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1    Introduction 

1.1    Impact and Influence of the p-version 

Research and development of the p-version of the finite element method at Washington 
University have been supported by AFOSR since 1977. 

The p-version of the finite element method, together with the h-p version, have now- 
been as widely accepted as the classical /i-version, as efficient computational approaches 
to the solution of a wide variety of engineering and scientific problems. One current com- 
puter implementation of the p-version is the code MSC/PROBE, which is marketed by 
the MacNeal-Schwendler Corporation, p-version capabilities have been incorporated into 
MSC/NASTRAN and are now available to the general user. Thus, the p-version which until 
recently has only been licensed for use by a large number of aerospace companies and govern- 
ment laboratories on an individual basis, is now accessible to all users of MSC/NASTRAN. 

PROBE contains many unique features including fracture mechanics extraction proce- 
dures which were developed specifically for the p-version of the finite element method. These 
procedures, along with explicit quality control features, provide an excellent tool for perform- 
ing fracture mechanics analyses and verifying the accuracy of the results [1]. 

Several other computer codes which implement the p-version are now available for engi- 
neering use. These codes include: 

• ANSYS, marketed by Swanson Analysis, Houston, PA. 

• IDEAS, marketed by Structural Dynamics Research Corp., Cincinnati, OH. 

• COSMOS/M, marketed by the Structural Research and Analysis Corporation, Santa 
Monica, CA. 

• Mechanica, marketed by Rasna Corporation, San Jose, CA. 

• NISA/P-Adapt, marketed by Engineering Mechanics Research Corporation, Troy, MI. 

(for some details on these codes, see Machine Design, July 25, 1991, pp. 73-77, and Me- 
chanical Engineering, September, 1991, pp. 83-84). 

Most important, perhaps, is a new software structure, PEGASYS, marketed by ESRD 
(Engineering Software Research and Development). 
PEGASYS: A Software Infrastructure for R & D 

PEGASYS is an advanced software infrastructure, designed with two objectives in mind: 
To support research and to provide a framework for technology deployment in numerical 
simulation. 

Essentially, PEGASYS is an open system of software modules with well-documented in- 
terface specifications. PEGASYS currently consists of approximately 250,000 lines of code, 
written in the FORTRAN and C languages. PEGASYS is maintained in the popular work- 
stations, such as Hewlett Packard, Silicon Graphics, SPARCstation, IBM RS6000 and VAXs- 
tation. Using the software modules of PEGASYS, it is possible for researchers and developers 
to assemble simulation software products designed to meet specific engineering and scientific 
objectives. 



A number of finite element procedures concerned with element formulation, mapping, 
assembly, extraction procedures, error estimation and adaptivity have been completed. The 
currently active R&D projects utilizing PEGASYS include the following: 

- Development of hierarchic models for structural plates and shells; 

- Development of hierarchic models for laminated composites; 

- Superconvergent methods for the computation of stress intensity factors, including 
generalized stress intensity factors for multi-material interface problems; 

- Investigation of crack propagation phenomena; 

- Mechanics of filament-wound composites; 

- Advanced solution methods for elastic-plastic problems; 

- Development of models for structural connections; 

- Error estimation and quality control procedures; 

- Implementation of advanced finite element software on parallel computers; 

- Design sensitivity analysis. 

Some current R&D users of PEGASYS include: Washington University in St. Louis, 
The University of Maryland at College Park, The University of Iowa, McDonnell Douglas 
Aerospace Co., Ford Motor Co., Kelly AFB, The University of Technology in Espoo, Finland. 
PEGASYS is being used by NASA LBJ Space Center in Houston, and is being evaluated for 
use at Lockheed Fort Worth, McDonnell Aircraft Company and Ford Motor Company. 

Thus, earlier research into the p-version which was supported by AFOSR, has rapidly 
been transferred into modern technology. 

1.2    Hierarchic Modeling and Analysis of Structural Connections 

In the last few years there has been a great deal of progress in the development of methods 
for controlling the errors of discretization in finite element analysis. It has been established 
that, with properly designed finite element meshes and p-extensions, it is possible to achieve 
exponential convergence rates for very large classes of problems and, with superconvergent 
extraction procedures, engineering data can be computed from finite element solutions with 
accuracies comparable to the accuracy of the strain energy. The stopping criterion is that 
the data of interest must be substantially independent of the discretization. 

Control of errors of idealization is based on the idea that any particular model, for 
example a model based on the linear theory of elasticity, is embedded in a set of more 
general models, for example, ones that account for geometric and/or material nonlinearities. 
Which model is appropriate for a given task, depends on the goals of computation and the 
required accuracy. In general one starts with a simple linear model. Once a reasonably 
accurate approximate solution is available, then it is possible to judge whether the solution 



violates the assumptions (i.e., restrictions) incorporated in the model. The key question 
is, whether removal of those restrictions would have a significant effect on the conclusions 
drawn for the model. If that is the case then the model has to be "upgraded" and a 
new solution obtained which, once again, has to be examined for consistency with respect 
to the restrictions incorporated in the model. The stopping criterion is that the data of 
interest must be substantially independent of any restrictions imposed on the model. The 
construction of hierarchic models for structural plates and shells is described in reference [2]. 
An investigation of hierarchic modelling techniques applied to fastened structural connections 
is presented in reference [3]. 

Fasteners are complicated structural assemblies, full stress analysis of which would require 
consideration of three-dimensional problems involving friction, contact, nonlinear material 
properties, and other factors, such as mode of installation, etc. A number of idealizing de- 
cisions are necessary in order to make the problem tractable by numerical methods. This 
generally means that the problem has to be reduced to a two-dimensional one and nonlinear- 
ities must either be ignored, or only mild forms of nonlinearities considered. The objectives 
are to compute (a) the total force acting on fastener groups; (b) the forces acting on individ- 
ual fasteners; (c) critical combinations of stresses or strains in the neighborhood of the most 
heavily loaded fasteners; (d) the stress intensity factors for cracks in the vicinity of fasteners. 

There is renewed interest in this problem, particularly in the aerospace industry, for two 
reasons: First, concern over the safety of aging aircraft requires re-evaluation of structural 
connections that remain in service much longer than the original design life. Second, previ- 
ously established design procedures are based on assumptions of substantial ductility in the 
fasteners and the connected parts. These assumptions do not hold, in general, for composite 
materials. For this reason, determination of the distribution of forces in fastener groups 
subjected to critical loads and determination of the stress distributions in the neighborhood 
of fasteners, are important. Given the very low ductility of composite materials, use of the 
linear theory of elasticity is sufficient in a very large number of practical problems. 

There may be considerable interest on the part of the Air Force in analyzing structural 
connections because there is a potential for substantial improvements in the reliability and 
performance of mathematical models for structural connections and their repairs. Each 
repair being a separate design problem, improvements in this area are of obvious importance 
to the Air Force. 

The representation of fasteners in current modeling practice is a source of serious errors: 
In current modeling practice fasteners are usually represented by multipoint constraints, 
that is nodes of the finite element mesh are positioned at fastener locations and the nodes 
are connected by rigid or flexible bars. This modeling practice is conceptually wrong and the 
computed forces in the fasteners are entirely discretization-dependent [3, 4> 5, 6, 7, 8j. 
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2    Summary of Research Accomplishments 

Need for iterative solvers and parallelization in the p-version. 
Direct methods are fully satisfactory for the solution of the assembled system of linear 

equations in the p-version for small size problems or large sparse systems. But large size 
problems (with more than 30,000 degrees of freedom) which are today common in finite ele- 
ment analysis, are inefficient both in terms of CPU time and storage [1]. Iterative methods 
are a much better choice for problems with a large number of elements, and also do not suffer 
from fill-in. Iterative methods can be implemented on parallel computers and achieve com- 
putational load balance, that is, the computational load can be balanced among processors. 
Classical iterative methods: Jacobi, Gauss-Seidel, SOR, SSOR, Chebyshev methods, have 
been studied thoroughly and solve well-conditioned systems efficiently. But these methods 
converge very slowly for ill-conditioned systems. 

Also, they do not exploit the special structure of the global stiffness matrix. Iterative 
methods, specially designed for the p-version, can lead to dramatic increases in the rate 
of convergence, to implementation on parallel computers and, hence, to impressive savings 
in cost. These new methods will be used for complicated problems involving hundreds 
of thousands of degrees of freedom. Such problems are now becoming common and very 
realistic. 

2.1    Parallel Implementations based on the p-version 

An iterative method based on the textured decomposition method has been developed in 
order to solve the systems of linear equations arising in the p-version of the finite element 
method. The iteration was used to implement the p-version in parallel on an MIMD computer 
NCUBE/six, the objectives are two-fold: to achieve high computational efficiency (that is 
computational load should be balanced among the processors) and simultaneously to achieve 
rapid convergence. 

A superelement, consisting of four adjacent rectangular finite elements, is constructed for 
two dimensional problems. Based on the structural property of the shape functions, each 
superelement is partitioned into three blocks in two different ways, and a two-leaf textured 
decomposition (TD) is used. Computations for a superelement associated with each leaf are 
assigned to two processors and are performed in parallel. A new preconditioner is introduced 
to accelerate convergence in a preconditioned textured decomposition (PTD). A special local 
communication strategy is used to avoid global assembly and global communication. 

Three model problems: A Poisson equation on a rectangular domain with a smooth 
true solution, a Laplace equation on a rectangular domain with a near singular solution, 
and a Poisson equation on L-shaped domain, are solved. The conjugate gradient method, 
the textured decomposition method, the recursive textured decomposition method, both 
with and without preconditioning; and the classical iterative methods (Jacobi, Gauss-Seidel, 
SOR), are used to solve the three model problems. Load balance, speedup ratio, and spectral 
radii of the various iterations are studied. The test results indicate that recursive PTD with 
a local communication strategy gives at least a 30% improvement in computational time 
over the other methods. 



This method has been presented at papers at the SIAM National Meetings and will 
appear in the SIAM J. on Scientific Computing [2]. 

2.2    Multi-p Methods 

A natural analogy to the multigrid method, which is used in connection with the finite dif- 
ference method or the h-version of the finite element method, is the multi-p method which 
is used in connection with the p-version of the finite element method and hierarchical shape 
functions. Each method, multigrid or multi-p, is based on a fundamental iterative scheme, 
e.g., Gauss-Seidel or SOR. We have studied multi-p methods based on general linear station- 
ary iteration schemes. Various V-cycle algorithms for the multi-p methods are formulated 
including standard multi-p V-cycle (SMPV), modified multi-p V-cycle (MMPV) and vary- 
ing multi-p V-cycle (VMPV). Convergence results for each of the V-cycle algorithms have 
been provided. We have shown that, using a general linear stationary iterative scheme as 
a smoother, the standard multi- V-cycle algorithm has a linear convergence rate, but this 
rate is faster than that of the smoother. The modified multi-p V-cycle algorithm also has a 
linear convergence rate, but again this rate is faster than the rate of the standard multi-p 
V-cycle. The convergence of the varying multi-p V-cycle algorithm is a consequence of the 
convergence of both standard and modified V-cycle methods. Numerical experiments on 
representative problems have been conducted, and the numerical results agree and support 
our theoretical analysis [3]. 

In addition, we have studied nested multi-p methods. An error estimate has been de- 
rived for the nested multi-p methods. By comparing the nested multi-p methods with the 
multi-p V-cycle methods, we found that, at low accuracy, the nested multi-p methods are 
more efficient, but, at high accuracy, the multi-p V-cycle methods. This leads to the so- 
called accelerated multi-p V-cycle methods which are a combination of the nested multi-p 
methods and the V-cycle methods. Convergence of the accelerated multi-p V-cycle methods 
is proved. Numerical results indicate that the accelerated multi-p V-cycle methods are 80% 
more efficient than the underlying iteration. Some of the numerical results are shown in the 
figure 1. 
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Figure 1.   Comparison of the multi-p V-cycles. 

2.3    Multi-p Preconditioning 

In general, preconditioned conjugate gradient methods are regarded as very promising it- 
erative methods for solving linear systems of equations. In particular, conjugate gradient 
methods preconditioned by first condensing the finite elements and then using linear elements 
to construct a preconditioner have been studied by some researchers [4]. 



An algebraic theory for multi-p methods has been presented and analyzed. Convergence 
and symmetric properties are proved under suitable conditions. It is then shown how these 
multi-p methods can be used as preconditioners for the conjugate gradient method (CG). 
In particular, it is shown that given any preconditioner Mv to CG, a multi-p preconditioner 
Bp based on Mp can be constructed, which leads to a smaller condition number (and hence 
faster convergence). When Bp is applied as a preconditioner to condensed finite elements, 
the condition number is shown to grow slower than C(l + log2p), the best currently known 
result for 2-D problems in the p-version of the finite element analysis [3]. 

Numerical experiments on representative problems indicate that the condition numbers 
after multi-p preconditionings are, in fact, independent of p. The numerical results also 
show greater efficiency for PCG with the multi-p preconditioners in terms of number of 
iterations and CPU time when compared with two sophisticated linear equation solvers: (1) 
a direct frontal solver specially designed for the p-version of the finite element analysis; (2) a 
highly tuned preconditioned CG code in ITPACK. Preliminary comparisons of the number 
of iterations are also made with ROCKITS [5], a new commercial code used for the p-version. 

The methods presented are intended for use in the p-version of the finite element analysis, 
but are general in nature and can be applied to a wide variety of problems. 

The following three dimensional elastostatic problem on a brick domain illustrates our 
results. 

Figure 2.   A 3-D elastostatic problem on a brick domain. 
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Figure 3.   Uniform mesh with 64 elements. 

A 3-D elastostatic problem on a brick domain-CPU time (sec.) 
V 1 2 3 4 5 6 7 8 

DOF 369 1269 2169 3789 6129 9381 13737 19389 

Direct Solver 3 10 25 62 148 331 703 1487 

PCG by Multi-p 4 8 15 32 64 123 237 735 
PCG by SSOR 11 60 153 472 1186 2111 - - 
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Figure 4.   Relationship between CPU time and degree p. 

These results have been reported at SIAM National Meetings and will appear in SIAM 
J. on Scientific Computing [3, 6]. 

2.4    Conditioning of Global Stiffness Matrices 

In order to properly design preconditioners and to understand the rate of convergence of 
iterative schemes, it is important to know the condition number of global stiffness matrices 
appearing in the p-version. 

We have presented a theory for bounding the minimum eigenvalues, maximum eigenval- 
ues and condition numbers of stiffness matrices arising from the p-version of finite element 
analysis. Both lower and upper bounds are derived for the minimum eigenvalues, maximum 
eigenvalues and the condition numbers, which are valid for stiffness matrices based on a set of 
general basis functions that can be used in the p-version. Although the theory is specifically 
developed for the p-version and general basis functions, it is shown that the methodology 
used can be applied easily to both the h-version and the h — p version of the finite element 
methods. For a class of hierarchical basis functions that has been popularly used in the p- 
version, explicit bounds are derived for the minimum eigenvalues, maximum eigenvalues and 
condition numbers of stiffness matrices. Our results show that the condition numbers of the 
stiffness matrices grow at most as pA{-d~l\ where d is the number of dimensions. This growth 
is quite slow compared with the general bounds, which provides new theoretical support for 
using this class of basis functions. Numerical results are also presented which indicate that 
our theoretical bounds are quite sharp. 

12 



2.5    The Problem of Model Selection 

This phase of the work is motivated by the recognition that proper model selection is an 
essential prerequisite for reliable numerical simulation of physical systems. Specifically, work 
on model selection is focussed on two areas: One is the development of proper modelling 
techniques for fastened structural connections, the other is model selection for structural 
plates and shells made of laminated composites. Both areas are of substantial practical im- 
portance: In computations involving durability and damage tolerance, reliable and accurate 
estimation of the load distribution within aeronautical structures is essential. Loads are 
typically transmitted through lugs, actuators and fasteners. Increasingly, aircraft compo- 
nents are fabricated of composite materials. Reliable analytical procedures for structural 
and strength analyses of these important structural elements are not currently available. 

The problem of fastened structural connections is approached by the use of space en- 
richment techniques: The finite element space is enlarged through the introduction of the 
fundamental solution, multiplied by a cutoff function, such that the nearly singular character 
of the fastener interacting with the plate is well represented. This method is expected to 
lead to convenient and accurate representation of the structural action of large numbers of 
fasteners. 

In the case of laminated plates the stress distributions near boundaries, discontinuities 
and at interfaces are generally very different from the stress distribution in the interior re- 
gions. Boundary layer effects are normally present, and the problem in those regions is 
essentially three-dimensional. Hierarchic models for laminated plates make it possible to ap- 
proximate the three-dimensional problem through the solution of two-dimensional problems 
without the expense of a fully three-dimensional analysis. 

The proper choice of model depends on the problem description and the data of interest. 
For this reason, the model definition itself must be adaptive. In order to make this possible, 
a hierarchic sequence of models has been defined. The essential property of hierarchic plate 
models is that the exact solutions corresponding to the sequence of models converge to the 
exact solution of the fully three-dimensional problem: 

lim\\u{3D) -u{Hm\\v-0 nm \\uEX     uEX     \\E — u 

where uEX is the exact solution of the fully three-dimensional problem, uEX 'l' is the exact 
solution of the zth hierarchic model. Subsequently the following desirable properties were 
stated and the conditions for achieving them clarified: 

1. (a) With respect to the thickness (£) approaching zero, the exact solution of each model 
should converge to the exact solution of the fully three-dimensional problem in energy 
norm: 

lim11^      "™     "     =0   »=1,2.... 
\\4%\\E 

In the case of plates the limiting solution is the Kirchhoff plate model. The first model 
in the hierarchy is the Reissner-Mindlin model. 

2. (b) When uEX is smooth then the hierarchic models yield optimal rates of convergence, 
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that is, 

lim 
t-»o 

,   (3D) _    (HM\i){ 
\UEX        UEX       I E 

'   (3D) n 
,   EX \\E 

<ct oti 1,2,. 

where a, > is the largest possible constant. 

When the region of interest includes the boundaries of plates and shells then boundary- 
layer effects must be taken into consideration. The exact solution of plate models may 
differ very substantially from the exact solution of the corresponding fully three-dimensional 
problem at the boundaries. Thus, when the data of interest depend on the solution at 
the boundaries, which is often the case in engineering applications, proper model selection 
through the use of hierarchic models is essential. 

Aspectracoa/h=4:.   . 

'.—' REFERENCE 

    MODEL 1 

-'-~ M0DEL2. "• 

— MODEL 3"' 

Figure 5.   Typical through-thickness shear stress distribution computed for a 3-ply 
(-45 + 45 - 45) soft-simply supported square plate from a hierarchic sequence of models. 

The reference is the fully three-dimensional model. 

2.6    Numerical Analysis of Material Interface Singularities in 
Two Dimensions 

Eigenpairs 
The solution for the linear elasticity problem in two dimensions (2-D) in the vicinity of a 
singular point can be expanded in the form [7]: 

oo    M 

i=l m=0 
(1) 

where Cim are the coefficients of the asymptotic expansion (called the generalized stress 
intensity factors - GSIFs), and cc* and fim{9) are eigenpairs which depend on the boundary 
conditions. 
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At present, the possibility to evaluate these GSIFs, which determine failure initiation at 
singular points in a 2-D domain, especially when the singularity is caused by multi-material 
interfaces, is very limited. 

A numerical method based on the Steklov problem for the computation of the eigen- 
pairs resulting from singularities due to corners, abrupt changes in material properties and 
boundary conditions is presented (see [8]). 

Numerical studies have indicated that the computed values converge strongly, are accu- 
rate and inexpensive from both the computational point of view and the point of view of 
human time needed for input preparation. 

This method is very important from the practical point of view because it provides a 
rigorous quantitative basis for investigating failure events, such as delaminations of composite 
materials at corners, and failure in electronic devices. 
The Steklov Weak Form. 

Notation: We denote the two displacements (variables) in the x and y directions by ux 

and uy respectively. The normal and tangential displacements and tractions, will be denoted 
by Tn, Tt and un, ut, respectively. In the vicinity of the corner we assume that no body 
forces are present. 

Let us consider a domain Q.R shown in the figure 6, where r, 8 are the coordinates of a 
cylindrical coordinate system located in the singular point. On the boundaries Tx and T2 

homogeneous boundary conditions are introduced. 

Singular palne. 

Figure 6.   Domain and notations for the modified Steklov formulation. 

In QR, UX and uy may be represented as follows: 

(ux) 
{Uy) 

u = <i n ~ > = r 
"ly l g(0) I • 

(2) 

Under special (exceptional) circumstances, u may also have additional terms lnr terms, 
however this case is not treated in the following. 

Using (2), on T3 we have: 

(du/du) = (a/R)u    ,   (x,y)eT3, (3) 
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and a similar condition on T^ 
Multiplying the equilibrium equation by v = {vx , vy}

T € H1^) x Hl(Q,R), we obtain 
after some mathematical manipulations the following weak form, called the modified Steklov 
weak form: 

Seek       aeC  , O^ue H^ÜR) x H^QR), 

B(u, v) + E-=i Mi(u, v) - CA/k(w, v) + MR-(% v)) = 
a(MR(ü,v) + MR*(ü,v)),  WeH1{nR)xH1{nR) (4) 

where: 

B(u,v) = f IQR([D]v)T[E][D}udQ, 

MR(u, v) = j ^[AtflMMM*]^M, (5) 

AfR(u,v) = I [^[ArnAsmiD^ul^dO , (6) 
e 

where the various matrices are given in [9], and [E] is the material matrix. 
Remark 1 The domain QR does not include singular points, hence no special refinements 
of the finite element mesh is required. Furthermore, QR is very small in size. 

The bilinear forms MR and NR* are non-symmetric with respect to u and v. As a 
consequence, the symmetric properties of the weak form are destroyed. This means that in 
general complex eigenvalues and eigenvectors exist. 

Also note that the formulation of the weak form has not limited the domain ÜR to 
be isotropic, and in fact can be applied to multi-material anisotropic interface, as will be 
demonstrated by a numerical example. 

The expressions in (4) are reformulated in the framework of the p-version of the finite 
element method, where the solution of the eigenproblem are the desired eigenpairs. 
Numerical Example 

Consider two orthotropic materials, graphite and adhesive (epoxy), bonded together, 
with plane strain condition assumed. See figure 7. 
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Figure 7.   Orthotropic bonded materials test problem. 

This problem was chosen to demonstrate the Steklov method for anisotropic multi- 
materials with a singular point. The material properties are listed in Table 1, where E 
is the modulus of elasticity, v is the Poisson's ratio, and G is the modulus of rigidity. 
The first three exact non-zero eigenvalues, obtained using the Lekhnitskii stress potentials, 
are given in the following; {cti)Ex = 0.905 ± O.OOOOi, (a2)EX = 1-000 ± 0.0000i, (a3)EX = 
1.944 ± 0.3051i. 

The mesh used for this example problem has the minimum possible number of finite 
elements, i.e. one element in each anisotropic subdomain. The exact eigenvalues are given 
with an accuracy of up to the third digit, so that the accuracy of the numerical results may 
be assessed up to about 0.01% relative error. 

Convergence curves of the absolute relative error in the eigenvalues is shown in figure 8. 
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Figure 8.   Convergence of first three eigenvalues. 

The results demonstrate an excellent convergence rate for the coarsest mesh possible. 
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2.7    Extraction of GSIFs Using the Principle of Minimum Com- 
plementary Energy 

By utilizing the principle of minimum complementary energy in conjunction with the Steklov 
formulation and the p-version of the finite element method, the GSIFs for anisotropic as well 
as for isotropic domains, can be computed with high accuracy. 

The following method is proposed. A small subdomain, QR, is constructed around the 
singular point, by intersecting a circle of radius R centered in the singular point, and the 
domain ft. The approximated pointwise finite element solution is applied on the boundaries 
of Q/j. 

The finite element method based on the principle of minimum complementary energy is 
used now over ftÄ, where the trial and test functions are the approximated eigenpairs with 
the GSIFs as unknowns. The finite element formulation chooses these coefficients such that 
the complementary energy in QR is maximized. Solving the finite element system of equation 
over £IR, one obtains an approximation for the series coefficients. 

Numerical experiments for the scalar elliptic problem (for both isotropic and anisotropic 
materials) showed that the GSIFs converge to the exact values as fast as the error in the 
strain energy, thus exhibit superconvergence. For a detail discussion and numerical examples 
see [10]. 

Graphite Adhesive 
En x 106psi         20. 1.4 
E22                       2. 1.4 
.E33                       2. 1.4 

1/12                       0.450 0.3 
i/23                       0.040 0.3 
u3l                      0.045 0.3 

G12 x 106psi 1.1 2.7 

Table 1: Material properties. 

Summary 
It is expected that, much like crack extensions, failure initiation and propagation can 

be correlated with the GSIFs, but neither the computational procedures, nor the analytical 
understanding are available for the anisotropic multi-material interfaces. 

A reliable numerical method for the computation of the eigenpairs and the generalized 
stress intensity factors (GSIFs) which characterize the solution in the neighborhood of sin- 
gular points in anisotropic multi-material interfaces has been presented. 

Numerical experiments and mathematical analysis indicate that the computed values 
converge strongly, are accurate and inexpensive from the points of view of human time 
needed for input data preparation, and required computer time. 

This method is very important because it provides a rigorous quantitative basis for inves- 
tigating failure events, such as delamination of composite materials, and failure in electronic 
devices. 
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