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1    Introduction 

We study the cost of storage management for garbage- 
collected programs compiled with the Standard ML of 
New Jersey compiler [3]. There are two motivations for 
conducting this study. First, we want to better under- 
stand the cost of storage management. Since costs due to 
storage management occur throughout the entire execu- 
tion of a program, it is not adequate to measure only the 
time spent garbage collecting. Moreover, since memory- 
system performance has an increasing effect on program 
performance, it is important to understand the memory- 
system cost of storage management. Second, we want to 
identify bottlenecks in the storage-management strategy 
of the SML/NJ compiler and suggest potential improve- 
ments. 

We measure the cost of storage management for eight 
programs on a DECstation 5000/200 [12]. The measure- 
ments include most of the instruction-level and memory- 
system costs of storage management. We measure in- 
structions spent garbage collecting, allocating, checking 
if garbage collection is necessary, tagging, implement- 
ing a write barrier, and making code relocatable so that 
it can be placed in the heap and garbage-collected. In 
addition, we measure the memory-system cost incurred 
during garbage collection and the cost incurred during the 
rest of program execution. We also measure the effect of 
garbage collection displacing instructions and data used 
during the rest of program execution from the cache. We 
estimate upper bounds on the memory system cost due 
to the disruption of spatial locality by storage manage- 
ment, header words occupying space in the data cache, 
and instruction-cache misses from storage-management 
instructions. 

The measurements show that the time spent doing 
storage-management tasks other than garbage collection 
is greater than the time spent garbage collecting. Thus, 
measuring a storage-management scheme using only the 
time spent garbage collecting is misleading because it may 
ignore most of the cost. The measurements also identify 
bottlenecks in the storage-management strategy of the 
SML/NJ compiler and indicate that SML/NJ programs 
spend 19% to 46% of their execution time doing storage 
management. 

We made the measurements using trace-driven sim- 
ulation. This allowed us to count the instructions spent 
performing various tasks, such as tagging integers and 
implementing the write barrier. The memory simula- 
tor modeled the entire memory system of the DECStation 
5000/200 [12], which is favorable to programs which heap 
allocate intensively. A less favorable memory-system or- 
ganization would increase the cost of storage management 
by increasing the cost of allocation [14, 15]. 

The remainder of the paper is organized as follows. 
Section 2 introduces terminology and describes the storage- 
management strategy used by the SML/NJ compiler. Sec- 
tion 3 describes the measurement techniques and bench- 
mark programs. Section 4 presents measurements for 
eight SML/NJ programs. Section 5 reviews related work. 
Section 6 concludes. 

2   Background 

The following sections introduce terminology and de- 
scribe SML, the SML/NJ system, and the storage-manage- 
ment technique used by the SML/NJ system. 

2.1 Terminology 

Storage management refers to the management of mem- 
ory by an individual program. In a garbage-collected 
program, the part of the program that is not the garbage 
collector is called the mutator. Execution of the mutator 
is called mutation. Storage management has two com- 
ponents in garbage-collected programs. The first compo- 
nent, which is obvious, is the execution of the garbage col- 
lector. The second component comprises tasks done out- 
side the garbage collector to support storage management. 
The cost of these tasks is called the storage-management 
cost during mutation. 

The number of instructions executed to perform a task 
is the instruction-level cost of that task. The time spent 
by the processor waiting for memory while performing a 
task is the memory-system cost of that task. 

2.2 Standard ML and the SML/NJ system 

Standard ML (SML) [23] is a call-by-value, lexically 
scoped language with higher-order functions, garbage 
collection, polymorphic static typing, provable safety 
properties, a sophisticated module system, and a dynamic- 
ally-scoped exception mechanism. 

The SML/NJ compiler [3] is a state-of-the-art com- 
piler for SML. We used version 0.91. The compiler con- 
centrates on making allocation cheap and function calls 
fast. 

2.3 Storage management in the SML/NJ sys- 
tem 

Storage management in the SML/NJ system has many 
components. One component is garbage collection. How- 
ever, there are many additional components: checking 
whether garbage collection is needed, allocating new ob- 
jects, tagging, implementing a write barrier, and imple- 
menting position independent code. 



The SML/NJ system uses heap-only allocation: all 
allocation is done on the heap. In particular, all acti- 
vation records are allocated on the heap rather than on 
a call stack. The heap is managed automatically using 
generational copying garbage collection [22, 1,2]. 

In copying garbage collection [17,7], an area of mem- 
ory is reclaimed by copying the live (non-garbage) data to 
another area of memory. All data in the garbage-collected 
area becomes garbage and the area can be reused. 

The SML/NJ system uses a simple variant of genera- 
tional copying garbage collection [1]. Memory is divided 
into an old generation and an allocation area. New objects 
are created in the allocation area. When the allocation 
area becomes full, the live data in the allocation area is 
copied to the old generation in a minor collection. When 
the size of the old generation becomes sufficiently large, 
the entire heap is collected in a major collection. Live 
objects are copied using a Cheney scan [7], which copies 
objects in a breadth-first order. The criteria for when 
to collect the whole heap is described in Section 3.5. 
Generational garbage collection is efficient because most 
allocated objects die young (about 99% [3, p. 206]) and 
few objects are copied from the allocation area. 

Before an object can be allocated, the mutator must 
check whether there is sufficient space on the heap to 
allocate the object. If not, a garbage collection is needed. 
Instead of inserting a check before every allocation, the 
SML/NJ compiler places a check at the beginning of most 
extended basic blocks1. This means that the cost of a 
check may be amortized across across several allocations. 
Checks are placed only on some of the extended basic 
blocks because for other extended basic blocks the checks 
are redundant; there are checks along all paths to those 
blocks which are sufficient. Checks are placed on many 
extended basic blocks that do not allocate, since these 
checks are also used to implement asynchronous signals 
[27]. 

Allocation is done in-line, except for the allocation 
of arrays and strings. Since the entire allocation area 
is always reclaimed, objects can be allocated sequentially 
from the allocation area in only two instructions. Figure 1 
gives an example of pseudo-assembly code for allocating 
a cons cell, ra contains the car cell contents, rd con- 
tains the cdr cell contents, alloc is the address of the 
next free word in the allocation area, and top contains the 
end of the allocation area2. We do not regard initializing 
newly allocated storage as being part of allocation. 

All objects are tagged, so that garbage collection can 
find all live objects and copy them. All objects except 
integers have a header word which gives the kind and 

% check for heap overflow 
cmp alloc+12,top 
branch-if-gt call-gc 
% write the object 
store tag,(alloc) 
store ra,4(alloc) 
store rd,8(alloc) 
% save pointer to object 
move alloc+4,result 
% add 12 to alloc pointer 
add alloc,12 

Figure 1: Pseudo-assembly code for allocating an object 

the size of the object. The kind tells whether the object 
is a record, array, byte-array, etc. In addition, integers 
are tagged with 1 in the least significant bit and pointers 
are tagged with 0 in the least significant bit. This means 
that for integer arithmetic operations, tag manipulation 
instructions are needed. 

The write barrier tracks all pointers from the old gen- 
eration to objects in the allocation area. The objects 
tracked by the write barrier must be regarded as live when 
only the allocation area is collected; otherwise collection 
of the allocation area could create dangling pointers. The 
write barrier is implemented using a store list. Since 
pointers from the old generation to the allocation area can 
be created only by assignment, at each assignment where 
the source value 3 could be a pointer, the target is added 
to the store list. The store list is processed when a minor 
collection occurs. 

Code is position independent, since the SML/NJ in- 
teractive system places code in the heap and code may be 
relocated by garbage collection. Position independence 
is implemented by doing all addressing of instructions us- 
ing base-offset addressing. The base register is adjusted 
every time a module is entered. 

3   Methodology 

We used trace-driven simulation to measure the cost of 
storage management. This allowed us to measure the cost 
of storage management precisely, including the memory- 
system cost, and to separate the cost into its components. 

In the following subsections, we describe what we 
measured for each component of the cost of storage man- 
agement, the traces and trace-generation mechanism, the 

1 An extendedbasic block is a block of code with only forward jumps. 

2This figure originally appeared elsewhere [15]. 

3Given an assignment x   : =  t, we say that x is the target of the 
assignment and t is the source of the assignment. 



memory system simulated, the benchmark programs, and 
garbage collection sizing parameters. 

3.1 Measurement methodology for each com- 
ponent 

Table 1 lists what we measured for each component of 
the cost of storage management. The first three entries 
are the cost of garbage collection. The remaining rows 
are the storage management costs in the mutator. 

The one instruction-level cost of storage management 
that we do not measure is the effect of storage manage- 
ment on program optimization [6]. Diwan etal. [13] have 
presented techniques that allow extensive optimization 
even using copying collection with unambiguous roots. 
However, we do not measure this cost. 

Storage management also affects the memory-system 
cost incurred during mutation. We were unable to mea- 
sure this effect directly. A detailed discussion of this 
effect and how we measured it is deferred to Section 4.3. 

We measured the cost of position-independent code 
as the number of instructions spent updating the base 
register and the additional instructions that have to be ex- 
ecuted relative to position-dependent code. In particular, 
jump tables are more expensive in position-independent 
code. For position-dependent code, the table address 
is an absolute address, while for position-independent 
code the table address must be computed. In addition, 
for position-dependent code, the table gives absolute ad- 
dresses; whereas in position-independent code the table 
gives relative offsets and the address of the target must 
also be computed. 

3.2 Trace generation 

We extended QPT (Quick Program Profiler and Tracer) 
[5, 21, 20] to produce memory traces for SML/NJ pro- 
grams. QPT rewrites an executable program to produce 
compressed trace information; QPT also produces a cor- 
responding regeneration program that expands the com- 
pressed trace into a full address trace. Because QPT oper- 
ates on the executable program, it can trace both the SML 
code as well as the garbage collector, which is written in 
C. 

We extended QPT in two ways. First, we modi- 
fied QPT and the SML/NJ system to produce traces for 
SML/NJ programs. Second, we added an event tracing 
facility to QPT. The changes to QPT and the SML/NJ 
system are described elsewhere [14, 15]. One important 
change we made to the SML/NJ system was to place code 
outside the heap so that it was not moved by garbage col- 
lection. In the original system, code was placed in the 
heap and it was moved by garbage collection.   Allow- 

ing code to be moved makes tracing programs extremely 
difficult. 

An event is a specially marked instruction. We have 
extended QPT so that when an event is encountered during 
the execution of a traced program, an event marker is 
inserted into the trace. The event marker identifies the 
event and also contains parameters to the event (if any). 
The simulator consuming the trace can take whatever 
actions are necessary when it encounters an event marker. 
For example, when an integer-tag event is encountered 
during run time, an integer-tag event marker is inserted 
into the trace. When the simulator sees the marker, it 
increments the count of instructions spent doing integer 
tagging. 

We also used the event-tracing mechanism to mark 
different phases of garbage collection. For example, the 
first and last instructions for the Cheney scan are events. 
When the simulator encounters one of these events, it out- 
puts a message noting the event and the memory-system 
statistics. The statistics are the total numbers of reads, 
writes, data-cache read misses, data-cache write misses, 
instruction-cache misses, and write buffer stalls through 
that point of program execution. From these statistics, 
we can compute the memory-system cost incurred during 
each phase of garbage collection. 

We identify events to QPT by adding event tables to 
executable files. Each event table corresponds to one kind 
of event and lists the locations of all instructions at which 
that kind of event occurs. In addition, each event table 
also specifies the values of the parameters to the event 
for each instruction. When invoked on an executable file, 
QPT searches the executable file for these tables. We 
modified the SML/NJ compiler to emit these tables for 
"interesting" events. The event tables for the garbage 
collector, which is written in C, were produced manually 
by editing the assembly file produced by a compiler. 

The tracing mechanism is non-intrusive: the traces 
produced by QPT correspond to addresses in the original 
programs rather than those in the instrumented programs. 

3.3   Memory system simulation 

We simulated the DECstation 5000/200 memory system 
using an extended version of Tycho [19], a cache simula- 
tor. The extensions to Tycho, described in [14,15], allow 
us to measure costs due to the entire memory system, not 
just the cache. 

Table 2 summarizes the memory system of the DEC- 
station 5000/200. The DECstation 5000/200 has a split 
instruction and data cache. The instruction cache is direct 
mapped and is composed of blocks of 16 bytes each. The 
data cache is also direct mapped, but has a block size of 
4 bytes. However, on a read miss, 16 bytes aligned on a 



Root processing 
Instructions to process the store list and registers, including copying 
objects immediately reachable from the store list and registers. Also any 
memory-system cost incurred while executing those instructions. 

Cheney Scan 
Instructions to do the breadth-first copying of objects. Also any memory- 
system cost incurred while executing those instructions. 

Moveback 
Instructions to move the old generation to one end of the free region. Also 
any memory-system cost incurred while executing those instructions. 

Allocation 
Instructions to increment the allocation pointer and initialize registers to 
point to newly-allocated objects. This does not include instructions to 
initialize newly-allocated storage before it is used. 

GC Check 
Instructions to check whether garbage collection is needed and to jump 
to the garbage collector entry code if garbage collection is needed. 

Integer Tagging Instructions to tag and untag integers. 
Record Tagging Instructions to write header words of records. 

Position-Independent code 
Instructions to update base register. Also, additional instructions needed 
relative to position dependent code to compute jump table addresses from 
the addressing register. 

Store List Instructions to add a record to the store list. 

Table 1: Measurements for each component of the cost of storage management 

Instruction cache 
64K, direct mapped 
Block size 16 bytes 
On miss fetch aligned 16 bytes 

Data cache 
64K, direct mapped 
Block size 4 bytes 
Write through 
On write miss, write word to cache 
On read miss, fetch aligned 16 bytes 

Write buffer 
Six 4-byte entries 

Table 2: Summary of the DECstation 5000/200 memory 
system 

Task Penalty (in cycles) 

Write hit or miss 0 
Read miss 15 
Instruction-fetch miss 15 
Non-page-mode write 5 
Page-mode write 1 

Table 3: Penalties of memory operations 

16 byte boundary are fetched from memory. Because the 
DECstation 5000/200 has a block size of 4 bytes, a write 
miss can write to the cache immediately without fetch- 
ing a block from memory4. The DECstation also has a 
write buffer to avoid stalling the CPU on a write; the CPU 
needs to stall on a write only when the write-buffer fills up. 
This memory system is favorable to allocation-intensive 
programs [14, 15]. 

3.4   Benchmark Programs 

The material in this section originally appeared elsewhere 
[15] and is repeated here to keep this paper self-contained. 
Table 4 describes the benchmark programs5. Knuth- 
Bendix, Lexgen, Life, Simple, VLIW, and YACC are iden- 
tical to the programs measured by Appel [3]6. Table 5 
gives for each program its source code size in lines, its 
maximum heap size in kilobytes, its compiled code size in 
kilobytes,7 and its running time in seconds on a DECsta- 
tion 5000/200. The source code size excludes comments 
and blank lines. The maximum heap size is the largest 
size of the heap during the execution of the program. It 
includes both live data and garbage. The compiled-code 

4Partial-word writes are treated differently, but since there are so few 
in our programs, we can ignore them in our discussion without loss of 
accuracy. 

5Available from the authors. 

The description of these programs has been taken from [3]. 

7This includes 207 kilobytes of code for the standard libraries. 



size excludes the size of the garbage collector and other 
run-time support code. The excluded code is about 60 
kilobytes in size. The running time is the minimum of 
five runs. All programs were compiled and run using the 
default compiler settings, which enable many optimiza- 
tions. 

Table 6 characterizes the memory references of the 
programs. All numbers for each program are percent- 
ages of the total number of instructions executed by the 
program. The Reads, Writes, and Partial writes columns 
list the reads, full-word writes, and partial-word writes 
for each program. These are for the entire program. The 
assignments column lists the non-initializing writes done 
only by the SML code; it excludes those done by the 
run-time. The Nops column lists the percentage of null 
instructions executed by each program. Note that the 
programs have long traces; most related works use traces 
that are an order of magnitude smaller. Also, note that the 
programs do few assignments; the majority of the writes 
are initializing writes. 

Table 7 gives the allocation statistics for each pro- 
gram. All allocation and sizes are reported in 32-bit 
words. The Allocation column lists the total allocation 
done by each program. The remaining columns separate 
the allocation by kind: closures for escaping functions, 
closures for known functions, closures for callee-save 
continuations8, records, and others (includes spill records, 
arrays, strings, vectors, ref cells, store list records, and 
floating-point numbers). For each allocation kind, the 
first column gives the total words allocated for objects of 
that kind as a percentage of total allocation and the Size 
column gives the average size in words, including the 1 
word tag, of an object of that kind. The percent of total 
allocation in the other column for PIA and Simple is large 
because those programs are floating-point intensive. 

Stefanovic and Moss [29] find that the allocation of 
callee-save continuation closures on the heap has a pro- 
found impact on the young-object dynamics of ML pro- 
grams. In the programs they measured9, most objects 
are short-lived. They attribute the high mortality rate to 
the allocation of callee-save continuation closures on the 
heap. The age at which most objects die is program de- 
pendent, as is the percentage of objects that die at that 
age. In particular, YACC has a relatively high object sur- 
vival rate when compared to Knuth-Bendix. We would 
expect YACC to have a higher garbage collection cost 
than Knuth-Bendix. 

"Closures for callee-save continuations can be trivially allocated on 
a stack in the absence of first class continuations. 

9This includes many of the programs we measured. However, they 
give data for only Knuth-Bendix and YACC in their paper. 

3.5    Garbage collection sizing parameters 

We used the default strategy for sizing the allocation area 
and the old generation [1]. The heap is sized as r times 
the size of the old generation after the old generation is 
collected, where r is the desired ratio of heap size to 
live data. We used the default system value (r=5). The 
allocation area is sized as one-half of the free space (the 
heap space not occupied by the old generation). As the 
old generation grows after each collection of the alloca- 
tion area, the free space decreases and the allocation area 
decreases. The old generation is collected when the re- 
maining free space is less than the original size of the old 
generation (less than 1/5 the size of the heap). 

In addition to the ratio, the garbage collector is con- 
trolled by the softmax and the initial heap size- The 
softmax is a desired upper limit on the heap size. It is 
exceeded only to prevent programs from running out of 
space. The softmax was 20 megabytes; the benchmark 
programs never reached this limit and were able to always 
resize their heaps to maintain the desired ratio of 5. The 
initial heap size was 1 megabyte. 

4   Results 

In this section, we present our results. First, we give the 
breakdown of the cost of storage management and demon- 
strate that it provides insight into improving the perfor- 
mance of storage management by identifying potential 
areas of improvement. Second, we show it is important 
to measure as much of the cost of storage management 
as possible; measuring only some of the cost may be 
misleading. Third, we identify the different components 
of the memory-system cost of storage management and 
explain why it is difficult to measure these components. 
We then give measurements for most of these components 
and estimate upper bounds for the remaining components. 
These estimated costs range from a few percent to negli- 
gible on the DECStation 5000/200. 

4.1    The cost of storage management 

Figure 2 gives a breakdown of the cost of storage 
management. Table 8 gives these numbers as a table. For 
garbage collection, we measured the cost of processing 
the store list and registers (roots), scanning and forward- 
ing reachable objects (Cheney), and moving the heap back 
at the end of a major collection (moveback). We also mea- 
sured entry and exit costs, which are the costs of entering 
the collector from ML and returning from the collector 
to ML. These costs were insignificant and are omitted 
from the graph. All the costs of garbage collection in- 
clude memory-system costs. For mutation we measured 



Program 

CW 

Knuth-Bendix 

Lexgen 

Life 

PIA 

Simple 

VLIW 
YACC 

Description 

The Concurrency Workbench [8] is a tool for analyzing networks of finite state 
processes expressed in Milner's Calculus of Communicating Systems. The input 
is the sample session from Section 7.5 of [8], 
An implementation of the Knuth-Bendix completion algorithm, implemented by 
Gerard Huet, processing some axioms of geometry. 
A lexical-analyzer generator, implemented by James S. Mattson and David R. 
Tarditi [4], processing the lexical description of Standard ML. 
The game of Life, written by Chris Reade [25], running 50 generations of a glider 
;un. It is implemented using lists. 

A perspective inversion algorithm [32], deciding the location of an object in a 
perspective video image. 
A spherical fluid-dynamics program, developed as a "realistic" FORTRAN bench- 
mark [9], translated into ID [16], and then translated into Standard ML by Lai 
George.   
A Very-Long-Instruction-Word instruction scheduler written by John Danskin. 
An LALR(l) parser generator, implemented by David R. Tarditi [30], processing 
the grammar of Standard ML.  

Table 4: Benchmark programs 

Program Lines 
Size 

Heap size (K) Code size (K) 
Run tir 

Non-gc (sec) 
ne 

Gc (sec) 

CW 5728 1107 894 22.74 3.09 
Knuth-Bendix 491 2768 251 13.47 1.48 

Lexgen 1224 2162 305 15.07 1.06 

Life 111 1026 221 16.97 0.19 

PIA 1454 1025 291 6.07 0.34 

Simple 999 11571 314 25.58 4.23 
VLIW 3207 1088 486 23.70 1.91 

YACC 5751 1632 580 4.60 1.98 

Table 5: Sizes of benchmark programs 

Program Inst Fetches Reads (%) Writes (%) Partial Writes (%) Assignments (%) Nops (%) 

CW 523,245,987 17.61 11.61 0.01 0.41 13.24 

Knuth-Bendix 312,086,438 19.66 22.31 0.00 0.00 5.92 

Lexgen 328,422,283 16.08 10.44 0.20 0.21 12.33 

Life 413,536,662 12.18 9.26 0.00 0.00 15.45 

PIA 122,215,151 25.27 16.50 0.00 0.00 8.39 

Simple 604,611,016 23.86 14.06 0.00 0.05 7.58 

VLIW 399,812,033 17.89 15.99 0.10 0.77 9.04 

YACC 133,043,324 18.49 14.66 0.32 0.38 11.14 

Table 6: Characteristics of benchmark programs 



Program 
Allocation 

(words) 
Escaping 
%     Size 

Known 
%      Size 

Callee Saved 
%      Size 

Records 
%     Size 

Other 
%      Size 

CW 56,467,440 4.0 4.12 3.3 15.39 67.2 6.20 19.5 3.01 6.0 4.00 

Knuth-Bendix 67,733,930 37.6 6.60 0.1 15.22 49.5 4.90 12.7 3.00 0.1 15.05 

Lexgen 33,046,349 3.4 6.20 5.4 12.96 72.7 6.40 15.1 3.00 3.7 6.97 

Life 37,840,681 0.2 3.45 0.0 15.00 77.8 5.52 22.2 3.00 0.0 10.29 

PIA 18,841,256 0.4 5.56 28.0 11.99 25.0 4.69 12.7 3.41 33.9 3.22 

Simple 80,761,644 4.0 5.70 1.1 15.33 68.1 6.43 8.3 3.00 18.5 3.41 

VLIW 59,497,132 9.9 5.22 6.0 26.62 61.8 7.67 20.3 3.01 2.1 2.60 

YACC 17,015,250 2.3 4.83 15.3 15.35 54.8 7.44 23.7 3.04 4.0 10.22 

Table 7: Allocation characteristics of benchmark programs 
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Figure 2: Breakdowns of storage management cost for benchmark programs. 

Program Roots Cheney Moveback Allocation Gc check Int tag Record tag Posit, ind. code Store list 

CW 0.06 0.05 0.01 0.04 0.05 0.02 0.04 0.03 0.01 

Knuth-Bendix 0.00 0.09 0.01 0.08 0.05 0.00 0.08 0.02 0.00 

Lexgen 0.00 0.06 0.01 0.03 0.06 0.08 0.03 0.04 0.00 

Life 0.00 0.01 0.00 0.04 0.06 0.02 0.04 0.02 0.00 

PIA 0.00 0.05 0.00 0.06 0.05 0.00 0.06 0.01 0.00 

Simple 0.05 0.07 0.03 0.05 0.04 0.03 0.05 0.02 0.00 

VLIW 0.01 0.06 0.01 0.04 0.04 0.05 0.04 0.03 0.00 

YACC 0.01 0.25 0.04 0.04 0.04 0.02 0.04 0.02 0.00 

Table 8:  Breakdowns of storage management costs for benchmark programs.   All numbers are fractions of total 
execution time 



the instruction counts for allocation (allocation), checking 
whether garbage collection is needed (gc check), tagging 
integers (int tagging), storing header words (record tag- 
ging), and position-independent code (posit, ind. code). 
The cost of adding elements to the store list was negligible 
for most programs, so it is omitted from the graph. 

Figure 2 suggests several opportunities for improv- 
ing the performance of storage management in SML/NJ 
programs. First, eliminating position-independent code 
can reduce program execution time by 1% to 4%. While 
placing code in the garbage-collected heap is useful in 
an interactive setting, it is not useful for stand-alone exe- 
cu tables. 

Second, improving integer tagging, which accounts 
for 0% to 8% of overall execution time, ignoring the neg- 
ligible instruction cache penalty, may reduce execution 
time. Integers are tagged with 1 and pointers are tagged 
with 0 in the least significant bit. By tagging integers with 
0 and pointers with 1 and using displacement addressing, 
which is available on many architectures, many tagging 
operations can be removed. Representation analysis may 
also eliminate some tagging operations. 

Third, the store-check mechanism can be improved 
by using a hash-based scheme. The cost of adding el- 
ements to the store list during mutation is 0% to 1 % of 
overall execution time, while the cost of processing the 
store list during garbage collection is 0% to 6% of overall 
execution time (Table 8, columns Store list and Roots). In 
a hash-based scheme, a table is used instead of a list, and 
duplicate entries are eliminated when elements are added 
to the table during mutation. The cost of adding entries 
during mutation would be similar for both schemes, since 
the cost of adding an element to the store list is already 
high (8 or 9 instructions). The cost of processing the 
table during garbage collection would be lower than the 
cost of processing the list, since the table has no duplicate 
entries. 

Fourth, scanning and forwarding reachable objects 
takes 1% to 25% of overall execution time. This can be 
reduced by coding the inner loops of the collector care- 
fully and by increasing the size of the allocation area. 
Increasing the size of the allocation area allows more 
objects to die, and thus fewer objects need to be copied 
during garbage collection. However, this involves a trade- 
off: increasing the size of the allocation area may reduce 
copying time but increase the memory-system cost. For 
the DECStation 5000/200 memory-system organization, 
which is favorable to heap allocation, increasing the allo- 
cation area size is unlikely to change the memory-system 
cost. Halving the cache size for the DECStation 5000/200 
organization affects performance little [14, 15]. Some 
other memory-system organizations, such as the SPARC- 
Stationll [ 10], are more sensitive to cache size. Increasing 

the allocation area size can increase the memory-system 
cost greatly. 

An interesting point to note about Figure 2 is that the 
cost of checking whether garbage collection is needed (gc 
check) is larger than the cost of allocation (allocation) for 
CW, Lexgen, and Life. This is despite the fact that the 
check and allocating an object both take two instructions 
on the MIPS, and that a check is sometimes for multiple 
allocations. We speculate that this is because the SML/NJ 
compiler overloads checks to implement asynchronous 
signals [27]. This results in checks in extended basic 
blocks which do no allocation, so that the allocation cost 
is not an upper bound on the cost of checking whether 
garbage collection is needed. 

4.2 Mosts cost are incurred during muta- 
tion 

To illustrate how inaccurate it can be to measure only 
some of the cost of storage management, Figure 3 com- 
pares the cost of garbage collection against the cost of 
instructions executed during mutation to support stor- 
age management. The garbage-collection cost includes 
the memory-system cost, while the storage-management 
cost during mutation does not include the memory-system 
cost. Still, the storage-management cost during mutation 
is larger than the garbage-collection cost for seven of the 
programs. This shows that regarding the cost of garbage 
collection as the cost of storage management is inaccu- 
rate; most of the cost is often elsewhere. 

4.3 The memory-system cost of storage man- 
agement 

Because the cache is a global shared resource, it can be 
difficult to pinpoint the exact cause of a cache miss. One 
instruction may cause a cache miss which knocks data 
out of the cache that is used by a subsequent instruction. 
Thus, the subsequent instruction will also have a cache 
miss. This makes it difficult to correlate misses with their 
actual source: an instruction at which a miss occurs may 
not be the actual cause of the miss. 

Storage management may incur memory-system cost 

1. during garbage collection. 

2. by collection displacing mutator data and instruc- 
tions from the cache. 

3. by allocating memory which is not resident in the 
cache. When the mutator initializes or uses the 
memory, cache misses may occur. 
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Program Before (miss rate) After (miss rate) 

CW 0.03 0.02 
Knuth-Bendix 0.04 0.04 
Lexgen 0.03 0.03 
Life 0.01 0.01 
PIA 0.01 0.01 
Simple 0.01 0.01 
VLIW 0.02 0.01 
YACC 0.03 0.04 

Table 9: Data-cache miss rates before and after garbage 
collections 

4. by increasing the size of data by adding header 
words. This reduces spatial locality and the effec- 
tive size of the cache. 

5. by reducing the spatial locality of mutation by re- 
arranging the layout of data in memory. This may 
also improve spatial locality. 

6. by changing the code size of the mutator by requir- 
ing code for tagging, the write barrier, and position- 
independent code. This may increase instruction- 
cache misses. 

We measured some of the components of the memory- 
system cost of storage management, and placed upper 
bounds on the remaining components 

We measured the memory-system cost incurred dur- 
ing garbage collection. Figure 4 presents the memory- 
system costs incurred during mutation and collection. 
The memory-system cost that occurred during collection 
is 0.1% to 4.3% of overall execution time. The cost of 
instruction-cache misses during collection is negligible. 

We also measured the effect of garbage collection dis- 
placing instructions and data used during mutation from 
the cache. The effect was negligible. The cost of instruc- 
tion misses during mutation caused by garbage collection 
is bounded from above by the cost of instruction misses 
during garbage collection, since the machine has a split 
instruction and data cache. Since the cost of instruc- 
tion misses during garbage collection is low (see Figure 
4), this effect is negligible. To measure the effect of 
data-cache misses during mutation caused by collection, 
we collected memory-system statistics for intervals be- 
fore and after each collection. The arithmetic mean of the 
sizes of the intervals measured before each collection was 
143,000 instructions. The mean of the sizes of the inter- 
vals after each collection was 166,000 instructions. Table 
9 shows the average cache-miss rates for the intervals for 
each program; the Before column gives the data-cache 
read-miss rates for the intervals just before each garbage 
collection and the After column gives the data-cache 

Program Upper Bound 
(% execution time) 

CW 2.8 
Knuth-Bendix 4.8 
Lexgen 3.2 
Life 1.1 
PIA 2.4 
Simple 1.9 
VLIW 1.6 
YACC 2.9 

Table 10: Upper bound on disruption of spatial locality 
by storage management 

read-miss rates for the intervals after each garbage col- 
lection. If garbage collection were disturbing the cache 
locality of mutation, we would expect the miss rates af- 
ter garbage collection to be noticeably higher than those 
before garbage collection. We see only a slight variation. 
This suggests that data references during collection do 
not cause significant data-cache misses during mutation. 

Because the DECStation 5000/200 memory system 
has no penalty for write misses, besides write-buffer 
penalties which are small enough to be negligible, there is 
no cache penalty for initializing writes that miss. If there 
were a penalty for write misses10, the programs would run 
24% to 72% slower than they do now [14, 15]. In other 
words, with a penalty for cache write misses, most of 
the cost of storage management would be for initializing 
newly-allocated objects. 

While we have been unable to measure the remaining 
components of the memory-system cost of storage man- 
agement exactly, we have placed upper bounds on these 
components. Recall that header words and copying dur- 
ing garbage collection may worsen the spatial locality of 
the program. To bound this, note that obtaining perfect 
spatial locality could change the cache misses by at most 
a factor of 2. This is because without header words, at 
most two of the smallest objects (2 word cons cells) can fit 
in 16 bytes (which is the amount fetched on a read miss). 
Table 10 demonstrates that the upper bound on disruption 
of spatial locality by garbage collection and other storage- 
management tasks is small. The Upper Bound column 
gives an upper bound of the percentage of total execution 
time lost to disrupted spatial locality. Of course, the cost 
of disrupted spatial locality may be more substantial with 
larger fetch sizes or larger cache-miss penalties. 

Header words may also increase the memory-system 
cost of mutation by decreasing the effective cache size. 

'"in particular, if write misses were non-blocking and required the 
cache block to be fetched from main memory. 

10 



Program Upper Bound 
(% execution time) 

CW 1.8 
Knuth-Bendix 3.7 
Lexgen 2.6 
Life 1.0 
PIA 1.8 
Simple 0.8 
VLIW 0.7 
YACC 1.0 

Table 11: Upper bound on data cache costs due to smaller 
effective cache size 

Program Est. cost 
(% execution time) 

CW 1.8 
Knuth-Bendix 0.1 
Lexgen 0.9 
Life 0.0 
PIA 0.4 
Simple 0.4 
VLIW 3.8 
YACC 1.1 

Table 12: Estimate of instruction cache costs due to stor- 
age management instructions 

Since a header word occupies 1/3 of the space used for the 
typical smallest object, a list cell, at most 1/3 of the space 
in the cache is being occupied by header words. We would 
need a cache which is 50% larger in practice to achieve 
the same effective cache size. We can give a generous 
estimate of the cost of header words by subtracting the 
data-cache cost for a 128K cache from the cost for 64K 
cache, that is, generously assuming that without header 
words the cache size is effectively doubled. Table 11 
gives the improvement in going to a 128K cache; this 
is an upper bound on the memory-system costs due to 
header words decreasing the effective cache size. 

The impact of effectively increasing the size of data 
depends on cache boundary conditions. If data fits well 
within the cache, then increasing the size does not matter 
much. However, if data just fits in the cache, then increas- 
ing the size of the data may cause cache misses. If data 
does not fit in the cache, increasing the size of the data 
leads to proportionately more cache misses. The effect of 
cache size on SML/NJ programs is explored thoroughly 
elsewhere [15]. There were no dramatic boundary condi- 
tions for SML/NJ programs on the DECStation 5000/200. 

Just as header words increase the size of data, storage- 
management instructions increase the size of a program. 
This may cause additional instruction-cache misses. The 
fraction of instruction misses during mutation which are 
on average due to storage management is the fraction 
of instructions executed during mutation in support of 
storage management. Figure 12 gives an estimate of the 
cost due to these extra instruction-cache misses for each 
of the programs. 

5    Related work 

This study is more comprehensive in its measurements 
than previous works studying the cost of storage manage- 
ment in garbage-collected systems. Ungar [31] measures 
the time spent garbage collecting and the cost of integer 

tagging in a Smalltalk system, but does not measure other 
costs incurred during mutation. Zorn [34] compares the 
cost of two simulated garbage-collection algorithms. In 
contrast, we measure an actual implementation. He mea- 
sures the memory-system cost using the cache-miss ratio, 
which is an inaccurate indicator of performance because 
it does not separate the cost of read and write misses [15]. 
Wilson et al.[33] and Peng and Sohi [24] also measure 
the memory-system cost of garbage collection using the 
cache-miss ratio. They do not measure the instruction- 
level cost of garbage collection or costs incurred during 
mutation. Reinhold [26] measures the cost of garbage 
collection for a Scheme system, including the change in 
memory-system performance of entire programs, but does 
not measure costs incurred during mutation. 

Steenkiste [28] studies ways to reduce the cost of 
tagging in Lisp. He also studies instructions used for 
stack allocation. He is primarily concerned with hardware 
support to improve tag checking required for dynamic 
typing. He finds that tag insertion and removal costs 
about 4.5% with the best software scheme. 

There have been several studies of the cost of stor- 
age management in languages with explicitly-managed 
heap storage and stack allocation of procedure activation 
records. Detlefs [11] measures time spent in allocation 
and deallocation routines, but does not measure the cost 
of managing the stack. Grunwald et al. [18] finds that 
the implementation of explicit heap management can af- 
fect the performance of allocation-intensive C programs 
significantly. 

6    Conclusion 

We have studied the cost of storage management for pro- 
grams compiled with the SML/NJ compiler. Modern 
programming languages, such as SML, LISP, and object- 
oriented languages, use dynamic heap allocation exten- 
sively. Thus, the cost of storage management can have a 
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major effect on program performance. Unlike other work 
measuring the cost of storage management, we measured 
both the time spent garbage collecting and costs incurred 
during mutation. 

We believe that the design of high-performance garbage 
collectors and the debate about the cost of garbage col- 
lection should be based on measurements like those pre- 
sented here. 

We used trace-driven simulation to measure the cost of 
storage management. This allowed us to measure the cost 
of storage management precisely, including instruction- 
level and memory-system costs. Moreover the tools al- 
lowed us to separate the cost of storage management into 
its components. We measured eight programs compiled 
with the SML/NJ compiler running on a DECStation 
5000/200. 

We found that most of the cost of storage manage- 
ment did not occur during garbage collection; rather it 
occurred during mutation. We also found that SML/NJ 
programs spent 19% to 46% of their execution time doing 
storage management. These measurements indicate that 
it is necessary to measure all the cost of storage manage- 
ment; merely measuring the time spent garbage collecting 
is not adequate. 
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