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 ——• ' Abstract 

The structure-from-motion problem has been extensively studied in the field of computer 
vision. Yet, the bulk of the existing work assumes that the scene contains only a single moving 
object. The more realistic case where an unknown number of objects move in the scene has 
received little attention, especially for its theoretical treatment. In this paper we present a new 
method for separating and recovering the motion and shape of multiple independently moving 
objects in a sequence of images. The method does not require prior knowledge of the number 
of objects, nor is dependent on any grouping of features into an object at the image level. 
For this purpose, we introduce a mathematical construct of object shapes, called the shape 
interaction matrix, which is invariant to both the object motions and the selection of coordinate 
systems. This invariant structure is computable solely from the observed trajectories of image 
features without grouping them into individual objects. Once the matrix is computed, it allows 
for segmenting features into objects by the process of transforming it into a canonical form, as 
well as recovering the shape and motion of each object. 
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1    Introduction 

A motion image sequence allows for the recovery of the three-dimensional structure of a scene. 
While a large amount of literature exists about this structure-from-motion problem, most previous 
theoretical work is based on the assumption that only a single motion is included in the image 
sequence; either the environment is static and the observer moves, or the observer is static and only 
one object in the scene is moving. More difficult and less studied is the general case of an unknown 
number of objects moving independently. Suppose that a set of features has been extracted and 
tracked in an image sequence, but it is not known which feature belongs to which object. Given 
a set of such feature trajectories, the question is whether we can segment and recover the motion 
and shape of multiple objects contained in the image sequence. 

The previous approaches to the structure-from-motion problem for multiple objects can be 
grouped into two classes: image motion-based (2D) and three-dimensional (3D) modeling. The 
image-motion based approach relies mostly on spatio-temporal properties of an image sequence. 
For example, regions corresponding to different velocity fields are extracted by using Fourier 
domain analysis [18][1] or scale-space and space-time filters [3, 5, 8, 9]. These image-based 
methods have limited applicability either because object motions are restricted to a certain type, 
such as translation only, or because image-level properties, such as locality, need to be used for 
segmentation without assuring consistent segmentation into 3D objects. 

To overcome these limitations, models of motion and scene can be introduced which provide 
more constraints. Representative constraints include rigidity of an object [17] and smoothness (or 
similarity) of motion [13, 11, 2, 4]. Then the problem becomes segmenting image events, such as 
feature trajectories, into objects so that the recovered motion and shape satisfy those constraints. 
It is now a clustering problem with constraints derived from a physical model. Though sound in 
theory, the practical difficulty is the cyclic dilemma: to check the constraints it is necessary to 
segment features and to segment it is necessary to compute constraints. So, developed methods 
tend to be of a "generate-and-test" nature, or require prior knowledge of the number of objects 
(clusters). Ullman [17] describes a computational scheme to recursively recover shape from the 
tracks of image features. A model of the object's shape is matched to the current position of the 
features, and a new model that maximizes rigidity is computed to update the shape. He suggests 
that this scheme could be used to segment multi-body scenes by local application of the rigidity 
principle. Since a single rigid body model does not fit the whole data, collections of points that 
could be explained by a rigid transformation would be searched and grouped into an object. Under 
the framework of the factorization method [16], this view of the problem is followed by Boult 
and Brown [4] and Gear [7], where the role of rigidity is replaced by linear dependence between 
feature tracks. Since the factorization produces a matrix that is related with shape, segmentation is 
obtained by recursively clustering columns of feature trajectories into linearly dependent groups. 

This paper presents a new method for segmenting and recovering the motion and shape of 
multiple independently moving objects from a set of feature trajectories tracked in a sequence of 
images. Developed by using the framework of the factorization by Tomasi and Kanade [16], the 
method does not require any grouping of features into an object at the image level or prior knowledge 
of the number of objects.  It directly computes shape information and allows segmentation into 
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objects. This has been made possible by introducing a linear-algebraic construct of object shapes, 
called the shape interaction matrix. The entries of this matrix are invariant to individual object 
motions and yet is computable only from tracked feature trajectories without knowing their object 
identities (ie, segmentation). Once the matrix is computed, transforming it into the canonical form 
results in segmenting features as well as recovering the shape and motion of each object. We will 
present our theory by using the orthographic camera model. It is, however, easily seen that the 
theory, and thus the method, works under a broader projection model including weak perspective 
(scaled orthography) and paraperspective [12] up to an affine camera [10] 

In the next section, we will first re-derive the factorization method in homogeneous coordinates 
including the translational motion component. Then, section 3 will provide geometrical interpre- 
tation of the matrices involved in factorization, which will be useful for developing the multi-body 
factorization method in section 4. Finally in sections 5 and 6 we present experimental results, and 
discuss implications of our method. 



2   Factorization Method: A New Formulation Including Trans- 
lation 

The factorization method was originally introduced by Tomasi and Kanade[15, 16] for the 
case of single object motion. The core of the method is a procedure based on singular value 
decomposition that separates a matrix of measurements into the product of two matrices which 
represent the shape and motion of an object, respectively. The method does not need any prior 
assumptions about either structure or motion. 

The original Tomasi-Kanade formulation addressed the case of a moving camera observing a 
static scene. In this section we will reformulate the method in such a way that a static camera 
observes a scene with a moving object. Also, whereas the translation component of motion is first 
eliminated in the Tomasi-Kanade formulation, we will retain that component in our formulation. 
Though equivalent for the single object case, the new formulation with these two changes simplifies 
some of the representations and allows for easy extension to the case of multiple moving objects. 

2.1    World and Observations 

Let us assume for the moment that a static camera observes a single moving object. To 
represent the situation we need two coordinate systems: a moving system O attached to the object, 
and a static system C attached to the camera as shown in figure 1. 

Figure 1:  This figure shows the camera and the object with its coordinate system.   The (unit) 
vectors i, j define the image plane and k its normal. 

Consider a point p; on the object. Its position represented in the camera coordinate system at 



instant / is given by the transformation, 

p?. R/P,- + t/. 

Here 

Rf = 1 
L *7 

is the rotation matrix whose rows ij ^Xf lyj Izf J/ Jxj 72// J* andk2 
™Xf fcyj "'Zf 

the axes of the camera coordinate frame C expressed in the object's frame. The vector 

t/=     t vs 
U 

(1) 

(2) 

are 

(3) 

represents the position of the object's coordinate frame at instant / in the camera frame.  The 
representation (1) can be simplified if we use homogeneous coordinates, 

X 

s = P 
1 

Y 
Z 
1 

(4) 

for the object's point. In the homogeneous coordinates, equation (1) can be expressed as 

R/   tf 
0lx3       1 

R/   */ 
0lx3       1 

4- 
r,c 

1 
Pi 

1 (5) 

(6) 

The camera is modeled as an orthographic projection. It produces the image by projecting a 
world point parallel to the optical axis onto the image plane. The image of point p, at time / is 
then given by the first two elements of p£: 

Ufi ^Xj      lyj      ^Zj 

.   Vfi   . _     Jxf     Jyj     Jzj 

<>Xf 
(7) 

The object moves relative to the camera which acquires images. In the sequence we track 
feature points from frame to frame. Suppose that we track N feature points over F frames, and 
that we collect all these measurements into a single matrix 

W   = 

«li    un UlN 

UF\ uF2    . ■   uFN 

V\\ vn    ■ •      VlN 

VFX VF2     ■ ■   vFN 

(8) 



Each row of W lists the image coordinates u ovv of all the feature points in each frame, and each 
column represents the image trajectory of one feature over the whole image sequence. 

Using (7) we can represent W as the matrix product, 
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vn    vl2    .. 
■ UFN 
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as the motion and shape matrices respectively, we have the compact representation 

W = MS. 

(9) 

(10) 

(11) 

(12) 

Compared with the original formulation in [16], note that the motion matrix contains transla- 
tional components tXf and tyf. In the original formulation they were eliminated from the bilinear 
equation corresponding to (9) by subtracting the means of the measurements beforehand. That 
procedure reflected the fact that under orthography the translation components does not provide 
any information about shape. In the case of a scene with multiple independent moving objects, the 
situation is not the same: on one hand the translation component of each object cannot be computed 
without segmentation, and on the other hand the translation component does provide information 
for segmenting the multi-body scene. For these reasons, we include the translation component in 
our formulation of the factorization method. 

2.2    Solution for Shape and Motion by Factorization 

We have derived the bilinear relationship (9) by modeling the imaging process. The problem 
of recovering the shape and motion is to start with a given matrix W and obtain a factorization into 



motion matrix M and shape matrix S. By simple inspection of (9) we can see that since M and S 
can be at most rank 4, W will be at most rank 4. In real situations W is constructed from noisy 
measurements, so the rank of W can be higher due to noise in the feature tracking. Among all the 
possible matrix decompositions, singular value decomposition (SVD) is the most robust and the 
best rank revealing of all [14] to approximate W by a rank-4 matrix. With SVD, W is decomposed 
and approximated as: 

W   =   USVT. (13) 

Matrix £ = diag(o\, a2: <r3, cr4) is a diagonal matrix made of the four biggest singular values which 
reveal the most important components in the data. Matrices U G R2Fx4 and V <G RNxA are the left 
and right singular matrices respectively, such that UTU = VTV = I (the 4x4 identity matrix). 

By defining, 

M   =   US* (14) 

S   =   S'VT (15) 

we have the two matrices whose product can represent the bilinear system W. However,^ this 
factorization is not unique, since for any invertible 4x4 matrix A, M = MA and S = A_IS are 
also a possible solution because 

MS = (MA) (A-!S)   =   MS = W. (16) 

In other words, the singular value decomposition (13) provides a solution both for shape and motion 
up to an affine transformation. 

The exact solution can be computed, using the fact that M must have certain properties. Let us 
denote the 4 x 4 matrix A as the concatenation of two blocks, 

A=[Afi|a4], (17) 

The first block AR is the first 4x3 submatrix related to the rotational component and the second 
block at is a 4 x 1 vector related to translation. Now, since 

(18) M   =   MA MAJMat 

we can impose motion constraints, one on rotation and the other on translation, in order to solve 
for A. 

2.2.1    Rotation Constraints 

Block AR of A, which is related to rotational motion, is constrained by the orthonormality of 
axes vectors ij and jj: each of the IF rows entries of matrix MAR is a unit norm vector and the 
first and second set of F rows are pairwise orthogonal. This yields a set of constraints: 

ihiAflA^mf   =   1 (19) 
m.AfiA^rhJ   =    1 (20) 

m,-AÄA£mT   =   0 (21) 



where rh,, riij are rows i and j of matrix M for i = 1... F and j = F + I... IF. This is 
an overconstrained system which can be solved for the entries of KRPJR by using least squares 
techniques, and subsequently solving for AR. See [16] for a detailed solution procedure. 

2.2.2    Translation Constraints 

In orthography, the projection of the 3D centroid of an object features into the image plane is the 
centroid of the feature points. The X and Y position of the centroid of the feature points is the 
average of each row of W: 

w   = 
iE«i,i 

L  N b £ vF,i 

=   Ms MAR|Mat 
P 
1 

(22) 

(23) 

where 

P=jV*> 
(24) 

is the centroid of the object. 
The origin of the object's coordinate system is arbitrary, but we can choose to place it at the 

centroid of the object, that is p = 0. Then it follows immediately from (23) that 

w = Mat (25) 

This expression is also an overconstrained system of equations, which can be solved for the entries 
of &t in the least square sense. The best estimate will be given by 

at   =   (MTM)_1MTw 
=   5T1/2UTw, 

(26) 

(27) 

which completes the computation of all the elements of matrix A. 



3   Geometrical Interpretation of the Factorization 

The factorization procedure developed in the previous section can be summarized as follows. 
Given the measurements of matrix W, compute its singular decomposition (13) 

w   =   UEVT. (28) 

This gives recovery of the shape and motion M and S up to an affine transform. Then, by using 
the constraints (19)-(20) and (27), we obtain A which provides a unique motion and shape as 

W   =   MS 

s = A-
1
S = A-

I
E'V 

M   =   MA = US^A. 

(29) 

(30) 

(31) 

All the matrix operations involved in the factorization have been so far presented from a pure 
numerical and algebraic point of view. It is insightful to give a geometric interpretation to these 
matrices. 

Let us first consider the right singular matrix Vr. From equation (30) we see that 

VJ S-2AS. (32) 

\EXn 1 
1 EK P 

N ZZn 1 
L    N    \ 

This equation reveals the fact that VT is a linear transformation of the shape. This transformation, 
produced by A and £, is done in such a way that the resultant V is orthonormal. To understand 
how A and S are related with shape we need to introduce a few geometric concepts first. We have 
previously used the centroid of the object; 

(33) 

The centroid is the first-order moment of a set of points. The second order moments of a set of 
points is given in homogeneous coordinates by 

(34) 

(35) 

(36) 

The matrix A consists of a submatrix A0 and the centroid vector p.  The submatrix A0 is the 
matrix of the moments of inertia of the object. Its eigenvectors represent the directions of the three 

ss L 
"E*„2 

y^xnYn 

Y^xnzn 
.EX. 

YlXnYn 

TY2 
{—<    n 

z2YnZn 

EYn 

J2Xnzn 

J2YnZn 

EZl 
J2Zn 

EXn 

EK 
EZn 
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N Ao   p 



symmetrical axes of the ellipsoid of inertia. Using equation (30), we can show that the matrix A is 
written as 

A   =    (A-'^V7) (V5^A-r 

=   A^EA"7. 

(37) 

(38) 

Similarly to the moments of an object, we can think of the moments of motion. Vectors if 

and if of the motion matrix represent the X and Y axes of the camera (ie., image plane) in object 
coordinates. As the object moves these vectors describe trajectories in the unit sphere. The second 
order moments of motion vectors can be defined as 

ft 

7+'V 

=   IF 

B 
T,(,xftxf 

fto 
tT     II 

+ 3xjjyj) 

Y2(izftxj + 3Zjtyf) 

+ Jn flyf f>y}> D* °y/^ 

t |2 Is 

(39) 

(40) 

(41) 

The submatrix ft0 is the matrix of the "moments of inertia" of the image plane motion axes. The 
term t is the average position of the camera origin in the object's coordinate system and || t ||s the 
average of the norm of the translation vector. 

Due to (31) we can derive an equation for 12 similar to (38) 

ft = A1 SA (42) 

The bilinearity of the observations is reflected in the second-order motion moments, too.   By 
multiplying the motion moment (42) and shape moment (38), we have 

ftA ATS2A-T. (43) 

or 
ftA AT = AT S2 (44) 

This is a standard form of a 4 x 4 eigensystem, where S2 is the diagonal matrix of the 
eigenvalues and AT the matrix of the eigenvectors. The square of the singular values of of 
the measurements matrix W are the eigenvalues of the product of motion and shape moment 
matrices, and their eigenvectors form the rows of the transformation matrix A. Geometrically, the 
eigenvectors represent space orientation, resulting from projecting the symmetry axes of motion 
into the symmetry axes of shape. The eigenvalues (thus singular values of W) represent object's 
"lengths" multiplied by motion moments. 



4    The Multi-body Factorization Method 

So far we have assumed that the scene contains a single moving object. If there is more than 
one moving object, the measurement matrix W will contain features (columns) which originate 
from different motions. One may think that solving the problem requires first sorting the columns 
of the measurements matrix W into submatrices, each of which contains features solely from one 
object, so that the factorization technique of the previous sections can be applied individually. We 
will show in this section that the multi-body problem can be solved without prior segmentation. 
For the sake of simplicity in presentation we will present the theory and method for the case of two 
bodies, but it will be clear that the method is applicable to the general case of an arbitrary unknown 
number of objects. 

4.1   Multi-body Motion Recovery Problem: Its Difficulty 

Suppose we have a scene in which two objects are moving and we take an image sequence of 
F frames. The relevant coordinate systems in this case are depicted in figure 2. Suppose also that 

Figure 2: Two bodies: The coordinate systems 

the set of features that we have observed and tracked in the image sequence actually consists of N\ 
feature points from object 1 and N2 from object 2 which are observed in an image sequence of F 
frames. 

Imagine for the moment that somehow we know the classification of features and thus could 
permute the columns of W in such a way that the first TVi columns belong to object 1 followed by 
the N2 columns from object 2. Matrix W would have the canonical form: 

W*   =    [ W, I W2 ] . (45) 

Each measurement submatrix can be factorized as 

(46) 

10 



=   M,S, = (MjA/XA^S (47) 

with / = 1 and 2 for object 1 and 2 respectively. Equation (45) now has the canonical factorization: 

w* = [MJIMJ   Q
1
 S°2 

Ar1 

[U,|U2 
Sf     0 

o   sj 
A!     0 
0    A2 

0 

0 

0 Vf     0 
0    V,T 

(48) 

(49) 

By denoting 

M*= [Mi|M2],   S* = 

U* = [Ui|U2] ,   E* 

Si 0 
0 s2 

Si 0 
0 E2 

A* = 

V* 

A,     0 
0    A2 

Vf     0 
0    vj 

(50) 

(51) 

we express a factorization in a similar way to a single object case, where the canonical measurement 
matrix relates to shape and motion by: 

W*   =   M*S* 

S*   =   A*_1S*2V*T 

M*   =   U*X1*2A* 

(52) 

(53) 

(54) 

From equation (48), we see that W* (and therefore W) will have at most rank 8, since Wi and 
W2 are at most rank 4. Let us consider for the remainder of this paper the non-degenerate case 
where the rank of W is in fact equal to 8; that is, the object shape is actually three-dimensional 
(not planar or line) and the motion vectors span 3D for both objects. The degenerate cases will be 
briefly touched in the last section and are discussed in more detail in [6]. 

In reality, we do not know which features belong to which object, and thus the columns of the 
given measurement matrix W are a mixture of features from object 1 and 2. We can still apply 
singular value decomposition (SVD) to the measurement matrix, and obtain 

w = UEVJ. (55) 

Then it may appear that the remaining task is to find the linear canonical transformation A* in (50) 
such that shape and motion will have the block structure of equations (53) and (54). 

There is, however, a fundamental difficulty in doing this. The metric (rotation and translation) 
constraints (eq.(19)-(20) and (25)-(27)) were obtained in section 2.2 by considering that the motion 
matrix for one object, that is, by assuming that the measurement matrix consists of features from 
a single object. Those constraints are therefore applicable only after knowing the segmentation. 
This is exactly the mathematical manifestation of the cyclic dilemma mentioned earlier. 
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Faced with this difficulty, a usual approach would be to group features bit by bit so that we 
segment W into two rank-4 matrices and obtain the factorization of the form (48). For example, a 
most simplistic procedure would be like the following. Pick the first four columns of W and form 
a rank-4 subspace. If the fifth column belongs to the subspace (ie. is linear dependent on the first 
four, or "almost" linear dependent in the case of noisy measurement), then classify it to the same 
object as the first four columns and update the subspace representation. Otherwise, it belongs to 
a new object. Apply this procedure recursively to all the remaining columns. This approach is in 
fact essentially the one used by [4] and [7] to split matrix W, and similar to what was suggested 
by Ullman [17], whose criteria for merging was local rigidity. 

There are a few disadvantages in this cluster-and-test approach. First, there is no guarantee that 
the first four columns, which always form a rank-4 subspace, are from the same object. Second, if 
we use a sequential procedure like the one above or its variation, the final result is dependent on 
where we start the procedure, and alternatively, the search for the globally optimal segmentation 
most likely will be computational very expensive. Finally, the prior knowledge of the number of 
objects becomes very critical, since depending on the decision criteria of subspace belongingness 
the final number of objects may vary arbitrarily1 

4.2   Mathematical Construct of Shapes Invariant to Motions 

The main difficulty in the multi-body structure-from-motion problem revealed above is that 
shape and motion interact. Mathematically, the equation (48) indicates that the rank-8 measurement 
space is originally generated by the two subspaces of rank 4 each, represented by the block- 
diagonal shape matrix S*. However, the recovered shape space VT, obtained by the singular value 
decomposition of the non-canonical W, is in general a linear combination of the two subspaces and 
has lost the block-diagonal structure. 

There is however a mathematical construct that preserves the original subspace structure. Let 
us define Q as (Nx + TV2) x (Ni + N2) square matrix 

Q = VVT. (56) 

We will call this matrix the shape interaction matrix. Mathematically, it is the orthogonal operator 
that projects TV = (TVi + TV2) dimensional vectors to the subspace spanned by the columns of 
V. This matrix Q has several interesting and useful properties. First, by definition it is uniquely 
computable only from the measurements W without knowing the segmentation, since V is uniquely 
obtained by the singular value decomposition of W. 

Secondly, permuting columns of W does not change the set of values {Qij} that appear in Q 
though their arrangement in Q does; swapping columns / and m of W results in swapping columns 
/ and m of VT. Therefore it results in simultaneously swapping columns / and m and rows I and 
m in Q, but not their entry values. 

'While this is beyond the scope of the assumption in this section, this cluster-and-test approach also requires the 
prior knowledge of the ranks of objects as well. Since for example a rank-8 measurement matrix might have been 
generated by two line (rank-2) objects and one full 3D (rank 4) object instead of two full 3D objects, and therefore 
committing to find two rank-4 subspaces might be wrong. 
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Thirdly, each element of Q provides important information about whether a pair of features 
belong to the same object. Since the set of values do not change, let us compute Q*, the shape 
interaction matrix for the canonical measurement matrix W*. By substituting (53) into (56), we 
obtain 

Q* v*v*T 

=   S*TA*T£*A*S* 

)"1S* =   S*T(A*-lX*-lA*-T 

=   S' lo* s* = s*J(s*s*Jr1s 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

where Ai and A2 are the 4 x 4 matrices of the moments of inertia of each object. This means that 
the canonical Q* matrix for the sorted W* has a very defined block-diagonal structure. Moreover, 
each entry has the value 

T '(A-'E" l/2y*2\/y*£* -1/ l2A*-T) 

Sir     0 ' Ar1    o " Si    0 
0     S2

T 0      A2
_1 0   s2 

SiTAi-1Si            0 
0 S2  A2    S2 

Q u 

( sf.Ai_1si.   if feature trajectory i and j belong to object 1 

sf. A2 ~l s2    if feature trajectory i and j belong to object 2 

0 if feature trajectory i and j belong to different objects. 

(63) 

Finally and most importantly, the set of values {Q*j}, which is the same as {Qi3} are invariant 
to motion. This is true since equations (63) include only S's, and not M. In other words, in 
whatever way the objects move they will produce the same set of entries in matrix Q. 

In summary, we have shown that without knowing the segmentation of features we can compute 
matrix Q whose element Qi3 can be interpreted as a measure of the interaction between feature i 
and j: if the value is non zero, they belong to the same object, and if they don't belong to the same 
object, the value is zero. Also, if the features are sorted correctly into the canonical form of the 
measurement matrix W*, then the corresponding canonical shape interaction matrix Q* must be 
block diagonal. 

4.3   Sorting Matrix Q into Canonical Form 

The problem of segmenting and recovering motion of multiple objects now has reduced to 
sorting the entries of matrix Q by swapping pairs of rows and columns until it becomes block 
diagonal. Once achieved, the corresponding permutations of columns of W will transform it 
its canonical form where features from one object are grouped into contiguous columns. This 
relationship between sorting Q and permuting W is illustrated in figure 3. 
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Figure 3: Segmentation process 

With noisy measurements, a pair of features from different objects may exhibit a small non-zero 
entry in Q. We can regard Q\ as representing the energy of the shape interaction, and the block 
diagonalization of Q can be achieved by minimizing the total energy of all possible off-diagonal 
blocks over all set of permutations of rows and columns of Q. We found that a simple iterative 
minimization procedure suffices for our purpose. Alternatively, we can regard matrix {Q}-} as 
defining a graph of N\ + N2 nodes, where the Q\ indicates the weight of the link (ij). We also 
found that graph-theoretical algorithms, such as the minimum spanning tree, can be used to achieve 
the block diagonalization more efficiently than the energy minimization. The detailed procedures 
are presented in [6]. 

4.4    Summary of Algorithm 

While we have presented the theory for the case of two full-3D objects, it is easy to see tht its 
essential part holds for more general cases. First the matrix Q* has the block diagonal structure 
for an arbitrary number of moving objects, that is, an entry Qti of the Q matrix equals to zero if 
features i and j belong to different objects. Furthermore, this property holds even when the shape 
matrix of the objects has rank less than 4 (planes and lines). The computation of Q by (56) requires 
only the knowledge of the total rank of W, which we can determine by SVD. Finally once Q* is 
obtained, instead of permuting columns of W we can use the equivalent permutation of VT, since 
it is more computationally efficient. 
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The whole algorithm of the multi-body factorization method is now summarized as: 

1. Extract and track features in the input image sequence and create matrix W 

2. Compute r = rank(W) 

3. Decompose matrix W using SVD 

4. Compute shape interaction matrix Q using the first r rows of VT 

5. Block-diagonalize Q 

6. Permute matrix VT into submatrices, each corresponding to a single object 

7. Compute A, for each object, and thus its shape and motion. 
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5    Experiments 

We will present two sets of experiments to demonstrate how the algorithm works. The first is 
an experiment with synthetically generated feature trajectories, and the second with those extracted 
from real images taken in the laboratory under controlled imaging conditions. 

5.1    Synthetic Data 

Figure 4 shows the 3D synthetic scene. It contains three transparent objects in front of each other 
moving independently. A static camera takes 100 images during the motion. The closest object to 
the camera is planar (rank 3) and the other two are full 3D objects (rank 4). So this is in fact a shape- 
degenerate case. Each object translates slightly and rotates over its own centroid in such a way that 
the features of all objects are completely intermingled in the image plane. This complication is 
intentionally introduced in order to demonstrate the fact that our motion segmentation and recovery 
method does not use any local information in the images. One hundred and eighteen (118) points 
in total on three objects are chosen: 33 features from the first object, 49 from the second, and 36 
from the third. Figure 5 (a) illustrates the actual 3D motions of those 118 points. 

Figure 4: Synthetic scene. Three objects move transparently with arbitrary motion 

The projections of 118 scene points onto the image plane during the motion, that is, the 
simulated trajectories of tracked image features, are shown in figure 5(b) with a different color for 
each object. Independently distributed Gaussian noise with one pixel of variance was added to 
the image feature positions for simulating errors in feature tracking. Of course, the identities of 
the features are assumed unknown, so the measurement matrix created by randomly ordering the 
features was given to the algorithm. 

Figure 6(a) shows the shape interaction matrix Q: the height is the square of the entry value. 
The result of sorting the matrix into a bloackdiagonal form is shown in figure 6(b). We can observe 
the three blocks corresponding to objects 3, 2 and 1: all of the 118 features are correctly classified. 

Figures 7(a) (b) and (c) show one view of each of the recovered shapes of the three objects in 
the same order as figure 4. Figure 7(c) showing the planar object viewed from its edge indicates 
the correct recovery of its shape. 
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Figure 5: (a) 3D trajectories of the points and (b) noisy image tracks 
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Figure 6: The shape interaction matrix for the synthetic scene with three transparent objects: (a) 
Unsorted matrix Q, and (b) sorted matrix Q*. 
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Figure 7: Recovered shape of the objects 

(c) 

5.2   Laboratory Data 

The laboratory scene consists of two roughly cylindrical shapes made by rolling cardboard and 
drawing dots on the surface. The cylinder on the right tilts and rotates in the plane parallel to the 
image plane while the cylinder on the left hand side rotates around its axis. The 85 images were 
taken by a camera equipped with a telephoto lens to approximate orthographic projections, and 
lighting was controlled to provide the best image quality. In total, 55 features are detected and 
tracked throughout the sequence: 27 coming the left cylinder and 28 from the other, while the 
algorithm was not given that information. 
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Figure 8: Image of the objects and feature tracks 

Figure 8 shows the 85-th frame in the sequence with the tracks of the selected features super- 
imposed. The scene is well approximated by orthography and the tracking was very reliable due 
to the high quality of the images. 
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Figure 9: The shape interaction matrix for the lab scene: (a) Unsorted Q; (b) block-diagonalized 
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Figure 10: The recovered shape of the two cylinders 
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Figure 9(a) show the shape interaction matrix Q for the unsorted input features. The sorted 
block diagonal matrix Q* is shown in figure 9(b), and the features are grouped accordingly for 
individual shape recovery. The resultant three-dimensional points are displayed in figure 10 with 
linearly interpolated surface in order to convey a better perception of the their shape. 
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6   Discussion and Conclusion 

In this paper we have shown that the problem of multi-body structure-from-motion problem can 
be solved systematically by using the shape interaction matrix. The striking fact is that the 
method allows for segmenting or grouping image features into separate objects based on their 
shape properties without explicitly computing the individual shapes themselves. Also, no prior 
knowledge of the number of moving objects in the scene is assumed in the algorithm. 

This is due to the interesting and useful invariant properties of the shape-interaction matrix Q. 
We have shown that Q is motion invariant. Even when the matrix is computed from a different set 
of image-level measurements W generated by a different set of motions of objects, its entries will 
remain invariant. Each entry has the same unique value independently of the trajectories of its own 
and other object. The motion invariance property of Q means also that the degree of complexity 
of the solution is dependent on the scene complexity, but not on the motion complexity. 

The shape interaction matrix Q is also invariant to the selection of individual object coordinate 
frames. We can easily see that by considering transforming object jfc's shape Sk by a homogeneous 
transform 4x4 matrix T, 

S'it=TSfc. (64) 

The corresponding block-diagonal element matrix of Q* will be 

S'Tk(S'kS'Tky'S'k   =   (TSfc)
T(TS,srTr)"1(TS,) = Sr(S,SD-1S, (65) 

and therefore the entries of the shape interaction matrix remains the same. 
Another interesting fact is that the shape interaction matrix can handle many degenerate cases 

as well, where one or more objects may not be a full 3-D object, but a line or a planar object. The 
synthetic example in section 5 was in fact a degenerate case where a planar object was included. 
More research is required for the degenerate cases including the cases where the motions are 
degenerate. Also, in order to achieve robustness under the presence of noise we need to relate the 
noise level with the thresholds necessary in some of the decision making processes. They include 
the identification of the rank of the measurement matrix in the singular value decomposition, and 
the determination of block-diagonality in sorting the shape interaction matrix. The report [6] 
explores some of those issues. 

Acknowledgments: The authors wish to thank Martial Hebert, Jose Moura and Jose Bioucas 
for useful suggestions and comments to this work. 
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