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INTRODUCTION

Continuing research into hybrid stress finite element formulations has been directed towards minimizing the
computational cost associated with computing element stiffness coefficients in order to make hybrid elements
competitive with purely displacement-based formulations. Much emphasis has been placed on reducing the
computational cost of inverting the complementary energy or flexibility matrix inherent to the hybrid stress
method and has led to insightful yet elaborate procedures and approximations directed towards this aim 23,
Recently, a general procedure has been developed by the author for simplifying the stiffness definition by
making full use of the freedom in selecting and manipulating assumed stress fields which include the gener-
ation of a weighted orthonormalized stress mode basis*. In this approach, the flexibility matrix is formally
eliminated and the resulting expression for the element stiffness matrix is reduced to the integration of a
single constituent matrix which can be accomplished in closed—form. Such an evaluation results in algebraic
equations which can appear cumbersome; however, these statements replace the formation and inversion of
the flexibility matrix and, more importantly, the costly numerical quadrature of large—order matrix products.
In contrast, displacement-based continuum elements under general distortion possess an integrand involving
rational functions due to the presence of the Jacobian determinant in the denominator which precludes a
simple explicit evaluation of stiffness coefficients in algebraic form. Such a represention of basic strain energy
characteristics by rational functions compounded by possible nonlinear variations in material properties make
the inherent polynomial approximation of Gaussian quadrature schemes significant in regards to the rate of
solution convergence. The present method is completely generic and potentially avoids all approximations
made to the formal variational definition of hybrid element stiffness matrices. The developed technique is

utilized in two different element derivations. First, a closed-form set of expressions are developed for the '

stiffness coefficients in the Pian-Tong hexahedral element ® which is a robust 8-node solid continuum element
and presents.a formidable degree of difficulty in deriving an explicit formulation. Secondly, the method
is extended to derive explicit expressions for element stiffness matrices incorporating nonconstant material
properties for nonlinear-elastic problems which, within the framework of finite element solution methods,
usually require computatlonally intensive, iterative solution procedures. As an initial effort towards that
aim, an explicit formulation is developed for the 4-—node Pian-Sumihara hybrid quadnlateral element®. The
resulting closed-form derivations demonstrate a substantial reduction in computational cost over purely nu-
merical treatments in generating element matrices.

VARIATIONAL BASIS OF THE HYBRID MODEL

The form of the Hellinger-Reissner energy functional utilized in References [5] and [6] is given by
g = / (=1/2)07Se + o7 (Luy) - (L) usldv (1)

where o is the assumed stress field, S is the material compliance matrix, u, and uy are the assumed compat-
ible and incompatible displacement fields and L is the differential operator relating strains to displacements.
The assumed stresses may be represented by

o=Pp (2)
where P is a matrix of polynomial terms and B is a vector of undetermined expansion coefficients. The
displacement field is assumed over the element domain as

u=u, +u)=Nq+M ' » (3)

where N and M are compatible and incompatible displacement shape functions, respectively, q are nodal
displacements, and A are Lagrange multipliers which variationally enforce the field equilibrium conditions.
These variational constraints are applied a priori to the assumed stress modes which condense the influence
of the incompatible modes into the element formulation. The resulting express1on for the element stiffness
matrix is given by

K =GTH"'G : ' (4)
where

H = / PTSPdv (5)

v




G = / PTBdv (6)

in which B is the strain-displacement matrix. In the above formulation, the a priori condensation of the
incompatible displacement modes results in an H matrix which is fully populated and has hitherto required
the inversion of a full matrix of order dim(g3).

COMPUTATION OF EXPLICIT STIFFNESS MATRICES

The procedure developed in Reference [4] for simplifying the expressions involved in (4) is outlined below.
The method utilizes a sequence of permissible transformations of assumed stress fields to simplify the stiffness
definition. The assumed stresses are first transformed through the introduction of a symmetric ‘distributing’

matrix as
P=IP =(DD"')P =D(D"'P) = DP (7)

where the distributing matrix is defined as :
D =S§-1/2 ®)

The inverse square root of the compliance matrix is obtained through a standard spectral decomposition?. For
illustration, the decomposition of 2-D and 3-D orthotropic compliance matrices are presented in Appendix
I. Substitution of (7) into (5) yields

1 1 1
- BT NT D
H= /_ 1 [ 1 /_ 1[|J|P DTSDP]d¢dyd¢ (9)

_ where, from the definition of D and the symmetry of both S and D, we obtain

DTSD = s-1/288-1/2 = gs-1 =1

and the flexibility matrix redﬁées to : _

: SU O ,

m= [ [ [ (opreleanac (10)
~1J-1J-1 »

A second field transformation uses equation (10) to define a weighted inner product for use in a Gram-
Schmidt procedure to generate an orthonormal spanning set of stress modes, P*, which are a special linear
combination of the modes present in P. The weighted inner product is therefore defined as

1 1 1
B. P. > PTPH. — 5.
< P;,P; >_/—1/_1/:1[|J]P, P;]d{dnd( = §;; , (11)

where §;; is the Kronecker delta function. The linear combination yielding a sequence of orthogonal stress

modes is given by _
P; i=1

-1
Vig) - <PLBi>P;  i>1 (12)
1

j=
which are normalized to form basis vectors, P}, as

Pl =<V, V;> 12V (13)

Substitution of P* into equation (10) yields by definition

1 gl g1 _
H= / / / (IP*TP*|dednd¢ = 1 (14)
-1Ja1J-
The new basis for the element stress field is now given by

P =DP* (15)




and the expression for the element stiffness matrix reduces to
K=GTG (16)

Separating out the Jacobian determinant from the isoparametric strains as

1
- —B* 1
B= IJIB &m0 (17)

and substituting (15) and (17) into (6) yields the G matrix definition as

G= /_ 11 /_ 11 /_ ll[P"TDB']dfdndC (18)

The absence of the Jacobian determinant in the denominator permits a direct derivation of algebraic expres-
sions for the G matrix coefficients. The explicit form of the element stiffness matrix is then obtained from
equation (16).

EXPLICIT PIAN-TONG HEXAHEDRAL ELEMENT

X
| OAN

Figure 1. Hexahedral element configuration.

The configuration of the 8-node Pian-Tong hexahedral element is depicted in Figure 1. The compatible
displacement functions u, are given by

uq 8 4 s A
U =9 Y = 1 ‘5(1 +&OA+mn)(1+ GO v (19)

Wq i= w;

As detailed in Reference [5], incompatible displacement modes are introduced to complete the cubic order
of the assumed isoparametric displacement field. These modes are condensed a priori into the element for-
mulation through constraint conditions on the assumed stress modes.

The stress field utilized in the Pian-Tong element is assumed in natural coordinates and transformed to
physical coordinates using Jacobians computed at the element centroid as

o = (1)E(Jo)ir (20)

Performing the initial transformation of stresses given by (7) results in the physical or Cartesian stress field
given by B B
0 =[05,0y,0;, Tyzy Tez, Toy)? = PeB, + PrBy (21)




where

P.= (22)

and
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eq2f €43l ess eqn eq3n eqen eq1( el esal eqzfn ennl es42é(
es2f es3 ess esin esan esen esi¢ esol esal essén esinC es2é(
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-
]

The coefficients e;; are obtained from the product of the inverse distributing matrix and a transformation
matrix relating tensorial stresses to physical components. This relationship is given by

E=D"!'T
or

diy diz dis ai a i 2aya2 2aza;3 2aja3

dy1 dyp daa b2 b3 b3 2b1by 2b9b3 2b1b3

[ei;] = d3; d32 d3z - c 3 - 3 2¢1c9 2¢qc3 “2¢1c3
a deg; .~ | | @161 acy; asc3 axcy+aicy a3cz +axcs  ager +aics
dss a1by @by asby aiba +azb;  azbz+azby aybs +ash

dse bicr  bacy baca bica +byey  bacz + baca  byes + byey |

The isoparamétric mapping between local physical and natural coordinates is given by

z = @f+an+as(+a4n+asé( +aen( +arén(
y = bi§+bon +b3( +baln +bsE( + ben¢ + brén( (24)
z = a§tcean +cea( +can + csEC + cend + crénd
where ) )
EE (-1 1 1 -1 -1 1 1 —17|% n &
az by ¢ -1 -1 -1 -1 11 1 1}]|%* ¥ =2
a3 by c3 S R T T T S B S B T3 Y3z
ag by ea |==] 1 -1 -1 1 -1 1 1 -1 T4 Yo 24
as bs cs | S| -1 1 -1 1 -1 1 -1 1]|]|% ¥ =
as bs cs -1 -1 1 1 11 =1 =1 Te Ys Zs
| a7 b7 cr | | 1 -1 1 -1 -1 1 -1 1| ‘;‘: z: Z

Orthonormalizing the stress modes according to (12) yields the final transformed stress field composed of
constant modes given by

P: =mn Pc (25)
and higher-order modes given by

P = [P;;Pg’Ps‘;’PIO:PIDP;'pPIa,P;‘t:PIs)PIe:PI?vP;s] (26)




The columns of the higher—order stress modes with i = 1,2,3,...,6 and j = 1,2,3 are given by

{P:",j-l-s}
{P;,j-}-g}
{P;,j+12}
{Pf,m}
{P:",17}
{P?,m}

where the expressions for n;

njye{rigj-1§ +1i2;}
nj49{ri3j+an + ri3j4s€ + Ti 346}
njp12{ri aj+12C + Ti4j 4130 + Ti4j414€ + Tigj s}
ni6{ri 2860 + ri,20C + ri,307 + ri31€ + i 32}

ny7{ri 33nC + ri,3a€n + i 35¢ + ri 360 + 18,378 + 73 38}
n18{ri 306C + 73 401 + 73 4160 + 7i,42C + i 430 + 75 2a€ + i g5}

and ry; are presented in Appendix II.

. The integration of (18) yields the following expressions for elements of the G matrix in which j = 1,2,3, ...,8.
Specific components utilize an additional index, #, which assumes the values ¢ = 1,2,3. The components are

given by

9i,35-2
94,35 -2
95,352
g6,3j-2

nnun

9i+6,3j -2

9i46,3j -1
gi+6,3f

9i+9,3-2

9i+49,3j -1
9i49,35
9i412,35-2

Ji4+12,35-1

9i412,35

916,35 -2

916,35 -1

916,35

917,3j-2

917,35 -1

g17,3j

918,3j -2

918,37 -1
918,3; =

dyiTi(1,75) gi,3j -1
0 94,3j-1
dssT'1(3,5) 95,3j~1
des'1(2,7) 96,35 -1

d2iT1(2,7)
daal'1(3,7)
0

desT'1(1,4)

9i,35
94,35
gs5,3j
96,35

i

d3:T1(3,7)
dsaT'1(2,75)
dssT'1(1,5)
0

d11T5(1,4,4, ) + d12T2(2,4, 4, 7) + d1aT2(3, 4,4, §) + dssT2(5, 6,1, j) + desT'2(6, 5, 7, §)
an‘z(l, 5,1, ]) + dzzrz(z, 5, 1,]) -+ d23I‘2(3, 5,1, ]) + d44P2(4, 6,1, ]) + desrz(6, 4, i,j)
d;nrz(l, 6,1, ]) + d32F2(2, 6, l,]) + d33F2(3, 6,1, ]) + d44F2(4, 5, 1,]) + d55F2(5, 4,1, ])
d11T3(1,7,4,§) + d12Ta(2, 7,4, 7) + diaT'a(3,7,4,5) + dssT3(5,9, 4, 5) + des '3(6, 8, , 5)
d21T3(1,8,4,5) + d22T3(2, 8,1, 7) + d2al'a(3,8, 4, §) + daaT'3(4,9,4,5) + desT3(6,7, 4, §)
d31T3(1,9,4,5) + daaT'3(2, 9,4, §) + dsal'a(3,9, 4, 1) + daaT's(4,8,3, j) + dssT'a(5, 7,4, j)
d11T4(1,10,7,5) + d12T4(2, 10,4, §) + d1aTa(3,10,4,5) + dssTa(5,12,4,7) + desTa(6, 11,4, 5)
d1T4(1,11,4,5) + dpoTa(2, 11,4, 5) + d2al'a(3,11,4,5) + daaTa(4,12,4,5) + desTa(6, 10,7, 5)
d31Ta(1,12,4,7) + d3aT4(2, 12,4, j) + daala(3,12,4,5) + daaTa(4, 11,4, ) + dssTa(5, 10,4, §)
“d11T5(1,13,7) + d12T's(2,13,5) + d1al's(3, 13, 7) + dssT's(5, 15, ) + desT's(6, 14, 7)
d1Ts(1,14, 7) + dpaT'5(2,14, ) + d23T's(3,14, 7) + daaT's(4, 15, ) + desT's(6, 13, §)
d31T's(1,15,7) + dsaT's(2, 15, 5) + daal's(3, 15, ) + daal's(4, 14, 5) + dssTs(5, 13, )
d11T6(1,16,7) + d12T6(2,16, ) + d13Ts(3, 16, j) + dssTs(5, 18, ) + dssT's(6, 17, 5)
d21T6(1,17,7) + daal'6(2,17,5) + d2als(3,17,7) + dasTs(4, 18, 5) + dssTs(6, 16, 5)
d31T6(1,18, j) + daaT'e(2,18,7) + dasTs(3, 18, 5) + daaTe(4,17,5) + dssTs(5, 16, §)
d11T7(1,19,7) + d12T7(2,19,7) 4 d13T7(3,19, 7) + dssT7(5, 21, §) + desT'7(6, 20, §)
d21T7(1,20, §) + daal'7(2,20, ) + d2aT'7(3, 20, 7) + daaT'7(4,21, ) + dssT7(6, 19, §)
d31T7(1,21,7) + dsaT'7(2,21,7) + dasl7(3,21, 5) + daal'7(4, 20, §) + dssT'7(5, 19, §)

where d;; are elements of the distributing matrix and the functions T'; are given by

I‘l(maj)
PZ(k, m, 171)
F3(kv mairj)
T4(k,m,i,7)
I‘S(ksm,j)
I‘G(k)mvj)
I‘7(k’m’j)

n1¢j,m/3

Ni6(Tk,20-10j,m + Tk, 2i0j,m-3)/9

ni+9(Tk,3i4+4Pj,m + Tk 3i459j,m=3 + Tt 3i46Pj,m—6)/9

ni412(Tk,4i+1205,m + Tk 4i4+130j,m—3 + Tk 4i+140j,m—~6 + Tk, 4i+15Pj,m-9)/9

n16(Tk,2805,m + Tk,200j m—3 + Tk 309j,m—-6 + T%,310j,m~9 + Tk 320j,m-12)/27
- n17(7Tk,3307,m + Tk 3¢0j,m—3 + Tk,350j m-6 + Tk 360j,m-9 + Tk,370j,m-12 + Tk 380j m-15)/27

m18(rE,3005,m + Tk,4005,m-3 + Tk, 418, m-6 + Tk 4205, m—9 + Tk, 430; m—12+

Tk,44%5 m—15 + Tk 450j,m-18)/27

(27)




The functions ¢;;, for i = 1,2, 3, are given by

i (8% + 3512)217: + (835 + 522)2‘2 + (6b4 +365)7 + (5 83 + 01 4)2'1 + (66 + 8%1)73 + (84 + 36%3) 7
$ii+s = (8%7+3814)7% + (8hy + 365,) 24 + (845 + EA + (643 + 38} 2)23 + (527 + 3531)2‘7 +3(655 + 543)ZJ

Siirs = (5hs + 3657 + (657 + 35{2)z + 3(8%1 + 654) 24 + (6k3 + 61a) 2] + (641 + 36%3)7) + (847 + 3836)7]
$iive = 3(8ie+ 6%2)217 + (552 + 3‘5:31)3 (567 + 3635)2‘1 + (526 + 551)24 (6 + 3853) 23 + (8% + 35&3)211 ,

biir1s = 3(6hy+ y’+M6 +6’pV+M%7+6 p§+wg+3g94+4& +3636)2] + (8% +3%9£
$iiv1s = 3(654 + 61 7)2'; + (854 + 368;) 2L + (836 + 385))2] + 3(836 + 853) 23 + (67 + 3635) 7 + 3(85 + b))

in which geometric constants are defined by
6;'1_7' = bicj - bjci 6,-2]- = ciaj — cja; 5,—3}. = aibj - ajb‘-

and values for z} with n =1,2,3, ...,8 are given by

23 25

T 1T 1 -I -1 1
11 -1 -1 -1 1
-1 1 -1 1 -

Q0 -3 OOk o N B
\ [ [ K\
e el e el ) it

1 1 -1 -1 1 -1 (28)
-1 -1 11 1]

1 1 1 1 1 1

1 -1 -1 1 -1 -1

101 1 1 -1 -]

NUMERICAL STUDIES OF THE EXPLICIT -PIAN-TONG ELEMENT

The followmg tables present computer run—tlmes comparing the explicit and numerical generation of stiffness
matrices in the Pian-Tong hexahedral element. In the numerical evaluation, under general element distor-
tion, quartic terms involving the natural coordinates appear requiring a 3"%-order Gaussian quadrature rule
for exact evaluation as is obtained in the explicit formulation. However, the underintegration utilizing a 2"9-
order rule has been found adequate to compute element stiffness coefficients without introducing spurious
kinematic modes. The influence of the quartic terms have a negligible influence and a 2”%-order rule is thus
considered standard for the 8-node solid hybrid element and is used herein for all numerical integrations.
No optimization was attempted in performing the computer implementations of the elements in terms of
code preparation or CPU processing options such as vectorization or concurrency. The codes were run on a
Hewlett Packard Apollo 400 series workstation in a Unix environment. The standard UNIX profiler Gprof
was used to characterize the time spent in performing various operations. In generating the computational
profiles, 1000 element stiffness matrices were processed. A description of the procedures used in the codes
which account for at least 97% of the computational cost are presented in Table 1. The designation ‘main’
combines the operations within the main program together with various subroutines which contribute in-
significant computational cost. Table 2 details the computational profile for the Pian-Tong element evaluated
explicitly and numerically.

Table 1: Subroutine procedures

Name Description Name Description

mxmul | matrix multiplication || gmatrx | explicit computation of G matrix

mxadd | matrix addition orthop | computation of orthonormal stress modes
invers | matrix inversion main main program + minor subroutines




Table 2: Computational profiles of the Pian-Tong (PT) element

PT-Explicit PT-Numerical
% self cumulative | procedure || % self cumulative | procedure
time | seconds seconds name time | seconds seconds name
70.5 | 39.99 39.99 mxmul 83.5 | 341.62 341.62 mxmul
186 | 10.56 50.55 gmatrx 7.3 29.90 371.52 mxadd
8.9 5.03 55.58 orthop 6.9 28.43 399.95 invers
2.0 1.12 56.70 main 2.3 9.42 409.37 main

The computational profiles quantify the different characteristics of the explicit and numerical versions of
the Pian-Tong element. As shown, the computational cost of both the explicit and numerical versions is
mostly spent in matrix multiplication and addition consuming 70.5 % and 90.8 % of the processing time,
respectively. Comparing total computer run-times, the explicit version requires only 13.9 % of the compu-
tational cost as that consumed in the underintegrated numerical evaluation. Not shown in the tables, the
exact integration of the quartic terms in the numerical version using 3r4_order Gaussian quadrature results
in a run-time of 1167.4 seconds. Compared to this the explicit formulation requires only 4.9 % of the com-
putational expense.

NONLINEAR ELEMENT STIFFNESS DEFINITION

The extension to nonconstant material properties requires that the compliance matrix be interpolated over
the element domain. For illustration, the Pian-Sumihara quadrilateral element is selected®. For the plane ele-
ment under study a bilinear isoparametric field is sufficient for interpolating compliance properties; however,
the derived D matrix is a nonlinear function of S thus requiring a higher order interpolation. A quadratic
isoparametric field is adopted in which the material matrices are computed at the stress recovery or material’
evaluation points depicted in Figure 2. Thus, at arbitrary points over the element domain D = §~1/2 and
the interpolation results in the relationship S = S being strictly valid at the recovery points and approximate
elsewhere. The accuracy of this approximation is discussed later in Remark I.

¢4 37 g3
*8 06 ——g
I *s )

Figure 2. Evaluation points used for material interpolation.

The interpolation is given by

8

(&) = Ni(én)9; (29)
i=1

where £2; represents the material D and D~! matrices computed at the i* stress recovery point and N; are

the associated quadratic-order isoparametric shape functions. Interpolation of the material matrices over

the element domain may be expressed as

206,0) = Ay + Azl + Asn+ Aul® + Asn® + Aeln + Ar€%n + Agln® (30)




where the constant matrices, A;, are given by

(A ) T o1 =1 -1 -1 2 2 2 27( @)
A, 9 2 || 2
As D) 2 25
A, 1] 1 -1 1 -1 2,
! A (21 1 1 1 1 -2 2 1 2 ( (31)
As 1 -1 1 1 9 ~2 || n
As 1 -1 1 1 2 -2 2,
| As -1 1 1 -1 D) 2| | 2

Following the procedure outlined above in equations (7) through (18), substitution of (7) into (5) based on
the distribution represented by equation (30) yields the flexibility matrix as

1 1
_ ST nRT D
H= /_ 1 /_ 3BT DT SDPldsdr (32)

where, from the definition of D and the symmetry of both S and D we obtain
DTSD = §-1/285-1/2 = 8§~ » 1 (33)

The approximation rapidly approaches an identity as the interpolation order of D increases and as the varia-

tion of material properties over the element diminishes. The flexibility matrix is thereby closely approximated
by

H=~ /_ 11 /_ 11[|J|13T Pldédn (34)

A second field transformation uses equation (34) to define a weighted inner product for use in a Gram-
Schmidt procedure to generate an orthonormal spanning set of stress modes, P*. This modal set is formed
" as a special linear combination of the modes present in P and constitutes an alternative basis set which
spans the original stress space. The weighted inner product is therefore defined as

1 1 B
-1J-1 ’

where §;; is the Kronecker delta function. The linear combination yielding a sequence of orthogonal stress
modes is given by _
P; i=1

-1
Vi= P;-) <P;,B;>P; i>1 (36)
i=1

which are normalized to form basis vectors, P}, as

P; =< V;,V; >_1/2 Vi ’ (37)

In the definition of P, the D~! matrix is interpolated according to (30) and carried into the subsequent
orthonormalization of assumed stress.modes. For the present study, however, a simplification is adopted
wherein the D matrix is interpolated according to equation (30) while its inverse is obtained from an area
average obtained by integrating over the element domain. This operation is not required but is utilized in
the present study to simplify the expressions for the orthonormalized stress modes, P*, while maintaining
an adequate approximation for the material properties. The inverse is thus defined as

D= [i / 11 / 11 D(E,n)dfdn] B (38)

D(,nD™! ~ 1 (39)

and the relationship




is satisfied in an integral sense for nonconstant material properties and pointwise for constant properties
over the element domain. Substitution of P* into equation (34) yields by definition

141
H= / / (I[P TP*)dédn =1 (40)
-1J-1
Repeating the above relations, the new basis for the element stress field is given by
P =DP* (41)
and the expression for the element stiffness matrix reduces to '
K=GTa (42)

Separating out the Jacobian determinant from the isoparametric strains as

1.,
B =3B &n.¢) (43)

and substituting (41) and (43) into (6) the G matrix definition becomes

e=/ 11 / 11 [P*TDB"Jdtdn (44)

The absence of the Jacobian determinant in the denominator permits a direct derivation of algebraic ex-
pressions for the G matrix coefficients which incorporate a nonconstant field of material properties over the
element domain. The explicit form of the element stiffness matrix is then obtained from equation (42).

NONLINEAR PIAN-SUMIHARA QUADRILATERAL ELEMENT

(x2,¥2)

Figure 3. Quadrilateral element configuration.

The configuration of the Pian-Sumihara element and node numbering are depicted in Figure 3. The dis-
placement functions u, are given by

u; = ( :: ) = ig(l +E.-€)(1+nsn)( :,‘ ) (45)

As detailed in Reference [6], stresses are defined in natural or tensorial coordinates and incompatible dis-
placement modes are introduced to complete the quadratic order of the assumed isoparametric displacement
field. These modes are condensed a prioriinto the element formulation through constraint conditions on the




assumed stress modes.

The tensorial stress field is transformed to physical or Cartesian coordinates using Jacobians computed

at the element centroid as

ot = (JO)f(JO);'

ol

(46)

Performing the initial transformation of stresses given by (7) results in the Cartesian stress field given by

o =[0;,0y,7y]T =PB

where

) 1 - ené
P= 1 c21é
1 cmé

C127
Ca21
€327

(47)

(48)

and the coefficients c;; are obtained from the product of D~! and a transformation matrix relating tensorial
stresses to Cartesian components. This relationship is given by

@11 (zl2 a$ a?
[C,'j] =D-lr= ds1 dog ~ b% b%
da3 azby ayh

The geometric parameters a; and b; are obtained from the mapping between physical and natural coordinates
given by

z = ag+ai{+an+asly (49)
Yy = bo+bi& +ban+ b3én
where -
ag bo 1 1 1 1 )y Y%
a; b _ 1 -1 1 1 -1 Ty Y2
as by T4 -1 -1 1 .1 1 T3 Y3 ;
as b3 1 -1 1 -1 T4 Yg
The Weighted orthonormalized stress modes are obtained as
pia 0 0 pi+pis P51+ p5€ +pia
P'=1 0 pl 0 pisf+pis DP5an+P3sé +Pis (50)
0 0 p3 pis§+pio D377+ Pisk + Pio
where the stress mode coefficients, pij, are presented in Appendix II.
Given the following constants arising from the regular structure of the strain modes
. . . _ ilalalg
e1j = boz]—biz ey = a1z} —ay7] IT-11-1[1
€5 = baz‘i - blzé €55 = alzé - a3zi where 2 1 -1 -1 (51)
€3; = bgzé - 53212 €e; = 03212 - agz':’, 3 1 1 1
41-1f 1¢(-1
and the general form for each stress mode given by
pitn + pi2 + pis
P; =< pian + pis€ + pis (52)
pirn + pis€ + pio

the integration of (44) yields explicit expressions for the components of the G matrix. The expressions
are based on the most general form of orthonormalized stress modes in which most terms are zero for
the simpler modes and the constants (dij)x are elements of the D matrix computed at the k** evaluation
point. In addition, for constant material properties, if all (d;;) terms are discarded for k£ > 1 the resulting
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expressions reduce to an explicit form of the linear-elastic Pian-Sumihara element. The components g;; with
i=1,2,3,....,5and j = 1,2,3,4 are given by

gizi-1 = (ph{(e1j{(di1)7 + 3(d11)3] + e3;[(d11)a + 3(d11)1 + 9(d11)5/5] + (d11)se2; } +
P {(e1j[(d11)s + 3(d11)2] + e2;[(d11)s + 3(d11)1 + 9(d11)4/5] + (d11)ses; } +
pla{(e2;[(d11)s + 3(d11)2] + esj[(di1)7 + 3(d11)a] + 3e1;[(d11)s + (d11)a + 3(dua)a]} +
pia{(e1;[(dr2)7 + 3(d12)a] + esj[(d12)s + 3(d12)1 + 9(d12)5/5] + €25(d12)e} +
pis{(e1j{(d12)s + 3(d12)2] + e2j{(d12)s + 3(d12)1 + 9(d12)4/5] + e3;j(dr2)s} +
pis{(e3j[(d12)7 + 3(d12)3] + e2;[(d12)s + 3(d12)2] + 3e1;[(d12)s + (d12)4 + 3(di2)a]} +
pi7{(e4j{(d33)7 + 3(ds3)s] + eq;[(daz)s + 3(daa)1 + 9(da3)s/5] + esj(das)s} +
Pis{(e4j[(daa)s + 3(dsz)2] + e5;[(das)s + 3(das)1 + 9(dsa)s/5] + ej(das)s} +
Plo{(es;[(d3a)s + 3(d33)2] + es;{(das)7 + 3(daa)a] + 3ea;[(daa)s + (ds3)a + 3(d33)1]})/9

(53)
gizi = (pi{(esjl(di2)7 + 3(di2)a] + es;[(d12)s + 3(d12)1 + 9(d12)s/5] + (drz)ses; } +

pia{(eaj[(d12)s + 3(d12)2] + e55[(d12)s + 3(d12)1 + 9(d12)a/5] + (di2)ses; } +
pia{(esi[(di2)s + 3(d12)2] + esj{(d12)7 + 3(d12)a] + 3eq;[(d12)s + (d12)a + 3(d12)1]} +
Pla{(e[(daz)7 + 3(da2)3) + eqj[(d22)s + 3(d22)1 + 9(d22)s5/5] + es5(daz)s} +
Pis{(e4;[(d22)s + 3(d22)2] + esj[(daz)s + 3(d22)1 + 9(d22)4/5] + e6j(d22)s} +
Pis{(es;j[(d22)7 + 3(daz)3] + e5;[(da2)s + 3(da22)2] + 3esj[(daz)s + (da2)s + 3(d22)1]} +
piz{(exj[(das)7 + 3(d33)a] + eaj[(daz)a + 3(daa)r + 9(daa)s/5] + e2;(das)s} +
pis{(e1;[(da3)s + 3(dsa)2] + €25[(dsa)s + 3(daa)1 + 9(d33)a/5] + e3;(daa)s} +
Pio{(e2;{(dsa)s + 3(dsa)z] + €3j[(daz)7 + 3(da3)s] + 3eq;((das)s + (daa)s + 3(daz)1]})/9

—_— o — —

NUMERICAL STUDIES OF THE EXPLICIT PIAN-SUMIHARA 'ELEMENT

Computer codes were generated to assess element computational characteristics. A description of the proce-
dures used in the codes are presented in Table 3. The designation ‘main’ combines the operations within the
main program together with various minor subroutines which contribute insignificant computational cost. No
optimization was attempted in terms of code preparation or CPU processing options such as vectorization or
concurrency. The codes were run on a Hewlett Packard Apollo 400 series workstation in a Unix environment.
The standard Unix profiler Gprof was used to characterize the time spent in performing various operations.
Table 4 presents computational profiles and computer run-times comparing the explicit and numerical gener-
ation of stiffness matrices in the nonlinear Pian-Sumihara quadrilateral element. An additional comparison is
made to a 4-node displacement-based element incorporating incompatible displacement modes which is pre-
sented in Table 5. The incompatible modes are based on quadratic functions and modified using a technique
presented in Reference [8] to identically satisfy the strong form of the patch test for incompatible elements.
A 2"% order Gaussian quadrature fule was used for all numerical evaluations in generating computational
profiles. In generating the computational profiles, 10,000 element stiffness matrices were processed.

Table 3: Subroutine procedures

Name Description Name Description

mxmul | matrix multiplication || gmatrx | explicit computation of G matrix

mxadd | matrix addition orthop | computation of orthonormal stress modes
invers | matrix inversion spectrl | spectral decomposition of S matrix

statc static condensation main matrix main program + minor subroutines
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Table 4: Computational profiles of the nonlinear Pian-Sumihara (PS) element

PS-Explicit PS-Numerical
% self cumulative | procedure % self cumulative | procedure

time | seconds seconds name time | seconds seconds name
32.76 | 16.55 16.55 spectrl 75.46 | 109.09 109.09 mxmul
30.09 | 15.20 31.75 mxmul 9.26 13.38 122.47 mxadd
21.71 | 1097 42.72 gmatrx 6.50 9.39 131.86 invers
3.17 1.60 44.32 orthop 8.78 12.71 144.57 main
12.27 6.20 50.52 main

Table 5: Computational profile of incompatible displacement-based element

D-Based
% self cumulative | procedure
time | seconds seconds name
71.6 | 160.82 160.82 mxmul
13.0 | 29.18 190.00 mxadd
11.0 24.63 214.63 statc
44 10.12 224.75 main

The computational profiles quantify the different characteristics of the explicit and numerical versions of
the nonlinear Pian-Sumihara element. In the explicit version, the eight spectral decompositions of the com-
pliance matrix consume the greatest amount of computational cost (32.76%). while matrix multiplications
constitute most of the computations in the numerical version (75.46%). The computational profile of the
explicit version shows that the operations involved in forming the orthonormal stress modes is insignificant
(3.17%) while the formation of the G matrix consumes 21.71% of the cost. The final evaluation of equation
(24), which is the only matrix operation performed in the explicit version, constitutes fully 30% of the cost
in forming the element stiffness matrix. Comparing total cost, the explicit version requires only 34.95% of
the processing time as the numerical evaluation and only 22.48% of the cost required in the incompatible
displacement-based formulation. While this represents a significant reduction in processing cost, application
of the developed methodology may be expected to show greater reductions in 3-D and higher—order hybrid
element formulations. This issue is discussed in Remark II.

A second demonstration is made to show the accuracy of the nonlinear material representation in the ex-
plicit formulation. Because the basic computational characteristics have been shown above, a cantilevered
beam under plane stress is solved where the material properties are not a function of the stress/strain state
but instead vary along the length of the beam. Such a problem is uncommon but serves to illustrate the
representation of material property variation in the clearest manner. The beam was analyzed using a coarse
model of 5 elements. Two different mesh configurations were used as shown in Figure 4; a uniform mesh
was adopted to assess optimum element performance and a nonuniform mesh was used to assess distortion
sensitivity to the simplifications currently incorporated in the explicit derivation. For simplicity, isotropic
material properties were assumed with a linear variation of modulus as depicted in Figure 5.
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Figure 4. Cantilevered beam configurations: a) uniform mesh, b) distorted mesh.

E©) A
© V =0.25
2000 ,

1000

0 5 , 10 -

Figure 5. Assumed linear variation in Young’s modulus along beam length.

Table 6 depict solutions for the explicit and numerical hybrid element formulatxons together with results
using an incompatible displacement-based element.

Table 6. Deflection of nonlinear cantilevered beam under end shear loading.

a)Uniform Mesh b) Distorted Mesh
Elements Va | 0z) | 0z(e) || Elements R a0 | 0200
PS-Explicit -88.7 | 4045 | 3587 || PS-Explicit -86.1 | 4048 | 3728
PS-Numerical | -89.1 | 4050 | 3600 {| PS-Numerical | -90.1 | 4047 | 3735
D-Based -89.0 | 4050 | 3586 [| D-Based -89.9 | 3276 | 3079

Exact -90.4 | 4043 | 3601 || Exact -90.4 | 4043 | 3601

Comparing the above results show an excellent agreement between the explicit and numerical hybrid el-
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ement formulations for both meshes; a small departure is seen in the tip deflection prediction in the explicit
formulation using the irregular mesh due to the incorporated simplifications. The incompatible displacement—
based element demonstrates good results for both stresses and displacements using a uniform mesh; however,
in the distorted mesh, stress recovery is severely compromised. In general, the greater computational cost
of the displacement-based element makes it unappealing.

REMARK I

An important aspect of the above development involves the collocation error of the ID matrix over the
element domain using quadratic isoparametric shape functions. Because this matrix is computed as the
square root of the material stiffness matrix, the individual components in D are interpolated to yield the
approximate relation given above in equation (39). A formal error estimate may be derived for arbitrary
variation of material properties and order of collocation polynomials; however, a clearer illustration may be
given by assuming a specific variation in the compliance matrix components as a function of a single coor-
dinate, thus simplifying the error analysis to a one-dimensional demonstration. A linear function is selected
in which a parameter, 0, is used to set the magnitude of variation in the material component denoted by Cj.
The resulting square root distribution is given by

£€) = G "L+ 01+ &)1/
The values of f(£) at the evaluation points along £ € (—1,1) are depicted in Figure 6.

)4

Co2(1+0)  CoP(1+20)

¥
! 4 >
-1 1 :
Figure 6. Variation in material properties over segment.

The quadratic isoparametric interpolation is given.by

p(€) = C (1 +0)1/2 + & 511 +20)% + [1—2<1+e)1/2+(1+2e)1/2152}

An error measure for point evaluation may be given by

1£(6) = p(©)]
B=""r0

A second error measure is associated with the difference between the integrated areas computed by the exact
solution and the quadratic collocation. The integral of the exact distribution is given by

! 2
F©) = [ 1€ = 55Co' 20+ )% 1

while the integral of the collocated function is given by

P(E) = /11 ()df“001/2[1+4(1+9)1/2 (1+20)/2]
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An error measure for the integral evaluation may be given by

IFE) - PE)
B==F0

Table 7 details error measures at the points of maximum expected error and the integrated error between
the two assumed functions.

Table 7. Error measures for point and integral evaluation of material property interpolation.

T BE=-D[HE=D] &
0.00 0.0 0.0 0.0
0.01 2.287E-6 2.262E-6 | 5.005E-9
0.05 2.603E-4 2.467E-4 | 2.683E-6
0.1 1.862E-3 1.681E-3 | 3.581E-5
0.2 1.211E-2 1.003E-2 | 4.109E-4
0.3 3.384E-2 2.606E-2 | 1.542E-3
04 6.739E-2 4.871E-2 | 3.7T10E-3
0.5 1.120E-1 7.658E-2 | 7.048E-3
0.6 1.664E-1 1.083E-1 | 1.158E-2
0.7 2.292E-1 1.429E-1 | 1.728E-2
0.8 2.993E-1 1.794E-1 | 2.406E-2
0.9 3.754E-1 2.171E-1 | 3.184E-2
1.0 4.565E-1 2.555E-1 | 4.051E-2

The above table indicates that the maximum point collocation error for a 40% variation in modulus (6 = 0.2)
over the segment is just over 1%. At 6 = 0.5, corresponding to a 100% variation in material properties, the
point error increases to 11.2%. However, even when the properties vary by a factor of 3 (6 = 1.0) over the
segment, the integrated error, Ej, is still small, on the order of 4.05%. ’

REMARK II

With stresses assumed in natural coordinates, the procedure described herein may be applied directly. For
higher—order elements, the approach of assuming tensorial stresses with a contravariant transformation us-
ing centroidal Jacobians to obtain Cartesian stresses is inaccurate and neccessitates a formulation based
on stresses assumed a priori in Cartesian coordinates. For assumed Cartesian stress fields, a fully explicit
derivation may become overly cumbersome and computationally disadvantageous. In such cases the basic
methodology is applied but numerical quadrature of the scalar integrals arising in the weighted inner product
and computation of G-matrix components is advocated. In higher—order elements, the reduction in compu-
tational cost afforded by adapting the present methodology is expected to be significantly greater than that
demonstrated for the 4-node quadrilateral element due to the larger order of the constituent matrices. The
computational savings result from eliminating the cost of forming and inverting the complementary energy
matrix, H, and by replacing the numerical quadrature of large—order matrix products by the quadrature of
a small set of scalar integrals.

CONCLUSION

The developed methodology for deriving explicit hybrid element stiffness matrices has been applied to the
linear-elastic Pian-Tong 8-node solid continuum element and has been extended to develop an explicit
formulation for the nonlinear—elastic Pian-Sumihara quadrilateral element. The 3-D element formulation in-
corporates a complex set of higher—order stress modes yet, through application of a simplifying methodology,
has been shown to permit a straightforward derivation of explicit algebraic expressions for element stiffness
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coefficients. In comparison with an underintegrated numerical version of the element using a 2"9%-order Gaus-

sian quadrature rule, the explicit derivation required less than 14 % of the computational cost in forming

element stiffness matrices. If an exact integration is required in the numerical version, the explicit derivation
demonstrates a 20-fold increase in computational efficiency. The enhancement of computational efficiency of

hybrid element formulations for nonlinear analysis has been demonstrated using the 4-node Pian-Sumihara
quadrilateral element to derive explicit formulations accommodating nonconstant material properties. The

derivation of an explicit element stiffness matrix has been shown to substantially reduce the computational

cost in nonlinear analysis. The developed methodology is completely generic and may be applied to any

hybrid element formulation to reduce the computational cost in linear and nonlinear applications. In the

application to higer-order element formulations, an assumption of Cartesian stresses lead most efficiently to

a combination of numerical evaluation of the scalar integrals involved in the orthonormalization process and

in the integration of of various integrals required in determining components of the G matrix. All other inte- N
grations may be performed analytically. The increase in efficiency demonstrated with a linear-order hybrid
element is expected to be even more pronounced in higher—order element formulations due to the elimination
of forming and inverting the complementary energy matrix and by replacing the numerical quadrature of
large—order matrix products with the analytical/numerical integration of a relatively small set of scalar inte-
grals. The application of the above methodology can be expected to find general application in hybrid and
mixed element formulations and provide a significant reduction in computational cost in generating element
stiffness matrices for linear and nonlinear analysis.

APPENDIX I

SPECTRAL DECOMPOSITION

The spectral decomposition of an orthotropic material compliance matrix is given by

D= 5—1/2 — Cl/2 : Cl/? =.QA1/2QT

where the C and D matrix are given for a 2-D orthotropic material as

cir ci2 0 diy diz 0
C=]ca2 ¢ca 0 D=| dia d2 0
0 0 eca3 0 0 ds3

The eigenvalues are computed as

w1 = (=v/c53 — 2c1100 +4ciy + 3 + caz + c11)/2
Y2 = ( \/632—2611622+4c%2+6§1+C22+611)/2
3 = C33

yielding the A/2 matrix as

4 AY? = diaglpy”?, 03*, 03]
The @Q matrix is defined as

Q = [01]®2|®s]
where the eigenvectors are given by
~ €12 _ P2 — C22 _ 0
=49 pr—cnn g, 2= C12 , P3=¢ 0
0 0 €33

and normalized as




&; = N;®;

The computation of the 3-D distributing matrix using the symmetric C matrix for an orthotropic material
is performed as follows.

c11 c12 a3 0 0 O dyy dig diz 0 0 O
c1g €2 c3 0 0 O dig dyp dyz 0 0 O
c=|c3 ¢ cs3 0 0 O D= dig daz dzz 0 0 0
- 0 0 0 C44 0 0 0 0 0 d44 0 0
0 0 0 0 Cs5 0 0 0 0 0 d55 0
0 0 0 0 0 Ce6 0 0 0 0 0 dss
In the spectral decomposition, eigenvalues are obtained as
p1 = ti+ta—a/3 Pa = cCay
P = (——(t1 + tz) — 20/3 + \/—3(t1 - tg))/? Y5 = Css
w3 = (=(t1+1t2)—2a/3 —/=3(t1 —t2))/2 P = Ce6
where
t, = (r+/@+rR)/3
o= (r- O
g = b/3-a%/9 ; r=(ab—3c)/6—a%/27
a = —(caz+caz+cu)
b = (caz+ci1)cas — iz —ciz+cica —cly
¢ = (ciicaz +¢y)cas + 11633 — 2ci2¢13¢03 + c23c02
yielding the A!/? matrix as '
. e 1/2
A2 = diaglp)?, 0%, 03" 0} 04 0
The @ matrix is given by
Q = [®;|D2|P3|P4|P5|Ds]
where the eigenvectors are given by
(caz2 - <P1)(033 - 1) — Cga [ c13c03 — c12(cas — p2)
€13C23 — 0125033 - 1) (c11 — p2)(cas — p2) — ci3
T C12C23 — C13(C22 — <P1) 5 C12€13 — 023(011 - <P2)
Ql - 0 ) @2 = . 0
0 0
0 k 0
c12€23 — c13(ca2 — ¥3) 0 ) 0 0
c12¢13 — ca3(c11 — <P3)2 0 0 0
= ) (c11 — p3)(c22 — p3) — ¢y = 0 = 0 | s _ 0
®3 = 0 :¢4 - Cas ? ) Q5 - 0 ’ ¢5 - 0
0 0 Css 0
0 0 ) 0 Ce6

and normalized to yield




In the case of degenerate eigenvalues, the associated eigenvectors are discarded and replaced by vectors
orthonormalized to the independent eigenvectors using the standard Gram-Schmidt procedure. In addition,
the inverse of the distributing matrix is obtained by simply replacing the diagonal A matrix in the above
with the following

AY? = diaglpT 032, 0312 07 P 05 0g 1P

APPENDIX II

ORTHONORMAL STRESS MODE COEFFICIENTS FOR THE 3-D
PIAN-TONG HEXAHEDRAL ELEMENT

For 3-D coordinate transformations, the determinant of the Jacobian is given by

Il = s1 4526 + 530+ 54 + 5516 + 56C€ + 57(n + 58E% + 590% + 510€% + 511(N€ + 5120€2+
513C€% + 514€0° + s15Cn? + 5166¢% + 51712 + 518(NE% + 519(EN? + 520mEC?
where
s1 = ¢ s6 = ¢hi+tehit+els su =28 sis = ol
s2. = P +eh 51 = platelatels s o= ¢ly st = o
s3 = ¢+ e 58 = piy 513 = P51 S18 = Pl
54 = 9§ +¢3 So = ¢ S1a = ply S8 = Pl
Css = Phtelately s = @8 s1is. = Pl S0 = Pgs
and _
Pie = ai(bjer — bicj) +bi(cjar — ceaj) + ci(a;by —arb;)-:
The stress mode coefficients, r;;, are given by 4 '
Ti1 = Ci2 . Ti28 = &3
ri2 = —CiaAz/ M Ti20 = — 3724 — B5Ti 20 — P3ci1
ri3= ci3—Piriy ri30 = —@i7i 25 — P3ri 21 — P31 17 — PIri 13—
Ti4 = —cizAz2/A1 — diri o v $2ri 10 — PRri7
ris = Cis— iriz — diri1 31 = —Biri 26 — P3Ti 20 — G318 — B3I 14—
Tig = —@iria — P3rin — cisAa/ A $2ri11 — Barig — PIri5 — PIri a3 — PIri 1
ri7T= Gy ri32 = —@1ri 27 — @57i 23 — P31 19 — BITi 15—
rig = —¢iris — ¢ariz — d3rin $3ri12 — $2riio — BITi 6 — B3ri 4 — Piria—
Tio = —@3ri6 — ¢3ria — d3ri2 — citAs/ M cizAs/ Ay
T = Ciz—diriz T3 = Gy
ri = —@iris — d3ris — ariz — diriy : riga = —¢1%ri 28
Tig2 = —@irig — d3rie — $3ia — 83/ri2 — cisda/A Tias = —10ri 99 — P10r 24 — B10r; 50 — $10¢i;
Ti13 = Cig — @3Ti10 — B3Ti7 7936 = —@1°ri 30 — ¢30ri 25 — ¢10ri o1 — GL0r; 17—
T4 = —@iri 1 — G5Tig — B35 — B3riz — Piriy #5713 — 6807 10 — $10ri 7
Tis = —@iTia — @3ri9 — P3ris — Biria — Biria—  rigr = —@i0mi a1 — G10r; 26 — BL0r 00 — #1%ri 18—
cieAa/ A1 $3°ri 14 — G80ri 11 — 930 g — B30r; 5—
Til6 = Ciy Biorin
rigr = — 513 — @515 10 — B5ri 7 ri38 = —$1°ri 30 — 3°7i 97 — ¢10r; 23 — B10r; 10—
Ti18 = —37i,14 — @57, 11 — $3ri 8 — B3ri 5 — BSria— $3°ri,15 — $5°ri,12 — $1°ri 0 — BA0ri 6—
Beri 6°ria — ¢10ri 2 — citde/ A1
Ti1e = —@5rins — #3ri10 — B5rio — @§rie — Piria— Tize = i
Beri2 — citda/ M rig0 = —@1'rizs
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riao = Cip — @]cit riat = —@1'rise — d3lri o8
rio1 = —@iri 17 — Gari13 — Garine — aTiT ria2 = —@iirias — 3lri 20 — @31ri 20 — By i 20—
Tioz = —Piri 18 — PaTi1a — ATy — BiTis — Pari5— ¢ilein
¢iriz— diriy ri43 = —@iiriae — ¢330 — P31 i 5 — By i1 —
rios = —@iri 19 — @ori 15 — Pari 12 — Pirio — PITi6— Gilri 17 — diirinz — ¥ ri 10 — dEiri7
Biria— dIri2 — cinda/M riaa = —@iiri a7 — $ilrigr — d3iri 06 — P5iri o —
Tioa = Cia — @57 20 — B5ci1 Gilri 18 — diTi e — Giriny — PglTis—
ri95 = —@5ri o1 — @57 17 — B8ri 13 — B3ri 10 — BB P3iris — dliris — dlirin
Tigs = —@5ri 20 — #5ri 18 — B5ri 1a — B8ri11 — B8ris—  Tias = —@l'ri a8 — Bhiri a0 — B3 107 — Pilri 23—
¢8ris — ¢5ri 3 — ¢8ri Pitrino — PElri s — vy 10 — GElri0—
ri27 = —@3ri 23 — B37i 10 — B87i 15 — Birina — BETi— - P3trie — dliria — dllria — ciad7/M

B87i 6 — B3ri 4 — BT 2 — Ciada/ M

Expressions for the inner products arising from orthogonalization are given by

6
¢n = Z ¢nm,a
i=1
where

8; = nlcia(riide +ri2d2) 35 = ngcii(rizde + righr +1i9)s)

65; = ndcis(rinds+ri2h2) 3: = nigcia(riiade + 1i14A7 + 1i15)4)

#3; = ndcis(riads+rialr2) 33 = ndicia(riode + rindr + rizdd)

¢%b, = nde;1(risAs + Ti6A3) B = ndgcia(rizde +risAr +Tighs)

¢,3§b, = n%ci,1(r.',u\s + 7ri2A3) ;135, = nfzci,‘i(?‘i,la/\e + 7 14A7 + i 15A4)

610 = ndei(ri3hs + ri4da) 3 = ndicia(riote + iy + ri1ahe)

¢iy = nicia(rists +1i6)a) 51,5, = n?gcia(rizAe + rigA7 + Ti9As)

¢3 = nfcia(riars +ri4ha) “63% = niycia(risAiz + ritadia +1iasds)
ii,- = nic;3(ri1As +1i2A3) 85 = niicia(riorz +rinndia +1i12)s)
12 = nle e(rishs + rishs) &S = n2gcis(rizAiz + righia + riols)
};“’,- = ndei6(ri3As + rials) é%. = nlyci1(ri1sdi7 +1i1a 11 + 715 A6)
12 = e o(rids + i 2)8) 1 = n? g y(ri10M7+ rin A + i 12)6)

¢ik.~ = ndci1(risAr +risia) ¢%l': = n?pci1(ri,7A17 + TigA11 + Ti9Ae)
éé, = ndei1(risA7 + riads) éé, = ndyeia(ri13A11 + Tij1adi6 + 1i,15A7)
B = ndep(rindr +righa) #18 = ndicia(rii0M1 + ri 1) + rin2dr)
¥ = ndeia(rishr+righs) és, = ndycia(rizAn + righis + rigA7)

¢sy = ndcia(riadr + riadd) 12 = n?gci2(rijieAi0 + ri,17 X6 + 7i,18A7 + 70 1904)
%:,- = . nie;o(ri1 A7 + 1i2A4) 5 = n2,c; a(riz0hi0 + i 216 + Ti,2207 + i 230a)
8% = ndcia(risAr +rig)d) ¢§s. = nlzcia(ri16d10 + ri,17A6 + i 18A7 + Ti1904)
_1,5’ = njcia(riazhr + i) 1% = nlscia(ri2adn +rizsdiz + ri2edia + i 27)s)
15 = nZe 4(riahr + righa) 1% = niscis(ri2odin + mi21A12 + ri22A14 + 75 23As)
%é, = n;‘,’ci,s(r;,sz\u +7i6Xs) ' :136, = ﬂfaci,a(ri,ls/\u + 117 12 + i 18A14 + i 19A5)
2% = ndcia(riziia+riads) ;", = ni5ci1(ri2a4r15 + 1i 25 M17 + 15,26 A11 + i 276)
g}g = ﬂici,a(ri,xz\m + r,225) ;i;:, = niyci1(ri20A1s + ri21A17 + 1i 2211 + i 236)
i = ngce,1(7‘i,5)\11 + 7 6A6) - P4 = "zsci,l(ri,m/\ls + 717017 + 131811 + T 10A6)
9 = n3¢i,1(ri,3M11 + 1i,46) 3 = ni5ci2(ri,24 13 + 15,25 A11 + 726 A16 + Ti 27A7)
i = ndein(rindi +ri2)e) 13 = nlcia(ri20ds + ri2 A + ri22A6 + i 230 7)

$3% = ndcia(risdie +TieA7) LR n2ge; 2(ri 16013 + 7i17A11 + 1i;18 16 + Tij19A7)
i%,,- = ndcia(ri3rs + riaA7) {l', = n¥gei1(ri2sAa2 + 12015 + Ti30dr + rimAnu+

$13; = ncia(riidie +ri2A7) 7i,326)

¢%;‘ = n2ycia(rizAe + i gAs + i 9A3) $35% = n2gci o(ri 28h23 + 1520013 + 7 3001 + 731 A6t
ih‘ = n26i,6(ri, 1000 + i,11A5 + Ti,12A3) 7 32A7)
2 = n2qci6(ri,7 Ao + 1i,8As + Ti9A3) 1% = nlcia(risada + risades + riashia + riaedn+
B = ny61(ri18)6 + 1i1ad7 + 1 1504) i 3716 + T 38 A7)

¢§h. = n?ci1(rij0de + i1 A7 + 1i1204)
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Normalizing factors for the othogonal stress modes in which j = 1,2,3 are given by

n = /\..1/2
nj+6 = {Zz—l(rl ,2j— 1’\8 + T2 -1y 125 A2+ r: )25 1)} 1/2
Njt9 = {Z, 1(7', 3J+4/\9 + 27': 3]+4(7': 31+5/\5 +r; 3J+6/\3) +r; 3J+5/\8 +2r; ,3i+574,37 +6/\2+
L 3]+6’\1)}
njipz = {Diey(r? 4 +12210 F 275 45412(75 454136 + Ti 441407 + 75 gj4150e) + 1 4,+13)\9+
2ri4j413(7i 4541405 + Ti4j41523) + 1745 1408 + 215 454147, 4J+15/\2 + 71} 4J+15A1)} -1/2
n = {2._1(1', 2gA18 + 27 28(7i,20A11 + i 30A12 + 7‘: 31214 + 73,3225) + 7¥ 9 M 10+

2r; 20(, 30)‘6 + 7133127 + T 32A4) + 7‘, ? 300 + 2r; 30(ri 31 As+
ri,32A3) + r¥31 A8 + 2y 3175 32 g + 17 32/\1)} -1/2
nr = {Z:——l(" 33/\19 + 273 33(7i 3422 + i 35A15 + T 36 A7 + ri37A1 + 1‘: 3846 )+
i 34/\18 + 27 34(ri 35 A11 + i 36A12 + T'; 37A14 + 7i,38As5) + rfg5 Ao+
2r; 35(ri 36 X6 + i 37A7 + 13 38A4) + r236Ae + 27 36(ri a7 s + 1y 38A3)+
ri 723728 + 21 377 38A2 + 1 33/\1)} 1/2
nig = {E 1(7‘, 39220 + 275 30(i 4021 + 73 a1X23 + 14213 + 7 a3A 11 + Tiaadis + 7'1 45A7)+
U 401\19 + 275 40(ri 41222 + 7 a2A15 + Ti 4z A7 + 7': 44211 + Ti45)6) + 1 41/\18+
27': a1(Tia2A11 + T azAi2 + i agdra 1y 45As) + uA 42310 + 2r; 42(r;, 43/\s+
7i,44A7 + 1 a5 Aa) + 134300 + 21 43(7i aaXs + 14 45/\3+
,,44/\8 + 2r; 44754522 + 1‘,,45)\1)}'1/

The integrals arising in the weighted inner product evaluate to

A = 8(3s1+ s+ 59+ 510)/3 Az = 8(15s3 + 5514+ 9516)/135
Ay = 8(3sz+ 514+ 516)/9 - Aa = 8(15s3+ 9s12 + 5s17)/135
A3 = 8(3sa+s12+517)/9 - 4 A1is = 8(15s3 + 5s12 + 9s17)/135
Az = 8(3s4+s13+515)/9 Ate = 8(15s4+ 9s13 + 5s15)/135
As = 8(3ss +s20)/27 A7 = 8(15s4 + 5513 + 9s515)/135

“As = 8(3s7+s18)/27 Mg = 8(15s; + 9sg + 959 + 5510)/135
A7 = 8(3s¢ + s19)/27 o A9 = 8(15sy + 5sg + 9s9 + 9519)/135
As = 8(15s1+ 9ss + 559 + 5s10)/45 - Ao = 8(15sy + 9ss + 559 + 9s10)/135
Ao = 8(15s) + 558 + 959 + 5510)/45 A2r = 8(5ss + 3s20)/135

Ao = 8(15s1 + 5sg + 5sg + 9510)/45 A2z = 8(Bss + 3519)/135

A = 8s11/27 A2z = 8(5s7+ 3s18)/135

Alp = 8(1532 + 9s14 + 5316)/135 ’

APPENDIX III

ORTHONORMAL STRESS MODE COEFICIENTS FOR THE
NONLINEAR PIAN-SUMIHARA ELEMENT

The stress mode coeflicients, pjj, are given by

pils = m Pia = nacu1 piz = —nacnre/A
P = m Pis = Maca1 Py = —nacud2/A
Py = n Pis = M4C31 Py = —ngczra/)
P51 = nsciz ps; = —nscud piy = —nsh
Psa = mnsC22 pis = -—nscnd pig = —nsb
P57 = mnsca2 psg = -—nscard pig = —nsbs
in which

¢ = —ni(ciac11 + caz¢a1 + c32¢31)A23/ My

01 = (c12As + dcrira)/ M

02 = (c22A3+ dca1Aa)/ Ay

03 = (ca2ds + dearra)/ M
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and normalizing factors are given by

n; = /\1—1/2

ng = [(3) 43 +cd)(As — AP /Ap)] 72

3
ns = [Y(ch— 2ci0ids + *ch A5 + 2dcinfidg + 0701)] /2

f=1
The determinant of the Jacobian for 2-D transformations is given by

|J| = Jo + J1i€ + Jan

where
Jo=a1by —azby ; Jy=aibz—azby ; J2=azby—azbs

The scalar integrals arising in the inner product to evaluate to

A= /_11 /_11 \ldedn = 40 Ai= /_11 /_ll[lJlfndgdn =0

1 1 1 1
_ B ) L
de = /_1/.1 Wlgdédn =451/3 A5 = /_ 1 /_ [3lePdedn = 4J/3
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