
REPORT DOCUMENTATION PAGE

»-*-
Form Approved

OMB No. 0704-018S

PUOMC re0or,-S surse, w :-,s :„.ea,on of :n,or™::c~ , es:.nat.« to a-erage nour oe; -= «» ^^/£™ g r^ ■ -;^. «^m « st,n- c^a.o, c„

9""«""? T ?*"<! "uc™ ru^;o^c?™"',nn"n° Du«?n"?n «»n nS^He ^te^e^^'^orat'fo^rSrma^n Ooe,;,« ana Reocr.s,J^i jetted
D° H°=r a T -";2"4 ^n-c'lr ?A 2^202 Jsofan^fotn» W° e of Manaaemem and Buaqet. Paperwork Recuct.on Pro,e:t (07G4.Q1S8J. Washington. L< ,050;.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

FINAL/30 Sep 93 TO 29 Dec 94

4. TITLE AND SUBTITLE

MULTISTRATEEGY LEARNING FOR IMAGE UNDERSTANDING

6. AUTHOR(S)

BIR BHANU

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

UNIVERSITY OF CALIFORNIA
COLLEGE OF ENGINEERING
RIVERSIDE, CA 92521-0425

AF.0SR-1B- 9 ^>

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM
110 DUNCAN AVE, SUTE B115
BOLLING AFB DC 20332-0001

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

5. FUNDING NUMBERS

A414/02
F49620-93-1-0624

PERFORMING ORGANIZATION
REPORT NUMBER

-o*y8

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

F49620-93-1-0624

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

12b. DISTRIBUTION CODE

aj^P6Tt*ctitrage^UndeTvs4^i1ding (1U) algorithms and systems lack the flexibility and
robustness to successfully handle complex real-world situations. Robust 3-D object
recognition, in real-world applications operating under changing environmental
conditions, remains one of the important but elusive goals of IU research. We
believe that an innovative combination of IU and Machine Learning (ML) techniques
will lead to the advancement of the IU filed in general. IU itself has come to a
certain state of maturity, in that we have today a good understanding of the
essential components, their functionality, and the architectural issues involve.
IU processes are commonly separated into three hierarchical layers, called the low,
intermediate, and high level. At each of these levels. ML techniques can be
employed selectively to improve the overall recognition performance. By
introducing adaptation of task parameters; maintenance of internal representations
and hypotheses pertaining to the observed reality: and learning new concepts and
recognition strategies. The incorporation of learning into IU algorithms and
systems will results in adaptation and robustness capability since learning
provides automatic knowledge acquisition and continuous improvement of recognition
system performance.
U. SUBJECT TERMS

MM «flJALB* nasfflorasD 5

17 SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

>AR(SAME AS REPORT)

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-

Multistrategy Learning for
Image Understanding

Technical Report

September 30 1993 to December 29, 1994
Grant Number F49620-93-1-0624

February 15, 1995

Prepared for the
Air Force Office of Scientific Research

Sponsor Code 2416
and the

Advanced Research Projects Agency

by
Bir Bhanu

Principal Investigator

.-^ilä^-. •v"«-^» SK\OV. .•/<C,/tli2S
;==[

: 3r/i —^ vJ° •■

RB-Y-

University of California
College of Engineering

Riverside, CA 92521-0425

Contributors:

Bir Bhanu Rabi Dutta
Dongsung Kim Jing Peng
Wilhelm Burger Songnain Rong
Subhodev Das Xing Wu

I
I
I

19950616 075

AacsessiGii Fo?

WZ1S GRA&I
PT1C TAS
Usiaaxiouaeed
justlfioatio

Contents

1 Summary 1

1.1 Multistrategy Learning in Image Understanding 2

1.2 Learning at the Low Level: Adaptive Multi-Sensor Image Segmentation . . 3

1.3 Learning at the Intermediate Level: Learning Composite Visual Concepts . 4

1.4 Learning at the High Level: Learning Recognition Strategies in Dynamic
Environments r

1.5 Interaction and Feedback between Multiple Levels 5

1.6 Other Research in This Area g

1.7 Accomplishments 7

2 Genetic Algorithm for Adaptive Image Segmentation io

2.1 Introduction in

2.2 Image Segmentation as an Optimization Problem n

2.2.1 Parameter Search Techniques yi

2.2.2 Genetic algorithms for Image Segmentation 13

2.3 Genetic Learning for Adaptive Image Segmentation 15

2.3.1 Image Characteristics 15

2.3.2 Genetic Learning System Ig

2.3.3 Segmentation Algorithm 20

2.3.4 Segmentation Evaluation 21

2.4 Segmentation Results 25

2.4.1 Segmentation Results Using Genetic Algorithm 25

2.4.2 Performance Comparison with Other Techniques 27

2.4.3 Demonstration of Learning Behavior 28

2.5 Scaling the Number of Parameters 31

2.5.1 Search Space and GA Control Mechanism 31

2.5.2 GA Plus Hill Climbing for Adaptive Image Segmentation 33

2.5.3 Experimental Results 35

2.6 Conclusions 36

2.7 Future Work 38

3 Learnable Structural Models for Target Indexing: Hidden Markov Mod-
els, n-Grams, and Salient Sequences 52

3.1 Introduction 52

3.2 Motivation 53

3.3 The Domain of Learning 54

3.3.1 Hidden Markov models 55

3.3.2 ra-Grams 65

3.3.3 Inexact sequence matching 67

3.4 Conclusions 71

4 Signal to Symbol Conversion for Structural Object Recognition Using
Hidden Markov Models 72

4.1 Introduction 72

4.2 Hidden Markov Models for Signal-To-Symbol Conversion 74

4.3 Indexing Approach 76

4.3.1 Gabor Wavelet Features 77

4.3.2 Encoding of Image Data 77

4.3.3 Sequentialization of Image Probes 78

4.3.4 Sequence Classification and Indexing 79

4.4 HMM Model Base 80

4.5 Future Work 80

5 Closed-Loop Object Recognition Using Reinforcement Learning 85

5.1 Introduction 85

5.2 Reinforcement Learning System for Segmentation Parameter Estimation . . 87

5.2.1 The Problem 87

5.2.2 Learning to Segment images 88

5.3 Reinforcement Learning 90

5.3.1 REINFORCE Algorithms 91

5.3.2 The Team Network 93

5.3.3 The Team Algorithm Used 95

5.3.4 Implementation of the Algorithm 96

5.4 Experimental Results 96

5.4.1 Results on Indoor Images 99

5.4.2 Results on Outdoor Images 102

5.5 Conclusions and Future Work 104

6 Delayed Reinforcement Learning for Closed-Loop Object Recognition 111

6.1 Introduction Ill

6.2 Reinforcement Learning System for Object Recognition 113

6.3 Experimental Validation 116

6.4 Conclusions and Future Work 120

7 Context Reinforced Background Modeling 123

7.1 Representation of A Background Model Bank (BMB) Member Using A Self-
organizing Map 124

7.2 Conventional Self-organizing Maps 126

7.3 Supervised Self-organizing Maps 127

7.3.1 Disorder Index 127

7.3.2 Learning From Negative Examples 129

m

7.4 Experimental Results 129

7.4.1 Synthetic Data 129

7.4.2 Real Data 130

7.5 Validity Scopes of The Background Models 131

7.5.1 The Role of Contextual Parameters 131

7.5.2 Reinforcement Learning Using Contextual Parameters 133

7.5.3 The SRV Algorithm 134

7.5.4 Implementation Concerns 136

7.5.5 Experimental Results 137

7.5.6 Future Work 137

8 Case-Based Learning of Recognition Strategies 145

8.1 Introduction 145

8.2 Learning Recognition Strategies 146

8.2.1 Case-based reasoning (CBR) 146

8.2.2 CBR in IU 148

8.2.3 Learning method 149

8.2.4 An Example 151

8.2.5 Implementation Issues and Performance Evaluation 154

8.3 Future Work 155

9 Learning Composite Visual Concepts 156

9.1 Introduction 156

9.2 General Idea 158

9.2.1 Example 159

9.2.2 Goals 159

9.3 Approach 160

9.3.1 Task 1 — Model-Based Interpretation of Perceptual Groups 162

9.3.2 Task 2 — Composite Structure Model Acquisition and Refinement . 163

9.3.3 Task 3 — Composite Structure Learning Subsystem 163

iv

9.4 Learning at the Intermediate-Level Vision: Previous Work 163

9.5 Explanation-Based Learning 165

9.6 EBL and Visual Concepts 166

9.6.1 Elements of the Learning Problem 166

9.7 Future Work 167

10 A Learning System for Consolidated Recognition and Motion Analysis 168

10.1 Introduction 168

10.2 Components of LITE-SEER 170

10.3 Experiments 172

10.4 Conclusions and Future Work 177

Bibliography 191

List of Figures

1.1 Multistrategy Learning-Based IU System 3

2.1 Segmentation quality surface 12

2.2 Adaptive image segmentation system 16

2.3 Representation of a knowledge structure used by the genetic learning system.
The image characteristics (image statistics and external variables), segmen-
tation parameters, and the image quality or fitness of the parameter set are
stored in each structure 17

2.4 Example of one complete cycle through the adaptive image segmentation
system 19

2.5 Illustration for the quality measures used in the adaptive image segmentation
system, (a)Edge-border coincidence, (b)Boundary consistency, (c)Pixel clas-
sification, (d)Object overlap. Object contrast is defined by using the symbols
shown in the center figure in (a) and the left most figure in (c) 41

2.6 Sample outdoor images used for adaptive segmentation experiments 42

2.7 Segmentation quality surfaces for Frame 1. (a)Edge-border Coincidence,
(b)Boundary Consistency, (c)Pixel Classification, (d)Object Overlap, (e)Object
Contrast, (f)Combined Segmentation Quality 43

2.8 Segmentation of Frame 1 and Frame 11 for the adaptive technique, default
parameters, and the traditional approach 44

2.9 Performance of the adaptive image segmentation system for the sequential ex-
periments. (a)Single day test results. (b)Double day test results. (c)Multiple
day test results 45

2.10 Coordinate axes for the volume representation in Fig. 10 46

VI

2.11 Volume representation (different views) of segmentation parameter search
space 47

2.12 Genetic algorithm crossover operation, (a) Scheme for doing 4-point crossover
with each chromosome containing four parameters, (b) A complete scenario
for one crossover operation 48

2.13 Performance comparison between default (+), initial seed (*), and final hill
climbing (o) results for frame 1 to 20 49

2.14 Segmentation performance comparison for frames 2 and 3: (a) Frame 2 using
default parameter set, (b) Frame 2 using parameter set generated by genetic
and hill climbing, (c) Frame 3 using default parameter set, (d) Frame 3 using
parameter set generated by genetic and hill climbing 50

2.15 Segmentation performance comparison for frames 7 and 16: (a) Frame 7 using
default parameter set, (b) Frame 7 using parameter set generated by genetic
and hill climbing, (c) Frame 16 using default parameter set, (d) Frame 16
using parameter set generated by genetic and hill climbing 51

3.1 A schematic of the learning-based approach to target indexing 55

3.2 Discrete symbol hidden Markov model 56

3.3 Extraction of salient structures 58

3.4 n-Grams of patterns typically encountered in ATR imagery 65

4.1 Typical forward looking infrared image that contains rich structure but struc-
tural components are difficult to extract from 74

4.2 Principal components of the HMM-based signal-to-symbol conversion ap-
proach for object indexing 76

4.3 Cosine (left) and sine (right) components of the Gabor filter response for one
out of four orientations (f>i and four different center frequencies u0 = 0.057T,
coi = O.ITT, u>2 = 0.27T, and W3 = 0.47T 81

4.4 Result of vector quantization applied to the Gabor decomposition shown in
Figure 4.3, using two different codebooks with 128 entries each (a-b). The
corresponding 128 32-dimensional codebook vectors (c-d), where each vector
is shown as a vertical column 82

4.5 Possible terminal points obtained at local maxima of the Gabor energy func-
tion (a). Gabor probe sequences (streaks) are formed by collecting encoded
Gabor probes along straight lines between terminal points (b) 83

vii

4.6 Using multiple HMMs for classifying an observation sequence, for the case
that the sequentialization and classification are decoupled 83

4.7 State transition diagram for the forward-type HMM used to represent Gabor
probe sequences. State transitions not shown in the diagram are assigned

zero probabilities 84

5.1 Conventional multi-level system for object recognition 87

5.2 Reinforcement learning-based system for object recognition 89

5.3 Main Steps of the Reinforcement Learning-Based Object Recognition Algo-

rithm 90

5.4 Bernoulli Quasilinear Unit 92

5.5 Team of Bernoulli units for learning segmentation parameters 94

5.6 Main Steps of the Proportional Training Algorithm 97

5.7 Twelve color images having simple geometric objects 100

5.8 Segmentation performance of the PHOENIX algorithm with learned param-

eters 101

5.9 Average confidence received over time during training 102

5.10 Trajectories for a particular run for each of the four parameters Hsmooth,
Maxmin, Splitmin, and Height during training on a particular image (Figure

5.7(g)) 103

5.11 Samples of segmentation performance of the PHOENIX algorithm with de-
fault parameters on indoor color images (Figures, 5.7(a), 5.7(b) and 5.7(c),

respectively) 104

5.12 Samples of outdoor color images with varying environmental conditions, (a):

Frame 2; (b): Frame 7 104

5.13 Polygonal approximation of the car used in the matching algorithm 105

5.14 Sequence of segmentations of the first frame during training 106

5.15 Segmentation performance of the PHOENIX algorithm on two testing images
(frames 2 and 4) with learned parameters obtained after training 107

5.16 Samples of segmentation performance of the PHOENIX algorithm with de-
fault parameters on the two outdoor color images shown in Figure 5.12. . . 107

5.17 Conceptual diagram of the Phoenix segmentation algorithm 108

vin

I
I
I

6.1 Conventional multi-level system for object recognition 113

6.2 Reinforcement learning-based multi-level system for object recognition. . . . 114

6.3 Main steps of the delayed reinforcement learning algorithm for parameter
adjustment for segmentation and feature extraction 116

6.4 Experimental results for the training phase of an outdoor image 117

6.5 Experimental results in the testing phase on an outdoor image, (a) unknown
image (b) segmentation with learned parameters (c) segmentation with de-
fault parameters 118

6.6 Experimental results in the testing phase on an indoor image, (a) unknown I
image (b) segmentation with learned parameters (c) segmentation with de- '
fault parameters 119

6.7 The Q(A)-learning algorithm used in our approach 122

7.1 Building up a member of the Background Model Bank. The initial uniformly
distributed self-organizing map (SOM) is trained first by using positive ex-
amples and Kohonen's algorithm. After a pre-selected number of iterations,
a disorder index is computed. If the map has reached a certain degree of
ordering, the algorithm/data selection switch is turned to the near-miss in-
jection algorithm which uses negative examples to refine the trained SOM.
To allow a BMB member to memorize its valuable past knowledges while
it gains new experiences, the size of the SOM needs to be extensible. An
incremental SOM algorithm allows us to achieve this 126

7.2 Synthetic data for testing SOM algorithm, (a) Positive examples overlapped
with negative examples, (b) Positive examples, (c) Negative examples. . . . 130

7.3 Trained SOM by applying Kohonen's algorithm for 1000 epochs, (a) SOM
overlapped with positive examples, (b) SOM overlapped with negative ex-
amples 131

7.4 Distribution of 4 — Neighber average distance of (a) all positive examples.
(b) all negative examples 132

7.5 Trained SOM by applying supervised SOM algorithm for 1000 epochs, (a)
SOM overlapped with positive examples, (b) SOM overlapped with negative
examples 133

7.6 Distribution of 4 - Neighber average distance of (a) all positive examples.
(b) all negative examples 134

I

I
I
I
I
I

IX

7.7 Examples of training images 138

7.8 (a) Feature distribution for absolute LSGE (b) Feature distribution for rela-

tive LSGE 139

7.9 SOM constructed using kohonen's algorithm and absolute LSGE feature data,
(a) SOM overlapped with positive examples (b) SOM overlapped with nega-
tive examples (c) distribution of 4 - Neighber distance of positive examples.
(d) distribution of 4 — Neighber distance of negative examples 140

7.10 SOM constructed using kohonen's algorithm and relative LSGE feature data.
(a) SOM overlapped with positive examples (b) SOM overlapped with nega-
tive examples (c) distribution of 4 - Neighber distance of positive examples.
(d) distribution of 4 - Neighber distance of negative examples 141

7.11 SOM constructed using supervised SOM algorithm and absolute LSGE fea-
ture data, (a) SOM overlapped with positive examples (b) SOM overlapped
with negative examples (c) distribution of 4 — Neighber distance of positive
examples, (d) distribution of 4 - Neighber distance of negative examples. . 142

7.12 SOM constructed using supervised SOM algorithm and relative LSGE fea-
ture data, (a) SOM overlapped with positive examples (b) SOM overlapped
with negative examples (c) distribution of 4 - Neighber distance of positive
examples, (d) distribution of 4 - Neighber distance of negative examples. . 143

7.13 Confusion matrix of the detection experiment, (a) before the reinforcement
learning of the validity scopes, (b) after the reinforcement learning of the
validity scopes 144

8.1 A CBR framework for learning recognition strategies 147

8.2 Representation of a case in the photointerpretation context 149

8.3 High-level object recognition based on CBR 152

8.4 High-level object recognition based on CBR (continued) 153

9.1 Domain-specific, composite visual concepts 160

9.2 Learning intermediate visual concepts using Explanation-Based Learning (EBL) 161

10.1 Overview of LITE-SEER 169

10.2 Algorithmic components of LITE-SEER 171

10.3 Is* and 2nd frames of a sixteen frame sequence 172

10.4 lsi and 3rd frames of a twenty frame sequence 173

10.5 The subimage of the wedge of the indoor sequence is shown on the left and
the dense depth map obtained from motion analysis is shown on the right
hand picture 174

10.6 Cones and can from the outdoor sequence are shown on the left and their
dense depth maps obtained purely from motion analysis are shown in the
corresponding right hand pictures 175

10.7 Segmentation of the "wedge" based on intensity for the first image of the
indoor sequence. The right picture is an histogram which illustrates the
segmentation. The shading of the histogram corresponds to the shading
on the segmented image. For example, the "wedge" has an intensity value
between 76 and 84 and is shown in in black 176

10.8 Segmentation of cans and cones based on intensity for the first image of the
outdoor sequence. The cones have intensity greater than 148; the can has
intensity less than 53; the intensity of the ground varies between 54 and 147. 177

10.9 Depth segmentation of the "wedge" from genetic learning and motion analysis.178

10.10Depth segmentation of cans and cones from the depth maps obtained via
genetic learning and motion analysis between frames 1 and 3 180

lO.HRecognition and surface reconstruction of the "wedge." The middle picture
is the smoothed depth map and the right picture is the reconstructed surface. 181

10.12Recognition and surface reconstruction of the cones. The middle picture is
the smoothed depth map and the right picture is the reconstructed surface. 182

XI

List of Tables

2.1 PHOENIX parameters used for adaptive image segmentation 22

2.2 Number of segmentations under varying population size and crossover rate.
The threshold for minimum acceptable segmentation quality was set at 95% 32

2.3 Number of segmentations under varying population size and selection of
crossover points 32

2.4 Number of segmentations under varying threshold 33

2.5 Performance comparison between pure GA and GA with hill climbing (crossover
points = 4, crossover rate = 80%, mutation rate « 1%) 36

5.1 Sample ranges for selected PHOENIX parameters 98

5.2 Changes of parameter values during training 105

10.1 The ten best solutions for thresholds with genetic learning for depth maps.
t-1, t-2 and t-3 are the thresholds 179

Xll

Chapter 1

Summary

Current Image Understanding (IU) algorithms and systems lack the flexibility and robust-
ness to successfully handle complex real-world situations. Robust 3-D object recognition, in
real-world applications operating under changing environmental conditions, remains one of
the important but elusive goals of IU research. We believe that an innovative combination
of IU and Machine Learning (ML) techniques will lead to the advancement of the IU field
in general. IU itself has come to a certain state of maturity, in that we have today a good
understanding of the essential components, their functionality, and the architectural issues
involved. IU processes are commonly separated into three hierarchical layers, called the
low, intermediate, and high level. At each of these levels, ML techniques can be employed
selectively to improve the overall recognition performance: by introducing adaptation of
task parameters; maintenance of internal representations and hypotheses pertaining to the
observed reality; and learning new concepts and recognition strategies. The incorporation
of learning into IU algorithms and systems will results in adaptation and robustness capa-
bility since learning provides automatic knowledge acquisition and continuous improvement

of recognition system performance.

Current computational learning taxonomy identifies five major ML paradigms, based
upon representation schemes and learning methods employed:

• Inductive Learning uses experience to generate a conjecture and uses further experi-
ence to confirm or refute it. It is useful to synthesize new knowledge.

• Analytical Learning (e.g., Explanation-based Learning) uses observations to generate
conjectures and attempts to confirm these as logical consequences of the existing
knowledge. It is useful to improve existing knowledge.

I

• Case-Based Reasoning uses memory of relevant "past" cases to interpret or solve a new
problem case. It is useful when cases similar to its current situation are encountered.
It can help to avoid past mistakes.

• Genetic Algorithms are a family of adaptive search methods that are modeled after
genetic evolution process with the advantage that the search process is independent
of the problem domain.

• Connectionist Learning is biologically inspired and uses parallel distributed networks
of computational nodes with the advantage that the network adaptation is indepen-
dent of the problem domain.

The general approach for selecting a computational learning technique for a given ap-
plication involves the following steps [22]: (1) understand the task well enough to select
appropriate functions for evaluating the performance of the learning system; (2) abstract
and define a learning problem from the task problem; (3) select a particular computational
learning paradigm for the abstracted learning problem. In practice, these three steps are
not completely separable. We have found, however, that this general process is valuable
for uncovering non-obvious — but compelling — applications of machine learning in the
domain of object recognition.

1.1 Multistrategy Learning in Image Understanding

The application of ML to the IU domain is more demanding than most conventional learning
applications in AI. It is caused by (a) the enormous amount of incoming data to be processed,
and (b) the variety of processes and representations encountered in Image Understanding.
Consequently, the selection and adaptation of existing learning techniques require careful
attention. Due to the variety of tasks involved, we cannot expect a single learning technique
to solve the entire learning problem in IU, but different learning strategies must be optimally
combined to achieve the desired results.

The Multi strategy Learning-Based IU System (Figure 1.1) selectively applies machine
learning techniques at multiple levels to achieve robust recognition performance.

The system uses Genetic Algorithms (GAs) to optimize multi-sensor image segmentation
at the low level. At the intermediate level, Explanation-Based Learning (EBL) is employed
to learn new visual concepts for improving indexing and matching. At the high-level, Case-
Based Reasoning (CBR) is used to dynamically adapt recognition strategies, and acquiring
and maintaining information about the environment. At each level, appropriate evaluation
criteria are employed to monitor the performance and self-improvement of the system.

Recognition Results

Runtime System

High-Level
Object Recognition'

Intermediate Level
Feature Extraction ■

and Grouping

a
Low-Level

Image Segmentation

^TiT^F

Multi-Strategy Learning-Based
Image Understanding System

Learning System

Case-Based Reasoning
for Learning
Recognition Strategies

£ Explanation-Based Learning
for Learning
New Visual Concepts

A

JSL

Genetic Algorithms
for Adaptive Multi-Sensor
Image Segmentation

\sggJ Multi-Sensor Input Data

Figure 1.1: Multistrategy Learning-Based IU System

1.2 Learning at the Low Level: Adaptive Multi-Sensor
Image Segmentation

Image segmentation is an extremely important and difficult low-level task. All subsequent
interpretation tasks including object detection, feature extraction, object recognition, and
classification rely heavily on the quality of the segmentation process. The difficulty arises
when the segmentation performance needs to be adapted to the changes in image quality
that is affected by variations in environmental conditions, imaging devices, time of day,
etc. Despite the large number of segmentation techniques presently available [39, 50] no
general methods have been found that perform adequately across a diverse set of imagery,
i.e., no segmentation algorithm can automatically generate an "ideal" segmentation result
in one pass (or in an open loop manner) over a range of scenarios encountered in practical
unstructured applications. Any technique, no matter how "sophisticated" it may be, will

eventually yield poor performance if it cannot adapt to the variations in unstructured scenes.

Genetic Algorithms (GAs) are efficient in locating an approximate global maximum in a
search space and therefore show great promise in solving the parameter selection problem
encountered in the image segmentation task. They use simple recombinations of existing
high quality search points together with a method of measuring current performance. Our
initial research has demonstrated that adaptive image segmentation can provide over 30%
improvement in performance over non-adaptive techniques[20].

The objectives of our genetics-based adaptive image segmentation system working under
varying scenarios and/or environmental conditions are (a) learning the optimal parameter
settings for adaptive image segmentation, (b) learning the optimal selection of image seg-
mentation algorithms, for multi-scenarios, and (c) learning the optimal sensor combinations
and cross-sensor validation of segmentation results.

1.3 Learning at the Intermediate Level: Learning
Composite Visual Concepts

Model-based object recognition methods require image data to be matched with models
in the system database. Typically, the image data consists of unordered sets of simple
geometric primitives like lines, arcs, and corners. It is well known that the computational
complexity of the matching process is exponential in the number of image features for a
given object model. Grouping has been shown to be an effective means for reducing the
search complexity in structural matching [63]. However, most current grouping techniques
use only perceptually motivated, low-order geometrical relationships, (such as collinearity,
cotermination, parallelism, proximity, etc.), but no object model information, to assemble
simple features of the same type. As a result, the full potential of grouping for solving the
indexing problem has not been realized.

The key features of our approach at the intermediate level are:

1. The use of a two-stage grouping strategy that combines (a) domain-independent per-
ceptual grouping and (b) model-based grouping with a database of high-order struc-
tural arrangements (intermediate visual concepts).

2. The use of Explanation-Based Learning to automatically infer the most useful inter-
mediate visual concepts from real examples.

3. The introduction of multiple types of primitive features ("polymorphic" features) to
participate in feature groupings instead of a single feature type, which will lead to
increased robustness (by providing redundancy) and indexing power.

1.4 Learning at the High Level: Learning Recognition
Strategies in Dynamic Environments

Automatic acquisition of recognition strategies in dynamic situations has been a bottleneck
in the development of automated IU systems applied to real-world problems. The problem
occurs while matching a stored object model to an input instance of that model and is
attributed to the initially unknown pose of object and the varying environmental conditions.

During the process of image/scene understanding a human relies heavily on the memory
of past cases and experience. For this purpose, we use the Case-Based Reasoning (CBR)
paradigm in which "past" experiences are stored in memory as cases and are used to solve
a new problem case. Similar cases can be combined to create problem solving shortcuts or
to anticipate problems in new situations. The set of cases is prioritized and a strategy for
the current problem is generated and executed. Various combinations of cases are created
until a successful solution is reached.

The key features of our high-level approach are:

1. Cases are represented in a hierarchical manner and include task related knowledge,
context, and recognition strategies. Explanation-Based Learning (EBL) is also used
for generalizing and refining the individual cases before they are stored in the case
memory.

2. Visual concepts instantiated at the intermediate level are used for indexing and match-
ing, in conjunction with the evaluation of recognition performance.

3. Similarities and differences are used to match new situations to existing cases.

1.5 Interaction and Feedback between Multiple Levels

Current computer vision systems for model-based object recognition are open-loop systems
that typically use image segmentation followed by object recognition algorithms. As a
result of the open-loop nature, these systems are not robust for most real-world problems.
With the goal of achieving robust recognition performance by using closed-loop systems, the
question is how we can control feedback in a systematic manner from high-level recognition
to low-level image segmentation. This has been a long-standing problem in the field of
computer vision. Our approach for closed-loop model-based object recognition determines
its criteria for image segmentation or feature extraction by using the recognition algorithm
as part of the evaluation function. The confidence level of the matching algorithm serves

as a reinforcement signal to generate the new values for segmentation or feature extraction
parameters. This results in the performance improvement of the recognition system and
generation of recognition strategies automatically.

1.6 Other Research in This Area

The incorporation of machine learning techniques into IU has been limited to isolated
problems but there have been no approaches to integrate learning at multiple levels [22].

Learning in Image Understanding — Recent learning-based approaches to model-
based object recognition have primarily focused on the connectionist framework or have
emphasized object model acquisition. However, in all of these past approaches, the problem
of object recognition has been treated as self-contained, independent of any lower-level
feature extraction problems that may be encountered in reality. In contrast, our proposed
approach treats the object recognition problem as a multi-level (low, intermediate, and high
level) vision task.

Learning in Low-Level Vision — Genetic algorithms have been used for learning
algorithm parameters for adaptive segmentation of color and textured images as well as
the adaptive extraction of parametric image curves. Approaches using artificial neural nets
(ANN) have been developed for adaptive image segmentation using perceptually motivated
features. There has been some work in automatic sensor modeling, however, the problem
of sensor, algorithm/parameter selection has not been addressed.

Learning in Intermediate-Level Vision — Structural feature detection is usually
based on a fixed set of visual primitives for which efficient detection algorithms are avail-
able. The incorporation of features of varying complexity has been addressed using only
non-adaptive, domain-independent grouping criteria. The problem of automatically form-
ing intermediate-level perceptual shape concepts has found considerable attention in the
psychological field recently, and interesting computational theories have emerged which,
however, have not been implemented in IU architectures.

Learning in High-Level Vision — Learning by analogy was the first approach to in-
corporate a learning capability into a computer vision program, followed by learning class
descriptions from examples. An inductive learning system was developed that creates pro-
duction rules for recognizing isolated 2-D objects. ANN-based schemes have been used

6

for recognition based on multivariate approximation theory. A multistrategy learning tech-
nique that incorporates Explanation-Based Learning and Structured Conceptual Clustering
techniques has been used to automatically acquire and refine 2-D aircraft models.

Evaluation of Vision Algorithms — Very little work has been done to date on sys-
tematic evaluation of vision algorithm and system performance. Most current evaluation
methods are selected ad hoc, performed off-line, and not integrated into IU systems ar-
chitectures. Statistical approaches, such as the surface response method have been used
for algorithm evaluation in conjunction with parameter selection. No practical IU systems
exist today that provide performance evaluation of the overall system by making use of the
inherent performance evaluation of individual learning components.

1.7 Accomplishments

During the reporting period, we have made the following achievements:

(a) Genetic Algorithm for Adaptive Image Segmentation (Chapter 2): We find that our
genetic learning-based adaptive image segmentation approach scales with respect to
the number of parameters and the size of the search space. Genetic learning com-
bined with a hill-climbing technique is able to adaptively select good segmentation
parameters and generate the best result using the least number of segmentations. By
designing the experiments to evaluate the scalability of our approach, we find that
when the size of the search space for four Phoenix parameters is 1 million, we search
about 0.5% of the search space. This needs to be compared to the situation when we
adapt two Phoenix parameters, the size of search space is 1024 and 2.4% of the search
space is examined to find the global maximum.

(b) Learnable Structural Models for Target Indexing (Chapters 3 and 4): We have devel-
oped an approach to indexing that is based on utilization of weak structural models,
direct table look-up, and inexact sequence matching. The weak structural models
are defined as hidden Markov models (HMMs) which together with inexact analysis
are appropriate for handling uncertainties and distortion in the imaging process; the
table look up method utilizes invariant features similar to the existing approaches to
indexing. The HMMs, the look-up table, and the database for sequence matching are
all learned from training examples.

Using Gabor wavelet preprocessing we have developed techniques for quantization of
local image measurements, learned HMM parameters from real examples and devel-
oped techniques for sequentialization of observations.

(c) Reinforcement Learning for Closed-Loop Object Recognition (Chapter 5 and 6): Using

the Phoenix algorithm for the segmentation of color images, a clustering-based algo-
rithm for the recognition of occluded 2-D objects and a team of learning automata

algorithm, we show that in simple real scenes with varying environmental conditions
and camera motion, effective low-level image analysis can be performed. We show the
performance improvement of an IU system combined with learning over an IU system
with no learning.

We have also developed a closed-loop object recognition system based on delayed
reinforcement learning methods, where we learn segmentation and feature extraction
parameters. In the future we plan to compare reinforcement learning algoithms based

on team of learning automata and delayed reinforcement.

(d) Context Reinforced Background Modeling (Chapter 7): We have developed a tech-
nique that uses reinforcement learning to relate background models with the con-
text for automatic target detection. Background models are represented by a novel
self-organizing approach that uses both positive and negative examples to improve
classification performance.

(e) Case-Based Learning of Recognition Strategies (Chapter 8): We have developed an
approach to model-based object recognition under real-world conditions using Case-
Based Reasoning (CBR) paradigm. This paradigm is analogical to human reasoning
process which relies heavily on the memory of past cases and experience. Using CBR,
successful recognition strategies are stored in memory as cases and are used to solve
a new problem. Various combinations of cases are created until a successful solution
is reached for the new situation.

(f) Learning Composite Visual Concepts (Chapter 9): We have specified the goals, prereq-
uisites, and a preliminary formalism for "inventing" significant structural groupings
from multi-class primitives. The approach is based on discovering groupings that have
both a simple description and are distinctive for indexing into the model base, using
a variant of explanation-based learning.

(g) Consolidated Recognition and Motion Analysis (Chapter 10): Using two sequences of
outdoor and indoor color images, we show preliminary results for performance im-
provement in recognition by the interaction of color and dense range images obtained
from motion analysis. The objects in the sequences are quite simple (traffic cones,
cans, etc.).

Other accomplishments include the publication of a book on "Genetic Learning for Adap-
tive Image Segmentation," publication of a chapter in a book, submission of two papers to a

I

special issue of Proceedings of the IEEE on "Signals and Symbols," and papers to IJCAP95
ICCV'95 and IUW'94.

Chapter 2

Genetic Algorithm for Adaptive
Image Segmentation

2.1 Introduction

Image segmentation is an old and difficult problem. It refers to the grouping of parts of an
image that have "similar" image characteristics. All subsequent interpretation tasks includ-
ing object detection, feature extraction, object recognition, and classification rely heavily
on the quality of the segmentation process. The difficulty arises when the segmentation
performance needs to be adapted to the changes in image quality. Image quality is affected
by variations in environmental conditions, imaging devices, time of day, etc. Despite the
large number of segmentation techniques presently available [39, 50], no general methods
have been found that perform adequately across a diverse set of imagery, i.e., no segmen-
tation algorithm can automatically generate an "ideal" segmentation result in one pass (or
in an open loop manner) over a range of scenarios encountered in practical applications.
Any technique, no matter how "sophisticated" it may be, will eventually yield poor perfor-
mance if it cannot adapt to the variations in real-world scenes. The following are the key
characteristics of the image segmentation problem:

• When presented with a new image, selecting the appropriate set of algorithm param-
eters is the key to effectively segmenting the image. Most segmentation techniques
contain numerous control parameters which must be adjusted to obtain optimal
performance, i.e., they are to be learned. The size of the parameter search space in
these approaches can be prohibitively large, unless it is traversed in a highly efficient
manner.

10

• The parameters within most segmentation algorithms typically interact in a complex,
non-linear fashion, which makes it difficult or impossible to model the parameters'
behavior in an algorithmic or rule-based fashion.

• The variations between images cause changes in the segmentation results, the objective
function that represents segmentation quality varies from image to image. The search
technique used to optimize the objective function must be able to adapt to these
variations.

• The definition of the objective function itself can be a subject of debate because there
are no universally accepted measures of image segmentation quality.

Hence, a need exists to apply an adaptive technique that can efficiently search the com-
plex space of plausible parameter combinations and locate the values which yield optimal
results. The approach should not be dependent on the particular application domain nor
should it have to rely on detailed knowledge pertinent to the selected segmentation algo-
rithm. Genetic algorithms (GA), which are designed to efficiently locate an approximate
global maximum in a search space, have the attributes described above and show great
promise in solving the parameter selection problem encountered in the image segmentation
task.

The next section of this Chapter argues about the genetic algorithms as the appropriate
optimization technique for the segmentation problem. Section 3 describes the adaptive im-
age segmentation algorithm. We explain the choice of a particular segmentation algorithm
as well as the manner in which segmentation quality is measured. Section 4 presents the
experimental results on a sequence of outdoor images. We compare adaptive image seg-
mentation results with other non-adaptive segmentation techniques. Section 5 presents the
adaptive segmentation results when we scale the number of parameters in a scheme that
uses genetic algorithms and hill climbing. Finally, Section 6 provides the conclusions of this
Chapter.

2.2 Image Segmentation as an Optimization Problem

Fig. 2.1 provides an example of an objective function that is typical for the image segmenta-
tion process. The figure depicts an application in which only two segmentation parameters
(maxmin and absscore) are being varied, and the corresponding segmentation quality ob-
tained for any pair of algorithm parameters. Because the algorithm parameters interact in
complex ways, the objective function is multimodal and presents problems for many com-
monly used optimization techniques. Further, since the surface is derived from an analysis

11

I

a

Figure 2.1: Segmentation quality surface.

of real-world imagery, it may be discontinuous, may contain significant amounts of noise,
and cannot be described in closed form. The derivation of this surface will be described in
Section 3, where we discuss the segmentation evaluation process.

The conclusion drawn from an analysis of various segmentation quality surfaces that we
have examined is that we must utilize a highly effective search strategy which can withstand
the breadth of performance requirements necessary for the image segmentation task.

2.2.1 Parameter Search Techniques

Various commonly used search techniques for functional optimization exist. The drawbacks
to each of these methodologies are as follows:

• Exhaustive Techniques (Random walk, depth first, breadth first, enumerative) — Able
to locate global maximum but computationally prohibitive because of the size of the
search space.

• Calculus-Based Techniques (Gradient methods, solving systems of equations) — No
closed form mathematical representation of the objective function is available. Dis-
continuities and multi-modal complexities are present in the objective function.

• Partial Knowledge Techniques (Hill climbing, beam search, best first, branch and
bound, dynamic programming, A*) — Hill climbing is plagued by the foothill, plateau,
and ridge problems. Beam, best first, and A* search techniques have no available

12

measure of goal distance. Branch and bound requires too many search points while
dynamic programming suffers from the curse of dimensionality [110].

• Knowledge-Based Techniques (Production rule systems, heuristic methods) — These
systems have a limited domain of rule applicability, tend to be brittle [53], and are
usually difficult to formulate. Further, the visual knowledge required by these systems
may not be representable in knowledge-based formats.

There are other search techniques such as genetic algorithms, simulated annealing and
hybrid method [16]. To address the characteristic of image segmentation problem as dis-
cussed earlier, we have selected genetic algorithms for adaptive image segmentation.

2.2.2 Genetic algorithms for Image Segmentation

Genetic algorithms were pioneered at the University of Michigan by John Holland and
his associates [30, 43, 52]. The term genetic algorithm is derived from the fact that its
operations are loosely based on the mechanics of genetic adaptation in biological systems.
Genetic algorithms can be briefly characterized by three main concepts: a Darwinian notion
of fitness or strength which determines an individual's likelihood of affecting future gener-
ations through reproduction; a reproduction operation which produces new individuals by
combining selected members of the existing population; and genetic operators which create
new offspring based on the structure of their parents.

A genetic algorithm maintains a constant-sized population of candidate solutions, known
as individuals. The initial seed population from which the genetic process begins can be
chosen randomly or on the basis of heuristics, if available for a given application. At
each iteration, known as a generation, each individual is evaluated and recombined with
others on the basis of its overall quality or fitness. The expected number of times an
individual is selected for recombination is proportional to its fitness relative to the rest of
the population. Intuitively, the high strength individuals selected for reproduction can be
viewed as providers of "building blocks" from which new, higher strength offspring can be
constructed. An abstract procedure of a simple genetic algorithm is given below, where
P(t) is a population of candidate solutions to a given problem at generation t.

t = 0;
initialize P(t);
evaluate P(t);
while not termination condition>

begin
t = t + l;

13

end;

reproduce P(t) from P(t-l)
recombine P(t);
evaluate P(t);

New individuals are created using two main genetic recombination operators known as
crossover and mutation. Crossover operates by selecting a random location in the genetic
string of the parents (crossover point) and concatenating the initial segment of one parent
with the final segment of the second parent to create a new child. A second child is simul-
taneously generated using the remaining segments of the two parents. The string segments
provided by each parent are the building blocks of the genetic algorithm. Mutation provides
for occasional disturbances in the crossover operation by inverting one or more genetic ele-
ments during reproduction. This operation insures diversity in the genetic strings over long
periods of time and prevents stagnation in the convergence of the optimization technique.

The individuals in the population are typically represented using a binary notation to
promote efficiency and application independence of the genetic operations. Holland [52]
provides evidence that a binary coding of the genetic information may be the optimal
representation. Other characteristics of the genetic operators remain implementation de-
pendent, such as whether both of the new structures obtained from crossover are retained,
whether the parents themselves survive, and which other knowledge structures are replaced
if the population size is to remain constant. In addition, issues such as the size of the
population, crossover rate, mutation rate, generation gap, and selection strategy have been
shown to affect the efficiency with which a genetic algorithm operates [46]

The inherent power of a genetic algorithm lies in its ability to exploit, in a highly efficient
manner, information about a large number of individuals. By allocating more reproductive
occurrences to above average individuals, the overall net affect is an upward shift in the
population's average fitness. Since the overall average moves upward over time, the genetic
algorithm is a "global force" which shifts attention to productive regions (groups of highly
fit individuals) in the search space. However, since the population is distributed throughout
the search space, genetic algorithms effectively minimize the problem of converging to local
maxima.

To date, genetic algorithms have been applied to a wide diversity of problems. They have
been used in combinatorial optimization [55], gas pipeline operations [42, 45] and machine
learning[53]. With regards to computer vision applications, Mandava et. al [64] have used
genetic algorithms for image registration, Gillies [41], and Roth and Levine [91] for feature
extraction, and Ravichandran [85] for object recognition.

14

I

2.3 Genetic Learning for Adaptive Image Segmentation

Genetic algorithms can be used in three different ways to provide an adaptive behavior
within a computer vision system. The simplest approach is to allow the genetic system to
modify a set of control parameters that affect the output of an existing computer vision
program. By monitoring the quality of the resulting program output, the genetic system can
dynamically change the parameters to achieve the best performance. A second approach
allows the genetic component to modify the complex data structures within an algorithm
or production rule system for a computer vision application. By modifying the control
mechanism or agenda in an algorithm or the organization of data frames in a rule-based
system, the genetic algorithm can bring about changes in the system's behavior. Finally,
the most complex implementation of an adaptive computer vision system allows the genetic
algorithm to actually make changes in the executable code of a program. In most of these
cases, the adaptation involves changing the condition/action statements of the rules in a
production system. Since almost every image segmentation algorithm contains parameters
that are used to control the segmentation results, we have adopted the first strategy listed
above.

The block diagram of our approach to adaptive image segmentation is shown in Fig. 2.2.
After acquiring an input image, the system analyzes the image characteristics and passes
this information, in conjunction with the observed external variables, to the genetic learning
component. Using this data, the genetic learning system selects an appropriate parameter
combination, which is passed to the image segmentation process. After the image has been
segmented, the results are evaluated. If the quality of segmentation ("fitness") is acceptable,
and update to long-term population is made. If the quality is unacceptable, the process of
new parameter selection, segmentation and evaluation continues until a segmentation result
of acceptable quality is produced, or the terminate criteria are satisfied.

2.3.1 Image Characteristics

A set of characteristics of the image is obtained by computing specific properties of the
digital image itself as well as by observing the environmental conditions in which the im-
age was acquired. Each type of information encapsulates knowledge that can be used to
determine a set of appropriate starting points for the parameter adaptation process. For
the experiments described here, we compute twelve first order properties for each color
component (red, green, and blue) of the image. These features include mean, variance,
skewness, kurtosis, energy, entropy, x intensity centroid, y intensity centroid, maximum
peak height, maximum peak location, interval set score, and interval set size [60, 101]. The
last two features measure histogram properties used directly by the PHOENIX segmenta-

15

i

Input
Image Image

Analysis

Image
Statistics

External Variables
(Time of day, time of year,
rain, snow, haze, cloud, etc)

Image
Distance
Measure

I

Long-Term
Population Update

Long-Term
Population

Seed
Population

New
Structures

Genetic
Adaptive
System

Control
Parameters I

Short-Term
Population

Image
Segmentation

"Fitness"

Segmented
Images

Segmented
Image
Evaluation

Figure 2.2: Adaptive image segmentation system.

tion algorithm and provide useful image similarity information. Since we use a gray scale
image to compute edge information and object contrast during the evaluation process, we
also compute the twelve features for the Y (luminance component) image as well. Combin-
ing the image characteristic data from these four components yields a list of 48 elements.
In addition, we utilize two external variables, time of day and weather conditions, in the
outdoor experiments to characterize each image. The external variables are represented
symbolically in the list structure (e.g., time = 9am, 10am, etc. and weather conditions =
sunny, cloudy, hazy, etc). The distances between these values are computed symbolically
when measuring image similarity. The two external variables are added to the list to create
an image characteristic list of 50 elements for the outdoor experiments. The representation
of an individual knowledge structure of the genetic population is shown in Fig. 2.3.

2.3.2 Genetic Learning System

Once the image statistics and external variables have been obtained, the genetic learning
component uses this information to select an initial set of segmentation algorithm param-

16

LonR-Term Population

I I II I I

MINI
*

Fitness Image Statistics External Varlablei Sp|""I!!'°,n

0.75

W

134 2007 180 10 im

[+1

Parameters

Sumy 17

ci+; A>

Figure 2.3: Representation of a knowledge structure used by the genetic learning system. The
image characteristics (image statistics and external variables), segmentation parameters, and the
image quality or fitness of the parameter set are stored in each structure.

eters. A knowledge-based system is used to represent the image characteristics and the
associated segmentation parameters. The image statistics and external variables shown in
Fig. 2.3 form the condition portion of the knowledge structure, C\ through CI+J, while
the segmentation parameters indicate the actions, A\ through AN, of the knowledge struc-
ture. The fitness, W, which ranges in value from 0.0 to 1.0, measures the quality of the
segmentation parameter set. Note that only the fitness value and the action portion of the
knowledge structure are subject to genetic adaptation; the conditions remain fixed for the

life of the knowledge structure.

When a new image is provided to the genetic learning system, the process begins by
comparing the image characteristics of the new image (Fig. 2.2) with the knowledge struc-
tures in the long-term population (also called global population, Fig. 2.3). The long-term
population represents the accumulated knowledge of the adaptive system obtained through
previous segmentation experience. The algorithm computes a ranked list of individuals in
the population that have characteristics similar to the new image. Ranking is based on the
normalized Euclidean distance between the image characteristic values as well as the fitness
of the knowledge structure. The normalized distance between images A and B is computed

using

C'iA - CiMIN CiB — CiMIN
distj^ß

I+J

Y.
i=l

Wi
Ci iMAX C MIN Ci MAX -c iMIN

where CiMIN is the minimum value of the ith numeric or symbolic feature in the global
population, C{MAX

is the maximum value of the ith feature in the global population, and
Wi is the weight attached to the ith feature. For the results presented in this paper, the

17

i

ranges are normalized and the Wi values have been set to 1 so that each feature contributes
equally to the distance calculation.

When the distance between an image and several members of the global population are
the same (e.g., if a previous image contributed multiple individuals to the global population),
fitness values are used to select the best individuals from the population. Temporary copies
of the highest ranked individuals are used to create the initial or seed population for the
new image.

Once the initial or seed population is available, the genetic adaptation cycle begins. (The
seed population is the same as the initial population, when the genetic algorithm begins its
search operation.) The segmentation parameter set in each member of the seed population
is used to process the image. The quality of the segmented results for each parameter
set is then evaluated. If the maximum segmentation quality for the current population
is above a predefined threshold of acceptance or other stopping criteria are satisfied, the
cycle terminates and the high quality members of the current image population are used
to update the global population. Less fit members of the global population are discarded
in favor of higher strength individuals obtained from processing the current image. In this
manner, the system is able to extend the knowledge of the adaptive segmentation system
by incorporating new experience into the knowledge database.

Alternatively, if after segmenting and evaluating the performance of the current or local
(also called short-term) population, the system has not achieved acceptable segmentation
quality and any other termination criteria are not satisfied, the genetic recombination op-
erators are applied to the members of the current population. The crossover and mutation
operators are applied to the high strength individuals in the population, creating a new
set of offspring which will theoretically yield better performance [52]. The new population
is supplied back to the image segmentation process, where the cycle begins again. Each
pass through the loop (segmentation-evaluation-recombination) is known as a generation.
The cycle shown continues until the maximum fitness achieved at the end of a generation
exceeds some threshold or other termination criteria are satisfied, as described earlier. The
global population is updated and the system is then ready to process a new image.

Fig. 2.4 provides a simple example of the adaptive segmentation system. The image
characteristics extracted from the image are used in this example as the new image data.
A subset of the complete image characteristics is used here for the sake of simplicity. The
new image characteristics are compared with the individuals in the global population to
obtain the seed population. The normalized Euclidean distance is computed from the new
image to every member of the global population and this distance is used in conjunction
with the fitness of each individual in the population. In this example, we have limited
the seed population to 3 individuals. In the experiments described in Section 4, the seed

18

population for each image consists of 10 knowledge structures while the global population
holds 100 knowledge structures in order to maintain a diverse collection of segmentation
experience. The matching process identifies the three members of the global population
with similar image characteristics and a high degree of fitness. A copy of these individuals
is then extracted to create the seed population shown in Fig. fig:gacycle.

Image Characteristics

109 1641 192 9 tm Sunny
Fitness Segmentation

Parameters

Seed Population

Update Long-Term
Population

0.79 S09 1641 192 9am Sunny

0.94 17 2 9

0.80 14 3 1

0.72 19 5 11

Long-Term Population

0.94 no 1628 197 10 am Sunny 17 2 9

• • • •

0.80 105 1591 193 8 am Sunny 14 3 7

0.72 107 1669 188 9am Hazy 19 5 11

• *

Image Segmentation
& Evaluation o

0.48 17 2 9

0.54 14 3 7

0.30 19 5 11

Genetic Reproduction
& Recombination O

IS 3 11

13 2 5

19 5 3

Image Segmentation
& Evaluation ^>

r€ 0.79 18 3 11

0.53 13 2 5

0.21 19 5 3

Create New
Structures

Figure 2.4: Example of one complete cycle through the adaptive image segmentation system.

After the seed population is obtained, we must establish the fitness of each individual by
processing the new image with the associated segmentation parameters. Thus, we perform
the image segmentation and evaluation steps to derive the new fitness values shown in
the second step of Fig. 2.4. Assuming a threshold fitness value of 0.70, none of the fitness
values obtained from the initial population (0.48, 0.54, and 0.30) are acceptable. The current
population is now passed through the genetic recombination step to generate a set of new

19

individuals. In this example, the first two members of the population are combined using
the crossover operator while the third member is modified using the mutation operator.

The newly created population must be passed through the segmentation and evaluation
stages once more to determine the fitness of each individual. The fitness values of the
new population are shown in Fig. 2.4. Since the fitness of the first individual (0.79)
exceeds the threshold value (0.70), the adaptive cycle for this image is terminated. A
new knowledge structure is created for the current image by inserting the appropriate
image characteristics and storing the new parameter settings and their associated fitness.
This knowledge structure is then inserted into the global population, replacing the least
fit member. Had any other members of the new image's population been greater than the
threshold, they too would have been placed into the global population.

2.3.3 Segmentation Algorithm

Since we are working with color imagery in our experiments, we have selected the PHOENIX
segmentation algorithm developed at Carnegie-Mellon University and SRI International [60,
73, 101]. The PHOENIX algorithm is a recursive region splitting technique. An input image
typically has red, green, and blue image planes, although monochrome images, texture
planes, and other pixel-oriented data may also be used. Each of the data planes is called a
feature or feature plane. The algorithm recursively splits nonuniform regions in the image
into smaller subregions on the basis of a peak/valley analysis of the histograms of the red,
green, and blue image components simultaneously. Segmentation begins with the entire
image, considered to be a single region, based on histogram and spatial analyses. If the
initial segmentation fails, the program terminates; otherwise, the program fetches each of
the new regions in turn and attempts to segment them. This process terminates when
the recursive segmentation reaches a predefined depth, or when all the regions have been
segmented as finely as various user-specified parameters permit.

PHOENIX contains seventeen different control parameters [60] fourteen of which are used
to control the thresholds and termination conditions of the algorithm. There are about 1040

conceivable parameter combinations using these fourteen values. For the outdoor image
sequence that we have used, these parameters can be divided into three groups according
to their effect on segmentation results.

20

Group I: Essential PHOENIX Parameters.

Parameter (default) Description Range

Hsmooth (9) The width of the averaging window used to
smooth each feature histogram.

1- 100

Maxmin (160) The minimum acceptable ratio of apex height
to higher shoulder.

100-104

Group II: Important PHOENIX Parameters.

Parameter (default) Description Range

Absscore (70) The lowest interval set score that will be
passed to the threshold phase.

0 - 1000

Spiitmin (4) Direct manipulation of the segmentation
queue, for which fetched regions are to be seg-
mented further

1-200

Noise (10) The size of the largest area that is to be con-
sidered noise

0- 104

Height (20) The minimum acceptable apex height as a
percentage of the second highest apex

0- 100

Group III: Less important PHOENIX parameters

The rest of the parameters have relatively much less influence on the segmentation result.

To minimize the problem complexity, four parameters have been selected for GA to
search for the combination that gives best segmentation result using PHOENIX. Thirty
two values are sampled for each of these four parameters. This results in a search space
whose size is about one million. The parameters are shown in Table 1, together with the
formula by which they are sampled, and the associated test range for each. In Section 4,
we will present results using the first two parameters (hsmooth and maxmin). In Section 5,
we show scaling results when we adapt all the four parameters.

2.3.4 Segmentation Evaluation

21

Table 2.1: PHOENIX parameters used for adaptive image segmentation.

Parameter

Hsmooth:

hsindex 6 [0 : 31]

Maxmin:

mmindex 6 [0 : 1]

Splitmin:

smindex € [0 : 1]

Height:

htindex €[0:1]

Sampling Formula Test Range

hsmooth = 1 + 2 • hsindex

ep = log(100) + 0.05 • mmindex

maxmin = exp(ep) + 0.5

splitmin = 9 + 2 • smindex

height = 4 + 2 • htindex

1-63

100 - 471

9-71

4-66

After the image segmentation process has been completed by the PHOENIX algorithm,
we must measure the overall quality of the segmented image. There are a large number of
segmentation quality measures that have been suggested in the literature [11], although none
has achieved widespread acceptance as a universal measure of segmentation quality. In order
to overcome the drawbacks of using only a single quality measure, we have incorporated
an evaluation technique that uses five different quality measures to determine the overall
fitness for a particular parameter set. In the following, boundary pixels refer to the pixels
along the borders of the segmented regions, while the edges obtained after applying an
edge operator are called edge pixels. The five segmentation quality measures that we have
selected are,

1. Edge-Border Coincidence: Measures the overlap of the region borders in the image
acquired from the segmentation algorithm relative to the edges found using an edge
operator. In this quality measure, we use the Sobel operator to compute the necessary
edge information. The original, unthinned Sobel edge image is used to maximize
overlap between the segmented image and the edge image. Edge-border coincidence
is defined as follows (refer to Fig. 2.5(a)).

Let E be the set of pixels extracted by the edge operator after thresholding and S
be the set of pixels found on the region boundaries obtained from the segmentation
algorithm:

E = {pup2,---, PE} = {(xpl, ypl), (xp2, yp2), ■ ■ ., (XpE, ypE)} and

22

S = {qi,q2,---,qs} = {{xqi,yqi)A
xq2,yq2),

n{EnS)

{xqs,yqs}, then

Edge-border Coincidence =
n(E)

E n S = {{xki Vk), k = 1, ■ ■ ■, m, where(xy, y^) € -E1 and 5}, and

ra(A) = the number of elements in set A.

2. Boundary Consistency: Similar to edge-border coincidence, except that region borders
which do not exactly overlap edges can be matched with each other. In addition, region
borders which do not match with any edges are used to penalize the segmentation
quality. The Roberts edge operator is used to obtain the required edge information.
As with the edge-border coincidence measure, the Roberts edge image is not thinned
to maximize the overlap between images. Boundary consistency is computed in the
following manner (see Fig. 2.5(b)).

The first step is to find neighboring pixel pairs in the region boundary and edge results.
For each pixel in the segmented image region boundary results, S, a neighboring pixel
in the edge image, E, that is within a distance of dmax is sought. A reward for locating
a neighbor of the ith boundary pixel is computed using

Ri —
dr, -di

where dmax = 10, and di = the distance to the nearest edge pixel.

Thus, if the pixels had overlapped, Ri = (10 — 0)/10 = 1. Pixels that do not directly
overlap contribute a reward value that is inversely related to their distance from each
other. As matching pairs of pixels are identified, they are removed from the region
boundary and edge images (5 and E). The total reward for all matching pixel pairs
is obtained using

RTOTAL = ^2 Ri

i

Once all neighboring pixel pairs have been removed from E and S, the remaining (i.e.,
non-overlapping and non-neighboring) pixels correspond to the difference between the
two images. The average number of these pixels is used to compute a penalty

n(all remaining pixels in E and S)

~ 2 '

Finally, since the value of boundary discrepancy must be positive, we define an inter-
mediate value, M, as M = (RTOTAL - P)/n(E), then

Boundary Consistency = M, if M > 0, and zero otherwise.

23

i

3. Pixel Classification: This measure is based on the number of object pixels classified
as background pixels and the number of background pixels classified as object pixels.
Let G be the set of object pixels in the groundtruth image and R be the set of object
pixels in the segmented image (see Fig. 2.5(c)). Formally, we have

G= {PUP2,---,PA} = {(xpi,yPi),(xp2,yP2),---AxpA,yPA)} and

R= {quq2i---,qB} = {(xqi,yqi),(xq2,yq2)r..,(XqB,yqB}.

Since pixel classification must be positive, we define the intermediate value N as
follows

N = 1 - [("(g) ~ n(G n R)) + (n(R) - n(G n R))'

where GDR= {(xk,yk),k = l,---, m, where (xk,yk) e G &nd R}

Using the value of N, pixel classification can then be computed as

Pixel Classification = N, if JV > 0, and zero otherwise.

4. Object Overlap: Measures the area of intersection between the object region in the
groundtruth image and the segmented image, divided by the object region. As defined
in the pixel classification quality measure, let G be the set of object pixels in the
groundtruth image and R be the set of object pixels in the segmented image (Fig.
2.5(d)). Object overlap can be computed as

Object Overlap

where Gn R = {(xk, yk), k = 1, • • •, m

njGDR)
n(G)

, where (xk, yk) e G and R}

5. Object Contrast: Measures the contrast between the object and the background in the
segmented image, relative to the object contrast in the ground-truth image. Let G
be the set of object pixels in the groundtruth image and R be the set of object pixels
in the segmented image, as shown in Fig. 2.5(a). In addition, we define a bounding
box (X and Y) for each object region in these images. These boxes are obtained by
enlarging the size of the minimum bounding rectangle for each object (G and R) by
5 pixels on each side. The pixels in regions X and Y include all pixels inside these
enlarged boxes with the exception of the pixels inside the G and R object regions.
We compute the average intensity for each of the four regions (G, R, X, and Y) using
the equation IL = J2f=ix I(j)/Lmax, where I(j) is the intensity of the jth pixel in
some region L and Lmax is the total number of pixels in region L. The contrast of the

24

object in the groundtruth image, CGT-, and the contrast of the object in the segmented
image, Csi, can be computed using

CGT =
IG-IX

IG
i Csi

IR-IY

IR

The object contrast quality measure is then computed as

Csi Object Contrast
CGT

CGT

CSI

, if CGT > CSI

, if CGT < CSI-

The maximum and minimum values for each of the five segmentation quality measures
are 1.0 and 0.0, respectively. The first two quality measures are global measures since they
evaluate the segmentation quality of the whole image with respect to edge information.
Conversely, the last three quality measures are local measures since they only evaluate the
segmentation quality for the object regions of interest in the image. When an object is
broken up into smaller parts during the segmentation process, only the largest region which
overlaps the actual object in the image is used in computing the local quality measures. The
three local measures require the availability of object groundtruth information in order to
correctly evaluate segmentation quality. Since object groundtruth data may not always be
available, we have designed the adaptive segmentation system to use three separate methods
of evaluating segmentation quality. First, we can measure quality using global evaluation
methods alone. Second, if groundtruth data is available and we are only interested in
correctly segmenting the object regions in the image, we can use local evaluation methods
alone. Finally, if we desire good object regions as well as high quality overall segmentation
results, we can combine global and local quality measures to obtain a combined segmentation
quality measure that maximizes overall performance of the system. In the experiments
described in this chapter, we combine the five quality measures into a single, scalar measure
of segmentation quality using a weighted sum approach. Each of the five measures is given
equal weighting in the weighted sum. Elsewhere we have investigated a more complex vector
evaluation approach that provides multidimensional feedback on segmentation quality [16,
17]

2.4 Segmentation Results

2.4.1 Segmentation Results Using Genetic Algorithm

The adaptive image segmentation consists of the following steps:

25

1.
2.
3.
4.
5.
5a.
5b.

5c.
5d.

6.

Compute the image statistics.
Generate an initial population.

Segment the image using initial parameters.
Compute the segmentation quality measures.
WHILE not <stopping conditions> DO

select individuals using the reproduction operator
generate new population using the crossover
and mutation operators
segment the image using new parameters
compute the segmentation quality measures

END

Update the knowledge base using the new knowledge structures.

We have tested the performance of the adaptive image segmentation system on a time
sequence of outdoor images that contains variations in the position of the light source (sun)
and the amount of light as well as changing environmental conditions. The outdoor image
database consists of twenty frames captured using a JVC GXF700U color video camera. The
images were collected approximately every 15 minutes over a 4 hour period. A representative
subset of these images is shown in Fig. 2.6. The original images were digitized to be 480x480
pixels in size but were subsequently subsampled (average of 4 x 4 pixel neighborhood) to
produce 120 X 120 pixel images for the segmentation experiments. Weather conditions in
our image database varied from bright sun to overcast skies. Varying light level is the most
prominent change throughout the image sequence. The changing environmental conditions
caused by movement of the sun also created varying object highlights, moving shadows,
and many subtle contrast changes between the objects in the image. Also, the colors of
most objects in the image are subdued. The car in the image is the object of interest. The
auto-iris mechanism in the camera was functioning, which causes a similar appearance in
the background foliage throughout the image sequence. Even with the auto-iris capability
built into the camera, there is still a wide variation in image characteristics across the
image sequence. This variation requires the use of an adaptive segmentation approach to
compensate for these changes.

To precisely evaluate the effectiveness of the adaptive image segmentation system, we
exhaustively defined the segmentation quality surfaces for each frame in the database. The
car in the image is the object of interest for the pixel classification, object overlap, and
object contrast segmentation quality measures. The groundtruth image for the car was
obtained by manual segmentation of Frame 1 only for the image sequence. The Sobel and
Roberts edge operator results, which are used in the computation of the edge-border coin-
cidence and boundary consistency measures respectively, are obtained from the gray scale
image (Y component of the YIQ image set) for each frame [18]. For the determination of

26

object contrast, we used 5 pixels beyond the Minimum Bounding Rectangle (MBR) for each
object region. For the results presented here, the maxmin and hsmooth parameters of the
PHOENIX algorithm were used to control the segmentation quality and the segmentation
quality surfaces were defined for preselected ranges of these two parameters as shown in
Table 1. All the parameters that were not optimized were set at the default PHOENIX
parameter values. These parameters remain fixed throughout all the experiments. By se-
lecting 32 discrete values (5 bits of resolution) for each of these parameter ranges, the search
space contained 1024 different parameter combinations. Fig. 2.7 presents the five individual
segmentation quality surfaces and the combined surface for Frame 1 of the database. No-
tice that the surfaces are complex and hence, would pose significant problems to traditional
optimization techniques.

The genetic component used a local or seed population size of 10, a crossover rate of
0.8, and mutation rate of 0.01. A crossover rate of 0.8 indicates that, on average, 8 out of
10 members of the population will be selected for recombination during each generation.
The mutation rate of 0.01 implies that on average, 1 out of 100 bits is mutated during the
crossover operation to insure diversity in the local population. The stopping criteria for the
genetic process contains three tests. First, since the global maximum for each segmentation
quality surface was known a priori (recall that the entire surface was precomputed), the
first stopping criteria is the location of a parameter combination that produces quality of
95% or higher. In experiments where the entire surface is not precomputed, this stopping
criteria would be discarded. Second, the process terminates if three consecutive generations
produce a decrease in the average population fitness for the local population. Third, if five
consecutive generations fail to produce a new maximum value for the average population
fitness, the genetic process terminates. If any one of these three conditions is met, the
processing of the current image is stopped and the maximum segmentation quality currently
in the local population is reported.

Numerous experiments [16] were performed for training and testing to measure the opti-
mization capabilities of the genetic algorithm and to evaluate the reduction in effort achieved
by utilizing previous segmentation experience. In the following we present some of these
results.

2.4.2 Performance Comparison with Other Techniques

Since there are no other known adaptive segmentation techniques with a learning capability
in both the computer vision and neural networks fields to compare our system with, we
measured the performance of the adaptive image segmentation system relative to the set
of default PHOENIX segmentation parameters [60, 101] and a traditional optimization
approach. The default parameters have been suggested after extensive amounts of testing by

27

researchers who developed the PHOENIX algorithm [60]. The parameters for the traditional
approach are obtained by manually optimizing the segmentation algorithm on the first image
in the database and then utilizing that parameter set for the remainder of the experiments.
This approach to segmentation quality optimization is currently a standard practice in state-
of-the-art computer vision systems. Fig. 2.8 illustrates the quality of the segmentation
results for Frames 1 and 11 using the default parameters and the traditional approach
and contrasts this performance with our adaptive segmentation technique. Each result
corresponds to the average segmentation performance produced by each technique for the
first frame in the outdoor image database. By comparing the extracted car region in each
of these images, as well as the overall segmentation of the entire image, it is clear that the
adaptive segmentation results are superior to the other methods. For Frame 1 using the
traditional approach, the segmentation quality is initially 95%, which is close to the adaptive
segmentation quality. This value indicates that our segmentation evaluation measures are
providing information similar to human perceptual performance.

The average segmentation quality for the adaptive segmentation technique is 95.8%. In
contrast, the performance of the default parameters is only 55.6% while the traditional
approach has a 63.2% accuracy. The outdoor experiments described above were conducted
in a parallel fashion, i.e., all training and all testing was performed without the aid of
previous segmentation experience. Although the testing experiments used the knowledge
acquired during training, the tests were still performed in parallel. None of the segmentation
experience obtained during testing was applied to subsequent testing images. Using multiple
day experiments, we show that experience can be used to improve the segmentation quality
over time.

The size of the search space in these experiments is 1024, since each of the two PHOENIX
parameters are represented using 5 bits. The price paid for achieving consistent higher
quality of segmentation is the average number of times (2.5) one has to go through the
genetic loop. Thus, only 2.4% of the search space is explored to achieve the global maximum.
The superiority of the results is not because of the ground-truth information but because of
the power of the adaptive image segmentation system. Many additional tests, including the
comparison with random walk approach are performed, that demonstrate the effectiveness
of the reproduction and crossover operators [16].

2.4.3 Demonstration of Learning Behavior

To measure the improvement in efficiency achieved by immediately reusing segmentation
experience, we also conducted a set of experiments. These experiments were designed to
investigate the reduction in computational effort obtained by processing the images in a
sequential rather than parallel manner. All the parameters were set as mentioned above

28

in this section. Three separate sequential experiments were performed. In each case, the
order of the images presented to the adaptive image segmentation system was modified to
determine the sensitivity of the sequential process to variations in the image sequences. The
first test processed the outdoor images in their original order, i.e.. Frames 1, 2, 3, ..., 20. The
second test processed the odd numbered images first and then the even numbered images,
i.e., Frames 1, 3, 5, ..., 19 followed by Frames 2, 4, ..., 20. This order was chosen so that we
could compare the performance of the sequential processing with the parallel experiments
performed earlier. Finally, the third test altered the sequence of images to simulate a multi-
day scenario where the frequency of image collection decreases to approximately one hour.
The order of the images in this test is 1, 5, 9, 12, 16, 20, 3, 7, 11, 14, 18, 2, 6, 10, 13, 17,
4, 8, 15, 19. Each group of images in the sequence of Frames (1, 5, 9, 12, 16, 20), (3, 7, 11,
14, 18), (2, 6, 10, 13, 17), or (4, 8, 15, 19) was designed to represent a collection of images
acquired on a different day. Thus, using the sequence of images described above, we have
simulated a four day long collection of images.

For each of the three tests, the genetic population of the first frame in the image sequence
was randomly selected. Once the segmentation performance for that frame was optimized
by the genetic algorithm, the final population from that image was used to create the initial
global population. This global population was then used to select the seed population for
subsequent frames in the image sequence. The global population size was set to 100 for these
experiments to insure a diversity of segmentation experience in the population. While the
size of the global population remained below 100 members (prior to processing 10 frames),
the final populations for each image were merely added to the current global population.
After the size of the global population reached 100 individuals, the final populations from
each successive image had to compete with the current members of the global population.
This competition was based on the fitness of the individuals; highly fit members of a new
local population replaced less fit members of the global population, thus keeping the size of
the global population constant. Fig. 2.9 presents the performance results achieved by the
adaptive image segmentation system during each of the three sequential tests.

Single Day Sequential Test Fig. 2.9(a) illustrates the performance of the system for
the single day sequence (first test). The number of generations for the first frame is quite
large since we started from a random collection of search points. The experience gained
in processing the first frame is immediately utilized during the second frame. The number
of generations has been reduced from 12 to 3. Similarly, for Frames 3 and 4, the number
of generations decreases each time. Although the number of generations does increase
at several points beyond the fourth frame, the overall trend of this plot does indicate a
reduction in computational effort. This claim is evident by noting that for the 20 frames of
outdoor imagery in this sequence, the adaptive image segmentation system optimizes the

29

segmentation quality of 50% (10 out of 20) of these images using the information present in
the global population. No iterations of the genetic generations are necessary in these cases.

Odd-Even Image Sequence Test Fig. 2.9(b) provides similar evidence of learning and
computational savings for the sequence of images used in the second test. Note that the
initial slope of the graph in this figure is not as steep as in Fig. 2.9(a). This difference is
due to the fact that the image intervals have increased in this experiment (e.g., we take
every other image instead of every image). Thus, the knowledge previously acquired by
the adaptive process is not as immediately relevant to subsequent images as it was during
the first test. However, once we have processed all odd numbered images, the number
of generations required during the even numbered images is substantially smaller. It is
interesting to note that the even numbered images which require several generations (Frames
6, 14, and 18) in this test also required similar efforts in the first test (Fig. 2.9(a)). This
correlation implies that the knowledge currently in the global population was not sufficient
to optimize the segmentation quality of these images without some assistance from the
genetic algorithm. Finally, note that as was the case in the first test, the adaptive image
segmentation system optimizes the segmentation quality of half the image sequence (10 of
20 frames) without invoking the genetic process.

Multiple Day Sequential Test Fig. 2.9(c) presents the computational efforts required
for the multi-day simulation in the third test. Once again, we can see the difference in the
initial slope of the graph, which is due to the order in which the images are encountered.
In this case, since there is an even wider separation between the images than in the two
previous tests, the number of generations required for the first few frames is much higher.
Additionally, with the exception of some local irregularities, the graph in Fig. 2.9(c) shows
the cyclical nature of the multi-day process. The irregularities are attributed to the trou-
blesome frames (6, 14, and 18) described earlier. The images in the first "day" (frames 1, 5,
9, 12, 16, 20) show a continually decreasing level of computational effort. When the second
sequence (frames 3, 7, 11, 14, 18) is encountered, the effort increases temporarily as the
adaptive process fills in the knowledge gaps present as a result of the differences between
the images in each sequence. The image sequence for the third "day" (frames 2, 6, 10, 13,
17) was handled with almost no effort by the genetic learning. Finally, the fourth image
sequence (frames 4, 8, 15, 19) requires no effort by the genetic learning at all; each image
is optimized by the information stored in the global population. Note that the third test
contains the largest number of frames processed with no help from the genetic algorithm.
Twelve of the twenty frames in this test were optimized using the global population.

30

2.5 Scaling the Number of Parameters

For the results presented in Section 4, we selected only two (hsmooth and maxmin) param-
eters of the PHOENIX algorithm. In this section, we present experimental details when
we select four parameters (hsmooth, maxmin, splitmin and height) for adaptive image seg-
mentation. In this case the size of the search space is about 1 million. Table 1 shows the
parameter values. As the number of segmentation parameters for adaptation increases, the
number of points to be visited on the surface will also increase. However, genetic algorithms
offer a number of advantages over other search techniques. These include parallel search
from a set of points with the expectation of achieving the global maximum. Unlike the
Hough transform [9], which is essentially an exhaustive search technique commonly used in
Computer Vision, it is expected that the genetic algorithm will visit only a small percent-
age of the search space to find an adequate solution, that is sufficiently close to the global
maximum.

2.5.1 Search Space and GA Control Mechanism

Visualization of the Search Space Visualization of the search space allows one to
understand its complexity—the number and distribution of local peaks and the location of
global maximum. But this 5-dimensional space (four parameters plus the fitness or quality
of image segmentation) is difficult to be visualized with traditional methods. So we project
this 5-dimensional data into a 4-dimensional space by slicing it into 32 pieces along the
Height axis.

Fig. 2.10 shows the 3-D volume representation of this 4-dimensional data using the brick
and slice visualization technique, where the x,y, z axes are maxmin, hsmooth, and splitmin
respectively (Fig. 2.11), and the color associated with each point represents the combined
segmentation quality for a given parameter set. Blue color represents segmentation quality
of zero, while the red color represents 100% quality. To create the data shown in this figure
using PHOENIX took a couple of weeks on 10 SUN Sparc2 machines.

GA Control Mechanism As discussed earlier, GA require three operations: selection,
crossover, and mutation. Here each chromosome consists of four parameters. The ordering
of these parameters within the chromosome representation does not affect the search process
due to our method of crossover point selection. Tests are carried out to select the best control
parameters for GA. These include number of crossover points, crossover rate, mutation rate,
method of selection, population size, and quality threshold. The results are given below.

31

Crossover Rate Table 2 shows the number of segmentations that are needed for frame
1 for different crossover rates. The threshold for minimum acceptable segmentation quality
is 95%, population size varies from 50 to 200. We can see that a lower crossover rate leads
to smaller number of total segmentations. These data are averaged over 1000 independent
tests.

Table 2.2: Number of segmentations under varying population size and crossover rate. The thresh-
old for minimum acceptable segmentation quality was set at 95%

Population Crossover Rate 2-Point Crossover

50 80% 9439

50% 6077

100 80% 5805

50% 4675

200 80% 7548

50% 5068

Table 2.3: Number of segmentations under varying population size and selection of crossover points.
(Segmentation Quality Threshold = 95% , Crossover Rate = 80%).

Population

10

100

200

500

1-Point Crossover

7102

4960

4131

3575

2-Point Crossover

6553

5805

3939

3332

4-Point Crossover

5941

5528

3900

2878

32

Table 2.4: Number of segmentations under varying threshold (Population = 500, Crossover Rate
= 80%).

Threshold 1-Point Crossover 2-Point Crossover 4-Point Crossover

95% 3575 3332 2878

90% 2943 2788 2325

Population Size and Number of Crossover Points Table 3 shows the number of
segmentations required for different population sizes and crossover points. The threshold
for acceptance of segmentation quality is 95% and the crossover rate is set at 80%. From
the results we can see that using more crossover points and larger population size, the total
number of required segmentations can be reduced. This experiment also showed that the
total number of segmentations will not reduce further when population size is greater than
500. A complete scenario for crossover operation using four points is shown in Fig. 2.12.

Segmentation Quality Threshold Table 4 shows how different thresholds which cor-
respond to minimum acceptable segmentation quality affect the total number of required
segmentations. The difference is not significant between 90% and 95% because these seg-
mentation qualities are quite close.

The results presented for Frame 1 in Tables 2-4 show that the number of points that are
visited on the surface varies from 0.9% to 0.3% for 95% quality of segmentation. In the best
case only 0.28% of the search space is visited to achieve 99.89% (Threshold is 95%) quality
of segmentation.

2.5.2 GA Plus Hill Climbing for Adaptive Image Segmentation

Hybrid search techniques [1] have the potential for improved performance over single opti-
mization techniques since these can exploit the strengths of the individual approaches in a
cooperative manner. One such hybrid scheme which we describe in this section combines
a global search technique (genetic algorithm) with a specialized local search technique (hill
climbing). Hill climbing methods are not suitable for optimization of multimodal objective
functions, such as the segmentation quality surfaces, since they only lead to local extrema
and their applicability depends on the shape of the objective functions. The hybrid scheme
provides performance improvements over the genetic algorithm alone by taking advantage of

33

both the genetic algorithm's global search ability and the hill climbing's local convergence
ability. In a sense, the genetic algorithm first finds the hills and the hill climber climbs
them.

The search through a space of parameter values using hill climbing consists of the follow-
ing steps: (1) Select a starting point; (2) Take a step in each of the fixed set of directions;
(3) Move to the best alternative found; and (4) Repeat until a point is reached that is higher
than all of its adjacent points. An algorithmic description of the hill climbing process is as
follows:

la.
lb.
2a.
2b.
3.
3a.

3b.

Select a point xc at random.
Evaluate the criterion function, i.e., obtain V(xc)
Identify points xx,- ■ ■ ,xn adjacent to xc

Evaluate the criterion function, i.e., obtain V(x{)
Let V(xm) be the maximum of V(xi) for i — 1, • •
If V(xm) > V(xc) then

set xc = xm, V(xc) = V(xm)
goto Step 2.

Otherwise, stop.

V(xn).
,71.

In the above, a set of points that are "adjacent" to a certain point can be defined in
two ways. First, it can denote the set of points that are a Euclidean distance apart from
the given point. Thus, the adjacent points are located in the neighborhood of the given
point. Second, "adjacent" points can denote the set of points that are unit Hamming
distance apart from the given point pair. Each point in this set differs by only one bit value
from the given point in binary representation of points. It defines the set of points with
varying step size from the given point. The set of Hamming adjacent points was used in
this research. Hamming adjacent points have an advantage over Euclidean adjacent points
in our implementation because all the segmentation parameter values are represented as
binary strings when using the GA. The set of Hamming adjacent points also represents the
set of points which can be generated by a genetic mutation operator from the given point.

A conventional hill climbing approach, as described above, finds the largest V(xm) from
V(x{), i — 1, • • •, n, and the search moves to its corresponding point, xm. For a space of
n adjacent points, it requires n function evaluations to make each move. To reduce the
cost of evaluating all the adjacent points before making each move, the hybrid approach
is designed to try alternatives only until an uphill move is found. The first uphill move is
undertaken without checking whether there are other (higher) possible moves. After the
hill climbing process has examined all the adjacent points by flipping each bit in the binary
representation of the current point, in turn, without finding an uphill move, the current

34

point is taken as a local maximum. The algorithmic description of the hill climbing process
used in the hybrid search scheme is as follows:

1. Select a starting point xc with fitness value V(xc) from the
genetic population.

2. Set i = 0.
3. Set j = i.
4a. Generate an adjacent point xa by flipping the ith bit in xc.
4b. Obtain V(xa). Set i = (i + 1) mod n.
5. If V(xa) > V(xc) then

goto Step 3.
Else if i < j then

goto Step 4
Otherwise, pass the control to the GA.

2.5.3 Experimental Results

There are several possibilities in which GA plus climbing can be used. In one case the control
moves back and forth between GA and hill climbing [16, 17]. In the approach used here GA
is used for obtaining starting points for hill climbing for the first frame only. Thereafter,
only hill climbing is used.

1. GA learning: Perform GA learning for frame 1 using a population size of 10 (chosen
from hardware consideration) and 4 point crossover operation with a crossover rate
of 0.8 (same as in Section 4). Ten knowledge structures are selected as seeds for
hill climbing. The goal here is to use small population size to achieve the desired
segmentation quality with minimum number of segmentations.

2. Hill climbing: For frame 2 to frame 20 perform hill climbing with accumulated
knowledge structures. The seeds generated from previous frames are used to hill
climb. The best result obtained for the current frame is kept as a new knowledge
structure and added to the seed pool for hill climbing for the next frame.

After we are done with frame 20, we will accumulate 29 knowledge structures, with 19 of
them generated by hill climbing.

The experimental results of the hybrid search scheme (combining GA and hill climbing)
for frame 1 are shown in Table 5. The results show that for 95% threshold for image
segmentation quality, genetic algorithm plus hill climbing technique helps to reduce the

35

i

Table 2.5: Performance comparison between pure GA and GA with hill climbing (crossover points
= 4, crossover rate = 80%, mutation rate äS 1%).

Population = 10

Threshold = 95%

Threshold = 90%

Genetic w/o hill climbing

5941

1720

Genetic with hill climbing

3340

1631

required number of segmentations by almost half. For low segmentation quality threshold
(90%), this effect is not dramatic.

Fig. 2.13 summarizes the performance of GA plus hill climbing based techniques for
frames 2 to 20, and compare it with default parameter set of the PHOENIX algorithm.
The performance corresponds to the parameter set in the population that has the highest
fitness. The average performance increase for the hybrid scheme over the default parameter
set is about 50%, increase over the initial knowledge seed (GA learning for frame 1 only,
no subsequent hill climbing) is also dramatic. This shows that GA learning from frame 1
does provide a good starting point for hill climbing. The average improvement shown in
Fig. 2.13 is 107.8% over the default parameter set.

Figs. 2.14 and 2.15 compare the segmentation results obtained by using the default
parameter set and the parameter set generated by GA and hill climbing. Using the default
parameter set, it is seen that the car does not show up at all in the segmentation results
for Frames 7 and 16, but the corresponding results using GA and hill climbing are quite
good. The results show that by combining genetic search and hill climbing techniques the
performance improvement is significant when the search space is large.

2.6 Conclusions

The goal of this research was to perform adaptive image segmentation and evaluate the
convergence properties of the closed-loop system using outdoor data. The performance
improvement provided by the adaptive system was consistently greater than 30% over the
traditional approach or the default segmentation parameters [60, 101]. Further experimental
details and several other techniques can be found in [16, 17, 18].

The adaptive image segmentation system can make use of any segmentation technique
that can be controlled through parameter changes. No extensive knowledge pertaining to

36

the selected algorithm is required. In addition, we can choose to adapt the entire parameter
set or just a few of the critical parameters, depending on time constraints and the desired
quality of the final segmentation results. The adaptive segmentation system is only as robust
as the segmentation algorithm that is employed. It cannot cause an algorithm to modify
the manner in which it performs the segmentation task. It can only optimize the manner in
which the algorithm converges to its best solution for a particular image. However, it may
be possible to keep multiple segmentation algorithms available and let the genetic process
itself dynamically select the appropriate algorithm based on image characteristics. Further,
it is possible to define various evaluation criteria which can be automatically selected and
optimized in a complete vision system. Although we have only used color images in our
current experiments, the adaptive technique itself is applicable to any type of imagery
whose characteristics can properly be represented. This set includes infrared, laser radar,
millimeter wave, sonar, and gray scale imagery. The adaptive image segmentation system
may soon be able to benefit from advances in parallel computing and VLSI technology, which
are now beginning to produce chips that can perform the image segmentation process in
real time [13] These hardware improvements would make it possible to achieve high quality
image segmentation results at near-realtime processing rates.

In a complete computer vision system, the segmentation evaluation component can be
replaced by the object recognition component(for example, see [78]). In our adaptive image
segmentation system, the focus is the image segmentation component. Therefore, we sup-
plied the manually generated groundtruth image to the segmentation evaluation component
and used local and global measures. Our approach attempts to fulfill the goal of automatic
segmentation and groundtruth provides the reference against which the segmentation re-
sults can be evaluated. The groundtruth information is not contributing to the superiority
of our approach since the same information is also being used by the traditional approach
and the approach based on the default segmentation parameters that we have analyzed
for performance comparison. Availability of such groundtruth information is guaranteed
in such applications as photointerpretation and automatic target detection/recognition for
the regions of interest containing the potential targets. The adaptive image segmentation
system can utilize local, global, or combined segmentation quality measures to achieve the
appropriate segmentation results. If nothing is known about an application, global evalua-
tion measures can be used. For example, a complete target recognition system (in hardware)
has been developed where edge/border coincidence [11] has been used for terminating image
segmentation on real FLIR images. Elsewhere, we have optimized both global and local
measures in a multi-objective optimization framework [17]. In the future we plan to use a
data set with dramatic environmental variations and we will utilize several segmentation
algorithms. Ultimately, we will incorporate the adaptive segmentation component into our
complete vision system.

37

2.7 Future Work

• Adaptive Multisensor Image Segmentation

Sensors are known to be sensitive to the scene content, such as the different channels

of a multi-spectral scanner. Selection of sensors in a dynamic and adaptive fashion
is therefore necessary to achieve the best possible segmentation results for a given
scene. In this task, we will develop the mechanisms for selecting the most suitable
sensor (i.e., one) from a set of sensors with identical imaging geometries (such as the
channels of a multi-spectral scanner) as well as from sensors with different geometries
and principles of operation (TV, FLIR, LADAR, etc.). The objective here is to
integrate multiple sensors in a cooperative, complementary, and competitive fashion.
The integrated results are evaluated and a GA-based approach is used to learn the
appropriate strategy for combining the individual sensor data in order to obtain the
best overall segmentation results. The combined data are fed back to the individual
adaptive segmentation modules to enhance their performances further.

• New evaluation criteria - An important factor related to GA applications concerns
the validity of the evaluation function used to evaluate population members [31]. If
the evaluation function does not provide a uniform measure of individual fitness, the
performance of the search process will suffer since the system will be placing unre-
alistic confidence in the strength of certain individuals based on the misinformation
of the evaluation data. In order to prevent the quality of the evaluation function
from adversely affecting the overall performance, Schaffer and Grefenstette [95] have
developed a method of using vector performance evaluation incorporating multiple
forms of evaluation information instead of a simple, scalar measure of performance.
Alternatively, in our initial work we have combined five separate quality measures
using a weighted sum approach to provide a more powerful and uniform indication
of an individual's fitness. Additionally, the latter approach also maintains a vector
of performance measures (global and local segmentation quality measures) for each
genetic structure. Our proposed new evaluation criteria will include a combination of
gray scale, texture, and color features. In the case of a complete object recognition
system, the following quantitative measures can be used: 1) number of target pix-
els misclassified with respect to the true target, 2) correlation coefficient and mean
squared-error between the true and extracted objects, 3) object-to-background con-
trast, intensity difference and Bhattacharyya distance [23] between the true object
and clutter objects used with thresholding (threshold fixed a priori or determined in
a global, local or object adaptive manner), and 5) shape number that estimates the
shape difference between the true and extracted targets. In the navigation scenario,
where knowledge-based landmark recognition is often employed, access to landmark

38

models may provide geometric and semantic features that will guide the segmentation
evaluation. Once the set of evaluation criteria is selected, the overall performance
measure will be a vector of all the individual measures. The key research issues are
(a) the selection of the relative weights for the different local and global measures,
(b) learning of these weights using GA, (c) relationships of the selected measures to
the information content of an image, which may be measured in terms of entropy,
structural similarity of a pixel to its neighbors, or co-occurrence matrices, and (d) the
confirmation of the local measures by human perceptual measures.

• Recursive GAs - Optimization of genetics with genetics- In our initial work, the use of
GA has been solely to manipulate strings that represent parameter (of the segmenta-
tion algorithm) combinations. In DeJong's study [29] of GAs in function optimization,
he suggests that good genetic algorithm performance requires the selection of a mod-
erate population size, a high crossover probability, and a low mutation probability.
For example, a small population size will cause the GA to converge too quickly with-
out adequately exposing the system to learning experiences. On the other hand, a
large population size results in a longer waiting period for significant improvements
in the learning behavior. However, a setting of GA parameters, such as population
size, crossover rate, mutation rate, generation gap, and selection strategy is in general
implementation dependent [46]. Other characteristics of the genetic operators also
remain implementation dependent, such as whether both of the new structures ob-
tained from crossover are retained, whether the parents themselves survive, and which
structures are removed if the population size is to remain constant. The scope of a
GA-based adaptive image segmentation technique can be extended by incorporating
recursive GAs (RGAs) in place of the single-level simple GA (SGA). The objective
of recursive GAs will be to learn the above mentioned variables such as population
size of the SGA. Besides, RGAs can also be used to learn the relative weights of the
evaluation criteria.

• Feedback from Higher-level Processing for Criteria Selection - In most typical ap-
proaches to lower level computer vision tasks, including segmentation, little attention
has been paid to providing feedback from higher level processes. On the other hand,
a feedback from a higher level process, such as object recognition, would undoubtedly
help in making such lower level decisions as to which segmentation evaluation criteria
are proving to be the most effective in recognizing an object in a particular scene. Our
proposed adaptive approach will include such feedback connections from the high- as
well as the intermediate-level processes.

• Use of Classifier Systems - The most common genetic-based machine learning GBML
architecture is known as the classifier system. A classifier system is a machine learn-

39

ing system that learns syntactically simple string rules or classifiers in an arbitrary
environment. It consists of three main components [43]: rule and message system,
apportionment of credit system, and genetic algorithm. In our preliminary work, we
have focused on the GA-component of a classifier system. The rule and message
system-component is a special kind of production system in that it restricts its rules
to fixed-length representations. Unlike traditional expert systems, in which serial rule
activation is the norm, classifier systems use parallel rule activation. Assigning re-
wards to the rules between successive evaluations via competition and rule discovery is
the task of the apportionment of credit system. As a result of credit assignment, only
good rules survive. Finally, the GA is responsible for creating new rules through repro-
duction, crossover and mutation. So far, our effort in adaptive image segmentation has
been confined to the low-level domain. On the other hand, when more higher-level de-
cisions are brought in to affect the low-level optimization of the segmentation results,
rules will prove to be effective in representing human-like knowledge. Besides, there
are existing segmentation algorithms that rely on rule databases [62]. We, therefore,
plan to make use of complete classifier systems in adaptive image segmentation.

Comparison of Genetic Algorithms and Evolutionary Strategies - Like the GAs, the
Evolutionary Strategies (ESs) are a class of algorithms designed to synthesize natural
evolution as a means of solving parameter optimization problems [8]. Functionally,
both GAs and ESs are similar in the overall process of generating new individuals
from the existing population. However, the architectures of these two approaches are
vastly different. During the selection process for genetic recombination in ESs, either
the offsprings in a generation are selected or both the parents and the offsprings are
chosen. The recombination process in the ESs, which is analogous to the crossover
operation in the GAs, can vary from no recombination, i.e., only one parent is sub-
jected to mutation in a generation, to global recombination, in which both parents
contribute equally to the creation of an offspring. But the key difference between
the two approaches is in the implementation of the mutation operator that causes
occasional changes in the genetic structure of an individual. While the mutation rate
is almost always determined by an exogenous heuristic in GAs (and in earlier versions
of ESs), it is treated as a part of the genetic structure in ESs thereby subjecting it to
the same genetic processes as the parameters themselves. This constitutes a two-level
learning process in which not only the population adapts to the response surface of the
objective function, but also the rate of adaptation is adjusted according to the surface
topology. An additional strategy is also incorporated to handle situations when the
mutations of the individuals are correlated; the optimum rate of progress is achieved
under correlated mutation condition. In our approach to image segmentation, we
therefore plan to investigate the relative merits of GAs and ESs.

40

S = S«i of bortw pine]»

Edge Image Segmented Image

(a)

Edge-Border Coincidence

s'ss.ens

petrel« of
•^""W*

_ 1
— E'

"
S'

(b) Boundary Consistency

Bounding
boxX

G = Gruandtruli
object region

11(G) = No. <rf
object pixels

Q-(GnR) =
Object piult
cluufiedu
background

' VjtY3
R-(OnRJ =
Background
pixels dauificd
u object

(c) Pixel Qassification

(d) Object Overtap

41
Figure 2.5: Illustration for the quality measures used in the adaptive image segmentation system.
(a)Edge-border coincidence, (b)Boundary consistency, (c)Pixel classification, (d)Object overlap. Ob-
ject contrast is defined by using the symbols shown in the center figure in (a) and the left most figure

(a) Frame 1 (b) Frame 11

Figure 2.6: Sample outdoor images used for adaptive segmentation experiments.

42

*7 f i?

(a) (b)

(c) (d)

(e)
43

(f)

Figure 2.7: Segmentation quality surfaces for Frame 1. (a)Edge-border Coincidence, (b)Boundary
Consistency, (c)Pixel Classification, (d)Object Overlap, (e)Object Contrast, (f)Combined Segmen-
tation Quality.

i

Adaptive Technique Traditional Approach

(d) (e) (f)

Figure 2.8: Segmentation of Frame 1 (a-c) and Frame 11 (d-f) for the adaptive technique, default
parameters, and the traditional approach.

44

c
o

5 S
a

/\

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Frame Number

(a)

■—■—i^l^i^l^"-—1—-■—f—■ I '
9 10 11 12 13 14 15 16 17 18 19 20

Frame Number

(b)

12 T

7 8 9 10 11 12 13 14 15 16 17 18 19 20

Frame Number

(c)

Figure 2.9: Performance of the adaptive image segmentation system for the sequential experiments.
(a)Single day test results. (b)Double day test results. (c)Multiple day test results.

45

hsmooth

A

splitmin

maxmin

Figure 2.10: Coordinate axes for the volume representation in Fig. 10

46

(a) Projection with height — 0 (b) Projection with height — 2

(c) Projection with height = 10 (d) Projection with height = 25

Figure 2.11: Volume representation (different views) of segmentation parameter search space. The
original 5-dimensional data (hsmooth, splitmin, maxmin, height, segmentation quality) is projected
along height axis, where the color represents the fitness or segmentation quality value corresponding
to each 3-D coordinate.

47

a) Before Crossover 2
1

3
1

4
1

parent 1 1 1 1
1 1

parent 2
,...,,■. .».■.[.:-.. •..,•■,:.,•■ ■ "■"!"•? MflHlllfllliEH

b) After Crosso ver

1 .

■ammj p™*

childl

child 2 n 1 ill

1 1

(a)

Decimal Representation Binary Representation

Crossover Points

22 10 6 15

2 19 21 8

22 18 7 15

2 11 20 8

EZ^>
1011 0 0 1 010 0011) 01 111

0001 D 1 0 Oil 1010 L 01 000

"«i,^

1011 0 10 010 0011 1 01 111

0001 D 01 Oil 1010 D 01 000

(b)

Figure 2.12: Genetic algorithm crossover operation, (a) Scheme for doing 4-point crossover with
each chromosome containing four parameters, (b) A complete scenario for one crossover operation.

48

100

90

80

§ 70 a
c

1 60 c u
so

00
u >

50

40

30

20

10

+ default
* seed
olearnin

10 12
Frame Number

14 16 20

Figure 2.13: Performance comparison between default (+), initial seed (*), and final hill climbing
(o) results for frame 1 to 20.

49

(a) Frame 2: Default Segmentation (b) Frame 2: After Genetic and Hill Climb-
ing

(c) Frame 3: Default Segmentation (d) Frame 3: After Genetic and HiU Climb-
ing

Figure 2.14: Segmentation performance comparison for frames 2 and 3: (a) Frame 2 using default
parameter set, (b) Frame 2 using parameter set generated by genetic and hill climbing, (c) Frame 3
using default parameter set, (d) Frame 3 using parameter set generated by genetic and hill climbing.

50

(a) Frame 7: Default Segmentation (b) Frame 7: After Genetic and Hill Climb-
ing

(c) Frame 16: Default Segmentation (d) Frame 16: After Genetic and Hill Climb-
ing

Figure 2.15: Segmentation performance comparison for frames 7 and 16: (a) Frame 7 using default
parameter set, (b) Frame 7 using parameter set generated by genetic and hill climbing, (c) Frame
16 using default parameter set, (d) Frame 16 using parameter set generated by genetic and hill
climbing.

51

Chapter 3

Learnable Structural Models for
Target Indexing: Hidden Markov
Models, n-Grams, and Salient
Sequences

3.1 Introduction

Automatic target recognition (ATR) is an image understanding problem whose goal is to
find instances of "known" targets in the input sensor data. It comprises the computational
processes of detection of target-like features, indexing or recognition of targets based on
detected features, and verification or identification of indexed targets. Real-world ATR
scenarios are characterized by multi-modal imagery, low contrast, high clutter, camouflage,
partial target occlusion, and other image variabilities. Thus, the ATR problem space is
represented by a number of state variables, such as target state (pose/location), sensor state
(pose/location), background, environment, which account for the high dimensionality of the
problem space [112]. Since a direct mapping from detected features to target models for
identification is computationally expensive in such a high-dimensional space, the indexing
problem is now considered as an important intermediate step in the overall recognition
process. The role of indexing is one of signal-to-symbol transformation in which hypotheses
about targets are framed in a bottom-up fashion, i.e., driven by detected features. The
specific tasks that are involved in the indexing process are delineation of image regions
which correspond to targets using higher-order groups of detected features, recognition of

52

grouped features as specific target classes, and localization of recognized targets in terms of
aspect, scale, and depression angle.

Current approaches to object/target model indexing lack flexibility and robustness re-
quired for ATR applications. In this work, we describe an approach to indexing that is
based on utilization of weak structural models, direct table look-up, and inexact sequence
matching. The weak structural models are defined as hidden Markov models (HMMs) which
together with similarity-based analysis are appropriate for handling uncertainties and dis-
tortion in the imaging process; the table look up method utilizes invariant features similar
to the existing approaches to indexing. HMMs, which have been effectively used in speech
recognition systems are generalizations of stochastic finite automata and are amenable to
learning. Besides, the look-up table (LUT) and the database for sequence matching are
both constructed from examples through learning processes.

3.2 Motivation

The purpose of indexing is to make good guesses about an object's identity and pose (in-
cluding scale) from partial evidence in a bottom-up fashion. The assumption here is that
detection is generally not possible from the evidence contained in single feature cells.1 Input
to the indexing step is an unordered set (stream) of locations-of-interest (LOIs) produced by
the detection module. An object hypothesis produced by the indexing module must provide
sufficient information to the recognition module to initiate a goal-directed matching process.
In the optimal case, this includes (1) the object category, (2) the relevant aspect, and (3)
the (approximate) location in the image. In general, it will be sufficient to indicate a set of
possible aspects or even a set of possible object categories, depending on the information
available. In general, indexing is accomplished by (1) combining the information available
from multiple LOIs within a certain neighborhood, (2) imposing more specific structural
constraints that are suitable to narrow down the object category, and (3) by reverting to
the original image data (Gabor decomposition) to obtain additional information.

The problem of indexing can be stated as "finding the needle in a haystack" (without
knowing if there actually is a needle), given

1. weak local evidence,

2. spatially unrelated LOIs,

3. unknown object (target) identity, and

otherwise, indexing could be done at the same time as detection.

53

i

4. unknown target location and extent.

The general approach here is to look out for complex spatial arrangements of features in
order to associate them with parts of a known model, without performing explicit subgraph
matching with the structural model base itself. The technique we suggest here is a combi-
nation of Hidden Markov Models (HMMs) [84] and a variant of the n-gram method [111],
which have both been used successfully in natural speech recognition. While HMMs provide
an elegant way to model low-order (usually only first-order) dependencies between adjacent
elements, n-grams represent sparse high-order (re-order) relationships that facilitate efficient
indexing. Supposedly, 3-grams (trigrams) will be sufficiently powerful for indexing.

The advantage of using HMM and n-gram techniques is their use of a discrete alphabet of
symbols, which allows the use of a probabilistic inference scheme, and the existence of fast
evaluation algorithms. The crucial point with symbolic methods is the need for a "pixels-
to-symbols" transition before they can be applied. Hidden Markov models (in contrast to
conventional Markov models) support this transition well, because they explicitly handle
the problem of uncertainty of pixel-to-symbol association.

The main obstacle to a direct application of the above methods is that we have to deal
with 2-D configurations instead of the 1-D sequences in speech recognition. One solution
to this could be a 2-D random walk over neighboring features, (softly) biased by certain
selection criteria that can be learned from experience.

3.3 The Domain of Learning

Figure 3.1 describes our overall learning-based approach to indexing. The input to the sys-
tem consists of various structural primitives which have been obtained by low-order group-
ing such as perceptual grouping of edge-based features, e.g., smooth, elongated curves, or
region-based features, e.g., blobs. To utilize the HMM paradigm for evidence accumulation,
we adopted a discrete symbol HMM. Consequently, the input stream of continuous observ-
ables need to be discretized and subsequently sequentialized. Once the discrete observation
sequences have been obtained, these can be used as input to an HMM-based process for
classification. There exist efficient real-time algorithms to decompose the input sequence
into meaningful state sequences of an HMM (discussed below). For example, the individual
HMMs can be associated with target classes and states with subparts of a target. Thus,
uncovering of the states will result in segmentation of the input sequence into subparts, i.e.,
subpart decomposition. Also, HMM outputs the best model or the best indexed target class
(see Figure 3.1). By associating observation symbols with states, one obtains higher-order
grouping. This segmented sequence of observations can be further utilized to determine

54

Database of
Primitives

'Database of
HMMs for

\Target types.

Input Sequentialization
of Discrete

Observations

HMM-Based
Evidence

Accumulation
Observation
Sequence

Segmented
Sequence,
Best HMM

Model

Lexicon of
Primitive

Sequences

Inexact
Sequence
Matching

n-Gram
Analysis

Selector
Indexed

Targets

Look-Up
I TableJ ^—J Off-line

C "\ Learning

Figure 3.1: A schematic of the learning-based approach to target indexing.

the class of target apart from what HMM outputs. In our approach, we have two alter-
natives. One is the fast direct table look-up based on n-gram analysis of the segmented
state sequence. The other one is slower inexact matching using a lexicon of primitive se-
quences. The selector at the output has to its disposition indexed targets generated by
HMM, n-gram, and inexact matching.

3.3.1 Hidden Markov models

A Hidden Markov model is a stochastic signal model and is an extension of the theory of
Markov chains. According to this theory, at any given instant, a stochastic system can be in
one of a number of distinct states. At regularly spaced discrete times, the system undergoes
a state change with a certain probability. HMMs have been widely used with considerable
success to classify signals in speech and text recognition systems [54, 58, 83, 84]. In fact, it
is a good choice for decision making in situations involving sequences of observations.

Figure 3.2 illustrates the phenomenon underlying the HMM framework. The Markov
chain of states is a probabilistic description of a stochastic system at any given instant. In
the case of HMM, this stochastic process is hidden and can only be observed through another

55

observable
stochastic process

hidden
stochastic process

(a) (b)

Figure 3.2: Discrete symbol hidden Markov model: (a) HMM as a doubly stochastic process, (b)
an example illustrating HMM where the observations of the same state are indicated using the same
symbol.

stochastic process which produces the sequence of observations as seen in Figure 3.2(a).
Thus, an HMM is a doubly stochastic process. To illustrate these basic ideas, consider an
image consisting of a tank as shown in Figure 3.2(b). Suppose, the tank is represented using
an HMM whose different states correspond to different subparts of the tank. Let the input
observations consist of a set of filter responses which are obtained at the lattice points of
the grid shown in Figure 3.2(b). Thus, the different subparts are only observed through
these filter responses. For example, State 1 corresponds to the gun, State 2 corresponds to
the turret, and State 3 corresponds to the body.

There are several elements in the definition of a hidden Markov model [83, 84]:

• number of states (N) - these are the distinct states S = {Su S2, • • •, SN} which the
system can be in,

• number of symbols (M) - these are the distinct symbols V = {vu v2, ■ ■ ■, vM} which
are observed in any state,

• state transition probability (A) - the probability distribution set is A = {ati}, where
O.J = Pr[qt+i = Sj\qt = Si], 1 < i,j < N,

• observation symbol probability (B) - the probability distribution set is B = {&;(&)},
where b{(k) = Pr{Ot = vk\gt = Si], 1 < i < N and 1 < k < M, and

56

• initial state probability (IT) - the probability distribution set is ir = {7r,-}, where
m = Pr[qi = St], l<i<N.

A complete specification of an HMM requires specification of N and M, specification of
observation symbols, and specification of the three probability measures collectively denoted
as A = {A, B,x}.

There are three modes in which an HMM can be operated [83, 84]:

• Training - It involves adjusting model parameters A to maximize the probability of
observations, i.e., maximize Pr[0|A].

• Classification- Assuming that each A is associated with a class u>, it involves selecting
that A which optimally explains the observation sequence and, therefore, identifies the
class, i.e., u> = argmax,Pr[0|Aj]. Classification also allows uncovering of the optimal
state sequence.

• Generation - It allows generation of an observation sequence O (of usually a specified
length), given N, M, and A.

In this work, we focus on the first two modes, i.e., training and classification.

The important difference between application of HMM to speech or text processing and
2-D image analysis is finding sequences of observations. In the former case, there is a natural
order, temporal or spatial, in the observations. However, in the latter case this is seldom
the situation, except under restricted imaging conditions, such as observations are ordered
along a row or column. Thus, the application of HMM to general image analysis requires
a solution to the problem of observation sequentializing. This problem which is essentially
the where to look next problem does not have a general solution and in case of humans
has been demonstrated to be varying with time and from person to person for a given
input pattern. Consequently, computational approaches have proposed criterion which are
task-specific. In our application context, these sequences of observations (associated with
different targets) are to be obtained by ordering the observations in some meaningful way
which is independent of the target present in the input image. One idea to find sequences of
meaningful observations is to locate salient structures in images. The approach of Sha'ashua
and Ullman [100] finds sequential arrangements of salient image locations represented by
perceptually long and smooth curves. Figure 3.3 shows a grey-level image and salient
structures detected in the corresponding intensity edge image. In this work, we investigate
a more general framework for the ordering (sequentializing) problem that is independent of
the type of observations, i.e., applicable to both edge- and region-based observations. We
also discuss the sequentializing problem at the object level when the salient structures are

57

I
I
I

I
I

Figure 3.3: Extraction of salient structures: (a) original image, (b) edge image, (c) high saliency
map using (b).

given (since salient structure extraction addresses the sequentializing problem at the pixel
level).

Additionally, it is to be noted that in order to use discrete symbol HMM, the observations
of the sequence must be discretized with respect to their intrinsic values such as length,
orientation, location of line features and elongation, orientation, location of blob features.'

Observation Sequentializing as a Markov Decision Process

In the general framework, the ordering problem is considered to be a multi-stage decision
process which is modeled as a Markov chain. Associated with each state, 5t-, of the Markov
system is a discrete, finite set of actions, A(i), and a similar set of observations, Q(i).
Based on the observation, 0 e 0(i), at a given instant, the controller selects an action,
a e A(i), which transforms the system to a new state at the next instant. The important
difference between a Markov decision process and (hidden) Markov model is that no action
is allowed to influence the state transitions in the latter. In a first-order Markov model, the
probability of the transition from the current state, s(t) = Si, to the next state, s(t+l) = Sj,
is expressed as

Pij = Pr{s{t + 1) = Sj | s(t) = St, 9(t) = 9, a(t) = a}, St, Sj e S, (3.1)

where S is the finite set of discrete states of the system. For observation ordering, each
input feature (an observation) is assumed to be associated with a state 5,-, where the state-

58

based observation 6 corresponds to certain measurable properties of the selected feature,
such as length, orientation, color, size, etc. The typical actions at each state may involve
searching in a quantized direction 4> over a quantized distance d in the image plane. Thus,
the problem of feature ordering may be formulated as one of "finding a state sequence such
that the corresponding feature (observation) sequence is significant in some chosen sense".

The extraction of a sequence of significant states depends on the appropriateness of the
selected actions. According to the theory of Markov decision tasks, there exists at least one
policy, i.e., mapping from states to actions, which is optimal. The criterion for optimality
is usually defined in terms of the expected discounted reward-to-go. Let the reward for
entering state 5; as a result of selecting the action a be denoted by r,-(a). Then, the
expected discounted reward-to-go in Si, F{(a), is an infinite sum of the expected future
rewards, each of which is weighted by a decreasing (temporal) discounting factor:

^■(a) = r,-(a) + £7(i)fi(0> (3.2)

where j(t) is the discounting factor and R(t) is the expected reward in t time steps. Con-
sequently, Equation 3.2 can be written as a recursive function of the successor states of

Fi(a) = r,-(a) + 7 £ P,»^), (3.3)
j6SUCCS(i,a)

where succs(i, a) is the set of successor states of Si as a result of the action a, ß £ A(j),
and 7 is the discounting factor in the next time step. Now, the goal of the controller is to
select an optimal policy a = aopt which maximizes the expected discounted reward-to-go
Fi(a). This is obtained as the root of the equation VFi(a) = 0 when F(a) is a continuous,
convex function over the space of a. When the transition probabilities p,-j's are known,
the expected discounted reward function is completely specified and the optimal solution is
obtained using such well-known methods as Dynamic Programming (DP). However, when
these probabilities are unknown, the optimal solution is incrementally learned on the basis
of the observations - the series of actions, state transitions, and rewards.

As noted earlier, the use of discrete symbol HMM requires quantization of the measured
values of observations. For example, a line feature would need its orientation or length
value discretized. In speech, the corresponding problem is known as codebook design for
mapping continuous observation vector into a discrete codebook index. One approach to
represent a quantized observation vector is to obtain the probability density function (pdf)
for the corresponding cell of the observation space. In this approach, a cell is represented as
a family of overlapping Gaussian pdf's. This probabilistic view is well suited for incomplete
data. Re-estimating the parameters of the mixture pdf's is thus an unsupervised learning
problem.

59

Learning methods

Learning Control of Observation Sequentialization: The field of reinforcement learn-
ing [10, 38] is concerned with the study of learning control of Markov decision processes.
This learning paradigm essentially finds a solution action a = aopt (refer to Equation 3.3),
given the current state, a set of possible actions, and past experience of success and failure.'

A sequence of observations captures a global context in the sense that the ensemble is
structurally significant and not the individual components. Thus, the significance measure
(saliency according to [100]) of the local observations must propagate along the sequence to
result in its global significance. The reinforcement learning paradigm is particularly suitable
for this class of problems since structural saliency requires measures that have a global extent
and reinforcement learning is applicable to control problems involving temporally extended
behavior. To support propagation of local evidence in a global fashion, an appropriate
architecture for state space must be chosen. In our approach, the image is represented as
a grid of processing elements (PEs) each having a fixed neighborhood. A PE is completely
connected to its neighborhood PEs which in turn contribute to its significance measure. This
architecture is similar to the saliency network model introduced in [100]. Reinforcement
learning methods have been demonstrated most successfully for connectionist networks [10].
We assume that the input observations are either edge- or region-based. Thus, a PE is
associated with the presence or absence of an edge or region pixel. An ordered set of
observations is a sequence of PEs which is optimal according to a certain saliency measure.

To cast the network training for salient observation sequence extraction as a reinforce-
ment learning problem, we adopt the following mappings: a PE corresponds to a state,
preference for a particular type of curve or linear arrangement of blobs corresponds to an
action, saliency value at a PE corresponds to expected discounted reward-to-go. Thus, in
the process of finding the optimal action, the learning process biases the network (for a
chosen saliency measure) towards detecting certain feature groups based on the training
examples. For any given state, i.e., a PE, the set of its successor states consists of all the
PEs in its neighborhood. The selection of a particular action in a state, such as selection
of a curve whose tangents are near-horizontal, causes some of the successor states to be
more preferred than others. Since the action value is usually quantized, such as curves of
tangential slopes less than 10° preferred, the selection of the next state is probabilistic.

The two critical issues in the application of reinforcement learning are how to explore
the state space and how to generate the reward. The importance of the first issue lies in
observation that for a high-dimensional state space an exhaustive exploration strategy would
be computationally prohibitive. Since the state space is of a high-dimensionality in our
approach (number of states equal to the total number of pixels), a non-uniform partitioning
of the space is required for efficient exploration. One way to obtain such a partitioning is

60

to use a fcd-tree representation [93] for the image. The second issue or reward generation
is important because it is related to effectiveness of learning and the learning rate. We
employ a scalar feedback value, r, to penalize selection of a state which is not associated
with any edge or region pixel; r — 1 if state is associated with an edge/region pixel, r = 0
otherwise. The generation of the reward can occur at every step or it can be delayed over
several actions steps. In our current approach, the reward is generated at every step so that
the network converges at a faster rate to a reasonable solution.

There exists a number of approaches to reinforcement learning in the literature [10].
Our initial attempt aims to utilize these for our problem instead of developing a new one
(a future issue). We plan to investigate two of the most recent approaches, Q-learning
[107] and Prioritized Sweeping [70]. Both of these approaches are asynchronous dynamic
programming (DP) techniques, that is they seek an optimal policy which specifies an action
such that the expected discounted reward (refer to Eq. (3.3) is maximized:

Fv a) — max
aeactions(t')

jGSUCCs(i,a)

(3.4)

Here, actions (i) is the set of all possible actions in state i, pij(a) is the estimated probability
of the transition from state Si to state Sj given that the action a has been applied, and
fi(a) is the estimated reward so far from all previous applications of action a in state S,-.

Q-learning is a model-free approach in that it directly learns the optimal policy without
building a world model. It uses a local greedy strategy specified by Eq. (3.4) to select
the locally optimal action. The new estimated discounted reward-to-go is combined
with old estimate using a weighted sum:

(a) = (l-c)F°ld(a) + cFl(a id, (3.5)

where c is the learning rate.

Prioritized Sweeping , on the other hand, extensively relies on learning a world model
from which a control rule is developed. It concentrates its computational effort on
the most "interesting" parts of the system. These are identified with those states
for which maximum change in expected discounted reward-to-go occurs. After each
real-world observation Si —>• Sj, the transition probability pij is updated along with
the probabilities of transition to all other previously observed successors of Si. Thus,
Prioritized Sweeping is much more memory intensive than Q-learning since the former
needs to build the world model. The expected discounted reward-to-go is updated for
every state Si and all the predecessors of the interesting states. The order of update

61

for the predecessors is determined by a priority value of each which is based on the
amount of change in the reward value of the successor and the transition probability
between the predecessor and the successor.

Learning Observation Quantization: Earlier, we have described the problem of obser-
vation quantization as one of estimating the parameters of a mixture Gaussian pdf 's repre-
senting each quantized cell. A well-known maximum likelihood estimation technique is the
EM algorithm [32]. This algorithm, which is an unsupervised learning method, works with
an unlabeled data set assumed to have been derived from an unobservable category (similar
to the notion of HMM). The purpose of EM algorithm is to maximize the log-likelihood
from incomplete data, i.e., observable data, by iteratively maximizing the expectation of
log-likelihood from complete data, i.e., observable and unobservable data.

Learning HMMs for Target Classes: Each target class, such as tank, truck, APC,
aircraft, is represented by an individual HMM and the objective is to build these HMMs
from training data. The input data consist of structural primitives whose feature values are
quantized. The vocabularies of structural primitives may be identical for the observations
and the hidden state sequence. Usually, the vocabulary of observations is larger than that
of the state sequence. The goal of this training phase is to determine the various elements
of an HMM corresponding to a target class.

Usually, the parameters N and M, the numbers of discrete symbols/state and the number
of states, are selected prior to the training process. For example, the number of states
in HMM of a target class may well be the number of distinct components of structural
decompositions, such as gun, turret, body, and wheel of a tank. This selection of states is
useful when the target image can be segmented into meaningful subcomponents, e.g., based
on extracted contours. On the other hand, if such segmentation is not possible, then it is
more prudent to select identical vocabularies for observation and state sequences. It is to be
noted that an observation corresponding to a state is usually vector-valued. The remaining
parameters of HMM to be learned are the various probabilities.

A) Given input sequence, learn A - Following the general framework of observation se-
quentialization, it is assumed that the input sequence of observations is already extracted.
Subsequently, the learning of HMM models involves the application of an iterative algo-
rithm, the Baum-Welch algorithm [83, 84]. This algorithm is used to estimate the proba-
bilities from frequency of observations. It is in sense a maximum likelihood estimation as
the EM algorithm. Consequently,_the algorithm progresses as selecting the initial model A
and reestimating another model A such that either A defines a critical point of the likeli-

62

hood function, in which case A = A, or A is more likely in the sense that Pr[0|A] > Pr[0|A].
Therefore, by iteratively replacing A with A, the probability of O being observed is increased
until some limiting point is reached. The result is the estimated model.

B) Find input sequence, learn A - This situation is encountered when the general frame-
work of observation sequentialization is not adopted, e.g., input consists of salient structures
of curves such as those derived from Figure 3.3(c). In this case, the problem of finding the
input observation sequence is linked with deriving the Markov models. We assume that
the input consists of salient curves, each of which can be modeled, e.g., using B-spline or
polygonal approximation, as an autoregressive process, etc. The parameters of the model
representation are used to form the feature vector which is then subjected to the quan-
tization process described above. One or more these quantized feature vectors are the
observations associated with a state of an HMM. The model learning problem in this case
is equivalent to

maxPr[Oi,5opi|Aj],

where O; is the ith input sequence, Sopt is the optimum state sequence, and Pr[.] is known as
the state-optimized likelihood function. For a given A, an efficient way to find Pr[0, Sopt\X]
is the well known Viterbi algorithm [24, 83, 84].

During the training phase, all the input feature vectors are clustered, e.g., using fc-means
algorithm. The cluster centers are then chosen as the states of an HMM. Each feature vector
in a cluster is assigned the state which is the cluster center. The transition probabilities and
the initial state probabilities are computed based on training sequences. Viterbi algorithm
is then used to trace the optimal state sequence Sopt for each selected sequence 0{ of the
feature vectors. A vector is reassigned a state if its original state assignment is different
from the tracing result and the processes of model learning and state tracing are repeated.

Implementation Issues: There are several issues of practical importance from the im-
plementation point of view. These include scaling, multiple observation sequences, initial
parameter estimates, missing data, and choice of model size and type [83]. Scaling of prob-
abilities is important since small probability values often exceed the precision range of any
machine. Multiple observation sequences from the same source are necessary to have suf-
ficient data for reliable estimation of model parameters. The importance of selecting an
appropriate initial parameter set (the initial model) is well-known for any gradient tech-
nique. A solution to this problem is to administer a supervised training procedure with
manual segmentation of observations into states. Alternately, an unsupervised training
using fc-means segmentation with clustering can be followed. To overcome the problem of
insufficient data for reliable model estimation, the size of the training data can be increased,

63

the size of the model can be decreased, one set of parameters can be interpolated using an-
other set from a model receiving sufficient training data, or extra constraints can be added
so that every parameter value satisfies them. The choice of the model, i.e., size and type
(e.g., left-right or ergodic), is usually application dependent.

The order of the model, i.e., the number of intermediate states skipped, determines the
ability of the classification process to handle distortion; higher the order, greater is this
ability. If the observations are made scale- and aspect-specific with respect to the targets,
then scale- and aspect-dependent HMMs are obtained for each target class.

Performance Evaluation

The performance of HMMs for target indexing can be evaluated in terms of several criteria:
classification accuracy, model trainability, input pattern distortion.

An efficient learning method is capable of reproducing the same high performance learn-
ing behavior under similar situations during training and testing. Using HMMs, the learning
behavior is evaluated in terms of the number of correct classification of the input patterns.
The classification accuracy depends on the choice of the model parameters. For example,
increasing the number of states usually leads to an improvement in the accuracy. Usually,
the Viterbi algorithm is applied for classification purposes. As noted earlier, the Viterbi
algorithm yields both the best matching HMM and the state sequence. During training, the
error between the expected state sequence (determined by the observation sequence) and
the extracted (via Viterbi algorithm) sequence is used to reestimate the parameters of the
HMMs until the error is small. It is expected that such reestimation procedures would lead
to improved classification results. Both training and test patterns should be representative
of the variety of scenarios in which a particular target is expected to be found in order to
ensure a robust classification performance.

The primary issue related to the trainability of the HMMs is the amount of data. Larger
number of states of HMMs implies greater amount of training data to estimate the model
parameters more accurately. Although, we have discussed some alternate solutions to over-
come the data insufficiency problem earlier, a trade-off between classification accuracy and
trainability is always required while selecting the size of an HMM. Since the training data
have to cover various scenarios, selection of the HMM parameters become even more im-
portant so as to keep the training data set of manageable size.

The performance of the HMMs to accurately classify the input observations depends on
their ability to generalize from the training data. To exhibit robust classification perfor-
mance, the HMMs must be able to handle significant pattern distortion caused by noise,
occlusion, and viewpoint location. Thus, the training data need to include all such excep-

64

blob 0.95
elong 0.85
period 0.35

blob-elong 0.70
blob-period 0.25
elong-period 0.15

elong-blob-period 0.05

(a) (b)

Figure 3.4: n-Grams of patterns typically encountered in ATR imagery: (a) FLIR image of a
tank, (b) uni-, bi-, and tri-grams of patterns, such as blob, elongated shape, periodic structure, and
probabilities of occurrences in images such as (a).

tions to ideal data.

3.3.2 n-Grams

Like HMMs, 7i-grams have also been very successfully used in natural language and speech
processing and information retrieval [104, 111]. An n-gram is a string of n consecutive
symbols from the same alphabet. The elements of an n-gram model, jn, are,

• n-grams for a selected value of n,

• the corresponding probabilities.

The probabilities are obtained by gathering statistics from observations. In Figure 3.4(b),
we give examples of uni-, bi-, and tri-grams of patterns which may be typically encountered
in ATR imagery such as Figure 3.4(a). The probabilities indicated in Figure 3.4(b) are
merely to illustrate the n-gram model.

An n-gram model can be utilized in two ways:

65

•

Verification — Given a model jn, it involves verification that an element e 6 Jn

matches the observation sequence O. Consequently, the element is identified, i.e.,
e = argmaxtPr[0|7m].

Generation — It allows generation of an observation sequence O (of usually a specified
length), given jn.

In this work, we focus on the first mode, i.e., verification.

Learning method

The n-gram analysis is designed to extract indices of targets from a lookup-table (LUT)
based on the detected substructures, i.e., the re-grams. Thus, the goal of learning is to
design the LUT based on input data and expected output during training. The choice of re
is important since a large value of re may make the n-gram somewhat unique or an invariant
feature, but at the same time such substructures are difficult to detect. A reasonable choice
of n is 3 < n < 5.

The learning task can be formulated as, given a sequence of discrete symbols and the
corresponding labeled target, determine the re-grams to be used for indexing that target.
Clearly, this is a problem of supervised learning. The re-grams can be directly used to
index the LUT or these can be hash-coded if their direct use increases the size of the LUT
considerably. Here, we assume that the n-grams index into a hash table. Thus, the learning
process must discover the partitioning of the space of n-grams such that each partition
contains a pointer to a substructure of a target model. This is a well-known problem in
pattern recognition, a solution to which may be obtained using decision trees. An advantage
of using decision trees is that the classification rules provide a clear explanation of the
classification process. However, there exists no unique decision tree for ascertaining the
partitions needed for a hash table.

Decision trees are commonly used to represent domain knowledge [81]. Each nonterminal
node in a decision tree specifies some attribute and each branch specifies the alternative
values. A decision tree classifies a new instance by repeatedly sorting downwards while
selecting the most discriminating attributes and exploring the branches associated with
each of the attribute values until a terminal node, specifying a class name (a target in our
case), is reached. The attributes of a decision tree thus correspond to those of the hash
table, i.e., the axes of the table. The creation of the hash table occurs via the induction
of a decision tree. In other words, the partitioning along the various axes of a hash table
correspond to the tests at the different nodes of a decision tree.

In order for a hash table to be optimal, the classification error using the hash table must

66

be minimal. In general, finding the optimal table requires exhaustive search over all possible
partitions of the n-gram space. Thus, an indirect approach to constructing the hash table
consists of constructing an approximate decision tree initially. Next, the decision tree is
converted into an equivalent hash table. The decision thresholds applied at each node of
the tree partitions the attribute space of the hash table. This process may create additional
partitions which may not be present in the direct construction of the hash table. An
important consideration for decision tree construction is over-specialization or "overfitting"
of the input examples due to reduction in learning bias. This overfitting increases the
variance or noise sensitivity of the learning process. A related issue is "underrating" or
overgeneralization. Since the goal is to classify as many input samples as possible by
reducing the overall classification error, a decision tree has to be appropriately pruned
during the learning process.

Performance evaluation

The performance of n-gram method for target indexing is evaluated in terms of error rate.
The error rate is measured in terms of hits and misses, and false alarms. It is related to
the number of terminal nodes of a decision tree or the attributes of the hash table, and
decreases with the increase in this number. However, for practical purposes the choice of n
from which these attributes are derived is small as noted earlier. Since pruning of a decision
tree is a necessity to allow generalization capability, the indexing performance is influenced
by the selection of the pruning method, e.g., pruning based on partitioning samples into
training and test sets, pruning by resampling input, pruning by identifying the weakest link
in the tree.

Another relevant performance measure for any supervised learning is in example com-
plexity or the number of training examples required for a satisfactory performance. If the
number of training samples is small, then the growth of the decision tree will be restricted
and subsequent pruning will lead to poor generalization capability. The phenomenon of
missing or spurious data causes inadequate coverage of the space of learning experiences.
In such case, the number of training examples have to be increased.

3.3.3 Inexact sequence matching

The inexact sequence matching is concerned with approximate matching of two sequences,
an input and a stored sequence, containing structural primitives and their spatial relations.
The inexactness or approximateness of the match is to allow for occasional large distortions
in the input patterns, such as due to moderate to large occlusion, high clutter, deep hide, etc.
As noted earlier, this approximate matching for indexing is more of a backup process when

67

more precise matching methods based on n-gram and HMM would fail. The complexity of
such techniques depends on the matching strategy and the method of storing sequences in
the lexicon (see Figure 3.2).

The notion of "inexact" may be interpreted as one of equivalence - the two matching
sequences are essentially the same except for small differences - or similar - the matching
sequences could actually be different but appear similar due to the large variability. If
the threshold of acceptance is set too high to limit similar sequences, then it is expected
that many equivalent sequences would be missed out. A lowering of the threshold, on the
other hand, would allow more similar sequences causing false alarm. One way to locate an
equivalent pair is to define a canonical form which is the representative of the equivalence
class (using the mathematical definition of equivalence) to which the pair may belong [49].
For example, in text processing two equivalent sequences are alternate spellings of the
same word and the canonical form is created by transforming these sequences into some
standard spellings. In our case, finding the canonical form is seeking a generalization of
the equivalent sequences. To process similar sequences, a measure of similarity based on
a similarity or a difference metric is required. Understandably, the similarity metric is for
sequences belonging to the same equivalence class while the difference metric is suitable for
sequences belonging to different equivalence classes and should therefore be based on the
corresponding canonical forms. In either case, the chosen metric must model the source of
variation correctly, otherwise ascertaining an inexact match in a large lexicon of sequences
is difficult. Some of the successful methods [49] in speech and text processing are based on
dynamic programming, which attempts to find the shortest path in a graph whose nodes
are labeled by pairs of elements drawn from the two sequences, and computing probabilities
of joint occurrences of element pairs in the two sequences to obtain the joint event of the
matching sequences.

Learning method

Selecting the size of the lexicon is an important problem for satisfactory performance. For a
large size lexicon, the number of undetected errors tend to be higher. This is because there
would always be some sequence in the lexicon which would approximately match an input
sequence. Consequently, the choice of correct context becomes very important in matching
sequences using a large lexicon. Another problem with large lexicon is that the search time
is proportionately longer. A better approach is to employ a learning method to grow the
lexicon so that it is tailored to the specific application, e.g., target recognition using FLIR
images, and yet its size is manageable.

An input sequence consists of alternating structural primitives and spatial relations (bi-
nary) between adjacent primitives in the sequence. Additionally, we assume that each target

68

class is represented by a set of sequences, where the different sequences might capture the
differences in the appearances of the specific members of the target class, possibly under
varying imaging conditions. Matching of two sequences can then be formulated as a nearest-
neighbor classification problem. In this paradigm, a learning approach is required for the
following tasks: (a) addition of a new sequence to the lexicon corresponding to an exist-
ing/new target class, (b) deletion of an old sequence from the lexicon, (c) generalization of
two matching sequences, (d) refinement of an existing sequence.

The similarity between learning a class of sequences in our case and concept learning in
AI motivates the use of a noise-tolerant instance based learning (NT-IBL) algorithm [56].
This framework extends the nearest neighbor (NN) algorithm by generating classification
predictions using only specific instances without maintaining the abstractions derived from
specific instances. IBL offers the advantages of simple representations for learnable entity
(i.e., sequence) descriptions, low incremental learning costs, small storage requirements
(e.g., compared to NN), ability to learn continuous functions and non-linearly separable
categories. The NT-IBL uses significance tests to distinguish noisy instances in the training
examples. It seeks evidence that saved instances are significantly good classifiers before it
allows them to be used for subsequent classification tasks.

The simplest form of IBL is a growth algorithm. Given C as the concept to be learned
and T as the training set, IBL initializes C to the set containing the first element in T. For
each subsequent element in T, the algorithm finds the nearest neighbor in C to the current
element in T. If the current element is correctly classified, then it is discarded, otherwise it
is appended to C. In the NT-IBL, the classification records of all instances in C that are
at least as similar to the current element in T as the nearest neighbor in C are updated.
Also, the instances in C which appear to be noisy after the application of the significance
test are discarded.

Both NN and IBL work with vectors of features that are of the same length. In contrast,
the sequences in our approach like their counterparts in speech and text processing are of
variable length. Thus, to use IBL, these sequences have to be made of a predefined fixed
length by incorporating null primitives and spatial relations during run-time. To evaluate
the similarity between an input vector and an instance in C, IBL uses the euclidean distance
metric. Since the sequences consist of primitives and spatial relations, appropriate distance
metrics have to be used for the primitives and the relations separately. Comparison of
primitives is based on type equivalence, i.e., line to line, blob to blob. For same type of
primitives, e.g., zth primitive of the input sequence T and j'th primitive of an instance
sequence S are of type P (say, ellipse), the distance measure d(Ti,Sj) is based on the
cumulative normalized distance between attribute values, such as the Minkowski metric of

69

order n:

d(Ti,Sj E
ik=i

Tik - S

VPk

■jk
1/n

where m is the number of attributes of the primitive type P and VPk is a normalizing value
of P corresponding to the Arth attribute. When the relations are expressed in qualitative
terms such as left, right, top, bottom, the matching algorithm seeks verification in such
terms and the results are expressed as either 1 (match) or 0 (no match). On the other
hand, when the spatial relations are expressed quantitatively such as in terms of angles and
distances Minkowski metric can again be used.

To classify an input element, IBL uses a single instance from C, viz., the nearest neighbor
In contrast, our approach accumulates matching scores from all sequences belonging to a
concept or a target class. Thus, the score for matching an input sequence T to the instance
sequences S1 e S of the target class Ck is

wk= £*(d(T,s')),
S'es

where the function $ can be chosen as an error function such as a Gaussian or a Lorentzian
to increase the support of similar instance sequences and reduce that of dissimilar ones
Classification is based on the highest accumulated score, i.e., C* is the assigned class for T

C* = argmax^W*), k = 1,..., nc,

where nc is the number of target classes. In order to keep the size of each class of sequences
manageable, instance sequences that are nearly equivalent are replaced by their canonical
sequence derived by generalizing upon the attribute values of primitives and spatial rela-
tions (quantitative). A book-keeping procedure deletes sequences from target classes whose
support classifications fail to agree with their respective target classes.

Performance evaluation

The performance of the IBL-based sequence matching can be evaluated using the measures
used for any supervised learning method. These are the classification accuracy, example
complexity, and noise sensitivity. The classification rate is expected to decrease with in-
crease in lexicon size and sequence length. The example complexity requires a little different
perspective than usual supervised learning approaches. This is because IBL being an incre-
mental algorithm can utilize new information in added sequences to continue the training
process. On the other hand, being an incremental process, the performance of IBL may
be affected by the order in which the training examples are presented. Thus, to evaluate

70

the performance based on the number of training examples, is has to be ensured that the
test examples do not alter the learned sequence classes and also the order of the training
examples need to be accounted for. The performance may be further evaluated by providing
training examples corrupted with various amounts of noise.

3.4 Conclusions

Our approach has been motivated by the success of the use of weak structural models in
speech and text recognition. However, in making these models effective for object recogni-
tion one faces the same level of difficulty as extending 2-D pattern matching techniques to
3-D. We plan on extending the HMM framework if it is necessary to ensure a satisfactory
performance of the system or to enhance it. Subsequently, we shall be working on the other
learning aspects of the indexing system, i.e., n-gram and inexact sequence matching.

71

Chapter 4

Signal to Symbol Conversion for
Structural Object Recognition
Using Hidden Markov Models

Structural recognition methods are usually based on the availability of structural primitives
and the assumption that these elements can be extracted from the image data. However, in
many practical situations it is difficult to extract these primitives with sufficient reliability.
Regardless of what these primitives are, their extraction normally requires early decision-
making at a low level and without consideration of the spatial context. Our approach
attempts to avoid early segmentation by using a context-dependent classification scheme
based on Hidden Markov Models (HMMs). They offer several features that make them
attractive for pattern detection and matching under distortion, partial occlusion, and noise.
However, due to their fundamentally one-dimensional nature, the application of HMMs
to images remains a challenging and largely unsolved problem. In this chapter, we have
adapted HMMs for 2-D for shape indexing and recognition. Initial results from experiments
with the HMM-based indexing mechanism are shown.

4.1 Introduction

In this chapter, we study the problem of two-dimensional object recognition under the
general assumption that three-dimensional objects can be represented by a finite set of 2-
D aspects. However, since each aspect must necessarily cover a certain range of viewing
angles, viewing distances, and possible articulations, we require that the underlying recog-

72

nition process be able to handle a sufficient amount of variation between the image and the
corresponding prototype aspect. The critical problems for 2-D recognition are (a) tolerance
against changes in lighting conditions and contrast, (b) the handling of geometrical devi-
ations, such as rotations, scale changes, and moderate object deformations, (c) tolerance
against changes in background, and (d) partial object occlusion. A central premise is that
the shape of an object is its most discriminating property, one that is mostly unaffected
by lighting conditions and sensor parameters. The shape of an object can be defined in
many different ways, for example as the occluding contour, a set of straight line segments,
or a collection of bright blobs. Here we mean by shape, in a very general sense, the spatial
arrangement of structural information, which typically includes boundary information as
well as information about the interior structure of an object. The need to perform recogni-
tion under partial object occlusion requires that objects can be identified from their parts
or at least a subset of their parts, which typically excludes methods based on rigid iconic
template matching.

Traditional shape-based recognition approaches fall into three broad categories: contour-
based, morphological, and structural methods. All of these (with the exception of grey-scale
morphology) require pre-segmentation of the image. Contour-based methods operate on the
outline curve of the objects, which are difficult to obtain under real conditions and many
objects do not have well-defined boundaries at all. Contours are typically obtained by
edge- or region-based segmentation. Often, closed object contours are required for success-
ful matching, which are even more difficult to extract in practice. Morphological methods
are useful for simple shape-based filtering but are intolerant to rotation and scale changes.
Binary morphology, in addition, requires prior segmentation (thresholding) as well. Struc-
tural recognition methods are based on the availability of primitive structural elements and
the assumption that these elements can be extracted from the image data with sufficient
reliability. Typical primitives are straight line segments, corners, blobs, arcs, and other
parametric strokes. Regardless of what the primitives are, the performance of the recog-
nition process depends critically on how reliably they can be extracted, which is difficult
even under ideal viewing conditions. When images are noisy and cluttered, the extraction
of suitable primitives may not be possible from local information alone. A typical example
for this kind of imagery is shown in Figure 4.1. Also, the chosen class of primitives may
significantly constrain the kind of objects that can be described.

Our goal is to implement an object indexing and recognition mechanism that makes
effective use of all available structural information while, at the same time, avoids the early
decisions necessary for extracting structural tokens. Instead of performing an isolated,
context-independent detection and subsequent combination of structural primitives, larger
spatial patterns are extracted and classified as a whole. The key mechanism we employ for
this purpose is the hidden Markov model (HMM) which has been used successfully in other

73

Figure 4.1: Typical forward looking in-
frared image that contains rich structure
but structural components are difficult
to extract from.

pattern recognition applications, particularly for speech and character recognition. The
main attraction of HMMs is that they are able to model possible pattern distortions, they
perform efficient evidence accumulation without requiring previous segmentation, and they
provide elegant learning methods. The main problem associated with traditional HMMs is
that they are essentially one-dimensional models and their extension for 2-D applications
is not straightforward. Our solution is to represent the object's appearance by a set of
characteristic one-dimensional observation sequences that extend over the entire object
(including its interior regions) and can be extracted from the image with sufficient reliability.

4.2 Hidden Markov Models for Signal-To-Symbol
Conversion

The internal mechanism of the HMM is a probabilistic finite-state machine that is usually
stationary, i.e. with fixed (time-invariant) state transition probabilities. The key difference
from a regular Markov chain is that the state trajectory s0,

si! • • • i st, ■ ■ ■ of a HMM is not
directly observable. At each time step t, the HMM is thought of emitting an observable
entity Ot, which can have either a discrete or a continuous value (for discrete or continuous
HMMs, respectively). The observation Ot again depends upon the state st in a probabilistic
way, which makes the model double-stochastic. Formally, a discrete HMM is defined as a
tuple A = (A,B,w), where At-j is the probability that state j follows state i, 5,-^ is the
probability of observing symbol k in state i, and TT{ is the probability of i being the initial
state.

74

HMMs are well suited for handling two common difficulties in pattern recognition: spatial
(or temporal) pattern distortions are captured by the non-deterministic internal finite-state
machine, and the uncertainty of the locally observed signals are modeled by the observation
probability distributions. During classification, the HMM uses all the available local infor-
mation and interprets the subparts of a pattern in the context of a globally optimal solution.
In case of the Viterbi classifier, we can obtain an implicit segmentation of the pattern into
meaningful constituents from the corresponding optimal state trajectory, without the need
for ever declaring explicitly what and where these constituents are. The considerable suc-
cess of HMMs in many speech recognition applications is mainly due to these properties, in
addition to their simplicity and efficiency.

While HMMs have a lot of appeal as a pattern recognition formalism, they are primarily
suited for sequential, one-dimensional patterns and it is not obvious how HMMs can be
applied for processing 2-D patterns. Markov Random Fields (MRF) and Hidden Markov
Random Fields (HMRF) have been proposed as 2-D extensions of the original Markov chain
model and the HMM, respectively. However, the MRF models lack efficient classification
and learning algorithms and their impact in 2-D processing has been restricted to image
restoration and pixel labeling. It has not been shown yet that MRFs are useful for structural
pattern classification in the context of object recognition. Our approach is to apply HMMs in
their original one-dimensional formulation by converting the image into a suitable sequence
of observations.

The two key issues related to HMM algorithms for our purpose are (a) the classification of
a given observation sequence, and (b) training the model from sample observations. In the
classification problem, we are looking for the likelihood that a given observation sequence
O = (OO,OI,...OT-I) was generated by a particular HMM A. Fortunately, there are
simple and efficient algorithms for computing this likelihood, such as the Forward-Backward
procedure and the classical Viterbi algorithm [106, 84]. Both algorithms are based on the
dynamic programming principle and are linear in the length of the observation sequence for
a given model. The Forward-Backward procedure computes the overall probability P(0|A)
for all possible state sequences S = (s0,si,. ..ST-I), while the Viterbi algorithm computes
the probability of the "best" of all possible state sequence max; P(0|A, S(). The training
problem consists of finding a HMM A' that maximizes the likelihood of observing a given
set of observation sequences {O^}. While there is no analytical solution to this problem,
an iterative learning procedure with proven convergence properties exists in the form of the
Baum-Welch reestimation algorithm [84].

75

Image

I
Gabor Wavelet Preprocessing

I

Figure 4.2: Principal compo-
nents of the HMM-based signal-to-
symbol conversion approach for ob-
ject indexing.

Vector Quantization

Observation Sequence Extraction

I
HMM-Based Sequence Classification

J
Object Index

4.3 Indexing Approach

Figure 4.2 shows the principal components of our approach. The input of the HMM-based
structural analysis process is obtained from a set of oriented Gabor filters, which form a
multi-scale decomposition of the image signal. Subsequently, the Gabor feature vectors
are encoded to a discrete set of symbols by vector quantization (VQ). This is followed
by the extraction of 1-D sequences from the 2-D image data, for which we describe several
alternatives. Our approach is to extract observation sequences using both image and spatial
constraints. HMMs are used to describe the shapes of individual subparts of objects, thus
allowing recognition under partial occlusion. The identification of subparts is used for
indexing into a given model base, which is the basis for final recognition. Both the VQ
codebook and the HMM model parameters are learned directly from image examples in a

supervised fashion.

76

4.3.1 Gabor Wavelet Features

Preprocessing of the image data consists of applying a set of hierarchical Gabor wavelet
filters with Nw log-spaced center frequencies u>k and N^ regularly spaced orientations </>/.
For each pixel location x;, we compute the values

JkM

where / denotes the original image, (G^fc ^G' ^) is a Gabor quadrature filter pair with
center frequency u>k and modulation orientation <f>i, and * is the convolution operator. G* .
and G~ , are the cosine and the sine Gabor filter kernels, respectively. The spacing in

frequency is Aw, such that uk = u0 • A^ for 1 < k < Nu, and the spacing in orientation is
A^ = ^-, such that 4>i = (f>0 + / • A^, for 1 < / < Nj,, for given w0, Nw, cj>0, and Nj,. For

typical values of N^ — 4, Aw = 2, and Nu = 4, we obtain a 32-element Gabor probe G[i] for
each image location x,-. Figure 4.3 shows the cosine and sine responses of four filters with
different center frequencies but identical orientation applied to the image in Figure 4.1.

Each individual Gabor probe at an image location x,- is a multi-scale description of the
structural image properties around the point x,-. The diameter of the region covered by each
Gabor filter is inversely proportional to the filter's center frequency iOk- Thus in a sense,
the "larger" filters provide the structural context for the smaller ones. Notice that all filters
are applied to each image position, which means that at least for the low-frequency Gabor
filters the resulting output function is highly over-sampled. While the amount of data is
considerably larger than with a traditional pyramid representation, the advantage of this
scheme is that there is no need for spatial interpolation.

4.3.2 Encoding of Image Data

To produce the observation sequences required by a discrete HMM, we apply vector quan-
tization to the continuous-valued Gabor probes. Each Gabor feature vector y = G[i] is
mapped to a discrete set of symbols: y —>■ q(y) G [0,1/ - 1], for a X-level codebook. The
issues in VQ are the choice of a suitable distance (distortion) measure, the codebook design,
and the encoding efficiency. For the choice of a distance measure we have two basic alterna-
tives: (a) group the Gabor probes by using the Euclidean (or similar) distance measure or
(b) use a "smart" inter-vector distance measure that takes care of Gabor probe similarities
over varying rotation and scale.

In the first approach (which we use), the burden of providing scale and rotation invariance
lies on the subsequent HMM processing. In the second case, we would need a much more

77

sophisticated distance measure. Given two Gabor probes a and b, the task would be to find
the maximum similarity between a and b under all possible rotations and scale changes.
For the chosen vector structure, a scale change would roughly be equivalent to a blockwise
shift of elements up or down the vector, while a change in orientation would correspond
to a simultaneous cyclic shift within each of the scale blocks. Clustering is used for the
codebook design. Using the Euclidean distance in the multi-dimensional Gabor feature
space, d(y,y) = ||y - y||2 allows the use of fc-means and similar clustering algorithms for
building the codebook. Currently we are use a linear codebook consisting of L = 128 cluster
entries, which will be replaced by a larger tree-structured codebook for faster quantization
in the future. Figure 4.4 illustrates the result of applying VQ to the Gabor decomposition
partly shown in Figure 4.3.

4.3.3 Sequentialization of Image Probes

The main problem is how to use the HMM formalism, which is geared towards one-
dimensional sequence analysis, in the 2-D domain. One solution is the use of the objects'
contours, which is particularly practical when the contours are closed [51], or the "pseudo-
2D" version of HMMs that was used in [3] for printed character recognition. Both solutions
for sequentializing image observations are not adequate for our problem.

The sequences we want to generate should (a) extend over the interior of the object,
(b) they should be based on local image features (coded Gabor probes) without previous
segmentation, and (c) they should not require the object to be entirely visible for successful
indexing. Our model-base consists of a set of sequence prototypes, each represented by
its corresponding HMM. The characteristic sequences for each object (or object view) are
learned from real images. For model indexing, observation sequences are extracted from
the given image and matched to the set of sequence prototypes. However, a key problem
is how to find sequences of image locations during indexing that have a high likelihood of
matching those stored in the HMM model base. Assuming that we are given (from the
preceding detection stage, e.g.) a region of interest supposed to contain a known object,
then some of the alternatives for producing observation sequences are:

1. Random walk — Start at an arbitrary location within the search region and perform a
constrained random walk covering the search region. Although there is a chance that
this process will eventually produce subsequences that coincide with existing model
sequences, this technique is not efficient.

2. Spatial constraints — Using spatial constraints is one way of increasing the likelihood
that sequences recovered from the region of interest have a match in the model base.

78

A very simple spatial constraint would be to move only horizontally, vertically, and
diagonally over single pixel increments, regardless of the image contents. This creates
problems with rotated patterns.

3. Image constraints — An alternative to using the underlying image raster, one could
use the information in the image itself for constraining the sequentialization process.
For example, one could extract local energy peaks as "control points" of the sequences
and use a fixed but non-deterministic decision rule to move from one control point to
the next. One could then use either Gabor information at the control points alone or
include additional data between those points as we do here.

4. Model constraints — To further increase the likelihood of generating sequences that
match the model one can make the sequencing itself model-dependent. In this scheme,
the decision which successor probe to select depends upon the state of one or more
HMMs in the model base. This means that the sequence selection and matching steps
become intimately coupled. One way of formalizing this combined process is a Markov
Decision process. In this case we can still use dynamic programming as in the original
Viterbi decoding algorithm, but the sequence selection adds a spatial dimension to
the trellis search space (see [12] for details).

Our current implementation is based on a combination of spatial constraints and image
constraints. Image constraints are used to locate potential terminal points of Gabor probe
sequences. In particular, we use local maxima of the Gabor energy £GH = ||G[i]||2 to
isolate such candidate points. Then, pairs of potential terminal points are connected by a
straight line and the Gabor probes along this line are collected from the encoded (vector-
quantized) data into discrete observation sequences, which we call Gabor streaks. The
straight line serves as a simple spatial constraint for extracting the observation sequences
that is independent of the image contents. The process for selecting pairs of terminal points
is based on a model-independent heuristic decision rule that takes into account (a) the local
Gabor energy value, (b) the distance between the points, (c) the number of streaks ending
in a single point, and (d) the resulting local density of Gabor streaks. Of course, the same
rule is applied during learning and recognition. Redundancy in the object representation is
supposed to compensate for the uncertainties involved in this bottom-up process. Figure 4.5
shows an example for terminal point and subsequent Gabor streak extraction.

4.3.4 Sequence Classification and Indexing

In our current implementation, the selection of observation sequences is independent of
the sequence classification. The extracted Gabor streaks are fed into all HMMs and the

79

model that maximizes the probability of observing the given sequence is selected as the best
match (Figure 4.6). If the maximum probability is below a certain threshold, the observation
sequence is classified as "unknown". The use of dynamic programming schemes, such as
the Viterbi algorithm, makes this process computationally efficient. Moreover, the matching
could proceed in parallel for all HMMs.

4.4 HMM Model Base

For the purpose of indexing, an object aspect is represented by a set of Gabor streaks, each
describing a certain part of the object's appearance. Indexing is accomplished by associating
one or more Gabor streaks within a given region of interest with a particular object aspect,
thus allowing indexing under partial object occlusion. The particular type of HMM used
for representing Gabor streaks has a typical forward structure with five states, as shown in
Figure 4.7. This type of model enforces an ordered left-to-right state sequence but allows
individual states to be extended over several observation frames or to be skipped.

Gabor streak HMMs are acquired in a supervised learning process from real image data.
For a given pair of terminal points, the model for the corresponding Gabor streak is com-
puted by (a) randomly disturbing the coordinates of the terminal points, (b) extracting the
corresponding disturbed streaks, and (c) feeding them into the Baum-Welch reestimation
algorithm. This makes the model tolerant against positioning errors of the terminal points
during indexing. For example, 30 learning trials on the streak connecting the terminal
points 1 and 7 in Figure 4.5(b) using the codebook shown in Figure 4.4(c) resulted in the
state transition probability matrix

A(l,7)

which shows the left-to-right structure of the model and the emergence of distinct states.

4.5 Future Work

Our current work is focussed on the implementation of the model-dependent sequential-
ization process and a multi-aspect/multi-object HMM model base for target indexing and
recognition. Near-term goals include the incorporation of multiple VQ codebooks and non-
stationary HMMs to increase the robustness of the approach.

5-10-11 0.999 0.5- IO-6 1 • IO-32 0.0

3- IO-27 0.647 0.353 9 • IO-7 0.0
6- 10-34 4- 10-18 0.055 0.945 0.0

3 • 10-60 1 • io-36 7 • IO-29 0.950 0.049
0.0 1 • io-68 2 • IO"47 8- IO"24 1.0

80

1
% ^

,n,"

*** ^"***1 ̂ -*^ ™ '■'^n *. ;

Figure 4.3: Cosine (left) and sine (right) comRonents of the Gabor filter response for one out of
four orientations <f>i and four different center frequencies UQ — 0.057T, wi = 0.17T, W2 = 0.27T, and
ÜJ3 = 0.4-7T.

I
I
I

(a) (b)

(c) (d)

Figure 4.4: Result of vector quantization applied to the Gabor decomposition shown in Figure 4.3,
using two different codebooks with 128 entries each (a-b). The corresponding 128 32-dimensional
codebook vectors (c-d), where each vector is shown as a vertical column.

82

(a) (b)

Figure 4.5: Possible terminal points obtained at local maxima of the Gabor energy function (a).
Gabor probe sequences (streaks) are formed by collecting encoded Gabor probes along straight lines
between terminal points (b).

Given
Observation
Sequence

Model 1

Model 2

Model 3

Model n

Max. Likelihood
Decision

Best Model
I

State Sequence

Figure 4.6: Using multiple HMMs for classifying an observation sequence, for the case that the
sequentialization and classification are decoupled.

83

I

Figure 4.7: State transition diagram for the forward-type HMM used to represent Gabor probe
sequences. State transitions not shown in the diagram are assigned zero probabilities.

84

Chapter 5

Closed-Loop Object Recognition
Using Reinforcement Learning

5.1 Introduction

Image segmentation, feature extraction and model matching are the key building blocks of
a computer vision system for model-based object recognition [27, 74]. The tasks performed
by these building blocks are characterized as the low (segmentation), intermediate (feature
extraction) and high (model matching) levels of computer vision. The goal of image seg-
mentation is to extract meaningful objects from an image and it is essentially a pixel-based
processing. Model matching uses a representation such as shape features obtained at the
intermediate level for recognition. It requires explicit shape models of the object to be rec-
ognized. There is an abstraction of image information as we move from low to high levels
and the processing becomes more knowledge based or goal directed.

Current computer vision algorithms for object recognition do not achieve good perfor-
mance for practical applications since they do not adapt to the changing environment [14].
For object recognition systems to perform effectively under changing environmental condi-
tions, it is essential to combine the interaction between the low and high level components
of a vision system. There are several problems with current model-based object recognition
systems that are mostly open-loop or filter type systems.

1. The fixed set of parameters used in various vision algorithms used for object recogni-
tion lead to undraceful degradation in performance.

2. The image segmentation, feature extraction and selection are generally carried out

85

as preprocessing steps to object recognition algorithms for model matching. These
steps totally ignore the effects of the earlier results (image segmentation and feature
extraction) on the future performance of the recognition algorithm.

3. Generally the criteria used for segmentation and feature extraction require elaborate
human designs. When the conditions for which they are designed are changed slightly,
these algorithms may fail. Furthermore, the criteria themselves can be a subject of
debate [16].

4. Object recognition is a process of making sequences of decisions, i.e., applying vari-
ous image analysis algorithms. Often the usefulness of a decision or the results of an
individual algorithm can only be determined by the final outcome (e.g. matching con-
fidence) of the recognition process. This is also known as "vision-complete" problem
[26], i.e., one cannot really assign labels to the image without the knowledge of which
parts of the image correspond to what objects.

Object recognition systems whose decision criteria for image segmentation and feature
extraction, etc. are developed autonomously from a reinforcement signal of the final recog-
nition might transcend all the above problems.

In this chapter, we present an approach that takes the output of the recognition algorithm
and uses it as a feedback in a reinforcement learning framework to influence the performance
of the algorithm used for image segmentation. The recognition performance is improved
over time with this method. The novelty of the approach is that it includes the matching
or recognition component as part of the evaluation function for image segmentation in
a systematic way. The additional strength of the approach is that the system develops
its independent decision criteria (segmentation parameters) to best serve the underlying
recognition task. It should be emphasized that our interest is not in a simple mixture of
learning and computer vision, but rather in the principled integration of the two fields at
the algorithmic level.

Our work is most closely related to the work by Bhanu and Lee [16], where they describe
a system that uses genetic algorithms for learning segmentation parameters1. However, the
recognition algorithm is not part of the evaluation function for segmentation in their system.
The genetic algorithms simply search for a set of parameters that optimize a prespecified
evaluation function which may not best serve the overall goal of robust object recognition.
Furthermore, they assume that the location of the object in the image is known. In our
work, we do not make such an assumption. We use explicit geometric model of an object,
represented by its polygonal approximation, to recognize it in the image.

'Specifically, the PHOENIX's [60] parameters.

86

Confidence Level for Matching

Figure 5.1: Conventional multi-level system for object recognition.

Section 5.2 describes a general framework for reinforcement learning-based adaptive im-
age segmentation. Section 5.3 describes the reinforcement learning paradigm and the par-
ticular reinforcement learning algorithm employed in our system. Section 5.4 presents the
experimental results evaluating the system and section 5.5 concludes the chapter. Appen-
dices A and B describe briefly the segmentation and the matching algorithms that have
been used to perform experiments reported in section er.

5.2 Reinforcement Learning System for Segmentation
Parameter Estimation

5.2.1 The Problem

Consider the problem of recognizing an object in an input image, assuming that the model
of the object is given and that the precise location of the object in the image is unknown.

The conventional method, shown in Figure 5.1, for the recognition problem is to first

87

segment the input image, then extract and select appropriate features from the segmented
image, and finally perform model matching using these features. If we assume that the
matching algorithm produces a real valued output indicating the degree of success upon its
completion, then it is natural to use this real valued output as feedback to influence the
performance of segmentation and feature extraction so as to bring about system's earlier
decisions favorable for more accurate model matching. The rest of the chapter describes a
reinforcement learning-based vision system to achieve just that.

5.2.2 Learning to Segment images

Our current investigation into reinforcement learning-based vision systems is focused on
the problem of learning to segment images. An important characteristic of our approach is
that the segmentation process takes into account the biases of the recognition algorithm to
develop its own decision strategies. As a result, more efficient recognition performance can
be expected.

Image Segmentation

We begin with image segmentation [50] because it is an extremely important and difficult
low-level task. All subsequent interpretation tasks including object detection, feature ex-
traction, object recognition and classification rely heavily on the quality of the segmentation
process. The difficulty arises for image segmentation when only local image properties are
used to define the region-of-interest for each individual objects. It is known [36] that cor-
rect localization may not always be possible. Thus, image segmentation cannot be done by
grouping parts with similar image properties in a purely bottom-up fashion. Difficulties also
arise when segmentation performance needs to be adapted to the changes in image quality,
which is affected by variations in environmental conditions, imaging devices, time of day,
etc. The following are the key characteristics [16] of the image segmentation problem:

• When presented with a new image, selecting the appropriate set of algorithm param-
eters is the key to effectively segmenting the image.

• The parameters within most segmentation algorithms typically interact in a complex,
non-linear fashion, which makes it difficult or impossible to model the parameters'
behavior analytically.

• The variations between images cause changes in the segmentation results, the objective
function that represents segmentation quality varies from image to image. Also, there
may not be a consensus on segmentation quality measures.

Confidence Level for Matching

Figure 5.2: Reinforcement learning-based system for object recognition.

Our Approach

Figure 5.2 depicts the conceptual diagram of our reinforcement learning-based object
recognition system that addresses the parameter selection problem encountered in image
segmentation task by using the recognition algorithm itself as part of the evaluation function
for image segmentation. Note that the reinforcement learning component employs a partic-
ular reinforcement learning algorithm which will be described in the next section. Figure 5.3
shows the main steps of the algorithm we use, where the algorithm terminates when either
the number of iterations reaches a prespecified value (N) or the recognition confidence level
(r) has exceeded a given threshold, called Rth- In the event that the number of iterations
has exceeded N, we will say that the object is not present in the image. Also for simplicity
we assume that only one instance of the model is present in the image. Multiple instances
of the model can be recognized by slight modification of the algorithm.

89

• LOOP:

1. For each image i in the training set do

(a) Segment image i using current segmentation parameters

(b) Perform noise clean up

(c) Get segmented regions (also called blobs or connected compo-
nents)

(d) Perform feature extraction for each blob to obtain token sets

(e) Compute the matching of each token set against stored model
and return the highest confidence level, r

(f) If r > Rth then exit

(g) Obtain new parameters for the segmentation algorithm using
r as reinforcement for the reinforcement learning algorithm

• UNTIL number of iterations is equal to N

Figure 5.3: Main Steps of the Reinforcement Learning-Based Object Recognition Al-
gorithm.

5.3 Reinforcement Learning

In this section we begin with a brief overview of the reinforcement learning technique. We
then describe reinforcement learning algorithms applicable to our task and the modifications
of these algorithms to effectively solve the problem identified in section 5.2.1.

Reinforcement learning is a framework for learning to make sequences of decisions in an
environment. In this framework, a learning system is given at each time step inputs de-
scribing its environment. The system then makes a decision based on these inputs, thereby
causing the environment to deliver to the system a reinforcement. The value of this rein-
forcement depends on the environmental state, the system's decision, and possibly random
disturbances. In general, reinforcement measuring the consequences of a decision can emerge
at a multitude of times after the decision is made. A distinction can be made between

90

associative and non-associative reinforcement learning. In the non-associative paradigm,
reinforcement is the only information the system receives from its environment. Whereas,
in the associative paradigm, the system receives input information that indicates the state
of its environment as well as reinforcement. In such learning systems, a "state" is a unique
representation of all previous inputs to a system. In computer vision, this state informa-
tion corresponds to current input image and our object recognition applications require
us to take into account the changes appearing in the input images. The objective of the
system is to select sequences of decisions to maximize the sum of future reinforcement (pos-
sibly discounted) over time. It is interesting to note that for a given state an associative
reinforcement learning problem becomes a non-associative learning problem.

As noted above, a complication to reinforcement learning is the timing of reinforcement.
In simple tasks, the system receives, after each decision, reinforcement indicating the good-
ness of that decision. Immediate reinforcement occurs commonly in function optimization
tasks. A well-understood method in immediate reinforcement learning is the REINFORCE
algorithms of Williams [108], a class of connectionist reinforcement learning algorithms,
that perform stochastic hill-climbing.

In more complex tasks, however, reinforcement is often temporally delayed, occurring
only after the execution of a sequence of decisions. Delayed reinforcement learning is im-
portant because in many problem domains, immediate reinforcement regarding the value
of a decision may not always be available. For example, in object recognition, the good-
ness of segmentation is not known until the recognition decision has been made. Delayed
reinforcement learning is attractive and can play important role in machine vision.

The most effective approach to date to delayed reinforcement learning is the temporal
difference learning method of Sutton [105], a class of useful computational procedures for
solving the temporal credit assignment problem. The key idea behind temporal difference
learning is that the value of a state should be regressed towards the weighted average of
the values of its successors, where the weightings reflect the conditional probabilities of the
successors. A well-studied form of temporal difference learning is Watkins' Q-learning [107],
a Monte-Carlo method that approximates dynamic programming. For further details, see
[107, 77]. The REINFORCE algorithms are the main focus in this chapter since reinforce-
ment (matching confidence level) regarding segmentation performance is immediate.

5.3.1 REINFORCE Algorithms

The particular class of reinforcement learning algorithms employed in our object recognition
system is the REINFORCE algorithms. It is a class of connectionist reinforcement learning
algorithms developed by Williams [108], where units in such a network are Bernoulli quasi-

91

linear units, in that the output of such a unit is either 0 or 1, determined stochastically
using the Bernoulli distribution with parameter p = /(s), where / is the logistic function,

and

/(s) = l/(l + exp(-s))

S = ^2 WiXi

is the usual weighted summation of input values to that unit. For such a unit, p represents
its probability of choosing 1 as its output value. Figure 5.4 depicts such a unit.

Figure 5.4: Bernoulli Quasilinear Unit

In the general reinforcement learning paradigm, the network generates an output pattern
and the environment responds by providing the reinforcement r as its evaluation of that
output pattern, which is then used to drive the weight changes according to the particular
reinforcement learning algorithm being used by the network. For the Bernoulli quasilinear
units used in this research, the REINFORCE algorithm we use prescribes weight increments
equal to

Awij = aij(r - bij)(yi - pi)xj, (5.1)

where a,-j is a positive learning rate (possibly different for each weight), 6,-j serves as a
reinforcement baseline (which can also be different for each weight), and i = l,...,n,

92

i

j = l,...,m. n and m are the number of the units in the network and the number of
features for each input, respectively. In this chapter, we consider only algorithms having
the form

Awij = a(r - b)(y{ - pi)xj (5.2)

where o.^ = a and bij — b for all i and j. Xj is the input to the Bernoulli unit and y; is the
output of the ith Bernoulli unit, pi is an internal parameter to a Bernoulli random number
generator and it is computed according to (5.4). It can be shown [108] that, regardless of
how b is computed, whenever it does not depend on the immediately received reinforcement
value r, such an algorithm satisfies

£{AW|W} = aVw£{r|W} (5.3)

where E denotes the expectation operator, W represents the weight matrix of the network,
and AW is the change of the weight matrix. A reinforcement learning algorithm satisfying
(5.3) can be loosely described as having the property that it statistically climbs the gradient
of expected reinforcement in weight space. For extensive discussions of these algorithms,
see [108, 109]. Next two subsections describe the particular network and the REINFORCE
algorithm used in the experiments reported in this chapter.

5.3.2 The Team Network

We use a very simple form of trial generating network in which all of the units are output
units and there are no interconnections between them. This degenerate class of network
corresponds to what is called a team of automata in the literature on stochastic learning
automata [72]. We, therefore, call these networks as teams of Bernoulli quasilinear units.
Figure 5.5 depicts the team network used here, which corresponds directly to the reinforce-
ment learning component in Figure 5.2. Each segmentation parameter is represented by a
set of Bernoulli quasilinear units and the output of each unit is binary as we have described
earlier.

For any Bernoulli quasilinear unit, the probability that it produces a 1 on any particular
trial given the value of the weight matrix W (size n by ra)is

Pr {Vl = 1|W} = Pi = f(si) = i +
1

e_s< (5.4)

where s,- = J2j wijxj- Because all units pick their outputs independently, it follows that for
such a team of Bernoulli quasilinear units the probability of any particular output vector
y(i), corresponding to an instance of segmentation parameters, conditioned on the current

93

New Parameters

Segmentation Parameter 1 Segmentation Parameter n

TEAM OF BERNOULLI QJjASILINEAR UNITS

Input Image r = Confidence Level

Figure 5.5: Team of Bernoulli units for learning segmentation parameters.

value of the weight matrix W is given by

Pr{y|W}= I] Vf{l-Vi)l~m.
i€{l,~,n}

(5.5)

The weights Wij are adjusted according to the particular learning algorithm used. We
note that when s,- = 0 and hence pi = 0.5, thus the unit is equally likely to pick y; either 0
or 1, while increasing S{ makes a 1 more likely. Adjusting the weights in a team of Bernoulli
quasilinear units is thus tantamount to adjusting the probabilities (p;'s) for the individual
units.

Note that, except bias terms, there are no input connections in the team networks
experimented in [109]. In contrast, the team network described here does have input weights
which play the role of long-term memory in associative learning tasks.

94

5.3.3 The Team Algorithm Used

The algorithm we used with the team architecture has the following general form: At the tth

time step, after generating output y(t) and receiving reinforcement r(t), i.e., the confidence
level indicating the matching result, increment each weight Wij by

Awij{t) = ap(t)eij(t)xj - 5wij{t), (5.6)

where a, the learning rate, and 8, the weight decay rate, are parameters of the algorithm.
p is called the reinforcement factor and e,-j the eligibility of the weight Wij [108]. Generally,
the eligility of a weight indicates the extent to which the activity at the input of the weight
was connected in the past with unit output activity. The reinforcement factor is computed
according to

p(t) = r(t)-7(t-l), (5.7)

where r(t) is the exponentially weighted average, or trace, of prior reinforcement values

r(t) = 7r(i - 1) + (1 - 7)r(t) t > 1, (5.8)

with 7(0) = 0. The trace parameter 7 was set equal to 0.9 for all the experiments reported
here. Finally, we considered the following form of eligibility

eij(t) = yi(t)-yi(t-l), (5.9)

where y{(t) is an average of past values of y; computed by the same exponential weighting
scheme used for 7. That is,

yt(t) = jyt(t-i) + (i-i)yi(t). (5.10)

Superior performance with this form of eligibility was reported in the experiments performed
in [109] for function optimization. For other forms of eligibility, see [109].

The use of weight decay is chosen as a simple heuristic method to force sustained explo-
ration of the weight space since it was found that REINFORCE algorithms without weight
decay always seemed to converge. It is argued in [109] that having weight decay (the second
term Swij(t) in Equation (5.6) is very closely related to having a nonzero mutation rate at
a particular allele (feature value) in a genetic algorithm [44]. The size of the weight decay
rate 8 was chosen to be 0.01 in all our experiments. Note that there are other ways to
force sustained exploration. One possibility is to maximize a linear combination of system's
entropy and reinforcement. We omit here the detailed analysis of the method except com-
menting that such a strategy seeks not only a particular region of the space having high
reinforcement values, but also a variety of such high value regions. For further details, see
[109].

95

5.3.4 Implementation of the Algorithm

A slightly different training strategy from that described in Figure 5.3 was used in the
experiments reported here. Instead of looping through every images in the training set,
the training procedure samples images proportional to the level of matching confidence the
current system achieves. That is, the lowerer the matching confidence the system gets on an
image, the more likely the image will be sampled. In this way training is focused on those
images having the lowest matching confidence, and thus faster performance improvement
can be achieved. A similar technique is also adopted in [33]. Figure 5.6 shows the main steps
of the proportional training algorithm, where MAXCONFID is the maximum confidence
level the system can achieve, i.e., when a perfect matching occurs.

5.4 Experimental Results

This section describes experimental results evaluating the performance of our system on
two sets of color images, one of which is indoor and the other is outdoor.

The PHOENIX algorithm [60] was chosen as the image segmentation component in our
system because it is a well-known method for the segmentation of color images with a
number of adjustable parameters. It has been the subject of several Ph.D. theses [82, 102].
PHOENIX works by splitting regions using histogram for color features. Appendix 5.5
provides a brief overview of the algorithm. Note that any segmentation algorithm with
adjustable parameters can be used in our approach.

The PHOENIX algorithm has a total of fourteen adjustable parameters. The four most
critical ones that affect the overall results of the segmentation process are used in learning.
These parameters are Hsmooth, Maxmin, Splitmin, and Height. Hsmooth is the width of
the histogram smoothing window, where smoothing is performed with a uniformly weighted
moving average. Maxmin defines the peak-to-valley height ratio threshold. Any interval
(see Appendix 5.5) whose peak height to higher shoulder ratio is less than this threshold is
merged with the neighbor on the side of the higher shoulder. Splitmin defines the minimum
size for a region to be automatically considered for splitting. This is an absolute value,
not a percentage of the image area. Height is the minimum acceptable peak height as a
percentage of the second highest peak. The team algorithm searches for a combination of
these parameters that will give rise to a segmentation from which the best recognition can
be achieved.

The ranges for each of these parameters are the same as those used in [16]. Table 5.1
shows sample ranges for each of these parameters. The resulting search space is about one
million sample points.

96

• LOOP:

1. For each image i in the training set do

(a) Compute matching confidence for image i: CONFIDi

(b) m = MAXCONFID - CONFIDi

(c) If J2i ni is 0, then terminate.

(d) proportion

2. Sample image i according to proportiorii and do

(a) Segment image i using current segmentation parameters

(b) Perform noise clean up

(c) Get segmented regions (also called blobs or connected compo-
nents)

(d) Perform feature extraction for each blob to obtain token sets

(e) Compute the matching of each token set against stored model
and return the highest confidence level, r

(f) If r > Rth then exit

(g) Obtain new parameters for the segmentation algorithm using
r as reinforcement for the reinforcement learning algorithm

• UNTIL number of iterations is equal to N

Figure 5.6: Main Steps of the Proportional Training Algorithm.

Each of the PHOENIX parameters is represented using 5 bit Gray code which has the
advantage over simple binary code in that only one bit changes between representations of
two consecutive numbers. One reason for using the binary representation is its usefulness as
a model of certain types of distributed adaptive decision-making. Another reason is that it

97

Table 5.1: Sample ranges for selected PHOENIX parameters.

Parameter Sampling Formula Test Range
Hsmooth:

hsindex e [0 : 31]
hsmooth=l + 2 * hsindex 1-63

Maxmin:
mmindex G [0 : 31]

ep=ln(100) + 0.05 * mmindex
maxmin = exp(ep) + 0.5

100 - 471

Splitmin:
smindex € [0 : 31]

splitmin=9 + 2 * smindex 9-71

Height:
htindex e [0 : 31]

height=l + 2 * htindex 1-63

offers a combinatorially advantageous way of approaching learning problems having a large
search space. While the same task could be learned in the original parameter space, for
many types of problems, including image segmentation, the binary representation can be
expected to learn much faster. Since there are 4 parameters, we have a total of 20 Bernoulli
quasilinear units and each parameter corresponds to the outputs of 5 units.

The feature extraction consists of finding polygon approximation tokens for each of the
regions obtained after image segmentation. The polygon approximation is obtained using
a split and merge technique [19] that has a fixed set of parameters.

Object recognition employs a cluster-structure matching algorithm [19] which is based
on the clustering of translational and rotational transformation between the object and
the model for recognizing 2-D and 3-D objects. A brief description of the algorithm is
given in Appendix 5.5. The algorithm takes as input two sets of tokens, one of which
represents the stored model and the other represents the input region to be recognized. It
then performs topological matching between the two token sets and computes a real number
that indicates the confidence level of the matching process. This confidence level is then
used as a reinforcement signal to drive the team algorithm.

It is important to note that, in the current implementation of the system, the cluster-
structure matching algorithm does not have the knowledge of actual target location in the
image. It simply attempts to match the stored model against the polygonal approximation
of each blob in the segmented image whose size is at least 80% of the size of the model, and
at the same time does not exceed it by more than 20%. The confidence level returned is
the highest value ever obtained during matching.

It is worth pointing out that, during learning, the weights are updated after each presen-

98

tation of an input image. This is in direct analogy to the typical weight update procedure
in connectionist networks where weights are updated according to the stochastic gradient
or incremental procedure instead of the total gradient rule [61]. That is, updates take place
after each presentation of a single exampler without averaging over the whole training set.
Both empirical and theoretical studies show that the stochastic gradient rule converges sig-
nificantly faster than the total gradient rule, especially when training set contains redundant
information.

Finally, as a comparison, the segmentation results with the PHOENIX algorithm using
default parameters are also obtained for feature extraction and recognition on the same
tasks.

5.4.1 Results on Indoor Images

The first segmentation task whose experimental results we report here is a sequence
of indoor color images (160 by 120 pixels) having simple geometric objects with varying
lighting and motion conditions. These images are shown in Figure 5.7, where, from left to
right, images are moving away from the camera, and within each column, lighting conditions
deteriorate from top to bottom. The training data consist of the images in the first column (4
images), whereas the testing data come from the rest of the images (8 images). The objective
of the task is to find a set of PHOENIX's parameters that give rise to a segmentation of
the input image which, after appropriate feature extraction, will result in the recognition
of the triangular object. The model of the triangular object is represented by a polygonal
approximation of its shape. The threshold for matching confidence in this simple case
was set to 100%. Note that, unlike previous work on image segmentation, the criteria
measuring image segmentation quality here are completely determined by the matching
algorithm itself.

Each unit in the team network has a total of 8 input weights, each of which takes an
average gray value of input on a 60 by 40 neighborhood on the input image plane of 120
by 160 pixels. This input plane is the luminance image of the corresponding color image.
Note that in this experiment the average is normalized to lie between -1 and 1. For weights
that are adjacent in a unit, their receptive fields are at least 40 pixels apart in the input
image. Thus, the input image is undersampled, which in turn greatly reduces the number
of weights in the network. The motivation is that variations in lighting need not be adapted
with high resolution.

Figure 5.8 shows the segmentation performance (both training and testing) of the PHOENIX
algorithm with learned parameters on the images shown in Figure 5.7. The training results
in Figure 5.8 are obtained after a mean value (over 10 runs) of 103 passes through the

99

(a) (b) (c)

(d) (e) (f)

(s) (h) 0)

Ü) (k) (1)

Figure 5.7: Twelve color images having simple geometric objects.

training data. Figure 5.9 shows the average confidence received by the system over time
during training. Figure 5.10 shows the trajectory of each of the four Hsmooth, Maxmin,
Splitmin, and Height parameters during training in a typical run on a particular image (in
this case it is the third image in the first column of Figure 5.7, i.e., 5.7(g)). Note that no
attempt was made to determine if the set of parameters giving rise to the final recognition

is unique.

When the segmentation parameters obtained after training were applied to the images
in the testing set, recognition results for images 5.7(b), 5.7(c), 5.7(f), 5.7(i) and 5.7(k) are

100

(a)

(d)

(g)

(b) (c)

(e) (f)

(h) 0)

Figure 5.8: Segmentation performance of the PHOENIX algorithm with learned pa-
rameters.

acceptable. However, recognition failed for images 5.7(e), 5.7(h) and 5.7(1). If we allow
learning to continue on these three images, experiments have been performed which show
that successful recognition can be achieved for all testing images in much less time (less
than 50%) compared to the time taken for training on the images shown in the first column
of Figure 5.7.

In comparison, the PHOENIX algorithm with default parameter setting was also run

101

100-

>
a)
_l
0)
u
c
a)

»t— c
o o

50-

160

Iteration
320

Figure 5.9: Average confidence received over time during training.

on the same images. Figure 5.11 shows the samples of the segmentation performance of
the PHOENIX algorithm with default parameters on the images in the first row of Figure
5.7, i.e, images 5.7((a)), 5.7(b), and 5.7 (c). These default parameters were obtained in
[60] after extensive tests. We omit the details of the experiment, but note that this default
parameter setting resulted in a total matching failure.

5.4.2 Results on Outdoor Images

The second segmentation task involves a sequence of 10 outdoor color images obtained under
varying environmental conditions, two of which are shown in Figure 5.12. These images are
collected approximately every 15 minutes over ~ 2 and 1/2 hour period [16]. The images
exhibit varying shadow and reflection on the car as the position of the sun changed and
clouds came in and out the field of view of the camera that had auto iris adjustment turned
on. The overall goal is to recognize the car in the image. The original images are digitized at
480 by 480 pixels in size and are then subsampled to produce 120 by 120 pixel images. Five
of these odd-numbered images are used as training data and five even-numbered images as
testing data.

Similar to the team network for the indoor images, each unit here has a total of 9 input
weights, each of which takes an average gray value of input on a 40 by 40 neighborhood on
the input image plane of 120 by 120 pixels. These averages are normalized to lie between -1
and 1. Polygonal approximation of the car shown in Figure 5.13 is used as the model in the
cluster-structure matching algorithm. It was extracted manually in an interactive session

102

63-

Hsmooth

47-h

118-

100-

Maxmin

Iterations
23

Iterations
46

(a) (b)

71-,
67"

631

Splitmin
16-

23
Iterations

T
46

Height

23
Iterations

46

(c) (d)

Figure 5.10: Trajectories for a particular run for each of the four parameters Hsmooth,
Maxmin, Splitmin, and Height during training on a particular image (Figure 5.7(g)).

from the first frame in the sequence.

Figure 5.14 shows a sequence of segmentations for frame 1 with PHOENIX's parameters
sampled at iterations 20, 30, 40, 50, 60, and 74 in a particular run during training, and
corresponding parameter values at each of these intervals are shown in Table 5.2. Note that
Figure 5.14(f) shows the final segmentation result when the highest confidence matching
has been achieved. The threshold for acceptable matching confidence is set at 90% because
of the low resolution nature of the real data.

Figure 5.15 shows the Phoenix segmentation performance on two testing images (frames
2 and 4) of with learned parameters obtained after training on frames 1, 3, 5, 7 and 9. For
frame 2 the matching is acceptable. However, for frame 4 the result is not acceptable and
learning is to be performed similar to the indoor examples for the adaptation of parameters.

103

(a) (b) (c)

Figure 5.11: Samples of segmentation performance of the PHOENIX algorithm with
default parameters on indoor color images (Figures, 5.7(a), 5.7(b) and 5.7(c), respec-
tively).

(a) (b)

Figure 5.12: Samples of outdoor color images with varying environmental conditions.
(a): Frame 2; (b): Frame 7.

Finally, Figure 5.16 shows the samples of performance of PHOENIX with default pa-
rameters on the outdoor color images shown in Figure 5.12. Note that these segmentation

results are totally unacceptable.

5.5 Conclusions and Future Work

Our investigation into reinforcement learning-based closed-loop model-based object recog-
nition shows that a robust and adaptive system can be developed that automatically de-

104

Figure 5.13: Polygonal approximation of the car used in the matching algorithm.

Table 5.2: Changes of parameter values during training.

Iteration Hsmooth Maxmin Splitmin Height
20 53 135 55 58
30 17 142 39 42
40 21 105 43 24
50 1 165 51 42
60 1 135 19 62
74 1 300 55 64

termines the criteria for segmentation of the input images and selects useful features which
result in a system with high recognition accuracy when applied to new unseen images.

The key contribution of the chapter is the general framework for the usage of reinforce-
ment learning in a closed-loop model-based object recognition system. Future research will
address extensions for enlarging the scope of the approach in a multi-level object recognition
system for practical applications.

105

i 's-

) A ■*£>■

»<: ̂ r „

a^>

c

r~

(a)

MS gß? m

Wp '
c

ga>

(d) (e) (f)

Figure 5.14: Sequence of segmentations of the first frame during training.

APPENDIX A: The Phoenix Segmentation Algorithm

The Phoenix image segmentation algorithm is based on a recursive region splitting technique
[60]. It uses information from the histograms of the red, green, and blue image components
to split regions in the image into smaller sub-regions on the basis of a peak/valley analysis
of each histogram. An input image typically consists of red, green, and blue image planes,
although monochrome images, texture planes, and other pixel-oriented data may also be
used. Each plane is called a feature or feature plane.

Figure 5.17 shows a conceptual description of the Phoenix segmentation process. It
begins with the entire image as a single region. It then fetches this region and attempts to
segment it using histogram and spatial analyses. If it succeeds, the program fetches each of
the new regions in turn and attempts to segment them. The process terminates when no
region can be further segmented.

106

'0

11/
°\ xr. WS*-.-:. •

'* n '• • •-

(a) (b)

Figure 5.15: Segmentation performance of the PHOENIX algorithm on two testing
images (frames 2 and 4) with learned parameters obtained after training.

Figure 5.16: Samples of segmentation performance of the PHOENIX algorithm with
default parameters on the two outdoor color images shown in Figure 5.12.

I

The histogram analysis phase computes a histogram for each feature plane, analyzes it
and and selects thresholds or histogram cutpoints which are likely to identify significant
homogeneous regions in the image. A set of thresholds for one feature is called an interval
set. During the analysis, a histogram is first smoothed with an unweighted window average,
where the window width is hsmooth. It is then broken into intervals such that each contains
a peak and two "shoulders." A series of heuristics is applied to eliminate noise peaks.
When an interval is removed, it is merged with the neighbor sharing the higher of its two

107

Empty '"Z """"-v
i

Fetch Region

1 J Rejected Region

Histogram Analysis

' 1
No Acceptable Histograms

Spatial Analysis

' ' No Acceptable Features

 te

Split Region

\ '

Figure 5.17: Conceptual diagram of the Phoenix segmentation algorithm.

shoulders. Splitmin is the minimum area for a region to be automatically considered for

splitting.

Two tests determine if an interval should be retained. First, the ratio of peak height to
the height of its higher shoulder must be greater than or equal to the maxmin threshold.
Second, the interval area must be larger than an absolute threshold and the relative area,
percent of the total histogram area. The second highest peak can now be found, and peaks
lower than the height percent of this peak are merged. The lowest valley is then determined,
and any interval whose right shoulder is higher than absmin (Phoenix's parameter) times
this valley is merged with its right neighbor. Finally, only intsmax (Phoenix's parameter)
intervals are retained by repeatedly merging intervals with low peak-to-shoulder ratio.

The spatial analysis selects the most promising interval sets, thresholds the corresponding
feature planes, and extracts connected components for spatial evaluation. The feature and
the interval set providing the best segmentation (the least noise area) are accepted as the

segmentation feature and the thresholds.

108

The histogram outpoints are now applied to the feature plane as intensity thresholds
and connected components are extracted. After each feature has been evaluated, the one
producing the least total noise area is accepted as the segmentation feature. If no suitable
feature is found, the original region is declared terminal. Otherwise the valid patches,
merged with the moise patches, are converted to new regions and added to the segmentation
record. In either case, a new segmentation pass is scheduled. For additional details, see
[60].

APPENDIX B: The Cluster-Structure Algorithm for
Matching

The cluster-structure algorithm can be divided into the following main steps:

1. Determine Disparity Matrix

2. Initial Clustering

3. Sequencing

4. Final Clustering

5. Transform Computation

The algorithm first computes the disparity matrix. It determines the segment length
of each line and the angles between successive lines from the set of vertices for the model
and the image input to the program. At this point, every segment in the model will be
compared against every segment in the image. If segment lengths and successor angles
are compatible, the algorithm computes the rotational and translational disparity between
pairs of segments. These values are stored in the disparity matrix and are indexed by the
segment numbers in the model and the image. The algorithm continues until all segments
have been compared. It then computes the range of rotational and translational values
present in the matrix, and normalizes them over their appropriate range.

The initial clustering determines clusters from the normalized values in the disparity
matrix. At each step, the program clusters all of the samples, recomputes the new cluster
centers, and continues until none of the cluster centers change their positions. The program
then selects the cluster having the largest number of samples. Also selected are the clusters
which are within 20% of the largest one. Each cluster is considered separately and the final
transform comes from the cluster that yields the highest confidence level.

109

The sequencing step uses the samples in the current cluster to find all sequences in the
samples. This provides the critical structural information. Samples which are not placed
in any sequence are discarded. The program also removes sequences that have a segment
count of less than three (three segments comprise the basic local shape structure). It then
computes the rotational and translation averages of each sequence that has been located.

Using the sequences and the sequence averages, the final clustering step clusters these
values to find those sequences that lead to the same rotational and translational results.
This is achieved by using the iterative technique of clustering, evaluating, clustering, etc.
The program then selects the cluster that contains the largest number of sequences and
passes this cluster to the final step.

The final step of the algorithm computes the confidence level of the transformation
determined by each cluster. The cluster having the highest confidence level is selected as
the final transformation cluster. It assembles the set of matched segments in the sequences in
this cluster. The final output of the program is the rotation and the vertical and horizontal
translation necessary to locate the model within the image. The program also produces
a confidence level indicating the likelihood that the final matching is correct. For further
details, see [19].

110

Chapter 6

Delayed Reinforcement Learning
for Closed-Loop Object
Recognition

Object recognition is a multi-level process requiring a sequence of algorithms at low, inter-
mediate and high levels. Generally, such systems are open loop with no feedback between
levels and assuring their robustness is a key challenge in computer vision research. A robust
closed-loop system based on "delayed" reinforcement learning is introduced in this paper.
The parameters of a multi-level system employed for model-based recognition are learned.
The method improves recognition results over time by using the output at the highest level
as feedback for the learning system. Appropriate credit in the form of rewards and penalties
are assigned to the sequence of algorithms used for object recognition by the learning system.
The method is experimentally validated by learning the parameters of image segmentation
and feature extraction and thereby recognizing 2-D objects. The approach systematically
controls feedback in a multi-level vision system and provides a solution to a long-standing
problem in the field of computer vision.

6.1 Introduction

Most vision systems use a sequence of algorithms that operate at various levels of abstraction
to perform a given task, such as object recognition. In earlier work that combines learning

111

and vision [25, 78, 35], the inherent multi-level nature of vision systems has not been
addressed adequately. In this chapter an approach that takes the output of the final level
and uses it as a feedback in a reinforcement learning framework to influence the performance
of the lower levels of vision algorithms is proposed. The overall system performance is
improved over time with this method.

The improvement is possible via learning because vision systems are usually based on
models of the physical world. For example, the process of creating the two-dimensional
image from the three-dimensional world is usually modeled as a perspective projection.
In machine learning terminology vision systems are said to exhibit a "bias." In other
words, vision systems do not model some random phenomenon but are "biased" towards
modeling the orderly physical world. Since it can be shown that learning is effective only
in the presence of bias [65] it is possible to design a biased multi-level model-based object
recognition system that improves its own performance over time.

The key to the improvement of a multi-level system over time is the automatic ad-
justment of parameters of various algorithms used in the system since the content of the
three-dimensional scene and the imaging conditions are not known a priori. Currently, in
most complex vision systems the designer manually adjusts parameters of the algorithms to
some "default" values that are to be applied subsequently by users. However, the designer
cannot anticipate for all possible inputs to the algorithms. The simultaneous adjustment
of even a few system parameters is time-consuming and difficult and has yet to be solved
satisfactorily for multi-level systems. The original contribution of this work is to provide an
approach based on "delayed" reinforcement learning to control parameters in a multi-level
object recognition system. A theoretical model is provided and its efficacy is validated on
a moderately complex system. In contrast, the substantial body of work on system param-
eter estimation has not taken advantage of the power and flexibility of machine learning
methods for multi-level vision systems.

With the above preliminaries consider the problem of model-based object recognition.
Given the model of an object, the problem is to recognize it when it is located anywhere in
an image. Figure 6.1 illustrates a typical approach to solve the problem. It segments the
image at the first level, then extracts and selects appropriate features from the segmented
image at the second level, and finally matches the selected features to the model. The
segmentation and feature extraction modules use default parameters set by the system
designer. However, the approach is inadequate for real-world applications because default
parameters of segmentation and feature extraction often lead to large errors in recognition.

If it is assumed that the model matching produces a confidence measure indicating the
closeness of the selected features to the model, then it is natural to use this confidence as
feedback to influence the system's performance for segmentation and feature extraction.

112

I
I

Confidence Level for Matching
a

Figure 6.1: Conventional multi-level system for object recognition.

Figure 6.2 shows a closed-loop reinforcement learning-based system to achieve this goal.
Reinforcement learning uses rewards and penalties based on the confidence to iteratively
improve the performance of a system over time.

6.2 Reinforcement Learning System for Object
Recognition

In the multi-level system for object recognition described in Figure 6.2 there are unknown
parameters for both the segmentation and feature extraction modules. The segmentation1

module is based on the "Phoenix" algorithm [60]. Phoenix uses region splitting based on
histograms of color features and is critically dependent on system parameters "HSMOOTH"
and "MAXMIN." HSMOOTH is the width of the histogram smoothing window with the
smoothing performed by a uniformly weighted moving average technique. MAXMIN is the
peak-to-valley height ratio threshold. Any interval whose peak height to shoulder ratio is

For additional details on segmentation techniques see [50, 16].

113

Confidence Level for Matching

Model Matching

Feature Extraction

Segmentation

Reinforcement
Learning

(^ Model y (Training Image.

Figure 6.2: Reinforcement learning-based multi-level system for object recognition.

less than this threshold is merged with the neighbor on the side of the higher shoulder.
The feature extraction module finds polygon approximation tokens for each of the regions
obtained after image segmentation. The polygon approximation is obtained using a split and
merge technique dependent on a parameter named "SMOOTH." SMOOTH is a quantitative
measure of the smoothness of the polygonal approximation [19]2 . The model matching
algorithm topologically compares a stored 2-D model to the token set output of the feature
extraction module [19] 3. It computes a real number that indicates the confidence level of
the matching process.

It can be seen that the parameters HSMOOTH and MAXMIN are at the first level of the
system and the parameter SMOOTH is at the second level. Reinforcement learning is used
to adjust the parameters at both the first and second level. In reinforcement learning, at
each time step a system is given not just perceptual inputs but also a numerical reward or
penalty, called reinforcement. The reinforcement is a function of the output of the system

2HSMOOTH can take values ranging from 1 to 63, MAXMIN can take values ranging from 100 to 471
and SMOOTH can take values ranging from 6 to 16.

3For additional details on object recognition see [74, 27].

114

corresponding to the inputs at the previous time step. The goal of the system is to choose
actions that maximize the sum of reinforcements (possibly discounted) over time [105].

One complication to reinforcement learning is the timing of reinforcement. In simple
tasks, the system receives, after each decision, reinforcement indicating the goodness of
that decision [79]. However, in most complex tasks reinforcement is often temporally de-
layed because immediate reinforcement regarding the value of a decision is unavailable.
For example, in the object recognition system, the goodness of segmentation and feature
extraction is not known until matching has been done.

An effective approach for delayed reinforcement learning is "temporal difference" (TD)
learning [105]. In such learning systems, a "state" is a unique representation of all previous
inputs to a system. The value of a state is regressed towards the weighted average of the
values of its successors, where the weightings reflect the conditional probabilities of the
successors, instead of the final outcome of reinforcement.

Let i be an input image to the segmentation module and a be an instance of segmentation
parameters. Let R(i, a) be the average immediate reinforcement for taking action a in input
state i; 7 : 0 < 7 < 1 is a discount factor; j is the next input state resulting from taking
action a in i; Pij(a) is the probability of going from state i to state j with action a; and
V(j) = maxbQ(j,b).

Then according to the Q-learning method Q(i,a) measures how good the instance a is
when applied to image i and is given by:

Q{i,a) = R(i,a) + 1J2Pij(a)VU) (6-1)

Q-learning works by updating the estimate of Q(i,a) so that equation (6.1), with esti-
mated values substituted for the unknown actual values, comes to be more nearly satisfied
for each (i,a) encountered. If R(i,a) of equation (6.1) is the expected value of r (reinforce-
ment or confidence value) then this is done using the TD error:

r + 1V(j)-Q(i,a).

The particular reinforcement learning algorithm employed in the approach presented in this
chapter is the Q(A) learning algorithm [79, 107] which is a generalization of the Q-learning
algorithm (details are given in the Appendix). It not only speeds up the learning but also
allows for a non-Markovian environment encountered in vision applications. In terms of the
example just described, this simply means that the value of Q(i, a) will be corrected to look
more like the value of the segmented image, which will in turn be estimated according to
the matching confidence.

115

1. Initialize Q function

2. LOOP:

• For each image i in the training set do

(a) Image i, is segmented with current segmentation parameters
a= (ai, Ü2, ■ ■ •, an); is is the resulting segmented image.

(b) Compute TD error: V(is) — Q(i, a) and update Q(i, a) accord-
ing to the Q(A) learning algorithm.

(c) Perform feature extraction with current values of feature ex-
traction parameters b = (b\, b2, ■ ■ •, bn), from the segmented
image is.

(d) Compute the matching of each extracted feature set against
stored model and return the highest confidence level .

(e) Compute TD error: r + V{ABS) -Q(is, b) and update Q(IS, b)
and Q(i,a) according to the Q(A) learning algorithm. (ABS
is the absorbing state).

3. UNTIL terminating condition

Figure 6.3: Main steps of the delayed reinforcement learning algorithm for parameter
adjustment for segmentation and feature extraction.

Figure 6.3 shows the main steps of the algorithm described conceptually in Figure 6.2.
The algorithm terminates when either the number of iterations has exceeded a prespecified
value or the recognition confidence level has reached a given threshold. Note that in general

there can be multiple objects in the images.

6.3 Experimental Validation

There are several representation schemes for the Q-function in the reinforcement learning
paradigm. Since the goal here is to isolate the effect of learning for multi-level recognition

116

(b)

1246

(c)

s ^^wVK^-v^ ^TU

623

Iteration

623

Iteration
623

Iteration

(d) (e) (f)

Figure 6.4: Experimental results for the training phase of an outdoor image.

a look-up table based representation suffices. The two dimensions of the look-up table are
the following: (1) segmented or feature-extracted image, (2) action represented by a par-
ticular combination of system parameters. The focus of the experiments is to demonstrate
the feasibility of using learning for multi-level recognition and not to address the issue of

117

-•'■

<3

(a)
(b)

(c)

Figure 6.5: Experimental results in the testing phase on an outdoor image, (a) unknown
image (b) segmentation with learned parameters (c) segmentation with default parameters.

generalization.

Figure 6.4 shows the results of the training phase of the system. Figure 6.4(a) shows
a sample training image of a car on a road. The resolution of the image is 120 X 120
pixels. It should be noted that although the image is in color for publication purposes it
is being shown in grayscale. Figure 6.4(b) shows the given 2-D model of the car located in
Figure 6.4(a). The dark squares in Figure 6.4(b) correspond to labels of the vertices in the
polygonal approximation of the car.

Figures 6.4(c), 6.4(d), 6.4(e), and 6.4(f) show how the confidence, HSMOOTH, MAXMIN
and SMOOTH change over time, respectively. It should be noted that over time the confi-
dence shown in Figure 6.4(c) increases. At the end of the training phase the confidence of

the match is over 0.9 on a scale which varies between 0 and 1. For the purposes of our sys-
tem an object is recognized if the confidence of matching is greater than 0.75. Furthermore,
it should also be noted that the learned values of HSMOOTH, MAXMIN, and SMOOTH
are considerably different from their starting values.

To illustrate the results further, Figures 6.4(g), 6.4(h), 6.4(i) show how the segmentation
improves over time during the training phase. Figure 6.4(g) depicts the segmentation of the
training image before applying the learning algorithm. Figure 6.4(h) depicts the segmenta-
tion after half the lotal time for training has elapsed. Figure 6.4(i) depicts the segmentation
at the end of the training phase. It can be seen that the results improve considerably.

Figure 6.5 shows the results in the testing phase on an outdoor image provided to the
trained closed-loop object recognition system. Figure 6.5(a) shows an input image in which

118

(a) (b) (c)

Figure 6.6: Experimental results in the testing phase on an indoor image, (a) unknown
image (b) segmentation with learned parameters (c) segmentation with default parameters.

the car of Figure 6.4(b) must be identified. It can be seen that the lighting conditions in the
outdoor image of the testing phase is significantly different from the training image. The
image is taken at a different time from Figure 6.4(a). Observe that there are significant
changes between the cars shown in Figures 6.4(a) and 6.5(a). Figures 6.5(b) and 6.5(c) show
the segmentation obtained by using the parameters obtained from the training phase, and
the segmentation obtained by using default parameters, respectively. It should be noted
that when default parameters are used the car is broken up into many small blobs. The
confidence of model matching was obtained as 0.88. It should also be noted that delayed
reinforcement learning has been used only in the training phase.

Figure 6.6 shows results in the testing phase of another image except that now it is of
an indoor scene. For brevity the results for training are not shown for this scenario. Figure
6.6(a), 6.6(b), and 6.6(c) show the indoor image, the segmentation with learned parameters
and the segmentation with default parameters respectively. The large triangular shaped
object (wedge) is the object of interest. The confidence of model matching was 0.85.

It should be noted that until the final recognition outcome is determined the effectiveness
of the segmentation and feature extraction modules cannot be ascertained. Experimental
results show that a robust and adaptive system can be developed that determines au-
tonomously the criteria for segmentation and feature extraction to achieve a high accuracy
for recognition on new images.

119

\

6.4 Conclusions and Future Work

To summarize it can be stated that a multi-level approach to object recognition in a "de-
layed" reinforcement learning paradigm was described in this chapter. The reinforcement
learning algorithm used rewards and penalties at successive levels of a closed-loop model-
based object recognition system to iteratively improve the system parameters. A system
was built to exemplify the efficacy of the approach. After feature extraction from the seg-
mented image, the system computed the confidence of matching between the features and
the model. Reinforcement learning used the confidence to adjust the segmentation and
feature extraction parameters in such a way that the confidence of matching improved sig-
nificantly over time. Simple objects in indoor and outdoor scenes were recognized in about
a thousand time steps even when the reinforcement learning algorithm started with ran-
dom values of the parameters. In contrast, "default" parameters of the system gave a poor
confidence of matching.

If vision systems could be designed in one-level as a single black box the "simple" re-
inforcement paradigm would have sufficed. Earlier work on one-level systems used a team
of stochastic semi-linear units for learning image segmentation parameters [78]. However,
in reality both open and closed-loop systems have multiple levels with parameters that
need to be adjusted at each level. Delayed reinforcement learning allowed an elegant and
effective solution to the problem of object recognition in multi-level systems. The system
presented here included the recognition component as part of the evaluation functions for
learning in a systematic way. The emphasis here was not so much in simple mixtures of
learning and computer vision, but rather in the principled integration of the two fields at
the algorithmic level. The key contribution is the general framework for the usage of de-
layed reinforcement learning in a multi-level vision system. Future research will address
extensions for enlarging the scope of the approach to encompass problems in active vision
where reinforcement learning could be extremely useful. Furthermore, incorporatation of
more efficient representations could facilitate the study of generalization issues pertaining
to the system.

120

APPENDIX A: Q(A) Learning

One set of methods for determining an optimal policy is given by the theory of dynamic
programming. These methods entail first determining the "optimal state-value function",
V, which assigns to each state the expected total discounted reward obtained when an
optimal policy is followed starting in that state. As in [107], a closely related function
can be defined that assigns to each state-action pair a value measuring the expected total
discounted reward obtained when the given action is taken in the given state and the optimal
policy is followed thereafter. That is, using the notation that x denotes the current state,
a the current action, r the resulting immediate reward, and y the resulting next state,

Q(x,a) = E{r + jV(y)\x,a} (6.2)

= R(x,a) + 7J2Pxy(a)V(y),
y

where R(x,a) = E{r\x,a}, V(x) = m&xaQ(x,a), and Pxy(a) is the probability of making
a state transition from x to y as a result of applying action a.

Note that once we have this Q-function it is straightforward to determine the optimal
policy. For any state x the optimal action is simply argmaxa Q(x, a).

The Q-learning algorithm is based on maintaining an estimate Q of the Q-function
and updating it so that equation (6.2), with estimated values substituted for the unknown
actual values, comes to be more nearly satisfied for each state-action pair encountered. More
precisely, the algorithm is as follows: At each transition from one time step to the next,
the learning system observes the current state x, takes action a, receives immediate reward
r, and observes the next state y. Assuming a tabular representation of these estimates,
Q{x,a) is left unchanged for all state-action pairs not equal to (a;, a) and

Q{x, a) <- Q(x, a) + a[r + 7Vr(y) - Q(x, a)] , (6.3)

where a e (0,1] is a learning rate parameter and V{y) = maxbQ(y,6). An estimate of the
optimal action at any state x is obtained in the obvious way as argmaxa Q(x, a).

This algorithm is an example of the temporal difference method because the quantity
r + jV(y) - Q(x, a) can be interpreted as the difference between two successive predictions
of an appropriate expected total discounted reward. The general effect of such algorithms
is to correct earlier predictions to more closely match later ones.

The advantage of the Q-learning algorithm is that when combined with sufficient ex-
ploration it can be guaranteed to eventually converge to an optimal policy [107]. The
disadvantages, however, are that it is very slow to converge and may work poorly in prob-
lem domains which are non-Markovian. To overcome these weaknesses, Peng and Williams

121

1. Q(x, a) = 0 and Tr(x, a) = 0 for all x and a

2. Do Forever:

(a) xt <— the current state

(b) Choose an action at that maximizes Q(xt,a) over all a

(c) Carry out action at in the world. Let the short term reward be rt

and the new state be xt+1

(d) e't = rt + 7yi(a:;+1) - Qt(a;t, at)

(e) et = rt+ ^Vt{xt+l) - Vt(xt)

(f) For each state-action pair (a;, a) do

• Tr(x,a) = 'y\Tr(x, a)

Qt(x,a) + aTr(x,a)et

(g) Qt+1(xt,at) = Qt+i(xt,at) + ae't

(h) Tr(xt, at) = Tr(xt, at) + 1

Figure 6.7: The Q(A)-learning algorithm used in our approach.

[79] have introduced the Q(A) learning algorithm in which the current prediction error is
used to correct previously experienced state-action pairs in addition to the current one.
More formally, the following form of evaluation function estimators [105] is used in Q(A)
learning:

r^ = r, + 7(1 - A)V7(zi+1) +TAri
A
+1 (6.4)

Equation (6.4) is called TD(A) estimators [105]. Then the Q(A) learning algorithm can
be derived in Figure 6.7, where Tr(x,a) is the "activity" trace of state-action pair (x,a),
corresponding to the "eligibility" trace as described in literature. It is worth noting when

A = 0 then Q(A) learning reduces to Q-learning.

122

Chapter 7

Context Reinforced Background
Modeling

Automatic Target Detection and Recognition (ATD/R) may be considered as an extension
of object recognition problem from its original successful domain of simple objects in the
block world to a more difficult new domain of complex objects embedded in natural envi-
ronment. Such an extension has seen some new challenges that do not exist in the block
world. First, the target may appear in front of many different outdoor backgrounds, e.g.
the target may be seen in the desert areas of Africa or it can also be seen in the forests
of North Europe. The appearance of the background is totally out of our control, and we
have no means to adjust the background to get a high contrast between the target and the
background. Secondly, there are various practical restrictions that prevent us from taking
a high quality image about a specific scene. If the ATD/R system had to get close enough
to an enemy's tank in order to recognize it, it would be very likely that the ATD/R system
is destroyed by the enemy before any recognition result is obtained. Finally, many covering
techniques have been developed to hide the identity of the target. As a result, most input
images to a ATD/R system are of low resolution and high clutter, and the targets may also
be partially occluded. When traditional object-model-based object recognition systems are
required to handle these low resolution images, they are not successful. Two indexes are
important to ATD/R performance, one is the probability of detection and the other is the
probability of false alarm. With traditional object recognition approaches, whenever we
improve one of the index we usually sacrifice the other. Since the output of an ATD/R
system is normally used to control the weapon system, both performance indexes need to
be maintained at a reasonable level.

From our point of view, part of the reason why it is difficult to apply most existing

123

object recognition approaches to ATD/R is because the background of the concerned object
is generally ignored by these approaches, and the recognition processes normally begin
with a segmentation stage which is nothing but "background rejection." In most indoor
environment where the background of the concerned object can be selected or controlled
to get a high object-background contrast, this task is simple. But for ATD/R in cluttered
environments, where targets become more mixed with their backgrounds, high quality early
segmentation becomes very difficult.

In order to cope with this problem, we propose here a new strategy called Background
Model Aided Target Detection and Recognition (BMATD/R). The main idea of this strategy
is to maintain a high probability of detection while reducing the number of false alarms
by involving explicit background models into ATD/R processes. The practice of modeling
the background has long existed in the field of audio signal processing, synthetic aperture
radar (SAR) signal analysis, infrared detection techniques and image processing, where it
is usually referred to as noise model or clutter model. A common practice in building
these models is to use existing stochastic process models to set up a framework for the
behavior of the noise or clutter, and data from real signals is used to decide the value of free
parameters. Such an approach is seldom seen for ATD/R, because no existing stochastic
model has a solid proof of its validity (either theoretical or experimental) for describing the
appearance of natural backgrounds in an image. As a result, most of the effort has been
devoted to finding more sophisticated and robust target modeling techniques and developing
new matching algorithms that can tolerate more feature distortions. Although efforts in
this direction have led to some encouraging results, we believe background modeling and
recognition can make this progress quicker by putting it onto two wheels instead of one.

7.1 Representation of A Background Model Bank (BMB)
Member Using A Self-organizing Map

In our previous report, we pointed out that high cluttered sensory data had made it hard to
extract perfect object features from the input, which are crucial for a conventional object
recognition system to have a good performance. As a result, more and more sophisticated
feature sets are introduced to compensate the weakness of any single metric. And the
dimension of the feature vectors has grown to such an extent that it is already impossible for
human beings to visualize and understand the train of thought of the undergoing recognition
process. While this situation may be tolerable in an unsupervised learning environment,
it would be very hard to conduct a high quality supervised learning with the supervisor
himself being blind. Based on such a concern, we will try to avoid using high dimension
feature sets during the building up of our background models. Rather than constructing a

124

sophisticated model for a certain natural background based on a very complicated feature
set, we would try to investigate independently each available group of metrics that have
closely related physical meaning, and build one model based on each such metric group.
Thus for a certain background we will have a bank of simple models, each model is called
a member of the bank, and it views the under-investigated background based on its own
"theory". Such a background model bank (BMB) is superior, in the following aspects,
to the all-in-one model that is widely used in current Automatic Target Detection and
Recognition (ATD/R) research:

• The BMB is more suitable for supervised learning environment: Since each member
of a BMB is simple (i.e. based on very short feature vectors) it would be easy to
visualize the modeling process and thus enable the supervisor to "see" the learning
process, so he could select examples with proper difficulty to speed up the learning
process.

• The BMB makes it easier to involve new metrics into ATD/R systems: Whenever a
group of new metrics is found useful for modeling and recognition of the background, a
new member can be created and inserted into the BMB. The all-in-one models would
need much more work to increase the dimension of their feature vectors.

• The BMB is more easily to be extended to multi-sensor based ATD/R systems: Since
each member of the BMB is investigated independently, involving a new sensory input
is just to add a new member into the BMB.

• The BMB will provide an efficient way to manage the long-term knowledge cumu-
lation: Based on the above two advantages, BMB approach can keep improve its
performance by involving new sensory techniques and new image processing methods
as they emerge. Such a property is very important because we can expect that a
successful ATD/R system will need time to become mature.

Although many papers in the literature have used known statistical distributions in their
analysis of natural clutters in IR images, there is no strong evidence that thermal natural
clutters possess a certain statistical distribution [87]. Instead of artificially assigning a
distribution model to background models, we construct our BMB from real images through
a supervised learning process. Since reliable statistical models can only be obtained through
analysis of a large population of samples, space and time complexities of algorithms become
a major concern when selecting a learning scheme. In our approach, each BMB member is
represented by a self-organizing map (SOM). By controlling the size of the SOM, we can
easily control the space and time complexity of the learning process. Figure 7.1 shows the
training process for a BMB member. A supervised SOM algorithm has been developed to

125

Training Images
Supervised

Target Isolation
Background

Reg ions
Target

Regions

3HZS
Kohonen's
Algorithm

Feature Extraction
for Group - i

Positive ; Negative
Examples ■ Examples

Near-miss
Injection

Self-Organizing
Map

Figure 7.1: Building up a member of the Background Model Bank. The initial
uniformly distributed self-organizing map (SOM) is trained first by using positive
examples and Kohonen's algorithm. After a pre-selected number of iterations, a
disorder index is computed. If the map has reached a certain degree of ordering,
the algorithm/data selection switch is turned to the near-miss injection algorithm
which uses negative examples to refine the trained SOM. To allow a BMB member
to memorize its valuable past knowledges while it gains new experiences, the size
of the SOM needs to be extensible. An incremental SOM algorithm allows us to
achieve this.

accomplish learning for BMB members from both positive and negative training examples

7.2 Conventional Self-organizing Maps

In Kohonen's SOM algorithm, neurons are arranged into an NxN array. After initialization
of the weight vector w,- of each neuron i, the algorithm runs inside a loop which contains
two operations:
(1) given a training feature vector x, search is carried out for the winning neuron c which
fulfills

||x- wc|| = min ||x-wi||, i = 1, 2, • •-, A^2 (7.1)

126

(2) update the weight vectors of the winning neuron c and every neuron within a neighbor-
hood of c according to

w.u + i) = / w«(*) + aW WO - w«(*)) for i 6 Nc
y w,-(i) otherwise (7.2)

Different strategies can be used to control the learning rate a(t) and to adjust the neigh-
borhood Nc as training goes on. Both parameters should decay with time. In the above
algorithm, normally the training process terminates when a pre-selected iteration number
has been reached. The selection of this number is mainly based on experiments.

7.3 Supervised Self-organizing Maps

Learning From Positive Examples

The first step of the supervised self-organizing map algorithm is to use the Kohonen's
algorithm to train the SOM by using positive training examples. By positive examples we
mean pure background images that have no target embedded in them. During learning, a
group of such images will be presented to the learning system for generating positive feature
vectors for each feature group.

7.3.1 Disorder Index

When applying kohonen's algorithm to real world problems, people often find that it needs
a lot of experiments to select a good set of parameters. The termination criterion is one
of them. To make the learning process autonomous, i.e. without the need for humans
intervention, a metric reflecting the SOM's ordering is needed so that the algorithm can
determine how well the SOM has been trained, and thus determine whether it is time to
terminate the learning process. In our research, we developed two metrics to describe the
ordering of a SOM. The first one is based on the proved asymptotic convergence property
of the SOM, and the second one is based on a direct analysis of the distortion of the SOM
grid.

Disorder index 1

Since a properly trained SOM asymptotically converges to the distribution of training exam-
ples, the variation of the weight vectors with respect to a fixed number of training iterations

127

will decrease asymptotically. So a measure based on this variation can be used as an index
for the ordering of SOM. Let dms{t) be the mean square distance between the training
vectors and the weight vectors at discrete training time t, we have

drn.it) ^E y,L ||X- Wi(i)||
2] (7.3)

where ST denotes the training set and Nc is the set of neurons within the neighborhood of
the winning neuron. The Disorder Index {DOI) can then be defined as

DOI = dms{t + k) - dms{t) (7.4)

where k determines the length of the interval when DOI is evaluated. Recently a more
sophisticated metric has been proposed for measuring the disorder of a SOM [68].

Disorder index 2

Because all our feature groups and their corresponding SOM's are 2 dimensional, we can
directly analyze the distortion of the 2D neuron grid and use the result as the disorder in-
dex. To be judged as having been well ordered by this disorder index, a SOM must satisfy
two conditions:

• All the extreme neurons must be boundary neurons.

• The ratio between the number of distorted grids and the number of grids of the SOM
must be less than a preselected threshold.

Although we also need a preselected threshold to apply this disorder index, it is much
more easier for a learning supervisor to select this threshold, compared with the total
iteration threshold used in Kohonen's algorithm. So, the disorder index can be formulated
as following:

n _ j Th + 1 if {boundary} ^ {extrem} , .
— 1 Nd/Nt if {boundary} = {extreme}

where Th is the preselected threshold for this disorder index, Nd is the number of distorted
grids, and Nt is the total number of grids in the SOM. {boundary} is the set of boundary
neurons and {extrem} is the set of the extreme neurons .

128

7.3.2 Learning From Negative Examples

When DOI is below a pre-selected threshold the SOM is in a well ordered state, and
a conventional SOM algorithm can terminate its learning process at this time. In our
approach, at this time the learning process will go into the second stage — refining those
ambiguous regions in the SOM by using the near-miss injection algorithm and negative
examples. By ambiguous regions we mean regions where features of different classes (e.g.
background and man-made target) overlap. The near-miss injection algorithm runs inside
a loop which contains two steps:
(1) given a negative training vector y, search is made for the "hitting" neuron h using
equation 7.1.
(2) update the weight vectors according to

wi(i+l) = (w'W + (lly-w.'('.)IIW,' fOTi6W» m
{ w,-(i) otherwise

y(<)-w,-(<)

u = llym-w,m|| if||y-w,-(t)||^0

HySi'Sii if||y-w,-(OH = o (7J)

1 v- wi = ö 2^ WJ' neuron j £ 4-neighbor of neuron i (7.8)
3

where ß(t) is the learning rate for this near-miss injection algorithm, it should decay
with time, and we can use the same decay function used in Kohonen's algorithm to control

7.4 Experimental Results

In our experiment, we compared our supervised SOM algorithm, which uses both positive
and negative examples during the training, with the conventional Kohonen's algorithm, first
using synthetic testing data, then using real data — the feature values computed from real
testing images.

7.4.1 Synthetic Data

Shown in Figure 7.2 are the synthetic data. Positive examples are evenly distributed over
a 2 x 2 square area, with a hole in the center. Negative examples are evenly distributed

129

IininJng Exvnplw : da — Po**n*. p ha — Nsqativa

-<• ■V.'"■.' '•'••.'•"••'•:'•• ■"..*' • *.
. • ■ ~.'.J'..':i.v'»:-';*-.

• •; *» * • ; •*.'

•:...*,.« *A •** T*'
i** * i>; •• ■

"'
., *

-V

*/r- ■v

V , '^;-bv^-;?^?;|?;:»-:." :•■.>:'; '*..
i " "V* •;**••*"• ""*■ i ,■*• .* ■'.;' I-'-,-•••'~ •'

ig Exampi« ; Pc*tlv«

-0.6 -0.4 -0.2

(a)

#•■ :•? i.-.-

„» *• .;»•.* "

(b)

*Y** * *** ********

(c)

Figure 7.2: Synthetic data for testing SOM algorithm, (a) Positive examples
overlapped with negative examples, (b) Positive examples, (c) Negative examples.

in a circular area with a radius of 0.7. The overlapping region is a ring with a width of
0.2. The size of the SOM used in the experiment is 7 X 7. Figure 7.3 shows the trained
SOM by applying Kohonen's algorithm for 1000 epochs. Figure 7.4 shows distribution of
4 — Neighber the average distance both for all the positive examples and all the negative
examples. With this distribution, we computed two classification thresholds, Thp and Thn,
which are the mean 4 —Neighber average distance positive examples and negative examples.
By using Thp and Thn, each training example (positive and negative) is classified using the
trained SOM. Among total 795 positive examples, 171 were misclassified as negative, while

among 192 negative examples, 45 were misclassified as positive.

Figure 7.5 and Figure 7.6 are the result by applying our supervised SOM algorithm
for 1000 epochs. With the same number of positive and negative examples, the two mis-
classification measures are 114 and 43.

7.4.2 Real Data

Twenty FLIR images like those shown in Figure 7.7 were used to built the background model
for target detection. Shown in Figure 7.8 is the distribution of the LSGE feature values
extracted from these 20 training images. Both Kohonen's algorithm and our supervised
SOM algorithm were used to generate a set of representatives from the training feature
vectors.

130

SOM and Positive Examples. 1000 epochs

'•_,'■"■'■ ' *. . ' .
0.8

■'•'■.. :* ■ fc-. •-.*'•.

L^J~rJ~r1^' ■ ^^^^Hl^^^ ^V^*\
■

0.6 •'■ '- K^^^^^^^yC-' ■ A '•*■'■ '•'
0.4 ■ -. i^Ky^yc ^\ /"■' v
0.2 ■ / *\r• V / \ / \ ' / A .A ■' ■'

0 ''•'■ \/l' 'Y \ /^"^ \'/': K Jy'''
-0.2

-0.4 ... :•;-y/V i \\/\ ^^>-^'" V

-0.6 ■■■' v^^cr^3^^ V '

-0.B :-" •. •. :~<^-^*;=?~i-«<f:*>^ -xY i .

■./■! ":..'•. ■'.'.' '. '"r ■'' ■" •''■ •''• ■■:•

SOM and Negativs Examples. 1000 epochs

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0 6
W(i,1)

(a)

■ ■

fC"""^ TJ^<^> i*\ A
A. A.

+ ^vJC L**\/ \ Aut V^K + *Ä A

1 ** V 7 ^
T +ly

/++*\ I
1/ *V^5'

V* ++ /\

■"*--«. + j5*=f-_^t" "v)►

, . ,
-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.S

(b)

Figure 7.3: Trained SOM by applying Kohonen's algorithm for 1000 epochs, (a)
SOM overlapped with positive examples, (b) SOM overlapped with negative exam-
ples.

The constructed SOM using Kohonen's algorithm from the absolute LSGE feature data
is shown in Figure 7.9. The SOM corresponding to the relative LSGE feature data is shown
in Figure 7.10. The mis-classification ratio is 6/239 and 12/35 for the absolute LSGE
feature group. The ratio for the relative LSGE feature group is 4/239 and 15/35. The same
procedure was repeated for the supervised SOM algorithm. The resulted SOM is shown
in Figure 7.11 and Figure 7.12 for the two feature groups. The mis-classification ration
is 4/239 6/35 for the absolute LSGE and 4/239 and 10/35 for the relative LSGE feature
group.

7.5 Validity Scopes of The Background Models

7.5.1 The Role of Contextual Parameters

Automatic Target Detection and Recognition (ATD/R) is a challenging application for the
general techniques developed by image processing and image understanding communities.
This challenge is mainly due to the lack of control of the environment in a typical ATR
mission. As a result, there are many variables that can affect the performance of an ATR

131

Distance Distribution Of Positivs Example Distance Distribution Of Negative Examples

(a) (b)

Figure 7.4: Distribution of 4 — Neighber average distance of (a) all positive ex-
amples, (b) all negative examples.

system. Sherman et al. [59] categorized 41 such variables into five classes — background
parameters, target parameters, platform dynamics, atmospherics and sensor parameters.
Because a target could appear on the same background under different contextual con-
ditions, e.g. different time of the day, different air temperature, or being viewed with a
different depression angle, when we build the BMB, we should also cover this variation of
contextual conditions.

It can be imagined that different features may have different sensitivity to a certain
contextual parameter, e.g. the mean and standard deviation of image gray values are more
sensitive to the air temperature than the Gabor transform amplitude features which tend
to find out the periodic pattern with in a local image region. To be practically applicable, a
ATD system must be able to detect targets under different contextual conditions. One way
to achieve this goal is to use learning technique to associate contextual parameters with
the performance of each feature group. The rationality behind this association is that if a
feature group can effectively detect man-made objects under a given contextual condition, it
tends to be effective for images taken under similar contextual conditions. Since the human
supervisor cannot provide any assistance to the ATD system in finding this association,
except telling the system whether it is doing a good job with respect to a specific testing
image, the most suitable learning scheme for this task is the reinforcement learning scheme.

132

SOM and Positivs Examples. 1000 epochs

"'■■'•' '■•.— ' '-.';,,'■■ " "•

'■ J—-r**? . S^^i=::^—-r^
<-\- L'*-^^

0.6 ' '''^v^^^^^^y^vi■ / \ •'■'■''•'

0.4
■ ./\" \ .' \u \ •v^l' '?J'

0.2 • - 7 • -\l / i /\-A -A •■;.
—
r ° ' . V ■/ fit' \ / ' Ar* \r':

-0.2 r'"''
-0.4 "' ''. X/- \\ -:.. ■ \y ■.': " / .' \
-0.6

-0.8 -" ■ ■ ^v^^=^riti^^^*Sa^-^i:

^•'..' ; ,

SOM and Negative Exampfas. 1000 epochs

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

(a) (b)

Figure 7.5: Trained SOM by applying supervised SOM algorithm for 1000 epochs,

(a) SOM overlapped with positive examples, (b) SOM overlapped with negative
examples.

7.5.2 Reinforcement Learning Using Contextual Parameters

If a feature group has a good performance under a certain contextual condition, its detection
result deserves a heavy weight for all the similar contextual conditions. In another word, the
context — performance relationship can be replaced by a context — weight relationship,
which is more compliant for being integrated into a automatic learning system. To facilitate
the discussion, we define the following terms which will be used to formulate the SRV based
algorithm.

• Contextual Parameter (c) is a scalar that quantifies a specific aspect of a contextual
condition, it can be defined over continuous or discrete values.

• Contextual vector (C) is a vector with each element being c\ a contextual parameter.

• Weight Vector (W) is a real value vector with each element being w\ the weight of a
feature group.

Our learning problem can then be defined as following:

133

Distance Distribution Of Positive Examples
18

16

14

t'2

| 10

5 8

| 6
z

4

2

Distance Distribution Of Negative Examples

if "" ■ it in 1 .
0.2 0.3 0.4 0.5 0.6 0.7

4-Neighber average distance
0.9 1

(b)

Figure 7.6: Distribution of 4 — Neighber average distance of (a) all positive ex-

amples, (b) all negative examples.

Given a set of training images that cover the whole range of available contextual condi-
tions, with the BMB having been built as a collection of SOM's, we would like to associate
with each BMB member SOM' a stochastic transform function Tx, such that

w T(C)

Tl is stochastic because the C — W relationship can not be described by a deterministic
function, there are always exceptional cases due to the high complexity of the real world.

7.5.3 The SRV Algorithm

The reinforcement learning algorithm we selected for learning the context — performance
relationship is called Stochastic Real Valued reinforcement learning (SRV) algorithm, devel-
oped by Gullapalli [48, 47]. This algorithm allows the system to learn outputs that take on
real values. Since the performance of a feature group is best described as a real number,
normally from 0 to 1, with 1 representing the best performance, this SRV algorithm meets
our requirement very well.

134

In SRV algorithm, Tl is implemented as a random number generator according to the
normal distribution. The mean //, and standard deviation a{ are determined by two internal
vectors, $l and $>l according to the following formula.

Hn = $T ■ Cn (7.9)

an = l-rn = l- f(WT -C) (7.10)

where function /(•) often takes the form of

Once the two parameters are available, the weight for the ith feature group can be
computed by passing ft1 and a1 to a random number generator:

wl ~ N{fi\ai)

So, in the learning system, the transform function T is actually "remembered" as two
vectors, $ and ^. Starting with random selected initial values, these two internal vectors
learn to represent the C — W relationship by updating themselves according to the following
formula.

0n+1 = $n + crn(rn- r„){wn- fin)Cn (7.12)

9n+i = Vn + Pn(rn - fn) Cn (7.13)

where

rn = g{P)

is the reinforcement provided by a critic function g(-) for the nth detection trial. Vector P
is the detection result vector that can be used by the critic to judge the performance of the
system after the detection trial.

135

7.5.4 Implementation Concerns

To utilize this complex learning scheme to solve the previously defined C — W problem,
we have to make several implementation decisions.

1. selection of contextual parameters : It is obvious that we cannot deal with 41 contex-
tual parameters at the same time. One practical way is to select a subset from the
available contextual parameters. In our implementation, we selected 4 parameters to
form the contextual vector, they are

• t : Time of the day.

• d : Depression angle.

• s : Range to the target.

• p : Air temperature.

In order to make the inner product of Equation 7.9 and Equation 7.10 meaningful,
we used relative values of the contextual parameters in constructing the contextual

r Ut,
where dmax and dr, vector. The relative value of d, for example, is

the maximum and minimum depression angle occured in the training images.
are

2. the performance vector P : Since all our features are region based features, given a
testing image, the image is first divided into rectangular regions based on the Range
to the target information. The detection result is a label map I that labels each
region either as a background region or a target region. The easiest way to describe
the performance of the detection is to compare / with the label map L given by the
learning supervisor. Thus, the performance vector p can simply be p = I — L.

3. selection of the critic function : Since we are dealing with a two class classifica-
tion problem, both / and L can be a bit vector. A simple metric for the detection
performance is obtained by examine the number of bits being set to 1 in p,

Nb

"n = ^p(i)/Nb (7.14)
i'=l

where Nb is the total number of feature regions within the testing image.

136

7.5.5 Experimental Results

After the BMB is constructed through applying the supervised SOM algorithm with 20
training images, another twenty FLIR images were used as testing images for target detec-
tion experiment. Without knowing the validity scope of each BMB member, we first treated
all five BMB members as equally important and assigned each one's weight to 0.2. For the
total 217 feature cells in the 20 testing images, we achieved a 100% detection rate and
a 12% false alarm.The corresponding confusion matrix is shown in Figure 7.13(a). Then,
we use these 20 images to learn the validity scope for each BMB member using the SRV
reinforcement learning algorithm. After 200 iterations, the detection false alarm decreased
by 2%, and the new confusion matrix is shown in Figure 7.13(b).

7.5.6 Future Work

Our work on the supervised SOM algorithm and the SRV reinforcement learning algorithm
has shown that, by introducing learning capabilities into an ATR system, we can build a
statistical model for the complex natural background from real images and improve it as
we feed the system with more examples. Our future work will focus on improving these
two algorithms. First, we need to make the supervised SOM algorithm incremental, which
would allow the system to process new examples more efficiently. Second, we need to make
modifications to the SRV algorithm so that we could (1) abandon the assumption that each
BMB member has a normal distributed validity scope (Equation 7.9, 7.10). (2) use more
sophisticated functions to approximate the relationship between contextual vectors and the
two internal state vectors # and #, not just a linear function.

137

(a) 09p3sa6r-0/i (b) 09p3sa6r_2h

(c) 09p3sa6r_4h (d) 09p3sa6r.6/j

Figure 7.7: Examples of training images.

138

Training Examples : dot — Positive, plus — Negativ* Training Examples: dot — Positive, plus — Negative

*
3.5

■ »

1 3
X

*,-,
V
X +

* +++

.a ++ +

^1.5
■ .* -t*

*TZ.v#**to * 1

 1... 1 J

Relative LSGE Slope

(a) (b)

Figure 7.8: (a) Feature distribution for absolute LSGE (b) Feature distribution

for relative LSGE.

139

SOM and Positive Examples. 2000 epochs SOM and Negative Examples

00 (b)

Distance Distribution Of Positive Examples Distance Distribution Of Negative Examples

4-Neighber average distance 4-Neighber averag» distance

(c) (d)

Figure 7.9: SOM constructed using kohonen's algorithm and absolute LSGE fea-

ture data, (a) SOM overlapped with positive examples (b) SOM overlapped with

negative examples (c) distribution of 4 — Neighber distance of positive examples,

(d) distribution of 4 — Neighber distance of negative examples.

140

SOM and Positive Examples. 2000 epochs SOM and Negative Examples. 2000 epochs

(a)

Distance Distribution Of Positive Examples

(b)

Distance Distribution Of Negative Examples

120

3 loo

E

* 80 .
£

8
Ö 60 -
N
-= 40

20

1 "fl___ . . .
-

0 0.2 0,4 0.S 0.8
4-Nelghber average distance

1.2 1.4 1.6

4-Neighber average distance

(«=) (d)

Figure 7.10: SOM constructed using kohonen's algorithm and relative LSGE fea-

ture data, (a) SOM overlapped with positive examples (b) SOM overlapped with

negative examples (c) distribution of 4 — Neighber distance of positive examples,

(d) distribution of 4 — Neighber distance of negative examples.

141

SOM and Positive Examples. 2000 epochs SOM and Negativ» Examples

(a)

Distance Distribution CM Positive Examples

(b)

Distance Distribution Of Negative Example!

4-Neighber average distance

(c) (d)

Figure 7.11: SOM constructed using supervised SOM algorithm and absolute

LSGE feature data, (a) SOM overlapped with positive examples (b) SOM over-

lapped with negative examples (c) distribution of 4 - Neighber distance of positive

examples, (d) distribution of 4 — Neighber distance of negative examples.

142

SOM and Positive examples. 2000 epochs SOM and Negative Examples. 2000 epochs

(a)

Distance Distribution Of Positive Examples

(b)
Distance Distribution CM Negative Examples

0.2 0.4 0.6 0.8 1 1.2
■»-Neighbor average distance 4-Neighbor average distance

(c) (d)

Figure 7.12: SOM constructed using supervised SOM algorithm and relative

LSGE feature data, (a) SOM overlapped with positive examples (b) SOM over-

lapped with negative examples (c) distribution of 4 — Neighber distance of positive

examples, (d) distribution of 4 — Neighber distance of negative examples.

143

Background Target
-a c
o
bo
M o
cd

03

157/178 0/39

s? 21/178 39/39

Background Target

c
3
O u.
bfl
M o

KS

160/178 0/39

■4—»

bo 18/178 39/39

(a) (b)

Figure 7.13: Confusion matrix of the detection experiment, (a) before the rein-

forcement learning of the validity scopes, (b) after the reinforcement learning of

the validity scopes.

144

Chapter 8

Case-Based Learning of

Recognition Strategies

8.1 Introduction

Photointerpretation (PI) has been an important application domain of image understand-
ing (IU) techniques for about two decades. An important goal of PI or image exploitation
(extraction of intelligence from image data, particularly aerial imagery) is to aid reconnais-
sance tasks, such as airfield, port, and troop movement monitoring. The problem of PI is
one of identifying instances of "known" object models in images acquired from a platform,
such as by a satellite or a reconnaissance aircraft. Like PI, automatic target recognition
(ATR) is also concerned with finding instances of known targets in the input sensor data.
Model-based object recognition is a challenging task under real-world conditions such as
occlusion, shadow, cloud cover, haze, seasonal variations, clutter, and various other forms of
image degradation. Additionally, ATR scenarios are characterized by multi-modal imagery,
low resolution, and camouflage. All of these problems put heavy requirements on any IU
system to be robust.

Automatic acquisition of recognition strategies in dynamic situations has been a bot-
tleneck in the development of automated IU systems applied to real-world problems, such
as PI and ATR. The problem occurs while matching a stored object model to an input
instance of that model and is attributed to the initially unknown pose of object and the
varying environmental conditions. During the process of image/scene understanding, a hu-

145

man relies heavily on the memory of past cases and experience. We use the Case-Based
Reasoning (CBR) paradigm in which "past" experiences are stored in memory as cases and
are used to solve a new problem case. Similar cases can be combined to create problem
solving shortcuts or to anticipate problems in new situations. The set of cases is prioritized
and a strategy for the current problem is generated and executed. Various combinations of
cases are created until a successful solution is reached.

8.2 Learning Recognition Strategies

Figure 8.1 describes our approach to learning recognition strategies for real-world object
recognition tasks. The main learning paradigm employed in our recognition scheme is Case-
Based Reasoning. The detailed CBR-based recognition framework shown in Figure 8.1 con-
sists of four subtasks: (a) the generation of goal-directed recognition strategies using CBR,
(b) the construction and maintenance of the Generalized Case Library (GCL) that collects
past situations and corresponding actions, (c) the development of efficient algorithms for
matching new situations to previous cases, and (d) the generalization of new cases using a
variation of Explanation-Based Learning (EBL). Additionally, our approach also addresses
the problems of indexing into the object model data base and the verification of object
hypotheses. This latter task consists of two main parts: (a) the creation and refinement
of the decision structures for indexing, using a variant of the Conceptual Clustering (CC)
learning technique, and (b) the implementation of the indexing and matching algorithms.
In this report, we focus on the CBR-based framework.

8.2.1 Case-based reasoning (CBR)

Case-based approaches are characterized by how the learner represents what it has learned
so far, as well as the analogical methods which are used to transfer the learned experience.
Human expertise in problem solving is largely dependent on past experiences. This idea has
influenced the evolution of Case-Based Reasoning [7, 57, 88]. A related approach is that of
reasoning by analogy [6, 40]. In CBR, "past" experiences are stored in memory as cases and
are used to solve a new problem case. Given a problem to be solved, the case-based method
retrieves from the memory the solution to a similar problem encountered in the past, adapts
the previous solution to the current problem, and stores the new problem-solution packet
as another case in the memory.

There are several advantages of CBR as a learning paradigm. First, CBR has the capa-
bility of anticipating and therefore avoiding past mistakes as well as focusing on the most

146

Image

Non-Image
Information

Conceptual
Clustering

(CC)

Generation and
Execution of

Goal-Directed
Strategy for

Object Recognition

Case-Based Reasoning
(CBR)

±
Generalized Case Library

for Object Recognition
(GCL)

Adaption/
Acquisition

of the Current
Situation

Explanation-Based
Learning (EBL)

Acquisition and
Refinement of
Object Models

Segmentation,
Feature Extraction,

Grouping

Recognition
Strategies

Symbolic Features

Object
Recognition

(Indexing
and Matching)

Recognition
Performance
Evaluation

Recognition
Results

Recognition
Quality
Measures

Figure 8.1: A CBR framework for learning recognition strategies. EBL generalizes cases and along

with CC it facilitates automatic knowledge acquisition of object models.

important aspects of a problem first. All of these lead to an increase in efficiency over time.
Second, the learning process is fairly uncomplicated, since CBR does not require causal
models like inductive learning or extensive domain knowledge like analytic learning. Third,
the individual or generalized cases can also serve as explanations. Fourth, the process is
scalable. Fifth, the knowledge acquisition bottleneck is relatively simple to solve in CBR
than in conventional learning systems. This is because individual cases interact a little
among themselves unlike the rules. The major concerns with CBR are the selection of the
indexing scheme to organize cases in the memory, the method for choosing the most relevant
cases at reasoning time, and the adaptation heuristics to modify previous cases to fit the

147

current problem.

There are two major types of case-based approaches: interpretive/classification (or
precedent-based) CBR, and problem solving CBR. In the precedent-based CBR, the task is
to decide whether or not a new case should be treated like one of the stored cases based
on similarities and differences between the two. This is done by generating a pro's and
con's analysis from a comparison of the two cases. In problem solving CBR, a solution for
the new problem is formulated by suitably modifying past solutions. In either approach,
a proposed solution must be verified for appropriateness. This is particularly important if
the derived solution is based on "unexplained" experiences. This verification process is akin
to an evaluation procedure associated with any learning process. An interpretive CBR is
used in such evaluation process to provide a check on the use of knowledge derived from
experience.

8.2.2 CBR in IU

Current model-based IU approaches to object recognition generally utilize only the geo-
metric descriptions of object models, i.e., they emphasize the recognition problem as a
characteristic of individual object models only. However, there are various factors, such
as contextual information, sensor type, target type, scene models, and related non-image
information that may influence the outcome of recognition in real-world applications such
as ATR, PI, navigation. Humans also rely on such ancillary information for object recogni-
tion and scene understanding. For example, it is well known in the intelligence community
that oxen yoked to water pumps in Southeast Asia resemble anti-aircraft artillery in aerial
images [2]. Thus, without the knowledge of the area being examined, an image analyst
or an automated PI system may be misled easily. Thus, prior experience in addition to
object/sensor models is important for devising efficient and robust recognition strategies to
deal with noisy data or occluded targets against complex backgrounds.

Prototypical situations (cases) observed in the past are useful for the recognition of
objects as well as for the assessment of entire scenes. An example of a case in the PI
context is given in Figure 8.2. Each path from the root node to a leaf node in the tree
represents a single case. The path incorporates the information normally used at each level
in an object recognition task, e.g., aircraft recognition. It includes contextual information,
e.g., airfield, scene type, e.g., tarmac parking areas, the best object recognition strategy, e.g.,
selection of segmentation, feature extraction, recognition algorithms and their parameters,
and corresponding image analysis goals, e.g., finding instances of transport aircraft such as
Hercules. A case of ATR would additionally include sensor type, terrain, and radiometric
information.

148

SegmentA Paranij

Case

Param-i.

Param

RecogA F-18

Grass Areas

*Q)Param2 Re^"g^ C-130

FeatExctA~^Oparam \

:=0
Recogf- Hercules

Figure 8.2: Representation of a case in the photointerpretation context.

Case-based methods are best suited to problems for which many training cases are avail-
able, perhaps with many exceptional cases, and it is difficult to specify appropriate behavior
using abstract rules. Most IU applications, such as ATR and PI, are characterized by
large-volume image exploitation corresponding to a variety of scenarios, many of which re-
quire unique analysis. Besides, IU for unstructured environments is difficult to formalize in
terms of rules that are general enough to be applicable to diverse situations. For example,
recognition of a Hercules aircraft in a parked area of the tarmac under sunny condition has
been successful in the past by following the path from the root node to the leaf marked
"hercules" in the case representation of Figure 8.2. However, the same path may not lead
to a successful recognition of an F-18 aircraft. Thus, the case of recognizing a Hercules is
not the same as that of an F-18.

8.2.3 Learning method

The learning approach is concerned with (a) building new cases, (b) generalizing and re-
fining existing cases, for a particular application. As indicated in Figure 8.1, the relevant
knowledge is accumulated in the generalized case library. For updating and indexing into
the GCL we use a combination of two different learning strategies: CBR is used primarily
for retrieving the relevant earlier experiences and updating (restructuring) the knowledge
base; CC is used for maintaining decision structures (classification trees) that allow efficient
object recognition at run time.

The GCL is the collection of knowledge that allows the system to perform object recog-
nition and scene assessment. It is a dynamic body of information that represents the
experience base of the object recognition system. For efficient indexing, the GCL is repre-

149

sented as a structured hierarchy of individual cases. Each case, in turn, is represented using
scripts and memory organization packets (MOPs) which are meta-scripts [97, 96]. These
data structures are appropriate for episodic memory or time sequences of episodes which
are equivalent to the sequences of computational steps/recognition strategies in our case.
Since scripts contain more specialized information, these are used for lower-levels of a case
structure. The MOPs allow representation of more generic knowledge such as an airfield
which can be instantiated and specified for recognition of multiple aircraft types.

When a new problem situation or IU task is encountered, e.g., recognition of aircraft
on tarmacs, the process of interpreting and assimilating the new task in CBR framework
breaks down into the following steps:

• Assign Indices - Features of the new task are assigned as indices characterizing the
task. For example, "tarmac" and "aircraft" can be used to characterize the task as
"aircraft-on-tarmac" which will be a particular subtask of "aircraft-in-airfield" task.

• Retrieve - The indices are used to retrieve from memory a similar case encountered
in the past based on similarities and differences. The past case contains the prior
solution. For example, a case which has involved aircraft on tarmac instead of grass
areas.

• Modify - The previous solution is adapted to the current task, resulting in a proposed
solution. For example, the previous recognition may have occurred under sunny condi-
tions which required detection of shadows, while the weather condition for the current
task is cloudy. Thus, the previous case is modified by eliminating all computational
steps involving shadows.

• Test - The proposed solution is carried out. It may lead to success or failure. For
example, the parameters of the segmentation algorithm for detecting regions of interest
may have been retained as the same as in the previous case. On the other hand, the
contrast of the current image may be low due to cloudy weather condition, thereby,
requiring somewhat different segmentation parameter set.

• Assign and Store - If the solution succeeds, then indices are assigned to it and the
solution is stored as a working solution. The successful plan is then incorporated into
the case memory. If the solution is not too different from the proposed solution, then
it affects the script of the existing case a little.

• Explain, Repair, and Test - If the solution fails, then the failure is explained, the
working solution is repaired, and the test is again carried out. The explanation pro-
cess identifies the source of the problem. For example, new segmentation parameters

150

are selected when recognizing aircraft under cloudy weather condition. The predic-
tive features of the problem are incorporated into the indexing rules to anticipate
this problem in the future. For example, "aircraft-on-tarmac" index is extended to
"aircraft-on-tarmac-sunny" and "aircraft-on-tarmac-cloudy." The failed plan is re-
paired to fix the problem, and the revised solution is then tested. The rest of the plan
is carried out with new segmentation parameters in our example. A new case is then
created in the memory to handle this new situation.

The results of the CBR-generated strategy are passed to the interpretation and evalu-
ation component. Case indexing and matching is performed using the intermediate visual
concepts. The different recognition states are: complete recognition, incomplete recogni-
tion, object occlusion, object model acquisition, object model refinement, and recognition
failure. Now, three situations may arise. First, if the strategy is very similar to one of
the cases extracted from the GCL, no learning takes place. In this instance, the system
has encountered an "ordinary" image interpretation task in which the current collection of
system knowledge is adequate. Second, if the strategy is an extension of an existing case
(i.e., the existing case represents a subset of elements of the new strategy), a case refinement
operation may be necessary. The new strategy and its associated case are sent to the EBL
module to determine if any new information should be included in the existing case. Third,
if a unique combination of existing cases has been utilized to create a novel strategy for a
given problem, a case acquisition operation is required. The new strategy is passed to the
EBL, which applies its system control knowledge in order to remove irrelevant details and
conceptualize the scope of the strategy. This new strategy is then inserted as a new case
into the GCL. The CBR and the EBL paradigms are combined in a complementary manner.
CBR has the ability to index into a large number of potential solutions and select a set of
cases that match the characteristics of the current object recognition task. However, the
performance of CBR degrades with the size of the case library and also by the amount of
irrelevant detail retained in the stored cases. EBL compensates for this by learning only
the concepts underlying the individual cases before adding the conceptual abstraction of
the cases to the GCL. On the other hand, since CBR combines a set of previous cases to
create a single new case for the current problem, any bias of the EBL component towards a
particular training example will be greatly reduced. In summary, CBR allows the capture
of context and domain-specific information to improve recognition performance over time.

8.2.4 An Example

An example that illustrates the use of CBR for high-level object recognition is given in
Figures 8.3-8.4. A knowledge-based technique initially identifies several regions of interest

151

Figure 8.3: High-level object recognition based on CBR. (a) Original image; (b) Initial region of

interest (ROI); (c) Extracted dominant axes.

(ROIs) in the image that are likely to contain aircraft. One such ROI and its corresponding
segmentation results are shown in Figures 8.3(b) and 8.3(c), respectively. Also shown in
Figure 8.3(c) are the dominant axes of an aircraft structure along the wing and the fuselage.
(The third axis corresponding to the shadow of the wing is found to be part of a shadow
region and is removed subsequently.) The most "salient" features (with regard to edge
strength and global connectivity) and the identified shadow lines are shown in Figures 8.4(a)
and 8.4(b), respectively. Notice that most of the front edges on both wings are missing from

the extracted line group.

A composite structure detection step identifies trapezoid-like shapes that are characteris-
tic of wings, tails, and rudder in non-shadow lines (Figure 8.4(b)). Next, an evidence-based
dynamic reasoning process seeks to instantiate one of these composite structures (that are
aligned with the dominant axes) as a wing. This situation is shown in Figure 8.4(c). The

152

(a)

(d)

(b)

(e)

(c)

».,:,..:■■;. _«._.

...,„

- — "•""^•y
, ■ > _j/^fsß[

* ' ^i
. JBRa jf~

*^i
J*

- Pfc
"^Jijjj

(f)

Figure 8.4: High-level object recognition based on CBR (continued), (a) Fitted straight lines;

(b) Detected shadow lines; (c) Trapezoid shapes in non-shadow groups; (d) Hypothesized right wing

and projected left wing; (e) Emergence of additional non-shadow lines; (f) Final recognition result.

support for this hypothesis, however, is weak, as there is no evidence for the other wing
(i.e., no trapezoid-like structure was detected that is aligned with the same dominant axis).
Subsequently, less "salient" line features are acquired (Figure 8.4(e)) and a trapezoid-like
structure is detected by relaxing the thresholds of the perceptual grouping process. The
final recognition result is shown in Figure 8.4(f).

The experiences gained in this recognition "case" are:

• Shadow and object regions are similar (Figures 8.3(a)-(a)), therefore the rear part
of the aircraft could not be recovered (Figure 8.4(f)) without using sensor/platform

information.

• Relative positions of the sun and the sensor had given rise to specularity along the
leading edges of the wings, making these hard to detect from edge information (Fig-
ures 8.4(a) and 8.4(d)).

153

• Evidence of engines had been helpful in hypothesizing a wing (Figure 8.4(d)).

Additional information in this case includes the sun angle, sensor position, sensor/platform
parameters, segmentation parameters, directions of shadow regions in a ROI, etc. Clearly,
such a "case" is valuable when the task is to investigate another ROI, say the one next to
the current one in Figure 8.3(a) which contains another aircraft of the same type (i.e., a
Hercules). The recognition algorithm will use the same segmentation parameters, will try
to verify the front parts of the airplane first, and will know that the leading edges of the
wings may be difficult to detect.

8.2.5 Implementation Issues and Performance Evaluation

There are several issues of practical importance in implementing a CBR-based recognition
system. These issues are,

• representation and contents of a case in the memory,

memory organization and selection of indexing rules and search algorithms,

incorporation of changes over time in the cases and the indexing rules,

•

•

•

•

recognition of a new situation as similar to a previous case, i.e., the choice of similarity
metrics,

adaptation of old solutions to new problems, i.e., selection of modification rules,

acceptance or rejection of a new case that is in conflict with a previous case, i.e.,
explaining the differences between two problem situations,

• learning from mistakes and devising the repairing rules.

Unlike the rule-based systems, the rules for indexing, modification, and repair do not make
up the principal knowledge base but, rather, independent support modules. Thus, the
complexity involved is less severe than in most rule-based systems. However, the theory of
case-based reasoning suggests that these rules would themselves be acquired by experience
from cases through a recursive application of the CBR algorithm. That is, the system would
derive rules for indexing, modification, and repair from cases and experience.

The evaluation of the performance of a CBR system can be quite complex due to the
nature of the represented knowledge. One way to express the recognition success would
be to note the similarity between two problem situations. If these situations are identical,

154

then one would expect identical recognition results. The performance difference would
increase with the difference in the situations. Finding a single difference (or similarity)
metric would be quite complex as there may exist a number of alternatives to compare
two situations. Thus, a multi-objective criterion function would be more appropriate. One
could simply focus on the various rules for indexing, modification, and repair to evaluate
the performance of a CBR system. For example, the hit vs. miss ratio in retrieving cases
from the memory using the indexing rules can be one measure. Various tools from the
field of memory management can be used as potential measures to evaluate the efficiency
of memory management in a CBR system, e.g., memory usage, memory fragmentation,
distributed vs. centralized memory, dynamic memory organization.

8.3 Future Work

Our initial goal of learning recognition strategies using case-based approaches would be
limited to PI applications. We have already developed an aircraft recognition system for
this purpose and are in the process of extending it further. Currently, this system can
handle quite complex imagery and the variabilities present in such images would be ideal for
a case-based approach. We have presented some results using this system in this report and
sketched our case-based approach. Since our focus is on developing recognition strategies
through a learning process, we are minimizing our effort to design appropriate CBR tools.
We have experimented with a LISP-based system for CBR. Our future effort is directed
towards developing (a) a prototype system which will have all the basic elements of CBR
and (b) reasoning, adaptation and indexing approaches that will make CBR an effective
approach for IU applications.

155

Chapter 9

Learning Composite Visual

Concepts

9.1 Introduction

The context of the learning problem addressed here is structural object recognition, which is
based on the assumption that structural primitives, extracted from the image in a bottom-up
fashion, can be used to describe and recognize the objects of interest. The main advantage
of this approach is that it facilitates (at least in principle) recognition under object and
aspect variations and, as a recognition-by-components approach, under partial occlusion.

The main problems associated with the structural recognition approach are (a) the com-
putational expense for matching structural object descriptions, (b) the reliable extraction
of structural primitives from the image, and (c) the descriptive limitations of the commonly
used structural features. The combinatorial problems associated with matching structural
descriptions call for methods to limit the search space. When object models are complex,
their direct instantiation, either in a top down or a bottom-up, becomes impractical. A
logical solution is to describe objects as assemblies of smaller substructures (intermediate
visual concepts) that can be instantiated with much less effort. Perceptual grouping meth-
ods (e.g., [63, 86, 94]) make use of this fact by using simple geometrical relationships (e.g.,
collinearity, cotermination, parallelism, etc.) to assemble primitives into more complex fea-
tures. However, due to the domain-independent specification of perceptual groupings, their
"indexing power" is insufficient in applications with more than a few object categories. An-

156

other weakness of current structural recognition techniques is their reliance upon a single
type of primitive feature, which leads to low redundancy and inappropriate descriptions.

We address the first problem by learning significant composite structures that are hi-
erarchically assembled from geometric primitives and serve the purpose of intermediate
goals for partial recognition. The other two problems are approached by using a larger
variety of different structural feature types and corresponding object representations, thus
achieving a higher level of redundancy. For the recognition framework we adopt a model-
based hypothesize-and-test approach that consists of three main steps: primitive extraction,
model-base indexing, and model verification. These three steps operate in a bootstrap fash-
ion, i.e., the process starts in a bottom-up mode by extracting primitives and combining
them in a meaningful way up to a point when a plausible object hypothesis can be made.
Then the recognition process turns into a goal- (model-) directed search and verification
process.

The bottom-up part of the recognition process can be viewed as a multi-stage grouping
process. At the lowest level, individual pixels are grouped to form the structural primitives,
e.g., straight line segments, arcs, regions, etc. At the intermediate-level, the structural
primitives produced by feature extraction are combined into more complex structural ar-
rangements, usually biased by perceptual (i.e., domain-independent) constraints. The main
goals of the second grouping step1 are to

1. combine structural features in a way that they are likely to belong to the same object,
thus reducing the number of "clutter" features that have no correspondence in the
model structure and

2. to produce more expressive, object-specific entities that allow effective indexing into
the model base.

It is the second item that is our main focus in this part of the project. We need to ask the
question, which properties, apart from being perceptually significant, should be incorpo-
rated into the grouping process. We believe that, in order to lead to useful object indices,
this second set of grouping criteria cannot be model- or domain-independent but needs to
be adjusted to the particular application domain, the objects involved, and the context in
which they appear. The value of a particular feature group depends mainly upon (a) its
indexing power, i.e., its capability to select a specific object (or a small set of objects) and
(b) its operationality, i.e., the effort needed to instantiate it. The general approach for the
use of learning to come up with the most effective feature groupings is described in the
following.

^his step is the one commonly referred to as "grouping."

157

9.2 General Idea

The intermediate-level part of the project is focused on the problem of "inventing" new
composite structural features (intermediate visual concepts) to improve recognition perfor-
mance. We use intermediate visual concepts that are directly related to the application
domain. For this purpose, we select certain high-order assemblies of primitive features
which are both perceptually salient and sufficiently distinct to allow very efficient indexing.
We employ a two-step grouping strategy that consists of

1. a domain-independent perceptual grouping stage (which ensures perceptual saliency
of the selected groups to cope with over-segmentation), followed by

2. a model-based grouping process that is domain-dependent. The high-order, model-
based groups are formed as assemblies from the lower-order perceptual groups.

Current perceptual grouping methods (e.g., [63, 86, 94]) are based on (a) a single type of
primitives and (b) grouping rules that are predetermined and not adapted to the application
domain. The use of a single feature type has the advantage of simple representations
and grouping criteria that can be evaluated efficiently. Also, the corresponding structural
descriptions are independent of the problem domain. The disadvantages are that

1. the perceptual "saliency" of groupings between different types of primitive features is
not used,

2. groupings based on a single feature type are inherently brittle, and

3. fixed, domain-independent grouping rules are not suitable for dynamically changing
scenes.

In our approach, we combine multiple types of structural features at the intermediate level,
such as line segments, conic sections, corners, inflection points, blobs, etc., in order to in-
crease the descriptive power and robustness (through higher redundancy) of the "polymor-
phic" feature groupings. The problem of grouping polymorphic features is more challenging
than grouping features of the same kind, with regard to the representations and grouping
algorithms involved.

The selection and generalization of the intermediate visual concepts is critical in order to
in-sure optimal recognition performance. It requires knowledge of the application domain,
the imaging process, the behavior of the perceptual grouping stage, and the recognition
utility of the intermediate visual concepts. We use Explanation-Based Learning (EBL) to
solve this special knowledge acquisition problem. EBL is useful in this context to detect

158

3. The use of "polymorphic" feature groupings based on multiple feature types.

The main advantages we expect from this strategy are:

1. A significant reduction of the overall search complexity for structural model instanti-
ation by using high-order intermediate visual concepts.

2. Increased robustness and indexing power from the use of polymorphic groupings.

3. Adaptation of grouping processes to application domains and environmental condi-
tions.

9.2.1 Example

In the aircraft picture shown in Figure 9.1 it is evident that the groups of lines that compose
the wings, tails, and rudders, form high-order groupings that are characteristic for many
types of aircraft. Obtaining a conceptual description of certain configurations, e.g., the
trapezoid that forms the wings, is useful for improving the recognition of other aircraft.

9.2.2 Goals

The main goals at the intermediate level are to automatically acquire new visual concepts
from examples, using Explanation-Based Learning and incorporating polymorphic feature
groupings. We shall demonstrate that the use of domain- and object-specific grouping, in
combination with traditional perceptual grouping, can significantly improve the efficiency
of indexing and object recognition.

I
I
I

inherent pattern regularities and to generalize patterns, i.e., to determine the simplest
description with respect to a given set of operators. In summary, the strategy at this level
involves:

1. The use of a two-stage grouping strategy that involves (a) perceptual grouping and
(b) model-based grouping with a database of generalized visual concepts.

2. The use of EBL to automatically infer the most useful intermediate visual concepts I
by applying the entire recognition "engine" to real examples.

I
I
I

159

>«*..j(21

Figure 9.1: Domain-specific, composite visual concepts are formed by combining perceptually

salient low-order groupings. Here only straight line segments are used as initial primitives. An

example for a simple intermediate-level concept is the typical trapezoid shape found at the ends of

the aircraft wings. Four instances (1-4) of this concept are outlined and marked in this image.

9.3 Approach

The instantiation of visual concepts is performed in a two-stage process (Figure 9.2).
Initially, the simple features extracted from the input image by various different selec-
tion mechanisms (e.g., straight line segments, conic segments, homogeneous blobs, etc.) are
grouped using domain-independent perceptual grouping criteria. Examples for the grouping
criteria are collinearity, cotermination, parallelism, proximity, relative size, symmetry.

At the second stage, domain-specific models of high-order composite structures (inter-
mediate visual concepts) that have been found useful for recognizing objects guide the
grouping process. Visual concepts are learned by the system (see below) and stored in a
local database that is continually updated. Only those groupings are considered here that
were found perceptually significant at the initial perceptual grouping stage. During actual

160

Database of
Intermediate

Visual
Concepts

C -N
•

Simple Features

\w~
Initial

Perceptual
Grouping

Domain-
Independent
Perceptual
Grouping
Criteria

I®
Perceptual "Polymorphic" Groupings

Model-Based Grouping

vv

Indexing
Object
Models > High-Level

Object
'New Concept Recognition

Pattern
Generalizer

&
Database

Update

Minimum
Description

Analysis
(EBL)

Recognition Utility

Knowledge
about

Grouper's
Capabilities

©

Figure 9.2: Learning intermediate visual concepts using Explanation-Based Learning (EBL)

(routine) recognition, the visual concepts found at this stage are directly used for indexing
into the object model base.

Learning of new visual concepts is based on the following criteria:

Perceptual saliency: A concept must be perceptually salient, i.e., receive a high score in
the first (perceptual) grouping stage.

Operationality: A concept must be describable in terms of the operators that the model-
based grouper is able to perform. For this purpose, knowledge about these operators
is supplied in explicit form.

Simplicity: Concepts that permit a simple description (i.e., one with few grouping steps

161

I

I

/ transformations) are preferred. EBL is used to find the simplest description for a
given feature configuration (Minimum Description Analysis).

Recognition utility: Only those concepts that are found to be useful in recognizing a
particular object are eventually accepted. This is determined by considering the
outcomes of the high-level recognition steps.

Visual concepts in the database are generalizations of the actually observed feature con-
figurations, produced by analytic (EBL) learning (Pattern Generalizer). The representation
of a concept in the database is an annotated symbolic description, which is generalized by
parameterizing specific geometrical properties of the corresponding feature representation.
The task of the Model-Based Grouper module is to instantiate the visual concepts, in the
stream of perceptual groups, operating in a goal-directed fashion. The concepts (goals)
are supplied to the grouper as decision structures that are updated dynamically when the
contents of the database are changed. Interaction with high-level object recognition occurs
in two forms. First, instantiated known groups can be directly used for indexing into the
model base at the high level. (The association between intermediate concepts and object
models is done at the high level.) Secondly, high-level recognition is invoked to determine
the recognition utility of new concepts.

The use of a small set of fixed bottom-up composite structural concepts allows efficient
detection in images. Similar arguments hold for top-down search for specific arrangements
when the number of possible objects is small. The disadvantage of this approach is that a
small but fixed set of intermediate structural concepts is generally not useful in different
application domains. For using top-down, model-based composite structures, the number
of models is restricted. In both cases, the manual specification of suitable intermediate
structures is difficult.

The following specific tasks are involved:

9.3.1 Task 1 — Model-Based Interpretation of Perceptual Groups

We develop methods for collecting structural primitives of different types (e.g., lines, arcs,
parametric curves, blobs) into polymorphic groups, using a set of perceptually significant
spatial relationships. The relationships (e.g., proximity, collinearity, symmetry, relative
size) being used depend upon the type of elements contained in each particular group. The
purpose of this initial bottom-up grouping process is to supply an ordered set of composite
structures that have a high probability of being semantically meaningful. The database of
perceptual relationships used in this task is fixed, i.e., not subject to adaptation during
runtime. However, this database must be designed to allow easy extension when new

162

structural feature types are introduced. The main subtasks are to develop (a) the database
of perceptual relationships, (b) evaluation function to measure the "saliency" of high-order
polymorphic groups, and (c) efficient grouping algorithms that can handle polymorphic
structures.

9.3.2 Task 2 — Composite Structure Model Acquisition and Refinement

We consider the actual semantic significance of perceptual groups with regard to the given
application domain, in contrast to the previous task, where we employ only general percep-
tual cues. The module developed in this task uses the initial perceptual groups developed in
Task B.l for ultimately creating an index into the object model database. For this purpose,
the module tries to form more complex groups from the incoming simple groups by using
a database of semantically relevant structures. The database is created and maintained by
a learning scheme based on Explanation-Based Learning (EBL). The major steps in this
task are (a) the development of a suitable representation for high-order polymorphic fea-
ture groups which can also express their variability, (b) the adaptation of EBL for learning
parameterized geometric concepts and its implementation in software, and (c) the develop-
ment of efficient matching algorithms that can make use of the polymorphic nature of the
feature groups.

9.3.3 Task 3 — Composite Structure Learning Subsystem

The goal of this task is the integration of all components needed for the adaptive inter-
mediate-level learning scheme. Here we address in particular the interaction between the
database of composite feature structures (Task 2) and the object models at the high level.
The interaction with the high-level recognition module is needed to determine the utility of
an observed feature structure for recognizing a particular object.

9.4 Learning at the Intermediate-Level Vision: Previous

Work

Learning at the intermediate level has been applied mainly in the areas of texture recogni-
tion, algorithm parameter adjustment, motion perception, and specific vision tasks, such as
road following. Currently, clustering methods are the most popular adaptation or learning
paradigm at this level, followed by the use of neural networks and some applications of

163

genetic algorithms. Structural learning methods, such as EBL or CBR are currently much
less used at the intermediate level.

An example for inductive learning at the intermediate level is the approach to texture
recognition described by Pachowicz [75]. He uses a scaling process to convert feature vectors
of texture statistics into symbolic intervals and then applies an inductive learning program to
find the most preferred symbolic expression according to a specified criterion. The method
also employs a rule optimization technique after texture learning and prior to recognition to
allow rule generalization. A performance improvement over the traditional nearest-neighbor
clustering method is demonstrated.

Gillies [41] reports a learning system based on Genetic Algorithms for generating image
domain feature detectors to find the location of objects in the image. A genetic search
method is used to generate populations of feature detectors which are morphological opera-
tors. The functions performed by the layered system are tailored to the specific imagery on
which the system is trained. The system is also shown to handle multi-class discrimination.

Another application of Genetic Algorithms at the intermediate level is the work done
by Roth and Levine [90], which is a learning-based approach to extraction of geometric
primitives (parametric curves) from images. In this approach, a geometric primitive is
genetically represented by the minimal set of points instead of its parameters. Learning
involves determining the minimal set of points for a given primitive type that optimally
fits the data. Montana [69] reports an expert system for the interpretation of passive sonar
images that employs a GA for determining detection thresholds.

There is a growing number of neural network applications at the intermediate vision level.
An example is the work by Pomerleau [80] on network-based navigation of autonomous
robots. Due to their inability to capture and generalize structural descriptions, NNs in
general do not appear to be well suited for solving structural problems at the intermediate
level. There are, however, certain functional mapping problems at the intermediate level
that can be addressed successfully with NNs. For example, Aloimonos and Shulman [4] have
suggested the use of NNs to learn the parameters involved in "Shape-from-X" problems.

Intermediate-level composite structures are commonly detected by either bottom-up
grouping criteria (see above) or specified a priori as prototype patterns that are searched
for in a goal-directed manner (e.g., [71]). The work reported by Segen [98] addresses some
aspects of learning composite structural concepts from examples, however, no results have
been shown on real images. Structural feature detection is usually based on a fixed set of
visual primitives for which efficient detection algorithms are available. The incorporation of
features of varying complexity has been addressed using only fixed, domain-independent
grouping criteria. The problem of automatically forming intermediate-level perceptual
shape concepts has found considerable attention in the psychological field recently.

164

9.5 Explanation-Based Learning

Explanation-based learning (EBL) [28] is an extension to an earlier concept called "ex-
planation-based generalization" described by Mitchell et al. in [66]. Both paradigms are
based on the same idea of using strong domain knowledge to "explain" why a given training
example is a member of the concept being learned.

The domain knowledge (or domain theory) required in EBL consists of three main com-
ponents:

1. A specification of the types and properties of the objects being dealt with.

2. A set of inference rules for inferring relations and properties from given relations and
properties, and possible transformations between objects in the domain.

3. A library of problem-solving operators (schemata) that were either learned from earlier
training examples or are hand coded.

The learning task in EBL can be stated as finding a generalized sequence of legal trans-
formations (a schema) to derive the goal configuration from a given initial configuration.
This is usually accomplished in a two-step process:

1. Construct an explanation that is causal with respect to the domain knowledge. This is
similar to constructing a proof sequence for a theorem with respect to a set of axioms.

2. Generalize that explanation into a new schema by looking for the weakest precondi-
tions under which the same explanation would apply.

The main limitation of EBL in its original form lies in the fact that the domain knowledge
must be complete. If a given training example cannot be explained in terms of the existing
domain knowledge, no generalization and thus no learning can take place. Another issue is
the way the domain knowledge is specified and used. In "pure" EBL, the domain knowledge
is expressed in the form of first-order logic predicates or Horn clauses, which provide no
notion of proximity or similarity in a quantitative sense. However, many domains require
handling of approximate, distorted, or noisy descriptions, and are thus not well suited
for EBL in its original form. As a consequence, there have been several suggestions for
extending the capabilities of EBL, in particular for relaxing the problem of incomplete and
and possibly incorrect domain knowledge by combining analytical (EBL) and inductive
learning [99, 67, 76, 103].

A second shortcoming of EBL is its strong dependence of a "good" encoding of the
domain theory rules, which makes it difficult to design a domain theory that produces correct

165

specializations. One approach for solving this problem is to employ a weaker semantic bias
when searching for a solution path, which, however, requires the use of multiple training
examples (EBL can, in principle, produce generalizations from single training examples)
[37].

9.6 EBL and Visual Concepts

In this section, we describe the principles of applying EBL in the context of structural feature
analysis and visual concept acquisition. The first step is to define the basic elements of the
EBL paradigm, i.e., objects, relations, inference rules, initial state, and goal state in terms
of the structural feature domain.

9.6.1 Elements of the Learning Problem

The primitives involved in this learning approach are two-dimensional geometric primi-
tives. The assumption is that we have suitable mechanism available for extracting these
primitives from images. Primitive classes include zero-dimensional primitives (points), one-
dimensional primitives (straight line segments, arcs), and fully two-dimensional primitives
(closed curves, elliptical regions, parametric blobs, etc.), as indicated in Figure 9.2. We call
these three primitive classes V0, V\, and V2, respectively.

The domain knowledge in this case consists of

1. the properties of the individual primitives,

2. the spatial relations between primitives, and

3. a set of operators for combining (grouping) primitives into more complex arrange-
ments.

The knowledge can be interpreted as a picture language (or algebra) for describing almost
arbitrary configurations of picture primitives. In general, there is more than one possible
description for a given arrangement of picture primitives. The learning problem consists of
finding the simplest description (or a small set of simple descriptions) for a given picture
configuration with respect to the current domain knowledge. The simplified descriptions
found in the learning process become new intermediate-level visual concepts that are added
to the current domain knowledge and can, in turn, become part of other object descriptions.

166

To evaluate the complexity of a particular description, each operator is associated with
a cost term that represents the complexity of applying that operator or transformation. A
similar approach is used in most approximate string matching techniques, where certain
costs are associated with each character insertion, deletion, and replacement to compute a
minimum "string edit" distance. The individual operator costs are assumed to be predefined
and constant, at least originally. The questions of (a) how the operator costs should be
related to the actual recognition mechanism and (b) if they can and should be learned pose
interesting research topics.

9.7 Future Work

The work towards visual concept learning described in this chapter is still in an initial
phase. Currently, our short-term goal in this problem area is to formalize the learning
problem in precise terms and to specify suitable representations, learning algorithms, and
performance measures. The plan is to adapt existing learning tools to this specific problem
and to integrate these tools with other software components wherever possible. In addition,
we are currently creating the necessary low-level operators for extracting structural features
of various types that will allow to perform initial experiments on actual image data.

167

Chapter 10

A Learning System for

Consolidated Recognition and

Motion Analysis

A system for /earning integrated targeting and exploration via segmentation, emplacement
and recognition (LITE-SEER) is described. LITE-SEER uses learning augmented image
understanding methodologies to identify and locate objects from a sequence of dynamic
images for the following: (a) targeting and tracking in cluttered environments, (b) con-
straining object viewpoints for recognition, (c) detection of stationary and moving objects.
To achieve these goals, the learning module (based on genetic and other algorithms) inter-
acts cooperatively with the motion, segmentation and recognition modules. Experimental
results on dynamic image sequences that detect, identify and locate obstacles like cones,
cans, and wedge-shaped objects are presented.

10.1 Introduction

Tracking of moving and static objects, and exploration in an unknown or partially known
environment are important applications of computer vision. Recognition and reconstruction
of objects in a scene are often required for this purpose. Reconstruction of an object involves
determining the shape of the object as well as the position and orientation of the object in

168

Recognition
,

Scene
Reconstruction

Segmentation U—* LEARNING « «•

Motion

(a)

Figure 10.1: Overview of LITE-SEER.

3-D. The recognition of an object is of course limited by the range of models available in
the model database; in practice the database could be extended by the acquisition of new
models. Building an environmental model using depth information and models has been
studied earlier [92]. However, most algorithms are still at an early stage and are not robust.
For better performance of recognition algorithms the incorporation of depth information
obtained from motion analysis can be of considerable help. Similarly, motion analysis can
be assisted by the recognition of objects.

In the overview of the LITE-SEER system in Figure 10.1, the motion module determines
dense depth maps from a sequence of 2-D images. The segmentation module can segment
either 2-D intensity images or dense depth maps. The recognition module uses the pre-
stored models and information from the segmentation and motion modules to recognize
objects over multiple frames. The learning module is central to the system and allows for
the cooperation between the segmentation, motion and recognition modules. The system
attempts to secure the 3-D position of objects through motion algorithms and identify
them via the recognition module. Then the objects can be placed in a 3-D map in the
course of scene reconstruction. In short, the LITE-SEER project attempts to incorporate
motion, segmentation and learning for model-based 3-D reconstruction and recognition
from dynamic image sequences. LITE-SEER's application area includes outdoor navigation
and robotics, target tracking, target recognition, surveillance etc. The fully implemented
system is expected to run on the mobile vehicle UCRover, being developed at the University
of California, Riverside. In this chapter, the focus is on the processes of motion analysis and
recognition. They are combined to provide results that are better than those obtained from
either of them separately. To achieve this goal segmentation is performed on the following:

169

(a) color images, (b) depth maps obtained via motion analysis. Segmentations of depth
maps and intensity images are automated by using a computational learning paradigm to
learn the parameters that have to be adjusted.

10.2 Components of LITE-SEER

The actual design and implementation of the LITE-SEER system is described in Fig-
ure 10.2. The pre-stored models of the objects are kept in a model database. The database
contains CAD models of objects likely to be found in the 3-D scene. In the initial imple-
mentations of the work, the representations of the models are relatively straightforward and
conform to simple geometrical figures and intensity characteristics of the objects when they
are projected onto the image.

There are two separate channels which interchange information in the whole system: (a)
Channel for the segmentation of color images (b) Channel for the segmentation of depth
images. The two channels interact closely through the Integrator for recognition, 3-D
position, orientation and shape determination of objects in the scene.

Even though the segmentation of images is an ill-posed problem in computer vision, for
practical scenarios there is often no other alternative but to segment color images and depth
maps. Usually this involves the adjustment of the values of several parameters for optimal
segmentation. LITE-SEER uses genetic algorithms [15] to learn the optimal values of the
parameters that have to be adjusted. Not only can genetic algorithms be used to learn the
parameters for the segmentation of the depth maps and intensity imagery but they can also
be extended to work in a similar way on infrared and LASAR imagery. Genetic algorithms
have a high probability of locating the global optimum solution in a multidimensional search
space. In addition, when multiple characteristics like depth and intensity are involved and
the interactions among them are complex, the genes of the chromosomes can represent the
various characteristics in the genetic algorithm.

As far as model-based segmentation of depth map is concerned, even though it is a
well-studied subject [5], and algorithms have been implemented on parallel processors [21]
the results obtained need improvement for robust performance in practical applications.
For the purposes of this study, the method used for obtaining dense depth map is that
described by Dutta in [34]. It derives dense depth maps from motion in both outdoor and
indoor imagery to about 8% accuracy (at distances of up to 80 feet) in real-time in an
SIMD mode of computation on the Image Understanding Architecture. The parameters for
segmenting the depth map are determined through the application of genetic learning in a
fashion similar to the determination of parameters for color segmentation.

170

Models of 3-D Objects

Matching

Segmented
Color Images

Learning of
Parameters

Evaluation

Matching

Segmented
Depth Map

Learning of
Parameters

Evaluation

3-D Scene Reconstruction
and Recognition

(a)

Figure 10.2: Algorithmic components of LITE-SEER.

The two channels interact closely and influence the output of each other. The evaluations
of the fit between the models and the objects in the segmented color and depth images are
determined by considering the influence of the other channel, i.e., the color segmentation is
influenced by the depth segmentation and vice-versa. The final output of the Integrator is

171

(a) (b)

Figure 10.3: 1 and 2 frames of a sixteen frame sequence.

the reconstructed 3-D scene with the recognized objects.

10.3 Experiments

Figures 10.3 and 10.4 show frames of two typical image sequences collected by moving
cameras. The sequences will be referred to as "indoor" and "outdoor" sequence respectively.
From the image sequences the motion module computes dense depth maps via the use of
SIMD-based parallel depth from motion algorithms described in Dutta [34]. The dense
depth map obtained for a subimage of the indoor sequence containing the "wedge" is shown
in Figure 10.5. The dense depth maps obtained for two separate regions of the outdoor
sequence containing cones and cans are shown in Figure 10.6. For the depth map of a
subimage, the darker the gray scale the closer the environmental point is to the camera.

172

"> ■■£-,'». I ' i ' ■

- :
■HHli

HHHH

Wmmmmm^naiiiiBk

-^^ - » ■*" <wL«w«u*Bfci^

(a) (b)

Figure 10.4: Is' and 3rd frames of a twenty frame sequence.

The result of intensity-based segmention of the "wedge" subimage of the indoor sequence
is shown in Figure 10.7. The result of segmenting the central region of the first image of
the outdoor sequence by using models of cones and cans based on intensity characteristics
are shown in Figure 10.8. It can be seen that the "wedge," cones and can stand out clearly
from the ground.

Genetic learning algorithms are used to apply the intensity segmentation results obtained
in Figures 10.7 and 10.8 to segment the depth maps shown in Figures 10.5 and 10.6 such that
the depth of the "wedge", cones and cans can be determined and they can be separated from
the ground plane. With no other information other than depth maps complete separation
of obstacles (e.g. cones, can) is not possible because part of the surroundings of an obstacle
in the depth map is at almost the same depth as the obstacle and tends to merge with the
foot of the obstacle (e.g. the depth of the bottom of cones and the surrounding ground is
the same). This is different from an intensity image where all regions of an obstacle have

173

I

I

(a) (b)

Figure 10.5: The subimage of the wedge of the indoor sequence is shown on the left and the dense

depth map obtained from motion analysis is shown on the right hand picture.

a different image intensity from their surroundings. The genetic algorithm will try to learn
the parameters for segmentation of the depth maps.

From experience it is determined that the "wedge" may be segmented from the depth
map of the indoor image with two thresholds. Similarly the can may be segmented from the
depth map of the outdoor image with two thresholds. However, several cones at varying
distances require three thresholds. Hence, the genetic learning implementation for the
automated learning procedure for the depth segmentation of "wedges" and cans have two
genes corresponding to the two thresholds whereas for depth segmentation of the can there
are three genes corresponding to the three thresholds.

The initial population of chromosomes (which contains the genes) is selected at random.
Some information is known about the range of depths in the image and this is incorpo-
rated as a constaint while generating the random chromosomes. The goodness of each

174

km?

(a)

Figure 10.6: Cones and can from the outdoor sequence are shown on the left and their dense depth

maps obtained purely from motion analysis are shown in the corresponding right hand pictures.

chromosome is then evaluated by an evaluation function f{x1,x2) for the can and "wedge"
images and f(xi,x2, x3) for the cone image where xu x2 and x3 represent the genes of the
chromosome. The evaluation function tries to match the intensity segmented map with
the hypothetically segmented depth map constructed from genes reflecting the thresholds.
Succeeding generations of chromosomes are chosen applying a crossover rate of 0.6 and a
mutation rate of 0.001. The number of generations created is limited by the processing time
that can be used for the problem. The ten best parameter estimates for the thresholds of

depth segmentation for the "wedge," cone, and cans are shown in Table 10.1.

The depth images corresponding to the results of Table 10.1 are illustrated in Figures
10.9 and 10.10. The average of the three best solutions were used for segmentation. Studies
comparing the automatically generated results of Figure 10.10 with the manually obtained
results show that the generated thresholds are close enough to the manually generated

175

KJ

:;**. •■.. .Tfc'

^Btc ■ if

-^^|
Kr*1

'S *W-

"JtH ■. .
% ._ .- - '"'" ...:

2000

1000

40 60 80 100 140 180

file

(a) (b)

Figure 10.7: Segmentation of the "wedge" based on intensity for the first image of the indoor

sequence. The right picture is an histogram which illustrates the segmentation. The shading of the

histogram corresponds to the shading on the segmented image. For example, the "wedge" has an

intensity value between 76 and 84 and is shown in in black.

thresholds. Since the manually generated thresholds were chosen with great care after a
lot of attempts, the automatically generated thresholds are excellent. The automatically
generated thresholds are a lot better than any that are generated from default parameters.

Once the segmented depth map and the segmented intensity maps are obtained the scene
can be reconstructed as shown in Figures 10.11 and 10.12. The triangular structure in the
surface plot of Figure 10.11 is the "wedge." The three undulations in the surface plot of
Figure 10.12 are the three cones. The depth of the "wedge," can and cones can be obtained
from the histograms. The "wedge" is at a depth of 3 m. (10 feet), the can is at a depth of
46 feet, the near cone is at a depth of 36 feet and the farther cones are at a depth of 56 feet.

176

(a) (b)

Figure 10.8: Segmentation of cans and cones based on intensity for the first image of the outdoor

sequence. The cones have intensity greater than 148; the can has intensity less than 53; the intensity

of the ground varies between 54 and 147.

10.4 Conclusions and Future Work

At the current state of the system, genetic learning has been used to segment the depth
maps and combine them with intensity segmentation and models for 3-D reconstruction
and recognition of simple objects. The future focus will be on the completion of learning
and model-based algorithms to recognize and track 3-D objects for real applications.

177

I 4000

3000

2000

1000

IL
10 20

Eile_depchLpl

(a) (b) (c)

Figure 10.9: Depth segmentation of the "wedge" from genetic learning and motion analysis.

178

I

Table 10.1: The ten best solutions for thresholds with genetic learning for depth maps, t-1, t-2

and t-3 are the thresholds.

For the ' 'wedge'' image

t-1 t-2 evaluation

0.38 3.19 6.1140e+03

1.62 5.34 6.2830e+03

0.71 3.37 6.1140e+03

0.79 3.20 6.1140e+03

1.94 5.34 6.2830e+03

0.71 3.19 6.1140e+03

0.79 3.19 6.1140e+03

1.94 5.45 6.2830e+03

0.79 3.37 6.1140e+03

0.71 3.27 6.1140e+03

For the can image

t-1 t-2 evaluation

32.11 45.32 9.8000e+01

28.05 47.35 9.9000e+01

31.10 47.35 9.9000e+01

25.00 45.32 9.9000e+01

31.10 45.32 9.7000e+01

33.13 46.33 9.9000e+01

26.02 45.32 9.9000e+01

33.13 47.35 9.9000e+01

33.13 45.32 9.7000e+01

30.08 45.32 9.7000e+01

For the cone image

t- •1 t-2 t-3 evaluation

27 08 46 89 58 44 7.0300e+02

24 60 46 89 57 62 6.9900e+02

24 60 44 41 57 62 7.0100e+02

27 08 43 59 57 62 6.8100e+02

27 90 46 89 58 44 7.0300e+02

27 08 44 41 57 62 6.8700e+02

24 60 43. 59 57 62 6.9500e+02

27 90 43 59 58 44 6.9900e+02

27 08 41 11 57 62 7.0100e+02

27 08 46 89 57 62 6.8500e+02

179

IS
tisii

1mm

* ■..- . J

P.i

V iil -B|"
r _l

(a) (b) (c)

(d) (e) (f)

Figure 10.10: Depth segmentation of cans and cones from the depth maps obtained via genetic

learning and motion analysis between frames 1 and 3.

180

(a) (b) (c)

Figure 10.11: Recognition and surface reconstruction of the "wedge." The middle picture is the

smoothed depth map and the right picture is the reconstructed surface.

181

(a) (b) (c)

Figure 10.12: Recognition and surface reconstruction of the cones. The middle picture is the

smoothed depth map and the right picture is the reconstructed surface.

182

Bibliography

[1] D. Ackley. Stochastic iterated genetic hillclimbing. Technical Report CMU-CS-87-107,
Carnegie Mellon University, Dept. of Computer Science, March 1987.

[2] J.A. Adam. Peacekeeping by technical means. IEEE Spectrum, 23(7):42-56, July
1986.

[3] O.E. Agazzi and S.-S. Kuo. Hidden Markov model based optical character recognition
in the presence of deterministic transformations. Pattern Recognition, 26(12):1813-
1826,1993.

[4] J. Aloimonos and D. Shulman. Learning shape computations. In Proc. DARPA Image
Understanding Workshop, pages 862-873, 1987.

[5] F. Arman and J. K. Aggarwal. Model-based object recognition in dense depth images
- a review. ACM Computing Surveys, pages 5-43, Mar. 1993.

[6] K. D. Ashley. Arguing by analogy in law: A case-based model. In D.H. Helman, editor,
Analogical Reasoning: Perspectives of Artificial Intelligence, Cognitive Science, and
Philosophy. Boston, MA: Kluwer, 1988.

[7] K. D. Ashley and E. Rissland. A case-based approach to modeling legal expertise.
IEEE Expert, Summer 1988.

[8] T. Back, F. Hoffmeister, and H. P. Schwefel. A survey of evolution strategies. In
Fourth Intl. Conf. Genetic Algorithms, pages 2-9, San Diego, Calif., July 1991.

[9] D. H. Ballard and C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs,
NJ, 1982.

[10] A. G. Barto. Reinforcement learning and adaptive critic methods. In David A.
White and Donald Sofge, editors, Handbook of Intelligent Control: Neural, Fuzzy and
Adaptive Approaches, pages 469-491. Van Nostrand Reinhold, 1992.

183

11] B. Bhanu. Automatic target recognition: State of the art survey. In IEEE Trans.
Aerospace and Electronic Systems, volume 22 of AES, pages 364-379, 1986.

12] B. Bhanu, R.N. Braithwaite, W. Burger, S. Das, S. Rong, and X. Wu. Multistrategy
learning for image understanding. Report to ARPA VISLAB-MSL-94-1, Univ. of
California, Riverside, CA, Feb. 1994.

13] B. Bhanu, B.L. Hutchings, and K.F. Smith. VLSI design and implementation of a
real-time image segmentation processor. International Journal of Machine Vision and
Applications, 3(l):21-44, January 1990.

14] B. Bhanu and T. Jones. Image understanding research for automatic target recogni-
tion. In DARPA Image Understanding Workshop, pages 249-259, 1992.

15] B. Bhanu and S. Lee. Genetic Learning for Adaptive Image Segmentation. Kluwer
Academic Publishers, 1994.

16] B. Bhanu and S. Lee. Genetic Learning for Adaptive Image Segmentation. Kluwer
International Series in Engineering and Computer Science, Robotics: Vision, manip-
ulation and Sensors (Takeo Kanade, editor). Kluwer Academic Publishers, Boston,
MA, Spring 1994.

17] B. Bhanu, S. Lee, and S. Das. Adaptive image segmentation using genetic and hybrid
search methods. IEEE Trans, on Aerospace and Electronic Systems, July 1995.

18] B. Bhanu, S. Lee, and J. Ming. Adaptive image segmentation using a genetic algo-
rithm. IEEE Trans, on Systems, Man and Cybernetics, July 1995.

19] B. Bhanu and J. Ming. Recognition of occluded objects: A cluster-structure algorithm.
Patter Recognition, 20(2):119-211, 1987.

20] B. Bhanu, J.C. Ming, and S. Lee. Closed-loop adaptive image segmentation. In IEEE
Conf. Computer Vision and Pattern Recognition, pages 734-735, Maui, HI, 1991.

21] B. Bhanu and L. A. Nuttall. Recognition of 3-D objects in range images using a
butterfly multiprocessor. Pattern Recognition, 22(l):49-64, 1989.

22] Bir Bhanu and Subhodev Das. Computational Learning for Adaptive Computer Vi-
sion. Plenum Publishing Company, 1994.

23] A. Bhattacharyya. On a measure of divergence between two statisical populations
defined by their probability distributions. Bull. Calcutta Math. Soc, 35(3):99-110,
1943.

184

[24] R.E. Blahut. Fast Algorithms for Digital Signal Processing. Addison Wesley, 1985.

[25] K. W. Bower, L. O. Langley, B. Bhanu, and B. A. Draper. Report of the aaai fall
symposium on machine learning and computer vision: what, why and how? In
Proceedings of the ARPA image Understanding Workshop, pages 727-780, Monterey,
California, November 1994.

[26] D. Chapman. Intermediate vision: Architecture implementation, and use. Cognitive
Science, 16:491-537, 1992.

[27] R. T. Chin and C. R. Dyer. Model-based recognition in robot vision. A CM Computing
Surveys, pages 67-108, March 1994.

[28] G.F. DeJong and R. Mooney. Explanation-based learning: An alternative view. Ma-
chine Learning, 1:145-176, 1986.

[29] K. DeJong. Adaptive system design: A genetic approach. IEEE Trans. Systems,
Man, and Cybernetics, 10(9):566-574, 1980.

[30] K. DeJong. Learning with genetic algorithms: An overview. Machine Learning,
3:121-138, 1988.

[31] K. DeJong. Learning with genetic algorithms: An overview. Machine Learning,
3:121-138, 1988.

[32] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum-likelihood from incomplete
data via the EM algorithm. J. Royal Stat. Soc. Ser. B (methodological), 39:1-38,
1977.

[33] B. A. Draper, C. E. Brodley, and P. E. Utgoff. Goal-directed classification using
linear machine decision trees. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16(9):888-893, 1994.

[34] R. Dutta. Depth from Motion and Stereo: Parallel and Sequential Algorithms, Ro-
bustness and Lower bounds. PhD thesis, Department of Computer Science, University
of Massachusetts at Amherst, September 1994.

[35] R. Dutta and B. Bhanu. A learning system for consolidated recognition and motion
analysis. In Proceedings of the ARPA Image Understanding Workshop, pages 773-776,
Monterey, California, November 1994.

[36] M. A. Fischler. On the representation of natural scenes. In A. R. Hanson and E. M.
Riseman, editors, Computer Vision Systems. Academic, New York, 1978.

185

[37] N.S. Flann and T.G. Dietterich. A study of explanation-based methods for inductive
learning. Machine Learning, 4:187-266, 1989.

[38] K. S. Fu. Stochastic automata as models of learning systems. In J. M. Mendel and
King-Sun Fu, editors, Adaptive, Learning, and Pattern Recognition Systems: Theory
and Applications, pages 393-431. New York: Academic Press, 1970.

[39] K. S. Fu and J. K. Mui. A survey on image segmentation. Pattern Recognition,
13:3-16, 1981.

[40] D. Genter. Structure-mapping: A theoretical framework for analogy. Cognitive Sci-
ence, 7(2):411-436, 1983.

[41] A. M. Gillies. Machine Learning Procedures for Generating Image Domain Feature
Detectors. PhD thesis, University of Michigan, Ann Arbor, MI, April 1985.

[42] D. Goldberg. Computer-Aided Gas Pipeline Operation using Genetic Algorithms and
Rule Learning. PhD thesis, Dept. of Civil Engineering, University of Michigan, Ann
Arbor, MI, 1983.

[43] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, Mass., 1989.

[44] D. E. Goldberg and Holland J. H. Special issue on genetic algorithms. Machine
Learning, 2/3, 1988.

[45] D.E. Goldberg. Dynamic system control using rule learning and genetic algorithms.
In Proceedings of International Joint Conference on Artificial Intelligence, pages 588-
592, 1985.

[46] J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE
Trans. Systems, Man, and Cybernetics, 16(1):122—128, January 1986.

[47] V. Gullapalli. A stochastic reinforcement learning algorithm for learning real-valued
functions. Neural Networks, 3(6):671-692, 1990.

[48] V. Gullapalli. Associate reinforcement learning of real-valued functions. Technical re-
port, Department of Computer and Information Science, University of Massachusetts,
Amherst, May, 1993.

[49] P. A.V. Hall and G. R. Dowling. Approximate string matching, acmes, 12(4):381-402,
1980.

186

[50] R.M. Haralick and L.G.. Shapiro. Image segmentation techniques. Computer Vision,
Graphics and Image Processing, 29:100-132, 1985.

[51] Y. He and A. Kundu. 2-D shape classification using Hidden Markov Model. IEEE
Trans. Pattern Analysis and Machine Intelligence, 13(11) :1172—1184, Nov. 1991.

[52] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, Mich., 1975.

[53] J. Holland. Escaping brittleness: The possibilities of general-purpose learning algo-
rithms applied to parallel rule-based systems. In R. Michalski, J. Carbonell, and
T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, vol-
ume II, pages 593-623. Morgan Kaufman, Los Altos, Calif., 1986.

[54] X.D. Huang, Y. Ariki, and M.A. Jack. Hidden Markov Models for Speech Recognition.
Edinburgh, UK: Edinburgh University Press, 1990.

[55] J.J.Grefenstette, R.Gopal, B.J.Rosmaita, and D.Van Gucht. Genetic algorithm for
the traveling salesman problem. In Proc. of Intl. Conf. Genetic Algorithms and Their
Applications, pages 160-168, July 1987.

[56] D. W. Aha, D. Kibler and M. K. Albert. Instance-based learning algorithms. Machine
Learning, 6(l):37-66, 1991.

[57] J. L. Kolodner, R. L. Simpson, and K. Sycara. A process model of case-based reasoning
in problem solving. In Proc. 9th Intl. Joint Conf. Artificial Intelligence. Los Angeles,
CA, 1985.

[58] A. Kundu, Y. He, and P. Bahl. Recognition of handwritten word: First and second
order hidden Markov model based approach. Pattern Recognition, 22(3):283-297,
1989.

[59] J.W. Sherman, D.N. Spector, C.W. "Ron" Swonger, L.G. Clark, E.G. Zelnio, M.J.
Lahart, and T.L. Jones. Automatic target recognition systems. In L. Shumaker, editor,
The Infrared and Electro-optical Systems Handbook, pages 343-402. SPIE Optical
Engineering Press, 1993.

[60] K.I. Laws. The phoenix image segmentation system: Description and evaluation.
Technical Report 289, SRI International, Dec. 1982.

[61] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1:541-551, 1989.

187

[62] M.D. Levine and A.M. Nazif. Low level image segmentation: An expert system. IEEE
Trans. Pattern Analysis and Machine Intelligence, PAMI-6:555-578, Sept. 1984.

[63] D.G. Lowe. Three-dimensional object recognition from single two-dimensional images.
Artificial Intell, 31:355-395, 1987.

[64] V.R. Mandava, J.M.Fitzpatrick, and D.R. Pickens III. Adaptive search space scaling
in digital image registration. IEEE Trans, on Medical Imaging, 8(3):251-262, 1989.

[65] T. M. Mitchell. The need for bias in learning generalizations. Technical Report
CBN-TR-117, Department of Computer Science, Rutgers University, 1986.

[66] T.M. Mitchell, R.M. Keller, and S.T. Kedar-Cabelli. Explanation-based generaliza-
tion: A unifying view. Machine Learning, 1:47-80, 1986.

[67] T.M. Mitchell and A.B. Thrun. Explanation-based learning: A comparison of sym-
bolic and neural network approaches. In Machine Learning: Proc. of the Tenth Inter-
national Conference, pages 197-204, Amherst, MA, June 1993. Morgan Kaufmann.

[68] S. Mitra and S. K. Pal. Self-organizing neural network as a fuzzy classifier. IEEE
Trans. Systems, Man, and Cybernetics, 24(3):385-399, 1994.

[69] D.J. Montana. Empirical learning using rule threshold optimization for detection of
events in synthetic images. Machine Learning, 5:427-450, 1990.

[70] A. W. Moore and C. G. Atkeson. Memory-based reinforcement learning: Converging
with less data and les real time. In J. H. Connell and S. Mahadevan, editors, Robot
Learning, pages 79-103. Kluwer Academic, 1993.

[71] T.N. Mudge, J.L. Turney, and R.A. Volz. Automatic generation of salient features
for the recognition of partially occluded parts. Robotica, 5:117-127, 1987.

[72] K. S. Narendra and M. A. L. Thathatchar. Learning Automata: An Introduction.
Prentice Hall, Englewood Cliffs NJ, 1989.

[73] R. Ohlander, K. Price, and D.R. Reddy. Picture segmentation using a recursive region
splitting method. Computer Graphics and Image Processing, 8:313-333, 1978.

[74] P. Fua P. Suetens and A. J. Hanson. Computational strategies for object recognition.
ACM Computing Surveys, 24(l):5-59, 1992.

[75] P.W. Pachowicz. Integrating low-level features computation with inductive learning
techniques for texture recognition. Intl. J. Pattern Recognition and Artificial Intelli-
gence, 4(2):147-165, 1990.

188

[76] M.J. Pazzani. Detecting and correcting errors of omission after explanation-based

learning. In Proc. IJCAI-89, pages 713-718, 1989.

[77] J. Peng. Efficient Dynamic Programming-Based Learning for Control. PhD thesis,

Northeastern University, Boston, MA, 1993.

[78] J. Peng and B. Bhanu. Closed-loop object recognition using reinforcement learning. In
Proc. DARPA Image Understanding Workshop, pages 777-780, Monterey, CA, 1994.

November 14-16.

[79] J. Peng and R. J. Williams. Incremental multi-step q-learning. In Proceedings of the
11th International Conference on Machine Learning, pages 226-232, New Brunswick,

NJ, 1994.

[80] D.A. Pomerleau. Neural network based autonomous navigation. In C. Thorpe, edi-
tor, Vision and Navigation: The Carnegie Mellon Navlab, pages 83-93. Boston, MA:

Kluwer, 1990.

[81] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

[82] K. Price R. Ohlander and D. R. Reddy. Picture segmentation using a recursive region
splitting method. Computer Graphics and Image Processing, 8:313-333, 1978.

[83] L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

[84] L.R. Rabiner and B.H. Juang. An introduction to hidden Markov models. IEEE

ASSP Magazine, pages 4-16, January 1986.

[85] B. Ravichandran. 2D and 3D model-base matching using a minimun representation
criterion and hybrid genetic algorithm. Technical Report 105, Center for intelligent
robotic systems for space exploration, Rensselaer Polytechnic Institute, Troy, New

York, 1993.

[86] G. Reynolds and J.R. Beveridge. Searching for geometric structure in images of
natural scenes. In DARPA IU Workshop, pages 257-271, Los Angeles, CA, 1987.

[87] W.R.Reynolds. Toward quantifying infrared clutter. Proceedings SPIE, 1311:232-240,

1990.

[88] C. Riesbeck and R. Schänk. Inside Case-Based Reasoning. Hillsdale, NJ: Erlbaum,

1989.

189

S. Rong and B. Bhanu. Characterizing natural backgrounds for target detection. In
Proc. ARPA Image Understanding Workshop, Monterey, California, November 14-16
1994.

[90] G. Roth and M. D. Levine. A genetic algorithm for primitive extraction. In Proc.
Intl. Conf. Genetic Algorithms, pages 487-494, San Diego, Calif., July 1991.

[91] G. Roth and M. D. Levine. Geometric primitive extraction using a genetic algorithm.
In Conf. on Computer Vision and Pattern Recognition, pages 640-643, Champaign,
IL, June 1992.

[92] Y. Roth-Tahak and R. Jain. Building an environment model using depth information.
IEEE Computer, pages 85-90, June 1989.

[93] Hannan Samet. The quadtree and related hierarchical data structure. ACM Comput-
ing Surveys, pages 187-260, 1984.

[94] E. Saund. Symbolic construction of a 2-d scale-space image. IEEE Trans. Pattern
Analysis and Machine Intelligence, 12(8):355—395, 1990.

[95] J. Schaffer and J. Grefenstette. Multi-objective learning via genetic algorithms. In
Proc. 9th Intl. Joint Conf. Artificial Intelligence, pages 593-595, Los Angeles, Calif.,
1985.

[96] R. Schänk and R. Abelson. Scripts, Plans, Goals, and Understanding. Hillsdale, NJ:
Lawrence Erlbaum, 1977.

[97] Roger Schänk. Dynamic Memory: A Theory of Learning in Computers and People.
Cambridge, MA: Cambridge University Press, 1982.

[98] J. Segen. Learning structural descriptions of shape. In Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pages 96-99, 1985.

[99] A. M. Segre, editor. Workshop on Combining Empirical and Explanation-Based Learn-
ing, Proc. 6th International Workshop on Machine Learning, pp. 1-93, San Mateo,
CA, 1989. Morgan Kaufmann.

[100] A. Sha'ashua and S. Ullman. Structural saliency: The detection of globally salient
structures using a locally connected network. In Proc. IEEE Second Intl. Conf. Comp.
Vision, pages 321-327, Tarpon Springs, FL, Dec. 1988.

[101] S. Shafer and T. Kanade. Recursive region segmentation by analysis of histograms.
In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 1166-1171, 1982.

190

[102] S. Shafer and T. Kanade. Recursive region segmentation by analysis of histograms. In
IEEE INternational Conference on Accoustics, Speech, and Signal Processing, pages
1166-1171, 1982.

[103] J.W. Shavlik and G.G. Towell. An approach to combining explanation-based and
neural learning algorithms. Connection Science, l(3):231-253, 1989.

[104] C.Y. Suen. rc-gram statistics for natural language understanding and text processing.
IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-1(2):164-172, 1979.

[105] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3:9-44, 1988.

[106] A.J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Trans. Information Theory, 13(2):260-269, 1987.

[107] C.J. Watkins. Learning from Delayed Rewards. PhD thesis, King's College, University
of Cambridge, Cambridge, MA, May 1989.

[108] R. J. Williams. Simple statistical gradient-following algorithms for connectionist re-
inforcement learning. Machine Learning, 3:229-256, 1992.

[109] R. J. Williams and J. Peng. Function optimatization using connectionist reinforcement
learning. Connection Science, 3(3), 1991.

[110] P.H. Winston. Artificial Intelligence. Reading, MA: Addison-Wesley, 1984.

[Ill] E.J. Yannakoudakis, I. Tsomokos, and P.J. Hutton. n-grams and their implication to
natural language understanding. Pattern Recognition, 23(5):509-528, 1990.

[112] E. G. Zelnio. Importance of sensor models to model-based vision. In H. N. Nasr,
editor, Automatic Object Recognition, pages 112-121. Bellingham, WA: SPIE Optical
Engineering Press, 1991.

191

