
Behavior-based Language Generation for
Believable Agents

A. Bryan Loyall Joseph Bates

March 1995

CMU-CS-95-139

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This work was supported in part by Fujitsu Laboratories and Mitsubishi Electric Research
Laboratories.

The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of any other parties.

19950623 077
JT35 .J Iri JTSD S

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

Keywords: artificial intelligence, believable agents, active language, embodied
language and action, situated natural language generation, art, entertainment

Abstract

Accesion For

NT1S CKA&i
DTIC TAB
Unannounced
Justification

D

By
Distribution /

Availability Codes

Dist

m
Avail and/or

Special

We are studying how to create believable agents that perform actions and use natural
language in interactive, animated, real-time worlds. We have extended Hap, our
behavior-based architecture for believable non-linguistic agents, to better support
natural language text generation. These extensions allow us to tightly integrate
generation with other aspects of the agent, including action, perception, inference
and emotion. We describe our approach, and show how it leads to agents with
properties we believe important for believability, such as: using language and
action together to accomplish communication goals; using perception to help make
linguistic choices; varying generated text according to emotional state; and issuing
the text in real-time with pauses, restarts and other breakdowns visible. Besides
being useful in constructing believable agents, we feel these extensions may interest
researchers seeking to generate language in other action architectures.

1 Introduction
We are studying how to create believable agents that perform actions and use natural
language in interactive, animated, real-time worlds. Such worlds might be built as
entertainment, as art, or as interfaces to databases, libraries, or the Internet.

"Believable" is used here in the sense of believable characters in the arts, meaning
that a viewer or user can suspend their disbelief and feel that the character or agent
is real. This does not mean that the agent must be realistic. In fact, the best path
to believability almost always involves careful, artistically inspired abstraction,
retaining only those aspects of the agent that are essential to express its personality
and its role in the work of which it is part.1

While full realism is rarely appropriate, we have found, as have others before
us, that fine details can have a great influence on whether a creature seems alive.
The use of the eyes, the timing of pauses in speech, an awareness of body position
and personal space, are each examples of these important details.

To further bring out some of the requirements on believable language and action
producing agents, let us examine four seconds from the film Casablanca [5], which
we have transcribed in Figure 1. In this scene, Ugarti (Peter Lorre), a dealer in the
black market, is being arrested for stealing two letters of transit. Just before the
police haul him away, he seeks help from Rick (Humphrey Bogart), the seemingly
cynical owner of the Cafe Americain. Speech and action occur simultaneously, and
we have transcribed them into two columns to show the parallelism.

In these moments, Ugarti is a very believable and engaging character. If we
wish to build autonomous agents that can produce similarly believable behavior, we
might identify the following as a few of the challenges:

• In general, production (and understanding) of language and action appear very
tightly integrated. We feel this probably is not the result of distinct sensing, acting,
understanding, and generating modules communicating through narrow channels.

• Action and language are used together to accomplish communication goals.
An example is pleading language with a wide eyed facial expression.

• Language generation occurs in parallel with other independent goals. Parallel
behaviors producing streams of control signals to multiple channels (eyes, body,
voice) help bring the character to life. Ugarti is generating language while watching
and struggling with the police.

• Perception and action occur as subgoals of generation. For instance, as the
transcript begins, Ugarti yells "Rick" because he perceives that Rick is not attending
to him. He acts by putting his hands on Rick's arms to signify an embrace of friends,
presumably to increase the persuasiveness of his words. We believe both of these
arise most naturally as consequences of generation.

• Generation does not reduce the agent's responsiveness to events in the world.
Ugarti notices and responds to the police approaching, grabbing him, etc. all while

'There are many discussions of this idea in the arts. Such a discussion together with a wealth of
other material particularly useful for animation is presented by Thomas and Johnston [16].

1

Speech Action
... Ugarti enters yelling "Rick! Rick! Help me!", puts his hands on Rick's forearms.
Rick pushes Ugarti against a column saying "Don't be a fool, you can't get away."

U's eyes are wide, focused on R, U has facial expression of
extreme desperation and fear.
U's eyes and then head turn left to see approaching police,
mouth tight, face tense.
Head, eyes back on R, intense gaze, "something" emphasized.
Eyes then head turn a bit left toward police as they grab him.
U's face compresses in pain.
Shrinks down, looks further away from R.
Twists to get free.
Looks back at R, but eyes pressed shut, looks away as police
pull at him.
U looks toward R as he speaks, then away in pain as he is
dragged from scene yelling.

But Rick, hide me!

Do

something,
you
must
help
me
Rick!

Do something!

Figure 1: Transcript of moment from Casablanca.

producing one short sentence.
• Pauses, restarts, and other breakdowns are desirable when they reflect the

personality and situation of the agent. In the fine scale timing of the transcript, the
actions of the police absorb some of Ugarti's attention and noticeably vary his rate
of speech production.

• Generation is incremental. Word choice and other generation activities seem
to be as influenced by the real-time flow of events as other action production.

• Language generation, like other action, varies with personality and emotional
state. Ugarti pleading with Rick is in accord with his personality, and with his
emotions upon being arrested.

• Emotion is produced from the success and failure of communication as well
as of other action. For instance, Ugarti is upset about not escaping the police, but
this failure is partly a consequence of not having enough time to convince Rick to
help him. So he is angry and sad about his inability to achieve a communication
goal, as that was his means to achieve an important parent goal. Anger in response
to being constantly interrupted is another example of this phenomenon.

Artists know these principles, often implicitly, and use them when writing,
animating, or acting out scenes. We must express them more explicitly in our
agents, since the agents must exhibit these qualities on their own as action proceeds.

In previous papers we have presented lessons learned from our efforts to build
believable non-linguistic agents. These include ideas on modeling emotion [3, 13],
integrating emotion and action [4], real-time interactive personality animation [10],
and a stand-alone framework for language generation [9]. As the transcript above
suggests, building language-using believable agents raises new challenges.

In the rest of the paper we describe our approach to these challenges. We describe
how we have extended Hap, a behavior-based architecture originally designed for
producing action, to support natural language text generation; we discuss how we
generate text and action on top of this enhanced architecture; and we analyze our
progress toward responding to the challenges.

We see two reasons our work might interest other researchers, besides its direct
contribution to creating language-using believable agents. First, it is a contribution
to active language (also called "embodied language and action") research, and
might suggest how other action architectures could be extended to support language
generation. Second, the extensions to Hap to support language generation might be
useful in expressing especially complex action generation behaviors.

2 Extending Hap to Support Language Generation
Existing Hap. Hap is a behavior-based architecture that we use as a foundation for
building believable agents. Originally written in Lisp and designed to produce one
action at a time, it was rewritten and extended when we built the Woggles to control
multiple parallel motor and sensing channels in real-time [10].

In most of our agents, we build components on top of Hap to support emotion,
social behavior, memory, and other functions. By building in Hap, these functions
tend to inherit reactivity, parallelism, and other qualities that we want to permeate
our agents. Our generic name for this composite framework is Tok. Thus, our goal
can be seen as extending Tok (and in fact Hap) to support language generation.

We will explain the extensions we have developed using a minimum of Hap-
specific terminology (but see [10] for further details). We hope thereby to help
suggest how other behavior-based action architectures might be extended to support
the production of language.

The relevant Hap concepts are as follows. Hap programs are written as collec-
tions of behaviors. Each behavior is something like a procedure, in that it is has a
name (called the "goal"), a parameter list, a body, and a precondition. The body, in
the simplest case, is a sequential or parallel invocation of other goals and primitive
actions. When a goal is invoked, all behaviors named by that goal are considered
for instantiation. Of the behaviors whose precondition is true, one is chosen and in-
stantiated (with actual parameters for formals) in the hope of achieving the invoking
goal. Thus, execution of a Hap program results in a tree of active goals, behaviors,
subgoals, sub-behaviors, etc., some of which run as parallel threads.

Hap also supports multiple top level goals (ie, a forest of active behaviors),
backtracking, various annotations to enhance reactivity in the face of surprises in the
world, and other mechanisms. We have found these mechanisms useful for action,
perception, emotion, and elsewhere in Tok, as well as for language generation.
However, to keep this paper accessible, we defer to the first author's dissertation
further discussion of these mechanisms and their relationship to language.

After the Woggles were developed, we wanted to extend Tok to begin to support

Bear, you wouldn't
want to uh play

Figure 2: Woggles that "speak" text bubbles.

language. As a goal, we decided to create animated creatures that could generate
(and understand) text bubbles, as suggested in Figure 2.

Glinda is a language generation architecture that had been created in our group
[9]. It is a stand-alone system, but was developed with an awareness of Hap. We felt
we saw similarities in the way Glinda made language generation decisions and the
way Hap made action generation decisions. It seemed that by extending Hap a bit,
we could make it easy for agent builders to express language generation behavior
directly as a variety of action generation behavior. Thus, we chose to Glinda as our
conceptual framework, and set about extending Hap to support it.

Our first step was to better support the representations that Glinda manipulated,
which were far more structured than those Hap had typically handled. Then we
considered ways to encode Glinda's grammar and other processing rules as Hap
behaviors. This led us to introduce new ways of passing complex structures as
parameters, accessing and matching structures, and passing information between
widely separated behaviors. We will consider these, beginning with representation.

Glinda's main representational elements are groups and features. Features are
name/value pairs, for example, (root love) and (number singular). Agroup
is a set containing features, subgroups, or both2. Groups must contain a type and
a role feature. The type provides information about the expected elements of the
group and the level of the group in the linguistic hierarchy, for example morpheme,
word, phrase, or clause. The role specifies the group's function within its parent
group. All subgroups within a group must have distinct roles.

As in Hap, Glinda execution proceeds via a gradual elaboration of goals. A
Glinda goal is a group denoting a concept to be communicated together with a set
of features that modify the generation process. The feature set is treated as part of
the group, but it is convenient when invoking generation to be able to vary these
additional features as an independent parameter.

A sample goal is shown in Figure 3. This goal would generate the sentence

2In our adaptation of Glinda, a group is very much like a frame or association list. However, we
will retain the Glinda terminology to emphasize the mapping from language generation concepts.

group: ((type sentence) (role sentence)
((type relation) (role matrix)
((type parameter) (role predicate)
((type word)
((type morph) (cat verb) (transitive t) (root eat))))

((type parameter) (role agent)
((type word)
((type morph) (cat noun) (root john_l)
(person 3) (number singular) (gender male))))))

features: ((mood declarative))

Figure 3: Example Glinda Goal

"John eats." If the features (voice passive) and (time past) were added to
the features list (or the group) then it would yield "Something was eaten by John."

Representation. How shall we represent groups and Glinda goals in Hap? As
mentioned earlier, Hap goals consist of a name and actual parameters. Since the
values passed via a goal into a behavior are unrestricted, and since Hap's behavior
language is Turing complete, we could simply represent Glinda goals as structured
values passed into Hap behaviors. The components of the Glinda goals could be
accessed by code written in Hap's existing behavior language, and this code could
emulate Glinda's processing behavior. To a first approximation, this is the approach
we adopted. However, accessing information inside Glinda goals is particularly
unpleasant in this simple scheme. Thus, we chose to attempt a more fundamental
merging of Glinda's and Hap's notions of goal.

Information in Glinda goals is accessed in characteristic ways. Most generation
decisions are made by examining top-level features and subgroups. Features are
accessed by name and subgroups are accessed by role. For example, in the goal in
Figure 3, the fact that the mood is declarative and no voice feature is present might
cause the agent subgroup to be the one first converted to text. When features are
accessed, Glinda looks for them in the features list and in the goal. More deeply
nested features and groups are seldom accessed. The exception is the projector of
a group. The projector is a value of a feature deep within the group that forms the
core concept of the group. For example, in a group of type sentence the projector is
the verb, a feature which may be deeply nested. (Projectors are accessed only when
determining which generation rules to apply, and we support them by providing an
extension to the match language for preconditions.)

Because of these characteristic access patterns, we chose to support Glinda goals
by adding first-class environments to Hap. An environment is a set of name/value
bindings. As first-class entities, environments can be passed and stored as values.
When an environment is passed as an actual parameter, it can be bound to a behavior's

corresponding formal and accessed in the usual ways. However, an environment
also can be imported (by using the particular formals named group and features).
If imported, all of the bindings in the passed environment are added to the behavior's
lexical environment and can be accessed like normal bindings.

In Hap, the values of parameters and variables are accessed by the form
$$<variable>. We extend this to allow a variable's binding, to be accessed by the
form$$&<variable>. A binding can be constructed using the form (name value),
where value is a value denoting expression. An environment value can be created
by enclosing a sequence of bindings in parentheses.

A feature is now represented as a binding, and roughly speaking, both the group
and set of features that comprise a Glinda goal are represented as environments.
When these two environments are passed as values to a generate behavior, they
are both imported so that all of their features and subgroups can be accessed by
na;me or role as normal Hap variables. More precisely, in order to be accessed by
role, a group is represented as a binding whose value is an environment. The name
of the binding is the role of the group and the environment contains all of the other
information. When a group is imported, the bindings inside the environment are
imported. In addition, a new binding is created and imported with name role and
value the role (that is, the binding name) of the group.

Groups and features can now merge seamlessly with Hap goals and parame-
ter passing. For instance, the following behavior shows how a natural language
generate goal can be created:

(sequential_behavior request_play (who object)
(subgoal generate

(sentence ((type "sentence) (hearer $$who)
(relation ((agent $$who) (predicate "desire)

(object ((agent $$who)
(predicate "play)
$$&object))))))

((focus "play))))

This behavior tries to accomplish a request_play goal by generating natural
language. The group and features are constructed using the binding and environment
creating operators and include embedded variable accesses. The value of the who
formal is included in the group in three places; the binding of the object formal
appears once.

Processing. With this approach to representing Glinda groups, features, and
goals, we can turn to processing. Glinda generation is performed by four types
of rules: organization, combination, feature passing, and mapping. Organization
rules take a group and set of features, select subgroups and features to be generated,
and establish an order for them. For example, at the sentence level, organization
rules choose between active voice order and passive voice order. At the word level,
organization rules cause prefixes, roots, and suffixes to be generated. At the lexical

level, they choose strings to realize items. In Hap this knowledge can be expressed
as various sequential behaviors for generate goals. The Glinda test to determine
if an organization rule applies in this situation can be written in the precondition for
the behavior. An example behavior for passive voice is:

(sequential_behavior generate (group features)
(precondition "$$type == ^relation && $$voice == '-passive")

(with (bind_return_values_to subject_number subject_person)
(subgoal generate $$&object))

(subgoal generate $$&predicate
($$&inflection $$&subject_number $$&subject_person))

(subgoal generate $$&agent))

This behavior can be used to instantiate a generate goal with type relation
which contains a voice feature with value passive. It issues several generate
sub-goals in order for the subgroups and features needed to express the group. Both
the precondition and accesses to subgroups and features are concise because of the
first-class environment representation for groups and features. These goals are each
realized by other behaviors until eventually a series of strings is emitted.

Combination rules in Glinda smooth this sequence of strings. They introduce
spaces between words and longer spaces after sentences, introduce no spaces be-
tween roots of words and their prefixes or suffixes, and perform character deletions,
additions and substitution (such as "i" for "y" in "happiness"). A buffer is used
to hold the most recent string generated and all applicable combination rules fire
whenever a new string is generated. The (possibly modified) buffered string is then
printed, and the new (possibly modified) string is placed in the buffer.

We support combination rules in Hap with a special generate_string behav-
ior that is invoked only when a string is being generated. This behavior keeps
the buffered string and new string in dynamically scoped local variables, cre-
ates a combine goal with annotations that force all applicable behaviors to run
(these are Hap's (persistent when_succeeds) and ignore_failure anno-
tations), and then prints the possibly changed old string and buffers the new string .
Glinda's combination rules can then be written as normal Hap behaviors that match
the buffered string and new string variables using preconditions and modify them
through side-effects as desired.

Feature passing rules are Glinda's mechanism for communication between gen-
eration instances. They are used, for example, to express subject verb agreement
and the coordination of tenses of root and auxiliary verbs. Upward feature passing
rules filter at runtime the features that are returned after generation of a group.
Downward feature passing rules determine which of these features is passed to the
next subgroup to be generated. Each rule can pass any number of features, and all
rules are evaluated to determine the set of features passed.

In Hap, features or values can be passed down to a subgoal as arguments to that
goal. We added value returns to Hap behaviors to allow features or values to be

(parallel_behavior generate (group features)
(precondition "$$type == ''location &&

guery_looking_at($ $hearer,$ $me) &&
visible($$location)")

(subgoal generate (pronoun Alocation)
((distance "distance($$location,$$me)")))

(subgoal glance $$location))

Figure 4: Example of a language generating behavior.

passed up from subgoals to parent goals. This is a simpler mechanism than Glinda's,
but one we hope will be adequate for our generation needs and easier to understand.
In addition to allowing values to pass up and down the subgoal hierarchy, we
provide another mechanism for communication between distant behaviors. Using
dynamically-scoped variables and side-effects, one can create variables in a common
parent and allow both goals to write and read from these variables. This eliminates
the need for intermediate goals to explicitly pass along values. It also allows
behaviors running in parallel to communicate through shared variables.

The final type of Glinda processing rule is the mapping rule. Mapping rules run
just before an organization rule is chosen, and can add, delete or modify features
that are present in the current group or set of features. They are used to perform
simple kinds of inference. For example, a mapping rule to infer voice from focus
is: if no voice feature is present and a focus feature has the same value as the actor
then add (voice Aactive). Mapping rules are not supported in any special way
in Hap. The inferences they perform can instead be encoded as normal Hap goals
and behaviors, and called where appropriate.

3 Example of a Language Generating Behavior
Having described our extensions to Hap, let us consider Figure 4, which shows

in simplified form how we might write a language producing behavior in extended
Hap. This behavior encodes one of several possible ways to reference a location: by
simultaneously gesturing and using a pronoun reference. Other methods to generate
references to locations (when this behavior doesn't apply or is undesirable) are
encoded in separate behaviors. The precondition states the conditions under which
it is applicable: the group being generated must be of type location, the agent being
spoken to must be looking at the speaker, and the location must be visible. The last
two of these conditions are sensor queries that actively sense the world at the time the
precondition is evaluated.3 The behavior is parallel so that language production and
gesturing occur simultaneously. The first subgoal generates the location pronoun
subject to an auxiliary feature that encodes the distance to the location. This feature

3 Primitive sensors can be embedded directly in match expressions, as in this precondition. More
complex sensing is performed by sensing behaviors written in Hap.

is used to decide between realizations such as "there", "over there", or "over there
about 30 feet". The second subgoal causes the agent to look toward the location and
then return its gaze to what it was tracking or looking at when the goal was issued.

4 Example of Processing
The code in Figure 4 suggests how we might write language and action producing
behaviors. Let us now consider an execution trace of the processing that might result
from full creatures built in this style. The creatures we discuss are Woggles [10]
enhanced to use simple natural language. We hope to illustrate how our approach
responds to the challenges for believability posed in the introduction.

As the trace begins, Shrimp has approached Bear who is looking away. Shrimp
is sad, but wants to play a game with Bear at a nearby mountain. He decides to
invite Bear to play, by invoking a generate goal for the group:

(sentence ((type "sentence) (hearer $$who)
(relation ((agent $$who) (predicate "desire)

(object ((type relation) (agent $$who)
(predicate "play)
(location $$where)
(object "follow_the_leader)))))))

((voice "interrogative-yn))

As we will explain, this goal generates "Bear, you wouldn't want [pause] uh
[pause] to play over there, would you?", while causing parallel action, sensing, etc.

The generate goal invokes a sequential behavior (the only sentence generating
behavior in our current grammar) to perform the following subgoals:

(generate (punctuation Abeginning_of_sentence))
(generate $$&hearer)
(generate $$&relation)
(generate (punctuation "end_of_sentence))

The first subgoal, when expanded, places a special symbol in the output buffer
to mark the beginning of the sentence. This symbol cannot occur elsewhere in
generation, and aids the capitalization and spacing combination rules.

The generation of the hearer feature has a number of behaviors from which
to choose. If the generation of the example sentence is part of a larger on-going
conversation between Bear and Shrimp, then a behavior would fire that would result
in the empty string being generated for the hearer feature. Since that is not the case,
a behavior is chosen to decide how best to get Bear's attention. This is accomplished
by sensing the world, for instance by making the first subgoal of this behavior be
a sensing behavior to determine where Bear is and where he is looking. Since he
is nearby but not looking at Shrimp, the behavior chooses to generate from the
group (name (object $$hearer)) followed by (generate (punctuation

^end_of _pref)), and issue the action to look at Bear in parallel. The first results
in "Bear" being generated. When this happens the combine goal is posted with
the buffer contents (beginning of sentence symbol) and the newly generated string
"Bear". The combine goal persists until no behaviors apply for it. In this case there
is only one behavior that applies. It removes the beginning of sentence symbol
and capitalizes the first character of the newly generated string, a no-op in this case
because "Bear" is already capitalized. The (punctuation ^end_of_pref)
group results in a comma being generated. No combination behaviors fire for these
two, so at this point "Bear" is printed, "," is in the buffer, and Shrimp is looking at
Bear.

If Bear had been across the room, this generation behavior would have resulted
in Shrimp looking at Bear and generating "Hey Bear!". Alternatively if Bear had
noticed Shrimp's approach and was watching Shrimp attentively, a behavior would
have been chosen to generate the empty string. Thus, sensing is being used to affect
generation on a fine time scale.

The next goal to be executed is (generate $$&relation). There are several
ways to order the subgroups of a relation to be generated as a sentence, for example
active voice order or passive voice order. In this case the voice is specified as
interrogative-yn, but we could still choose a number of orderings (including
active or passive word order followed by a question mark). Because Shrimp is
currently feeling very sad (see emotion discussion below), a negative phrasing of
the question is chosen. This results in the following sequence of subgoals:

(generate $$&actor)
(bind_return_values_to (modal)

(generate $$&predicate ((negated t))))
(generate $$&object)
(generate_string " , ")
(generate $$&modal)
(generate $$&actor).

Because the actor is also the hearer, the first subgoal is generated as "you".
The hearer's identity is stored in a dynamically scoped variable in a parent behavior,
and this is accessed and tested in the behavior for generating the actor.

The second subgoal is an example of explicit feature passing by returning which
modal is used in the generation of the predicate. This information is used to generate
the modal later in the sentence. This allows the same behavior to be used for "You
don't..., do you?" as for "You wouldn't..., would you?". (The sentence "Wolf isn't
..., is he?" uses the same rule. The particulars of generating the actor subgroup
changes.) In this case, the subgoal produces "wouldn't want" as output.

At this point, Shrimp notices that Wolf is coming toward him at high speed.
He notices it via the firing of a higher level sensing goal. This knowledge gives
Shrimp a good bit to think about, and the resulting processing elsewhere slows the
Hap thread that is running this generation task. He becomes afraid. He actively

10

looks to decide if he should run or get out of the way. Observers can notice that
something is going on because Shrimp stops generating words. In addition, part
of the behavior to communicate is a parallel goal that watches for pauses in output
and inserts stuttering "uh"s at intervals during these pauses. This goal is only active
when a communication goal is active. As Shrimp's pause becomes longer, this goal
is triggered, and Shrimp says "uh". Shrimp continues to watch Wolf, and decides
to move slightly to let him pass more easily. As Wolf goes by, Shrimp continues to
generate, producing "to play".

Shrimp now generates the relation's location subgroup. There are several
potential behaviors. Since Bear is looking at him and a formal feature is not present,
a behavior is chosen to gesture and concurrently generate a pronoun referring to the
location. So, Shrimp says "over there" as he glances toward the mountain.

Finally, the trace ends as the last three subgoals generate ", would you?".
To summarize the behavior that is observed in this example, Shrimp has just

come over to Bear who has not noticed him. Shrimp starts looking at Bear at the
same time he says "Bear, ". He goes on to say "you wouldn't want" one word at a
time, when he pauses and looks over at Wolf racing toward him. He looks around,
says "uh", moves slightly to get out of Wolf's way and continues to say "to play a
game". As he says the next two words "over there" he glances toward the mountain.
Looking at Bear again, he concludes with ", would you?".

5 Discussion of Results
The above trace suggests how our system responds to the challenges raised in the
introduction. Let us consider our attempt to meet them in more detail.

Incremental language generation is a property of Glinda that we have maintained
in our approach. Pauses, restarts and other breakdowns due to the difficulty of the
generation task itself are visible in Glinda and in our system. However, with the
generation process expressed as Hap goals and behaviors in an agent with other goals
and behaviors, pauses or other breakdowns due to other aspects of the agent can arise
and be visible. These include pauses caused by the agent attending to goals activated
by events in the external world (e.g. Wolf's approach in the example) as well as
goals triggered by internal events. For example, generation could infer a piece
of information, which when placed in memory awakens an otherwise independent
goal. This goal might then perform more inference, generate emotions, generate
action or language, etc. This might be similar to the types of pauses people make
when realizing something while talking. The pause caused by this thinking would
be visible in the timing of text output. Any actions or language produced by this
digression would cause the mental digression to be even more visible.

Responsiveness to the environment and reactivity are properties of the system
(Tok) that Hap provides. As just mentioned, with generation expressed in Hap,
generation can be interrupted at any point while the agent deals with other goals.
Hap behaviors are situated in the sense described by Agre and Chapman [1, 2] in

11

that they are interpreted in the context of the current situation. The amount that
particular behaviors take advantage of being situated is dependent in part on the
amount of sensing they include. We are attempting to take advantage of behaviors
being situated by constructing our generation behaviors (that is, our grammar) to
include sensing. This sensing can be external as when Shrimp looks at Bear to
decide how to refer to a location and whether to introduce his question with Bear's
name, or the sensing can be internal as when Shrimp's emotional state is sensed to
choose a negative phrasing of the question.

Just as we can invoke sensing within generation, action subgoals can be included
in generation behaviors. Though we are just beginning to explore this topic, we
have thus far found it natural to mix these three types of processing to accomplish
the agent's goals. Some of that naturalness, we hope, is conveyed in the trace.

Hap maintains multiple active goals and pursues them concurrently. This is done
by using the processing power available, when a behavior is paused, to pursue other
goals. For example, once a Woggle jumps, it does not have to consider that goal
until its body is almost ready to land. Likewise, after asking a question, an enclosing
behavior need not be attended to until a response is heard or too much time elapses.
During these pauses, Hap attends to other (perhaps unrelated) active goals. If these
goals issue actions, the actions will occur in parallel with other executing actions.
The actions (and goals they are in service to) must not use the same resources that
other executing goals are using. The primitive action to print text in a voice bubble
executes in time proportional to the length of the string.4 Since generation goals are
normal Hap goals, this same mechanism allows other unrelated goals to be pursued
in parallel. The saying of "uh" while moving aside in the example is an instance of
two unrelated goals issuing actions that are executed in parallel.

This same mechanism is used to simultaneously generate action and language
to accomplish a communication goal. For example, gesturing toward the mountain
and saying "over there" in the trace was accomplished by a parallel behavior with
two subgoals: an action goal to perform the gesture and a generation goal to realize
the text. One of these subgoals was chosen arbitrarily to be pursued. When the
action was initiated and that goal was suspended waiting for the action to (nearly)
complete, the other goal was pursued, issuing the parallel action.

Integrating emotion with language generation is accomplished in the same way
emotion is integrated with action. The emotional state of the agent is available to
all behaviors and can be used to include emotion-based variation. One example
of this is illustrated in the example when Shrimp chooses a negative phrasing of
his question over the more straightforward phrasing. How to introduce meaningful
emotion-based variation in language in general is of course a difficult problem,
and we are drawing on existing work, for example Hovy's thesis work [8], where
possible in pursuing it. The fact that the generation process is embedded in an actual

4This is to model the fact that speaking and typing both take time to execute, even after what is
to be typed or said is known.

12

agent with emotions gives us a rich base on which to explore this issue.
As with other goals, success and failure of generate goals can cause emotion.

This happens automatically if a character builder marks goals that are emotionally
important. Success or failure of these goals produces joy or distress. Anger or
gratitude arise if the cause of success or failure can be inferred. This is often done
by inference goals that are written and issued in parallel with the generate goal.
For further description of the emotion model and its use in Tok see [4].

6 Related Work
Chapman's thesis work on Sonja [7] and Firby and Martin's work integrating RAP
with DMAP [11] have similarities with our work. Both systems tightly integrate
language understanding with action generation and make use of the situated nature
of the tasks. They do little or no generation, however, and do not address some
of our goals, such as creating believable agents, displaying the internal state of the
agent through pauses, emotion and personality based variations, etc.

Rich, et al [14] seem to share our goal of building engaging, believable agents,
and they have integrated a remarkably wide range of capabilities in their system,
including language understanding, speech synthesis and recognition, low-level mo-
tor control, and simple cognition and emotion. Their broad integration takes a
traditional approach in that there are distinct components for each of the capabilities
and they communicate through relatively narrow channels. This is a natural conse-
quence of building upon existing, independently developed components. However,
our impression from using their system is that the resulting agents generally lack an
appearance of awareness that we feel is crucial for our goals of believability.

Recent work in speech synthesis and gesture by Cassell et al. [6] and speech
synthesis and facial animation by Nagao and Takeuchi [12] is relevant to our goals.
This work offers insight into fine-grained timing and interaction of action and speech.
However, like Rich, it takes a less integrated approach than the one presented in this
paper, with some of the same limitations for believability.

Rubinoff and Lehman, in NL-Soar [15], share our goal of real-time, responsive
language generation mixed with action. They take a modular approach to integration,
like the systems above, but through learning NL-Soar gradually becomes tightly
integrated. This lets them develop language somewhat independently of the rest
of their agent, yet still get integration such as language using the agent's sensing
and inference abilities to accomplish its goals. Because their task domains involve
communication by radio, they have not pursued coordinated action and language to
accomplish a single communication goal. Also, their agents as yet have no emotion
model, so they have not explored this aspect of integration. Finally, the ultimate
goal of NL-Soar is cognitive plausibility rather then believability. Nonetheless, of
the efforts reported here, we see this work as most closely related to our own.

13

7 Conclusion
We have described an approach to creating believable agents that act and generate
natural language text in a simulated world. This includes a description of extensions
to Hap, our behavior-based action architecture, to better support natural language
generation, and a description of how the resulting system is used to generate action
and language. We believe these extensions may be useful to others developing sim-
ilar believable agents, and to researchers interested in extending action architectures
with language capabilities.

Prior to extension, Hap provided facilities we used extensively in our approach
to language generation. These include hierarchical (and recursive) invocation of
behaviors with parameterized goals, selection by pattern matching of behaviors to
achieve a goal, determination of success and failure of goals by means other than
testable conditions, and concurrent threads pursuing parallel goals (and subject to
resource constraints). In our experience, these are important capabilities in behavior-
based architectures that are intended to support complex action, such as language.

On this foundation, we extended Hap by adding first-class environments, allow-
ing behaviors to return values, providing dynamic scoping with side-effects (in addi-
tion to the previously existing lexical scoping), and building a generate_string
behavior to support Glinda's notion of combination rule. As argued in the Discus-
sion of Results section above, we believe the resulting framework, and our use of it
to produce natural language text, address in significant ways each of the challenges
raised in the introduction.

While we feel that the challenges raised in this paper are important for believ-
ability, the full requirements for believability remain little understood. Gradually
the task should become more clear, through further research and gatherings such as
the AAAI 94 Spring Symposium on Believable Agents, Lifelike Computer Char-
acters '94, the believable agents session at AAAI-94, and the upcoming AAAI 95
Fall Symposium on Embodied Language and Action. We believe the work reported
here will help us move toward the ultimate goal of believable interactive characters.

References
[1] Philip E. Agre and David Chapman. Pengi: An implementation of a theory

of activity. In Proceedings of the Sixth National Conference on Artificial
Intelligence, July 1987.

[2] Philip E. Agre and David Chapman. What are plans for? In Robotics and
Autonomous Systems. Elsevier Science Publishers, 1990.

[3] Joseph Bates. The role of emotion in believable agents. Communications of
the ACM, 37(7): 122-125, July 1994.

14

[4] Joseph Bates, A. Bryan Loyall, and W. Scott Reilly. Integrating reactivity,
goals, and emotion in a broad agent. In Proceedings of the Fourteenth Annual
Conference of the Cognitive Science Society, Bloomington, IN, July 1992.

[5] Casablanca. Warner Brothers, Inc. Avail, from Turner Entertainment., 1942.

[6] Justine Cassell et al. Animated conversation. IxxProc. SIGGRAPH '94, 1994.

[7] David Chapman. Vision, Instruction, and Action. PhD thesis, Massachusetts
Institute of Technology, Artificial Intelligence Laboratory, 1990.

[8] Eduard Hovy. Generating Natural Language under Pragmatic Constraints.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1988.

[9] Mark Kantrowitz. Glinda: Natural language text generation in the Oz interac-
tive fiction project. Technical Report CMU-CS-90-158, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, 1990.

[10] A. Bryan Loyall and Joseph Bates. Real-time control of animated broad agents.
In Proceedings of the Fifteenth Annual Conference of the Cognitive Science
Society, Boulder, CO, June 1993.

[11] Charles E. Martin and R. James Firby. Generating natural language expec-
tations from a reactive execution system. In Proceedings of the Thirteenth
Annual Conference of the Cognitive Science Society, 1991.

[12] Katashi Nagao and Akikazu Takeuchi. Social interaction: Multimodal conver-
sation with social agents. In Proceedings of the Twelfth National Conference
on Artificial Intelligence, 1994.

[13] W. Scott Reilly and Joseph Bates. Building emotional agents. Technical Report
CMU-CS-92-143, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, May 1992.

[14] Charles Rich et al. An animated on-line community with artificial agents.
IEEE MultiMedia, 1(4):32^12, Winter 1994.

[15] Robert Rubinoff and Jill Fain Lehman. Real-time natural language generation
in NL-Soar. In Proceedings of 7th Internat. Generation Workshop, June 1994.

[16] Frank Thomas and Ollie Johnston. Disney Animation: The Illusion of Life.
Abbeville Press, New York, 1981.

15

