
Congres International sur la Modelisation 
Mathematique des 

Ecoulements en Milieux Poreux 

»Tlf* 
ELEGIE [VÄ 
JUN 2 7 1995 I 1 

SAINT-ETIENNE 
22 - 26 MAI 1995 

J 

TABLE DES MATIERES 

This document hos beeö approved 
for public release and sale; its 
distribution is unlimited. 

Remerciements 

Organisation du Congres 

Programme general 

Programme scientifique 

Conferences de 50 minutes 

Conferences de 30 minutes 

■ Posters du 22 mai 

• Posters du 23 mai 

• Posters du 25 mai 

• Resume des conferences de 50 minutes 

- Resume des conferences de 30 minutes 

- Resume des posters 

page 1 

page 2 

page 3 

page 5 

page 6 

page 7 

page 9 

page 10 

page 11 

page 12 

page 25 

page 44 

DUG QUALITY INSPECTED 5 

19950626 m 



LES ORGANISATEURS REMERCIENT : 

La societe S.N.F.- Floerger 

La Municipalite de Saint-Etienne 

Le C.N.R.S. 

Le Ministere de l'Enseignement Superieur 

L'European Research Office, (U S A R D S G-UK) 

La Region Rhönes Alpes 

Le Conseil Generale de la Loire 

L'Universite de Saint-Etienne 

L'Ecole Nationale Superieure des Mines de Saint-Etienne 

• La Faculte des Sciences et Techniques de 1'Universite Jean Monnet 

pour l'aide qu'ils ont bien voulu apporter au Congres international sur la Modelisation 

Mathematique des Ecoulements en Milieux Poreux. 

Accesion For 

NTIS    CRA&I 
DTIC    TAB 
Unannounced 
Justification 

4 

Disfcfbution I 

Availabiiity Codes 

Dist 

M 

Avail and/or 
Special 
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PROGRAMME DU CONGRES 

Dimanche21mai      18H30 Cocktail d'accueil des participants ä l'Altea 
et inscriptions 

Lundi 22 mai           8H30 Inscriptions sur le lieu du Congres 
(Ecole des Mines 29 rue Ponchardier) 

9H45 Inauguration du congres par le President de 
l'Universite et le Directeur des Mines 

10H Information sur le deroulement du Congres 

10H15-11H05 
11H05-11H20 
11H20-11H50 
11H55-12H25 

Conf.de 50'   GLIMM 
Pause cafe 
Conf.de 30'   ANTONTSEV 
Conf.de 30'   CUSHMAN 

12H30-14H Repas 

15H30 - 17H Posters 1 ä 13 

17H   - 17H50 
17H55 - 18H25 
19H 

Conf.de 50'  AVELLANEDA 
Conf.de 30'   GREENKORN 
Reception ä la Mairie de St Etienne 

Mardi23mai           9H   - 9H50 
9H55 - 10H25 
10H25 - 11H 
11H   -11H50 
11H55-12H25 

Conf. de 50'   KNABNER 
Conf.de 30'   ALLAIRE 
Pause cafe et photo sraphie du congres 
Conf. de 50'   FASANO 
Conf. de 30   RÜSSEL 

12H30 - 14H 
14H30 
15H30 - 17H 

Repas 
Conference de presse 
Posters 14 ä 26 

17H   - 17H50 
17H55 - 18H25 
18H30 - 19H 
19H 

Conf. de 50'   DOUGLAS 
Conf. de 30   LENORMAND 
Conf. de 30'   GALLOUET 
Coktail offert par l'Universite 

20H30 Concert offert par la Mairie choeur 
Contrechant (salle Aristide Briand 
ä la Mairie) 

Mercredi 24 mai       9H   - 9H50 
9H55 - 10H25 
10H25 - 11H 
11H   -11H50 
11H55-12H25 

Conf. de 50'   EWING 
Conf. de 30'   THOMAS 
Pause cafe 
Conf. de 50'   PANFILOV 
Conf. de 30'   BADEA 

12H30 - 14H Repas 
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Mercredi 24 mai Apres-midi libre : 

Prestations proposees aux participants (ä leur 
charge): 
- visite du Musee d'Art Moderne, 
- visite du Musee de la Mine, 
- seance au planetarium 
- golf, 

18h30 Cocktail et presentation de 1'economie de la 
region stephanoise ä la Chambre de 
Commerce et d'Industrie 

Jeudi     25 mai 9H   - 9H50 
9H55 - 10H25 
10H25-11H 
IIH   -11H50 
11H55-12H25 

Conf.de 50'   WHEELER 
Conf.de 30'   RISEBRO 
Pause cafe 
Conf.de 50'   MOLENAAR 
Conf.de 30'   YORTSOS 

12H30 - 14H Repas 

15H30 - 17H Posters   2.^-  ^ 4© 

17H   - 17H50 
17H55 - 18H25 
18H30-19H 

Conf.de 50'   VAZQUEZ 
Conf.de 30'   CHAVENT 
Conf.de 30'   GILBERT 

19H45 Depart des cars pour le Banquet devant 
l'Altea pour le Superflu ä St Romain le Puy 

Vendredi 26 mai 9H   - 9H50 
9H55 - 10H25 
10H25-11H 
IIH   - 11H30 
11H35-12H05 
12H10- 12H40 

Conf.de 50'   ZHIKOV 
Conf. de 30'   HORNUNG 
Pause cafe 
Conf. de 30'   AGANOVIC 
Conf. de 30"   QUINT ARD 
Conf. de 30'   GIPOULOUX 

12H45 - 14H15 Repas 
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PROGRAMME SCIENTIFIQUE 

Lundi 22 mai 10H15- 11H05 
11H05- 11H20 
11H20- 11H50 
11H55 - 12H25 
12H30 - 14H00 
15H30 - 1700H 
17H00 - 17H50 
17H55 - 18H25 

Conf. de 50' 
Pause cafe. 
Conf. de 30' 
Conf. de 30' 
Repas 
Posters 1 ä 13 
Conf. de 50' 
Conf. de 30' 

GLIMM 

ANTONTSEV 
CUSHMAN 

AVELLANEDA 
GREENKORN 

Mardi 23 mai 09H00 - 09H50 
09H55 - 10H25 
10H25 - 11H00 
11H00- 11H50 
11H55- 12H25 
12H30 - 14H00 
15H30 - 17H00 
17H00 - 17H50 
17H55 - 18H25 
18H30 - 19H00 

Conf. de 50' 
Conf. de 30' 
Pause cafe 
Conf. de 50' 
Conf. de 30' 
Repas 
Posters 14 a 26 
Conf. de 50' 
Conf. de 30' 
Conf. de 30' 

KNABNER 
ALLAIRE 

FASANO 
RÜSSEL 

DOUGLAS 
LENORMAND 
GALLOUET 

Mercredi   24 mai 09H00 - 09H50 
09H55 - 10H25 
10H25- 11H00 
11H00- 11H50 
11H55- 12H25 
12H30 - 14H00 

Conf. de 50' 
Conf. de 30' 
Pause cafe 
Conf. de 50' 
Conf. de 30' 
Repas 

EWING 
THOMAS 

PANFILOV 
BADEA 

Jeudi 25 mai 09H00 - 09H50 
09H55 - 10H25 
10H25 - 11H00 
11H00- 11H50 
11H55- 12H25 
12H30 - 14H00 
15H30 - 17H00 
17H00 - 17H50 
17H55 - 18H25 
18H30 - 19H00 

Conf. de 50' 
Conf. de 30' 
Pause cafe 
Conf. de 50' 
Conf. de 30' 
Repas 
Posters 27 a 40 
Conf. de 50' 
Conf. de 30' 
Conf. de 30' 

WHEELER 
RISEBRO 

MOLENAAR 
YORTSOS 

VAZQUEZ 
CHAVENT 
GILBERT 

Vendredi   26 mai 09H00 - 09H50 
09H55 - 10H25 
10H25 - 11H00 
11H00- 11H30 
11H35 - 12H05 
12H10 - 12H40 
12H45 - 14H15 

Conf. de 50' 
Conf. de 30' 
Pause cafe 
Conf. de 30' 
Conf. de 30' 
Conf. de 30' 
Repas 

ZHIKOV 
HORNUNG 

AGANOVIC 
QUINTARD 
GIPOULOUX 



50' LECTURES 

AVELLANEDA M. Courant Institute, NEW YORK (U.SA.) 
Exact relations between electrical measurements and permeability : a porescale analysis 

DOUGLAS J. PURDUE University (U.S.A.) 
Anomolous diffusion in immiscible displacement resulting from fractal permeabilities 

EWING R.E Texas A & M University, COLLEGE STATION (U.S.A.) 
Mathematical modelling and simulation for applications of fluid flow in porous media 

FASANO A. University of FIRENZE (ITALY) 
Satured flows through deformable porous media with mechanical and chemical interactions 

GLIMM J. University of STONY BROOK (U.S.A.) 
Scaling and scale up for flow in porous media 

KNABNER P. University of ERLANGEN (GERMANY) 
Finite element approximation of contaminant transport problems in porous media 

MOLENAAR J. DELFT University of Technology (THE NETHERLANDS) 
Density driven two-phase flow in heterogeneous porous media 

PANFILOV M. University OIL & GAZ Research Institute, MOSCOU (RUSSIA) 
Averaged models governing tranfer process through highly heterogeneous porous media 

VAZQUEZ L. Universitad Autonoma de MADRID (SPAIN) 
Mathematical model for two-phase non equilibrium flows in porous media 

WHEELER M. University of HOUSTON (U.S.A.) 
non parvenue 

ZHIKOV V.V. Pedagogical University, VLADIMIR (RUSSIE) 
Homogenization of monotone operations in perforated domains 



30' LECTURES 

AGANOVIC I. University of ZAGREB (CROATIE) 
Homogeneization of micropolar flow through a porous medium 

ALLAIRE G. C.E.A. and University of Paris 6, PARIS (FRANCE) 
Multi-scale convergence and homogenization in porous media with an mfrnitnumber of length 
scales 

ANTONTSEV S.N. University of OVIEDO (SPAIN) 
Filtration of immiscible fluids : effects capillary locking and hysteresis self-propelling under 
wave impact 

BADEA A. Universite Jean Monnet, ST ETIENNE (FRANCE) 
Homogenization of two-phase flow through random porous media 

CHAVENT G. I.N.R.I.A., ROCQUENCOURT (FRANCE) 
Methology for the numerical treatment of two phase flows through porous media with two rock- 
types 

CUSHMAN J.H. PURDUE University (U.S.A.) 
Comparaison of eulerian nonlocal models to lagrangian models of chemical transport in 
heterogeneous media 

ENE H.L Institut de Mathematiques, BUCAREST (ROMANIA) 
On the homogenization of clays 

GALLOUET T. Ecole Normale Superieure, LYON (FRANCE) 
Schemas de volumes finis pour les problemes d'ecoulement en milieu poreux 

GILBERT R. University of Delaware, NEWARK (U.S.A.) 
Boundary layer corrections in the poroelastic seabed lying under a shallow ocean 

GIPOULOUX O. Universite Jean Monnet, ST ETIENNE (FRANCE) 
Theorical and numerical homogenization of polymer flows 

GREENKORN R.A. PURDUE University (U.S.A.) 
An examination of a stochastic-nonlocal theory for modeling dispersion in scale-dependent 
porous media 

HORNUNG U. University B W M, MÜNCHEN (GERMANY) 
A model of multicomponent diffusion in reactive acid soil 



LENORMAND R. Institut Francais du Petrole, RUEIL-MALMAISON (FRANCE) 
Transport equations for fluid displacements in heterogeneous porous media : the MHD model 

QUINTARD M. E.N.S.A.M., BORDEAUX (FRANCE) 
Calculation of porous media effective properties : computational problems and required unit cell 
features 

RÜSSEL T.F. University of Colorado, DENVER (U.S.A.) 
Upscalling of dispervisity in modelling of solute transport: mathematical theory and simulations 
of laboratory experiments 

THOMAS J.M. Universite de PAU (FRANCE) 
Analysis of finite volume methods and application to reverse simulation 

YORSTOS Y.C. University of Southern California, LOS ANGELES (U.S.A.) 
Studies with asymptotic regimes of displacements in porous media 



POSTERS 

Monday 22th of May, 15 H 30 

1) ON A MODEL OF FRACTURED POROUS MEDIA p.45 
Ioana-Andreea ENE - Jeannine SAINT JEAN PAULIN 

2) NON-LINEAR DARCY'S LAW P-46 
Eduard MARUSIC PALOKA 

3) INSTABILITY THRESHOLDS IN MISCIBLE FLUID FLOWS p.48 
D. LOGGIA - N. RAKOTOMALALA - D. SALFN 

4) HOMOGENEISATION DES EQUATIONS DE STOKES ET NAVIER-STOKES DANS 
UN MILIEU POREUX SANS PROLONGEMENT DE LA PRESSION ET ESTIMATION 
DES CORRECTEURS 
EricBLAVIER P-50 

5) MIXED-HYBRID FINITE ELEMENT APPROXIMATION OF THE CHEMICAL 
SPACIES' TRANSPORT PROBLEM 
J. MARYSKA - J. MUZAK P-52 

6) DISPERSION EN MILIEUX POREUX PERIODIQUES  : DE LA MODELISATION 
NUMERIQUE A L'EXPERTENCE P• 54 
Sophie DIDIERJEAN - Helio AMARAL SOUTO - Renaud DELANNAY - Christian MOYNE 

7) CORRECTION NON LINEARE DE LA LOI DE DARCY : ETUDE NUMERIQUE DE 
L'ECOULEMENT      BIDIMENSIONNEL     POUR      QUELQUES      ARRANGEMENTS 
PERIODIQUES 
Helio AMARAL SOUTO - Christian MOYNE P ■ 5 6 

8) MODELS FOR WATER PERCOLATION DURING THE PREPARATION OF ESPRESSO 
COFFE 
Gianni BALDFNI P-^8 

9) MATHEMATICAL MODELS FOR FREEZING IN POROUS MEDIA 
Federico TALAMUCCI P-59 

10) DIFFUSION AND DISSOLUTION IN REACTIVE POROUS MEDIUM : 
MATHEMATICAL MODELING AND NUMERICAL SIMULATIONS 
E. MAISSE - P. MOSZKOWICZ - J. POUSIN - F. SANCHEZ p.61 

11) LATTICE GAS SIMULATION OF VISCOUS FINGERING FOR MISCIBLE FLUIDS 
N. RAKOTOMALALA - D. SALIN - P. WATZKY p • 64 

12) NONLINEAR DIFFUSION IN AN INHOMOGENEOUS AQUIFER 
M. GUEDDA - D. HILHORST - M. PELETIER P-66 

13) SPATIALISATIONS QUANTITATIVE ET QUALITATIVE EN MILIEUX POREUX 
APPLICATION A L'ESTIMATION DES RISQUES DANS LA DEPOLLUTION DES SOLS 
W. ANKER - D. GRAILLOT - J. BOURGOIS - M. ZELFANI p.68 



Tuesday 23th of May, 15 H 30 

14) WATER RETENTION CHARACTERISTICS FOR FRACTAL SOIL 
Nigel BIRD p.70 

15) CONTRIBUTION OF IMAGE ANALYSIS TO ACCURATE NUMERICAL FLOW 
MODELLING 
Y. ANGUY - D. BERNARD - R. EHRLICH p.71 

16) A THREE DIMENSIONAL MODEL FOR FLOW AND TRANSPORT IN SATURATED 
POROUS MEDIA APPLICATION TO SALT INTRUSION INTO COASTAL AQUIFER 
F. JACOB - J.M. CROLET - P. LESAJNT - J. MANIA p.73 

17) USE OF THE FOURJER-LAPLACE TRANSFORMATION AND OF 
DIAGRAMMATICAL METHODS TO INTERPRET PUMPING TEST IN 
HETEROGENEOUS RESERVOIRS 
Benoit NOETINGER - Y. GAUTIER p.75 

18) COMPRESSIBLE FLOW IN POROUS MEDIA. CHECKING OF A MACROSCOPIC 
MODEL BY MEANS OF PORE-LEVEL SIMULATIONS 
A. BOUHOUCH - M. PRAT - H. BOISSON p.76 

19) MATHEMATICAL MODELLING OF DJAGENETIC PROCESSES IN SEDIMENTARY 
BASINS 
Astrid HOLSTAD p. 77 

20) MEDIAS AXIS ANALYSIS OF THREE DIMENSIONAL TOMOGRAPHIC IMAGES OF 
DRILL CORE SAMPLES 
W. BENT LINDQUIST - Sang-Moon LEE p.79 

21) ETUDE NUMERIQUE DE LA METHODE DE RECUPERATION SECONDAIRE DU 
PETROLE 
MazenSAAD p.81 

22) SCALING-UP PERMEABILITY IN THE NEAR WELL REGIONS 
Y. DING p.83 

23) ON THE DAM PROBLEM WITH LEAKY BOUNDARY CONDITIONS AND LINER 
DARCY'S LAW 
A. LYAGHFOURI p.85 

24) NUMERICAL MODELLING OF CLAY DRYING 
EF. KAASSCHIETER p.86 

25) THE PLANE POTENTIAL FLOW THROUGH THE INHOMOGENEOUS POROUS 
LINE 
Ivan KEGLEVIC p.87 

26) IMPLEMENTING A NON-LOCAL FOR FLOW AND TRANSPORT THROUGH 
POROUS MEDIA 
John F. PETERS - Stacy E. HOWTNGTON p. 89 
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Thursday 25th of May, 15 H 30 

27) EFFECTIVE PERMEABILITY OF STRONGLY HETEROGENEOUS POROUS MEDIA 
A. De WIT P-91 

28) DIFFERENT PRESSURE GRIDS IN HETEROGENEOUS POROUS MEDIA 
Sophie VERDIERE - Dominique GUERELLOT p.93 

29) CONTRIBUTION A L'ETUDE DU COMPORTEMENT DE LA SOLUTION 
DEQUATIONS NON LFNEAIRES DE DIFFUSION-CONVECTION 
J.B. BETBEDER - L. LEVI - A. PLOUVER - G. VALLET p.95 

30) SUR LA CORRECTION NON-LINEAIRE DE LA LOI DE DARCY POUR LES 
ECOULEMENTS EN MILIEUX POREUX A FAIBLE NOMBRE DE REYNOLDS 
Mouaouia FIRDAOUSS - Jean Luc GUERMOND p.97 

31) THE CAUCHY PROBLEM FOR HYPERBOLIC CONVERSATION LAWS WITH 
THREE EQUATIONS 
Yun-guang LU - Christian KLINGENBERG p. 101 

32) MODELLING OF A HORIZONTAL AND A VERTICAL FRACTURED WELL 
B. CVETKOVIC - G. HALVORSEN - E. LOW p. 102 

33) RESOLUTION NUMERIQUE D'UN PROBLEME DE RESTAURATION BIOLOGIQUE 
EN MILIEUX POREUX 
Ch. H. BRUNEAU - P. FABRIE - P. RASETARINERA p. 103 

34)ASYMPTOTIC BEHAVIOUR OF SOLUTIONS  OF NEUMANN PROBLEMS  FOR 
NONLINEAR    NONVARIATION    ELLIPTIC    EQUATIONS    IN    DOMAINS    WITH 
COMPOSITE STRUCTURE 
Alexander A. KOVALEVSKY P-105 

35) STORAGE DE GAZ REACTTE DANS UN MILIEU POREUX MODELISATTON 
MATHEMATIQUE ET NUMERIQUE 
Victor DUVAL - Hamid GHIDOUCHE - Claude BASDEVANT p. 106 

36) MACROSCOPIC PERMEABILITY OF THE SYSTEM OF THIN FISSURES FILLED 
BY MATERIAL WITH RANDOM PERMEABILITY TENSOR p. 107 
G.P. PANASENKO 

37) APPLICATION OF CONVECTTVE TRANSFERS ON GEOLOGY 
B. GERARD - J.J. ROYER - C. LE CARLIER DE VESLUD p. 109 

38) THE   EXPLICIT   SOLUTION   OF   A   FREE   BOUNDARY   PROBLEM   FOR   A 
NONLINEAR ABSORPTION MODEL OF MIXED SATURATED-UNSATURATED FLOW 
A.C. BRIOZZO - DA. TARZIA P-111 

39) ON SOME NEW MODELS OF NONHOMOGENEOUS FLUID FILTRATION IN 
POROUS MEDIA 
V.N.MONAKHOV P-H2 

40) MULTISCALE MODELS : A TOOL TO DESCRIBE THE POROSITY OF CEMENT- 
BASED MATERIALS AND TO PREDICT THEIR TRANSPORT PROPERTIES 
J.F. DAIAN - D. QUENARD P-113 
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EXACT RELATIONS BETWEEN ELECTRICAL MEASUREMENTS 

AND PERMEABILITY: A PORE-SCALE ANALYSIS 

Marco Avellaneda 

Courant Institute, New York University 

Electrical measurements have been used for many years by petroleum engineers 
to characterize the formation and fluid conductivity of porous media. In this talk, 
relations between electrical measurements and permeability are discussed and an- 
alyzed through simple models and computer simulations of Stokes flow through 
capillaries. It is shown that certain estimators based on electric measurements pro- 
posed by Johnson et al. (Jr. Fluid Mech., 176, 379 (1986)) and Zhou and Sheng 
(Phys. Rev. Lett. 57, 2565. (1986)) are. generically, good predictors of the effective 
pore-radius and the Darcy constant. However, the accuracy of such estimators may 
deteriorate if the porous medium has a wide range of (active) pore sizes or due to 
the asperity of pore walls. 



Anomolous Diffusion in Immiscible 
Displacement Resulting from Fractal 

Permeabilities 

Jim Douglas, Jr. *      Felipe Pereira*        Frederico Furtado^ 

March 15, 1995 

Abstract 

The analysis, through high resolution numerical simulations, of 
mixing lengths in water-oil fronts in heterogeneous porous media can 
be accomplished through efficient computations on fast, multi-processor 
computers. This paper is devoted to the description of an algorithm 
for such a computation and to the presentation of numerical results 
that lead to the characterization of anomalous diffusion arising from 
fractal permeabilities. It is shown that the exponent 7 describing the 
scaling behavior (for large time) of the mixing region lies in the range 
2 ^ 7 ^ 1- For physically typical heterogeneity strengths and mo- 
bility ratios occurring in waterflooding processes, 7 = 1; thus, typical 
waterflooding displays non-Fickean behavior, while the behavior tends 
to Fickean as the mobility ratio tends to one. 

The computational algorithm is based on a domain-decomposition 
technique applied to a mixed finite element approximation of the non- 
linear equations for two-phase, immiscible, incompressible flow ex- 
pressed in an Eulerian form and is implemented to be portable to 
several state-of-the-art parallel architectures. 

'Center for Applied Mathematics, Purdue University, West Lafayette, IN, USA 
TDepartment of Mathematics. UNICAMP, Campinas, Brazil 

^ 



MATHEMATICAL MODELING AND SIMULATION 
FOR APPLICATIONS OF FLUID FLOW 

IN POROUS MEDIA 

Richard E. Ewing 
Institute for Scientific Computation 

Texas A&M University 

ABSTRACT 

Understanding the fate and transport of contaminants to determine wa- 
ter quality and to develop remediation strategies or optimizing the recovery of 
hydrocarbons in petroleum applications each require the ability to model multi- 
phase flow in heterogeneous three-dimensional reservoirs. Model equations and 
corresponding parameters must be determined at the appropriate length scales 
to describe the scaled physics of flow. Effective simulators require accurate nu- 
merical methods on general geometries. Use of mixed finite element methods 
and local grid refinement will be discussed. Example calculations for field sim- 
ulations in aquifers or reservoirs with complex boundaries will be presented. 
Parallelization of the codes will also be discussed. 

•45 



Saturated flows through deformable porous media 

with mechanical and chemical interactions 

Antonio FASANO 

University of Firenze, ITALY 

We will examine a variety of filtration processes in which there is a mutual 
interaction between the flow and the porous medium. Typical cases are the dissolution 
of substances from the porous matrix to the flow, the removal of small particles from the 
skeleton and their transport by the flow, the deformation of the medium induced by the 
flow with the consequent change of the porosity and of the hydraulic conductivity. In 
the above framework many different situations can arise. For instance the deformations 
can be reversible or not, they can be instantaneous or can obey some relaxation kinetics. 

Also we can have a wetting front (i.e. a free boundary problem) or other types of free 
boundaries due to the generation of internal inhomogeneities because of the transport 
of solid components. The variety of the physical situations is obviously reflected in the 
diversity of the mathematical structure. 

At 



Scaling and Scale up for Flow in Porous Media 

James GLIMM 

University at Stony Brook, Stony Brook NY 11794-3600 

Geological variation occurs across all length scales. Both fine and coarse scale 
variability produce important effects upon the coarse scale fluid flow, which is of direct 
engineering interest. The (scale up) problem of predicting the influence of fine scale 
features on coarse scale flow is further complicated by the fact that the fine scale 

variation is only specified stochastically, as a random field. 

As a simple model of multi-length scale geological variation, we use fractal random 

fields. For the case of linear transport (flow of a passive scalar concentration), results 
of the author and colleagues will be presented, based on direct simulation and ordinary 
and renormalized perturbation theory. Comparison to results of others will be included. 
Results of the author and others concerning nonlinear stochastic transport (which is a 

considerably more difficult problem) will also be presented. 

-I* 



Finite element approximation of contaminant 

transport problems in porous media 

Peter Knabner 

University of Erlangen-Nürnberg 

Institute for Applied Mathematics 

Martensstr. 3, 91058 Erlangen 

Germany 

Models for the transport of reactive solutes in porous media as the adsorption- 

diffusion-advection model or more involved multi-component models exhibit 

various aspects which distinguish them from smooth parabolic equations or 

systems: 

- non-smooth nonlinearities, as e.q. the Freundlich isotherm, 

- non-equilibrium, 

- advection dominance. 

I.e., emerging mathematical problems are nonlinear parabolic systems with 

various degenerations: 

- parabolic-hyperbolic locally 

(as in the porous medium equation), 

- parabolic-ordinary differential equation, 

- parabolic close to hyperbolic globally 

(as singular limit). 

In the first part of the lecture we will discuss order of convergence results 

for the conformal finite element method taking the first two phenomena into 

account.    We allow for numerical quadrature and time discretization and 

■*% 



elucidate the role of regularization and kinetic relaxation of equilibrium re- 
actions. If in addition the third aspect is prominent, the conformal finite ele- 
ment approach is no longer appropriate and we select the Lagrange-Gelerkin 
method (or modified method of characteristics). The main problem con- 
sists in a self-consistent definition of the chracteristics to insure an accurate 
tracking of fronts and shocks also for large time steps. The evolving "fully 
implicit scheme" is discussed and preliminary order of convergence estimates 

indicated. 

- joint work with John Barrett (London) and Holger Kappmeier (Erlan- 

gen). 

43 



Density driven two-phase flow in heterogeneous porous media 

J. Molenaar 
TWI, Delft University of Technology, 

p.o.box 5031.   2600 GA Delft, The Netherlands 

The contamination of groundwater by Dense Non-Aqueous Phase Liquids is increasingly stud- 
ied by hydrologists. A DNAPL exists as a separate phase in the subsurface, and does not 
mix with the water on time scales of practical interest. Therefore the spreading of a DNAPL 
in the soil can be described by an immiscible, incompressible two-phase flow model. In the 
absence of capillary forces the ID flow through a homogeneous porous medium is modeled by 
the classical Buckley-Leverett equation. 

In this presentation we consider the flow of a DNAPL in a heterogeneous porous medium 
taking capillarity into account. It is well known that at heterogeneity a certain capillary pres- 
sure must built up, before the DNAPL can enter a low permeability region. The minimum 
pressure needed, is called the displacement or threshold pressure. A nonzero displacement 
pressure in the capillary pressure model (e.g. the Brooks-Corey model) has interesting math- 
ematical consequences. By a regularization technique we derive conditions to match the 
solution on both sides of an interface, where the soil properties are discontinuous. There are 
two conditions: a flux condition and an extended capillary pressure condition. To illustrate 
the implications of these interface conditions we consider the stationary ID problem. With- 
out gravity this problem has a unique steady-state solution, however with gravity there are 
multiple steady-state solutions. Moreover neither the DNAPL saturation, nor the capillary 
pressure need to be continuous at the heterogeneity. This means that the usual assumptions 
for standard numerical simulators are in general not valid. 

We present a numerical algorithm that is developed specially to deal with this situation: 
at a heterogeneity we assume continuity of flux and the extended interface condition for 
the capillary pressure. To validate the numerical method we consider two problems with 
heterogeneities that can be treated analytically: the ID steady state situation with gravity, 
and a 2D time-dependent problem without gravity. Finally we will show some computational 
results for cases which are of more practical relevance. 
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Averaged Models Governing Transfer Processes 

Through Highly Heterogeneous Porous Media 

M. PANFILOV 

Moscow, RUSSIA 

Macroscopic models are proposed to describe convection-diffusion transfer through 

multiply heterogeneous media. The heterogeneity is given by three periodic fields of 
porosity, conductivity and dispersion parameter. The high heterogeneity corresponds 
to the case, when the oscillation amplitude of one of fields is large. Dual porosity 
medium presents one example of examined systems. The convection velocity is derived 

from the pressure distribution described by parabolic equation. 

All media are shown to be nonuniform. They include 15 classes, with different 
averaged models and internal flow structures. Media when the convection predominates 
in blocks present essential interest. They can be decomposed into three sub-classes 
depending on convection flow type. Closed results were obtained for the through-type 
flow in blocks or source-type flow using homogenization method. Averaged models 
contain the exchange term that is no symmetric in bloc and in fracture. Homogenization 
results depend upon the direction of pressure variation in time. In case when the time 
derivative of pressure changes its sign, the averaged model consists of equations with 
delaying argument. Example of its solution is constructed. It corresponds to the special 

inverse method of oil well investigation by means of tracer injection. 

Media with through-source flow type in blocs was examined by the way of 
simulations on the network model of porous media. The analysis of exchange process is 
shown. Some results for nonlinear case were presented also. This system corresponds to 
both two-phase flow or one-phase concentration transfer, when fluid viscosity depends 
on concentration. The case of two-phase flow was examined without a contribution of 
high heterogeneity. Generalization of Darcy's law including the capillary dynamics is 
derived. It is shown by averaging of numerical simulations, that new type of capillary 

pressure function has a form of non monotone curves. 
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TITLE:  Mathematical model for two-phase 
non-equilibrium flows in porous media 

Juan Luis Vazquez, Dpto. de Matemäticas, 
Univ. Autonoma de Madrid, 28049 Madrid, Spain 

ABSTRACT 

We study a model for the flow of two immiscible fluids in a homogeneous and isotropic 
porous medium, based on the Muskat-Leverett model, classical in the oil science, with 
the non-equilibrium effects introduced by Barenblatt in describing the process of water-oil 
displacement. 

It leads to the following system for the saturation s £ (0,1) and the effective saturation 
a: 

eAcß(cr) = a — s, 

TSt + S = <7, 

where e and r are positive constants and $ is a monotone constitutive function. 
We pose the problem for x > 0 and t > 0 with intial data s(x, 0) > 0 and boundary data 

<r(0,i) = 1. Our main results concern the existence and properties of the free boundary 
or leading front of the set {s(:r,f) > 0} and the large-time behaviour of the solution and 
free boundary. 

This is joint work with G.I. Barenblatt (Urbana, USA), and Jesus Garcia Azorero and 
Arturo de Pablo, from Madrid. Previous analysis is due to G.I. Barenblatt and A. Gilman. 
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Homogenization of monotone operators m 
perforated domains 

V.V.Zhikov 

January 10,1995 

Vladimir Pedagogical University 
Department Mathematics 
600024, Vladimir, Russia 

Let Q be a connected periodic domain in JR.»,Qt = eQ,° = (Mf be a 

cell of periodicity. We consider the problem 

( -div(a(£-1i, Vu<) + Ke-1!,*')) = f in finQ,, 
\ aie-'x, Vir) ■ n|nn9Q, = 0 (Neumann's condiüon), 
1 u'\BnnQ. = 0 (Dirichlet's condition). 

Here Q is a bounded domain in Hi" and «(y,0, *(*.*) verifies the following 

structure conditions 

1) a(-,0.6(-.*) are n-Periodic and Lebesgue measurable on Q; 

2) for a.e. x &Q and every £i,6 £ El 

(a(x,^)-a(x,6))-(6-6)>«l6-6r«>0'       I in the case p > 2 

(a(s,£i) - a(x,6)) • (6 - 6) > «16 - &|2(I6J + N) 
|a(x,^)-a(^.6)l<«_1|6-6l 

,p-2   , 
in the case 1 < p < 2 

3) a(x,0) = &(*,0) = 0 

4) for a.e. x 6 Q and for every si, s2 6 HI 

(b(x, si) - b(x, s2)) • («i - s2) > ß\si - s2\q, ß > 0,      \ in the case q > 2 

|6(«,.i) - 6(*,«2)| < ß~l(l + I'll'"3 + l«il'    )l*i " ^ J 

(6(x, Sl) - fe(s, s2)) • («i - s2) > /?|si - s2|
2(|sij + |s2|)

?  " \  iri the case 1< g < 2 
\b{x,s1)-b{x,s2)\<ß-1\si-s2\q J 

th 



Note that there is not connection between the exponents p and q. 
The homogenized operator O,Q : IR    —► IR    is defined for every £ 6 IR 

by 

Ao(0=   J a(y^ + Dw(y))dy, 
anQ 

where w is the unique solution to the problem 

f   /   a(y, £ + Dw) • D<£cfy = 0 for every <j) G W*g(n) 
) anQ 

wewlg{Q). per v 

Let also set 
1 if x e Q 
0 if x £ IRJV \ Q \(x) = 1 n;t „ ^mN 

b0(s)=   f X(x)b(x,s)dx,    e=\DDQ\ 
a 

Theorem. If f E Z?'(ft). q' — -£y, then we have 

Mm    /   \ue - u°\qdx = 0, 
5-0     J 

fing, 

x(s~lx)a(c~1x, Va") -^ a0(Vu°)    weakly inLp(fl) 

where u° is the unique solution to homogenized equation 

f -dit(ao(Vu0) + b0(u
0)) = Of in ft, 

I        «°|an = 0. 

The case of Q = IRA see Tartar [1] and Fusco, Moscariello [2]. The case 
of variational problem in perforated domains see Zhikov [3]. 

References 

[1] Tartar L., Cours Peccot au College de Franc., Paris, 1977 

[2] Fusco N., Moscoriello G., On the homogenization of quasilinear diver- 
gence structure operators. Ann. Mat. Pura Appl. 146, (1987), pp. 1-13 

[3] Zhikov V.V. On the homogenization of Nonlinear Variational Problems 
in perforated Domains. Russian Journal of Math. Physics, v. 2, No 3, 
(1994), pp. 393-408. 
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Hornogenization of Micropolar Flow through a Porous Medium 
I. Aganovic, Zagreb 
Hornogenization of an incompressible micropolar fluid flow through a pe- 

riodic porous medium is discussed. The homogenized problem consists of the 
corrected Darcy law and divergence free condition for macroscopic velocity. 
Under appropriate scaling the corresponding convergence result is proved. 

The presented results are a part of the joint research of I. Aganovic and 
Z. Tutek. 
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MULTI-SCALE CONVERGENCE AND HOMOGENIZATION 
IN POROUS MEDIA 

WITH AN INFINITE NUMBER OF LENGTH SCALES 
Gregoire ALLAIRE 

Commissariat ä l'Energie Atomique 
DRN/DMT/SERMA, C.E. Saclay, F-91191 GIF sur YVETTE 

k 
Laboratoire d'Analyse Numerique, Universite Paris 6 

In collaboration with M. Briane, we generalized the notion of two-scale con- 
vergence to the case of multiple separated scales of periodic oscillations. We 
introduced a multi-scale convergence method for the so-called reiterated ho- 
mogenization of partial differential equations with oscillating coefficients. This 
new method is applied to a diffusion problem in a porous media modeled by an 
infinite number of periodic scales of heterogeneities. 
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Filtration of Immiscible Fluids: Effects of 
Capillary Locking and Hysteresis Self-Propelling 

under Wave Impact 

Antontsev S.N. 
Lavrentyev Institute of Hydrodynamics, Novosibirsk, Russia 

FICYT, University of Oviedo, Spain 

Penkovskii V.l. 
Lavrentyev Institute of Hydrodynamics, Novosibirsk, Russia 

There are studied qualitative properties of solutions of the classical model of filtration 

of two immiscible incompressible liquids 

Vi = -Ko{x)ki(si)/fiiW[pi + pigh),    i = 1, 2, 

d[m
d
S

t
iPi)+6iv(Pivi) = 0,     (« = 1,2,     sl+s2 = l) 

P2-Pl= Pc{Sl;X). 

It is shown that the domain of filtration flow may contain "dead" cores of two types where 
either Vi = 0 or v2 = 0. The former happens in the presence of the limiting values of the 
saturation s°, si which make the relative phase permabilities zero, &i(s°) = 0. Besides, 
the saturation distribution in the dead core is constant (either 5 = s° or s = s°). 

The second type is caused by the action of the capillary locking effect. In the cores of 
this type the saturation needn;t be constant but so is the presssure in the corresponding 
phase, (pi = const.). It is shown that among with the well-known effect of the "boundary 
locking" of the wetting phase an analogous phenomenon can occure inside the flow domain. 

There are considered peculiarities of the filtration flow of two immiscible incompress- 
ible fluids in mixed-wetted porous media where the capillary pressure function pc(si) is 
of the hysteresis character. Besides, the effect of the wave change of the pressure at the 
production and injection wells is discussed. 

There are presented some results of numerical and physical experiments. 
where u,-, /),-, pi and st- are the velocity , tensity, pressure, saturation of the phase i, 

i = 1,2, m(x) is porosity of the medium, Ko(x) is the tensor of absolute permeability, 
k{(s) = koi/pi , pi is the viscosity, k0{(si) > 0 (kOi(0) = 0,kOi(si) increasing in S;) is the 
relative permeability, g is the acceleration due to gravity, h is the distance to a fixed 

horizontal reference plane, qi(x,t), (qi + q2 = 0), is the injected mass of the phase i, pc is 
the capillary pressure (increasing in si (dpc7ds < 0) and p(x,si) = 0). 
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HOMOGENIZATION OF TWO-PHASE FLOW THROUGH 
RANDOM POROUS MEDIA 

by Anca BADEAt and Alain BOURGEAT* 

We are interested to apply the theory of homogenization for random coefficients, 
developped mainly for linear operators, to the modelisation of incompressible two-phase 
flow in randomly heterogeneous porous media. 

After giving the equations of two-phase flow in porous media, we define the problem 
of homogeneization (or scaling up) we are considering. 

In a second part, we recall the theoretical results on this problem as obtained in [1] 
and in [2]. 

Due to the difficulty to use these theoretical results as a mean of computing the 
effective coefficients (permeability and porosity), in the ergodic case, we design a way of 
doing this scaling-up numerically by using the notion of Volume Averaging. We prove that 
this method gives back the theoretical effective coefficients. 

In the last part we present numerical tests. The first test is for a one-phase flow 
problem and shows the convergence of the method. The second one is for two-phase flow 
and shows interaction between fingering, heterogeneities and scaling-up. 

References 

[1] A. BOURGEAT, S. KOZLOV, A. MIKELIC: Effective Equations of Two Phase Flow 
in Random Media , To appear in Calculus of Variations and P.D.E. 

[2] A. BOURGEAT, A. MIKELIC. S. WRIGHT: Stochastic two-scale convergence in the 
mean and applications , J.reine angew.Math. 456 (1994), 19-51 

f Equipe d'Analyse Numerique, URA 740, Universite de Saint-Etienne, 23 rue du Dr. 
Paul Michelon, 42023 Saint-Etienne Cedex 2, France 
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Mixed finite elements and cell-centered finite volumes 

for two-phase flow in porous media with two rock-types 

Guy CHAVENT 

INRIA, Rocquencourt, FRANCE 

Finite Volumes methods are very popular,as they are very close to the physics 
and allow the implementation of complicated physical laws. However their design may 
become delicate in complex geometries. On the other hand, Finite Elements methods 
are less close to the physics, but they come with a good mathematical background, and 
their analysis is quite advanced for structured as well unstructured meshes. 

We show how to combine the advantages of finite volumes and finite elements 
methods into a numerical procedure for the resolution of two-phase incompressible flows 
through a porous medium with two different rock-types, by a joint use of a mixed-hybrid 
finite elements method and of a Godunov method. 
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Comparison of Eulerian Nonlocal Models to Lagrangian Models of 

Chemical Transport in Heterogeneous Media 

John H. Cushman. Bill X. Hu, and Fei-Wen Deng 

Abstract 

When developing transport theory for heterogeneous porous media there are 

basically two frame works one may adopt: Eulerian and Lagrangian. The standard starting 

point for both types of theories is a "Darcy-scale" CDE. In the particle tracking 

(Lagrangian) framework, the Darcy-scale dispersive term in the CDE is neglected so that 

the particles move along streamlines. In this approach one does not obtain the mean 

concentration, but rather various order mean spatial moments. Using the Eulerian 

perspective, there is no need to neglect Darcy-scale dispersion as particles are not tracked 

along streamlines, but rather they are viewed from a fixed position. Thus as currently 

employed the Eulerian framework which explicitly obtains the mean concentration is more 

general than the Lagrangian models. We show that if the local-scale dispersion is 

neglected in the Eulerian models and if these models are not localized for reactive 

transport, then the mean spatial moments agree with those obtained through the 

Lagrangian picture. However, if the local-scale dispersive flux is kept in the Eulerian 

model, then the Eulerian moments can be substantially different than the Lagrangian 

moments. 
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ON THE HOMOGENIZATION OF CLAYS 

By Horia I. Ene and Bogdan Vernescu 

in studying clays, an intensive research has been done in two directions: a 
microscopic phenomenological study, on one hand, and a macroscopic constitutive 
modeling, on the other. The present research intends, by using the homogenization 
techniques, to make a link between the two theories. 

In modeling the microscopic behavior of clays it is significant to consider the 
presence of negative surface charges caused by imperfections of the crystal lattice of 
the clay particles. The unbalanced charges are compensated by the accumulation of 
cations from the solution surrounding the mineral particles. A diffuse double layer 
is created. 

The problem is described at the microscopic level by the balance of momentum 
in both parts of the porous medium (the fluid part and the solid skeleton) 

- diver* — /,   and   - diva3 — f (1) 

where the constitutive equation for the fluid phase involves an electric stress part: 

_f o '-''2   , E7   r /rt\ 
'-7ij - ,J'ij - 7)Hii^   T 'lik^k^j {!) 

with crfj being the stress tensor in the fluid in the absence of the electric field. 
We have to adjoin the balance of mass: 

divv = 0 (3) 

the Maxwell's laws: 

di\'(r]E) ~ q    in the fuid, div (t}E) = 0    in the solid (4) 

with q the free charge density and r; the electric permeability, 

cm\E = 0      - (5) 

and the conservation of free charge in the fluid: 

divj = 0 (6) 

with the free current density: 
J = vE + qv (7) 

3 a, 



(7 being the conductivity. 
The boundary conditions are: 

[cr. «j = 0,   [vnj = 0,   [üT] = ß{a!n)r. (8) 

where ur — v — (v ■ n)n. 
We have to adjoin to these, the appropriate boundary conditions for the electric 

Held and free current: 

[£T] = 0,     [r,ti-n] = q\     J • n = 0 (9) 

with q* the surface charge density. 
It is important to note that the first jump condition in (8) reduces to the 

double layer condition, that is usualy used to describe the presence of the electric 
charges on the surface between the fluid and a rigid solid. 

The third condition in (S) reduces, in the absence of the volume and surfaces 
charges, to the slip condition used in the case of composites with imperfect interfaces. 
For the case of small viscous stress compared to the Maxwell stress part (a°n)T « 
({cr* -a°)n\ the condition reduces to the ( potential condition in the Debye-Hiickel 
approximation. 

The homogenized equations display a coupled non-linear behaviour. 
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Schemas de volumes finis pour les problemes 
d'ecoulements en milieu poreux. 

Robert Eymard1, Thierry Gallouet2 et Raphaele Herbin3 

Les problemes d'ecoulements en milieu poreux possedent de nombreux aspects 
physiques, induisant des comportements varies, de transports convectifs et dif- 
fusifs notamment. Pour resoudre numeriquement ces problemes, des Schemas 
numeriques de type "Volumes Finis" sont frequemment employes. Nous presen- 
tons ici les principes generaux permettant de bätir ces Schemas, fondes, en 
particulier, sur un principe de conservativite. Nous donnons ensuite quelques 
resultats de convergence des solutions approchees donnees par ces Schemas pour 
certains problemes simples d'ecoulements en milieu poreux. 

1LCPC, 58 bd Lefebvre 75732 Paris Cedex 15 et Universite Paris-Nord, France 
2ENSLyon, 69364, France 
3Universite de Savoie, Campus Scientifique, 73376 Le Bourget du Lac Cedex, France 
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Boundary layer corrections in the poroelastic 
seabed Lying under a Shallow Ocean 

Bob GILBERT 

University of Delaware, Newark, U.S.A. 

We consider the problem of acoustic wave propagation in a shallow ocean, with a 

reactive seabed. We shall model the seabed as a poroelastic structure using the method 
of homogenization.  The effect of the ocean will be taken into account by computing 
boundary layer terms. It will be assumed that the ocean occupies the region 

JR[o,h] ■= {{xux2,x3) :  0 < x3 < h, (xux2) G St2}; 

whereas the seabed occupies 2R[0 _«,] := {{xi,x2,x3) : -00 < x3 < 0, (x1,x2) G St }. 
The poroelastic structure in the seabed will be modeled by assuming a periodic 
microstructure dependent on a small parameter e which is of the same order of 

magnitude as the pore size. In 2R[0_oo], we sna11 refer to the reSion n»e as that 
part occupied by the solid, elastic matrix and tife as that part occupied by the fluid. 
Moreover we assume that all the pores are filled so that -R[0,_oo] = &se U ^/e- We 
consider the solid to consist of an elastic porous material, which we model in the solid 
space-time region tiae X (0.T) by using the elastic equilibrium equation 

P 
se d

2u]      da 

dt2        dx3 

iJ- = fV, (i) 

and in the fluid space-time region 0/e x (0,T)  using the viscous fluid equilibrium 

equation 

pfe^L_^lL=ff^ (2) 
9   dt     dxj    il 

Here u := {uuu2,u3) is a solid displacement; whereas a := (^1,^2,^3) is a flux (or 

velocity). The fluid stress-tensor is given by 

{f:=-pt5ij + 2r(e)eij(v<). (3) au 

where pe is the pressure, fi(e) a viscosity which depends on e, and e,j(-ye) a rate of strain 
tensor. In addition, we assume that the fluid is incompressible; hence 

V-i>£=0    in    (ft/eU2R[O)ft])x(0.r). (4) 

The elastic coefficients of the solid matrix are taken to be anisotropic.  The boundary 
layer corrections in the seabed due to the ocean abutting upon the poroelastic structure 

are calculated following the scheme used in [1]. 

Reference 

[1]  Ene, H. I. and Vernescu, B. Viscosity dependent behavior of viscoelastic porous 
media, in Asymptotic Methods Shell and Plate Theory, Pitman, 1995. 
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THEORICAL AND NUMERICAL DERIVATION OF POLYMER 
FLOW THROUGH TWO MEDIA 

O. GIPOULOUX, A. MIKELIC 

After a short review on classical isotherm viscosity laws (Power law, Carreau 
law and his variants), we propose the theorical derivation of the microscopic 
polymer flow in two particular cases to the different filtration laws depending 
on the injection velocity or the Reynolds number. 

At first, we consider an incompressible bidimensionnal polymer flow through 
a thin layer, by classical homogenization, we determine three nitrations laws 
wich are function of the order of the injection velocity in regard of the thin 
layer's depth. When the injection velocity is small enough compared with the 
thin layer's depth, we obtain an explicit relation between the filtration velocity 
and the pressure gradient, when the injection velocity is great enough compared 
with the layer depth, we obtain an explicit filtration law connecting the filtration 
velocity and a certain power of the pressure gradient. Between this two case, 
we obtain an implicit transition filtration law. Some numerical experiments are 
proposed to illustrate this results. 

In a second part, we consider the case of a polymer flow through a porous 
medium. After a review of the filtration laws obtained by theorical homoge- 
nization, we try to propose some numerical algorithms to solve the homoge- 
nized problems wich present a coupling between the microscopic scale and the 
macroscopic scale due to the two scale convergence. 
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AN EXAMINATION OF A STOCHASTIC-NONLOCAL THEORY FOR 
MODELING DISPERSION IN SCALE-DEPENDENT POROUS MEDIA 

Matthew M. Perkins (Purdue University, School of Chemical Engineering) 
John H. Cushman (Purdue University, Department of Agronomy) 

Robert A. Greenkorn (Purdue University, Department of Chemical Engineering) 

A stochastic-nonlocal theory used to predict mean concentration in megascopic systems 
was investigated. The investigation involved numerically solving the stochastic-nonlocal 
theory and comparing the results to experimentally measured laboratory data. The theory 
uses the Darcy scale transport equation along with the log-hydraulic conductivity concept. 
The velocity, log-hydraulic conductivity and concentration are decomposed into their 
mean and fluctuation terms and the resulting mean and mean removed equations are 
solved by use of Fourier and Laplace transforms. A nonlocal constitutive flux is 
incorporated into the theory. A FORTRAN program was used to numerically solve the 
theory. The resulting concentration profiles and second spatial moments were compared 
to data from a one-dimensional tracer experiment characterized by nonlocal dispersion. 
The experiment involved a cylindrical column packed with glass beads in a heterogeneous 
fashion. It was found that the simulation of the stochastic-nonlocal theory did not 
adequately model the experimental results. The simulation concentration profiles did not 
match the experimental concentration profiles. Specifically, the simulation significantly 
overpredicted the size of the experimental mixed zone. Further, the simulation did not 
model the nonlocal behavior well since the results matched the local advection-dispersion 
equation better than the nonlocal experimental results. It was also found that, while the 
comparison of the concentration profiles was poor, a comparison of the second spatial 
moments of the concentration profiles was quite good. Two reasons for the poor 
performance of the simulation are hypothesized: 1) the simulation solves for the mean 
concentration while the experiment corresponds to a single realization of concentration; 2) 
the covariance function chosen for the log-fluctuating conductivity may not actually model 
this property very well. 
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A Model of Multicomponent Diffusion 
in a Reactive Acid Soil 

Michael Hauhs (BITÖK) 
Ulrich HORNUNG (UniBwM, 

ulrich@iiiforniatik.iinibw-niiienchen.de) 
Holger Lange (BITÖK) 

Congres International sur la 
Modelisation Mathematical e 

des Ecoulements en Milieux Poreux 
Saint Etienne. 22 au 26 mai 1995 

In structured soils, a considerable amount of soil water can be immobile. 

As this immobile water is confined to the smallest pore classes, it may be 
nevertheless in contact with most of the reactive surface areas of the solid 
phase. A model is proposed for the following general case: i) The mobile soil 
water is characterized by a relatively low pH and high Al3+ concentrations 
due to internal or external inputs of acids; ii) the solid phase consists of 
silicate minerals that weather irreversibly and relatively independent of pH 
by releasing base cations, and iii) all soil water is exposed to a high partial 
pressure of CO?- 

In the simplest case we model this situation as a one-dimensional mul- 
ticomponent diffusion problem in which the connection to the mobile phase 
and the solid phase are described by Dirichlet and Neumann boundary con- 
ditions, respectively. Precipitation of secondary minerals (A1(0H)3) in the 
water column is linked to decreased diffusion coefficients of dissolved ions. 

The resulting set of coupled non-linear partial differential equations has a 
nonstandard form, since a reaction-diffusion system is coupled to a condition 
of electric neutrality everywhere in space.  Therefore, special care has to be 

taken when applying numerical techniques for parabolic systems. 

Test calculations show that the model exhibits a new mechanism for SO4- 

accumulation in acid soils that interferes in a novel way with variations in 
NOj in the mobile water. 
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TRANSPORT EQUATIONS FOR FLUID DISPLACEMENTS IN 
HETEROGENEOUS POROUS MEDIA: THE M.H.D. MODEL 

Roland   LENORMAND 

Institut Frangais du Petrole 
BP 311 

F-92 506 Rueil-Malmaison Cedex 

CPU time for numerical simulations can be reduced by using improved 
transport equations in an equivalent "homogenised" medium instead of 
fine-scale simulations. Most of simulators use the Koval non-linear 
equation for large viscosity ratios and homogeneous media. We have 
derived the average equations to be used when the medium is highly 
heterogeneous, and especially layered. Our method is based on a "two- 
fluid" approach and the determination of a matrix of relative 
permeabilities that accounts for anisotropy and gravity effects. The 
originality of the method, called M.H.D., is to combine the numerical 
calculation of the streamtubes for unit viscosity ratio, in any of the 
three main directions, to the stochastic calculation of the displacement 
inside   the   streamtubes. 
The form of the transport equations, and the values of the parameters 
that govern the equations are found to depend strongly on the flow 
regimes. For the limiting cases : 
• dispersive regime: a standard dispersion equation is valid with a 
dispersion coefficient "D" proportional to the correlation length and 
permeability   variance   (macrodispersion). 
• fingering regime (due to viscosity or gravity) : the transport equation 
reduces to the known Koval's equation with an effective viscosity ratio 
"M". 
• for channeling, at unit mobility ratio, it is shown that the Koval non 
linear equation is still a good approximation, with a heterogeneity 
parameter "H" instead of M. 
A general equation is then proposed for displacements in reservoirs 
with long-range correlations and viscosity effects. The equation 
combines the dispersive term (parameter D) and the non-linear 
convective term with the product HM. 
The advantage of the method is that the streamtubes and the D and H 
factors are determined from a monophasic flow. It can also be used for 
calculating the pseudo-permeabilities for immiscible displacements with 
negligible  capillary  effects. 

38 



CALCULATION     OF     POROUS     MEDIA     EFFECTIVE     PROPERTIES: 
COMPUTATIONAL PROBLEMS AND REQUIRED UNIT CELL FEATURES 

by P. FABRIE*, M. QUINTARD**, S. WITHAKER*** 

*       Ce.Re.MaB. 

**     L.E.P.T.-ENSAM, Esplanade des Arts et Metiers - 333405 TALENCE CEDEX 
- France 

***   University of California at Davis 

ABSTRACT 

The calculation of effective transport properties starting with the description of 
the porous medium in terms of a periodic unit cell is particularly attractive. It provides 
bounds or even estimates that can be very accurate and useful for modeling purposes. 
Besides the theoretical aspects associated with the derivation of the local problems that 
are needed to compute the effective properties, two problems are of a particular 
importance. The first problem is the implementation of effective algorithms, which can 
be a very difficult task if convective effects are important, and if the geometry is very 
complicated. The second problem is associated with the degree of complexity required 
in the unit cell geometry in order to reasonably represent actual characteristics of "real" 
porous media. In this paper, several algorithms are presented to solve for local 
problems associated with dispersion-like processes. High accuracy schemes can be 
implemented by solving pseudo-transient problems with operator splitting. Details and 
recommendations are provided. 

Resulting numerical models are used to test for the importance of the unit cell 
geometry and the type of process under consideration, i.e., diffusion or dispersion. It is 
shown that highly dispersive systems calls for very complex, disordered systems. 
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Upscaling of Dispersivity in Modeling of Solute Transport: 

Mathematical Theory and Simulations of Laboratory Experiments 

T. F. RÜSSEL & D. W. DEAN 

Center for Computational Mathematics Department of Mathematics 
University of Colorado at Denver P.O. Box 173364, Campus Box 170 

Denver, CO 80217-3364 U.S.A. 

T. H. ILLANGASEKARE, R. MAPA, k J. GARCIA 

Department of Civil, Environmental and Architectural Engineering 
University of Colorado at Boulder 
Boulder, CO 80301-0428 U.S.A. 

One need in the current theory of subsurface transport in porous media is an im- 
proved understanding of upscaled transport physics in highly heterogeneous subsurface 
environments. This understanding should take the form of mathematical models that 
are valid at multiple scales. This investigation first focuses on a Lagrangian approach, 
similar to a formulation of Dagan, for calculating the dispersion tensor coefficients of 
the transport equation. The tensor is defined in terms of the second spatial moment 
of a plume with respect to the plume's centroid. This form of the dispersion tensor 
is derivable from the transport equation. The Lagrangian approach characterizes the 
dispersion tensor as a stochastic process, which in turn leads to consideration of the 
transport equation as a stochastic partial differential equation. The lecture discusses 
this theory and numerical models using it to simulate flow and transport in an exper- 
imental tank packed with sands of varying hydraulic conductivities. Comparisons to 
experimental data are presented. 
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Analysis of Finite Volume Methods 

and Application to Reservoir Simulation 

J.-M. THOMAS & D. TRUJILLO 

Universite de Pau, FRANCE 

A new Mixed Finite Volume Method for elliptic problems on quadrilateral meshes 
will be presented and analyzed. We obtain so a conforming and conservative convergent 
scheme, with a 9-point stencil in 2-D (27-point in 3-D). Generalization with a triangular 
unstructured mesh is then given. These method is well adapted for domain decomposi- 
tion. Some numerical examples in reservoir simulation and developed by Elf-Aquitaine 
Society will be presented. 
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STUDIES IN THE ASYMPTOTIC REGIMES OF 

DISPLACEMENTS IN POROUS MEDIA 

Z. Yang and Y.C. Yortsos 

Petroleum Engineering Program, Department of Chemical Engineering 

University of Southern California, Los Angeles, CA 90089-1211 

ABSTRACT 

We study the asymptotic behavior of miscible displacements in porous media of 2-D 

rectilinear geometry in the two limits where a permeability-modified aspect ratio RL becomes 

large or small, respectively. In either case, the problem reduces to the solution of an integro- 

differential equation. We investigate the validity of the asymptotic description and derive 

appropriate matching conditions in regions where it is not valid. For the case of unstable 

displacement, the linear stability characteristics of the equation as well as the non-linear 

finger evolution are described. Comparison with the numerical solution of the full problem 

delineates the range of validity of the asymptotic regimes. 
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On a Model of Fractured Porous Media 

by 

Ioana-Andreea ENE* and Jeannine SAINT JEAN PAULIN* 

In this paper we study a double porosity model in a double periodicity media. 
From a mechanical point of vue this model represents a fractured porous media. 
From a mathematical point of vue we study a Neumann problem with double peri- 
odicity. We prove existence and unicity for such a problem and using the three-scale 
convergence we obtain the homogenized equation and the homogenized coefficients. 
From a mechanical point of vue the result we obtain is a Darcy law at the macro- 

scale. 
At least in the steady case these result show us that both the double periodicity 

model, introduced by Th. Levy [3] and P. Donato and J. Saint Jean Paulin [2], and 
the double porosity model, introduced by T. Arbogast, J. Douglas and U. Hornung 

[1], are the same. 
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Non-linear Darcy's Law 

Eduard Marusic-Paloka 

Department of Mathematics, University of Zagreb, Bijenicka 30, 41000 
Zagreb, Croatia 

and 
Equipe D'Analyse Numerique, Universite de Saint-Etienne, 23 rue 

Dr.P.Michelon, 42023 Saint-Etienne cedex 2, France 

We study the stationary Navier-Stokes system in 1-dimensional porous medium. 
Let Y C [0, l]2 be periodic in ex direction with upper and lower boundaries 
r+ and T" (dist(r+,r~) > 0). For e = l/n , n € N we define the domain 
Qs = UlZle(ke1 + Y) with upper and lower boundaries T+~ 

Let S = Fn {xi = 0} = Y n {Xl = 1}.   Let g{ € C0~(S) ,  i = 1,2 be 
such that f^g1 = J^g2 = 6. For g\(x) = g^x/e) we consider the problem 

-Au£ + (uEV)us + Vps = 0  ,   divu£ = 0 in 0£ 

u£ = 0on r+"   ,   ue = i5«ei on E^ (1) 

for S^ = eE1'. Using the asymptotic expansions in the form 

.      1 
«- = 4{u°(xi,y) + ---} , P£ = 4ip°(*i)W(zi,?/) + •••} , y = j (2) 

we obtain the two-scale homogenised problem - 

f -Ayu° + (u°Vy)u° + VyP
1 = -^  ,   divyu° = 0 in]0,l[xy       (3) 

\ u° = 0 on r+-   ,   (u^p1) is 1-periodic in y1   ,   fY u° = 6  . 

For |0|  < J\Y\12\/2 we prove that the problem (3) has the unique solu- 
tion u° G L2{0,l;W(Y)) ,  p1  G I2(]0,l[xy)/R , p° G £2(0,1)/R where 
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W(Y) = {<j> 6 H^Y) ; divd> = 0 , ^|r+- = 0 , <f> is 1-periodic in ^}. More- 
over u° = u°(y) e W(y) , p1 = px(y) <E Z2(y) and p° is the linear function 
p°(xi) = -axx + 0. 
By computing boundary layers u!

6/ on S- , ?' = 1, 2 and estimating the difer- 
ence we obtain the following result: 

Theorem 1 Let Cp{\u°\L=c + |u^|x,oo + |UJ;|L~} < 1.  Then 

\eu* - K(f) + 4(f) + u?,(f )]|*i(n.) < Ce"1/' 

As the consequance we conclude that 

JE
£
(-) 

US
{ '' x2)dx2 —" JY U° weakly in L2(0,1) 

£2 Xs£(-)Pe(- ^2)^2 ->p° strongly in £2(0,1)   , 

(4) 

(5) 

where Se(yi) = eS(yi) and S(i) = F n {yi = t}. 
Finally we find the relation between filtration velocity v = JY u° and the 
pressure gradient ^- in the form of non-linear law 

where k{a) = fY ui(a) for u(a) € W(K) the solution of the problem 

—Au(a) + (14(a) V)u(a) + Vp(a) = at\   ,   divu(a) = 0 in Y , . 
u(a) = 0 on T+_ , (u(a),p(a)) is 1-periodic in j/i   . 

For the function fc we find the Taylor's expansion in neighbourhood of 0 with 
k^m\a) = JY Ui(a) where u^(a) are the solutions of the linear problems 
obtained by formal derivation of (7) with respect to a. We prove that k(0) = 
k"(0) = 0 so that 

—4'<<4r(o»C)3+- ■        <8) 

moreover ^'(0) is the standard Darcy's permeability (as in the linear law) 
and Jfc"'(0) > 0. 
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INSTABILITY THRESHOLDS in MISCIBLE FLUID FLOWS 

by 

D. Loggia, N. Rakotomalala and D. Salin 

Laboratoire Fluides Automatique et Systemes Thermiques, 

Batiment 502, Campus Universitaire, 91405 Orsay Cedex, France 

and 

Y.C. Yortsos 

Department of Chemical Engineering and Petroleum Engineering Program, 

University of Southern California, Los Angeles, CA 90089-1211, USA 

ABSTRACT 

When a fluid of lower viscosity displaces a fluid of higher viscosity, the interface between 

the two fluids is unstable. The resulting interface pattern is refereed to as viscous fingering 

l. When a denser fluid sits on the top of a lighter one. the situation is also unstable leading 

to gravity fingering 2. When gravity and viscosity act on simultaneously, they can contribute 

either in the same way to the interface stability ( both stabilizing or destabilizing ) or in 

opposite. In the latter case, two situations have to be described. A lighter and less viscous 

fluid is injected from top to bottom against a denser and more viscous fluid (flow 1): at low 

flow rate, q , the gravity stabilizing effect overcomes the viscous destabilizing one leading to 

an overall stability. Above a large enough flow rate 9l viscous effects prevail leading to an 

overall instability. In the reverse situation (flow 2) the denser and more viscous is injected 

from the top against the other one in which case large flow rates lead to an overall stability 

due to viscous effects. Below a small enough flow rate q2, gravity effects prevail resulting 

to instability. In the pioneering approach of Hill 3 the linear stability analysis (long waves, 

M* 



LW) predicts a similar threshold of instability for the two reverse flow q^ = qx — q2, in 

reasonable agreement with the experiment with small gravity and viscosity contrasts. 

Qh = kg—  (1) 

If the LW aproach is relevant for immiscible fluids interfaces where the interface thickness 

(b) can always be considered as small compared to the wave length (A) of the the perturbation 

involved in the stability analysis, this no longer true for miscible fluids because of longitudinal 

dispersion which spreads the interface as times goes on (b ~ y/t). Therefore the details of 

the front concentration profile can be felt by short waves ( A <C 6) leading to new predictions 

4-5. For miscible fluids a non-monotonic viscosity or a gravity-viscosity profiles can leads to 

SW instabilty whereas LW theory predicts stability. These new instability branches in the 

dispersion relation leads to gi#<?2- 

92 = kg—[Max       <7i = kg—[Min (2) 

In the poster, we discuss the state of the art, present a derivation of this new thresholds of 

instabilty and compute accurately the dispersion relation, i.e. growth rate of the disturbance 

versus wave-vector. For the numerical computation, we address the case of real fluids for the 

concentration viscosity and density relationships to get results suitable for comparison with 

experiments 6. 
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HOMOGENEISATION DES EQUATIONS DE STOKES ET 
NAVIER-STOKES DANS UN MILIEU POREUX SANS 

PROLONGEMENT DE LA PRESSION ET ESTIMATION DES 
CORRECTEURS 

ERIC BLAVIER 

U.R.A. 740 , Laboratoire dAnalyse Numerique 
Bat. 101 , Universite LYON 1 
43, Bd du 11 novembre 1918 

69622 Villeurbanne Cedex , FRANCE 
email: blavierClanl.univ-lyonl.fr 

On considere un domaine fluide flE obtenu en retirant d'un ouvert fl des parties solides sY, 
par periodicite. Pour e fixe, on considere le Systeme de Stokes 

Trouver      (u',p€) G H1^)" x L2(fi£) / 
—Au£ + Vp- = / dans Q€ 

div(ur) = 0 dans QE 

uz = 0 sur <9£L 

(1) 

et de Navier-Stokes 

{    Trouver      (vE,g£) G Hl{Slc)
n x L2{Q,) / 

-£^Ar-+ (tr.V)ir + Vg£ = / dans fi£ 

div(tr") = 0 dans Qe 

v' — 0 sur d^e 

(2) 

ou / est une fonction appartenant a H1(Q)n et 0 < 7 < 3/2. On definit ensuite (uJ'£, 7rJ'£) 
et -yJ-''e par 

-£2Au^ + eV^' = ei    dans fir ,  div(y.'>) = 4r(^>), - r£rA',j      dans n* 

uiJ.e = 0 sur <9fi£ \ Q 
l   ' 

avec K, matrice de permeabilite de composante A',- j = Jy (wj)idx. On considere le probleme 

suivant, qui va permettre de definir la vitesse de Darcy ou vitesse homogeneisee dans fL. 

f    Trouver p° G tf!(fi)     I 
\   div(A'(/- Vp0)) =0 dans ft 
I   A"(/-Vp°).I/ert =0 SUr an 

On definit ensuite la vitesse de Darcy par u = K(f - Vp°). Nous rappelons que si A est un 
ouvert de Rn, alors on note \A, la fonction caracteristique de Tensemble A. On a alors 

Theoreme 0.1 Soit (u'".p£) la solution du probleme de Stokes (1). On note Bc = {x G 
ft / dist(x,dQ) > \fi} et ¥ le prolongement par 0 sur ft de u-. On suppose que f G 
H1(£l)n.  On a alors les resultats de convergence suivants: 

I - ^ry^A-H-+E^
,V
'^

A
'~HO ^ °   dans L2{n)n 

ei 

XB'nn,-{p"-P0} ^>0       c/ansl2(f2) 

ou p£ esf /jxe par /a relation /B,nn (pe — Po) = 0 

HO 



Nous avons egalement un resultat similaire pour le probleme de Navier-Stokes. Cependant, 
la convergence de la pression n'est acquise qu'avec une restriction supplemental sur 7. 
Ainsi, pour des valeurs de 7 proches de 3/2 nous allons etre oblige de faire appel ä la 
construction d'un Operateur de relevement pour la pression. 

Theoreme 0.2 Sott (v~ ,q-) la solution du probleme de Navier-Stokes (2). On suppose que 
f € H1^)", et que 7 verifie 0 < 7 < § si n = 3 et 0 < 7 < § si n = 2. En notant v€ le 
prolongement de vE par 0 sur fl, on a les resultats de convergence suivants: 

if - E «'■■'(A-M,- +EV'i4((A-1^)i) -> 0 dans L2(fi)" 
dx{ 

Si 7 est tel que 0 < 7 < | si n = 3 et 0 < 7 < 1 si n = 2, alors on a 

XB'nn, . ■ { r - P° - £ Yl xJ,€(K~lv)j \ —* 0       dans Z,2(ft) 

XB'nn«- {?" -P°} —> 0       (fans L2(fi) 
£-+0 

oti </c es£ /ixe par la relation fB?nn (?" — Po) = 0. 

5J 7 est tel que | < 7 < | si n = 3 et 1 < 7 < § si n = 2, a/ors if existe r 6]1, 2[ ei un 
relevement qe de q£ appartenant ä LQ(^I) tel que 

f -p° -sj ^(A'-1^- —>■ 0       dans Lr
0{Q) 

0       (fans Lr
0(Q) 
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MIXED-HYBRID FINITE ELEMENT APPROXIMATION OF THE 
CHEMICAL SPECIES' TRANSPORT PROBLEM 

J. MARYSKA, J. MUZAK* 

Institute of Computer Science, Academy of Sciences 
of the Czech Republic, Pod voddrenskou vizi 2, 

182 07 Prague 8, Czech Republic 

The uranium mining activities and remediation of the deposits in the chalk formation of 
Sträz of the Northern Bohemia is the main subject of the contribution proposal. Nowadays, 
the mining activity is being suppressed and the problems concerning the remediation of the 
deposits in Straz appear to be very urgent. One of the most important aspect which is faced 
is the protection of the detached roof stratum - the reservoir of the drinking-water m this 

region. .   .     . ,        , i 
'It is necessary, most of all. to consider much larger region than it is in the current models 

and to compute the transport of contaminants applying three-dimensional models^ With 
respect to the large size of the problems, necessity of non-standard use of the FEM and 
particularities of uranium mining in the considered region, it is possible to exploit the already 
known experience only partially. Thus the whole process of creating the new models is still 
open The solution of this problem is divided into two parts: In the first part - the solution 
of stationary porous media flow of the technological solution. It is assumed that the chemical 
non-homogenity of the liquid does not affect its porous media flow. In the second part, the 
transport of chemical substances in the technological solution and the chemical changes m 
the rock are studied. Both particular problems are solved by several computational methods. 

The solution of underground water flow problem in the real conditions must reflect com- 
plex geological structure of sedimented minerals. Layers of the stratified rocks with substan- 
tially different physical properties must be modelled using the appropriate discretization of 
the geological region. These geological characteristics can be correspondingly described by 
the mixed-hybrid finite element method using trilateral prismatic elements with vertical faces 

and generally nonparallel bases. 
Let SI be a bounded domain in R3 with a Lipschitz continuous boundary dSl. The potential 

fluid flow in a saturated porous media can be modeUed by the velocity u given by Darcy s law 
u = -A-'Vp where p is the piezometric potential (fluid pressure) and A is symmetric 
and uniformly'positive definite second rank tensor of hydraulic permeability of the porous 
medium. Consider also the continuity equation for the incompressible flow V • u = q, where q 
represents the density of potential sources in the medium. Theboundary conditions are given 
by p = pD on dSlD, n-n = uNon dSlN, where dSl = dSlDödüN are such that 8SlDndüN = 0 
and n is the outward normal vector defined (almost everywhere) on the boundary cm. 

Assume from now that the domain Ü is polyhedron and is subdivided in a collection of 
subdomains Sh, such that every subdomain is a trilateral prism. We denote the collection of 

*This work was supported by GA CR under grant 201/93/0067. 
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faces of subdomains e e £h which are not adjacent to the boundary düD by Th = Uee£hde - 
8QD, where h is the discretization parameter. 

The velocity function u will be approximated with the vector functions linear on every 
element e G £h and the pressure function p will be approximated with the element-wise con- 
stant function and the trace of the pressure on the structure of faces Th will be approximated 

by the face-wise constant function. 
Hybrid-mixed formulation of the porous media flow problem leads to the system of linear 

equations: 

(S*c) (;)-(:)■ 
In the second part, the transport of chemical substances in the technological solution 

and the chemical change in the rock are studied. The hybrid-mixed model of the transport 
of chemical substances dissolved in technological solution is described by Fick's law 'i = 
-DV'c, where 'i is the flow vector of 1-th substance and lc denotes its concentration, D is 
the diffusivity-dispersivity tensor calculated by the formula [D]ij = Dm6ij+aT-\u-\.6ij + (aL- 
aT)^ , where Dm denotes coeficient of molecular diffusion and aj respectively aL denotes 
coefficient of transversal dispersivity respectively coefficient of longitudinal dispersivity. The 
equation of the materials balance for 1-th substance is ff + u • V'c + V ■ li + lcQ~ - lr(c, t) = 
lc*Q+, where first member defines storage of 1-th substance, second member defines convection 
and third expresses the influence diffusion and dispersion. The member lcQ~ determines 
the influence exhausting of 1-th substance and the member 'c*Q+ determines the influence 
indentation of 1-th substance about concentration lc*. Last member on the left side equation 
defines the complicated chemical reaction of components of the technological solution and 
component of the rock by that 1-th substance either rises or extinguishes. 

This member is analysed using reaction kinetics and decomposed on the part 'c.lR~(t), 
where coefficient lR~{t) determines a measure of a capacity of the environment bring into 
reaction with 1-th substance and on the part lR+(t), which determines a measure of a capacity 
of the environment generated 1-th substance. 

Balance equations for all substances are discretized in the time with the step At = ^ and 
space on the equal decomposition £h of the domain ft as in the porous media flow problem. 
The finite-dimensional approximation of the transport chemical substances problem using 
the function spaces described above leads to the following system of equations: 

'*i 

=   (';2.n).       C#n)('cn) = (Vn), 

where superscripts / = l,...,Zi denote substances in the solution and superscripts / = L\ + 
l,...,i denote substances in the rock. 

We perform the numerical experiments with the problem of transport of chemical sub- 
stances is testing at present time using a set of basis problems. 
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DISPERSION EN MILIEUX POREUX PERIODIQUES : 

DE LA MODELISATION NUMERIQUE A L'EXPERIENCE 

Dispersion in spatially periodic porous media : 

from the numerical modelling to the experiments 

Sophie DIDIERJEAN*, Helio AMARAL SOUTO**, Renaud DELANNAY*, Christian MOYNE* 

* Laboratoire dEnergetique et de Mecanique Theorique et Appliquee 

2, avenue de la Foret de Haye 54504 VANDCEUVRE LES NANCY Cedex (FRANCE) 

** Institute Politecnico - UERJ 

Caixa Postal 97282 Nova Friburgo - RJ Cep 28601-970 (BRASIL) 

La prise de moyenne a rendu possible l'obtention de l'equation de transport macroscopique 

en milieux poreux. Dans le cas du probleme de dispersion, l'equation macroscopique est similaire 

ä l'equation microscopique si les variables locales sont remplacees par les variables moyennes et si 

le tenseur effectif de dispersion est introduit ä la place du coefficient de diffusion moleculaire. Le 

tenseur peut etre calcule si on connait le champ des vitesses ä l'interieur de la structure poreuse et 

si on est en mesure de resoudre le probleme de fermeture associe ä la prise de moyenne. Le 

probleme de fermeture, est un probleme classique de convection-diffusion. Cependant, la 

geometrie du milieu est une grande inconnue et le choix que Ton fait pour aborder numeriquement 

la resolution du probleme de dispersion en milieux poreux peut etre determinant pour la reussite de 

la methode. La question qui se pose est de savoir si l'on peut trouver des arrangements 

geometriques simples qui puissent representer raisonnablement un milieu reel. Le choix c'est porte 

ici sur des arrangements periodiques bidimensionnels de cylindres carres. Pour certains auteurs, si 

la periodicite spatiale autorise une resolution numerique,-voire analytique, aisee du probleme de 

dispersion, eile engendre necessairement des comportements singuliers du tenseur. Une etude 

numerique complete de revolution, en fonction du nombre de Peclet des composantes 

longitudinale et transversales du tenseur de dispersion est proposee dans des arrangements 

d'abord simples (en ligne, en quinconce) puis plus complexes (disposition aleatoire de la phase 

solide dans la cellule unite). On s'interessera plus particulierement ä l'influence de la direction 6 de 

l'ecoulement moyen par rapport aux axes de la cellule unite. 

Pour des milieux dits "ordonnes", le coefficient de dispersion longitudinal presente, pour 6=0° et 

45°, une variation proche de Pep
2, assez differente de celle obtenue pour d'autres valeurs de 0. 

Pour le coefficient de dispersion transversal, les resultats sont fortement dependants de 

rarrangement considere. 



Pour les 20 milieux "desordonnees" etudies, les resultats sont quasi independants de Tangle 9 et 

les variations moyennes sont en Pep1-6 et Pep
0'4 pour le coefficient respectivement longitudinal et 

transversal. 

Les resultats pour les milieux "ordonnes" sont confrontes ä ceux issus de la theorie approchee de 

Koch et Brady dont on peut dire qu'elle est uniquement valable lorsque la porosite du milieu tend 

vers l'unite. Cette conclusion est confortee quand on aborde la comparaison des resultats obtenus 

ici avec ceux issus des etudes de Salles et al. puis Edwards et Eidsath et al. pour des arrangements 

de meme type. 

Dans le but d'elargir la comparaison ä des resultats experimentaux, peu presents dans la litterature, 

un dispositif experimental est mis au point. L'ensemble est compose de deux dispositifs : le 

premier a pour objet la fabrication de milieux poreux modeles par photo polymerisation laser. Le 

principe de fabrication repose sur une technique appelee stereophotolithographie laser developpee 

par le GRAPP (ENSIC NANCY) permettant de realiser des objets de tres bonne definition 

geometrique. Les milieux ainsi obtenus sont formes d'un arrangement periodique de cylindres de 

section circulaire de 5 mm de hauteur et de 0,5 mm de diametre disposes entre deux plaques de 

verre. Un milieu comporte en moyenne 4000 obstacles repartis sur une largeur egale ä 25 mm 

pour un milieu de longueur egale ä 130 mm. Les experiences de dispersion reposent sur la mesure 

de revolution de la concentration d'un traceur colore introduit dans l'ecoulement au sein du 

milieu. Cette mesure est realisee par un ensemble video, camera et analyseur d'images. Les profils 

temporeis de concentration, prise en valeur moyenne sur une periode spatiale du milieu, analyses 
par une methode d'ajustement sur le modele theorique, permettent d'estimer la variation du 

coefficient de dispersion longitudinal en fonction du nombre de Peclet. L'interet majeur de 

l'ensemble experimental est que les resultats obtenus peuvent etre compares de facon effective aux 

resultats numeriques donnes pour des geometries identiques. Les premiers resultats concement un 

arrangement en ligne etudie pour deux directions de l'ecoulement moyen : 0° et 26°. L'exposant m 
Dxx 

de la loi limite pour le coefficient de dispersion longitudinal —— = A Pep
m presente bien une 

forte sensibilite ä la direction de l'ecoulement, conformement aux predictions numeriques. Le 

decalage sur les valeurs effectives du coefficient (inferieures ä 0°, superieures ä 26°, comparees 

aux valeurs obtenues numeriquement) semble devoir etre attribue ä la forme de l'obstacle. Un 

milieu desordonne est etudie pour une direction du vecteur vitesse moyenne. La cellule unite du 

milieu etudie experimentalement est identique ä l'une des 20 geometries aleatoires etudiees 

numeriquement. Dans ce cas l'accord sur les valeurs effectives du coefficient de dispersion 

longitudinal est excellent cependant que Ton obtient m=l,2, valeur generalement admise pour les 

structures poreuses "reelles", sensiblement plus faible que la valeur predite numeriquement (1,38). 

Les trois experiences realisees demontrent l'aptitude du dispositif pour etudier qualitativement et 

quantitativement le processus de dispersion. L'outil mis au point, meme s'il reste encore 

perfectible, couple ä un code de calcul fiable doit permettre une meilleure comprehension des 

differents mecanismes d'un processus particulierement complexe. 
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CORRECTION NON LINEAIRE DE LA LOI DE DARCY : 
ETUDE NUMERIQUE DE L'ECOULEMENT BIDIMENSIONNEL 

POUR QUELQUES ARRANGEMENTS PERIODIQUES. 

Non-linear correction to Darcy 's law : 
numerical study of hydrodynamics through some two-dimensional spatially 

periodic arrays 

Helio AMARAL SOUTO*, Christian MOYNE** 
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Ce travail a pour but de determiner l'ordre de variation des termes non lineaires de la loi 

de Darcy, c'est-ä-dire comment varie la perte de charge en fonction du vecteur vitesse 

moyenne. La plage de nombre de Reynolds particulaire consideree est choisie de facon ä ce que 

l'ecoulement se trouve dans le regime laminaire inertiel [1]. Differents types d'arrangements 

periodiques de cylindres carres ont ete retenus : arrangements disposes en ligne, en quinconce, 
en chicane et de facon aleatoire pour une porosite de 0,6 environ. L'etude s'attache ä faire 

varier le nombre de Reynolds particulaire et la direction du vecteur vitesse moyenne de 

l'ecoulement par rapport aux axes du maillage. 

La methode des volumes finis est adoptee pour resoudre l'equation de Navier-Stokes en 

regime permanent avec des conditions aux limites periodiques sur la frontiere du domaine de 

resolution, c'est-a-dire une cellule-unite du milieu poreux periodique. Deux types de Schemas 

numeriques sont utilises pour la discretisation des termes convectifs de l'equation : un schema ä 
trois points et un schema quadratique ä quatre points afin de traiter la diffusion numerique. Les 

termes diffusifs sont discretises a l'aide d'un schema des differences centrees. La resolution 

utilise l'algorithme SIMPLE (Semi-Implicite Method for Pressure-Linked Equations) developpe 

par Patankar et Spalding [2]. 
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Les resultats montrent que pour les maillages et critere de convergence retenus, les 

valeurs calculees sont sensiblement equivalentes pour les differents Schemas, ceci pour des 

nombres de Reynolds particulaires inferieurs ä 400 environ. 

Les resultats cherchent plus particulierement ä decrire au-delä du regime de Stokes les 

deviations obtenues par rapport ä la loi de Darcy ä savoir la correction ä apporter ä la perte de 

charge lineaire ainsi que la perte d'isotropie observee pour les arrangements periodiques 

reguliere possedant deux axes de symetrie geometriques perpendiculaires. Les variations de la 

perte de charge nous amenent ä conclure ä l'existence de deux types de correction non lineaire ä 

la loi de Darcy. Pour une plage intermediaire de nombre de Reynolds particulaire, la correction 

non lineaire est d'un ordre superieur ä une variation quadratique relativement ä la vitesse 

moyenne <u>, proportionnelle ä <u>n oü n est superieur a 2. Une valeur de l'exposant n=3 

semble correcte sur une plage de nombre de Reynolds particulaires moderes pour des milieux 

isotropes lorsque les termes d'inertie sont importants mais ne sont pas preponderants devant les 

termes visqueux. Cette constatation est en accord avec les resultats theoriques prevus par 

Wodie et Levy [3], Mei et Auriault [4] et Moura-Neto et al [5]. 

REFERENCES 

[1] - Dybbs, A. Edwards, R.V., A New Look at Porous Media Fluid Mechanics - Darcy to 

Turbulent, Fundamentals of Transport Phenomena in Porous Media, Martinus Nijhoff 
Publishers, pp. 199-256, Dordrecht, The Netherlands, 1984. 

[2] - Patankar, S.V. et Spalding, D.B., A Calculation Procedure for Heat, Mass and 

Momentum Transfer in Three-Dimensional Parabolic Flows, Int. J. Heat Mass Transfer, vol. 
15, pp. 1787-1806, 1972. 

[3] - Wodie, J.C. et Levy, T., Correction Non Lineaire de la Loi de Darcy, C. R. Acad. Sei. 
Paris, t.312, serie II, pp. 157-161, 1991. 

[4] - Mei, C.C. et Auriault J.L., The Effect of Weak Inertie on the Flow through a Porous 
Medium, J. Fluid Mechanics, vol. 222, pp. 157-161, 1991. 

[5] - Moura-Neto, F., Amaral Souto, H.P., Paes Lerne, P.J. et Vargas, A. S., Inertial and 2nd 

Grade Effects on Macroscopic Equations for the Flow of a Fluid in a Porous Media, en 
preparation. 

SI- 



mMs.fct safest vstsds^ssx &adu£ ite preparation ßf SSBTSSBO, Jzafise. 

v •■       . i - 

I descfib^ the experiments I performed in the laboratory of Iltycaffe p.p.A., 

Trieste, (Italy), to order to explain what happens during the water percolation. I 

made experiments with water temperature; of 4PC, since 1 want | to minimjze the 

effects of ex^^11 process. As Qualitative results, I have that; the'flow rate ?, 

corresponding to a fixed Ap> is decreasing with time and that the-asymptotic value 

of the flow ,'je hot necessarily an increasing functioD of Ap (1]. I Suppose there are 

two main processes related with this behaviour: first of all the finest component- of 

the eolid particles »s removed from the coarse skeleton and transported by the 

water flow, U'that it tends to form a compact layer whose hydiaulic conductivity 

• is  considerably smaller;  on  the  other hand  I  have  a (partially jirrovereible) 

deformation-of the skeleton of the porous medium induced by the flow. The first 

one is investigated in [2], where the proof of the vrell-posedness cf the problem, of 

the unicity of the solution and of the continuous dependence upon the data and the 

coefficients is given; moreover, it "is shown in [2] that there are sufficient conditions 

for a finite time extinction of the transport phenomenon and that its occurrence is 

indeed necessary in order that the asymptotic discharge can exhibit a nonmonotone 

dependence upon the external procure. Concerning the model of the deformation of 

the skeleton; if 6{t) denotes the thickness reduction of the coffee bed at tirne t, 1 

can relate it to the water flow q\ for instance by assuming that. £ *;>?$(/?$-£) +, 
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Mathematical models for freezing in porous media 

FEDERICO TALAMüOCI \ 

If we observe ä column of porous soil saturated with water and subjected to i freezing 
temperature at the top (the lower side.:on the contrary, is maintained at 6 positive tempera- 
ture), we will notice fundamentally two facts: a freezing front moviag downward (Confining 
temperature permitting) and a water migration'torn the bottom towards higher parts of 
the soil. The mass transfer is due to capillarity phenomena, or rather to ctyosuction. 

We locate essentially two parts of the soil: an unfrozen region, with a porous matrix 
and liquid water, and a frozen part, wlere ice fills the porous space.   \       •       ' 

■ Nevertheless, what can happen in proximity to the separation front is; the fOrrn&tion 
of pure ice layers, called knees, that are fed by the migration flux of water towards the 
freezed part. If we consider that theUower base of the soil is at rest; we'will observe a 
lifting of the upper surface, due to the formation of lences: such a process is known as 
fro.st heave, ; '        ; 

On the other hand, if the freezing process is too fast, or an overburden pristvre (a 
load that the column must support) prevents the soil from separating somewhere', wo will 
simply observe a downward movement of the freezing front (host penetration).' A frost 
Aeave can be observed even in this case, due to the increase of the mass of Water '(the soil 
is maintained saturated): instead of a macroscopic lens, a change in porosity can occur, 
after the passage of the frost front. ■      ]        l ' 

" If we assume that the separation-region between the two main parts of the-soil is a 
surface {freezing front), we are dealing with a class of models which are more treatable 
from a mathematical point of view. In this case, the lifting of the soil is known as primary 
frost heave. ; 

Nevertheless, the experimental observation of the process makes Us remark the exis- 
tence of an intermediate region, situated between the frozen and the unfrozen part and 
called frozen fringe where ice and water coexist in the porous space/ Models including 
this transition zone describe the secondary frost heave. \ 

In any easet the starting point for writing the equations of any model is'the conserva- 
tion of heat and mast. Obviously* we need further information about the evolution of the 
process, ' .-•;:' 

. Three questions are of crucial importance:   \ »      I  •    i 

— which is the .composition of the frozen fringe that is. which are the most relevant 
interfacial effects in the mixture ice-water-soil? : 

— which is the law regulating the water flux in'the frozen fringe? \ 

— are temperature and pressure independent in the same region? 
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Models proposed in literature differ one from the other just on the ground of the kind 
öf answer given to the previous questions: the thcrmodynamkal and transfer process in 
the frozen fringe are still something obscure and there is not a convergence of opinions 
among modelers about the governing laws. 

The analvsis that we axe doing deals with a quasi-steady approach to the problem, 
assuming that the temperature is linear with respect to the spatial-coordinate (we are 
considering one dimensional models). 

As regards primary fro it htavs, we found out conditions on the (given) confining tern- 
peratures such that we are able to distinguish between lens formation sndfroH ptntiraUon 
Furthermore, a proof of an existence theorem has been concluded in the general case (not 
linear temperature). 

The investigation of secondary Jrott keavt is started through the analysis of a particular 
model proposed recently by Y. NaJsano: he assume* that temperature and water pressure 
are independent in the frozen fringe and the hydraulic flux is regulated by a combinauofl, 
of the thermal and pressure gradients. ;■ \ 

Moreover, the volumetric water content in the frozen fringe is assumed to be a known j 
function of the temperature. Ice is at rest with respect to the porous matrix (m opposition 
to that models where ice moves as one rigid body) and always at the atmosphenc pressure 
(instead of a time and space dependence of the ice pressure, responsible in that case for 
the soil separation as soon as lens starts to form). 

In particular, a criterion which allows us to discriminate between the two possibil- 
ities wDl be analyzed and the existence of the solution in a general case (without any 
simplification) will be investigated. 
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1 Introduction 

This work originates from an attempt to model from mathematical and numerical points 
of view, the leaching of ions from cement matrices used for waste solidification and waste 
storage. The aim of this model is to study the leaching of ions on a large scale of time 
which can't be done by experimental measurements. Here, we present a simple model for 
leaching of several ionic chemical species accounting for phase change, diffusion and chemical 
reactions. 

Some numerical results are discussed in the case of one chemical species (lime) and two 
chemical species (lime and lead). We present a modification of the original model to fit with 
precipitation phenomena. 

2 Mathematical model for diffusion and dissolution 

We consider the process of diffusion and dissolution on the macroscopic scale. Interstitial 
solution of cement is assumed to be diluted and at rest. The quantities studied are Ck the 
molar concentration of ionic chemical species k in liquid phase and Sp the molar concen- 
tration of chemical species p in solid phase. We denote l(p) the set of indexes of species k 
yielding from dissolution of species p in solid phase. The porosity 8, 0 < 9 < 1, is assumed 
to be constant. 

The domain of the study is a cylinder Q, filled with hydrated cement, during a period 
of time [0,T]. 

n={(x,y,:)eR3,x2 + y2 < 1,     0 < z < l} (2-1) 

Using the conservation principle, we consider the variation of the relative number of 
moles of species k filling an arbitrary subdomain V of Q. This variation is given by the sum 
of the diffusive flux through the boundary and the internal production/destruction rate. 

According to Fick's law, the outgoing diffusive flux of ionic species k, qk through the 
surface dV (the boundary of subdomain V) expresses as: 

qk = DkVCk-n        l<k<N, (2-2) 

where the constant Dk stands for the diffusive coefficient and n for the outgoing normal 
to the volume V. 
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3   PHASE CHANGE RATES 

We denote by Rk(Ci,.., Cjv) the molar rate of production of species k due to chemical 
reactions in liquid phase, and for 1 < k < L we denote by Fk(Ci,..,CN,Sp) the molar 
production rate of species k yielding from dissolution of species p in solid phase. 

Hence we have: 

dt JV 
fv 9Ck dxdydz    =    fdV6DkVCk-n dcr+ 

Jv6Rk(C1,..,CN)dxdydz+ (2-3) 
Jv(l - 6)Fk{Cu •-, CN, SP) dxdydz,        l<k<N. 

By using Green's formula, and since equations 2-3 are valid in every smooth subdomain 

V, we have: 

6dtCk - div(6DkVCk) = 9Rk(d, ..,CN) + (1 - 9)Ft(Ci,..,CN,Sp)    l<k<N.    (2-4) 

It remains to specify the dissolution kinetic equations which, because of mass balance 
between solid and liquid phases read: 

dtSp = - J2 MCI,-,CN,SP)       \<p<M. (2-5) 
ief(p) 

One of the major assumptions is that chemical reactions in liquid phase are at equilib- 
rium, thus Rk = 0 for 1 < k < N; Moreover, the model is supposed to be one-dimensional. 

For 0 < T be given, the equations 2-4 and 2-5 become: 

9dtCk-dt(0Dkd,Ck)    =    (l-e)Fk(C1,..,CN,Sp)l<k<N,in(0,l)x(0,T) (2-6) 

dtSp    =    -Y,F^c^"'C^SP)l<P<M,m(0,l)>i(0,T){%-7) 

kEl(p) 

3     Phase change rates 

The main phenomenon involved is dissolution of solid phase in open system (see [3]). 
There is no general expression in literature to express the dissolution rate in such a case. In 
this model we consider it is proportional to the difference between the concentration of the 
species in solution Ck and a reference concentration Ck, provided that solid phase is still 

present: 

Fk = 0 for L + 1 < k < -V; /, 8) 

Fk(Ci,..,CN,Sp) = asgn+(Sp)[C'k-Ck]+ for l<k<L with 0< a. K     > 

C* stands for thermodynamical equilibrium concentrat'ions of ionic species k. It is deter- 
mined by a system of equations including equilibrium relationships for species in solution, 
the electrical equilibrium relation and the equilibrium relationships for dissolution. The last 
ones are replaced by an equality between Ck and C£ when there is no more of the related 
solid phase. 

Existence and uniqueness of solutions to the mathematical problem for a single species 
in solid phase have been proved in a previous article (see [1]). A numerical method based on 
a marching technique to approximate numerically the mathematical problem for diffusion 
and dissolution was also proposed (see [2]). This method was first tried in the case of a 
single species and extended to the case of two species. 

In the case of two species, computations were done with lead and lime. The results 
showed that we reached values of pH where usely a phenomenon of precipitation appears. 
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This is due to the fact that we took into account two dissolved species for lead.   The 
precipitation rate is not written our model. 

To consider the possibility of precipitation, the model is changed as follows: 

Fk(Cl,..,CN,Sp) = a1sgn+(Sp)[C;-Ck}+-a2[C*k~Ck}-,     \<k<L. (3-9) 

Numerical simulations with a given C\ shows that Ck "follows" the equilibrium concen- 
tration and that precipitations can occur with this model. This expression is interesting 
because it represents both dissolution and precipitation and because it may be use for en- 
vironemental flows too (see [4]). Results got with this model about the example lime and 
lead will be discussed. 
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ABSTRACT 

Lattice gas has been proved useful to simulate flow as an alternative to Navier-Stokes 

finite difference method. We will demonstrate the relevance of such a simulation tool in the 

case of flow of miscible fluids in a Hele-Shaw cell. This is a particular and simple way to 

approach the properties of viscous flow inside porous media (Darcy's law holds). Using a 

recent and efficient lattice gas model we simulate the mixing at the interface of two viscous 

miscible fluids in such a flow, and adress the question of the resulting instabilities. 

To simulate the flow we use the lattice gas BGK model proposed by Qian et al. [1] 

that describes the fluid dynamics in 2D. This model is an alternative to conventional lattice 

Boltzmann models ([2], [3]) which themselves evolved from the lattice gas automaton [4]. 

The basic variable in the model are Ni(r.t) which denotes the mean occupation number 

of particles and A;(r,f) which represent the relative concentration of the two fluids in the 

direction i at the node r at time t. These number are updated according to the Boltzmann 

equation 

Ni(r + Ci,t + 1) = Ni(f,t) + A„(JV,-(r,<) - N?(r,t)) (1) 

and a convection-diffusion equation 

A,-(r + Q,* + 1) = A,-(r,i) + AD(A,-(f,<) - A?(r,<)) (2) 

where Ay is the relaxation parameter that determines the kinematic viscosity v and Aß 

the one who determines the molecular diffusivity Dm and c,- denotes the velocity vector 
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connecting neighboring nodes on the lattice. In 2D we take a square lattice with eight 

directions of propagation (including the diagonals) plus one at rest (model D2Q9). In 3D a 

cubic lattice is used with fifteen or nineteen directions (D3Q15 or D3Q19 models). 

The algorithm involves three steps: given an initial uniform distribution of TV,- and the 

chosen initial amount of color A,-, the equilibrium distributions Nfq(r,t) and Af(r, t) are 

calculated; then a collision step (right hand side of equation 1,2) is performed; finally, the 

occupation numbers are propagated to the neighboring sites. In case the last site belong to 

a solid boundary (top or bottom walls), they are propagated back in the opposite direction 

to enforce a no-slip boundary condition at the walls. Along the flow direction x, periodic 

boundary conditions are applied for the iV,- as for the A,-. Finally, to simulate an imposed 

flow, a fixed small amount e of the mean occupation number on each node of the first column 

of lattice is transferred from the upstream to the downstream direction at each time step. 

The simulations are performed on a 256 x 32 lattice for the 2D studies and on a 256 x 32 x 8 

lattice for the 3D studies. 

On 2D we perform simulation with a real 2D flow, i.e. in a channel, using both the 

original Navier-Stokes and convection-diffusion equations (1, 2). On the other hand we test 

the Rayleigh-Taylor instability, where the flow is induced by gravity. Finally we build a 3D 

Hele-Shaw cell with our lattice. Our results are compared to classical numerical simulations 

[5] and to an Hele-Shaw experiment performed in our laboratory. The effects of the viscosity 

ratio are presented, for the stable case and the instable one. The application to more complex 

systems, as real porous media, will be now considered. 
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Nonlinear diffusion in an inhomogeneous 
aquifer 

by 
M. Guedda, D. Hilhorst and M. Peletier 

We consider the Cauchy problem 

p(x)ut = (tt(l — u)ux)x    in R x JR+ 

(P) , v   ' ' u(x,0) = u0(x) x e R. 

We suj>pose that the functions p and u0 satisfy the hypotheses 

PeC1(R)nLco(R)nL\R),   P>o 

and 

u0 £ W1'°°(R)) 0 <u0 < l,7io(l — '"o) has compact support. 

The related equation p(x)ut =- Aum has been studied by Kamin and 
Rosenau and Kamin and Kersner. In particular they prove that in the case 
that the space dimension n > 3 the support of u may become unbounded 
in finite time if p decreases fast enough as |x| tends to infinity. Our main 
purpose is to prove a similar property for Problem (P). 

After having shown how Problem (P) modelizes the interface between 
fresh and salt groundwater in an inhomogeneous aquifer, we sketch the proofs 

of existence and uniqueness of a weak solution u of Problem (P). 

We then give a result about the limiting behavior of u as t tends to 
infinity. 

Theorem A (Large-time behaviour) Let u be the solution of Problem 

(P). Then 

/  p(x)u0(x)dx 
u{t) —> u = .     as    t —> oo, 

/  p(x)dx 
JR 

uniformly on compact subsets of R. 
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A solution u is said to exhibit finite time blow-up (FTB) if there exists a 
time T such that suppu(i)(l — u(t)) is unbounded from above for all times 
t > T. For the formulation of the next result we also need an auxiliary 
density function a defined by 

a{x) = min{p(0 : 0 < £ < x}, 

the reason being that the function a is monotonic while p need not be. 
Our main result is the following. 

Theorem B  Let u be the solution of Problem (P).  Then the following im- 
plications hold: 

y»00 

1. If /     xp(x) dx < co, then finite time blow-up occurs; 
Jo 

y»oo 

2. If        xcr(x) dx = co, then there is no finite time blow-up. 
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W. Anker, D. Graillot, J. Bourgois et M. Zelfani: 

Spatialisations quantitative et qualitative en milieu poreux 
Application ä 1'estimation des risques dans la depollution des sols 

La spatialisation dans les methodes quantitatives 

Les methodes quantitatives sont des methodes largement utilisees pour decrire les phenomenes 
de transfert en milieu poreux souterrain. La resolution du probleme de transfert fait appel: 
(i): ä une equation aux derivees partielles et ä la connaissance des conditions limites et initiales, 
(ii): ä la dimension spatiale du domaine pour une discretisation de l'espace ä considered 

Si ces methodes ne posent pas ou peu de probleme pour des milieux poreux homogenes, il en 
va autrement pour les milieux poreux heterogenes. Pour ces demiers cas, un maillage adapte de 
facon optimale et resultant d'une methode de discretisation aux differences finies avec mailles 
variables ou aux elements finis est necessaire de teile sorte que chaque maille corresponde ä une 
partie du domaine relativement homogene (nous exclurons les milieux heterogenes fissures : 
milieu «poreux» ä grande echelle). L'optimisation du maillage discretisant le milieu considere 
souleve cependant un probleme particulier : il s'agit de determiner le nombre et la forme des 
elements du maillage en fonction des connaissances du milieu (mesures disponibles, localisa- 
tion des heterogeneites). 

Deux approches differentes peuvent resoudre ce type de probleme : 
- les modeles deterministes qui prennent bien en compte les heterogeneites mais qui demandent 
des donnees souvent inconnues dans la pratique. 
- les modeles stochastiques qui foumissent des resultats en termes de probabilite puisque les 
donnees fournies par la geostatistique le sont egalement. 

La spatialisation dans les methodes qualitatives 

Les methodes qualitatives de resolution ne font pas appel ä des donnees uniquement numeri- 
ques, mais aussi ä des donnees descriptives qualitatives ou semi-quantitatives (eloigne, rappro- 
che, immediat par exemple) et foumissent egalement des resultats descriptifs. Parmi ces 
methodes, nous avons distingue les systemes ä bases de connaissances et les systemes de simu- 
lation qualitative. 

La simulation qualitative s'interesse ä la simulation des phenomenes physiques par l'interme- 
diaire de raisonnements sur leur comportement et sur leur changement caracteristique. Ces mo- 
deles s'appuient sur des regies logiques qui relient differents parametres : «modeles de 
parametres». Ces outils servent souvent ä decrire des systemes qui se formalisent difficilement 
par les methodes conventionnelles (ebullition d'un liquide par exemple). De nombreux pheno- 
menes physiques font appel ä une dimension spatiale qui a ete introduite par certains auteurs 
dans la simulation qualitative, mais une teile description se limite pour 1'instant ä des systemes 
mecaniques tres simples. Si la simulation qualitative est appliquee au deplacement d'une parti- 
cule dans un domaine discretise, le nombre d'etats qualitatifs croit de maniere exponentielle tres 
rapidement [86 etats qualitatifs pour 4 mailles !]. Pour simuler un ecoulement, il faudrait de plus 
tenir compte de l'heterogeneite du domaine, de la notion des phenomenes continus, des niveaux 
piezometriques, des phenomenes de transfert et de la dispersion dans le cas de pollution. Ce type 
de methodes qualitatives, bien que prenant en compte la dimension spatiale pour des cas sim- 
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pies, ne sont pas encore en mesure de simuler des phenomenes aussi complexes que l'ecoule- 
ment et le transfert de polluants dans un domaine poreux. 

Dans les systemes ä bases de connaissances, la dimension spatiale a ete introduite principale- 
ment pour la construction de topologies et la localisation d'objets dans une topologie. Les don- 
nees et les mecanismes d'inference sur les proprietes spatiales peuvent etre introduits dans les 
systemes ä bases de connaissances pour construire des regies de logique (par exemple) qui ser- 
vent de support au raisonnement spatial. 

Application ä 1'estimation des risques des pollutions dans la decontamination des sols 

Les bases de connaissances spatiales peuvent etre utilises comme bases de connaissances geo- 
graphiques. En realite, la complexity des phenomenes de pollution met en evidence la comple- 
mentarity et la necessite d'associer les methodes de spatialisation quantitatives avec les 
methodes qualitatives. Les methodes quantitatives sont davantage destinees ä simuler la propa- 
gation des phenomenes physico-chimiques, les methodes qualitatives sont davantage destinees 
ä raisonner sur les resultats quantitatifs pour une aide ä la decision (mise en place d'un plan d'in- 
tervention). La contribution de chacune de ces deux categories de methodes est plus ou moins 
importante selon le cas. Elle est en particulier guidee par l'existence, la nature et la distribution 
des informations spatiales (localisation des polluants de differente nature, reperage des zones 
vulnerables). 

La methodologie proposee consiste ä mettre en place un Systeme d'analyse spatiale permettant 
d'evaluer la situation de la pollution en terme quantitatif (scenarios). A partir des resultats quan- 
titatifs obtenus, une base de connaissances permet une evaluation en terme de risques ou d'im- 
pacts de la pollution (aide ä la decision). 
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Water retention characteristics for fractal soil 
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For soil structure modelled as a fractal ■-■ith the pore space as it's complement, it is possible 
-1erive the cumulative pore volume as a function of pore scale. From this powerlaw water 

»Oiüüdon models may be constructed. However, pore connectivity effects neglected in the 
above approach are likely to make the relation between pore volume and water retention 
characteristics more complex, and the feasibility of inferring fractal structure and fractal 
dimensions from experimental water retention data must then be questioned. 

Pore connectivity effects relate to the accessibility of pore water to the air-water interface 
within the soil (resulting in delayed drainage), and the accessibility of the pore water to a 
drainage route through the soil (resulting in entrapped water). 

In a conventional non-fractal problem, the air-interface accessibility issue diminishes as 
drainage progresses beyond air breakthrough. In contrast for a fractal structure, the 
accessibility to an air interface remains a problem at all scales and thus at all stages of the 
drainage process. 

As desaturation of a fractal structure progresses, the probability that the remaining water- 
filled porosity percolates falls. If the connectivity of the water filled porosity is disrupted at 
an early stage of the drainage process, then a substantial quantity of entrapped water may 
result, and further drainage will occur for only a subset of the remaining water filled porosity 
.hydraulically connected to the water sink. This ignores the hydraulic connections made by 
thin films, and the water filled porosity existing below the fractal regime, but in practical 
terms insufficient time may be allowed for these to operate. 

These two effects combined may result in a nontrivial dependence of water retention data 
upon the pore volume distribution. Hence the interpretation of powerlaw exponents derived 
from such data in terms of fractal dimensions should be made with caution. 
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Contribution of Image Analysis to 
Accurate Numerical Flow Modelling 

by 
the Local Change of Scale Technique 

Y. Anguy1 J). Bernard1 and R. Ehrlich2 
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2 Department of Geological Sciences, University of South Carolina, Columbia 
South Carolina, 29208, U.S A. 

This work presents a progress report towards building physically and structurally realistic 
models of flow through porous media, based on the local change of scale method. The local 
change of scale technique leads, from first principles, to a spatially smoothed equation (e.g., 
Darcy's law) and to a closure problem, set at the microscopic scale, over a local Representative 
Elementary Volume (R.E.V.) of Darcy's type (Vß(r0)). 

Vp(r0) must be larger than the micro-geometrical R.E.V. (Vp00)) - (minimal volume of 
length-scale % describing the geometrical variability over some length-scale L; i,0«L). 

Development of a valid geometrical R.E.V., Vß(i,0), coupled with its relationship to the 
local Darcy's R.E.V. Vß(r0) will allow explicit calculation of the permeability K as an implicit 
function of the micro-geometry. 

In accordance with the existence of a local closure form, the three-dimensional micro- 
structure defines K. Nonetheless, realistically characterizing the three-dimensional micro- 
geometry is complex, current observations being of porosity exposed on slices intersecting the 
medium. 

Development of a valid geometrical R.E.V., Vß(%), and, a-fortiori, usefulness of the local 
change of scale method appears to be dependent on one's ability to remove several theoretical 
problems upstream from the local change of scale model in itself: 

- complete characterization of the micro-geometry in terms of N two-dimensional 
measurable parameters {P1}^ N - Micro-geometry = fCfP1}^ w), 

- reduction of the set {P1}^^- to a minimal sub-set {P1}^^ N-<N relevant to the involved 
physical property, namely K, 

- development of an "ad-hoc" procedure solely constrained by the sub-set {Pi}i=1>s-, 
allowing generation of synthetic three-dimensional porous media acting as an interface between 
the image-analysis-based bi-dimensional knowledge one has of the micro-structure and the three- 
dimensional numerical codes based on the local change of scale technique. 

Herein, one intends, in two-dimensions, to come up with partial answers to the afore- 
mentioned upstream problems, capitalizing on a more empirical approach due to Ehrlich et al. 
[Ehrlich et al., 1991a ; McCreesh et al., 1991]. The relevance of the plan to the volume has been 
empirically based by Ehrlich et al. who suggest that a finite set of parameters {P1}^^, namely, 
pore types and their relative proportions (obtained by deconvolving the two-dimensional micro- 
geometry) are adequate to characterize the three-dimensional micro-structure: 

N 

Micro-geometry = f(^ (Pore Type1, Relative Proportion1)) 
i=l 

Each pore-type is arranged in continuous and independent circuits at the origin of strong 
correlations between pore-types and throat sizes. Such relation between pore-types and throat- 
sizes has been quantified by combining two-dimensional image-analysis-based data, pore types, 
and three-dimensional petrophysical dala, mercury drainage. In sandstones, the tendency of pore 
types to fill in mutually exclusive ranges of pressure intervals would be the consequence of the 
proclivity of pores of like type to be mutually adjacent, connected by similarly-sized throats, hence 
a heterogeneous fabric that results in a series of quasi-parallel flow circuits. 

Using an "interpretative" implicit model of percolation type [Ehrlich et al., 1991b], the 
physically relevant geometrical information is reduced to a simpler sub-set, {Pi}i=i>N={di,NPi}i=liN 
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to address the relation k - Micro-geometry under the form k = g{di,NPi}i=liN, where Np; is the 
number of pores of the i* pore type per (im2 and <^ is the diameter of throat of the r* pore type per 
|im. 

Herein, one means to develop a similar, but devoid of any constitutive assumption 
methodology. The two-dimensional micro-structure is fully-characterized by a measure of type 
{^}i=13={F(vx,vy),(p(vx,vy),£ß} where F(vx,vy) and cp(vx,v ) are the Fourier modulus and phase of 
the micro-geometry and £ß the associated probability density function. The minimum subset ^}i=N- 
included in {F(vx,vy),(p(vx,vy),£p} and held to describe accurately the coupling K - Micro- 
geometry by means of the change of scale method is {^}i=li2 = {|F(v)(2 ,ep}. |F(v)|2 allows 
quantitative assessment of the nature and length-scales of the structural components of the micro- 
structure i.e., of the minimum size of Ya(%) wherein the micro-geometry is stationary and ergodic 
(locally homogeneous). 

A set of synthetic media are generated from a single set {|F(v)|2;£ß} derived from any 
medium by convolution of these parameters with a gaussian field. Adequacy of a "measure" of 
type {|F(v)|2 ,£ß} as a measure of the two-dimensional micro-geometry is tested from an empirical 
(but practically validated) angle by linking qualitatively the structural parameters {P}i=i x = {Pore 
type1, Relative proportion1 }i=ix of Ehrlich et al. to characteristics of |F(v)|2 [Anguy et al.^in press ; 
Prince et al., in press]. This'is done by showing that filtered-and-inverse-Fourier-transformed 
images might reveal a hierarchy of micro-structural components preferentially containing distinct 
pore types - throat sizes relationships. The spatial arrangement of pores of like type, as predicted 
by Ehrlich et al. would be the same as that one displayed on the filtered images. The amount and 
nature of the geometrical information carried by {|F(v)|2 ;£ß} are quantitatively assessed by 
comparing the Pore-Types of real and synthetic media. 

The local change of scale method is not absolutely restricted to periodic media. However, 
development of a "numerically-tractable" closure form requires a weak periodic condition 
imposed on the boundaries of Vp(r0). That is, K is not calculated using the local geometrical 
R.E.V. Vß(i/0), but a local periodic Darcy's R.E.V., Vp(r0), derived from Vß(*„0) [Aguy, 1993]. It is 
commonly assumed that K derived this way is a close approximation of the permeability tensor of 
natural porous media, provided that Vß(r0) is large enough. However, the random character of 
natural porous media requires assessment of the ratio "n" between the size i/0 of Vß(ig) and the size 
r0=nx^o of Vß(r0). Because natural porous media are not totally periodic, Vß(r0) must be larger than 
Vß(i/0) in order for random effects to be correctly accounted for. On account of practical 
constraints, this problem has been so far investigated in two dimensions. A 1st rough estimate of 
"n" is derived using synthetic isotropic media by calculating K for unit cells of increasing sizes 
and common centre. Results achieved this day verify that the Darcy's R.E.V., Vß(r0), is larger than 
the geometrical R.E.V., VQ(%): r0=30x^0 [Anguy, 1993]. These results are also encouraging in that 
they suggest that the realizations of synthetic media constrained by the same set {|F(v)|2;£p} 
converge at about the same values of K. In this respect, these results can be taken as a necessary 
condition in view of basing that K is solely constrained by {|F(v)|2;£ß}. 
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A three dimensional mathematical model, for flow and solute 

or energy transport in saturated porous media is presented. 

This model allows to take into account the study of flow in a 

confined aquifer or in an unconfined aquifer; density and 

viscosity of the fluid might be considered as linearly 

dependant on transport (VOSS [5]); during mass transport, the 

miscible polluant can be chemically degraded or absorbed; 

finally this modeling can be realized in an steady or unsteady 

way. 

This model is based on physical equations which one are 

described with accuracy in Bear [1],[2]. In this study, they 

are written in order to consider particular conditions like 

pumping, infiltration as boundary conditions of flux 

(Jacob [3]). This method allows to take into account, for 

example some specifications like a pumping in upper layer of 

the aquifer. A such problem induces to solve a system with two 

coupled partial differential equations. Each of them is solved 

by a finite element method. For reasons described by MOSE [4], 

a two degree interpolation is . required to get a good 

approximation of the velocity, thus the finite element used is 

a hexahedron with 2 0 nodes, it permits to have the previous 

conditions on degree interpolation. The finite element method 

requires to solve at each time step some linear systems. In 

order to get a fast and accurate computation, a preconditioned 

conjugate gradient method is used; the same process is used to 

solve the non symmetric system produced by solving transport 

equation. 
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When the density or the viscosity depends on concentration or 

temperature, a coupled system of two equations has to be 

solved. For this, an iterative method on the approximation of 

the pressure P is developed. 

A description of the model including the physical equations 

and the numerical schemes is presented. An example of salt 

intrusion into coastal aquifer is analysed, according to a 

study made with the Australian National University of Canberra. 
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Title: Use of the Fouriei-Laplace transformation and of diagrammatical methods to interpret pumping tests 
in heterogeneous reservoirs. 

Abstract 

Progresses in the power of computers and in reservoir characterization allow the simulation of 

pressure-transients in complex reservoirs generated with stochastic tools. Classically, the interpretation of 

these transients gives useful informations about the reservoir structure : a major goal is to interpret these 

transients in a stochastic context. To adress this problem, an important question is to relate the pressure 

variations at lime t to the local permeability map. Using the Fourier information for spatial coordinates, as 

well as a LapJace transformation for time allows to tackle this task. This formalism is used in conjuction 

with a perturbation scries expansion in powers of the permeability fluctuations to get an explicit solution. 

The N-th order term of this series involves the hydrodynamic interaction between N permeability 
heterogeneities. 

The goal of the work is to ensemble average the pressure over all the random permeability field 
realizations to derive an equation obeicd by the mean pressure. To adress this problem, Fcynman graphs are 

introduced which allows a graphical interpretation of the perturbation series. It is shown that the sum of the 

so called one-particle irreducible graphs gives the kernel of a linear integro-differcntial equation obeyed by 

the ensemble averaged pressure, All the information about the heterogeneities is thus contained in this 

renormalized kernel. We recover thus directly results assumed by Indclman and we get-a systematic and 
direct scheme to evaluate successive approximations of the kernel. 

This equation itself is the starting point of useful asymptotic results and approximations. In particular 
ji is shown that the interpretation of pumping tests yields the steady-state equivalent permeability after a 

sufficiently long time for an infinite reservoir, a rather intuitive result. This means that the homogencization 
process performed by pumping tests is well understood. 

It is also shown that the kernel of the mean equation is closely related to the time variations of some 

spatial moments of the pressure field. These moments arc important as they quantify the size of the 

investigated volume at any time and play a key role for simplified pumping tests simulation methods. This 

equation is also a good starting point to study fractal-like media having correlations at all kngthscale, In that 
case, we can expect lime and scale dependant behaviour of the apparent parameters known under the name 

of anomalous diffusion. Understanding of these phenomena will be of great theoretical and practical interest. 
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Abstract: This paper is devoted to the modelling of compressible flow through porous media. 
In contrast with incompressible flows, compressible flows through porous media have been 
little studied in recent years. However, in addition to more traditional domain, new applications 
of porous media, such as the external insulation of spacecraft [1], require a proper modelling of 
compressible flows in porous media. Naturally, it exists a large variety of compressible flow 
depending on the Mach number and the Reynolds number, the coupling effect with thermal 
effects, etc. Here, we limit our scope to isothermal low Reynolds and Mach numbers transient 
flows. Traditionally, this type of flow at the macroscopic level is described by the classical 
Darcy's law combined with a mass balance that includes the transient term. This model is called 
the "classic model" in the following. 

The aim of this paper is to check numerically the relevance of this classic model. To this 
end, we consider the flow of an ideal gas within a two dimensional model porous medium 
consisting of an arrangement of square cylinders. The flow is due to the imposed pressure 
decrease at the outlet of the fluid domain. At the microscopic level, the flow is computed by 
solving the full Navier-Stokes equations in two dimensions. We use the PISO (Pressure- 
Implicit with Splitting Operators) method, [2]. This method is well adapted to solving variable 
density low Mach flows. Special attention is given to the outlet boundary conditions by using 
the NSCBC's method (Navier Stokes Characteristic Boundary Conditions, [3]). The results are 
spatially averaged to obtain macroscopic data. At the macroscopic level, the classic model is 
solved by a Galerkin finite element method. The comparison between the macroscopic data, 
obtained on the one hand by spatially averaging the microscopic results and on the other hand 
by solving the problem directly at the macroscopic level is performed for various 
depressurization conditions. We exhibit situations for which a good agreement is found 
between the two series of data and situations for which discrepancies are observed. These 
various behaviours are discussed in terms of the various time scales controlling the flow. 

1 A.Bouhouch, M.Prat & S.Bories. Transient compressible flow and thermal 
transfer within a heterogeneous porous system. Journal of Thermophysics and Heat 
transfer in press. 

2 R..I. Issa, 1986, Solution of the implictly discretised fluid flow equations by operator- 
splitting. Journal of Comp. Phys., Vol.62, No.l, pp.40-65 

3 T.J.Poinsot & S.K.Lele, 1992, Boundary conditions for direct solutions of compressible 
viscous flows, Journal of Comp. Phys., Vol.101, pp.104-129 
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Mathematical modelling of diagenetic processes in 
sedimentary basins 
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la the field of geology diagenesis refers to the sum total of processes that bring about 
changes in a sediment or sedimentary rock subsequent to deposition in water. These pro- 
cesses may be physical, chemical and/or biological, see [l1. 

In this paper we present the mathematical model and numerical methods used to simu- 
late a subset of the chemical diagentic processes within a sedimentary basin. The processes 
are the dissolution and precipitation of minerals and decay of organic carbon present in 
the porous sediments in contact with a moving fluid phase in the pores. The mineral re- 
actions and the organic carbon decay processes are time dependent. In addition there are 
instantaneous equilibrium reactions in the fluid phase. 

The results of the mineral dissolution/precipitation reactions and the decay of organic 
carbon are changes in the porosity and the permeability in the sediments and hence the 
fluid flow properties within a sedimentary basin. The main results we therefore want from 
our model are information about the behaviour of the mineral and organic carbon reactions 
combined with information about how these reactions affects the fluid flow properties within 
a sedimentary basin through geological time. 

In our model we assume the sedimentary basin is two-dimensional and represent it 
in space by quadrilateral elements. Each element is assigned a temperature, a mineral 
composition and a fluid phase composition. Between the elements there are fluid flow and 
diffusion of ions and complexes dissolved in the fluid phase. 

The diffusion depends on temperature and concentration gradients. Electrostatic poten- 
tial is not considered. Parameters that influence on the fluid flow are viscosity, perrneabilitv 
and pressure. The chemical reactions taking place in the basin are temperature dependent. 
We assume Neumann conditions for the unknowns at the basin boundaries. Typical simu- 
lation periods are 1 - 10 million years. The temperature and-the fluid flow history may be 
the result from a basin simulator. 

in our model we are studying the time dependent development of the concentration of 
12 minerals in the solid phase and 18 species in the fluid phase per basin element. The 
minerals are modelled by ordinary differential equations. The species in the fluid phase 
are modelled by 10 mass balances which are algebraic equations and 8 mass action laws. 
To reduce the number of equations to integrate, the 8 mass actions laws are eliminated. 
A typical simulation is 10 - .1.00 elements, i.e. 220 - 2200 equations to integrate and 300 - 
3000 concentrations to compute. 
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The full mathematical model is thus a Differential Algebraic Equation Svstem fDAP 
systein) 

(la) 

(lb) 

with t E JR., y E E."", 2  e IR"»T. f : B x ST -» ]R^, g : ]R x ffi." -> ]R>* and 
« = «Af ~ *W   Here n is the total number of unknowns, 7iM is the number of mineral 

. unknowns and naq is the number of fluid phase unknowns, y is the mineral unknowns and 
z is the fluid phase unknowns. 

This system of equations has the following properties: 

• The equations are very non-linear. 

• The unknowns are tightly coupled and can vary many orders of magnitude during a 
simulation period both individually and compared with each other. 

• The mineral reactions switch between the state of dissolution, equilibrium and pre- 
cipitation. This switching is extremely sensitive for changes in the fluid composition. 

• The equations are very stiff. 

• It is not known if there exists a unique solution for the set of parameters we are 
considering. 

To solve this complicated DAE-system we have constructed a solver based on the 
RADAÜ5 code, see [2]. Our main modifications in this code are non-negativity handling 
and introduction of sparse Jacobian and iterative linear solver. Because of the complexity 
of the equations we have to use an analytical Jacobian. 

We will present numerical res-alts from the model, in both single element and multi- 
element basin configurations to show the validity of the model. The input data to the model 
are real data from sedimentary basins in the North Sea. The results will be presented as 
the time-dependent development of the mineral composition of the sediments and the pore 
fluid composition. 
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We introduce the medial axis transform as a tool in the analysis of geometric structure 
of void space in porous media. The medial axis of any volume filling object is intuitively 

the "spine" of the object running along its geometric middle. It defines the inherent shape 
of the object, for example, the medial axis of a cylinder is the axis of rotational symmetry, 
for a sphere it is the center point. The medial axis for any n-dimensional object can be 
found by an algorithm equivalent to the following process. Imagine burning the object by 
igniting a fire simultaneously everywhere on its entire surface. Let this fire burn into the 
object at a constant rate, reducing it layer-by-layer. The set of all points within the object 
where the fire extinguishes itself is the media axis. The fire is said to extinguish itself at a 
point if two components of the fire, traveling in opposite directions, simultaneously arrive 

at the point. 
Volume information can also be associated with each elementary segment of the medial 

axis. As the rate of burn is constant, the time at which the fire burns any point in the 
object also gives the radius of the largest L2-norm ball, centered on the point, which just 
fits completely inside the object. Thus each point in the object is assigned a unique radius 
value, which we refer to as the burn radius; in particular, each medial axis point is assigned 
a burn radius, which we refer to as the medial axis radius at the given point. 

The medial axis of an object gives basic information concerning its topology and 
geometry. The attraction of the medial axis is that it has lower dimensionality than the 

object itself; for a two-dimensional object, the medial axis will consist of a union of lines 
and points, for a three-dimensional object: surfaces, lines and points. 

We apply this analysis to the void spaces in high resolution (5 micron), three dimen- 
sional, tomographic images obtained using the National Synchrotron Light Source facility 
at Brookhaven National Laboratory. Three samples are analyzed, consisting of two drill 
core samples, Berea sandstone and Danish chalk, and a sample of packed, 100 micron 
diameter glass beads. A Berea sandstone sample was chosen as it is a reference stan- 
dard rock for petrology. The Danish chalk core sample is representative of a low porosity 
rock that is difficult to work with using invasive laboratory techniques, such as microsand- 
ing/microslicing. The packed glass bead sample provides a realization of a non-overlapping 
sphere model, a model which has been extensively studied both theoretically and experi- 

mentally. 
In this poster, we describe a discrete version of the medial axis "burn" algorithm 

applicable to digitized tomographic images consisting of a cubic array of voxels. Example 
medial axes obtained for the void spaces in the data samples are shown. 

"* Q 



We present four analyses of the medial axes constructed for these three data sets. 
The first analysis we present is for the distribution, n(r), of burn radii, which is a discrete 
analog of the pore-size distribution. We show that for the two drill core samples, the burn 
radius distribution is very well fit by exponential, n(r) ~ exp(r/r0). This conclusion is 
also true for the distribution of the subset of medial axis radii. This contrasts with the 
burn radius distribution of the packed glass bead sample which is very well fit by a normal 
distribution, n(r) ~ exp((r/r0)

2). 
The second analysis concerns the size distribution of disconnected medial axis seg- 

ments, which correspond to disconnected void volumes. All samples indicate a composite 
distribution consisting of a power-law distribution of the smallest medial axis fragments, 
followed by an essentially constant distribution of medial axis fragments of intermediate 
sizes. Finally, both the Berea and glass bead data sets contain a single, very large inter- 
connected medial axis segment, occupying approximately 40% of the pore volume. Such a 
large segment is absent in the lower porosity chalk sample. 

The third analysis concerns the tortuosity distribution of the medial axis between 
parallel planes in the sample. Assuming that the medial axis between two parallel planes 
consists of N voxels, there are on the order of Nl connecting paths to be considered. For 
the Berea and Bead samples considered here, the value of N can exceed 100,000. To 
simplify this CPU intensive computation, only shortest path connections along the medial 
axis between the planes were considered. For the Berea and chalk samples, the tortuosity 
distribution appears to be best fit by an incomplete Gamma distribution, which has two 
free parameters. The distribution for the Bead sample does not appear to be fit well by 
the same model. 

Finally, considering the medial axis radius as a continuous function along the medial 
axis, we classify segments of the medial axis as throats (local radius minima) and nodal 
pores (local radius maxima). We present throat and nodal pore size distributions and the 
connectivity between them. 
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Etude numerique de la methode de recuperation secondaire du petrole 

Mazen SAADi 

On s'Interesse ä 1 etude numerique de la methode de recuperation secondaire du 
petrole dans un gisement constitue dun seul type de roche caracterise par la porosite, 
la permeabilite intrinseque, les pressions capillaires et les permeabilites relatives. 
Cette methode consiste ä injecter un fluide mouillant l'eau dans les puits d'injection 
pour deplacer le petrole vers les puits de production. 

On considere que la phase eau (w) et la phase huile (o) sont incompressibles 
tandis que la phase gaz (g) est compressible. La modelisation de ce type d'ecoulement 
est decrite ä l'echelle macroscopique par 

(1) <pdtsw+VT.Vvw(s)+div(Gw(s,pg)g)+    vwdivVT+div(Dw(s)Vs) = 0 

(2) <pdts0+VTyv0 + div(G0(s,pg)g)+     v0divVT +div(D0(s) Vs) =0 

(3)0 dt (pgsg)+VT . V (pg vg)+divipg Gg (s, pg)g)+Pg vgdivVT+div (pg Dg (s)Vs)=0 

La vitesse totale Vy est donnee par 
(4) VT = -KM7Pg +G(s,pg)g+DT(s)Vs 

On a de plus 

(5) sw+s0+sg=l 

Dans ce Systeme, s^represente la saturation de la phase r\, s = (sw,s0), pg la 
pression du gaz, vT?=vT?(s) la fraction des flux, pg(pg) la masse volumique du gaz, 
GJs,pg) les termes gravitationnels, Dy(s) les termes dus aux pressions capillaires 
{y = w,o,g, T), M(s) la mobilite totale. 

Dans le domaine Q=]0, L[ x ]0, l[, les conditions aux limites sont 
- sur la paroi d'injection Te 

sw(t,x) = l, pg(t,x)=pe ou VT.n =-Q      sur Te 

- sur la paroi de production Ts 

pg(t,x)=ps<pe;(Dn(s)Vs).h=Osurrs 

- sur la paroi impermeable Tj 

VT.n =0;(Dn(s)Vs).n=0 sur Tt 

Le Systeme (l)-(3) est un ststeme parabolique degenere ; la degenerescence est due 
au fait que la fraction de flux v^ s'annule avec s^ . Le Systeme (l)-(3) est forme de deux 
parties modelisant deux phenomenes physiques differents. Le premier correspond au 
transport sous l'action de la seule force exterieure d'injection de l'eau ä une vitesse ou 
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une pression donnee) et sous l'action des termes gravitationnels. Le deuxieme 
correspond ä la diffusion sous l'effet des termes capillaires. Afin de prendre en compte, 
aussi precisement que possible, ces deux phenomenes une methode de pas 
fractionnaires est utilisee. 

Dans la formulation du Systeme (l)-(3), l'operateur est scinde en deux parties ; ainsi 
la methode des pas fractionnaires employee ici est une methode ä deux pas. Nous 
decrivons schematiquement cette methode. 

Au premier pas, nous donnons une caracterisation pour que la premiere partie 
(correspondant au transport) soit hyperbolique ; ceci donne une facon naturelle de 
classer les modeles et pennet de mettre en place des Schemas quasi d'ordre deux. 

Plus precisement, on se limitera aux modeles de permeabilites relatives donnant 
lieu ä un Systeme hyperbolique (l'etude de l'hyperbolicite de ces ecoulements a ete es- 
sentiellement faite dans [3], [5]). Pour resoudre ce probleme, nous mettons en place 
un solveur approche de type Roe. Pour ce, nous explicitons une construction de la 
matrice de Roe pour une certaine classe de permeabilites relatives. 

Si les flux sont des polynömes de degre inferieur ou egal ä deux, Vila [6] construit 
explicitement une matrice de Roe. Nous avons generalise ce resultat lorsque les flux 
s ecrivent comme quotient de deux polynömes. 

Le schema de Roe est d'ordre un et ä trois points. L'inconvenient d'un tel schema est 
sa diffusion numerique ; de nombreuses methodes peuvent etre utilisees pour essayer 
de la reduire. Par exemple, les limiteurs de pentes, les limiteurs de flux, ou des 
Schemas numeriques d'ordre superieur (Harten [2]). La construction de cette nouvelle 
famille de matrice de Roe a permis, entre autres, la mise en place du schema de 
Harten. Nous presentons tout d'abord, l'avantage numerique d'un tel schema pour un 
ecoulement monodimensionnel, ensuite son extension aux ecoulements 
bidimensionnels. 

Au deuxieme pas, nous traitons les Operateurs d'ordre deux en espace par un 
schema implicite en pression et semi-explicite en saturations. Dans cette etape, on 
etablit une equation discrete en pression, non degeneree, qui preserve la consistance 
du schema avec l'operateur induit. 

Les resultats obtenus sont satisfaisants, on retrouve le comportement attendu : 
etalement des fronts du ä la diffusion capillaire, freinage des fluides du ä 
l'augmentation de la mobilite massique du gaz en compressible. On verifie egalement 
la conservation de la masse de chaque phase. 
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Scaling-up   Permeability   in   the   Near   Well    Regions 

Y. DING 
Institut Francis du Petrole, Rueil Malmaison, France 

One of the major applications of modelling of flow in porous media can be found in the petroleum reservoir 
simulation. However, the reservoir heterogeneities, such as absolute permeability, generated on fine grids by 
geological/geostatistical models, can not be directly used for flow simulation, due to computational cost and memory 
storage capacity. Therefore, efficient techniques are needed to scale the fine grid petrophysical parameters up to the coarse 

grid1"13. 

It is well known that the equivalent gridblock permeability obtained by the scaling-up procedure from fine 
gridblocks depends on the boundary conditions1"3. In the literature, most boundary conditions considered represent a 
"linear" flow pattern. Using directly these scaling-up results in reservoir simulation might be erroneous, because the near 
well behavior can not be approximated by the "linear" flow. 

On a reservoir field scale, the flow region can be divided into two types: a "radial" flow region with a high 
pressure gradient and a "linear" flow region with a low pressure gradient4. The "radial" flow region is usually more 
important"for the prediction of production forecast, because it is directly related to the well. A specific scaling-up procedure 
is needed in the near well region by imposing a "radial" flow condition. The transmissibility will be scaled-up in stead of 
the permeability because it is more accurate for flow simulation5. In the well vicinity, the scaled-up parameters should not 
only consist of the equivalent transmissibility (permeability), but also numerical productivity index (PI). More precisely, 
the equivalent transmissibility (permeability) and numerical PI is calculated as follow4: 

I. According to Darcy's law, the equivalent transmissibility Teq (Keq) between two coarse grids is defined by the 
quotient of equivalent flow Feq, which is the sum of flows at the fine grid interfaces composing the coarse grid 
interface, and the difference in coarse grid pressures Pco, which is defined as the storage-weighted mean of the 
pressures of all the fine grids composing the coarse grid: 

Teq = Peq/ APco 

2. By the definition of numerical productivity index, the PI on a coarse grid is calculated by the following formula: 
Pico = PIfine (Pfine - Pw)' (Pco - Pw) = Q / (Pco - Pw) 

where PI fine " the numerical PI on fine grid, Pw is the wellbore pressure, Pc0 and Pfine are the coarse grid and fine 
grid wellblock pressures, and Q is the well flow rate. 

The goal of the scaling-up procedure is to reconstruct the fine grid simulation by a coarse grid simulation, 
especially for the well production forecast. We give an example to show the need of the specific scaling-up procedure in 
the near well region. 

Example: 
A heterogeneous configuration is generated on 99x99 fine gridblocks with a short correlation length (Figure la). 

Fourteen wells are distributed in this field with five injection wells (11-15) and nine production wells (P1-P9) (Figure lb). 
Pressure conditions are imposed at all the wellbores to investigate flow rate calculations. A fine grid simulation is done 
with a standard finite-difference reservoir simulator, where the numerical productivity indices are calculated by a 
conventional formula^. The results of this simulation are considered as-the reference solution. A 33x33 coarse grid is 
constructed based on the fine grid, and each coarse grid includes nine fine ones. Two scaling-up procedures are used and the 
results of flow simulation on coarse grids are compared to the reference solution. 

The first scaling-up procedure is the standard one. i.e., no flow boundary conditions on the edges and constant 
pressure at the inlet and outlet faces3. The second one is new: it includes the standard procedure for "linear" flow pattern 
and the specific procedure in the well vicinity for "radial" flow pattern. 

Single-phase incompressible flow is first tested. Figure 2 presents the flow rate for each well given by three 
simulations: a fine grid simulation and two coarse grid simulations with the scaling-up procedures presented above. It can 
be seen that the errors caused by the standard scaling-up procedure attain about 30% en the average, while those caused by 
the new procedure, which includes the scaling-up for "radial" flow pattern, are only about 1-2%. This test shows the need 
to use the new procedure when scaling-up in the vicinity of wells. With the new procedure, the error for well performance 
can be significantly reduced. 

Two-phase flow simulation is also investigated. Water is injected in an oil reservoir. Figure 3 shows the water 
cut for three production wells PI, P2 and P3. Again, the simulation with new scaling-up procedure approaches the fine 
grid results much better. The breakthrough time can be calculated accurately by using the new scaling-up procedure. 
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It is clear that using a scaling-up procedure without considering the impact of the "radial" flow pattern in the near 
well regions might greatly bias the flow simulation results on a reservoir scale. The simulation accuracy can be 
significantly improved by using the new scaling-up procedure. This procedure is very easy to use in reservoir simulation. 
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On the Dam Problem with Leaky Boundary Conditions 
and Linear Darcy's Law 

We would like to present various results on the Dam problem with leaky boundary 
conditions. The problem is to find a pair (p, x) G H1^) x L°°(ü) such that 

' P > o, o < x < i, p(i - x) = o a-e in ft> 
p = 0     on     S-2, 

f a(x)(Vp + *e).VZdx -   I   ß(x,<p - pUda(x) < 0 

vteH\n), ve>0on52: 

where /? is a nondecreasing Caratheodory function and a £ L°°(Q.,Mn0&))- 
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Numerical Modelling of Clay Drying 

E.F. Kaasschieter 
Eindhoven University of Technology, Department of Mathematics and Com- 
puting Science, P.O. Box 513, 5600 MB Eindhoven, the Netherlands. 

Abstract 
Drying is an important unit operation, which is used in many production 
processes. An example of a branch of industry, where drying plays an essen- 
tial role in the production process, is the clay brick and tile manufacturing 
industry. 
Shrinkage occurs during drying of many materials. Moisture concentra- 
tion gradients in the material and corresponding gradients in the amount 
of shrinkage will lead to drying stresses. Controlling these stresses is im- 
portant since they can lead to deformation or cracking of the product. A 
correct description of the evolution of moisture concentration profiles in the 
material is complicated by the influence of shrinkage on mass transfer. 
Drying of clay can be modelled by equations expressing mass conservation 
of moisture and solid, together with a flux equation for moisture. This flux 
equation is essentially Darcy's law. where pressure and permeability depend 
on moisture content, i.e. the quotient of moisture and solid concentration. 
These equations are supplemented with equations expressing the deforma- 
tion of clay due to gradients in moisture content. It is assumed that clay 
behaves as an elastic material, i.e. Hooke's law applies, where Young's mod- 
ulus and Poisson's ratio depend on the moisture content. 
A careful analysis leads to a nonlinear parabolic equation for the moisture 
content and a nonlinear elliptic equation for the displacements, that depends 
on the moisture content. 
These equations are discretised in space by finite elements and in time by 
Euler's method with frozen coefficients. The resulting systems of sparse lin- 
ear equations are solved by preconditioned conjugate gradients. 
Results of three-dimensional simulations are presented. 

8& 



The Plane Potential Flow Through The Inhomogeneous Porous 
Line 

Ivan Keglevic* 

November 25, 1994 

We consider the plane stationary potential flow, i.e. a pair of functions (v,p),v : M2 —► K2, p : M2 —>■ 1, 

which satisfy 

div v(x, y)    =    0. (1) 

rot v(x, y)    =    0. (2) 

(»(i,y)-V)w(a;Iy) + -Vp(xIi/)    =    0, (3) 

where p is a positive real constant (the density of an incompressible fluid). We assume that the flow is ideal 
(i.e. the formulae (1) to (3) are valid) in the whole IR2 except on the straight line y = 0. There, we have the 
continuity condition 

vy+(x,0) = vy-(x,0), (4) 

where (x, 0) is in porous region and vy+ and vy- are the limits of the vy component of the velocity field form 
the + (y > 0) and - (y < 0) part of the plane. Let the porosity law be given by 

yi{x)vy(x, 0) = 72(a0(p+(*, 0) - P-(*> 0)), (5) 

where ji, 72 : M. —> IR are two given nonnegative functions which do not vanish simultaneously and p+ and 
p_ are the limits of pressure field from the + resp. - part of the plane. We also assume 

v+(x,Q) = v-.(x,0),    zeM\supp7i. (6) 

If the velocity in infinity 

lim     v(x, y) = Voo = (v«,*, vxy) (7) 
l(s,y)l—00 

and the functions 

71,72 :R —[0,oo) (8) 

are given, we look for velocity and pressure fields v and p. 
The form (5) of the porosity law is derived by SANCHEZ-PALENCIA [6], MURAT [5] and DAMLAMIAN[1] 

and already used in WoLFERSDORF [7] and in MIKELIC-SUHADOLC-VESELIC [4]. 
If the function 72 is zero at some points, the hindrance is completely impervious. If 71 is zero, the 

hindrance is completely open. We assume that 71 and 72 are piecewise continuous and have the limit in the 

infinity. 
For VooX ± 0 the solution of this problem can be explicitly given (through the formula) if there is the 

limit 

lim   iM     d<OQ, (9) 
x—>±oo 72(2;) 

*LG Math.-Phys., Fernuniversität D-58084 Hagen, Germany; e-mail ivan.keglevic@fernuni-hagen.de 
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in case supp 71 = W. and if 

lim   Ä = 0. (10) 
x^ioo 72(2;) 

hold in case supp ~fi ^ R. The second possibility also includes the cases when only one or more than one 
bounded line segments are porous or imprevious. The uniqueness of this solution in the set of all functions 
v with their boundary value on T in if0C(E) can also be proved. 

In the case Voax = 0 we do not have any solutions in the space of all functions v with boundary values 
on T in Lf0C(R). If supp fi consist of finitely many bounded line segments, we do get some solutions (with 
boundary values not in Lj0C(lR)) but there is always more than one solution, and all solutions show the 
unexpected property that the flow do not get through hindrance then round it. In this cases the model do 
not describes properly the expected physical situation. 
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Implementing a Non-local Theory for 
Flow and Transport Through Porous Media 

John F. Peters1 and Stacy E. Howington2 

Abstract 

At many sites with subsurface contamination, potential health risks make remediation 
necessary. As a rule, remediation of subsurface contamination is expensive and the consequences 
of failure are considerable. Therefore, a thorough assessment of remediation candidates in the 
context of the particular site is warranted before a selection is made. At the heart of many such 
assessments is the prediction of fluid flow and contaminant transport through media with 
multiple scales of heterogeneity. In the past decade, this need has prompted a revaluation of the 
existing theory for flow and transport in porous media. The central difficulty in devising new 
models from existing theory is that model parameters often depend on the scales at which their 
measurements are made. For example, an apparent scale dependency arises as a result of the 
macroscopic Fickian description for dispersion, which is evidently a non-Fickian process. Many 
non-Fickian dispersion models currently proposed are non-local, wherein the rate of change of 
concentration in an elemental volume depends not only on a concentration gradient in the 
element, as for a local continuum law, but on the history of the gradient in a finite region around 
the element. Accordingly, the non-local form of the equation is represented in terms of 
convolution integrals. The non-local form contains a length scale that permits the introduction of 
scale dependence. 

A theoretical approach is presented based on representing a discrete porous medium in terms 
of continuous variables. A non-local governing equation, similar in form to those presented by 
others [1, 2,3] results. Regardless of the origin of the non-local equation, the convolution integral 
may be approximated discretely as a network. This network is distinguishable from traditional 
network models in three ways: (1) the flow paths represent the larger-scale primary advection 
paths in the porous material, not individual pores, (2) variations in advection paths capture 
dispersion whereas spatial averaging reproduces Darcy-scale properties, and (3) because the 
network is a discrete form of the non-local model, each location in the domain may be connected 
to all other locations, resulting in unusually high coordination numbers and a very dense pattern 
of flow paths. This approximation is valid at any scale from the pore scale to the field scale. A 
non-local advection equation will necessarily display dispersion not found in its local continuum 
counterpart. The observed scale effect in apparent dispersivity is reproduced by including 
sufficient spatial range and structure in the kernel function of the convolution integral. 

Research Civil Engineer, Geotechnical Laboratory, USAE Waterways Experiment Station, 
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A discrete network model was constructed to numerically simulate non-local advection. Flow 
paths are laid out such that spatial averages honor the Darcy-scale flow parameters. Variations 
in small-scale flow direction and resistance endow the network with the desired dispersion 
characteristics. Flow paths are discretized along their length to capture small-scale details and 
reduce numerical dispersion. Several notable results are observed: (1) the dispersion 
characteristics of statistically homogeneous media depend on the range of the kernel function, (2) 
by incorporating random variability in the throat parameters, early scaling behavior is matched, 
(3) the dilemma of coupling is made clear by the network model; in the physical system, 
processes are coupled at the finest scale, a feature lost by continuum models but only 
approximated by coarse network models, (4) model parameters in these equations do not depend 
on scale. 

The network represents an alternative discrete system to the real porous medium. Different 
network systems yield the same Darcy-level averages and, therefore, produce spatially averaged 
behavior indistinguishable from one another. In this sense, the network is simply a coarsened 
discrete system that yields the same dispersive behavior as the real medium, provided both are 
viewed through the same broad band filter. 

Research to this point shows that, in principle, a network may be constructed that gives the 
best representation of the real medium/or a given level of resolution. The key problem for practical 
applications is determining procedures to calibrate these networks, especially when non-linear 
processes are involved. Efforts are underway to calibrate the network model to specific 
laboratory and field data and to extend the approach to other processes such as nonconservative 
solute transport and immiscible flow. 

Support for this research was provided by the Strategic Environmental Research and 
Development Program within the Department of Defense under the project entitled "Simulation 
of the Impacts of Subsurface Heterogeneities on Remedial Effectiveness" and by the Army 
Environmental Center. Permission was granted by the Office of the Chief of Engineers to publish 
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Effective Permeability of Strongly Heterogeneous Porous Media 

A. De Wit 
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Finding effective parameters to describe a flow in large scale heterogeneous porous media 

is a problem of major concern to the fields of hydrogeology, petroleum engineering and the 

chemical process industry. In such systems, the velocity field u of the flow is related to the 

gradient of pressure Vp by Darcy's law 

u = — n(r) Vp (1) 

where /c(r) is the spatially varying permeability which varies on length scales much longer 

than the characteristic pore scale. In practice, it is desired to describe the heterogeneous 

medium in terms of an effective homogeneous medium, i.e.: 

< u >= -Ke/r < Vp > (2) 

where K^Jf is the constant effective permeability tensor. 

The problem of computing the effective permeability of a heterogenous medium has 

been the subject of numerous analytical and numerical efforts [1]. Most of these works have 

focused on systems for which the logarithm of the permeability has a normal probability 

distribution function. In our work [2], we derive the effective permeability tensor "Keff of 

strongly heterogeneous media for arbitrary distributions of the log-permeability Zn[/c(r)]. We 

perform a perturbation expansion of Darcy's law in the variance a1 of /n[/c(r)] and show how 

to solve the problem at higher orders using spectral methods. The only assumption is that 

the spatially varying permeability /c(r) is a stationary random function of position. This 

approach expresses the effective permeability in terms of the moments of the distribution of 

Zn[/c(r)], i.e.  Ke// can formally be computed for any given distribution of the fluctuations 
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of the log-permeability. We then analyze the computed effective permeability tensor for 

different particular situations. As a special case of the theory, we examine Keff for a 

normal distribution function of ln[K(r)] for both isotropic and anisotropic media. In this 

case, all odd moments of the distribution function are zero. In the case of isotropic systems, 

a conjecture has been made in the past [3] according to which, for three-dimensional porous 

media, the scalar effective permeability «e// = KG exp[(T2/6] where KG is the geometric 

mean of the log-permeability. It is shown here that this conjecture is incorrect as the a6- 

order term of Keff contains additional terms than those corresponding to the development of 

the above formula. Moreover, these additional terms depend on the shape of the two-point 

correlation function of IU[K). The resulting Kefj lies below the exponential formula. For 

anisotropic systems, 0(a4) corrections to the effective permeability tensor are given for an 

arbitrary orientation of stratification. 
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Different  Pressure and Saturation Grids in Heterogeneous Porous Media 
Sophie Verdiere"!'2, Dominique Guerillot1 
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Background   and   Motivation 

More and more geological models are available to describe the internal structure of oil and gas reservoirs. 
These models are the results of geoscientific work aiming to integrate the data and knowledge about the field. 
Generally, these models are represented on a very high resolution grid (HR Grid). It is not unusual to obtain a grid 
with millions of cells. However, it is not possible to solve over this HR Grid while fluid flow simulating, because of 
the hugeness of the linear system to be solved. So, one must upscale petrophysical parameters. 

The conventional method aims to obtain a lower resolution grid (LR Grid) by coarsening the mesh. The 
motivation of this coarsening is generally to perform fluid flow simulations at a reasonable cost. The results are 
averaged phase pressures and saturations, and, for compositional modelling, components of the oil or gas. These 
classical methods prevent the dynamical upscaling to the extent that one homogeneizes the petrophysical 
parameters before doing the fluid flow simulation.   Some attempts have been made to overcome this difficulty [1]. 

To overcome this drawback, an original method based on two grids is proposed. The principle of this one 
consists in solving the parabolical pressure equation over a LR Grid, and the hyperbolical transport equations 
over a HR Grid. So, a specific discretisation in space for each unknown allows to keep the information on the 
distribution of the saturation while computing accurate averaged parameters for the pressure equation. This 
method can be seen as a way to dynamically update the pseudo-functions for the relative and capillary pressure 
curves. 

The Model  Problem 

Let us consider the following dead-oil problem with the hypothesis of incompressibility of the fluids and 
the rock. The diffusion and capillary pressure are neglected. 

The problem is:   find the pressure p and the saturation s such that: 

(1) -div km(s)gradp ]■ L + L Pressure Equation 

(2) 
as f 
at" 

- div k-^-sradp Saturation Equation 

with initial conditions in saturation, and with boundary conditions in pressure and flow rate, such 
that the problem is well posed. 

In the proposed method, each unknown will have its own discretisation. An IMPES scheme is used. So, 
we apply an implicit scheme for the pressure equationon on the LR Grid, and an explicit scheme for the saturation 
equation on the HR Grid. 

The Dual  Mesh Algorithm 

Let us describe an extension of the Dual Mesh Algorithm 
presented for the pressure equation [2]. 

We consider the update from p^.s^ to PH+1.SJ;+I 

H is relative to the LR Grid and h to the HR Grid (cf fig 1) 

Step   1:    Homogeneization of the petrophysical 

parameters km(sf)) over the LR Grid 

Step   2:    Resolution of the pressure equation; 

calculation of p£,+l 

div kmts^gradtpiT)   = fw + f, «g i 
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Step   3:      Reconstruction of the pressure p|J+1 and the flow rate q£+l thanks to p"^ and q„+! 

Step 4 :     Calculation of the saturation s£+' by resolution of the transport equation over the HR Grid: 

„n+l :s£ + <|)Atndiv iradpr1 + f,., 

Step 3 - Reconstruction of the flow rate and the pressure 

Let us describe into details the step 3. This is one of the 
most important in this algorithm. 

In order to take into account the heterogeneities of the 
porous media, we propose an original method by solving for each 
cell (called Mj - cf fig 2) of the LR Grid a local problem using the 
same interpolator as the one used to model the global system. 

There are several options to define 
- the region r(Mj) around each cell Mj. 
- the boundary conditions on r(Mj) 

We choose first r(Mj) =Mj 
The problem of the boundary conditions is probably the 

most difficult point. After taking boundary conditions in pressure, 
such that the flow rate Q is kept on the boundary of Mj, we decide 
to take Neuman conditions on Mj with one Dirichlet condition. 

Numerical   Results 

. __■ 

-. m 
-£'. i -,ä 

.; "-/-.- "-<■ *v 

fig 2 

This Dual Mesh Method was successfully implemented on synthetic cases. In our poster, one could notice 
how the interpolator follows the variation of the pressure due to the discontinuity permeability field. At last, the Dual 
Mesh Method is completely validated in homogeneous case, with a good estimation of the saturation. 

Conclusion 

The paper describes an algorithm which allows to solve the transport equation over the HR Grid after 
solving the pressure equation on a LR Grid, and obtaining the flow rate at a smaller scale by solving local problems. 
This algorithm is implemented for a dead-oil problem. These results are encouraging and could be extended to more 
general multiphase flow. 

Nomenclature 

'w, 'o: 

k: 
krw: 

mj; 

m: 

Symbols pertaining to the LR grid are written in capital letters, those for the HR grid are written in small letters, 

source terms vector p: interpolated pressure vector (over the HR Grid) 

permeability tensor p: pressure vector (over the HR grid) 

relative permeability of the water s: water saturation 

current cell u.w:       viscosity 

mobility <f> : porosity 
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Contribution ä l'etude du comportement de la solution d'equations non Iineaires 
de diffusion-convection 

J.B.Betbeder, L.Levi, A.Plouvier, G.Vallet 
Laboratoire de Mathömaüques Appüqudes, URA 1204 CNRS. IPRA, avenue de l'Universitd, 64000 PAU. 

La modeiisation mathematique des phenomenes naturels rencontres en mecanique des milieux 
continus fait appel ä la traduction de lois de conservation (de masse, de l'energie, ...). On est alors 
amene ä considerer des Equations non Iineaires de type divergentiel, dites Equations de continuity. 
Elles sont   genenquement formuiees, au sens des distributions dans Q = ]0,T[xfl (ß domaine 

borne regulier de Rn), 

I) soit sous la forme d'un probleme de Cauchy de diffusion-convection 

(I)   ^^-A<|>(U) + Di\j*F(U)G 
at 

= f, 

ß(U)(0,.) = ß(U0), 
auquel on adjoint des conditions aux limites appropriees, 
(ß, <)) et *F sont au moins des fonctions continues, (j) etant croissante et ß strictement croissante) 

II) soit sous la forme d'une Equation hyperbolique non lin6aire du premier ordre : 

(II)       -^ + Di\|»F(U)G 
at 

= f, 

U(0,.) = U0, 
lorsque l'effet de transport est preponderant par rapport ä l'effet de diffusion-dispersion. Ceci est par 

exemple le cas dans une phase fluide heterogene, lorsque l'on desire suivre revolution de la fraction 
massique d'un constituant. En effet, la diffusion-dispersion moieculaire de ce dernier (due ä 
l'existence de gradients de concentration au sein de la phase) peut etre "negligeable" au regard de la 
vitesse de filtration du fluide. 
(la fonction *Fest generalement supposee de classe C2, U0 bornee et ä variation bornee) 

Lorsque Ton cherche ä moritrer l'unicite de la solution de tels problemes par des methodes de 
troncature dans L1, il est necessaire de prendre en compte les eventuelles ondes de chocs d'une 
solution. 

I. i) Ainsi, lorsque la fonction <j) est injective (probleme de type parabolique degenere), s'il 

existe une solution U de liquation (I) teile que -^— € L1 (Q.), alors cette solution est unique. Bien 
at 

sur, on n'est jamais assure de l'existence d'une teile solution "forte". Cependant, moyennant certaines 
hypotheses de regularite sur la donnee initiale et sur les non-linearites ß et <J>,  G.Vallet a su dormer 
dans [12] un resultat d'existence d'une solution "forte" pour liquation integro-differentielle 

dansQ, ^1- A<j>(U) = J(U)Exp -j J(U(s,.))ds 
3t I o J 

verifiant des conditions de bord de type Fourier. Sa demarche s'appuie sur un resultat developpe dans 
[2] et montre meme que cette solution est en fait element de W1'" (0,T; L {Q.)). 

I. ii) Lorsque 1' on n'est pas en mesure d'etablir l'existence d'une solution "forte" de (I), il est 
neanmoins possible de montrer l'unicite d'une solution U verifiant : <j)(U) e H (Q) et 
ß(U) e BV(0,T;L1(Q))nL~(Q). La demonstration repose sur la validation de la formule de 
derivation de la composition d'applications dans l'ensemble BV des fonctions ä variation bornee. Pour 
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cela, on montre que l'onde de chocs (au sens de la limite approximative) est n6gligeable par rapport ä 

la mesure de Radon ——— (cf. par exemple [6], [3] ou encore [10]). 
dt 

Enfin, l'adaptation des resultats exposes dans [4], a permis ä G.Gagneux & M.Madaune-Tort 
[7] de montrer qu'une solution faible de liquation (I) pos£e dans Hj, (£2) venfie implicitement une 
formulation de Kruzkov. Sans hypotheses supplementaires sur les non-linearitds, son unicite" est alors 
prouv6e en reprenant l'idee de la methode gen6ralement ddvellopde dans le cas d'une Equation 
hyperbolique non lineaires du premier ordre. (voir aussi [5] pour des problemes de barrages, [11] lors 
que le tenseur de diffusivite depend de 1'evolution du probleme ou encore [12] dans le cadre 
d'equations de la thermodynamique) 

II. La solution de l'equation (11) est obtenue par l'eüide du comportement, lorsque e tend vers 
0+, de la suite des solutions des problemes (PE) de "diffusion lente" : 

(Ie)   -^--eA(t)(Ue) + Di^(UE)G = f. 

UE(0,.) = U0. 
associes ä des conditions de bord Dirichlet sur tout ou une partie de la frontiere. 
Reprenant l'idde de la methode de viscosit6 artificielle, on est amen6 ä estimer la solution Ue du 

probleme (P£) dans l'espace Wu(Q)nL°°(Q), dans les cas de solutions "fortes", voire dans 

l'espace BV(Q) n L°° (Q), dans le cas de solutions faibles. Ainsi, en raisonnant par compacite\ on 
ätablit l'exitence d'une solution faible entropique U ä variation bornee. (cette technique de 
perturbations singulieres, introduite par [1], a notamment 6t6 reprise par M.JJasor [8] pour des 
problemes ä effet de puits et par L.Levi dans le cas de problemes unilatöraux [9]). 

Remarque : Puisque l'onde de chocs (au sens de la limite approximative) n'est pas nögliaeable par 
au   au 

rapport aux mesures de Radon et , i=l..n, on comprend mieux la necessity d'une formulation 
at    ax; 

entropique, qui permet de "contröler" les sauts de U au niveau d'une onde de chocs (relation de 
Rankine-Hugoniot) et d'assurer ainsi son uniciti. 
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Sur la correction non-lineaire de la loi de Darcy pour 
les ecoulements en milieux poreux ä faible nombre de 

Reynolds 

MOUAOUIA FIRDAOUSS, JEAN-LUC GUERMOND 

1. INTRODUCTION. - On demontre une conjecture annoncee dans Wodie-Levy [5] et Mei- 
Auriault [2]: dans les milieux poreux periodiques clont les inclusions sont de taille equivalente 
a la periode, la correction non lineaire a la loi de Darcy est quadratique en fonction du nombre 
de Reynolds Re = pVP0l

3/p\ ou VP0 est l'echelle de gradient de pression ma-.nscopique, I 
l'echelle spatiale microscopique, p la masse volumique du fluide et p. sa viscosite dynamique. 
On montre que l'hypothese d'isotropie faite dans [5] et [2] n'est pas necessaire, mais peut etre 
remplacee par une hypothese d'invariance par rapport au sens du flux. Des tests uumeriques 

illustrent ce result at. 

2. POSITION DU PROBLEME. - On suppose le milieu poreux periodique. On se donne 
pour cellule periodique tt un parallepipede de 1R'1 engendre par les vecteurs (tlt.. .,tn) qu'on 
suppose lineairement independants, c:est a dire dete(ii,... ,*„) = mes(ft) ^ 0, oü e est la 
base canonique de IRn (ie. en se donnant e, on fixe l'echelle microscopique). La base 
(tu...,tn) n'etant pas forcement orthonormee, on definit (i\...,in) la base covariante. 
Pour i=l,...nou note dü~ la face de fi passant par l'origine de ET (qu'on munit de sa 
structure affine) et teile queönf-f' = 0; on pose aussi dSlf = dtt~ + t{. Soit H0 un ouvert 
connexe de H, de frontiere reguliere, (disons Lipschitz et d'un seul cote de sa frontiere). 
Pour t = l,...,non pose dttftP = dSlf n dtt0 et on suppose que fi0 est compatible avec la 
periodicite, c'est a dire dntP = dPJ? + t{. On definit enfin, dQ0,s = 3ft0\ U?=1 dÜftP. On 
suppose que mes(diV) # 0 et mes(3fi,-p) ^ 0 pour i = 1,.. . ,n. On introduit maintenant 

le cadre fonctionnel habituel: soient HjiP(n0) = {v £ H^fto), ^|an0|3 = 05 
v\dn~p = v\3nfJ et 

V = {v e Hä,p(fio), divu = 0}. 
Dans un premier temps on considere le probleme suivant: pour A 6 ^„(Ojl) (la sphere 

unite de En, ie. on fixe le gradient de pression macroscopique de reference), trouver uQ(X) € 

V tel que 
(2.1) VueV, (VM0(A),VU) = (A,U). 

On introduit maintenant le tenseur de permeabilite. A'0 G £(IRn, IRn) tel que K0X = /no u0(A). 
Ce tenseur est symetrique defini positif. Dans le cadre de la theorie de Thomogeneisation 
on interprete la relation A'0A = jQo u0(A) comme la loi de Darcy (c/. Bensoussan-Lions- 
Papanicolaou [1], Sanchez-Palencia [3] et Tartar [4]). L'objectif de ce travail est d'etudier la 
correction non lineaire de cette relation dans le cadre des equations de Navier-Stokes. 

On se place maintenant en dimension n = 2 ou 3. On introduit la forme trilineaire 
b(u,v,w) = (U.V»,IB); b est continue sur Hjp(f20)3, pour n = 2 ou 3, on note cb la norme 
de 6 sur Hj (n0)

3- On s'interesse au probleme de Navier-Stokes: pour e > 0 et A 6 5n(0,l) 

trouver uc(X) € V tel que 

(2.2) Vv 6 V, (Vu((A), Vu) + eb{ut(X),ut(X),v) = (A,u). 

Si e < co(n0)2/2chmes(tto), ou c0(r20) est la constante de Poincare du domaine ft0, il existe 
une solution unique au probleme ci-dessus. Par la suite, on caracterise la dependence de 

Jfi0 
U({X) par rapport a A pour e petit. 
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3. CORRECTION NON LINEAIRE DE LA LOI DE DARCY - On introduit maintenant 
l'hypothese centrale de ce trava.il: 

(H)  On suppose que pour tout A € 5„(0, 1) et tout t suffisamment petit, u£(A) satisfait: 

/   uc(\) = - f   u((-X) + ö(e2) 

Remarque 1 : Cette hypothese signifie qu'un renversement du gradient de pression macro- 
scopique implique un renversement de la vitesse de nitration sans alteration notable de 
son module, et ce independamment du nombre de Reynolds (suppose petit), le resultat de 
l'experience pouvant dependre de la direction (non orientee) du gradient de pression en ques- 
tion. 
Remarque 2 :Si O0 est invariant par symetrie centrale, (H) est verifiee et la correction 0(e2) 
est exactement nulle independamment de t. 
Remarque 3 : Si QQ est invariant par rapport aux symetries S{, i = l,...,n, telles que 
S'i(ti) = t{ et Si(tj) = —tj si j 7^ i, alors 9.0 est invariant par symetrie centrale. 

Le resultat central de ce travail est le suivant 

Theoreme 3.1 Si l'hypothese (H) est satisfaite, on a 

(3.1) VAeS'„(0,l), I  uc{\) = K0\ + 0{e2). 

Ce resultat signifie que pour e petit, la vitesse de filtration verifie quasiment la loi de Darcy 
avec le tenseur de permeabilite KQ, la norme de l'erreur etant bornee par ce2, ou la constante 
c ne depend que de la geometrie du domaine. 

On peut s'afFranchir de l'hypothese (H) si l'ecoulement de filtration est monodimension- 
nel. Plus precisement, on se place dans le cas ker(/\To)"L = lm(K0) =< U >, c'est a dire KQ 

se reduit a la multiplication par une constante; on montre alors 

Theoreme 3.2  Dans le cas monodimensionnel, on a 

(3.2) VA€{*i/|*i|,-*i/|*i|}, /   u£(A) = /i0A + O(e2). 

4. ILLUSTRATIONS NUMERIQUES - Les resultats annonces ici font en fait suite a, une serie 
d'experimentations numeriques en dimension 2 sur des reseaux periodiques. Nous rapportons 
ci-dessous quelques unes de ces experiences afin d'illustrer les theoremes 3.1 et 3.2. 

Les figures 1, 2, 3 et 4 resument des resultats numeriques significatifs pour quatres con- 
figurations differentes. A gauche on represente revolution de | fn wt(A) — Ä"oA| normahse par 
son maximum en fonction du nombre de Reynolds relatif Re/-Rmax pour differentes valeurs 
du Reynolds maximum Rma.x- A droite des figures on a represente la configuration periodique 
correspondante. Dans tous les cas on a choisi \ti\ = 1. 

La figure 1 concerne un reseau rectangulaire de rapport l^il/l^l — 2. Le tenseur K0 n'est 
pas spherique, le milieu homogeneise n'est done pas "isotrope" pour les equations de Stokes 
(il n'entre pas dans le cadre, de [2], [5]). Ce reseau est a symetrie centrale; il verifie done 
(H). On verifie sur la figure que pour Re < 20, la correction non lineaire est parfaitement 
quadratique. Le cas presente correspond a A = eI7r'4. 
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La figure 2 concerne un reseau rectangulaire qui n'est pas a symetrie centrale mais qui 
satisfait (H) experimentalement. On verifie encore ici que la correction non lineaire est 
quadratique (on a pris A = e1*'2). 

La figure 3 concerne un cas monodimensionnel. II n'y a pas de reversibilite (ie. (H) n'est 
pas verifiee), mais le theoreme 3.2 s'applique. Independamment du sens de l'ecoulement et 
pour Re < 10 on verifie que la correction non lineaire est quadratique. 

La figure 4 concerne un cas bidimensionnel fabrique de teile sorte qu'il ne satisfait pas 
(H). Ce cas a ete. assez difficile a exhiber. Pour A = ei5,r/'6 on verifie que la correction non 
lineaire est lineaire en fonction du nombre de Reynolds. 
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Figure 1: Cas anisotrope a. symetrie centrale 

Figure 1: Anisotropie case with central symmetry 
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Figure 2: Cas anisotrope avec (H) verifiee experimentalement 
Figure 2: Anisotropie case for which (H) is satisfied experimentally 
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Figure 3: Cas monodimensionnel sans reversibilite du flux 

Figure 3: Monodimensional case without reversibility of the flux 

Figure 4: Cas anisotrope avec (H) non verifiee 

Figure 4: Anisotropie case for which (H) is not satisfied 
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(1.1) 

Abstract 

This paper considers the Cauchy problem for the following nonlinear system 

vt - ux = 0 
ut - c(v,s)x + au= 0 

ß -{s-f(v)}_ 
st + ^=0 

with bounded L2 measurable initial data 

(1.2) (v,u,s)/t=o = (v0(x),u0(x),so(x)) , 

where a, ß, x are nonnegative constants. When ß = 0, system (1.1) can be used to model the 
adaiabatic gas flow through porous media, where v is specific volume, u denotes velocity, s 
stands for entropy and a denotes pressure. Its form in Euler coordinates is also a model of 
isothermal unsteady two phase flow in pipelines. In this paper we study the global generalized 

solution for the case ß = 0. 

When ß ^ 0, which, when written in Euler coordinates, can be used to model the 
chemically reacting flow, where again v is specific volume, u denotes velocity but s is the 
mass fraction of one mode of the two-mode gas and f(v) is a given equilibrium distribution in 
v. In this case, x denotes a reaction time. We show that the solution of the equilibrium system 

(1.3) vt-ux = 0 
ut - ö(v,f(v))x + au= 0 

is given by the limit of the solutions of the viscous approximation 

vt - ux = evxx 

(1.4) ut - G(V,S)X + au= e uxx 

X 
as the dissipation and the reaction time x go to zero. 
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MODELLING OF A HORIZONTAL AND A VERTICAL- 
FRACTURED WELL 

B.Cvetkovic, G. Halvorsen. E. L0w, Rele - Reservoir Technology Section 
Lb'E - Kjeller, Norway 

A horizontal-well and vertical-fractured-well production rate-time analysis 
needs a different approach and treatment. Reservoir simulation data and a 
well-production data may be compared to the modelling data. The 
difference to the wellbore rate-time data will be analysed and discussed. 
The rate-time and pressure-time comparison data analysis should provide 
more realistic future rate prediction. Comparison analysis will be based on 
developed type-curves data, reservoir simulation rate-time data and well 
production data. The rate-time data will be compared and obtained results 
discussed. The approach will comprise modelling, simulation analysis of 
both a horizontal-well and a vertically fractured well in a single porosity 
reservoir that may be extend to the dual porosity case. The comparison 
analysis will start with a simplified horizontal-well case and in a future the 
proposed simplified model can be extended to a model that will include 
heterogeneities (vertical to horizontal permeability differences, faults and 
multilayers or composite structures). 
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Resolution numerique d'un probleme 
de restauration biologique en milieu poreux 

Ch.H. Bruneau1 - P. Fabrie1-2   - P. Rasetarinpra1 

On s Interesse ä la resolution numerique d'un probleme modelisant la restaura- 

tion biologique par des bacteries B d'un milieu poreux pollue par un substrat miscible 

S en presence d'oxygene 0 [4]. Le modele etudie est celui de Borden et Bedient [1] oü 

l'adsorption des Substrats en solution est supposee lineaire et instantanee, et les 

termes de reactions qui regissent le developpement des bacteries et la degradation du 
polluant sont issus de la cinötique de Monod [1] : 

(1) OÄ-^-- V(U(S)+Z)(V)).VS )+V.VS =-®Rs (0,S,B) 
dt 

(2) d)10._ V(U(0)+£(V)).VO)+V.VO= -OÄ0(0,S,ß) 
ot 

(3) ft=RB{0,S,B) 

(4) ii(S)V=-K.(Vp-ß(S).e,) 

(5) V.V=0 

La vitesse de l'ecoulement est notee V, la porositä du milieu <I>, la permeabilite du 

milieu K, R est le facteur de retard du substrat S, ß et ß la viscosite et la densite du 

fluide, X le tenseur de diffusion moleculaire et D le tenseur de dispersion 

DiV) = ai 

oü cti et cct sont les coefficients de dispersion longitudinale et transversale. 

La vitesse de filtration V etant donnee par la resolution de l'equation de Darcy (4) 

et de l'equation de continuite (5), les equations (1), (2), et (3) sont decouplees par une 

methode de pas fractionnaires [3] : le Systeme d equations differentielles issu des 

termes de reaction est alors resolu par une methode de Runge Kutta explicite d'ordre 

quatre. La principale difficulte reside dans le traitement des equations d'advection dif- 

fusion. En effet lorsque le transport domine la diffusion, les methodes usuelles ge- 

nerent soit de la diffusion numerique soit de la dispersion numerique source 

d' etalements des fronts et d'instabilites. 

-u2 
UV ' 

v2. 
+ cct 

- v2 
-UV ' 

u2   . L UV L -UV 

1 LAMB, Universite Bordeaux I - 33405 Talence 
2 LEPT-ENSAM URA 873 
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A partir du schema de Tackacs [6], qui est du type Lax-Wendroff auquel un terme 

de troisieme ordre en espace est ajoute minimisant ainsi les erreurs de dispersion et de 

dissipation, on construit par la technique des limiteurs de flux de Roe ou Davis [5], un 

schema explicite quasi d'ordre deux ä variation totale döcroissante pour l'approxi- 

mation des termes de transport [4]. Les termes de diffusion sont discretises de facon 

imphcite par un schema centre. Les resultats obtenus sont tr6s satisfaisants. 

L'extension bidimensionnelle du schema de Tackacs est basee sur la discretisation 

par la methode des volumes finis sur un maillage cartösien de liquation 

(6) i£_MV(ZT(V)VC)+V.VC=0  ; ZT(V) = 
dt       2 

U2      UV 

UV     v2 

issue du developpement de Taylor ä l'ordre deux en temps de la solution C de  l'equa- 

tion de transport 

(7) ^- + V.VC= 0. 
dt 

Le flux JD*( V)VC est discretise et limite de facon ä avoir un schema L°° stable. 

Des essais numeriques ont ete effectues pour le probleme modele (7) avec des 

champs de vitesse ä divergence nulle pour lesquels on connait une solution 

analytique. La comparaison de la solution calculee avec la solution exacte montre que 

le schema est faiblement diffusif et minimise les effets dispersifs dus au maillage tout 

en conservant la masse. C'est ce schema qui est propose pour resoudre la partie 

transport du Systeme (1) - (5). 
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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF NEUMANN 

PROBLEMS FOR NONLINEAR NONVARIATIONAL ELLIPTIC 

EQUATIONS IN DOMAINS WITH COMPOSITE STRUCTURE 

Alexander A.Kovalevsky 

Institute of Applied Mathematics and Mechanics 

Donetsk, Ukraine 

The asymptotic behaviour of IV"1,"'-generalized solutions of Neumann problems for 

elliptic equations 
71 

_ I] -£-ai(x-yu) -ra{x.u) = /,   i£fi,,   5 = 1,2,..., 
i= 1 

is studied.   The following qualitatively different kinds of domains Q3 C Q, are consid- 

ered: 

1) strongly connected perforated domains; 

2) weakly connected domains of framework type with thin channels; 

3) perforated domains with so called accumulators. 

The first kind of domains Q,3 is characterized with existence of a sequence of linear 

continuous extension operators p. : Wl'"l(Q.s) —> W1,m(ft) such that sup,, \\p3\\ < oo. 

In this case solutions of the problems under consideration converge to solution of Neu- 

mann problem for an equation of the form 
71 

- Y, -^n,lx.Vu) - nn(x.u) = af,   xeQ.   a > 0 . 
i=i 

In the second case domains Q3 have representation Q3 = Q,i3
x)UH3UQ[2)

1aies H3 —> 0 

and there exist sequences of linear continuous extension operators p(p : Wi'm(Q3'}) —*• 

_► W1,m(Q.)  such that sup^ll^0!]  < oc  (i = 1,2). In this situation solutions of the 

initial Neumann problems converge to solution of an equation with operator defined on 

(w^m(n))2. 
In the third case domains fi3 have representation 'Q3 = £l3

x)UH3UE3 , mes Hs —? 0, 

there exists a sequence of operators ps
l) : Wl'm[Q.3

X)) —> W1'm(Q) such as in the second 

case, open sets E3 are unions of nonintersected domains Ej (j £ J3), which are called 

as accumulators. In this case solutions of the problems under consideration converge 

in a certain sense to solution (a. c>) € \Vl-m(Q) x Lm(Q.) of a problem for functional- 

differential system of the form 

—d\b(x. u — vj) -~ ao[a(x.il') — /] = 0 .   igfl, 
n 

~ Yl ^7" «:'(£• Vu) + «0n(x. u) -f a2a(x. ip) = (a0 + oco)f ,   x £ ft 

(«,- > 0.   i = 0.1.2)-. 

AoS 



Stockage de gaz reactif dans un milieu poreux 
Modelisation mathematique et numerique 

Victor Duval, Hamid Ghidouche & Claude Basdevant 
URA 742, C.N.R.S., Universite Paris Nord, France 

Le stockage rapide de grandes quantites de tritium, isotope radioactif et toxique de 
l'hydrogene, est un probleme important pour les installations utilisees dans la fusion ther- 
monucleaire controlee. line des methodes preconisee par les ingenieurs du CEA consiste ä 
faire absorber ce gaz par une poudre metallique, cette reaction etant reversible. L'absorption 
du gaz se fait par une reaction dmydruration qui est exothermique. Cette reaction se pro- 
duit sous certaines conditions de temperature et de pression. Durant l'hydruration la poudre 
gonfle, modifiant la porosite du milieu. Le stockage maximum, c'est ä dire l'hydruration max- 
imale, demande de controler, par un Systeme de refroidissement inclus dans les parois. la 
temperature du four de stockage: en particulier pour empecher la formation en entree de 
four d'un bouchon d'hydrure bloquant la progression du gaz. Le processus de destockage 
est symetrique, ä un leger hysteresis pres . La reaction de deshydruration est activee par 
chauffage de la poudre. Le phenomene est done caracterise par des couplages non-lineaires 
raides entre dynamique et chimie et entre chimie et thermique. 

La modelisation mathematique et numerique du probleme a ete entreprise dans le but 
d'optimiser la forme du four et le contröle de la reaction. Elle est basee sur l'equation de la 
cinetique chimique de la reaction d'hydruration/deshydruration, sur le bilan de masse et sur 
le bilan d'energie. Si le probleme est relativement standard dans le cas du transport d'un seul 
gaz, il est moins classique quand on prend en compte un melange tritium - helium. L'helium 
qui peut apparaitre ä des concentrations non negligeables dans le Systeme est inerte dans 
la poudre. Nous proposons dans ce cas une modelisation de la dynamique du melange en 
definissant des vitesses propres pour chaeun des gaz ; ces vitesses sont calculees elles-memes 
ä partir d:une unique loi de Darcy fondee sur une viscosite dynamique moyenne. 

La modelisation numerique est faite en volumes finis avec des Schemas conservatifs. semi- 
implicites en temps et decentres amont en espace. Des resultats d'existence et de stabilite ont 
pu etre etablis ainsi qu;un principe du maximun discret analogue du principe du maximum 
obtenu sur le modele mathematique continu. 

Le code de calcul, prenant en compte la geometrie detaillee du prototype industriel 
(poudre, masses metalliques du four et volumes d'entree et de sortie) donne des resultats en 
accord avec les experiences. 
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MACROSCOPIC PERMEABILITY OF THE SYSTEM OF THIN FISSURES 
FILLED BY MATERIAL WITH RANDOM PERMEABILITY TENSOR 

PANASENKO G. P. 
Consider the simliest model of lattice-structures: two-dimensional rectangular 

lattice. 
Definition 1. The union 

B«,M  =  U+^-oo ( {(*i,*2) € R2 I I X2 - ke |  <  en/2 } 

U {(x1,x2)eR2 | \xi-kel  < £ß/2}) 

is called the two-dimensional rectangular lattice. 
Thus the rectangular lattice is a union of thin strips of the width e\i stretched 

in each coordinate direction and forming the e— periodic system in each dimension. 
We also denote 

Blltt = U+^-oo {(*i,*2) e R2 I I X3-j -ke\  < eß/2 } 

the unions of horisontal (j = 1) and vertical (j = 2) strips, so 

Bs,^  = B}^ U BEfl. 

Let G be a domain with the bondary dG E C°° which is independent of e and 

fi. 
Definition 2.Letuc^(x) is a sequence of functions from L2(B£iAtnG) , UQ(X) e 

L2{G). One sais that uSjfJ. L - converges to u0(x) at J5£i/J D G if and only if 

\\u£,,-UQ\\L7{Bt^G)      ,n (£)/i_0). 

y/meas{Bs^ D G) 

The normalisation factor  l/yJmeas(Be^ n G)  is necessary because 

||1||L2(B£   nG)   =   y/meas(B£^ D G). Notice that L-convergence is not a con- 
vergence in common sense because the domain depends on small parameters. 

Consider a lattice B£tfl and for each strip B3
k = {{xx,x2) e -R2 II 0:3-j - 

fcs I < e/i/2 },j = 1,2 we associate a random-valued constant (2 x 2)-matrix AB, , 

independent of e and ß. All AßJ- are independent in aggregate and have the same 
k 

discrete distribution: 

where 

P{ABJ   = .4^}  = Ps,    5 = 1, 

£>  =  1,    -4(s)  =  (A^)T  >  0. 
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Let II be an intersection of the strips: 

and A^ be a fixed constant matrix such that A^   ==   (A^)T   >   0. We pose 
A = AW on the set II and A = ABj in each strip B3

k\TL without II. 

Let G be a domain with the bondary BG G C°° which is independent of e and 
//, / € C1(G). Consider the problem with random coefficients 

(1) -diu ( A grad we,M)  = /(x) , 

(2) ( A grad u£iM , n )  = 0, /or a; G <9-Be,M n G, 

(3) u£,M  = 0, for x G ££,M n BG. 

Problems (l)-(3) simulate a problem of permeability of a fissured rock filled 
with porous substance , with A being the permeability tensor of the substance in the 
fissures , u£iM is a microscopic pressure, and UQ is a macroscopic pressure. Numerical 
solution of problems (l)-(3), with c « 1, ß «\, is very difficult since the step 
size of the grid must have an order much less than e. The realization of the standard 
homogenization procedure is also impeded, since the problem on a cell depends on 
the small parameter \i, and in order to solve it numerically, we must select the step 
size of the grid to be much less than \i. Hence, an asymptotic investigation of the 
problem is needed. 

Introduce the notation Ä = (5^-), 

r 

an = 2jp30.5(an - ai2a^"2
1a2i), äi2 = 0, 

s=l 

r 

0.12 = ^p30.5(a22 - ai\a{laii), ä2i = 0. 
3=1 

Let UQ be a solution of the homogenized averaged problem 

(4) —div ( Ä grad uo)  = f{x) , x G G,    uo\dG  = 0, 

Theorem  For each S G (0.1) the estimate takes place 

p{""';""°l'fa(B:»"G) > (v^+vw'-n^^. 
y/meas(BSmtJ, f\ G) 
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Application of convective transfers on geology 

B. Gerard, J.J. Rover, C. Le Carlier de Veslud 
CRPG, 15 rue Nd des Pauvres. BP 20,54501 Vandoeuvre-Les-Nancy, France. 

L.I.A.D.,E.N.S.G., 94 Av. de Lattre de Tassigny, BP 452, 54001 Nancy Cedex,France. 

Convective heat transfer in porous media is of fundamental importance to a 

number of geological applications, such as oil recovery, water supply management 
in hydrogeology, geothermal exploitation, ground heat storage, radioactive waste 

management, ground water flow modelling and is also of interest in environmental 
sciences and geophysics. But problems encountered in that kind of application 
are different from those encountered in laboratories for several reasons: i) large 
spatial extension, ii) 3D complex geometry, iii) scarce, irregular or partial data, iv) 
geometry of objects not known, v) large amount of data. In such situation, there 
is no uniqueness of solution and consequently, robust benchmarks are necessary to 

select the most appropriated model compatible with the available data. 
The purpose of this work is to present, firstly, a global process for 3D modelling 

of transfer problems encountered in geology, and secondly, indirect procedure based 
on direct measurements for validating the model. In a first step, the geometry is 
modelled using surfaces defining the limits of the studied object (layers, volume,...) 
and the discontinuities (fractures, faults). Then, properties of the objects (perme- 
ability, thermal conductivity,..) are interpolated into the space from a given set 
of "control points". This step is done by the GOCAD software, developed at the 
Ecole de Gologie de Nancy, a powerful tool designed for interactive 3D modelling of 

surfaces and volumes, of complex geological structures. 
In a second step, a special scheme allowing modelling of coupled heat and mass 

transfer in 2D and axisymmetric. anisotropic and heterogeneous porous media has 
been developed. The media is saturated with a single fluid phase. Darcy flow char- 
acteristics are assumed for the liquid phase. Solid characteristics depend on the 
temperature. A dimensionless formulation is used to simplify the heat and Darcy 
equations. For two dimensional and axisymmetric problems, the resulting equations 

are strictly similar and can be solved numerically using the same procedure. Nu- 
merical studies are in agreement with results obtained by theoretical approach for 

homogeneous isotropic medium. 
This approach has been applied to the site of Soultz-sous-Forts, selected by 

the European Hot Dry (HDR) geothermal project as a pilot zone for exploiting 
low enthalpy energy. It is situated east of the Merkwiller-Pechelbronn oil field , 
along the western limit of the upper Rhine Graben in northern Alsace (France). 
Geophysical and geochemical studies carried out on Rhine Graben show evidences 
of water circulation, within the Triassic and altered granitic rocks.    Firstly, the 
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sedimentary cover is asymmetric with a depth of 1400m along the west border of 

the graben compared to 3500m on the eastern part, causing a general circulation 
pattern from east to west, associated with a higher surface heat flow on the west 

(up to 150mW m~2 compared to 70-80mW rrT2 on the east). Secondly, the vertical 
heat flow decreases vertically from a mean constant value of 150 mW m~2 in the 

sedimentary cover to a lower value of 70 and 30 mW m~2 at 1700-2000m depth, in 
the bedrock in boreholes GPK1 and EPSl, respectively. Finally, fluid circulation is 
presently observed in the granitic fractured bedrock. Regional geochemical studies 
suggest that these fluids result from a mixing of low salinity surface water from the 
west with higher salinity deep formation water from the east. The decrease of the 

geothermal heat flow at depth is likely attributed to fluid circulation through the 

sediment cover. Physical parameters and boundary conditions are sometime difficult 
to define. Thermal conductivity has been measured directly on a conductivimeter 
from rock samples whilst permeability is estimated from empirical approximations 
and injection tests in boreholes. Boundary conditions are defined from hydrological 
and geophysical information. 

To obtain a "good model", several tries have been necessary, implying the modi- 
fication of the geometry, the physical parameters and the boundary conditions. The 
final model shows three hydrothermal circulation systems. The first one is expressed 
at the surface next to Baden-Baden. The second has a complex path, consisting of 
six convective cells extending from the Rhine axis to Pechelbronn. The third and 
smallest one consists of two cells, which originate in the western part of the graben 
and continue to Hochwald. The maximum filtration velocity observed is about 
lm.yr-1. The temperature obtained from the numerical model are in good agree- 
ment with those from direct borehole observations and with temperature estimated 
from fluid inclusions, suggesting that the temperature field would be stable from 
the formation of the fluid inclusions to the present time. The geochemical study 
of water shows that fluid exchange has been taken place between the Triassic and 
the fractured granite layers, resulting from a mixing of high salinity formation fluids 
and surface water. These two last arguments are in favour of convective circulation 
and show that water exchange between the Triassic and the fractured granite layers 
has been taken place. The C14 fluid dating provides ages ranging from 5000 to 20 
000 yr., compatible with the velocity calculated by model. 

The above methodology shows that fluid transfer in natural porous media implies 
a feedback procedure between the modelling and the available data. The solution is 
not unique, but indirect methods (fluid dating, etc..) can be used to constrain the 
final model. Such procedures are used to provide temperature estimation at depth 
for geothermal purpose. Together with geometrical reconstitution throughout times, 
they give also interesting information for oil formation and migration. 
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The Explicit Solution of a Free Boundary Problem for a Nonlinear 

Absorption Model of Mixed Saturated-Unsaturated Flow 

A. C. BRIOZZO-D. A. TARZIA 

Departamento de Matemätica, F.C.E., Universidad Austral 

Paraguay 1950, (2000) Rosario, ARGENTINA. 

ABSTRACT 

In wetted soils, zones of saturation develop naturally in the vicinity of impermeable strata, 

surface ponds and subterranean cavities. Hidrology must be concerned with transient flow trough 

coexisting unsaturated and saturated zones. Models of advancing saturated zones necessarily involve a 

nonlinear free boundary problem. 

A closed-form analytic solution is presented for a nonlinear diffusion model under conditions 

of  ponding   at   the   surface.   The   soil   water   diffusivity   is   restrict   to   the   special   funcional   form 

r>(0)= §.       where  6  is  the water content  field  to  be determined  and,  a and  b are positive 
V '    (b-0)2 

constants. The explicit solution depends of a parameter C (determined by the data of the problem), 

according to two cases : 1 < C   <   Ct or C >   Cx , where Ca is a constant which is obtained as the 

unique solution of an equation. This result complements the study given in P. Broadbridge, "Solution 

of a Nonlinear Absorption Model of Mixed Satured-Unsatured Flow", Water Resources Research, 

26(1990), 2435-2443. 

AW 



On some new models of nonhomogeneous fluid filtration 

in porous media 

V.N. MONAKHOV 

Novosibirsk, RUSSIA 

In this report I propose some new models of nonhomogeneous fluid filtration in 
porous media. The models based on Navier-Stokes and boundary layer equations. 
Existence theorems are proved as well as numerical results are given. 
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Multiscale models : A tool to describe the porosity 
of cement-based materials and to predict 

their transport properties 

Jean Francois DAIAN 
LTHE, Universite Joseph Fourier, Grenoble, FRANCE, INPG, CNRS. 

KeXU 
LMSGC, LCPC, Cite Descartes, Marne la Vallee, FRANCE 

Daniel QUENARD 
CSTB, Service Materiaux. Saint Martin d'Heres, FRANCE. 

The porosity of cement-based materials covers several orders of magnitude, gener- 
ally ranging from nanometers to a few micrometers. Therefore, it is difficult to relate 
porosity and transport properties for such materials. In this paper, a method based 
on the representation of the pore structure by networks of capillary tubes is proposed. 
The basic idea is to sort the pore-size-distribution into several classes and to distribute 
each class on networks of various sizes. The different networks are then superposed 
by following rules based on renormalization theory. This model has been applied to 
correct the pore-size distribution (PSD) obtained from experimental mercury intrusion 
porosimetry curves. Using this "corrected" PSD, transport coefficients, such as satu- 
rated (water, air) permeability and mixed (water vapour+water) transfer coefficients, 
can be estimated using numerical methods. The estimated values are compared with 
experimental results. 
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