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INTRODUCTION 

Continuing research into hybrid stress finite element formulations has been directed towards minimizing the 
computational cost associated with computing element stiffness coefficients in order to make hybrid elements 
competitive with purely displacement-based formulations. Much emphasis has been placed on reducing the 
computational cost of inverting the complementary energy or flexibility matrix inherent to the hybrid stress 
method and has led to insightful yet elaborate procedures and approximations directed towards this aim1'2'3. 
Recently, a general procedure has been developed by the author for simplifying the stiffness definition by 
making full use of the freedom in selecting and manipulating assumed stress fields which include the gener- 
ation of a weighted orthonormalized stress mode basis4. In this approach, the flexibility matrix is formally 
eliminated and the resulting expression for the element stiffness matrix is reduced to the integration of a 
single constituent matrix which can be accomplished in closed-form. Such an evaluation results in algebraic 
equations which can appear cumbersome; however, these statements replace the formation and inversion of 
the flexibility matrix and, more importantly, the costly numerical quadrature of large-order matrix products. 
In contrast, displacement-based continuum elements under general distortion possess an integrand involving 
rational functions due to the presence of the Jacobian determinant in the denominator which precludes a 
simple explicit evaluation of stiffness coefficients in algebraic form. Such a represention of basic strain energy 
characteristics by rational functions compounded by possible nonlinear variations in material properties make 
the inherent polynomial approximation of Gaussian quadrature schemes significant in regards to the rate of 
solution convergence. The present method is completely generic and potentially avoids all approximations 
made to the formal variational definition of hybrid element stiffness matrices. The developed technique is 
utilized in two different element derivations. First, a closed-form set of expressions are developed for the 
stiffness coefficients in the Pian-Tong hexahedral element5 which is a robust 8-node solid continuum element 
and presents a formidable degree of difficulty in deriving an explicit formulation. Secondly, the method 
is extended to derive explicit expressions for element stiffness matrices incorporating nonconstant material 
properties for nonlinear-elastic problems which, within the framework of finite element solution methods, 
usually require computationally intensive,;'iterative solution procedures. As an initial effort towards that 
aim, an explicit formulation is developed for the 4-node Pian-Sumihara hybrid quadrilateral element6. The 
resulting closed-form derivations demonstrate a substantial reduction in computational cost over purely nu- 
merical treatments in generating element matrices. 

VARIATIONAL BASIS OF THE HYBRID MODEL 

The form of the Hellinger-Reissner energy functional utilized in References [5] and [6] is given by 

ER =  /[(-l/2)<rTS<r + <rT(Lu?) - (LT <r)T ux]dv (1) 
Jv 

where tr is the assumed stress field, S is the material compliance matrix, uq and \i\ are the assumed compat- 
ible and incompatible displacement fields and L is the differential operator relating strains to displacements. 
The assumed stresses may be represented by 

<r = Pß (2) 

where P is a matrix of polynomial terms and ß is a vector of undetermined expansion coefficients. The 
displacement field is assumed over the element domain as 

u = u? + UA = Nq + MA (3) 

where N and M are compatible and incompatible displacement shape functions, respectively, q are nodal 
displacements, and A are Lagrange multipliers which variationally enforce the field equilibrium conditions. 
These variational constraints are applied a priori to the assumed stress modes which condense the influence 
of the incompatible modes into the element formulation. The resulting expression for the element stiffness 
matrix is given by 

K = GTH"1G (4) 

where 

=     I PTSPdv (5) 
Jv 

H 
lv 



=     I PTBdv (6) 
Jv 

in which B is the strain-displacement matrix. In the above formulation, the a priori condensation of the 
incompatible displacement modes results in an H matrix which is fully populated and has hitherto required 
the inversion of a full matrix of order dim(ß). 

COMPUTATION OF EXPLICIT STIFFNESS MATRICES 

The procedure developed in Reference [4] for simplifying the expressions involved in (4) is outlined below. 
The method utilizes a sequence of permissible transformations of assumed stress fields to simplify the stiffness 
definition. The assumed stresses are first transformed through the introduction of a symmetric 'distributing' 
matrix as 

P=IP = (DD-1)P = D(D-1P) = DP (7) 

where the distributing matrix is defined as 
D = S-1'2 (8) 

The inverse square root of the compliance matrix is obtained through a standard spectral decomposition7. For 
illustration, the decomposition of 2-D and 3-D orthotropic compliance matrices are presented in Appendix 
I. Substitution of (7) into (5) yields 

H = j   J   J  [|J|PTDTSDPK<VC (9) 

where, from the definition of D and the symmetry of both S and D, we obtain 

DTSD = S-1/2SS~1/2 = SS"1 = I 

and the flexibility matrix reduces to 

K=L 11. wpTpwdidt (io) 
A second field transformation uses equation (10) to define a weighted inner product for use in a Gram- 
Schmidt procedure to generate an orthonormal spanning set of stress modes, P*, which are a special linear 
combination of the modes present in P. The weighted inner product is therefore defined as 

^„P,  >= J J_Jj\J\PjPj]dZdt,dC = 6ij (11) 

where <5,-j is the Kronecker delta function. The linear combination yielding a sequence of orthogonal stress 
modes is given by 

(  P. i = 1 
«-1 

p,: - J2 < P; , P, > P;    i > l (12) 

which are normalized to form basis vectors, P*, as 

V< = < 

P*=<Vi,Vi>-1/2Vi (13) 

Substitution of P* into equation (10) yields by definition 

H = J1J1j\\J\P*TP*]didi1dCsl (14) 

The new basis for the element stress field is now given by 

P = DP* (15) 



and the expression for the element stiffness matrix reduces to 

K = GTG 

Separating out the Jacobian determinant from the isoparametric strains as 

and substituting (15) and (17) into (6) yields the G matrix definition as 

G= [    f   [  [P*TDB*RcVC 

(16) 

(17) 

(18) 

The absence of the Jacobian determinant in the denominator permits a direct derivation of algebraic expres- 
sions for the G matrix coefficients. The explicit form of the element stiffness matrix is then obtained from 
equation (16). 

EXPLICIT PIAN-TONG HEXAHEDRAL ELEMENT 

Y| 

Figure 1. Hexahedral element configuration. 

The configuration of the 8-node Pian-Tong hexahedral element is depicted in Figure 1.   The compatible 
displacement functions uq are given by 

1 
». = < v< HER^+^KI+WKI+GCM 

Vi (19) 
i=i 

As detailed in Reference [5], incompatible displacement modes are introduced to complete the cubic order 
of the assumed isoparametric displacement field. These modes are condensed a priori into the element for- 
mulation through constraint conditions on the assumed stress modes. 

The stress field utilized in the Pian-Tong element is assumed in natural coordinates and transformed to 
physical coordinates using Jacobians computed at the element centroid as 

<r" = {J0)t{J0)'S KJi (20) 

Performing the initial transformation of stresses given by (7) results in the physical or Cartesian stress field 
given by 

er= [crx,cry,cr2,Ty2,Tzx,TXy]T = Pcßc + Phßh (21) 



where 

P.= (22) 

and 
eut ei3^    e15£    ent} eizV eieV enC ei2C ei4C e 13^ enT7C ^C 
^ ^23^    e25£    e2ir/ z-izn 626*7 e2iC e22C C24< e23^»7 e2i»7C ^22^C 
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e32^ e33£    e35£    e31T7 e-zzi) ^36 »7 C3lC C32C e34< e33f»? e3i»?C e32^C x n — 
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The coefficients e,-,- are obtained from the produ ct of the inverse di stribut ine mat rix and a trar 

(23) 

matrix relating tensorial stresses to physical components. This relationship is given by 

E = D~1T 

e,-,-  = 

du dl2 d\z 
^21 d22 <^23 

<^31 dzt ^33 

HA 

155 
J66 

b\ 
4 4 

a\C\ a2c2 

axbi d2b2 

bici 62C2 

bl 
4 

13C3 

0363 

&3C3 

20^2 

26i62 

2cic2 

a2Ci + <J!C2 
ai&2 +0261 
61 c2 +62ci 

2a2a3 

26263 
2c2c3 

a3c2 + a2C3 
1263 + a362 

62C3 + 63c2 

The isoparametric mapping between local physical and natural coordinates is given by 

x 

y 
ait + <*2»7 + a3C + 04^77 + a5£< + a6T)C + a7^ 

bit + b2ri + 63C + 64£T? + 65£C + 66r?C + b^rf 

cit + c2r] + c3< + C4£T) + c5£( + c6t]<^ + crftf 

where 

ai 61 Cl 

<*2 62 C2 

<*3 63 C3 

a4 64 C4 

<*5 65 C5 

«6 66 C6 

a7 67 C7 

1          1          1      _1      _1 Xl Vl Zl 

1             __ 1                1             _ 1                       1 x2 V2 *2 

I                       1                1—1                       1 I      _ X3 y3 Z3 

1                1             _1                       1               1 X\ 2/4 z4 

1          1-1          1-1 X5 2/5 25 

1               1                       1                       I                       1 x6 ye 26 

1      _1          1-1      -1 X7 yi ■Z7 

X8 ys z& 

2aia3 

26i63 

2ciC3 

a3ci +CI1C3 

ai.6'3 + 0361 
61 c3 + 63ct 

(24) 

Orthonormalizing the stress modes according to (12) yields the final transformed stress field composed of 
constant modes given by 

p; = nxpc 

and higher-order modes given by 

Ph = [P7.P8>P9.Pl0>P*l.Pl2'Pl3.Pl4.Pl5.Pl6.P*7>Pl8] 

(25) 

(26) 



The columns of the higher-order stress modes with i = 1,2,3,..., 6 and j = 1,2,3 are given by 

iPij+e)     =    "]+e{n,2j-iG + n,2i} 
{Pi,j+9)        =      "j+9{'*i,3j+4»7 + n-,3;+5^ + r,-,3j+6} 

{Pij+u)      =      nJ+12{'*«)4i + 12C + '•»,4; + 13'? + '*.-,4j + 14^ + ^i,4j + 15} 
{P.'ie}       =   ni6{r,-,28^»7 + »,,-,29C + ',,-,30»7 + r,-13i^ + r,-i32} 

{Ptn)        =    nn{ri,33T)C + nMv + *,&( + '*.-,36'7 + r,-,37£ + '*,138} 
{Pi.is}        =    ni8{r;,39f C + r.\40»?< + »',•,41^ + n,42C + riA3r] + r,-i44£ + r,|45} 

where the expressions for n,- and rt|J- are presented in Appendix II. 

The integration of (18) yields the following expressions for elements of the G matrix in which j = 1,2,3,..., 8. 
Specific components utilize an additional index, i, which assumes the values i = 1,2,3. The components are 

given by 

9i,3j-2 
94,3j-2 
95,3j-2 
96,3j-2 

9i+6,3j-2 

gi+6,3j-l 

9i+6,3j 

9i+9,3j-2 

gi+9,3j-l 

9i+9,3j 

9i + 12,3j-2 

9i+12,3j-\ 

9i+12,3j 

9l6,3j-2 

9l6,3j-l 

9l6,3j 

917,3j -2 

9l7,3j-l 

9U,3j 

9l8,3j-2 

gi8,3j-l 

9l8,3j 

dl.Tl(l,j) 
0 

j) de6T i(2 

dnW 

rf2ir2(i 

d3ir2(i 

dnr3(i 

d2ir3(i 

<*3ir3(i 

dnr4(i 

d«r4(i 

dair4(l 
dnT5(l 

d2iMl 

dnT6(l 

d3iT6(l 

duT7(l 

d2iT7(l 

dsiT7(l 

9i,3j-l 
94,3j -1 
05,3;-1 
96,3j-l 

d2iTi(2,j) 
<i44ri(3,j) 
0 

9i,3j =    d«ri(3,i) 
94,3j =  ^44ri(2,i) 

95,3j =  d5STi(i,j) 

96,3j =  0 

(27) 

4, i,j) + dl2T2(2,4, i,j) + <*i3r2(3,4, i,j) + d55T2(5,6, i,j) + d66T2(ß,5, i,j) 

5, i, j) + <f22r2(2,5, i, j) + d23r2(3) 5, z, j) + <f44r2(4,6, i, j) + d66r2(6,4, i, j) 

6, i, j) + d32r2(2,6, i, j) + d33r2(3,6, i, j) + rf44r2(4,5, i, j) + d55r2(5,4, i, ;) 

7, i, j) + dl2T3(2,7, i, j) + <f13r3(3,7, i, j) + d55T3(h, 9, i,.j) + <f66r3(6,8, i, j) 

8, i,j) + d22r3(2,S, i,j) + d23r3(3,8, i,j) + rf44r3(4,9, i,j) + d66T3(e,7, i,j) 

9, i, j) + d32r3(2,9, i, j) + <i33r3(3,9, i, j) + rf44r3(4,8, i, j) + cf55r3(5,7, i, j) 

10, i.'jf) + diar4'(2,10, i,j) + di3r4(3,10, i, j) + d55r4(5,12, i,j) + d66T4(6,11, i, j) 

n,i,j) + d22r4(2, ii,i, j) + d23r4(3, li.t.j) + d44r4(4, n,i,j) + <f66r4(6, 10,«, j) 

12, i,j) + <f32r4(2,12, ij) + <f33r4(3,12, ij) + d44r4(4, ii, ij) + <f55r4(5, 10,;, j) 

13, j) + d12T5(2,13, j) + <fi3r5(3,13, j) + d55T5(5,15, j) + d66T5(6, U,j) 

14, j) + <f22r5(2,14, j) + cf23r5(3,14, j) + rf44r5(4,15, j) + rf66r5(6,13, j) 

15, j) + d32T5(2,15, j) + d33r5(3,15, j) + d44r5(4,14, j) + d55T5(5,13, j) 

16, j) + di2r6(2,16, j) + cf13r6(3,16, j) + d55r6(5,18, j) + d66r6(6,17, j) 

17, j) + <f22r6(2,17, j) + <f23r6(3,17, j) + d44r6(4,18,j) + d66r6(6,16, j) 

18, j) + d32r6(2,18, j) + cf33r6(3,18, j) + <f44r6(4,17, j) + d55r6(5,16, j) 

19, j) + <*i2r7(2,19, i) + d13r7(3,19, j) + <f55r7(5,21, j) + d66r7(6,20,j) 

20, j) + d22r7(2,20j) + d23r7(3,20,j) + rf44r7(4,2i,i) + (i66r7(6,19, j) 

21, j) + d32r7(2,2i,j) + <*33r7(3,21, j) + <f44r7(4,20,;) + <f55r7(5,19, j) 

where d{j are elements of the distributing matrix and the functions T, are given by 

ri(m,j) =    ni<^J>m/3 

T2(k,m,i,j)    =    ni+6(rk,2i-i<j>j,m + rk,2i<t>j,m-3)/9 
T3(k,m,i,j)    =    ni+9(rki3i+4<j>jtm+rki3i+5<j>jtm_3 + rkt3i+6(j>jim_6)/9 

r4(fc,m,l,j)      =      n,-+i2(rjfci4>-+i2^j,m + »"ifc,4»+13^j,m-3 + rjfc,4j+l4<0j>m_6 + ri)4i+i5^j)m_g)/9 
T5(k, m,j)       =    ni6(rk,2a<j>j,m + ^,29^/^-3 + nt,30<£j,m-6 + rt,3i0j,m-9 + rki324>j>m„i2)/27 
Te{k, m,j)       —    nn(rkt33<j)jim + rkt34<j>jim_3 + rki35<f>jtm„6 + rki36<l>i,m-9 + rkt37<j>j>m-\2 + rki38(j>jim_i5)/27 

T7(k, m,j)       —    nis(rkt3a<f>jim + rti4o^j,m-3 + rkt4i<f>jtm-6 + rkt42<f>j,m-9 + »*ifc,43<£j,m-i2+ 
»*fc,44^i,m-15 + *"ii45^j,m_i8)/27 



The functions <j>ji, for i = 1,2,3, are given by 

4>j,i 

<f>j,i+3 

<t>j,i+9 

<f>j,i+12 

<f>j,i+15 

4>j,i+l8 

=   (6U + 34)4 + (4 + 4)4 + (4 
= (4+34)4 + (4+34)4 + (* 
=    (4+ 34)4+ (4 "    ' 
= 3(4+4)4+(4 
= (4 + 34)4 + 3(4 + 4; -    V57 -r »"147*6 ^ »Vu54 T "7U*5 T (4 + 3^12)^4 + (4 + ^d^J^ + 3(d25 -f 0G1)r2 -f 0^37 + O^g/Zj 

=    3(4 + 4)4 + 3(4 + 4)4 + 3(4 + 4)4 + (4 + 3*23)4 + (4 + He)4 + (4 + 34)4 
= 3(«U + «17)4 + (4 + 34)** + (4 + 34)4 + 3(4 + 4)4 + (4 + 34)4 + 3(4 + 4)4 

(4+ 4)4 + (4 + 34)4 
-(4 + 34)4 + 3(4 + 4)4 

*    "        (4 
(4 
•3(6 

-3(4 + 4)4 

!6 + °51^2 + <,°45 + »Ö23;2i 

4 + 34)4 + 3(4 + 4)4 
- "i4,r4 + ^7i + 34)4 + (4 + 34)4 
- 4)4 + (4 + 34)4 + (4 + 34)4 
- 34)4 + 3(4 + 4)4 + 3(4 + 4)4 
- 3404 + (4 + 34)4 + (4 + 34)4 

in which geometric constants are denned by 

6fj    -    biCj-bjCi <5?-    =    Cidj - Cjdi Sfj    =    a.&j-aji; 

and values for zf with n = 1,2,3, ...,8 are given by 

n zi 22 z3 Z4 z5 z6 z7 
1 -1 1 -1 1 -1 -1 1 
2 -1 -1 -1 -1 1 
3 -1 -1 1 -1 -1 
4 -1 1 -1 -1 -1 
5 -1 -1 -1 -1 1 1 
6 1 1 1 1 
7 1 -1 -1 1 -1 -1 
8 -1 -1 1 1 -1 -1 

(28) 

NUMERICAL STUDIES OF THE EXPLICIT PIAN-TONG ELEMENT 

The following tables present computer run-times comparing the explicit and numerical generation of stiffness 
matrices in the Pian-Tong hexahedral element. In the numerical evaluation, under general element distor- 
tion, quartic terms involving the natural coordinates appear requiring a 3rd-order Gaussian quadrature rule 
for exact evaluation as is obtained in the explicit formulation. However, the underintegration utilizing a 2nd- 
order rule has been found adequate to compute element stiffness coefficients without introducing spurious 
kinematic modes. The influence of the quartic terms have a negligible influence and a 2nd-order rule is thus 
considered standard for the 8-node solid hybrid element and is used herein for all numerical integrations. 
No optimization was attempted in performing the computer implementations of the elements in terms of 
code preparation or CPU processing options such as vectorization or concurrency. The codes were run on a 
Hewlett Packard Apollo 400 series workstation in a Unix environment. The standard UNIX profiler Gprof 
was used to characterize the time spent in performing various operations. In generating the computational 
profiles, 1000 element stiffness matrices were processed. A description of the procedures used in the codes 
which account for at least 97% of the computational cost are presented in Table 1. The designation 'main' 
combines the operations within the main program together with various subroutines which contribute in- 
significant computational cost. Table 2 details the computational profile for the Pian-Tong element evaluated 
explicitly and numerically. 

Name 

Table 1: Subroutine procedures 

Description Name Description 
mxmul 
mxadd 
invers 

matrix multiplication 
matrix addition 
matrix inversion 

gmatrx 
orthop 
main 

explicit computation of G matrix 
computation of orthonormal stress modes 
main program + minor subroutines 



Table 2: Computational profiles of the Pian-Tong (PT) element 

PT-Explicit PT-Numerical 

% 
time 

self 
seconds 

cumulative 
seconds 

procedure 
name 

% 
time 

self 
seconds 

cumulative 
seconds 

procedure 
name 

70.5 
18.6 
8.9 
2.0 

39.99 
10.56 
5.03 
1.12 

39.99 
50.55 
55.58 
56.70 

mxmul 
gmatrx 
orthop 
main 

83.5 
7.3 
6.9 
2.3 

341.62 
29.90 
28.43 
9.42 

341.62 
371.52 
399.95 
409.37 

mxmul 
mxadd 
invers 
main 

The computational profiles quantify the different characteristics of the explicit and numerical versions of 
the Pian-Tong element. As shown, the computational cost of both the explicit and numerical versions is 
mostly spent in matrix multiplication and addition consuming 70.5 % and 90.8 % of the processing time, 
respectively. Comparing total computer run-times, the explicit version requires only 13.9 % of the compu- 
tational cost as that consumed in the underintegrated numerical evaluation. Not shown in the tables, the 
exact integration of the quartic terms in the numerical version using 3rd-order Gaussian quadrature results 
in a run-time of 1167.4 seconds. Compared to this the explicit formulation requires only 4.9 % of the com- 
putational expense. 

NONLINEAR ELEMENT STIFFNESS DEFINITION 

The extension to nonconstant material properties requires that the compliance matrix be interpolated over 
the element domain. For illustration, the Pian-Sumihara quadrilateral element is selected6. For the plane ele- 
ment under study a bilinear isoparametric field is sufficient for interpolating compliance properties; however, 
the derived D matrix is a nonlinear function of S thus requiring a higher order interpolation. A quadratic 
isoparametric field is adopted in which the material matrices are computed at the stress recovery or material 
evaluation points depicted in Figure 2. Thus, at arbitrary points over the element domain D = S-1/2 and 
the interpolation results in the relationship S = S being strictly valid at the recovery points and approximate 
elsewhere. The accuracy of this approximation is discussed later in Remark I. 

% 

15 2 

Figure 2. Evaluation points used for material interpolation. 

The interpolation is given by 

««,»?) = £>,(£T?)ßi (29) 
»=i 

where #,• represents the material D and D-1 matrices computed at the ith stress recovery point and AT,- are 
the associated quadratic-order isoparametric shape functions. Interpolation of the material matrices over 
the element domain may be expressed as 

n(£t T]) = A1+ A2£ + A3T7 + A4t;2 + A5772 + A6£»7 + A7t;277 + A8£T;
2 (30) 



where the constant matrices, A,-, are given by 

-1    -1    -1    -1 A! 
A2 

A3 

A4 

A5 

A6 

A7 

A8 

_ 1 
> ~ 4 

2 

-2 
1    -1 
1       1    -2 
1       1 
1       1      2 
1    -1 

2 

-2 

2 

2 

-2 

-2 

2 " f  fli   ] 
-2 ß2 

«3 

< ß4 

«5 
-2 «6 

n7 
2 { n& J 

(31) 

Following the procedure outlined above in equations (7) through (18), substitution of (7) into (5) based on 
the distribution represented by equation (30) yields the flexibility matrix as 

H=  [    [  [|J|PTDTSDP]d^7? 

where, from the definition of D and the symmetry of both S and D we obtain 

DTSD = S~1/2SS-1/2 = SS"1 a I 

(32) 

(33) 

The approximation rapidly approaches an identity as the interpolation order of D increases and as the varia- 
tion of material properties over the element diminishes. The flexibility matrix is thereby closely approximated 
by 

HKJ^Jj\J\PTP]d$dV (34) 

A second field transformation uses equation (34) to define a weighted inner product for use in a Gram- 
Schmidt procedure to generate an orthonormal spanning set of stress modes, P*. This modal set is formed 
as a special linear combination of the modes present in P and constitutes an alternative basis set which 
spans the original stress space. The weighted inner product is therefore defined as 

< P.-, P; >= J i JjlJlPTp^drj^ 6ij (35) 

where 6{j is the Kronecker delta function. The linear combination yielding a sequence of orthogonal stress 
modes is given by 

r Pi i = i 
v'= I P.--]C< P>,P* > P;    * > i (36) 

which are normalized to form basis vectors, P*, as 

P;=<V,-,Vi>-1/2Vi (37) 

In the definition of P, the D-1 matrix is interpolated according to (30) and carried into the subsequent 
orthonormalization of assumed stress.modes. For the present study, however, a simplification is adopted 
wherein the D matrix is interpolated according to equation (30) while its inverse is obtained from an area 
average obtained by integrating over the element domain. This operation is not required but is utilized in 
the present study to simplify the expressions for the orthonormalized stress modes, P*, while maintaining 
an adequate approximation for the material properties. The inverse is thus defined as 

and the relationship 

Trl=[\J_J_1
D(Z>iWdi 

Dfc.tfD-1«! 

-i-i 

(38) 

(39) 



is satisfied in an integral sense for nonconstant material properties and pointwise for constant properties 
over the element domain. Substitution of P* into equation (34) yields by definition 

H = JlJ1[\3\P'TF]dtdr, = I 

Repeating the above relations, the new basis for the element stress field is given by 

P = DP* 

and the expression for the element stiffness matrix reduces to 

K = GTG 

Separating out the Jacobian determinant from the isoparametric strains as 

and substituting (41) and (43) into (6) the G matrix definition becomes 

G = /    /  [P*TDB*]#<fy 

(40) 

(41) 

(42) 

(43) 

(44) 

The absence of the Jacobian determinant in the denominator permits a direct derivation of algebraic ex- 
pressions for the G matrix coefficients which incorporate a nonconstant field of material properties over the 
element domain. The explicit form of the element stiffness matrix is then obtained from equation (42). 

NONLINEAR PIAN-SUMIHARA QUADRILATERAL ELEMENT 

(x*y2) 

Figure 3. Quadrilateral element configuration. 

The configuration of the Pian-Sumihara element and node numbering are depicted in Figure 3.  The dis- 
placement functions uq are given by 

".=(;;H!>+«xi+»->>(;:). (45) 

As detailed in Reference [6], stresses are defined in natural or tensorial coordinates and incompatible dis- 
placement modes are introduced to complete the quadratic order of the assumed isoparametric displacement 
field. These modes are condensed a priori into the element formulation through constraint conditions on the 



assumed stress modes. 

The tensorial stress field is transformed to physical or Cartesian coordinates using Jacobians computed 
at the element centroid as 

^'= WHJo)'^ (46) 
Performing the initial transformation of stresses given by (7) results in the Cartesian stress field given by 

<r=[<rx,cry,Txy]T = Pß (47) 

where 

P = 
1 Cll£ C12T) 

1     C21f  C22»? 
1  C3l£  C3277 

(48) 

du du " 4 a? 
d2\ d22 b\ *? 

^33 02^2 Ml 

and the coefficients c,j are obtained from the product of D-1 and a transformation matrix relating tensorial 
stresses to Cartesian components. This relationship is given by 

= D-1r 

The geometric parameters a,- and 6j are obtained from the mapping between physical and natural coordinates 
given by 

x    =    a0 + ai£ + a2t] + 03^77 
y    =    60 + &i£ + b2i] + ht.*} 

where 
ao 60 
ai 61 
a2 62 
<*3 H 

The weighted orthonormalized stress modes are obtained as 

(49) 

1 1    1 1 x\ 2/1 
1 -1 1    1 -1 X-2 V2 
4 -1 -1    1 .   1 *3 V3 

1 -1    1 -1 Z4 2/4 

p* = 
Pl3 

0 
0 

0       0     Pl2$ + Pl3   pltf + p*s7£ + p*53 

P26      0      Plst + Ple    PU*I + PMZ + PU 
0        P*39     P*48$ + P49     Pirn + Ps8£ + P59 

(50) 

where the stress mode coefficients, p*;-, are presented in Appendix II. 

Given the following constants arising from the regular structure of the strain modes 

dj    =    b2z{-b1z
3

2 e4j    =    aiz^- a2z{ 
62;      =     &3Z1-6123 e5j    =    at4 - a3z{ 
esj    =    b2z3 — &3Z2 e6j    =    03^2 - alA 

where 

j A 4 4 
1 -1 -1 1 
2 1 -1 -1 
3 1 1 1 
4 -1 1 -1 

(51) 

and the general form for each stress mode given by 

PilV + Put + Pi3 
PUT! + P.sf + Pi6 
Pi7V + Pist + Pi9 

(52) 

the integration of (44) yields explicit expressions for the components of the G matrix. The expressions 
are based on the most general form of orthonormalized stress modes in which most terms are zero for 
the simpler modes and the constants (d,;)* are elements of the D matrix computed at the kth evaluation 
point. In addition, for constant material properties, if all (d,v,)fc terms are discarded for k > 1 the resulting 
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expressions reduce to an explicit form of the linear-elastic Pian-Sumihara element. The components gij with 
i = 1,2,3,..., 5 and ;' = 1,2,3,4 are given by 

9i,2j-\ 

9i,2j     = 

(p«{ leiji 

p«{< eij[( 

phU e2j[< 

PU{( elj[< 

P?5{( elj[l 

PUU e3j[l 

P,-7{< 'e4j[ 

PUH 'C4j[ 

P:9{( 
e5j[ 

(P«{ >4j [ 

P?a{( e4j [ 

P?3{< e5j[l 

p;4{( ,e4j[ 

p,-5{< 'e4j[ 

P*6« 
e6j[ 

P,T{( elj[ 

PUU elj[ 

PUU e2j[ 

:(dn)7 + 3((fn)3] 

:(dii)8 + 3(du)2] 

:(rfu)8 + 3(dn)2] 

(d12)7 + 3(<f12)3] 

(d12)8 + 3(dia)a] 

(d12)7 + 3(d12)3] 

(^33)7 + 3(^33)3] 

(^33)8 + 3(d33)2] 

(d33)S + 3(d33)2] 

(d12)7 + 3(<f12)3] 

(d12)& + 3(dia)a] 

(du)s + 3(di2)2] 

(^2)7 + 3(<f22)3] 

(d22)s + 3(d22)2] 

(^22)7 + 3(d22)3] 

(^33)7 + 3(0/33)3] 

(^33)8 + 3(<f33)2] 

(^33)8 + 3(d33)2] 

+ e3j[(d\i 

+ e2j[(dn 

+ e3j[(du 

+ e3j[(dn 

+ e2j [(du 

+ e2j[{di2 

+ e6j[(d33 

+ e5j[(<*33 
+ e6j[(d33 

+ e6j[(di2 

+ e5j[(di2 

+ e6j[(di2 

+ e6j[(d22 

+ e5;[(rf22 

+ e5j[(d22 

+ e3j[(d33 

+ e2j[(<f33 

+ e3j[(<f33 

+ 3(dn 

+ 3(dn 

+ 3(4 11 

+ 3(dia 

+ 3(<fl2 

+ 3(<ii2 

+ 3(d33 

+ 3(<f33 

+ 3(4 33 

+ 3(<fi2 

+ 3(<f12 

+ 3(dl2 

+ 3(<f22 

+ 3(<f22 

+ 3(daa 

+ 3(<f33 

+ 3(ef33 

+ 3(e*33 

i+9(dii)5/5] + (dn)6eaj} + 

i+9(d1i)4/5] + (dii)6e3j} + 

3] + 3ey [(dn)B + (du)A + 3(du)i]} + 

i+9(di2)5/5] + e2i(<fi2)6} + 

i+9(di2)4/5] + e3i(di2)6} + 

a] + 3e1;[(d12)5 + (dia)4 + 3(<fi2)i]} + 

l+9(d33)5/5] + e5;(c/33)6} + 
1 +9(d33)4/5] + e6j(d33)6} + 

3] + 2e4j[(d33)5 + (d33)4 + 3(d33)i]})/9 

1+9(di2)5/5]+ (dia)6C5j} + 
i + 9(di2)4/5] + (d12)6e6i} + 

3] + 3e4;[(<f12)5 + (di2)4 + 3(<*i2)i]} + 

1 +9(^22)5/5] + e5j(<f22)6} + 

i + 9(daa)4/5] + e6i(daa)6} + 

2] + 3e4i[(<f22)5 + (d22)4 + 3(da2)i]} + 

i+9(<f33)5/5] + e2j (0(33)6} + 

1 +9(d 33)4/5] + e3j-(dssM + 

s] + 3eii[(d33)5 + (d33)4 + 3(d33)i]})/9 

(53) 

NUMERICAL STUDIES OF THE EXPLICIT PIAN-SUMIHARA ELEMENT 

Computer codes were generated to assess element computational characteristics. A description of the proce- 
dures used in the codes are presented in Table 3. The designation 'main' combines the operations within the 
main program together with various minor subroutines which contribute insignificant computational cost. No 
optimization was attempted in terms of code preparation or CPU processing options such as vectorization or 
concurrency. The codes were run on a Hewlett Packard Apollo 400 series workstation in a Unix environment. 
The standard Unix profiler Gprof was used to characterize the time spent in performing various operations. 
Table 4 presents computational profiles and computer run-times comparing the explicit and numerical gener- 
ation of stiffness matrices in the nonlinear Pian-Sumihara quadrilateral element. An additional comparison is 
made to a 4-node displacement-based element incorporating incompatible displacement modes which is pre- 
sented in Table 5. The incompatible modes are based on quadratic functions and modified using a technique 
presented in Reference [8] to identically satisfy the strong form of the patch test for incompatible elements. 
A 2nrf-order Gaussian quadrature rule was used for all numerical evaluations in generating computational 
profiles. In generating the computational profiles, 10,000 element stiffness matrices were processed. 

Table 3: Subroutine procedures 

Name Description Name Description 
mxmul 
mxadd 
invers 
state 

matrix multiplication 
matrix addition 
matrix inversion 
static condensation 

gmatrx 
orthop 
spectrl 
main 

explicit computation of G matrix 
computation of orthonormal stress modes 
spectral decomposition of S matrix 
matrix main program + minor subroutines 
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Table 4: Computational profiles of the nonlinear Pian-Sumihara (PS) element 

PS-Explicit PS-Numerical 
% self cumulative procedure % self cumulative procedure 

time seconds seconds name time seconds seconds name 
32.76 16.55 16.55 spectrl 75.46 109.09 109.09 mxmul 
30.09 15.20 31.75 mxmul 9.26 13.38 122.47 mxadd 
21.71 10.97 42.72 gmatrx 6.50 9.39 131.86 invers 
3.17 1.60 44.32 orthop 8.78 12.71 144.57 main 
12.27 6.20 50.52 main 

Table 5: Computational profile of incompatible displacement-based element 

D-Based 
% self cumulative procedure 

time seconds seconds name 
71.6 160.82 160.82 mxmul 
13.0 29.18 190.00 mxadd 
11.0 24.63 214.63 state 
4.4 10.12 224.75 main 

The computational profiles quantify the different characteristics of the explicit and numerical versions of 
the nonlinear Pian-Sumihara element. In the explicit version, the eight spectral decompositions of the com- 
pliance matrix consume the greatest amount of computational cost (32.76%) while matrix multiplications 
constitute most of the computations in the numerical version (75.46%). The computational profile of the 
explicit version shows that the operations involved in forming the orthonormal stress modes is insignificant 
(3.17%) while the formation of the G matrix consumes 21.71% of the cost. The final evaluation of equation 
(24), which is the only matrix operation performed in the explicit version, constitutes fully 30% of the cost 
in forming the element stiffness matrix. Comparing total cost, the explicit version requires only 34.95% of 
the processing time as the numerical evaluation and only 22.48% of the cost required in the incompatible 
displacement-based formulation. While this represents a significant reduction in processing cost, application 
of the developed methodology may be expected to show greater reductions in 3-D and higher-order hybrid 
element formulations. This issue is discussed in Remark II. 

A second demonstration is made to show the accuracy of the nonlinear material representation in the ex- 
plicit formulation. Because the basic computational characteristics have been shown above, a cantilevered 
beam under plane stress is solved where the material properties are not a function of the stress/strain state 
but instead vary along the length of the beam. Such a problem is uncommon but serves to illustrate the 
representation of material property variation in the clearest manner. The beam was analyzed using a coarse 
model of 5 elements. Two different mesh configurations were used as shown in Figure 4; a uniform mesh 
was adopted to assess optimum element performance and a nonuniform mesh was used to assess distortion 
sensitivity to the simplifications currently incorporated in the explicit derivation. For simplicity, isotropic 
material properties were assumed with a linear variation of modulus as depicted in Figure 5. 
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a)   2 

b)   2 

1   ■   1   '        2 3 ' 3 

Figure 4. Cantilevered beam configurations: a) uniform mesh, b) distorted mesh. 

E(E> 
V = 0.25 

2000 -—.^^_^                                                              / 

1000 

0 5 10 ^ 

Figure 5. Assumed linear variation in Young's modulus along beam length. 

Table 6 depict solutions for the explicit and numerical hybrid element formulations together with results 
using an incompatible displacement-based element. 

Table 6. Deflection of nonlinear cantilevered beam under end shear loading. 

a)Uniform Mesh b) Distorted Mesh 
Elements Va Vxib) ffx(e) Elements Va 

ffr(b) Vsic) 
PS-Explicit 
PS-Numerical 
D-Based 

Exact 

-88.7 
-89.1 
-89.0 

-90.4 

4045 
4050 
4050 

4043 

3587 
3600 
3586 

3601 

PS-Explicit 
PS-Numerical 
D-Based 

Exact 

-86.1 
-90.1 
-89.9 

-90.4 

4048 
4047 
3276 

4043 

3728 
3735 
3079 

3601 

Comparing the above results show an excellent agreement between the explicit and numerical hybrid el- 
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ement formulations for both meshes; a small departure is seen in the tip deflection prediction in the explicit 
formulation using the irregular mesh due to the incorporated simplifications. The incompatible displacement- 
based element demonstrates good results for both stresses and displacements using a uniform mesh; however, 
in the distorted mesh, stress recovery is severely compromised. In general, the greater computational cost 
of the displacement-based element makes it unappealing. 

REMARK I 

An important aspect of the above development involves the collocation error of the D matrix over the 
element domain using quadratic isoparametric shape functions. Because this matrix is computed as the 
square root of the material stiffness matrix, the individual components in D are interpolated to yield the 
approximate relation given above in equation (39). A formal error estimate may be derived for arbitrary 
variation of material properties and order of collocation polynomials; however, a clearer illustration may be 
given by assuming a specific variation in the compliance matrix components as a function of a single coor- 
dinate, thus simplifying the error analysis to a one-dimensional demonstration. A linear function is selected 
in which a parameter, 9, is used to set the magnitude of variation in the material component denoted by CQ. 

The resulting square root distribution is given by 

/(O = co
1/2[i + 0(i + o]1/2 

The values of /(£) at the evaluation points along £ € (—1,1) are depicted in Figure 6. 

C0-1/2(l+a)    C0-1/2(l+2a) 

c--1/2 

-    § 

Figure 6. Variation in material properties over segment. 

The quadratic isoparametric interpolation is given by 

P(0 = Q1/2{(1 + 6)1'2 + ^[(1 + M)1,2]Z + |[1 - 2(1 + 0)1'2 + (1 + 20)1/V> 

An error measure for point evaluation may be given by 

F .1/(0-KOI 
Ep ~      /(0 

A second error measure is associated with the difference between the integrated areas computed by the exact 
solution and the quadratic collocation. The integral of the exact distribution is given by 

F(t) = J^ f(S)dt = ^Co1/2[(29 + l)3/2 - 1] 

while the integral of the collocated function is given by 

P(0 = J_ P(0# = |Co1/2[l + 4(1 + 0)1/2 + (1 + 29)1'2} 
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An error measure for the integral evaluation may be given by 

\F(0-P(t)\ Ei = no 
Table 7 details error measures at the points of maximum expected error and the integrated error between 
the two assumed functions. 

Table 7. Error measures for point and integral evaluation of material property interpolation. 

0 m = -*) 3»« = *) Ei 
0.00 0.0 0.0 0.0 
0.01 2.287E-6 2.262E-6 5.005E-9 
0.05 2.603E-4 2.467E-4 2.683E-6 
0.1 1.862E-3 1.681E-3 3.581E-5 
0.2 1.211E-2 1.003E-2 4.109E-4 
0.3 3.384E-2 2.606E-2 1.542E-3 
0.4 6.739E-2 4.871E-2 3.710E-3 
0.5 1.120E-1 7.658E-2 7.048E-3 
0.6 1.664E-1 1.083E-1 1.158E-2 
0.7 2.292E-1 1.429E-1 1.728E-2 
0.8 2.993E-1 1.794E-1 2.406E-2 
0.9 3.754E-1 2.171E-1 3.184E-2 
1.0 4.565E-1 2.555E-1 4.051E-2 

The above table indicates that the maximum point collocation error for a 40% variation in modulus (0 = 0.2) 
over the segment is just over 1%. At 0 = 0.5, corresponding, to a 100% variation in material properties, the 
point error increases to 11.2%. However, even when the properties vary by a factor of 3 (0 = 1.0) over the 
segment, the integrated error, Ei, is still small, on the order of 4.05%. 

REMARK II 

With stresses assumed in natural coordinates, the procedure described herein may be applied directly. For 
higher-order elements, the approach of assuming tensorial stresses with a contravariant transformation us- 
ing centroidal Jacobians to obtain Cartesian stresses is inaccurate and neccessitates a formulation based 
on stresses assumed a priori in Cartesian coordinates. For assumed Cartesian stress fields, a fully explicit 
derivation may become overly cumbersome and computationally disadvantageous. In such cases the basic 
methodology is applied but numerical quadrature of the scalar integrals arising in the weighted inner product 
and computation of G-matrix components is advocated. In higher-order elements, the reduction in compu- 
tational cost afforded by adapting the present methodology is expected to be significantly greater than that 
demonstrated for the 4-node quadrilateral element due to the larger order of the constituent matrices. The 
computational savings result from eliminating the cost of forming and inverting the complementary energy 
matrix, H, and by replacing the numerical quadrature of large-order matrix products by the quadrature of 
a small set of scalar integrals. 

CONCLUSION 

The developed methodology for deriving explicit hybrid element stiffness matrices has been applied to the 
linear-elastic Pian-Tong 8-node solid continuum element and has been extended to develop an explicit 
formulation for the nonlinear-elastic Pian-Sumihara quadrilateral element. The 3-D element formulation in- 
corporates a complex set of higher-order stress modes yet, through application of a simplifying methodology, 
has been shown to permit a straightforward derivation of explicit algebraic expressions for element stiffness 
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coefficients. In comparison with an underintegrated numerical version of the element using a 2nd-order Gaus- 
sian quadrature rule, the explicit derivation required less than 14 % of the computational cost in forming 
element stiffness matrices. If an exact integration is required in the numerical version, the explicit derivation 
demonstrates a 20-fold increase in computational efficiency. The enhancement of computational efficiency of 
hybrid element formulations for nonlinear analysis has been demonstrated using the 4-node Pian-Sumihara 
quadrilateral element to derive explicit formulations accommodating nonconstant material properties. The 
derivation of an explicit element stiffness matrix has been shown to substantially reduce the computational 
cost in nonlinear analysis. The developed methodology is completely generic and may be applied to any 
hybrid element formulation to reduce the computational cost in linear and nonlinear applications. In the 
application to higer-order element formulations, an assumption of Cartesian stresses lead most efficiently to 
a combination of numerical evaluation of the scalar integrals involved in the orthonormalization process and 
in the integration of of various integrals required in determining components of the G matrix. All other inte- 
grations may be performed analytically. The increase in efficiency demonstrated with a linear-order hybrid 
element is expected to be even more pronounced in higher-order element formulations due to the elimination 
of forming and inverting the complementary energy matrix and by replacing the numerical quadrature of 
large-order matrix products with the analytical/numerical integration of a relatively small set of scalar inte- 
grals. The application of the above methodology can be expected to find general application in hybrid and 
mixed element formulations and provide a significant reduction in computational cost in generating element 
stiffness matrices for linear and nonlinear analysis. 

APPENDIX I 

SPECTRAL DECOMPOSITION 

The spectral decomposition of an orthotropic material compliance matrix is given by 

.    D=S~1'2=C1/2   ■   Cl'2 = QA1'2QT 

where the C and D matrix are given for a 2-D orthotropic material as 

C = 

The eigenvalues are computed as 

Cll Cl2 0   " 
Cl2 C22 0 D = 
0 0 C33 

d\i    du     0 
<^12     ^22       0 

0      0     d33 

<Pi    =    (-y/cyj - 2cuc22 + 4cj2 + c-ft + c22 + cn)/2 
f2    =   .(   \Jc'i2 - 2ciic22 + 4c?2 + c2

n + C22 + Cnj/2 
<P3     =      C33 

yielding the A1/2 matrix as 

The Q matrix is defined as 

where the eigenvectors are given by 

^2 = dia9[^\^\^] 

g = [*1|*2|*s] 

$3 = 

and normalized as 
Ni = (<if <l,-)-1/2 
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The computation of the 3-D distributing matrix using the symmetric C matrix for an orthotropic material 

is performed as follows. 

C = 

Cll C12 C13 0 0 0 
cu C22 C23 0 0 0 
Cl3 C23 C33 0 0 0 
0 0 0 C44 0 0 
0 0 0 0 C55 0 
0 0 0 0 0 C66 

D- 

dn   dl2   dis     0      0      0 

du ^22 ^23 0 0 0 
di3 ^23 ^33 0 0 0 
0 0 0 d44 0 0 
0 0 0 0 ^55 0 
0 0 0 0 0 <^66 

In the spectral decomposition, eigenvalues are obtained as 

ipi    =    tx+t2-a/Z <fi4    =    c44 

P2      =      (-(tl+t2)-2aß + y/=5(t1-t2))/2 <P5      =     C55 

<P3   =    (-(*i + <a) - 2a/3 --/3J(<i -12))/2 <Pe    =   c66 

where 
1/3 h = (r + s/q3 + r2) 

<2 = (r-N/^r+H)1/3 

9 = 6/3-a2/9   ;   r = {ab - 3c)/6 - a3/27 
a = -(C33 + C22 + C11) 

6 = (c22+Cll)c33-C2i3-C?3 + CiiC22-C?2 
C = (cUC22 + Ci2)c33 + CUC23 - 2ci2Ci3C23 + cj3C22 

yielding the A1/2 matrix as 

The Q matrix is given by 

A 1/2      j-    r  1/2     1/2    1/2     1/2    1/2     1/2, A1/i! = dtagltp^  ,ip2'  ,ip3'  ,<p4'  ,<p5'  ,<p6' ] 

Q = [*l|*2|«3|*4l*5|*6] 

where the eigenvectors are given by 

$1 = < 

(c22-¥>l)(c33- Vl)~c23 
C13C23 — C12(C33 — 9l) 

C12C23 -Ci3(c22 - <Pl) 
0 
0 
0 

(        C13C23 - Ci2(c33 - <f2) 

(Cll - V2)(C33 - 92) - Cj3 

L      $2  =   < 
Cl2Cl3 - C23(Cll - <Pl) 

0 
0 
Ö 

$3= < 

C12C23 — C13(C22 — Vz) 

C12C13 - C23(Cn - fz) 
(Cll - ¥>3)(C22 - ?z) - C?2 

0 
0 
0 

r 0 ] r 0 ] f 0 1 
0 0 0 

>,$4=< 
0 

C44 
► ,  $5 = < 

0 
0 

. ,  $6 = < 
0 
0 

0 C55 0 
I 0 J I 0 J . C66 , 

and normalized to yield 
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In the case of degenerate eigenvalues, the associated eigenvectors are discarded and replaced by vectors 
orthonormalized to the independent eigenvectors using the standard Gram-Schmidt procedure. In addition, 
the inverse of the distributing matrix is obtained by simply replacing the diagonal A matrix in the above 
with the following 

-1/2, A-1/2        j-      r    -1/2       -1/2      -1/2       -1/2       -1/2 A    '   =diag[<pl     ,<p2      ,p3      ,<p4      ,(p5      , fe 

APPENDIX II 

ORTHONORMAL STRESS MODE COEFFICIENTS FOR THE 3-D 
PIAN-TONG HEXAHEDRAL ELEMENT 

For 3-D coordinate transformations, the determinant of the Jacobian is given by 

|J|      =     Si+ S2$ + S3T] + S4C + S5T)$ + S6(£ + S7(T] + S8£2 + S9T]2 + Sio(2 + Sn^ + SX2^
2 + 

«13<£2 + S14ZT}2 + S15CT}
2
 + Sl6^C2 + Si7TJ<2 + «lsC^2 + «19C^2 + «20»?£C2 

where 

«1 = <Pl2 «6 

s2 = fix + <fi2 s7 

«3 = ¥'23 + ¥'l2 «8 
S4 = ^31 + ¥>23 «9 
«5 = f42 + fl4 + fh «10 

=     fll + V51 + ¥>43 «11 =   M4 «16 =      <P35 

=     V23 + V?34 + V26 «12 =    VIA «17 =      <P37 

=     Vl4 Sl3 =  <PI\ Sl8 =  VIA 
=     V>42 S14 =     <P742 «19 -    fie 
=      ^35 «15 

       ,„7 
-      ^26 S20 =      V?65 

and 

f)k = ai(bjck - bkCj) +-bi(ciak - Ckdj) + Ci(ajbk -akbj\ 

The stress mode coefficients, r,j, are given by 

ri,i =    c,2 
r,i2 = -c,-2A2/Ai 
n-,3 =    c,-3 - <j>\riti 

n,4 = -Ciz^il^i — <i>\n,i 
»"i,5 =    c,5 - 4>\rit3 — r2»*«,i 
Tifi = — <£2r,-?4 - ^2r»,2 — Cis\2/\\ 
n,7 =   c,i 

n,S, = -<£l»*.\5 - <t>2ri,3 — r3r«',l 
r,-,9 = -4>irii6 - r2r«',4 - r3r.',2 - C.1A3/A1 
»*i,10 =     C,3 — <j)\rij 

n-,11 = -<f>\ri,& ~ r2r«,5 - #3r>,3 ~ r4rU 
n-,12 = -<f>iri,9 - </>2r>,6 - <t>irii4 - <j>X/rit2 - ci3\3/\i 
ri,13 =     C,-6 - 4>\r,',l0 - <^2ri,7 
»•i,14 = -^fr,-,ll - 02r«,8 - V3rt,5 - r4»%\3 ~ rlr»,l 
r.M5 = -0?r,-,i2 - 4\ri>9 - 4>%rifi - <f>\riA - ^|r,-,2- 

CtöAs/Ai 
ri,16 =    c,i 

»•,■,17 = ~r? fi.13 - <^2r»,10 ~ V3r.\7 
»",•,18 = -^fr,-,l4 ~ ^2r»Ml - V3r«\8 - r>.,5 ~ $fo,3- 

n,i9 = -^fri,i5 - ^2r«,i2 - ^3r»,9 - 4>\rifi - <t>%riA- 
^6r»",2 - c,iA4/Ai 

»".,28 

>"i,30 

r,-,3i 

r.\32 

C,3 
: -^?r«,24 - <^2r«',20 - <^3c«'l 
: -^in-,25 - <£2r,\2i - <l>ln,n - ^4r«,13- 

<#Sr«,10 — ^6P»',7 
= -^ir,-,26 - <^2r»,22 - ^3^,18 ~ ^4r.\14- 

<l>5ri,n ~ 06r»,8 ~ <^7ri,5 - </>8r.',3 ~ ^g^.l 
= -<f>lrit27 ~ ^2r«,23 - «^3r»M9 ~ <^4r«,15- 

(a , n . n . n . 1 

»".,33 

n,34 
ri,35 = 

J*j,36 = 

r,-,37 = 

r.,38 = 

^5r«,12 - <^6ri,9 ~ ^7r.-,6 - <l>ln,4 ~ ^9^,2" 
Ci3A5/A! 

:      Cn 

■■ -ft0*,* 

-v{°r,-,29 - ^°r,-l24 - 4>l°rii20 - <j>\°Cil 

-vi°r,-,30 - ^°r,->25 - ^°r,-i21 - <j>\°riil7- 
^°r,M3 - ^°n,io - #°r,-,7 

-ri°r,-,3i - v^0r,-)26 - v3°r,-,22 - ^°r,-,i8- 
4>\°riM - $°r,-,u - r7°r,-,8 - ^r,-,5- 
J.10-. 
P5 

V10'«,l 
-rl°r,-,32 - #°r,-,27 - r3

0n-,23 - ri°r,M9- 
rs^.MS - ^°r<lia - 07°r,-,9 - 08°r,-,6- 
'/'g0'',-^ - riori,2 - CjiA6/Ai 

r.,39 

n,40 = -rilj"i,33 

C.2 
All. 
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n-,20 —     c«2 
4.7 n,2i = -4> 

ri,23 

I - <t>\ri; 

= -^Iri.is - <t>\riM - ^3r>,ll - <f[n,8 - ^5r>',5- 

06r«,3 - <t>7ri,l 

= -<t>lri,19 - <f>ln,15 - 03r»',12 - 04r«',9 - ^5r«,6- 

<^6r»,4 — ^7r»',2 — Ci2^4/^1 

»".•,41 = -<^ilr»',34 - ^2lr«,28 
_. JLll„.  ._ J.U„.  „ 
»"«,42 = —^i1'"»,3S — V2 

r.-,43 = -0i1r,-,36 - <£n 

•«,29 -* '31»-,-,24 ■^4lr«',20- 

. ^   »"«,36 — <?>2ir»,30 

»•.•,44 = -<^1   ''»,37 - V2 
All-. ^(.11 

1 T»',37 

<^5lrt',18 - <p6*r«',14 

V6' »,i      rr »,^      ~»^ 

»*.-,24 =     C,4 - 0ir,-,2O - 02C«'l 

»".•,25 = —^f»*s,21 - 4>2r',ir - ^3r«M3 ~ <^4r«,10 ~ <t>%»V r 3     .,- 

»•.-,26 = -4>1 »'.•,22 - 02r«',18 - $3r«\14 ~ ^4r«\ll ~ <t>lri,&-      »"»,45 = -^Vj.as - <f> 
18 i8_ .[8_ J.11- J. 

- <^3lr»,25 

- <^7lr«M0 

- ^3lr«,26 

T   L       • ,** T   &      • ,*« I   *)      • 

<#5r«,5 - <^7r»,3 - 0!»N,1 

^?f.-,23 - 02»"«.19 - <j>3ri »".■,27 = -^?»".-,23 - <t>2r <^3r',15 - ^4rt,12 - ^f»"i,9 — <P\ri,23 — <?>2r«',19 ~ Y>3r',15 — 941 iX 

06r«',6 - 07r«',4 - 0ir»,2 - C.^/Ai 

<fi¥rits - <j>\hri,3 - ^iir,-,i 

^3lr«-,27 

- <^7lr«,12 

^llr«-,2 - 

»•.,32 

<t>9lri,6 ~ 4>\ori,4 - 

Hlri,19 ~ ^"»VS 

-4>\xri,2i- 

-<^4lr»,22- 

-<^4lr.",23- 

Ci2^7/M 

Expressions for the inner products arising from orthogonalization are given by 

c = X>«..- 
i=l 

where 

4>\ 

8 _ 

*ii = 
*$ = 

*i} = 
*2. = 

= «yd 

= "I 
= nie 

= 7J7C, 

= «1 
= nie 

= n|c, 

= «7. 

= ngc, 

= n|c, 

= n^c, 

= nie 

= n|c, 

= nyC, 

= »a 
= n|c, 

= . n|c, 

= nie, 
- „2 

= n?e 
= nie 
= nie, 

= nfe 
= nie 

= n|e 
= n7e 
= nie 
= nie 

,lA8 + »"«-,2A2) 
,1^8 + Tj)2A2) 

,3^8 + »•«■,4^2) 

,5^5 + »"j^Aa) 

,lA5 + »"i,2A3) 

,3A5 + »".^As) 

,5A5 + »"i,6A3) 

,3A5 + U ,4X3) 

,1X5 + r,-,2A3) 

,5A5 + »"i,6A3) 

,3A5 + »"t,4A3) 
4A5 + r,-,2A3) 

,5A7 + r,-,6A4) 

,3A7 + r,,4A4) 

,iA7 + r,-,2A4) 

,5A7 + »*»",6A4) 

,3A7 + fi,4A4) 

,lA7 + Tj,2A4) 

,5A7 + »*i,6A4) 

|3A7 + Tji4A4) 

,iA7 + r,-,2A4) 

,5Ai4 + r,-,6A5) 

|3Ai4 + r,-,4As) 

,lAl4 + »".-,2A5) 

.öAn + »*.-,6A6) 

,3An + ri^Xe) 

,iAn + r,-,2A6) 

,5Al6 + »".,6A7) 

,3Al6 + »",-,4A7) 

,1X16 + ^,2X7) 
2 
10 

rlllc«',6(rt,loA9 + »".,llA5 + »-,ii2A3) 
n10c«',6(r»,7A9 + »•«,8A5 + »•«,9A3) 
Tl12C»',l(T"t,13A6 + f.-,14A7 + »•.•,15A4) 
niic»',i(r»,ioA6 + ritnX7 + rt|i2A4) 

.-,3(r, 

ifi(ri 

iAn 
.M(r.- 
•M(r.- 
Mfa 
iAn 
idn 
.-.3(r,- 

.-,6(r.- 

iÄn 
iAn 
i,i(n 
iAn 
i,i(rt 

iÄr' 
Un 
i,2(n 

iAn 
i,4(»*.- 

iAn 
.■•3(r.- 

.-,3(r.- 

iAn 
iAn 
u(r. 
iAri 
.•,2(r. 

iAn 
.-,2(r. n?e 

nioc»,3(»'.',7A9 + r,-,8A5 + r,-,9A3) 

4$ 

-      „2 

n?2e 

n2 

12 li( 
,2 
n\Qc 

= ni2 

= n2
lC, 

= n2
l0c, 

= »12c 

= n2
nc, 

= n2
10c, 

= n\2c, 
= n2

nc, 

= nj0ft 

= «ISC 
= nf4e 

= »13< 

= »?5 
"14 

"ioc«M(r«',7A6 + ri}SX7 + r,|9A4) 
n12c»',2(r«',13A6 + »V4A7 + r,-ii5A4) 

"llc.,2(»".,loA6 + »'«•,11A7 + »*i,12A4) 

"10C«',2(»'.-,7A6 + »*.-,8A7 + r,-)9A4) 

"2 - -,(»•,•, 13A6 +»•«-,i4A7 + r,-ii5A4) 

,(»*»•, loAö + »*.-,llA7 + »".,12 A4) 

,(r,-,7A6 + »"i,8A7 + ri|9A4) 

l(»*i,13Al2 + »'.•,14Al4 + »N,15A5) 

i(»".-,ioAi2 + »-.-,iiAi4 + r,-,12A5) 

,3(»'.,7Ai2 + r,-i8Ai4 + r,-,9A5) 

,l(»"»',13Al7+ »•.•,14A11 +»"., 15 Xß) 

,i(»"»,ioAi7 + »"..liAii + r,,i2A6) 

l(»*t,7Al7 + »*.,8All + rj.gAö) 

[^(»•«.lsAii + r,-,i4Ai6 + rtii5A7) 

,2(»"»,ioAii + r,-,nAi6 + r,-,i2A7) 

,2(»"»,7Aii + r,|8Ai6 + r,-,9A7) 

^(»•».löAio + f.,i7A6 + r,-,18A7 + r,- 

=    n 

"14 

"13 

»?5 
"14 

2 
13' 

"16 

J9A4) 

23A4) 

Aö + n,i8A7 + r,,i9A4) 

,4(»"«',2oAio + r.-^iAö + r,-,22A7 + r,- 

^(»•..leAio + r^^Ae ,    ,,i0-,  , .. 

C«,3(»'»,24All + r,|25Ai2 + r,-,26A].4 + 

'*14c«',3(r'«',2oAll + r,-,2lAi2 + rt|22Al4 + 

"l3C«',3(»'.,16All + r,-ii7Ai2 + f,-,18Al4 + 

"l5c»',l(rt',24Al5 + r,-,25Al7 + r,-,26All + 

"2 lCj,l(»".,20Al5 + f.,2lAl7 + r,-,22Aii + 

|Cj,l(»'.',16Al5 + »\\17Al7 + »*.-,18All + 

e.',2(»*.',24Al3 + ri,2sXu + »*.,26Al6 + 

C.,2(»"«',2oAi3 + »*«,2lAll + r,,22Ai6 + 

|Ci,2(»*»,16Al3 + »"i,17All + r,,18Ai6 + 

iCi,l(rji28A22 + »*i,29Al5 + »"i,3oAl7 + 

»"«,32A6) 

"l6c«',2(»"t,28A23 + »"»,29Al3 + »,.,,3oAll + rii31A16+ 

»"«,32A7) 
n17c»',2(»'i,33A21 + »'»,34A23 + »*i,35Al3 + 

»"«•,37Al6 + rii3sX7) 

»*«,27A5) 

»*i,23A5) 

»"i,19A5) 

»*i,27A6) 

»"i^Aö) 

»*»,19A6) 

»*i,27A7) 

»*i,23A7) 

»*»-,19A7) 

»*t,3lAll + 

r«',36Aii + 
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Normalizing factors for the othogonal stress modes in which j = 1,2,3 are given by 

\-l/2 

"i+6    =    {ELi(r.?.v-iA8 + r,-I?)-_ir,-i?,-A2+r1??J.A1)}-1/a 

"i+9    =    {E,=i(r.?,3;+4A9 + 2r«,3;+4('',-,3j+5A5 + r,-,3J+6A3) + r2
3j+5A8 + 2r,-,3j+5r,|3;+6 A2+ 

"j+12    =    {E<=i(rMi+i2Aio + 2r,i4;+i2(r,-,4J-+13A6 + r,-,4j+i4A7 + rji4j+15A4) + T-
2
4J+13A9+ 

2r,-,4J+i3(r,i4j+i4A5 + r,)4j+15A3) + r2
4i+14A8 + 2r,)4J+14r,i4i+15A2 + ff^+^Ai)}-1/2 

"16    =    •C-=i(r2,28Ai8 + 2r,-]28(r,-,29Aii + r,-,3oA12 +r,-,3iAi4 + ri,32A5) + r2
|29Aio+ 

2ri,29(r,-,30A6 + r<i31A7 + rii32A4) + r2
30A9 + 2r,|3o(r,|31A5+ 

r,-,32A3) + r2
)31A8 + 2ri?3iri,32A2 + r2,32

Ai)}~1/2 

«17    =    {Z)i=i(r»2,33Ai9 + 2rj|33(rj|34A22 + r,i35Ai5 + r,,36Ai7 + r,|37An + r,-i38A6)+ 
ri2,34Ai8 + 2r,]34(r,|35Aii + r,;36Ai2 + r,-,37Ai4 + r,-i38A5) + r2

3SAi0+ 
2r,-,35(r,-,36A6 + r,-,37A7 + r,i38A4) + r2

36A9 + 2r1>36(rti37A5 + r,-,38A3)+ 

r2
37A8 + 2r,-,37r,-,38A2 + r^Ai)}"1/2' 

"18    =    {H»=i(ri2,39A20 + 2r,i39(r,i4oA2i + r,|41A23 + ri)42Ai3 + r,-,43Au + TVI44AI6 + r,|45A7)+ 
rl 40^19 + 2r»,4o(r,-,4iA22 + r;,42Ai5 + T-,-,43AI7 + ri|44An + r,-,45A6) + r2

41A18+ 
2r,-,4i(r,i42Ai1 + riA3X12 + rii44X14 + r,|45A5) + r2

42A10 + 2r,|42(''.143A6+ 
»*»,44A7 + r,>45A4) + r2

43A9 + 2rj|43(rii44A5 + r,-,45A3+ 

r2,44A8 + 2r,-,44T\-,45A2 + r^Ai)}"1/2 

The integrals arising in the weighted inner product evaluate to 

Ai = 8(3si + s8 + s9 + si0)/3 Ai3 = 8(15s2 + 5si4 + 9s16)/135 
A2 = 8(3s2 + si4 + si6)/9 Ai4 = 8(15s3 + 9s12 + 5si7)/135 
A3 = 8(3s3 + si2 + si7)/9 Ais = 8(15s3 + 5s12 + 9*i7)/135 
A4 = 8(3s4 + si3 + si5)/9 Ai6 = 8(15s4 + 9s13 + 5si5)/135 
A5 = 8(3s5 + s20)/27 Air = 8(15s4 + 5si3 + 9si5)/135 
A6 = 8(3s7 + s18)/27 A18 = 8(15si + 9s8 + 9s9 + 5si0)/135 
A7 = 8(3*6 + *19)/27 A19 = 8(15*i+5s8 + 9*9 + 9s10)/135 
A8 = 8(15*i + 9s8 + 5*9 + 5*io)/45 A20 = 8(15*i + 9s8 + 5s9 + 9*i0)/135 
A9 = 8(15*1 +5*8+ 9s9 + 5*io)/45 A2i = 8(5s5 + 3s2o)/135 

Aio = 8(15*i + 5s8 + 5s9 + 9sio)/45 A22 = 8(5*6 + 3*i9)/135 
An = 8sn/27 A23 = 8(5*7 + 3*18)/135 
Ai2 = 8(15s2 + 9si4 + 5s16)/135 

APPENDIX III 

ORTHONORMAL STRESS MODE COEFICIENTS FOR THE 
NONLINEAR PIAN-SUMIHARA ELEMENT 

The stress mode coefficients, p? •, are given by 

Pl3 =   . Til P42 = Tl4Cn ?43 = -n4cnA2/Ai 
P26 =      Til P45 = TI4C21 P46 = -Tl4C2lA2/Ai 

P39 =      «1 Pia = «4C31 P49 = -n4c3iA2/Ai 
til =      "5Cl2 Ph = -n5cu^ P53 = -«5^1 

PU =      "5C22 Ph = -Tl5C21<£ Ph = -TI5Ö2 

Ph =      »5C32 Ph = -«5C31<^ Ph = -TI5Ö3 

in which 
<f> = -n4(ci2Cn + C22C21 + c32C3i)A2A3/Ai 
9\ = (ci2A3 + ^cnA2)/A1 

#2 = (C22A3 + <£c21A2)/Ai 
#3 = (c32A3 + <^C3iA2)/Ai 
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and normalizing factors are given by 

Bl = Ar1/2 

»4    =    [(c?1 + c|1 + c|1)(A5-A2
2/A1)]-

1/2 

3 

"5    =    [5>22- 2ci2fliA3 + ^2c2
1A5 + 2^c,1ö<A2 + Ö,2A1)]-

1/2 

«=i 

The determinant of the Jacobian for 2-D transformations is given by 

|j| = J0 + Jit + J2v 

where 
Jo = <ll&2 — a2&l     !     Jl = al&3 "" <*3&1     !     -72 = «3&2 ~ 02^3 

The scalar integrals arising in the inner product to evaluate to 

Ai= /    /   |J|d£di7 = 4Jo XA
 
=
 JJ  [lJl^*^ = ° 

A2 = y   y   |J|^(f77 = 4Jj/3     >* = ]   j  [|J|^2^d»7 = 4Jo/3 
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