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Chapter 1 

Summary 

Current Image Understanding (IU) algorithms and systems lack the flexibility and robust- 
ness to successfully handle complex real-world situations. Robust 3-D object recognition, in 
real-world applications operating under changing environmental conditions, remains one of 
the important but elusive goals of IU research. We believe that an innovative combination 
of IU and Machine Learning (ML) techniques will lead to the advancement of the IU field 
in general. IU itself has come to a certain state of maturity, in that we have today a good 
understanding of the essential components, their functionality, and the architectural issues 
involved. IU processes are commonly separated into three hierarchical layers, called the 
low, intermediate, and high level. At each of these levels, ML techniques can be employed 
selectively to improve the overall recognition performance: by introducing adaptation of 
task parameters; maintenance of internal representations and hypotheses pertaining to the 
observed reality; and learning new concepts and recognition strategies. The incorporation 
of learning into IU algorithms and systems will results in adaptation and robustness capa- 
bility since learning provides automatic knowledge acquisition and continuous improvement 

of recognition system performance. 

Current computational learning taxonomy identifies five major ML paradigms, based 
upon representation schemes and learning methods employed: 

• Inductive Learning uses experience to generate a conjecture and uses further experi- 
ence to confirm or refute it. It is useful to synthesize new knowledge. 

• Analytical Learning (e.g., Explanation-based Learning) uses observations to generate 
conjectures and attempts to confirm these as logical consequences of the existing 
knowledge. It is useful to improve existing knowledge. 
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• Case-Based Reasoning uses memory of relevant "past" cases to interpret or solve a new 
problem case. It is useful when cases similar to its current situation are encountered. 
It can help to avoid past mistakes. 

• Genetic Algorithms are a family of adaptive search methods that are modeled after 
genetic evolution process with the advantage that the search process is independent 
of the problem domain. 

• Connectionist Learning is biologically inspired and uses parallel distributed networks 
of computational nodes with the advantage that the network adaptation is indepen- 
dent of the problem domain. 

The general approach for selecting a computational learning technique for a given ap- 
plication involves the following steps [22]: (1) understand the task well enough to select 
appropriate functions for evaluating the performance of the learning system; (2) abstract 
and define a learning problem from the task problem; (3) select a particular computational 
learning paradigm for the abstracted learning problem. In practice, these three steps are 
not completely separable. We have found, however, that this general process is valuable 
for uncovering non-obvious — but compelling — applications of machine learning in the 
domain of object recognition. 

1.1     Multistrategy Learning in Image Understanding 

The application of ML to the IU domain is more demanding than most conventional learning 
applications in AI. It is caused by (a) the enormous amount of incoming data to be processed, 
and (b) the variety of processes and representations encountered in Image Understanding. 
Consequently, the selection and adaptation of existing learning techniques require careful 
attention. Due to the variety of tasks involved, we cannot expect a single learning technique 
to solve the entire learning problem in IU, but different learning strategies must be optimally 
combined to achieve the desired results. 

The Multi strategy Learning-Based IU System (Figure 1.1) selectively applies machine 
learning techniques at multiple levels to achieve robust recognition performance. 

The system uses Genetic Algorithms (GAs) to optimize multi-sensor image segmentation 
at the low level. At the intermediate level, Explanation-Based Learning (EBL) is employed 
to learn new visual concepts for improving indexing and matching. At the high-level, Case- 
Based Reasoning (CBR) is used to dynamically adapt recognition strategies, and acquiring 
and maintaining information about the environment. At each level, appropriate evaluation 
criteria are employed to monitor the performance and self-improvement of the system. 
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Figure 1.1: Multistrategy Learning-Based IU System 

1.2     Learning at the Low Level: Adaptive Multi-Sensor 
Image Segmentation 

Image segmentation is an extremely important and difficult low-level task. All subsequent 
interpretation tasks including object detection, feature extraction, object recognition, and 
classification rely heavily on the quality of the segmentation process. The difficulty arises 
when the segmentation performance needs to be adapted to the changes in image quality 
that is affected by variations in environmental conditions, imaging devices, time of day, 
etc. Despite the large number of segmentation techniques presently available [39, 50] no 
general methods have been found that perform adequately across a diverse set of imagery, 
i.e., no segmentation algorithm can automatically generate an "ideal" segmentation result 
in one pass (or in an open loop manner) over a range of scenarios encountered in practical 
unstructured applications.  Any technique, no matter how "sophisticated" it may be, will 



eventually yield poor performance if it cannot adapt to the variations in unstructured scenes. 

Genetic Algorithms (GAs) are efficient in locating an approximate global maximum in a 
search space and therefore show great promise in solving the parameter selection problem 
encountered in the image segmentation task. They use simple recombinations of existing 
high quality search points together with a method of measuring current performance. Our 
initial research has demonstrated that adaptive image segmentation can provide over 30% 
improvement in performance over non-adaptive techniques[20]. 

The objectives of our genetics-based adaptive image segmentation system working under 
varying scenarios and/or environmental conditions are (a) learning the optimal parameter 
settings for adaptive image segmentation, (b) learning the optimal selection of image seg- 
mentation algorithms, for multi-scenarios, and (c) learning the optimal sensor combinations 
and cross-sensor validation of segmentation results. 

1.3     Learning at the Intermediate Level: Learning 
Composite Visual Concepts 

Model-based object recognition methods require image data to be matched with models 
in the system database. Typically, the image data consists of unordered sets of simple 
geometric primitives like lines, arcs, and corners. It is well known that the computational 
complexity of the matching process is exponential in the number of image features for a 
given object model. Grouping has been shown to be an effective means for reducing the 
search complexity in structural matching [63]. However, most current grouping techniques 
use only perceptually motivated, low-order geometrical relationships, (such as collinearity, 
cotermination, parallelism, proximity, etc.), but no object model information, to assemble 
simple features of the same type. As a result, the full potential of grouping for solving the 
indexing problem has not been realized. 

The key features of our approach at the intermediate level are: 

1. The use of a two-stage grouping strategy that combines (a) domain-independent per- 
ceptual grouping and (b) model-based grouping with a database of high-order struc- 
tural arrangements (intermediate visual concepts). 

2. The use of Explanation-Based Learning to automatically infer the most useful inter- 
mediate visual concepts from real examples. 

3. The introduction of multiple types of primitive features ("polymorphic" features) to 
participate in feature groupings instead of a single feature type, which will lead to 
increased robustness (by providing redundancy) and indexing power. 



1.4 Learning at the High Level: Learning Recognition 
Strategies in Dynamic Environments 

Automatic acquisition of recognition strategies in dynamic situations has been a bottleneck 
in the development of automated IU systems applied to real-world problems. The problem 
occurs while matching a stored object model to an input instance of that model and is 
attributed to the initially unknown pose of object and the varying environmental conditions. 

During the process of image/scene understanding a human relies heavily on the memory 
of past cases and experience. For this purpose, we use the Case-Based Reasoning (CBR) 
paradigm in which "past" experiences are stored in memory as cases and are used to solve 
a new problem case. Similar cases can be combined to create problem solving shortcuts or 
to anticipate problems in new situations. The set of cases is prioritized and a strategy for 
the current problem is generated and executed. Various combinations of cases are created 
until a successful solution is reached. 

The key features of our high-level approach are: 

1. Cases are represented in a hierarchical manner and include task related knowledge, 
context, and recognition strategies. Explanation-Based Learning (EBL) is also used 
for generalizing and refining the individual cases before they are stored in the case 
memory. 

2. Visual concepts instantiated at the intermediate level are used for indexing and match- 
ing, in conjunction with the evaluation of recognition performance. 

3. Similarities and differences are used to match new situations to existing cases. 

1.5 Interaction and Feedback between Multiple Levels 

Current computer vision systems for model-based object recognition are open-loop systems 
that typically use image segmentation followed by object recognition algorithms. As a 
result of the open-loop nature, these systems are not robust for most real-world problems. 
With the goal of achieving robust recognition performance by using closed-loop systems, the 
question is how we can control feedback in a systematic manner from high-level recognition 
to low-level image segmentation. This has been a long-standing problem in the field of 
computer vision. Our approach for closed-loop model-based object recognition determines 
its criteria for image segmentation or feature extraction by using the recognition algorithm 
as part of the evaluation function.  The confidence level of the matching algorithm serves 



as a reinforcement signal to generate the new values for segmentation or feature extraction 
parameters. This results in the performance improvement of the recognition system and 
generation of recognition strategies automatically. 

1.6     Other Research in This Area 

The incorporation of machine learning techniques into IU has been limited to isolated 
problems but there have been no approaches to integrate learning at multiple levels [22]. 

Learning in Image Understanding — Recent learning-based approaches to model- 
based object recognition have primarily focused on the connectionist framework or have 
emphasized object model acquisition. However, in all of these past approaches, the problem 
of object recognition has been treated as self-contained, independent of any lower-level 
feature extraction problems that may be encountered in reality. In contrast, our proposed 
approach treats the object recognition problem as a multi-level (low, intermediate, and high 
level) vision task. 

Learning in Low-Level Vision — Genetic algorithms have been used for learning 
algorithm parameters for adaptive segmentation of color and textured images as well as 
the adaptive extraction of parametric image curves. Approaches using artificial neural nets 
(ANN) have been developed for adaptive image segmentation using perceptually motivated 
features. There has been some work in automatic sensor modeling, however, the problem 
of sensor, algorithm/parameter selection has not been addressed. 

Learning in Intermediate-Level Vision — Structural feature detection is usually 
based on a fixed set of visual primitives for which efficient detection algorithms are avail- 
able. The incorporation of features of varying complexity has been addressed using only 
non-adaptive, domain-independent grouping criteria. The problem of automatically form- 
ing intermediate-level perceptual shape concepts has found considerable attention in the 
psychological field recently, and interesting computational theories have emerged which, 
however, have not been implemented in IU architectures. 

Learning in High-Level Vision — Learning by analogy was the first approach to in- 
corporate a learning capability into a computer vision program, followed by learning class 
descriptions from examples. An inductive learning system was developed that creates pro- 
duction rules for recognizing isolated 2-D objects.   ANN-based schemes have been used 
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for recognition based on multivariate approximation theory. A multistrategy learning tech- 
nique that incorporates Explanation-Based Learning and Structured Conceptual Clustering 
techniques has been used to automatically acquire and refine 2-D aircraft models. 

Evaluation of Vision Algorithms — Very little work has been done to date on sys- 
tematic evaluation of vision algorithm and system performance. Most current evaluation 
methods are selected ad hoc, performed off-line, and not integrated into IU systems ar- 
chitectures. Statistical approaches, such as the surface response method have been used 
for algorithm evaluation in conjunction with parameter selection. No practical IU systems 
exist today that provide performance evaluation of the overall system by making use of the 
inherent performance evaluation of individual learning components. 

1.7    Accomplishments 

During the reporting period, we have made the following achievements: 

(a) Genetic Algorithm for Adaptive Image Segmentation (Chapter 2): We find that our 
genetic learning-based adaptive image segmentation approach scales with respect to 
the number of parameters and the size of the search space. Genetic learning com- 
bined with a hill-climbing technique is able to adaptively select good segmentation 
parameters and generate the best result using the least number of segmentations. By 
designing the experiments to evaluate the scalability of our approach, we find that 
when the size of the search space for four Phoenix parameters is 1 million, we search 
about 0.5% of the search space. This needs to be compared to the situation when we 
adapt two Phoenix parameters, the size of search space is 1024 and 2.4% of the search 
space is examined to find the global maximum. 

(b) Learnable Structural Models for Target Indexing (Chapters 3 and 4): We have devel- 
oped an approach to indexing that is based on utilization of weak structural models, 
direct table look-up, and inexact sequence matching. The weak structural models 
are defined as hidden Markov models (HMMs) which together with inexact analysis 
are appropriate for handling uncertainties and distortion in the imaging process; the 
table look up method utilizes invariant features similar to the existing approaches to 
indexing. The HMMs, the look-up table, and the database for sequence matching are 
all learned from training examples. 

Using Gabor wavelet preprocessing we have developed techniques for quantization of 
local image measurements, learned HMM parameters from real examples and devel- 
oped techniques for sequentialization of observations. 



(c) Reinforcement Learning for Closed-Loop Object Recognition (Chapter 5 and 6): Using 

the Phoenix algorithm for the segmentation of color images, a clustering-based algo- 
rithm for the recognition of occluded 2-D objects and a team of learning automata 

algorithm, we show that in simple real scenes with varying environmental conditions 
and camera motion, effective low-level image analysis can be performed. We show the 
performance improvement of an IU system combined with learning over an IU system 
with no learning. 

We have also developed a closed-loop object recognition system based on delayed 
reinforcement learning methods, where we learn segmentation and feature extraction 
parameters. In the future we plan to compare reinforcement learning algoithms based 

on team of learning automata and delayed reinforcement. 

(d) Context Reinforced Background Modeling (Chapter 7): We have developed a tech- 
nique that uses reinforcement learning to relate background models with the con- 
text for automatic target detection. Background models are represented by a novel 
self-organizing approach that uses both positive and negative examples to improve 
classification performance. 

(e) Case-Based Learning of Recognition Strategies (Chapter 8): We have developed an 
approach to model-based object recognition under real-world conditions using Case- 
Based Reasoning (CBR) paradigm. This paradigm is analogical to human reasoning 
process which relies heavily on the memory of past cases and experience. Using CBR, 
successful recognition strategies are stored in memory as cases and are used to solve 
a new problem. Various combinations of cases are created until a successful solution 
is reached for the new situation. 

(f) Learning Composite Visual Concepts (Chapter 9): We have specified the goals, prereq- 
uisites, and a preliminary formalism for "inventing" significant structural groupings 
from multi-class primitives. The approach is based on discovering groupings that have 
both a simple description and are distinctive for indexing into the model base, using 
a variant of explanation-based learning. 

(g) Consolidated Recognition and Motion Analysis (Chapter 10): Using two sequences of 
outdoor and indoor color images, we show preliminary results for performance im- 
provement in recognition by the interaction of color and dense range images obtained 
from motion analysis. The objects in the sequences are quite simple (traffic cones, 
cans, etc.). 

Other accomplishments include the publication of a book on "Genetic Learning for Adap- 
tive Image Segmentation," publication of a chapter in a book, submission of two papers to a 
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special issue of Proceedings of the IEEE on "Signals and Symbols," and papers to IJCAP95 
ICCV'95 and IUW'94. 



Chapter 2 

Genetic Algorithm for Adaptive 
Image Segmentation 

2.1     Introduction 

Image segmentation is an old and difficult problem. It refers to the grouping of parts of an 
image that have "similar" image characteristics. All subsequent interpretation tasks includ- 
ing object detection, feature extraction, object recognition, and classification rely heavily 
on the quality of the segmentation process. The difficulty arises when the segmentation 
performance needs to be adapted to the changes in image quality. Image quality is affected 
by variations in environmental conditions, imaging devices, time of day, etc. Despite the 
large number of segmentation techniques presently available [39, 50], no general methods 
have been found that perform adequately across a diverse set of imagery, i.e., no segmen- 
tation algorithm can automatically generate an "ideal" segmentation result in one pass (or 
in an open loop manner) over a range of scenarios encountered in practical applications. 
Any technique, no matter how "sophisticated" it may be, will eventually yield poor perfor- 
mance if it cannot adapt to the variations in real-world scenes. The following are the key 
characteristics of the image segmentation problem: 

• When presented with a new image, selecting the appropriate set of algorithm param- 
eters is the key to effectively segmenting the image. Most segmentation techniques 
contain numerous control parameters which must be adjusted to obtain optimal 
performance, i.e., they are to be learned. The size of the parameter search space in 
these approaches can be prohibitively large, unless it is traversed in a highly efficient 
manner. 
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• The parameters within most segmentation algorithms typically interact in a complex, 
non-linear fashion, which makes it difficult or impossible to model the parameters' 
behavior in an algorithmic or rule-based fashion. 

• The variations between images cause changes in the segmentation results, the objective 
function that represents segmentation quality varies from image to image. The search 
technique used to optimize the objective function must be able to adapt to these 
variations. 

• The definition of the objective function itself can be a subject of debate because there 
are no universally accepted measures of image segmentation quality. 

Hence, a need exists to apply an adaptive technique that can efficiently search the com- 
plex space of plausible parameter combinations and locate the values which yield optimal 
results. The approach should not be dependent on the particular application domain nor 
should it have to rely on detailed knowledge pertinent to the selected segmentation algo- 
rithm. Genetic algorithms (GA), which are designed to efficiently locate an approximate 
global maximum in a search space, have the attributes described above and show great 
promise in solving the parameter selection problem encountered in the image segmentation 
task. 

The next section of this Chapter argues about the genetic algorithms as the appropriate 
optimization technique for the segmentation problem. Section 3 describes the adaptive im- 
age segmentation algorithm. We explain the choice of a particular segmentation algorithm 
as well as the manner in which segmentation quality is measured. Section 4 presents the 
experimental results on a sequence of outdoor images. We compare adaptive image seg- 
mentation results with other non-adaptive segmentation techniques. Section 5 presents the 
adaptive segmentation results when we scale the number of parameters in a scheme that 
uses genetic algorithms and hill climbing. Finally, Section 6 provides the conclusions of this 
Chapter. 

2.2     Image Segmentation as an Optimization Problem 

Fig. 2.1 provides an example of an objective function that is typical for the image segmenta- 
tion process. The figure depicts an application in which only two segmentation parameters 
(maxmin and absscore) are being varied, and the corresponding segmentation quality ob- 
tained for any pair of algorithm parameters. Because the algorithm parameters interact in 
complex ways, the objective function is multimodal and presents problems for many com- 
monly used optimization techniques. Further, since the surface is derived from an analysis 
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Figure 2.1: Segmentation quality surface. 

of real-world imagery, it may be discontinuous, may contain significant amounts of noise, 
and cannot be described in closed form. The derivation of this surface will be described in 
Section 3, where we discuss the segmentation evaluation process. 

The conclusion drawn from an analysis of various segmentation quality surfaces that we 
have examined is that we must utilize a highly effective search strategy which can withstand 
the breadth of performance requirements necessary for the image segmentation task. 

2.2.1     Parameter Search Techniques 

Various commonly used search techniques for functional optimization exist. The drawbacks 
to each of these methodologies are as follows: 

• Exhaustive Techniques (Random walk, depth first, breadth first, enumerative) — Able 
to locate global maximum but computationally prohibitive because of the size of the 
search space. 

• Calculus-Based Techniques (Gradient methods, solving systems of equations) — No 
closed form mathematical representation of the objective function is available. Dis- 
continuities and multi-modal complexities are present in the objective function. 

• Partial Knowledge Techniques (Hill climbing, beam search, best first, branch and 
bound, dynamic programming, A*) — Hill climbing is plagued by the foothill, plateau, 
and ridge problems.   Beam, best first, and A* search techniques have no available 
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measure of goal distance.  Branch and bound requires too many search points while 
dynamic programming suffers from the curse of dimensionality [110]. 

• Knowledge-Based Techniques (Production rule systems, heuristic methods) — These 
systems have a limited domain of rule applicability, tend to be brittle [53], and are 
usually difficult to formulate. Further, the visual knowledge required by these systems 
may not be representable in knowledge-based formats. 

There are other search techniques such as genetic algorithms, simulated annealing and 
hybrid method [16]. To address the characteristic of image segmentation problem as dis- 
cussed earlier, we have selected genetic algorithms for adaptive image segmentation. 

2.2.2     Genetic algorithms for Image Segmentation 

Genetic algorithms were pioneered at the University of Michigan by John Holland and 
his associates [30, 43, 52]. The term genetic algorithm is derived from the fact that its 
operations are loosely based on the mechanics of genetic adaptation in biological systems. 
Genetic algorithms can be briefly characterized by three main concepts: a Darwinian notion 
of fitness or strength which determines an individual's likelihood of affecting future gener- 
ations through reproduction; a reproduction operation which produces new individuals by 
combining selected members of the existing population; and genetic operators which create 
new offspring based on the structure of their parents. 

A genetic algorithm maintains a constant-sized population of candidate solutions, known 
as individuals. The initial seed population from which the genetic process begins can be 
chosen randomly or on the basis of heuristics, if available for a given application. At 
each iteration, known as a generation, each individual is evaluated and recombined with 
others on the basis of its overall quality or fitness. The expected number of times an 
individual is selected for recombination is proportional to its fitness relative to the rest of 
the population. Intuitively, the high strength individuals selected for reproduction can be 
viewed as providers of "building blocks" from which new, higher strength offspring can be 
constructed. An abstract procedure of a simple genetic algorithm is given below, where 
P(t) is a population of candidate solutions to a given problem at generation t. 

t = 0; 
initialize P(t); 
evaluate P(t); 
while not termination condition> 

begin 
t = t + l; 
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end; 

reproduce P(t) from P(t-l) 
recombine P(t); 
evaluate P(t); 

New individuals are created using two main genetic recombination operators known as 
crossover and mutation. Crossover operates by selecting a random location in the genetic 
string of the parents (crossover point) and concatenating the initial segment of one parent 
with the final segment of the second parent to create a new child. A second child is simul- 
taneously generated using the remaining segments of the two parents. The string segments 
provided by each parent are the building blocks of the genetic algorithm. Mutation provides 
for occasional disturbances in the crossover operation by inverting one or more genetic ele- 
ments during reproduction. This operation insures diversity in the genetic strings over long 
periods of time and prevents stagnation in the convergence of the optimization technique. 

The individuals in the population are typically represented using a binary notation to 
promote efficiency and application independence of the genetic operations.   Holland [52] 
provides evidence that a binary coding of the genetic information may be the optimal 
representation.   Other characteristics of the genetic operators remain implementation de- 
pendent, such as whether both of the new structures obtained from crossover are retained, 
whether the parents themselves survive, and which other knowledge structures are replaced 
if the population size is to remain constant.   In addition, issues such as the size of the 
population, crossover rate, mutation rate, generation gap, and selection strategy have been 
shown to affect the efficiency with which a genetic algorithm operates [46] 

The inherent power of a genetic algorithm lies in its ability to exploit, in a highly efficient 
manner, information about a large number of individuals. By allocating more reproductive 
occurrences to above average individuals, the overall net affect is an upward shift in the 
population's average fitness. Since the overall average moves upward over time, the genetic 
algorithm is a "global force" which shifts attention to productive regions (groups of highly 
fit individuals) in the search space. However, since the population is distributed throughout 
the search space, genetic algorithms effectively minimize the problem of converging to local 
maxima. 

To date, genetic algorithms have been applied to a wide diversity of problems. They have 
been used in combinatorial optimization [55], gas pipeline operations [42, 45] and machine 
learning[53]. With regards to computer vision applications, Mandava et. al [64] have used 
genetic algorithms for image registration, Gillies [41], and Roth and Levine [91] for feature 
extraction, and Ravichandran [85] for object recognition. 
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2.3     Genetic Learning for Adaptive Image Segmentation 

Genetic algorithms can be used in three different ways to provide an adaptive behavior 
within a computer vision system. The simplest approach is to allow the genetic system to 
modify a set of control parameters that affect the output of an existing computer vision 
program. By monitoring the quality of the resulting program output, the genetic system can 
dynamically change the parameters to achieve the best performance. A second approach 
allows the genetic component to modify the complex data structures within an algorithm 
or production rule system for a computer vision application. By modifying the control 
mechanism or agenda in an algorithm or the organization of data frames in a rule-based 
system, the genetic algorithm can bring about changes in the system's behavior. Finally, 
the most complex implementation of an adaptive computer vision system allows the genetic 
algorithm to actually make changes in the executable code of a program. In most of these 
cases, the adaptation involves changing the condition/action statements of the rules in a 
production system. Since almost every image segmentation algorithm contains parameters 
that are used to control the segmentation results, we have adopted the first strategy listed 
above. 

The block diagram of our approach to adaptive image segmentation is shown in Fig. 2.2. 
After acquiring an input image, the system analyzes the image characteristics and passes 
this information, in conjunction with the observed external variables, to the genetic learning 
component. Using this data, the genetic learning system selects an appropriate parameter 
combination, which is passed to the image segmentation process. After the image has been 
segmented, the results are evaluated. If the quality of segmentation ("fitness") is acceptable, 
and update to long-term population is made. If the quality is unacceptable, the process of 
new parameter selection, segmentation and evaluation continues until a segmentation result 
of acceptable quality is produced, or the terminate criteria are satisfied. 

2.3.1    Image Characteristics 

A set of characteristics of the image is obtained by computing specific properties of the 
digital image itself as well as by observing the environmental conditions in which the im- 
age was acquired. Each type of information encapsulates knowledge that can be used to 
determine a set of appropriate starting points for the parameter adaptation process. For 
the experiments described here, we compute twelve first order properties for each color 
component (red, green, and blue) of the image. These features include mean, variance, 
skewness, kurtosis, energy, entropy, x intensity centroid, y intensity centroid, maximum 
peak height, maximum peak location, interval set score, and interval set size [60, 101]. The 
last two features measure histogram properties used directly by the PHOENIX segmenta- 
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Figure 2.2: Adaptive image segmentation system. 

tion algorithm and provide useful image similarity information. Since we use a gray scale 
image to compute edge information and object contrast during the evaluation process, we 
also compute the twelve features for the Y (luminance component) image as well. Combin- 
ing the image characteristic data from these four components yields a list of 48 elements. 
In addition, we utilize two external variables, time of day and weather conditions, in the 
outdoor experiments to characterize each image. The external variables are represented 
symbolically in the list structure (e.g., time = 9am, 10am, etc. and weather conditions = 
sunny, cloudy, hazy, etc). The distances between these values are computed symbolically 
when measuring image similarity. The two external variables are added to the list to create 
an image characteristic list of 50 elements for the outdoor experiments. The representation 
of an individual knowledge structure of the genetic population is shown in Fig. 2.3. 

2.3.2     Genetic Learning System 

Once the image statistics and external variables have been obtained, the genetic learning 
component uses this information to select an initial set of segmentation algorithm param- 
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Figure 2.3: Representation of a knowledge structure used by the genetic learning system. The 
image characteristics (image statistics and external variables), segmentation parameters, and the 
image quality or fitness of the parameter set are stored in each structure. 

eters. A knowledge-based system is used to represent the image characteristics and the 
associated segmentation parameters. The image statistics and external variables shown in 
Fig. 2.3 form the condition portion of the knowledge structure, C\ through CI+J, while 
the segmentation parameters indicate the actions, A\ through AN, of the knowledge struc- 
ture. The fitness, W, which ranges in value from 0.0 to 1.0, measures the quality of the 
segmentation parameter set. Note that only the fitness value and the action portion of the 
knowledge structure are subject to genetic adaptation; the conditions remain fixed for the 

life of the knowledge structure. 

When a new image is provided to the genetic learning system, the process begins by 
comparing the image characteristics of the new image (Fig. 2.2) with the knowledge struc- 
tures in the long-term population (also called global population, Fig. 2.3). The long-term 
population represents the accumulated knowledge of the adaptive system obtained through 
previous segmentation experience. The algorithm computes a ranked list of individuals in 
the population that have characteristics similar to the new image. Ranking is based on the 
normalized Euclidean distance between the image characteristic values as well as the fitness 
of the knowledge structure. The normalized distance between images A and B is computed 

using 

C'iA - CiMIN CiB — CiMIN 
distj^ß 

I+J 

Y. 
i=l 

Wi 
Ci iMAX C MIN Ci MAX -c iMIN 

where CiMIN is the minimum value of the ith numeric or symbolic feature in the global 
population, C{MAX 

is the maximum value of the ith feature in the global population, and 
Wi is the weight attached to the ith feature.  For the results presented in this paper, the 
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ranges are normalized and the Wi values have been set to 1 so that each feature contributes 
equally to the distance calculation. 

When the distance between an image and several members of the global population are 
the same (e.g., if a previous image contributed multiple individuals to the global population), 
fitness values are used to select the best individuals from the population. Temporary copies 
of the highest ranked individuals are used to create the initial or seed population for the 
new image. 

Once the initial or seed population is available, the genetic adaptation cycle begins. (The 
seed population is the same as the initial population, when the genetic algorithm begins its 
search operation.) The segmentation parameter set in each member of the seed population 
is used to process the image. The quality of the segmented results for each parameter 
set is then evaluated. If the maximum segmentation quality for the current population 
is above a predefined threshold of acceptance or other stopping criteria are satisfied, the 
cycle terminates and the high quality members of the current image population are used 
to update the global population. Less fit members of the global population are discarded 
in favor of higher strength individuals obtained from processing the current image. In this 
manner, the system is able to extend the knowledge of the adaptive segmentation system 
by incorporating new experience into the knowledge database. 

Alternatively, if after segmenting and evaluating the performance of the current or local 
(also called short-term) population, the system has not achieved acceptable segmentation 
quality and any other termination criteria are not satisfied, the genetic recombination op- 
erators are applied to the members of the current population. The crossover and mutation 
operators are applied to the high strength individuals in the population, creating a new 
set of offspring which will theoretically yield better performance [52]. The new population 
is supplied back to the image segmentation process, where the cycle begins again. Each 
pass through the loop (segmentation-evaluation-recombination) is known as a generation. 
The cycle shown continues until the maximum fitness achieved at the end of a generation 
exceeds some threshold or other termination criteria are satisfied, as described earlier. The 
global population is updated and the system is then ready to process a new image. 

Fig. 2.4 provides a simple example of the adaptive segmentation system. The image 
characteristics extracted from the image are used in this example as the new image data. 
A subset of the complete image characteristics is used here for the sake of simplicity. The 
new image characteristics are compared with the individuals in the global population to 
obtain the seed population. The normalized Euclidean distance is computed from the new 
image to every member of the global population and this distance is used in conjunction 
with the fitness of each individual in the population. In this example, we have limited 
the seed population to 3 individuals.  In the experiments described in Section 4, the seed 
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population for each image consists of 10 knowledge structures while the global population 
holds 100 knowledge structures in order to maintain a diverse collection of segmentation 
experience. The matching process identifies the three members of the global population 
with similar image characteristics and a high degree of fitness. A copy of these individuals 
is then extracted to create the seed population shown in Fig. fig:gacycle. 
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Figure 2.4: Example of one complete cycle through the adaptive image segmentation system. 

After the seed population is obtained, we must establish the fitness of each individual by 
processing the new image with the associated segmentation parameters. Thus, we perform 
the image segmentation and evaluation steps to derive the new fitness values shown in 
the second step of Fig. 2.4. Assuming a threshold fitness value of 0.70, none of the fitness 
values obtained from the initial population (0.48, 0.54, and 0.30) are acceptable. The current 
population is now passed through the genetic recombination step to generate a set of new 
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individuals.  In this example, the first two members of the population are combined using 
the crossover operator while the third member is modified using the mutation operator. 

The newly created population must be passed through the segmentation and evaluation 
stages once more to determine the fitness of each individual. The fitness values of the 
new population are shown in Fig. 2.4. Since the fitness of the first individual (0.79) 
exceeds the threshold value (0.70), the adaptive cycle for this image is terminated. A 
new knowledge structure is created for the current image by inserting the appropriate 
image characteristics and storing the new parameter settings and their associated fitness. 
This knowledge structure is then inserted into the global population, replacing the least 
fit member. Had any other members of the new image's population been greater than the 
threshold, they too would have been placed into the global population. 

2.3.3    Segmentation Algorithm 

Since we are working with color imagery in our experiments, we have selected the PHOENIX 
segmentation algorithm developed at Carnegie-Mellon University and SRI International [60, 
73, 101]. The PHOENIX algorithm is a recursive region splitting technique. An input image 
typically has red, green, and blue image planes, although monochrome images, texture 
planes, and other pixel-oriented data may also be used. Each of the data planes is called a 
feature or feature plane. The algorithm recursively splits nonuniform regions in the image 
into smaller subregions on the basis of a peak/valley analysis of the histograms of the red, 
green, and blue image components simultaneously. Segmentation begins with the entire 
image, considered to be a single region, based on histogram and spatial analyses. If the 
initial segmentation fails, the program terminates; otherwise, the program fetches each of 
the new regions in turn and attempts to segment them. This process terminates when 
the recursive segmentation reaches a predefined depth, or when all the regions have been 
segmented as finely as various user-specified parameters permit. 

PHOENIX contains seventeen different control parameters [60] fourteen of which are used 
to control the thresholds and termination conditions of the algorithm. There are about 1040 

conceivable parameter combinations using these fourteen values. For the outdoor image 
sequence that we have used, these parameters can be divided into three groups according 
to their effect on segmentation results. 
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Group I: Essential PHOENIX Parameters. 

Parameter (default) Description Range 

Hsmooth (9) The width of the averaging window used to 
smooth each feature histogram. 

1- 100 

Maxmin (160) The minimum acceptable ratio of apex height 
to higher shoulder. 

100-104 

Group II: Important PHOENIX Parameters. 

Parameter (default) Description Range 

Absscore (70) The  lowest  interval  set  score  that  will   be 
passed to the threshold phase. 

0 - 1000 

Spiitmin (4) Direct   manipulation   of   the   segmentation 
queue, for which fetched regions are to be seg- 
mented further 

1-200 

Noise (10) The size of the largest area that is to be con- 
sidered noise 

0- 104 

Height (20) The minimum  acceptable  apex height as a 
percentage of the second highest apex 

0- 100 

Group III: Less important PHOENIX parameters 

The rest of the parameters have relatively much less influence on the segmentation result. 

To minimize the problem complexity, four parameters have been selected for GA to 
search for the combination that gives best segmentation result using PHOENIX. Thirty 
two values are sampled for each of these four parameters. This results in a search space 
whose size is about one million. The parameters are shown in Table 1, together with the 
formula by which they are sampled, and the associated test range for each. In Section 4, 
we will present results using the first two parameters (hsmooth and maxmin). In Section 5, 
we show scaling results when we adapt all the four parameters. 

2.3.4    Segmentation Evaluation 
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Table 2.1: PHOENIX parameters used for adaptive image segmentation. 

Parameter 

Hsmooth: 

hsindex 6 [0 : 31] 

Maxmin: 

mmindex 6 [0 : 1] 

Splitmin: 

smindex € [0 : 1] 

Height: 

htindex €[0:1] 

Sampling Formula Test Range 

hsmooth = 1 + 2 • hsindex 

ep = log(100) + 0.05 • mmindex 

maxmin = exp(ep) + 0.5 

splitmin = 9 + 2 • smindex 

height = 4 + 2 • htindex 

1-63 

100 - 471 

9-71 

4-66 

After the image segmentation process has been completed by the PHOENIX algorithm, 
we must measure the overall quality of the segmented image. There are a large number of 
segmentation quality measures that have been suggested in the literature [11], although none 
has achieved widespread acceptance as a universal measure of segmentation quality. In order 
to overcome the drawbacks of using only a single quality measure, we have incorporated 
an evaluation technique that uses five different quality measures to determine the overall 
fitness for a particular parameter set. In the following, boundary pixels refer to the pixels 
along the borders of the segmented regions, while the edges obtained after applying an 
edge operator are called edge pixels. The five segmentation quality measures that we have 
selected are, 

1. Edge-Border Coincidence: Measures the overlap of the region borders in the image 
acquired from the segmentation algorithm relative to the edges found using an edge 
operator. In this quality measure, we use the Sobel operator to compute the necessary 
edge information. The original, unthinned Sobel edge image is used to maximize 
overlap between the segmented image and the edge image. Edge-border coincidence 
is defined as follows (refer to Fig. 2.5(a)). 

Let E be the set of pixels extracted by the edge operator after thresholding and S 
be the set of pixels found on the region boundaries obtained from the segmentation 
algorithm: 

E = {pup2,---, PE} = {(xpl, ypl), (xp2, yp2), ■ ■ ., (XpE, ypE)}   and 
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S = {qi,q2,---,qs} = {{xqi,yqi)A
xq2,yq2), 

n{EnS) 

{xqs,yqs},    then 

Edge-border Coincidence = 
n(E) 

E n S = {{xki Vk), k = 1, ■ ■ ■, m, where(xy, y^) € -E1 and 5},    and 

ra(A) = the number of elements in set A. 

2. Boundary Consistency: Similar to edge-border coincidence, except that region borders 
which do not exactly overlap edges can be matched with each other. In addition, region 
borders which do not match with any edges are used to penalize the segmentation 
quality. The Roberts edge operator is used to obtain the required edge information. 
As with the edge-border coincidence measure, the Roberts edge image is not thinned 
to maximize the overlap between images. Boundary consistency is computed in the 
following manner (see Fig. 2.5(b)). 

The first step is to find neighboring pixel pairs in the region boundary and edge results. 
For each pixel in the segmented image region boundary results, S, a neighboring pixel 
in the edge image, E, that is within a distance of dmax is sought. A reward for locating 
a neighbor of the ith boundary pixel is computed using 

Ri — 
dr, -di 

where dmax = 10, and di = the distance to the nearest edge pixel. 

Thus, if the pixels had overlapped, Ri = (10 — 0)/10 = 1. Pixels that do not directly 
overlap contribute a reward value that is inversely related to their distance from each 
other. As matching pairs of pixels are identified, they are removed from the region 
boundary and edge images (5 and E). The total reward for all matching pixel pairs 
is obtained using 

RTOTAL = ^2 Ri 

i 

Once all neighboring pixel pairs have been removed from E and S, the remaining (i.e., 
non-overlapping and non-neighboring) pixels correspond to the difference between the 
two images. The average number of these pixels is used to compute a penalty 

n(all remaining pixels in E and S) 

~ 2 ' 

Finally, since the value of boundary discrepancy must be positive, we define an inter- 
mediate value, M, as M = (RTOTAL - P)/n(E), then 

Boundary Consistency = M,    if M > 0,   and zero otherwise. 
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i 

3. Pixel Classification: This measure is based on the number of object pixels classified 
as background pixels and the number of background pixels classified as object pixels. 
Let G be the set of object pixels in the groundtruth image and R be the set of object 
pixels in the segmented image (see Fig. 2.5(c)). Formally, we have 

G= {PUP2,---,PA} = {(xpi,yPi),(xp2,yP2),---AxpA,yPA)}   and 

R= {quq2i---,qB} = {(xqi,yqi),(xq2,yq2)r..,(XqB,yqB}. 

Since pixel classification must be positive, we define the intermediate value N as 
follows 

N = 1 - [("(g) ~ n(G n R)) + (n(R) - n(G n R))' 

where GDR= {(xk,yk),k = l,---, m,    where  (xk,yk) e G &nd R} 

Using the value of N, pixel classification can then be computed as 

Pixel Classification = N,    if JV > 0,   and zero otherwise. 

4. Object Overlap: Measures the area of intersection between the object region in the 
groundtruth image and the segmented image, divided by the object region. As defined 
in the pixel classification quality measure, let G be the set of object pixels in the 
groundtruth image and R be the set of object pixels in the segmented image (Fig. 
2.5(d)). Object overlap can be computed as 

Object Overlap 

where Gn R = {(xk, yk), k = 1, • • •, m 

njGDR) 
n(G) 

,    where  (xk, yk) e G and R} 

5. Object Contrast: Measures the contrast between the object and the background in the 
segmented image, relative to the object contrast in the ground-truth image. Let G 
be the set of object pixels in the groundtruth image and R be the set of object pixels 
in the segmented image, as shown in Fig. 2.5(a). In addition, we define a bounding 
box (X and Y) for each object region in these images. These boxes are obtained by 
enlarging the size of the minimum bounding rectangle for each object (G and R) by 
5 pixels on each side. The pixels in regions X and Y include all pixels inside these 
enlarged boxes with the exception of the pixels inside the G and R object regions. 
We compute the average intensity for each of the four regions (G, R, X, and Y) using 
the equation IL = J2f=ix I(j)/Lmax, where I(j) is the intensity of the jth pixel in 
some region L and Lmax is the total number of pixels in region L. The contrast of the 
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object in the groundtruth image, CGT-, and the contrast of the object in the segmented 
image, Csi, can be computed using 

CGT = 
IG-IX 

IG 
i     Csi 

IR-IY 

IR 

The object contrast quality measure is then computed as 

Csi Object Contrast 
CGT 

CGT 

CSI 

,   if CGT > CSI 

,   if CGT < CSI- 

The maximum and minimum values for each of the five segmentation quality measures 
are 1.0 and 0.0, respectively. The first two quality measures are global measures since they 
evaluate the segmentation quality of the whole image with respect to edge information. 
Conversely, the last three quality measures are local measures since they only evaluate the 
segmentation quality for the object regions of interest in the image. When an object is 
broken up into smaller parts during the segmentation process, only the largest region which 
overlaps the actual object in the image is used in computing the local quality measures. The 
three local measures require the availability of object groundtruth information in order to 
correctly evaluate segmentation quality. Since object groundtruth data may not always be 
available, we have designed the adaptive segmentation system to use three separate methods 
of evaluating segmentation quality. First, we can measure quality using global evaluation 
methods alone. Second, if groundtruth data is available and we are only interested in 
correctly segmenting the object regions in the image, we can use local evaluation methods 
alone. Finally, if we desire good object regions as well as high quality overall segmentation 
results, we can combine global and local quality measures to obtain a combined segmentation 
quality measure that maximizes overall performance of the system. In the experiments 
described in this chapter, we combine the five quality measures into a single, scalar measure 
of segmentation quality using a weighted sum approach. Each of the five measures is given 
equal weighting in the weighted sum. Elsewhere we have investigated a more complex vector 
evaluation approach that provides multidimensional feedback on segmentation quality [16, 
17] 

2.4     Segmentation Results 

2.4.1     Segmentation Results Using Genetic Algorithm 

The adaptive image segmentation consists of the following steps: 
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1. 
2. 
3. 
4. 
5. 
5a. 
5b. 

5c. 
5d. 

6. 

Compute the image statistics. 
Generate an initial population. 

Segment the image using initial parameters. 
Compute the segmentation quality measures. 
WHILE not <stopping conditions> DO 

select individuals using the reproduction operator 
generate new population using the crossover 
and mutation operators 
segment the image using new parameters 
compute the segmentation quality measures 

END 

Update the knowledge base using the new knowledge structures. 

We have tested the performance of the adaptive image segmentation system on a time 
sequence of outdoor images that contains variations in the position of the light source (sun) 
and the amount of light as well as changing environmental conditions. The outdoor image 
database consists of twenty frames captured using a JVC GXF700U color video camera. The 
images were collected approximately every 15 minutes over a 4 hour period. A representative 
subset of these images is shown in Fig. 2.6. The original images were digitized to be 480x480 
pixels in size but were subsequently subsampled (average of 4 x 4 pixel neighborhood) to 
produce 120 X 120 pixel images for the segmentation experiments. Weather conditions in 
our image database varied from bright sun to overcast skies. Varying light level is the most 
prominent change throughout the image sequence. The changing environmental conditions 
caused by movement of the sun also created varying object highlights, moving shadows, 
and many subtle contrast changes between the objects in the image. Also, the colors of 
most objects in the image are subdued. The car in the image is the object of interest. The 
auto-iris mechanism in the camera was functioning, which causes a similar appearance in 
the background foliage throughout the image sequence. Even with the auto-iris capability 
built into the camera, there is still a wide variation in image characteristics across the 
image sequence. This variation requires the use of an adaptive segmentation approach to 
compensate for these changes. 

To precisely evaluate the effectiveness of the adaptive image segmentation system, we 
exhaustively defined the segmentation quality surfaces for each frame in the database. The 
car in the image is the object of interest for the pixel classification, object overlap, and 
object contrast segmentation quality measures. The groundtruth image for the car was 
obtained by manual segmentation of Frame 1 only for the image sequence. The Sobel and 
Roberts edge operator results, which are used in the computation of the edge-border coin- 
cidence and boundary consistency measures respectively, are obtained from the gray scale 
image (Y component of the YIQ image set) for each frame [18]. For the determination of 
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object contrast, we used 5 pixels beyond the Minimum Bounding Rectangle (MBR) for each 
object region. For the results presented here, the maxmin and hsmooth parameters of the 
PHOENIX algorithm were used to control the segmentation quality and the segmentation 
quality surfaces were defined for preselected ranges of these two parameters as shown in 
Table 1. All the parameters that were not optimized were set at the default PHOENIX 
parameter values. These parameters remain fixed throughout all the experiments. By se- 
lecting 32 discrete values (5 bits of resolution) for each of these parameter ranges, the search 
space contained 1024 different parameter combinations. Fig. 2.7 presents the five individual 
segmentation quality surfaces and the combined surface for Frame 1 of the database. No- 
tice that the surfaces are complex and hence, would pose significant problems to traditional 
optimization techniques. 

The genetic component used a local or seed population size of 10, a crossover rate of 
0.8, and mutation rate of 0.01. A crossover rate of 0.8 indicates that, on average, 8 out of 
10 members of the population will be selected for recombination during each generation. 
The mutation rate of 0.01 implies that on average, 1 out of 100 bits is mutated during the 
crossover operation to insure diversity in the local population. The stopping criteria for the 
genetic process contains three tests. First, since the global maximum for each segmentation 
quality surface was known a priori (recall that the entire surface was precomputed), the 
first stopping criteria is the location of a parameter combination that produces quality of 
95% or higher. In experiments where the entire surface is not precomputed, this stopping 
criteria would be discarded. Second, the process terminates if three consecutive generations 
produce a decrease in the average population fitness for the local population. Third, if five 
consecutive generations fail to produce a new maximum value for the average population 
fitness, the genetic process terminates. If any one of these three conditions is met, the 
processing of the current image is stopped and the maximum segmentation quality currently 
in the local population is reported. 

Numerous experiments [16] were performed for training and testing to measure the opti- 
mization capabilities of the genetic algorithm and to evaluate the reduction in effort achieved 
by utilizing previous segmentation experience. In the following we present some of these 
results. 

2.4.2    Performance Comparison with Other Techniques 

Since there are no other known adaptive segmentation techniques with a learning capability 
in both the computer vision and neural networks fields to compare our system with, we 
measured the performance of the adaptive image segmentation system relative to the set 
of default PHOENIX segmentation parameters [60, 101] and a traditional optimization 
approach. The default parameters have been suggested after extensive amounts of testing by 
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researchers who developed the PHOENIX algorithm [60]. The parameters for the traditional 
approach are obtained by manually optimizing the segmentation algorithm on the first image 
in the database and then utilizing that parameter set for the remainder of the experiments. 
This approach to segmentation quality optimization is currently a standard practice in state- 
of-the-art computer vision systems. Fig. 2.8 illustrates the quality of the segmentation 
results for Frames 1 and 11 using the default parameters and the traditional approach 
and contrasts this performance with our adaptive segmentation technique. Each result 
corresponds to the average segmentation performance produced by each technique for the 
first frame in the outdoor image database. By comparing the extracted car region in each 
of these images, as well as the overall segmentation of the entire image, it is clear that the 
adaptive segmentation results are superior to the other methods. For Frame 1 using the 
traditional approach, the segmentation quality is initially 95%, which is close to the adaptive 
segmentation quality. This value indicates that our segmentation evaluation measures are 
providing information similar to human perceptual performance. 

The average segmentation quality for the adaptive segmentation technique is 95.8%. In 
contrast, the performance of the default parameters is only 55.6% while the traditional 
approach has a 63.2% accuracy. The outdoor experiments described above were conducted 
in a parallel fashion, i.e., all training and all testing was performed without the aid of 
previous segmentation experience. Although the testing experiments used the knowledge 
acquired during training, the tests were still performed in parallel. None of the segmentation 
experience obtained during testing was applied to subsequent testing images. Using multiple 
day experiments, we show that experience can be used to improve the segmentation quality 
over time. 

The size of the search space in these experiments is 1024, since each of the two PHOENIX 
parameters are represented using 5 bits. The price paid for achieving consistent higher 
quality of segmentation is the average number of times (2.5) one has to go through the 
genetic loop. Thus, only 2.4% of the search space is explored to achieve the global maximum. 
The superiority of the results is not because of the ground-truth information but because of 
the power of the adaptive image segmentation system. Many additional tests, including the 
comparison with random walk approach are performed, that demonstrate the effectiveness 
of the reproduction and crossover operators [16]. 

2.4.3    Demonstration of Learning Behavior 

To measure the improvement in efficiency achieved by immediately reusing segmentation 
experience, we also conducted a set of experiments. These experiments were designed to 
investigate the reduction in computational effort obtained by processing the images in a 
sequential rather than parallel manner.   All the parameters were set as mentioned above 
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in this section. Three separate sequential experiments were performed. In each case, the 
order of the images presented to the adaptive image segmentation system was modified to 
determine the sensitivity of the sequential process to variations in the image sequences. The 
first test processed the outdoor images in their original order, i.e.. Frames 1, 2, 3, ..., 20. The 
second test processed the odd numbered images first and then the even numbered images, 
i.e., Frames 1, 3, 5, ..., 19 followed by Frames 2, 4, ..., 20. This order was chosen so that we 
could compare the performance of the sequential processing with the parallel experiments 
performed earlier. Finally, the third test altered the sequence of images to simulate a multi- 
day scenario where the frequency of image collection decreases to approximately one hour. 
The order of the images in this test is 1, 5, 9, 12, 16, 20, 3, 7, 11, 14, 18, 2, 6, 10, 13, 17, 
4, 8, 15, 19. Each group of images in the sequence of Frames (1, 5, 9, 12, 16, 20), (3, 7, 11, 
14, 18), (2, 6, 10, 13, 17), or (4, 8, 15, 19) was designed to represent a collection of images 
acquired on a different day. Thus, using the sequence of images described above, we have 
simulated a four day long collection of images. 

For each of the three tests, the genetic population of the first frame in the image sequence 
was randomly selected. Once the segmentation performance for that frame was optimized 
by the genetic algorithm, the final population from that image was used to create the initial 
global population. This global population was then used to select the seed population for 
subsequent frames in the image sequence. The global population size was set to 100 for these 
experiments to insure a diversity of segmentation experience in the population. While the 
size of the global population remained below 100 members (prior to processing 10 frames), 
the final populations for each image were merely added to the current global population. 
After the size of the global population reached 100 individuals, the final populations from 
each successive image had to compete with the current members of the global population. 
This competition was based on the fitness of the individuals; highly fit members of a new 
local population replaced less fit members of the global population, thus keeping the size of 
the global population constant. Fig. 2.9 presents the performance results achieved by the 
adaptive image segmentation system during each of the three sequential tests. 

Single Day Sequential Test Fig. 2.9(a) illustrates the performance of the system for 
the single day sequence (first test). The number of generations for the first frame is quite 
large since we started from a random collection of search points. The experience gained 
in processing the first frame is immediately utilized during the second frame. The number 
of generations has been reduced from 12 to 3. Similarly, for Frames 3 and 4, the number 
of generations decreases each time. Although the number of generations does increase 
at several points beyond the fourth frame, the overall trend of this plot does indicate a 
reduction in computational effort. This claim is evident by noting that for the 20 frames of 
outdoor imagery in this sequence, the adaptive image segmentation system optimizes the 
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segmentation quality of 50% (10 out of 20) of these images using the information present in 
the global population. No iterations of the genetic generations are necessary in these cases. 

Odd-Even Image Sequence Test Fig. 2.9(b) provides similar evidence of learning and 
computational savings for the sequence of images used in the second test. Note that the 
initial slope of the graph in this figure is not as steep as in Fig. 2.9(a). This difference is 
due to the fact that the image intervals have increased in this experiment (e.g., we take 
every other image instead of every image). Thus, the knowledge previously acquired by 
the adaptive process is not as immediately relevant to subsequent images as it was during 
the first test. However, once we have processed all odd numbered images, the number 
of generations required during the even numbered images is substantially smaller. It is 
interesting to note that the even numbered images which require several generations (Frames 
6, 14, and 18) in this test also required similar efforts in the first test (Fig. 2.9(a)). This 
correlation implies that the knowledge currently in the global population was not sufficient 
to optimize the segmentation quality of these images without some assistance from the 
genetic algorithm. Finally, note that as was the case in the first test, the adaptive image 
segmentation system optimizes the segmentation quality of half the image sequence (10 of 
20 frames) without invoking the genetic process. 

Multiple Day Sequential Test Fig. 2.9(c) presents the computational efforts required 
for the multi-day simulation in the third test. Once again, we can see the difference in the 
initial slope of the graph, which is due to the order in which the images are encountered. 
In this case, since there is an even wider separation between the images than in the two 
previous tests, the number of generations required for the first few frames is much higher. 
Additionally, with the exception of some local irregularities, the graph in Fig. 2.9(c) shows 
the cyclical nature of the multi-day process. The irregularities are attributed to the trou- 
blesome frames (6, 14, and 18) described earlier. The images in the first "day" (frames 1, 5, 
9, 12, 16, 20) show a continually decreasing level of computational effort. When the second 
sequence (frames 3, 7, 11, 14, 18) is encountered, the effort increases temporarily as the 
adaptive process fills in the knowledge gaps present as a result of the differences between 
the images in each sequence. The image sequence for the third "day" (frames 2, 6, 10, 13, 
17) was handled with almost no effort by the genetic learning. Finally, the fourth image 
sequence (frames 4, 8, 15, 19) requires no effort by the genetic learning at all; each image 
is optimized by the information stored in the global population. Note that the third test 
contains the largest number of frames processed with no help from the genetic algorithm. 
Twelve of the twenty frames in this test were optimized using the global population. 
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2.5     Scaling the Number of Parameters 

For the results presented in Section 4, we selected only two (hsmooth and maxmin) param- 
eters of the PHOENIX algorithm. In this section, we present experimental details when 
we select four parameters (hsmooth, maxmin, splitmin and height) for adaptive image seg- 
mentation. In this case the size of the search space is about 1 million. Table 1 shows the 
parameter values. As the number of segmentation parameters for adaptation increases, the 
number of points to be visited on the surface will also increase. However, genetic algorithms 
offer a number of advantages over other search techniques. These include parallel search 
from a set of points with the expectation of achieving the global maximum. Unlike the 
Hough transform [9], which is essentially an exhaustive search technique commonly used in 
Computer Vision, it is expected that the genetic algorithm will visit only a small percent- 
age of the search space to find an adequate solution, that is sufficiently close to the global 
maximum. 

2.5.1     Search Space and GA Control Mechanism 

Visualization of the Search Space Visualization of the search space allows one to 
understand its complexity—the number and distribution of local peaks and the location of 
global maximum. But this 5-dimensional space (four parameters plus the fitness or quality 
of image segmentation) is difficult to be visualized with traditional methods. So we project 
this 5-dimensional data into a 4-dimensional space by slicing it into 32 pieces along the 
Height axis. 

Fig. 2.10 shows the 3-D volume representation of this 4-dimensional data using the brick 
and slice visualization technique, where the x,y, z axes are maxmin, hsmooth, and splitmin 
respectively (Fig. 2.11), and the color associated with each point represents the combined 
segmentation quality for a given parameter set. Blue color represents segmentation quality 
of zero, while the red color represents 100% quality. To create the data shown in this figure 
using PHOENIX took a couple of weeks on 10 SUN Sparc2 machines. 

GA Control Mechanism As discussed earlier, GA require three operations: selection, 
crossover, and mutation. Here each chromosome consists of four parameters. The ordering 
of these parameters within the chromosome representation does not affect the search process 
due to our method of crossover point selection. Tests are carried out to select the best control 
parameters for GA. These include number of crossover points, crossover rate, mutation rate, 
method of selection, population size, and quality threshold. The results are given below. 
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Crossover Rate Table 2 shows the number of segmentations that are needed for frame 
1 for different crossover rates. The threshold for minimum acceptable segmentation quality 
is 95%, population size varies from 50 to 200. We can see that a lower crossover rate leads 
to smaller number of total segmentations. These data are averaged over 1000 independent 
tests. 

Table 2.2: Number of segmentations under varying population size and crossover rate. The thresh- 
old for minimum acceptable segmentation quality was set at 95% 

Population Crossover Rate 2-Point Crossover 

50 80% 9439 

50% 6077 

100 80% 5805 

50% 4675 

200 80% 7548 

50% 5068 

Table 2.3: Number of segmentations under varying population size and selection of crossover points. 
(Segmentation Quality Threshold = 95% , Crossover Rate = 80% ). 

Population 

10 

100 

200 

500 

1-Point Crossover 

7102 

4960 

4131 

3575 

2-Point Crossover 

6553 

5805 

3939 

3332 

4-Point Crossover 

5941 

5528 

3900 

2878 
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Table 2.4: Number of segmentations under varying threshold (Population = 500, Crossover Rate 
= 80% ). 

Threshold 1-Point Crossover 2-Point Crossover 4-Point Crossover 

95% 3575 3332 2878 

90% 2943 2788 2325 

Population Size and Number of Crossover Points Table 3 shows the number of 
segmentations required for different population sizes and crossover points. The threshold 
for acceptance of segmentation quality is 95% and the crossover rate is set at 80%. From 
the results we can see that using more crossover points and larger population size, the total 
number of required segmentations can be reduced. This experiment also showed that the 
total number of segmentations will not reduce further when population size is greater than 
500. A complete scenario for crossover operation using four points is shown in Fig. 2.12. 

Segmentation Quality Threshold Table 4 shows how different thresholds which cor- 
respond to minimum acceptable segmentation quality affect the total number of required 
segmentations. The difference is not significant between 90% and 95% because these seg- 
mentation qualities are quite close. 

The results presented for Frame 1 in Tables 2-4 show that the number of points that are 
visited on the surface varies from 0.9% to 0.3% for 95% quality of segmentation. In the best 
case only 0.28% of the search space is visited to achieve 99.89% (Threshold is 95%) quality 
of segmentation. 

2.5.2     GA Plus Hill Climbing for Adaptive Image Segmentation 

Hybrid search techniques [1] have the potential for improved performance over single opti- 
mization techniques since these can exploit the strengths of the individual approaches in a 
cooperative manner. One such hybrid scheme which we describe in this section combines 
a global search technique (genetic algorithm) with a specialized local search technique (hill 
climbing). Hill climbing methods are not suitable for optimization of multimodal objective 
functions, such as the segmentation quality surfaces, since they only lead to local extrema 
and their applicability depends on the shape of the objective functions. The hybrid scheme 
provides performance improvements over the genetic algorithm alone by taking advantage of 
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both the genetic algorithm's global search ability and the hill climbing's local convergence 
ability. In a sense, the genetic algorithm first finds the hills and the hill climber climbs 
them. 

The search through a space of parameter values using hill climbing consists of the follow- 
ing steps: (1) Select a starting point; (2) Take a step in each of the fixed set of directions; 
(3) Move to the best alternative found; and (4) Repeat until a point is reached that is higher 
than all of its adjacent points. An algorithmic description of the hill climbing process is as 
follows: 

la. 
lb. 
2a. 
2b. 
3. 
3a. 

3b. 

Select a point xc at random. 
Evaluate the criterion function, i.e., obtain V(xc) 
Identify points xx,- ■ ■ ,xn adjacent to xc 

Evaluate the criterion function, i.e., obtain V(x{) 
Let V(xm) be the maximum of V(xi) for i — 1, • • 
If V(xm) > V(xc) then 

set xc = xm, V(xc) = V(xm) 
goto Step 2. 

Otherwise, stop. 

V(xn). 
,71. 

In the above, a set of points that are "adjacent" to a certain point can be defined in 
two ways. First, it can denote the set of points that are a Euclidean distance apart from 
the given point. Thus, the adjacent points are located in the neighborhood of the given 
point. Second, "adjacent" points can denote the set of points that are unit Hamming 
distance apart from the given point pair. Each point in this set differs by only one bit value 
from the given point in binary representation of points. It defines the set of points with 
varying step size from the given point. The set of Hamming adjacent points was used in 
this research. Hamming adjacent points have an advantage over Euclidean adjacent points 
in our implementation because all the segmentation parameter values are represented as 
binary strings when using the GA. The set of Hamming adjacent points also represents the 
set of points which can be generated by a genetic mutation operator from the given point. 

A conventional hill climbing approach, as described above, finds the largest V(xm) from 
V(x{), i — 1, • • •, n, and the search moves to its corresponding point, xm. For a space of 
n adjacent points, it requires n function evaluations to make each move. To reduce the 
cost of evaluating all the adjacent points before making each move, the hybrid approach 
is designed to try alternatives only until an uphill move is found. The first uphill move is 
undertaken without checking whether there are other (higher) possible moves. After the 
hill climbing process has examined all the adjacent points by flipping each bit in the binary 
representation of the current point, in turn, without finding an uphill move, the current 
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point is taken as a local maximum. The algorithmic description of the hill climbing process 
used in the hybrid search scheme is as follows: 

1. Select a starting point xc with fitness value V(xc) from the 
genetic population. 

2. Set i = 0. 
3. Set j = i. 
4a. Generate an adjacent point xa by flipping the ith bit in xc. 
4b. Obtain V(xa). Set i = (i + 1) mod n. 
5. If V(xa) > V(xc) then 

goto Step 3. 
Else if i < j then 

goto Step 4 
Otherwise, pass the control to the GA. 

2.5.3    Experimental Results 

There are several possibilities in which GA plus climbing can be used. In one case the control 
moves back and forth between GA and hill climbing [16, 17]. In the approach used here GA 
is used for obtaining starting points for hill climbing for the first frame only. Thereafter, 
only hill climbing is used. 

1. GA learning: Perform GA learning for frame 1 using a population size of 10 (chosen 
from hardware consideration) and 4 point crossover operation with a crossover rate 
of 0.8 (same as in Section 4). Ten knowledge structures are selected as seeds for 
hill climbing. The goal here is to use small population size to achieve the desired 
segmentation quality with minimum number of segmentations. 

2. Hill climbing: For frame 2 to frame 20 perform hill climbing with accumulated 
knowledge structures. The seeds generated from previous frames are used to hill 
climb. The best result obtained for the current frame is kept as a new knowledge 
structure and added to the seed pool for hill climbing for the next frame. 

After we are done with frame 20, we will accumulate 29 knowledge structures, with 19 of 
them generated by hill climbing. 

The experimental results of the hybrid search scheme (combining GA and hill climbing) 
for frame 1 are shown in Table 5. The results show that for 95% threshold for image 
segmentation quality, genetic algorithm plus hill climbing technique helps to reduce the 
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Table 2.5: Performance comparison between pure GA and GA with hill climbing (crossover points 
= 4, crossover rate = 80%, mutation rate äS 1%). 

Population = 10 

Threshold = 95% 

Threshold = 90% 

Genetic w/o hill climbing 

5941 

1720 

Genetic with hill climbing 

3340 

1631 

required number of segmentations by almost half. For low segmentation quality threshold 
(90%), this effect is not dramatic. 

Fig. 2.13 summarizes the performance of GA plus hill climbing based techniques for 
frames 2 to 20, and compare it with default parameter set of the PHOENIX algorithm. 
The performance corresponds to the parameter set in the population that has the highest 
fitness. The average performance increase for the hybrid scheme over the default parameter 
set is about 50%, increase over the initial knowledge seed (GA learning for frame 1 only, 
no subsequent hill climbing) is also dramatic. This shows that GA learning from frame 1 
does provide a good starting point for hill climbing. The average improvement shown in 
Fig. 2.13 is 107.8% over the default parameter set. 

Figs. 2.14 and 2.15 compare the segmentation results obtained by using the default 
parameter set and the parameter set generated by GA and hill climbing. Using the default 
parameter set, it is seen that the car does not show up at all in the segmentation results 
for Frames 7 and 16, but the corresponding results using GA and hill climbing are quite 
good. The results show that by combining genetic search and hill climbing techniques the 
performance improvement is significant when the search space is large. 

2.6     Conclusions 

The goal of this research was to perform adaptive image segmentation and evaluate the 
convergence properties of the closed-loop system using outdoor data. The performance 
improvement provided by the adaptive system was consistently greater than 30% over the 
traditional approach or the default segmentation parameters [60, 101]. Further experimental 
details and several other techniques can be found in [16, 17, 18]. 

The adaptive image segmentation system can make use of any segmentation technique 
that can be controlled through parameter changes.  No extensive knowledge pertaining to 
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the selected algorithm is required. In addition, we can choose to adapt the entire parameter 
set or just a few of the critical parameters, depending on time constraints and the desired 
quality of the final segmentation results. The adaptive segmentation system is only as robust 
as the segmentation algorithm that is employed. It cannot cause an algorithm to modify 
the manner in which it performs the segmentation task. It can only optimize the manner in 
which the algorithm converges to its best solution for a particular image. However, it may 
be possible to keep multiple segmentation algorithms available and let the genetic process 
itself dynamically select the appropriate algorithm based on image characteristics. Further, 
it is possible to define various evaluation criteria which can be automatically selected and 
optimized in a complete vision system. Although we have only used color images in our 
current experiments, the adaptive technique itself is applicable to any type of imagery 
whose characteristics can properly be represented. This set includes infrared, laser radar, 
millimeter wave, sonar, and gray scale imagery. The adaptive image segmentation system 
may soon be able to benefit from advances in parallel computing and VLSI technology, which 
are now beginning to produce chips that can perform the image segmentation process in 
real time [13] These hardware improvements would make it possible to achieve high quality 
image segmentation results at near-realtime processing rates. 

In a complete computer vision system, the segmentation evaluation component can be 
replaced by the object recognition component(for example, see [78]). In our adaptive image 
segmentation system, the focus is the image segmentation component. Therefore, we sup- 
plied the manually generated groundtruth image to the segmentation evaluation component 
and used local and global measures. Our approach attempts to fulfill the goal of automatic 
segmentation and groundtruth provides the reference against which the segmentation re- 
sults can be evaluated. The groundtruth information is not contributing to the superiority 
of our approach since the same information is also being used by the traditional approach 
and the approach based on the default segmentation parameters that we have analyzed 
for performance comparison. Availability of such groundtruth information is guaranteed 
in such applications as photointerpretation and automatic target detection/recognition for 
the regions of interest containing the potential targets. The adaptive image segmentation 
system can utilize local, global, or combined segmentation quality measures to achieve the 
appropriate segmentation results. If nothing is known about an application, global evalua- 
tion measures can be used. For example, a complete target recognition system (in hardware) 
has been developed where edge/border coincidence [11] has been used for terminating image 
segmentation on real FLIR images. Elsewhere, we have optimized both global and local 
measures in a multi-objective optimization framework [17]. In the future we plan to use a 
data set with dramatic environmental variations and we will utilize several segmentation 
algorithms. Ultimately, we will incorporate the adaptive segmentation component into our 
complete vision system. 
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2.7      Future Work 

• Adaptive Multisensor Image Segmentation 

Sensors are known to be sensitive to the scene content, such as the different channels 

of a multi-spectral scanner. Selection of sensors in a dynamic and adaptive fashion 
is therefore necessary to achieve the best possible segmentation results for a given 
scene. In this task, we will develop the mechanisms for selecting the most suitable 
sensor (i.e., one) from a set of sensors with identical imaging geometries (such as the 
channels of a multi-spectral scanner) as well as from sensors with different geometries 
and principles of operation (TV, FLIR, LADAR, etc.). The objective here is to 
integrate multiple sensors in a cooperative, complementary, and competitive fashion. 
The integrated results are evaluated and a GA-based approach is used to learn the 
appropriate strategy for combining the individual sensor data in order to obtain the 
best overall segmentation results. The combined data are fed back to the individual 
adaptive segmentation modules to enhance their performances further. 

• New evaluation criteria - An important factor related to GA applications concerns 
the validity of the evaluation function used to evaluate population members [31]. If 
the evaluation function does not provide a uniform measure of individual fitness, the 
performance of the search process will suffer since the system will be placing unre- 
alistic confidence in the strength of certain individuals based on the misinformation 
of the evaluation data. In order to prevent the quality of the evaluation function 
from adversely affecting the overall performance, Schaffer and Grefenstette [95] have 
developed a method of using vector performance evaluation incorporating multiple 
forms of evaluation information instead of a simple, scalar measure of performance. 
Alternatively, in our initial work we have combined five separate quality measures 
using a weighted sum approach to provide a more powerful and uniform indication 
of an individual's fitness. Additionally, the latter approach also maintains a vector 
of performance measures (global and local segmentation quality measures) for each 
genetic structure. Our proposed new evaluation criteria will include a combination of 
gray scale, texture, and color features. In the case of a complete object recognition 
system, the following quantitative measures can be used: 1) number of target pix- 
els misclassified with respect to the true target, 2) correlation coefficient and mean 
squared-error between the true and extracted objects, 3) object-to-background con- 
trast, intensity difference and Bhattacharyya distance [23] between the true object 
and clutter objects used with thresholding (threshold fixed a priori or determined in 
a global, local or object adaptive manner), and 5) shape number that estimates the 
shape difference between the true and extracted targets. In the navigation scenario, 
where knowledge-based landmark recognition is often employed, access to landmark 
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models may provide geometric and semantic features that will guide the segmentation 
evaluation. Once the set of evaluation criteria is selected, the overall performance 
measure will be a vector of all the individual measures. The key research issues are 
(a) the selection of the relative weights for the different local and global measures, 
(b) learning of these weights using GA, (c) relationships of the selected measures to 
the information content of an image, which may be measured in terms of entropy, 
structural similarity of a pixel to its neighbors, or co-occurrence matrices, and (d) the 
confirmation of the local measures by human perceptual measures. 

• Recursive GAs - Optimization of genetics with genetics- In our initial work, the use of 
GA has been solely to manipulate strings that represent parameter (of the segmenta- 
tion algorithm) combinations. In DeJong's study [29] of GAs in function optimization, 
he suggests that good genetic algorithm performance requires the selection of a mod- 
erate population size, a high crossover probability, and a low mutation probability. 
For example, a small population size will cause the GA to converge too quickly with- 
out adequately exposing the system to learning experiences. On the other hand, a 
large population size results in a longer waiting period for significant improvements 
in the learning behavior. However, a setting of GA parameters, such as population 
size, crossover rate, mutation rate, generation gap, and selection strategy is in general 
implementation dependent [46]. Other characteristics of the genetic operators also 
remain implementation dependent, such as whether both of the new structures ob- 
tained from crossover are retained, whether the parents themselves survive, and which 
structures are removed if the population size is to remain constant. The scope of a 
GA-based adaptive image segmentation technique can be extended by incorporating 
recursive GAs (RGAs) in place of the single-level simple GA (SGA). The objective 
of recursive GAs will be to learn the above mentioned variables such as population 
size of the SGA. Besides, RGAs can also be used to learn the relative weights of the 
evaluation criteria. 

• Feedback from Higher-level Processing for Criteria Selection - In most typical ap- 
proaches to lower level computer vision tasks, including segmentation, little attention 
has been paid to providing feedback from higher level processes. On the other hand, 
a feedback from a higher level process, such as object recognition, would undoubtedly 
help in making such lower level decisions as to which segmentation evaluation criteria 
are proving to be the most effective in recognizing an object in a particular scene. Our 
proposed adaptive approach will include such feedback connections from the high- as 
well as the intermediate-level processes. 

• Use of Classifier Systems - The most common genetic-based machine learning GBML 
architecture is known as the classifier system. A classifier system is a machine learn- 
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ing system that learns syntactically simple string rules or classifiers in an arbitrary 
environment. It consists of three main components [43]: rule and message system, 
apportionment of credit system, and genetic algorithm. In our preliminary work, we 
have focused on the GA-component of a classifier system. The rule and message 
system-component is a special kind of production system in that it restricts its rules 
to fixed-length representations. Unlike traditional expert systems, in which serial rule 
activation is the norm, classifier systems use parallel rule activation. Assigning re- 
wards to the rules between successive evaluations via competition and rule discovery is 
the task of the apportionment of credit system. As a result of credit assignment, only 
good rules survive. Finally, the GA is responsible for creating new rules through repro- 
duction, crossover and mutation. So far, our effort in adaptive image segmentation has 
been confined to the low-level domain. On the other hand, when more higher-level de- 
cisions are brought in to affect the low-level optimization of the segmentation results, 
rules will prove to be effective in representing human-like knowledge. Besides, there 
are existing segmentation algorithms that rely on rule databases [62]. We, therefore, 
plan to make use of complete classifier systems in adaptive image segmentation. 

Comparison of Genetic Algorithms and Evolutionary Strategies - Like the GAs, the 
Evolutionary Strategies (ESs) are a class of algorithms designed to synthesize natural 
evolution as a means of solving parameter optimization problems [8]. Functionally, 
both GAs and ESs are similar in the overall process of generating new individuals 
from the existing population. However, the architectures of these two approaches are 
vastly different. During the selection process for genetic recombination in ESs, either 
the offsprings in a generation are selected or both the parents and the offsprings are 
chosen. The recombination process in the ESs, which is analogous to the crossover 
operation in the GAs, can vary from no recombination, i.e., only one parent is sub- 
jected to mutation in a generation, to global recombination, in which both parents 
contribute equally to the creation of an offspring. But the key difference between 
the two approaches is in the implementation of the mutation operator that causes 
occasional changes in the genetic structure of an individual. While the mutation rate 
is almost always determined by an exogenous heuristic in GAs (and in earlier versions 
of ESs), it is treated as a part of the genetic structure in ESs thereby subjecting it to 
the same genetic processes as the parameters themselves. This constitutes a two-level 
learning process in which not only the population adapts to the response surface of the 
objective function, but also the rate of adaptation is adjusted according to the surface 
topology. An additional strategy is also incorporated to handle situations when the 
mutations of the individuals are correlated; the optimum rate of progress is achieved 
under correlated mutation condition. In our approach to image segmentation, we 
therefore plan to investigate the relative merits of GAs and ESs. 
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Figure 2.5: Illustration for the quality measures used in the adaptive image segmentation system. 
(a)Edge-border coincidence, (b)Boundary consistency, (c)Pixel classification, (d)Object overlap. Ob- 
ject contrast is defined by using the symbols shown in the center figure in (a) and the left most figure 



(a) Frame 1 (b) Frame 11 

Figure 2.6: Sample outdoor images used for adaptive segmentation experiments. 
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Figure 2.7: Segmentation quality surfaces for Frame 1. (a)Edge-border Coincidence, (b)Boundary 
Consistency, (c)Pixel Classification, (d)Object Overlap, (e)Object Contrast, (f)Combined Segmen- 
tation Quality. 
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Adaptive Technique Traditional Approach 

(d) (e) (f) 

Figure 2.8: Segmentation of Frame 1 (a-c) and Frame 11 (d-f) for the adaptive technique, default 
parameters, and the traditional approach. 

44 



c 
o 

5 S 
a 

/\ 

1    2    3     4   5    6    7     8    9    10  11   12   13   14  15  16   17   18 19   20 

Frame Number 

(a) 

■—■—i^l^i^l^"-—1—-■—f—■      I      ' 
9    10 11   12   13   14  15  16   17   18  19   20 

Frame Number 

(b) 

12 T 

7     8    9    10 11   12   13   14  15  16   17   18 19   20 

Frame Number 

(c) 

Figure 2.9: Performance of the adaptive image segmentation system for the sequential experiments. 
(a)Single day test results. (b)Double day test results. (c)Multiple day test results. 
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Figure 2.10: Coordinate axes for the volume representation in Fig. 10 
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(a) Projection with height — 0 (b) Projection with height — 2 

(c) Projection with height = 10 (d) Projection with height = 25 

Figure 2.11: Volume representation (different views) of segmentation parameter search space. The 
original 5-dimensional data (hsmooth, splitmin, maxmin, height, segmentation quality) is projected 
along height axis, where the color represents the fitness or segmentation quality value corresponding 
to each 3-D coordinate. 
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Figure 2.12: Genetic algorithm crossover operation,  (a) Scheme for doing 4-point crossover with 
each chromosome containing four parameters, (b) A complete scenario for one crossover operation. 
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(a) Frame 2: Default Segmentation (b) Frame 2: After Genetic and Hill Climb- 
ing 

(c) Frame 3: Default Segmentation (d) Frame 3: After Genetic and HiU Climb- 
ing 

Figure 2.14: Segmentation performance comparison for frames 2 and 3: (a) Frame 2 using default 
parameter set, (b) Frame 2 using parameter set generated by genetic and hill climbing, (c) Frame 3 
using default parameter set, (d) Frame 3 using parameter set generated by genetic and hill climbing. 
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(a) Frame 7: Default Segmentation (b) Frame 7: After Genetic and Hill Climb- 
ing 

(c) Frame 16: Default Segmentation (d) Frame 16: After Genetic and Hill Climb- 
ing 

Figure 2.15: Segmentation performance comparison for frames 7 and 16: (a) Frame 7 using default 
parameter set, (b) Frame 7 using parameter set generated by genetic and hill climbing, (c) Frame 
16 using default parameter set, (d) Frame 16 using parameter set generated by genetic and hill 
climbing. 
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Chapter 3 

Learnable Structural Models for 
Target Indexing: Hidden Markov 
Models, n-Grams, and Salient 
Sequences 

3.1     Introduction 

Automatic target recognition (ATR) is an image understanding problem whose goal is to 
find instances of "known" targets in the input sensor data. It comprises the computational 
processes of detection of target-like features, indexing or recognition of targets based on 
detected features, and verification or identification of indexed targets. Real-world ATR 
scenarios are characterized by multi-modal imagery, low contrast, high clutter, camouflage, 
partial target occlusion, and other image variabilities. Thus, the ATR problem space is 
represented by a number of state variables, such as target state (pose/location), sensor state 
(pose/location), background, environment, which account for the high dimensionality of the 
problem space [112]. Since a direct mapping from detected features to target models for 
identification is computationally expensive in such a high-dimensional space, the indexing 
problem is now considered as an important intermediate step in the overall recognition 
process. The role of indexing is one of signal-to-symbol transformation in which hypotheses 
about targets are framed in a bottom-up fashion, i.e., driven by detected features. The 
specific tasks that are involved in the indexing process are delineation of image regions 
which correspond to targets using higher-order groups of detected features, recognition of 
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grouped features as specific target classes, and localization of recognized targets in terms of 
aspect, scale, and depression angle. 

Current approaches to object/target model indexing lack flexibility and robustness re- 
quired for ATR applications. In this work, we describe an approach to indexing that is 
based on utilization of weak structural models, direct table look-up, and inexact sequence 
matching. The weak structural models are defined as hidden Markov models (HMMs) which 
together with similarity-based analysis are appropriate for handling uncertainties and dis- 
tortion in the imaging process; the table look up method utilizes invariant features similar 
to the existing approaches to indexing. HMMs, which have been effectively used in speech 
recognition systems are generalizations of stochastic finite automata and are amenable to 
learning. Besides, the look-up table (LUT) and the database for sequence matching are 
both constructed from examples through learning processes. 

3.2     Motivation 

The purpose of indexing is to make good guesses about an object's identity and pose (in- 
cluding scale) from partial evidence in a bottom-up fashion. The assumption here is that 
detection is generally not possible from the evidence contained in single feature cells.1 Input 
to the indexing step is an unordered set (stream) of locations-of-interest (LOIs) produced by 
the detection module. An object hypothesis produced by the indexing module must provide 
sufficient information to the recognition module to initiate a goal-directed matching process. 
In the optimal case, this includes (1) the object category, (2) the relevant aspect, and (3) 
the (approximate) location in the image. In general, it will be sufficient to indicate a set of 
possible aspects or even a set of possible object categories, depending on the information 
available. In general, indexing is accomplished by (1) combining the information available 
from multiple LOIs within a certain neighborhood, (2) imposing more specific structural 
constraints that are suitable to narrow down the object category, and (3) by reverting to 
the original image data (Gabor decomposition) to obtain additional information. 

The problem of indexing can be stated as "finding the needle in a haystack" (without 
knowing if there actually is a needle), given 

1. weak local evidence, 

2. spatially unrelated LOIs, 

3. unknown object (target) identity, and 

otherwise, indexing could be done at the same time as detection. 
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4. unknown target location and extent. 

The general approach here is to look out for complex spatial arrangements of features in 
order to associate them with parts of a known model, without performing explicit subgraph 
matching with the structural model base itself. The technique we suggest here is a combi- 
nation of Hidden Markov Models (HMMs) [84] and a variant of the n-gram method [111], 
which have both been used successfully in natural speech recognition. While HMMs provide 
an elegant way to model low-order (usually only first-order) dependencies between adjacent 
elements, n-grams represent sparse high-order (re-order) relationships that facilitate efficient 
indexing. Supposedly, 3-grams (trigrams) will be sufficiently powerful for indexing. 

The advantage of using HMM and n-gram techniques is their use of a discrete alphabet of 
symbols, which allows the use of a probabilistic inference scheme, and the existence of fast 
evaluation algorithms. The crucial point with symbolic methods is the need for a "pixels- 
to-symbols" transition before they can be applied. Hidden Markov models (in contrast to 
conventional Markov models) support this transition well, because they explicitly handle 
the problem of uncertainty of pixel-to-symbol association. 

The main obstacle to a direct application of the above methods is that we have to deal 
with 2-D configurations instead of the 1-D sequences in speech recognition. One solution 
to this could be a 2-D random walk over neighboring features, (softly) biased by certain 
selection criteria that can be learned from experience. 

3.3     The Domain of Learning 

Figure 3.1 describes our overall learning-based approach to indexing. The input to the sys- 
tem consists of various structural primitives which have been obtained by low-order group- 
ing such as perceptual grouping of edge-based features, e.g., smooth, elongated curves, or 
region-based features, e.g., blobs. To utilize the HMM paradigm for evidence accumulation, 
we adopted a discrete symbol HMM. Consequently, the input stream of continuous observ- 
ables need to be discretized and subsequently sequentialized. Once the discrete observation 
sequences have been obtained, these can be used as input to an HMM-based process for 
classification. There exist efficient real-time algorithms to decompose the input sequence 
into meaningful state sequences of an HMM (discussed below). For example, the individual 
HMMs can be associated with target classes and states with subparts of a target. Thus, 
uncovering of the states will result in segmentation of the input sequence into subparts, i.e., 
subpart decomposition. Also, HMM outputs the best model or the best indexed target class 
(see Figure 3.1). By associating observation symbols with states, one obtains higher-order 
grouping.   This segmented sequence of observations can be further utilized to determine 
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Figure 3.1: A schematic of the learning-based approach to target indexing. 

the class of target apart from what HMM outputs. In our approach, we have two alter- 
natives. One is the fast direct table look-up based on n-gram analysis of the segmented 
state sequence. The other one is slower inexact matching using a lexicon of primitive se- 
quences. The selector at the output has to its disposition indexed targets generated by 
HMM, n-gram, and inexact matching. 

3.3.1     Hidden Markov models 

A Hidden Markov model is a stochastic signal model and is an extension of the theory of 
Markov chains. According to this theory, at any given instant, a stochastic system can be in 
one of a number of distinct states. At regularly spaced discrete times, the system undergoes 
a state change with a certain probability. HMMs have been widely used with considerable 
success to classify signals in speech and text recognition systems [54, 58, 83, 84]. In fact, it 
is a good choice for decision making in situations involving sequences of observations. 

Figure 3.2 illustrates the phenomenon underlying the HMM framework. The Markov 
chain of states is a probabilistic description of a stochastic system at any given instant. In 
the case of HMM, this stochastic process is hidden and can only be observed through another 
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Figure 3.2: Discrete symbol hidden Markov model: (a) HMM as a doubly stochastic process, (b) 
an example illustrating HMM where the observations of the same state are indicated using the same 
symbol. 

stochastic process which produces the sequence of observations as seen in Figure 3.2(a). 
Thus, an HMM is a doubly stochastic process. To illustrate these basic ideas, consider an 
image consisting of a tank as shown in Figure 3.2(b). Suppose, the tank is represented using 
an HMM whose different states correspond to different subparts of the tank. Let the input 
observations consist of a set of filter responses which are obtained at the lattice points of 
the grid shown in Figure 3.2(b). Thus, the different subparts are only observed through 
these filter responses. For example, State 1 corresponds to the gun, State 2 corresponds to 
the turret, and State 3 corresponds to the body. 

There are several elements in the definition of a hidden Markov model [83, 84]: 

• number of states (N) - these are the distinct states S = {Su S2, • • •, SN} which the 
system can be in, 

• number of symbols (M) - these are the distinct symbols V = {vu v2, ■ ■ ■, vM} which 
are observed in any state, 

• state transition probability (A) - the probability distribution set is A = {ati}, where 
O.J = Pr[qt+i = Sj\qt = Si], 1 < i,j < N, 

• observation symbol probability (B) - the probability distribution set is B = {&;(&)}, 
where b{(k) = Pr{Ot = vk\gt = Si], 1 < i < N and 1 < k < M, and 
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• initial state probability  (IT) - the probability distribution set is ir =  {7r,-}, where 
m = Pr[qi = St], l<i<N. 

A complete specification of an HMM requires specification of N and M, specification of 
observation symbols, and specification of the three probability measures collectively denoted 
as A = {A, B,x}. 

There are three modes in which an HMM can be operated [83, 84]: 

• Training - It involves adjusting model parameters A to maximize the probability of 
observations, i.e., maximize Pr[0|A]. 

• Classification- Assuming that each A is associated with a class u>, it involves selecting 
that A which optimally explains the observation sequence and, therefore, identifies the 
class, i.e., u> = argmax,Pr[0|Aj]. Classification also allows uncovering of the optimal 
state sequence. 

• Generation - It allows generation of an observation sequence O (of usually a specified 
length), given N, M, and A. 

In this work, we focus on the first two modes, i.e., training and classification. 

The important difference between application of HMM to speech or text processing and 
2-D image analysis is finding sequences of observations. In the former case, there is a natural 
order, temporal or spatial, in the observations. However, in the latter case this is seldom 
the situation, except under restricted imaging conditions, such as observations are ordered 
along a row or column. Thus, the application of HMM to general image analysis requires 
a solution to the problem of observation sequentializing. This problem which is essentially 
the where to look next problem does not have a general solution and in case of humans 
has been demonstrated to be varying with time and from person to person for a given 
input pattern. Consequently, computational approaches have proposed criterion which are 
task-specific. In our application context, these sequences of observations (associated with 
different targets) are to be obtained by ordering the observations in some meaningful way 
which is independent of the target present in the input image. One idea to find sequences of 
meaningful observations is to locate salient structures in images. The approach of Sha'ashua 
and Ullman [100] finds sequential arrangements of salient image locations represented by 
perceptually long and smooth curves. Figure 3.3 shows a grey-level image and salient 
structures detected in the corresponding intensity edge image. In this work, we investigate 
a more general framework for the ordering (sequentializing) problem that is independent of 
the type of observations, i.e., applicable to both edge- and region-based observations. We 
also discuss the sequentializing problem at the object level when the salient structures are 
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Figure 3.3: Extraction of salient structures:  (a) original image, (b) edge image, (c) high saliency 
map using (b). 

given (since salient structure extraction addresses the sequentializing problem at the pixel 
level). 

Additionally, it is to be noted that in order to use discrete symbol HMM, the observations 
of the sequence must be discretized with respect to their intrinsic values such as length, 
orientation, location of line features and elongation, orientation, location of blob features.' 

Observation Sequentializing as a Markov Decision Process 

In the general framework, the ordering problem is considered to be a multi-stage decision 
process which is modeled as a Markov chain. Associated with each state, 5t-, of the Markov 
system is a discrete, finite set of actions, A(i), and a similar set of observations, Q(i). 
Based on the observation, 0 e 0(i), at a given instant, the controller selects an action, 
a e A(i), which transforms the system to a new state at the next instant. The important 
difference between a Markov decision process and (hidden) Markov model is that no action 
is allowed to influence the state transitions in the latter. In a first-order Markov model, the 
probability of the transition from the current state, s(t) = Si, to the next state, s(t+l) = Sj, 
is expressed as 

Pij = Pr{s{t + 1) = Sj | s(t) = St, 9(t) = 9, a(t) = a},   St, Sj e S, (3.1) 

where S is the finite set of discrete states of the system. For observation ordering, each 
input feature (an observation) is assumed to be associated with a state 5,-, where the state- 
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based observation 6 corresponds to certain measurable properties of the selected feature, 
such as length, orientation, color, size, etc. The typical actions at each state may involve 
searching in a quantized direction 4> over a quantized distance d in the image plane. Thus, 
the problem of feature ordering may be formulated as one of "finding a state sequence such 
that the corresponding feature (observation) sequence is significant in some chosen sense". 

The extraction of a sequence of significant states depends on the appropriateness of the 
selected actions. According to the theory of Markov decision tasks, there exists at least one 
policy, i.e., mapping from states to actions, which is optimal. The criterion for optimality 
is usually defined in terms of the expected discounted reward-to-go. Let the reward for 
entering state 5; as a result of selecting the action a be denoted by r,-(a). Then, the 
expected discounted reward-to-go in Si, F{(a), is an infinite sum of the expected future 
rewards, each of which is weighted by a decreasing (temporal) discounting factor: 

^■(a) = r,-(a) + £7(i)fi(0> (3.2) 

where j(t) is the discounting factor and R(t) is the expected reward in t time steps. Con- 
sequently, Equation 3.2 can be written as a recursive function of the successor states of 

Fi(a) = r,-(a) + 7     £     P,»^), (3.3) 
j6SUCCS(i,a) 

where succs(i, a) is the set of successor states of Si as a result of the action a, ß £ A(j), 
and 7 is the discounting factor in the next time step. Now, the goal of the controller is to 
select an optimal policy a = aopt which maximizes the expected discounted reward-to-go 
Fi(a). This is obtained as the root of the equation VFi(a) = 0 when F(a) is a continuous, 
convex function over the space of a. When the transition probabilities p,-j's are known, 
the expected discounted reward function is completely specified and the optimal solution is 
obtained using such well-known methods as Dynamic Programming (DP). However, when 
these probabilities are unknown, the optimal solution is incrementally learned on the basis 
of the observations - the series of actions, state transitions, and rewards. 

As noted earlier, the use of discrete symbol HMM requires quantization of the measured 
values of observations. For example, a line feature would need its orientation or length 
value discretized. In speech, the corresponding problem is known as codebook design for 
mapping continuous observation vector into a discrete codebook index. One approach to 
represent a quantized observation vector is to obtain the probability density function (pdf) 
for the corresponding cell of the observation space. In this approach, a cell is represented as 
a family of overlapping Gaussian pdf's. This probabilistic view is well suited for incomplete 
data. Re-estimating the parameters of the mixture pdf's is thus an unsupervised learning 
problem. 
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Learning methods 

Learning Control of Observation Sequentialization: The field of reinforcement learn- 
ing [10, 38] is concerned with the study of learning control of Markov decision processes. 
This learning paradigm essentially finds a solution action a = aopt (refer to Equation 3.3), 
given the current state, a set of possible actions, and past experience of success and failure.' 

A sequence of observations captures a global context in the sense that the ensemble is 
structurally significant and not the individual components. Thus, the significance measure 
(saliency according to [100]) of the local observations must propagate along the sequence to 
result in its global significance. The reinforcement learning paradigm is particularly suitable 
for this class of problems since structural saliency requires measures that have a global extent 
and reinforcement learning is applicable to control problems involving temporally extended 
behavior.   To support propagation of local evidence in a global fashion, an appropriate 
architecture for state space must be chosen.  In our approach, the image is represented as 
a grid of processing elements (PEs) each having a fixed neighborhood. A PE is completely 
connected to its neighborhood PEs which in turn contribute to its significance measure. This 
architecture is similar to the saliency network model introduced in [100].   Reinforcement 
learning methods have been demonstrated most successfully for connectionist networks [10]. 
We assume that the input observations are either edge- or region-based.   Thus, a PE is 
associated with the presence or absence of an edge or region pixel.    An ordered set of 
observations is a sequence of PEs which is optimal according to a certain saliency measure. 

To cast the network training for salient observation sequence extraction as a reinforce- 
ment learning problem, we adopt the following mappings:   a PE corresponds to a state, 
preference for a particular type of curve or linear arrangement of blobs corresponds to an 
action, saliency value at a PE corresponds to expected discounted reward-to-go. Thus, in 
the process of finding the optimal action, the learning process biases the network (for a 
chosen saliency measure) towards detecting certain feature groups based on the training 
examples. For any given state, i.e., a PE, the set of its successor states consists of all the 
PEs in its neighborhood.  The selection of a particular action in a state, such as selection 
of a curve whose tangents are near-horizontal, causes some of the successor states to be 
more preferred than others. Since the action value is usually quantized, such as curves of 
tangential slopes less than 10° preferred, the selection of the next state is probabilistic. 

The two critical issues in the application of reinforcement learning are how to explore 
the state space and how to generate the reward. The importance of the first issue lies in 
observation that for a high-dimensional state space an exhaustive exploration strategy would 
be computationally prohibitive. Since the state space is of a high-dimensionality in our 
approach (number of states equal to the total number of pixels), a non-uniform partitioning 
of the space is required for efficient exploration.  One way to obtain such a partitioning is 
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to use a fcd-tree representation [93] for the image. The second issue or reward generation 
is important because it is related to effectiveness of learning and the learning rate. We 
employ a scalar feedback value, r, to penalize selection of a state which is not associated 
with any edge or region pixel; r — 1 if state is associated with an edge/region pixel, r = 0 
otherwise. The generation of the reward can occur at every step or it can be delayed over 
several actions steps. In our current approach, the reward is generated at every step so that 
the network converges at a faster rate to a reasonable solution. 

There exists a number of approaches to reinforcement learning in the literature [10]. 
Our initial attempt aims to utilize these for our problem instead of developing a new one 
(a future issue). We plan to investigate two of the most recent approaches, Q-learning 
[107] and Prioritized Sweeping [70]. Both of these approaches are asynchronous dynamic 
programming (DP) techniques, that is they seek an optimal policy which specifies an action 
such that the expected discounted reward (refer to Eq. (3.3) is maximized: 

Fv a) —       max 
aeactions(t') 

jGSUCCs(i,a) 

(3.4) 

Here, actions (i) is the set of all possible actions in state i, pij(a) is the estimated probability 
of the transition from state Si to state Sj given that the action a has been applied, and 
fi(a) is the estimated reward so far from all previous applications of action a in state S,-. 

Q-learning is a model-free approach in that it directly learns the optimal policy without 
building a world model. It uses a local greedy strategy specified by Eq. (3.4) to select 
the locally optimal action. The new estimated discounted reward-to-go is combined 
with old estimate using a weighted sum: 

(a) = (l-c)F°ld(a) + cFl(a id, (3.5) 

where c is the learning rate. 

Prioritized Sweeping , on the other hand, extensively relies on learning a world model 
from which a control rule is developed. It concentrates its computational effort on 
the most "interesting" parts of the system. These are identified with those states 
for which maximum change in expected discounted reward-to-go occurs. After each 
real-world observation Si —>• Sj, the transition probability pij is updated along with 
the probabilities of transition to all other previously observed successors of Si. Thus, 
Prioritized Sweeping is much more memory intensive than Q-learning since the former 
needs to build the world model. The expected discounted reward-to-go is updated for 
every state Si and all the predecessors of the interesting states. The order of update 
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for the predecessors is determined by a priority value of each which is based on the 
amount of change in the reward value of the successor and the transition probability 
between the predecessor and the successor. 

Learning Observation Quantization: Earlier, we have described the problem of obser- 
vation quantization as one of estimating the parameters of a mixture Gaussian pdf 's repre- 
senting each quantized cell. A well-known maximum likelihood estimation technique is the 
EM algorithm [32]. This algorithm, which is an unsupervised learning method, works with 
an unlabeled data set assumed to have been derived from an unobservable category (similar 
to the notion of HMM). The purpose of EM algorithm is to maximize the log-likelihood 
from incomplete data, i.e., observable data, by iteratively maximizing the expectation of 
log-likelihood from complete data, i.e., observable and unobservable data. 

Learning HMMs for Target Classes: Each target class, such as tank, truck, APC, 
aircraft, is represented by an individual HMM and the objective is to build these HMMs 
from training data. The input data consist of structural primitives whose feature values are 
quantized. The vocabularies of structural primitives may be identical for the observations 
and the hidden state sequence. Usually, the vocabulary of observations is larger than that 
of the state sequence. The goal of this training phase is to determine the various elements 
of an HMM corresponding to a target class. 

Usually, the parameters N and M, the numbers of discrete symbols/state and the number 
of states, are selected prior to the training process. For example, the number of states 
in HMM of a target class may well be the number of distinct components of structural 
decompositions, such as gun, turret, body, and wheel of a tank. This selection of states is 
useful when the target image can be segmented into meaningful subcomponents, e.g., based 
on extracted contours. On the other hand, if such segmentation is not possible, then it is 
more prudent to select identical vocabularies for observation and state sequences. It is to be 
noted that an observation corresponding to a state is usually vector-valued. The remaining 
parameters of HMM to be learned are the various probabilities. 

A) Given input sequence, learn A - Following the general framework of observation se- 
quentialization, it is assumed that the input sequence of observations is already extracted. 
Subsequently, the learning of HMM models involves the application of an iterative algo- 
rithm, the Baum-Welch algorithm [83, 84]. This algorithm is used to estimate the proba- 
bilities from frequency of observations. It is in sense a maximum likelihood estimation as 
the EM algorithm. Consequently,_the algorithm progresses as selecting the initial model A 
and reestimating another model A such that either A defines a critical point of the likeli- 
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hood function, in which case A = A, or A is more likely in the sense that Pr[0|A] > Pr[0|A]. 
Therefore, by iteratively replacing A with A, the probability of O being observed is increased 
until some limiting point is reached. The result is the estimated model. 

B) Find input sequence, learn A - This situation is encountered when the general frame- 
work of observation sequentialization is not adopted, e.g., input consists of salient structures 
of curves such as those derived from Figure 3.3(c). In this case, the problem of finding the 
input observation sequence is linked with deriving the Markov models. We assume that 
the input consists of salient curves, each of which can be modeled, e.g., using B-spline or 
polygonal approximation, as an autoregressive process, etc. The parameters of the model 
representation are used to form the feature vector which is then subjected to the quan- 
tization process described above. One or more these quantized feature vectors are the 
observations associated with a state of an HMM. The model learning problem in this case 
is equivalent to 

maxPr[Oi,5opi|Aj], 

where O; is the ith input sequence, Sopt is the optimum state sequence, and Pr[.] is known as 
the state-optimized likelihood function. For a given A, an efficient way to find Pr[0, Sopt\X] 
is the well known Viterbi algorithm [24, 83, 84]. 

During the training phase, all the input feature vectors are clustered, e.g., using fc-means 
algorithm. The cluster centers are then chosen as the states of an HMM. Each feature vector 
in a cluster is assigned the state which is the cluster center. The transition probabilities and 
the initial state probabilities are computed based on training sequences. Viterbi algorithm 
is then used to trace the optimal state sequence Sopt for each selected sequence 0{ of the 
feature vectors. A vector is reassigned a state if its original state assignment is different 
from the tracing result and the processes of model learning and state tracing are repeated. 

Implementation Issues: There are several issues of practical importance from the im- 
plementation point of view. These include scaling, multiple observation sequences, initial 
parameter estimates, missing data, and choice of model size and type [83]. Scaling of prob- 
abilities is important since small probability values often exceed the precision range of any 
machine. Multiple observation sequences from the same source are necessary to have suf- 
ficient data for reliable estimation of model parameters. The importance of selecting an 
appropriate initial parameter set (the initial model) is well-known for any gradient tech- 
nique. A solution to this problem is to administer a supervised training procedure with 
manual segmentation of observations into states. Alternately, an unsupervised training 
using fc-means segmentation with clustering can be followed. To overcome the problem of 
insufficient data for reliable model estimation, the size of the training data can be increased, 
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the size of the model can be decreased, one set of parameters can be interpolated using an- 
other set from a model receiving sufficient training data, or extra constraints can be added 
so that every parameter value satisfies them. The choice of the model, i.e., size and type 
(e.g., left-right or ergodic), is usually application dependent. 

The order of the model, i.e., the number of intermediate states skipped, determines the 
ability of the classification process to handle distortion; higher the order, greater is this 
ability. If the observations are made scale- and aspect-specific with respect to the targets, 
then scale- and aspect-dependent HMMs are obtained for each target class. 

Performance Evaluation 

The performance of HMMs for target indexing can be evaluated in terms of several criteria: 
classification accuracy, model trainability, input pattern distortion. 

An efficient learning method is capable of reproducing the same high performance learn- 
ing behavior under similar situations during training and testing. Using HMMs, the learning 
behavior is evaluated in terms of the number of correct classification of the input patterns. 
The classification accuracy depends on the choice of the model parameters. For example, 
increasing the number of states usually leads to an improvement in the accuracy. Usually, 
the Viterbi algorithm is applied for classification purposes. As noted earlier, the Viterbi 
algorithm yields both the best matching HMM and the state sequence. During training, the 
error between the expected state sequence (determined by the observation sequence) and 
the extracted (via Viterbi algorithm) sequence is used to reestimate the parameters of the 
HMMs until the error is small. It is expected that such reestimation procedures would lead 
to improved classification results. Both training and test patterns should be representative 
of the variety of scenarios in which a particular target is expected to be found in order to 
ensure a robust classification performance. 

The primary issue related to the trainability of the HMMs is the amount of data. Larger 
number of states of HMMs implies greater amount of training data to estimate the model 
parameters more accurately. Although, we have discussed some alternate solutions to over- 
come the data insufficiency problem earlier, a trade-off between classification accuracy and 
trainability is always required while selecting the size of an HMM. Since the training data 
have to cover various scenarios, selection of the HMM parameters become even more im- 
portant so as to keep the training data set of manageable size. 

The performance of the HMMs to accurately classify the input observations depends on 
their ability to generalize from the training data. To exhibit robust classification perfor- 
mance, the HMMs must be able to handle significant pattern distortion caused by noise, 
occlusion, and viewpoint location. Thus, the training data need to include all such excep- 
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Figure 3.4: n-Grams of patterns typically encountered in ATR imagery: (a) FLIR image of a 
tank, (b) uni-, bi-, and tri-grams of patterns, such as blob, elongated shape, periodic structure, and 
probabilities of occurrences in images such as (a). 

tions to ideal data. 

3.3.2     n-Grams 

Like HMMs, 7i-grams have also been very successfully used in natural language and speech 
processing and information retrieval [104, 111]. An n-gram is a string of n consecutive 
symbols from the same alphabet. The elements of an n-gram model, jn, are, 

• n-grams for a selected value of n, 

• the corresponding probabilities. 

The probabilities are obtained by gathering statistics from observations. In Figure 3.4(b), 
we give examples of uni-, bi-, and tri-grams of patterns which may be typically encountered 
in ATR imagery such as Figure 3.4(a). The probabilities indicated in Figure 3.4(b) are 
merely to illustrate the n-gram model. 

An n-gram model can be utilized in two ways: 
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• 

Verification — Given a model jn, it involves verification that an element e 6 Jn 

matches the observation sequence O. Consequently, the element is identified, i.e., 
e = argmaxtPr[0|7m]. 

Generation — It allows generation of an observation sequence O (of usually a specified 
length), given jn. 

In this work, we focus on the first mode, i.e., verification. 

Learning method 

The n-gram analysis is designed to extract indices of targets from a lookup-table (LUT) 
based on the detected substructures, i.e., the re-grams. Thus, the goal of learning is to 
design the LUT based on input data and expected output during training. The choice of re 
is important since a large value of re may make the n-gram somewhat unique or an invariant 
feature, but at the same time such substructures are difficult to detect. A reasonable choice 
of n is 3 < n < 5. 

The learning task can be formulated as, given a sequence of discrete symbols and the 
corresponding labeled target, determine the re-grams to be used for indexing that target. 
Clearly, this is a problem of supervised learning. The re-grams can be directly used to 
index the LUT or these can be hash-coded if their direct use increases the size of the LUT 
considerably. Here, we assume that the n-grams index into a hash table. Thus, the learning 
process must discover the partitioning of the space of n-grams such that each partition 
contains a pointer to a substructure of a target model. This is a well-known problem in 
pattern recognition, a solution to which may be obtained using decision trees. An advantage 
of using decision trees is that the classification rules provide a clear explanation of the 
classification process. However, there exists no unique decision tree for ascertaining the 
partitions needed for a hash table. 

Decision trees are commonly used to represent domain knowledge [81]. Each nonterminal 
node in a decision tree specifies some attribute and each branch specifies the alternative 
values. A decision tree classifies a new instance by repeatedly sorting downwards while 
selecting the most discriminating attributes and exploring the branches associated with 
each of the attribute values until a terminal node, specifying a class name (a target in our 
case), is reached. The attributes of a decision tree thus correspond to those of the hash 
table, i.e., the axes of the table. The creation of the hash table occurs via the induction 
of a decision tree. In other words, the partitioning along the various axes of a hash table 
correspond to the tests at the different nodes of a decision tree. 

In order for a hash table to be optimal, the classification error using the hash table must 
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be minimal. In general, finding the optimal table requires exhaustive search over all possible 
partitions of the n-gram space. Thus, an indirect approach to constructing the hash table 
consists of constructing an approximate decision tree initially. Next, the decision tree is 
converted into an equivalent hash table. The decision thresholds applied at each node of 
the tree partitions the attribute space of the hash table. This process may create additional 
partitions which may not be present in the direct construction of the hash table. An 
important consideration for decision tree construction is over-specialization or "overfitting" 
of the input examples due to reduction in learning bias. This overfitting increases the 
variance or noise sensitivity of the learning process. A related issue is "underrating" or 
overgeneralization. Since the goal is to classify as many input samples as possible by 
reducing the overall classification error, a decision tree has to be appropriately pruned 
during the learning process. 

Performance evaluation 

The performance of n-gram method for target indexing is evaluated in terms of error rate. 
The error rate is measured in terms of hits and misses, and false alarms. It is related to 
the number of terminal nodes of a decision tree or the attributes of the hash table, and 
decreases with the increase in this number. However, for practical purposes the choice of n 
from which these attributes are derived is small as noted earlier. Since pruning of a decision 
tree is a necessity to allow generalization capability, the indexing performance is influenced 
by the selection of the pruning method, e.g., pruning based on partitioning samples into 
training and test sets, pruning by resampling input, pruning by identifying the weakest link 
in the tree. 

Another relevant performance measure for any supervised learning is in example com- 
plexity or the number of training examples required for a satisfactory performance. If the 
number of training samples is small, then the growth of the decision tree will be restricted 
and subsequent pruning will lead to poor generalization capability. The phenomenon of 
missing or spurious data causes inadequate coverage of the space of learning experiences. 
In such case, the number of training examples have to be increased. 

3.3.3    Inexact sequence matching 

The inexact sequence matching is concerned with approximate matching of two sequences, 
an input and a stored sequence, containing structural primitives and their spatial relations. 
The inexactness or approximateness of the match is to allow for occasional large distortions 
in the input patterns, such as due to moderate to large occlusion, high clutter, deep hide, etc. 
As noted earlier, this approximate matching for indexing is more of a backup process when 
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more precise matching methods based on n-gram and HMM would fail. The complexity of 
such techniques depends on the matching strategy and the method of storing sequences in 
the lexicon (see Figure 3.2). 

The notion of "inexact" may be interpreted as one of equivalence - the two matching 
sequences are essentially the same except for small differences - or similar - the matching 
sequences could actually be different but appear similar due to the large variability. If 
the threshold of acceptance is set too high to limit similar sequences, then it is expected 
that many equivalent sequences would be missed out. A lowering of the threshold, on the 
other hand, would allow more similar sequences causing false alarm. One way to locate an 
equivalent pair is to define a canonical form which is the representative of the equivalence 
class (using the mathematical definition of equivalence) to which the pair may belong [49]. 
For example, in text processing two equivalent sequences are alternate spellings of the 
same word and the canonical form is created by transforming these sequences into some 
standard spellings. In our case, finding the canonical form is seeking a generalization of 
the equivalent sequences. To process similar sequences, a measure of similarity based on 
a similarity or a difference metric is required. Understandably, the similarity metric is for 
sequences belonging to the same equivalence class while the difference metric is suitable for 
sequences belonging to different equivalence classes and should therefore be based on the 
corresponding canonical forms. In either case, the chosen metric must model the source of 
variation correctly, otherwise ascertaining an inexact match in a large lexicon of sequences 
is difficult. Some of the successful methods [49] in speech and text processing are based on 
dynamic programming, which attempts to find the shortest path in a graph whose nodes 
are labeled by pairs of elements drawn from the two sequences, and computing probabilities 
of joint occurrences of element pairs in the two sequences to obtain the joint event of the 
matching sequences. 

Learning method 

Selecting the size of the lexicon is an important problem for satisfactory performance. For a 
large size lexicon, the number of undetected errors tend to be higher. This is because there 
would always be some sequence in the lexicon which would approximately match an input 
sequence. Consequently, the choice of correct context becomes very important in matching 
sequences using a large lexicon. Another problem with large lexicon is that the search time 
is proportionately longer. A better approach is to employ a learning method to grow the 
lexicon so that it is tailored to the specific application, e.g., target recognition using FLIR 
images, and yet its size is manageable. 

An input sequence consists of alternating structural primitives and spatial relations (bi- 
nary) between adjacent primitives in the sequence. Additionally, we assume that each target 
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class is represented by a set of sequences, where the different sequences might capture the 
differences in the appearances of the specific members of the target class, possibly under 
varying imaging conditions. Matching of two sequences can then be formulated as a nearest- 
neighbor classification problem. In this paradigm, a learning approach is required for the 
following tasks: (a) addition of a new sequence to the lexicon corresponding to an exist- 
ing/new target class, (b) deletion of an old sequence from the lexicon, (c) generalization of 
two matching sequences, (d) refinement of an existing sequence. 

The similarity between learning a class of sequences in our case and concept learning in 
AI motivates the use of a noise-tolerant instance based learning (NT-IBL) algorithm [56]. 
This framework extends the nearest neighbor (NN) algorithm by generating classification 
predictions using only specific instances without maintaining the abstractions derived from 
specific instances. IBL offers the advantages of simple representations for learnable entity 
(i.e., sequence) descriptions, low incremental learning costs, small storage requirements 
(e.g., compared to NN), ability to learn continuous functions and non-linearly separable 
categories. The NT-IBL uses significance tests to distinguish noisy instances in the training 
examples. It seeks evidence that saved instances are significantly good classifiers before it 
allows them to be used for subsequent classification tasks. 

The simplest form of IBL is a growth algorithm. Given C as the concept to be learned 
and T as the training set, IBL initializes C to the set containing the first element in T. For 
each subsequent element in T, the algorithm finds the nearest neighbor in C to the current 
element in T. If the current element is correctly classified, then it is discarded, otherwise it 
is appended to C. In the NT-IBL, the classification records of all instances in C that are 
at least as similar to the current element in T as the nearest neighbor in C are updated. 
Also, the instances in C which appear to be noisy after the application of the significance 
test are discarded. 

Both NN and IBL work with vectors of features that are of the same length. In contrast, 
the sequences in our approach like their counterparts in speech and text processing are of 
variable length. Thus, to use IBL, these sequences have to be made of a predefined fixed 
length by incorporating null primitives and spatial relations during run-time. To evaluate 
the similarity between an input vector and an instance in C, IBL uses the euclidean distance 
metric. Since the sequences consist of primitives and spatial relations, appropriate distance 
metrics have to be used for the primitives and the relations separately. Comparison of 
primitives is based on type equivalence, i.e., line to line, blob to blob. For same type of 
primitives, e.g., zth primitive of the input sequence T and j'th primitive of an instance 
sequence S are of type P (say, ellipse), the distance measure d(Ti,Sj) is based on the 
cumulative normalized distance between attribute values, such as the Minkowski metric of 
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order n: 

d(Ti,Sj E 
ik=i 

Tik - S 

VPk 

■jk 
1/n 

where m is the number of attributes of the primitive type P and VPk is a normalizing value 
of P corresponding to the Arth attribute. When the relations are expressed in qualitative 
terms such as left, right, top, bottom, the matching algorithm seeks verification in such 
terms and the results are expressed as either 1 (match) or 0 (no match). On the other 
hand, when the spatial relations are expressed quantitatively such as in terms of angles and 
distances Minkowski metric can again be used. 

To classify an input element, IBL uses a single instance from C, viz., the nearest neighbor 
In contrast, our approach accumulates matching scores from all sequences belonging to a 
concept or a target class. Thus, the score for matching an input sequence T to the instance 
sequences S1 e S of the target class Ck is 

wk= £*(d(T,s')), 
S'es 

where the function $ can be chosen as an error function such as a Gaussian or a Lorentzian 
to increase the support of similar instance sequences and reduce that of dissimilar ones 
Classification is based on the highest accumulated score, i.e., C* is the assigned class for T 

C* = argmax^W*), k = 1,..., nc, 

where nc is the number of target classes. In order to keep the size of each class of sequences 
manageable, instance sequences that are nearly equivalent are replaced by their canonical 
sequence derived by generalizing upon the attribute values of primitives and spatial rela- 
tions (quantitative). A book-keeping procedure deletes sequences from target classes whose 
support classifications fail to agree with their respective target classes. 

Performance evaluation 

The performance of the IBL-based sequence matching can be evaluated using the measures 
used for any supervised learning method. These are the classification accuracy, example 
complexity, and noise sensitivity. The classification rate is expected to decrease with in- 
crease in lexicon size and sequence length. The example complexity requires a little different 
perspective than usual supervised learning approaches. This is because IBL being an incre- 
mental algorithm can utilize new information in added sequences to continue the training 
process. On the other hand, being an incremental process, the performance of IBL may 
be affected by the order in which the training examples are presented.  Thus, to evaluate 
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the performance based on the number of training examples, is has to be ensured that the 
test examples do not alter the learned sequence classes and also the order of the training 
examples need to be accounted for. The performance may be further evaluated by providing 
training examples corrupted with various amounts of noise. 

3.4     Conclusions 

Our approach has been motivated by the success of the use of weak structural models in 
speech and text recognition. However, in making these models effective for object recogni- 
tion one faces the same level of difficulty as extending 2-D pattern matching techniques to 
3-D. We plan on extending the HMM framework if it is necessary to ensure a satisfactory 
performance of the system or to enhance it. Subsequently, we shall be working on the other 
learning aspects of the indexing system, i.e., n-gram and inexact sequence matching. 
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Chapter 4 

Signal to Symbol Conversion for 
Structural Object Recognition 
Using Hidden Markov Models 

Structural recognition methods are usually based on the availability of structural primitives 
and the assumption that these elements can be extracted from the image data. However, in 
many practical situations it is difficult to extract these primitives with sufficient reliability. 
Regardless of what these primitives are, their extraction normally requires early decision- 
making at a low level and without consideration of the spatial context. Our approach 
attempts to avoid early segmentation by using a context-dependent classification scheme 
based on Hidden Markov Models (HMMs). They offer several features that make them 
attractive for pattern detection and matching under distortion, partial occlusion, and noise. 
However, due to their fundamentally one-dimensional nature, the application of HMMs 
to images remains a challenging and largely unsolved problem. In this chapter, we have 
adapted HMMs for 2-D for shape indexing and recognition. Initial results from experiments 
with the HMM-based indexing mechanism are shown. 

4.1     Introduction 

In this chapter, we study the problem of two-dimensional object recognition under the 
general assumption that three-dimensional objects can be represented by a finite set of 2- 
D aspects. However, since each aspect must necessarily cover a certain range of viewing 
angles, viewing distances, and possible articulations, we require that the underlying recog- 
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nition process be able to handle a sufficient amount of variation between the image and the 
corresponding prototype aspect. The critical problems for 2-D recognition are (a) tolerance 
against changes in lighting conditions and contrast, (b) the handling of geometrical devi- 
ations, such as rotations, scale changes, and moderate object deformations, (c) tolerance 
against changes in background, and (d) partial object occlusion. A central premise is that 
the shape of an object is its most discriminating property, one that is mostly unaffected 
by lighting conditions and sensor parameters. The shape of an object can be defined in 
many different ways, for example as the occluding contour, a set of straight line segments, 
or a collection of bright blobs. Here we mean by shape, in a very general sense, the spatial 
arrangement of structural information, which typically includes boundary information as 
well as information about the interior structure of an object. The need to perform recogni- 
tion under partial object occlusion requires that objects can be identified from their parts 
or at least a subset of their parts, which typically excludes methods based on rigid iconic 
template matching. 

Traditional shape-based recognition approaches fall into three broad categories: contour- 
based, morphological, and structural methods. All of these (with the exception of grey-scale 
morphology) require pre-segmentation of the image. Contour-based methods operate on the 
outline curve of the objects, which are difficult to obtain under real conditions and many 
objects do not have well-defined boundaries at all. Contours are typically obtained by 
edge- or region-based segmentation. Often, closed object contours are required for success- 
ful matching, which are even more difficult to extract in practice. Morphological methods 
are useful for simple shape-based filtering but are intolerant to rotation and scale changes. 
Binary morphology, in addition, requires prior segmentation (thresholding) as well. Struc- 
tural recognition methods are based on the availability of primitive structural elements and 
the assumption that these elements can be extracted from the image data with sufficient 
reliability. Typical primitives are straight line segments, corners, blobs, arcs, and other 
parametric strokes. Regardless of what the primitives are, the performance of the recog- 
nition process depends critically on how reliably they can be extracted, which is difficult 
even under ideal viewing conditions. When images are noisy and cluttered, the extraction 
of suitable primitives may not be possible from local information alone. A typical example 
for this kind of imagery is shown in Figure 4.1. Also, the chosen class of primitives may 
significantly constrain the kind of objects that can be described. 

Our goal is to implement an object indexing and recognition mechanism that makes 
effective use of all available structural information while, at the same time, avoids the early 
decisions necessary for extracting structural tokens. Instead of performing an isolated, 
context-independent detection and subsequent combination of structural primitives, larger 
spatial patterns are extracted and classified as a whole. The key mechanism we employ for 
this purpose is the hidden Markov model (HMM) which has been used successfully in other 
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Figure 4.1: Typical forward looking in- 
frared image that contains rich structure 
but structural components are difficult 
to extract from. 

pattern recognition applications, particularly for speech and character recognition. The 
main attraction of HMMs is that they are able to model possible pattern distortions, they 
perform efficient evidence accumulation without requiring previous segmentation, and they 
provide elegant learning methods. The main problem associated with traditional HMMs is 
that they are essentially one-dimensional models and their extension for 2-D applications 
is not straightforward. Our solution is to represent the object's appearance by a set of 
characteristic one-dimensional observation sequences that extend over the entire object 
(including its interior regions) and can be extracted from the image with sufficient reliability. 

4.2     Hidden Markov Models for Signal-To-Symbol 
Conversion 

The internal mechanism of the HMM is a probabilistic finite-state machine that is usually 
stationary, i.e. with fixed (time-invariant) state transition probabilities. The key difference 
from a regular Markov chain is that the state trajectory s0, 

si! • • • i st, ■ ■ ■ of a HMM is not 
directly observable. At each time step t, the HMM is thought of emitting an observable 
entity Ot, which can have either a discrete or a continuous value (for discrete or continuous 
HMMs, respectively). The observation Ot again depends upon the state st in a probabilistic 
way, which makes the model double-stochastic. Formally, a discrete HMM is defined as a 
tuple A = (A,B,w), where At-j is the probability that state j follows state i, 5,-^ is the 
probability of observing symbol k in state i, and TT{ is the probability of i being the initial 
state. 
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HMMs are well suited for handling two common difficulties in pattern recognition: spatial 
(or temporal) pattern distortions are captured by the non-deterministic internal finite-state 
machine, and the uncertainty of the locally observed signals are modeled by the observation 
probability distributions. During classification, the HMM uses all the available local infor- 
mation and interprets the subparts of a pattern in the context of a globally optimal solution. 
In case of the Viterbi classifier, we can obtain an implicit segmentation of the pattern into 
meaningful constituents from the corresponding optimal state trajectory, without the need 
for ever declaring explicitly what and where these constituents are. The considerable suc- 
cess of HMMs in many speech recognition applications is mainly due to these properties, in 
addition to their simplicity and efficiency. 

While HMMs have a lot of appeal as a pattern recognition formalism, they are primarily 
suited for sequential, one-dimensional patterns and it is not obvious how HMMs can be 
applied for processing 2-D patterns. Markov Random Fields (MRF) and Hidden Markov 
Random Fields (HMRF) have been proposed as 2-D extensions of the original Markov chain 
model and the HMM, respectively. However, the MRF models lack efficient classification 
and learning algorithms and their impact in 2-D processing has been restricted to image 
restoration and pixel labeling. It has not been shown yet that MRFs are useful for structural 
pattern classification in the context of object recognition. Our approach is to apply HMMs in 
their original one-dimensional formulation by converting the image into a suitable sequence 
of observations. 

The two key issues related to HMM algorithms for our purpose are (a) the classification of 
a given observation sequence, and (b) training the model from sample observations. In the 
classification problem, we are looking for the likelihood that a given observation sequence 
O = (OO,OI,...OT-I) was generated by a particular HMM A. Fortunately, there are 
simple and efficient algorithms for computing this likelihood, such as the Forward-Backward 
procedure and the classical Viterbi algorithm [106, 84]. Both algorithms are based on the 
dynamic programming principle and are linear in the length of the observation sequence for 
a given model. The Forward-Backward procedure computes the overall probability P(0|A) 
for all possible state sequences S = (s0,si,. ..ST-I), while the Viterbi algorithm computes 
the probability of the "best" of all possible state sequence max; P(0|A, S(). The training 
problem consists of finding a HMM A' that maximizes the likelihood of observing a given 
set of observation sequences {O^}. While there is no analytical solution to this problem, 
an iterative learning procedure with proven convergence properties exists in the form of the 
Baum-Welch reestimation algorithm [84]. 
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Figure 4.2: Principal compo- 
nents of the HMM-based signal-to- 
symbol conversion approach for ob- 
ject indexing. 
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4.3     Indexing Approach 

Figure 4.2 shows the principal components of our approach. The input of the HMM-based 
structural analysis process is obtained from a set of oriented Gabor filters, which form a 
multi-scale decomposition of the image signal. Subsequently, the Gabor feature vectors 
are encoded to a discrete set of symbols by vector quantization (VQ). This is followed 
by the extraction of 1-D sequences from the 2-D image data, for which we describe several 
alternatives. Our approach is to extract observation sequences using both image and spatial 
constraints. HMMs are used to describe the shapes of individual subparts of objects, thus 
allowing recognition under partial occlusion. The identification of subparts is used for 
indexing into a given model base, which is the basis for final recognition. Both the VQ 
codebook and the HMM model parameters are learned directly from image examples in a 

supervised fashion. 
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4.3.1     Gabor Wavelet Features 

Preprocessing of the image data consists of applying a set of hierarchical Gabor wavelet 
filters with Nw log-spaced center frequencies u>k and N^ regularly spaced orientations </>/. 
For each pixel location x;, we compute the values 

JkM 

where / denotes the original image, (G^fc ^G' ^) is a Gabor quadrature filter pair with 
center frequency u>k and modulation orientation <f>i, and * is the convolution operator. G* . 
and G~ , are the cosine and the sine Gabor filter kernels, respectively. The spacing in 

frequency is Aw, such that uk = u0 • A^ for 1 < k < Nu, and the spacing in orientation is 
A^ = ^-, such that 4>i = (f>0 + / • A^, for 1 < / < Nj,, for given w0, Nw, cj>0, and Nj,. For 

typical values of N^ — 4, Aw = 2, and Nu = 4, we obtain a 32-element Gabor probe G[i] for 
each image location x,-. Figure 4.3 shows the cosine and sine responses of four filters with 
different center frequencies but identical orientation applied to the image in Figure 4.1. 

Each individual Gabor probe at an image location x,- is a multi-scale description of the 
structural image properties around the point x,-. The diameter of the region covered by each 
Gabor filter is inversely proportional to the filter's center frequency iOk- Thus in a sense, 
the "larger" filters provide the structural context for the smaller ones. Notice that all filters 
are applied to each image position, which means that at least for the low-frequency Gabor 
filters the resulting output function is highly over-sampled. While the amount of data is 
considerably larger than with a traditional pyramid representation, the advantage of this 
scheme is that there is no need for spatial interpolation. 

4.3.2    Encoding of Image Data 

To produce the observation sequences required by a discrete HMM, we apply vector quan- 
tization to the continuous-valued Gabor probes. Each Gabor feature vector y = G[i] is 
mapped to a discrete set of symbols: y —>■ q(y) G [0,1/ - 1], for a X-level codebook. The 
issues in VQ are the choice of a suitable distance (distortion) measure, the codebook design, 
and the encoding efficiency. For the choice of a distance measure we have two basic alterna- 
tives: (a) group the Gabor probes by using the Euclidean (or similar) distance measure or 
(b) use a "smart" inter-vector distance measure that takes care of Gabor probe similarities 
over varying rotation and scale. 

In the first approach (which we use), the burden of providing scale and rotation invariance 
lies on the subsequent HMM processing.  In the second case, we would need a much more 
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sophisticated distance measure. Given two Gabor probes a and b, the task would be to find 
the maximum similarity between a and b under all possible rotations and scale changes. 
For the chosen vector structure, a scale change would roughly be equivalent to a blockwise 
shift of elements up or down the vector, while a change in orientation would correspond 
to a simultaneous cyclic shift within each of the scale blocks. Clustering is used for the 
codebook design. Using the Euclidean distance in the multi-dimensional Gabor feature 
space, d(y,y) = ||y - y||2 allows the use of fc-means and similar clustering algorithms for 
building the codebook. Currently we are use a linear codebook consisting of L = 128 cluster 
entries, which will be replaced by a larger tree-structured codebook for faster quantization 
in the future. Figure 4.4 illustrates the result of applying VQ to the Gabor decomposition 
partly shown in Figure 4.3. 

4.3.3    Sequentialization of Image Probes 

The main problem is how to use the HMM formalism, which is geared towards one- 
dimensional sequence analysis, in the 2-D domain. One solution is the use of the objects' 
contours, which is particularly practical when the contours are closed [51], or the "pseudo- 
2D" version of HMMs that was used in [3] for printed character recognition. Both solutions 
for sequentializing image observations are not adequate for our problem. 

The sequences we want to generate should (a) extend over the interior of the object, 
(b) they should be based on local image features (coded Gabor probes) without previous 
segmentation, and (c) they should not require the object to be entirely visible for successful 
indexing. Our model-base consists of a set of sequence prototypes, each represented by 
its corresponding HMM. The characteristic sequences for each object (or object view) are 
learned from real images. For model indexing, observation sequences are extracted from 
the given image and matched to the set of sequence prototypes. However, a key problem 
is how to find sequences of image locations during indexing that have a high likelihood of 
matching those stored in the HMM model base. Assuming that we are given (from the 
preceding detection stage, e.g.) a region of interest supposed to contain a known object, 
then some of the alternatives for producing observation sequences are: 

1. Random walk — Start at an arbitrary location within the search region and perform a 
constrained random walk covering the search region. Although there is a chance that 
this process will eventually produce subsequences that coincide with existing model 
sequences, this technique is not efficient. 

2. Spatial constraints — Using spatial constraints is one way of increasing the likelihood 
that sequences recovered from the region of interest have a match in the model base. 
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A very simple spatial constraint would be to move only horizontally, vertically, and 
diagonally over single pixel increments, regardless of the image contents. This creates 
problems with rotated patterns. 

3. Image constraints — An alternative to using the underlying image raster, one could 
use the information in the image itself for constraining the sequentialization process. 
For example, one could extract local energy peaks as "control points" of the sequences 
and use a fixed but non-deterministic decision rule to move from one control point to 
the next. One could then use either Gabor information at the control points alone or 
include additional data between those points as we do here. 

4. Model constraints — To further increase the likelihood of generating sequences that 
match the model one can make the sequencing itself model-dependent. In this scheme, 
the decision which successor probe to select depends upon the state of one or more 
HMMs in the model base. This means that the sequence selection and matching steps 
become intimately coupled. One way of formalizing this combined process is a Markov 
Decision process. In this case we can still use dynamic programming as in the original 
Viterbi decoding algorithm, but the sequence selection adds a spatial dimension to 
the trellis search space (see [12] for details). 

Our current implementation is based on a combination of spatial constraints and image 
constraints. Image constraints are used to locate potential terminal points of Gabor probe 
sequences. In particular, we use local maxima of the Gabor energy £GH = ||G[i]||2 to 
isolate such candidate points. Then, pairs of potential terminal points are connected by a 
straight line and the Gabor probes along this line are collected from the encoded (vector- 
quantized) data into discrete observation sequences, which we call Gabor streaks. The 
straight line serves as a simple spatial constraint for extracting the observation sequences 
that is independent of the image contents. The process for selecting pairs of terminal points 
is based on a model-independent heuristic decision rule that takes into account (a) the local 
Gabor energy value, (b) the distance between the points, (c) the number of streaks ending 
in a single point, and (d) the resulting local density of Gabor streaks. Of course, the same 
rule is applied during learning and recognition. Redundancy in the object representation is 
supposed to compensate for the uncertainties involved in this bottom-up process. Figure 4.5 
shows an example for terminal point and subsequent Gabor streak extraction. 

4.3.4    Sequence Classification and Indexing 

In our current implementation, the selection of observation sequences is independent of 
the sequence classification.   The extracted Gabor streaks are fed into all HMMs and the 
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model that maximizes the probability of observing the given sequence is selected as the best 
match (Figure 4.6). If the maximum probability is below a certain threshold, the observation 
sequence is classified as "unknown". The use of dynamic programming schemes, such as 
the Viterbi algorithm, makes this process computationally efficient. Moreover, the matching 
could proceed in parallel for all HMMs. 

4.4    HMM Model Base 

For the purpose of indexing, an object aspect is represented by a set of Gabor streaks, each 
describing a certain part of the object's appearance. Indexing is accomplished by associating 
one or more Gabor streaks within a given region of interest with a particular object aspect, 
thus allowing indexing under partial object occlusion. The particular type of HMM used 
for representing Gabor streaks has a typical forward structure with five states, as shown in 
Figure 4.7. This type of model enforces an ordered left-to-right state sequence but allows 
individual states to be extended over several observation frames or to be skipped. 

Gabor streak HMMs are acquired in a supervised learning process from real image data. 
For a given pair of terminal points, the model for the corresponding Gabor streak is com- 
puted by (a) randomly disturbing the coordinates of the terminal points, (b) extracting the 
corresponding disturbed streaks, and (c) feeding them into the Baum-Welch reestimation 
algorithm. This makes the model tolerant against positioning errors of the terminal points 
during indexing. For example, 30 learning trials on the streak connecting the terminal 
points 1 and 7 in Figure 4.5(b) using the codebook shown in Figure 4.4(c) resulted in the 
state transition probability matrix 

A(l,7) 

which shows the left-to-right structure of the model and the emergence of distinct states. 

4.5     Future Work 

Our current work is focussed on the implementation of the model-dependent sequential- 
ization process and a multi-aspect/multi-object HMM model base for target indexing and 
recognition. Near-term goals include the incorporation of multiple VQ codebooks and non- 
stationary HMMs to increase the robustness of the approach. 

5-10-11 0.999 0.5- IO-6 1 • IO-32 0.0 

3- IO-27 0.647 0.353 9 • IO-7 0.0 
6- 10-34 4- 10-18 0.055 0.945 0.0 

3 • 10-60 1 • io-36 7 • IO-29 0.950 0.049 
0.0 1 • io-68 2 • IO"47 8- IO"24 1.0 
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Figure 4.3:  Cosine (left) and sine (right) comRonents of the Gabor filter response for one out of 
four orientations <f>i and four different center frequencies UQ — 0.057T, wi = 0.17T, W2 = 0.27T, and 
ÜJ3 = 0.4-7T. 
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(a) (b) 

(c) (d) 

Figure 4.4: Result of vector quantization applied to the Gabor decomposition shown in Figure 4.3, 
using two different codebooks with 128 entries each (a-b). The corresponding 128 32-dimensional 
codebook vectors (c-d), where each vector is shown as a vertical column. 
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(a) (b) 

Figure 4.5: Possible terminal points obtained at local maxima of the Gabor energy function (a). 
Gabor probe sequences (streaks) are formed by collecting encoded Gabor probes along straight lines 
between terminal points (b). 
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Figure 4.6:   Using multiple HMMs for classifying an observation sequence, for the case that the 
sequentialization and classification are decoupled. 
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Figure 4.7:  State transition diagram for the forward-type HMM used to represent Gabor probe 
sequences. State transitions not shown in the diagram are assigned zero probabilities. 
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Chapter 5 

Closed-Loop Object Recognition 
Using Reinforcement Learning 

5.1     Introduction 

Image segmentation, feature extraction and model matching are the key building blocks of 
a computer vision system for model-based object recognition [27, 74]. The tasks performed 
by these building blocks are characterized as the low (segmentation), intermediate (feature 
extraction) and high (model matching) levels of computer vision. The goal of image seg- 
mentation is to extract meaningful objects from an image and it is essentially a pixel-based 
processing. Model matching uses a representation such as shape features obtained at the 
intermediate level for recognition. It requires explicit shape models of the object to be rec- 
ognized. There is an abstraction of image information as we move from low to high levels 
and the processing becomes more knowledge based or goal directed. 

Current computer vision algorithms for object recognition do not achieve good perfor- 
mance for practical applications since they do not adapt to the changing environment [14]. 
For object recognition systems to perform effectively under changing environmental condi- 
tions, it is essential to combine the interaction between the low and high level components 
of a vision system. There are several problems with current model-based object recognition 
systems that are mostly open-loop or filter type systems. 

1. The fixed set of parameters used in various vision algorithms used for object recogni- 
tion lead to undraceful degradation in performance. 

2. The image segmentation, feature extraction and selection are generally carried out 
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as preprocessing steps to object recognition algorithms for model matching. These 
steps totally ignore the effects of the earlier results (image segmentation and feature 
extraction) on the future performance of the recognition algorithm. 

3. Generally the criteria used for segmentation and feature extraction require elaborate 
human designs. When the conditions for which they are designed are changed slightly, 
these algorithms may fail. Furthermore, the criteria themselves can be a subject of 
debate [16]. 

4. Object recognition is a process of making sequences of decisions, i.e., applying vari- 
ous image analysis algorithms. Often the usefulness of a decision or the results of an 
individual algorithm can only be determined by the final outcome (e.g. matching con- 
fidence) of the recognition process. This is also known as "vision-complete" problem 
[26], i.e., one cannot really assign labels to the image without the knowledge of which 
parts of the image correspond to what objects. 

Object recognition systems whose decision criteria for image segmentation and feature 
extraction, etc. are developed autonomously from a reinforcement signal of the final recog- 
nition might transcend all the above problems. 

In this chapter, we present an approach that takes the output of the recognition algorithm 
and uses it as a feedback in a reinforcement learning framework to influence the performance 
of the algorithm used for image segmentation. The recognition performance is improved 
over time with this method. The novelty of the approach is that it includes the matching 
or recognition component as part of the evaluation function for image segmentation in 
a systematic way. The additional strength of the approach is that the system develops 
its independent decision criteria (segmentation parameters) to best serve the underlying 
recognition task. It should be emphasized that our interest is not in a simple mixture of 
learning and computer vision, but rather in the principled integration of the two fields at 
the algorithmic level. 

Our work is most closely related to the work by Bhanu and Lee [16], where they describe 
a system that uses genetic algorithms for learning segmentation parameters1. However, the 
recognition algorithm is not part of the evaluation function for segmentation in their system. 
The genetic algorithms simply search for a set of parameters that optimize a prespecified 
evaluation function which may not best serve the overall goal of robust object recognition. 
Furthermore, they assume that the location of the object in the image is known. In our 
work, we do not make such an assumption. We use explicit geometric model of an object, 
represented by its polygonal approximation, to recognize it in the image. 

'Specifically, the PHOENIX's [60] parameters. 
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Confidence Level for Matching 

Figure 5.1: Conventional multi-level system for object recognition. 

Section 5.2 describes a general framework for reinforcement learning-based adaptive im- 
age segmentation. Section 5.3 describes the reinforcement learning paradigm and the par- 
ticular reinforcement learning algorithm employed in our system. Section 5.4 presents the 
experimental results evaluating the system and section 5.5 concludes the chapter. Appen- 
dices A and B describe briefly the segmentation and the matching algorithms that have 
been used to perform experiments reported in section er. 

5.2     Reinforcement Learning System for Segmentation 
Parameter Estimation 

5.2.1     The Problem 

Consider the problem of recognizing an object in an input image, assuming that the model 
of the object is given and that the precise location of the object in the image is unknown. 

The conventional method, shown in Figure 5.1, for the recognition problem is to first 
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segment the input image, then extract and select appropriate features from the segmented 
image, and finally perform model matching using these features. If we assume that the 
matching algorithm produces a real valued output indicating the degree of success upon its 
completion, then it is natural to use this real valued output as feedback to influence the 
performance of segmentation and feature extraction so as to bring about system's earlier 
decisions favorable for more accurate model matching. The rest of the chapter describes a 
reinforcement learning-based vision system to achieve just that. 

5.2.2    Learning to Segment images 

Our current investigation into reinforcement learning-based vision systems is focused on 
the problem of learning to segment images. An important characteristic of our approach is 
that the segmentation process takes into account the biases of the recognition algorithm to 
develop its own decision strategies. As a result, more efficient recognition performance can 
be expected. 

Image Segmentation 

We begin with image segmentation [50] because it is an extremely important and difficult 
low-level task. All subsequent interpretation tasks including object detection, feature ex- 
traction, object recognition and classification rely heavily on the quality of the segmentation 
process. The difficulty arises for image segmentation when only local image properties are 
used to define the region-of-interest for each individual objects. It is known [36] that cor- 
rect localization may not always be possible. Thus, image segmentation cannot be done by 
grouping parts with similar image properties in a purely bottom-up fashion. Difficulties also 
arise when segmentation performance needs to be adapted to the changes in image quality, 
which is affected by variations in environmental conditions, imaging devices, time of day, 
etc. The following are the key characteristics [16] of the image segmentation problem: 

• When presented with a new image, selecting the appropriate set of algorithm param- 
eters is the key to effectively segmenting the image. 

• The parameters within most segmentation algorithms typically interact in a complex, 
non-linear fashion, which makes it difficult or impossible to model the parameters' 
behavior analytically. 

• The variations between images cause changes in the segmentation results, the objective 
function that represents segmentation quality varies from image to image. Also, there 
may not be a consensus on segmentation quality measures. 



Confidence Level for Matching 

Figure 5.2: Reinforcement learning-based system for object recognition. 

Our Approach 

Figure 5.2 depicts the conceptual diagram of our reinforcement learning-based object 
recognition system that addresses the parameter selection problem encountered in image 
segmentation task by using the recognition algorithm itself as part of the evaluation function 
for image segmentation. Note that the reinforcement learning component employs a partic- 
ular reinforcement learning algorithm which will be described in the next section. Figure 5.3 
shows the main steps of the algorithm we use, where the algorithm terminates when either 
the number of iterations reaches a prespecified value (N) or the recognition confidence level 
(r) has exceeded a given threshold, called Rth- In the event that the number of iterations 
has exceeded N, we will say that the object is not present in the image. Also for simplicity 
we assume that only one instance of the model is present in the image. Multiple instances 
of the model can be recognized by slight modification of the algorithm. 
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• LOOP: 

1. For each image i in the training set do 

(a) Segment image i using current segmentation parameters 

(b) Perform noise clean up 

(c) Get segmented regions (also called blobs or connected compo- 
nents) 

(d) Perform feature extraction for each blob to obtain token sets 

(e) Compute the matching of each token set against stored model 
and return the highest confidence level, r 

(f) If r > Rth then exit 

(g) Obtain new parameters for the segmentation algorithm using 
r as reinforcement for the reinforcement learning algorithm 

• UNTIL number of iterations is equal to N 

Figure 5.3: Main Steps of the Reinforcement Learning-Based Object Recognition Al- 
gorithm. 

5.3     Reinforcement Learning 

In this section we begin with a brief overview of the reinforcement learning technique. We 
then describe reinforcement learning algorithms applicable to our task and the modifications 
of these algorithms to effectively solve the problem identified in section 5.2.1. 

Reinforcement learning is a framework for learning to make sequences of decisions in an 
environment. In this framework, a learning system is given at each time step inputs de- 
scribing its environment. The system then makes a decision based on these inputs, thereby 
causing the environment to deliver to the system a reinforcement. The value of this rein- 
forcement depends on the environmental state, the system's decision, and possibly random 
disturbances. In general, reinforcement measuring the consequences of a decision can emerge 
at a multitude of times after the decision is made.   A distinction can be made between 
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associative and non-associative reinforcement learning. In the non-associative paradigm, 
reinforcement is the only information the system receives from its environment. Whereas, 
in the associative paradigm, the system receives input information that indicates the state 
of its environment as well as reinforcement. In such learning systems, a "state" is a unique 
representation of all previous inputs to a system. In computer vision, this state informa- 
tion corresponds to current input image and our object recognition applications require 
us to take into account the changes appearing in the input images. The objective of the 
system is to select sequences of decisions to maximize the sum of future reinforcement (pos- 
sibly discounted) over time. It is interesting to note that for a given state an associative 
reinforcement learning problem becomes a non-associative learning problem. 

As noted above, a complication to reinforcement learning is the timing of reinforcement. 
In simple tasks, the system receives, after each decision, reinforcement indicating the good- 
ness of that decision. Immediate reinforcement occurs commonly in function optimization 
tasks. A well-understood method in immediate reinforcement learning is the REINFORCE 
algorithms of Williams [108], a class of connectionist reinforcement learning algorithms, 
that perform stochastic hill-climbing. 

In more complex tasks, however, reinforcement is often temporally delayed, occurring 
only after the execution of a sequence of decisions. Delayed reinforcement learning is im- 
portant because in many problem domains, immediate reinforcement regarding the value 
of a decision may not always be available. For example, in object recognition, the good- 
ness of segmentation is not known until the recognition decision has been made. Delayed 
reinforcement learning is attractive and can play important role in machine vision. 

The most effective approach to date to delayed reinforcement learning is the temporal 
difference learning method of Sutton [105], a class of useful computational procedures for 
solving the temporal credit assignment problem. The key idea behind temporal difference 
learning is that the value of a state should be regressed towards the weighted average of 
the values of its successors, where the weightings reflect the conditional probabilities of the 
successors. A well-studied form of temporal difference learning is Watkins' Q-learning [107], 
a Monte-Carlo method that approximates dynamic programming. For further details, see 
[107, 77]. The REINFORCE algorithms are the main focus in this chapter since reinforce- 
ment (matching confidence level) regarding segmentation performance is immediate. 

5.3.1    REINFORCE Algorithms 

The particular class of reinforcement learning algorithms employed in our object recognition 
system is the REINFORCE algorithms. It is a class of connectionist reinforcement learning 
algorithms developed by Williams [108], where units in such a network are Bernoulli quasi- 
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linear units, in that the output of such a unit is either 0 or 1, determined stochastically 
using the Bernoulli distribution with parameter p = /(s), where / is the logistic function, 

and 

/(s) = l/(l + exp(-s)) 

S = ^2 WiXi 

is the usual weighted summation of input values to that unit. For such a unit, p represents 
its probability of choosing 1 as its output value. Figure 5.4 depicts such a unit. 

Figure 5.4: Bernoulli Quasilinear Unit 

In the general reinforcement learning paradigm, the network generates an output pattern 
and the environment responds by providing the reinforcement r as its evaluation of that 
output pattern, which is then used to drive the weight changes according to the particular 
reinforcement learning algorithm being used by the network. For the Bernoulli quasilinear 
units used in this research, the REINFORCE algorithm we use prescribes weight increments 
equal to 

Awij = aij(r - bij)(yi - pi)xj, (5.1) 

where a,-j is a positive learning rate (possibly different for each weight), 6,-j serves as a 
reinforcement baseline (which can also be different for each weight), and i =  l,...,n, 
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j = l,...,m. n and m are the number of the units in the network and the number of 
features for each input, respectively. In this chapter, we consider only algorithms having 
the form 

Awij = a(r - b)(y{ - pi)xj (5.2) 

where o.^ = a and bij — b for all i and j. Xj is the input to the Bernoulli unit and y; is the 
output of the ith Bernoulli unit, pi is an internal parameter to a Bernoulli random number 
generator and it is computed according to (5.4). It can be shown [108] that, regardless of 
how b is computed, whenever it does not depend on the immediately received reinforcement 
value r, such an algorithm satisfies 

£{AW|W} = aVw£{r|W} (5.3) 

where E denotes the expectation operator, W represents the weight matrix of the network, 
and AW is the change of the weight matrix. A reinforcement learning algorithm satisfying 
(5.3) can be loosely described as having the property that it statistically climbs the gradient 
of expected reinforcement in weight space. For extensive discussions of these algorithms, 
see [108, 109]. Next two subsections describe the particular network and the REINFORCE 
algorithm used in the experiments reported in this chapter. 

5.3.2    The Team Network 

We use a very simple form of trial generating network in which all of the units are output 
units and there are no interconnections between them. This degenerate class of network 
corresponds to what is called a team of automata in the literature on stochastic learning 
automata [72]. We, therefore, call these networks as teams of Bernoulli quasilinear units. 
Figure 5.5 depicts the team network used here, which corresponds directly to the reinforce- 
ment learning component in Figure 5.2. Each segmentation parameter is represented by a 
set of Bernoulli quasilinear units and the output of each unit is binary as we have described 
earlier. 

For any Bernoulli quasilinear unit, the probability that it produces a 1 on any particular 
trial given the value of the weight matrix W (size n by ra)is 

Pr {Vl = 1|W} = Pi = f(si) = i +
1

e_s< (5.4) 

where s,- = J2j wijxj- Because all units pick their outputs independently, it follows that for 
such a team of Bernoulli quasilinear units the probability of any particular output vector 
y(i), corresponding to an instance of segmentation parameters, conditioned on the current 
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New Parameters 

Segmentation Parameter 1 Segmentation Parameter n 

TEAM OF BERNOULLI QJjASILINEAR UNITS 

Input Image r = Confidence Level 

Figure 5.5: Team of Bernoulli units for learning segmentation parameters. 

value of the weight matrix W is given by 

Pr{y|W}=      I]     Vf{l-Vi)l~m. 
i€{l,~,n} 

(5.5) 

The weights Wij are adjusted according to the particular learning algorithm used. We 
note that when s,- = 0 and hence pi = 0.5, thus the unit is equally likely to pick y; either 0 
or 1, while increasing S{ makes a 1 more likely. Adjusting the weights in a team of Bernoulli 
quasilinear units is thus tantamount to adjusting the probabilities (p;'s) for the individual 
units. 

Note that, except bias terms, there are no input connections in the team networks 
experimented in [109]. In contrast, the team network described here does have input weights 
which play the role of long-term memory in associative learning tasks. 
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5.3.3    The Team Algorithm Used 

The algorithm we used with the team architecture has the following general form: At the tth 

time step, after generating output y(t) and receiving reinforcement r(t), i.e., the confidence 
level indicating the matching result, increment each weight Wij by 

Awij{t) = ap(t)eij(t)xj - 5wij{t), (5.6) 

where a, the learning rate, and 8, the weight decay rate, are parameters of the algorithm. 
p is called the reinforcement factor and e,-j the eligibility of the weight Wij [108]. Generally, 
the eligility of a weight indicates the extent to which the activity at the input of the weight 
was connected in the past with unit output activity. The reinforcement factor is computed 
according to 

p(t) = r(t)-7(t-l), (5.7) 

where r(t) is the exponentially weighted average, or trace, of prior reinforcement values 

r(t) = 7r(i - 1) + (1 - 7)r(t) t > 1, (5.8) 

with 7(0) = 0. The trace parameter 7 was set equal to 0.9 for all the experiments reported 
here. Finally, we considered the following form of eligibility 

eij(t) = yi(t)-yi(t-l), (5.9) 

where y{(t) is an average of past values of y; computed by the same exponential weighting 
scheme used for 7. That is, 

yt(t) = jyt(t-i) + (i-i)yi(t). (5.10) 

Superior performance with this form of eligibility was reported in the experiments performed 
in [109] for function optimization. For other forms of eligibility, see [109]. 

The use of weight decay is chosen as a simple heuristic method to force sustained explo- 
ration of the weight space since it was found that REINFORCE algorithms without weight 
decay always seemed to converge. It is argued in [109] that having weight decay (the second 
term Swij(t) in Equation (5.6) is very closely related to having a nonzero mutation rate at 
a particular allele (feature value) in a genetic algorithm [44]. The size of the weight decay 
rate 8 was chosen to be 0.01 in all our experiments. Note that there are other ways to 
force sustained exploration. One possibility is to maximize a linear combination of system's 
entropy and reinforcement. We omit here the detailed analysis of the method except com- 
menting that such a strategy seeks not only a particular region of the space having high 
reinforcement values, but also a variety of such high value regions. For further details, see 
[109]. 
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5.3.4    Implementation of the Algorithm 

A slightly different training strategy from that described in Figure 5.3 was used in the 
experiments reported here. Instead of looping through every images in the training set, 
the training procedure samples images proportional to the level of matching confidence the 
current system achieves. That is, the lowerer the matching confidence the system gets on an 
image, the more likely the image will be sampled. In this way training is focused on those 
images having the lowest matching confidence, and thus faster performance improvement 
can be achieved. A similar technique is also adopted in [33]. Figure 5.6 shows the main steps 
of the proportional training algorithm, where MAXCONFID is the maximum confidence 
level the system can achieve, i.e., when a perfect matching occurs. 

5.4     Experimental Results 

This section describes experimental results evaluating the performance of our system on 
two sets of color images, one of which is indoor and the other is outdoor. 

The PHOENIX algorithm [60] was chosen as the image segmentation component in our 
system because it is a well-known method for the segmentation of color images with a 
number of adjustable parameters. It has been the subject of several Ph.D. theses [82, 102]. 
PHOENIX works by splitting regions using histogram for color features. Appendix 5.5 
provides a brief overview of the algorithm. Note that any segmentation algorithm with 
adjustable parameters can be used in our approach. 

The PHOENIX algorithm has a total of fourteen adjustable parameters. The four most 
critical ones that affect the overall results of the segmentation process are used in learning. 
These parameters are Hsmooth, Maxmin, Splitmin, and Height. Hsmooth is the width of 
the histogram smoothing window, where smoothing is performed with a uniformly weighted 
moving average. Maxmin defines the peak-to-valley height ratio threshold. Any interval 
(see Appendix 5.5) whose peak height to higher shoulder ratio is less than this threshold is 
merged with the neighbor on the side of the higher shoulder. Splitmin defines the minimum 
size for a region to be automatically considered for splitting. This is an absolute value, 
not a percentage of the image area. Height is the minimum acceptable peak height as a 
percentage of the second highest peak. The team algorithm searches for a combination of 
these parameters that will give rise to a segmentation from which the best recognition can 
be achieved. 

The ranges for each of these parameters are the same as those used in [16]. Table 5.1 
shows sample ranges for each of these parameters. The resulting search space is about one 
million sample points. 
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• LOOP: 

1. For each image i in the training set do 

(a) Compute matching confidence for image i: CONFIDi 

(b) m = MAXCONFID - CONFIDi 

(c) If J2i ni is 0, then terminate. 

(d) proportion 

2. Sample image i according to proportiorii and do 

(a) Segment image i using current segmentation parameters 

(b) Perform noise clean up 

(c) Get segmented regions (also called blobs or connected compo- 
nents) 

(d) Perform feature extraction for each blob to obtain token sets 

(e) Compute the matching of each token set against stored model 
and return the highest confidence level, r 

(f) If r > Rth then exit 

(g) Obtain new parameters for the segmentation algorithm using 
r as reinforcement for the reinforcement learning algorithm 

• UNTIL number of iterations is equal to N 

Figure 5.6: Main Steps of the Proportional Training Algorithm. 

Each of the PHOENIX parameters is represented using 5 bit Gray code which has the 
advantage over simple binary code in that only one bit changes between representations of 
two consecutive numbers. One reason for using the binary representation is its usefulness as 
a model of certain types of distributed adaptive decision-making. Another reason is that it 
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Table 5.1: Sample ranges for selected PHOENIX parameters. 

Parameter Sampling Formula Test Range 
Hsmooth: 

hsindex e [0 : 31] 
hsmooth=l + 2 * hsindex 1-63 

Maxmin: 
mmindex G [0 : 31] 

ep=ln(100) + 0.05 * mmindex 
maxmin = exp(ep) + 0.5 

100 - 471 

Splitmin: 
smindex € [0 : 31] 

splitmin=9 + 2 * smindex 9-71 

Height: 
htindex e [0 : 31] 

height=l + 2 * htindex 1-63 

offers a combinatorially advantageous way of approaching learning problems having a large 
search space. While the same task could be learned in the original parameter space, for 
many types of problems, including image segmentation, the binary representation can be 
expected to learn much faster. Since there are 4 parameters, we have a total of 20 Bernoulli 
quasilinear units and each parameter corresponds to the outputs of 5 units. 

The feature extraction consists of finding polygon approximation tokens for each of the 
regions obtained after image segmentation. The polygon approximation is obtained using 
a split and merge technique [19] that has a fixed set of parameters. 

Object recognition employs a cluster-structure matching algorithm [19] which is based 
on the clustering of translational and rotational transformation between the object and 
the model for recognizing 2-D and 3-D objects. A brief description of the algorithm is 
given in Appendix 5.5. The algorithm takes as input two sets of tokens, one of which 
represents the stored model and the other represents the input region to be recognized. It 
then performs topological matching between the two token sets and computes a real number 
that indicates the confidence level of the matching process. This confidence level is then 
used as a reinforcement signal to drive the team algorithm. 

It is important to note that, in the current implementation of the system, the cluster- 
structure matching algorithm does not have the knowledge of actual target location in the 
image. It simply attempts to match the stored model against the polygonal approximation 
of each blob in the segmented image whose size is at least 80% of the size of the model, and 
at the same time does not exceed it by more than 20%. The confidence level returned is 
the highest value ever obtained during matching. 

It is worth pointing out that, during learning, the weights are updated after each presen- 
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tation of an input image. This is in direct analogy to the typical weight update procedure 
in connectionist networks where weights are updated according to the stochastic gradient 
or incremental procedure instead of the total gradient rule [61]. That is, updates take place 
after each presentation of a single exampler without averaging over the whole training set. 
Both empirical and theoretical studies show that the stochastic gradient rule converges sig- 
nificantly faster than the total gradient rule, especially when training set contains redundant 
information. 

Finally, as a comparison, the segmentation results with the PHOENIX algorithm using 
default parameters are also obtained for feature extraction and recognition on the same 
tasks. 

5.4.1     Results on Indoor Images 

The first segmentation task whose experimental results we report here is a sequence 
of indoor color images (160 by 120 pixels) having simple geometric objects with varying 
lighting and motion conditions. These images are shown in Figure 5.7, where, from left to 
right, images are moving away from the camera, and within each column, lighting conditions 
deteriorate from top to bottom. The training data consist of the images in the first column (4 
images), whereas the testing data come from the rest of the images (8 images). The objective 
of the task is to find a set of PHOENIX's parameters that give rise to a segmentation of 
the input image which, after appropriate feature extraction, will result in the recognition 
of the triangular object. The model of the triangular object is represented by a polygonal 
approximation of its shape. The threshold for matching confidence in this simple case 
was set to 100%. Note that, unlike previous work on image segmentation, the criteria 
measuring image segmentation quality here are completely determined by the matching 
algorithm itself. 

Each unit in the team network has a total of 8 input weights, each of which takes an 
average gray value of input on a 60 by 40 neighborhood on the input image plane of 120 
by 160 pixels. This input plane is the luminance image of the corresponding color image. 
Note that in this experiment the average is normalized to lie between -1 and 1. For weights 
that are adjacent in a unit, their receptive fields are at least 40 pixels apart in the input 
image. Thus, the input image is undersampled, which in turn greatly reduces the number 
of weights in the network. The motivation is that variations in lighting need not be adapted 
with high resolution. 

Figure 5.8 shows the segmentation performance (both training and testing) of the PHOENIX 
algorithm with learned parameters on the images shown in Figure 5.7. The training results 
in Figure 5.8 are obtained after a mean value (over 10 runs) of 103 passes through the 
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(a) (b) (c) 

(d) (e) (f) 

(s) (h) 0) 

Ü) (k) (1) 

Figure 5.7: Twelve color images having simple geometric objects. 

training data. Figure 5.9 shows the average confidence received by the system over time 
during training. Figure 5.10 shows the trajectory of each of the four Hsmooth, Maxmin, 
Splitmin, and Height parameters during training in a typical run on a particular image (in 
this case it is the third image in the first column of Figure 5.7, i.e., 5.7(g)). Note that no 
attempt was made to determine if the set of parameters giving rise to the final recognition 

is unique. 

When the segmentation parameters obtained after training were applied to the images 
in the testing set, recognition results for images 5.7(b), 5.7(c), 5.7(f), 5.7(i) and 5.7(k) are 
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(a) 

(d) 

(g) 

(b) (c) 

(e) (f) 

(h) 0) 

Figure 5.8:   Segmentation performance of the PHOENIX algorithm with learned pa- 
rameters. 

acceptable. However, recognition failed for images 5.7(e), 5.7(h) and 5.7(1). If we allow 
learning to continue on these three images, experiments have been performed which show 
that successful recognition can be achieved for all testing images in much less time (less 
than 50%) compared to the time taken for training on the images shown in the first column 
of Figure 5.7. 

In comparison, the PHOENIX algorithm with default parameter setting was also run 
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Figure 5.9: Average confidence received over time during training. 

on the same images. Figure 5.11 shows the samples of the segmentation performance of 
the PHOENIX algorithm with default parameters on the images in the first row of Figure 
5.7, i.e, images 5.7((a)), 5.7(b), and 5.7 (c). These default parameters were obtained in 
[60] after extensive tests. We omit the details of the experiment, but note that this default 
parameter setting resulted in a total matching failure. 

5.4.2     Results on Outdoor Images 

The second segmentation task involves a sequence of 10 outdoor color images obtained under 
varying environmental conditions, two of which are shown in Figure 5.12. These images are 
collected approximately every 15 minutes over ~ 2 and 1/2 hour period [16]. The images 
exhibit varying shadow and reflection on the car as the position of the sun changed and 
clouds came in and out the field of view of the camera that had auto iris adjustment turned 
on. The overall goal is to recognize the car in the image. The original images are digitized at 
480 by 480 pixels in size and are then subsampled to produce 120 by 120 pixel images. Five 
of these odd-numbered images are used as training data and five even-numbered images as 
testing data. 

Similar to the team network for the indoor images, each unit here has a total of 9 input 
weights, each of which takes an average gray value of input on a 40 by 40 neighborhood on 
the input image plane of 120 by 120 pixels. These averages are normalized to lie between -1 
and 1. Polygonal approximation of the car shown in Figure 5.13 is used as the model in the 
cluster-structure matching algorithm.  It was extracted manually in an interactive session 
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Figure 5.10: Trajectories for a particular run for each of the four parameters Hsmooth, 
Maxmin, Splitmin, and Height during training on a particular image (Figure 5.7(g)). 

from the first frame in the sequence. 

Figure 5.14 shows a sequence of segmentations for frame 1 with PHOENIX's parameters 
sampled at iterations 20, 30, 40, 50, 60, and 74 in a particular run during training, and 
corresponding parameter values at each of these intervals are shown in Table 5.2. Note that 
Figure 5.14(f) shows the final segmentation result when the highest confidence matching 
has been achieved. The threshold for acceptable matching confidence is set at 90% because 
of the low resolution nature of the real data. 

Figure 5.15 shows the Phoenix segmentation performance on two testing images (frames 
2 and 4) of with learned parameters obtained after training on frames 1, 3, 5, 7 and 9. For 
frame 2 the matching is acceptable. However, for frame 4 the result is not acceptable and 
learning is to be performed similar to the indoor examples for the adaptation of parameters. 
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(a) (b) (c) 

Figure 5.11: Samples of segmentation performance of the PHOENIX algorithm with 
default parameters on indoor color images (Figures, 5.7(a), 5.7(b) and 5.7(c), respec- 
tively). 

(a) (b) 

Figure 5.12:  Samples of outdoor color images with varying environmental conditions. 
(a):  Frame 2; (b): Frame 7. 

Finally, Figure 5.16 shows the samples of performance of PHOENIX with default pa- 
rameters on the outdoor color images shown in Figure 5.12. Note that these segmentation 

results are totally unacceptable. 

5.5     Conclusions and Future Work 

Our investigation into reinforcement learning-based closed-loop model-based object recog- 
nition shows that a robust and adaptive system can be developed that automatically de- 
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Figure 5.13: Polygonal approximation of the car used in the matching algorithm. 

Table 5.2: Changes of parameter values during training. 

Iteration Hsmooth Maxmin Splitmin Height 
20 53 135 55 58 
30 17 142 39 42 
40 21 105 43 24 
50 1 165 51 42 
60 1 135 19 62 
74 1 300 55 64 

termines the criteria for segmentation of the input images and selects useful features which 
result in a system with high recognition accuracy when applied to new unseen images. 

The key contribution of the chapter is the general framework for the usage of reinforce- 
ment learning in a closed-loop model-based object recognition system. Future research will 
address extensions for enlarging the scope of the approach in a multi-level object recognition 
system for practical applications. 
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Figure 5.14: Sequence of segmentations of the first frame during training. 

APPENDIX A: The Phoenix Segmentation Algorithm 

The Phoenix image segmentation algorithm is based on a recursive region splitting technique 
[60]. It uses information from the histograms of the red, green, and blue image components 
to split regions in the image into smaller sub-regions on the basis of a peak/valley analysis 
of each histogram. An input image typically consists of red, green, and blue image planes, 
although monochrome images, texture planes, and other pixel-oriented data may also be 
used. Each plane is called a feature or feature plane. 

Figure 5.17 shows a conceptual description of the Phoenix segmentation process. It 
begins with the entire image as a single region. It then fetches this region and attempts to 
segment it using histogram and spatial analyses. If it succeeds, the program fetches each of 
the new regions in turn and attempts to segment them. The process terminates when no 
region can be further segmented. 
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Figure 5.15:   Segmentation performance of the PHOENIX algorithm on two testing 
images (frames 2 and 4) with learned parameters obtained after training. 

Figure 5.16:  Samples of segmentation performance of the PHOENIX algorithm with 
default parameters on the two outdoor color images shown in Figure 5.12. 

I 

The histogram analysis phase computes a histogram for each feature plane, analyzes it 
and and selects thresholds or histogram cutpoints which are likely to identify significant 
homogeneous regions in the image. A set of thresholds for one feature is called an interval 
set. During the analysis, a histogram is first smoothed with an unweighted window average, 
where the window width is hsmooth. It is then broken into intervals such that each contains 
a peak and two "shoulders." A series of heuristics is applied to eliminate noise peaks. 
When an interval is removed, it is merged with the neighbor sharing the higher of its two 
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Figure 5.17: Conceptual diagram of the Phoenix segmentation algorithm. 

shoulders.   Splitmin is the minimum area for a region to be automatically considered for 

splitting. 

Two tests determine if an interval should be retained. First, the ratio of peak height to 
the height of its higher shoulder must be greater than or equal to the maxmin threshold. 
Second, the interval area must be larger than an absolute threshold and the relative area, 
percent of the total histogram area. The second highest peak can now be found, and peaks 
lower than the height percent of this peak are merged. The lowest valley is then determined, 
and any interval whose right shoulder is higher than absmin (Phoenix's parameter) times 
this valley is merged with its right neighbor. Finally, only intsmax (Phoenix's parameter) 
intervals are retained by repeatedly merging intervals with low peak-to-shoulder ratio. 

The spatial analysis selects the most promising interval sets, thresholds the corresponding 
feature planes, and extracts connected components for spatial evaluation. The feature and 
the interval set providing the best segmentation (the least noise area) are accepted as the 

segmentation feature and the thresholds. 
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The histogram outpoints are now applied to the feature plane as intensity thresholds 
and connected components are extracted. After each feature has been evaluated, the one 
producing the least total noise area is accepted as the segmentation feature. If no suitable 
feature is found, the original region is declared terminal. Otherwise the valid patches, 
merged with the moise patches, are converted to new regions and added to the segmentation 
record. In either case, a new segmentation pass is scheduled. For additional details, see 
[60]. 

APPENDIX B: The Cluster-Structure Algorithm for 
Matching 

The cluster-structure algorithm can be divided into the following main steps: 

1. Determine Disparity Matrix 

2. Initial Clustering 

3. Sequencing 

4. Final Clustering 

5. Transform Computation 

The algorithm first computes the disparity matrix. It determines the segment length 
of each line and the angles between successive lines from the set of vertices for the model 
and the image input to the program. At this point, every segment in the model will be 
compared against every segment in the image. If segment lengths and successor angles 
are compatible, the algorithm computes the rotational and translational disparity between 
pairs of segments. These values are stored in the disparity matrix and are indexed by the 
segment numbers in the model and the image. The algorithm continues until all segments 
have been compared. It then computes the range of rotational and translational values 
present in the matrix, and normalizes them over their appropriate range. 

The initial clustering determines clusters from the normalized values in the disparity 
matrix. At each step, the program clusters all of the samples, recomputes the new cluster 
centers, and continues until none of the cluster centers change their positions. The program 
then selects the cluster having the largest number of samples. Also selected are the clusters 
which are within 20% of the largest one. Each cluster is considered separately and the final 
transform comes from the cluster that yields the highest confidence level. 
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The sequencing step uses the samples in the current cluster to find all sequences in the 
samples. This provides the critical structural information. Samples which are not placed 
in any sequence are discarded. The program also removes sequences that have a segment 
count of less than three (three segments comprise the basic local shape structure). It then 
computes the rotational and translation averages of each sequence that has been located. 

Using the sequences and the sequence averages, the final clustering step clusters these 
values to find those sequences that lead to the same rotational and translational results. 
This is achieved by using the iterative technique of clustering, evaluating, clustering, etc. 
The program then selects the cluster that contains the largest number of sequences and 
passes this cluster to the final step. 

The final step of the algorithm computes the confidence level of the transformation 
determined by each cluster. The cluster having the highest confidence level is selected as 
the final transformation cluster. It assembles the set of matched segments in the sequences in 
this cluster. The final output of the program is the rotation and the vertical and horizontal 
translation necessary to locate the model within the image. The program also produces 
a confidence level indicating the likelihood that the final matching is correct. For further 
details, see [19]. 
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Chapter 6 

Delayed Reinforcement Learning 
for Closed-Loop Object 
Recognition 

Object recognition is a multi-level process requiring a sequence of algorithms at low, inter- 
mediate and high levels. Generally, such systems are open loop with no feedback between 
levels and assuring their robustness is a key challenge in computer vision research. A robust 
closed-loop system based on "delayed" reinforcement learning is introduced in this paper. 
The parameters of a multi-level system employed for model-based recognition are learned. 
The method improves recognition results over time by using the output at the highest level 
as feedback for the learning system. Appropriate credit in the form of rewards and penalties 
are assigned to the sequence of algorithms used for object recognition by the learning system. 
The method is experimentally validated by learning the parameters of image segmentation 
and feature extraction and thereby recognizing 2-D objects. The approach systematically 
controls feedback in a multi-level vision system and provides a solution to a long-standing 
problem in the field of computer vision. 

6.1     Introduction 

Most vision systems use a sequence of algorithms that operate at various levels of abstraction 
to perform a given task, such as object recognition. In earlier work that combines learning 
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and vision [25, 78, 35], the inherent multi-level nature of vision systems has not been 
addressed adequately. In this chapter an approach that takes the output of the final level 
and uses it as a feedback in a reinforcement learning framework to influence the performance 
of the lower levels of vision algorithms is proposed. The overall system performance is 
improved over time with this method. 

The improvement is possible via learning because vision systems are usually based on 
models of the physical world. For example, the process of creating the two-dimensional 
image from the three-dimensional world is usually modeled as a perspective projection. 
In machine learning terminology vision systems are said to exhibit a "bias." In other 
words, vision systems do not model some random phenomenon but are "biased" towards 
modeling the orderly physical world. Since it can be shown that learning is effective only 
in the presence of bias [65] it is possible to design a biased multi-level model-based object 
recognition system that improves its own performance over time. 

The key to the improvement of a multi-level system over time is the automatic ad- 
justment of parameters of various algorithms used in the system since the content of the 
three-dimensional scene and the imaging conditions are not known a priori. Currently, in 
most complex vision systems the designer manually adjusts parameters of the algorithms to 
some "default" values that are to be applied subsequently by users. However, the designer 
cannot anticipate for all possible inputs to the algorithms. The simultaneous adjustment 
of even a few system parameters is time-consuming and difficult and has yet to be solved 
satisfactorily for multi-level systems. The original contribution of this work is to provide an 
approach based on "delayed" reinforcement learning to control parameters in a multi-level 
object recognition system. A theoretical model is provided and its efficacy is validated on 
a moderately complex system. In contrast, the substantial body of work on system param- 
eter estimation has not taken advantage of the power and flexibility of machine learning 
methods for multi-level vision systems. 

With the above preliminaries consider the problem of model-based object recognition. 
Given the model of an object, the problem is to recognize it when it is located anywhere in 
an image. Figure 6.1 illustrates a typical approach to solve the problem. It segments the 
image at the first level, then extracts and selects appropriate features from the segmented 
image at the second level, and finally matches the selected features to the model. The 
segmentation and feature extraction modules use default parameters set by the system 
designer. However, the approach is inadequate for real-world applications because default 
parameters of segmentation and feature extraction often lead to large errors in recognition. 

If it is assumed that the model matching produces a confidence measure indicating the 
closeness of the selected features to the model, then it is natural to use this confidence as 
feedback to influence the system's performance for segmentation and feature extraction. 
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Figure 6.1: Conventional multi-level system for object recognition. 

Figure 6.2 shows a closed-loop reinforcement learning-based system to achieve this goal. 
Reinforcement learning uses rewards and penalties based on the confidence to iteratively 
improve the performance of a system over time. 

6.2     Reinforcement Learning System for Object 
Recognition 

In the multi-level system for object recognition described in Figure 6.2 there are unknown 
parameters for both the segmentation and feature extraction modules. The segmentation1 

module is based on the "Phoenix" algorithm [60]. Phoenix uses region splitting based on 
histograms of color features and is critically dependent on system parameters "HSMOOTH" 
and "MAXMIN." HSMOOTH is the width of the histogram smoothing window with the 
smoothing performed by a uniformly weighted moving average technique. MAXMIN is the 
peak-to-valley height ratio threshold.  Any interval whose peak height to shoulder ratio is 

For additional details on segmentation techniques see [50, 16]. 
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Figure 6.2: Reinforcement learning-based multi-level system for object recognition. 

less than this threshold is merged with the neighbor on the side of the higher shoulder. 
The feature extraction module finds polygon approximation tokens for each of the regions 
obtained after image segmentation. The polygon approximation is obtained using a split and 
merge technique dependent on a parameter named "SMOOTH." SMOOTH is a quantitative 
measure of the smoothness of the polygonal approximation [19]2 . The model matching 
algorithm topologically compares a stored 2-D model to the token set output of the feature 
extraction module [19] 3. It computes a real number that indicates the confidence level of 
the matching process. 

It can be seen that the parameters HSMOOTH and MAXMIN are at the first level of the 
system and the parameter SMOOTH is at the second level. Reinforcement learning is used 
to adjust the parameters at both the first and second level. In reinforcement learning, at 
each time step a system is given not just perceptual inputs but also a numerical reward or 
penalty, called reinforcement. The reinforcement is a function of the output of the system 

2HSMOOTH can take values ranging from 1 to 63, MAXMIN can take values ranging from 100 to 471 
and SMOOTH can take values ranging from 6 to 16. 

3For additional details on object recognition see [74, 27]. 
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corresponding to the inputs at the previous time step. The goal of the system is to choose 
actions that maximize the sum of reinforcements (possibly discounted) over time [105]. 

One complication to reinforcement learning is the timing of reinforcement. In simple 
tasks, the system receives, after each decision, reinforcement indicating the goodness of 
that decision [79]. However, in most complex tasks reinforcement is often temporally de- 
layed because immediate reinforcement regarding the value of a decision is unavailable. 
For example, in the object recognition system, the goodness of segmentation and feature 
extraction is not known until matching has been done. 

An effective approach for delayed reinforcement learning is "temporal difference" (TD) 
learning [105]. In such learning systems, a "state" is a unique representation of all previous 
inputs to a system. The value of a state is regressed towards the weighted average of the 
values of its successors, where the weightings reflect the conditional probabilities of the 
successors, instead of the final outcome of reinforcement. 

Let i be an input image to the segmentation module and a be an instance of segmentation 
parameters. Let R(i, a) be the average immediate reinforcement for taking action a in input 
state i; 7 : 0 < 7 < 1 is a discount factor; j is the next input state resulting from taking 
action a in i; Pij(a) is the probability of going from state i to state j with action a; and 
V(j) = maxbQ(j,b). 

Then according to the Q-learning method Q(i,a) measures how good the instance a is 
when applied to image i and is given by: 

Q{i,a) = R(i,a) + 1J2Pij(a)VU) (6-1) 

Q-learning works by updating the estimate of Q(i,a) so that equation (6.1), with esti- 
mated values substituted for the unknown actual values, comes to be more nearly satisfied 
for each (i,a) encountered. If R(i,a) of equation (6.1) is the expected value of r (reinforce- 
ment or confidence value) then this is done using the TD error: 

r + 1V(j)-Q(i,a). 

The particular reinforcement learning algorithm employed in the approach presented in this 
chapter is the Q(A) learning algorithm [79, 107] which is a generalization of the Q-learning 
algorithm (details are given in the Appendix). It not only speeds up the learning but also 
allows for a non-Markovian environment encountered in vision applications. In terms of the 
example just described, this simply means that the value of Q(i, a) will be corrected to look 
more like the value of the segmented image, which will in turn be estimated according to 
the matching confidence. 
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1. Initialize Q function 

2. LOOP: 

• For each image i in the training set do 

(a) Image i, is segmented with current segmentation parameters 
a= (ai, Ü2, ■ ■ •, an); is is the resulting segmented image. 

(b) Compute TD error: V(is) — Q(i, a) and update Q(i, a) accord- 
ing to the Q(A) learning algorithm. 

(c) Perform feature extraction with current values of feature ex- 
traction parameters b = (b\, b2, ■ ■ •, bn), from the segmented 
image is. 

(d) Compute the matching of each extracted feature set against 
stored model and return the highest confidence level . 

(e) Compute TD error: r + V{ABS) -Q(is, b) and update Q(IS, b) 
and Q(i,a) according to the Q(A) learning algorithm. (ABS 
is the absorbing state). 

3. UNTIL terminating condition 

Figure 6.3: Main steps of the delayed reinforcement learning algorithm for parameter 
adjustment for segmentation and feature extraction. 

Figure 6.3 shows the main steps of the algorithm described conceptually in Figure 6.2. 
The algorithm terminates when either the number of iterations has exceeded a prespecified 
value or the recognition confidence level has reached a given threshold. Note that in general 

there can be multiple objects in the images. 

6.3     Experimental Validation 

There are several representation schemes for the Q-function in the reinforcement learning 
paradigm. Since the goal here is to isolate the effect of learning for multi-level recognition 
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Figure 6.4: Experimental results for the training phase of an outdoor image. 

a look-up table based representation suffices. The two dimensions of the look-up table are 
the following: (1) segmented or feature-extracted image, (2) action represented by a par- 
ticular combination of system parameters. The focus of the experiments is to demonstrate 
the feasibility of using learning for multi-level recognition and not to address the issue of 
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Figure 6.5: Experimental results in the testing phase on an outdoor image,  (a) unknown 
image (b) segmentation with learned parameters (c) segmentation with default parameters. 

generalization. 

Figure 6.4 shows the results of the training phase of the system. Figure 6.4(a) shows 
a sample training image of a car on a road. The resolution of the image is 120 X 120 
pixels. It should be noted that although the image is in color for publication purposes it 
is being shown in grayscale. Figure 6.4(b) shows the given 2-D model of the car located in 
Figure 6.4(a). The dark squares in Figure 6.4(b) correspond to labels of the vertices in the 
polygonal approximation of the car. 

Figures 6.4(c), 6.4(d), 6.4(e), and 6.4(f) show how the confidence, HSMOOTH, MAXMIN 
and SMOOTH change over time, respectively. It should be noted that over time the confi- 
dence shown in Figure 6.4(c) increases. At the end of the training phase the confidence of 

the match is over 0.9 on a scale which varies between 0 and 1. For the purposes of our sys- 
tem an object is recognized if the confidence of matching is greater than 0.75. Furthermore, 
it should also be noted that the learned values of HSMOOTH, MAXMIN, and SMOOTH 
are considerably different from their starting values. 

To illustrate the results further, Figures 6.4(g), 6.4(h), 6.4(i) show how the segmentation 
improves over time during the training phase. Figure 6.4(g) depicts the segmentation of the 
training image before applying the learning algorithm. Figure 6.4(h) depicts the segmenta- 
tion after half the lotal time for training has elapsed. Figure 6.4(i) depicts the segmentation 
at the end of the training phase. It can be seen that the results improve considerably. 

Figure 6.5 shows the results in the testing phase on an outdoor image provided to the 
trained closed-loop object recognition system. Figure 6.5(a) shows an input image in which 
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Figure 6.6: Experimental results in the testing phase on an indoor image,  (a) unknown 
image (b) segmentation with learned parameters (c) segmentation with default parameters. 

the car of Figure 6.4(b) must be identified. It can be seen that the lighting conditions in the 
outdoor image of the testing phase is significantly different from the training image. The 
image is taken at a different time from Figure 6.4(a). Observe that there are significant 
changes between the cars shown in Figures 6.4(a) and 6.5(a). Figures 6.5(b) and 6.5(c) show 
the segmentation obtained by using the parameters obtained from the training phase, and 
the segmentation obtained by using default parameters, respectively. It should be noted 
that when default parameters are used the car is broken up into many small blobs. The 
confidence of model matching was obtained as 0.88. It should also be noted that delayed 
reinforcement learning has been used only in the training phase. 

Figure 6.6 shows results in the testing phase of another image except that now it is of 
an indoor scene. For brevity the results for training are not shown for this scenario. Figure 
6.6(a), 6.6(b), and 6.6(c) show the indoor image, the segmentation with learned parameters 
and the segmentation with default parameters respectively. The large triangular shaped 
object (wedge) is the object of interest. The confidence of model matching was 0.85. 

It should be noted that until the final recognition outcome is determined the effectiveness 
of the segmentation and feature extraction modules cannot be ascertained. Experimental 
results show that a robust and adaptive system can be developed that determines au- 
tonomously the criteria for segmentation and feature extraction to achieve a high accuracy 
for recognition on new images. 
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6.4    Conclusions and Future Work 

To summarize it can be stated that a multi-level approach to object recognition in a "de- 
layed" reinforcement learning paradigm was described in this chapter. The reinforcement 
learning algorithm used rewards and penalties at successive levels of a closed-loop model- 
based object recognition system to iteratively improve the system parameters. A system 
was built to exemplify the efficacy of the approach. After feature extraction from the seg- 
mented image, the system computed the confidence of matching between the features and 
the model. Reinforcement learning used the confidence to adjust the segmentation and 
feature extraction parameters in such a way that the confidence of matching improved sig- 
nificantly over time. Simple objects in indoor and outdoor scenes were recognized in about 
a thousand time steps even when the reinforcement learning algorithm started with ran- 
dom values of the parameters. In contrast, "default" parameters of the system gave a poor 
confidence of matching. 

If vision systems could be designed in one-level as a single black box the "simple" re- 
inforcement paradigm would have sufficed. Earlier work on one-level systems used a team 
of stochastic semi-linear units for learning image segmentation parameters [78]. However, 
in reality both open and closed-loop systems have multiple levels with parameters that 
need to be adjusted at each level. Delayed reinforcement learning allowed an elegant and 
effective solution to the problem of object recognition in multi-level systems. The system 
presented here included the recognition component as part of the evaluation functions for 
learning in a systematic way. The emphasis here was not so much in simple mixtures of 
learning and computer vision, but rather in the principled integration of the two fields at 
the algorithmic level. The key contribution is the general framework for the usage of de- 
layed reinforcement learning in a multi-level vision system. Future research will address 
extensions for enlarging the scope of the approach to encompass problems in active vision 
where reinforcement learning could be extremely useful. Furthermore, incorporatation of 
more efficient representations could facilitate the study of generalization issues pertaining 
to the system. 
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APPENDIX A: Q(A) Learning 

One set of methods for determining an optimal policy is given by the theory of dynamic 
programming. These methods entail first determining the "optimal state-value function", 
V, which assigns to each state the expected total discounted reward obtained when an 
optimal policy is followed starting in that state. As in [107], a closely related function 
can be defined that assigns to each state-action pair a value measuring the expected total 
discounted reward obtained when the given action is taken in the given state and the optimal 
policy is followed thereafter. That is, using the notation that x denotes the current state, 
a the current action, r the resulting immediate reward, and y the resulting next state, 

Q(x,a)    =    E{r + jV(y)\x,a} (6.2) 

=    R(x,a) + 7J2Pxy(a)V(y), 
y 

where R(x,a) = E{r\x,a}, V(x) = m&xaQ(x,a), and Pxy(a) is the probability of making 
a state transition from x to y as a result of applying action a. 

Note that once we have this Q-function it is straightforward to determine the optimal 
policy. For any state x the optimal action is simply argmaxa Q(x, a). 

The Q-learning algorithm is based on maintaining an estimate Q of the Q-function 
and updating it so that equation (6.2), with estimated values substituted for the unknown 
actual values, comes to be more nearly satisfied for each state-action pair encountered. More 
precisely, the algorithm is as follows: At each transition from one time step to the next, 
the learning system observes the current state x, takes action a, receives immediate reward 
r, and observes the next state y. Assuming a tabular representation of these estimates, 
Q{x,a) is left unchanged for all state-action pairs not equal to (a;, a) and 

Q{x, a) <- Q(x, a) + a[r + 7Vr(y) - Q(x, a)] , (6.3) 

where a e (0,1] is a learning rate parameter and V{y) = maxbQ(y,6). An estimate of the 
optimal action at any state x is obtained in the obvious way as argmaxa Q(x, a). 

This algorithm is an example of the temporal difference method because the quantity 
r + jV(y) - Q(x, a) can be interpreted as the difference between two successive predictions 
of an appropriate expected total discounted reward. The general effect of such algorithms 
is to correct earlier predictions to more closely match later ones. 

The advantage of the Q-learning algorithm is that when combined with sufficient ex- 
ploration it can be guaranteed to eventually converge to an optimal policy [107]. The 
disadvantages, however, are that it is very slow to converge and may work poorly in prob- 
lem domains which are non-Markovian. To overcome these weaknesses, Peng and Williams 
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1. Q(x, a) = 0 and Tr(x, a) = 0 for all x and a 

2. Do Forever: 

(a) xt <— the current state 

(b) Choose an action at that maximizes Q(xt,a) over all a 

(c)  Carry out action at in the world.  Let the short term reward be rt 

and the new state be xt+1 

(d) e't = rt + 7yi(a:;+1) - Qt(a;t, at) 

(e) et = rt+ ^Vt{xt+l) - Vt(xt) 

(f) For each state-action pair (a;, a) do 

• Tr(x,a) = 'y\Tr(x, a) 

Qt(x,a) + aTr(x,a)et 

(g) Qt+1(xt,at) = Qt+i(xt,at) + ae't 

(h) Tr(xt, at) = Tr(xt, at) + 1 

Figure 6.7: The Q(A)-learning algorithm used in our approach. 

[79] have introduced the Q(A) learning algorithm in which the current prediction error is 
used to correct previously experienced state-action pairs in addition to the current one. 
More formally, the following form of evaluation function estimators [105] is used in Q(A) 
learning: 

r^ = r, + 7(1 - A)V7(zi+1) +TAri
A
+1 (6.4) 

Equation (6.4) is called TD(A) estimators [105]. Then the Q(A) learning algorithm can 
be derived in Figure 6.7, where Tr(x,a) is the "activity" trace of state-action pair (x,a), 
corresponding to the "eligibility" trace as described in literature. It is worth noting when 

A = 0 then Q(A) learning reduces to Q-learning. 
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Chapter 7 

Context Reinforced Background 
Modeling 

Automatic Target Detection and Recognition (ATD/R) may be considered as an extension 
of object recognition problem from its original successful domain of simple objects in the 
block world to a more difficult new domain of complex objects embedded in natural envi- 
ronment. Such an extension has seen some new challenges that do not exist in the block 
world. First, the target may appear in front of many different outdoor backgrounds, e.g. 
the target may be seen in the desert areas of Africa or it can also be seen in the forests 
of North Europe. The appearance of the background is totally out of our control, and we 
have no means to adjust the background to get a high contrast between the target and the 
background. Secondly, there are various practical restrictions that prevent us from taking 
a high quality image about a specific scene. If the ATD/R system had to get close enough 
to an enemy's tank in order to recognize it, it would be very likely that the ATD/R system 
is destroyed by the enemy before any recognition result is obtained. Finally, many covering 
techniques have been developed to hide the identity of the target. As a result, most input 
images to a ATD/R system are of low resolution and high clutter, and the targets may also 
be partially occluded. When traditional object-model-based object recognition systems are 
required to handle these low resolution images, they are not successful. Two indexes are 
important to ATD/R performance, one is the probability of detection and the other is the 
probability of false alarm. With traditional object recognition approaches, whenever we 
improve one of the index we usually sacrifice the other. Since the output of an ATD/R 
system is normally used to control the weapon system, both performance indexes need to 
be maintained at a reasonable level. 

From our point of view, part of the reason why it is difficult to apply most existing 
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object recognition approaches to ATD/R is because the background of the concerned object 
is generally ignored by these approaches, and the recognition processes normally begin 
with a segmentation stage which is nothing but "background rejection." In most indoor 
environment where the background of the concerned object can be selected or controlled 
to get a high object-background contrast, this task is simple. But for ATD/R in cluttered 
environments, where targets become more mixed with their backgrounds, high quality early 
segmentation becomes very difficult. 

In order to cope with this problem, we propose here a new strategy called Background 
Model Aided Target Detection and Recognition (BMATD/R). The main idea of this strategy 
is to maintain a high probability of detection while reducing the number of false alarms 
by involving explicit background models into ATD/R processes. The practice of modeling 
the background has long existed in the field of audio signal processing, synthetic aperture 
radar (SAR) signal analysis, infrared detection techniques and image processing, where it 
is usually referred to as noise model or clutter model. A common practice in building 
these models is to use existing stochastic process models to set up a framework for the 
behavior of the noise or clutter, and data from real signals is used to decide the value of free 
parameters. Such an approach is seldom seen for ATD/R, because no existing stochastic 
model has a solid proof of its validity (either theoretical or experimental) for describing the 
appearance of natural backgrounds in an image. As a result, most of the effort has been 
devoted to finding more sophisticated and robust target modeling techniques and developing 
new matching algorithms that can tolerate more feature distortions. Although efforts in 
this direction have led to some encouraging results, we believe background modeling and 
recognition can make this progress quicker by putting it onto two wheels instead of one. 

7.1     Representation of A Background Model Bank (BMB) 
Member Using A Self-organizing Map 

In our previous report, we pointed out that high cluttered sensory data had made it hard to 
extract perfect object features from the input, which are crucial for a conventional object 
recognition system to have a good performance. As a result, more and more sophisticated 
feature sets are introduced to compensate the weakness of any single metric. And the 
dimension of the feature vectors has grown to such an extent that it is already impossible for 
human beings to visualize and understand the train of thought of the undergoing recognition 
process. While this situation may be tolerable in an unsupervised learning environment, 
it would be very hard to conduct a high quality supervised learning with the supervisor 
himself being blind. Based on such a concern, we will try to avoid using high dimension 
feature sets during the building up of our background models. Rather than constructing a 
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sophisticated model for a certain natural background based on a very complicated feature 
set, we would try to investigate independently each available group of metrics that have 
closely related physical meaning, and build one model based on each such metric group. 
Thus for a certain background we will have a bank of simple models, each model is called 
a member of the bank, and it views the under-investigated background based on its own 
"theory". Such a background model bank (BMB) is superior, in the following aspects, 
to the all-in-one model that is widely used in current Automatic Target Detection and 
Recognition (ATD/R) research: 

• The BMB is more suitable for supervised learning environment: Since each member 
of a BMB is simple (i.e. based on very short feature vectors) it would be easy to 
visualize the modeling process and thus enable the supervisor to "see" the learning 
process, so he could select examples with proper difficulty to speed up the learning 
process. 

• The BMB makes it easier to involve new metrics into ATD/R systems: Whenever a 
group of new metrics is found useful for modeling and recognition of the background, a 
new member can be created and inserted into the BMB. The all-in-one models would 
need much more work to increase the dimension of their feature vectors. 

• The BMB is more easily to be extended to multi-sensor based ATD/R systems: Since 
each member of the BMB is investigated independently, involving a new sensory input 
is just to add a new member into the BMB. 

• The BMB will provide an efficient way to manage the long-term knowledge cumu- 
lation: Based on the above two advantages, BMB approach can keep improve its 
performance by involving new sensory techniques and new image processing methods 
as they emerge. Such a property is very important because we can expect that a 
successful ATD/R system will need time to become mature. 

Although many papers in the literature have used known statistical distributions in their 
analysis of natural clutters in IR images, there is no strong evidence that thermal natural 
clutters possess a certain statistical distribution [87]. Instead of artificially assigning a 
distribution model to background models, we construct our BMB from real images through 
a supervised learning process. Since reliable statistical models can only be obtained through 
analysis of a large population of samples, space and time complexities of algorithms become 
a major concern when selecting a learning scheme. In our approach, each BMB member is 
represented by a self-organizing map (SOM). By controlling the size of the SOM, we can 
easily control the space and time complexity of the learning process. Figure 7.1 shows the 
training process for a BMB member. A supervised SOM algorithm has been developed to 
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Figure 7.1: Building up a member of the Background Model Bank. The initial 
uniformly distributed self-organizing map (SOM) is trained first by using positive 
examples and Kohonen's algorithm. After a pre-selected number of iterations, a 
disorder index is computed. If the map has reached a certain degree of ordering, 
the algorithm/data selection switch is turned to the near-miss injection algorithm 
which uses negative examples to refine the trained SOM. To allow a BMB member 
to memorize its valuable past knowledges while it gains new experiences, the size 
of the SOM needs to be extensible. An incremental SOM algorithm allows us to 
achieve this. 

accomplish learning for BMB members from both positive and negative training examples 

7.2     Conventional Self-organizing Maps 

In Kohonen's SOM algorithm, neurons are arranged into an NxN array. After initialization 
of the weight vector w,- of each neuron i, the algorithm runs inside a loop which contains 
two operations: 
(1) given a training feature vector x, search is carried out for the winning neuron c which 
fulfills 

||x- wc|| = min ||x-wi||, i = 1, 2, • •-, A^2 (7.1) 

126 



(2) update the weight vectors of the winning neuron c and every neuron within a neighbor- 
hood of c according to 

w.u + i) = / w«(*) + aW WO - w«(*))   for i 6 Nc 
y w,-(i) otherwise (7.2) 

Different strategies can be used to control the learning rate a(t) and to adjust the neigh- 
borhood Nc as training goes on. Both parameters should decay with time. In the above 
algorithm, normally the training process terminates when a pre-selected iteration number 
has been reached. The selection of this number is mainly based on experiments. 

7.3     Supervised Self-organizing Maps 

Learning From Positive Examples 

The first step of the supervised self-organizing map algorithm is to use the Kohonen's 
algorithm to train the SOM by using positive training examples. By positive examples we 
mean pure background images that have no target embedded in them. During learning, a 
group of such images will be presented to the learning system for generating positive feature 
vectors for each feature group. 

7.3.1     Disorder Index 

When applying kohonen's algorithm to real world problems, people often find that it needs 
a lot of experiments to select a good set of parameters. The termination criterion is one 
of them. To make the learning process autonomous, i.e. without the need for humans 
intervention, a metric reflecting the SOM's ordering is needed so that the algorithm can 
determine how well the SOM has been trained, and thus determine whether it is time to 
terminate the learning process. In our research, we developed two metrics to describe the 
ordering of a SOM. The first one is based on the proved asymptotic convergence property 
of the SOM, and the second one is based on a direct analysis of the distortion of the SOM 
grid. 

Disorder index 1 

Since a properly trained SOM asymptotically converges to the distribution of training exam- 
ples, the variation of the weight vectors with respect to a fixed number of training iterations 
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will decrease asymptotically. So a measure based on this variation can be used as an index 
for the ordering of SOM. Let dms{t) be the mean square distance between the training 
vectors and the weight vectors at discrete training time t, we have 

drn.it) ^E     y,L   ||X- Wi(i)||
2 ] (7.3) 

where ST denotes the training set and Nc is the set of neurons within the neighborhood of 
the winning neuron. The Disorder Index {DOI) can then be defined as 

DOI = dms{t + k) - dms{t) (7.4) 

where k determines the length of the interval when DOI is evaluated. Recently a more 
sophisticated metric has been proposed for measuring the disorder of a SOM [68]. 

Disorder index 2 

Because all our feature groups and their corresponding SOM's are 2 dimensional, we can 
directly analyze the distortion of the 2D neuron grid and use the result as the disorder in- 
dex. To be judged as having been well ordered by this disorder index, a SOM must satisfy 
two conditions: 

• All the extreme neurons must be boundary neurons. 

• The ratio between the number of distorted grids and the number of grids of the SOM 
must be less than a preselected threshold. 

Although we also need a preselected threshold to apply this disorder index, it is much 
more easier for a learning supervisor to select this threshold, compared with the total 
iteration threshold used in Kohonen's algorithm. So, the disorder index can be formulated 
as following: 

n   _ j Th + 1    if {boundary} ^ {extrem} ,     . 
— 1   Nd/Nt   if {boundary} = {extreme} 

where Th is the preselected threshold for this disorder index, Nd is the number of distorted 
grids, and Nt is the total number of grids in the SOM. {boundary} is the set of boundary 
neurons and {extrem} is the set of the extreme neurons . 
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7.3.2    Learning From Negative Examples 

When DOI is below a pre-selected threshold the SOM is in a well ordered state, and 
a conventional SOM algorithm can terminate its learning process at this time. In our 
approach, at this time the learning process will go into the second stage — refining those 
ambiguous regions in the SOM by using the near-miss injection algorithm and negative 
examples. By ambiguous regions we mean regions where features of different classes (e.g. 
background and man-made target) overlap. The near-miss injection algorithm runs inside 
a loop which contains two steps: 
(1) given a negative training vector y, search is made for the "hitting" neuron h using 
equation 7.1. 
(2) update the weight vectors according to 

wi(i+l) = (w'W + (lly-w.'('.)IIW,'   fOTi6W» m 
{ w,-(i) otherwise 

y(<)-w,-(<) 

u = llym-w,m||   if||y-w,-(t)||^0 

HySi'Sii   if||y-w,-(OH = o (7J) 

1 v- wi = ö 2^ WJ' neuron j £ 4-neighbor of neuron i (7.8) 
3 

where ß(t) is the learning rate for this near-miss injection algorithm, it should decay 
with time, and we can use the same decay function used in Kohonen's algorithm to control 

7.4    Experimental Results 

In our experiment, we compared our supervised SOM algorithm, which uses both positive 
and negative examples during the training, with the conventional Kohonen's algorithm, first 
using synthetic testing data, then using real data — the feature values computed from real 
testing images. 

7.4.1     Synthetic Data 

Shown in Figure 7.2 are the synthetic data. Positive examples are evenly distributed over 
a 2 x 2 square area, with a hole in the center.  Negative examples are evenly distributed 
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Figure 7.2:   Synthetic data for testing SOM algorithm,   (a) Positive examples 
overlapped with negative examples, (b) Positive examples, (c) Negative examples. 

in a circular area with a radius of 0.7. The overlapping region is a ring with a width of 
0.2. The size of the SOM used in the experiment is 7 X 7. Figure 7.3 shows the trained 
SOM by applying Kohonen's algorithm for 1000 epochs. Figure 7.4 shows distribution of 
4 — Neighber the average distance both for all the positive examples and all the negative 
examples. With this distribution, we computed two classification thresholds, Thp and Thn, 
which are the mean 4 —Neighber average distance positive examples and negative examples. 
By using Thp and Thn, each training example (positive and negative) is classified using the 
trained SOM. Among total 795 positive examples, 171 were misclassified as negative, while 

among 192 negative examples, 45 were misclassified as positive. 

Figure 7.5 and Figure 7.6 are the result by applying our supervised SOM algorithm 
for 1000 epochs. With the same number of positive and negative examples, the two mis- 
classification measures are 114 and 43. 

7.4.2    Real Data 

Twenty FLIR images like those shown in Figure 7.7 were used to built the background model 
for target detection. Shown in Figure 7.8 is the distribution of the LSGE feature values 
extracted from these 20 training images. Both Kohonen's algorithm and our supervised 
SOM algorithm were used to generate a set of representatives from the training feature 
vectors. 
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SOM and Positive Examples. 1000 epochs 
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Figure 7.3: Trained SOM by applying Kohonen's algorithm for 1000 epochs, (a) 
SOM overlapped with positive examples, (b) SOM overlapped with negative exam- 
ples. 

The constructed SOM using Kohonen's algorithm from the absolute LSGE feature data 
is shown in Figure 7.9. The SOM corresponding to the relative LSGE feature data is shown 
in Figure 7.10. The mis-classification ratio is 6/239 and 12/35 for the absolute LSGE 
feature group. The ratio for the relative LSGE feature group is 4/239 and 15/35. The same 
procedure was repeated for the supervised SOM algorithm. The resulted SOM is shown 
in Figure 7.11 and Figure 7.12 for the two feature groups. The mis-classification ration 
is 4/239 6/35 for the absolute LSGE and 4/239 and 10/35 for the relative LSGE feature 
group. 

7.5    Validity Scopes of The Background Models 

7.5.1     The Role of Contextual Parameters 

Automatic Target Detection and Recognition (ATD/R) is a challenging application for the 
general techniques developed by image processing and image understanding communities. 
This challenge is mainly due to the lack of control of the environment in a typical ATR 
mission. As a result, there are many variables that can affect the performance of an ATR 
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(a) (b) 

Figure 7.4:  Distribution of 4 — Neighber average distance of (a) all positive ex- 
amples, (b) all negative examples. 

system. Sherman et al. [59] categorized 41 such variables into five classes — background 
parameters, target parameters, platform dynamics, atmospherics and sensor parameters. 
Because a target could appear on the same background under different contextual con- 
ditions, e.g. different time of the day, different air temperature, or being viewed with a 
different depression angle, when we build the BMB, we should also cover this variation of 
contextual conditions. 

It can be imagined that different features may have different sensitivity to a certain 
contextual parameter, e.g. the mean and standard deviation of image gray values are more 
sensitive to the air temperature than the Gabor transform amplitude features which tend 
to find out the periodic pattern with in a local image region. To be practically applicable, a 
ATD system must be able to detect targets under different contextual conditions. One way 
to achieve this goal is to use learning technique to associate contextual parameters with 
the performance of each feature group. The rationality behind this association is that if a 
feature group can effectively detect man-made objects under a given contextual condition, it 
tends to be effective for images taken under similar contextual conditions. Since the human 
supervisor cannot provide any assistance to the ATD system in finding this association, 
except telling the system whether it is doing a good job with respect to a specific testing 
image, the most suitable learning scheme for this task is the reinforcement learning scheme. 
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Figure 7.5: Trained SOM by applying supervised SOM algorithm for 1000 epochs, 

(a) SOM overlapped with positive examples, (b) SOM overlapped with negative 
examples. 

7.5.2    Reinforcement Learning Using Contextual Parameters 

If a feature group has a good performance under a certain contextual condition, its detection 
result deserves a heavy weight for all the similar contextual conditions. In another word, the 
context — performance relationship can be replaced by a context — weight relationship, 
which is more compliant for being integrated into a automatic learning system. To facilitate 
the discussion, we define the following terms which will be used to formulate the SRV based 
algorithm. 

• Contextual Parameter (c) is a scalar that quantifies a specific aspect of a contextual 
condition, it can be defined over continuous or discrete values. 

• Contextual vector (C) is a vector with each element being c\ a contextual parameter. 

• Weight Vector (W) is a real value vector with each element being w\ the weight of a 
feature group. 

Our learning problem can then be defined as following: 
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Figure 7.6:  Distribution of 4 — Neighber average distance of (a) all positive ex- 

amples, (b) all negative examples. 

Given a set of training images that cover the whole range of available contextual condi- 
tions, with the BMB having been built as a collection of SOM's, we would like to associate 
with each BMB member SOM' a stochastic transform function Tx, such that 

w T(C) 

Tl is stochastic because the C — W relationship can not be described by a deterministic 
function, there are always exceptional cases due to the high complexity of the real world. 

7.5.3    The SRV Algorithm 

The reinforcement learning algorithm we selected for learning the context — performance 
relationship is called Stochastic Real Valued reinforcement learning (SRV) algorithm, devel- 
oped by Gullapalli [48, 47]. This algorithm allows the system to learn outputs that take on 
real values. Since the performance of a feature group is best described as a real number, 
normally from 0 to 1, with 1 representing the best performance, this SRV algorithm meets 
our requirement very well. 
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In SRV algorithm, Tl is implemented as a random number generator according to the 
normal distribution. The mean //, and standard deviation a{ are determined by two internal 
vectors, $l and $>l according to the following formula. 

Hn = $T ■ Cn (7.9) 

an = l-rn = l- f(WT -C) (7.10) 

where function /(•) often takes the form of 

Once the two parameters are available, the weight for the ith feature group can be 
computed by passing ft1 and a1 to a random number generator: 

wl ~ N{fi\ai) 

So, in the learning system, the transform function T is actually "remembered" as two 
vectors, $ and ^. Starting with random selected initial values, these two internal vectors 
learn to represent the C — W relationship by updating themselves according to the following 
formula. 

0n+1 = $n + crn(rn- r„){wn- fin)Cn (7.12) 

9n+i = Vn + Pn(rn - fn) Cn (7.13) 

where 

rn = g{P) 

is the reinforcement provided by a critic function g(-) for the nth detection trial. Vector P 
is the detection result vector that can be used by the critic to judge the performance of the 
system after the detection trial. 
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7.5.4    Implementation Concerns 

To utilize this complex learning scheme to solve the previously defined C — W problem, 
we have to make several implementation decisions. 

1. selection of contextual parameters : It is obvious that we cannot deal with 41 contex- 
tual parameters at the same time. One practical way is to select a subset from the 
available contextual parameters. In our implementation, we selected 4 parameters to 
form the contextual vector, they are 

• t : Time of the day. 

• d : Depression angle. 

• s : Range to the target. 

• p : Air temperature. 

In order to make the inner product of Equation 7.9 and Equation 7.10 meaningful, 
we used relative values of the contextual parameters in constructing the contextual 

r        Ut, 
where dmax and dr, vector. The relative value of d, for example, is 

the maximum and minimum depression angle occured in the training images. 
are 

2. the performance vector P : Since all our features are region based features, given a 
testing image, the image is first divided into rectangular regions based on the Range 
to the target information. The detection result is a label map I that labels each 
region either as a background region or a target region. The easiest way to describe 
the performance of the detection is to compare / with the label map L given by the 
learning supervisor. Thus, the performance vector p can simply be p = I — L. 

3. selection of the critic function : Since we are dealing with a two class classifica- 
tion problem, both / and L can be a bit vector. A simple metric for the detection 
performance is obtained by examine the number of bits being set to 1 in p, 

Nb 

"n = ^p(i)/Nb (7.14) 
i'=l 

where Nb is the total number of feature regions within the testing image. 
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7.5.5 Experimental Results 

After the BMB is constructed through applying the supervised SOM algorithm with 20 
training images, another twenty FLIR images were used as testing images for target detec- 
tion experiment. Without knowing the validity scope of each BMB member, we first treated 
all five BMB members as equally important and assigned each one's weight to 0.2. For the 
total 217 feature cells in the 20 testing images, we achieved a 100% detection rate and 
a 12% false alarm.The corresponding confusion matrix is shown in Figure 7.13(a). Then, 
we use these 20 images to learn the validity scope for each BMB member using the SRV 
reinforcement learning algorithm. After 200 iterations, the detection false alarm decreased 
by 2%, and the new confusion matrix is shown in Figure 7.13(b). 

7.5.6 Future Work 

Our work on the supervised SOM algorithm and the SRV reinforcement learning algorithm 
has shown that, by introducing learning capabilities into an ATR system, we can build a 
statistical model for the complex natural background from real images and improve it as 
we feed the system with more examples. Our future work will focus on improving these 
two algorithms. First, we need to make the supervised SOM algorithm incremental, which 
would allow the system to process new examples more efficiently. Second, we need to make 
modifications to the SRV algorithm so that we could (1) abandon the assumption that each 
BMB member has a normal distributed validity scope (Equation 7.9, 7.10). (2) use more 
sophisticated functions to approximate the relationship between contextual vectors and the 
two internal state vectors # and #, not just a linear function. 
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Figure 7.7: Examples of training images. 
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Figure 7.9: SOM constructed using kohonen's algorithm and absolute LSGE fea- 

ture data, (a) SOM overlapped with positive examples (b) SOM overlapped with 

negative examples (c) distribution of 4 — Neighber distance of positive examples, 

(d) distribution of 4 — Neighber distance of negative examples. 
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Figure 7.10: SOM constructed using kohonen's algorithm and relative LSGE fea- 

ture data, (a) SOM overlapped with positive examples (b) SOM overlapped with 

negative examples (c) distribution of 4 — Neighber distance of positive examples, 

(d) distribution of 4 — Neighber distance of negative examples. 
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Figure 7.11: SOM constructed using supervised SOM algorithm and absolute 

LSGE feature data, (a) SOM overlapped with positive examples (b) SOM over- 

lapped with negative examples (c) distribution of 4 - Neighber distance of positive 

examples, (d) distribution of 4 — Neighber distance of negative examples. 
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Figure 7.12: SOM constructed using supervised SOM algorithm and relative 

LSGE feature data, (a) SOM overlapped with positive examples (b) SOM over- 

lapped with negative examples (c) distribution of 4 — Neighber distance of positive 

examples, (d) distribution of 4 — Neighber distance of negative examples. 
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Figure 7.13: Confusion matrix of the detection experiment, (a) before the rein- 

forcement learning of the validity scopes, (b) after the reinforcement learning of 

the validity scopes. 
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Chapter 8 

Case-Based Learning of 

Recognition Strategies 

8.1     Introduction 

Photointerpretation (PI) has been an important application domain of image understand- 
ing (IU) techniques for about two decades. An important goal of PI or image exploitation 
(extraction of intelligence from image data, particularly aerial imagery) is to aid reconnais- 
sance tasks, such as airfield, port, and troop movement monitoring. The problem of PI is 
one of identifying instances of "known" object models in images acquired from a platform, 
such as by a satellite or a reconnaissance aircraft. Like PI, automatic target recognition 
(ATR) is also concerned with finding instances of known targets in the input sensor data. 
Model-based object recognition is a challenging task under real-world conditions such as 
occlusion, shadow, cloud cover, haze, seasonal variations, clutter, and various other forms of 
image degradation. Additionally, ATR scenarios are characterized by multi-modal imagery, 
low resolution, and camouflage. All of these problems put heavy requirements on any IU 
system to be robust. 

Automatic acquisition of recognition strategies in dynamic situations has been a bot- 
tleneck in the development of automated IU systems applied to real-world problems, such 
as PI and ATR. The problem occurs while matching a stored object model to an input 
instance of that model and is attributed to the initially unknown pose of object and the 
varying environmental conditions. During the process of image/scene understanding, a hu- 
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man relies heavily on the memory of past cases and experience. We use the Case-Based 
Reasoning (CBR) paradigm in which "past" experiences are stored in memory as cases and 
are used to solve a new problem case. Similar cases can be combined to create problem 
solving shortcuts or to anticipate problems in new situations. The set of cases is prioritized 
and a strategy for the current problem is generated and executed. Various combinations of 
cases are created until a successful solution is reached. 

8.2     Learning Recognition Strategies 

Figure 8.1 describes our approach to learning recognition strategies for real-world object 
recognition tasks. The main learning paradigm employed in our recognition scheme is Case- 
Based Reasoning. The detailed CBR-based recognition framework shown in Figure 8.1 con- 
sists of four subtasks: (a) the generation of goal-directed recognition strategies using CBR, 
(b) the construction and maintenance of the Generalized Case Library (GCL) that collects 
past situations and corresponding actions, (c) the development of efficient algorithms for 
matching new situations to previous cases, and (d) the generalization of new cases using a 
variation of Explanation-Based Learning (EBL). Additionally, our approach also addresses 
the problems of indexing into the object model data base and the verification of object 
hypotheses. This latter task consists of two main parts: (a) the creation and refinement 
of the decision structures for indexing, using a variant of the Conceptual Clustering (CC) 
learning technique, and (b) the implementation of the indexing and matching algorithms. 
In this report, we focus on the CBR-based framework. 

8.2.1     Case-based reasoning (CBR) 

Case-based approaches are characterized by how the learner represents what it has learned 
so far, as well as the analogical methods which are used to transfer the learned experience. 
Human expertise in problem solving is largely dependent on past experiences. This idea has 
influenced the evolution of Case-Based Reasoning [7, 57, 88]. A related approach is that of 
reasoning by analogy [6, 40]. In CBR, "past" experiences are stored in memory as cases and 
are used to solve a new problem case. Given a problem to be solved, the case-based method 
retrieves from the memory the solution to a similar problem encountered in the past, adapts 
the previous solution to the current problem, and stores the new problem-solution packet 
as another case in the memory. 

There are several advantages of CBR as a learning paradigm. First, CBR has the capa- 
bility of anticipating and therefore avoiding past mistakes as well as focusing on the most 
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Figure 8.1: A CBR framework for learning recognition strategies. EBL generalizes cases and along 

with CC it facilitates automatic knowledge acquisition of object models. 

important aspects of a problem first. All of these lead to an increase in efficiency over time. 
Second, the learning process is fairly uncomplicated, since CBR does not require causal 
models like inductive learning or extensive domain knowledge like analytic learning. Third, 
the individual or generalized cases can also serve as explanations. Fourth, the process is 
scalable. Fifth, the knowledge acquisition bottleneck is relatively simple to solve in CBR 
than in conventional learning systems. This is because individual cases interact a little 
among themselves unlike the rules. The major concerns with CBR are the selection of the 
indexing scheme to organize cases in the memory, the method for choosing the most relevant 
cases at reasoning time, and the adaptation heuristics to modify previous cases to fit the 
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current problem. 

There are two major types of case-based approaches: interpretive/classification (or 
precedent-based) CBR, and problem solving CBR. In the precedent-based CBR, the task is 
to decide whether or not a new case should be treated like one of the stored cases based 
on similarities and differences between the two. This is done by generating a pro's and 
con's analysis from a comparison of the two cases. In problem solving CBR, a solution for 
the new problem is formulated by suitably modifying past solutions. In either approach, 
a proposed solution must be verified for appropriateness. This is particularly important if 
the derived solution is based on "unexplained" experiences. This verification process is akin 
to an evaluation procedure associated with any learning process. An interpretive CBR is 
used in such evaluation process to provide a check on the use of knowledge derived from 
experience. 

8.2.2    CBR in IU 

Current model-based IU approaches to object recognition generally utilize only the geo- 
metric descriptions of object models, i.e., they emphasize the recognition problem as a 
characteristic of individual object models only. However, there are various factors, such 
as contextual information, sensor type, target type, scene models, and related non-image 
information that may influence the outcome of recognition in real-world applications such 
as ATR, PI, navigation. Humans also rely on such ancillary information for object recogni- 
tion and scene understanding. For example, it is well known in the intelligence community 
that oxen yoked to water pumps in Southeast Asia resemble anti-aircraft artillery in aerial 
images [2]. Thus, without the knowledge of the area being examined, an image analyst 
or an automated PI system may be misled easily. Thus, prior experience in addition to 
object/sensor models is important for devising efficient and robust recognition strategies to 
deal with noisy data or occluded targets against complex backgrounds. 

Prototypical situations (cases) observed in the past are useful for the recognition of 
objects as well as for the assessment of entire scenes. An example of a case in the PI 
context is given in Figure 8.2. Each path from the root node to a leaf node in the tree 
represents a single case. The path incorporates the information normally used at each level 
in an object recognition task, e.g., aircraft recognition. It includes contextual information, 
e.g., airfield, scene type, e.g., tarmac parking areas, the best object recognition strategy, e.g., 
selection of segmentation, feature extraction, recognition algorithms and their parameters, 
and corresponding image analysis goals, e.g., finding instances of transport aircraft such as 
Hercules. A case of ATR would additionally include sensor type, terrain, and radiometric 
information. 
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Figure 8.2: Representation of a case in the photointerpretation context. 

Case-based methods are best suited to problems for which many training cases are avail- 
able, perhaps with many exceptional cases, and it is difficult to specify appropriate behavior 
using abstract rules. Most IU applications, such as ATR and PI, are characterized by 
large-volume image exploitation corresponding to a variety of scenarios, many of which re- 
quire unique analysis. Besides, IU for unstructured environments is difficult to formalize in 
terms of rules that are general enough to be applicable to diverse situations. For example, 
recognition of a Hercules aircraft in a parked area of the tarmac under sunny condition has 
been successful in the past by following the path from the root node to the leaf marked 
"hercules" in the case representation of Figure 8.2. However, the same path may not lead 
to a successful recognition of an F-18 aircraft. Thus, the case of recognizing a Hercules is 
not the same as that of an F-18. 

8.2.3    Learning method 

The learning approach is concerned with (a) building new cases, (b) generalizing and re- 
fining existing cases, for a particular application. As indicated in Figure 8.1, the relevant 
knowledge is accumulated in the generalized case library. For updating and indexing into 
the GCL we use a combination of two different learning strategies: CBR is used primarily 
for retrieving the relevant earlier experiences and updating (restructuring) the knowledge 
base; CC is used for maintaining decision structures (classification trees) that allow efficient 
object recognition at run time. 

The GCL is the collection of knowledge that allows the system to perform object recog- 
nition and scene assessment. It is a dynamic body of information that represents the 
experience base of the object recognition system. For efficient indexing, the GCL is repre- 
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sented as a structured hierarchy of individual cases. Each case, in turn, is represented using 
scripts and memory organization packets (MOPs) which are meta-scripts [97, 96]. These 
data structures are appropriate for episodic memory or time sequences of episodes which 
are equivalent to the sequences of computational steps/recognition strategies in our case. 
Since scripts contain more specialized information, these are used for lower-levels of a case 
structure. The MOPs allow representation of more generic knowledge such as an airfield 
which can be instantiated and specified for recognition of multiple aircraft types. 

When a new problem situation or IU task is encountered, e.g., recognition of aircraft 
on tarmacs, the process of interpreting and assimilating the new task in CBR framework 
breaks down into the following steps: 

• Assign Indices - Features of the new task are assigned as indices characterizing the 
task. For example, "tarmac" and "aircraft" can be used to characterize the task as 
"aircraft-on-tarmac" which will be a particular subtask of "aircraft-in-airfield" task. 

• Retrieve - The indices are used to retrieve from memory a similar case encountered 
in the past based on similarities and differences. The past case contains the prior 
solution. For example, a case which has involved aircraft on tarmac instead of grass 
areas. 

• Modify - The previous solution is adapted to the current task, resulting in a proposed 
solution. For example, the previous recognition may have occurred under sunny condi- 
tions which required detection of shadows, while the weather condition for the current 
task is cloudy. Thus, the previous case is modified by eliminating all computational 
steps involving shadows. 

• Test - The proposed solution is carried out. It may lead to success or failure. For 
example, the parameters of the segmentation algorithm for detecting regions of interest 
may have been retained as the same as in the previous case. On the other hand, the 
contrast of the current image may be low due to cloudy weather condition, thereby, 
requiring somewhat different segmentation parameter set. 

• Assign and Store - If the solution succeeds, then indices are assigned to it and the 
solution is stored as a working solution. The successful plan is then incorporated into 
the case memory. If the solution is not too different from the proposed solution, then 
it affects the script of the existing case a little. 

• Explain, Repair, and Test - If the solution fails, then the failure is explained, the 
working solution is repaired, and the test is again carried out. The explanation pro- 
cess identifies the source of the problem. For example, new segmentation parameters 
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are selected when recognizing aircraft under cloudy weather condition. The predic- 
tive features of the problem are incorporated into the indexing rules to anticipate 
this problem in the future. For example, "aircraft-on-tarmac" index is extended to 
"aircraft-on-tarmac-sunny" and "aircraft-on-tarmac-cloudy." The failed plan is re- 
paired to fix the problem, and the revised solution is then tested. The rest of the plan 
is carried out with new segmentation parameters in our example. A new case is then 
created in the memory to handle this new situation. 

The results of the CBR-generated strategy are passed to the interpretation and evalu- 
ation component. Case indexing and matching is performed using the intermediate visual 
concepts. The different recognition states are: complete recognition, incomplete recogni- 
tion, object occlusion, object model acquisition, object model refinement, and recognition 
failure. Now, three situations may arise. First, if the strategy is very similar to one of 
the cases extracted from the GCL, no learning takes place. In this instance, the system 
has encountered an "ordinary" image interpretation task in which the current collection of 
system knowledge is adequate. Second, if the strategy is an extension of an existing case 
(i.e., the existing case represents a subset of elements of the new strategy), a case refinement 
operation may be necessary. The new strategy and its associated case are sent to the EBL 
module to determine if any new information should be included in the existing case. Third, 
if a unique combination of existing cases has been utilized to create a novel strategy for a 
given problem, a case acquisition operation is required. The new strategy is passed to the 
EBL, which applies its system control knowledge in order to remove irrelevant details and 
conceptualize the scope of the strategy. This new strategy is then inserted as a new case 
into the GCL. The CBR and the EBL paradigms are combined in a complementary manner. 
CBR has the ability to index into a large number of potential solutions and select a set of 
cases that match the characteristics of the current object recognition task. However, the 
performance of CBR degrades with the size of the case library and also by the amount of 
irrelevant detail retained in the stored cases. EBL compensates for this by learning only 
the concepts underlying the individual cases before adding the conceptual abstraction of 
the cases to the GCL. On the other hand, since CBR combines a set of previous cases to 
create a single new case for the current problem, any bias of the EBL component towards a 
particular training example will be greatly reduced. In summary, CBR allows the capture 
of context and domain-specific information to improve recognition performance over time. 

8.2.4    An Example 

An example that illustrates the use of CBR for high-level object recognition is given in 
Figures 8.3-8.4. A knowledge-based technique initially identifies several regions of interest 
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Figure 8.3: High-level object recognition based on CBR. (a) Original image; (b) Initial region of 

interest (ROI); (c) Extracted dominant axes. 

(ROIs) in the image that are likely to contain aircraft. One such ROI and its corresponding 
segmentation results are shown in Figures 8.3(b) and 8.3(c), respectively. Also shown in 
Figure 8.3(c) are the dominant axes of an aircraft structure along the wing and the fuselage. 
(The third axis corresponding to the shadow of the wing is found to be part of a shadow 
region and is removed subsequently.) The most "salient" features (with regard to edge 
strength and global connectivity) and the identified shadow lines are shown in Figures 8.4(a) 
and 8.4(b), respectively. Notice that most of the front edges on both wings are missing from 

the extracted line group. 

A composite structure detection step identifies trapezoid-like shapes that are characteris- 
tic of wings, tails, and rudder in non-shadow lines (Figure 8.4(b)). Next, an evidence-based 
dynamic reasoning process seeks to instantiate one of these composite structures (that are 
aligned with the dominant axes) as a wing. This situation is shown in Figure 8.4(c). The 
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Figure 8.4: High-level object recognition based on CBR (continued), (a) Fitted straight lines; 

(b) Detected shadow lines; (c) Trapezoid shapes in non-shadow groups; (d) Hypothesized right wing 

and projected left wing; (e) Emergence of additional non-shadow lines; (f) Final recognition result. 

support for this hypothesis, however, is weak, as there is no evidence for the other wing 
(i.e., no trapezoid-like structure was detected that is aligned with the same dominant axis). 
Subsequently, less "salient" line features are acquired (Figure 8.4(e)) and a trapezoid-like 
structure is detected by relaxing the thresholds of the perceptual grouping process. The 
final recognition result is shown in Figure 8.4(f). 

The experiences gained in this recognition "case" are: 

• Shadow and object regions are similar (Figures 8.3(a)-(a)), therefore the rear part 
of the aircraft could not be recovered (Figure 8.4(f)) without using sensor/platform 

information. 

• Relative positions of the sun and the sensor had given rise to specularity along the 
leading edges of the wings, making these hard to detect from edge information (Fig- 
ures 8.4(a) and 8.4(d)). 
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• Evidence of engines had been helpful in hypothesizing a wing (Figure 8.4(d)). 

Additional information in this case includes the sun angle, sensor position, sensor/platform 
parameters, segmentation parameters, directions of shadow regions in a ROI, etc. Clearly, 
such a "case" is valuable when the task is to investigate another ROI, say the one next to 
the current one in Figure 8.3(a) which contains another aircraft of the same type (i.e., a 
Hercules). The recognition algorithm will use the same segmentation parameters, will try 
to verify the front parts of the airplane first, and will know that the leading edges of the 
wings may be difficult to detect. 

8.2.5    Implementation Issues and Performance Evaluation 

There are several issues of practical importance in implementing a CBR-based recognition 
system. These issues are, 

• representation and contents of a case in the memory, 

memory organization and selection of indexing rules and search algorithms, 

incorporation of changes over time in the cases and the indexing rules, 

• 

• 

• 

• 

recognition of a new situation as similar to a previous case, i.e., the choice of similarity 
metrics, 

adaptation of old solutions to new problems, i.e., selection of modification rules, 

acceptance or rejection of a new case that is in conflict with a previous case, i.e., 
explaining the differences between two problem situations, 

• learning from mistakes and devising the repairing rules. 

Unlike the rule-based systems, the rules for indexing, modification, and repair do not make 
up the principal knowledge base but, rather, independent support modules. Thus, the 
complexity involved is less severe than in most rule-based systems. However, the theory of 
case-based reasoning suggests that these rules would themselves be acquired by experience 
from cases through a recursive application of the CBR algorithm. That is, the system would 
derive rules for indexing, modification, and repair from cases and experience. 

The evaluation of the performance of a CBR system can be quite complex due to the 
nature of the represented knowledge. One way to express the recognition success would 
be to note the similarity between two problem situations. If these situations are identical, 
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then one would expect identical recognition results. The performance difference would 
increase with the difference in the situations. Finding a single difference (or similarity) 
metric would be quite complex as there may exist a number of alternatives to compare 
two situations. Thus, a multi-objective criterion function would be more appropriate. One 
could simply focus on the various rules for indexing, modification, and repair to evaluate 
the performance of a CBR system. For example, the hit vs. miss ratio in retrieving cases 
from the memory using the indexing rules can be one measure. Various tools from the 
field of memory management can be used as potential measures to evaluate the efficiency 
of memory management in a CBR system, e.g., memory usage, memory fragmentation, 
distributed vs. centralized memory, dynamic memory organization. 

8.3     Future Work 

Our initial goal of learning recognition strategies using case-based approaches would be 
limited to PI applications. We have already developed an aircraft recognition system for 
this purpose and are in the process of extending it further. Currently, this system can 
handle quite complex imagery and the variabilities present in such images would be ideal for 
a case-based approach. We have presented some results using this system in this report and 
sketched our case-based approach. Since our focus is on developing recognition strategies 
through a learning process, we are minimizing our effort to design appropriate CBR tools. 
We have experimented with a LISP-based system for CBR. Our future effort is directed 
towards developing (a) a prototype system which will have all the basic elements of CBR 
and (b) reasoning, adaptation and indexing approaches that will make CBR an effective 
approach for IU applications. 
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Chapter 9 

Learning Composite Visual 

Concepts 

9.1     Introduction 

The context of the learning problem addressed here is structural object recognition, which is 
based on the assumption that structural primitives, extracted from the image in a bottom-up 
fashion, can be used to describe and recognize the objects of interest. The main advantage 
of this approach is that it facilitates (at least in principle) recognition under object and 
aspect variations and, as a recognition-by-components approach, under partial occlusion. 

The main problems associated with the structural recognition approach are (a) the com- 
putational expense for matching structural object descriptions, (b) the reliable extraction 
of structural primitives from the image, and (c) the descriptive limitations of the commonly 
used structural features. The combinatorial problems associated with matching structural 
descriptions call for methods to limit the search space. When object models are complex, 
their direct instantiation, either in a top down or a bottom-up, becomes impractical. A 
logical solution is to describe objects as assemblies of smaller substructures (intermediate 
visual concepts) that can be instantiated with much less effort. Perceptual grouping meth- 
ods (e.g., [63, 86, 94]) make use of this fact by using simple geometrical relationships (e.g., 
collinearity, cotermination, parallelism, etc.) to assemble primitives into more complex fea- 
tures. However, due to the domain-independent specification of perceptual groupings, their 
"indexing power" is insufficient in applications with more than a few object categories. An- 
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other weakness of current structural recognition techniques is their reliance upon a single 
type of primitive feature, which leads to low redundancy and inappropriate descriptions. 

We address the first problem by learning significant composite structures that are hi- 
erarchically assembled from geometric primitives and serve the purpose of intermediate 
goals for partial recognition. The other two problems are approached by using a larger 
variety of different structural feature types and corresponding object representations, thus 
achieving a higher level of redundancy. For the recognition framework we adopt a model- 
based hypothesize-and-test approach that consists of three main steps: primitive extraction, 
model-base indexing, and model verification. These three steps operate in a bootstrap fash- 
ion, i.e., the process starts in a bottom-up mode by extracting primitives and combining 
them in a meaningful way up to a point when a plausible object hypothesis can be made. 
Then the recognition process turns into a goal- (model-) directed search and verification 
process. 

The bottom-up part of the recognition process can be viewed as a multi-stage grouping 
process. At the lowest level, individual pixels are grouped to form the structural primitives, 
e.g., straight line segments, arcs, regions, etc. At the intermediate-level, the structural 
primitives produced by feature extraction are combined into more complex structural ar- 
rangements, usually biased by perceptual (i.e., domain-independent) constraints. The main 
goals of the second grouping step1 are to 

1. combine structural features in a way that they are likely to belong to the same object, 
thus reducing the number of "clutter" features that have no correspondence in the 
model structure and 

2. to produce more expressive, object-specific entities that allow effective indexing into 
the model base. 

It is the second item that is our main focus in this part of the project. We need to ask the 
question, which properties, apart from being perceptually significant, should be incorpo- 
rated into the grouping process. We believe that, in order to lead to useful object indices, 
this second set of grouping criteria cannot be model- or domain-independent but needs to 
be adjusted to the particular application domain, the objects involved, and the context in 
which they appear. The value of a particular feature group depends mainly upon (a) its 
indexing power, i.e., its capability to select a specific object (or a small set of objects) and 
(b) its operationality, i.e., the effort needed to instantiate it. The general approach for the 
use of learning to come up with the most effective feature groupings is described in the 
following. 

^his step is the one commonly referred to as "grouping." 
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9.2     General Idea 

The intermediate-level part of the project is focused on the problem of "inventing" new 
composite structural features (intermediate visual concepts) to improve recognition perfor- 
mance. We use intermediate visual concepts that are directly related to the application 
domain. For this purpose, we select certain high-order assemblies of primitive features 
which are both perceptually salient and sufficiently distinct to allow very efficient indexing. 
We employ a two-step grouping strategy that consists of 

1. a domain-independent perceptual grouping stage (which ensures perceptual saliency 
of the selected groups to cope with over-segmentation), followed by 

2. a model-based grouping process that is domain-dependent.   The high-order, model- 
based groups are formed as assemblies from the lower-order perceptual groups. 

Current perceptual grouping methods (e.g., [63, 86, 94]) are based on (a) a single type of 
primitives and (b) grouping rules that are predetermined and not adapted to the application 
domain. The use of a single feature type has the advantage of simple representations 
and grouping criteria that can be evaluated efficiently. Also, the corresponding structural 
descriptions are independent of the problem domain. The disadvantages are that 

1. the perceptual "saliency" of groupings between different types of primitive features is 
not used, 

2. groupings based on a single feature type are inherently brittle, and 

3. fixed, domain-independent grouping rules are not suitable for dynamically changing 
scenes. 

In our approach, we combine multiple types of structural features at the intermediate level, 
such as line segments, conic sections, corners, inflection points, blobs, etc., in order to in- 
crease the descriptive power and robustness (through higher redundancy) of the "polymor- 
phic" feature groupings. The problem of grouping polymorphic features is more challenging 
than grouping features of the same kind, with regard to the representations and grouping 
algorithms involved. 

The selection and generalization of the intermediate visual concepts is critical in order to 
in-sure optimal recognition performance. It requires knowledge of the application domain, 
the imaging process, the behavior of the perceptual grouping stage, and the recognition 
utility of the intermediate visual concepts. We use Explanation-Based Learning (EBL) to 
solve this special knowledge acquisition problem.   EBL is useful in this context to detect 

158 



3. The use of "polymorphic" feature groupings based on multiple feature types. 

The main advantages we expect from this strategy are: 

1. A significant reduction of the overall search complexity for structural model instanti- 
ation by using high-order intermediate visual concepts. 

2. Increased robustness and indexing power from the use of polymorphic groupings. 

3. Adaptation of grouping processes to application domains and environmental condi- 
tions. 

9.2.1     Example 

In the aircraft picture shown in Figure 9.1 it is evident that the groups of lines that compose 
the wings, tails, and rudders, form high-order groupings that are characteristic for many 
types of aircraft. Obtaining a conceptual description of certain configurations, e.g., the 
trapezoid that forms the wings, is useful for improving the recognition of other aircraft. 

9.2.2     Goals 

The main goals at the intermediate level are to automatically acquire new visual concepts 
from examples, using Explanation-Based Learning and incorporating polymorphic feature 
groupings. We shall demonstrate that the use of domain- and object-specific grouping, in 
combination with traditional perceptual grouping, can significantly improve the efficiency 
of indexing and object recognition. 

I 
I 
I 

inherent pattern regularities and to generalize patterns, i.e., to determine the simplest 
description with respect to a given set of operators. In summary, the strategy at this level 
involves: 

1. The use of a two-stage grouping strategy that involves (a) perceptual grouping and 
(b) model-based grouping with a database of generalized visual concepts. 

2. The use of EBL to automatically infer the most useful intermediate visual concepts I 
by applying the entire recognition "engine" to real examples. 

I 
I 
I 
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Figure 9.1: Domain-specific, composite visual concepts are formed by combining perceptually 

salient low-order groupings. Here only straight line segments are used as initial primitives. An 

example for a simple intermediate-level concept is the typical trapezoid shape found at the ends of 

the aircraft wings. Four instances (1-4) of this concept are outlined and marked in this image. 

9.3     Approach 

The instantiation of visual concepts is performed in a two-stage process (Figure 9.2). 
Initially, the simple features extracted from the input image by various different selec- 
tion mechanisms (e.g., straight line segments, conic segments, homogeneous blobs, etc.) are 
grouped using domain-independent perceptual grouping criteria. Examples for the grouping 
criteria are collinearity, cotermination, parallelism, proximity, relative size, symmetry. 

At the second stage, domain-specific models of high-order composite structures (inter- 
mediate visual concepts) that have been found useful for recognizing objects guide the 
grouping process. Visual concepts are learned by the system (see below) and stored in a 
local database that is continually updated. Only those groupings are considered here that 
were found perceptually significant at the initial perceptual grouping stage. During actual 
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Figure 9.2: Learning intermediate visual concepts using Explanation-Based Learning (EBL) 

(routine) recognition, the visual concepts found at this stage are directly used for indexing 
into the object model base. 

Learning of new visual concepts is based on the following criteria: 

Perceptual saliency: A concept must be perceptually salient, i.e., receive a high score in 
the first (perceptual) grouping stage. 

Operationality: A concept must be describable in terms of the operators that the model- 
based grouper is able to perform. For this purpose, knowledge about these operators 
is supplied in explicit form. 

Simplicity: Concepts that permit a simple description (i.e., one with few grouping steps 
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I 

/ transformations) are preferred.  EBL is used to find the simplest description for a 
given feature configuration (Minimum Description Analysis). 

Recognition utility: Only those concepts that are found to be useful in recognizing a 
particular object are eventually accepted. This is determined by considering the 
outcomes of the high-level recognition steps. 

Visual concepts in the database are generalizations of the actually observed feature con- 
figurations, produced by analytic (EBL) learning (Pattern Generalizer). The representation 
of a concept in the database is an annotated symbolic description, which is generalized by 
parameterizing specific geometrical properties of the corresponding feature representation. 
The task of the Model-Based Grouper module is to instantiate the visual concepts, in the 
stream of perceptual groups, operating in a goal-directed fashion. The concepts (goals) 
are supplied to the grouper as decision structures that are updated dynamically when the 
contents of the database are changed. Interaction with high-level object recognition occurs 
in two forms. First, instantiated known groups can be directly used for indexing into the 
model base at the high level. (The association between intermediate concepts and object 
models is done at the high level.) Secondly, high-level recognition is invoked to determine 
the recognition utility of new concepts. 

The use of a small set of fixed bottom-up composite structural concepts allows efficient 
detection in images. Similar arguments hold for top-down search for specific arrangements 
when the number of possible objects is small. The disadvantage of this approach is that a 
small but fixed set of intermediate structural concepts is generally not useful in different 
application domains. For using top-down, model-based composite structures, the number 
of models is restricted. In both cases, the manual specification of suitable intermediate 
structures is difficult. 

The following specific tasks are involved: 

9.3.1     Task 1 — Model-Based Interpretation of Perceptual Groups 

We develop methods for collecting structural primitives of different types (e.g., lines, arcs, 
parametric curves, blobs) into polymorphic groups, using a set of perceptually significant 
spatial relationships. The relationships (e.g., proximity, collinearity, symmetry, relative 
size) being used depend upon the type of elements contained in each particular group. The 
purpose of this initial bottom-up grouping process is to supply an ordered set of composite 
structures that have a high probability of being semantically meaningful. The database of 
perceptual relationships used in this task is fixed, i.e., not subject to adaptation during 
runtime.    However, this database must be designed to allow easy extension when new 
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structural feature types are introduced. The main subtasks are to develop (a) the database 
of perceptual relationships, (b) evaluation function to measure the "saliency" of high-order 
polymorphic groups, and (c) efficient grouping algorithms that can handle polymorphic 
structures. 

9.3.2 Task 2 — Composite Structure Model Acquisition and Refinement 

We consider the actual semantic significance of perceptual groups with regard to the given 
application domain, in contrast to the previous task, where we employ only general percep- 
tual cues. The module developed in this task uses the initial perceptual groups developed in 
Task B.l for ultimately creating an index into the object model database. For this purpose, 
the module tries to form more complex groups from the incoming simple groups by using 
a database of semantically relevant structures. The database is created and maintained by 
a learning scheme based on Explanation-Based Learning (EBL). The major steps in this 
task are (a) the development of a suitable representation for high-order polymorphic fea- 
ture groups which can also express their variability, (b) the adaptation of EBL for learning 
parameterized geometric concepts and its implementation in software, and (c) the develop- 
ment of efficient matching algorithms that can make use of the polymorphic nature of the 
feature groups. 

9.3.3 Task 3 — Composite Structure Learning Subsystem 

The goal of this task is the integration of all components needed for the adaptive inter- 
mediate-level learning scheme. Here we address in particular the interaction between the 
database of composite feature structures (Task 2) and the object models at the high level. 
The interaction with the high-level recognition module is needed to determine the utility of 
an observed feature structure for recognizing a particular object. 

9.4     Learning at the Intermediate-Level Vision: Previous 

Work 

Learning at the intermediate level has been applied mainly in the areas of texture recogni- 
tion, algorithm parameter adjustment, motion perception, and specific vision tasks, such as 
road following. Currently, clustering methods are the most popular adaptation or learning 
paradigm at this level, followed by the use of neural networks and some applications of 
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genetic algorithms. Structural learning methods, such as EBL or CBR are currently much 
less used at the intermediate level. 

An example for inductive learning at the intermediate level is the approach to texture 
recognition described by Pachowicz [75]. He uses a scaling process to convert feature vectors 
of texture statistics into symbolic intervals and then applies an inductive learning program to 
find the most preferred symbolic expression according to a specified criterion. The method 
also employs a rule optimization technique after texture learning and prior to recognition to 
allow rule generalization. A performance improvement over the traditional nearest-neighbor 
clustering method is demonstrated. 

Gillies [41] reports a learning system based on Genetic Algorithms for generating image 
domain feature detectors to find the location of objects in the image. A genetic search 
method is used to generate populations of feature detectors which are morphological opera- 
tors. The functions performed by the layered system are tailored to the specific imagery on 
which the system is trained. The system is also shown to handle multi-class discrimination. 

Another application of Genetic Algorithms at the intermediate level is the work done 
by Roth and Levine [90], which is a learning-based approach to extraction of geometric 
primitives (parametric curves) from images. In this approach, a geometric primitive is 
genetically represented by the minimal set of points instead of its parameters. Learning 
involves determining the minimal set of points for a given primitive type that optimally 
fits the data. Montana [69] reports an expert system for the interpretation of passive sonar 
images that employs a GA for determining detection thresholds. 

There is a growing number of neural network applications at the intermediate vision level. 
An example is the work by Pomerleau [80] on network-based navigation of autonomous 
robots. Due to their inability to capture and generalize structural descriptions, NNs in 
general do not appear to be well suited for solving structural problems at the intermediate 
level. There are, however, certain functional mapping problems at the intermediate level 
that can be addressed successfully with NNs. For example, Aloimonos and Shulman [4] have 
suggested the use of NNs to learn the parameters involved in "Shape-from-X" problems. 

Intermediate-level composite structures are commonly detected by either bottom-up 
grouping criteria (see above) or specified a priori as prototype patterns that are searched 
for in a goal-directed manner (e.g., [71]). The work reported by Segen [98] addresses some 
aspects of learning composite structural concepts from examples, however, no results have 
been shown on real images. Structural feature detection is usually based on a fixed set of 
visual primitives for which efficient detection algorithms are available. The incorporation of 
features of varying complexity has been addressed using only fixed, domain-independent 
grouping criteria. The problem of automatically forming intermediate-level perceptual 
shape concepts has found considerable attention in the psychological field recently. 
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9.5   Explanation-Based Learning 

Explanation-based learning (EBL) [28] is an extension to an earlier concept called "ex- 
planation-based generalization" described by Mitchell et al. in [66]. Both paradigms are 
based on the same idea of using strong domain knowledge to "explain" why a given training 
example is a member of the concept being learned. 

The domain knowledge (or domain theory) required in EBL consists of three main com- 
ponents: 

1. A specification of the types and properties of the objects being dealt with. 

2. A set of inference rules for inferring relations and properties from given relations and 
properties, and possible transformations between objects in the domain. 

3. A library of problem-solving operators (schemata) that were either learned from earlier 
training examples or are hand coded. 

The learning task in EBL can be stated as finding a generalized sequence of legal trans- 
formations (a schema) to derive the goal configuration from a given initial configuration. 
This is usually accomplished in a two-step process: 

1. Construct an explanation that is causal with respect to the domain knowledge. This is 
similar to constructing a proof sequence for a theorem with respect to a set of axioms. 

2. Generalize that explanation into a new schema by looking for the weakest precondi- 
tions under which the same explanation would apply. 

The main limitation of EBL in its original form lies in the fact that the domain knowledge 
must be complete. If a given training example cannot be explained in terms of the existing 
domain knowledge, no generalization and thus no learning can take place. Another issue is 
the way the domain knowledge is specified and used. In "pure" EBL, the domain knowledge 
is expressed in the form of first-order logic predicates or Horn clauses, which provide no 
notion of proximity or similarity in a quantitative sense. However, many domains require 
handling of approximate, distorted, or noisy descriptions, and are thus not well suited 
for EBL in its original form. As a consequence, there have been several suggestions for 
extending the capabilities of EBL, in particular for relaxing the problem of incomplete and 
and possibly incorrect domain knowledge by combining analytical (EBL) and inductive 
learning [99, 67, 76, 103]. 

A second shortcoming of EBL is its strong dependence of a "good" encoding of the 
domain theory rules, which makes it difficult to design a domain theory that produces correct 
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specializations. One approach for solving this problem is to employ a weaker semantic bias 
when searching for a solution path, which, however, requires the use of multiple training 
examples (EBL can, in principle, produce generalizations from single training examples) 
[37]. 

9.6     EBL and Visual Concepts 

In this section, we describe the principles of applying EBL in the context of structural feature 
analysis and visual concept acquisition. The first step is to define the basic elements of the 
EBL paradigm, i.e., objects, relations, inference rules, initial state, and goal state in terms 
of the structural feature domain. 

9.6.1     Elements of the Learning Problem 

The primitives involved in this learning approach are two-dimensional geometric primi- 
tives. The assumption is that we have suitable mechanism available for extracting these 
primitives from images. Primitive classes include zero-dimensional primitives (points), one- 
dimensional primitives (straight line segments, arcs), and fully two-dimensional primitives 
(closed curves, elliptical regions, parametric blobs, etc.), as indicated in Figure 9.2. We call 
these three primitive classes V0, V\, and V2, respectively. 

The domain knowledge in this case consists of 

1. the properties of the individual primitives, 

2. the spatial relations between primitives, and 

3. a set of operators for combining (grouping) primitives into more complex arrange- 
ments. 

The knowledge can be interpreted as a picture language (or algebra) for describing almost 
arbitrary configurations of picture primitives. In general, there is more than one possible 
description for a given arrangement of picture primitives. The learning problem consists of 
finding the simplest description (or a small set of simple descriptions) for a given picture 
configuration with respect to the current domain knowledge. The simplified descriptions 
found in the learning process become new intermediate-level visual concepts that are added 
to the current domain knowledge and can, in turn, become part of other object descriptions. 
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To evaluate the complexity of a particular description, each operator is associated with 
a cost term that represents the complexity of applying that operator or transformation. A 
similar approach is used in most approximate string matching techniques, where certain 
costs are associated with each character insertion, deletion, and replacement to compute a 
minimum "string edit" distance. The individual operator costs are assumed to be predefined 
and constant, at least originally. The questions of (a) how the operator costs should be 
related to the actual recognition mechanism and (b) if they can and should be learned pose 
interesting research topics. 

9.7    Future Work 

The work towards visual concept learning described in this chapter is still in an initial 
phase. Currently, our short-term goal in this problem area is to formalize the learning 
problem in precise terms and to specify suitable representations, learning algorithms, and 
performance measures. The plan is to adapt existing learning tools to this specific problem 
and to integrate these tools with other software components wherever possible. In addition, 
we are currently creating the necessary low-level operators for extracting structural features 
of various types that will allow to perform initial experiments on actual image data. 

167 



Chapter 10 

A Learning System for 

Consolidated Recognition and 

Motion Analysis 

A system for /earning integrated targeting and exploration via segmentation, emplacement 
and recognition (LITE-SEER) is described. LITE-SEER uses learning augmented image 
understanding methodologies to identify and locate objects from a sequence of dynamic 
images for the following: (a) targeting and tracking in cluttered environments, (b) con- 
straining object viewpoints for recognition, (c) detection of stationary and moving objects. 
To achieve these goals, the learning module (based on genetic and other algorithms) inter- 
acts cooperatively with the motion, segmentation and recognition modules. Experimental 
results on dynamic image sequences that detect, identify and locate obstacles like cones, 
cans, and wedge-shaped objects are presented. 

10.1    Introduction 

Tracking of moving and static objects, and exploration in an unknown or partially known 
environment are important applications of computer vision. Recognition and reconstruction 
of objects in a scene are often required for this purpose. Reconstruction of an object involves 
determining the shape of the object as well as the position and orientation of the object in 
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Figure 10.1: Overview of LITE-SEER. 

3-D. The recognition of an object is of course limited by the range of models available in 
the model database; in practice the database could be extended by the acquisition of new 
models. Building an environmental model using depth information and models has been 
studied earlier [92]. However, most algorithms are still at an early stage and are not robust. 
For better performance of recognition algorithms the incorporation of depth information 
obtained from motion analysis can be of considerable help. Similarly, motion analysis can 
be assisted by the recognition of objects. 

In the overview of the LITE-SEER system in Figure 10.1, the motion module determines 
dense depth maps from a sequence of 2-D images. The segmentation module can segment 
either 2-D intensity images or dense depth maps. The recognition module uses the pre- 
stored models and information from the segmentation and motion modules to recognize 
objects over multiple frames. The learning module is central to the system and allows for 
the cooperation between the segmentation, motion and recognition modules. The system 
attempts to secure the 3-D position of objects through motion algorithms and identify 
them via the recognition module. Then the objects can be placed in a 3-D map in the 
course of scene reconstruction. In short, the LITE-SEER project attempts to incorporate 
motion, segmentation and learning for model-based 3-D reconstruction and recognition 
from dynamic image sequences. LITE-SEER's application area includes outdoor navigation 
and robotics, target tracking, target recognition, surveillance etc. The fully implemented 
system is expected to run on the mobile vehicle UCRover, being developed at the University 
of California, Riverside. In this chapter, the focus is on the processes of motion analysis and 
recognition. They are combined to provide results that are better than those obtained from 
either of them separately. To achieve this goal segmentation is performed on the following: 
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(a) color images, (b) depth maps obtained via motion analysis. Segmentations of depth 
maps and intensity images are automated by using a computational learning paradigm to 
learn the parameters that have to be adjusted. 

10.2    Components of LITE-SEER 

The actual design and implementation of the LITE-SEER system is described in Fig- 
ure 10.2. The pre-stored models of the objects are kept in a model database. The database 
contains CAD models of objects likely to be found in the 3-D scene. In the initial imple- 
mentations of the work, the representations of the models are relatively straightforward and 
conform to simple geometrical figures and intensity characteristics of the objects when they 
are projected onto the image. 

There are two separate channels which interchange information in the whole system: (a) 
Channel for the segmentation of color images (b) Channel for the segmentation of depth 
images. The two channels interact closely through the Integrator for recognition, 3-D 
position, orientation and shape determination of objects in the scene. 

Even though the segmentation of images is an ill-posed problem in computer vision, for 
practical scenarios there is often no other alternative but to segment color images and depth 
maps. Usually this involves the adjustment of the values of several parameters for optimal 
segmentation. LITE-SEER uses genetic algorithms [15] to learn the optimal values of the 
parameters that have to be adjusted. Not only can genetic algorithms be used to learn the 
parameters for the segmentation of the depth maps and intensity imagery but they can also 
be extended to work in a similar way on infrared and LASAR imagery. Genetic algorithms 
have a high probability of locating the global optimum solution in a multidimensional search 
space. In addition, when multiple characteristics like depth and intensity are involved and 
the interactions among them are complex, the genes of the chromosomes can represent the 
various characteristics in the genetic algorithm. 

As far as model-based segmentation of depth map is concerned, even though it is a 
well-studied subject [5], and algorithms have been implemented on parallel processors [21] 
the results obtained need improvement for robust performance in practical applications. 
For the purposes of this study, the method used for obtaining dense depth map is that 
described by Dutta in [34]. It derives dense depth maps from motion in both outdoor and 
indoor imagery to about 8% accuracy (at distances of up to 80 feet) in real-time in an 
SIMD mode of computation on the Image Understanding Architecture. The parameters for 
segmenting the depth map are determined through the application of genetic learning in a 
fashion similar to the determination of parameters for color segmentation. 
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Figure 10.2: Algorithmic components of LITE-SEER. 

The two channels interact closely and influence the output of each other. The evaluations 
of the fit between the models and the objects in the segmented color and depth images are 
determined by considering the influence of the other channel, i.e., the color segmentation is 
influenced by the depth segmentation and vice-versa. The final output of the Integrator is 
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(a) (b) 

Figure 10.3: 1    and 2     frames of a sixteen frame sequence. 

the reconstructed 3-D scene with the recognized objects. 

10.3    Experiments 

Figures 10.3 and 10.4 show frames of two typical image sequences collected by moving 
cameras. The sequences will be referred to as "indoor" and "outdoor" sequence respectively. 
From the image sequences the motion module computes dense depth maps via the use of 
SIMD-based parallel depth from motion algorithms described in Dutta [34]. The dense 
depth map obtained for a subimage of the indoor sequence containing the "wedge" is shown 
in Figure 10.5. The dense depth maps obtained for two separate regions of the outdoor 
sequence containing cones and cans are shown in Figure 10.6. For the depth map of a 
subimage, the darker the gray scale the closer the environmental point is to the camera. 
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Figure 10.4: Is' and 3rd frames of a twenty frame sequence. 

The result of intensity-based segmention of the "wedge" subimage of the indoor sequence 
is shown in Figure 10.7. The result of segmenting the central region of the first image of 
the outdoor sequence by using models of cones and cans based on intensity characteristics 
are shown in Figure 10.8. It can be seen that the "wedge," cones and can stand out clearly 
from the ground. 

Genetic learning algorithms are used to apply the intensity segmentation results obtained 
in Figures 10.7 and 10.8 to segment the depth maps shown in Figures 10.5 and 10.6 such that 
the depth of the "wedge", cones and cans can be determined and they can be separated from 
the ground plane. With no other information other than depth maps complete separation 
of obstacles (e.g. cones, can) is not possible because part of the surroundings of an obstacle 
in the depth map is at almost the same depth as the obstacle and tends to merge with the 
foot of the obstacle (e.g. the depth of the bottom of cones and the surrounding ground is 
the same). This is different from an intensity image where all regions of an obstacle have 
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Figure 10.5: The subimage of the wedge of the indoor sequence is shown on the left and the dense 

depth map obtained from motion analysis is shown on the right hand picture. 

a different image intensity from their surroundings. The genetic algorithm will try to learn 
the parameters for segmentation of the depth maps. 

From experience it is determined that the "wedge" may be segmented from the depth 
map of the indoor image with two thresholds. Similarly the can may be segmented from the 
depth map of the outdoor image with two thresholds. However, several cones at varying 
distances require three thresholds. Hence, the genetic learning implementation for the 
automated learning procedure for the depth segmentation of "wedges" and cans have two 
genes corresponding to the two thresholds whereas for depth segmentation of the can there 
are three genes corresponding to the three thresholds. 

The initial population of chromosomes (which contains the genes) is selected at random. 
Some information is known about the range of depths in the image and this is incorpo- 
rated as a constaint while generating the random chromosomes.   The goodness of each 
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Figure 10.6: Cones and can from the outdoor sequence are shown on the left and their dense depth 

maps obtained purely from motion analysis are shown in the corresponding right hand pictures. 

chromosome is then evaluated by an evaluation function f{x1,x2) for the can and "wedge" 
images and f(xi,x2, x3) for the cone image where xu x2 and x3 represent the genes of the 
chromosome. The evaluation function tries to match the intensity segmented map with 
the hypothetically segmented depth map constructed from genes reflecting the thresholds. 
Succeeding generations of chromosomes are chosen applying a crossover rate of 0.6 and a 
mutation rate of 0.001. The number of generations created is limited by the processing time 
that can be used for the problem. The ten best parameter estimates for the thresholds of 

depth segmentation for the "wedge," cone, and cans are shown in Table 10.1. 

The depth images corresponding to the results of Table 10.1 are illustrated in Figures 
10.9 and 10.10. The average of the three best solutions were used for segmentation. Studies 
comparing the automatically generated results of Figure 10.10 with the manually obtained 
results show that the generated thresholds are close enough to the manually generated 
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Figure 10.7: Segmentation of the "wedge" based on intensity for the first image of the indoor 

sequence. The right picture is an histogram which illustrates the segmentation. The shading of the 

histogram corresponds to the shading on the segmented image. For example, the "wedge" has an 

intensity value between 76 and 84 and is shown in in black. 

thresholds. Since the manually generated thresholds were chosen with great care after a 
lot of attempts, the automatically generated thresholds are excellent. The automatically 
generated thresholds are a lot better than any that are generated from default parameters. 

Once the segmented depth map and the segmented intensity maps are obtained the scene 
can be reconstructed as shown in Figures 10.11 and 10.12. The triangular structure in the 
surface plot of Figure 10.11 is the "wedge." The three undulations in the surface plot of 
Figure 10.12 are the three cones. The depth of the "wedge," can and cones can be obtained 
from the histograms. The "wedge" is at a depth of 3 m. (10 feet), the can is at a depth of 
46 feet, the near cone is at a depth of 36 feet and the farther cones are at a depth of 56 feet. 
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(a) (b) 

Figure 10.8: Segmentation of cans and cones based on intensity for the first image of the outdoor 

sequence. The cones have intensity greater than 148; the can has intensity less than 53; the intensity 

of the ground varies between 54 and 147. 

10.4     Conclusions and Future Work 

At the current state of the system, genetic learning has been used to segment the depth 
maps and combine them with intensity segmentation and models for 3-D reconstruction 
and recognition of simple objects. The future focus will be on the completion of learning 
and model-based algorithms to recognize and track 3-D objects for real applications. 
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Figure 10.9: Depth segmentation of the "wedge" from genetic learning and motion analysis. 
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Table 10.1:  The ten best solutions for thresholds with genetic learning for depth maps,  t-1, t-2 

and t-3 are the thresholds. 

For the ' 'wedge'' image 

t-1 t-2 evaluation 

0.38 3.19 6.1140e+03 

1.62 5.34 6.2830e+03 

0.71 3.37 6.1140e+03 

0.79 3.20 6.1140e+03 

1.94 5.34 6.2830e+03 

0.71 3.19 6.1140e+03 

0.79 3.19 6.1140e+03 

1.94 5.45 6.2830e+03 

0.79 3.37 6.1140e+03 

0.71 3.27 6.1140e+03 

For the can image 

t-1 t-2 evaluation 

32.11 45.32 9.8000e+01 

28.05 47.35 9.9000e+01 

31.10 47.35 9.9000e+01 

25.00 45.32 9.9000e+01 

31.10 45.32 9.7000e+01 

33.13 46.33 9.9000e+01 

26.02 45.32 9.9000e+01 

33.13 47.35 9.9000e+01 

33.13 45.32 9.7000e+01 

30.08 45.32 9.7000e+01 

For the cone image 

t- •1  t-2   t-3    evaluation 

27 08 46 89 58 44  7.0300e+02 

24 60 46 89 57 62  6.9900e+02 

24 60 44 41 57 62  7.0100e+02 

27 08 43 59 57 62  6.8100e+02 

27 90 46 89 58 44  7.0300e+02 

27 08 44 41 57 62  6.8700e+02 

24 60 43. 59 57 62  6.9500e+02 

27 90 43 59 58 44  6.9900e+02 

27 08 41 11 57 62  7.0100e+02 

27 08 46 89 57 62  6.8500e+02 
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Figure 10.10:  Depth segmentation of cans and cones from the depth maps obtained via genetic 

learning and motion analysis between frames 1 and 3. 
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(a) (b) (c) 

Figure 10.11: Recognition and surface reconstruction of the "wedge."  The middle picture is the 

smoothed depth map and the right picture is the reconstructed surface. 
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(a) (b) (c) 

Figure 10.12:   Recognition and surface reconstruction of the cones.   The middle picture is the 

smoothed depth map and the right picture is the reconstructed surface. 
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