
WL-TR-95-1105

STANDARD ANALYZER OF VHDL
APPLICATIONS FOR NEXT GENERATION TECHNOLOGY
(SAVANT)

PRAVEEN CHAWLA
PHILIP A. WILSEY

HERBERT L. HIRSCH
JEFFREY CARTER

MTL SYSTEMS, INC.
3481 DAYTON-XENIA ROAD
DAYTON OH 45432-2796

APRIL 1995

FINAL REPORT FOR 06/23/94-04/24/95

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

r DTIC 1
f&ELECTEfll

JUN 2 8 1995

AVIONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH 45433-7409

19950626 092

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-

tion.

SCARPELLI, Project Eng AL öt.AKijJiL,Li, project engineer
Data & Signal Processing Section
Information Processing

Technology Branch

STANLEY E. TJAGNER, Chäef
Microelectronics Division
Solid State Electronics

Directorate

JJL.. * \A>U,
#OHN W. HINES, Chief
Design Branch
Microelectronics Division

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

i &
O
D

By....._ _
Distribution /

Availability Codes

Dist

/w
Avail and/or

Special

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WL/AAAT-2 , WPAFB, OH 45433-7409 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific

document.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of nformation is estimated to average l hour per response, including the time for reviewing instructions, searching existing data sources,
gMherinS and maintaining the data needed, and completing and renewing the collection of information. Send comments regarding this burden estimate or any;other'aspect <Jf this
mlection of information .nciudinq suqqestions for reducing this ourden. to Washington Headquarters Services. Directorate for Information Operations and Reports 1215 Jetterson
Da"!Sway Surte 204 p Hngton VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project 0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

APRIL 1995
3. REPORT TYPE AND DATES COVERED

FINAL 06/23/94—04/24/95

4. TITLE AND SUBTITLE
STANDARD ANALYZER OF VHDL APPLICATIONS FOR NEXT
NEXT GENERATION TECHNOLOGY (SAVANT)

6. AUTHOR(S)
PRAVEEN CHAWLA
PHILIP A. WILSEY

HERBERT L. HIRSCH
JEFFREY CARTER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

MTL SYSTEMS, INC.
3481 DAYTON-XENIA ROAD
DAYTON OH 45432-2796

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AVIONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH 45433-7409

5. FUNDING NUMBERS
C F33615-94-C-1469

PE 65502
PR 3005
TA 06
WU 57

8. PERFORMING ORGANIZATION
REPORT NUMBER

MFR-93-006/CSF325

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

WL-TR-95-1105

11. SUPPLEMENTARY NOTES
THIS IS A SMALL BUSINESS INNOVATION RESEARCH REPORT (SBIR), PHASE 1

12a. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
THIS WORK ESTABLISHED THE FEASIBILITY OF A STANDARD MEDIUM (INTERMEDIATE FORM OR IF.
FOR THE EXCHANGE OF VHDL-ENCODED DATA AMONG COMPUTER-AIDED DESIGN (CAD) SYSTEMS.
THE CURRENT PROLIFERATION OF VENDOR-PROPRIETARY, NON-STANDARD IFs AND ANALYZERS
FORCES USERS TO EITHER USE ALL THE CAD TOOLS FROM ONE VENDOR OR PURCHASE SEVERAL
VHDL ANALYZERS, ONE FROM EACH DISTINCT CAD TOOL VENDOR. THE SOLUTION TECHNOLOGY
WAS NAMED THE STANDARD ANALYZER OF VHDL APPLICATIONS FOR NEXT-GENERATION TECHNOLOGY
(SAVANT). THE WORK FOCUSED ON THREE OBJECTIVES, TO: 1)ESTABLISH THE TECHNICAL
FEASIBILITY OF THE SAVANT TECHNOLOGY, 2)ESTABLISH COMMUNITY ACCEPTANCE OF THE
TECHNOLOGY, AND 3)PRODUCE PRELIMINARY DESIGN CONCEPTS FOR PHASE II IMPLEMENTATION.
THE TECHNOLOGY WAS FOUND TO BE A VALID, FEASIBLE, COMMERCIALIZABLE SOLUTION. THE
EFFORT DEMONSTRATED THE IF CONCEPTS, A PROTOTYPE STANDARD ANALYSER, COMPILER
SUPPORT TOOLS, AND RECORD AND PLAYBACK FORMATS. THE WORK ALSO DEFINED THE SAVANT
DOCUMENTATION FORM, IDENTIFIED A DISTRIBUTION SCHEME, BEGAN TO STIMULATE DESIGN
COMMUNITY ACCEPTANCE, AND PRODUCED A COMMERICAL PRODUCT INSERTION PLAN. POTENTIAL
APPLICATIONS INCLUDE MYRIAD RESEARCHERS, DEVELOPERS, AND DESIGN TOOL PRODUCERS
INVOLVED WITH CAD IN VHDL. T)TIC OUAUT? INSPECTED 3

14. SUBJECT TERMS
VHDL VHDL SIMULATION
CAD VHDL ANALYZER

INTERMEDIATE FORM (IF)
EDA

17. SECURITY CLASSIFICATION
or REPORT

UNCLASSIFIED

13. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
70

16. PRICE CODE

20. LIMITATION OF ABSTRACT

SAR

MFR-95-006/CSC325 F33615-94-C-1469

SAVANT

TABLE OF CONTENTS

SECTION TITLE PAGE

PREFACE. V

1.0 INTRODUCTION 1
1.1 The Problem and Significance 1
1.2 The Background 4

1.3 The Phase I Objectives, Requirements, and Task Plan 5
1.4 The Phase I Summary Results 10

2.0 TECHNICAL INVESTIGATIONS 15
2.1 Task 1 — Establish the Preliminary Standard IF Definition 15
2.2 Task 2 — Interact with the Community 17
2.3 Task 3— Select Compiler Tools 18
2.4 Task 4— Demonstrate Tools and Build Prototype 19
2.5 Task 5 — Establish File Format for Record and Playback 20
2.6 Task 6— Document the Phase I Effort 22
2.7 SAVANT Documentation Definition (Added Task) 23
2.8 Summary of the Technical Investigations 27

3.0 PHASEIRESULTS 28
3.1 Task 1 — Establish the Preliminary Standard IF Definition 28
3.2 Task 2— Interact with the Community 32
3.3 Task 3— Select Compiler Tools 33
3.4 Task 4— Demonstrate Tools and Build Prototype 35
3.5 Task 5 — Establish File Format for Record and Playback 38
3.6 Task 6— Document the Phase I Effort 39
3.7 SAVANT Documentation Definition (Added Task) 40
3.8 Summary of the Results 43

4.0 PHASE I CONCLUSIONS AND RECOMMENDATIONS 44

Appendix A A-1
Appendix B B-1

Final Report iii SAVANT

MFR-95-006/CSC325 F3361S-94"0"1469

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE

1 The Problem — Tightly-Coupled, Vendor-Specific CAD-in-VHDL 2
2 Principal Components of SAVANT 3
3 Phase I Task Plan 8

4 Look-Up Table Timing 23
5 IF Documentation Method 26
6 Derivation Structure of the IF 29
7 Extensibility of the IF 3°
8 Software Implementation Structure 31
9 Prototype SAVANT Software System 37

Final Report iv SAVANT

MFR-95-006/CSC325 F33615-94-C-1469

PREFACE

This report describes a Phase I Small Business Innovation Research (SBIR)
project entitled "Solid State Electronics Directorate Applied Research." The
program was conducted for the United States Air Force Wright Laboratory Solid
State Electronics Directorate (USAF-WL/ELED), from June, 1994 through April,
1995, under contract number F33615-94-C-1469. The research was conducted by
MTL Systems, Inc., Dayton, Ohio, and the University of Cincinnati (UC)
Department of Electrical and Computer Engineering and Science, Cincinnati,
Ohio. The MTL project number and title were CSF325, "Standard Analyzer of
VHDL Applications for Next-Generation Technology," or "SAVANT."

The MTL Principal Investigator was Dr. Praveen Chawla, with additional MTL
support provided by Mr. Jeff Carter and Mr. Herb Hirsch. The UC effort was
conducted by Dr. Philip Wilsey. Mr. Al Scarpelli and Captain Scott Bilik were the
USAF Project Engineers. The authors wish to express their thanks to Mr.
Scarpelli and Captain Bilik for the attentive support and guidance provided to the
MTL project team, which contributed significantly to the success of this effort.

rr ,D rf v SAVANT Final Report

MFR-95-006/CSF325 F33615-94-C-1469

l.o INTRODUCTION

This report documents the results of a Phase I Small Business Innovation
Research (SBIR) project entitled "Standard Analyzer of VHDL Applications for
Next-Generation Technology" (SAVANT). The effort was conducted under United
States Air Force SBIR Topic Number AF94-134, "Solid State Electronics

Directorate Applied Research."

We have organized this report to provide ready access to pertinent
information for a variety of readers' needs. In the remainder of this introductory
section (Section 1), we provide a succinct overview of the project, in the context of
problem, background, Phase I objectives and requirements, and Phase I results.
Readers who require a concise "snapshot" of the project will find this section
especially useful. Next, in Section 2, we provide an elaborated discussion of our
technical investigations, with attention to the particular technical achievements
and their relevance to meeting the project requirements and objectives. Readers

. with interest in the technical issues will find these details in this section. Then,
in Section 3, we present our Phase I results, in the context of their extent toward
solving the problem and forming a foundation for subsequent Phase II activity.
Here, readers may ascertain exactly how far our Phase I work has brought us
toward a solution to the fundamental problem. Finally, in Section 4, we offer our
conclusions and recommendations for a subsequent Phase II program. From
this information, readers may evaluate how the multi-phase SBIR program can
provide (1) the particular technology innovation to solve the technical problem at
hand, and (2) a viable commercial product, thus meeting the goals of the SBIR

program in general.

1.1 The Problem and Significance

Here, we describe the problem which we attacked in Phase I, as well as its
significance. In this context, "significance" relates to the benefits to be realized by
the electronic design automation community at large from solving the problem,

as we shall explain.

The principal problem addressed by this effort is the absence of an
established, standard Intermediate Form (IF) for the exchange of VHDL-encoded
electronic data among Computer-Aided Design (CAD) systems. The result of this

r ,„ , i SAVANT
Final Report '

MFR-95-006/CSF325 F33615-94-C-1469

absence is apparent within the presently-constrained basic research environment
and sub-optimal nature of CAD-in-VHDL tool development. Consider how VHDL
is applied in such tool development. VHDL presents a standard format for
human comprehension or encoding of digital system designs. Analyzing and
processing VHDL source code is quite difficult and requires considerable effort.
Furthermore, there is a broad range of complex CAD tools that are generally
available to support the computer system design process, and each distinct CAD
tool must input design data encoded in VHDL.

Presently, most CAD tool vendors must execute a cumbersome process to
realize a CAD-in-VHDL product. Typically, they (1) design an in-house
intermediate form (IF); (2) build a VHDL analyzer that validates the (static)
correctness of the input VHDL, producing an IF representation of the input; and
(3) input the IF to each in-house-developed CAD tool. In other words, processing
VHDL as the source input language places additional, unnecessary burden upon
the construction of such CAD tools. The result is a tightly-coupled, non-standard
analyzer and IF, within a particular, vendor (application)-specific environment,

as shown in Figure 1.

User

Other
System
Objects

Analyzer Code
Generator

Execution
Results Processor

System ^i

Exe
i

cutable .
Code

i

Source
Code ^

^nmrt ;inr W V/UIM pnci

\ Application-Specific Environment

Figure 1. The Problem - Tightly-Coupled, Vendor-Specific CAD-in-VHDL

A resulting problem is the current proliferation of several of these vendor-
proprietary, non-standard IFs and analyzers. In rare instances, a vendor may
sell (at high cost) the IF and analyzer to a third party. Unfortunately, no vendors
are currently willing to standardize (and fully productize) their IF. Consequently,
each vendor maintains an internal IF and markets both tools that use the IF and

Final Report SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

VHDL analyzers to produce the IF. Consequently, users are forced to either use
all the CAD tools from one vendor or purchase several VHDL analyzers, one from
each distinct CAD tool vendor whose design tools are being used.

Another aspect of the problem is that this lack of a widely-available, standard
IF for VHDL also inhibits basic research. That is, before embarking upon a
research investigation in CAD with VHDL, researchers must either design their
own particular IF and build an analyzer to translate VHDL to the IF, or they
must purchase a vendor-supplied VHDL analyzer/intermediate form (A/IF). The
former approach is expensive in time and effort, and generally results in an
inferior VHDL analyzer/CAD system that operates only over a limited VHDL
subset. The latter approach is subject to the nature of the chosen A/IF. It
consequently suffers from high cost and the research project is subject to any
changes in the IF produced by the vendor to support their internal tool
development. Furthermore, because the IF is generally not a primary product for
the vendor, documentation and support tools are generally of poor quality.

The purpose of SAVANT is to directly mitigate these problems. Its
significance will be that of a community-wide improvement in tool compatibility,
as well as a significant enhancement to the overall effectiveness of basic CAD-in-
VHDL research and development. We consider SAVANT to consist of two
principal components, the IF and analyzer, and a supporting component, the
record/playback tool for archiving the IF in file form, as illustrated in Figure 2.
The standard IF will provide a common internal representation that vendors can
follow and to which users can request adherence. Furthermore, the availability of
a public domain analyzer and library subsystem will dramatically promote
additional research and development in CAD and its integration with VHDL.
Finally, source code availability will also enable and promote integration and
cross-coupling between other design language efforts. For example, there is
currently an effort underway, sponsored by USAF Rome Laboratory, to develop a
standard analog hardware description language (VHDL-A). This VHDL-A effort
could extend SCRAM (SAVANT's VHDL analyzer) to support the additional
features of analog description and promote a rapid integration of VHDL-A
technology with VHDL technology among vendors and users alike.

VHDL
Source SCRAM

(Analyzer)

Record/
Playback

Tool

/^
IF

(files)

IF output to Code Generator, etc.

Figure 2. Principal components of SAVANT

Final Report SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

Having discussed the problem and its significance, we may now turn to a
description of the background from which it evolved, which is the subject of the

next section.

1.2 The Background

In our background discussions of this section, we describe the evolution of
our problem to the point at which we began our Phase I effort. As this particular
problem involves both technical and business issues in the Electronic Design
Automation (EDA) industry, our discussions address both these aspects.

From a technical point of view, a public-domain analyzer and a standard IF
have always made good sense. Obviously, such standardization promotes a more
open-system environment, encourages and facilitates research and development,
and generally works to the benefit of users and tool developers alike. However,
due to the lack of standardization as VHDL was beginning its surge toward pre-
eminence as a digital HDL, tool vendors were forced to make early design choices,
to provide products for the growing market, without the benefit of such
standardization.

The result of these design choices was an early divergence of analyzers and
IFs among the several VHDL analyzer vendors. However, as the market
demands were high, and the analyzers were being accepted and selling well into
the user community, there was no particular incentive for analyzer developers to
adhere to some standard. This momentum has carried the industry to the state

in which we find it today.

However, the environment is now changing. First of all, CAD-in-VHDL has
proliferated to the point where individual organizations are using a variety of
CAD-in VHDL tools, and are directly experiencing the problems associated with
disparate, vendor-specific analyzers. Second, there is more competition among
tool vendors, and the toolmaker whose products will work across the widest
variety of VHDL analyzers will most likely enjoy the most success. Finally, there
is the demand for more VHDL research, and an abundance of researchers
willing to do it, except they cannot afford several, different analyzers. Obviously,
something has to yield. Either (1) the user and tool developer community has to
concede that tools and researchers must resolve themselves either to limited
environments or the burden of multiple, specialized interfaces to the several
analyzers, or (2) the analyzer community has to accept standardization and seek
their rewards in support environments.

Based upon the problem and background we have described, we established

Final Report 4 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

certain goals and objectives for our Phase I effort, to properly focus our effort.
These are the subjects of the next section.

1.3 The Phase I Objectives, Requirements, and Task Plan

Our Phase I effort was specifically focused upon establishing the feasibility of
a solution to the problem, forming a solid foundation for both Phase II work, and
realizing a viable commercial product. We now describe the Phase I goals and
objectives we established to achieve this focus, and the task plan we implemented

to accomplish these ends.

The Objectives: The stated, general objective of the original solicitation was to
"Explore innovative technologies and demonstrate feasibility." However, we
required more specific objectives to solve our specific problem. In forming our
Phase I objectives, we considered the problem at hand, as articulated in Section 1,
as well as several other issues. The first issue was feasibility. Hence, one of our
objectives had to answer the question "Is SAVANT feasible?" Here, we considered
feasibility in the context of both technology and community acceptance. SAVANT
needed to be both producible in today's technology and viewed as a necessary tool
by users to be considered feasible. The second issue was commercialization
potential. Our research had to determine whether or not a viable, marketable
product could be derived from SAVANT, given that it was indeed feasible. This
aspect also included technology and user acceptance aspects, since products
derived from SAVANT needed to be producible at a competitive cost and desired by
users to be considered marketable. A final issue was that of scope. We had to set
objectives which could reasonably be achieved within the resources of a Phase I
effort, and in doing so we needed to consider how these objectives would support a
smooth transition into a Phase II program. In consideration of all these aspects,

we established our Phase I objectives as follows:

Objective 1 - Establish the technical feasibility of the SAVANT technology as a
standard AI IF exchange medium for CAD in VHDL. In meeting this
objective, we needed to produce quantified technical investigation results
which would confirm that the innovations represented by SAVANT could be
constructed in today's technology. Its achievement would specifically address
the chief problem (lack of a standard A/IF) stated in Section 1.

Objective 2 - Establish community acceptance of the SAVANT technology and
Define the Commercial Product. Here, we wished to obtain valid community
endorsement of, and desire for, the SAVANT technology, should it indeed be
implemented. We also wished to provide definition of what portion of the

Final Report 5 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

SAVANT technology may be effectively transitioned into a commercial
product. In achieving this objective, we expected to address the ancillary
problem of constrained (by lack of a standard A/IF) basic research for CAD-in-
VHDL, discussed in Section 1.

Objective 3 - Produce valid preliminary design concepts for the two principal
elements of SAVANT: the IF and the Analyzer. By achieving this objective we
planned to produce a solid foundation for Phase II development. Its
achievement would further support the feasibility and commercialization
aspects, by showing the beginning of a clear path to development and
subsequently to productization and proliferation of SAVANT within the

community.

In achieving these objectives, as we document in this report, we established a
problem-responsive, feasible, commercializable basis for SAVANT, and produced
the preliminary design elements from which a Phase II program may be
initiated.

The Project Performance Requirements: Certain performance requirements
for the SAVANT program were designed, to bridge the problem and performance
domains. These specific Project Performance Requirements (PRs), were defined
to particularly ensure that the program objectives were achieved, and to provide
proper definition for tasking within our program plan. These PRs and the
objectives they were designed to support were:

SUPPORTS TO ACHIEVE
PR ACTIVITY OBJECTIVE

1. Establish a preliminary standard intermediate form (IF) 1,3
2. Establish willingness of CAD community to accept proposed standard 2
3. Establish vendor community participation 2
4. Reactivate DASC subcommittee 2
5. Select compiler support tools to enable construction of SCRAM 1,3
6. Demonstrate the capability of the compiler support tools by

producing a "prototype" SCRAM 1,3
7. Establish initial file format for record/playback 1,3

Performance Requirements 1, 5, 6, and 7 were designed to achieve Objective
1, to establish the technical feasibility of the SAVANT technology as a standard
A/IF exchange medium for CAD in VHDL. By establishing the preliminary
form, selecting tools and experimentally confirming the ability to compile and
construct the analyzer (SCRAM), and establishing the record/playback file

Final Report 6 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

format, we planned to confirm the format, constructability, and exchange
medium capability of the SAVANT technology.

Performance Requirements 2, 3, and 4 were designed to achieve Objective 2,
to establish community acceptance of the SAVANT technology. By gaining the
acceptance of the CAD community and participation of the vendor community, we
expected to define the basis for full community acceptance and definition of the
commercializable aspects within SAVANT. Furthermore, by reactivating a
subcommittee within the Design Automation Standards Committee (DASC), we
expected to establish the formal basis for ensuring continued community
participation as we develop SAVANT through Phase II and undertake Phase III

or other commercialization activities.

Performance requirements 1, 5, 6, and 7 were also designed to achieve
Objective 3, to produce valid preliminary design concepts for the two principal
elements of SAVANT: the IF and the analyzer. These design concepts,
encompassing the preliminary standard IF, compiler tools, and record/playback
file format would establish the necessary basis of a preliminary design. They
would validate (1) the nature of IF itself, (2) the ability to construct the analyzer,
and (3) the file exchange/archiving format. In other words, this foundation for
further development and commercialization was expected to prove that the format
is proper and achievable, that the compiler is constructable, and that the

exchange format is proper and established.

The Task Plan: Summarily, the performance requirements just described
were designed to specify the proper tasking within the program to ensure that the
program objectives are met. The resulting task plan needed to provide for
cohesive interaction among tasks necessary to produce products which will
satisfy the program performance requirements. Our plan to achieve this
interaction consisted of 6 tasks, integrated as illustrated in Figure 3.

In Task 1, we planned to apply our proposed concepts for the standard IF,
which we presented in our Phase I proposal. The result of this task was to be first
a "draft" standard IF definition, which would be shared with the design
community under Task 2, and iterated into the Phase I-level standard IF
definition which is a deliverable product of our Phase I effort. This definition,
which would satisfy Performance Requirement 1 (Establish preliminary standard
IF) was to be completed to a preliminary design-level of detail.

Under Task 2, we planned to conduct interactions with the community,
including users, vendors, and particularly the DASC. The result of this task,
although not an explicit project deliverable, would be the useful knowledge and

Final Report 7 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

community acceptance necessary to ensure a valid and acceptable standard IF.
Additionally, this task would obtain community needs for a SAVANT Support
Environment, which we viewed as the commercial product to be derived from this
program. Task 2 would satisfy Performance Requirements 2, 3, and 4 (Establish
community acceptance, vendor participation, DASC subcommittee). However, in
the course of the program, this task's focus was modified. In concert with our
WL/ELED sponsor, we decided to limit our interaction with the community to
VHDL International Users' Forum (VIUF) meetings, postponing more active
interaction to Phase II.

Needs, ideas

Proposed
Initial

Concepts

Experience
with Existing

Laboratory,
Version of

SCRAM

Laboratory
Versions
from UC

Prototype SCRAM

Tested Format

Final Report &
Product Plan

Figure 3. Phase I Task Plan

Tasks 3 and 4 were to be a tightly-integrated pair. Together, their execution
would satisfy Performance Requirements 5 and 6 (Select tools and construct
prototype SCRAM). In Task 3, we would begin with our experience with the
laboratory version of SCRAM at UC, and the draft standard IF definition from

Final Report SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

Task 1. Under this task, we would select the appropriate compiler tools to
construct the deliverable prototype SCRAM under Phase I. Then, in Task 4, we
would proceed to develop and test the prototype SCRAM, supplementing it with
the final standard IF definition produced by Task 1, as the task proceeds. The
results of Task 4 would be the deliverable prototype SCRAM and the test IF used to
confirm its functionality, documented to a preliminary design-level of detail.

In Task 5 we were to establish the record/playback format, to satisfy
Performance Requirement 7. The result was to be a tested format capable of
supporting the archiving needs of the IF, and documented to a preliminary-

design level of detail.

The documentation aspect of the Phase I effort evolved into a two-faceted
endeavor. Under Task 6, we originally planned to assimilate all information
regarding designs, discoveries, and community interaction into this document, a
Phase I Final Report. This report was to also contain a product insertion plan for
transfer of the SAVANT technology into the commercial sector. Additionally,
while executing the other Phase I tasks, we became aware of the need to define
some tools, formats, translation means, and an overall framework for the
ultimate production and distribution of supporting documentation for the Phase
II SAVANT implementation. We felt that since such documentation support
definition would be a critical factor in a successful Phase II endeavor, we should
expend some Phase I resources to achieve it. Hence, we added a task (un-
numbered) to define the documentation framework and elements, and proceeded
to evaluate documentation support candidates.

In summary, our requirements and objectives were well-focused upon the
problem, in careful consideration of its background and our available resources,
and the task plan was designed to support them. In actuality, as is usually the
case with research, the task activities and results from the project, although
successful, diverged somewhat from what we originally expected. The added
documentation definition task described above is a particular example of this, and
there were other instances as well. In Section 1.4, which follows, we briefly
summarize the results. Then, in Sections 2 and 3 we elaborate the particulars
regarding our tasks, activities, and results, duly noting divergences from the

original plan.

Final Report 9 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

1.4 The Phase I Summary Results

In this section, we provide a summary statement of our Phase I results.
Although we offer an elaborated description of these results in Section 3, we
wanted to complete our Section 1 project "snapshot" with a concise description of
these results. Specifically, we present these results in the context of their impact
upon the program requirements and objectives, and their relevance to Phase II
activity and ultimate commercialization. We now summarize these results by

task.

In Task 1, we defined the SAVANT IF and satisfied all the task
requirements. First, the IF essentially makes no semantic changes to the VHDL
source, thus satisfying the first technical requirement, to preserve as much
semantic content from the original source input as possible. Second, the IF was
designed with particular attention to achieving extensibility. Hence, it is indeed
extensible for the inclusion of additional CAD tool synthesized information, which
satisfies our second technical requirement. Finally, by producing this IF
definition, as described above and further elaborated in the Intermediate Form
Description of Appendix A, we satisfied Project Performance Requirement 1, to
establish the preliminary standard IF. As such, this IF definition served to
partially achieve Objective 1 (establish technical feasibility) and Objective 3

(produce preliminary design concepts).

The results from Task 2 were aligned to no particular requirements, due to
the re-scoping of this task as we described in Section 1.3. Hence, our efforts were
essentially to begin defining how the SAVANT technology may be proliferated,
and to stimulate initial community awareness of this technology. As a result, we
formed the definition of how the SAVANT technology may be transferred to the
design community, in the context of a licensing and distribution approach. We
decided to distribute the SAVANT Analyzer (SCRAM) and IF definition freely (no
charge) and easily available through the World Wide Web (WWW), and to provide
a robust simulator based on SAVANT technology, also at no charge. Users of the
SAVANT Analyzer/IF/Simulator will be allowed to create derivative products. In
addition, we will allow distribution of derivative work for non-commercial
purposes. However, for-profit distribution, support, rent, or lease of SAVANT-
based technology will be allowed only upon completion of a profit-sharing

agreement between MTL and the distributor.

By implementing this liberal licensing and distribution scheme, we will
stimulate research in the VHDL community and continually extend its utility to
the community. This should establish community acceptance by proliferation of
the SAVANT technology and encourage development of its extensions. In

Final Report 10 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

addition, we have begun the process of creating SAVANT awareness. MTL
representatives have discussed possible utilization of SAVANT with several EDA
vendors such as Exemplar, Synopsys, Intergraph, Mentor Graphics and
Intermetrics at the Fall VIUF conference. EDA vendors were receptive to our
ideas and have expressed an interest in obtaining a copy of the software and
documentation. Through these results, we achieved Objective 2, to (begin to)
establish community acceptance of SAVANT and to define the commercial

product.

In Task 3, we analyzed available tools and selected the Purdue Compiler
Compiler Tool Set (PCCTS) which satisfied our technical requirements to (1)
analyze available tools for synthesizing compilers, and (2) select the appropriate
tools for SAVANT. These accomplishments also satisfied Project Performance
Requirement 5, to select the compiler support tools. We determined that PCCTS is
an ideal and practical choice for SAVANT, as it:

A. Exceeds the requirements

B. Contains support for exception handling that facilitates error reporting and
recovery

C. Integrates well with C++

D. Includes a grammar which successfully parsed over 1400 test files of VHDL
models.

This selection of PCCTS also contributed, along with the results of Tasks 1, 4,
and 5, to achieving Objective 1 (establish technical feasibility) and Objective 3
(produce preliminary design concepts).

In developing and testing the SCRAM analyzer, under Task 4, we essentially
satisfied the basic technical requirements, to (1) Achieve a public domain
analyzer, (2) Have archive capabilities, (3) Employ tools which are stable, reliable,
and well documented, and (4) Make the software and documentation as portable
as possible. As such, this also satisfied Performance Requirement 6, to
demonstrate the capability of the compiler support tools by producing the prototype
SCRAM. However, we note that a complete IF definition is not finished. The
added design problems posed by the novel solution required additional design and
implementation effort not foreseen when the original proposal and work
definition was written. The novel solution (see section 2.4) required the
construction of additional parts for exploring or demonstrating capacity of an
extensible, object-oriented IF. As we discuss in Section 2.4, the benefits are that a
better and more efficient final solution, that is more easily (and subsequently,
more readily) integrated by the research CAD community, will result.

Final Report 11 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

Through this development of SCRAM, with its inherent demonstration of the
compiler support tools, we provided the following results:

A. Demonstrated the ability to parse VHDL '93.

B. Implemented many IF nodes.

C. Implemented some extensions to rewrite concurrent statements as process
statements (which was actually not part of the original Phase I proposal).

D. Implemented several methods to regenerate VHDL from the IF.

This development of SCRAM contributed, along with the results of Tasks 1,
3, and 5, to achieving Objective 1 (establish technical feasibility) and Objective 3
(produce preliminary design concepts).

Under Task 5, we determined that VHDL would be an appropriate record and
playback file format. As such, we satisfied the technical requirements for record
and playback functions, implemented in a manner which would not interfere
with the IF or standard exchange goals of the project. Here, we satisfied Project
Performance Requirement 7, to establish the initial record and playback file
formats. By defining this VHDL file format, we produced the following results:

A. Decided to use VHDL as intermediate file format

B. Established and integrated the library structure with the SAVANT GUI
front-end

C. Although not yet integrated with analyzer, established that the basic
functionality is already present: (1) by definition, the analyzer inputs VHDL,
(2) the publish_vhdl() methods already generate VHDL for the intermediate
format, and (3) the publish_vhdl() methods output to a redirectable file.

This decision to use a VHDL format for record and playback satisfied Project
Performance Requirement 7, as well as the particular technical requirements for
this task. As such, this selection contributed, along with the results of Tasks 1, 3,
and 4, to achieving Objective 1 (establish technical feasibility) and Objective 3
(produce preliminary design concepts).

The result from Task 6, is the product documentation, consisting of this
Final Technical Report, and the appended SAVANT IF Definition and Product
Plan. The requirements were simply to produce this documentation, which we
have done. The IF definition, along with the SCRAM analyzer, compiler support
tools, and record and playback format definition, form the preliminary design
basis for Phase II implementation. The Product Plan is our approach to
commercialization, or technology transition, of SAVANT into the commercial

Final Report 12 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

sector. In aggregate, this documentation is the substance of satisfying all of the
program objectives, as we have described under the other task discussions of this

section, and elaborate in Sections 2 and 3.

Under our (additional) SAVANT Documentation Definition Task, we defined
the SAVANT system (or product) documentation framework and elements, and
evaluated documentation support candidates. Here, we investigated the four
critical aspects to effective SAVANT documentation, which are outline construc-
tion, tool gathering, IF documentation, and translation to other formats. This
definition forms the basis of the documentation needs for the Phase II
implementation as well as for the commercial product to be derived from the
SAVANT technology. We now summarize the results under each of these

aspects.

Outline Construction: Our requirement here was to construct a framework or
outline for SAVANT documentation. The results from our investigations were
outlines of the five main chapters, consisting of Terms and Conditions for
copying, distribution and modification, Overview of SAVANT, Object-Oriented
SAVANT, Integrating with CAD Tools, and The Intermediate Form which is a
description of the in memory representation of each VHDL type. The user will
need to know the intermediate form if SAVANT is to be used. These results serve
to satisfy our requirements in several ways. First, we have identified the main
components of the SAVANT documentation. Also, we have provided the user
with the terms for using SAVANT, a definition of SAVANT, a summary of why
SAVANT was developed and how to use SAVANT, and finally what information a

user needs to know when using SAVANT.

Tool Gathering: The requirement for tool gathering included the analysis,
retrieval, and testing of tools which would allow for the development of SAVANT
documentation. The result was obtaining a typesetting tool called TeX, the
documentation macro Texinfo, and the postscript figure macro psfig.tex. These
results serve to satisfy our requirements in several ways. First, these tools
produce two formatted outputs without the aid of additional tools. The first output
is a .dui file that can be used to generate a hardcopy. The second type of output is
an info file. An info file is a hypertext file that can be viewed in Gnu's Emacs or
by using a stand alone hypertext reader called info. We tested these tools by first
incorporating the outline in Texinfo. We successfully printed a hardcopy and an

info file from this outline.

c. ,„ . no SAVANT
Final Report l0

MFR-95-006/CSF325 F33615-94-C-1469

IF Documentation: The requirement for IF documentation was that of displaying
an easy-to-understand view of the intermediate form for VHDL as produced by
SAVANT. The results were developing a hierarchy of classes currently included
in SAVANT, collapsing each inheritance branch of the VHDL type classes and
writing the data member information as nodes in Texinfo. These results serve to
satisfy our requirements in several ways. The method of collapsing the
inheritance branches of the hierarchy tree provides a systematic way of obtaining
the intermediate form. By creating nodes in Texinfo for each VHDL type
intermediate form, we obtained a simple way of displaying this information to the
user. In the hypertext files, when a user is viewing a VHDL type intermediate
form, the user can chose to view the classes associated with this intermediate

form. In the hardcopy, these classes will be in the index.

Translation: The requirement of the translation aspect was translate the one
source document into multiple output documents. The results from our
investigation into the translation aspect were recognizing exactly what output
files need to be generated from the source. We have found a substantial number of
users of the World-Wide Web (WWW), so we made it a point to product a HTML
(HyperText Markup Language) file from the Texinfo source document. These
results serve to satisfy our requirements in several ways. First, we have
discovered the two most prevailing media for distributing documentation —
Postscript and HTML. By using a WWW browser (such as Mosaic) a user can
view documentation in a hypertext environment. If, however, the user requires a
hardcopy, this can be available via FTP (File Transfer Protocol) which is a
common method for retrieving files from other computers who reside on the
Internet. We also satisfy the one source document translation to multiple output
documents requirement by showing successful translated files.

Our documentation definition results served to further the design definition
of SAVANT as a whole, thus contributing to achieving Objective 3, to produce a
preliminary design concept. These results also supported achieving Objective 2,
to establish community acceptance, by defining the nature of the SAVANT
documentation to be proliferated among the community.

In conclusion of this Results Summary of Section 1.4, our results provided
the required feasibility validation, Phase II foundation, and commercialization
product plan necessary for a successful Phase I effort. This also concludes our
introductory section (1.0). In the next section (2.0), we describe the specific

technical activities which contributed to these results.

Final Report 1^
SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

2.0 TECHNICAL INVESTIGATIONS

In this section, we provide an elaborated discussion of our technical
investigations, with attention to the particular technical achievements and their
relevance to meeting the project goals and objectives. We have organized our
discussions in the context of the individual tasks. For each task in this section,
we (1) describe the technical requirements we established, (2) outline the
methodology we applied, (3) relate any significant events or discoveries resulting
from the execution of the methodology, and (4) provide a summary of the
investigations.

In our task activities we focused upon the key technical contribution of the
SAVANT program — to establish a standard intermediate form of digital systems
for the exchange of electronic data among CAD tools. In general, the
intermediate form representation of a digital system design can be input from a
variety of sources (textual languages, graphical languages, etc.); however, the
primary source for this effort, presuming a Phase II implementation, will be the
DoD standard hardware description language VHDL. Thus, in addition to
designing and documenting the intermediate form, the Phase II SAVANT
implementation and derivative commercial product will include a VHDL-to-
intermediate form translator. The intermediate form will be an in-memory tree
data structure. Consequently, SAVANT will also require some mechanism for
off-line archiving and retrieving of digital system designs represented in the
intermediate form. Finally, the SAVANT project must address the problem of
technology insertion; how will the industrial, government, and academic
communities be encouraged to use the SAVANT technology? These issues are
more fully discussed below.

2.1 Task 1 — Establish the Preliminary Standard IF Definition

In Task 1, we were to apply our proposed concepts for the standard IF. The
result of this task was to be first a "draft" standard IF definition to be shared with
the design community and iterated into the deliverable Phase I-level standard IF
definition, to satisfy Performance Requirement 1 (Establish preliminary standard

IF).

Final Report 15 SAVANT

F33615-94-C-1469
MFR-95-006/CSF325

Technical Requirements: The importance of and need for a standard inter-
mediate form was discussed in Section 1.0. Briefly, a standard intermediate form
is important and will serve the design automation community by providing a
unifying, easy to process, representation of electronic designs. That is, instead of
analyzing, verifying correctness, and manipulating VHDL source, CAD tools will
be able to interface with an intermediate form of the design that has already been

analyzed for syntactic and static semantics correctness.

The design of an intermediate form must preserve as much semantic content
frnm the original Rmirr.P. input as possible. However, it is not necessary to retain
an ability to exactly reproduce the source input. That is for example, comments,
newlines, and spaces are not language constructs with semantic content (while
semantic constructs can be added as comments, cf VAL/VHDL, the VHDL
language does not formally relate semantic content with comments). Thus, some

information from the original source input may be discarded.

While the intermediate form will not preserve all information from the
original source input, it should allow for the augmentation of the design data by
CAD tools. More precisely, a CAD tool may need to mark components of the
intermediate form with additional information for later use (by the same or other
CAD tools). For example, a simulation code generator may need to decorate the
intermediate form with code templates for later phases in the code generation
process. Thus, the intermediate format must be extensible for the inclusion of

additional CAD tool synthesized information.

Methodology: Our methodology was simple and straightforward, and designed to
take maximum advantage of previous accomplishments. It consisted of the

following steps:

A. Study existing solutions which may offer potential.

B. Review the status of past standardization efforts for IFs, as well as any

procedural interfaces which may have been defined.

C. Design and implement any solutions, standardizations, or procedural
interfaces deemed potentially useful in an analyzer's working IF nodes.

D. Review or examine the use of these IF methods in contemporary CAD tools.

E. Iterate steps C and D to focus upon useful and valid methods to be imple-

mented in the SAVANT IF design.

Through this methodology we expected to be efficient in applying useful prior
technology and effective in homing in on an effective IF definition. Next, we

., SAVANT
Final Report 1b

MFR-95-006/CSF325 F33615-94-C-1469

describe some of our experiences in executing this methodology.

Task Execution: In the course of conducting this task, while identifying
potentially viable techniques as planned, we noted a particular significance in the
context of object-oriented approaches. In particular, we noted that past solutions
have claimed to be object-oriented but lacked a defined ability for extensibility. We
also realized that object-oriented design allows the possibility that nodes can be
augmented with data and (overloaded) methods. Hence, self-definition of an
object-oriented structure is great boon to CAD tools since the [overloaded] method
is automatically resolved, which appears to eliminate the need for a procedural
interface. Furthermore, since the IF can be made extensible, the augmenting
data can be strongly typed. While all of these aspects will contribute to a highly-
effective standard IF, they also require careful design of any software tools for
implementing the standard IF. So the benefits are desirable, but demand care in
their implementation.

Task 1 Summary: In summary, our venture into the object-oriented issues
allowed us to conceive a novel solution, allowing a fully extensible IF definition.
Although this was a valuable discovery, the entire problem studied in Phase I was
enlarged somewhat by our novel solution, indirectly causing a less complete
development of the IF in Phase I than we had anticipated. However, the result is
a much cleaner, more flexible final design, which will ultimately produce a more
effective implementation in a Phase II development, as we describe further in our

description of task results in Section 3.1.

2.2 Task 2 — Interact with the Community

Under Task 2, we were to interact with the community, including users,
vendors, and particularly the DASC. The result of this task would be the useful
knowledge and community acceptance necessary to ensure a valid and acceptable
standard IF. Additionally, this task would define community needs for a
SAVANT Support Environment, which we viewed as the commercial product to
be derived from this program. Task 2 would satisfy Performance Requirements 2,
3, and 4 (Establish community acceptance, vendor participation, DASC sub-

committee).

In the course of the program, however, we, in concert with our WL/ELED
sponsors, decided to de-emphasize this task. Our decision was based upon the
opinion that it would be more appropriate to further the SAVANT research in
Phase I before aggressively promoting or proliferating the technology within the

Final Report 17 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

community. Hence, we took a more-or-less passive approach, consisting of only
discussing SAVANT within the VIUF framework, and determining a
methodology for distributing and proliferating the SAVANT technology, to be

implemented in Phase II.

Due to this de-scoping of Task 2, we have no explicit requirements or
methodology to discuss here, and no particular execution issues to describe. We
basically "spread the word" in a fairly casual manner, responded frankly to any
inquiries, and defined the proliferation methodology, the results of which we

describe in Section 3.2.

2.3 Task 3 —Select Compiler Tools

Tasks 3 and 4 were to be a tightly-integrated pair. Together, their execution
would satisfy Performance Requirements 5 and 6 (Select tools and construct
prototype SCRAM). In Task 3, we would begin with our experience with the
laboratory version of SCRAM at UC, and the draft standard IF definition from
Task 1. Under this task, we would select the appropriate compiler tools to

construct the deliverable prototype SCRAM under Phase I.

Technical Requirements: As previously mentioned, the construction of a VHDL
analyzer is a complex problem. In fact, this problem is sufficiently complex that
it prevents many research investigations from reaching a full integration with
VHDL. Even the problem of merely forming a machine-processable set of
grammar productions for VHDL is quite difficult. Despite much interest and
many queries, little progress has been made toward the construction of a public
domain VHDL parser. The chief problem is that the grammar given in the
language reference manual is written primarily for human consumption and
does not easily translate to a machine-processable form. In fact, most attempts at
building a VHDL parser fail because most available compiler-compiler tool-sets
produce parsers with only one token look-ahead and an LL(1) or LR(1) grammar

for VHDL is difficult to construct.

In this task, our requirement was to analyze available tools for synthesizing
compilers and to select tools for SAVANT. Because the intent of the SAVANT
project is to publicly release all source code for CAD research and
experimentation, the compiler support tools must also be publicly available and
redistributable. Thus, only tools that are freely available in the public domain

were considered.

r ID , 18 SAVANT
Final Report lo

MFR-95-006/CSF325 F33615-94-C-1469

Methodology: For the analyzer portion of this task, we located and copied all of
the public domain parser generators announced in the monthly posting of
comp.compilers. The parser generators were all examined for their suitability for
a VHDL analyzer. In addition to reviewing the capabilities of each of the parser
generators, we conducted an analysis of the available grammars for VHDL.

Task Execution: We executed this task by taking advantage of Internet access to a
wealth of tools and grammars. More specifically, we first obtained, through FTP,
comp.compilers monthly documents announcing public domain compiler
development tools. This provided us a comprehensive source list for these tools.
Next, again through FTP access, we obtained certain tools, selected from the
overall list, for evaluation. These included yacc/lex (and bison/flex), pccts, eli,
and coco. Similarly, we queried the comp.lang.vhdl community for available
VHDL grammars, then evaluated available grammars and tools. Here, we
concentrated upon VHDL grammars available for yacc/lex and pccts.

From these candidates, we then made our selection based upon the require-
ment for using effective, yet public-domain items. Here, the level of PCCTS
development and presence of VHDL '93 grammar for PCCTS prompted its
selection for SAVANT. We elaborate upon this result in Section 3.3.

Task 3 Summary: In summary of our approach to this compiler tool selection
task, by obtaining a significant and valid candidate list from qualified sources,
and evaluating our candidates in the context of our requirements, we were able to
make the proper selections.

2.4 Task 4 — Demonstrate Tools and Build Prototype

As previously mentioned, Tasks 3 and 4 were to be a tightly-integrated pair.
Together, their execution would satisfy Performance Requirements 5 and 6 (Select
tools and construct prototype SCRAM). In Task 4, we would proceed to develop
and test the prototype SCRAM, supplementing it with the final standard IF
definition produced by Task 1, as the task proceeds. The results of Task 4 would be
the deliverable prototype SCRAM and the test IF used to confirm its functionality,
documented to a preliminary design-level of detail.

Technical Requirements: The SAVANT IF requires support tools before it can be
widely accepted and inserted into the CAD research community. Consequently,
support tools to build and manipulate the SAVANT IF must be available. At a
minimum, a public domain analyzer and IF definition must be available. In

Final Report 19 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

addition, archive capabilities must be available. These tools must be stable,
reliable, and well documented for integration by CAD tool researchers and
developers. The software and documentation must be as portable as possible —
not requiring any special purpose hardware or expensive software packages for
use. Initially, the software will be developed for UNIX based workstations.

Methodology: Our methodology for this task was precise and direct. It was
simply to (1) build a grammar that processes all available VHDL models, (2)
augment this with the software necessary to create the IF nodes, and (3) construct
preliminary IF extensions for manipulation and output generation (hence
evaluating the support for CAD tool construction). We encountered no significant

problems in executing this methodology, as we describe next.

Task Execution: In executing this task, we accomplished the necessary technical
activities to support the methodology. First, we refined the PCCTS grammar,
building a preprocessor to distinguish quotes from character literals (a limitation
of the lexer tool of PCCTS required this fix). Then, we repaired some bothersome,
pathological VHDL parsing problems (e.g., name'('a')). Having achieved these
grammar and parser "tune-ups," we then tested the implementation against
available VHDL models and fixed bugs as they appeared. Here, approximately
1400 test VHDL models were successfully processed. Next, we built the C++
actions necessary to construct the IF nodes into the grammar. Finally, we built
extensions to the IF to demonstrate the capabilities for CAD tool integration.
Specifically, these extensions included rewriting VHDL concurrent statements to
process statements and implementing a code generator to regenerate VHDL

statements from the IF.

Task 4 Summary: Our Task 4 approach to demonstration and prototyping was
successful. Here, the grammar was completed and we were able to process a
significant number of VHDL models. Also, many IF nodes were implemented
and tested. Rewriting and output generation was implemented to validate the
benefits of object-oriented design which were made in our Task 1 activity (see

Section 2.1).

2.5 Task 5 — Establish File Format for Record and Playback

In Task 5 we were to establish the record/playback format, to satisfy

Performance Requirement 7. The result was to be a tested format capable of
supporting the archiving needs of the IF, and documented to a preliminary-

design level of detail.

r» ,r, ?n SAVANT Final Report Zü

MFR-95-006/CSF325 F33615-94-C-1469

Technical Requirements: The VHDL analyzer will translate VHDL into the inter-
mediate form. The intermediate form is a memory resident data structure (tree)
that must be archived into some library format for later use. That is, VHDL
design units (design entities, packages, etc.) must be analyzable and storable into
a design library for later use by other VHDL design units. Therefore SAVANT
will also include two additional functions called RECORD and PLAYBACK to
archive the intermediate form. RECORD will save the intermediate form
representation of a VHDL design unit into the design library and PLAYBACK
will read a design unit from design libraries into the intermediate form. For
simplicity, initial implementations for RECORD/PLAYBACK will simply use
VHDL as the library format. Later implementations may improve on this.
However, SAVANT will not be severely limited by the capabilities of an
implementation of RECORD and PLAYBACK. That is, the chief issue is
maintenance of the integrity of the intermediate format. RECORD/PLAYBACK
will be required to maintain the intermediate format: the format used for archival
storage will not interfere with the intermediate format/standard exchange

obiectives of this project.

Methodology: Our Task 5 methodology included technical review, solution design,
and consideration for future change, in the context of the record and playback
formats. It consisted of three parts:

A. A review of the particular requirements for VHDL library management

B. The design of a solution that supports quick prototyping of the tools described
in Task 4 (Section 2.4).

C. Maintaining the ability to replace an implementation with more efficient file
formats, should they become available.

Task Execution: In executing this methodology, we encountered no particular
problems. Hence, we proceeded to study existing library solutions of the vendor
community, then select the appropriate file format and library index structure

for our needs.

Task 5 Summary: Based upon our investigations, we decided to use a simple
record and playback format structure that operates as an extension of the IF node
structure, to serve our immediate needs. The file format was simply VHDL
written by the publish_vhdl() modules. SCRAM (the analyzer) was reused to
input the library structures. Although this solution is slower to process than a
regular file format, it provided a quick solution which can be easily replaced as
time permits in a subsequent Phase 2 implementation. The results from testing

this implementation are given in Section 3.5.

Final Report 21 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

2.6 Task 6 — Document the Phase I Effort

The documentation aspect of the Phase I effort evolved into a two-faceted
endeavor. Under Task 6, we planned to assimilate all information regarding
designs, discoveries, and community interaction into this document, a Phase I
Final Report. This report was to also contain a product insertion plan for transfer
of the SAVANT technology into the commercial sector. Additionally, while
executing the other Phase I tasks, we became aware of the need to define some
tools, formats, translation means, and an overall framework for the ultimate
production and distribution of supporting documentation for the Phase II
SAVANT implementation. We felt that since such documentation support
definition would be a critical factor in a successful Phase II endeavor, we should
expend some Phase I resources to achieve it. Hence, we added a task to define the
documentation framework and elements, and proceeded to evaluate documenta-
tion support candidates. These added task activities are described in Section 2.7.

Technical Requirements: Our requirement for the final report was that it should
be accurate, all-inclusive, and in the form and format prescribed for a Phase I
Final Report. For the product insertion plan, our requirement was that it should
be practical, realistic, and in a form which may easily grow into a product
management plan in Phase II.

Methodology: Our methodology for the final report and appendices was simply to
gather and assimilate the results of the various technical tasks as they became
available, and begin the integration and editing process when such volume of

material warranted these actions.

Task Execution: In executing this task, the assimilation of task information
proceeded more or less according to plan.

Task 6 Summary: In summary, we accomplished the accumulation of technical
material and the production of this Final Report, IF Definition (Appendix A) and
accompanying Product Insertion Plan (Appendix B) as planned.

Final Report 22 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

2.7 SAVANT Documentation Definition (Added Task)

As previously mentioned, we added a task to the Phase I effort, to define the
SAVANT system (or product) documentation framework and elements, and to
evaluate documentation support candidates. These added task activities are
described in this section.

There are four critical aspects to effective SAVANT documentation, which
are outline construction, tool gathering, IF documentation, and translation to
other formats. The relationship among these aspects is illustrated in Figure 4.
As shown, each input, with the exception of the outline construction aspect, is a
generated output of the previous aspect. For each aspect, a requirement must be
satisfied in order to complete the aspect given. These requirements are labeled as
inputs in the figure. The outputs identify results of the aspects. After the
translation aspect is accomplished, the end result is obtained in both hypertext
documents and hardcopy documents.

Documentation
Tools & Utilities

Source
Documentation

Outline
Construction

t
Outline Documentation

Tools & Utilities

T
Source

Documentation
On-Line Hypertext &
Hardcopy Outputs

Figure 4. Aspect Relationships in SAVANT Documentation

These aspects are particularly critical to a successful SAVANT imple-
mentation because they identify a process by which the documentation for
SAVANT will be generated. Each aspect performs a task on the given input, but
the task details are changeable. For example, a change in the outline
construction causes a change in the outline content, but not a change in format.
Therefore, this change has no impact on the tools used to process the outline. To
clarify, a change in content in any input to one of our aspects does not change the
format of the input. In the ensuing discussions, we describe our Phase I
technical investigations into these critical documentation aspects. For each
aspect, we first discuss the requirements, then describe the methodology of our
investigations and our execution of that methodology.

Final Report 23 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

Outline Construction: We begin with the outline construction aspect, which is to
construct an outline for the SAVANT documentation.

Requirements: The requirements for the outline construction were to identify the
main components of the SAVANT documentation, decide what information
is needed, and for whom this information is intended. Their basis was to
formulate a complete outline of the SAVANT documentation for a particular
set of end users. They also were to recognize the scope of information needed

for completeness.

Methodology: We designed our methodology to ensure meeting the requirements.
As such we investigated the typical end user of SAVANT. We analyzed the
end uses of SAVANT in determining the type of information that will be used

by the end users of the documentation.

Execution: In executing our methodology we generalized our end users to those
with a high degree of VHDL and computer knowledge. We also assumed a
minimum level of knowledge in Object Oriented programming. The end
users range from university students to professional CAD tool developers.
The outline therefore eliminates the need of having chapters relative to such
topics as introducing VHDL or elementary C++. One problem with
developing an outline such as this is the dynamic property of the assumed
user. For example, if a user from a different field of study finds use in
SAVANT, the documentation should be understood by this user. However,
our assumptions limit the user set to a general group that may or may not
include the new user.

Tool Gathering: The tool gathering aspect includes the analysis, retrieval, and
testing of tools which will allow for development of SAVANT documentation.

Requirement: The requirement for tool gathering was to locate tools and utilities
to provide a formatted output of the SAVANT documentation.

Methodology: We designed our methodology to ensure meeting the requirement.
In doing so, we established a criteria for which tools are to be used. This
criteria was developed as a result of outlining a few constraints. The first
constraint was to use tools that are currently in the public domain. This
constraint allowed public use of any portion of the documentation (outline,
source documentation, and IF documentation) without the downloading of
specific tools from us. Second, we recognized an importance in the localiza-
tion of one source document. The benefit in having one source is that
changes in documentation need only appear in one source. Third, we needed
a formatting tool that has many utilities in the public domain to translate one

Final Report 24 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

source to different, and unique, outputs. From the given constraints, we had
to locate and retrieve a tool that adheres to the constraints as well as be easy
to use. In testing the tools, we needed to determine if content material affects
file format. If so, the tool or tools would be discarded.

Execution: In executing our methodology we found an abundant amount of tools
in the public domain. It was difficult to decide the proper tools given many
had translation utilities and were easy to use. In order to decide on the
proper tools, we checked the archives of many locations and found which
tools were in a wider circulation than others. This was a determining factor

in the tools chosen.

IF documentation: The aspect of IF documentation includes displaying an easy to
understand view of the intermediate form for VHDL as produced by SAVANT.

Requirement: The requirement for IF documentation was to provide a systematic
way of documenting the intermediate form from SAVANT. It had to be
simple enough to understand but thorough enough to encompass the
complete intermediate form.

Methodology: In designing our methodology to satisfy the requirements, a
translation had to occur between what SAVANT put into memory (as data
structures) to documenting these structures. We first needed a hierarchy of
the classes used in SAVANT in its current state. From this hierarchy, we
could reduce the code to data only. This data, as it applies to VHDL syntax
and semantics, could be extracted and written in its declaration form. What
this implies is that a user who reads the documentation of the IF can easily
recognize the data structures as easily as viewing a data structure in C or
C++. This process is shown in Figure 5.

Execution: In executing our methodology we developed the class hierarchy with
relative ease. It was surprising to find simplicity in developing a graphical
hierarchical view of SAVANT's classes. From the hierarchy we collapsed
the inheritance properties and extracted data members only. We docu-
mented these data members and arranged them according to their respective
VHDL type. In order to minimize efforts in the remaining sections of the
documentation, we also documented the class interfaces.

Final Report 25 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

SAVANT Source
What ihii Imptl«« li
nntuNTi wrw rand
TM ctoajmaniatlon
oftha IFcanaastty
recognize tw dala
structural as goaty
as viewing s data
structure o I C++.

SAVANT
Source Hierarchy Collapse

Inheritance

char *name
int x
final *fn_type

Extract
Data Write IF

Figure 5. IF Documentation Method

Translation: The final aspect in documentation is translation, which deals with
the media as presented to the user. The responsibility here is to translate the one
source document into multiple output documents.

Requirements: The requirements for the translation were to decide what the final
documentation should look like and what form it should have. First, every
final document should maintain the integrity of the original source
documentation. Second, every final documentation item should be produced
by tools from the public domain. Finally, the final documentation should be
accessible.

Methodology: We designed our methodology to ensure meeting the requirements.
As such, we analyzed current media for information retrieval. From these
media, we were to locate tools from the public domain to do translations from
the output of the IF documentation into files that can be used by the media. If
none existed, we were to locate alternative translation utilities. We were to
verify that information in the source documentation was to match the
information of the new files. To test the output from the translation aspect,
we were to download these files in a manner similar to a user and validate
the information.

Execution: In executing our methodology, we found that an exact duplication
from source document to a final output file in differing media could be
accomplished if the information was text only. Translating graphics
provided a challenge in that different media requires different graphic
formats. We discovered two main types of information retrieval. The first
type is a hardcopy based file format (generally postscript). The second type is
an on-line hypertext environment where certain words or objects have
linking capabilities to other words, pages, or chapters. The hardcopy

Final Report 26 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

involved a linear traversing of information, thus the writing needed to reflect
this in the manner of chapters, indexes, and reference tags. In a hypertext
environfment, the writing needs to follow a manner more associated with
nodes and the linking must have order and direction. In our selection of tool
for developing the source documentation we have solved this problem. Our
tool for developing the source documentation allows the writing to be
formatted into nodes, which translate into chapters, sections, and even

indices.

Documentation Definition Investigations Summary: Our investigations in this
task proved to be successful and provided the necessary definition of the outline,
tools, IF documentation, and translation means. The specific results of this task

are discussed in detail in Section 3.7.

2.8 Summary of the Technical Investigations

In summary of our technical investigations, we have described the
requirements, methodologies, and significant execution aspects of all tasks
within our Phase I program. Our IF definition activities diverged from the
original course into the realm of object-oriented aspects - and provided a cleaner
design as a consequence. Our community interaction was useful and appropriate
for this level of SAVANT development. For compiler tool selection, by obtaining
and evaluating a significant and valid candidate list, we were able to make the
proper choices. Our demonstration and prototyping was successful, as the
grammar was completed and we were able to process a significant number of
VHDL models. We decided upon a simple record and playback format structure
that operates as an extension of the IF node structure, to serve our immediate
needs. We accomplished the accumulation of technical material and the
production of this Final Report and accompanying Product Insertion Plan as
planned. Finally, we produced the necessary definition of the SAVANT
documentation aspects — outline, tools, IF documentation, and translation
means. Next, in Section 3.0, we discuss the results we obtained from these
approaches, and how they served to satisfy our requirements.

Final Report 27 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

3.0 PHASE I RESULTS

In this section, we provide an elaborated discussion of our Phase I results,
defining their extent toward solving the problem and forming a foundation for
subsequent Phase II activity. As in Section 2, we have organized our discussions
in the context of the individual tasks. For each task in this section, we:

A. Describe the results we obtained from our technical investigations,
experiments, or other analyses.

B. Describe how these results pertain to satisfying the technical
requirements asserted in Section 2 as well as the Project Performance
Requirements of Section 1.

C. Provide a summary of these results in the context of how they served to
achieve our Program Objectives, which were also given in Section 1.

3.1 Task 1 — Establish the Preliminary Standard IF Definition

In Task 1, we were to execute a particular methodology to satisfy certain
technical requirements as we described in Section 2.1, to begin development of the
standard IF. The result of this task was to be first a "draft" standard IF definition
to be shared with the design community and iterated into the deliverable Phase I-
level standard IF definition, to satisfy Performance Requirement 1 (Establish
preliminary standard IF). Our technical requirements were that:

A. The design of an intermediate form must preserve as much semantic
content from the original source input as possible.

B. The intermediate format must be extensible for the inclusion of
additional CAD tool synthesized information.

In the remainder of this section, we describe the results we obtained, how
they served to satisfy the project and technical requirements, and how these
accomplishments relate to achieving the objectives of the program.

Results Obtained: During Phase I, we explored several aspects of the objectives
for this task. Most significantly, we reviewed different aspects of object-oriented
representations and decided that an object-oriented design would be most suitable

Final Report 28 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

for the IF. This decision also has been followed by several others in their design,
however, our approach differs significantly in that our design allows for an
extensible class definition within the object oriented representation. Thus, the
CAD researcher can augment the class hierarchy with additional data and
methods for problem-specific needs. Hence, decoration of the IF with additional
data, information, or functionality is well-supported and, furthermore, the CAD
researcher directly benefits from the fact that the IF is object-oriented (and, self-
defining). That is, the CAD researcher benefits from all aspects of an object-
oriented representation such as inheritance, polymorphism, and encapsulation.
Also, we have also discovered an implementation technique for C++ that will fully
support this design abstraction. Preliminary demonstration of this functionality
has been successfully accomplished during Phase I, as we describe below in

greater detail.

The SAVANT IF definition is designed as an object-oriented data structure
with each node in the tree derived from a common base object. The intermediate
form will be an extensible definition that is capable of adding additional data
members and methods to each node in the intermediate form. This derivation
structure is shown in Figure 6. This figure is shown for illustrative purposes
only and should be considered a partial definition of the final derivation tree (In
particular, the actual design has considerably more intermediate class defini-
tions. This abbreviated tree is shown to help simplify the example for discussion

purposes.)

Basic

Design Concurrent Sequential
Unit Statement Statement

/\ "" ^N^ /\
Primary Secondary Process Concurrent IF CASE

Unit Unit Statement Signal Assignment Statement Statement

* /\
Process Selected Conditional

Statement Concurrent Concurrent
With Signal Signal

• Sensitivity Assignment Assignment

Figure 6. Derivation Structure of the IF

Final Report 29 SAVANT

MFR-95-006/CSF325
F33615-94-C-1469

An example of how the basic intermediate form is extensible is shown in
Figure 7. In this figure, the nodes inside the shaded area are the base inter-
mediate form definition. The nodes outside the shaded area illustrate what might

be used for a simple code generator (cgen).

Basic

Design
Unit

/\
Primary Secondary

Unit Unit

t
Concurrent
Äilemilitl

Process
Statement

1
Concurrent

Signal Assignment

Sequential
Statement

/\
IF CASE

Statement Statement

Process
Statement

With
Sensitivity

Selected
Concurrent

Signal
Assignment

Conditional
Concurrent

Signal
Assignment

t
CASE

Statement
cgen

\ \ /
Process

Statement
cgen

Concurrent
Signal

Assignment cgen

Figure 7. Extensibility of the IF

Figures 6 and 7 also show the logical organization of the desired intermediate
form. The software implementation accompanying SAVANT that builds the
intermediate form will be written in C++ and will require some additional
structure to achieve the desirable functionality. In particular, the implementa-
tion will follow a structure as shown in Figure 8. In this figure, the basic
intermediate form is captured by the nodes in the shaded area. Other nodes such
as those needed for research CAD tools are shown outside of the shaded area.
Four important observations need to be made about this figure.

1. The base node of the intermediate form class derivation tree is actually
derived from base nodes for each of the research CAD tools.

2. In instantiating new nodes for the intermediate form, only those nodes
shown in the shaded area at the bottom of the structure are to be created.

This is enforced by having a single procedure called create-node defined in
the base class that actually performs all node creation.

Final Report 30 SAVANT

MFR-95-006/CSF325
F33615-94-C-1469

The leaf nodes of the intermediate form must be maintained as the research
CAD classes and are added to the intermediate form. This is necessary so
that constructors/destructors are invoked and methods/data of the inter-

mediate classes become known.

Intermediate nodes in the intermediate form may also have classes derived
by the research CAD tools. The reason for this is explained in Section 3.4 (see
the discussion of the publisher/transmute classes to be included with the

initial SAVANT software release).

Type
Checker

Transmute

Publish Archive

1

BASE IF

Type
Checker

Transmute

Publish

{
FINAL

Archive

Figure 8. Software Implementation Structure

Satisfying the Requirements: In defining the IF as described above, we satisfied
all the requirements for this task. First, the IF essentially makes no semantics
changes to the VHDL source, thus satisfying the first technical requirement, to
preserve as much semantic content from the original source input as possible.
Second, the IF was designed with particular attention to achieving extensibility.
Hence, it is indeed extensible for the inclusion of additional CAD tool synthesized

Final Report 31 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

information, which satisfies our second technical requirement. Finally, by
producing this IF definition, as described above and further elaborated in the
Intermediate Form Description of Appendix A, we have satisfied Project

Performance Requirement 1, to establish the preliminary standard IF.

Task 1 Results Summary: The IF definition we achieved satisfied Project
Performance Requirement 1, as well as the particular technical requirements for
this task. As such, this IF definition served to partially achieve Objective 1
(establish technical feasibility) and Objective 3 (produce preliminary design
concepts). The other aspects necessary to completely achieve these two objectives
are the selection and demonstration of compiler support tools and the definition of
a record and playback file format. We describe our accomplishments in these

areas later in Section 3.

3.2 Task 2 — Interact with the Community

As we discussed in Sections 1.4 and 2.2, we, in concert with our USAF
sponsor, decided to de-scope this task to (1) fairly passive discussions of the
SAVANT technology within the VIUF, and (2) defining the means for its
proliferation and distribution. In this section, we concentrate upon the results of

these two activities.

Results Obtained: The results from this task form the definition of how the
SAVANT technology may be transferred to the design community, in the context
of our determined licensing and distribution approach and activities to stimulate
awareness. We have decided to distribute the SAVANT Analyzer (SCRAM) and
IF definition freely (no charge) and easily available through the World Wide Web
(WWW) to anyone and everyone who wants it. In addition, we will also provide a
robust simulator based on SAVANT technology at no charge through WWW.
Users of SAVANT Analyzer/IF/Simulator will be allowed to create derivative
products. In addition, we will allow distribution of derivative work for non-
commercial purposes. However, for-profit distribution, support, rent, or lease of
SAVANT-based technology will be allowed only upon completion of a profit-

sharing agreement between MTL and the distributor.

By implementing such a liberal licensing and distribution scheme, we will
stimulate research in the VHDL community and continually extend its utility to
the community. Our strategy, stated simply, is to establish community acceptance
by proliferation of the SAVANT technology and encouraging development of its

extensions.

■r- ID ,. 32 SAVANT Final Report ^

MFR-95-006/CSF325 F33615-94-C-1469

MTL will profit by providing products that enhance the utility of basic
SAVANT technology. Such products would include an interactive and fast
simulation environment, a man-machine interface for SAVANT and derivative
products developed by third party vendors. In addition, MTL would be able to profit

from a pay-per-use service based on SAVANT.

In addition, we have begun the process of creating SAVANT awareness.
MTL representatives have discussed possible utilization of SAVANT with several
EDA vendors such as Exemplar, Synopsys, Intergraph, Mentor Graphics and
Intermetrics at the Fall VIUF conference. EDA vendors were receptive to our
ideas and have expressed an interest in obtaining a copy of the software and

documentation.

Satisfying the Requirements: In general, this activity had no explicit technical

requirements.

Task 2 Results Summary: As a result of this task, we defined the technology
distribution technique and created some initial SAVANT awareness within the
community. These actions will ultimately assist us in the implementation of our
Product Plan, which is described in Section 3.6 and elaborated in Appendix B.
They also served to satisfy Objective 2, to (begin) to establish community

acceptance and to define the commercial product.

3.3 Task 3 — Select Compiler Tools

In Task 3, we were to execute a particular methodology to satisfy certain
technical requirements as we described in Section 2.3, to select the appropriate
compiler tools to construct the deliverable prototype SCRAM under Phase I. The
result of this task was to be these selected tools, to satisfy Performance
Requirement 2 (select compiler support tools). Our specific technical require-
ments were to:

A. Analyze available tools for synthesizing compilers.

B. Select the appropriate tools for SAVANT.

In the remainder of this section, we describe the results we obtained, how
they served to satisfy the project and technical requirements, and how these
accomplishments relate to achieving the objectives of the program.

c- ID r* W SAVANT Final Report -"

MFR-95-006/CSF325 F33615-94-C-1469

Results Obtained: The findings from our technical investigations, as we discussed
in Section 2.3, were that the Purdue Compiler Construction Tool Set (PCCTS)
provided an excellent support environment for the SAVANT analyzer
development effort. PCCTS supports an extended BNF (EBNF) notation and
inputs LL(k) grammars. Inherited and synthesized attributes, parser exception
handling, token classes, and lexical classes are all supported by PCCTS. The
software is in the public domain and runs on a variety of platforms including
SUN, DEC, SGI, VAX, HP, Linux, NetBSD, MSDOS, and OS/2. Furthermore, the
VHDL grammar input to PCCTS was originally developed at UC and is the only

available grammar in the public domain that supports VHDL '93.

Thus, we plan to use the PCCTS compiler construction toolkit to build the
VHDL analyzer. PCCTS generates LL(k) parsers and was selected over other
tools such as YACC/LEX or Cocktail because (i) it is LL(k), (ii) it support
predictive parsing, (iii) it readily supports attribute transmission, and (iv) it
builds a parser compatible with C++. Because VHDL designs can easily grow
quite large and because LL parsers tend to be slightly faster and more compact,
we believe that PCCTS is an excellent choice for SAVANT's VHDL analyzer.
Furthermore, the PCCTS developers are actively engaged in extending the tool-
suite and are planning to incorporate extensive error recovery capabilities in 1995.
Finally, PCCTS generates ANSI C that is processable by g++. Consequently, we

propose to build the parser actions in C++.

Satisfying the Requirements: In analyzing available tools and selecting PCCTS,
as we described above, we satisfied our technical requirements to (1) analyze
available tools for synthesizing compilers, and (2) select the appropriate tools for
SAVANT. These accomplishments also satisfied Project Performance

Requirement 5, to select the compiler support tools.

Task 3 Results Summary: In summary, PCCTS is an ideal and practical choice

for SAVANT, as it:

A. Exceeds the requirements

B. Contains support for exception handling that facilitates error
reporting and recovery

C. Integrates well with C++

D. Includes a grammar which successfully parsed over 1400 test files of
VHDL models.

This selection of PCCTS satisfied Project Performance Requirement 5, as
well as the particular technical requirements for this task. As such, this

Final Report
34 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

selection contributed, along with the results of Tasks 1, 4, and 5, to achieving
Objective 1 (establish technical feasibility) and Objective 3 (produce preliminary

design concepts).

3.4 Task 4 — Demonstrate Tools and Build Prototype

In Task 4, we were to execute a particular methodology to satisfy certain
technical requirements as we described in Section 2.4, to develop and test the
prototype SCRAM, supplementing it with the final standard IF definition
produced by Task 1, and demonstrating the compiler support tools as a natural
consequence of the development. The result of this task was to be the deliverable
prototype SCRAM and the test IF used to confirm its functionality, documented to
a preliminary design-level of detail, to satisfy Performance Requirement 6
(demonstrate capability of the compiler support tools by producing the prototype
SCRAM). Our specific technical requirements for the SCRAM analyzer and tools

were that:

A. A public domain analyzer must be available.

B. Archive capabilities must be available.

C. The tools must be stable, reliable, and WP.11 documented for integration
by CAD tool researchers and developers.

D. The software and documentation must be as portable as possible —
not requiring any special purpose hardware or expensive software
packages for use.

In the remainder of this section, we describe the results we obtained, how
they served to satisfy the project and technical requirements, and how these
accomplishments relate to achieving the objectives of the program.

Results Obtained: In this task, we constructed the basic elements of a VHDL '93
analyzer and many of the initial class definitions for the IF. In particular, we
have a full VHDL '93 grammar that inputs to PCCTS. The resulting parser
correctly parses over 1400 test files. However it has no semantic testing. In
addition, we constructed many classes for the object-oriented representation. The
classes are organized into three components, namely: base nodes, CAD tool
nodes, and leaf nodes. The base nodes contain all the data and method definitions
for the standard IF definition. The leaf nodes are dummy classes that are used by
the parser to create IF objects. The leaf nodes are derived from the CAD nodes
and allow for user-added constructor/destructor invocations as well as for a

search up the derivation tree for the correct implementation of virtual functions.

Final Report 35

MFR-95-006/CSF325 F33615-94-C-1469

The CAD tool nodes are organized into two parts. The first part contains pure
virtual functions and serve as base classes from which the common base node for
all of the standard IF nodes are derived (thus making the virtual functions
visible). The second part is the actual implementations of the functions for each
node in the standard IF. Thus, for example, a code generator CAD tool would
define a pure virtual function cgen() from which the base standard IF node would
be derived. The remaining standard IF nodes would have a derived class
containing an implementation for cgen(). Lastly, the leaf classes would be
modified to derive from the classes for cgen() and the desired extensibility is

accomplished.

This functionality was completely demonstrated (but not fully implemented)
in the Phase I effort. In addition, we showed the implementation of two
functionalities. First, we implemented a transmuteO method that rewrites the IF
nodes for concurrent statements into an IF node (and descendants) for the
equivalent process statement. Second, we implemented a publish_vhdl() method
that outputs VHDL. Furthermore, we added a publish_vhdl() method derived
from the concurrent statement IF node that automatically causes an invocation of
the transmuteO function. Thus, publish_vhdl() need not be defined for the nodes
derived from concurrent statement and an automatic translation to a process
statement IF node will be invoked. The publish_vhdl() method can then operate
only on a subset of VHDL but actually achieve the desired capability across the
entirety of VHDL. Figure 9 illustrates this concept.

The prototype SAVANT software system includes the following components
integrated into the class derivation structure, as illustrated in Figure 8:

Scram: For translating VHDL source programs into the intermediate form.

Transmute: For manipulating the intermediate form and rewriting nodes from
one form to another. In particular, the rewriting of concurrent
statements into their equivalent process statement definition.

Publisher: Output routines that generate VHDL (publish-vhdl) and C++
(publish-cpp) representations of the intermediate form.

Archive: Library manager functions that load and store the intermediate
form. Initially these functions will rely on VHDL as the
intermediate form and invoke scram and publish-vhdl to read/write
the library files.

In addition, a simple, public domain GUI for the system was constructed
using TCL/TK. Named SAVANT, the GUI supports the control and invocation of
the above described tools. It also supports the definition of library names and
search paths to support the archive manager.

Final Report 36 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

Publisher Archive

Process
Statement ■
Process

Statement
W/Sensitivity

?
Process

Statement
Publisher

I
Process

Statement

BasiÖ

J
Concurrent
Statement

Concurrent
Signal Assignment

Selected
Concurrent

Signal Assignment

1
Selected

Concurrent Signal
Assignment Publisher

f
Selected

Concurrent
Signal Assignment

Conditional
Concurrent

Signal Assignment

\
Conditional

Concurrent Signal
Assignment Publisher

I
Conditional
Concurrent

Signal Assignment

Figure 9. Prototype SAVANT Publisher

Satisfying the Requirements: In developing and testing the SCRAM analyzer, as
described above, we essentially satisfied the basic technical requirements, to (1)
Achieve a public domain analyzer, (2) Have archive capabilities, (3) Employ tools
which are stable, reliable, and well documented, and (4) Make the software and
documentation as portable as possible. As such, this also satisfied Performance
Requirement 6, to demonstrate the capability of the compiler support tools by

producing the prototype SCRAM.

However, we must note that a complete IF definition is not finished. The
added design problems posed by the novel solution required additional design and
implementation effort not foreseen when the original proposal and work
definition was written. The novel solution (see section 2.4) required the
construction of additional parts for exploring or demonstrating capacity of an
extensible, object-oriented IF. As we discussed in Section 2.4, the benefits are that
a better and more efficient final solution, that is more easily (and subsequently,
more readily) integrated by the research CAD community, will result.

Final Report 37 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

Task 4 Results Summary: In summary, through this development of SCRAM,
with its inherent demonstration of the compiler support tools, we provided the

following results:

A. Demonstrated the ability to parse VHDL '93.

B. Implemented many IF nodes.

C. Implemented some extensions to rewrite concurrent statements as
process statements (which was actually not part of the original
Phase I proposal).

D. Implemented several methods to regenerate VHDL from the IF.

This development of SCRAM satisfied Project Performance Requirement 6,
as well as the particular technical requirements for this task. As such, this
selection contributed, along with the results of Tasks 1, 3, and 5, to achieving
Objective 1 (establish technical feasibility) and Objective 3 (produce preliminary

design concepts).

3.5 Task 5 — Establish File Format for Record and Playback

In Task 5, we were to execute a particular methodology to satisfy certain
technical requirements as we described in Section 2.5, to establish the record and
playback functions. The result of this task was to be a tested format capable of
supporting the archiving needs of the IF, and documented to a preliminary-
design level of detail, to satisfy Performance Requirement 7 (establish initial
record and playback file formats). Our particular technical requirements were

that:

A. SAVANT will include two additional functions called RECORD and
PLAYBACK to archive the intermediate form.

B. RECORD will save the intermediate form representation of a VHDL
design unit into the design library.

C. PLAYBACK will read a design unit from design libraries into the
intermediate form.

D. The format used for archival storage will not interfere with the
intermediate format or standard exchange goals of this project.

In the remainder of this section, we describe the results we obtained, how
they served to satisfy the project and technical requirements, and how these
accomplishments relate to achieving the objectives of the program.

Final Report 38 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

Results Obtained: Through the technical investigations described in Section 2.5,
we have determined that initially the file format for SAVANT libraries will
simply be VHDL. This allows us to exploit the publish_vhdl() method for both
debugging and archiving. SCRAM itself will be used to input the library object.
In addition, a simply library index is present to identify the library logical name
and its contents. A library interface has also been incorporated into the SAVANT

front-end GUI.

Satisfying the Requirements: By employing VHDL as the file format, as described
above, we satisfied the technical requirements for record and playback functions,
implemented in a manner which would not interfere with the IF or standard
exchange goals of the project. As such, we also satisfied Project Performance
Requirement 7, to establish the initial record and playback file formats.

Task 5 Results Summary: In summary, by defining the VHDL file format, as
described above, we produced the following results:

A. Decided to use VHDL as intermediate file format

B. Established and integrated the library structure with the SAVANT
GUI front-end

C. Although not yet integrated with analyzer, established that the basic
functionality is already present: (1) by definition, the analyzer inputs
vhdl, (2) the publish_vhdl() methods already generate vhdl for the
intermediate format, and (3) the publish_vhdl() methods output to a
re-directable file.

This decision to use a VHDL format for record and playback satisfied Project
Performance Requirement 7, as well as the particular technical requirements for
this task. As such, this selection contributed, along with the results of Tasks 1, 3,
and 4, to achieving Objective 1 (establish technical feasibility) and Objective 3
(produce preliminary design concepts).

3.6 Task 6 — Document the Phase I Effort

In Task 6, our requirement was simply to produce this final report, with the
appended SAVANT IF Definition and Product Plan. We had no explicit
requirements or methodology for this task. As a result, this report, the IF
definition of Appendix A, and the Product Plan of Appendix B were produced.

Final Report 39 SAVANT

F33615-94-C-1469
MFR-95-006/CSF325

3.7 SAVANT Documentation Definition (Added Task)

In this task, we were to execute a particular methodology to satisfy certain
technical requirements as we described in Section 2.7, to define the SAVANT
documentation for Phase II. The result of this task was to be appropriate
definition of the documentation outline, tools, IF documentation, and translation

means.

In the remainder of this section, for each particular aspect listed above, we
begin with a concise statement of the requirements, and then describe the results
we obtained and how they served to satisfy these requirements. We conclude with
a summary of how these accomplishments relate to achieving the objectives of the

program.

Outline Construction: We begin with the outline construction aspect, which is to

construct an outline for SAVANT documentation.

Results: The results from our investigations into the outline construction aspect
were outlines of the main chapters. There are five main chapters in the
documentation for SAVANT. The first chapter is the Terms and Conditions
for copying, distribution and modification. This chapter explains the legal
issues surrounding the use of SAVANT. The second chapter is the Overview
of SAVANT. It provides an introduction to SAVANT as well as identifying
what SAVANT can be used for. The third chapter, Object-Oriented SAVANT,
explains why we chose the object oriented paradigm for developing SAVANT.
It shows the class hierarchy of SAVANT. The fourth chapter is titled
Integrating with CAD Tools. This chapter explains to the CAD developer
how SAVANT can be extended to existing CAD tools as well as methods for
customizing SAVANT. The last chapter is titled The Intermediate Form. It
is a description of the in-memory representation of each VHDL type. The
user will need to know the intermediate form if SAVANT is to be used.

Satisfying the Requirements: These results serve to satisfy our requirements in
several ways. First, we have identified the main components of the SAVANT
documentation. We have provided the user with the terms for using
SAVANT, what is SAVANT, why was SAVANT developed, how does a user
use SAVANT, and finally what information a user needs to know when

using SAVANT.

Tool Gathering: The tool gathering aspect includes the analysis, retrieval, and
testing of tools which will allow for the development of SAVANT documentation.

c. ID . 40 SAVANT
Final Report 4U

MFR-95-006/CSF325 F33615-94-C-1469

Results: Our results from the tool gathering aspect were obtaining a typesetting
tool called TeX, the documentation macro Texinfo, and the postscript figure
macro psfig.tex. TeX is free and found in a wide number of archive sites,
and can handle multiple languages in the same document. This is desired
for the documentation of SAVANT as it provides a simple source document
that can be translated into other documents for different media. Texinfo is a
macro that can be included in the TeX file. Texinfo allows the development of
nodes. Nodes are blocks of information that can be translated into chapters,
sections, or not printed at all in the hardcopy. Nodes can also be linked by
hypertext links in hypertext documents. A node can contain menu items for
inclusion into a hypertext file. A menu item can also be processed as a
index, table of contents, or not at all in the hardcopy. The postscript figure
macro psfig.tex is a macro also included into the TeX file that allows printing

of a postscript image in hardcopy.

Satisfying the Requirements: These results serve to satisfy our requirements in
several ways. First, the tools we have chosen produce two formatted outputs
without the aid of additional tools. The first output is a .dvi file that can be
used to generate a hardcopy. The second type of output is an info file. An
info file is a hypertext file that can be viewed in Gnu's Emacs or by using a
stand alone hypertext reader called info. We tested these tools by first
incorporating the outline in Texinfo. We successfully printed a hardcopy and
an info file from this outline.

IF Documentation: The aspect of IF documentation includes displaying an easy
to understand view of the intermediate form for VHDL as produced by SAVANT.

Results: The results from the IF documentation aspect were developing a
hierarchy of classes currently included in SAVANT, collapsing each
inheritance branch of the VHDL type classes and writing the data member
information as nodes in Texinfo. We also documented the class hierarchy in
Texinfo which will be used as an index in the hardcopy, and links from the
IF nodes in the hypertext documents. Thus, we have the intermediate form
documented and cross references to the classes that hold that intermediate

form available to the user.

Satisfying the Requirements: These results serve to satisfy our requirements in
several ways. The method of collapsing the inheritance branches of the
hierarchy tree provides a systematic way of obtaining the intermediate form.
By creating nodes in Texinfo for each VHDL type intermediate form, we
obtain a simple way of displaying this information to the user. In the
hypertext files, when a user is viewing a VHDL type intermediate form, the

Final Report 41 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

user can chose to view the classes associated with this intermediate form. In
the hardcopy, these classes will be in the index.

Translation: We now present the last aspect of translation, which deals with the
media as presented to the user. The responsibility here is to translate the source

document into multiple output documents.

Results: The results from our investigation into the translation aspect were
recognizing exactly what output files need to be generated from the source.
We have found a substantial number of users using the World-Wide Web
(WWW), so we made it a point to product a HTML (HyperText Markup
Language) file from the Texinfo source document. To do this, we use a
translation utility from info to HTML (info2html). This produces a document
that has limited graphics capability, therefore we have added commands to
the utility in order to provide the extended graphics capability. We
successfully translated the outline, IF documentation, and hierarchy into
HTML. We also have translated the outline into a postscript file using a
utility (dvips) which prints the dvi file on a postscript printer.

Satisfying the Requirements: These results serve to satisfy our requirements in
several ways. First, we have discovered the two most prevailing media for
distributing documentation — Postscript and HTML. By using a WWW
browser (such as Mosaic) a user can view documentation in a hypertext
environment. If, however, the user requires a hardcopy in the form of a
postscript file, this can be available via FTP (File Transfer Protocol) which is
a common method for retrieving files from other computers who reside on
the Internet. We also satisfy the one source document translation to multiple
output documents requirement by showing successful translated files.

In conclusion of the documentation definition task results, they served to
further the design definition of SAVANT as a whole, thus contributing to
achieving Objective 3, to produce a preliminary design concept. These results also
supported achieving Objective 2, to establish community acceptance, by defining
the nature of the SAVANT documentation to be proliferated among the

community.

3.8 Summary of the Results

In summary of our results, they served to completely satisfy our project
performance requirements and Phase I objectives, as we have indicated in the
individual task discussions. Furthermore, the IF definition, along with the

Final Report 42 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

SCRAM analyzer development, compiler support tools definition and demonstra-
tion, and record and playback format definition, form a solid and well-quantified
and validated basis for a successful Phase II development. Finally, the product
plan of Appendix B, along with the documentation definition and proliferation
methodology promises a successful transition of the SAVANT technology into a
viable commercial product.

This concludes our Section 3 discussions of the results from our technical
investigations. In the next section, we present our Phase I conclusions and
recommendations, which are, of course, based upon these results.

Final Report 43 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

4.0 PHASE I CONCLUSIONS AND RECOMMENDATIONS

In conclusion of our Phase I project, we considered this to be a highly
successful effort. Although our focus was altered somewhat from our proposed
direction, the results were significant and served to satisfy the program

objectives.

In denning the IF in Task 1, we satisfied Project Performance Requirement
1, to establish the preliminary standard IF, and partially achieved Objective 1
(establish technical feasibility) and Objective 3 (produce preliminary design

concepts).

Through our community interactions of Task 2, although somewhat de-
scoped from the level we originally intended, we defined the technology
distribution technique and created some initial SAVANT awareness within the
community. These actions will ultimately assist us in the implementation of our
Product Plan, and served to satisfy Objective 2, to (begin to) establish community

acceptance and to define the commercial product.

By analyzing available tools, and selecting PCCTS, in Task 3, we satisfied
Performance Requirement 5, to select the compiler support tools. This selection
contributed to achieving Objective 1 (establish technical feasibility) and Objective 3

(produce preliminary design concepts).

In Task 4 by developing and testing the SCRAM analyzer and demonstrating
the compiler support tools, we satisfied Performance Requirement 6, to
demonstrate the capability of the compiler support tools by producing the prototype
SCRAM. This contributed to achieving Objective 1 (establish technical feasibility)

and Objective 3 (produce preliminary design concepts).

By establishing VHDL as the file format in Task 5, we satisfied Project
Performance Requirement 7, to establish the initial record and playback file
formats. This selection again contributed to achieving Objective 1 (establish
technical feasibility) and Objective 3 (produce preliminary design concepts).

In Task 6, our requirement was simply to produce this final report, with the
appended SAVANT IF Definition and Product Plan. As a result, this report, the
IF definition of Appendix A, and the Product Plan of Appendix B were produced.

As a result of our additional task to define the SAVANT documentation, we

Final Report 44 SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

furthered the design definition of SAVANT as a whole, thus contributing to
achieving Objective 3, to produce a preliminary design concept. These results also
supported achieving Objective 2, to establish community acceptance, by defining
the nature of the SAVANT documentation to be proliferated among the

community.

In aggregate, we satisfied all our project requirements, and achieved our
three program objectives, to (1) establish technical feasibility, (2) begin to establish
community acceptance, and (3) produce preliminary design concepts. Based on
this success in accomplishing these objectives, and in particular the level of
definition of SAVANT achieved, we recommend that a Phase II development of
the SAVANT Technology should be considered. SAVANT addresses an
acknowledged and critical problem for VHDL-in-CAD, is demonstrably feasible,
and has received sufficient investigation and preliminary development to judge a
Phase II prototype development to be a fairly low-risk endeavor.

MTL Systems, Inc. and the University of Cincinnati have enjoyed meeting
the technical challenges and producing the results of this Phase I effort. We look
forward to further developing and commercializing the SAVANT technology in a

Phase II program.

Final Report 45 ' SAVANT

MFR-95-006/CSF325 F33615-94-C-1469

Appendix A

SAVANT Intermediate Format Documentation

Final Report A-1 SAVANT Intermediate Format Documentation

MFR-95-006/CSF325 F33615-94-C-1469

1. The Intermediate Form
This chapter is a work in progress. At present, it currently documents the

intermediate form for the SAVANT analyzer as it currently exists at MTL. It is
updated as new versions of SAVANT are obtained.

1.1 Design Units

1.1.1 Design Unit List
The IF representation of the design unit list contains the following data

definition:
list_of_design_units design_unit_list

1.1.2 Design Unit
The IF representation of a design unit has the following data definitions:

char *name
fmal_context_clause_list *context_clauses
final_library_unit *library_unit

1.1.3 Primary Units

1.1.3.1 Entity Declaration

char *name
final_port_list *port_list
final_generic_list *generic_list
fmal_declaration_list *declaration_list
final_conc_stmt_list *stmt_list

1.1.3.2 Configuration Declaration
For a configuration declaration, the IF data structure has the following

declarations:

char *name
char *parent
final_declaration_list declarations
final_block_configuration *block_configuration

1.1.3.3 Package Declaration
For a package declaration, the IF data structure has the following

declarations:

char *name

Final Report A-2 SAVANT Intermediate Format Documentation

MFR-95-006/CSF325 F33615-94-C-1469

1.1.4 Secondary Units

1.1.4.1 Architecture Body
For an architecture body,

declarations:

char
char
final declaration list

the IF data structure has the following

*name
*parent
declarations

1.1.4.2 PackageBody
For a package body, the IF data structure has the following declarations:

In development

1.2 Sequential Statements

1.2.1 Wait Statement
For a wait statement, the IF data structure has the following declarations:

char *name
char *label
fmal_signal_list *signal_list
expression condition
expression timeout

1.2.2 IfStatement
For an if statement, the IF data structure has the following declarations:

char
char
expression
final_seq_stmt_list
final_seq_stmt_list

*name
*label
^condition
*then_stmts
*else stmts

1.2.3 Case Statement
char
char
expression
when clause list

*name
*label
^selector
when clauses

Final Report A-3 SAVANT Intermediate Format Documentation

MFR-95-006/CSF325 F33615-94-C-1469

1.2.4 Whüe Statement
For a while statement, the IF data structure has the following declarations:

char *name
char *label
final_seq_stmt_list *stmt_list
expression * condition

1.2.5 For Statement
For a for statement, the IF data structure has the following declarations:

char *name
char *label
final_seq_stmt_list *stmt_list
identifier iterator
discrete_range ■range

1.2.6 Exit Statement
For an exit statement, the IF data structure has the following declarations:

label *destination

1.2.7 Next Statement
For a next statement, the IF data structure has the following declarations:

char
char
label
expression

*name
*label
*destination
^condition

1.2.8 Assertion Statement
For an assertion statement, the IF data structure has the following

declarations:

char
char
boolean_expression
expression
expression

*name
*label
^condition
*report
*severity

1.2.9 Report Statement
For a report statement,

declarations:

char
char
expression
expression

the IF data structure has the following

^name
*label
*report
*severity

Final Report A-4 SAVANT Intermediate Format Documentation

MFR-95-006/CSF325 F33615-94-C-1469

1.2.10 Signal Assignment Statement

In development

1.2.11 Variable Assignment Statement
For a variable assignment statement, the IF data structure has the

following declarations:

In development

1.2.12 Procedure Call Statement
For a procedure call statement, the IF data structure has the following

declarations:

In development

1.2.13 Null Statement
For a null statement, the IF data structure has the following declarations:

In development

1.3 Concurrent Statements
1.3.1 Block Statement

In development

1.3.2 Process Statement
For a process statement, the IF data structure has the following

declarations:

char *name
char *label
final_declaration_list *declaration_list
final_seq_stmt_list *stmt_list
int postponement

1.3.3 Process Statement with Sensitivity list
For a sensitive process statement, the IF data structure has the following

declarations:

char *name
char *label
final declaration list ^declaration list
final_seq_stmt_list *stmt_list
int postponement
final_signal_li st *snsty_list

Final Report A-5 SAVANT interm

MFR-95-006/CSF325 F33615-94-C-1469

1.3.4 Concurrent Signal Assignment Statement
For a concurrent signal assignment statement.the IF data structure has

the following declarations:

In development

1.3.5 Concurrent Call Statement
For a concurrent call statement, the IF data structure has the following

declarations:

In development

1.3.6 Concurrent Assertion Statement
For a concurrent assertion statement, the IF data structure has the

following declarations:

char *name
char *label
boolean_expression ^condition
expression *report
expression ^severity

1.3.7 Component Instantiation Statement
For a component instantiation statement, the IF data structure has the

following declarations:

In development

1.3.8 Generate Statement
For a generate statement, the IF data structure has the following

declarations:

In development

Final Report A-6 SAVANT Intermediate Format Documentation

MFR-95-006/CSF325 F33615-94-C-1469

Appendix B

SAVANT Product Plan

Final Report B-1 SAVANT Product Plan

MFR-95-006/CSF325 F33615-94-C-1469

SAVANT Product Plan

In this plan, we describe potential markets and how we anticipate that our
Phase II SAVANT results and deliverables will form a basis for Phase III
commercialization, and discuss our specific plans for such commercialization.
We consider commercialization to be the crux of this issue, whether it is achieved
through a formal Phase III effort or by other means, and we present it here in
this context.

We have divided this plan into 3 parts. To begin, in Part 1, we describe the
commercial and military markets we expect to reach with the SAVANT
Technology. Next, in Part 2 we describe our anticipated Phase II results, and
how these will form the basis for the (Phase III) research and development
necessary to realize a viable commercial product from the SAVANT technology.
Finally, in Part 3, we describe our specific plans for Phase III and other
commercialization of the SAVANT technology.

Part 1. Commercial and Military Markets for the SAVANT Technology

The potential markets and applications for the SAVANT technology are both
vast and significant, in the context of commercial as well as government
endeavors. In this section we provide an overview of this potential, and then
describe particular government and commercial uses.

The applications for SAVANT are vast simply because the use and
proliferation of VHDL as a foundation for myriad design automation tools is
growing exponentially. Design automation tools for software design, hardware
design, concurrent engineering, hardware/software co-design, performance
modeling, and rapid prototyping, to name but a few, represent areas where VHDL
is the core beneath the specific tool. Significantly, within this tool developer
community, there is a growing and prevailing notion that standardization is the
key to success. In the recent past, individual tool vendors would choose a
particular VHDL environment, such as Cadence, Synopsis, or Model
Technologies upon which to build their products. Now, these vendors are
beginning to see the value of common VHDL foundations and looking to creative
and innovative support environments and their specific tool attributes as their
road to success. This motivation is of course partially influenced by user
dissatisfaction with having to purchase several, separate VHDL environments for
their different tools. In other words, the user and vendor communities are both
ready and anxious for the standardization which SAVANT will provide. The
applications for SAVANT technology are also significant because, in addition to
satisfying the standardization needs described above, the SAVANT standard will
be freely available to limited-resource-bound researchers as well as to well-funded

Final Report B-2 SAVANT Product Plan

MFR-95-006/CSF325 F33615-94-C-1469

vendors. This will integrate researchers tightly with commercial vendors, thus
making future technology transition significantly more effective.

Hence, we see the SAVANT technology being welcomed by vendors, their
customers, and the research community at large. This offers a thriving
marketplace for the SAVANT technology, to support both commercial and
government needs. In both sectors, SAVANT will be used to provide the
foundation for the tools discussed above. These tools will, in turn provide the
automated design support for large-scale digital (and analog, with VHDL-A
forthcoming) system designs. Some examples of these systems in the commercial
and government sectors include:

Commercial: Industrial control and process control systems, dedicated
computing or virtual computing systems, communications network and
network control systems, traffic control systems, automotive electronics,
medical and industrial imaging systems.

Government: Avionics systems, fire control and battle management systems,
reconnaissance systems, specialized computing or virtual computing
systems, target recognition/cueing systems, digital signal processing
systems, communications network and network control systems, air traffic
control systems.

In summary, we expect the SAVANT technology will provide the
standardization and software support needed to enable more widespread use of
VHDL, standardization and commonality among tools, and to enable more
VHDL-in-CAD research. This indicates vast and significant applications, and a
large commercial and government marketplace for this technology.

Final Report B-3 SAVANT Product Plan

MFR-95-006/CSF325 F33615-94-C-1469

Part 2. Phase II Results ■ The Foundation for Phase III R&D

We anticipate the initial SAVANT Phase II results will consist of certain
software components as well as supporting documentation. The software release
will include the following components and capabilities:

Scram: Translating VHDL source programs into the intermediate form.

Transmute: Manipulating the intermediate form and rewriting nodes from one
form to another. In particular, the rewriting of concurrent statements into
their equivalent process statement definitions.

Publisher: Output routines that generate VHDL publish_vhdl and C++
publish_cpp representations of the intermediate form.

Archive: Library manager functions that load and store the intermediate form.
Initially these functions will rely on VHDL as the intermediate form and
invoke scram and publish_vhdl to read/write the library files.

Debugger: Basic debugging utilities provided through a command line interface.
The debugger will be derived from the object-oriented QUEST simulation
kernel and code generator.

Interactive user I/F: Easy-to-use, man-machine interface for interactive
simulation and animation. The simulator will be based upon the QUEST
simulation kernel, QUEST code generator and SAVANT debugger. (See
Section 4 for details about the QUEST project).

The first four software objects will be placed in the public domain and will be
developed by our subcontractor, the University of Cincinnati. The last two
software objects (for debugging and interactive simulation) will be commercial
software, developed by and the property of MTL Systems, Inc.

Figure Bl illustrates how these Phase II results provide a foundation for
subsequent Phase III R&D. As shown, these results may be broadly categorized
as software and document results. Within the software category, we have the
public domain software, which consists of Scram, Transmute, Publisher and
Archive. Also within this category, we have the marketable software products,
which include the Debugger and Interactive User I/F. The documentation
category includes the User's Manual, Installation Guide, Reference Manual, IF
Definition, Final Report, and the WWW I/F which enables distribution of this
information, as well as the public-domain software, over the WWW. The purpose
of a Phase III effort would be to bring these products to a more effectively
marketable form, as we describe below.

The public domain software is considered to be both a basis for marketable
services and a marketing tool. Hence, in a Phase III effort (or other
commercialization activity), we would build a service support structure around
these products, which would permit us to effectively and profitably sell support to
those users who require more assistance than can be obtained through the
software and documentation distribution. The software itself would become a

Final Report B-4 SAVANT Product Plan

MFR-95-006/CSF325
F33615-94-C-1469

marketing tool in the sense that its distribution and proliferation would stimulate
a need for the services mentioned above. Therefore, a Phase III effort would build
upon the Phase II-level versions of these products, and provide such
improvements or enhancements necessary to render them a more acceptable
asset to the user community. The distribution accomplished in Phase II will no
doubt stimulate some feedback from the community, and this would be the basis
for such improvements or enhancements in this, as well as the other product
areas.

Basis for
Marketable
Services

&
Marketing Tool

Basis for
Marketable

Support
Environment

Results from Phase II

Software

:; Scratirii:

Transmute

Publisher

Archive

Debugger;

Interactive
UseflF

Documents

User's Manual
Installation Guide
Reference Manual

IF Definition
Final Report

WWW l/F

Supporting
Documentation

and
Distribution

System

Figure Bl. Phase II Results as a Phase III Foundation

The marketable software products from Phase II will form the basis for a
user-friendly support environment, which would become the ultimate product
here. In a Phase III or commercialization effort we would build upon this
foundation, and add other support environment utilities, such as translators, file
managers, additional visualization support, analysis tools, etc., to realize the
complete SAVANT support environment product. Here, we would also put the
software product support structure in place to provide for customer support and
revisions throughout the products' life.

The documentation from Phase II would require periodic revisions
throughout its lifetime. In a Phase III or commercialization effort, we would
make the document modifications necessary to reflect any Phase III
modifications to the software products. Here, we would also put the
documentation support structure in place to permit additional revisions to be

Final Report B-5 SAVANT Product Plan

MFR-95-006/CSF325 F33615-94-C-1469

effectively handled throughout the products' life, and to maintain the WWW
distribution paradigm established in Phase II.

In summary, a Phase III or commercialization effort would build upon the
Phase II products and comments from the user community regarding the Phase
II release to create an integrated SAVANT Product Line, with the necessary
support functions to ensure an effective and profitable product life. This concept
is illustrated in Figure B2.

Comments from
Phase II Release USER

Phase II
Release

uommunuy ^

y V

Results from Phase II *

Software Documents

Scram

Transmute

Publisher

Archive

User's Manual
Installation Guide
Reference Manual

IF Definition
Final Report

WWW l/F Debugger

Interactive
User l/F

PHASE III / Commercialization
Service Support Structure

Software Product Enhancements
Support Environment Enhancements

Product Support Structure
Document Upgrades

Document & Distribution Support Structure

SAVANT
Product

Line

Figure B2. Creating the SAVANT Product Line

Final Report B-6 SAVANT Product Plan

MFR-95-006/CSF325 F33615-94-C-1469

Part 3. The Phase HI or Commercialization Plan

In this section we describe our specific plans for Phase III and other
commercialization of the SAVANT technology. As we mentioned before, the
Phase III work would be but a part of a longer-term and more extensive
commercialization plan. This plan is designed to integrate several key
ingredients: The Phase II Results, the Phase III developments discussed above,
and the resources of MTL's INTELLX Center (an entity within the MTL corporate
structure specifically tasked with commercializing technologies, especially for
CAD and EDA). Our general commercialization approach is to synergize
proliferation of the public-domain software with both a products and services
business for long term marketing of the SAVANT technology. The elements of
this approach are as follows:

DISTRIBUTION:

1. The SAVANT IF definition could be utilized for any purpose by anyone and
would be freely distributed. A fee would be charged for the physical act of
transferring the copy, which would always include the original copyright
notice.

2. The SAVANT public-domain software and its derivative software could also
be freely distributed by anyone else provided (a) all the source code is provided
for SAVANT or its derivative, (b) the appropriate notice is included, (c) MTL
Systems, Inc. is notified, (d) it is provided to everyone and anyone and (f) no
fee is charged except for the physical act of transferring the copy.

3. Any distribution for profit including sale, support, lease and rent of
SAVANT software or its derivative would only be permitted through
negotiating a licensing or other profit-sharing agreement with MTL
Systems, Inc.

4. WWW would be used by MTL Systems, Inc. to provide easy access to the
SAVANT IF definition, public-domain software, and supporting documents.

COPYRIGHTS

The University of Cincinnati and MTL Systems, Inc. would hold the
copyright for the SAVANT IF and software.

COMMERCIAL RIGHTS

1. MTL Systems, Inc. would hold exclusive commercial rights to the SAVANT
software.

2. MTL Systems, Inc. would share its profits with the University of Cincinnati
(to be negotiated between MTL and UC).

Final Report B-7 SAVANT Product Plan

MFR-95-006/CSF325 F33615-94-C-1469

SIMULATOR

At least a parallel/uniprocessor simulator would be provided with
restrictions similar to the SAVANT software and documentation, and would
accompany the SAVANT analyzer. This simulator would be derived from the
QUEST simulator.

SUPPORT SERVICES

1. Yearly support for the SAVANT software could be obtained for a fee from
MTL Systems, Inc.

2. The support would be purchased at two levels: batch or interactive. Batch
support would be obtained via email and voice mail. Interactive support
would be obtained through phone or video conference.

3. The purchase of support would qualify the customer to any bug fixes and
upgrades.

4. No other organization except MTL Systems, Inc. would be permitted to
provide support for profit, unless a profit-sharing agreement is negotiated
with MTL Systems, Inc.

INITIAL SAVANT-BASED PRODUCTS

1. An easy-to-use GUI could be purchased from MTL Systems, Inc.

2. An interactive User I/F could be purchased from MTL Systems, Inc.

PAY-PER-USE

1. SAVANT could be accessed on a pay-per-use basis from MTL Systems, Inc.

This distribution of public-domain entities, plus the marketing of products,
for-profit services, and pay-per-use will enable the proliferation of the technology
and the initial insertion of the SAVANT Product line into the marketplace,
beginning in Phase II and continuing in a Phase III or other commercialization
activity.

Figure B3 illustrates our overall, expected paradigm for commercializing the
SAVANT technology, which includes the Phase II, Phase Ill/commercialization
activities, and also considers the long-term product life. As we described in Part
2, the Phase II effort will result in initial versions of the products and an initial
release or distribution of the public-domain entities. Then the Phase III or
commercialization activities will produce the initial SAVANT product line, which
will include the beginnings of the support services business. The configuration of
this release will depend a great deal upon the level of investment we may be able to

Final Report B-8 SAVANT Product Plan

MFR-95-006/CSF325 F33615-94-C-1469

obtain for commercialization actions here, as well as comments received from the
user community on the Phase II-level release.

Comments and
Revenues

Market Analyses

USER
Community

Results from Phase II

Software Documents

■,. Scram User's Manual

Transmute Installation Guide

Publisher Reference Manual

Archive IF Definition'
Final Report

' Debugger WWW l/F

Interactive
User l/F

PHASE III / Commercialization
Service Support Structure

Software Product Enhancements
Support Environment Enhancements

Product Support Structure
Document Upgrades

Document & Distribution Support Structure

Product Continuance Activities

Management
Support

Enhancements / New Versions
Marketing

Initial
SAVANT

Product Line

Dynamic
SAVANT

Product Line

Figure B3. SAVANT Long-Term Commercial Product Paradigm

Final Report B-9 SAVANT Product Plan

M FR-95-006/CSF325 F33615-94-C-1469

Long term operation of the SAVANT product line will be continual, dynamic,
interactive cycles of product release, user community response, and product
continuance activities. With each release, we will receive both comments and
revenues from the user community. The revenues will fund the execution of the
continuance functions of management, support, enhancements, and marketing.
The support and enhancement functions will evolve from the Phase II/III
implementations, while the management and marketing elements will be
executed in a more organized and product-oriented manner than will have been
done for Phase II/III activities.

The product-oriented attention and management of the SAVANT Product
Line will be executed by MTL's INTELLX Center, a for-profit design automation
tools & services center. INTELLX maintains high caliber talent and state-of-the-
art tools to accelerate the productization of technology. We engage in EDA tool
R&D, as well as electronic system design, analysis, and testing. Our engineers
have direct experience with system performance analysis, hardware/software
partitioning, and hardware/software project management from specification
through assembly and test. We have worked on a variety of projects spanning
industries such as ground vehicles, aerospace, computers, semiconductors,
telecommuni-cations, consumer electronics, and medical equipment. Our
engineers have designed and produced PCB's, hybrids, and semi-custom ICs.
ProDESIGN is customer-driven, and committed to product & process excellence.

In summary, our plan is to build effectively upon the Phase II effort to
conduct a Phase III (or other) commercialization effort which will result in an
initial SAVANT product line release. This activity and release will then integrate
smoothly into a long-term product management plan under the direction of an
organization whose sole purpose is to commercialize and maintain products for
MTL. Through this approach we will ensure effective insertion of the SAVANT
technology into the marketplace, whose demands and needs were summarized in
the beginning of this plan.

Final Report B-10 SAVANT Product Plan

