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19. Abstract, continued. 

RESULTS: Five illustrations are used in this report to discuss the major features of the results. 
Figures 1 and 2 are directed to the first of the above problems. A conjecture is outlined 

and evaluated: If a group of neurons can sustain recurring activity whose dynamics represents 
an attractor, and if the synaptic strengths and thresholds are set by activity-dependent 
mechanisms, the dissipative properties of the attractor constrain the flow of activity among 
these neurons in such a way that all synapses and thresholds are optimally set with respect to 
one another. 

Appendix-1 provides an extended discussion of this conjecture, and of other findings 
that emerge from it, and places it within the context of findings in the literature. Appendix-1 is 
presently under review in Behavioral and Brain Sciences. 

Figures 3-5 are directed to the second of the above problems. We used the rationale that 
one synaptic input acts as a perturbation stimulus to another; i.e., a given synaptic input that 
leads to the generation of an action potential acts on membrane impedance that has been 
preconditioned by some preceding event. In the present series of experiments, we used a weak 
preconditioning delta-function current impulse as the conditioning stimulus to determine its 
effect on the latency of a synaptically activated action potential (spike). The findings show 
clearly that the membrane is highly sensitive to the temporal pattern of the input signal. The 
output spike train, however, has a temporal structure that is significantly altered by comparison 
to the input. More importantly, the information flow across the synapse is highly degenerate; 
i.e., that degenerate conditions may emerge naturally from a completely deterministic system. It 
is expected that our future work will show that variations, and other dynamical characteristics 
of network activity, naturally emerge from such conditions. 

Appendices 2 & 3 discuss these findings in detail, and place them within the context of 
the literature over the past 30 years that has dealt with the possibility that neurons may be 
sensitive to the pattern of the input signals that they receive. Appendices 2 & 3 are near final 
versions of papers that will be submitted for publication in Biological Cybernetics. 

Publication that have appeared in print over the past three years: 

Andrade MA, Nuno JC, Moran F, Montero F, Mpitsos GJ (1993) Complex dynamics of a catalytic network 
having faulty replication into an error species. Phys D 63:21-40 

Burton RM, Mpitsos GJ (1992) Event-dependent control of noise enhances learning in neural networks. 
Neural Networks 5:627-637 

Mpitsos GJ, Burton RM (1992) Convergence and divergence in neural networks: Processing of chaos and 
biological analogy. Neural Networks 5:605-625 

Mpitsos GJ, Soinila S (1993) In search of a unifying theory of biological organization: What does the motor 
system of a sea slug tell us about human motor integration? In: Newell KM, and Corcos D, (eds) 
Variability and Motor Control, Human Kinetics, Champaign, pp 225-290 

Soinila S, Mpitsos GJ, Soinila J (1992) Enkephalin immunohistochemistry: Model studies on conjugation 
reaction and fixation. J Histochem Cytochem 40:231-239 

Appendices: 

1. Mpitsos GJ (1995) Attractor gradients: architects of developmental organization. Under review in 
Behavioral and Brain Sciences 

2. Edstrom JL, Mpitsos GJ (1995) Predicting the influence of perturbing currents on spike latencies: 
Determinism and degeneracy of information in synaptic transmission. A revised version will be 
sent to Biological Cybernetics. 

3. Edstrom JL, Mpitsos GJ (1995) Simple neuronal membrane is sensitive to the temporal structure of 
input signals. A revised version will be sent to Biological Cybernetics. 



I. FINAL REPORT 

1. Dissipativp action of network firing patterns sets all synapses optimally with respect to one 
another 

The following conjecture is examined: 

(a) Assume that the network is initially randomly connected, and that the neurons are firing 
action potentials. 

(b) Somewhere in the network, two or three neurons may have firing patterns that are 
sufficiently correlated with one another that their synapses undergo activity-dependent 
changes. If dissipative action begins to emerge, the synaptic weights in the developing 
network must have some interrelated range of values, else the attractor would not exist. 

(c) The emerging attractor constrains the flow of activity, causing further activity-dependent 
changes and refinement of the attractor spatio-temporally. 

(d) Neurons that converge onto the same follower neurons may compete (Merzenich, et al., 
1978; Merzenich, et al., 1983a; Merzenich, et al., 1983b; Merzenich, et al., 1984; Mpitsos, et al., 
1978; Recanzone and Merzenich, 1992) for occupancy of the synaptic space available on the 
follower neuron such that connections may be made or broken, structurally molding the 
neuroarchitecture 

Behavior of a fixed network: To illustrate this conjecture, first consider a network that 
has already been set and has the strengths of all of its synapses frozen. Figure 1C shows the 
network. For the present discussion, we may exclude Cell4; its use is discussed in Appendix-1 
where some of the details of the network are also given (detailed descriptions of the membrane 
and synapse characteristics are given in Appendix-2). The three cells are connected by excitatory 
(synapses shown by open-circle terminals) and inhibitory connections (synapses shown by 
filled-cirdes). The delay between the synapses was set at 3 msec. Simulation of electrogenic 
activity used the Hodgkin-Huxley model of the squid giant axon (future research will use more 
biologically complex neurons). The strength of the synapses is indicted by the thickness of the 
connection "axons" and numerically in milliSiemens. Steady depolarizing current was injected 

CVT>     mto Cell-1, causing it to fire action potentials which activated the remaining cells in the 
C^J     network. 
<_;    _> Figure 1A shows a 3-cyde firing pattern in Cell2. Starting from the simulation time at 

680 msec, seven intervals between the action potentials are shown, where the 3-cycle repetition 
|--^__      sequence consists of intervals having 15.4 msec, 35.0 msec, and 46.3 msec durations. For the 
V-^ ,      purposes of the illustration only two 3-cycle periods are shown, but many more 3-cycle 
J-J^J      sequences preceded them. This particular firing pattern was obtained by driving the network 
C^J      using steady depolarization of Celll and selectively adjusting the strength of the inhibitory 
C     J      synapse that Cell3 makes on Cell2 until the 3-cycle was obtained. 
I f^fc Certain other combinations of synaptic weights also give similar 3-cycle activity, just as 
rT*      Gardner (1990) has demonstrated that different synaptic strengths between four identified 
^fc___-____-^   _____r -m _ _ _ « a •        .   • 1  ______ I 1 -    _f  _-__-___       TT... ._-_   _•] A nU _-»_J     I« w« _n  l^_*_ I _-*■»_■»   4 neurons in the sea slug Aplysia generate similar network function. The dashed line below the , 

action potential trace shows the time during which the network was perturbed by injecting d          gf 
Cell2 with a 125 msec electrical current pulse that pushed the membrane potential below the □ 
threshold level for the genesis of action potentials, except for one action potential (labeled by a .d          O 
"1") arising from strong activity in one of the other cells in the network. After the cessation of       i on — 
the applied current, the cell rebounded with a rapid burst of three action potentials (labeled "2", - 
"3", "4"), and then recovered to its original firing pattern. 

The pattern of intervals shown in Fig. 1A may be plotted in a return map in which one     cn/ |, ^ 
interval in the sequence is plotted on the horizontal axis and the succeeding interval is plotted    ~r~L" . 
on the vertical axis. One hundred intervals were used to construct the 3-cycle of the J!?____^as' 
unperturbed activity; all fell sequentially on the three filled circles in Fig. IB. The return-map     '- &z&/v 
positions of the intervals during and aftef the application of the 125 msec perturbation pulse are >ciöl,      & 
shown by the numbered and open triangles. The identifying numbers in the return map are the    I %?a 

- SHOT!-" ■       »3S?     I        ?«#!% mm* " 

•;fe_M 



same as those in the trace shown in Fig. 1 A, where the number over a given action potential 
indicates the interval between that action potential and the preceding one. 

Behavior of a changeable network: The schematic in Fig. 2 shows how the network 
examined previously may be altered following a perturbation stimulus. The original network is 
shown in Fig. 2A. It is the same as the one shown in Fig. 1, as are the activation conditions, but 
the strengths of the synapses are now made available for activity-dependent changes. If Cell2 is 
depolarized for an arbitrary length of time, it begins to generate action potentials initially at a 
higher frequency than before, but soon the balance of excitatory and inhibitory feedback 
readjusts its rate of firing. The activity-dependent changes in a synapse depend on the temporal 
correlations of activity in the presynaptic and postsynaptic cells which will vary over time. The 
dynamics giving rise to these correlations is extremely complicated and time dependent, but 
Fig. 2B has caught the changed synapses at a stage (shown by the numbers next to the axons) 
that cause Cell2 to generate a 6-cycle firing pattern. The open triangles in the return map of Fig. 
2B show the values of the six intervals between the action potentials. The filled circles show the 
original 3-cycle. 

When Cell2 is released from the depolarizing current (Celll is under continuous 
depolarization to keep the network active), its firing pattern may remain in the 6-cycle state, but 
if the attractor is not sufficiently well formed, genesis of action potentials in the three neurons 
may drift to some other set of patterns, or it may eventually settle back to the original 3-cycle 
state (and perhaps with a different set of synaptic strengths between the neurons). 

The aim here is not to say that the 6-cycle per se is formed, nor that the original 3-cycle is 
regenerated in the recovery, but that some attractor is generated, and that its gradients are what 
adjusts or globally "directs" the local activity-dependent synaptic changes. This is different than 
would be imagined were we to view networks as switchboards or reflexes by which change is 
based only on local activity-dependent effects. From such effects it might be postulated, for 
example, that associative learning in whole animals is based on changes in individual synapses; 
reviewed in. By the conjectured gradient method, however, it is obvious that changing one 
synapse causes changes in all of them. Local rules are a work, but they are guided by a more 
global principle. 

Appendix-1 places this in the context of findings in artificial neural networks, and 
discusses how dissipative mechanisms may lead to a number of effects, such as the limitations 
of the functional size of the network and the types of information that may be stored among the 
connections in the network. 

2. Sensitivity of a neuron to the pattern of input stimuli. & the emergence of degeneracy in the 
information flow across a simple synapse 

How much of the input stimulus pattern does the output firing pattern of a neuron 
represent? How does the membrane transform the input signal? What are the filter properties of 
neuron membrane? Does the membrane of postsynaptic neurons act as a filter that is sensitive 
to the pattern of the input data stream arriving from presynaptic neurons? Being able to 
describe the membrane as a linear filter in order to understand the answers to such questions 
has been a subject of interest for many decades, as discussed in Appendix-2. Moreover, the 
possibility that neurons may be sensitive to the temporal patterns of input signals has important 
implications in our understanding of neurointegrative mechanisms (Softky, 1995). 

We have devised experiments that address such questions in computer simulations. The 
work described in Appendices 2 & 3 uses simple synapses and neuron membrane, as may be 
found in the giant synapse and axon of the squid. Subsequent studies will extend the work to 
more complex neurons and synapses. The results give some insight into the above questions, 
and also provide a basis for understanding how at least one source of nondeterministic 
variation in the firing patterns of neurons may emerge naturally from a deterministic process. 
The rationale for starting with studies that examine the membrane within its linear response 
range is also discussed in the Introduction and Discussion of Appendix-2. 

The results in Fig. 3 provide the foundation for the work covered in Appendices 2 & 3, 
and for much of our work that we shall be doing over the next several years. The design of the 
experiments used to obtain the results is a simple perturbation method. The family of curves 
shown in Fig. 3 C &D are the composite of many 40 msec simulation sweeps. In each sweep, a 



Single excitatory postsynaptic current (EPSC) was activated at 25 msec into the sweep. This 
produced a constant-latency action potential (Fig. 3B) when the postsynaptic neuron was not 
presented the conditioning, perturbation stimuli. The effects of perturbations are shown in Fig. 
3 C & D, and are compared against this standard response as a changes in the spike latency. A 
single excitatory (solid-line traces) or inhibitory (dotted-line traces) current impulse, lasting one 
integration step, was presented during the first 30 msec of each simulation sweep. In Fig. 3 C & 
D, the position of the impulse was moved progressively from left to right in the simulation 
sweep. Each curve was generated using one impulse amplitude. Progressing outwardly from 
the zero-latency change, the amplitudes in multiples of 10-10 Amp were (±) 2,4,6,8,10. 

The most important finding in Fig. 3 is that a given latency can be produced by many 
different temporal positions of the impulses. A horizontal line drawn in Fig. 3 to represent a 
given latency intersects not only one curve in two places, but many other curves as well: i.e., 
the input/output function of synapses under perturbation produce a many-to-one mapping. An 
observer of the output-spike latencies is ignorant of the temporal positions of the stimuli that 
produced the latency changes because a given latency can not be used to uniquely identify the 
timing of the perturbation impulse that generated it. 

This raises many important research questions relating to strategies that biological 
systems may have taken to accommodate to such degeneracies. One possibility is that the 
degeneracy may be useful in generating response variations that may be useful in controlling 
how networks settle into or exit response patterns. The relationship of these input/output 
functions to studies in biological systems of the impulse response function (IRF), the average 
current trajectory (ACT), and membrane impedance is discussed in Appendix-2. 

3. Sensitivity of simple neuron membrane to the pattern of input signals 

(a) Random stimulation over the temporal range of input/output functions shows that 
the membrane acts as a nonrandom filter. The experiments shown in Fig. 4 are the same as 
those in Fig. 3 except that the timing of the perturbing impulses was randomly controlled. 
100,000 simulation sweeps were run. The histogram in Fig. 4B shows that the timing of the 
impulses covered the 7-30 msec interval of the simulations evenly. The input/output function 
in Fig. 2 is rotated vertically by comparison to the curves in Fig. 3 so mat the time-axis 
extends upward and the latency-axis extends horizontally from left to right. Only one 
input/output curve is shown because all of the impulses had the same 4xlO"10Amp 
amplitude. Figure 4C shows that the histogram of the output latencies is significantly distorted 
by comparison to the distribution of the impulses that produced the latency changes, showing 
that membrane of the postsynaptic cell imposes structure on the signals that it receives. How 
this occurs is shown more explicitly below. 

(b) Stimulation of different temporal regions within the range of the input/output 
functions shows that the membrane filter imposes structure on its input signals and that the 
output is more complex than the input stimulus pattern. These experiments are the same as 
those shown in Fig. 4 except that the temporal position of the perturbing impulses was 
controlled by the recursive chaotic logistic,/fr) = 3.7(l-x)x, where x is in the unit interval; the 
output of this function was scaled so that it covered different regions of the simulation sweep. 
Return-map plots of this quadratic function, in which one value f(x) is plotted against the 
preceding one, produce a typical inverted-U map a quadratic function that can be compared to 
the return maps of the spike latencies. 

The effect of changing the position and range of the impulses is shown in Fig. 5. The 
presentation times of seven different sets of input stimulus trains are shown by the filled circles; 
they are shifted vertically with respect to one another in order to illustrate their positions. 
Figure 5B shows the return maps of the spike latencies; each map is identified numerically by 
the temporal range of the input stimulus times that generated it. The return maps of the 
latencies are significantly distorted by and non-quadratic; i.e., whereas the input of the 
quadratic logistic is a simple second-order polynomial, the multi-looped maps of the latency 
return maps require fourth or higher-order polynomials to define them. 

Additionally, the ends of the spike-latency return-maps may cross. This occurs 
whenever the stimulus pattern sufficiently spans a humped (vertically convex or concave) 
region of the i/o functions. An example is shown in Fig. 5B by the map labeled "14-19." These 
crossed-loop maps are degeneracies that cannot exist in an deterministic system since the flow 
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of events at the crossing point is not uniquely determined. However, this can be resolved by 
plotting the return maps in three dimensions (not shown) where one latency (X) is .mapped on 
the x-axis, the next interval (Xn+l) is on the y-axis, and the third interval (Xn+2) in succession if 
mapped on the z-axis. Rotating this 3-dimensional image shows that the maps do not actually 
cross, but that they only appeared to do so because the 2-dimensional return map is a 
projection of the 3-dimensional one. Dynamically, the input data stream is a 1-dimensional 
process, whose dynamics can be characterized in two-dimensional return-map embedding. The 
output data stream is also a 1-dimensional process, but it requires at least three-dimensional 
embedding to resolve. Thus, the filter properties of the postsynaptic neuron produces an output 
firing pattern whose temporal characteristic are not only a distortion of the dynamics in the 
input signal, they also produce an output whose dynamics live an embedding space having a 
higher dimension than the dynamics of the input data stream. 

SIGNIFICANCE: 
These findings raise a number of serious questions about how information is transferred 

across synapses, and how neurons or circuits of neurons may have accommodated to the 
complexities produced by the input/output functions. It is conceivable that the variations may 
play a beneficial role in neurointegrative processes. It is particularly interesting that a 
completely deterministic process may generate non-deterministic responses. Unlike chaos, in 
which the variations themselves are deterministic, the degeneracies indicated by the findings in 
Fig. 4 & 5 may lead to nondeterministic variations. The findings shown in Figs. 1 & 2 provide a 
rationale with which to conceive of how complex neuropil may be formed, and attractors 
provide a functional way to understand how information distributed widely in a network. We 
believe that many integrative functions, that may not be follow easily from traditional biological 
studies, naturally emerge from the findings outlined above. Future work will inquire into these 
possibilities. 
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FIGURE LEGENDS 
< 

FIGURE 1. Dissipative action in the simulation of small biologically realistic networks. The network 
(C) was activated by steady, low-level depolarizing current applied to Celll. A: Time series of 
action potentials obtained from Cell2. The activity consists of a 3-cycle in which three intervals 
between action potentials repeatedly appear, as shown by the first seven action potentials. A 125 
msec hyperpolarizing perturbation pulse was presented to Cell2 (marked by the dashed line). One 
action potential escaped during the hyperpolarization. After the release of the hyperpolarizing 
pulse, Cell2 rebounded, generating three action potentials in rapid succession, and then relaxed 
toward the original 3-cycle intervals. B: Shows the return map of the original 3-cycle (filled circles) 
and the post-perturbation recovery (open triangles). The numbers in (B) are the same as in A, and 
represent the interval between the numbered action potential and the action potential preceding it. 
C: Structure of the network: the thickness of the connections are proportional to the maximal 
synaptic strengths; the numbers show the strengths in milliSiemens. Excitatory synapses (open 
circles) have a reversal potential of 45 mV. Inhibitory synapses (filled circles) have a reversal 
potential of -82 mV. Open and close time constants for both types of synapses are 3 and 20 msec, 
respectively. Transmission delays were 3 msec. The simulations were run GENESIS obtained from 
the California Institute of Technology, Pasadena, and used squid axon membrane (Hodgkin & 
Huxley, 1952). 

FIGURE 2. Attractors may adjust synaptic strengths globally. A: The same network that produced 
the 3-cycle activity shown in Fig. 1 is used here. B: Activity-dependent emergence of new 
connection strengths: The network was activated using Celll to produce the 3-cycle. After start-up 
transients were dissipated, Cell2 was depolarized tonically while maintaining the depolarization 
applied to Celll. All synapses in the network were allowed to change using a variant of Hebb's 
rule. The new synaptic strengths are indicated by the thickness of the connection lines between the 
neurons and by the numerical values placed next to the lines (compare A and B). C: A return map 
showing that the new connection strengths generate a 6-cyde pattern (open circles) in the firing of 
Cell2; the original 3-cycle is shown by the filled symbols. When shorter or weaker stimuli are 
presented to Cell2, the synaptic strengths do not settle sufficiently into the values required to 
generate the 6-cycle. The synaptic strengths may fluctuate as the interrelated firing patterns of the 
cells in the network seek one gradient or another. The temporal structure of these patterns may 
drift until a strong enough gradient emerges which then forces the interrelated strengths of the 
synapse into some more stable set. The activity dependent changes in the synaptic strengths, 
discussed a little later, used Mike Vanier's implementation of Hebbian synapses in GENESIS. 

FIGURE 3: The timing of single preconditioning current impulses produces complex changes in 
action potential latencies. A single current impulse was given in each 40 msec simulation sweep; the 
timing was allowed to overlap the EPSC. The design of the experiment was aimed at understanding 
how the temporal position of the impulse affected the latency of the spike produced by the EPSC. A 
series of such experiments defined input/output functions that relate impulse timing to spike latency. 
A: Onset (25 msec) and time course of the EPSC B: Action potential produced by the EPSC in the 
absence of a preconditioning current pulse. C & D: latencies of action potentials produced in 
hyperpolarized (-9.5 x 10"11 Amp) and normal membrane in response to depolarizing (solid curves) 
and hyperpolarizing (dotted) current pulses. Each curve was obtained using a different amplitude of 
the current pulse. The incomplete lines in some of the negative current isopleths indicate suppression 
of the EPSC-evoked action potential at those current/time combinations. The interval between the 
points on the curves is 250 msec. The amplitude for the five 0.010 ms depolarizing and 
hyperpolarizing current pulses was, in multiples of lO"1^ Amp: (±) 2,4,6, 8,10. GSyn = 3 x 10" 
Siemens at the normal resting potential and 4.0536 x 10'8 Siemens at the hyperpolarized potential, a 
value chosen by trial and error to give the same unperturbed action potential latency as the normal 
control EPSC. Integration time step = 0.010 ms. 

FIGURE 4: Recent history of impedance changes that occur under random perturbation 
generates nonrandom firing of EPSC-evoked action potentials. A: Relation of impulse 
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presentation time (vertical axis) to action potential latency (horizontal axis). B: Density of 
randomly generated impulse presentation times; vertical axis is the same as in (A), A single 
randomly timed current impulse (4 x 10-10 Amps, lasting one .010 ms integration step) was 
presented in the 7-30 ms interval of each 35 ms simulation sweep. A suprathreshold EPSC was 
initiated 25 ms into the simulation. C: Histogram of the EPSC-evoked action potentials the 
resulted from 100,000 simulation sweeps. 

FIGURE 5: The temporal position along the latency input/output functions represent different 
distortions of the structure of the input function generating the perturbation pulses. A: The thin 
line shows the action potential latencies arising from a composite of logistic-activated sequence 
of current pulses having constant amplitude (9 x 10-10 Amp; .010 ms). Seven of these sequences 
are shown by the dotted curves which have been shifted vertically to identify them. The 
irregular spacing between the dots in each line arises from the logistic scaling function T 
described in the text. B: Return maps of the intervals in six of the sequences in (A). The numbers 
identify the approximate range of times spanned by each sequence along the input/output 
function. 
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SHORT ABSTRACT 
Biological systems have many interacting components that together produce 
coherent actions under conditions in which each component has relatively 
limited information. How coherence emerges in such complex systems is 
presently unclear. Using findings from biological, computational neural 
network, and dynamical system studies, I discuss how system-wide attractor 
gradients may provide a global organizing principle that: adjusts the local 
interactions optimally with respect to one another; limits network size; sculpts 
the neuroarchitecture, further redefining the gradients themselves; and 
imposes new types of stored information. Problems encountered in defining 
the existence of attractors are discussed. 



ABSTRACT 
All biological systems are composed of many parts that must work together to 
produce coherent adaptive responses. The many nonlinear interconnections 
between neurons in an assembly or between individuals in any population pose 
analogous questions to analytical studies, e.g: How does one handle the many 
degrees of freedom to know how the system as a whole functions? How does 
global function emerge from the action of individuals whose decisions are based 
on local information? Many simplifications may occur if the system is dissipative; 
i.e., if it has an attractor such that it tends to return to a characteristic state in 
response to external perturbation. I discuss possibilities emerging from studies in 
neural networks and dynamical systems to examine how: (a) Spatio-temporal 
attractor basins act as a global force on populations of neurons, restricting the 
correlations between their activities, (b) If the strengths of the connections are 
activity-dependent, gradients set the connection strengths between all neurons, 
and the response thresholds of individual neurons, optimally with one another, (c) 
limit network size, and (d) control the types of information that a system stores. 
The findings may provide insight into mechanisms that might not have been 
considered from classical approaches that view brain function as arising from 
simple reflexes and "switchboard" circuitry. Similar effects may occur in many 
different systems, from cellular to societal ones, that generate attractors and in 
which the response thresholds and strengths of interactions between the 
component parts are adjusted by activity-dependent mechanisms. 

Key words:   Self-organization, neural networks, multifunctional systems, 
activity-dependent changes, gradient systems, thresholds, central pattern 
generators, neural development, learning, population dynamics. 



INTRODUCTION 
Common conceptual and experimental problems. All biological 

systems, whether cellular ones, organismal ones, or ones involving 
populations of organisms, have the common feature of being composed of 
many parts that must work together to produce coherent responses or 
behaviors. Because of these attributes, similar conceptual and experimental 
problems arise in widely disparate systems such that studies in the social 
sciences are faced with many of the same difficulties as those in the 
neurosciences. For example, individual persons or neurons communicate with 
many others within the potentially coactive populations, yet must generate 
responses based largely on local rules because no single individual has 
information about the population as a whole or about the context within 
which the population must act. The present paper deals with the organization 
of neural tissues, but the findings that are discussed may also extend 
heuristically to other systems. The.problem will be examined of how a 
globally acting principle may emerge from local interactions in the system 
and, if the connections are changeable, how it affects the connections 
themselves. 

I shall discuss that attractors may provide one such principle. 
Attractors are an old idea (Abraham & Shaw, 1983), and have long been 
thought to be useful in developing a biological and computational theory 
relating to disparate systems, from chemical ones, to cellular ones, to ones 
composed of populations of animals and possibly even to evolution 
(Waddington, 1968-1972). There are many sources dealing with the use of 
attractors and the qualitative shift in dynamics or bifurcations in forced and 
unforced systems, e.g., (Andrade, et al., 1993; Chay & Rinzel, 1985; Cohen & 
Grossberg, 1983; Eigen & Schuster, 1979; Farmer, et al., 1987; Farmer, et al., 
1986; Guckenheimer & Holmes, 1983; Haken, 1983; Hirsch & Smale, 1974; 
Hofbauer & Sigmund, 1988; Holden, 1985; Hopfield, 1982; Küppers, 1983; Le 
Cun, et al., 1991; Schnabl, et al., 1991; Skarda & Freeman, 1987; Ueda, 1992; 
Widrow & Stearns, 1985). Additionally, a large literature has emerged, based 
on the seminal work of (Grassberger & Procaccia, 1983; Packard, et al, 1980; 
Takens, 1981) aimed at computing attractor dimensions and the minimal 
number of degrees of freedom or dimensions required to define attractors 
from experimental observations. A recent review by Abarbanel et al. (1993) is 
a useful account of some of the methods and directions for future work. A 
critical account of a number of these methods, methods for controlling the 
dynamics of a system, methods for determining whether the responses of an 
experimental system are deterministic, and software for making such 
assessments, have recently been published in an issue of the journal Integratiue 
Physiological and Behavioral Science (Vol 29, No. 3,1994). 

A defining feature of attractors is dissipation; i.e., that they relax to 
some characteristic state following perturbation. There are formal connections 
between the dissipative and attractor generating qualities of a system (Hale & 
Kocak, 1991, p. 394), but, as discussed a little later, the formalism may not be 



applicable to many biological systems. Given these constraints, the aim will 
be to follow the notion that attractors exist based on the observation of 
relaxation dynamics, and to see what might be a consequence of this 
dynamics, rather than, for example, attempting to compute its "fractal" 
dimension. A number of studies provide examples of such an approach, e.g., 
(Garfinkel, 1983; Garfinkel, et al., 1992; Schiff, 1994; Skarda & Freeman, 1987; 
Weiss, et al, 1994). 

Pathways for communication. Complex systems must have some 
method for distributing information among their components. In neural 
systems, single neurons make synaptic connections with many others; 
anatomically, this is referred to as divergence. Conversely, many neurons 
make synaptic connections onto common target neurons; this is referred to as 
convergence. In the visual cortex of mammals, the number of diverging 
connections that a single neuron makes is in the order of 5,000 to 10,000, and 
each neuron receives roughly the same number of converging inputs. The 
situation one encounters in studies even of "simple" invertebrate animals, such 
as sea slugs, is illustrated in Fig. 1 which shows that a few cell bodies (shown 
by the bright circular objects having a greenish color) send tangles of 
profusely diverging axons and neuntes (bright green strands) throughout a 
region of the ganglion known as the neuropil where most of the synapses 
between neurons take place. Some of the neuron cell bodies appear greener 
than others because they contain a four-peptide neurotransmitter FMRF- 
amide. The axons and neurites divide into thinner and thinner branches as 
they form, what seems to the human eye, a entangled web in the neuropil. 
Other neurons send similarly profuse projections to converge in the same 
areas. How such extensive connections become established and whether there 
is any interrelationship among the strengths of the connections are questions 
that remain unanswered. 

FIGURE 1 HERE 
Dynamic readjustment of network function. An additional difficulty 

is that the responses of biological systems are often short-lived, variable, 
possibly nonstationary, and are continuously subjected to many different 
types of "external" stimuli that perturb them. As a result, the functional role of 
a neuron in an assembly may be vary from one time to another, and may best 
be described by the context of the actions expressed by other individuals with 
which it becomes active (for discussions and a review of some of the literature 
on the subject, see Mpitsos & Soinila, 1993). 

Figure 2 provides an interesting example of a network dynamically 
adjusting to a perturbation. The illustration shows the time evolution of 
electrical potentials obtained from neurons; the overall pattern relates to 
feeding behavior. The trace labeled BCN is from a neuron that takes part 
(with about 20 other BCNs) in generating the pattern of activity for opening 
and closing of the jaws.1 The term "pattern" refers to the sequences of action 
potentials, sharp voltage spikes recorded from single neurons and from nerve 



roots. This cyclical activity is generated within the central nervous system; i.e., 
it is a central pattern generator (CPG) because the fundamental oscillations do 
not depend on sensory feedback. When the BCN is forced to stop firing action 
potentials, by selectively applying hyperpolarizing electrical current to it 
(arrows in Fig. 2), the pattern in the rest of the traces initially stops and then 
restarts while the BCN is still suppressed. Although the CPG and related 
activity initially depended on the actions of the BCN, they soon recover from 
the loss. How such reconfigurations happen is a an important and interesting 
problem facing studies of the complex brains in mammals (Lindsey, et al., 
1992), as well as of "simple" nervous system in the sea slug. 

FIGURE 2 HERE 
The themes introduced in Figs. 1 and 2 are observed in all animals. 

Given the large number of possible pathways that activity can follow from one 
neuron to another, the activity observed at different times may be variable or 
unstable (Adey, 1972; Braitenberg, 1989; Freeman, 1994; John, 1972; Lindsey et 
al., 1992; Mpitsos, 1989; Mpitsos & Cohan, 1986a; Mpitsos & Cohan, 1986b; 
Mpitsos, et al., 1988b; Wu, et al., 1989). This makes it quite difficult to correlate 
the activity of a neuron or a circuit of neurons with a particular function or 
behavior, suggesting that a new way of viewing function, some new language 
or set of concepts, is needed other than what is provided by the idea of simple 
reflexes. In mammalian studies, Adey (1972), John (1972), and Freeman (see 
(Skarda & Freeman, 1987) for a review) were perhaps the first to stress the 
notion of functional variability in neural tissues. Adey, asks whether the brain 
is adaptively a "noisy processor." John contrasts the notion of a circuit or 
"switchboard", akin to the circuits in a computer board, against statistical 
properties. Freeman (1994) views chaotic variations and instabilities as a 
search mechanism by which neural tissues find meaningful firing patterns in 
changing ensembles of neurons. From an anatomical perspective, Braitenberg 
(1989) speaks of the neuron-to-neuron firing pathways through visual cortex 
as taking a random walk. Such findings indicate that we must re-examine the 
notion and the applicability of the reflex, defined nearly 100 years ago 
(Sherrington, 1906). 

Activity-dependent changes in connection strengths. The proposition, 
discussed later, is that attractors emerging from a population of neurons 
globally cause the connections within this population to change in such a 
way that the dynamics is strengthened. To implement this mechanism, the 
connections between neurons must be able to change based on some locally 
acting rule governed by the firing patterns of the neurons. It has been shown 
in biological systems that at least some synapses are established by activity- 
dependent mechanisms, e.g., (Kater & Mills, 1990; Lipton & Kater, 1989; 
Mattson & Kater, 1989). All such mechanisms bear some similarity to a rule 
stated by Hebb (1949) which has found considerable utility in biological and 
artificial neural network studies. It states that if there is appropriate timing in 
the activity between two connected neurons, the synapses undergo metabolic 
or structural changes that affect its function. 



GRADIENTS AND FACTORS THAT CONTROL THEM 
Phase space visualization of attractors. Considering systems that are 

definable by differential equations, there are three types of attractors: point 
attractors, limit cycles (or, more generally, periodic and quasiperiodic cycles), 
and chaotic attractors. A rapid way to examine all of them is to construct phase 
portraits. For example, to examine the dynamics of the movement of a simple, 
friction-damped pendulum after it has been set into motion, a phase portrait 
can be constructed by plotting the position of the swing of the pendulum 
against its velocity. The succession of the position-velocity states from 
moment to moment constitutes a trajectory showing how the system evolves 
over time, though time is an implicit variable in such plots. The characteristic 
state of such a pendulum is the resting point at the bottom of its swing. We 
may think of the momentary stimulus that set the pendulum into motion as a 
perturbation pulse. The element that dissipates this pulse is friction. 
Operationally, the dissipative or relaxation process appears as an asymptotic 
spiral or gradient leading toward the resting point in the phase plot. Phase 
portraits of limit-cycle attractors contain trajectories that form a single closed 
loop; other periodic attractors have closed trajectories with two or more loops. 
Phase plots of chaotic attractors exhibit infinitely many loops of the trajectory, 
but with the proviso, as required by the Jordan curve theorem and the 
Poincare-Bendixson theorem (Hirsch & Smale, 1974; Hofbauer & Sigmund, 
1988), that the trajectory never closes and that the interrelated positions of the 
loops mix in a certain way, e.g., (Andrade et al., 1993; Thompson & Stewart, 
1986, p. 165). 

In the smooth dynamics of systems defined by differential equation, 
one speaks of flows in state space. Use of an artificial network model will 
serve as a example to illustrate phase space and fixed points. The exact 
specifics of this system have been described in detail elsewhere (Andrade et 
al., 1993). Briefly, it is composed of a set of four coupled differential equations 
that describe molecular catalytic action, where each variable represents the 
concentration of one of the catalytic species; a single species may catalyze the 
replication of more molecules of its own species, or of other species. The 
mathematical formulation resembles equations describing the dynamics of 
disparate systems, from population dynamics to neural network function 
(Cohen & Grossberg, 1983). By changing the parametric setting of one of its 
catalytic constants (equivalent to changing the strength of a neuronal synapse, 
as will be done later here), the system generates many different patterns of 
activity representing all three types of attractors mentioned above. Such 
constants are called bifurcation parameters. Changes in these parameters 
usually produces little change in system dynamics, but at certain critical 
points small parameter changes cause the system to respond qualitatively 
differently. 

The operations used to determine the presence of attractors graphically 
are illustrated in Fig. 3 for the catalytic network in periodic and chaotic 



regimes (only species XI and X2 are shown). The time-evolution of the 
concentrations in both regimes are shown before and after a brief perturbation 
was applied by increasing the concentration of molecular species XI for a 
single integration step. Since XI is coupled to the other catalytic species, the 
pulse of externally applied extra copies of XI affects the concentrations of all 
species. Following the perturbation pulse, the periodic oscillations (but not the 
phase) in the concentration original pattern. The method has been widely 
used in studies from CPGs in neural systems to circadian rhythms in humans. 
A similar relaxation process occurs in the chaotic regime, but owing to the 
variations that occur naturally in chaos, the recovery is difficult too assess 
using time-series data. 

FIGURE 3 HERE 
A view of the pre- and post-perturbation conditions is more clearly 

shown graphically by the phase portraits at the bottom of Fig. 3 than by the 
time-series data alone. The unperturbed state of the periodic activity, a limit 
cycle, is shown by the thick trajectory. The thin-line trajectories show the 
recovery that occurs after the perturbation stimulus is applied. These 
trajectories eventually lead back to the original limit cycle. In the chaotic 
regime, the relaxation process also occurs, but, since chaotic processes are 
sensitive to initial conditions, the trajectory never returns exactly to the 
original thick line; i.e., the attractor is represented by the overall structure of 
the phase portrait rather than a particular set of trajectories. To obtain a view 
of the gradient fields or basins of attraction, it is necessary to repeat the same 
experiment many times using different concentrations in the perturbation 
pulse; and pulses may be applied to all of the molecular species, as well. 

In the pendulum with friction, dissipation occurs through heat loss. In 
the catalytic network, dissipation occurs through two interrelated 
components. In one, the replication process is error-prone, and error copies of 
all of the different molecular species are ejected from the network into an 
error-species. The second component arises from competition between the 
various molecular species for a substrate substance from which they make 
copies of themselves. However, the total number of molecules of all species in 
the mixture that can be produced by replication from substrate material is 
capped at some upper limit. The pulse of externally applied molecules of XI 
causes a new set of conditions for competition for substrate, but as long as the 
excess copies are present, the total number of molecules exceeds the capped 
limit. The relative proportions of the various species readjusts nonlinearly 
since the extra copies of XI cause the synthesis of other species, so adding XI 
causes a redistribution in the population of all species. At the same time, error 
copies are ejected from the mixture, slowly redistributing the relative 
concentrations progressively back to the distributions relating to each 
dynamical regimes. 

Fixed points control system responses and define gradient space. 
Fixed points represent conditions when the state of a system does not 
changing over time (Andrade et al., 1993; Seydel, 1988); synonyms are steady 



states, equilibria, stationary points. The quality of the fixed points determines 
whether they attract or repel trajectories in state space. Figure 4 illustrates the 
relationship between the trajectory and fixed points in unperturbed and 
perturbed conditions of a periodic regime. The circles show four of the points, 
all saddles. Point-1 is the only fixed point at which all four species 
{X1,X2,X3,X4} coexist. For some parameter settings, the point is stable, 
attracting flows to it in all directions and creating conditions in which the 
concentrations of all species remain constant. For other settings, the flows are 
stable toward the point in two directions and unstable in the other two. Points 
2 and 3 show the unstable saddles for species-states {X1,X2,X4} and {X1,X2}, 
respectively. Point-4 is an unstable spiral saddle for the steady state 
{X1,X2,X3}, and as in points 2 and 3, there is one unstable direction of flow. 
Stability or instability along each axis is determined by the eigenvalues that 
characterize the quality of the fixed points. Negative eigenvalues indicate 
stable directions of flow; positive ones indicate unstable ones. 

FIGURE 4 HERE 
The quality of all of the fixed points together defines the characteristic 

features of the potential surface of attainable concentrations. This surface 
consists of a set of local maxima and minima, hills, valleys, saddles, etc., 
comprising a landscape whose local features must be navigated by the 
dynamics of the four coupled molecular species. The effects of the fixed points 
extend as gradients, so the course of nearby trajectories is determined by the 
"push" and "pull" of all the fixed points that exist in a given dynamical regime. 
Consequently, in order to know how a network will respond under the 
variable conditions that an animal may experience in the natural environment, 
it is necessary to understand what the gradient fields are and how 
perturbations move the trajectory around them. 

Attractors have zero volume. The attracting limit set has vanishingly 
small volume. This is indicated by the spectrum of Lyapunov exponents. 
These provide a measure of the rate at which nearby trajectories converge or 
diverge with respect to one another. There is an exponent for each dimension 
of the system. For the system to remain bounded, the sum of all of the 
Lyapunov exponents must be negative, though in chaos at least one exponent 
must be positive to produce stretching along a given dimension, e.g., see 
(Seydel, 1988; Wolf, et al, 1985). The post-transient behavior of the attractor is 
to approach zero-phase space volume. The rate of contraction in bits per 
second is given by 2% + ^ + A3 + X^)t. if au exponents were negative (loss of 
information in each direction of flow), the activity would collapse into a single 
point in all directions. In the example shown in Fig. 4C, the exponents are 
{+2.94,0, -49.06,-239.59} (Andrade et al., 1993). The positive value of the 
principal exponent indicates that there is stretching or gain of information in 
that direction of phase space. The next exponent is vanishingly small, leading 
neither to expansion or contraction. The third exponent is strongly negative 
and is required to constrain the activity in phase space. The fourth exponent is 



even more negative than the third such that information in this dimension is 
lost extremely rapidly. The exponents of periodic activity are all negative, 
except for the first which is zero. So, for all three types of attractors, there is 
overall contraction in phase space. 

The spectrum of Lyapunov exponents describes the local flows in the 
system and is an invariant measure of the attractor, regardless of the wild 
swings that may occur in the overall structure of the unperturbed attractor in 
phase space. As such, they provide an instantaneous indicator of an attractor, 
and they can an be used to estimate other invariants, such as the attractor 
dimension (Kaplan & Yorke, 1979; and see examples in Andrade et al., 1993; 
Wolf et al., 1985). Being local-flow measures that apply to the attractor as a 
whole, it is a rather interesting speculation that they may provide an 
immediate way for a network to detect the pattern of activity it receives as 
opposed to detecting it based on the large-scale aspects of its evolution which 
would require much longer sampling time. 

ATTRACTORS IN BIOLOGICAL SYSTEMS: SOME CAVEATS 
Before going on to a discussion of how attractors might affect networks, 

it is necessary first to point out problems or constraints that must be consider 
when positing the existence of attractors in biological adaptation. 

Effects produced by action-potential activated synapses. Much of 
what is known formally of dynamical systems, and partly described above, 
has come from studies of differential and difference equations, or of systems 
that can be put in these forms. In neural systems, the Hodgkin-Huxley (1952) 
model of the squid axon has had its success, and fostered much research on 
the dynamics of nerve membrane, e.g., (Canavier, et al., 1990; Chay & Rinzel, 
1985; Evans, et al., 1982; Fitzhugh, 1961; Fitzhugh, 1969; Jalife, 1990; Rinzel & 
Keller, 1973; Rinzel & Miller, 1980) partly because it can be modeled as a 
system of differential equations. The same is true in neural network studies 
when the communication between neurons is controlled by smoothly graded 
synaptic potentials (Wang & Rinzel, 1992; Rowat & Selverston, 1993), and in 
many studies dealing with psychophysical problems (Cohen & Grossberg, 
1983; Grossberg, 1980; Grossberg, 1988; Zanone & Kelso, 1992). 

The situation becomes much more complex when neurons 
communicate with one another using the pulses of action-potential activated 
synapses. A major reason for the increase in complexity is that the differently 
timed and differently shaped synaptic inputs act as perturbation pulses to 
subsequent synaptic inputs. Even for a simple model, such as the catalytic 
network discussed above, it would be impossible to determine how the 
system would behave in response to a series of differently shaped 
perturbation pulses that arrive at irregular times. 

Instability and ergodicity. The goal-directed, self-organizing behavior 
of biological systems can be unstable (Freeman, 1994). Examples of 
spontaneous shifts of motor patterns in our experimental system are given in 
Figs. 18 and 19 in (Mpitsos et al., 1988b). Extended discussions of the problems 
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may be found in (Mpitsos, 1989; Mpitsos & Soinila, 1993). Perhaps the most 
difficult problem to address is the finding that behaviors and motor patterns 
may blend into one another (Mpitsos & Cohan, 1986a; Mpitsos & Cohan, 
1986b); i.e., if attractors underlie behaviors, does blending imply that 
attractors blend into one another to create intermediates? Even if the number 
of systems that exhibit such variabilities is small, Freeman's comments are a 
fair warning that we must consider instabilities in order to gain a fuller 
(alternative?) understanding of self-organizing behavior, and, especially, how 
classical dynamical constructs such as attractors take part in the process, or 
whether they apply. 

Ideal multi-component systems in which transients and other 
instabilities have died out, and in which all available states are equally 
probable, may be thought of as being in statistical or thermodynamic 
equilibrium. This condition, which stems from ergodic theory (Eckmann & 
Ruelle, 1985; Friedman, 1970; Smale, 1980), may provide a principle that can 
be used to understand how complex biological systems organize globally. It is 
necessary to consider ergodicity because the aim here will be to say that the 
emergence of the "cooperative" assembly of neurons is a post-perturbation 
residue that emerges from a larger population through a common driving 
force. This force is the gradient action of the attractor. 

Ergodic conditions are difficult to prove in model systems, let alone in 
biological ones. A simple model system can be run long enough that it closely 
approximates statistical equilibrium, but biological systems, almost by 
definition, are far from equilibrium. During embryonic development, and 
learning, and in the normal moment to moment states that do not involve 
development or learning, biological systems are continuously bombarded by 
many extraneous stimuli; biological systems are always changing and are 
subjected to many perturbations such that asymptotically stable conditions 
seldom arise. It is necessary, therefore, to soften the statement of ergodicity to 
say that gradient-seeking activity in biological systems tends toward ergodic 
conditions, though it may be far off. Similarly, it is necessary to speak not of 
an attractor, which is an ideal equilibrium condition reached asymptotically, 
but rather of gradient behavior as the state of a system tends or is drawn 
toward the attractor. 

Does simple function emerge from complex structure? Although there 
are only about 20 BCNs on each side of the bilaterally symmetric nervous 
system of Pleurobranchaea, they are embedded in larger networks. In the 
motor ganglion in which the BCNs are located, there are roughly 400 neurons, 
some of which are shown in Fig. 1. The BCNs connect to other neurons in this 
ganglion and in other ganglia, and receive feedback from them directly or 
indirectly through other neurons. Overall, several thousand neurons, located 
in different parts of the nervous system, may take part in generating the 
pattern of neural activity underlying a bout of feeding behavior. However, 
many oscillatory patterns (though not all) that are generated by such networks 
recover rapidly from perturbations. Although phase information may be lost, 
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biological systems are observed to be homeostatic, and even if many different 
states are possible, small perturbations of a given state usually leads to its 
recovery. Because of such a relaxation process there is a tendency for the 
activity representing the attractor to contract spatially. This suggests, as in the 
case of the BCNs in Fig. 2, that fewer than the several thousand neurons that 
are active during the feeding motor pattern may be required to generate the 
dynamics underling the behavior. This relates to the above idea that the sum 
of the Lyapunov exponents must be negative for the system to remain 
bounded; overall, there must be contraction in phase space in the responses of 
individual neurons, and in the interrelated firing between neurons. The notion 
of spatial contraction is used in the sense of exclusion from the final 
cooperative ensemble. It does not imply that the final generative set 
necessarily consists of adjacently located cell bodies. The excluded neurons 
may become quiescent or they may continue to fire independently of the 
attractor, or they may. be driven by the attractor yet may not be part of the 
neural machinery that generates the attractor. 

Having said all that, it is necessary to point out that fundamental 
attractor features, such as fixed points, are not definable in most biological 
networks that rely on action potentials for communication between neurons, 
even in simple model networks such as the ones discussed below. Neither do 
we understand the specifics of how different spatio-temporal regimes emerge 
or how to define them from the perspective of how individual neurons take 
part in the process, though considerable work has been done along that line, 
e.g. (Freeman, 1994; Skarda & Freeman, 1987). Neither is it fully understood as 
to how to assess the state of a system or attractor quantitatively. The 
publication by Grassberger and Procaccia (1983) of a method for estimating 
attractor and embedding dimensions provided one easily applicable avenue 
for making assessments at least for the number of variables or dimensions that 
may sustain an attractor. Over the years, a number of important refinements 
have been proposed to improve the methods for determining attractor 
dimensions, whether chaos is present, or whether there are nonlinearities in 
the data, e.g., (Grassberger, 1990; Judd, 1992; Kaplan, 1993; Kaplan & Glass, 
1992; Mayer-Kress, 1986; Schiff, et al., 1994; Skinner, et al., 1994; Theiler, 1986; 
Theiler, 1987; Theiler, 1993; Theiler, et al., 1992), but as Theiler (1994) has 
pointed out, much "black art" is involved. Moreover, as Theiler and Rapp 
(1995), Mayer-Kress, Barczys and Freeman (1991), Glass and Kaplan (1993) 
point out, evidence for low dimensionality and chaos in measurements of 
biological activity is inconclusive. Although electrical stimulation methods, 
potentially applicable to the control of epileptic foci, have been developed that 
use the characteristics of unstable fixed points to obtain evidence both of 
periodic activity and chaos in hippocampal slices (Schiff, 1994), the majority of 
the quantitative assessments of activity in the same tissue point to stochastic 
processes rather than to low-dimensional chaos (Schiff et al., 1994). In our own 
studies, the evidence for chaos was state explicitly as being only 
circumstantial (Mpitsos, et al., 1988a; Mpitsos et al., 1988b). Although we have 
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not yet exhausted the available methods on estimates of low embedding 
space, e.g., such as the neural network methods described in (Abarbanel et al., 
1993), use of surrogates (Theiler, 1994) indicates that though there is structure 
in the firing patterns of individual BCNs and motor neurons that they drive, 
the evidence for low-dimensional embedding space is also wanting. This is 
remarkable because the neurons we have examined and the neural firing 
patterns that they generate are related to identifiable behaviors, whereas the 
firing, for example, of compound action potentials in hippocampal slices 
(Schiff et al., 1994) need not and probably do not represent any particular 
behavior. Moreover, in our experience, motor patterns appear less variable 
when obtained from isolated nervous systems than in whole animals, 
indicating that the numerical evidence for low dimensional (periodic or 
chaotic) attractors in whole animals should be even less conclusive. 

The problem in our own studies, and in other studies mentioned above, 
may be only one of quantitative verification, for which the appropriate 
methods have not been developed yet, or that we may not have conducted 
experiments that yielded the appropriate data. Alternatively, perhaps the 
search for crisply definable determinism may be equivalent to the search to 
identify a network anatomically as the neural correlate of behavior (Mpitsos & 
Soinila, 1993). But, following Adey (1972) and John (1972), it may be 
worthwhile to consider further the utility of stochastic processes. One of the 
reasons may be that while synaptic transmission involving action-potential 
evoked synapses, as opposed to smooth graded transmission, may be 
deterministic, it also appears that degeneracy of information flow across the 
synapse may also occur (Edstrom & Mpitsos, 1995b). 

The dynamics of spatio-temporal recovery may also not be simple. We 
can not just say that the recovery process reestablishes the set of neurons 
generating the attractor before the system was perturbed and leave it at that. 
The reason for this is that the generation of an attractor may not require the 
activity in any particular neuron. Even fewer than the 20 BCNs may be 
necessary for generating the CPG or the behaviors that the CPG drives. The 
effect shown in Fig. 2 is an extreme example of this. Other examples, not 
presented here, show that the interrelated firing of neurons in a cooperative 
set may vary over time, and the removal of some BCNs may have essentially 
no effect on the oscillatory patterns (Mpitsos & Cohan, 1986b). In a sense, 
there is a kind of redundancy in a population of neurons that generate 
attractors. Up to a point one can remove neurons, and the system can 
rearrange itself to give the same attractor as before, though eventually a 
minimal population may be reached from which we can not remove neurons 
and retain the attractor (Selverston, 1980; Selverston, 1993; Rowat & 
Selverston, 1993). Under the most general conditions, the terminal group may 
be different, depending on which neurons were removed at the beginning. 
Therefore, in the recovery of attractor systems, the crucial element is not 
necessarily what neurons remain, but whether certain gradient can be 
sustained. 
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ATTRACTORS IN SIMULATION OF BIOLOGICAL NETWORKS 
The network shown in Fig. 5C will be examined here and used 

subsequently to examine how activity affects network structure. This 
particular architecture was chosen as part of a larger experiment aimed at 
studying both periodic and complex firing patterns, though only simple 
patterns will be examined here. The network consists of three cells; Cell4 is 
external to the network because it receives no feedback from the other cells. A 
number of network constants that may be used as control parameters with 
which to produce "bifurcations", qualitative changes in the interrelated 
patterns of action potentials produced by the three cells: (a) Changing the 
firing level of Cell4 by injecting it with different sustained levels of 
depolarizing electrical current, (b) Keeping Cell4 quiescent, but injecting 
depolarizing current into one of the other cells in the network to adjust its 
firing level, (c) Or by selectively changing the synaptic strength of one of the 
synapses. 

FIGURE 5 HERE 
Figure 5A shows a 3-cycle firing pattern in Cell2. Starting from the 

simulation time at 680 msec, seven intervals between the action potentials are 
shown, where the 3-cycle repetition sequence consists of intervals having 15.4 
msec, 35.0 msec, and 46.3 msec durations. For the purposes of the illustration 
only two 3-cycle periods are shown, but many more 3-cycle sequences 
preceded them. This particular firing pattern was obtained by driving the 
network using steady depolarization of Celll and selectively adjusting the 
strength of the inhibitory synapse that Cell3 makes on Cell2. 

The values for the synaptic strengths giving this 3-cycle are illustrated 
in Fig. 5C, but certain other combinations of synaptic weights give similar 3- 
cycle activity, just as Gardner (1990) has demonstrated that different synaptic 
strengths between four identified neurons in the sea slug Aplysia generate 
similar network function. The dashed line below the action potential trace 
shows the time during which the network was perturbed by injecting Cell2 
with a 125 msec electrical current pulse that pushed the membrane potential 
below the threshold level for the genesis of action potentials, except for one 
action potential (labeled by a "1") arising from strong activity in one of the 
other cells in the network. After the cessation of the applied current, the cell 
rebounded with a rapid burst of three action potentials (labeled "2", "3", "4"), 
and then recovered to its original firing pattern. 

The pattern of intervals shown in Fig. 5A may be replotted in a return 
map in which one interval in the sequence is plotted on the horizontal axis 
and the succeeding interval is plotted on the vertical axis. One hundred 
intervals were used to construct the 3-cycle of the unperturbed activity; all fell 
sequentially on the three filled circles in Fig. 5B. The return-map positions of 
the intervals during and after the application of the 125 msec perturbation 
pulse are shown by the numbered and open triangles. The identifying 
numbers in the return map are the same as those in the trace shown in Fig. 5A, 
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where the number over a given action potential indicates the interval between 
that action potential and the preceding one. 

What causes dissipation in biological networks? The friction-damped 
pendulum and the catalytic network described above have known dissipative 
mechanisms with which to conceptualize the recovery process, but there is no 
obvious anchor in networks such as the one shown in Fig. 5C. It is not simply 
that there are inhibitory synapses in the network. Although, the excitatory and 
inhibitory synapses were chosen to produce expansion and contraction 
qualities in the firing patterns among the three neurons, modeled after Rössler 
(1976), dissipative firing can be obtained by using, for example, only 
excitatory synaptic connections. An understanding of the cellular processes 
underlying dissipative action in biological systems may shed light in how 
individual neurons take part in group action (Edstrom & Mpitsos, 1995a), but 
the subject has been largely bypassed in neurobiological applications of 
dynamical theory. 

Effect of gradient-seeking activity on biological networks. Gradient- 
seeking behavior in neural networks has been a subject of interest for a long 
time, and a large literature has emerged, e.g., (Cohen & Grossberg, 1983; 
Hopfield, 1982; Le Cun et al., 1991; Perlmutter, 1992; Plaut, et al., 1986; 
Rumelhart, et al, 1986; Werbos, 1974; Widrow & Stearns, 1985). The 
possibilities that gradients may change biological networks is considered in 
the following scenario: 

(1) Assume that the network is initially randomly connected, and that 
the neurons are firing action potentials. 

(2) Somewhere in the network, two or three neurons may have firing 
patterns that are sufficiently correlated with one another that their synapses 
undergo activity-dependent changes. If dissipative action begins to emerge, 
the synaptic weights in the developing network must have some interrelated 
range of values, else the attractor would not exist. 

(3) The emerging attractor constrains the flow of activity, causing 
further activity-dependent changes and refinement of the attractor 
spatiotemporally. 

(4) Neurons that converge onto the same follower neurons may 
compete (Merzenich, et al., 1983a; Merzenich, et al., 1983b; Merzenich, et al., 
1984; Mpitsos et al, 1978) for occupancy of the synaptic space available on the 
follower neuron such that connections may be made or broken, structurally 
molding the neuroarchitecture; i.e., attractors are the ultimate architects of 
neural tissues (or of any biological system governed by gradient-seeking 
behavior). 

A concrete example of this would be useful to visualize the process. 
Our work on this is very preliminary, but it is worth discussing to illustrate 
the above conjecture. The schematic in Fig. 6 shows how the network 
examined previously may be altered following a perturbation stimulus. The 
original network is shown in Fig. 6A. It is the same as the one shown in Fig. 5, 
as are the activation conditions, but the strengths of the synapses are now 
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made available for activity-dependent changes. If Cell2 is depolarized for an 
arbitrary length of time, it begins to generate action potentials initially at a 
higher frequency than before, but soon the balance of excitatory and inhibitory 
feedback readjusts its rate of firing. The activity-dependent changes in a 
synapse depend on the temporal correlations of activity in the presynaptic and 
postsynaptic cells which will vary over time. The dynamics giving rise to these 
correlations is extremely complicated and time dependent, but Fig. 6B has 
caught the changed synapses at a stage (shown by the numbers next to the 
axons) that cause Cell2 to generate a 6-cycle firing pattern. The open circles in 
the return map of Fig. 6C show the values of the six intervals between the 
action potentials. The filled circles show the original 3-cycle. 

FIGURE 6 HERE 
When Cell2 is released from the depolarizing current (Celll is under 

continuous depolarization to keep the network active), its firing pattern may 
remain in the 6-cycle state, but if the attractor is not sufficiently well formed, 
genesis of action potentials in the three neurons may drift to some other set of 
patterns, or it may eventually settle back to the original 3-cycle state (and 
perhaps with a different set of synaptic strengths between the neurons). 

The aim here is not to say that the 6-cycle per se is formed, nor that the 
original 3-cycle is regenerated in the recovery, but that some attractor is 
generated, and that its gradients are what adjusts or globally "directs" the local 
activity-dependent synaptic changes. This is different than would be imagined 
were we to view networks as switchboards or reflexes by which change is 
based only on local activity-dependent effects. From such effects it might be 
postulated, for example, that associative learning in whole animals is based on 
changes in individual synapses; reviewed in (Mpitsos & Lukowiak, 1985). By 
the conjectured gradient method, however, it is obvious that changing one 
synapse causes changes in all of them. Local rules are a work, but they are 
guided by a more global principle. 

GRADIENTS OF LEARMNG IN ARTIFICIAL NEURAL NETWORKS 
The above ideas are derived from the extensive studies on artificial 

networks, though their effect is only beginning to become apparent in 
biological studies. I shall discuss the results of simple artificial neural network 
studies (Burton & Mpitsos, 1992; Mpitsos & Burton, 1992), based on the 
backpropagation algorithm (Rumelhart et al., 1986), to examine possibilities 
that might not have been conceived from studies on biological networks. The 
backpropagation algorithm relies on a negative-gradient mechanism to 
minimize error as synapses and thresholds are changed during training. 
Gradner (1993) has suggested cellular mechanisms by which backpropagation 
might take place in biological systems, and backpropagation methods have 
been used to address specific cases in biology, such as the mechanism of local 
bending in the leech (Lockery & Sejnowski, 1992). However, rather than 
addressing a particular application or biological system, I shall examine some 
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of the more rudimentary effects that might arise generally in networks from 
gradient-seeking mechanisms. 

The network examined here is shown in Fig. 7(Top). The input consists 
of a single neuron whose synapses are distributed to a set of "interneurons", or 
hidden neurons, labeled h. The number of hidden units varies, depending on 
the experiments. The hidden units converge onto a single output neuron. The 
input signal consisted of a sequence of discrete values generated by the 
chaotic logistic function/(x) = 3.95(l-x)x, where x is in the unit interval. One of 
the aims of the original studies was to determine whether a single-input 
network with no bypass connections could predict a chaotic signal, but in 
order to keep the illustrations as simple as possible, the discussion here is of 
training using the identify function as the teacher whereby the output is 
required only to reproduce the input. Despite its simplicity, the identity 
function provides insight into the effects of gradients and permits the use of 
simple graphics to demonstrate effects. An on-line training method was used 
in which synapses, and threshold levels, are adjusted after each training trial. 
In this way the network is given information only of a single error-point 
relating to the gradient fields of the teacher function. Batch training updates 
the synapses after a number of trials, providing more information about the 
teacher function than on-line training. 

FIGURE 7 HERE 
Gradient descent during learning adjusts synaptic strengths 

optimally with respect to one another. The network was trained until the 
difference between its output and the teacher requirement converged to some 
minimum error. The synapses and thresholds were frozen at the trained 
values, and training effects were excluded during subsequent manipulations 
of the network. One synapse at a time was then set at a series of arbitrarily 
selected values while holding all other synapse at their trained value. For each 
value, the network was presented a number of input values of the logistic to 
obtain the average error as a function of the changes in each synapse (Fig. 7 
Bottom). As should be expected of backpropagation training, the error- 
gradients generated during training set the synapses optimally with respect to 
one another, as was proposed for biological simulations in Fig. 6. 

Two-dimensional error gradients or surfaces may be constructed using 
by measuring the error as a function of changes in two synaptic weights. The 
asterisk in Fig. 8 shows the location of the two weights that gave the minimum 
error. By adding a third synapse, the gradients become more complex, as 
shown in Fig. 9, where color represents error. Minimum error is somewhere 
inside the box of Fig. 9A. A series of slices through the box (Fig. 9B) reveals the 
location of the minimum error which is indicated by deep blue in the top 
horizontal slice. This slice is identical to the surface shown in Fig. 8; the dark 
blue spot in the middle corresponds to the asterisk in Fig. 8. Different 
initialization parameters yield a different set of final optimal weights, as 
occurred in the simulations in Figs. 5 and 6, and as reported in comparisons of 
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the connections between a set of four identifiable neurons in different 
specimens of the sea slug Aplysia (Gardner, 1990). 

FIGURES 7,8 &9 HERE 
Gradients limit the number of neurons in a cooperative assembly. 

The common intuitive impression of the effect of the size of the network is 
"the bigger, the better." This proved to be true to some extent (Mpitsos & 
Burton, 1992), but after some optimal small number of hidden units was 
reached, increasing the number further rapidly led to learning failure. The 
more complicated the learning task, the sooner the detrimental effects occur, 
even for learning the identity function. 

There are at least three interrelated factors underlying size limitation, 
all related to gradients. The top horizontal slice in Fig. 9B contains obvious 
gradients leading to an optimal solution of for weights {W1,W2,W3}; other 
slices contain large areas of flat gradients. Comparing Figs. 7-9 shows that 
changing from 1 to 3 degrees of freedom increases the possibility of 
encountering large flat gradient fields. As the number of trainable synapses or 
units increases, the surrounding high-error region grows exponentially by 
comparison to the central low error (Fig. 10). This makes the distances that the 
network must traverse through weight-error space from high too low error 
during training extremely long and the gradients flat in all directions. 

FIGURE 10 HERE 
Contributing to size limitation is the on-line training method since in 

each training trial the network is exposed to a single error-point rather than to 
the structure of the entire error surface. The error fields in Fig. 7-9 were 
constructed artificially after the network was trained, but the training method 
contained no information about the structure of the error fields, making 
learning difficult. 

The third factor limiting network size is introduced by a type of 
"stiffness" in gradient decent. This arises from cross correlations in the input 
matrix to neurons that receive multiple synapses (for a detailed discussion see 
Le Cun et al., 1991). If no cross correlations exist, the rate of gradient decent is 
the same in all directions, generating symmetric error fields in all directions. 
Ideally, minimum error can be reached in a single time step. If correlations 
exist, the rate of descent is not symmetric causing distortion and stretching of 
error fields. Analogous stiffness occurs in numerical integration of differential 
equations having disparate time scales. High-dimensionality and complex 
teachers (gradients) exacerbate this problem, slowing or preventing learning. 

Biological systems are inherently high-dimensional, far from ideal, and 
probably possess conditions for analogs of stiffness to exist. The neural 
network findings suggest that the rate at which coherent activity emerges in 
large biological networks will be slower than in smaller networks. In 
embryonic development, for example, certain rules (perhaps genetic ones) 
may limit the number of neurons in a cooperative assembly, but these rules 
may be assisted by the limitations imposed by gradient descent into attractors. 
Smaller populations of neurons may reach "consensus" to generate an attractor 
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faster than much larger ones, and may generate stronger attractors since 
smaller networks may have less chance of falling into non-optimal connection 
configurations that generate weak attractors. It is perhaps not just a humorous 
exaggeration to extend the notion of stiffness to consensus-building or lack 
thereof in university faculty meetings and in the United States Congress. 

Adjustable thresholds are essential for learning to occur. The 
presence of adjustable response thresholds in neurons, in addition to the 
presence of adjustable synaptic strengths between neurons, is necessary for 
learning to occur properly (Mpitsos & Burton, 1992). The above mentioned 
deficits relating to stiffness can be largely overcome for simple learning tasks 
in our network by slowing the rate of learning in the output unit, but even this 
does not make up for the reported deficits that emerge when networks do not 
contain trainable thresholds. Recent studies (Leshno, et al, 1993) provide a 
general proof for the necessity of thresholds in certain artificial networks, and 
findings in networks of biological neurons in culture (Turrigiano, et al, 1994) 
indicate that adjustments in firing thresholds may stabilize firing patterns. 

The facilitating effect of thresholds arises from that fact that they act as 
a bias (Rumelhart et al., 1986). This bias shifts the mid-region of the sigmoidal 
output functions selectively to different regions on the activation axis (Fig. 11; 
thin-line curves), allowing the network to reach activation states that would 
only be asymptotically reachable in the absence of thresholds (Fig. 11; thick- 
line curve). The activation of an output unit may be thought of as a 
polynomial function of the inputs from the hidden units. Selective control of 
all thresholds allows fine adjustments to the polynomial, allowing network 
function to conform to the error-field requirements of the learning task. Given 
that attractors in biological systems may have considerably more complicated 
gradients than the identity function shown here, it is expected that adjustable 
thresholds may be important when learning involves attractors. However, 
compared to the extensiveness of studies on synaptic changes during learning 
in biological systems, little attention has been paid to threshold changes and 
how such changes affect the computational ability of networks. 

FIGURE 11 HERE 
Networks encode multiple forms of information. The term encoded 

information typically refers to processes that are evoked among neurons in a 
network to produce an output. The output of the network can be sent to other 
networks for further computation or for producing behavior. A given network 
may contain the information for generating one or more processes (Mpitsos & 
Cohan, 1986a; Mpitsos & Cohan, 1986b; Sejnowski & Rosenberg, 1987; Skarda 
& Freeman, 1987). Ultimately, this information is "laid down in structure" 
(Lorenz, 1974), such as in the strength of synapses, in the structure of the 
neurocircuit itself, and even in changes relating to gene expression. 

Networks may contain a second form of encoded information that does 
not become obvious until networks are required to learn something new 
(Burton & Mpitsos, 1992). In these experiments, noise was injected into the 
adjustments that were applied to the synapses and thresholds in order to 
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improve the rate of learning. Interestingly, it also optimized the rate of 
learning of a subsequent task when noise was not given. Networks that were 
not given noise during the first training session eventually learned the first 
task equally as well as ones that received noise (i.e. all networks reached the 
same level of performance), but they learned the second task more slowly. 

To account for this, consider the error surfaces in Figs. 8 and 9. Without 
noise, the trajectory through weight-error space flows relatively smoothly, 
covering only a small region the potential errors. With noise-adjusted 
synapses, the network is forced to produce large error shifts during which the 
trajectory covers a relatively large portion of the potential error space. The two 
networks reach the same minimum error, but sample the error-space 
differently. This suggests that the second form of information contained in a 
set of connections may relate to not so much to the actual final task but to the 
error gradients that must be navigated during learning. 

If new tasks or teacher functions involve error gradients having any 
structural similarity to the gradients relating to previously learned functions, 
the networks that had been trained with noise should learn them faster 
because they already contain more information about these gradient fields 
than do networks whose adjustments had been made without noise. 
Conversely, if the old and new tasks involved quite different gradients, the 
ability of the two types of networks to learn the new task should be reversed. 
This occurs because the errors that are generated during learning of the 
second task result from the relative change between the gradient fields of the 
old and new tasks. 

The potential to store such different types of information may provide a 
form of generalization in biological systems. The first form of encoded 
information results from learning-related adaptation to one or more 
conditions. Given sufficient similarity between the new challenge and 
previous ones, biological systems may gain considerable adaptive advantage 
by having the additional information about the attractor gradients. 

CONCLUSION 
The aim here has been to use attractors to make sense of the functional 

structure in large neural assemblies. To do this I have discussed attractors as 
existing wholly within the nervous system. Learned perceptions in animals 
and humans (Freeman & Skarda, 1990; Grossberg, 1988) and CPGs and are 
examples of such internal representations. These examples are equivalent 
because they require sensory cueing only for triggering or sustaining them, 
although they may incorporate sensory or external elements as part of the 
pattern generating process or modification of it (Kater & Rowell, 1973; Mellon, 
1969). What this says is that if the aggregate activity of neurons in a network 
can not be altered so as to generate a particular basin of attraction, the 
network will not be able to adjust its connections to encode the information 
pertaining to that perception or motor pattern. Similarly, a network whose 
connections between the neurons have already been set will not produce a 
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particular pattern of activity when driven by some external signal if the fixed 
points represented by the connection strengths do not provide the gradients 
that will express such patterns. In either of these cases, the network exhibits 
"no workable solution" in its ability to learn or to respond to the driving force 
of an external stimulus once the synapses have been set. Ultimately, in 
adaptive behavior, the time varying neural output underlying a behavior 
emerges from a tension or dialectic between the goal-directed needs of the 
animal and a shifting and unknowable environment (Mpitsos & Cohan, 
1986a). The final "attractor" is not fixed hard; it is variable and moldable. 

The conjecture discussed here does not unravel the specific connections 
that we observe in complex biological systems as those shown in Fig. 1. It save 
to say that they will never be known in detail. We may gain some assurance in 
the validity of the conjecture by examining increasingly more complex 
networks in simulation or testing the conjecture in biological networks in cell 
culture, and showing that the settings of the connections follow a pattern that 
is established by the dissipative dynamics of the system. But as in Weinberg's 
(1992) use of reductionism, the conjecture provides the principle, not the 
details, though the effects of this principle should be testable. 
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FOOTNOTE 
iThe BCNs are involved in many different jaw-mouth behaviors; i.e., they are 
multifunctional. The animal exhibits several stages of feeding. Like all good 
carnivores, it actively exhibits regurgitation of noxious substances that have 
been ingested. It "rejects" ingested substances, by a process that resembles 
"reverse play-back" of bite-swallow behavior. It exhibits defensive biting 
behavior toward noxious attacks. And, interestingly, it not only cleans its gill, 
it also cleans the gill of other Pleurobranchaea, despite the fact that the animals 
are cannibalistic. Pleurobranchaea also exhibits rapid associative learning of 
several forms using mouth/head responses, eg., (Mpitsos & Cohan, 1986c; 
Mpitsos & Collins, 1975; Mpitsos, et al., 1978; Mpitsos, et al., 1988c). 
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FIGURE LEGENDS 
Figure 1. "Massively" parallel network connections. Photomicrograph of 
immunofluorescence for the neurotransmitter FMRF-amide in the right half of a 
400-neuron ganglion responsible for generating rhythmic feeding movements in 
the sea slug, Pleurobranchaea californica. Circular objects are neuron cell bodies, 
several of which exhibit the green fluorescence indicative of FMRF-amide. The 
tangle of neurites in the large area next to the cell bodies is the neuropil where 
most of the synapses between neurons take place. Exhaustive anatomical 
examination of the ganglion by slicing it layer by layer and reconstructing the 
results shows that the massive tangle of connections in the neuropil comes from 
only a few of the neurons in the buccal ganglion (and other ganglia); i.e., that 
there is extensive divergence in the connections between neurons. A survey of 
over a dozen neurotransmitters in complete serial sections of all ganglia in 
Pleurobranchaea and another sea slug, Aplysia, has shown similar profusely 
diverging projections of a few neurons containing a particular neurotransmitter 
into vast areas of the neuropil. Neurons containing other transmitters send 
converging projections into the same areas. Physiological work confirms the high 
degree of connectivity in Pleurobranchaea (Mpitsos & Cohan, 1986b) and Aplysia 
(Zecevic, et al., 1989). Modified from (Soinila & Mpitsos, 1991). 

Figure 2. Biological networks compensate for the loss of a neuron. Traces show 
the action potentials in single neurons (BCN and M) and in nerves containing the 
axons of many neurons (top four traces). The sequential bursts of action 
potentials relate to feeding behavior, where bursts in Rl drive muscles that open 
the jaws and bursts in R3 drive muscles that close the jaws. Cessation of firing in 
the BCN, caused by applying electrical current to the BCN (between the arrows), 
stops the oscillatory activity, but that the oscillations recover despite the fact that 
the BCN remains quiescent. The BCN is one of about 20 neurons that comprise 
the oscillator (CPG) for opening and closing the jaws. M is one of the motor 
neurons in the mouth nerve MN. The SOVN carries axons of nerves that control 
muscles in the lips and mouth. Modified from (Mpitsos & Cohan, 1986b). 

Figure 3. Dissipative processes in a computer simulation of periodic and chaotic 
changes in the concentration of two of the molecular species in a four-species 
catalytic network. Top four traces: time series of the concentrations of molecular 
species XI and X2 before and after a perturbation pulse was applied (asterisk). 
The perturbation was applied by increasing the concentration of XI for one 
integration step and then allowing the network to recover. Bottom two 
illustrations: phase portraits of preperturbed (thick lines) and perturbed post- 
transient responses (thin lines starting at asterisk) in the two regimes. 

Figure 4. Four-dimensional phase portrait showing relationship between four of 
the fixed points in periodic (A and B) and chaotic (C) regimes and the system 
trajectories. The concentration of molecular species XI, X2, X4 are plotted on the 
three axes, and X3 is shown by thickness of trajectory. Circles (spheres) show the 
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location of the fixed points. A: Unperturbed system. B. Perturbation induced by 
injecting extra copies of XI for one integration step. C: Fixed points are not shown 
because they would be obscured by the trajectories. (A and B) are modified from 
(Andrade et alv 1993). 

Figure 5. Dissipative action in the simulation of small biologically realistic 
networks. The network (C) was activated by steady, low-level depolarizing 
current applied to Celll. A: Time series of action potentials obtained from Cell2. 
The activity consists of a 3-cycle in which three intervals between action 
potentials repeatedly appear, as shown by the first seven action potentials. A 125 
msec hyperpolarizing perturbation pulse was presented to Cell2 (marked by the 
dashed line). One action potential escaped during the hyperpolarization. After 
the release of the hyperpolarizing pulse, Cell2 rebounded, generating three action 
potentials in rapid succession, and then relaxed toward the original 3-cycle 
intervals. B: Shows the return map of the original 3-cycle (filled circles) and the 
post-perturbation recovery (open triangles). The numbers in (B) are the same as 
in A, and represent the interval between the numbered action potential and the 
action potential preceding it. C: Structure of the network: the thickness of the 
connections are proportional to the maximal synaptic strengths; the numbers 
show the strengths in milliSiemens. Excitatory synapses (open circles) have a 
reversal potential of 45 mV. Inhibitory synapses (filled circles) have a reversal 
potential of -82 mV. Open and close time constants for both types of synapses are 
3 and 20 msec, respectively. Transmission delays were 3 msec. The simulations 
were run GENESIS obtained from the California Institute of Technology, 
Pasadena, and used squid axon membrane (Hodgkin & Huxley, 1952). 

Figure 6. Attractors may adjust synaptic strengths globally. A: The same network 
that produced the 3-cycle activity shown in Fig. 5. B: Activity-dependent 
emergence of new connection strengths: The network was activated using Celll 
to produce the 3-cycle. After start-up transients were dissipated, Cell2 was 
stimulated tonically in addition to Celll, and all synapses in the network were 
allowed to change using a variant of Hebb's rule. The new synaptic strengths are 
indicated by the thickness of the connection lines between the neurons and by the 
numerical values placed next to the lines (compare A and B). C: A return map 
showing that the new connection strengths generate a 6-cycle pattern (open 
circles) in the firing of Cell2; the original 3-cycle is shown by the filled symbols. 
When shorter or weaker stimuli are presented to Cell2, the synaptic strengths do 
not settle sufficiently into the values required to generate the 6-cycle. The 
synaptic strengths may fluctuate as the interrelated firing patterns of the cells in 
the network seek one gradient or another. The temporal structure of these 
patterns may drift until a strong enough gradient emerges which then forces the 
interrelated strengths of the synapse into some more stable set. The activity 
dependent changes in the synaptic strengths, discussed a little later, used Mike 
Vanier's implementation of Hebbian synapses in GENESIS. 
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Figure 7. Backpropagation training of an artificial neural network sets synaptic 
strengths optimally with respect to one another. Top: Schematic showing a 
network having 1 input neuron, 1 output neuron and n-number hidden neurons 
(h). whi, and woj: synapses on hidden and output units. th{ and tho, thresholds of 
hidden and output units; here, i = 1,..,4. Bottom: Training sets all synapses 
optimally with respect to one another. Dashed vertical line: synaptic strength set 
during training. Curves: Error as a function of changes in a single synapse while 
holding others at their trained values. Network as in Fig. 7. Modified from 
(Mpitsos & Burton, 1992). 

Figure 8. Two-dimensional error surfaces. Same procedure as in Fig. 7 except that 
two synapses at a time were arbitrarily adjusted. The optimum combination of 
synaptic strengths (shown by the asterisk) in the selected synapses (using all 
other synapses at their trained value) is identical to the values obtained during 
training. Note high-error hill, nearly flat plateaus, and the steeply sloping 
gradients of the valley leading to the lowest error point. 

Figure 9. Error gradients in 3-dimensions. Red represents high error, and the 
color change from red to blue shows decreasing error. Same procedure as in Figs. 
7-8, except that now the strength of three synapses were adjusted. A: Low error 
resides somewhere within the block. B: Slices uncover minimum error. The top 
horizontal slice is identical to the error surface shown in Fig. 8, except that the 
image here is rotated -90 degrees. Non-optimal slices show flat gradients. 

Figure 10. High-error space grows exponentially larger than low-error space as 
the number of trainable neurons increases. A: Schematic of the error-surface 
shown in the top horizontal slice of Fig. 9. Central low-error region has been 
made 5 times larger by comparison to the high-error region in the surround. B: 
Increasing to 120 trainable synapses reverses the relative sizes such that the 
volume of the surround-space is about 100,000 larger than the center one; the 
difference is a power function given by (Raft - (Rb)d, where d is the number of 
trainable synapses. 

Figure 11. Thresholds (60 act as a bias that shifts the sigmoidal output functions 
(Outputi) of hidden units selectively to different positions on the activation axis 
(a{) which would only be reached by asymptotic regions of output functions 
when there are no thresholds (thick curve labeled No 6's). aj is the product of 
the synaptic strength and the value of the input signal, less the threshold value. 
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Abstract. The general principles by which a neuron transforms the structure of 

afferent synaptic currents to an output firing pattern are essentially unknown. To 
address this problem we explored the interaction between injected current and the 
intrinsic membrane conductances during the generation of firing patterns. This was 

done by performing perturbation studies in simulations of a simple model neuron 

comprising a single compartment possessing the electrical properties of the well- 

studied squid giant axon as originally described by Hodgkin and Huxley [Hodgkin, 

1952 #750]. The injected current consisted of delta-function current impulses, 
sustained white noise, synaptic current or some combination of these. Three sets of 
experiments were performed: (1) Subthreshold white noise was used to characterize 
the impulse-impedance function (IRF) of the model neuron. (2) Suprathreshold 
white noise was used to obtain the average current trajectory (ACT), which is an 
approximation of the first-order Wiener kernel for action potential (spike) genesis. 
(3) A suprathreshold excitatory postsynaptic current (EPSC) was given as a time- 
dependent source of unimodal. The EPSC provided a test condition for determining 
how the latency of spikes it evoked was influenced by the timing of single current 
impulses. The stimulus/response (i/o) functions obtained from all three methods 
have complex multiphased shapes, indicating that over short periods of time linear, 
subthreshold and suprathreshold responses are governed by the same impedance 
process. These shapes also indicate that there may be considerable degeneracy in the 
transfer of information across synapses. Unlike neurons that are coupled 
by smoothly graded synaptic potentials, the dynamics of those relying on action- 
potential evoked synapses may may not be definable using systems of ordinary 
differential equations, though the numerical integrations generating the dynamics 

are deterministic. 



1 Introduction 

Our knowledge about neurons falls roughly into two main categories. There is a 

private or local world of ionic conductances, and a public or non-local world of action 

potentials and firing patterns, or, in the case of nonspiking neurons, of interneuronal 
communication that occurs via graded potentials. The fact that communication exists 

between neurons implies that some form of information is processed locally and 
transmitted to other neurons globally. For the moment, we use the term "information" 
broadly to mean simply some definable characteristic (or lack thereof) in the afferent 
signal that a neuron receives and in the output that the local processes generate. This 
characteristic may be as simple as the mean firing frequency of an otherwise stochastic 

process, or it may contain complex temporal structure. 
The local and public worlds must be related since the local conductance 

mechanisms transduce extrinsic influences and support the public events evoked by 
them. The general consensus is that the interactions among the local events process 
afferent information within a neuron and export relevant information about the afferent 
stream in a efferent firing pattern to other neurons or to effector organs. Equivalently, 
neurons that do not generate action potentials, use graded potentials to broadcast the 
processed information to other neurons. In the present paper we begin the reports of 

our studies using findings obtained from model neurons that generate action 

potentials. 
The electrophysiology of the single neuron stands at the confluence of these 

private and public domains. The character of this frontier, the laws and principles 
governing communication of information between domains, is mostly obscure to our 
understanding despite work and knowledge from both fields individually. Our 
understanding of the basic mechanisms of electrophysiology come from Hodgkin and 
Huxley [, 1952 #750] who were the first to present a theory of excitable membrane 
potential based on variable specific ionic conductances. These conductances were 
hypothesized to result from the presence, in a virtually impermeable membrane, of 
numerous independent molecules capable of controlling the permeability of specific 

ions through channels in the membrane. 
These postulated channels possessed complicated time- and voltage- sensitive 

characteristics which offered a good quantitative explanation of the action potential and 
subthreshold phenomena. Subsequent work has essentially confirmed the original 
theory. Recordings from single channels has established the relation between the 
microscopic conductances of single channels, on the one hand, and the macroscopic 
conductances and their control parameters, on the other hand, that Hodgkin and 
Huxley described [Patlak, 1991 #881]. The theory of specific ionic conductances has 



been successfully applied to a wide range of bioelectric phenomena such as synaptic 

transmission, sensory generator potentials and hormonal influences on neural activity. 

The study of the public domain, of neuronal firing patterns, goes back to the 

1920s when Adrian [, 1928 #921] showed that changes in the records from vertebrate 

peripheral sensory nerves during stimulation were due to changes in the firing rate of 

single units rather than to changes in their shape. Since then it has become clear that 

firing rate alone is not the only relevant parameter in neuronal firing patterns. It has 

been known for a long time that the firing patterns of neurons are often not random and 

show significant structure [Gerstein, 1964 #916]. Studies in visual systems suggest that 

various types of information about the visual field can be carried simultaneously in the 

firing patterns of single axons in optic nerve [Chung, 1970 #871] and monkey visual 

cortex [McClurkin, 1991 #872]. There are numerous studies showing that the times of 

occurrence of action potentials in many neurons are not independent of one another 

[Nakahama, 1977 #873], and that the degree of dependence varies with physiologically 

relevant variables [Grüneis, 1989 #875; Yamamoto, 1983 #876]. 

It is also known that single neurons can distinguish patterns in the sequences of 

synaptic activity and are potentially able to exploit this structure as a source of 

information. Random or constant-interval stimulation completely changes the firing 

pattern of pacemaker neurons [Perkel, 1964 #878] and computer model neurons 

[Segundo, 1968 #879]. Stimulating nerves with different interstimulus intervals at a 

constant mean rate yields different firing patterns in identified Aplysia neurons 

[Segundo, 1963 #880]. Single sustaining fibers in crayfish visual system are capable of 

carrying information relating to three different types of stimuli, average illumination, 

spatial frequency, and the e-vector of polarized light [Glantz, 1976 #908; Glantz, 1984 

#910; Glantz, 1988 #909]. Subtle changes in subcellular biochemical processes are also 

sensitive to the structure of activity in the afferents to the neuron. For example, in vitro 

and in vivo studies in rat, long-term potentiation (LTP) of rat hippocampal neurons 

exhibits stimulus-pattern dependencies that may have mechanisms in common with the 

LTP induced by the standard procedure of equally-spaced high- frequency stimulation 

[Diamond, 1988 #839; Rose, 1986 #838; Tsukada, 1994 #917]. Moreover, simulation 

studies have shown that dendritic arrays are capable of responding differentially to 

different patterns of synaptic input volleys [Rail, 1977 #911]. 

Such studies indicate that neurons are able both to recognize and to create 

temporal structure in spike trains. These structures appear to have precise relationship 

to the structure of the input signal. For example, information about the movement of the 

visual field of the blowfly is recoverable from the structure of the firing pattern of visual 

units [Bialek, 1991 #870]. The amount of information that is extractable from the firing 

patterns using linear filter models can resolve movements smaller than the sensory field 

of single visual units, and approaches the noise level of the optic detectors. Recent work 



on another arthropod, the crayfish, lends further support to the notion that the firing 
patterns for motion detection may be describable as linear filters [Glantz, 1994 #919]. It 

would seem, therefore, that linear filter models of the neuron might provide a bridge in 
our understanding of the relationship between the local computational properties of the 

neuron and firing patterns that they generate. 
The filtering properties of neural membranes have been known since the late 

1930's, and linear models of dynamic membrane conductances [Cole, 1968 #920; Koch, 
1984 #922; Mauro, 1970 #882; Sabah, 1969 #924; Stein, 1972 #925] have established the 

relationship between the conventional Hodgkin-Huxley theory of specific ionic 
conductances and complex impedances of neurons and other excitable cells. However, 

the systems of conductances supporting bioelectric phenomena in neurons are 
unambiguously nonlinear. Linear models are only applicable over narrow ranges of 
membrane potentials, usually well below threshold (e.g., see [Koch, 1984 #922]), 
whereas much larger ranges of voltage excursions appear to be important or necessary 
for information processing in spiking neurons. For this reason, linear filter models are 
not often considered generally useful for describing spike generation or single neuron 
computation. Nonlinear models have been developed to account more accurately for 

the structure in spike trains of biological systems, e.g., [French, 1989 #888]. 
Nevertheless, the empirical success of linear filter models to account for the 

input/output relations in many neurons [Bryant, 1976 #815; Enroth-Cugell, 1983 #972; 
Frishman, 1987 #973; Krause, 1980 #971; Sakuranaga, 1985 #844; Sakuranaga, 1985 #843; 
Sakuranaga, 1983 #845], and the linear-filter decoding of the spike trains of motion 
detectors in the blow fly visual system [Bialek, 1991 #870], suggest that linear filter 
models may be more generally applicable than is usually believed. The presence of 
high-precision information in the temporal structure of firing patterns in the blowfly 
motion detectors suggests the presence of robust membrane mechanisms that preserve 
and respond to small changes in structure of input signals [Bialek, 1991 #870; Bialek, 
1993 #915]. Although questions of the effects of nonlinearities must be addressed, the 
work of Guttman, Feldman and Lecar [, 1974 #914] on squid axon membrane suggests 
that violations of linearity produce only weak in the filter properties. The linear 
approximations to nonlinear activity in cockroach tactile sensory hairs [French, 1989 
#888] suggest the same conclusion. Linear analytical methods often provide excellent 
characterizations of invariant measures of the nonlinear dynamics generated by systems 
of coupled differential equations, e.g., [Andrade, 1993 #635; Canavier, 1990 #517; Wolf, 
1985 #55]. Taken together such studies suggest that it is reasonable to revisit the subject 

of how linear filter models of membrane mechanisms may be involved in the 

computational functions of neurons. 
In the series of studies reported here we inquire into plausible explanations of 

how subthreshold linear filter interactions in neuron membrane can govern the 



structure of nonlinear processes comprising spike trains. We show how a minimally 
complex membrane model can both preserve and transform temporal information. We 
suggest that these preserving and transforming effects may be largely explained by a 
linear filter model operating near a threshold nonlinearity. We then introduce some 

basic consequences of the insights concerning single neuron computation which will be 

considered more fully in later publications. 

2. Methods 

2.1 The simulation neuron 

All of the computer simulations in this study used SWIM, version 1.5, a simulator 
for real neural networks (Ekeberg, et al., 1990), obtained from the Department of 
Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, 
Sweden. The integrations employed the Crank-Nicholson method. The size of the 
integration steps ranged between 1 and 100 usec, depending on the purpose of the 
experiment. The SWIM source was compiled with GNU gcc version 2.4.8 (Free Software 
Foundation Inc.) using IEEE standard compliant double precision floating point 

arithmetic libraries. 
The SWIM source was modified to accept novel current sources that were not 

part of the original program. The modifications dealt strictly with adding novel current 
sources; none of the integration or other code was altered. These modification include 
the ability to read arbitrary current waveforms from script files, a white noise current 
source, transient current pulses lasting single time steps, synaptic conductances with bi- 
exponential time courses and ionic conductances using the Hodgkin and Huxley 
[Hodgkin, 1952 #750] specifications for squid giant axon. It was also modified to 
perform event triggered signal averaging used in the ACT experiment. A shifting buffer 
containing the recent history of injected current was maintained. When an action 
potential occurred the contents of the buffer were used to update a buffer of sums and 
sum of squares of the recent current history. 

In all cases we modeled a simple spherical neuron comprising a single 

compartment with no axons, dendrites or other added complexities. We used three 
simulation models which differ only in the types of current used to drive the modeled 
neuron. In one, white current noise was used. In the second, a generic simulated 
presynaptic neuron was used to generate an EPSC in conjunction with a single current 
pulse, lasting one integration step, located at various times in the simulation epoch. In 
the third case the neuron was driven by current waveforms obtained from edited 
portions of the ACT, obtained from a previous white noise simulation, that were read as 

a current command script. 



The neuronal membrane parameters, described below, are taken verbatim from 

the description of the squid giant axon at 6.3 C° by Hodgkin and Huxley [Hodgkin, 

1952 #750]. The parameters listed below were normalized to take into account the size 

of the neuron. 

Model Neuron Parameters: 

a^ Constant Parameters 

Radius of Neuron: 44 x 10'6 m; Area = 6.082 x 10"9 m2 

Membrane capacitance: Cm = 0.01 Farads/m2 

Maximum conductances: gNa = 1200 S/m2 ; gK = 360 S/m2; gUak = 3 S/m2 

Reversal potentials: ENa = 0.055 V; EK = - 0.072 V; EUak = -0.0604V 

b) Voltage-Dependent Characteristics of the Squid Giant Axon 

dV     ^Na + IK 
+

 IL 
+

 h + hyn 
dt~ C, (1) 

m 

^= -^-[gNa(y-ENa) + gK{V-EK) + gL(y-Ej) + /,- +1^] (2) 

&= Mn?hgm{V-ENa) + n*gK(V-EK) + g^V-Ej) +/,- +1^] (3) 
ai    om 

^=am(l-m)-ßmm (4) 

^L=ah(l-h)-ßhh (5) 

<kL=an(l-n)-ßnn (6) 

d Steady State Resting Parameter Values 



m = 0.0355402 
n = 0.260777 

h = 0.705487 
Em =-0.0631V. 

The functions and parameters used to obtain the rate constants (am, ßm, ah, ßh, 

V-n, ßn) for opening and closing of the ion gates (m, h, n) were identical to those 

described by Hodgkin and Huxley [Hodgkin, 1952 #750]. 

2.2 Synoptic conductances 

The time course for the EPSC was modeled to roughly resemble the squid giant 
synapse, as described by Llinas, Steinberg, and Walton [Llinas, 1980 #831]. With the 

parameters given below, the model synaptic conductance reaches a peak of 
approximately 25% of its maximum value (gsyn) after about 0.5 msec. The maximum 

synaptic conductance was chosen by trial-and-error to be just superthreshold at the 

normal resting potential. 

EPSC Parameters: 

Reversal potential (ESyn): 0 volts. 
Maximum conductance (gsyn): 3.8xl0~8 Siemens. 

Delay after presynaptic action potential: variable. 
EPSC activation time constant (xi): 0.00035 sec. 
EPSC inactivation time constant (i2): 0.0007 sec. 

The time course of the synaptic current is by the following equations, where V is 
the time-dependent membrane voltage: 

l^gsynW-Esy«) (7) 

gvn = gsynl(l-e-t/T^-V-e-t/T2)\ (») 

2.3 Average current trajectory (ACT) 

Use of the ACT asks the questions, given the occurrence of a sequence of action 
potentials, what can we predict of the history of the applied current that lead to these 
action potentials? One could ask the opposite question, given the history of the applied 
current, what can we predict of firing of a neuron? For the present paper, we restrict the 



presentation to the first question. The term "trajectory" refers to the time course of the 
shape of the average membrane current that precedes the generation of action 
potentials. The methods used here closely follow those of Bryant and Segundo [Bryant, 

1976 #815] who examined the ACT in identified neurons of Aplysia. 
To obtain the ACT, low-level Gaussian white-noise current X(t) was injected into 

a neuron at each integration step, and only one neuron was used; i.e., it was not 
synaptically activated. The response Y(t) of the membrane to the applied current was a 

function only of the injected current X(t). Y(t) was converted to a delta function 
representing the sequence of action potentials that were generated over time, by the 

following algorithm: 

Y{t)=ZS{t-t} (9) 

1       I 0, otherwise, 

where ti represents the time of occurrence of action potentials which were detected 

using a threshold of -30 mV in the membrane potential. 
The ACT was calculated using an averaging function S(x) that correlates the 

occurrence of action potentials with the membrane current that precedes them: 

S(T)=ir|j|x(r,-T;). (H) 

N represents the total number of action potentials in the recorded spike train, ti 
represents the time at which each action potential occurs, and ti is the time preceding 
the action potentials. Here xj = At, for; = 2,...,M, where At is the integration step size. 

The total observation time T before the action potentials is defined by T = MAt. 
To compute the ACT, Six) is evaluated for all N action potentials by summing all 

of the currents injected at each xj Therefore, the ACT shows the average current injected 

at a series of M points before the appearance of an action potential. Thus, the ACT is 
both a normalizing and an averaging process. It scans all records for the occurrence of 
action potentials, sets that as time "zero" and then examines the average current across 

the membrane for a series of times preceding the action potential. 
Depending on the length of time one uses to obtain the ACT and the firing 

frequency, one action potential can interfere with another. To avoid such artifacts, we 
selected the noise variance of the injected current such that the interval between action 

potentials was usually greater than 50 msec, the interval used to calculate the ACT. 
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Action potentials were excluded from the analysis that were preceded by another action 

potential by less than 70 msec. 

2.4 Complex impedance (Z) and the impulse response function (IRF) 

The complex impedance Z is the frequency domain image of the ratio of the 

complex frequency domain image of voltages with respect to the complex frequency 
FFT(V(t)) 

domain image of the applied current: Z =        v,     '.  FFT is the fast Fourier transform. 

V(t) is the membrane potential time series calculated by SWIM in response to the 

applied white-noise current I(t), which is described below, both of which are in the time 

domain. Signal processing routines were taken from Stearns and David [Stearns, 1993 

#864]. Our methods follow closely after Puil, Gimbarzevsky, and Miura 

[Gimbarzevskey, 1986 #865]. The reported impedances are averages of ten 60 msec 

"sweeps", each sweep consisting of a different simulation run. A different set of random 

signals was used in each simulation sweep. 

The IRF is obtained from Z by simply calculating the inverse Fourier transform 

to transpose the complex impedance vector to the time domain. These white-noise 

injection methods were the same as those used to obtain the data used for the ACT, 

except that the mean noise level was kept low enough to prevent the generation of 

action potentials. A second difference is that while the data for the ACT was obtained 

using continuous simulations to obtain tens of thousands of action potentials, the 

method for obtaining the data for the IRF used short 60 msec sweeps. 

2.4 Random current 

The white noise was generated using the ranO and gasdev functions from [Press, 

1988 #836], pp. 207-208, which uses the algorithm of Bays and Durham described in 

[Knuth, 1981 #835]. The random number generator was seeded with the current clock 

time when the program was run to avoid repeatedly using the same random series. This 

algorithm produces a normally distributed deviate with zero mean and unit variance. 

SWIM was modified so that at each integration step of the simulation, a new current 

intensity was selected from a Gaussian distribution with an appropriately specified 

variance. Different variances were used under different circumstances to control the 

range of the current signal. A variance of 2xl0"12 amps was used for estimating the 

membrane impedance and 0.9 xlO"9 amps was used in the ACT experiment. The former 

produced strictly subthreshold noise and the latter produced occasional action 

potentials. 
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The membrane of the simulated neuron acts as a low pass filter and its transfer 

function falls rapidly between 10 and 100 Hz. The components of the stimuli with 
frequencies above 100 Hz have negligible effect on the membrane potential but are 
susceptible to phase distortions. To reduce this source of noise and restrict the signal 
power to a relevant range of frequencies in the experiments estimating the membrane 
impedance, we used a three-stage Butterworth low-pass filter [Stearns, 1993 #864] with 

a cutoff frequency of 400 Hz. The white-noise current used to obtain the ACT were 
filtered using a seven-point centered weighted running average to reduce large 
transients which made averaging difficult. Since the ACT was obtained using 

integration steps of 0.050 msec or less, whatever correlations the filtering produced 
were maintained within short time spans of only about 0.350 msec. In both cases blocks 

of random numbers were calculated and filtered in chunks to provide consistent and 

smooth filtering properties over the course of each simulation run. 

3. Results 

We are interested in understanding how current signals affect the activity of 
neurons. In a general sense, the effects produced by a perturbing current signal depend 
on two independent factors. The structure of the current (the current amplitude over 

time) and the electrical characteristics of the membrane. 
The structure of the current is largely determined non-locally by the network in 

which the neuron is embedded or by the nature of the pulses that are applied 
experimentally. However, the local membrane characteristics, which are themselves 
complexly varying dynamic products of history, determine how the structure of the 
current is processed by a neuron at any given time. It is therefore necessary to consider 

the two factors together as a single functional unit. 
We choose to restrict our attention here to stable cells at rest with no sustained 

activity resulting from intrinsic pacemaker conductances, conspicuous bursting 
tendencies or constant superthreshold depolarizing current. Neither do we concern 
ourselves here with overwhelmingly large synaptic currents. Instead, we look at the 
interactions of combinations of simple, transient currents with small to intermediate 
magnitudes in otherwise quiescent neurons where the sole source of afferent 
information is contained in the structure of the current signal. 

It is first necessary to appreciate the degree to which different components of a 
current signal can be treated unequally. Synaptic interactions are often informally 
referred to as "spatial and temporal summation." However, the membrane is a variable 

and complex electronic filter and the relation between current and voltage is 
substantially more complex than this suggests and involves frequency-dependent 
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distortions of signal amplitude and phase. This relation is described by the membrane 

impedance. 

3.1 Membrane Impedance 

Impedance relates voltage to applied current in the same way that resistance 

relates voltage to current in Ohm's law except that while Ohm's law applies only to 

circuits comprising constant, frequency-insensitive components (resistance), impedance 

also describes the voltage distribution across and current flow among frequency- 

sensitive components (capacitance and inductance). The effects of applied currents and 

their combinations on membrane potential cannot be understood without knowing the 

impedance of the neuron. As a basis for subsequent studies, we start with an 

examination of the impedance characteristics of the Hodgkin-Huxley model under the 

conditions that we shall place it under the various perturbation experiments. 

In order to measure the impedance of the model neuron it is necessary to 

measure the impedance at many different frequencies since any circuit which contains 

reactive components, such as a neuron membrane, will have different impedances at 

different frequencies. Because impedance is a function of frequency and not a single 

number like resistance, this analysis is typically performed in the frequency domain 

where impedance is a complex quantity. Resistance, the component of impedance 

which does not change in response to changes in current, is the real part and reactance, 

the component of impedance which reacts to changes in current, is the imaginary part. 

Impedance is usually presented as impedance-plane plots (Fig. 1 A and C), where 

resistance is plotted against reactance at all frequencies, and as individual magnitude 

(Fig. IB) and phase angle (Fig. ID) vs. frequency plots. The two representations are 

related by virtue of the fact that each point on the impedance plane can be represented 

as a vector drawn from the origin to the point; its length is impedance magnitude, and 

its angle is the phase angle of the impedance. The phase angle can be positive or 

negative and serves to distinguish the two classes of reactance depending on whether 

its phase angle is positive (inductive) or negative (capacitive). 

The two types of graphs complement each other. The points along the curves on 

the impedance plane are ordered according to frequency with the highest frequencies 

near the origin. Progressively lower frequency impedances are encountered by 

following the curve counterclockwise from the origin until the other end is reached 

which corresponds to the zero frequency or DC resistance of the membrane. This shows 

nicely how impedance changes smoothly and continuously over a range of frequencies 

but provides no exact information about those frequencies. That information is 

provided by the other graphs where frequency is the independent variable and can be 

read directly. 
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In practice impedance is measured by injecting the neuron with some time 

varying current signal, collecting the voltage response of the neuron to it and then 
FFT{V(t))     ,        7.   ., 

calculating the impedance according to the equation Z = FFT^ >wriere z 1S me 

complex impedance, FFTO is the fast Fourier transform function (SPFFTRO) in Stearns 

and David, 1988) which converts a time domain vector into its complex frequency 
domain image, V(t) is the voltage time series observed in response to I(t), the current 

stimulus time series. White noise is used here as the stimulus source because it is 

convenient and contains nearly equal signal power at all frequencies. 
At least ideally. Any single finite sample of white noise will be incomplete with 

unequal power at different frequencies. To mitigate this finite sampling artifact the 
results presented here are the averages of ten independent estimations of Z. Examples 
of estimates of the model neuron impedance are shown in Fig. 1. They were obtained 
under three different conditions: normal resting membrane potential with 0.1 msec 
model time steps, normal resting membrane potential with 0.05 msec model time steps, 
and hyperpolarized resting membrane potential with 0.05 msec model time steps. 

FIGURE 1 HERE 

At its normal resting potential the membrane acts as a pure resistor only at the 
two frequencies 0 and 20 Hz, indicated by the zero phase angle axis crossings in Fig. ID. 
These points correspond to the two intersections of the resistance axis in the impedance 
plane plots (1A and 1C). Changing the polarization of the membrane significantly alters 
its impedance. This is apparent when comparing the impedance plane plots of the data 
from normal, depolarized and hyperpolarized membranes in Figure 1 A, where the 
hyperpolarized membrane exhibits only reactive impedance except at 0 Hz. At the 
normal resting membrane potential the magnitude of the reactance rises from its DC 
value to peak at 45 Hz (Figure IB) and then falls off rapidly. Depolarizing the cell as 

little as 3 mV significantly decreases the low frequency impedance, sharpens the 
impedance peak and shifts it up to 55 Hz (Fig. IB) Hyperpolarizing the cell as little as 3 
mV noticeably the low frequency impedance, broadens the impedance peak and shifts it 

down to about 30 Hz. Above 100 Hz the three impedance curves are similar. 
Peaked impedance curves such as those in Figure IB are characteristic of a 

damped oscillatory circuit which is indicative of combined inductive and capacitive 
elements, e.g, see [Mauro, 1970 #882; Sabah, 1970 #928; Sabah, 1969 #924]. The reactance 

of the normal membrane is largely inductive at and below 20 Hz, as shown by the 
positive reactance in Figure ID. Three mV depolarization shifts the crossover point to 40 
Hz. At higher frequencies and increasing polarization, the reactance is increasingly 
dominated by capacitance, as shown by the negative swing of the phase (Fig. ID). A 



14 

pure RC circuit will exhibit a semicircle in an impedance plane plot. The deviations 

from this form in 1A and 1C show that even though the net reactance is capacitive, there 

is a smaller but still significant inductive component at the hyperpolarized potential. 

As the frequency of the stimulus signal increases capacitance shunts the current, 

and the voltage response falls off rapidly above 45 Hz, the resonant impedance peak at 

rest (Fig. 1). At normal and depolarized resting potentials, and at low frequency 

stimulation, the membrane impedance is significantly influenced by inductive reactance 

arising from the dynamics of the sodium and potassium conductances. 

Within the modeling parameters used in this study the integration time step size 

does not introduce artifacts at functionally relevant frequencies. It can be seen in Fig. 1 

that the only effect of changing the time step from 0.050 to 0.100 msec is to introduce 

some phase distortions at frequencies above 300 Hz while most of the voltage signal 

power is below 200 Hz. In the remaining experiments time steps of 0.050 msec or less 

will be used. 

3.2 The Impulse Response Function (IRF) 

The IRF is the time domain image of the impedance and shows a three-phase 

time course of impedance change that would occur in the membrane in response to brief 

small current impulses. The significance of the IRF stems from the fact that the voltage 

response to any current signal can be calculated by convolution with the IRF. For a 

single current impulse the voltage response will be the IRF times the amplitude of the 

current impulse. So the IRF indicates how any current signal will be transformed and 

drawn out in time. 

It is obtained by calculating the inverse Fourier transformation of Z (SPIFTRO) in 

Stearns and David, 1988). The IRF from the two experiments with 0.05 msec time steps 

discussed above are shown in Figure 2. The two curves show clearly why inductive 

filters are considered as damped oscillators. In both cases a single current impulse 

causes an oscillation in the membrane impedance which diminishes over time. The 

membrane potential shows the same damped oscillation in response to a small current 

impulse (Figure 9 A and C). The depth of the negative impedance trough decreases with 

hyperpolarization and later than at the normal resting potential. 

FIGURE 2 NEAR HERE 

In an ideal linear filter these damped oscillations will continue indefinitely. In 

these simulations the ability to detect them is limited. The IRFs merge into ambient 

noise after 20 to 30 ms. The important observation about the IRF, which we shall 

examine further in the ACT, is that information about extremely small perturbations 
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(maximum amplitude of only about 1.5 x 10-12 Amps producing maximum voltage 

excursions of only 0.025 mV (Figure 1 legend)) is retained and still detectable over many 

milliseconds. 

3.3 The Average Current Trajectory (ACT): Using the output stream as the frame of reference 

The relevance of the membrane impedance, as it was described above, to the 

behavior of the membrane assumes that the membrane acts as a linear filter. This 
means that the state of the membrane at any given time is the sum of the effects of prior 

events. The assumption is only valid for a small range of potentials within about 5 mV 

of resting in squid axon [Koch, 1984 #922; Sabah, 1969 #924; Mauro, 1970 #882]. The 
current pulses we used were well within this range, and far from threshold, since the 
maximum voltage excursion to obtain the IRF was 0.025 mV above the -63 mV resting 

potential, approximately 10 mV below the -54 mV firing threshold. 
The membrane conductances in general, especially near threshold, comprise a 

nonlinear system, and the steady-state impedance over the range of voltages through 
which the membrane potential must journey in order to achieve threshold was shown to 

change significantly. One should not expect that the IRF, which is obtained near the 
resting potential, will be a reliable predictor of the behavior of the membrane over the 
range of voltages up to its firing threshold. Therefore, inasmuch as we are interested in 
the relation between current and the timing of action potentials, a means of ascertaining 
how signals will interact and combine over this range is needed. The ACT described in 
this section correlates the occurrence of action potentials with the recent history of 
current perturbations. This provides a direct empirical measure of the relation between 
the current and the spike generating mechanism which can be compared to the IRF. 

As in the case of the IRF, the neuron was activated by applying randomly 
varying current. With the parameters used here the cell exhibited an overall firing rate 
of 16 spikes per second (45,781 spikes in 2,849.1 seconds). The ACT was acquired from 
30,000 spikes (65.5%). The remaining 34.5% were rejected because they were less than 50 
msec apart. Fig. 3 shows an excerpt of a train of action potentials obtained in a sample 

simulation run. The ACT is shown in Fig. 4. 

FIGURES 3 & 4 HERE 

There are three statistically significant phases in the ACT time course, noted 
numerically, showing a damped oscillation. The ACT is an average correlation function 
representing the average or most likely current trajectory "chosen" by the neuron from 

the current waveforms presented to it. Edited portions of the ACT were used as 
stimulus waveforms to ascertain the functional significance of the three phases. It can 
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be seen from Fig. 5 that the early positive phase-3 produces no change in the voltage 

response that is observable at this resolution. The middle negative phase-2 is not 

necessary to evoke an action potential, but it does accelerate the rise of the action 

potential and reduce its latency. The late positive phase-1 alone is sufficient to produce 

an action potential, but the latency is prolonged with respect to the complete ACT 

stimulus waveform. The ACT therefore is not a minimal threshold current just 

adequate to evoke an action potential. It is a series of synergistic components which 

support each other. The phases of the ACT are temporally correlated with the three 

phases of the IRF which is a subthreshold function. 

FIGURE 5 NEAR HERE 

3.4      Modified-ACT: Combining sSbthreshold Random Noise with a Spike-Evoking EPSC to 

Allow Changes in the Frame of Reference in Assessing Spike Trains 

3.4.1    Information obtained using modified-ACTs from the reference of the output 

With the ACT, noise was the sole driving influence. In order to understand how 

impedance responds to combinations of current that might be encountered by a neuron 

in a circuit, we added a moderately strong synaptic event to represent a deterministic 

aspect of the network's business. It is deterministic because of the constancy of its time 

of presentation, amplitude, and shape. The aim is to influence this suprathreshold, 

deterministic process with subthreshold random stimulation. 

Since there are now two independent stimulus sources, the noise and the 

synaptic current, there are two ACTs; one of the average current trajectory of the noise 

channel, and one of the synaptic current channel. Although the complete stimulus 

waveform is the sum these currents, we shall treat them separately here because they 

provide independent sources of information with which to analyze the response of the 

membrane. Moreover, because the noise is so much smaller in amplitude than the 

synaptic current, any details about the noise source, and of the relationship between it 

and its affect on the membrane, would be invisible if only the sum were observed. We 

shall refer to this subthreshold noise ACT as the modified-ACT to distinguish it from 

the standard ACT in which the noise is suprathreshold, and which did not involve the 

activation of the synapse. The synaptic component of the current trajectory will be 

referred to as the synaptic-ACT. 

In these experiments, 35 ms epochs of time, were simulated rather than a single 

long simulation as used for the ACT above. The noise was entirely subthreshold. In 

each simulation an EPSC of constant magnitude was presented at a constant delay into 

the simulation. In the absence of noise, the EPSC evoked an action potential at 30.96 ms. 
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With the addition of noise, the latency of the action potential varied since each 35 ms 

sweep of the simulation used a different set of randomly generated noise pulses in 
conjunction with the EPSC. Only one or action potential was obtained in an epoch 
(sweep); in a few cases the action potential failed. Two intensities of noise were used to 
examine the modified and synaptic ACTs under different membrane conditions. With 
the lower noise intensity, 82,503 simulation sweeps were conducted in which there were 

9326 action potential failures (0.75%). We refer to these failures as class F "latencies". 

With the higher noise intensity, 82,503 sweeps were run in which there were 9,326 
failures (11.3%). In both experiments, 60,000 action potential latencies were used to 
compute the modified and synaptic ACTs. The method was the same as described for 

the standard ACT. 
The modified-ACTs for the two noise levels are in Fig. 6A, and the synaptic- 

ACTs are in Fig. 6B. The shapes of the synaptic-ACTs differ from the synaptic current 
because from one sweep to another, different noise schedules were given that produced 

variation in the temporal position of the action potential with respect to the time of 

occurrence of the EPSC. 

FIGURE 6 NEAR HERE 

The most obvious differences between the modified-ACTs and the standard ACT 

in Fig. 5 are a difference in magnitude and a change in shape. The late positive hump in 
the modified-ACTs is almost a thousand times smaller, narrower and asymmetric 
compared to the standard ACT. In low noise, the ratio of the magnitudes in positive to 
negative components in the trajectory of the modified-ACT are nearly equal. In high 

noise, the positive phase is larger and more nearly symmetric than in low noise. The 
phase relation between the synaptic- and modified-ACTs changes with noise. The 
zero-crossing point of the low-noise modified-ACT falls near the peak of its 
corresponding synaptic-ACT, whereas the crossing point of the high-noise modified- 
ACT is displaced approximately 4 ms earlier with the peak of its corresponding 

synaptic-ACT. 
As noise increases, the EPSC plays a diminishing role in driving the cell, and the 

modified-ACT begins to approach in shape and magnitude what was seen previously 
with the standard ACT. There is also a progressive loss of information about the 
synaptic current as the noise increases. This is a reciprocal relation: The information 
about the noise and the synaptic current provided by observing the action potential 

latencies are inversely related. As the noise approaches zero, the overall ACT, 
consisting of the combined noise and synaptic currents, approaches that of the timing, 

shape and amplitude of the EPSC. 
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3.4.2    Using the modified-ACT contingently: observing spike trains from the inut frame of 

reference 

The standard method of constructing the trajectories, ignores an important 

source of information about the circuit in which the neuron participates (We use the 
term "circuit" to refer to the temporal structure of any input signal that might occur 
naturally or be applied experimentally). The timing of the action potential in the driven 
cell depends on the relation in the sequence of the driving current-sources with respect 
to each other. This temporal information is invisible when looking only at the 

postsynaptic neuron and ignoring the circuit driving its activity. The histograms of 

postsynaptic spike latency, as measured with respect to the start of the simulation, 

indicates the extent of this information (Fig. 6 C and D). Noise produces a slurred 
distribution of the action-potential latencies over a wide range, and the distribution is 

sensitive to the level of the noise. As the noise intensity increases there is a shift of the 
mean to shorter latencies, a broadening of the distribution, and an increased frequency 
of failures. Each bin of latencies represents the effect produced by particular sets of 

noise signals. 
This additional information, which may be gained by using the input circuit as 

the frame of reference, causes a subtle but important change in the evaluation of the 
observations. With the standard ACT, our frame of reference is bound to the action 
potential in the postsynaptic neuron. But using the contingency of the latency 
histograms our observations are bound to the time frame of the afferent stream because 
each histogram bin represents the stimulus conditions that generate a class of latencies. 
An observer can exploit this binding information by collecting a family of ACT's, one 
for the set of current impulses associated with a given latency bin rather than a single 
ACT as was done before. Since the spike-evoking EPSC is used, these ACTs are 
modified and contingent. To distinguish them from other averaging methods above, we 
refer them as modified contingent ACTs (modified-CACTs). 

In Fig. 7 we construct the histograms so as to divide the range of the 60,000 
latencies in the low- and high-noise experiments into regions of approximately equal 
occupancy. These boundaries are used as criteria for collecting multiple ACTs where the 
inclusion of a current sweep in a particular class is contingent on the class of latencies it 
causes. In this way, there is one pair of current and synaptic CACTs corresponding to 
each of the five regions of the latency histogram. Since the averaging process is bound 
to the stimulus and not to the postsynaptic action potential, it is possible to collect a 
sixth ACT corresponding to the class, F, of current samples that suppressed action 
potentials. This trajectory is the lowest trace in Fig 7 (A and B) that has the most 
negative current dip near the peak of the EPSC. 
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Under these measurement circumstances, the synaptic CACT becomes a constant 

equivalent to the true EPSC, and is shown by the single synaptic trajectory. Variation is 
restricted to the modified CACTs, but they all consist of scaled versions of the filter 

function that was firsts encountered with the standard ACT shown in Fig. 4. The 
magnitude of the function is proportional to the degree to which the noise changes the 

action potential latency. The peak action potential advancement is caused by the current 

trajectory having the most negative early phase and the greatest positive late phase. 
Conversely, the peak latency retardation is produce by the trajectory having the most 
positive early phase and the most negative late phase. The form of the modified CACTs 
does not change with noise intensity, and neither does its relationship to the EPSC. 

Thus, the various CACTs shown in Fig. 7 accurately reflect the distribution of the 
current trajectories that were presented to the neuron and not the mechanism by which 

the current trajectories were chosen. 

FIGURE 7 NEAR HERE 

It is apparent from this that the sensitivity of the ACTs in Fig. 6 to the amplitude 
of the noise was a consequence of the ignorance of the observer about the timing of the 
postsynaptic action potential with respect to the activity in its driving network and does 
not accurately reflect the constancy and sensitivity of the relation between the two input 
streams (noise pulses and EPSC) and the postsynaptic action potential latency. This 
reflects the inability of an ignorant observer to extract the available information in the 
ACT rather than an absence of information. The results indicate that on the average 
knowledge of the latency of the action potential provides information about the shape 
of the noise that generated it. Conversely, knowledge of the average shape of the 
stimulus trajectory contains information about the latency of the action potential. 

Importantly, the average synaptic current is not significantly affected by the 
noise since because the synaptic event and the averaging process are both bound to the 
stimulus and remain constant. From Shannon [Shannon, 1948 #726] we know that 
because the synaptic current is constant it contributes no information to the observation. 
Thus, the information in the observed variation in the latencies is solely related to the 

shape of the noise current stream near the synaptic current. 
As small as they were, the modified-ACTs in Fig. 6 differed from zero, but the 

average of all of the modified-CACTs in Fig. 7 should be zero since they are properly 
weighted by the averaging process. To resolve this apparent paradox we need to 
remember that the construction of the modified-ACTs depended on the action potential 
as a reference point, and this required that the F-class trajectories be excluded. They 
need not be excluded in constructing the modified-CACTs because the selection method 

was independent of the action-potential reference. 
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The significance of this shift in the frame of reference of the observation can be 

appreciated by constructing modified-CACTs that are referenced to the action potential, 

much as is done in constructing the standard ACT. This shifts the frame of reference 

back to the output stream, but retains the contingency aspect by grouping the latencies 

into discrete ranges according to the latency of the action potentials. So, now the times 

of occurrence of the action potentials are fixed by definition of the construction method. 

The uncertainty that was previously associated with the time of occurrence of the 

postsynaptic action potential is transferred to the interval between the EPSC and the 

postsynaptic action potential. 

The results are shown in Fig. 8. The five histogram bins used in the analysis in 

Fig. 7 were used here to construct modified-CACTs from the reference point of the 

action potentials. Since action potentials are used, F-class trajectories could not be 

constructed. Panels A and C, respectively, show the effects on the modified-CACTs of 

low and high noise. Panels B and D show the synaptic-CACTS for each level of noise. It 

can be seen that the modified-CACTs are the same as the stimulus-bound CACTs in Fig. 

7, except for a translation related to the different spike latencies induced by them. As a 

result of this translation there is a variable causal uncoupling of the postsynaptic action 

potential from the afferent current stream. The duration of the uncoupling varies with 

the latency class of the modified-CACTs and attains a maximum value of about 2.5 ms 

for the longest latency class shown here. From this point of view the system appears to 

be capable of faithfully preserving the information about the relation of noise and 

synaptic currents over variable and relatively long periods of time. If these modified- 

CACTs are averaged together the modified-ACTs observed before for the two noise 

levels in Fig. 6A will result due to the unequal overlap of the offset population of 

trajectories, showing that the information in the modified-CACTs is contained in the 

modified-ACT. It is a matter of how one reads the data, but in reading it one way, one 

losses information that is available from the other. 

FIGURE 8 NEAR HERE 

For this reason, the synaptic- CACTs are no longer constant, indicating the 

relative ignorance about their time of occurrence with respect to the action potential. 

Nonetheless, the relative timing between the synaptic currents and the noise is retained. 

For reference, the curves for both the synaptic- and modified-ACTs are labeled 

numerically, but since the trajectories all progress in succession numerically, only "1" 

and "5" are shown. Using these numbers, it can be seen that although the synaptic- 

ACTs at different positions, they retain the same phase relation to their corresponding 

modified-ACTs. Thus, as in the case of the modified-ACTS, summing the synaptic- 

CACTs in Fig. 8 A and D yields the corresponding synaptic-ACTs in Fig. 6B for the 
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two noise levels, with the appropriate time between the modified-ACTs and the 

synaptic-ACTs. 
The differences in the various ACTs obtained in the presence of synaptic events 

depend on whether the observer is ignorant of presynaptic action potential timing, 

postsynaptic action potential timing or both. It appears that information about the 
driving sources stabilizes and maximizes the information about small amplitude 
perturbations that can be extracted by observing the timing of the action potentials. The 

answer one obtains about the relationship between input stimuli and the action- 

potential output depends in important ways on the frame of reference from which 

questions are constructed to inquire into this relationship. 

3.5 Time Course of Single-Pulse Perturbations on EPSC-Evoked Spike Latencies 

These experiments show that small afferent current signals significantly affect 
action potential timing over long periods of time preceding the action potential. To a 
first approximation the relation is described reasonably well by linear filter models even 
though the range of membrane potentials over which the system operates under these 
circumstances considerably exceeds the range of potentials over which a linear model is 

valid. 
In order to understand how linear relations persist over non-linear ranges of 

membrane potential we look at how the response of control parameters to small, simple 
perturbing currents produce changes in spike timing following an EPSC. The aim will 
be to obtain a better understanding of the local membrane mechanisms that transform 

the input stream into the output stream than is available from the white-noise 

experiments used above. 
In the present series of experiments, the same EPSC that was used above is 

presented at a fixed latency in each simulated sweep. To simplify the analysis, the 
continuous white noise is replaced by a delta function, approximated by a single current 

impulse lasting one time step, is presented at some suitable time during each 
independent simulation while model parameters of interest are monitored. 

Figure 9A contains four superimposed simulation sweeps: (1) The time course of 

the voltage response produced by a single depolarizing (solid line) or (2) a single 
hyperpolarizing (dashed line) current impulse. (3) In the absence of an EPSC, the thick 
solid line shows the voltage time course in response to the current impulse alone, 
displaying the familiar damped oscillation predicted by the IRF. (4) The voltage 
response to the EPSC when no conditioning pulse is presented (dotted line). At this 
magnification, all three EPSPs are shown by the rapidly rising thin solid line that begins 

at 11 ms. The nearly vertical dashed line just before the 20 ms time mark shows the 
descending course of the action potential that was accelerated by the hyperpolarizing 
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pulse. The most important feature of this illustration is that the magnitude of the 
voltage response to the depolarizing and hyperpolarizing pulses is less than 0.2 mV in 
both cases Despite such small amplitudes, it will be shown below that a single pulse can 

affect the latency of EPSP-evoked action potentials that precede the onset of the EPSP by 

as much as 35 ms. 

FIGURE 9 HERE 

The action potential produced by the unperturbed EPSC is shown by the dotted 

trace in Fig. 9B. Despite the weak immediate effects produced by the perturbing 
impulses, the latency is significantly advanced (dashed trace) by the presentation of the 

hyperpolarizing pulse, and retarded (solid trace) by the depolarizing pulse. The 

retardation of the action potential caused by the depolarizing impulse is greater than 

the advance caused by hyperpolarizing impulse of the same magnitude. The voltage 
response to the impulses preceding the EPSC are invisible at the display scale used in 

Fig. 9B. 
Except for the perturbing current impulses, which are an arbitrary imposed 

signal, everything else in these simulations is generated by the dynamics of the model. 
The changes in spike latency must, of course, work through the sodium and potassium 
gate parameters in the simple membrane used here. The evolution of the n and m gate 
parameters underlying the advancement of the action potential induced by the 
hyperpolarizing pulse are shown in Fig. 9 D and E, respectively. The response of the 
membrane potential to the hyperpolarizing pulse shown in Fig. 9A is shown again in 
Fig. 9C for reference. Gate m inactivates rapidly but has largely recovered by the time 
of the EPSC onset while the slower potassium gate n is still near its nadir. This residual 
inactivation which advances the onset of the action potential. 

A full experiment, in which current impulses of various magnitudes were 

presented at 0.25 ms intervals over a 30 ms time span before the EPSC and partially 
overlapping it, is shown in Fig. 10. The time courses of the synaptic conductance and 
the response of the membrane potential to it are shown for reference in Fig. 10 A and B, 

respectively. 

FIGURE 10 HERE 

The solid and dotted lines that appear in Fig. 10C and D, above the membrane- 
potential recording, show the change in action potential latency as a function of impulse 
presentation time for different current magnitudes. The lines are isopleths: i.e., each 
line connects all of the points obtained from impulses of the same magnitude presented 
at the times indicated. The dotted latency-change curves were obtained using 
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hyperpolarizing pulses, and the solid curves were obtained using depolarizing pulses. 

Some of the dotted curves are open. This indicates that the postsynaptic action 
potential was suppressed when the impulses were presented over that range of times. 
Similar sets of curves are shown for the membrane under normal polarization (Fig. 10D) 
and under sustained hyperpolarization (Fig. IOC). The curves for sustained 

depolarization are not shown. 
These curves strongly resemble the filter functions seen earlier with the IRF (Fig. 

2), ACT (Fig. 4) and CACTs (Figs. 7 and 8), and the different phases of the curves in Fig. 
!0 are numbered to coincide with the numbering scheme for the IRF and ACT. Since 

currents are used in these filter functions and latencies are used in Fig. 10, the 
deflections of the i/o curves in Fig. 10 D have the opposite deflection relative to those 

seen earlier. For example, the solid-line curves in Fig. 10 A, correspond to the 
trajectories in Fig. 7 that have positive current deflections just after the peak of the 
EPSC. Similarly, the solid-line curves in Fig. 10 D have inverse deflections by 

comparison to the ACT shown in Fig. 4. 
Overall, there are two major phases of opposite effect. The larger phase peaks 

about 4 ms before the normal action potential and the earlier, smaller and inverted peak 
at 19 ms, 12 ms before the action potential. Times are approximate since as the spike 
latency changes the time from any feature on the curve to the start of the action 
potential will change with it. This is the same distinction that was made earlier with the 
stimulus-bound and action potential-bound CACTs. This illustration adopts the 
afferent-stream frame of reference. As seen before in the CACTs the maximum 
perturbing influence occurs at 26 ms, a little less than 1 ms after the peak EPSC. There is 
a null point at 22.44 ms where no current has any detectable perturbing influence on the 
action potential latency which corresponds to the crossover points of the stimulus- 
bound CACTs. Also like the CACTs, perturbing influences which tend to retard the 
occurrence of the action potential are stronger than those which advance the action 
potential. A given depolarizing current impulse at 26 ms advances the action potential 
less than a hyperpolarizing impulse of the same magnitude will retard it. The disparity 
is seen most easily with the ability of the hyperpolarizing impulses to retard the action 
potential by several ms while depolarizing impulses of the same magnitude are unable 
to advance the action potential more than 1 ms over the range of magnitudes reported 

here. 
A constant hyperpolarizing current changes the i/o space as expected from the 

IRF. The null point is moved to an earlier time and the early phase is prolonged and 
reduced in amplitude compared to the late phase. Notice that the decay of the late 
phase (26-31 ms) does not change during hyperpolarization. The broadening of the late 
phase peak is accomplished by a broadening of its rising phase which moves the null 

point to an earlier time in the sweep. 
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A third, earlier, phase in the isopleths of Fig. 10D, noted by "3", is visible under 

expansion of the vertical axis, but becomes increasingly larger as the membrane is 
depolarized (not shown). Thus, the span of preconditioning history with detectable 

influences on the timing of the action potential can easily reach 30-35 ms into the past 

before the onset of the EPSC, depending on the polarization of the membrane. 
The experiments shown in Figs. 2, 4, 6-8 and 10 have addressed a wide range of 

response characteristics of the membrane. The IRF, as used to generate the results 
shown in Fig. 2, involved sufficiently weak stimulation that the membrane remained 
within its linear response range. The random current used to generate the ACT (Fig. 4) 

forced the membrane into its non-linear range. The EPSC used to obtain the modified- 
ACTs (Fig. 6) and the modified-CACTs (Figs. 7,8) also operated over the non-linear 
range while the noise which perturbed it was within the linear range. Similarly, the 

isopleths in Fig. 10 were obtained with current impulses which by themselves would 
not exceed the linear range of the membrane. The EPSC acts as an amplifier such that 
the small perturbations cause significant changes in the latency of action potentials. 
Under all of these conditions, the history of conditioning effects appear to have similar 

temporal structure. 

3.6 Perturbation and time-evolution of gates m ,h , and n 

The structure in the history of these conditioning effects must, as noted above, be 
related to the time and voltage dependencies of the ion gates in the Hodgkin-Huxley 
model. Figure 11 B-D shows the m and n gate dynamics that produce the multiphased 
i/o curves. Figure 11A shows two isopleths, one obtained using +10 x 10"° Amp pulses, 
that retard the latencies over the first part of the curve and then advance them, and one 
using -10 x 10"° Amp pulses that initially advance the spike latencies and then retard 
them. There are five labeled points of interest placed on the curves to mark important 
locations. Point a represents the normal or unperturbed condition. Point b is placed at 
19 ms, the presentation time at which the hyperpolarizing impulse produces its 
maximum advancement of the action potential. Point c is at 22.44 ms, the null point, 

where current impulses produce no change in action potential latency. Point d is 
placed on the baseline at 26 ms. It belongs on the -10x10"°' isopleth but at that 
presentation time the action potential is suppressed and that region of the isopleth does 
not exist. Point e is near the terminal point of no effect where the action potential is no 
longer susceptible to perturbing influences. It is shown at 30 ms but is really somewhat 
later just before the moment where the membrane potential normally crosses the 
criterion detection threshold (-30 mV). In the absence of perturbing influences the 
membrane potential crosses that threshold at 30.96 ms (horizontal dashed line). The 
EPSC begins at 25 ms. In the following discussion, we examine the results of the 
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experiments using -10 x 10"9 Amp impulses to examine how the ion gates are related to 

the isopleths. 

FIGURE 11 HERE 

The other three panels in Fig. 11 show the evolution of the potassium activation 

gate parameter n and the sodium activation gate parameter m during three 
representative experiments. We first discuss the general features of these diagrams, and 

then go in to the details of each feature. 
Points relating to the labeled points in Fig. 11A are placed on the trajectories. In 

all panels, the dotted line is the trajectory from the simulation with the EPSC alone; it is 
the unperturbed or control trajectory. The other trajectories are the result of paired 
pulse/EPSC stimulations. The dashed line is the trajectory resulting from the simulation 
in which the impulse was presented the at 26 ms. This trajectory is launched from the 
same point as the control trajectory, so the high-resolution graphs of the launch points 
show a combined trajectory made up of dots and dashes. The solid line is the trajectory 
from the simulation where the impulse was presented at 19 ms. Thus, the illustrations 
exhibit one normal (or control) and two extreme trajectories, the maximum retardation 
(dashed line) and the maximum advancement (solid line) of the action potential. The 
trajectory that results from the presentation of the perturbing impulse alone is shown as 
solid-line arc. In all cases, the sodium gate activation parameter m is presented on the 
vertical axis and the potassium gate activation parameter, n, is shown on the horizontal 

axis. 
The significance of these graphs is that they constitute a reduced phase space 

representation of the underlying dynamics. By showing the relation between dynamic 
variables as the system evolves, the phase space images are especially useful for 
understanding how the variables interact to produce the observed behavior. The m-n 
plane is a reduced phase space because it is incomplete. A plot of the complete four 
dimensional phase space (V,tn,h,n) is not feasible and an incomplete or reduced 
representation of the phase space is needed. The variables are not entirely independent 
of one another [Kepler, 1991 #958; Fitzhugh, 1961 #926]. Because V and m behave 
similarly, and because h and n behave similarly, we use a reduced phase-plane 
constructed from one variable from each pair for clarity. This is sufficient for exploring 
the dynamics. It is incomplete, but it is adequate as a tool for assisting thinking about 
the underlying process where subthreshold perturbations affect the generation of action 

potentials. 
Figure 11B shows a medium close-up of the m-n phase plane. Time is an implicit 

parameter and the general flow is from the bottom left to the upper right as the sodium 
and potassium activation parameters increase during depolarization. The curves 
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continue their paths off the graph upward and to the right as the action potential 

progresses, leading eventually in a clockwise fashion back to the original resting state at 

point a after the action potential. 
Trajectories to the left of the control (dotted) trajectory are advanced (reduced 

latency) and the trajectories to its right are retarded (increased latencies). It can be seen 
that the 19 ms perturbation moves the trajectory (solid line) to the left of the control 

trajectory. The point d marks the state of the gates where the perturbation has its 
maximum retardation effect (26 ms), and, in this case, the action potential is aborted 
(dashed line). To give a reference, the point on the unperturbed trajectory at which the 

voltage crosses -30 mV is labeled e. This occurs at 30.96 ms, the unperturbed action 
potential latency; refer to the Fig. 11A for temporal orientation. Point d occurs 1 ms 

after the beginning of the EPSP (25 ms) at point a and is about 5 ms before point e. 

A higher resolution graph of the initial rising phase of the trajectories is shown in 

Fig. 11C. The divergence of the 26 ms trajectory beginning at point d is apparent. The 
hyperpolarizing current impulse drives the voltage down. This inactivates m, forcing 
the trajectory downward and also inactivates n, forcing the trajectory to the left. The 
reduced activation of the sodium conductances peaks near the closest approach to the 
separatrix which lies above the trajectories in this panel. The response time of m   is 
short and the decrease in sodium activation dominates this response, preventing the 

trajectory from rising above the separatrix. (The location of the separatrix is difficult to 
define, and will be examined in a following section). 

The interrelationships of all of the trajectories may be understood using Fig. 11D 
which is an extreme close-up of the foot of the trajectories. The arc ado is the 
subthreshold trajectory of the response of m and n to the perturbation produced by the 
hyperpolarizing impulse (-10 x 10"" Amp). The arc begins at point a  and swings 
clockwise. In the absence of an EPSC, the hyperpolarizing pulse would cause a 
succession of m-n states that follow the solid-line curve that starts at point a  and 
continues through points c, b, and back to a eventually. The arc is broken between b 
and a   in order to show the launch positions of the control and the two extreme-case 
trajectories that will be used to visualize how the perturbations affect spike genesis. The 
control and the maximally delayed trajectories are shown rising as a combined dashed 
and dotted trajectory from point a. The maximally advanced trajectory is shown by the 
solid line emerging from point b. The loop is a result of the fact that although the 
hyperpolarization of the membrane induces a decrease in both m   and n, m  responds 
more quickly than n (as shown in Fig. 9 C-E) causing a nearly vertical, downward 
initial motion. Later, as n responds more slowly, it pulls the curve out to the left. 
Recovery of m   is well under way while n is still decreasing when the EPSC arrives. (A 
depolarizing pulse of equal magnitude would produce a mirror image of the acba loop 
in a clockwise flow, initially up and to the right). 
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Point a  is the sole fixed point in the complete phase space and depicts the 
normal resting position of the membrane, unperturbed by current pulses or synaptic 
currents. It is from this point that all trajectories begin. If the impulse is presented before 
the arrival of the EPSC, then the impulse evokes the solid-line loop described above. 
The earlier the impulse is presented before, the more fully the loop will evolve before it 
is interrupted by the EPSC. If the impulse is presented after the arrival of the EPSC, then 

the perturbed and unperturbed trajectories coincide, as shown by the dashed-line 
trajectory, until the impulse is presented. The rapidly rising trajectories are the initial 

response of m   and n to the synaptic current. 
When the hyperpolarizing perturbation impulse is presented at 19 msec, 6 ms 

before the onset of the EPSC, the initial decrease in sodium activation has almost 
completely recovered, but n is still significantly reduced. When no EPSC is presented, 
the combined time courses of m   and n that occur in response to the impulse produce a 
phase-plane arc upward and to the right of point c . Thus, the trajectory launched from 
point b begins to the left of the control trajectory because of the residual suppression of 
the potassium activation and almost normal sodium activation, and it is this persistence 

of the potassium inactivation that reduces the action potential latency. 
Point c  denotes the location on the acb loop where the EPSC would interrupt the 

normal evolution of the response of the gates to the hyperpolarizing perturbation pulse 
if it had been presented at 22.44 ms. The EPSC arrives 2.56 ms later. At that point there 
is residual inactivation of both m   and n. The balance of the two inactivations is such 
that the action-potential advancing influence of the decreased potassium channel 
activation is exactly offset by the action potential retarding effect of the decrease in m 
so that there is no appreciable change in action potential latency. Although it is not 
included here, a trajectory emanating from point c  in Fig. 11D, would begin to the left 
of the 19 ms perturbation trajectory emanating from point b  and then cross over it in 
order to approach the normal (dotted) trajectory and yield the same action potential 
latency as the control trajectory emanating from point a . As required by the Jordan 
curve theorem and the theorem of Poincare-Bendixson (see discussion in (Hofbauer and 

Sigmund, 1988), p. 149, phase-plane trajectories of deterministic functions cannot 
intersect. The fact that they appear to cross here is due to the incompleteness of the 
reduced two-dimensional phase plane employed in constructing Fig. 11 B-D. 

Many trajectories could be shown emanating from the baseline loop along acb in 
Fig. 11D; ones are shown only at points a and b in order to allow visualization of the 
loop itself. This shows how small, subthreshold perturbations impose distinct initial 
conditions from which similar, closely packed responses arise. The smallness of the 
these initial conditions can be appreciated by comparing the dimensions of the baseline 
arc to its phase space locations in Fig. 11B. Since the perturbation pulses used to obtain 
the isopleths had a presentation range of 25 ms before the EPSC, most of the acb loop in 
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Fig. HD consists of m -n values obtained within 0.25 mV of the resting potential. All 

take-off points of the trajectories on the baseline loop are within the linear response 
range of the membrane. 

Once the EPSC begins, the voltage of the membrane shifts rapidly into nonlinear 

regions. An indication of this effect is shown in Fig. 12. In all panels, the solid-line 
shows the trajectory leading to maximal action-potential advancement (perturbation 

pulse given at 19 ms), and the dashed lines represents the trajectory leading to maximal 
retardation (pulse given at 26 ms), as described above. The remainder of the baseline 
loop is made up of unfilled circles, each of which indicates the starting point of a 
trajectory for a different impulse presentation time. Above the baseline loop are four 
similar loops where each new loop represents a slice through the whole family of 

trajectories at different times during the simulation. Each loop is separated from the 
previous loop by 0.12 ms. For clarity, only the extreme trajectories and the null point 

trajectory are connected by lines. In Fig. 12 the scales in all four panels are the same. 
Compare these with scales in Fig. 11C for orientation. 

FIGURE 12 here 

Panel B shows two loops taken shortly after the divergence of the maximal delay 
trajectory at point d of Fig. 11. The course of the unperturbed trajectory, and of the 
trajectories that will be produced by impulse perturbations other than the one causing 
maximal delay, represented by the two lone points lying at the right end each loop, 
approximately half way between the solid and dashed trajectories. As the maximal- 
delay trajectory continues to diverge from the unperturbed trajectory, other non- 
maximally delayed trajectories emerge successively from behind the circle residing on 
the dashed line. These are born as impulses are presented at earlier times in the 
simulation with respect to point d. A total of six such trajectories have emerged from 
the first loop in Fig. 12C, and seven in the second loop. Also shown in Fig. 12C is that 
the null (dotted-line) trajectory that originated from point c   in Fig. 11D has nearly 
converged with the circle in each loop representing the unperturbed trajectory. Along 
the way, the null trajectory has crossed over the maximally advanced trajectory. 

The convergence between the point-c  and point-a trajectories, however, is only a 
false impression of the two dimensional projection of the illustration. This impression 
also indicates that the points on the c -trajectory are advanced with the points on the a- 
trajectory. In higher dimensions, however, it could be seen that the two points lie on 
opposite sides of the cross section of a tube. These two m -n states are sufficiently close 
to one another that they produce similar action potential latencies. 

Thus, in Fig. 12A-D, the m -n reduced phase space represents a 2-dimensional 
projection of an expanding cone of states. Each time-slice or loop through the cone 
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appears as an ellipse The effect of the EPSC is to rotate and expand the initial loop. 
Dividing the ellipses roughly in half horizontally in Fig. 12D, the top half contains 
trajectories that lead to action potentials, where the shortest latency is represented by 
the top solid line. The bottom half of the ellipses contain trajectories for which action 
potentials are not generated, where the maximal suppression of the m -n states is shown 

by the dashed trajectory. 
It is also possible to relate these time-slices to the structure of the isopleths in Fig. 

11A. The radial position of the points in the time slices represent points along the 
isopleth produced by the hyperpolarizing pulse. Starting with the solid-line trajectory 
of the second time slice shown in Fig. 12C and counting clockwise, the first 2 trajectories 
represent pulse presentation times between points a  and b  on the isopleth (0-19 ms). 
Counting counterclockwise, the first 8 trajectories represent pulse presentation times 
over the isopleth from point b  to point c  and part of the way up the segment between 
c  andrf (19-26 ms). Both of these sets of trajectories lead to action potentials. Starting 

at the dashed-line trajectory and counting clockwise, the first six trajectories arise from 
impulses presented between points c  and d . In the counterclockwise direction, the first 
5 trajectories emerge from pulses presented between points d  ande . Neither of these 
sets generate action potentials. The effects along the various portions of the time slices 
are graded, such that there is either a progressive change in the latency of the action 
potentials associated with the m-n trajectories, or progressive changes in the 
depolarization of the membrane potential for trajectories that do not lead to action 

potentials. 
Four conclusions may be summarized from the above findings on the reduced 

phase space. 
(1) The sample series of slices in Fig. 12 appear to be transections of the surface of 

a tube or cone that expands in time. 
(2) By labeling and examining the positions of individual circles in each time 

slice, it can be seen that the stretching of the surface of the cone is due to the relative 
motion of the trajectories such that they rotate and separate from one another but do not 
change their relative position. Above the separatrix, the trajectories comprise an 
expanding hemisection of a tube whose cross section resembles an inverted U that has 
the 19 ms trajectory at its apex. Expansion continues until the action potential is 
generated. On the rising phase of the action potential the trajectories remain more or 
less parallel to one another. Below the two separatrices, the trajectories form an 
expanding U whose base has the 26 ms trajectory. Expansion continues until the 
postsynaptic response plateaus. Thereafter, there is contraction of state space until the 

membrane returns to its resting value. 
(3) The stretching of the surface of the cone pulls the dotted-line trajectory, which 

emerges from point c on the baseline slice, away from the adjacent solid-line trajectory, 
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which emerges from point b . This relative motion of the two trajectories on the surface 

of the cone produces the visual impression that the two cross. It also shows that the 

apparent change in relative positions of points on the surface of the structure is due to a 

rotation of the structure and is not due to a change in relative radial positions of points 

on the surface. The trajectories remain separate and distinct, they don't cross or mix. 

(4) Most important is that the effect of the nonlinearities engendered by the EPSC 

is simply to stretch the structure of the baseline phase-space loop produced by the 

perturbation impulses. 

3.7 Relation of spike thresholds to the phase-space separatrix 

The separatrix divides all trajectories into those which lead to an action potential 

and those which do not. The two sets of trajectories represent alternative basins of 

attraction to the fixed point. Although the squid axon described by Hodgkin and 

Huxley's equations has no true threshold, the separatrix may be viewed as nonsingular- 

point threshold, which Fitzhugh [Fitzhugh, 1955 #929; Fitzhugh, 1960 #927; Fitzhugh, 

1961 #926] has termed QTP (quasi-threshold phenomena). 

The separatrix, the set of trajectories which belong to no basin of attraction, 

serves the purpose of the threshold. But, because the separatrix belongs to no basin of 

attraction any trajectory on the separatrix will not approach the fixed point in finite 

time. Therefore, as a trajectory approaches the separatrix from above the latency of the 

action potential will approach infinity. As a trajectory approaches the separatrix from 

below, the duration of the repolarization will approach infinity. This effect is what gives 

importance to the separatrix as an organizing structure in phase space. 

Because they belong to no basin of attraction separatrices have probability zero 

and can be neither experimentally discovered nor analytically determined. As a 

compromise we estimate the separatrix by bracketing it and assuming the true 

separatrix lies somewhere between them. We used a current impulse to drive the cell 

(no EPSC) for this estimation by adjusting its amplitude to thirteen significant figures by 

trial and error until the sub- and supra-threshold responses were virtually identical for 

over 12 msec. The suprathreshold stimulus amplitude for the cell dimensions used here 

was found to be 5.123152366087 x 10"H Amp and the subthreshold value was 

5.123152366086 x 10"^ Amp; the membrane voltage changes produced by these two 

stimuli are shown by the traces in Figure 13A. The m-n plane relating to both of these 

voltage traces is shown in Fig. 13B, and in higher magnification in Fig. 13C. In Fig. 13D, 

the initial portion of the m-n separatrix phase space trajectory is shown overlapped 

with the trajectories originating from points a, b, c and d in Fig. 11B using a .001 ms 

integration step. Keep in mind that this image of the separatrix, like the trajectories 

projected onto the reduced phase space, is incomplete. The separatrix is a four 
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dimensional hyper-line in the space of (V,m,h,n), not a simple line. Trajectories 
originating from these points are initially lower than the separatrix because of the 
temporal separation between the time at which the pulse was given and the onset of the 

EPSC. However, as these trajectories cross the separatrix, it can be seen that the 
separatrix takes on a position roughly near the midpoint between the trajectories for the 

most advanced action potential latency (top solid line) and the most retarded latency 

(bottom dashed line). This position is equivalent to the lateral mid-point position on the 
time slice loops shown in Fig. 12C. As clearly illustrated by the latency shown in Fig. 

13D, 

FIGURE 13 HERE 

5 Discussion 

Our principle interest here is to understand the nature of information processing 
at the level of single neurons in terms of an interpretation of known biophysical 
mechanisms. For information to be processed, it has traditionally seemed reasonable to 
accept the notion that there must be some meaningful relation, supported by known 
mechanisms, between the information entering a neuron and the information leaving a 

neuron although it need not necessarily be simple or obvious. We call such 
transformations "single-neuron computation" and use it as the foundation concept for 
the inquiries presented here and in subsequent papers. We shall discuss our findings as 
they relate to the ability of linear membrane impedance responses to subserve 
input/output transformations, and to the extent to which these transformations are 

reliable. 
The input/output transformations balance a difficult design problem in which 

neurons must satisfy multiple and sometimes contradictory constraints. On the one 
hand the neuron must accurately propagate information that it receives. This requires a 
predictable relation between the input and the output of a neuron so that an observer of 
the output can obtain reliable knowledge about the input. Balanced against this need 

for predictability is the need to produce novel outputs as the neuron combines 
information from diverse sources (such as contemporary sensory images, accumulated 
experience, or changes in the level of neurochemical modulation acting on the 
membrane) to produce an output appropriate to the circumstances that may differ in 

significant and unexpected ways from the form of the input. 
We have explored how membrane properties may achieve aspects of these 

design constraints by looking at the dependence of spikes on current injection in models 

of simple but plausible neurons where the input signal varies in size and form from 

small and random to large and non-random. 
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A generic computer model preparation was used to allow rigorous control over 

input and to be able to observe otherwise unobtainable internal state parameters. One 

of our main observations is that surprisingly small-amplitude signals make important 

contributions to firing patterns. Measuring and controlling small input signals is 

expensive in terms of effort and ingenuity in real life. It is therefore desirable to 

understand how and why small signals might be important to neural function by 

looking at them first under ideal conditions that are only possible in a model. 

Toward this end, we have modeled a single compartment neuron with the 

membrane electrical properties of squid giant axon. This model does not and is not 

intended to realistically describe any particular neuron. No neuron has exactly this 

impedance. But all neurons do have an impedance, and it is the need for a general 

understanding of how impedance relates the input of a neuron to its firing pattern that 

we address here. The properties of the squid axon were chosen in particular because 

they have been the object of extensive research and are simple enough to understand 

while still being complex enough to produce interesting effects. 

5.1 The membrane as a linear filter 

That the neuron membrane behaves like a filter is a trivial and uncontroversial 

statement because whenever a current is applied to anything a voltage will result and 

the relation between them, the transfer function or impedance, will be a filter of some 

sort. Theoretical and empirical studies have extended the utility of this statement by 

showing how the filter properties arise from known conductance mechanisms, and by 

showing in many cases that the filter will be linear over some range of voltages. 

A linear filter model is desirable from our perspective because it gives a simple, 

compact and empirically discoverable description of the relation between input 

(current) and output (voltage). Most theoretical and empirical attention has been 

directed toward the squid giant axon ([Mauro, 1970 #882; Poussart, 1977 #890; Moore, 

1980 #886; Sabah, 1969 #924; Sabah, 1970 #928]). Work by others has shown that the 

linear filter model of membrane impedance is not uniquely valid for the squid giant 

axon and can be applied to a variety of different neurons incorporating a variety of 

different conductances (Calcium conductance in thalamocortical neurons, trigeminal 

sensory cells under anesthesia [Puil, 1986 #883; Puil, 1987 #884; Puil, 1989 #885], and 

NMDA on lamprey spinal neurons [Moore, 1993 #889; Moore, 1985 #842]) under 

different conditions. 

Comparing the filter properties of our model with those of squid giant axon can 

be used as a test of its biological validity. The only apparent discrepancy between the 

model and the axon is a slow increase in phase angle of the transfer function of the 

model from an earlier minimum at signal frequencies greater than 300 Hz which is not 
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present in squid giant axon. This depends on the size of the integration step and must 
be an artifact of the numerical methods. This presents no serious problem for the acute 
simulations since the behavior of the model at low signal frequencies, which is what we 

are interested in, is unaffected by the choice of integration step size within the range 
employed in the remainder of the simulations used in these studies (0.05 ms or less). 

Otherwise the model captures the functionally important characteristics of the 

squid giant axon. As a filter, the squid giant axon behaves like a resonant RLC circuit. 

The model exhibits the same characteristic behavior. Like the axon the resonance 
frequency of the model is dependent on the steady-state resting potential maintained by 
various amounts of constant injected current (Fig. 1). As expected, hyperpolarizing the 

cell increases the damping factor and shifts the resonant frequency to lower values 
while depolarization decreases the damping factor and shifts the resonant frequency to 

higher values. 
The impedance can be represented in a variety of ways. We show both the 

impedance plane plot in the frequency domain (Fig. 1), and the IRF in the time domain 
(Fig. 2). The choice of representation is a matter of convenience since they are 
equivalent; for any given stimulus current waveform they both predict the same voltage 
waveform response. The response of the system in the frequency domain is computed 
by multiplying the complex impedance by the transform of the current while in the time 
domain the current is convolved with the IRF. Frequency-domain analysis is better 
suited for empirically estimating the impedance and calculating the response to a 
stimulus in real cells and the IRF is better suited for describing the nature of the 
transformation of an afferent current signal into a membrane potential by reactive 

membrane conductances. 
The duration of the IRF and its form are the two most important aspects of the 

filter properties of the membrane for what follows. The extent of the response, the 
period of time over which the IRF is non-zero, constitutes a type of memory since it 
indicates how long the effect of an afferent signals persist and is able to interact with 
currents that arrive at other times. Where the IRF is zero the current impulse has no 
influence on the future behavior of the system. Beyond that time the input and output 
are causally uncoupled. Here, the response to a single small impulse lasting less than a 
microsecond persists for several tens of milliseconds and the nature of this response 
depends upon the resting potential. This means that factors affecting the membrane 
potential will be able to affect the breadth of the window in time through which the 
neuron observes its input. In the same way, large signals may have the same effect by 

placing the 
In the case of the squid giant axon, the membrane exhibits significant resonance. 

This means that the membrane potential responds to a current impulse with a damped 

oscillation. Not all neurons exhibit resonance and in the squid axon it can be 
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suppressed by hyperpolarization, e.g, [Mauro, 1970 #882; Guftman, 1974 #914]. 

Resonance imbues the temporal relation of multiple input signals with an importance 
foreign to a passive RC membrane where the interaction between two events simply 

diminishes with the interval of time separating them. With resonance there is also a 

qualitative change in the response over time where the interaction of an impulse with 

another event can be synergistic, antagonistic or neutral, depending the interval 
between them. The phase relation or temporal separation between inputs becomes a 
potentially significant source of information for the cell. 

The relevant properties of resonance are its characteristic frequency and its 
strength. The characteristic or resonant frequency of the filter is the frequency at which 

the magnitude of the impedance peaks and the strength of the resonance can be judged 
by the size and damping rate of the oscillations in the IRF. This frequency depends 
most heavily on the characteristics of the channels involved while the damping factor 
depends on their density. The resonant frequency of the squid giant axon is 

approximately linearly proportional to the membrane potential [Sabah, 1970 #928]. The 
relation is more complex in other cells that have been studied but it usually exhibits 
polarization-dependent changes in one or both of these properties. Dorsal spinal 
lamprey neurons [Moore, 1993 #889] show increased resonance and higher resonant 
frequencies with depolarization as do trigeminal sensory neurons [Puil, 1987 #884]. 
Neurons of the nucleus ovoidalis of the chicken [Strohmann, 1994 #932] show a 
decrease in resonance away from the normal resting potential with a weak increase in 
resonant frequency with depolarization. In neocortical cells the resonant frequency 
increases with hyperpolarization [Hutcheon, 1994 #934]. In guinea pig mediodorsal 
thalamic neurons [Puil, 1994 #935] describe a minority of neurons which show 
decreased damping but no change in resonant frequency with depolarization. 
preference 

Even though subthreshold linear impedances appear in many different neurons 
there is a reluctance to employ them in describing neural function. The reason for this is 
that linearity only holds for small signals and the range of potentials over which the 
filter models are linear is narrow compared to the dynamic range of operation of a 
neuron [Koch, 1984 #922; Koch, 1987 #680]. The range of voltage over which the 
impedance of the squid giant axon is linear is between 1 and 2 mV around the resting 
potential or about 3 mV peak-to-peak (p-p). Using subjective judgment excursions of 
+/- 5 mV from the resting potential have been reported to be acceptable in squid giant 
axon [Sabah, 1969 #924; Mauro, 1970 #882]. But voltage-clamp experiments [Moore, 
1980 #886] show that linearity strictly only holds within 0.27 mV of the resting potential 
where current responses to voltage steps were symmetric. Nonlinearity increases 
beyond that point but does not become significant until the voltage steps are greater 
than 1 mV from the resting potential. This is supported by the observation that the 



35 

harmonic distortion increases with stimulus amplitude but only exceeds 10% for 
stimulus signals with peak-to-peak amplitudes above 3 mV. In addition, analysis of 
linearized models of the Hodgkin-Huxley equations become unstable (fail) at a critical 

voltage of 5.35 mV [Sabah, 1970 #928; Koch, 1984 #922] above the resting membrane 
potential. Thus, four different criteria (stability analysis, response symmetry, harmonic 
distortion and subjective judgment) concur that the linear range of the filter function in 

squid giant axon is not more than 5 mV from resting potential. 
Despite the fact that linearity is strictly valid for only a narrow portion of the full 

dynamic range, the errors introduced by the failure of linearity are often relatively mild. 
This means that the linear approximation that is valid near the resting potential can 
provide important, semi-quantitative information about the behavior of the neuron 
beyond the range of acceptable linearity. For example, estimates of the squid giant axon 
admittance obtained with 2 mV p-p (linearly valid range) and 8 mV p-p (linearly invalid 

range) perturbations differ only in the signal to noise ratio of the estimated transfer 
function [Poussart, 1977 #890]. Using control voltage signals outside the valid linear 
range did not change the estimated characteristic frequency or other gross 
characteristics. Similarly, Guttman, Feldman and Lecar [, 1974 #914] reported only mild 
deviations from linearity as the amplitude of the white noise stimulus used to measure 
the squid axon filter function was increases past threshold, more than 10 mV above the 
resting potential. The principle effect of larger noise amplitude was a decrease in 
damping. The characteristic frequency was only slightly affected. 

The studies looking at the range of linearity mostly used square current or 
voltage steps. Random or pseudo-random stimulus waveforms were used in the 
studies that reported only minor deviations from linearity over large voltage ranges. 
An obvious difference between the two methods of stimulation is that with noise a 
variety of membrane potentials were visited briefly while the mean voltage remained 
constant but with constant current or voltage steps the membrane evolves from one 
steady state voltage-dependent impedance to another. Under these circumstances 

nonlinearities are apt to be more salient. 
This suggests that as long as membrane potential excursions are relatively brief 

with respect to the settling time of the membrane conductances, the linear behavior near 
the resting potential will continue to be useful over wider ranges of voltages than the 
limits of strict steady-state linearity suggest. This conjecture is consistent with the ACT 
shown here (Fig. 4). Depolarization increases the resonant frequency of the membrane, 
but the timing of the phases of the ACT are closer to the impedance at the resting 

potential than depolarized potentials near threshold. 
The main difference between the IRF, which describes the behavior of the 

membrane over a linear range of potentials, and the ACT, which describes it over a 
nonlinear range of potentials, is the flattening of the early phase of the IRF. The cross 
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correlation function between white current noise and membrane potential, a similar 

statistic to the IRF, behaves the same way [Guttman, 1974 #914]; as the intensity of the 
noise is increased the cross correlation function evolves smoothly from a form like the 

IRF to one like the ACT. Theirs is the only study we know of that has explored a 

continuum between subthreshold and suprathreshold membrane behavior. Although 

Bryant and Segundo [, 1976 #815] obtained an ACT showing many of these features, 

from which they proposed a theory of spike train genesis based on a linear filter model, 
they did not try to relate that filter to membrane properties or to subthreshold filter 
behavior. 

In significantly different experiments Bialek and coworkers [, 1991 #870] looked 
at the relation of spike times in the HI neuron of the blowfly which receive visual 
information that is gathered from several independent receptors and has passed 

through several synapses. Despite the dispersed and indirect access to visual 

information, the acceleration of the visual field can be read accurately from the HI spike 
train by applying a simple linear filter similar to the ACT described here and by others. 
The major difference is that they make no reference to biophysical mechanisms and the 
filter they extract from the spike train represents a transfer function across the entire 
visual system. In their theoretical analysis Bialek and Zee [, 1990 #936] show how 
adaptive linear filters have advantages for optimally balancing conflicting operational 
constrains in sensory systems and suggest that linear filtering is an important aspect of 
information processing in nervous systems in general [Bialek, 1993 #915]. 

5.2 Determinism in membrane filter function 

For a scheme like that proposed by Bialek to work, precise phase (timing) 
information must be preserved through the synapses in the network. The notion that at 
the level of a whole cell the dynamics are mostly deterministic suggests that this should 
be the case and the paper by Bryant and Segundo [, 1976 #815] show the ability of single 
neurons to respond consistently to complex stimulus patterns. The spikes usually 
appear at the same places in the course of repeated presentations of a single noise 
sample, and when this does not happen, they appear at favored alternative times. This 
observation has been corroborated more recently by Mainen and Sejnowski [Mainen, 
1994 #937] and Bair, Koch, Newsome, and Britten [, 1994 #938]. 

Three conclusions may be drawn from these research threads. First, as evidence 
accumulates that the information in neuronal spike-trains is not simply a mean firing 
rate code (as reviewed in the introduction), then we must accept that the afferent stream 
is unlikely to be random noise. Non-random structure in both input and output should 
be expected. Second, although the background afferent stream may be unpredictable 
and of a small magnitude, there are reasons to believe it is deterministically related to 



37 

aspects of the environment, and that its shape over time is a significant source of 

information for neurons. Third, in order for there to be significant information in the 

details of the structure or timing of the input there has to be a precise and exact relation 

between input and output such that small details are mapped sensitively. The 

transforming computations of the membrane must reliably preserve details. Stated 
within the context of our findings, the linear perturbations must be reliably or 
deterministically transformed by the nonlinear behavior of the membrane. The 
impedance history of the membrane, as expressed variously in the IRF, ACT, CACTs, 
and the isopleths indicates that this transform may be quite complex, and that features 

of the form of the input may dissipate or be lost. 
Because deterministic systems retain information about small details it is 

important to consider the significance of small, subthreshold signals. Some synaptic 
events are unquestionably large, important and reasonably well known. They have 
attracted a large amount of the attention of researchers over the years. But there are 
also many instances where there is an on-going low-level sub-threshold stream of 
afferent activity. Evidence that much synaptic activity is of small magnitude and can be 
found scattered throughout the literature even though studies of low-level background 
afferent activity is scarce. For example, [Fetz, 1983 #939] report monosynaptic potentials 
between 0.15 and 3.1 mV (mean 0.75 mV) in cat motor neurons. In rat visual cortex 
[Mason, 1991 #940] show a range of synaptic potentials of 0.05 to 0.5 mV. The 
background synaptic activity in chicken nucleus ovoidalis neurons has a p-p magnitude 
of about 3 mV [Strohmann, 1994 #932]. We have shown here that small subliminal 
currents have a significant effect on the outcome of superthreshold events (Figures 6- 

10). 
The deterministic Hodgkin and Huxley model tells us that this is inevitable. Is it 

important? Yes. In the presence of a fixed synaptic event the shape of the ACT by itself 
provides little information about the structure of the data stream in the input circuit. 
The recoverable information about the noise stream is determined by the bandpass 
characteristics of the resting impedance which translates the local "shape" of the 
stimulus into changes in the timing of action potentials from unperturbed values. This 
necessitates consideration of the activity of the cell within the circuit. The timing of the 
action potential can have no meaning without defining a frame of reference. The frame 
of reference is provided by using events in other members of the circuit as reference 
points, where the spike time is defined as the interval between the pre- and post- 
synaptic action potentials as a cross-correlation function. The model used here is a 
simple circuit where there are two distinct and independent information sources, a 
synaptic event and an independent subthreshold source which is either a random 
stream to obtain the modified-ACTs or CACTs in Figs. 6-8, or a deliberately placed but 

sill independent impulse to obtain the isopleths in Figs. 9-10. In a sense, the 
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suprathreshold synaptic event provides an observational anchor with which either the 
input data stream or the output action-potential latencies may be analyzed. 

When this information is used the spike timing is seen to contain significant 

information about the shape of the subihreshold afferent channel before and 

immediately preceding the EPSC and that this information is a faithful scaled version of 

the filter function which translates magnitude to postsynaptic spike latency. 

Comparing the CACTs obtained from the afferent- (Fig. 7) and efferent- (Fig. 8) frames 
of reference shows that as information is obtained about the source, the information 
obtained from an observation increases. Observations bound only to the efferent frame 
of reference are ignorant of the events yielding no action potential and this excludes an 
entire class of CACT from consideration. 

In this situation knowledge of the interval between the action potential and 

synaptic event implies knowledge of the noise channel in the vicinity of the EPSC. The 
limit to the amount of obtainable information here is the precision of the measurement 

of the postsynaptic spike timing. The CACTs consists of a smooth, graded continuum 
so that as the precision of the timing of the spike increases there will be a corresponding 
increase in the precision with which the CACTs are known. Residual ignorance can be 
shifted between action potential timing and EPSC form, but the correlation with the 
noise remains constant except for the temporal offsets associated with the latencies of 
each class. The offset in the CACT from the class of prolonged latencies at the tail of the 
histogram show that information about the noise channel during the EPSC can be 
preserved over several milliseconds and is immune to noise after the EPSC. 

To understand how these principles can be applied in real situations requires 
measurements of both input and output in order to ascertain how different components 
in a network cooperate. In the case of the blowfly, for example, [Bialek, 1991 #870], is 
the observed filter function a result of prefiltering by visual elements or is it a fairly 
direct reflection of the local electrical properties of the neuron? If linear filters are 
generally appropriate then the convolution of the transfer function across HI (the ACT), 
with the transfer function between the visual stimulation and the afferent current 
should yield the overall transfer function already described. 

5.3 Degeneracy 

The consequences of the deterministic nature of the Hodgkin-Huxley model 
raises interesting problems. From a dynamical- theoretical perspective [Takens, 1981 
#54; Packard, 1980 #43], the state of the membrane can be "resurrected" from a time - 
series of measurements of a single variable, which in typical neurophysiological 
experiments is usually the membrane potential. The system of coupled differential 
equations is internally consistent and can be used to transmit information from one cell 
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to another through continuous observation of only one of the variables. This may be 

possible in neural networks in which transmission is relatively faithfully accomplished 
by graded transmitter release, as has been observed in many experimental systems since 

there is a one-to-one mapping of an input state with an output state [Anderson, 1981 

#946; Blight, 1980 #951; Davis, 1989 #947; Fain, 1977 #950; Graubard, 1983 #729; 
Mendelson, 1971 #948; Pearson, 1975 #952; Shaw, 1972 #949; Siegler, 1984 #944; 

Werblin, 1969 #629; Maynard, 1975 #942; Roberts, 1981 #945], 
In the large class of neurons that communicate with one another via action 

potentials the output of a neuron is discontinuous and so represents a significant 
transformation of its input signal, and is subject to degeneracies. In following papers, 
we shall examine some of these transformations [Edstrom, 1994 #912; Mpitsos, 1994 
#895]. The foundation of this work is presented there. On the one hand, because the 
Hodgkin-Huxley equations are deterministic, we expect that each unique stimulus will 
produce a unique response. This is indeed the case when the full four-state description 
is considered or even when a single state variable is monitored continuously. But, the 
information in spike timing alone is not complete. Consider Fig. 10 which shows the 
i/o curves for several different current impulses presented at a variety of different 
times. A horizontal line parallel to the x-axis will intersect a number of isopleths, many 
will be intersected two or more times. Therefore a given impulse can produce the same 
change in latency when presented at two different times. Worse, for any given latency 
change there are infinitely many combinations of impulse amplitude/presentation time 
which will produce that particular latency. 

Thus, even the simple network that we have used here has the potential of 
producing a highly degenerate, infinitely many-to-one mapping of an input data stream 
into an output stream. A given latency may arise from any number of combinations of 
different impulse magnitudes and presentation times. An impulse having a given 
amplituded and presentation time is correlated produces a \miq\ie(V,m,h,n) state state of 
the membrane; e.g, compare the states for points a,c,em Fig. 11 that all represent the 
same latency. But information about these states is not contained in a spike train 
because observing only the moment when the voltage crosses a detection threshold 
collapses the full state-space trajectory onto a lower, one-dimensional point. Thus, a 
neuron cannot transmit complete information about its internal state by spike time 
alone. This raises questions about how the spike time is "meant" to be interpreted. 

In principle, the shift from graded neuronal connections, which are amenable to 
detailed phase-space analyses of their dynamics, to spiking communication between 
neurons is presumed to be theoretically possible [Wang, 1992 #732]. Studies using 
model systems and integrate-and-fire methods have addressed the problem of whether 
there is a deterministic relationship between the underlying continuous dynamics and 
threshold-generated point processes [Longtin, 1991 #1014;Preissl, 1990 #587;Sauer, 1994 



40 

#963]. Application of a number of methods to biological neural systems have obtained 

evidence both for deterministic and nondeterministic activity [Longtin, 1990 #1015; 

Schiff, 1994 #960; Schiff, 1994 #990]. Our aim here has been to understand the 

input/output transformation process in its simplest expression as occurs through the 

history of membrane changes as in a simple two-cell network. At this level of 

organization, our findings indicate that there is considerable loss of information about 

the input stream. Moreover, the findings on CACTs (Figs. 6-8) show that there is loss of 

information whether an observer looks from the perspective of the input or the output 

data streams on cell-2. Alternatively, the information may not be necessary, and 

degeneracy may be necessary since it gives the network enough degrees of freedom to 

construct a desired particular output from a variety of inputs, as circumstances dictate 

[Longtin, 1990 #1015; Longtin, 1991 #1014;Longtin, 1991 #1013;Mpitsos, 1986 #38; 

Bulsara, 1991 #1016]. 

In any event, this scenario is what real-life neurons may have to work with, or 

must have evolved membrane mechanisms or network functions that adjust to it. Here 

we have defined the first components of such a scenario in the linear filter dynamics of 

simple membrane. In specific cases, biological systems have devised ways to 

accommodate or adjust for such degeneracies, as shown, for example, by the fidelity of 

information transfer in studies of linear models of blowfly [Bialek, 1991 #870; Glantz, 

1994 #919] and crayfish visual systems. However, what we know formally of dynamical 

systems dynamics has come largely from studies of differential and difference 

equations. The application of such formalism to account for the dynamics of the simple 

networks described here will be quite difficult, if possible at all. Subsequent papers will 

deal with these networks numerically to determine how the linear filter dynamics may 

lead both to stable and variable firing patterns. The overall aim will be to ascertain 

what information of the input is retained in the output of the neuron, what is lost or 

dissipated, and how the characteristics of neurons and of the network architecture 

accommodate to such loses or are able to function accurately in the face of unresolved 

degeneracies. 
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FIGURE LEGENDS 

FIGURE 1: White noise analysis of complex impedance Z. A: Comparison of impedance- 

plane plots of the normal, depolarized and hyperpolarized membrane with 0.05 msec time 

step at three membrane potentials. The open circles designate data from the normal resting 

potential (Em= - 63.32 mV); filled triangles are for the hyperpolarized membrane (Em = -66.40 

mV using sustained current of -9.5 x 10"11 Amp) and open triangles is for depolarized 

membrane {Em = -60.208 mV using sustained current of 13 x 10~13 Amp). White noise current 

was subthreshold for spike genesis in all cases. B: The vector length or magnitude of Z as a 

function of frequency. Filled and open circles are for the data presented in (C) at normal 

membrane polarization. C: The vector Z as a plot of reactance vs. resistance for two 

integration step sizes at the normal membrane potential. Open circles are for step = 0.05 

msec; filled circles are for step = 0.10 msec. D: The phase of Z (vector angle in (A and C)) as a 

function of frequency. Symbols are as in (A-C). 

At the normal resting potential there is a significant resonant peak at about 40 Hz that 

is shifted up to 55 Hz when the membrane is depolarized and down to 30 Hz when it is 

hyperpolarized. Above 300 Hz the modeling process introduces some phase distortions. In D 

the phase reaches a minimum around 300 Hz and then angles back up. This distortion is 

more severe for the simulation using a 0.1 msec time step than for the simulation using a 0.05 

msec time step. There is no apparent difference between the two at frequencies below 300 

Hz. 

Typical Current (all cases; example is from 0.05 msec time step simulation, N = 16384): 

Mean: 1.5493 x 10"14 Amps.  SD:   4.1111 x 10"13 Amps.   Max: 1.5443 x 10"12 Amps. 

Min: -1.4915 x 10"12 Amps. 

Typical Voltage responses: 

Mean (normal): -0.063319 Volts. SD:    7.9827 x 10"6 Volts. 

Max: -0.063293 Volts. Min: -0.063342 Volts. 

Mean (depolarized): 

Max: 

-0.060208 Volts. 

-0.060182 Volts. 

SD:    8.0384 x 10"6 Volts. 

Min: -0.060232 Volts. 

Mean (hyperpolarized): 

Max: 

-0.066403 Volts. 

-0.066378 Volts. 

SD:    7.3067 x 10-6 Volts. 

Min: -0.066425 Volts. 

The cell was injected with white noise for 0.8192 sec in all cases (8192 points @ 0.1 msec 

integration steps; and 16384 points @ 0.05 msec integrations) so that the minimum resolvable 

frequency step is 1.2207 Hz. The Nyquist frequency was 10 kHz with 0.05 msec and 5 kHz 

with 0.1 msec time steps. 
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FIGURE 2: Time course of the impulse response function (IRF): back transformation of the 
complex impedances shown in Fig. 1. Circles show every 10th point in a five-point center 
weighted running mean of the IRF from normal. The running average is needed to suppress 
high frequency noise, remnants of which can be seen on the two curves, resulting from phase 

distortions at the high frequency end of the spectrum. 

FIGURE 3: Noise-activated action potentials. Two time scales are shown. The top trace is an 
expansion of the region in the lower trace noted by the dashed lines, and shows example of 
spike intervals that were excluded from the computation of the ACT. Current was injected 
continuously. Mean noise: -1.676 x 10"13 Amp; SD = 3.73 x 10~10 Amp, Time step = 0.05 msec. 

FIGURE 4: Time course of the ACT. Vertical axis: average current. Horizontal axis: time 
preceding the occurrence action potentials; N = 30,000. Mean current Mean noise: -1.676 x 10" 
13 Amp; SD = 3.73 x 10"10 Amp. Dashed horizontal lines: 96% Confidence Limit, CL = ^ij=] 

= Mean ± 4.3 x 10"12 Amp. The analysis was on the same time series as shown by the excerpt 
in Fig. 4. This shows clearly that the average stimulating membrane current has a complex 
three-component waveform lasting approximately 30 msec before the occurrence of the 
action potential. The first component (0 to 5 msec preceding the action potential) is 
depolarizing. The second (5 to 20 msec) is hyperpolarizing, and the third, just barely above 
the 96% confidence limit, is depolarizing. Since the autocorrelation function of the injected 
current is flat, except for the first 7 points, these correlations between the action potentials 
and their preceding history of membrane currents are introduced by the membrane. The time 
course of the first two components is identical to the time course of the two components 
obtained in the IRF. The third is only slightly depolarizing, and is not observed in the IRF. 

FIGURE 5: Effects produced by the three phases of the ACT. The waveshape and amplitude 
of the three phases of the ACT were used as stimuli for injecting current into the cell. A: 
Membrane potential. B: Full ACT wave shape. C: ACT with phase three removed. D: Phase 
one of the ACT. Thick line in the voltage trace is the response to phase three. Thin line is the 
combined responses to the full ACT and the ACT less phase three. 

FIGURE 6. Modified ACTs: In the next three illustrations, EPSC-evoked action potentials will 
be used to examine the effect of subthreshold noise stimulation. A: Low and high noise 
modified ACTs in which random stimulation is paired with an EPSC. B: Synaptic ACTs. 
60,000, 35-ms simulation sweeps were conducted in which random noise perturbation was 
paired with an EPSC in each sweep. Since the synaptic ACT is calculated using the timing of 
the action potential, the preceeding currents of the EPSC are shifted from one sweep to the 
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next, causing a slurring of the synaptic currents. C and D: Frequency histograms of latencies 

obtained with low and high noise levels. The integration step size was 0.001 msec. In order 

to show an expanded scale, the traces here, and in Figs. 7 and 8, are of 1500 integration-step 

excerpts. In each sweep a different seed was used to generate pulses having random 

amplitude variation (same parameters as used in Fig. 5). At 25 ms into each sweep a single 

EPSC was given that had Gsyn = 3 x 10"8 Siemens. Each EPSC generated and action potential 

whose latency was defined using the start of the sweep as time zero. 

FIGURE 7: Average currents can be calculated from the input-stream frame of reference 

using modified-ACTs contingently. The latencies used in the low- and high-noise 

experiments of Fig. 6 were placed into 5 histogram bins having equal occupancy. Each range 

of latencies provided the contingency for selecting the particular noise-sweeps to use in the 

averages.   A and C: Modified-contingent ACTs (modified-CACTs) for low and high noise. 

All are scaled selectively for each latency bin. Trajectories producing the longest latencies 

dip most negatively near the EPSC, and those generating the shorter latencies deflect more 

positively. B and D: Synaptic CACTs for all latency are equivalent to the EPSC. Averages 

obtained using only the output frame of reference (Figs. 5 and 6) lose information about the 

input perturbations and of timing of the EPSC. This information was uncovered by forcing 

the data into the histogram. This information is lost to an observer who has information only 

about the spike intervals generated in the postsynaptic neuron. 

FIGURE 8. Observing spike latencies from the frame of reference of the output data-stream 

using modified-CACTs. Same histogram data as used to construct Figs. 6 and 7. A: 

Modified-CACTs constructed using the action potentials as the reference point. B: Synaptic 

ACTs corresponding to each trajectory in (A); the numbers used to identify the synaptic 

trajectory progress serially and are matched with the numbers in (A). C and D: Same as in (A 

and D) but with a higher level of random noise. The relative timing between the classes of 

spike latencies and the corresponding noise currents is retained. But information is lost 

between the timing of the occurrence of the EPSC and the action potential. 

FIGURE 9. Weak preconditioning current pulses affect EPSC-evoked action potential 

latencies after membrane potential changes occurring in response to the pulses have almost 

died out. A: Preconditioning current pulse duration: 0.010 msec, given at 5 msec. Dashed 

line: hyperpolarizing pulse. Dotted line no preconditioning pulse. Thick-solid line: 

depolarizing pulse. Note that the membrane potential has recovered before the onset of the 

EPSC which occurs at 11.16 msec. B: Same as (A) but at different scales, showing the EPSC 

and the action potentials; dotted, dashed, and thick-line traces are for the same conditions as 

in (A). C: Membrane response to a hyperpolarizing pulse; EPSC onset is indicated by the 

thin vertical line. D and E: Time course of changes in the potassium gate n and sodium gate 
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m during the voltage time course shown in (C). Magnitude of the current pulses (±) 1 x 10'9 

Amp. Integration time step = 0.010 msec. 

FIGURE 10: The timing of single preconditioning current pulses produces complex changes 

in action potential latencies. In each 40 msec sweep of the simulation a single pulse was given 
before the onset of the EPSC. A: Onset (24 msec) and time course of the EPSC. B: Action 
potential produced by the EPSC in the absence of a preconditioning current pulse. C and D: 

latencies of action potentials produced in hyperpolarized and normal membrane to 
depolarizing (solid curves) and hyperpolarizing (dotted) current pulses; hyperpolarization 

used here is the same as in Figs. 1 and 3. Each curve was obtained using a different 
amplitude of the current pulse. The incomplete lines in some of the negative current 
isopleths indicate suppression of the EPSC-evoked action potential at those current/time 
combinations. The interval between the points on the curves is 250 msec. The amplitude for 
the five 0.010 ms depolarizing and hyperpolarizing current pulses was, in multiples of 10"10 

Amp: (±) 2,4, 6,8,10. Gsyn = 3 x 10"8 Siemens at the normal resting potential and 4.0536 x 10" 
8 Siemens at the hyperpolarized potential, a value chosen by trial and error to give the same 
unperturbed action potential latency as the normal control EPSC. Integration time step = 

0.010 ms. 

FIGURE 11. Relationship of i/o curves to the m and n gate dynamics. A: Two i/o 
curves or isopleths obtained using ± 10 x 10"10 Amp pulses. Labeled points: a, the 
normal unperturbed resting state; b, the point of maximum action potential advance at 
19 ms; c, the null point of no effect (22.44 ms); d, the point on the zero isopleth 
corresponding to the pulse-presentation time that yields the maximum retardation (26 

ms; in this case, the action potential is suppressed entirely and the point d does not exist 
on the -10 x 10"10 isopleth); and e, the terminal point of no effect that corresponds to the 
moment the membrane potential crosses the criterion threshold (-30 mV). In the absence 
of perturbing influences the action potential crosses that threshold at 30.96 ms. The 
EPSC begins at 25 ms. B: Medium close-up of the tn-n phase plane. Trajectories to the 
left of the control (dotted) trajectory are advanced (reduced latency) and the trajectories 
to its right are retarded (increased latencies). At this magnification the state of the 
membrane is roughly the same at points a, b, and c. The state at point d (26 ms into the 
simulation) is different than at a, b, or c because the EPSC precedes it. Point e labels the 
tn-n state when the membrane crosses the spike-detection threshold (-30 mV). C: Initial 
section of the trajectories in (B). D: Extreme close-up of the foot of the trajectories in (B) 
where points a, b, c are also the same as those leveled in (B). Arc acb is the trajectory of 

tn-n states that are produced by a -10 x 10"10 Amp pulse when no EPSC is given. 
Trajectories are also shown for the tn-n states that emerge in time for action potentials 
that are most advanced (solid line emerging upward from point b) and for a control 
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trajectory in which the EPSC is not paired with a conditioning pulse (dots emerging 

from point a). Point a is also the take-off point for the trajectory relating to action 

potential latencies that are most delayed(dashes overlying the dots). This trajectory 

diverges from the control when the conditioning pulse is presented at 26 ms into the 

simulation, 1 ms after the onset of the EPSC. When using paired pulse/EPSC 

stimulation, trajectories originate along the baseline arc, starting successively from 

point a (25 ms before the EPSC) and progress toward point b . 

FIGURE 12. Stretching of m-n phase space in time after the onset of the EPSC. A: Base 

arc of open-circle points are take-off positions on the acb arc shown in Fig. 10D for a 

selected number of trajectories; this arc represents the state of the membrane just before 

the onset of the EPSC. Dashed line: trajectory emerging from point c. Solid line: 

trajectory emerging from point b. Dashed line: trajectory emerging from point a. A-D: 

Time-slices at selected times after the onset of the EPSC. The range of phase space 

dimensions are the same in all panels in order to show the stretching of the loops in 

time. In panel B, the time slices have been taken just after the separatrix (see Fig. 12) of 

m-n states that are above and below the level for generating action potentials. Thus, the 

bottom-most solid line now represents the trajectory of the most retarded action 

potential latency (here the spike is aborted), and the control trajectory is now shown by 

the point lying between the two solid lines. 

FIGURE 13. Separatrix between phase-space states for spiking and nonspiking membrane. A: 

Membrane potential obtained using a 0.001 ms depolarizing pulse that way just 

suprathreshoid (512.3152366087 x 10"15 Amp) and subthreshold (512.3152366086 x 10"15 

Amp) for generating an actin potential. B: Phase space states of gates m and n relating to the 

membrane potential traces shown in (A). C: High-gain phase space of spiking and non- 

spiking regions in (B). D: The initial portion in (C) is shown at an even higher gain as the in 

m-n phase space as the separatrix between trajectories that led to action potentials and those 

that do not. These trajectories (shown by the) solid, dotted, and small-dash lines are these 

same as the trajectories labeled a,b,c, and d in Fig. 10. Integration step = 0.001 ms. 
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Input Signals 
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ABSTRACT. We have examined how a Hodgkin-Huxley model of the squid axon 
membrane responds to patterned stimulation. The present work extends the 
methods reported in the accompanying paper whereby a single, low-level 
current impulses is used in each simulation to perturb the latency of action 

potentisls (spikes) evoked by an excitatory postsynaptic current (EPSC). A 
chaotic logistic function controlled the presentation time (or the amplitude) of the 
impulse. Over a number of simulations, the change in the timing of the impulse 
provided temporally structured trains of stimuli that could be compared to the 
changes in the latency of the EPSC-evoked spikes. At fixed presentation times, 
spike latencies were found to be a linear function of the amplitude of the 
perturbing impulse. This yielded a temporal structure in the sequence of spike 
latencies that was similar to the structure in the sequence of different impulse 
amplitudes. Using fixed impulse amplitudes and presenting them at different 
times produced complex sequences of spike latencies. The output pattern was 
significantly distorted by comparison to the input and is transformed into a 
higher phase-space dimension. The distortions are attributable to the shape of the 
functions relating the timing of the perturbation to the latency of the action 
potential which we examined in the preceding paper with respect to membrane 
impedance under perturbation. Using two perturbing impulses in each sweep, 
one having a fixed timing and one variable, produced amplitude changes in the 
distortion but no new distortions. Owing to the sensitivity of the membrane to 
stimulus patterns, multiple, temporally varying input stimuli would produce 
complex firing patterns. Together the findings reported here and 
previously provide evidence both for deterministic and nondeterministic pattern 
detection and generation in single neurons. 



1 Introduction 

A large body of research has indicated that structure in the temporal firing 

of action potentials in neurons may provide a basis of information transfer 
between neurons rather than, or in addition to, other response characteristics, 

such as the mean firing frequency, e.g., (Adrian, 1928; Diamond, et al., 1988; 

Gerstein and Mandelbrot, 1964; Glantz and Nudelman, 1976; Glantz and 
Nudelman, 1988; Glantz, et al, 1984; Grüneis, et al., 1989; Nakahama, et al., 1977; 

Perkel, et al., 1964; Rail, 1977; Rose and Dunwiddie, 1986; Segundo, et al., 1963; 
Tsukada, et al., 1994; Yamamoto and Nakahama, 1983). Along this line, the aim 
of the simulations reported in the preceding paper was to establish a foundation 
defining how membrane impedance, acting as a linear filter, might provide the 
mechanism for pattern detection and generation in simple neuron membrane 
(Edstrom and Mpitsos, 1995). We examined the ability of a simple neuron to 
generate synaptically-evoked action potentials under conditions when the 
impedance state of the membrane had been preconditioned using the injection of 
brief low-level current impulses. The neuronal membrane characteristics were 
defined using the Hodgkin-Huxley (1952) parameters for sodium and potassium 
ion channels. An excitatory postsynaptic current (EPSC) was used whose effect 
was simply to produce smoothly changing unimodal membrane changes having 
the time course of the squid giant synapse. The temporal history of impedance 
changes that occur between the perturbing impulse and the EPSC-evoked action 

potential (spike) had complex structure that resembled i/o functions obtained 
using sub- and suprathreshold white-noise perturbation methods of neurons in a 
number of animals (Bryant and Segundo, 1976; Guttman, et al., 1974; Sakuranaga 
and Naka, 1983; Sakuranaga and Naka, 1985a; Sakuranaga and Naka, 1985b). 
The findings are consistent with the possibility, also proposed in animal studies, 
that membrane may a act as a linear filter for pattern detection or generation e.g., 
(Bialek, et al, 1993; Bialek, et al, 1991; Enroth-Cugell, et al., 1983; Frishman, et al., 
1987; Glantz, 1994; Glantz, et al., 1984; Krause and Naka, 1980). Our findings also 
suggested that the same i/o functions may impose a form of degeneracy in the 

transfer of information across the synapse. 
In the present paper we extend these studies to show that the postsynaptic 

neuron responds differentially when the same input pattern is presented at 
different regions of the temporal span of the i/o function. However, depending 
on the timing of the input stimuli, the output spike patterns exhibit distortions 



and increases in complexity by comparison the same measures of the input 
pattern. Such differences include multiple folding regions in the return maps 
(phase-space autocorrelations of one spike latency against the preceding one in 

the time series) that require increases in phase-space embedding to resolve some 

of the degeneracies. The aim here will be to show these effects graphically. 

Papers that follow will report on quantitative measures of spike trains using 
information-theoretic methods and symbolic dynamics. 

2 Methods and Results 

Except for the the addition of a chaotic logistic function to control the 
presentation of the perturbation current impulses, methods used in the present 
series of experiments were the same as those reported in the preceding paper 
(Edstrom and Mpitsos, 1995). A two-cell network was used in which the 
presynaptic neuron activated the postsynaptic by means of an EPSC. A single 
low-level delta-function current impulses, lasting one integration step, was 
presented to the postsynaptic cell in each 35 ms simulation sweep. The impulse 
was presented in some temporal relationship with an EPSC whose onset was at 
25 ms. The membrane potential was reset to the normal resting potential after 
each sweep. The impulses were well below the firing threshold of the membrane, 
whereas the EPSC was suprathreshold and generated a single action potential. In 
the last set of experiments reported here, two impulses were given, one acting as 
a preconditioning stimulus to the other. In both sets the aim is to examine the 
effect of the conditioning impulses on the latency of the action potential 

produced by the EPSC. 
The temporal position of the impulses in the simulation sweep was 

controlled either by sequences of computer generated random numbers (routine 
ranO in (Press, et al., 1988, pp. 207-208), or by the recursive logistic function Xj+i = 
R(l-Xi)Xi, where X is in the unit interval. For R = 3.7, this function generates 
values that cover the unit interval densely and chaotically. Both sets of numbers 
were scaled so as to cover the first 30 ms of the simulation sweeps, or some 
portion of them. The sum of many such simulation sweeps defines input/output 
(i/o) functions that relate the time of occurrence of the input perturbation 
impulse(s) to the output latency generated by the EPSC. 



2.1    The perturbation history of the membrane imposes structure on randomly spaced 

stimuli 

An example of an i/o function is shown in Fig. 1A. The time-axis of the 

simulation sweeps rises vertically, and the associated latencies produced by the 
EPSC are on the horizontal axis. One perturbation current impulse (5 x 10'10 

Amps) was randomly timed to occur within the 7-30 ms portion of each 
simulation sweeps. Earlier presentation times were not used because at the 
normal resting potential, small perturbation currents produce little effect on the 
spike latencies. A total of 100,000 sweeps were run in which the random signals 
covered the 7-30 ms interval homgeneously (Fig. IB). This generated 100,000 
action-potential latencies having a non-homogeneous frequency distribution (Fig. 

1C), showing that the membrane imposes structure on the input data stream that 

it receives. 

2.1    The perturbation history of the membrane distorts and adds complexity to the 

temporal structure of the signals that it receives 

The chaotic logistic shif tes the timing of the perturbing impulse back and 
forth with respect to the occurrence of the EPSC. Being deterministic, the logistic 
provides a well-defined pattern of shifts that can be compared with the pattern 
of latencies in the output spike train. Figure 2A shows a sample time series. 
Figure 2B shows the structure of the time series as the return map, where a given 
interval (Xi+i) is mapped against the interval preceding it (Xj). For reference, the 
first four points are mapped in the return map with the same symbols as the first 

four points in the time series. 

FIGURE 2 HERE 

In some experiments, we held the presentation time constant and used the 

logistic to control the amplitude of the impulses using L; = (X{ - 0.5) x 10'10 Amp. 
In all cases the impulse width was the same as the integration time step (usually 
0.010 msec). In other experiments we held the impulse amplitude constant and 
varied the presentation times T using Tt = C + (Xj - 0.5)D, where X,- is the ouput 
of the logistic equation. The constant D controls the range of the logistic values, 
and C slides the critical point of this range along the time axis. The value of the 



critical point in the logistic itself is 0.5, and is the center of folding in the return 
map by which the points mix with respect to one another, as shown in Fig. 2B 

(and see (Devaney, 1986; May, 1976)). The i/o function representing the complete 

set of latencies obtained in the experiment is shown by the curve in Fig. 3C. 

Using the 45° line in Fig. 3B, it can be seen how the time series of current 

impulses (Fig. 3A) are mapped back and forth onto the temporal position of 
successive simulation sweeps (Fig. 3C). The symbols in Fig. 3 A-D identify each 
impulse with the corresponding latency in the output time series (Fig. 3D). 

FIGURE 3 HERE 

When holding the presentation times constant, the changes in the latency 
are nearly a constant function of amplitude (Fig. 4B), and the return maps of the 
latencies, constructed by plotting the latency obtained in one simulation sweep 
against the latency in the preceding sweep, are quite similar to the return map of 
the logistic-generated amplitudes (compare Fig. 4A with Fig. 2B). Minor 
stretching and compression may occur in the latency return maps at other 
constant presentation times along the isopleths, but overall their shape is similar 

to the shape shown in Fig. 2B for the input logistic function. 
Holding the amplitude constant and presenting the impulses at different 

times produces complex changes in the spike latencies. The results of two 
experiments are in Fig. 4D, where the two sets of impulses range over different 
times and have their critical points shifed with respect to one another in the 
simulation sweep. The latencies arising from impulses in one experiment are 
shown by open circles, and those from the other are shown by small dots that 
coallesce into a line at this resolution. The utility of using the logistic to control 
the impulse-presentation times becomes evident when plotting the latency 
changes as return maps in Fig. 4C. Both return maps have two folding regions, 
wheres the input logistic has only one. The effect of changing the position and 
range of the impulses is shown more fully in Fig. 5. The thin, unbroken line in 
Fig. 5A is a fuller representation of the standard i/o function obtained from 
membrane at resting potential using 10"10 Amp impulses shown in Fig. 4D. The 
presentation times of seven different sets of input stimulus trains are shown by 
the filled circles; they are shifted vertically with respect to one another in order to 
illustrate their positions. Figure 5B shows the return maps of the spike latencies; 
each map is identified numerically by the range of the input stimulus times that 



generated it. Like the findings in Fig. 4C, the return maps are significantly 
distorted variously by comparison to the input stimulus pattern often resulting in 

more than one folding region and even in ones having crossed trajectories (Fig. 

5B "14-19"). Crossed trajectories occur whenever the stimulus pattern sufficiently 
spans a humped (vertically convex or concave) region of the i/o functions. Four 

of these regions are shown in Fig. 6A, two each for depolarizing and 
hyperpolarizing impulses. The corresponding return maps are in Fig. 6B. 

Together the findings in Figs. 4(C and D), 5B, and 6 indicate that the 
conditioning history, introduced by a single low-level current impulse, 
significantly distorts or increases the complexity of the spike-latency return maps 

obtained in response to a test EPSC. 
In biological systems, neurons are bombarded by many synaptic events. 

These conditions are not controllable in biological systems to obtain the kind of 
perturbation studies we have attempted here, though they may be approximated 
in simulations (Mpitsos and Edstrom, 1995). In the experiments presented up to 
now in the present and in the preceding paper, we have used only one 
conditioning impulse and one test EPSC in each simulation sweep. Between 
sweeps the membrane was returned to the normal, unperturbed resting 
potential. A step toward creating controlled, multiple stimulation conditions may 
be made by presenting two conditioning pulses in conjunction with the EPSC. 
The general design of these experiments is as follows: A first conditioning 
impulse was presented at some fixed position in each simulation sweep. This 
impulse preconditioned the state of the membrane to the arrival of a second 
conditioning impulse. The timing of the second impulse was controlled by the 
chaotic logistic; as before, the use of the logistic provides a structured train of 
stimuli from one sweep to the next that can be used to assess the effect of the 
stimulus environment on the output of the postsynaptic neuron. 

Figure 7A provides an example of one such experiment. The fixed 
impulse, lasting one integration step, was given at 19 ms in the simulation sweep. 
In one experiment the amplitude of this impulse was 10"10 Amps (open circle); in 
a second experiment its amplitude was -lO"10 Amps (filled circles). The dashed 
lines running through these points indicate the latency of the action potential 
obtained when only this first impulse was paired with the EPSC. The long- 
dashed line lying between these indicates the latency obtained when presenting 
only the EPSC. In order to provide a reference for the results obtained using the 
second im pulse that was controlled by the logistic function, Fig. 7A contains i/o 



functions (solid-line curves) in which the position of the second impulse is 

moved successively along the time axis in each sweep from left to right, as was 

done to generate Fig. 10 of the preceding paper. There are two sets of solid-line 

curves for each experiment, one in which the amplitude of the second impulse 

was 4 x 10-10 Amps and one in which it -4 x 10"10 Amps; in both cases each of 

these movable impulses was paired with one of the fixed 10"10 Amp impulses 

and the EPSC. The effect of the fixed-position impulse is to shift the two sets of 

curves vertically, one set above the control position shown by long-dashed line, 

and one set below; i.e., the fixed-position impulse acts as bias on the membrane 

potential, or equivalently, on the state of the gate parameters. A third set of 

experiment is superimposed on these results by the thickened region of the i/o 

curves obtained using the 4 x!0~10 Amp impulses. In this set of experiments, the 

fixed impulses were used in conjunction with the EPSC, but the timing of the 4 x 

10"10 Amp impulses was controlled by the logistic over the simulation times that 

are indicated by the thickened curves. 

The return maps of the latencies delimited by the thickened curves in Fig. 

7A are plotted in Fig. 7B, showing that the depolarizing preconditioning states 

produced by the fixed impulse expand the maps whereas hyperpolarizing shrink 

them. Thus, adding the fixed impulse produced no new changes in the maps 

except for amplification, and, since the fixed impulses shifted the i/o functions 

vertically, the two return maps were shifted to different regions of phase space. 

The changes in amplification, however, would further complicate the return 

maps if both impulses had variable timing. 

3   Discussion 

As suggested by a number of studies in biological systems, noted above 

and reviewed in the accompanying paper, the findings reported here illustrate 

that the membrane acts as an active linear filter, responding differentially to the 

same stimulus pattern presented at different times, and adding structure to 

randomly spaced input signals. The output of the cell represents a distortion of 

the input, producing several folding regions in return maps and changing the 

shape and amplitude of the input pattern. 

Overall the output represents an increase in complexity with respect to the 

input pattern, since a single-folded return map of the chaotic logistic that is 

characterizable as by a second order polynomial, is converted to a doubly-folded 



map requiring a higher order polynomial to define it. The input stimulus is a 1- 
dimensional process, and the phase-space dynamics of the input pattern can be 
characterized accurately by simple 2-dimensional return maps (Fig. 2B) that 
represent autocorrelations between adjacent input values. The inter-spike 
intervals are also a 1-dimensional process, but under some impulse presentation 

timing, the membrane forces the output dynamics into higher phase-space 
dimensions than the input since autocorrelations between several intervals in 
succession are required to resolve the dynamics. These instances occur when the 
return maps have crossed ends (Fig. 5B ("14-19"), Fig. 6B, and Fig. 7B). Owing to 
the Poincare-Bendixson theorem (Hirsch and Smale, 1974) and the Jordon curve 
theorem, phase-space trajectories can not cross in deterministic systems. 
Although it is not shown here, casting the return maps in 3-dimensions (Xn, 
Xn+i, Xn+3) and rotating the image, the trajectories do not cross, showing that a 
changing the reference from a 2-dimensional return map to a 3-dimensional one 
resolves at least this degeneracy in the input/output transformation, though 
higher dimensional embedding may be necessary to characterize the dynamics 

accurately. 
Two important and possibly interrelated phenomena have been identified 

in our studies that may be useful in extending the understanding of how 
individual neurons may become involved in the integrative capabilities of 
networks. Both emerge from the input/output functions relating the linear 
perturbation history of the membrane impedance. One, reported in the 
accompanying paper, is the apparent degeneracy of how information in the input 
data stream may relate or be decipherable in the output data stream. The 
second, reported here, shows that that there is also a deterministic component, 
though there is distortion and increase in complexity of the output firing pattern 

by comparison to the input signal. 
These findings speak to both sides of a controversy that has had a long 

existence, e.g., (Adey, 1972; Adrian, 1946; John, 1972). To use Adey's words, are 
neurons inefficient, "noisy processor" or do they process information efficiently 
and deterministically? Recent work on hippocampal slices has obtained evidence 
for determinism (Schiff, 1994), but also for a substantial, perhaps in most cases, of 
nondeterministic activity (Schiff, et al., 1994). The problem has been one not only 
of neuronal function in mammals, but also one of "simple" function in lower 
animals (Mpitsos and Cohan, 1986; Mpitsos, et al., 1988b; Wu, et al., 1994). In our 
own biological work (Mpitsos, 1989; Mpitsos, et al., 1988a; Mpitsos, et al., 1988b), 
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the search for low-dimensional deterministic activity has not been encouraging, 

and has prompted the present simulations to gain some understanding of where 

the apparent nondetermimstic activity arises. In a commentary on a deterministic 

model proposed by Shalden and Newsome (1994), Softky (1995) has discussed 

that their model of 'balanced inhibition', used to account for variations in cortical 

neuron firing, is based on the assumption that the cell is insensitive to the 

temporal structure of the input signal. Our findings indicate that any neuron 

having complex, humped or multi-humped i/o functions will be highly sensitive 

to the temporal structure of its input signal. Although the process is 

deterministic, it is also highly subject to degeneracies that can lead to variations. 

Our subsequent papers will examine how the humped i/o functions lead both to 

stable and unstable firing when the neuron is placed in a network, and will 

examine the information transfer quantitatively. 
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FIGURE LEGENDS 

FIGURE 1: Recent history of impedance changes that occur under random 
perturbation generates nonrandom firing of EPSC-evoked action potentials. A: 
Relation of impulse presentation time to action potential latency (horizontal axis). 
B: Density of randomly generated impulse presentation times; vertical axis is the 

same as in (A). A single randomly timed current impulse (4 x 10"10 Amps, lasting 

one .010 ms integration step) was presented in the 7-30 ms interval of each 35 ms 

simulation sweep. A suprathreshold EPSC was initiated 25 ms into the 
simulation. C: Histogram of the EPSC-evoked action potentials the resulted from 

100,000 simulation sweeps. 

FIGURE 2: The chaotic logistic, f(x) = 3.7(l-x)x was used to generate deterministic 
sequences of impulse presentation times. A: Time series. The values were scaled 
(see text) to control the impulse presentation times within each simulation 
sweep. B: Return map showing the deterministic structure of the logistic. One 
value (Xi+i) of the time series is plotted against the preceding value (Xi). For 
reference, the symbols are the same in (A and B) for the first four points. The 1:1 

line shows how the points fold over the critical point (X = .5). 

FIGURE 3: Method for presenting the logistically-driven constant current pulses 
to the postsynaptic neuron variably in time. A: Logistic-driven current pulses. B: 

the 1:1 line is used to match time axes so that the current pulses can be 
superimposed on the time axis of the isopleth (C) to show how they bounce back 
and forth in time. D: Symbols show the observed EPSC-evoked action potential 

latencies arising from each pairing of the impulse with the EPSC. 

FIGURE 4: The effect of the amplitude (A and B) and timing (C and D) of 
perturbation pulses on EPSC-evoked action- potential latencies. A and C: return 
maps of the latencies. B and D: latencies as a function of current-pulse amplitude 
and time of occurrence, respectively. For each presentation of a 0.010 msec 
perturbation pulse and an EPSC, a single action potential was obtained whose 
latency was measured as the time from the onset of the simulation. Both 
amplitude and time were modulated by the 3.7 logistic. When changing the 
presentation time, the amplitude was constant at 2 x lO'10 A. The presentation 

times for two experiments are shown min C and D: The solid line is for 
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presentation times shifted earlier and covered a smaller range than the times 

shown for the experiment shown by the open circles. The EPSC onset was at 25 

msec 

FIGURE 5: The temporal position along the latency isopleths represent different 

distortions of the structure of the input function generating the perturbation 
pulses. A: The thin line shows the action potential latencies arising from a 
composite of logistic-activated sequence of current pulses having constant 
amplitude (9 x 10'10 Amp; .010 ms). Seven of these sequences are shown by the 
dotted curves which have been shifted vertically to identify them. The irregular 
spacing between the dots in each line arises from the logistic scaling function T 

described in the text. B: Return maps of the intervals in six of the sequences in 
(A). The numbers identify the approximate range of times spanned by each 
sequence along the isopleth. Note that each map is a different distortion of the 
input function return map shown in Fig. 8, and, in particular, that the two legs of 
the map for the presentation of the input function at the 14-19 msec span on the 

isopleth cross over one another. 

FIGURE 6: Trains of stimuli falling over four humped regions (normal and 
inverted) of the isopleths (A) produce different looped latency return maps (B). 
The two smaller humps occur before the onset of the EPSC. The second two 
partially overlap the EPSC, showing that the EPSC amplifies the latency changes 
by comparison to the latencies produced by stimuli falling over the first set of 

humps, but does not change the overall structure of the maps. 

FIGURE 7: Interaction between multiple perturbation impulses amplifies 
changes in EPSC-evoked latencies, but does not change overall output dynamics. 
A: To show the effect, three experiments were conducted involving two 
conditioning impulses and a suprathreshold EPSC). In two experiments (two 
sets of thin-line curves), a fixed conditioning pulse was presented at 19 ms in the 
simulation sweep (filled circle = 10"10 Amps; open circle = -10"10 Amps). The 
timing of the second impulse (4 xlO"10 or 4 x-10'10 MPS) was moved 
progressively from left to right in each simulation sweep, and enough sweeps 
were conducted to cover the full sweep. To show the shapes of the i/o curves, 
only the 15-30 msec range of times is shown. The third experiment paired the 
fixed-position impulses with the movable impulse whose timing was controlled 
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by the logistic to occur over the range shown by the thickened line segments. B: 

Return maps of the latencies shown by the two thickened lines. Not that the two 

maps are simple linear amplifications of one another. Middle, long-dashed line: 

latency obtained with only the EPSC. Top dashed line: latency obtained by 
pairing the 10"10 Amp impulse with the EPSC. Bottom dashed line: latency 

obtained by pairing the -10"10 Amp impulse with the EPSC. 
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