
ELECTED!
"JUN 2 7 1995 I 1

läiäi

Measuring the Cost of Storage Management

David Tarditi Amer Diwan l

May 3, 1995
CMU-CS-94-201

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted for publication. This paper is also published as Fox Memorandum CMU-CS-FOX-94-08.

Abstract

We study the cost of storage management for garbage-collected programs compiled with the Standard ML of New
Jersey compiler. We show that the cost of storage management is not the same as the time spent garbage collecting. For
many of the programs, the time spent garbage collecting is less than the time spent doing other storage-management
tasks.

This document has been approved
for public release and salej its
distribution is unlimited

D'l ! QüMaF* INSPECTED 8

'Authors' addresses: David Tarditi, Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213-
3891. e-mail: dtarditi@cs.cmu.edu. Amer Diwan, Department of Computer Science, University of Massachusetts, Amherst, MA 01003-4610.
e-mail: diwan@cs.umass.edu.

This research is sponsored by the Defense Advanced Research Projects Agency, DoD, through ARPA Order 8313, and
monitored by ESD/AVS under contract F19628-91-C-0168. David Tarditi is also supported by an AT&T PhD Scholarship. Views
and conclusions contained in this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the United States Government, or AT&T.

Accesion For 5 NTIS CRA&I
DTIC TAB D
Unannounced D
Justification n By O^rOj^., H&—
Dislributionf "

Availability Codes

j Avail and / or
Dist Special

M

Keywords: dynamic storage management, performance of systems, measurement techniques, applicative (func-
tional) programming, copying garbage collection, Standard ML, simulation

CvJ

1 Introduction

We study the cost of storage management for garbage-
collected programs compiled with the Standard ML of
New Jersey compiler [3]. There are two motivations for
conducting this study. First, we want to better under-
stand the cost of storage management. Since costs due to
storage management occur throughout the entire execu-
tion of a program, it is not adequate to measure only the
time spent garbage collecting. Moreover, since memory-
system performance has an increasing effect on program
performance, it is important to understand the memory-
system cost of storage management. Second, we want to
identify bottlenecks in the storage-management strategy
of the SML/NJ compiler and suggest potential improve-
ments.

We measure the cost of storage management for eight
programs on a DECstation 5000/200 [12]. The measure-
ments include most of the instruction-level and memory-
system costs of storage management. We measure in-
structions spent garbage collecting, allocating, checking
if garbage collection is necessary, tagging, implement-
ing a write barrier, and making code relocatable so that
it can be placed in the heap and garbage-collected. In
addition, we measure the memory-system cost incurred
during garbage collection and the cost incurred during the
rest of program execution. We also measure the effect of
garbage collection displacing instructions and data used
during the rest of program execution from the cache. We
estimate upper bounds on the memory system cost due
to the disruption of spatial locality by storage manage-
ment, header words occupying space in the data cache,
and instruction-cache misses from storage-management
instructions.

The measurements show that the time spent doing
storage-management tasks other than garbage collection
is greater than the time spent garbage collecting. Thus,
measuring a storage-management scheme using only the
time spent garbage collecting is misleading because it may
ignore most of the cost. The measurements also identify
bottlenecks in the storage-management strategy of the
SML/NJ compiler and indicate that SML/NJ programs
spend 19% to 46% of their execution time doing storage
management.

We made the measurements using trace-driven sim-
ulation. This allowed us to count the instructions spent
performing various tasks, such as tagging integers and
implementing the write barrier. The memory simula-
tor modeled the entire memory system of the DECStation
5000/200 [12], which is favorable to programs which heap
allocate intensively. A less favorable memory-system or-
ganization would increase the cost of storage management
by increasing the cost of allocation [14, 15].

The remainder of the paper is organized as follows.
Section 2 introduces terminology and describes the storage-
management strategy used by the SML/NJ compiler. Sec-
tion 3 describes the measurement techniques and bench-
mark programs. Section 4 presents measurements for
eight SML/NJ programs. Section 5 reviews related work.
Section 6 concludes.

2 Background

The following sections introduce terminology and de-
scribe SML, the SML/NJ system, and the storage-manage-
ment technique used by the SML/NJ system.

2.1 Terminology

Storage management refers to the management of mem-
ory by an individual program. In a garbage-collected
program, the part of the program that is not the garbage
collector is called the mutator. Execution of the mutator
is called mutation. Storage management has two com-
ponents in garbage-collected programs. The first compo-
nent, which is obvious, is the execution of the garbage col-
lector. The second component comprises tasks done out-
side the garbage collector to support storage management.
The cost of these tasks is called the storage-management
cost during mutation.

The number of instructions executed to perform a task
is the instruction-level cost of that task. The time spent
by the processor waiting for memory while performing a
task is the memory-system cost of that task.

2.2 Standard ML and the SML/NJ system

Standard ML (SML) [23] is a call-by-value, lexically
scoped language with higher-order functions, garbage
collection, polymorphic static typing, provable safety
properties, a sophisticated module system, and a dynamic-
ally-scoped exception mechanism.

The SML/NJ compiler [3] is a state-of-the-art com-
piler for SML. We used version 0.91. The compiler con-
centrates on making allocation cheap and function calls
fast.

2.3 Storage management in the SML/NJ sys-
tem

Storage management in the SML/NJ system has many
components. One component is garbage collection. How-
ever, there are many additional components: checking
whether garbage collection is needed, allocating new ob-
jects, tagging, implementing a write barrier, and imple-
menting position independent code.

The SML/NJ system uses heap-only allocation: all
allocation is done on the heap. In particular, all acti-
vation records are allocated on the heap rather than on
a call stack. The heap is managed automatically using
generational copying garbage collection [22, 1,2].

In copying garbage collection [17,7], an area of mem-
ory is reclaimed by copying the live (non-garbage) data to
another area of memory. All data in the garbage-collected
area becomes garbage and the area can be reused.

The SML/NJ system uses a simple variant of genera-
tional copying garbage collection [1]. Memory is divided
into an old generation and an allocation area. New objects
are created in the allocation area. When the allocation
area becomes full, the live data in the allocation area is
copied to the old generation in a minor collection. When
the size of the old generation becomes sufficiently large,
the entire heap is collected in a major collection. Live
objects are copied using a Cheney scan [7], which copies
objects in a breadth-first order. The criteria for when
to collect the whole heap is described in Section 3.5.
Generational garbage collection is efficient because most
allocated objects die young (about 99% [3, p. 206]) and
few objects are copied from the allocation area.

Before an object can be allocated, the mutator must
check whether there is sufficient space on the heap to
allocate the object. If not, a garbage collection is needed.
Instead of inserting a check before every allocation, the
SML/NJ compiler places a check at the beginning of most
extended basic blocks1. This means that the cost of a
check may be amortized across across several allocations.
Checks are placed only on some of the extended basic
blocks because for other extended basic blocks the checks
are redundant; there are checks along all paths to those
blocks which are sufficient. Checks are placed on many
extended basic blocks that do not allocate, since these
checks are also used to implement asynchronous signals
[27].

Allocation is done in-line, except for the allocation
of arrays and strings. Since the entire allocation area
is always reclaimed, objects can be allocated sequentially
from the allocation area in only two instructions. Figure 1
gives an example of pseudo-assembly code for allocating
a cons cell, ra contains the car cell contents, rd con-
tains the cdr cell contents, alloc is the address of the
next free word in the allocation area, and top contains the
end of the allocation area2. We do not regard initializing
newly allocated storage as being part of allocation.

All objects are tagged, so that garbage collection can
find all live objects and copy them. All objects except
integers have a header word which gives the kind and

% check for heap overflow
cmp alloc+12,top
branch-if-gt call-gc
% write the object
store tag,(alloc)
store ra,4(alloc)
store rd,8(alloc)
% save pointer to object
move alloc+4,result
% add 12 to alloc pointer
add alloc,12

Figure 1: Pseudo-assembly code for allocating an object

the size of the object. The kind tells whether the object
is a record, array, byte-array, etc. In addition, integers
are tagged with 1 in the least significant bit and pointers
are tagged with 0 in the least significant bit. This means
that for integer arithmetic operations, tag manipulation
instructions are needed.

The write barrier tracks all pointers from the old gen-
eration to objects in the allocation area. The objects
tracked by the write barrier must be regarded as live when
only the allocation area is collected; otherwise collection
of the allocation area could create dangling pointers. The
write barrier is implemented using a store list. Since
pointers from the old generation to the allocation area can
be created only by assignment, at each assignment where
the source value 3 could be a pointer, the target is added
to the store list. The store list is processed when a minor
collection occurs.

Code is position independent, since the SML/NJ in-
teractive system places code in the heap and code may be
relocated by garbage collection. Position independence
is implemented by doing all addressing of instructions us-
ing base-offset addressing. The base register is adjusted
every time a module is entered.

3 Methodology

We used trace-driven simulation to measure the cost of
storage management. This allowed us to measure the cost
of storage management precisely, including the memory-
system cost, and to separate the cost into its components.

In the following subsections, we describe what we
measured for each component of the cost of storage man-
agement, the traces and trace-generation mechanism, the

1 An extendedbasic block is a block of code with only forward jumps.

2This figure originally appeared elsewhere [15].

3Given an assignment x : = t, we say that x is the target of the
assignment and t is the source of the assignment.

memory system simulated, the benchmark programs, and
garbage collection sizing parameters.

3.1 Measurement methodology for each com-
ponent

Table 1 lists what we measured for each component of
the cost of storage management. The first three entries
are the cost of garbage collection. The remaining rows
are the storage management costs in the mutator.

The one instruction-level cost of storage management
that we do not measure is the effect of storage manage-
ment on program optimization [6]. Diwan etal. [13] have
presented techniques that allow extensive optimization
even using copying collection with unambiguous roots.
However, we do not measure this cost.

Storage management also affects the memory-system
cost incurred during mutation. We were unable to mea-
sure this effect directly. A detailed discussion of this
effect and how we measured it is deferred to Section 4.3.

We measured the cost of position-independent code
as the number of instructions spent updating the base
register and the additional instructions that have to be ex-
ecuted relative to position-dependent code. In particular,
jump tables are more expensive in position-independent
code. For position-dependent code, the table address
is an absolute address, while for position-independent
code the table address must be computed. In addition,
for position-dependent code, the table gives absolute ad-
dresses; whereas in position-independent code the table
gives relative offsets and the address of the target must
also be computed.

3.2 Trace generation

We extended QPT (Quick Program Profiler and Tracer)
[5, 21, 20] to produce memory traces for SML/NJ pro-
grams. QPT rewrites an executable program to produce
compressed trace information; QPT also produces a cor-
responding regeneration program that expands the com-
pressed trace into a full address trace. Because QPT oper-
ates on the executable program, it can trace both the SML
code as well as the garbage collector, which is written in
C.

We extended QPT in two ways. First, we modi-
fied QPT and the SML/NJ system to produce traces for
SML/NJ programs. Second, we added an event tracing
facility to QPT. The changes to QPT and the SML/NJ
system are described elsewhere [14, 15]. One important
change we made to the SML/NJ system was to place code
outside the heap so that it was not moved by garbage col-
lection. In the original system, code was placed in the
heap and it was moved by garbage collection. Allow-

ing code to be moved makes tracing programs extremely
difficult.

An event is a specially marked instruction. We have
extended QPT so that when an event is encountered during
the execution of a traced program, an event marker is
inserted into the trace. The event marker identifies the
event and also contains parameters to the event (if any).
The simulator consuming the trace can take whatever
actions are necessary when it encounters an event marker.
For example, when an integer-tag event is encountered
during run time, an integer-tag event marker is inserted
into the trace. When the simulator sees the marker, it
increments the count of instructions spent doing integer
tagging.

We also used the event-tracing mechanism to mark
different phases of garbage collection. For example, the
first and last instructions for the Cheney scan are events.
When the simulator encounters one of these events, it out-
puts a message noting the event and the memory-system
statistics. The statistics are the total numbers of reads,
writes, data-cache read misses, data-cache write misses,
instruction-cache misses, and write buffer stalls through
that point of program execution. From these statistics,
we can compute the memory-system cost incurred during
each phase of garbage collection.

We identify events to QPT by adding event tables to
executable files. Each event table corresponds to one kind
of event and lists the locations of all instructions at which
that kind of event occurs. In addition, each event table
also specifies the values of the parameters to the event
for each instruction. When invoked on an executable file,
QPT searches the executable file for these tables. We
modified the SML/NJ compiler to emit these tables for
"interesting" events. The event tables for the garbage
collector, which is written in C, were produced manually
by editing the assembly file produced by a compiler.

The tracing mechanism is non-intrusive: the traces
produced by QPT correspond to addresses in the original
programs rather than those in the instrumented programs.

3.3 Memory system simulation

We simulated the DECstation 5000/200 memory system
using an extended version of Tycho [19], a cache simula-
tor. The extensions to Tycho, described in [14,15], allow
us to measure costs due to the entire memory system, not
just the cache.

Table 2 summarizes the memory system of the DEC-
station 5000/200. The DECstation 5000/200 has a split
instruction and data cache. The instruction cache is direct
mapped and is composed of blocks of 16 bytes each. The
data cache is also direct mapped, but has a block size of
4 bytes. However, on a read miss, 16 bytes aligned on a

Root processing
Instructions to process the store list and registers, including copying
objects immediately reachable from the store list and registers. Also any
memory-system cost incurred while executing those instructions.

Cheney Scan
Instructions to do the breadth-first copying of objects. Also any memory-
system cost incurred while executing those instructions.

Moveback
Instructions to move the old generation to one end of the free region. Also
any memory-system cost incurred while executing those instructions.

Allocation
Instructions to increment the allocation pointer and initialize registers to
point to newly-allocated objects. This does not include instructions to
initialize newly-allocated storage before it is used.

GC Check
Instructions to check whether garbage collection is needed and to jump
to the garbage collector entry code if garbage collection is needed.

Integer Tagging Instructions to tag and untag integers.
Record Tagging Instructions to write header words of records.

Position-Independent code
Instructions to update base register. Also, additional instructions needed
relative to position dependent code to compute jump table addresses from
the addressing register.

Store List Instructions to add a record to the store list.

Table 1: Measurements for each component of the cost of storage management

Instruction cache
64K, direct mapped
Block size 16 bytes
On miss fetch aligned 16 bytes

Data cache
64K, direct mapped
Block size 4 bytes
Write through
On write miss, write word to cache
On read miss, fetch aligned 16 bytes

Write buffer
Six 4-byte entries

Table 2: Summary of the DECstation 5000/200 memory
system

Task Penalty (in cycles)

Write hit or miss 0
Read miss 15
Instruction-fetch miss 15
Non-page-mode write 5
Page-mode write 1

Table 3: Penalties of memory operations

16 byte boundary are fetched from memory. Because the
DECstation 5000/200 has a block size of 4 bytes, a write
miss can write to the cache immediately without fetch-
ing a block from memory4. The DECstation also has a
write buffer to avoid stalling the CPU on a write; the CPU
needs to stall on a write only when the write-buffer fills up.
This memory system is favorable to allocation-intensive
programs [14, 15].

3.4 Benchmark Programs

The material in this section originally appeared elsewhere
[15] and is repeated here to keep this paper self-contained.
Table 4 describes the benchmark programs5. Knuth-
Bendix, Lexgen, Life, Simple, VLIW, and YACC are iden-
tical to the programs measured by Appel [3]6. Table 5
gives for each program its source code size in lines, its
maximum heap size in kilobytes, its compiled code size in
kilobytes,7 and its running time in seconds on a DECsta-
tion 5000/200. The source code size excludes comments
and blank lines. The maximum heap size is the largest
size of the heap during the execution of the program. It
includes both live data and garbage. The compiled-code

4Partial-word writes are treated differently, but since there are so few
in our programs, we can ignore them in our discussion without loss of
accuracy.

5Available from the authors.

The description of these programs has been taken from [3].

7This includes 207 kilobytes of code for the standard libraries.

size excludes the size of the garbage collector and other
run-time support code. The excluded code is about 60
kilobytes in size. The running time is the minimum of
five runs. All programs were compiled and run using the
default compiler settings, which enable many optimiza-
tions.

Table 6 characterizes the memory references of the
programs. All numbers for each program are percent-
ages of the total number of instructions executed by the
program. The Reads, Writes, and Partial writes columns
list the reads, full-word writes, and partial-word writes
for each program. These are for the entire program. The
assignments column lists the non-initializing writes done
only by the SML code; it excludes those done by the
run-time. The Nops column lists the percentage of null
instructions executed by each program. Note that the
programs have long traces; most related works use traces
that are an order of magnitude smaller. Also, note that the
programs do few assignments; the majority of the writes
are initializing writes.

Table 7 gives the allocation statistics for each pro-
gram. All allocation and sizes are reported in 32-bit
words. The Allocation column lists the total allocation
done by each program. The remaining columns separate
the allocation by kind: closures for escaping functions,
closures for known functions, closures for callee-save
continuations8, records, and others (includes spill records,
arrays, strings, vectors, ref cells, store list records, and
floating-point numbers). For each allocation kind, the
first column gives the total words allocated for objects of
that kind as a percentage of total allocation and the Size
column gives the average size in words, including the 1
word tag, of an object of that kind. The percent of total
allocation in the other column for PIA and Simple is large
because those programs are floating-point intensive.

Stefanovic and Moss [29] find that the allocation of
callee-save continuation closures on the heap has a pro-
found impact on the young-object dynamics of ML pro-
grams. In the programs they measured9, most objects
are short-lived. They attribute the high mortality rate to
the allocation of callee-save continuation closures on the
heap. The age at which most objects die is program de-
pendent, as is the percentage of objects that die at that
age. In particular, YACC has a relatively high object sur-
vival rate when compared to Knuth-Bendix. We would
expect YACC to have a higher garbage collection cost
than Knuth-Bendix.

"Closures for callee-save continuations can be trivially allocated on
a stack in the absence of first class continuations.

9This includes many of the programs we measured. However, they
give data for only Knuth-Bendix and YACC in their paper.

3.5 Garbage collection sizing parameters

We used the default strategy for sizing the allocation area
and the old generation [1]. The heap is sized as r times
the size of the old generation after the old generation is
collected, where r is the desired ratio of heap size to
live data. We used the default system value (r=5). The
allocation area is sized as one-half of the free space (the
heap space not occupied by the old generation). As the
old generation grows after each collection of the alloca-
tion area, the free space decreases and the allocation area
decreases. The old generation is collected when the re-
maining free space is less than the original size of the old
generation (less than 1/5 the size of the heap).

In addition to the ratio, the garbage collector is con-
trolled by the softmax and the initial heap size- The
softmax is a desired upper limit on the heap size. It is
exceeded only to prevent programs from running out of
space. The softmax was 20 megabytes; the benchmark
programs never reached this limit and were able to always
resize their heaps to maintain the desired ratio of 5. The
initial heap size was 1 megabyte.

4 Results

In this section, we present our results. First, we give the
breakdown of the cost of storage management and demon-
strate that it provides insight into improving the perfor-
mance of storage management by identifying potential
areas of improvement. Second, we show it is important
to measure as much of the cost of storage management
as possible; measuring only some of the cost may be
misleading. Third, we identify the different components
of the memory-system cost of storage management and
explain why it is difficult to measure these components.
We then give measurements for most of these components
and estimate upper bounds for the remaining components.
These estimated costs range from a few percent to negli-
gible on the DECStation 5000/200.

4.1 The cost of storage management

Figure 2 gives a breakdown of the cost of storage
management. Table 8 gives these numbers as a table. For
garbage collection, we measured the cost of processing
the store list and registers (roots), scanning and forward-
ing reachable objects (Cheney), and moving the heap back
at the end of a major collection (moveback). We also mea-
sured entry and exit costs, which are the costs of entering
the collector from ML and returning from the collector
to ML. These costs were insignificant and are omitted
from the graph. All the costs of garbage collection in-
clude memory-system costs. For mutation we measured

Program

CW

Knuth-Bendix

Lexgen

Life

PIA

Simple

VLIW
YACC

Description

The Concurrency Workbench [8] is a tool for analyzing networks of finite state
processes expressed in Milner's Calculus of Communicating Systems. The input
is the sample session from Section 7.5 of [8],
An implementation of the Knuth-Bendix completion algorithm, implemented by
Gerard Huet, processing some axioms of geometry.
A lexical-analyzer generator, implemented by James S. Mattson and David R.
Tarditi [4], processing the lexical description of Standard ML.
The game of Life, written by Chris Reade [25], running 50 generations of a glider
;un. It is implemented using lists.

A perspective inversion algorithm [32], deciding the location of an object in a
perspective video image.
A spherical fluid-dynamics program, developed as a "realistic" FORTRAN bench-
mark [9], translated into ID [16], and then translated into Standard ML by Lai
George.
A Very-Long-Instruction-Word instruction scheduler written by John Danskin.
An LALR(l) parser generator, implemented by David R. Tarditi [30], processing
the grammar of Standard ML.

Table 4: Benchmark programs

Program Lines
Size

Heap size (K) Code size (K)
Run tir

Non-gc (sec)
ne

Gc (sec)

CW 5728 1107 894 22.74 3.09
Knuth-Bendix 491 2768 251 13.47 1.48

Lexgen 1224 2162 305 15.07 1.06

Life 111 1026 221 16.97 0.19

PIA 1454 1025 291 6.07 0.34

Simple 999 11571 314 25.58 4.23
VLIW 3207 1088 486 23.70 1.91

YACC 5751 1632 580 4.60 1.98

Table 5: Sizes of benchmark programs

Program Inst Fetches Reads (%) Writes (%) Partial Writes (%) Assignments (%) Nops (%)

CW 523,245,987 17.61 11.61 0.01 0.41 13.24

Knuth-Bendix 312,086,438 19.66 22.31 0.00 0.00 5.92

Lexgen 328,422,283 16.08 10.44 0.20 0.21 12.33

Life 413,536,662 12.18 9.26 0.00 0.00 15.45

PIA 122,215,151 25.27 16.50 0.00 0.00 8.39

Simple 604,611,016 23.86 14.06 0.00 0.05 7.58

VLIW 399,812,033 17.89 15.99 0.10 0.77 9.04

YACC 133,043,324 18.49 14.66 0.32 0.38 11.14

Table 6: Characteristics of benchmark programs

Program
Allocation

(words)
Escaping
% Size

Known
% Size

Callee Saved
% Size

Records
% Size

Other
% Size

CW 56,467,440 4.0 4.12 3.3 15.39 67.2 6.20 19.5 3.01 6.0 4.00

Knuth-Bendix 67,733,930 37.6 6.60 0.1 15.22 49.5 4.90 12.7 3.00 0.1 15.05

Lexgen 33,046,349 3.4 6.20 5.4 12.96 72.7 6.40 15.1 3.00 3.7 6.97

Life 37,840,681 0.2 3.45 0.0 15.00 77.8 5.52 22.2 3.00 0.0 10.29

PIA 18,841,256 0.4 5.56 28.0 11.99 25.0 4.69 12.7 3.41 33.9 3.22

Simple 80,761,644 4.0 5.70 1.1 15.33 68.1 6.43 8.3 3.00 18.5 3.41

VLIW 59,497,132 9.9 5.22 6.0 26.62 61.8 7.67 20.3 3.01 2.1 2.60

YACC 17,015,250 2.3 4.83 15.3 15.35 54.8 7.44 23.7 3.04 4.0 10.22

Table 7: Allocation characteristics of benchmark programs

0.5 -

0.45 -

0.4 -

B
0.35 -L

D

X

0.3 -

0.25 -
o

o 0.2 -L
a o
o 0.15 -

tu

0.1 -

0.05 -

o -

Root processing D Cheney Ü Moveback D Allocation II Gc check

Int tagging B Record tagging H Posit, ind. code

CW Knuth-
Bendix

Lexgen Life Pia Simple Vliw Yacc

Program

Figure 2: Breakdowns of storage management cost for benchmark programs.

Program Roots Cheney Moveback Allocation Gc check Int tag Record tag Posit, ind. code Store list

CW 0.06 0.05 0.01 0.04 0.05 0.02 0.04 0.03 0.01

Knuth-Bendix 0.00 0.09 0.01 0.08 0.05 0.00 0.08 0.02 0.00

Lexgen 0.00 0.06 0.01 0.03 0.06 0.08 0.03 0.04 0.00

Life 0.00 0.01 0.00 0.04 0.06 0.02 0.04 0.02 0.00

PIA 0.00 0.05 0.00 0.06 0.05 0.00 0.06 0.01 0.00

Simple 0.05 0.07 0.03 0.05 0.04 0.03 0.05 0.02 0.00

VLIW 0.01 0.06 0.01 0.04 0.04 0.05 0.04 0.03 0.00

YACC 0.01 0.25 0.04 0.04 0.04 0.02 0.04 0.02 0.00

Table 8: Breakdowns of storage management costs for benchmark programs. All numbers are fractions of total
execution time

the instruction counts for allocation (allocation), checking
whether garbage collection is needed (gc check), tagging
integers (int tagging), storing header words (record tag-
ging), and position-independent code (posit, ind. code).
The cost of adding elements to the store list was negligible
for most programs, so it is omitted from the graph.

Figure 2 suggests several opportunities for improv-
ing the performance of storage management in SML/NJ
programs. First, eliminating position-independent code
can reduce program execution time by 1% to 4%. While
placing code in the garbage-collected heap is useful in
an interactive setting, it is not useful for stand-alone exe-
cu tables.

Second, improving integer tagging, which accounts
for 0% to 8% of overall execution time, ignoring the neg-
ligible instruction cache penalty, may reduce execution
time. Integers are tagged with 1 and pointers are tagged
with 0 in the least significant bit. By tagging integers with
0 and pointers with 1 and using displacement addressing,
which is available on many architectures, many tagging
operations can be removed. Representation analysis may
also eliminate some tagging operations.

Third, the store-check mechanism can be improved
by using a hash-based scheme. The cost of adding el-
ements to the store list during mutation is 0% to 1 % of
overall execution time, while the cost of processing the
store list during garbage collection is 0% to 6% of overall
execution time (Table 8, columns Store list and Roots). In
a hash-based scheme, a table is used instead of a list, and
duplicate entries are eliminated when elements are added
to the table during mutation. The cost of adding entries
during mutation would be similar for both schemes, since
the cost of adding an element to the store list is already
high (8 or 9 instructions). The cost of processing the
table during garbage collection would be lower than the
cost of processing the list, since the table has no duplicate
entries.

Fourth, scanning and forwarding reachable objects
takes 1% to 25% of overall execution time. This can be
reduced by coding the inner loops of the collector care-
fully and by increasing the size of the allocation area.
Increasing the size of the allocation area allows more
objects to die, and thus fewer objects need to be copied
during garbage collection. However, this involves a trade-
off: increasing the size of the allocation area may reduce
copying time but increase the memory-system cost. For
the DECStation 5000/200 memory-system organization,
which is favorable to heap allocation, increasing the allo-
cation area size is unlikely to change the memory-system
cost. Halving the cache size for the DECStation 5000/200
organization affects performance little [14, 15]. Some
other memory-system organizations, such as the SPARC-
Stationll [10], are more sensitive to cache size. Increasing

the allocation area size can increase the memory-system
cost greatly.

An interesting point to note about Figure 2 is that the
cost of checking whether garbage collection is needed (gc
check) is larger than the cost of allocation (allocation) for
CW, Lexgen, and Life. This is despite the fact that the
check and allocating an object both take two instructions
on the MIPS, and that a check is sometimes for multiple
allocations. We speculate that this is because the SML/NJ
compiler overloads checks to implement asynchronous
signals [27]. This results in checks in extended basic
blocks which do no allocation, so that the allocation cost
is not an upper bound on the cost of checking whether
garbage collection is needed.

4.2 Mosts cost are incurred during muta-
tion

To illustrate how inaccurate it can be to measure only
some of the cost of storage management, Figure 3 com-
pares the cost of garbage collection against the cost of
instructions executed during mutation to support stor-
age management. The garbage-collection cost includes
the memory-system cost, while the storage-management
cost during mutation does not include the memory-system
cost. Still, the storage-management cost during mutation
is larger than the garbage-collection cost for seven of the
programs. This shows that regarding the cost of garbage
collection as the cost of storage management is inaccu-
rate; most of the cost is often elsewhere.

4.3 The memory-system cost of storage man-
agement

Because the cache is a global shared resource, it can be
difficult to pinpoint the exact cause of a cache miss. One
instruction may cause a cache miss which knocks data
out of the cache that is used by a subsequent instruction.
Thus, the subsequent instruction will also have a cache
miss. This makes it difficult to correlate misses with their
actual source: an instruction at which a miss occurs may
not be the actual cause of the miss.

Storage management may incur memory-system cost

1. during garbage collection.

2. by collection displacing mutator data and instruc-
tions from the cache.

3. by allocating memory which is not resident in the
cache. When the mutator initializes or uses the
memory, cache misses may occur.

0.35

0.3

1 T

.1 0.8 --

0.6

0.4 --

0.2 --

■ GC total

D Mutator total
1 * 3

LiH

CW Knuth- Lexgen
Bendix

Life Pia

Program

Simple Vliw Yacc

Figure 3: Comparison of garbage collection and mutation storage-management costs

u

M I 1 i 3

III
Gc inst cache

I Gc data cache

BE Gc insts

H Mutator inst cache

Li Mutator data cache

. . 1 Mutator insts

■3 *
2 o g >

Program

Figure 4: Breakdown of memory-system cost during collection and mutation.

Program Before (miss rate) After (miss rate)

CW 0.03 0.02
Knuth-Bendix 0.04 0.04
Lexgen 0.03 0.03
Life 0.01 0.01
PIA 0.01 0.01
Simple 0.01 0.01
VLIW 0.02 0.01
YACC 0.03 0.04

Table 9: Data-cache miss rates before and after garbage
collections

4. by increasing the size of data by adding header
words. This reduces spatial locality and the effec-
tive size of the cache.

5. by reducing the spatial locality of mutation by re-
arranging the layout of data in memory. This may
also improve spatial locality.

6. by changing the code size of the mutator by requir-
ing code for tagging, the write barrier, and position-
independent code. This may increase instruction-
cache misses.

We measured some of the components of the memory-
system cost of storage management, and placed upper
bounds on the remaining components

We measured the memory-system cost incurred dur-
ing garbage collection. Figure 4 presents the memory-
system costs incurred during mutation and collection.
The memory-system cost that occurred during collection
is 0.1% to 4.3% of overall execution time. The cost of
instruction-cache misses during collection is negligible.

We also measured the effect of garbage collection dis-
placing instructions and data used during mutation from
the cache. The effect was negligible. The cost of instruc-
tion misses during mutation caused by garbage collection
is bounded from above by the cost of instruction misses
during garbage collection, since the machine has a split
instruction and data cache. Since the cost of instruc-
tion misses during garbage collection is low (see Figure
4), this effect is negligible. To measure the effect of
data-cache misses during mutation caused by collection,
we collected memory-system statistics for intervals be-
fore and after each collection. The arithmetic mean of the
sizes of the intervals measured before each collection was
143,000 instructions. The mean of the sizes of the inter-
vals after each collection was 166,000 instructions. Table
9 shows the average cache-miss rates for the intervals for
each program; the Before column gives the data-cache
read-miss rates for the intervals just before each garbage
collection and the After column gives the data-cache

Program Upper Bound
(% execution time)

CW 2.8
Knuth-Bendix 4.8
Lexgen 3.2
Life 1.1
PIA 2.4
Simple 1.9
VLIW 1.6
YACC 2.9

Table 10: Upper bound on disruption of spatial locality
by storage management

read-miss rates for the intervals after each garbage col-
lection. If garbage collection were disturbing the cache
locality of mutation, we would expect the miss rates af-
ter garbage collection to be noticeably higher than those
before garbage collection. We see only a slight variation.
This suggests that data references during collection do
not cause significant data-cache misses during mutation.

Because the DECStation 5000/200 memory system
has no penalty for write misses, besides write-buffer
penalties which are small enough to be negligible, there is
no cache penalty for initializing writes that miss. If there
were a penalty for write misses10, the programs would run
24% to 72% slower than they do now [14, 15]. In other
words, with a penalty for cache write misses, most of
the cost of storage management would be for initializing
newly-allocated objects.

While we have been unable to measure the remaining
components of the memory-system cost of storage man-
agement exactly, we have placed upper bounds on these
components. Recall that header words and copying dur-
ing garbage collection may worsen the spatial locality of
the program. To bound this, note that obtaining perfect
spatial locality could change the cache misses by at most
a factor of 2. This is because without header words, at
most two of the smallest objects (2 word cons cells) can fit
in 16 bytes (which is the amount fetched on a read miss).
Table 10 demonstrates that the upper bound on disruption
of spatial locality by garbage collection and other storage-
management tasks is small. The Upper Bound column
gives an upper bound of the percentage of total execution
time lost to disrupted spatial locality. Of course, the cost
of disrupted spatial locality may be more substantial with
larger fetch sizes or larger cache-miss penalties.

Header words may also increase the memory-system
cost of mutation by decreasing the effective cache size.

'"in particular, if write misses were non-blocking and required the
cache block to be fetched from main memory.

10

Program Upper Bound
(% execution time)

CW 1.8
Knuth-Bendix 3.7
Lexgen 2.6
Life 1.0
PIA 1.8
Simple 0.8
VLIW 0.7
YACC 1.0

Table 11: Upper bound on data cache costs due to smaller
effective cache size

Program Est. cost
(% execution time)

CW 1.8
Knuth-Bendix 0.1
Lexgen 0.9
Life 0.0
PIA 0.4
Simple 0.4
VLIW 3.8
YACC 1.1

Table 12: Estimate of instruction cache costs due to stor-
age management instructions

Since a header word occupies 1/3 of the space used for the
typical smallest object, a list cell, at most 1/3 of the space
in the cache is being occupied by header words. We would
need a cache which is 50% larger in practice to achieve
the same effective cache size. We can give a generous
estimate of the cost of header words by subtracting the
data-cache cost for a 128K cache from the cost for 64K
cache, that is, generously assuming that without header
words the cache size is effectively doubled. Table 11
gives the improvement in going to a 128K cache; this
is an upper bound on the memory-system costs due to
header words decreasing the effective cache size.

The impact of effectively increasing the size of data
depends on cache boundary conditions. If data fits well
within the cache, then increasing the size does not matter
much. However, if data just fits in the cache, then increas-
ing the size of the data may cause cache misses. If data
does not fit in the cache, increasing the size of the data
leads to proportionately more cache misses. The effect of
cache size on SML/NJ programs is explored thoroughly
elsewhere [15]. There were no dramatic boundary condi-
tions for SML/NJ programs on the DECStation 5000/200.

Just as header words increase the size of data, storage-
management instructions increase the size of a program.
This may cause additional instruction-cache misses. The
fraction of instruction misses during mutation which are
on average due to storage management is the fraction
of instructions executed during mutation in support of
storage management. Figure 12 gives an estimate of the
cost due to these extra instruction-cache misses for each
of the programs.

5 Related work

This study is more comprehensive in its measurements
than previous works studying the cost of storage manage-
ment in garbage-collected systems. Ungar [31] measures
the time spent garbage collecting and the cost of integer

tagging in a Smalltalk system, but does not measure other
costs incurred during mutation. Zorn [34] compares the
cost of two simulated garbage-collection algorithms. In
contrast, we measure an actual implementation. He mea-
sures the memory-system cost using the cache-miss ratio,
which is an inaccurate indicator of performance because
it does not separate the cost of read and write misses [15].
Wilson et al.[33] and Peng and Sohi [24] also measure
the memory-system cost of garbage collection using the
cache-miss ratio. They do not measure the instruction-
level cost of garbage collection or costs incurred during
mutation. Reinhold [26] measures the cost of garbage
collection for a Scheme system, including the change in
memory-system performance of entire programs, but does
not measure costs incurred during mutation.

Steenkiste [28] studies ways to reduce the cost of
tagging in Lisp. He also studies instructions used for
stack allocation. He is primarily concerned with hardware
support to improve tag checking required for dynamic
typing. He finds that tag insertion and removal costs
about 4.5% with the best software scheme.

There have been several studies of the cost of stor-
age management in languages with explicitly-managed
heap storage and stack allocation of procedure activation
records. Detlefs [11] measures time spent in allocation
and deallocation routines, but does not measure the cost
of managing the stack. Grunwald et al. [18] finds that
the implementation of explicit heap management can af-
fect the performance of allocation-intensive C programs
significantly.

6 Conclusion

We have studied the cost of storage management for pro-
grams compiled with the SML/NJ compiler. Modern
programming languages, such as SML, LISP, and object-
oriented languages, use dynamic heap allocation exten-
sively. Thus, the cost of storage management can have a

11

major effect on program performance. Unlike other work
measuring the cost of storage management, we measured
both the time spent garbage collecting and costs incurred
during mutation.

We believe that the design of high-performance garbage
collectors and the debate about the cost of garbage col-
lection should be based on measurements like those pre-
sented here.

We used trace-driven simulation to measure the cost of
storage management. This allowed us to measure the cost
of storage management precisely, including instruction-
level and memory-system costs. Moreover the tools al-
lowed us to separate the cost of storage management into
its components. We measured eight programs compiled
with the SML/NJ compiler running on a DECStation
5000/200.

We found that most of the cost of storage manage-
ment did not occur during garbage collection; rather it
occurred during mutation. We also found that SML/NJ
programs spent 19% to 46% of their execution time doing
storage management. These measurements indicate that
it is necessary to measure all the cost of storage manage-
ment; merely measuring the time spent garbage collecting
is not adequate.

7 Acknowledgements

We would like to thank Anurag Acharya, Urs Hoezle,
Peter Lee, Mark Leone, Greg Morrisett, Kathryn McKin-
ley, and the anonymous referees for Lisp and Functional
Programming '94 for comments on drafts of this paper.

References

[1] APPEL, A. W Simple generational garbage collec-
tion and fast allocation. Software — Practice and
Experience 19, 2 (Feb. 1989), 171-184.

[2] APPEL, A. W A Runtime System. Lisp and Symbolic
Computation3, 4 (Nov. 1990), 343-380.

[3] APPEL, A. W Compiling with Continuations. Cam-
bridge University Press, 1992.

[4] APPEL, A. W, MATTSON, J. S., AND TARDITI, D. A
lexical analyzer generator for Standard ML. Dis-
tributed with Standard ML of New Jersey, 1989.

[5] BALL, T, AND LARUS, J. R. Optimally profiling
and tracing programs. In Proceedings of the 19th
Annual ACM Symposium on Principles of Program-
ming Languages (Jan. 1992), ACM.

[6] CHASE, D. R. Safety considerations for storage allo-
cation optimizations. Proceedings of the SIGPLAN
'88 Conference on Programming Language Design
and Implementation 23, 7 (July 1988), 1-10.

[7] CHENEY, C. A nonrecursive list compacting algo-
rithm. Communications of the ACM 13, 11 (Nov.
1970), 677-678.

[8] CLEAVELAND, R., PARROW, J., AND STEFFEN, B. The
Concurrency Workbench: A semantics-based tool
for the verification of concurrent systems. Transac-
tions on Programming Languages and Systems 15,
1 (Jan. 1993), 36-72.

[9] CROWLEY, W P., HENDRICKSON, C. P., AND RUDY,

T. E. The SIMPLE code. Tech. Rep. UCID 17715,
Lawrence Livermore Laboratory, Livermore, CA,
Feb. 1978.

[10] CYPRESS SEMICONDUCTOR, ROSS TECHNOLOGY

SUBSIDIARY. SPARC RISC User's Guide, sec-
ond ed., Feb. 1990.

[11] DETLEFS, D., DOSSER, A., AND ZORN, B. Memory
allocation costs in large C and C++ programs. Tech.
Rep. CU-CS-665-93, University of Colorado, 1993.

[12] DIGITAL EQUIPMENT CORPORATION. DS5000/200
KN02 System Module Functional Specification.

[13] DIWAN, A., Moss, J. E. B., AND HUDSON, R. L.
Compiler support for garbage collection in a stati-
cally typed language. In Proceedings of the SIG-
PLAN '92 Conference on Programming Language
Design and Implementation (San Francisco, Califor-
nia, June 1992), SIGPLAN, ACM Press, pp. 273-
282.

[14] DIWAN, A., TARDITI, D., AND MOSS, E. Mem-
ory subsystem performance of programs with in-
tensive heap allocation. Tech. Rep. CMU-CS-93-
227, School of Computer Science, Carnegie Mellon
University, Dec. 1993. Submitted for publication.

[15] DIWAN, A., TARDITI, D., AND MOSS, E. Mem-
ory subsystem performance of programs with copy-
ing garbage collection. In Proceedings of the 21st
Annual ACM Symposium on Principles of Pro-
gramming languages (Portland, Oregon, Jan. 1994),
ACM, pp. 1-14.

[16] EKANADHAM, K., AND ARVIND. SIMPLE: An ex-
ercise in future scientific programming. Technical
Report Computation Structures Group Memo 273,
MIT, Cambridge, MA, July 1987. Simultaneously
published as IBM/T J. Watson Research Center Re-
search Report 12686, Yorktown Heights, NY.

12

[17] FENICHEL, R. R., AND YOCHELSON, J. C. A LISP
garbage-collector for virtual-memory computer sys-
tems. Communications of the ACM 12, 11 (Nov.
1969), 611-612.

[18] GRUNWALD, D., ZORN, B., AND HENDERSON, R.
Improving the cache locality of memory allocation.
In Proceedings of the SIGPLAN '93 Conference on
Programming Language Design and Implementa-
tion (Albuquerque, New Mexico, June 1993), ACM,
pp. 177-186.

[19] HILL, M., AND SMITH, A. Evaluating associativity
in CPU caches. IEEE Transactions on Computers
38, 12 (Dec. 1989), 1612-1630.

[20] LARUS, J. R. Abstract Execution: A technique for
efficiently tracing programs. Software Practice and
Experience 20, 12 (Dec. 1990), 1241-1258.

[21] LARUS, J. R., AND BALL, T. Rewriting executable
files to measure program behavior. Tech. Rep. Wis
1083, Computer Sciences Department, University
of Wisconsin-Madison, Mar. 1992.

[22] LlEBERMAN, H., AND HEWITT, C. A real-time
garbage collector based on the lifetimes of objects.
Communications of the ACM26,6 (1983), 419^29.

[23] MlLNER, R., TOFTE, M., AND HARPER, R. The Def-
inition of Standard ML. MIT Press, Cambridge,
Massachusetts, 1990.

[24] PENG, C.-J., AND SOHI, G. S. Cache memory de-
sign considerations to support languages with dy-
namic heap allocation. Tech. Rep. 860, Computer
Sciences Department, University of Wisconsin-
Madison, July 1989.

[25] READE, C. Elements of Functional Programming.
Addison-Wesley, Reading, Massachusetts, 1989.

[26] REINHOLD, M. B. Cache Performance of Garbage-
Collected Programming Languages. PhD thesis,
Laboratory for Computer Science, MIT, Sept. 1993.

[27] REPPY, J. H. Asynchronous Signals in Standard
ML. Tech. Rep. 90-1144, Department of Computer
Science, Cornell University, Aug. 1990.

[28] STEENKISTE, P. LISP on a Reduced-Instruction-
Set Processor: Characterization and Optimization.
PhD thesis, Computer Systems Laboratory, Stanford
University, Stanford,CA 94305, Mar. 1987.

[29] STEFANOVIC, D., AND MOSS, E. Characterisation of
object behavior in Standard ML of New Jersey. In
Proceedings of the 1994 ACM Conference on Lisp
and Functional Programming (1994).

[30] TARDITI, D., AND APPEL, A. W. ML-YACC, version
2.0. Distributed with Standard ML of New Jersey,
Apr. 1990.

[31] UNGAR, D. The design and evaluation of a
high performance Smalltalk system. ACM Distin-
guished Dissertation. MIT Press, Cambridge, Mas-
sachusetts, 1987.

[32] WAUGH, K. G., MCANDREW, P., AND MICHAEL-

SON, G. Parallel implementations from function
prototypes: a case study. Tech. Rep. Computer Sci-
ence 90/4, Heriot-Watt University, Edinburgh, Aug.
1990.

[33] WILSON, P. R., LAM, M. S., AND MOHER, T. G.
Caching considerations for generational garbage
collection: a case for large and set-associative
caches. Tech. Rep. EECS-90-5, University of
Illinios at Chicago, Dec. 1990.

[34] ZORN, B. G. Comparative Performance evalua-
tion of garbage collection algorithms. PhD thesis,
University of California, Berkeley, CA 94720, Dec.
1989.

13

