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Abstract

For many types of learners one can compute the statistically "optimal" way to select data. We review how
these techniques have been used with feedforward neural networks [MacKay, 1992; Cohn, 1994]. We then
show how the same principles may be used to select data for two alternative, statistically-based learning
architectures: mixtures of Gaussians and locally weighted regression. While the techniques for neural
networks are expensive and approximate, the techniques for mixtures of Gaussians and locally weighted
regression are both efficient and accurate.
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1 ACTIVE LEARNING - tures, however, provide an estimate of P(pji) based on
BACKGROUND current data, so we can use this estimate to compute the

expectation of &2. Selecting .i to minimize the expected
An active learning problem is one where the learner has integrated variance provides a solid statistical basis for
the ability or need to influence or select its own training choosing new examples.
data. Many problems of great practical interest allow
active learning, and many even require it. 2.1 EXAMPLE: ACTIVE LEARNING WITH

We consider the problem of actively learning a map- A NEURAL NETWORK
ping X - Y based on a set of training examples In this section we review the use of techniques from Op-
{(xi•.y)}7iýL, where xi E X and yi C Y. The learner timal Experiment Design (OED) to minimize the es-
is allowed to iteratively select new inputs i: (possibly timated variance of a neural network [Fedorov, 1972;
from a constrained set), observe the resulting output . MacKay, 1992; Cohn, 1994]. We will assume we have
and incorporate the new examples (i, ý) into its training been given a learner = fj.(), a training set {(xi, yi)}iT=1
set. and a parameter vector W that maximizes a likeli-

The primary question of active learning is how to hood measure. One such measure is the minimum sum
choose which 5 to try next. There are many heuristics for squared residual
choosing .i based on intuition, including choosing places
where we don't have data [Whitehead, 1991], where we 1 2-

perform poorly [Linden and Weber, 1993], where we have M2 - I - (Yi -_ ý(i))2•
low confidence [Thrun and Mher, 1992], where we ex- =

pect it to change our model [Cohn et al, 1990], and The estimated output variance of the network is
where we previously found data that resulted in learning T '

[Schmidhuber and Storck, 1993]. 2 o2 (8i(x) '(02SX' - ( ()
In this paper we consider how one may select "op- a0, )w -W 2 - Ow

timally" from a statistical viewpoint. We first review
how the statistical approach can be applied to neu- The standard OED approach assumes normality and
ral networks, as described in MacKay [1992] and Cohn local linearity. These assumptions allow replacing the
[1994]. We then consider two alternative, statistically- distribution P(Ji]) by its estimated mean Q(5:) and vari-
based learning architectures: mixtures of Gaussians and ance S2 . The expected value of the new variance, ?,is
locally weighted regression. While optimal data selec- then:
tion for a neural network is computationally expensive 0'?(x, X)
and approximate, we find that optimal data selection for (a. ) 2 [MacKay, 1992]. (2)
the two statistical models is efficient and accurate.

2 ACTIVE LEARNING - A where we define
STATISTICAL APPROACH _ (X, i) S S2  

0 ,)) 2S2-

We denote the learner's output given input x as ý(x). 9w Ow2 Ow "
The mean squared error of this output can be expressed For empirical results on the predictive power of Equa-
as the sum of the learner's bias and variance. The varn- tion 2, see Cohn [1994].
ance o* (X) indicates the learner's uncertainty in its esti- The advantages of minimizing this criterion are that
mate at x.' Our goal will be to select a new example .i it is grounded in statistics, and is optimal given the as-
such that when the resulting example (i, 9) is added to sumptions. Furthermore. the criterion is continuous and
the training set, the integrated variance IV is minimized: differentiable. As such, it is applicable in continuous

domains with continuous action spaces, and allows hill-
IV 2-?P(x)dx. (1) climbing to find the "best" i.

For neural networks, however, this approach has many
Here. P(x) is the (known) distribution over X. In prac- disadvantages. The criterion relies on simplifications
tice. we will compute a Monte Carlo approximation of and strong assumptions which hold only approximately.
this integral, evaluating o'• at a number of random points Computing the variance estimate requires inversion of a
drawn according to P(x). IwI x Iwi matrix for each new example, and incorporat-

Selecting i so as to minimize IV requires comput- ing new examples into the network requires expensive
ing & the new variance at x given (2, •). Until we retraining. Paass and Kindermann [1995] discuss an ap-

actually commit to an i, we do not know what corre- proach which addresses some of these problems.
sponding ý we will see, so the minimization cannot be
performed deterministically. 2 Many learning architec- 3 MIXTURES OF GAUSSIANS

ýUnless explicitly denoted, ý and a9 are functions of x. The mixture of Gaussians model is gaining popularity
For simplicity, we present our results in the univariate setting. among machine learning practitioners [Nowlan, 1991;
All results in the paper extend easily to the multivariate case. Specht, 1991; Ghahramani and Jordan, 1994]. It as-

2This contrasts with related work by Plutowski and White sumes that the data is produced by a mixture of N Gaus-
[1993], which is concerned with filtering an existing data set. 1 sians gi, for i = 1,...,N. We can use the EM algorithm



[Dempster et al, 1977] to find the best fit to the data, where the expectation can be computed exactly in closed
after which the conditional expectations of the mixture form:
can be used for function approximation. nip-,,i + hii

For each Gaussian gi we will denote the estimated in- -Th,i I
put/output means as [,,j and p,.i and estimated covari- ni + hi

ances as a. ), 7 2i and o-y- The conditional variance of -.2 n,i nh-i(x - p-,i)2
y given x may then be written 0,.i + n 2n + hi (n + hi)2

U-0, 2 0. + h,0-(2) -

0 y + hi (n + hi)2

We will denote as ni the (possibly fractional) number n 
0

,yi nhi(i - p,,)(Qd(i) -pi)
of training examples for which gi takes responsibility: (5"Y,i) - - +m n + hi +(n + hi)2'

ni = m -•= P(xj. yj~l ) n03yi 2-?1- ,(.).

E YN (&2____________

j=1 k=1 P (r. yj Ik) ( + . (n + -,)4

For an input x, each gi has conditional expectation Y, 2
and variance o0. . K42 -• _0.__

0+;,i 4 LOCALLY WEIGHTED

0c,•,i ( (X _ ,.,)•2 REGRESSION
,= + -i-- 2 We consider here two forms of locally weighted regression

) (LWR): kernel regression and the LOESS model [Cleve-
These expectations and variances are mixed according land et al, 1988]. Kernel regression computes 9 as an
to the prior probability that gi has of being responsible average of the yi in the data set, weighted by a kernel
for x: centered at x. The LOESS model performs a linear re-

hi = hi(x) - V iN . gression on points in the data set, weighted by a kernel
Zj=l P(XIJ) centered at x. The kernel shape is a design parameter:

For input x then, the conditional expectation ) of the the original LOESS model uses a "tricubic" kernel; in
resulting mixture and its variance may be written: our experiments we use the more common Gaussian

N hi(x) =_ h(x - xi) = exp(-k(x - X,)2),

= hi Yi, where k is a smoothing constant. For brevity, we will
i=l drop the argument x for hi(x), and define n = >j hi.
N h2 02 /1 '2 We can then write the estimated means and covariances

0.?= 1 + -xi) + as:
X, J Ej hixi 2 Zi hi(xi - x)2

In contrast to the variance estimate computed for a neu- PX n n
ral network, here a.2 can be computed efficiently with no EZ hjy = Ei hi(yi - py)2

approximations. 
Py = 0.9

3.1 ACTIVE LEARNING WITH A 0 22 0.•; -- hi(xi - x)(yj - puy)
MIXTURE OF GAUSSIANS °y'l = .0' Y = n

We want to select " to minimize &2 With a mixture of We use them to express the conditional expectations and
their estimated variances:

Gaussians, the model's estimated distribution of ý given
i is explicit: kernel: Py,

N N 9, 2

P(Ji~) Sh~p(ýIp, i) =5h 1N%(ý,(p), 0I,2.i(p))' =' n

i=i -i= LOESS: 9 = pj + x-y-(x - u,),

where hi hi(x,). Given this, calculation of is X

straightforward: we model the change in each gi sep- 0.2 = 1 + -

arately, calculating its expected variance given a new 02 = , j
point sampled from P(ýIJ, i) and weight this change by 4.1 ACTIVE LEARNING WITH LOCALLY
hi. The new expectations combine to form the learner's WEIGHTED REGRESSION
new expected variance2 Again we want to select i to minimize &?). With LWR,

N yk1=yI-,i/(1 (I - (3) the model's estimated distribution ofy given ý is explicit:

o',h 2 P(9I1) = N(y(i),0•1.(X))



The estimate of &2 is also explicit. Defining h as the 1 Neural Network

weight assigned to 5 by the kernel, the learner's expected
new variance is

kernel: (&2) - o
n+ h

LOESS: a2 +- - -) - predicted change
n + X _ actual change

where the expectation can be computed exactly in closed
form: -0.5

- u-2  neural 0 0.2 0.4 0.6 0.8 1

fix -- x h
n +h/i Figure 1: The upper portion of the plot indicates the

n0,2  nh(ip,)2 neural network's fit to noisy sinusoidal data. The
&2 + lower portion of the plot indicates predicted and ac-tual changes in the network's average estimated vari-

(a2) = 2 + -j(Y2) nh(y(.i) -y)2 ance when i is queried and added to the training set, for

n +` + (n + h)2 ' [0, 1]. Changes are not plotted to scale with fits.

(•) o•,y nh/(i - p)y( ) -•
_3 ~ -+ Mixture of Gaussians

5I N (ESULT 0 _ 00 0

(3.&2),()2 + _yj~(~2~( - I)
(n +h) 4  

'0.5 o

5 EXPERIMENTAL RESULTS - - peiceicag
-_predicted change

Below we describe two sets of experiments demonstrat- actul change

ing the predictive power of the query selection criteria in -0.5 .
this paper. In the first set, learners were trained on data 0 0.2 0.4 0.6 0.8 1

from a noisy sine wave. The criteria described in this pa-
per were applied to predict how a new training example Figure 2: Fit to data and correlation for a mixture of
selected at point i would decrease the learner's variance. Gaussians.
These predictions, along with the actual changes in vari-
ance when the training points were queried and added.
are plotted in Figures 1, 2, 3, and 4.

In the second set of experiments, we applied the tech- have shown that they also offer the opportunity to per-
niques of this paper to learning the kinematics of a two- form active learning in an efficient and statistically con-
joint planar arm (Figure 5; see Cohn [1994] for details). rect manner. The criteria derived here can be computed
Below, we illustrate the problem using the LOESS algo- cheaply and, for problems tested, demonstrate good pre-
rithm. dictive power.

An example of the correlation between predicted and
actual changes in variance on this problem is plotted in References
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relation may be exploited to guide sequential query se-
lection. We compared a LOESS learner which selected W. Cleveland, S. Devlin, and E. Grosse. (1988)
each new query so as to minimize expected variance with Regression by local fitting. Journal of Econometrics
LOESS learners which selected queries according to var- 37:87-114.
ious heuristics. The variance-minimizing learner signifi- D. Cohn, L. Atlas and R. Ladner. (1990) Train-
cantly outperforms the heuristics in terms of both vari- ing Connectionist Networks with Queries and Selective
ance and MSE. Sampling. In D. Touretzky, ed., Advances in Neural In-

6 SUMMARY formation Processing Systems 2, Morgan Kaufmann.

D. Cohn. (1994) Neural network exploration using
Mixtures of Gaussians and locally weighted regression optimal experiment design. In J. Cowan et al., eds.,
are two statistical models that offer elegant representa- Advances in Neural Information Processing Systems 6.
tions and efficient learning algorithms. In this paper we Morgan Kaufmann.



KreRegression

0.5 

0 
0%

0- 0

_...... predicted change
- actual change-

-0.5-

- ,1

o 0.2 0.4 0.6 0.8 1 Figure 5: The arm kinematics problem.

Figure 3: Fit to data and correlation for kernel regres- 0.025

sion. o o

0.02-

1LOESS 0 0.0150

0 2
0 0.005o

S~o o o

0.6 
0.005 - o

e.4 c 0 ° o
0.2 o 6.... o o

0.2- o -0.005- o0.... o
-0.2- 01 i-0.005 0 0.005 0.01 0.015 0.02 0.025

actual change predicted delta variance

-0.6 Figure 6: Predicted vs. actual changes in model vari-
0 0.2 0.4 0.6 0.8 1 ance for LOESS on the arm kinematics problem. 100

candidate points are shown for a model trained with 50
Figure 4: Fit to data and correlation for LOESS model. initial random examples. Note that most of the poten-

tial queries produce very little improvement, and that
the algorithm successfully identifies those few that will

A. Dempster, N. Laird and D. Rubin. (1977) Max- help most.

imum likelihood from incomplete data via the EM algo-
rithm. J. Royal Statistical Society Series B, 39:1-38. M. Plutowski and H. White (1993). Selecting con-

V. Fedorov. (1972) Theory of Optimal Experiments. cise training sets from clean data. IEEE Transactions
Academic Press, New York. on Neural Networks, 4, 305-318.

Z. Ghahramani and M. Jordan. (1994) Supervised S. Schaal and C. Atkeson. (1994) Robot Juggling:
learning from incomplete data via an EM approach. In An Implementation of Memory-based Learning. Control
J. Cowan et al., eds., Advances in Neural Information Systems Magazine, 14(1):57-71.
Processing Systems 6. Morgan Kaufmann. J. Schmidhuber and J. Storck. (1993) Reinforce-

A. Linden and F. Weber. (1993) Implementing in- ment driven information acquisition in nondeterministic
ner drive by competence reflection. In H. Roitblat et environments. Tech. Report. Fakultit fuir Informatik,
al.. eds., Proc. 2nd Int. Conf. on Simulation of Adaptive Technische Universitit MIiinchen.
Behavior, MIT Press, Cambridge. D. Specht. (1991) A general regression neural network.

D. MacKay. (1992) Information-based objective func- IEEE Trans. Neural Networks, 2(6):568-576.
tions for active data selection, Neural Computation 4(4): S. Thrun and K. M8ller. (1992) Active exploration
590-604. in dynamic environments. In J. Moody et al., editors,

S. Nowlan. (1991) Soft Competitive Adaptation: Neu- Advances in Neural Information Processing Systems 4.
ral Network Learning Algorithms based on Fitting Sta- Morgan Kaufmann.
tistical Mixtures. CMU-CS-91-126, School of Computer S. Whitehead. (1991) A study of cooperative mecha-
Science, Carnegie Mellon University, Pittsburgh, PA. nisms for faster reinforcement learning. TR-365, Dept. of

Paass, G., and Kindermann, J. (1995). Bayesian Computer Science, Rochester Univ., Rochester, NY.
Query Construction for Neural Network Models. In this
rolume. 4



0.2 ---- bias
vanance

0.1 %

VarianceO
0 4  '

0.02

0.01

0.004-

50 100 150 200 250 300 350 400 450 500

training examples

Figure 7: Variance for a LOESS learner selecting queries
according to the variance-minimizing criterion discussed
in this paper and according to several heuristics. "Sen-
sitivity" queries where output is most sensitive to new
data, "Bias" queries according to a bias-minimizing cri-
terion, "Support" queries where the model has the least
data support. The variance of "Random" and "Sensitiv-
ity" are off the scale. Curves are medians over 15 runs
with non-Gaussian noise.

30

- random.
1 gensitivity

I0 _, supp~ort
1--varance

3~

MSE

0.31

0.14 Accession 7ow

50 100 150 200 250 300 350400 450 500 HTIS M&I
training examples DTIC Ta 0

Figure 8: MSE for a LOESS learner selecting queries Unannounced 0
according to the variance-minimizing criterion discussed

in this paper and according to the heuristics described
in the previous figure. By,

DI't ributiont/

Availability toftq

Avail ari -'i-r
5 ~Dist Special

I " -


