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1 Objectives

This effort is about designing, analyzing and implementing scalable parallel solutions to
problems in intermediate- and high-level vision. This is a difficult problem as computations
are heterogeneous, symbolic and geometric in nature and use complex data structures such
as lists and graphs. Simple data parallel approaches are not sufficient due to the need
for non-local communication and data dependent load distribution. Such problems require
development of a sophisticated computational model and techniques. Specifically, the work
has the following area of emphases:

1. Design of scalable parallel algorithms and analysis of their performance for a variety
of generic geometrical computational problems, such as perceptual grouping, arising in
intermediate and high level vision.

2. Developing a generic, realistic model of computation of parallel machines that includes
the local memory, communication latency, bandwidth and synchronization overheads,
that spans a variety of MIMD architectures and is usable for a variety of symbolic
computations.

3. Test the methodology by implementing an integrated vision system that begins with
an image and produces high-level descriptions on a versatile MIMD machine such as
a Thinking Machine CM-5 or IBM SP-2. Building detection in aerial images is one of
the chosen tasks.

2 Approach

Complexities of the proposed problem preclude the use of massive parallelism based on
automatic parallelization or compiler generated mappings. Our approach consists of the
following steps:

1. Accurately modeling the features of a parallel machine to develop an abstract coarse
grain parallel model of computation that includes the costs of communication latency,
impact of communication patterns on network congestion, available bandwidth and
time for synchronization.

2. Analyzing the computation, communication and control characteristics and the mem-
ory requirements of the vision algorithms.

3. Reorganizing the algorithms to achieve a better match between the characteristics
of the computation and the machine. This will typically involve reorganizing the ‘op o
process into computation and communication phases with appropriate synchronization 'T
mechanisms so that effects of network communication latency and congestion to not 0 a
dominate the computation performed by the processors. ! g =

4. Achieving load balancing by dynamic redistribution of the tasks.

In the following sections, we show the results of our approach in parallelizing the line =
finding problem on IBM SP-2 and a perceptual grouping step on TMC CM-5. :
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3 Status of the Research Effort

We have parallelized the linear feature extraction task, a time consuming procedure in IU.
Our implementations have been performed on IBM SP-2. These show linear speed-up com-
pared with serial implementations. We also implement a perceptual grouping task (Line
Grouping) on TMC CM-5. In the following, the definition of these IU tasks are given. A
realistic model of distributed memory parallel machine is discussed. Keys ideas of the design
of fast algorithms for these tasks are discussed. The implementation details and experi-
mental results are shown. These results will appear at the IEEE Workshop on Computer
Architectures for Machine Perception, 1995.

3.1 Problem Definition
We first briefly define the selected IU problems to be solved.

A. Linear Feature Extraction

The Linear Feature Extraction consists of Contour-Pizels Detection and Linear Approzima-
tion phases. We describe this algorithm as follows [4] :

The objective of the contour-pixels detection is to extract contour pixels from an input
image. The input is a 2-D image array of pixels (grey levels) and the output is a same sized
array with directed contour pixels embedded in the array. The contour-pixels detection con-
sists of edge detection, thinning, and linking operations. These are window operations, in
which the output at a pixel is based on the value of the input pixel and the value of its
neighboring pixels. The neighborhood of a pixel is defined by the given window size. Given
an n X n image and fixed number of windows of size m x m, extraction of contour pixels can
be performed in O(m?n?) time on a serial machine.

Linear approximation is a data reduction technique to extract line segments from a
contour-pixel array. The input is a 2-D contour pixel array with directions and the output
is a set of line segments approximating the contours. The linear approximation consists of
contour tracing and approximation operations. Several heuristics are available for approx-
imating a contour by a set of piecewise line segments [1]. In this paper, we employed a
strip-based algorithm [8]; given a starting point of a contour and an error bound for control-
ling the quality of the approximation, it follows the contour pixels until the current pixel is
the last pixel of the contour or exceeds a given error bound. A straight line from the starting
pixel to the current pixel is used to approximate the contour. If the current pixel exceeds
the error bound, then this procedure continues again with this pixel as the starting pixel.

The analysis of our algorithm as well as its implementation can be easily modified to suit
other heuristics for approximation to lead to similar performance.

B. Perceptual Grouping

In this section, we briefly describe the processing steps in perceptual grouping.




In general, vision system operates both in bottom-up (feature extraction, grouping) and
top-down fashion (verification). The perceptual grouping process is usually an intermediate-
level procedure to group the primitive features detected by low-level processing to form
structural hypotheses.

We consider parallelizing the perceptual grouping tasks described in [11]. The grouping
procedures are performed in a building detection system for grouping linear features to form
structural objects such as rectangles. The rectangles are then used to hypothesize building
structures. For the sake of completeness, we briefly outline the processing steps in perceptual
grouping. Additional details can be found in [11].

(1) Line Grouping - groups line segments which are closely bunched, overlapped, and
parallel to each other to form a line (a linear structure at a higher granularity level). For
each line segment, a search is performed within the region on both sides of the line segment
within a constant width to find other line segments which are parallel to it. The detected
segments are grouped to form a line. (2) Junction Grouping - groups two close right-
angled lines to form a Junction. For each line, a search is performed on both sides of the
line within a constant width and a fixed size region near its end-points to find lines which
may jointly form right-angled corner(s). For any two lines which form a “I” junction, the
top line will be broken to form two separate lines. To distinguish the linear features detected
at different grouping tasks, let linear denote the new generated lines and the lines that are
not broken. (3) Parallel Grouping - groups two linears which are parallel to each other
and have “high” percentage of overlap. For each linear, a search is performed on a window
of size w x w where w is a given value representing the length of the side of a possible build-
ing in the image. We then form a parallel by grouping the linear with the ltnear found
in the window having a difference of slope within a given threshold value and satisfying
certain constraints with respect to overlap. (4) U-contour Grouping - forms a U-contour
if any parallel has its two linears aligned at one end. A search is performed within the
window near the aligned end of each parallel to group with linears possibly connecting the
end-points at the aligned end. If any two U-contours share the same parallel, a rectangle is
formed as a building hypothesis.

To reduce the search time, we store pointers representing image features in an index
array of the same size as the image. For example, a pointer stored at (z,y) may point to
a junction feature formed by two segments with (z,y) as their intersection point. Thus, to
find a junction near a point of interest only a neighboring area need to be searched.

Let W(S) denote the total area of all the search windows generated by a set S of input
tokens in a grouping task. Note that the set S represents the token data such as segment,
line, linear, and parallel in Line, Junction, Parallel, and U-contour Grouping tasks respec-
tively. We store segment, line, and linear tokens in the index array before starting Line
Grouping, Junction Grouping, and Parallel Grouping tasks respectively. We assume that
a constant number of token data is stored at a grid point of the index array. In fact, the
thinning technique used in [11] produces at most three linear features at a grid point. We
have W(S) = Ys(c x ;) for Line Grouping and W(S) = Y s(2m? + d x [;) for Junction
Grouping, where [; is the length of the ¢th segment (line), ¢ and d are constants specifying




the width of the search window on each side of the segment (line), and m? denotes the
size of the search area at one end of a line. Given a n x n image, W(S) = O(n?). Also,
O(n?) time is required to construct the index array. Thus, the Line and Junction Grouping
tasks can be performed in O(n?) time on a sequential machine. The Parallel and U-contour
Grouping tasks can be combined into a single task as the search on aligned end overlaps with
the search area of Parallel Grouping. The combined task can be completed in O(]S|w? + n?)
time on a sequential machine.

3.2 A Model of Distributed Memory Machines

For our analysis, we model the distributed memory machine as a set of high-performance
serial machines interacting through a low-latency high-bandwidth network. Interprocessor
communication is performed using explicit message passing. We consider moderately parallel
processing systems in which the machine sizes are not “large.” In general, the size of the
machine (the number of processors) is less than a thousand for most commercially available
machines such as TMC CM-5, IBM SP-2, and Intel Paragon that have been installed. In the
current generation of interconnection networks, the small network (hardware) latency, the
high bandwidth of the communication network, and the advent of efficient routing methods,
have made the effects of network link contention and the distance between processors (in
terms of hops) be relatively small compared with large software overheads in message pass-
ing. Traditional task allocation/mapping algorithms consider the interconnection topology
and physical distance between the processors. Such approaches have limited capabilities in
reducing the the communication time in using state-of-the-art distributed memory machines.

Let P be the number of processors. In our discussion, processing node (PN), processing
element (PE), and processor are used interchangeably. Let 7T, denote the startup time
for sending a message. Let 7; denote the transmission rate (seconds per unit of data) for
data communication. The startup time, including the software and communication protocol
overheads, is associated with each communication step. We make the following assumptions
for our analysis: (1) Sending a message containing m units of data from a processor to another
processor or exchanging a message of size m between a pair of processors takes Ty + m7y
time. (2) Suppose each processor has m units of data to be routed to a single destination
and the set of all destinations is a permutation, then the data can be routed in T; + m7y
time. (3) To perform a global operation such as broadcast a data, a barrier synchronization,
or a reduction operation (sum, min, max, prefix sum etc.), 7, time is required. We assume
7, is a constant, if the machine has a control network dedicated to performing fast global
operations, (for example, CM-5 [15]). Otherwise, the operation is implemented using point-
to-point communication primitives, 7, = O((log P)Ty).

For most message-passing parallel machines, the ratio of Ty to 74 is in the range of several
hundreds to few thousands as shown in Table 1. To reduce the communication time, the high
startup cost, as well as the message length, need to be considered. For communicating many
short messages between a pair of processors, the algorithm may combine messages into a
larger message block to be transmitted as a single unit between the processors. For commu-
nicating long messages, the scheduling of the communication steps to avoid node contention




Machine | Ty (usec) Tq(usec/byte) Ty/T4
CM-5 86 0.12 716
SP-2 46 0.035 1314
Paragon | 82 0.26 315
iPSC/860 | 60 0.50 120
iPSC/2 700 0.36 1944

Table 1: Communication parameters of various message-passing machines.

(several processors attempt to communicate with the same processor simultaneously), and
the computation time for preparing the outgoing message need to be taken into account.

3.3 Fast Parallel Algorithms

In this section, we discuss the key ideas of the design of fast algorithm for the selected IU
tasks.

A. Parallel Linear Feature Extraction

Let P denote the number of processing nodes. The n X n image array is divided into P blocks
of size 7“—1; X —’j—;. The contour-pixels detection phase can be parallelized by performing the
window operations in each processing node. Since the work load for each window operation
is nearly the same and each operation can be done independently, we can exploit the data
parallelism in each operation naturally. However, some communication is required to ex-
change boundary data for subsequent window operation. This communication overhead can
be reduced by overlapping the computation with the communication.

We assume that the input to the linear approximation phase is the output of the contour-
pixels detection phase. The contour-pixels data are stored in a 2-D contour pixel array. In
the linear approximation, there are two kinds of data to be handled: local contour data and
global contour data. Local contour is a contour whose pixels are located in a single processing
node, while global contour is a contour whose pixels belong to more than one processing node.
The local contours can be processed independently as there is no data dependency between
the processing nodes. However, in the case of global contours, the processing can start only
after the neighboring processing node completes the approximation on the pixels ahead of
the local starting pixel. '

Following terminology is used in this paper: (1) starting pizel: the first pixel of a contour,
(2) ending pizel: the last pixel of a contour, (3) local-starting pizel: the starting pixel of a
global contour located in a processing node, (4) local-ending pizel: the ending pixel of a global
contour located in a processing node, (5) task: the computational work to be performed on
a local contour or part of a global contour located in a processing node, (6) token: data
sent from a processing node to another processing node to activate the processing of the
next segment of a global contour located in the neighboring processing node. This contains
information to continue global contour processing, (7) ready queue: queue for tasks having




a token, (8) wait queue: queue for tasks not having a token.

A.1 — A Synchronous Iterative Algorithm

A possible solution to linear approximation phase is to use a synchronous iterative technique.
Such a technique has been widely used in scientific computations [16]. In this approach, each
processing node performs operations on its local data, and then checks for a termination
condition. If the condition is not satisfied, then all the processing nodes exchange data and
proceed to the next iteration. For the purpose of comparison, we outline the synchronous
linear approximation algorithm in Figure 1 based on the technique in [7].

Method 1 : A Synchronous Iterative Algorithm
Step 1: Create wait queue.
Step 2: Update the wait queue and ready queue.
Step 3: Take a task from ready queue and perform linear approximation.
Repeat this Step until the ready queue is empty.
Step 4: Synchronize all processing nodes.
Step 5: Check termination condition. If TRUE, terminate.
Step 6: Exchange tokens and go to Step 2.
end

Figure 1: An outline of a Synchronous Iterative Algorithm for linear approximation.

In Step 1, we extract the starting and local-starting pixels from a 2-D contour pixel
array and store them into a wait queue. Initially, the contours having the starting pixel are
considered as the tasks having a token. Then, we check the wait queue in Step 2. If any
task has a token, it is extracted from the wait queue and inserted into the ready queue.
All the ready tasks are moved into the ready queue. In Step 3, we take one ready task
and perform the contour tracing and the approximation operations. Each processing node
has eight outgoing buffers for the eight neighboring nodes. If the task corresponds to a
global contour, the token is stored into its corresponding outgoing buffer. After finishing
all the ready tasks, the processing nodes participate in the synchronization in Step 4. In
Step 5, we combine the status of all the outgoing buffers. If any of the buffers 1s not empty,
communicate with each other in Step 6 and proceed to the next iteration.

In this algorithm, there are two sources of synchronization overheads. First, all process-
ing nodes synchronize (in Step 4) before starting the next iteration. If a processing node
completes Step 3 earlier, then it will be idle until all the other processing nodes complete
Step 3. This synchronization overhead occurs in practice due to unbalanced work load among
processing nodes in an iteration. The second source of synchronization overhead is the time
to perform the synchronization command in SP-2. As the number of processing nodes in-
creases, the execution time of the command increases. Thus, the execution time depends on
the distribution of the contours among the processing nodes, and in the worst case it can
result in poor speed-ups.




The load unbalance problem can be solved with the load re-distribution algorithms (3,
7]. In these methods, the contours are redistributed initially to balance the load on the
processing nodes. However, the cost of calculating the load on the processing nodes and
load re-distribution overhead make these algorithms attractive only if the computational
cost associated processing the with contour data is high.

A.2 — An Asynchronous Algorithm

Method 2 : An Asynchronous Algorithm
Step 1: Count the number of sends and receives.
Step 2: Create wait queue.
Step 3: Receive tokens. Check wait queue.
If no token for global contours,
go to Step 5.
Step 4: Take a task for global contour from ready queue and perform the approximation.
If needed, send token. Go to Step 6.
Step 5: Take a task for local contour from ready queue and perform the approximation.
Go to Step 6.
Step 6: Check termination condition.
If FALSE, go to Step 3.
Step T: Synchronize all processing nodes and terminate.
end

Figure 2: An outline of an Asynchronous Algorithm for linear approximation.

To reduce the overhead in detecting the termination status, we count the number of out-
going and incoming global contours in each processing node. Thus, the termination status in
each processing node is reached when all the queues become empty and the processing node
finishes sending the tokens. The termination status of the overall system can be detected
using a single collective communication command. This elimination of synchronization over-
head can improve the utilization of processing nodes as each processing node can start its
next task independently of all the other processing nodes.

In order to improve the execution time further, we intentionally interleave the local
contour processing and the global contour processing in each processing node. When we use
a coarse-grain machine such as SP-2, each processing node has a lot of data to be processed.
The processing for the input data in each processing node can be divided into two categories.
Processing of the local contour and part of the global contour having the starting pixel can
be done independently of other processing nodes. However, processing of part of the global
contour not having the starting pixel can only be done after performing the previous part of
that global contour. A simple priority-based scheduling heuristic can contribute to improved
performance. The contour pixels in each processing node are grouped into three priority
classes: (1) Priority I: global contours having their starting pixels in the processing node.
(2) Priority 2: global contours having the local-starting pixels in the processing node. (3)
Priority 3 local contours. Priority 1 is the highest priority class while Priority 3 is the




lowest priority class. By scheduling the tasks according to their priorities, we can reduce the
idle time of a processing node. The goal of this task scheduling is to perform tasks on the
critical-path first and keep the processing nodes. Details are shown in Figure 2.

In Step 1 (see Figure 2), we search the boundary of the 2-D contour pixel array in the
problem and count the number of sends and receives. Then, we extract the starting and
local-starting pixels from the 2-D contour pixel array and store them into a wait queue in
Step 2. Step 3 receives all the pending tokens and updates the number of receives. Then, we
check the wait queue. If any task has a token, it is extracted from the wait queue and inserted
into the ready queue. If there is any global contour task in the ready queue, then we process
it, otherwise, a local contour is processed. Step 4 takes a ready task for a global contour
and performs the contour tracing and the approximation operations. If the task contains a
local-ending pixel, then we send the token immediately and the number of sends is updated
as necessary. This makes overlapping the next computation with the communication possible
because each processing node may have independent tasks to perform. Step 5 takes a ready
task for a local contour and performs the contour tracing and the approximation operations.
Step 6 checks the number of sends and receives. If both of them are zeroes, then the
processing node participate in the synchronization for termination.

B. Parallel Perceptual Grouping

Let token denote any of a segment, a line, a linear, a pair of parallel linears, a junction, or
a rectangle. For example, a segment token contains information such as endpoint location,
length, or slope of the segment. Let P denote the number of processors in the machine and
let the image size be n x n. Initially, we divide the image array into P blocks and distribute
them to the processors for extraction of image features. Thus, each processor contains a
subimage of size \/LF X \/Lﬁ along with image features detected during the feature extraction
phase [7]. The image features detected are used as input to the perceptual grouping phase.
We assume that the input to the grouping phase is a set of segment tokens. A segment token
with starting coordinates (z1,y;) and ending coordinates (z3,ys) is stored in the processor
which has the subimage containing (z3,y,) pixel. The line and linear tokens are also stored
in this way before the grouping task begins.

B.1 — Outline of the Parallel Grouping Algorithm

We only analyze the Line Grouping task. The same approach can be applied to the Junction
Grouping and other grouping tasks. Following the sequential algorithm described in Section
3.1, in the Line Grouping task, we group line segments which are closely bunched, overlapped,
and parallel to each other to form a line (a linear structure at a higher granularity level). For
each line segment, a search is performed within the region on both sides of the line segment
within a constant width to find other line segments which are parallel to it. The detected
segments are grouped to form a line.

The grouping algorithm is performed in a scatter-and-gather fashion. In the scatter phase,
each processor computes the search window for each token stored locally and distributes
remote accesses to perform search on subimage blocks overlapping with the search window.
For example, if the search window of a segment in PE, overlaps with the subimage blocks
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Procedure : Line-Grouping ,
Input: n X n image with line segment data embedded on the image at its two endpoint
Step 1: Distribute search requests for long segments
Step 2: Perform partial grouping operation
Step 3: Gather results
Step 4: Perform merge operations
Step 5: Perform barrier synchronization

end

Figure 3: A skeleton of parallel algorithm for Line Grouping.

contained in PE3, PEy, and PE;, it will generate three search requests and send them to
PE;, PE4, and PE; separately. In the gathering phase, partial grouping results are sent
back to form new tokens. Initially, the segments are stored at the processor which has the
subimage containing its ending pixel (z3,y2). To make complete image data available before
performing window search, we also store the segment data at its starting point location (z1,
y;) on the image. This indexing mechanism is also used in {13, 6]. The communication cost
of performing the indexing step can be hidden because both endpoints are always located
within the search window. The indexing can be done at the processor containing the starting
point after receiving the search request.

For the sake of convenience, we define short segments as those segments whose search
windows do not cross subimage boundary and long segments as those that cross at least
one subimage boundary. For short segments, the grouping can be performed locally as the
search window is within the subimage. The steps of our algorithm are outlined in Figure 3.
In Step 1, for each long token, we compute its search window and send search requests to
processors containing the subimage that overlaps with the token’s search window. In Step
2, we first perform the indexing step and then perform search operations requested by the
remote processors and those of local short segments. All those short segments complete
this grouping task in Step 2. However, at this time, the search requests generated by long
tokens results in partial grouping. These partial results need to be sent back and merged to
form new tokens. In Steps 3 and 4, we send back the partial grouping results and generate
new tokens upon receiving the partial grouping results. Note that the grouping process is
decomposable and the partial result generated by each search request has O(1) data size.
The merge operation is a weighted-least mean square procedure to compute the average
orientation of the new line. Only the partial sum of the angle, partial sum of the length of
the grouped segments, and coordinates of the two farthest endpoints need to be sent back
to the original processor to compute the line. Thus, Steps 3 and 4 have the same time
complexity as Steps 1 and 2.

B.2 — Analyses of Communication Requirements

Each processor generates remote access requests for each long segments stored in it. All
requests from a processor with the same destination can be packed into a single message.
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Thus, each processor generates at most P messages of different lengths. Let [;; be the length
of the message to be sent from processor; to processor;, e = maz(l;;|0 < 4,7 < P—=1). lnas
is the longest outgoing message. Let s = maz(3; ;{0 < i < P —1) and 7 = maz(T; [;|0 <
7 < P —1) be the the maximum outgoing and incoming traffic generated at a processor
respectively. Let L = maz(s,r). Based on our analysis we know lnez < ;5= and using
the proposed algorithm in Section 3.3, we can control the communication traffic such that
L< %. The data movement is a many-to-many personalized communication with bounded
traffic L.

For image sizes used by the vision community (n < 4K') and machine sizes of practical
message-passing machines (P < 1024), the scenario leads to lpee < 512 and L < 2048,
for n = 4K and P = 16. The total amount of data to be transmitted on the network,
R=%,;;1i;0<4i,j<P—1,is at most 256K for R =L x P, n = 4K and P = 1024. This
type of data communication is usually not a bulk data transfer but a sparse many-to-many
communication having large message length variance. Based on the computational model
used in this paper, a straightforward algorithm for many-to-many personalized communica-
tion requires P(Ty + L X 74) communication time as the longest message size could be L
at each communication step and P communication steps are performed. We refer to this
algorithm as I-stage algorithm. This situation in the worst case may result in severe perfor-
mance deterioration without careful design of an algorithm to smooth out the variation in
the message lengths.

Some earlier studies have considered implementing data communication problems in dis-
tributed memory machines. In [14], a 2-stage algorithm for many-to-many personalized
communication with message length variance has been studied. In the first stage, mes-
sage 1, for 0 < 1 < P, is partitioned into P packets of equal size. They are designated
as packet; g, packet; 1, ..packet; p_y. The new ith outgoing message at each processor, for
0 <i < P, is composed of packet;;, for 0 < j < P. All P outgoing messages initiated from
the same processor will have equal size after this step. In the first stage, P communica-
tion steps are performed and each outgoing message from processor ¢, has message length
2 (0<i<P) [ITH < % + P, for 0 < 7 < P. In the second stage, all processors receive P mes-
sages. Each outgoing message is composed of data having the same destination. Another P
communication steps are performed to move the data to their destination. The algorithm
takes O(L + P?) computation time and 2PT, + 2(L + P?)7; communication time to perform
the data movement. The techniques in [14] do not reduce the number of communication
steps. If P is large, the startup time may dominate the total communication time.

Due to the relatively high startup time associated with a communication step, it is neces-
sary to design communication algorithms which smooth out the message length variance and
reduce the number of communication steps to avoid large startup time. We propose a 5-stage
algorithm which can reduce the communication time for many-to-many data communication
with high message length variance.
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B.3 — A 5-Stage Algorithm for Communication

We propose a 5-stage algorithm which can reduce the communication time for many-to-
many data communication with light traffic (small ) and high message length variance. We
assume P is the number of processing elements (PEs) and each PE sends or receives at most
L data. To describe the 5-stage algorithm, we use the following definitions and procedures.

We define two partitionS' Partition A: Gy, G1,G /5_q, PE; belongs to GL#J’ for 0 <
i < P; Partition B: G, \/— » PE; belongs to G} p for 0 <12 < P. The logical
partitions of the processor array 1s used to distinguish the communication scheduling in each
stage. Two procedures are used to prepare the outgoing messages. Rearrange A: this
procedure deals with the incoming data in the first three stages. In each processor, the data
with destination PE; is collected to form the [#J th outgoing message from that processor.
Rearrange B: this procedure deals with the incoming messages in Stages 4 and 5. In each
processor, the data with destination PE; is collected to form the (i mod v/P)th outgoing
message from that processor. Note that, there are always /P outgoing messages prepared
in each processor at all stages. In the following, we define three other main procedures:

1. v/P-decompose: Assume each processor has /P outgoing messages. Each outgoing
message is partitioned into v/P packets of even size numbered 0,1,.../P — 1. These
packets are then rearranged such that the new ¢th outgoing message is composed of
the ith packet from all the v/P outgoing messages, for 0 < i < v/P.

v/P-shuffle: We send the v/P — 1 messages to the other v/P — 1 processors within the
same logically partitioned group based on Partition A or B.

™

3. v/ P-collect: PE; collects the data destined for GL L) from all the other PEs within
VP
its logical group based on Partition B.

Lemma 1 Given a message-passing machine having P processors, a many-to-many person-
alized communication with bounded traffic L can be performed in O(L+ P) computation time,
5V PTy + 5 x maz(L, P)ry communication time.

Procedure: 5-stage Algorithm
Stage 1: Perform Rearrange A, v/ P-decompose, and v/ P-shuffle based on Partition A.

Stage 2: Perform Rearrange A, v/ P-decompose, and /P-shuffle based on Partition B.
Stage 3: Perform Rearrange A and /P-collect
Stage 4: Perform Rearrange B, /P-decompose, and v/ P-shuffle based on Partition A.
Stage 5: Perform Rearrange B and v/P-shuffle based on Partition A.

end

Figure 4: A skeleton of the 5-stage algorithm for personalized communication.

The 5-stage algorithm is performed in three phases. The first phase is used to smooth
the message length variance. In the first phase, two communication stages are performed

12




to redistribute the data such that data destined for G; is evenly distributed among the P
processors, for 0 < i < v/P. Thus, at the end of the first phase, each message at a processor
has length at most L x V/P/P = \/L}—J. The second phase consists of a single stage. In this
stage, we redistribute the data so that the data destined for processors in G; are moved to
processors in Gy, for 0 < ¢ < +/P. During the third phase (Stage 4 and 5), the 2-stage
algorithm is performed on the data within each group G;, 0 <1 < VP, to move the data to
their destination.

In each stage, each processor sends and receives /P messages among processors within
its own group. Assume the processors in each group are numbered by PEg, PE,..PE! & |

following the order of their physical node number. Movement of the /P messages in each
stage can be realized by /P rounds of data permutation within each logically partitioned
group. A simple schedule can be used during each stage: in round 7,0 < j < VP, P, PE! sends
the ((¢ + j) mod v/P)th message to PE( ) mod /P in parallel for all : and all \/— groups.

0 <7 < v/P. Each stage takes v PT, + max(L P)14 time for communication, since during
each round a processor sends at most \/— data. The 5-stage algorithm can be performed in

O(L + P) computation time and 5v/PTy + 5 x maz(L, P)r; communication time.

B.4 — Time Complexity of the Grouping Algorithm

The number of long segments in a processor is bounded by 2% as the detected line segments
do not overlap and the number of such segments is less than \ﬁ;lf the number of the subimage
boundary pixels. Let R be the total number of the search requests generated by the the long
segments over the entire processor array. Each processor can receive at most 4 x [ 2\7?1 search
requests since the number of requests is bounded by the number of subimage boundary pixels.

Thus, R is less than P X ;—%. Note that each processor may contain < % long segments

and each long segment may generate as many as \/ﬁ requests. Thus, the total number of
requests generated in a processor can be as large as —15 x /P = 2n. To smooth the variance
of the outgoing traffic from the processors, we redistribute the long segments such that each

B R ~ 2n
processor generates £ requests and 7 < ik

Theorem 1 Given an n X n image, the Line Grouping task can be performed in O(n®/P)
computation time and 20v/PTy + 10(log P)Ty + max(40" 20P)7y communication time using
P processors.

We briefly outline an analysis of the computation and communication times in Theorem 1,
following the steps shown in Figure 3. In Step 1, we first redistribute the long segments such
that each processor generates 5 £ requests. We then move these requests to their destinations
using the 5-stage algorithm. Each processor computes the number of requests generated for
each long segment and computes the sum of the number of requests (R) among the entire
processor array. This can be computed by performing a sum operation to obtain R. Let
r o= % be the average number of requests to be generated at a processor. To compute
the destination of the long segments for redistribution, a prefix sum operation is performed
on a length array with the ith entry storing the number of requests to be generated by
the ith segment. The destination of the long segment can be specified as PELze_nmJ, where
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len[t] is the prefix sum value of the sth segment. The two cooperative operations (sum and
prefix sum) take 4(log P)T; communication time. The 5-stage algorithm can be performed
to move the long segments. Step 1 can be completed in O( + P) computation time and

5v/ PT,+4(log P)Td—}—mcm(i})ﬁ 5P)7,; communication time. Step 2 can be performed in O(% )

computation time to perform the search on a = X N subimage. During Steps 3 and 4,
we gather the partial grouping results and perform the merge operation to form new tokens.
Step 3 involves data communication. The communication can be completed in O( % + P)

computation time and 5v/PTy + 4(log P)Ty + max(wT;, 5P)7; communication time. In Step
4, a similar procedure as in Step 1 can be performed to move back the results. Step 4 can
be completed in O(7 + P) computation time and 5v/PTy + 4(log P)Ty + maac(w” 5P) 7y

communication time. Step 5 can be performed in 2(log P)Td communication tlme The
total execution to perform the Line Grouping task is O(% + P) computation time and

20V PT, + 10(log P)T, + ma:z:(boE 20P)7y communication time. The computation time is

O(F) for n > P; typically, n < 4096 and P < 1024. Due to space constraints, the analysis
of time complexity of the Junction Grouping will be provided in the full version of the paper.

3.4 Parallel Implementation

In this section, we discuss the implementation details and performance results for paralleliz-

ing the selected IU tasks on IBM SP-2 and TMC CM-5.

A. Parallel Implementations of a Linear Feature Extraction Task on IBM SP-2

70¢

60 512x512

128x128,

) 10 20 30 40 50 60 70
Number of Processors

Figure 5: Speed-up of the Contour-Pixels Detection Phase

The algorithm was implemented on a SP-2 dedicated pool of 64 processing nodes at the
Maui High Performance Computing Center. We used 1, 4, 8, 16, 32, and 64 processing nodes
in the pool. The code was written using C and MPL message passing library. The total
length of the code is around 3000 lines. The code has two parts: manager part and worker
part. The manager part reads the image data to processing node 0 and then evenly dis-
tributes it to the processing nodes including processing node 0. The worker part is executed

14




by the processing nodes which perform the contour-pixels detection and linear approxima-
tion.

In the contour-pixels detection phase, we implemented the overlapping computation with
communication technique. It performs the window operations for the boundary part of the
tasks first, and sends the result immediately using the non-blocking command. Because we
keep working on the remaining part of the tasks, we can hide the actual transfer time by
overlapping next computation in the main processor with the communication performed by
the communication processor. Furthermore, due to the relatively large non-blocking com-
mand execution time in SP-2, we employed the message packing technique used in [7, 10] by
storing the individual messages for the same destination into an outgoing buffer and sending
that buffer as a single message (similar technique is also used by compiler designers, see
for example [5]). We show the speedup of the contour-pixels detection phase in Figure 5.
Given an image of size 512 x 512, the contour-pixels detection can be performed in 0.05
seconds on a 64-node SP-2. A serial implementation takes 3 seconds on a single-node of
SP-2. These reported data are calculated by the actual elapsed time using the wall clock in
the dedicated-mode.

In the linear approximation phase, we also exploited the non-blocking command in the
asynchronous implementation because the scheduling policy lets some tasks to be processed
after the non-blocking command. In Step 3 of Figure 2, we used a non-blocking receive
command. Once we post the commands, the main processor can start the next computational
work while the actual receive operation is performed by a communication processor. Also,
the main processor initiates the non-blocking send command in Step 4 of Figure 2. The
next computational work can be overlapped with the actual send operation being performed
by the communication processor. However, there is some difficulty when we apply the
message packing technique in the asynchronous implementation. The communication pattern
is irregular and is not known at compile time. If we determine the degree of the packing
using the fixed-size outgoing buffer (each processing node sends the packed message when the
outgoing buffer is full), then deadlock can occur; all processing nodes have no computational
work to do and are waiting for the results of adjacent processing nodes, but no one can
break this circular wait condition because all the outgoing buffers are not full. We avoid this
deadlock scenario by sending the outgoing buffer after some fixed time. By doing this, each
processing node can start next computational work with the received data.

The speed-ups of both synchronous and asynchronous algorithms are calculated with the
elapsed time using the wall clock in the dedicated-mode. These are shown in Figure 6. The
speed-ups of the synchronous algorithm become saturated soon due to idling of processing
nodes caused by data dependencies and synchronization overheads. However, large speed-ups
with the asynchronous algorithm is achieved by reducing the synchronization overheads and
applying task scheduling. As the number of processing nodes increases for a given image
data, the asynchronous algorithm gives large speed-ups compared with the synchronous
algorithm. The asynchronous implementation on an image of size 512 x 512 completes in
0.015 seconds on a 64-node of SP-2. The execution time of the synchronous algorithm is
0.225 seconds on a 64-node of SP-2. A serial implementation of the linear approximation
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Figure 6: Speed-up of the Linear Approximation Phase

takes 0.445 seconds on a single-node of SP-2.

B. Parallel Implementations of A Line Grouping Step on TMC CM-5

We have performed perceptual grouping (the Line Grouping step developed by the vision
group at USC) in about 0.324 sec using a CM-5 partition having 256 nodes (See Table 2).
This task takes about 10 seconds on a state-of-the-art Spacrstation. The key problem in
parallelizing perceptual grouping is unbalanced work load created by uneven distribution of
features in the image. We have developed load balancing techniques that evenly distribute

the load among the processors [7].

Total Execution Time (in seconds)

Image size | Number of | CM-5 Partition Size (P)
(nxn) Segments | P=64 P=256
AP1(n = 256) 1594 0.215 0.108
Mall(n = 512) 5474 0.622 0.243
J3(n = 1K) 8943 1.014 0.324

Table 2: Execution times of the Line Grouping procedure on various partitions of CM-5.
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