
RL-TR-95-50
Final Technical Report
March 1995

RADAR SIGNAL PROCESSING
RULEBASE PARTITIONING

Pragati Synergetic Research, Inc.

Mala Mehrotra

ü i i C
:IECTE|%

"% JUN 3 0 1995 I

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTTf QUALITY INSPECTED 8
Rome Laboratory

Air Force Materiel Command
Griffiss Air Force Base, New York

19950629 031

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-95-50 has been reviewed and is approved for publication.

APPROVED: [$AM~J_VJL . 0<6lSU^\^.

WILLIAM J. BALDYGO, Jr.
Project Engineer

FOR THE COMMANDER:

DONALD W. HANSON
Director of Surveillance & Photonics

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (OCSS) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Pubic reporting burden for ttrfe cclaction of information is estimated to average 1 hour per response, hdudng the time for reviewing instructions, searching existing data sources,
gatherhg and mai-taring the data needed, and completing and reviewing thecolecbon of Information Send comments regarding this burden estimate or any other aspect of this
collection of Information, Indudng suggestions for redudng this burden, to Washington Headquarters Services, Drectorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Sute 1204, Arlngton, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blanty Z REPORT DATE
March 1995

a REPORT TYPE AND DATES COVERED
Final Mar 94 - Jan 95

4. TITLE AND SUBTITLE
RADAR SIGNAL PROCESSING RULEBASE PARTITIONING

6. AUTHOR(S)

Mala Mehrotra

5. FUNDING NUMBERS
C - F30602-94-C-0069
PE - 611Ü2F
PR - 2304
TA - E8
WU - 07

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Pragati Synergetic Research, Inc.
145 Stonelake Court
Yorktown VA 23693

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)
Rome Laboratory (0CSS)
2b Electronic Parkway
Griffiss AFB NY 13^41-4514

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-95-50

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: William J. Baldygo, Jr./OCSS (315) 330-4049

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

1 3. ABSTRACT (Maximum 200 words)

This technical report addresses issues involved in the integration, enhancement and
porting of two large knowledge-based systems, (1) Expert System Constant False Alarm
Rate (ES-CFAR) and (2) The Integrated Multi-Domain Radar Demonstration (IMRD), to
more current software/hardware platforms using sound software engineering principles.

14. SUBJECT TERMS
Artificial Intelligence, Expert Systems, Radar Signal Processing

15. NUMBER OF PAGES
40

1& PRICE CODE

17. SECURITY CLASSIFICATION
0FRuPN?LT ASSIFIED

18. SECURITY CLASSIFICATION 19. SECURrTY CLASSIFICATION

IED
20. LIMITATION OF ABSTRACT

U/L

NSN 7540-01 -280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-18

1 Introduction

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

i
D
a

By
Distribution/

Availability Codes

Dist

A-1

Avail and /or
Special

This report addresses issues involved in the integration, enhancement and

porting of two large knowledge-based systems - Constant False Alarm Rate

Expert System (CFAR-ES) and Integrated Multi-Domain Radar Demonstra-

tion Expert System (IMRD-ES) - to more current software/hardware plat-

forms, using sound software engineering principles. Our objective is to for-

mulate the set of desirable requirements for the new expert system shell to be

used for implementing the integrated code. In order to achieve these goals,

a careful analysis of the two systems had to be undertaken. Multi-viewpoint

methodology was used for this purpose as it is able to abstract, structure

and cluster a large knowledge-based system in a manner that facilitates its

understanding, manipulation, testing and utilization. The multi-view point

methodology is founded on the principle that no single structuring principle

or abstraction hierarchy is sufficient to understand complex knowledge-bases.

The presentation of a knowledge-based system from several different view-

points gives very valuable leverage for various life-cycle activities by making

the knowledge-based system more comprehensible and tractable. Much of

any software life-cycle activities depend upon the right modularization for

more efficient analysis.

Initial study of the two systems revealed that the procedural aspects in

both the systems are intermingled very tightly with the knowledge-based as-

pects of the problem. In the IMRD-ES system a lot of procedural calls to

Pascal software exists from Prolog. In the CFAR-ES code the rulebase por-

tion of Gensym's G2 code are meshed in tightly with procedural code written

1

in C. Neither Gensym's G2 nor Prolog provides any structuring mechanisms

for code, thus making it very difficult for long-term maintenance. We were

able to analyze the AI aspects of the IMRD-ES code. However, CFAR-ES

code could not be analyzed as the rules could not be separately extracted

and analyzed. In any case, there were only a few embedded rules in the

CFAR-ES code.

We have used the results of our analysis of IMRD-ES along with doc-

umentation for CFAR-ES to identify functional commonalities between the

two systems and to suggest possible ways of integrating them. Our analy-

sis also suggests that a more structured environment needs to be chosen for

the integration and porting of the two systems. If AI aspects such as fuzzy

logic, uncertainty, non-monotonic reasoning etc. has to be incorporated, at

present or in future, then an expert system shell which incorporates these

features needs to be chosen. There is ample evidence that radar returns are

often contaminated enough by weather, clutter and jammers that a backward

chaining system with fuzzy logic reasoning will be desirable.

In this report we will first outline Rome Laboratories' two software sys-

tems. Next we will outline our software analysis tool called MVP-CA (Multi-

View Point - Clustering Analysis). We will then discuss the software engi-

neering aspects of these systems as revealed by the MVP-CA tool, followed

by suggestions for future enhancements in these codes.

2 Structure of IMRD-ES and CFAR-ES

Rome Laboratory utilizes two independently developed software systems in

their radar target detection environment. The first is the Constant False

Alarm Rate Expert System (CFAR-ES) that aids the radar surveillance sys-

tem by choosing the appropriate CFAR algorithm for target detection with

minimal false detections. The second is the Integrated Multi-Domain Radar

Demonstration Expert System, which automatically controls various modes

of operation and parameters for the multi-function C-Band phased array

radar system.

CFAR-ES adaptively selects the appropriate CFAR algorithm for accu-

rate target detections. The selection process is dependent on the various

characteristics of the observed radar data. Preprocessing routines classify

the radar data into various homogeneous clutter regions. AI rules in CFAR-

ES integrates this information with data from geographical maps, tracker

information, as well as inputs from the user, to determine the appropriate

CFAR algorithm to be executed for detection. It also determines the ap-

propriate CFAR parameter values for the CFAR processor. CFAR-ES is

currently written in Gensym's G2 shell with computations handled by re-

mote C procedure calls. Very few rules are written in G2 and almost all of

them are inside C procedures.

IMRD-ES identifies interference in radar returns and recommends the

appropriate responses for the next scan. The surveillance region is parti-

tioned into threat zones prioritized by the importance of maintaining detec-

tion within them. The beam dwell time is adaptively apportioned to different

beams, subject to a desired scan time constraint. The objective is to iden-

tify targets in the presence of clutter and jammer interference. Inputs to

the IMRD-ES is the Beam Scan Data processed by the ST-100 array proces-

sor. The knowledge-based adaptive controller in IMRD-ES (expressed as 337

Prolog predicates) analyzes the data for sources of interference, determines

the control changes to be made for the next scan to maximize the probabil-

ity of detection in conjunction with the prioritized regions of coverage. The

variable dwell time per beam is divided into three processing intervals: a

passive listening interval, CPU, for detecting jammers and radio frequency

interference sources; an active environmental assessment interval, CPI2, for

detecting ground and weather clutter; and an adaptive target detection wave-

form, CPI3, to apply appropriate electronic counter measures, as determined

by the expert system. A single fixed-parameter CFAR algorithm is used for

target detection in the present system. The expert system resides on a VAX

currently and has been tested to perform with both real and simulated data.

3 MVP-CA

3.1 Motivation for Clustering Knowledge-Based Sys-

tems Software

Knowledge-based systems owe their appeal to the promise of utilizing exper-

tise in the domain knowledge for the solution of difficult, poorly-understood,

ill-structured problems. However, they must be subjected to rigorous ver-

ification and validation (V&V) analyses before they can be accepted into

real-world critical applications. Unfortunately, expert systems do not lend

themselves to the traditional V&V techniques for highly reliable software.

There is a need to formulate an acceptable set of V&V techniques which

can assure their quality. Better knowledge-acquisition techniques as well as

better management, understanding and enhancement of the knowledge base

is critical to the success of such V&V activities.

The difficulty in the V&V of large knowledge-based systems arises due to

a number of reasons. Firstly, rapid prototyping and iterative development

form key features of any expert system development activity. This has led

to the development of ad-hoc techniques for expert system design without

any software engineering guidelines. Moreover, due to the data-driven nature

of expert systems, as the number of rules of an expert system increase, the

number of possible interactions between the rules increases exponentially.

The complexity of each pattern in a rule compounds the problem of V&V

even further. As a result, large expert systems tend to be incomprehensible,

difficult to debug or modify, and almost impossible to verify or validate.

Compounding the problem further is the fact that most expert systems

are built without much regard to defining the requirements or specifications.

As any software, conventional or knowledge-based, becomes more complex,

common errors are bound to occur through misunderstanding of specifica-

tions and requirements. Large computer systems are typically built by mul-

tiple teams who may have different, yet legitimate perspectives of the system

design. Often, conflicting opinions on implementational aspects of the sys-

tem will need to be resolved. Ambiguities and interpretational problems will

always be inherent to large systems software development. Human limita-

tions in understanding and managing software complexity will give rise to

deficiencies in software. In addition, since knowledge continues to remain

in an evolving state for large systems, with new knowledge augmenting the

software all the time, it is essential to provide a mechanism to check the con-

ceptual aspects of the system from time to time. Studies have shown that the

majority of time spent in maintaining existing systems lies in understanding

the software and how it relates to the application domain. Too many systems

were built with poor software engineering practices or have been changed so

many times that gaining this understanding is very difficult and is one of the

most common means by which faults are introduced into the system.

Therefore, it is our belief that even if a software life cycle stresses specifi-

cations and requirements upfront, that will not be enough to guarantee the

right product for complicated systems. There are bound to be ambiguities

and interpretational problems. What is needed is a complementary tool that

is capable of exposing such ambiguities and misinterpretations so that correc-

tive action can be taken before it is too late in the software life cycle. Having

a semi-automated means of capturing and structuring the meta-knowledge

in a rulebase and cross-checking it with the specifications and requirements

at various stages of the software life cycle could certainly help in this effort.

Conventional software yields more easily to verification efforts because

control is explicitly represented as procedures which can be structured to

encapsulate run-time abstractions. Modules can be designed in conven-

tional software, each consisting of a manageable unit with a well-defined

interface. Furthermore, procedures can be grouped into packages or objects

which share an internal data structure. These units can then be subjected

6

to unit/integration testing techniques. Isolating special-purpose variables in

a knowledge-based system into smaller subknowledge bases can lead to a re-

duction in the number of test cases to be designed. We have demonstrated

this aspect through our experimental results which has been discussed in [6].

Due to the declarative style of programming in knowledge-based systems,

the generation of clusters to capture significant concepts in the domain seems

more feasible than it would be for procedural software. By using knowledge-

based programming techniques one is much closer to the domain knowledge

of the problem than with procedural languages. The control aspects of the

problem are abstracted away into the inference engine (or alternatively, the

control rules are explicitly declared). The existence of a model of the do-

main would benefit the analysis of other knowledge-based systems within

that domain by providing seeds for cluster formation. Moreover, transfer of

expertise from one problem domain to another related domain can be fa-

cilitated through the factoring of common aspects across domains. Hence

software reuse can be exploited through multiple structuring of a knowledge-

based system. It is our contention that such activities will require that large

complex knowledge-based systems to be viewed from several different, possi-

bly orthogonal viewpoints. In addition, the use of a domain model to assist

in the development of new knowledge-based systems is a promising research

direction.

Existing research indicates that misunderstandings of the domain are a

primary cause of systems failures [1, 4, 13]. Often small oversights or mis-

understood interactions between sources of expertise lead to catastrophic

failures. Even though language support for systems structuring has long

been recognized as a key aspect of modern software and knowledge engineer-

ing, it is our contention that no single structuring can simultaneously capture

all the important concepts in complex knowledge-based systems. We believe

that techniques, methodologies and supporting tools are needed to manage

a complex system from multiple viewpoints and that the discovery of subtle

interrelating concepts is critical for assuring the reliability of these systems.

Multi-Viewpoint Clustering Analysis (MVP-CA) is a feasible and effective

technique for structuring a rulebase in various meaningful ways so as to cap-

ture its explicit as well as implicit knowledge. Preliminary results obtained

by clustering several knowledge-bases have shown that no single structuring

principle or abstraction hierarchy is sufficient to understand complex knowl-

edge bases [9, 10, 11, 12]. Multi-ViewPoint-Clustering Analysis (MVP-CA)

methodology provides multiple views of the same expert system. Signifi-

cant structures within the rulebase are discovered by structuring the system

both hierarchically (from detail to abstract) and orthogonally (from different

perspectives).

Our approach utilizes clustering analysis techniques to group rules which

share significant common properties and to identify the concepts underly-

ing in these groups. Cluster analysis is a kind of unsupervised learning in

which (a potentially large volume of) information is grouped into a (usu-

ally much smaller) set of clusters. If a simple description of the cluster is

possible, then this description emphasizes critical features common to the

cluster elements while suppressing irrelevant details. Thus, clustering has

the potential to abstract from a large body of data, a set of underlying prin-

ciples or concepts which organizes that data into meaningful classes. This

8

knowledge acquisition process involves "mining" the rulebase for interesting

concepts shared among the rules. Our research efforts address the feasibility

of providing automated support in the identification of such meaningful rule-

groups in knowledge-based systems software, so as to reflect the underlying

subdomains of the problem. Partitioning rule-based systems into a num-

ber of meaningful units can enhance the comprehensibility, maintainability,

testability, and reliability of expert systems software significantly.

The extraction of implicit, previously unknown, yet potentially useful in-

formation from the rulebase can have considerable impact on various stages

of the life cycle of knowledge-based systems software. It can expose var-

ious design pitfalls during construction of the rulebase and the functional

limitations of the software during its operation, as well as the subtle inter-

relationships between subgroups of rules could prove very valuable in the

testing and maintenance of the system.

3.2 Overview of MVP-CA

The MVP-CA tool is divided into two phases: the Cluster Generation Phase

and the Cluster Analysis Phase. In the Cluster Generation Phase the focus

is on generating meaningful clusters through statistical and semantics-based

measures. In the Cluster Analysis Phase the focus is on performing a statisti-

cal and functional analysis of the output generated from the previous phase.

Results of this analysis are fed back into the clustering tool as better con-

straints on the parameters for grouping, to improve the quality of subsequent

clusterings. A functional analysis of the clusters captures the key concepts

9

that underlie the generated clusters. Concepts are meaningful patterns in

the rulebase along with their associated attributes or values. A set of key

concepts constitutes a single viewpoint. Multiple clusterings present multiple

viewpoints on the rulebase.

A two-step procedure is utilized for extracting multiple viewpoints of a

rulebase. First, the best possible cluster is formed using various measures,

such as distance metric, dispersion, cohesion and coupling. When group

cohesiveness is plotted against number of groups, plateau regions are gener-

ated signifying stable values for cohesiveness in certain ranges of number of

groups. These regions represent optimal partitionings for a particular level

of conceptual abstraction. Insight into concepts dominating the various clus-

ters can be obtained through an examination of the groups at select points

on the plateau regions. A hierarchical view of the rulebase can then be gen-

erated by repeating the above procedure for different plateau regions on the

cohesiveness plots.

Next, with this "best" cluster, a concept focus list is formed, to either

sharpen a current viewpoint or expose an alternate viewpoint. The concept

focus list is generated from dispersion statistics of patterns. Dispersion is

based on shared concepts, i.e., how much a single concept is dispersed among

the clusters. Low dispersion concepts are likely to represent concepts which

characterize the clusters they are in. In fact, high dispersion noise concepts

may interfere with the generation of highly cohesive clusters. Removing these

concepts before clustering can help define the clusters more distinctly - a

process which we call "sharpening." However, high dispersion concepts may

represent legitimate alternate structurings of the knowledge base as well. By

10

selectively removing the low dispersion concepts, it is possible to reveal subtle

alternate viewpoints - a concept we have termed multiview point clustering

analysis [12]. Alternate viewpoints are also obtained by applying different

distance metrics on the knowledge-based systems.

In the Cluster Generation Phase, the rulebase, together with the concept

focus list, feeds into the frontend interpreter. The clustering algorithm starts

with all rules in their own clusters. At each step of the algorithm, the two

groups which are the most similar are merged together to form a new group.

This pattern of mergings forms a hierarchical cluster from the single-member

rule clusters to a cluster containing all the rules. In order to aid in the analysis

of this hierarchy and to highlight high and low dispersion concepts, various

metrics have been defined and are measured during the Cluster Generation

Phase.

The following measures control and quantify the quality of clusters gen-

erated.

• distance metric

• coupling measure

• cohesiveness measure

• dispersion measure

3.2.1 Distance Metric

Distance Metric measures the relatedness of two rules in a rulebase by cap-

turing different types of information for different classes of expert systems.

11

The nature of a knowledge-based system plays an important role in defining

the relatedness of two rules.

The nature of the domain knowledge enforces a certain programming

methodology on the developer of a rulebase [2]. Classification systems, have

a hierarchical structure which yields easily to a data-flow grouping. The fun-

damental characteristic of such systems is that the flow of data takes place

from the consequent of one rule to antecedent of other rules. For this type

of rulebase, it is appropriate to use a distance metric that captures informa-

tion from only right-hand side of one rule and left-hand side of the other.

A monitoring system issues different commands depending on the status of

different components of the system being monitored. In such systems, the

antecedents of the rules usually search for special values of sensors in the com-

ponent system, and the consequents assert actions to be taken when different

components fail. The bulk of domain information required for grouping is

usually present in the antecedents of rules in a monitoring system. This gives

rise to the antecedent distance metric that captures information only from

the antecedents. Alternatively, grouping the rulebase on different component

failures asserted or remedial actions advocated by the consequents, gives rise

to the consequent metric. The kind of distance metric to be used is a func-

tion both of the nature of the task performed by the rulebase (classification,

diagnosis, control) as well as the nature of the analysis required by the user

(restructuring, testing, comprehension, reuse, etc.).

We have previously shown that meaningful clusters can be formed using

the number of common patterns between two rules as a measure of similar-

ity [5, 7, 8]. Each pattern can be a word, string or number present in the

12

rules. The distance between two rules, which could alternatively be looked

upon as the similarity between two rules, rx and r2, is defined as

. Total no. of patterns in rx and r2
d{rur2) = TU 5 T, : 1 no. oj common patterns in v\ and r2

where different definitions of "common" give rise to different distance metrics.

When there are no common patterns between 7*1 and r2, d(ri,r2) is replaced

by the maximum number of patterns allowed.

3.2.2 Coupling Measure

Our coupling measure is a measure of the average inter-group distance be-

tween two clusters. This is the factor that currently controls the choice of

clusters to be merged at the next stage. This measure is based upon the

distance metric used, since the distance between two groups is dependent on

the distance between rules, which in turn is dictated by the metric chosen

for clustering the rulebase.

The clustering algorithm starts with each rule in its own group. Groups

are then merged based on the minimum inter-group distance. We define

inter-group distance, D(Gi,Gj) as follows:

d{rk,ri)
D[GuGi) = £ £

rkjtrt

rkzG, rlcGj
ni * Ui

where n; and nj are the number of rules in groups G{ and Gj, respectively.

Using this definition of inter-group distance, we form an automatic clus-

tering algorithm as follows. In this algorithm, the user provides the total

number of groups, M, to be formed, which serves as a stopping criterion.

13

Even though only the total number of groups need to be specified for the

clustering process, we have built zoom-in capabilities now that provide statis-

tics when a range for the maximum number of groups to minimum number

of groups is specified.

A high level view of the algorithm is given below:

Initialize each rule into its own group

While (number of groups > M)

Find groups G; and Gj with minimum inter-group distance

D(Gi,Gj)

Merge groups Gj and Gj

The average inter-group distance for a clustering C with m groups, is

defined as

vaver[L) - 2.2,^ + (m_1))/2)

since there are there are (m*(m-l))/2 distinct pairs of groups in such a

clustering.

3.2.3 Cohesiveness Measure

For a given clustering, C, cohesiveness measure is an index of the similarity

of rules belonging to the same group. Cohesiveness of a rule r^ with respect

to the group Gj that it belongs to is the average number of concepts it shares

14

with the other rule members in the group G{.

, , . ^-^ I 2 * common-concept sir ki rA I
cohGt(rk) = 2^ i 4 t \ i i i * r \\

<rla-) I concepts[rk) I + I concepts(ri) \

Cohesiveness of a group G{ is the average number of shared concepts over

all rule pairs in the group,

™ur\ v cohGx{rk)

r^Gini * (ni-1)

where nt- is the number of rules in group G{. Overall cohesiveness of a clus-

tering is the cohesiveness for each group averaged over all groups for a given

clustering,

overalLcoh(C) = -
nc

where nc is the number of groups in the clustering C.

Note that cohesiveness is independent of the metric used to cluster the

rulebase. The cohesion statistics feeds into a graphical tool which displays the

overall cohesion of clustering at each merge point. In the preliminary stages

of exploration of a knowledge-based system, cohesion plots give valuable

insight into the range for optimal partitioning regions, Gmax to Gmin, to be

examined. That is, it provides an intuitive feel for the optimal clusterings of

the system where meaningful partitions exist. Removal of noise patterns from

the rulebase helps sharpen the drop points of the plateaus on the cohesion

plots. Distinct plateaus at different levels suggest different abstraction levels

for a given viewpoint. Plateau towards the smaller number of groups suggest

abstractions at higher conceptual levels.

15

3.2.4 Dispersion Measure

The concept focus list which is input to the formatted rulebase helps guide

the clustering process by filtering out select patterns from the rulebase. This

list is formed from the dispersion statistics. Dispersion measures the degree

to which a single pattern is dispersed among the clusters. It is defined in the

following manner:

For a single group Gt-, dispersion of a pattern, p, is:

dispGl(p) =
1 if p e Gi

0 otherwise

The overall dispersion of p is therefore

"c

disp(p) = ^2dispGt(p)
j=i

where nc is the number of groups in a clustering, C.

At any point in the clustering process, the dispersion for all the patterns

can be obtained. For each pattern, dispersion gives the number of its group

affiliations. As the mergings progress, a group can become stable with re-

spect to a certain pattern or combination of patterns. When this happens

the pattern or pattern combination is flagged as having become stable. This

means that the flagged pattern or pattern combination does not occur any-

where else in the rulebase. Identification of such phenomena is very valuable

in reducing the number of test cases that must be designed as this type of

partitioning isolates concepts that belong together. Hence, a group-based

testing strategy can be applied.

16

It is apparent that complete semantic information cannot be extracted

from a syntactic analysis of the knowledge-based system. Thus, a fully auto-

matic tool based on just syntactic analysis is limited by the syntactic struc-

ture of the knowledge base. In fact, one of the significant potential benefits

of automatic clustering is to reveal to the user, heretofore unseen structures

in the knowledge-base that either give additional insight or indicate problems

in its organization. In the MVP-CA methodology both syntactic and seman-

tic criteria are used for obtaining meaningful partitionings. A framework is

provided through the concept focus list, wherein the developer can identify

meaningful semantic concepts within a particular knowledge base, which can

then form the basis for further clustering. The concept-focus list thus allows

a user now to control the patterns that go into defining the distance between

rules. This provides for more control in the eventual clustering that takes

place. Now one can either sharpen a current viewpoint (by identifying highly

dispersed "noise" patterns and weeding them out of the clustering process)

or filter primary concepts in the rulebase to allow secondary concepts to

emerge.

Our methodology for MVP-CA can be summarized as follows. First,

form the best cluster possible (using statistical measures of cohesiveness and

coupling) for a particular distance metric. If "almost" perfect groupings are

obtained, identify the "noise" patterns that are interfering with the forma-

tion of perfect groups. This is done by examining the dispersion statistics

generated from the clustering. Next, with the "best" clustering(s), exam-

ine the dispersion values of all patterns. Identify primary viewpoint for this

clustering. Remove the concept patterns that are responsible for the pri-

17

mary viewpoint from all the rules. Now repeat the clustering to find the

secondary (tertiary, etc.) viewpoints. Run the knowledge base with other

distance metrics applying the above procedure to get further viewpoints on

the rulebase.

4 Focus of this Project

Currently both these systems, IMRD-ES and CFAR-ES, are used indepen-

dently for target detection and radar control. It is the objective of Rome Labs

to integrate the two systems on more current software/hardware platforms

in such a way that:

• Real-time constraints for radar control are observed through possibly

parallelizing much of the signal processing code.

• Artificial intelligence techniques from the two systems are merged and

enhanced to make the system more adaptive for real world radar ap-

plications.

• Sound software engineering techniques are used in the integration pro-

cess so that the system is easily maintainable and extensible.

MVP-CA tool was chosen to be used to identify the common function-

alities in IMRD-ES and CFAR-ES code by partitioning these codes into se-

mantically meaningful clusters. The multi-viewpoint approach, as discussed

in the previous section, utilizes clustering analysis techniques to group rules

which share significant common properties and then it identifies the concepts

18

which underlie these groups. Exposing underlying domain and subdomain

information of the systems in this manner increases the odds of detecting

common regions of functionalities in the two codes. This leads to a better

reuse of existing code.

5 Application of MVP-CA to IMRD-ES and

CFAR-ES

5.1 Results of using MVP-CA on IMRD-ES

Under this contract, Pragati, Inc. was successful in analyzing the structure

of IMRD-ES using the MVP-CA tool. In order to run the MVP-CA tool on

IMRD-ES, Prolog's BNF-grammar had to be acquired over the internet from

Quintus Corporation. It took us about one month to build the frond-end

interface to Pragati's clustering tool which could convert the Prolog code

into the internal format for the tool. We also had to optimize the MVP-CA

tool to enable large systems such as IMRD-ES to be analyzed faster and

more efficiently.

After the front-end was built, we combined all the rules from different

Prolog files into one file. This was done to enable MVP-CA tool to come

up with its own clusters that are purely domain knowledge dependent and

did not incorporate the control aspects of the program. Our experience has

shown that generally developers of knowledge-bases, tend to partition the

knowledge-base according to the run-time or phase aspects of the system. It

is important, however, to expose the static viewpoint of the knowledge-base

19

since a lot of functional commonalities across different files get discovered in

this manner.

The predicate clauses in IMRD-ES formed a very convenient basis for la-

beling the rules so that the clusters could be analyzed for their semantic con-

tent. In order to label forward chaining systems, we have had to abbreviate

relevant domain knowledge in each rule. Only then a correct interpretation

of the semantics of the the clusters could be made. In a backward chaining

system such as Prolog, the goal predicate suggests very succintly the overall

objective of the rule. Therefore we labeled all 337 rules with their left-hand

side predicates.

Next, we ran IMRD-ES with different distance metrics in the MVP-CA

tool so as to find the most suitable one. The distance metric that resulted

in the most meaningful clusters was the consequent metric. This is because

Prolog is a backward chaining system with all the predicates or goals to be

fulfilled present on the left-hand side. Hence all domain knowledge in such a

system can be expected to reside on the right- hand side where how the goal

is being fulfilled is being elaborated.

Even though the consequent metric gave us some useful high-level clus-

ters, it was not possible to get deeper into the code as most of the clauses on

the right-hand-side were procedure calls to Pascal. All the control structure

was found to reside in Prolog rules and the real computations were carried

out in Pascal procedures.

The rules in Prolog were structured approximately into the following clus-

ters as discovered by the MVP-CA tool (also shown in Figure 1):

20

Control

Initialization

Control

Termination

Inputs

- User input

- File input

Jammers

Find interference

Identify jammers

Clutters

- Ground clutter

- Weather clutter

CCM

Set jammer ECCMs

Set clutter ECCMs

Radar Resources

Allocate radar controls

Output

Display AI output

Ouput radar controls

Figure 1: A viewpoint of the IMRD-ES Rulebase

21

• Control rules for performing initialization, control and termination of

the program.

• Input rules for reading file input as well as user input.

• Jammer detection rules to find interferences and identify the types of

jammers present.

• Clutter detection rules to discriminate ground and weather clutter.

• Counter-counter measure rules to set jammer as well as clutter elec-

tronic counter counter measures (ECCM).

• Radar resource allocation rules to apportion the resources of the radar

according to the prioritization of the threat regions, as well as overall

quality options set for the different priorities.

• Output rules to display the radar control and AI outputs onto a screen.

In the original partitioning of IMRD-ES by the developers, radar resource

allocation rules, input-output rules and control rules were scattered across

different files. Our clustering brought these rules into a single perspective.

This clustering of the IMRD-ES rules allowed us to gain an understanding

of the structure of the AI portion of IMRD-ES. However, MVP-CA tool

currently works only on rulebases. Most of IMRD-ES domain knowledge

is in the Pascal routines while the control knowledge is in the 337 Prolog

predicates. Thus, MVP-CA could focus only on the control part. In order to

perform more extensive analysis, mechanisms are needed which can include

22

the information about data accesses made by the Pascal routines offline and

feed it into the multi-view point tool.

5.2 Results of using MVP-CA on CFAR-ES

The CFAR-ES system was developed using Gensym's G2, and could not be

subjected to a similar study for the following reasons: G2 is a closed system

storing all the rules in the internal format. It does not provide a mechanism

for extraction of the rules to perform an offline study. This is the reason that

the CFAR-ES tapes sent by Rome Laboratories could not be installed on our

system. Since the CFAR-ES was built from within the Gensym shell, the first

two tapes could not be read using the Unix environment. The ASCII version

of the code had to be extracted through the "inspect" facility in Gensym.

Finally, a readable version of the tape was received. However, there were

only six rules to be installed and these could not be analyzed as they had

been pulled out of their procedural environment. Hence they were out of

context and analyzing them could give very misleading results.

It became evident to us during our trip to Rome in May 1994 to get

a demonstration of the CFAR-ES that none of the CFAR rules written in

G2 were in a stand alone form, i.e., they were embedded in C procedure

calls. This design possibly precluded the use of any efficient pattern matching

scheme provided by G2's inference engine.

We also tried to access CFAR-ES code through the internet connection

and analyze it by running it on Rome Laboratories Sparc station. However,

due to security reasons all such access had been suspended and we were

23

unable to run the software from off-site.

6 Results of the Analysis

6.1 Issues in Integration of IMRD-ES with CFAR-ES

As discussed in the earlier section, we were able to analyze the IMRD-ES

code. However, since the CFAR-ES code could not be installed entirely, we

had to base our understanding of CFAR-ES on documentations and papers

provided to us by Rome Laboratories.

One of the major commonalities found in the two codes is that both

use clutter (ground and weather based) information. In IMRD-ES the clut-

ter information as generated by processing the CPI2 beam is used to set

up the electronic counter-counter measures (ECCMs). Similarly, clutter in-

formation along with other geographical statistical information is used by

CFAR-selection expert system to choose the appropriate CFAR algorithm to

execute. Thus, in an integrated system, this information can be generated

once for each beam and updated and used by both codes. An integrated

system is depicted in Figure 2.

A possible timeline for the preprocessing of the beam scan data and the

execution of the IMRD-ES and CFAR-ES is'shown in Figure 3 (not drawn

to scale). Assuming independent hardware for the two functions, as in the

current system, the timeline shows how the preprocessing can be done in

parallel with the execution of the integrated IMRD-ES and CFAR-ES codes.

24

CFAR

Detection PPI

Processing Display

i L

Signal

Processing

(ST 100)

■ '

C Band

Radar

! CFAR
Adaptive i

[Selection
Control [-gg

, L

Us
Radar

er
V^OIll

(HP £

LOJ.

mi) Input

Figure 2: Suggested Integeration of IMRD-ES and CFAR-ES codes

25

CPU
Preprocessing

CPI2
Preprocessing

CPI3
Preprocessing

CFAR
Algorithm

CPU Data CPI2 Data

Algorithm Choice

CPI3 Data

Jammer Detection Clutter Detection + ECCM Selection

CFAR Selection

Figure 3: Timeline for preprocessing and IMRD-ES/CFAR-ES (not drawn

to scale)

6.2 Disadvantages of Prolog

There is no structuring mechanism in Prolog which makes it very difficult

to modify any software because interdependencies are not obvious upfront.

Moreover, "cuts" and "fail" type of constructs limit the comprehensibility

of code even further. Ideally, all such low-level control should be exercised

through the inference engine. Furthermore, Prolog provides no direct support

for real-time constraints which can be a very big drawback considering the

time constraints that need to be satisfied in the new system. Also there is

no direct support for fuzzy logic or uncertainty. Since the fidelity of radar

data is not that high, due to distortions produced in them by environmental

conditions, any conclusions that are drawn about possible threats, should be

qualified with a degree of confidence level.

26

6.3 Disadvantages of G2

Gensym's G2 provides no real-time support at the level required by Rome

Laboratories radar surveillance systems. Also there is no fuzzy logic incor-

poration. The biggest drawback that we see in G2 is that the system stores

all information in an internal format making extraction of knowledge very

difficult. Even though it is an object-oriented system, an external verification

and validation of the knowledge-base is impossible in the current setup.

6.4 Expert System Characteristics Desired

Based on our knowledge of IMRD-ES and CFAR-ES we advocate that the

following features will be desirable for the expert system shell choice:

• real-time constraints

• supports object-oriented design

• good integration with C or C++ routines

• incorporates fuzzy logic or at least uncertainty handling

• extensibility or modifiability of code

• maintainability and system support

• backward chaining system, since fidelity of data is not high enough to

warrant a forward-chaining data-driven system.

27

7 Conclusions

In this project, we have used Pragati's MVP-CA tool to structure and analyze

the IMRD-ES rulebase used for resource allocation in radar signal processing

Based on our analysis of IMRD-ES software along with the understanding

gained from the CFAR-ES documentation, we have suggested possible mech-

anisms for integrating the two systems. These include removal of redundant

computation such as clutter detection which is common in both codes. We

have also suggested potential situations where parallelism between the pre-

processing and algorithm steps can be readily exploited if the integrated

system is ported to the appropriate hardware.

Based on our analysis, we have also shown the shortcomings of the cur-

rent expert system shells used in the two systems. We have suggested char-

acteristics desired in an expert system shell which can be used to efficiently

implement the integrated system such that it meets the desired realtime con-

straints.

References

[1] V. R. Basili and B. T. Perricone. Software Errors and Complexity:

An Empirical Investigation. Communications of the ACM, l(27):42-52,

January 1984.

[2] B. Chandrasekharan. Generic tasks in knowledge-based reasoning:

High-level building blocks for expert systems design. IEEE Expert. Fall

1986.

28

[3] Expert System Verfication Validation and Evaluation Handbook: Version

2 (Draft), June 1994.

[4] N. Leveson. Software Safety: What, Why and How. Computing Surveys,

2(18):125-164, June 1986.

[5] M. Mehrotra. Rule Groupings: A Software Engineering Approach to-

wards Verification of Expert Systems. Technical Report NASA CR-4372,

NASA Langley Research Center, Hampton, VA., May 1991.

[6] M. Mehrotra. Application of Multi-Viepoint Clustering Analysis to a

Highway Maintenance System. Technical report, Pragati Final Report

- to appear as an NTIS report also, Yorktown, VA., November 1994.

[7] M. Mehrotra and S. C. Johnson. Importance of Rule Groupings in

Verification of Expert Systems. In Notes for the AAAI-90 Workshop on

Verification, Validation and Testing of Knowledge-Based Systems, July

1990.

[8] M. Mehrotra and S. C. Johnson. Rule Groupings in Expert Systems. In

Proceedings, First CLIPS Users Group Conference, Aug 1990.

[9] M. Mehrotra and C. Wild. Multi-view point clustering analysis. In Pro-

ceedings, 1993 Goddard Conference on Space Applications of Artificial

Intelligence, pages 217-231, May 1993.

[10] M. Mehrotra and C. Wild. Multi-viewpoint clustering analysis. In Notes

for the AAAI-93 Workshop on Verification, Validation and Testing of

Knowledge-Based Systems, July 1993.

29

[11] M. Mehrotra and C. Wild. Analyzing knowledge-based systems using

multi-viewpoint clustering analysis. Journal of Systems and Software,

to appear in March 1995.

[12] M. Mehrotra, C. Wild, and D. Rosca. Role of clustering analysis in the

verification of expert systems. In Notes for the AAAI-92 Workshop on

Verification, Validation and Testing of Knowledge-Based Systems, July

1992.

[13] C. Wild, J. Chen, and D. Eckhardt. Reasoning about Software Speci-

fications: A Case Study. Proceedings of AIAA Computers in Aerospace

VII Conference, pages 297-306, October 1989.

t-u.Z. GOVERNMENT PRINTING OFFICE: 1995-610-126-5018

30

Rome Laboratory-

Customer Satisfaction Survey

RL-TR-

Please complete this survey, and mail to RL/IMPS,
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly
appreciated.
Thank You

Organization Name:_ (Optional)

Organization POC: (Optional)

Address: .

1. On a scale of 1 to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating

Please use the space below to comment on your rating. Please
suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

3. Do any specific areas of the report stand out as inferior?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

4. Please utilize the space below to comment on any other aspects
of the report. Comments on both technical content and reporting
format are desired.

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

