the earlier section, we were able to analyze the IMRD-ES 

code. However, since the CFAR-ES code could not be installed entirely, we 

had to base our understanding of CFAR-ES on documentations and papers 

provided to us by Rome Laboratories. 

One of the major commonalities found in the two codes is that both 

use clutter (ground and weather based) information. In IMRD-ES the clut- 

ter information as generated by processing the CPI2 beam is used to set 

up the electronic counter-counter measures (ECCMs). Similarly, clutter in- 

formation along with other geographical statistical information is used by 

CFAR-selection expert system to choose the appropriate CFAR algorithm to 

execute. Thus, in an integrated system, this information can be generated 

once for each beam and updated and used by both codes. An integrated 

system is depicted in Figure 2. 

A possible timeline for the preprocessing of the beam scan data and the 

execution of the IMRD-ES and CFAR-ES is'shown in Figure 3 (not drawn 

to scale). Assuming independent hardware for the two functions, as in the 

current system, the timeline shows how the preprocessing can be done in 

parallel with the execution of the integrated IMRD-ES and CFAR-ES codes. 
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Figure 2: Suggested Integeration of IMRD-ES and CFAR-ES codes 
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Figure 3: Timeline for preprocessing and IMRD-ES/CFAR-ES (not drawn 

to scale) 

6.2      Disadvantages of Prolog 

There is no structuring mechanism in Prolog which makes it very difficult 

to modify any software because interdependencies are not obvious upfront. 

Moreover, "cuts" and "fail" type of constructs limit the comprehensibility 

of code even further. Ideally, all such low-level control should be exercised 

through the inference engine. Furthermore, Prolog provides no direct support 

for real-time constraints which can be a very big drawback considering the 

time constraints that need to be satisfied in the new system. Also there is 

no direct support for fuzzy logic or uncertainty. Since the fidelity of radar 

data is not that high, due to distortions produced in them by environmental 

conditions, any conclusions that are drawn about possible threats, should be 

qualified with a degree of confidence level. 
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6.3 Disadvantages of G2 

Gensym's G2 provides no real-time support at the level required by Rome 

Laboratories radar surveillance systems. Also there is no fuzzy logic incor- 

poration. The biggest drawback that we see in G2 is that the system stores 

all information in an internal format making extraction of knowledge very 

difficult. Even though it is an object-oriented system, an external verification 

and validation of the knowledge-base is impossible in the current setup. 

6.4 Expert System Characteristics Desired 

Based on our knowledge of IMRD-ES and CFAR-ES we advocate that the 

following features will be desirable for the expert system shell choice: 

• real-time constraints 

• supports object-oriented design 

• good integration with C or C++ routines 

• incorporates fuzzy logic or at least uncertainty handling 

• extensibility or modifiability of code 

• maintainability and system support 

• backward chaining system, since fidelity of data is not high enough to 

warrant a forward-chaining data-driven system. 
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7     Conclusions 

In this project, we have used Pragati's MVP-CA tool to structure and analyze 

the IMRD-ES rulebase used for resource allocation in radar signal processing 

Based on our analysis of IMRD-ES software along with the understanding 

gained from the CFAR-ES documentation, we have suggested possible mech- 

anisms for integrating the two systems. These include removal of redundant 

computation such as clutter detection which is common in both codes. We 

have also suggested potential situations where parallelism between the pre- 

processing and algorithm steps can be readily exploited if the integrated 

system is ported to the appropriate hardware. 

Based on our analysis, we have also shown the shortcomings of the cur- 

rent expert system shells used in the two systems. We have suggested char- 

acteristics desired in an expert system shell which can be used to efficiently 

implement the integrated system such that it meets the desired realtime con- 

straints. 
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