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THEORY AND GROUP VELOCITY OF 
ULTRASHORT, TIGHTLY-FOCUSED LASER PULSES 

1. INTRODUCTION 

Much recent interest has arisen in the study of ultrashort, high-intensity laser pulses. 

Numerous experiments are underway on applications of ultra-intense pulses, including 

particle acceleration [1-3], x-ray sources [4-7], laser fusion [8] and the study of ultrafast 

phenomena [9]. This activity is largely a result of the development of compact solid-state 

lasers based on chirped pulse amplification [10], which are capable of producing ultrahigh 

intensities ( > 1018 W/cm2) and ultrashort pulse lengths ( < 100 fs). In order to analyze 

short pulse phenomena and applications, it is necessary to have accurate analytic expres- 

sions describing the properties of ultrashort, tightly focused laser pulses. For example, it 

may be possible to focus an intense, short laser pulse onto a group of electrons (or a diffuse 

plasma or gas) such that the electrons are picked up and accelerated by the laser pulse. 

Electron acceleration can be a result of the axial ponderomotive force associated with the 

fast rise in the laser intensity. Whether or not the electrons are trapped and efficiently 

accelerated by the laser pulse depends on the pulse profile and is a sensitive function of 

the pulse group velocity. Accurate expressions for the pulse envelope evolution and, in 

particular, the group velocity are necessary to evaluate such processes. 

A common approach to the study of laser pulses is to make use of the paraxial wave 

equation, for which there are well-known analytical solutions [11-13]. Strictly speaking, 

these solutions are valid only for long laser beams: L> ZR, where L is the characteristic 

length for axial variations in the pulse envelope (typically on the order of the pulse length), 

ZR - 7rro/A is the Rayleigh length (or diffraction length), r0 is the minimum spotsize of 

the pulse at focus and A is the laser wavelength. Frequently, however, the paraxial solutions 

are modified and used to model short laser pulses. This can be done by multiplying the 

paraxial solutions by an axial profile function of the form f(z — vet), where z is the distance 

along the axis of propagation, ve is the velocity of the envelope and f/\df/dz\ ~ L. These 

modified paraxial solutions may not be accurate for very short laser pulses (L < ZR). 

Furthermore, it is not clear what value of ve to use in the modified paraxial solutions. 

It is also not clear how the envelope velocity ve is related to the group velocity of the pulse 

centroid vg. Accurate expressions for vg are not known. Intuitively, a laser pulse passing 
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through focus has vg < c. In the paraxial approximation, the laser spotsize rs evolves 

according to rs = r0(l + z2/Zfi)
1/2. This implies that the laser pulse photons are traveling 

at the diffraction angle Oj. — TQ/ZR with respect to the z axis. The axial component of 

the photon velocity is then ve ~ ccos#<£ ~ c(l — B\j2). A similar result is obtained by 

analyzing the phase of the paraxial solutions. In either case, 1 — ve/c ~ 0\j2. The results 

below indicate that this value differs from the group velocity of the pulse centroid vg by a 

factor of two. 

In this paper, analytic solutions to the wave equation [see Eq. (1) below] describ- 

ing ultrashort, tightly focused laser pulses are found to arbitrary order in the parameter 

\/2ixL < 1. In addition, exact expressions which describe several properties of short pulses 

are derived, such as global conservation, pulse length evolution, centroid motion and the 

pulse group velocity. For example, to leading order, the laser spotsize evolves according to 

rs = ro{\ + r)2/Zp)1/2, where rj = (z + ct)/2 and the initial conditions are chosen such that 

the minimum spotsize ro occurs at the focal point z = 0 and t = 0. Hence, for a fixed time, 

the spotsize varies throughout the pulse. Furthermore, the pulse group velocity in vacuum, 

based on the motion of the pulse centroid, is given by 1 — vg/c ~ 0^/4, to leading order. 

Detailed comparisons are made between the analytic solutions and numerical solutions to 

the full wave equation. The short pulse solutions discussed in this paper are limited to 

profiles which are Gaussian in the transverse direction, i.e., the laser field amplitude is pro- 

portional to exp(—r2/r2), where r is the radial coordinate. Generalization of the results 

below to describe higher order Hermite-Gaussian transverse profiles is straightforward. 

The wave equation describing the three-dimensional (3D) evolution of of a laser pulse 

in a fully ionized plasma is given by 

o      1  d2 

z2dt2 %* (!) 

where a = eA±/mec
2 is the normalized transverse vector potential of the laser pulse (the 

transverse electric field is given by eEj_ = —mecda/dt) and kp is the effective plasma 

wavenumber. In general, kp is a highly nonlinear function of a [3]. The present study, 

however, will be limited to a linear plasma response where kp = uip/c is constant, which 

is valid when a2 <g; 1, where LOP = (47re2no/me)
1/2 is the plasma frequency and no is 



the ambient electron plasma density (assumed to be uniform). Here, a2 is related to 

the intensity of a linearly polarized laser field by a2 ~ 0.72 x 10_18A2i~, where A is the 

laser wavelength in /im and I is the laser intensity in W/cm2. In the a2«l limit (i.e., 

/ <C 1018 W/cm2 for A ~ 1 /im), the k2 term models the dispersive effects of the plasma 

electrons. The vacuum limit corresponds to kp = 0. Equation (1) indicates that the initial 

polarization of the laser field remains unchanged as it propagates. The axial component 

of the field can be found by requiring V • E = 0. 

The majority of previous theoretical studies of tightly focused pulse propagation has 

been concerned with solutions to the paraxial wave equation [11-13]. Paraxial solutions 

are discussed in detail in Sec. 2. IP. Christov [14] found analytical solutions describing 

pulse evolution which are valid only far from focus, z 3> ZR. Furthermore, the group 

velocity of the pulse was not considered. More recently, Horvath and Bor [15] described 

pulse distortions which arise when a pulse is focused by a lens with a frequency dependent 

index of refraction. These distortions are due to the longitudinal chromatic aberration 

of the lens, i.e., the focal length of the lens is a function of frequency. A short pulse of 

length L has a finite bandwidth Au ~ 1/L. Hence, the different frequency components 

focus along different paths which distorts the pulse profile. Pulse distortions due to lens 

aberrations will be neglected in the following. 

The remainder of this paper is organized as follows. Section 2 discusses solutions to 

the paraxial wave equation and their shortcomings. Section 3 describes the formalism for 

obtaining short pulse solutions to the full wave equation. Use is made of the independent 

variables ( = z — ct and 77 = (z + ct)/2. The wave equation for the pulse envelope a(r, 77, £) 

is solved by taking a Fourier transform with respect to (, where a is given by the real part 

of aexp(ikoC)ex, with fco = 27r/A. Several exact properties of short pulses are derived, 

including global conservation, pulse centroid motion and group velocity, and pulse length 

evolution. Section 4 presents approximate short pulse solutions based on the expansion 

parameter 1/koL < 1. The zeroth, first, second and fourth order solutions are highlighted. 

Comparisons between the analytic solutions and numerical solutions to the wave equation 

are presented in Sec. 5. The paper concludes with a discussion in Sec. 6. 



2. PARAXIAL SOLUTIONS 

The mostly commonly used expressions describing the evolution of laser pulses are 

the solutions to the paraxial wave equation [11-13]. The paraxial wave equation can be 

obtained as follows. Consider a long laser pulse, i.e., a laser "beam", of the form a = 

a(r, z) exp [ikQ(z - ct)] ex, where a(r, z) is the laser envelope and ck0 is the laser frequency. 

The wave equation describing the laser envelope is given by 

(vl + 2ikolz + ^-klY = 0. (2a) 

The paraxial approximation involves neglecting the d2/dz2 term, which assumes a suffi- 

ciently slowly varying envelope, \dä/dz\ < |fcoä|. The paraxial wave equation is 

V2
± + 2ikQ-^-k2\a = 0. (26) 

Solutions to the paraxial wave equation are well-known in terms of Hermite-Gaussian 

modes [11-13]. For example, the lowest order Gaussian mode is given by ä = äp(r,k0,z), 

where äp = ao exp(V'p) and 

rPp(r, k0, z) = -\ ln(l + a2
z) - -^- - itan"1 az - -k2

pr
2az. (3) 

In Eq. (3), az = z/ZR, ZR = k0r%/2 is the Rayleigh length, a0 is the peak amplitude 

at focus, and r0 is the minimum laser spotsize at focus. For simplicity, the focal point is 

chosen to be at z = 0. The properties of the paraxial solutions are well-known [11-13]. For 

example, \ap\ = (a0r0/rs)exp(-r2/r2), where rs = r0(l + z2/ZR)1/2 is the laser spotsize. 

The paraxial solution ap = ap exp [ik0(z — ct)] can be written as 

ap(r, z, t) = (aQr0/rs) exp(-r2/r2
s + i<f>p), (4a) 

<j)p(r, z, t) = k0{z - ct) + azr
2/r2 - tan"1 az - fcJrgaz/4, (46) 

where 4>p - {4>p]i + k0(z - ct) is the total phase (the subscript i denotes the imaginary 

part). The effective pulse frequency u and axial wavenumber kz can be defined in terms 

of the total phase, u = -d<j>p/dt and kz = dcj)p/dz. This gives u = ck0 and 

kz = kQ- J-- A I*" 4(1-".)!• (5) 
k2 

2k0 

2 
kor2 

4 

1- 
r2 

-ocz) 



The par axial approximation implicitly assumes fcp/fco <C 1 and fc^r2 3> 1. 

It is reasonable to assume that if the laser pulse length L is sufficiently long, L 3> 

ZR 3> A, where A = 2ir/ko is the laser wavelength, then the pulse can be adequately 

described by a paraxial solution of the form 

a(r,z,t) = f(z - vet)ap(r,z,t) (6) 

Here, the function / describes the axial profile of the pulse envelope, which is assumed to 

travel at the envelope velocity ve, and f/\df/dz\ ~ L. It is not clear, however, what value 

of ve to use in the axial profile f(z — vei). Within the paraxial approximation, the "group 

velocity" of the pulse envelope ve can be estimated from the total phase (f)p of the laser 

field. In terms of the frequency u = cko and axial wavenumber kz, Eq. (5), the effective 

phase velocity vp and "group" velocities ve are given by vp = u/kz and ve = (dfc2/<9cj)_1. 

Specifically, ve/c= (1 + ep)-1 ~ 1 — ep, or 

ve(r,z) ä 1 _ _fc|_ _ _2_ \ (1 - eel)       r2 (1 - 6^ + a\) 
c 2k0      k0r0 

(7) .(1 + c*2,)2      rl      (1 + a2)3 

In particular, in vacuum kp = 0 and at r = z = 0, ve/c ~ 1 — 2/^0^. Note however, 

that this expression for ve is problematic, since it implies that there are regions in (r, z) 

for which ep < 0 and ve > c. To provide an accurate description of the group velocity, it is 

necessary to consider the motion of the pulse centroid, as is discussed below. 

3. EXACT DESCRIPTION OF SHORT PULSES 

To describe the behavior of short pulses, it is convenient to introduce the variables 

£ = z — ct and r] = (z + ct)/2. In these variables, the wave equation becomes 

d2 

V- + 2äk-^Ja = °- (8) 

Short pulse solutions will be sought of the form a = [aexp(ifc0C) + c-c-] ei/2, where 

a(r, £, 77) is the laser envelope, fco is a constant and represents the fundamental laser pulse 

wavenumber, e^ is a unit vector in the direction of the polarization and c.c. denotes the 

complex conjugate. Using this form, the laser pulse propagates in the positive z direction, 



£ is constant for a point moving at the speed of light and is a measure of the relative axial 

distance within the laser pulse, and 77 is the time-like coordinate which represents the axial 

distance traveled for a point moving at the speed of light. The wave equation describing 

the evolution of the envelope ä is given by 

vi+2(*,+|)ärJ? 

Taking the Fourier transform in C, gives 

d      .2 

a(r, C,r?) = 0. (9a) 

Vi + 2i(*o + *)ä--A$ äk = 0, (96) 

where 
1     f°° 

ak(r,k,r)) = —= \     dCex.p{-ik()a(r,(,r]) (9c) 
V 27T J-00 

is the Fourier transform of a. 

Notice that Eq. (9b) is identical to the paraxial wave equation, Eq. (2b), with z —> 77 

and ko —»• ko + k. Hence, explicit solutions to Eq. (9b) can be found based on the Hermite- 

Gaussian solutions of the paraxial wave equation [11-13]. For example, assuming the lowest 

order Gaussian mode, the Fourier transform of the laser envelope is given by 

äk{r,k,rj) = fkäpk(r,kQ + k,r}) = a0fkexpipk(r, k0 + A;,77), (10a) 
0/0 

Mr, k0 + k,v) = ~l ln(l + a\) - T /r°   - itan"1 ak - 
%-k2

prlak, (106) 
2 1 + lOLk 4 

ctk = v/ZRk, (10c) 

ZRk = (fco + k)r2
0/2. (lOd) 

Note that äk(r} = 0) = /fca0exp(-r2/7-^). Hence, fk is the Fourier transform of the initial 

(77 = 0) axial envelope profile /(C)- For convenience, the focal point is chosen to occur at 

77 = 0. 

Equation (10) is a valid solution for the lowest order Gaussian mode to Eq. (9b) for all 

k except k = -k0. Notice that k = -k0 corresponds to a Fourier mode component which 

is axially uniform, i.e., da/dC, -+ 0, which is physically uninteresting. When k - -k0, the 

d/dr} operator in Eq. (9b) and the quantity ak are singular and the solution Eq. (10) breaks 

down.   These singularities can be avoided by choosing a distribution fk which does not 



contain components at k = —ko. For analytical convenience in the following calculations, 

an axial k spectrum will be used of the form /fc = (1 + fc/fc0)/Gfc, which corresponds to 

/ = (1 — ik^d/dQJG, where fc = exp(—£2/L2) represents a Gaussian axial pulse profile 

with a pulse length L. Specifically, the following forms for /(£) and fk will be assumed, 

2iC 
f 1 + 

/fc =    1 + 

k0L
2 

k\ 

eXP I ~£2 

exp 

c2 

2 

k2L2 

Equation (11a) impUes an intensity profile I ~ \a\2 at focus (rj = 0) given by 

4(z-ct)2] ___ \   2(z-ct)2      2v2^ 
I = h 1 + 

k2L* 
exp 

L2 

(11a) 

(life) 

(12) 

where J0 is the intensity of the pulse center at focus (at focus, the pulse center is given 

by C = z — ct = 0 and r = 0). This represents a slightly distorted Gaussian profile, since 

\/k2L2 « 1. 

3.1. Global Conservation 

Based on the wave equation for the pulse envelope a(r,£, rj), Eq. (9a), it is straight- 

forward to show that the quantity 

W = 
pOO nC 

=  I     drr / 
Jo J- 

d( ik0 + ^) a (13) 

is an exact constant of the motion, i.e., dW/drj = 0. Physically, W may be interpreted 

as the leading order contribution to the total pulse energy at a given 77, i.e., the energy 

density integrated over the transverse and axial coordinates. In normalized units, the 

leading order components of the the transverse electric and magnetic fields are Ex = 

c^da/dt = (d/dC - \d/dri)a and By ~ da/dz = {d/dC, + \d/dri)a. Hence, 

E2 + B2~ \da/d(\2 + \da/dV\2/4 ~ \da/d£\2 - \(ikQ + d/dC,)a\2, 

which assumes |<9a/dC|2 » \da/dr)\2, \da/dx\2. 

Letting b = (iko + d/dQa and letting bk = i{ko + k)äk denote the Fourier transform 

of 6, W can be evaluated using the identity J dC\b\2 = f dk\bk\2■ One finds 

W=°^f    dk(k0 + k)2\fk\
2, 

^    J—00 
(14) 



where use has been made of the fact that J drr\apk\2 = alrf/A. For the specific form of 

fk given by Eq. (11), 

^ = ^io?r^1 + JL + JL), (is) 

where, typically, k2L2 = (2irL/\)2 > 1 

3.2. Pulse Centroid and Group Velocity 

Since |6|2 is a globally conserved quantity, it can be used as a weight function for 

defining the centroid ( of the laser pulse, i.e., 

/»OO /«OO 

C(V) = (C) = /     drr /     d((\b\2/W. (16) 
JO J-oo 

The centroid can be calculated explicitly using the relation / d(gb = J dkgkb*k, where 

g = (7) with its transform gk = idbk/dk and b* represents the complex conjugate of b. 

Assuming fk to be real gives 

1     r°° r°° Q 
C = -TJ7 /     drr dk{k0 + k)2\ak\2—lm(^k) 

W 

^U1+
kJ^\rdkfl (17) 

AW *)£ 
For the specific form of fk given by Eq. (11), 

- V(l + k2
pr

2/2)(l + l/k2L2) _ 
C_    fcgrjj(l + 6/ibgLa + 3/ifegL*)-    eT]- K      ) 

Note that if a pure Gaussian axial profile fG = exp(-(2/L2) was used in Eqs. (14) 

and (17) instead of the modified Gaussian profile of Eq. (11a), this would result in corrects 

of order \jk\L2 or higher. Specifically, the factor (1 + 6/fcgL2 + 3/A;4L4) appearing in Eq. 

(15) and would be replaced by (1 + 2/k$L2) and Eq. (18a) would become 

,(l + »2/2) 

<"-     fcgrg(l + 2/fcg-L») * V 

The evolution of the pulse centroid C can provide a definition for the group velocity 

vg of the pulse, where vg = dz/dt with C = z - ct. Setting z = z in Eq. (18a) and letting 

■q — (z + ct)/2 gives 

vg/c= {l-e/2)/(l + €/2), (19) 



where e = —d^/dr] can be determined trivially from Eq. (18a). In the limits e <C 1 and 

k2
QL

2 » 1, 

Vg/c ~ 1 — e ~ 1 — 
k2r2 
R0'0 

1 + 
1.2   2 Kpr0 

k2L* 
(20) 

The relativistic factor 7ff associated with vg is 7ff = (1 — v2/c2)   1/2 ~ l/\/2e, assuming 

c<l. 

3.3. Pulse Length 

In a similar fashion, the evolution of the pulse length Lp can be determined by defining 

LP = «C2> - <02)1/2, where 

/<oo pea 

(C2) = /     drr /     rfCC2|fc|2/^- (21) 
JO J-oo 

Noting that J d(,g*g = f dkg£gk and assuming fk real gives 

(C2) = J00 drr J^ 

4W-00 

dfc(fc0 + fc)2i^ 
3fc + /fc

2 ^2
+^w^ 

<9fc <9fc dk 

(fc0 + fc) 
öfc 7        (fc0 + fc)2^ I 2 8 

(22) 

For the specific form of /*. given by Eq. (11), 

L2 

(C 
7      ,  2V2/Z2

R k2
pr

2      fejrg 
fc2£2    '    fc4£4+     fc2L2      li+      2      +      8 

10 
1+TTTTT + 

6 3 
1+7^T + 

n/nL "'O 

-1 

In the hmit A;QL
2
 » 1 and fcprg < 1, 

X2 

p       4 +fc2L2^    fc2£2    ^ k2L2) 

(23) 

(24) 

Hence, the pulse length slowly increases as the pulse moves away from the focal point 

77 = 0. In particular, Lp(r))/LP(Q) ~ 1 + r)2 / [8Z£fcgLj(0)], assuming fcgL2 > 1. 

4. APPROXIMATE SOLUTIONS 

The laser pulse envelope a(r, £, 77) is given by the inverse transform of Eq. (10), 

1      f°° 
ä(r'C,v) = -F= dkexTp(ikC)fkaoexp(tpk)- (25) 

V27T y_oo 



For a particular choice of fk, it is unlikely that exact analytical solutions can be obtained 

for the inverse transform Eq. (25). Physically, k represents the transform of the ( variations 

which occur in the laser envelope. Typically, k ~ 1/L and k/ko ~ l/k0L <C 1. Hence, the 

function ipk(ko + k) can be expanded about ko and approximate expressions for the inverse 

transform can be obtained, i.e., 

Mr, k0 + k,V) = il>(k0) + ^f-k + ~-^k2 + 
dk0 2 dkl 

where 

r2/r2 

V\*-Q) - -~ in i j.       u   i        „         .           t> tail v           '     1 + za 
u. 

dip      ia 1             r2/r2     ,  k2r2 

dk0      k0 1 + ia     (1 + ia)2  '     4 J 

d2tp         ia 
ok0         k0 

2 + ia          2r2/rl        kffi 

(1 + ia)2      (1 + ia)3        2 

and a = TJ/ZR. 

4.1. Zeroth Order Solutioi a 

(26a) 

(26ft) 

(26c) 

(26d) 

To lowest order, ipk — ift(ko), independent of k. The inverse transform Eq. (25) gives 

the zeroth order solution 

a(°)(r,C,r/) = a0/(C)exp(VO. (27) 

The zeroth order solution is similar to the paraxial solution, Eq. (6), with the independent 

variable z replaced by 77 = (z + ct)/2. Furthermore, to zeroth order, the axial profile is 

f(Q = f(z - ct), i.e., the envelope propagates with vg = c. Notice that the initial (t = 0) 

envelope is given by a(t = 0) = a0f(z)exp[ip(z/2)], in contrast to the paraxial solution, 

for which ap(t - 0) = a0f(z) exp [tp(z)]. 

The full zeroth order solution a^ = a(0) exp(ikQ() can be written as 

a(°) = a0^|l + 
2zC 

k0L
2 

exP I -3 
2 A2 

<f,(°) = hot + ar2/r2
s - tan-1 a - fcJrjja/4, 

(28a) 

(286) 

10 



where <£(0) = iß{ + k0( is the total phase of the zeroth order solution and rs = r0(l + Q2
)
1/2 

is the spotsize. The effective pulse frequency u/°) and axial wavenumber ki°^ of the zeroth 

order solution can be defined by w<°) = -d<f>W/dt and k{0) = d<j>W/dz. This gives 

^ = ckoll + ^l + 4 
Akl     fcgr* L 

l--j(l -a2) 

Jb<0) = ko\l 4fc2      klrl 
:(l-a2) 

(29a) 

(296) 

Notice that Eqs. (29a) and (29b) satisfy the local dispersion relation 

(u/°))2 + c2(fc(°))2 = C
2^ + P   '   r2 

s 
(1-a2) (30) 

This is in contrast to the paraxial solution, in which the above dispersion relation is only 

approximately satisfied for u = cko and kz given by Eq. (5). 

4.2. First Order Solution 

To first order, tpk ~ ip(k0) + ip'k, where the prime denotes d/dk0.   The first order 

solution is 

1      f°° 
a(1)(r,C,v) = —f= I     dk exp [ik(( - iiß')] fka0 exp(^) 

V27T J-oo 

= o0/(C - W) exp(V>). (31) 

The first order solution includes corrections to the evolution of the axial profile, i.e., 

f(C-itp'). In particular, first order group velocity effects are included. Intuitively, the local 

envelope velocity can be estimated by setting d((-iip')r/dt = 0, where the subscript r de- 

notes the real part, and by identifying ve = dz/dt. This gives ve/c = (1 - ei/2)/(l + e1/2), 

i.e., 
ve(r,r]) 

~ 1-Ci = 1 L.2.,2 
Ä0'0 

(1-a2)       r2(l-6a2 + a4)      fc2r2 

(32) 
(1 + a2)2 r2(l + a2)3       '     4 

where t\ = Z^drpyda (the subscript i denotes the imaginary part). Alternatively, a local 

value of the pulse centroid (C)c as a function of radius can be defined by averaging over 

the axial profile, i.e., 
Mci/l2 

<0c Ml/I2 

ii 

= -i>'i(r,a), (33) 



where a Gaussian axial profile was assumed, / = exp(-C2/£2)- (If the quantity \b\2 is used 

as a weight function with / given by Eq. (11), an identical result is obtained plus corrections 

of order l/k$L2 or higher.) Equation (33) implies that ve/c = (1 - ei/2)/(l + ci/2) as 

before, i.e., the local envelope velocity is given by Eq. (32). 

The above discussion sheds some light on the interpretation of the paraxial result for 

the envelope velocity given by Eq. (7). Notice that the paraxial result is identical to Eq. 

(32) with r] -> z in the definition of a. Both Eqs. (7) and (32) exhibit regions in (r, a) 

for which ve > c. Hence, neither of these expressions should be interpreted as the pulse 

group velocity. Instead, Eqs. (7) and (32) should be interpreted as the velocity of the local 

pulse centroid (C)c defined at a specific radius. Note that a change in the local value of 

(C)c at fixed r does not necessarily correspond to an axial transport of energy. Changes in 

(C)c can reflect distortions in the pulse profile as it evolves. Consider, for example, a pulse 

profile which is initially symmetric and centered about the focal point such that (C)c = 0 

at all r. As the pulse propagates, the front of the pulse expands radially (diffracts) as it 

moves away from the focal point. The back of the pulse, which is initially located behind 

the focal point, will contract radially as it moves towards the focal point. The pulse is 

now asymmetric, with the front of the pulse wider than the back. For sufficiently large 

r, this can cause the local centroid (Oc to move towards the front of the pulse resulting 

in a "local" ve(r,rj) > c, as indicated by Eq. (32). However, this local centroid motion is 

associated with the distortions of the pulse profile and a radial transport of energy, not 

with an axial transport of energy. 

It is more accurate to identify the group velocity of the pulse with the motion of the 

actual centroid, C, of the entire pulse. The pulse centroid C = (C) is given by averaging 

over both the radial and axial profiles: 

;rfrrMC|/|2exp(2Vv)      __±_ ktf \ = (    } 
C~  /drr Ml/|2exp(2W) *grg ^ 2) 

To first order, Eq. (34) is equivalent to Eq. (16), producing the leading order contribution 

to the exact expression given by Eq. (18a). The group velocity of the centroid is then 

(l-e2/2)      1        1     (,^kpro\ ,«x 
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which is a constant independent of 77. 

In addition to group velocity effects, the first order solution has additional terms 

which affect the phase of the laser pulse. For example, the leading order correction to 

the total phase is given by </>(1) = <j>W + 2^'rjL2, where ^(0) is given by Eq. (28b). 

This additional term gives contributions to the effective frequency and wavenumber of 

the pulse. For example, the effective frequency, defined as u^1) = —dft^/dt, is given by 

ujW = u,(°) + 6u)^\ where o/0) is given by Eq. (29a) and 

6u>W a 
1 

2r2 (a 2r2 

(1-a2) (36) 
ck0        k2L2 \ (1 + a2) V^      r? )      ZR{1 + a2)2 |/ 

Notice that along the axis, r = 0, the frequency varies slightly throughout the pulse, 

6u^ — 6u^(C), and evolves as the pulse propagates away from focus, 6u^ = 6U}^\T]). 

4.3. Second Order Solution 

For a pulse with a Gaussian axial profile, analytical expressions can be obtained for a 

to second order. Approximating Vfc = *P + fp'k + ip"k2/2 and using the expression for fk 

given by Eq. (11) gives 

fi(2)(r,C,»7) 
ao 

y/1 ~ 2<ljj"/L2 
1 + 2»(c-«y) exp 

/\2  ITl 

i,- (C - WYIL 
(1 - 2ip"/L2) 

(37) 
k0L

2(l-2^"/L2) 

This analytic form for the second order solution will be compared with numerical solutions 

to the wave equation in Sec. 5. 

4.4. Solution to Arbitrary Order 

Keeping the full expansion for ipk and expanding the second order and higher terms 

in the exponential gives a solution to arbitrary order, 

ä{n)(r, C, 77) = --L f°° dk (1 + S + \S2 + ■ ■ ■ + -Sn) exp [</> + t(C - iip')k],      (38) 
V27T J-00       \ 4 n.     J 

where 
ld2ip 
2dk2 k

l + ■ ■ ■ + 
1_^0 

n! dk%     ' 
(39) 

Equation (38) can be readily evaluated. For example, keeping all terms up to order A;4, 

um   «3 /„l.(iv)        f„i,n\2\    «4 

aw(r,C,v) = aoe -  n^ 
xjj" d2      W d3      fipW     {i>")2\  9- 

2 dC 6   ÖC3 

13 

24 8 dc4 nc-w). (40) 



5. COMPARISON TO NUMERICAL SOLUTIONS 

The wave equation, Eq. (9a), can be solved numerically, using standard techniques, 

to obtain d(r, £, 77). For example, consider a laser pulse at the point of focus (77 = 0) with 

2iC 
a(r, C, 0) = a0 [ 1 + -^j^ ) exp 

r2      C2 

+ 
L2 (41) 

The evolution of this laser pulse in vacuum, as a function of 77, can be estimated using 

the first order solution Eq. (31) [with /(£) = (1 + 2iC/kQL
2) exp(-C2/X2)], the second 

order solution Eq. (37), or by numerically solving Eq. (9a) using Eq. (41) as the initial 

condition. The result for the second order solution is shown in Fig. 1, where the real part 

of a — aexp(iko() is plotted versus r and ( at fixed time (t — 77 — £/2) for (a) t — 0 and 

(b) t — 2ZR/C. In this example, A = 2.5 /jm and L = 7*0 = 5 /im, such that ZR ~ 31.4 /jm 

and L/X = TQ/X = 2. The curvature of the wave fronts as the laser pulse moves away from 

focus is clearly observable in Fig. 1(b). 

The numerical solution for the parameters of Fig. 1 is compared to the first and second 

order solutions in Fig. 2. Here, the percentage difference 100(a(n) - a^num))/Max(a(n)) is 

plotted versus r and C at 77 = ZR for (a) the first order solution a^ and (b) the second 

order solution a^2\ where a(-num^ denotes the numerical solution and Max(a^n)) denotes 

the maximum value of the n-th order solution a^n\ The numerical solution agrees with the 

approximate solutions to better than 1%. Numerical results show that this error decreases 

as L/X increases. 

The group velocity of the numerical solution can be determined by numerically eval- 

uating the pulse centroid C, Eq. (16), using the numerical solution in the integrand. From 

Eq. (19), the group velocity is given by vg/c — (1 — e/2)/(l + e/2), where the quantity 

e = —dC./dr) is evaluated numerically. The result is compared to the analytical solution, 

Eqs. (18a) and (19), in Fig. 3, where 1 — vg/c is plotted versus 77 for each case using the 

same parameters as in Fig. 1. The local envelope velocity ve at r = 0 can be similarly 

determined from the numerical solution by integrating only over C, on the right-hand side 

of Eq. (16). The result is compared to Eq. (32) in Fig. 3. The numerical results show 

excellent agreement with theory. 
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6. SUMMARY AND DISCUSSION 

New solutions to the wave equation, Eq. (1), have been derived which describe an 

ultrashort, tightly focused laser pulse propagating through a plasma with a linear re- 

sponse or through vacuum. The wave equation for the pulse envelope d(r, £,77), where 

a = aexp(i/uoC) + c-c> was solved making use of the independent variables ( = z — ct and 

77 = (z + ct)/2 and by taking a Fourier transform with respect to £. Solutions for the trans- 

form of the envelope, dfc(r, ko + k, 77), could then be found without approximation in terms 

of Hermite-Gaussian modes. The solutions are analogous to solutions of the paraxial wave 

equation. For simplicity, this study was limited to envelopes in which the radial profile is 

described by the fundamental Gaussian mode, i.e., \a\ ~ exp(—r2/r2
s). Generalization to 

higher order Hermite-Gaussian modes should be straightforward. Letting the solution to 

the paraxial wave equation, Eq. (2b), be denoted by ä = äp(r, k0, z), the exact solution to 

the full wave equation for äk, Eq. (9b), is given by äk = fkäp(r, fco + k,rj), as is indicated 

by Eq. (10), where fk is the fourier transform of the axial pulse profile at 77 = 0. 

Based on the exact solution for the transform of the envelope äk, several exact prop- 

erties of ultrashort, tightly focused laser pulses were determined. General expressions were 

determined for arbitrary axial profiles, fk, and specific expressions were determined for 

the case of a quasi-Gaussian axial profile given by Eq. (11). 

For a pulse with a quasi-Gaussian axial profile, the quantity W = f drr f dC\b\2, where 

b = (iko + d/dQa, was identified as a globally conserved quantity of the full wave equation 

for the envelope, Eq. (9a), i.e., dW/drj = 0. The quantity W is roughly equivalent to the 

total pulse energy at fixed 77. Using the quantity |6|2 as a weight function, an expression 

for the pulse centroid ( was determined, Eq. (18a), by integrating ( over the axial and 

radial coordinates. The motion of the centroid was used to define the group velocity of 

the pulse, vg = dz/dt, where ( = z - ct. The resulting value for vg is given by Eq. (19). 

By averaging C2 over the axial and radial coordinates with |6|2 as the weight function, an 

expression for the laser pulse length Lp was determined, Eq. (24). It was found that the 

pulse length slowly increased as the pulse propagates. 

Approximate solutions to the laser pulse envelope ä(r, (, 77) were found by expanding 
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äk(r,ko + k,rf) about k0 for \k/k0\ ~ 1/koL <C 1 and evaluating the inverse transform. 

Approximate solutions for a(r,C, 77) were found to arbitrary order in \k/k0\. The zeroth 

order solution, Eq. (27), gave a(0) = f(0<ip(r,ko,v), where ap(r, k0,z) is the solution to 

the paraxial wave equation. This indicates that in order to describe a short pulse with the 

paraxial solution, the variable z should be replaced by the correct propagation variable 

77 = (z + ct)/2. Furthermore, |a(0)| = |/(C)|(r-0/rs)exp(-r'2/r2), where the spotsize is 

given by rs = r0(l + rj2
/ZR)

1
/

2
. To zeroth order, the envelope propagates at c, i.e., group 

velocity effects are not included. The first order solution is a^ = f(( - iip')äp(r,k0,ri), 

as indicated by Eq. (31), where ap = exp(^) and ip and ip' are given by Eq. (26). The 

first order solution contains group velocity effects, with the group velocity, Eq. (35), in 

agreement with the exact expression, Eq. (19), to leading order. Higher order solutions for 

a contain corrections to higher order in the small parameter l/k^L2. 

Of fundamental importance is the group velocity of a tightly focused, ultrashort laser 

pulse. Solutions to the paraxial wave equation imply an envelope velocity ve(r, z) given by 

Eq. (7). This can not be interpreted as a group velocity, since there are regions in (r, z) 

for which ve > c. At the focal point, 1 - «e(0,0)/c ~ 2/fcjjrg, a value which differs from 

1 - Vg/c by a factor of two. By analyzing the first order solution a(1) to the full wave 

equation, the interpretation of the paraxial result ve(r,z) becomes clear. Using a(1), the 

expression for the local pulse centroid (Oo which is a function of r and 77 as given by 

Eq. (33), was determined by averaging C over the axial pulse profile at a fixed radius r. 

If the motion of the local centroid (C)c, which is a function of r and 77, is used to define 

a local envelope velocity ve(r,r]), the result, Eq. (32), is identical to the paraxial result 

ve(r, z) with z —> ?y. It clear that ve(r, rj) is not the pulse group velocity, but instead is the 

velocity of the local centroid (C)c at a fixed radius. The fact that regions in (r,7/) exist 

where ve(r,r)) > c indicates that ve(r,ri) does not represent the axial velocity at which 

pulse energy is transported. 

An improved definition of the pulse group velocity is given by considering the motion 

of the centroid C of the entire pulse, Eqs. (16) and (34), which is determined by averaging 

C over both the axial and radial pulse profiles. The pulse group velocity is given by 

vg = dz/dt, where ( = z - ct.  The exact expression for vg is given by Eq. (19).  In the 
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limits k£r£ > 1 and fcgl/ > 1, 

v0 l-^^4-(l+
k^--±\. (42) 

k0r0 \ 2        kQL   I 

In addition to finite spotsize and plasma dispersive effects, the group velocity is also slightly 

reduced due to the finite pulse length. Notice that vg is independent of z such that the pulse 

centroid propagates at a constant velocity. Thus Eq. (42) is valid both at focus and far from 

focus. The relativistic factor associated with the pulse group velocity, 73 = (1 — -u2/c2)_1//2, 

to leading order, is 

7fl ~ v^Trro/A) (l + fc2r2/2)"1/2 . (43) 

For a tightly focused laser pulse, 7S can be relatively small. 

As an example, consider the possibility of accelerating an electron from rest with 

the axial ponderomotive force of an intense, ultrashort laser pulse. For a fixed axial 

ponderomotive force, electron trapping is easier the lower the value of jg. For a laser pulse 

in vacuum with TQ/X = 3, jg ~ 13 and it may be possible for a sufficiently intense laser 

pulse to pick up and accelerate an electron from rest. 
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Fig. 1: Second order solution: Real part of a = äexp(ifcoC) plotted versus r and ( = z—ct 

at (a) t = 0 and (b) t = 2ZR/C for L/X = r0/X = 2 and A = 2.5 ^m. This shows 

the evolution of the normalized vector potential of the laser field for a pulse of 15 

fs duration with a central wavelength of 2.5 /xm. Plot (a) shows the initial laser 

field at t = 0 at the focal point where the minimum spot size is ro = 5 /im. Plot 

(b) shows the laser field after propagating a distance of two Rayleigh lengths from 

the focal point, ct = 2ZR ~ 63 ^m. Notice in (b) the curvature of the wavefronts 

as the pulse diffracts. 
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. O    |- 

- ° r 

Fig. 2: Percentage difference 100(a(n) - a^num^>)/Max(a^) between numerical solution 

to the wave equation a(num) and n-th order analytic solution a(n) plotted versus 

r and C = z - ci for (a) the first order solution a(1) and (b) the second order 

solution a(2). The parameters are L/X = r0/X = 2 and A = 2.5 urn and the 

comparisons are done after propagating a distance r\ = (z + ct)/2 = ZR from the 

focal point. 
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