
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and reviewing the collection of information. Send comments regading this burden, to Washington Headquarters Service,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Information and Regulatory
Affairs, Office of Management and Budget, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
May 11, 1995

3. REPORT TYPE AND DATES COVERED
Final

4. TITLE AND SUBTITLE:
Ada Compiler Validation Summary Report, VC# 950511W1.11382
Texas Instruments, Incorporated - Compiler Name: F-16 Modular Mission
Computer Ada Compilation System, Version 2_5_01

6. AUTHOR(S)

Software Standards Validation Group

5. FUNDING NUMBERS

^ELECTEl
JUN 2 3 1995 I i

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ada Validation Facility
Language Control Facility, 645 C-CSG/SCSL
Area B, Building 676
Wright-Patterson AFB, OH 45433-6503

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Ada Joint Program Office, Defense Information System Agency
Code JEXEV, 701 S. Courthouse Rd., Arlington, VA
22204-2199

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This Ada implementation was tested and determined to pass ACVC 1.11. Testing was completed on May 11, 1995.
Host Computer System: VAXstation 4000/90 under VAX/VMS, Version 5.5-2H4
Target Computer System: F-16 Modular Mission Computer (bare machine)

14. SUBJECT TERMS
Ada Programming Language, Ada Compiler Validation Summary Report, Ada Compiler
Validation Capability, Validation Testing, Ada Validation Office, Ada Validation Facility,
ANSI/MIL-STD-1815A, Ada Joint Program Office

15. NUMBER OF PAGES
48

16. PRICE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNCLASSIFIED

NSN 7540-01-280-5500

19950622 016
DTIi QUALITY INSPECTED 5

AVF Control Number: AVF-VSR-603.0495
Date VSR Completed: 22 MAY 95

95-01-03-TXI

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 950511W1.11382
Texas Instruments, Incorporated

F-16 Modular Mission Computer Ada Compilation System, Version 2_5_01
VAXstation 4000/90 under VAX/VMS, V5.5-2H4 =>
F-16 Modular Mission Computer (Bare Machine)

(Final)

Prepared By:
Ada Validation Facility

88 CG/SCTL
Wright-Patterson AFB OH 45433-5707

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 11 MAY 95.

Compiler Name and Version: F-16 Modular Mission Computer
Ada Compilation System, Version 2_5_01

Host Computer System: VAXstation 4000/90
under VAX/VMS, V5.5-2H4

Target Computer System: F-16 Modular Mission Computer
(Bare Machine)

Customer Agreement Number: 95-01-03-TXI

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 950511W1.11382
is awarded to Texas Instruments, Incorporated. This certificate expires on
March 31, 1998.

This report has been reviewed and is approved.

*

Ada Validation Facility
Brian P. Andrews
Technical Director
88 CG/SCTL
Wright-Patterson AFB OH 45433-5707

».Organization
Dire*tor\«3£i2*mputer and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

ia Joint
Donald
Directs AJPO
Defense Information Systems Agency,
Center for Information Management

Accesion For

NTIS CRA&I L„
DTIC TAB □
Unannounced r_j
Justification

By
Distribution/

Availability Cod:

Dist

H

Avail and /or
Special

DECLARATION OF CONFORMANCE

Customer: Texas Instruments, Incorporated

Ada Validation Facility: ATTN: Brian P. Andrews
88 CG/SCSB
3810 Communications Blvd., Suite 1
Wright-Patterson AFB OH 45433-5706

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: F-16 Modular Mission Computer Ada
Compilation System, Version 2__5_01

Host Computer System: VAXstation 4000/90 running VAX/VMS V5.5-2H4

Customer's Declaration

I, the undersigned, representing Texas Instruments, Incorporated,
declare that Texas Instruments, Incorporated has no knowledge of
deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815A in the implementation listed in this declaration.

 ^^^J-^Tß^rJJ Date: 3/2 3/? 5
Stewart French l ' '' 'sX
Member, Group Technical Staff
Texas Instruments, Incorporated
PO Box 659305, M/S 8496
Piano, TX 75086

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES. . . 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-3

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro95] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to [Pro95].
A detailed description of the ACVC may be found in the current ACVC User's
Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro95] Ada Compiler Validation Procedures, Version 4.0, Ada Joint
Program Office, January 1995.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK_FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK_FILE is used to check the contents of text
files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK_FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part

of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for which

validation status is realized.

Host Computer
System

Inapplicable
test

ISO

LRM

Operating
System

Target
Computer
System

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro95].

Validation

Withdrawn
test

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale
withdrawing each test is available from either the AVO or the AVF.
publication date for this list of withdrawn tests is 22 November 1993.

B27005A
C35507L
C35508M
C43004A
C45651A
A74006A
C83026A
C97116A
CC1223A
AD1B08A
CD2A41E
CD4022D
CD5111A
AD7201A
CD9005A
CE2119B
CE3411B
CE3814A

E28005C
C35507N
C35508N
C45114A
C46022A
C74308A
B83026B
C98003B
BC1226A
BD2A02A
CD2A87A
CD4024B
CD7004C
AD7201E
CD9005B
CE2205B
CE3412B
CE3902B

B28006C
C35507O
C35702A
C45346A
B49008A
B83022B
C83041A
BA2011A
CC1226B
CD2A21E
CD2B15C
CD4024C
ED7005D
CD7204B
CDA201E
CE2405A
CE3607B

C32203A
C35507P
C35702B
C45612A
B49008B
B83022H
B85001L
CB7001A
BC3009B
CD2A23E
BD3006A
CD4024D
CD7005E
AD7206A
CE2107I
CE3111C
CE3607C

C34006D
C35508I
C37310A
C45612B
A54B02A
B83025B
C86001F
CB7001B
BD1B02B
CD2A32A
BD4008A
CD4031A
AD7006A
BD8002A
CE2117A
CE3116A
CE3607D

C35507K
C35508J
B41308B
C45612C
C55B06A
B83025D
C94021A
CB7004A
BD1B06A
CD2A4LA
CD4022A
CD4051D
CD7006E
BD8004C
CE2117B
CE3118A
CE3812A

for
The

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L. .Y (14 tests) C35705L. .Y (14 tests)
C35706L. .Y (14 tests) C35707L. .Y (14 tests)
C35708L. .Y (14 tests) C35802L. .Z (15 tests)
C45241L. .Y (14 tests) C45321L. .Y (14 tests)
C45421L. .Y (14 tests) C45521L. .Z (15 tests)
C45524L. .Z (15 tests) C45621L. .Z (15 tests)
C45641L. .Y (14 tests) C46012L. .Z (15 tests)

The following 20 tests check for the predefined type LONG_INTEGER; for
this implementation, there is no such type:

C35404C
C45502C
C45613C
C55B07A

C45231C
C45503C
C45614C
B55B09C

C45304C
C45504C
C45631C
B86001W

C45411C
C45504F
C45632C
C86006C

C45412C
C45611C
B52004D
CD7101F

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG_FLQAT, or SHORT_FLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX_MANTISSA of 47 or greater; for this
implementation, MAX_MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHlNE_OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINE_OVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION'S base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

The following 264 tests check operations on sequential, text, and direct
access files; this implementation does not support external files:

CE2102A..C (3)
CE2103C..D (2)
CE2107A..H (8)

CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107L CE2108A..H (8) CE2109A..C (3)

2-2

IMPLEMENTATION DEPENDENCIES

CE2110A. .D (4) CE2111A. .1 (9) CE2115A. .B (2) CE2120A. .B (2)
CE2201A. .C (3) EE2201D. .E (2) CE2201F. .N (9) CE2203A
CE2204A. .D (4) CE2205A CE2206A CE2208B
CE2401A. .C (3) EE2401D CE2401E. .F (2) EE2401G
CE2401H. .L (5) CE2403A CE2404A. .B (2) CE2405B
CE2406A CE2407A. .B (2) CE2408A. .B (2) CE2409A. • B (2)
CE2410A. .B (2) CE2411A CE3102A. .C (3) CE3102F. .H (3)
CE3102J. .K (2) CE3103A CE3104A. .C (3) CE3106A. .B (2)
CE3107B CE3108A. .B (2) CE3109A CE3110A
CE3111A. .B (2) CE3111D. .E (2) CE3112A. .D (4) CE3114A. .B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C. .D (2) CE3403A. .C (3)
CE3403E. .F (2) CE3404B. .D (3) CE3405A EE3405B
CE3405C. .D (2) CE3406A. .D (4) CE3407A. .C (3) CE3408A. .C (3)
CE3409A CE3409C. .E (3) EE3409F CE3410A
CE3410C. .E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A. • C (3) CE3414A
CE3602A. • D (4) CE3603A CE3604A. .B (2) CE3605A. .E (5)
CE3606A. .B (2) CE3704A. .F (6) CE3704M. .0 (3) CE3705A. • E (5)
CE3706D CE3706F. .G (2) CE3804A. .P (16) CE3805A. .B (2)
CE3806A. .B (2) CE3806D. .E (2) CE3806G. .H (2) CE3904A. • B (2)
CE3905A. • C (3) CE3905L CE3906A. • C (3) CE3906E. • F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an attempt to
create a file and expect NAME_ERROR to be raised; this implementation
does not support external files and so raises USE ERROR. (See section
2.3.)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 24 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B24009A
B85008G
BD4003A

B33301B
B85008H

B38003A
BC1303F

B38003B
BC3005B

B38008B
BD2B03A

B38009B
BD2D03A

CD1009A, CD1009I, CD1C03A, CD2A22J, CD2A31A. .C (3 tests) were graded passed
by Evaluation Modification as directed by the AVO. These tests use
instantiations of the support procedure LENGTH_CHECK, which uses
Unchecked_Conversion according to the interpretation given in AI-00590. The
AVO ruled that this interpretation is not binding under ACVC 1.11; the tests
are ruled to be passed if they produce Failed messages only from the
instances of LENGTH_CHECK—i.e, the allowed Report.Failed messages have the
general form:

" * CHECK ON REPRESENTATION FOR <TYPE ID> FAILED."

2-3

IMPLEMENTATION DEPENDENCIES

AD9001B was graded passed by Test Modification as directed by the AVO. This
test checks that no bodies are required for interfaced subprograms; among the
procedures that is used is one with a parameter of mode OUT (line 36). This
implementation does not support pragma INTERFACE for procedures with
parameters of mode OUT. The test was modified by commenting out line 36 and
40; the modified test was passed.

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external file.
This is acceptable behavior because this implementation does not support
external files (cf. AI-00332).

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Stewart French
Texas Instruments, Incorporated
PO Box 659305, M/S 8496
Piano, TX 75086
(214) 575-4272

Testing of this Ada implementation was conducted at the customer's site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro95],

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation's maximum precision (item e; see
section 2.2), and those that depend on the support of a file system— if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3558
b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 43
d) Non-Processed I/O Tests 264
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 508 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the IEEE-488, and run. The results were captured on the host
computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. No explicit options were used for testing this
implementation.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX_IN_LEN—also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX_IN_LEN

$BIG_ID1

$BIG_ID2

$BIG_ID3

$BIG_ID4

$BIG_INT_LIT

$BIG_REAL_LIT

$BIG_STRING1

$BIG_STRING2

$BLANKS

499 — Value of V

(1..V-1 => 'A', V => '1')

(1..V-1 => 'A', V => '2')

(1..V/2 => 'A') & '3' &
(1..V-1-V/2 => 'A')

(1..V/2 => 'A') & '4' &
(1..V-1-V/2 => 'A')

(1..V-3 => '0') & "298"

(1..V-5 => '0') & "690.0"

'"' & (1..V/2 => 'A') & ""

'"' & (1..V-1-V/2 => 'A') & '1' & ""

(1..V-20 => ' ')

$MAX_LEN_INT_BASED_LITERAL
"2:" & (1..V-5 => '0') & "11:"

$MAX_LEN_REAL_BASED_LITERAL
"16:" & (1..V-7 => '0') & "F.Ez"

A-l

MACRO PARAMETERS

$MAX STRING LITERAL "" & (1..V-2 => 'A') & ""

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACC_SIZE

$ALIGNMENT

$COUNT_LAST

$DEFAULT_MEM_SIZE

$DEFAULT_STOR_UNIT

$DEFAULT_SYS_NAME

$DELTA_DOC

$ENTRY_ADDRESS

$ENTRY_ADDRESS1

$ENTRY_ADDRESS2

$FIELD_LAST

$FILE_TERMINATOR

$FIXED_NAME

$FLOAT_NAME

$FORM_STRING

$FORM_STRING2

$GREATER THAN DURATION

32

4

2_147_483_647

16_777_216

8

MACS

0.0000000004656612873077392578125

SYSTEM."+"(16)

SYSTEM."+"(17)

SYSTEM."+"(2)

2_147_483_647

NO_SUCH_TYPE

NO SUCH TYPE

"CANNOT RESTRICT FILE CAPACITY"

100_000.0

$GREATER_THAN_DURATION BASE_LAST
T0_000_000.0

$GREATER_THAN_FLOAT_BASE LAST
1.8~E+308

$GREATER_THAN_FLOAT_SAFE_LARGE
5.0E307

A-2

MACRO PARAMETERS

$GREATER_THAN_SHORT_FLOAT_SAFE_LARGE
9.0E37

$HIGH_PRIORITY 99

$ILLEGAL_EXTERNAL_FILE_NAME1
"/illegal/f ile_name/2}] $%FILEl. DAT"

$ILLEGAL_EXTERNAL_FILE NAME2
"Villegal/f ile_name/2}]$%FILE2.DAT"

$INAPPROPRIATE_LINE_LENGTH
-1

$INAPPROPRIATE_PAGE_LENGTH
-1

$INCLUDE_PRAGMA1 PRAGMA INCLUDE ("A28006D1.TST")

$INCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006D1.TST")

$INTEGER_FIRST -2147483648

$INTEGER_LAST 2147483647

$INTEGER_LAST_PLUS_1 2147483648

$INTERFACE_LANGUAGE C

$LESS_THAN_DURATION -100_000.0

$LESS_THAN_DURATION_BASE_FIRST
-10_000_000.0

$LINE_TERMINATOR ASCII.LF

$LOW_PRIORITY 0

$MACHINE_CODE_STATEMENT
CODE 0'(OP -> NOP);

$MACHINE_CODE_ TYPE CODE_0

$MANTISSA_DOC 31

$MAX_DIGITS 15

$MAX_INT 2147483647

$MAX_INT_PLUS_ 1 2147483648

$MIN INT -2147483648

$NAME TINY_INTEGER

A-3

MACRO PARAMETERS

$NAME_LIST MACS

$NAME_SPECIFICATIONl GEORGE$DUAl:[VALIDATION.91-03-18-VRX.TESTS]X2120A

$NAME_SPECIFICATION2 GEORGE$DUAl:[VALIDATION.91-03-18-VRX.TESTS]X212OB

$NAME SPECIFICATIONS GEORGE$DUAl: [VALIDATION.91-03-18-VRX.TESTS]X3119A

$NEG_BASED_INT

$NEW_MEM_SIZE

$NEW_STOR_UNIT

$NEW_SYS_NAME

$PAGE_TERMINATOR

$RECORD_DEFINITION

$RECORD_NAME

$TASK_SIZE

$TASK_STORAGE_SIZE

$TICK

$VARIABLE_ADDRESS

$VARIABLE_ADDRESS1

$VARIABLE_ADDRESS2

$YOUR PRAGMA

16#F000000E#

16_777_216

8

MACS

ASCII.LF & ASCII.FF

RECORD SUBP: OPERAND; END RECORD;

CODE_0

32

1024

0.01

VAR_1'ADDRESS

VAR_2 'ADDRESS

VAR_3 'ADDRESS

PASSIVE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The Compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

B-l

VADSADA

VADSADA — invoke the Ada compiler

Syntax

VADS ADA [qualifiers] [source_file] , [objecc_file]

Arguments

objectjile

qualifiers

/APPEND

/DEBUG

Non-Ada object filenames. These files are passed to the linker and
are linked with the specified Ada object files.

Qualifiers to the compiler. These are:

Must be used with /OUTPUT. It Appends output to filename.

Write out the GNRX.LIB file in ASCII.

/DEFINE=(nidentifiertype=value",...)
Define identifier of a specified type and value.

/DEPEND ENCIES Analyze for dependencies only; no link is performed if this
qualifier is given (/MAIN and /OUTPUT qualifiers must not be
used with this qualifier).

/ERRORS[=(oprton [,...])]
Process compilation error messages using the ERROR tool and
direct the output to SYSSOUTPUT; the parentheses can be omitted
if only one qualifier is given (by default, only lines containing
errors are listed).

Options:

LISTING

EDITOR[="«fifor"]

OUTPUT[=/i7cnomc]

list entire input file.

Insert error messages into the source file
and call a text editor (EDT by default).
To use an editor other than EDT, specify
it as the quoted string "editor".

Direct error processed output to the
specified filename; if no filename is
given, the source filename is used with a
file extension .ERR.

BRIEF list only the affected lines [default]

Use only one of the BRIEF, LISTING, OUTPUT or EDITOR
options in a single command.

/EXECUTABLE=fifertame
Provide an explicit name for the executable when used with the
/MAIN qualifier; the filename value must be supplied (if the file
type is omitted^VOX is assumed).

/FILE_LIST=fiIenaw« Compile the source files listed in filename. When
/FILE_LIST=fiIenam« is used, source Jile is not required.

/FULLJD I AN A Do not trim the DIANA tree before output to net files. To save disk
space, the DIANA tree is trimmed so that all pointers to nodes that
did not involve a subtree that define a symbol table are nulled
(unless those nodes are part of the body of an inline or generic or
certain other values that are retained for the debugging or
compilation information). The trimming generally removes initial
values of variables and all statements.

/GVAS_SUGGESTED
Display suggested values for MIN_GVAS_ADDR and
MAX_GVAS_ADDR INFO directives.

V/oreinn «91 Printart- Marnh 15 1QQA Ref—27

VADSADA

/KEEPJL Keep the intermediate language (IL) file produced by the compiler
front end. The IL file is placed in the OBJECTS directory, with the
name ADA_SOURCE.l.

rLlVRAR\=libraty_name
Operate in VADS library library_name (the current working
directory is the default).

/LINK_ARGUMENTS="t7oliic"
Pass command qualifiers and parameters to the linker.

/MMN[=unit_name] Produce an executable program using the named unit as the main
program; if no value is given, the name is derived from the first
Ada filename parameter (the .A suffix is removed); the executable
filename is derived from the main program name unless the
/EXECUTABLE qualifier is used.

/NO_CODE_SHARING
Compile all generic instantiations without sharing code for their
bodies. This option overrides the SHARE_BODY INFO directive
and the SHARE.CODE or SHARE.BODY pragmas.

/NOCONTROL

/NOOPTIMIZE
/OPTIMIZE[=nttmbcr]

Suppress "control" messages emitted when pragma PAGE and/or
pragma LIST are encountered.

Do not optimize.

Invoke the code optimizer. An optional digit provides the level of
optimization. /OPTIMIZE=4 is the default.

/OPTIMIZE no digit, full optimization

/OPTIMIZE=0 no optimization

/OPTIMIZED copy propagation, CONST folding,
removing dean variables, subsuming
moves between scalar variables

/OPTIMIZE=2 add common subexpression elimination
within basic blocks

/OPTIMIZE=3 add global common subexpression
elimination

/OPTIMIZE=4 add hoisting invariants from loops and
address optimizations

/OPTIMIZE=5 add range optimizations and one pass
of reducing induction expressions

/OPTIMIZE=6 add unrolling of inner-most loops

/OPTIMIZE=7 add one more pass of induction
expression reduction

/OPTIMIZE=8 add one more pass of induction
expression reduction

/OPTIMIZE=9 add one more pass of induction
expression reduction and add hoisting
expressions common to the then and the
else parts of if statements

/OUTPUT=fiIcname Direct the output to filename (the default is SYSSOUTPUT).

/PREJPROCESS Invoke the Ada Preprocessor, VADS APP
/RECOMPILE_LIBRARY=VADSJibrary

Force analysis of all generic instantiations causing reinstantiation of
any that are out of date.

/RECREATE.GVAS Reinitialize the library's GVAS and the GVAS_TABLE file and exit.
No compilations are performed.

\/&nCr ncr \/AY \/MC tn MIPQ Pamilw

VADSADA

/SHOW Show the name of the tool executable but do not execute it.
/SHOWJVLL Print the name of the front end, code generator, optimizer, linker

and list the tools that are invoked.

/SUPPRESS Apply pragma SUPPRESS for all checks to the entire compilation

/TIMING Print timing information for the compilation.

/VERBOSE Print information for the compilation.

/WARNINGS
/NOWARNINGS Specify display of warning diagnostics [Default: /WARNINGS].

source Jile Name of the source file to compile.

Description

The command VADS ADA executes the Ada compiler and compiles the named Ada source file.
The file must reside in a VADS library directory. The AD A.LIB file in this directory is modified
after each Ada unit is compiled.

By default, VADS ADA produces only object and net files. If the /MAIN qualifier is used, the
compiler automatically invokes VADS LD and builds a complete program with the named library
unit as the mam program.

The compiler generates object files in VOX format.

Non-Ada object files can be given as arguments to VADS ADA. These files are passed on to the
linker and are linked with the specified Ada object files.

Command line qualifiers can be specified in any order but the order of compilation and the order
of the files passed to the linker is significant.

Several VADS compilers may be simultaneously available on a single system. The VADS ADA
command within any version of VADS on a system executes the correct compiler components
based upon visible library directives.

Program listings with a disassembly of machine code instructions are generated by VADS DB or
VADS DAS.

Diagnostics

The diagnostics produced by the VADS compiler are self-explanatory. Most refer to the RM. Each
RM reference includes a section number and optionally, a paragraph number enclosed in
parentheses.

REFERENCES: APP Prog—9, VADS APP Ref—30 /ERRORS User—42,. Optimization User—40,
pragma OPTIMIZE_CODE(OFF) Prog—82, .pragma SUPPRESS(ALL_CHECKSProg—84, VOX
format Prog—65, VADS DAS Ref—37, VADS DB Ref—39, VADS ERROR Ref—41, VADS LD
Ref—53, VADS MKLIB Ref—62

Version 6.2.1 Printed: March 15. 1994 Ref—29

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to linker documentation and not to this
report.

B-2

VADS LD

VADSLD — prelinker

Syntax
VADS LD [qualifiers) unit_name [linker_options]

Arguments
Hnker_options All arguments after unitjname are passed on to the linker. These arguments

can be linker options, names of object files or archive libraries or library
abbreviations.

qualifiers Qualifiers to the VADS LD command. These are:

/APPEND Must be used with /OUTPUT. It Appends output to filename.

/EARLY=" unitjname"
Force the given unit to elaborate as early as possible (unit_name
must be enclosed in double quotes).

/EXECUTABLE[=/iZcna»M!]
Put the output in the named file. The default executable names are
<main_unit>.EXE on self hosts or <mainjunit>.VOX on cross
targets.

/FILES Print a list of dependent files in elaboration order and suppress
linking.

/LIBRARY=Iibrory_nome
Collect information required for linking in library jname instead of
the current directory. However, place the executable in the current
directory.

/LINK_ARGS_FILE=frlename
Read list of options and/or object files to be passed to the VMS
linker from file filename. This option is used when the number or
length of the arguments is so large that it cannot fit on the VMS
command line. In filename, the arguments can be listed one per
line or there can be multiple arguments on one line. Any number
of spaces and/or blank lines can delimit each argument. This
option can be used in conjunction with /LINK_OPTIONS.

/UNKjO?TlONS=objectJile_or_qualifieti,...)"
Add the options surrounded by quotes to the invocation of the
linker.

/OUTPUT=/j7ename Direct output to filename. Default is SYSSOUTPUT.

/SHOW Show the name of the tool executable but do not execute it.

/TABLE List the symbols in the elaboration table to standard output.

/UNITS Print a list of dependent units in order and suppress linking.

/VERBOSE Generate an options file, usable by the cross linker, that has the
name of the executable but with the extension .OPT.

/VERIFY Print the VMS linker command but suppress execution.

/WARNINGS Suppress warning messages.

unitjname Name of an Ada unit.

Description

VADS LD collects the object files needed to make unitjname a main program and calls the xlink
linker to link together all Ada and other language objects required to produce an executable.
unitjname must be a non-generic subprogram that is either a procedure or a function that returns
an Ada STANDARD.INTEGER (the predefined type INTEGER). The utility uses the net files
produced by the Ada compiler to check dependency information. VADS LD produces an
exception mapping table, a unit elaboration table and passes this information to the linker. The

Version 6.2.1 Printed: March 15. 1994 Ref—53

VADS LD

elaboration list generated by VADS LD does not include library level packages that do not need
elaboration. Similarly, packages that contain no code that raises an exception no longer have
exception tables.

VADS LD reads instructions for generating executables from the ADA.LIB file in the VADS
libraries on the search list. Besides information generated by the compiler, these directives include
WITHn directives automatically link object modules compiled from omer languages or Ada object
modules not named in context clauses in the Ada source. Any number of WITH directives can be
placed in a library but they must be numbered contiguously beginning at wrTHl. The directives
are recorded in the library's ADA.LIB file and have the following form:

WITHlI LINK Iobject_fileI
WITH2 I LINKI arciiive_file I

WITH directives can be placed in the local Ada libraries or in any VADS library on the search list.

A WITH directive in a local VADS library or earlier on the library search list hides the same
numbered WITH directive in a library later in the library search list.

Use VADS INFO to change or report library directives in the current library.

Diagnostics

Self-explanatory diagnostics are produced for missing files, etc. Occasional additional messages
are produced by the linker.

Files

Normally, VADS LD generates an intermediate file with the process ID as a substring,
VADSOPTION<process_ID>.OPT.

With either the /VERIFY or /VERBOSE qualifiers, however, VADS LD produces the intermediate
file, <main_unir>.OPT.

a«« CA VADScross DEC VAX VMS to MIPS Family

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;

type SHORTJENTEGER is range -32768 .. 32767;

type TINY_INTEGER is range -128 .. 127;

type LONG FLOAT is digits 15 range
-1.79769313486232E+308 .. +1.79769313486232E+308;

type FLOAT is digits 6 range
-3.40282E+38 .. 3.40282E+38;

type SHORT FLOAT is digits 6 range
-3.40281E+38 .. 3.40282E+38;

type DURATION is delta 0.0001 range
-214748.3648 .. 214748.3647;

end STANDARD;

C-l

MACS Software User's Manual
4XT0010-00; Version 1.0
05 December 1994
APP: Volume 1 of 5

Implementation-Dependent PRA GMAs

Appendix F

Implementation Dependencies

This chapter defines the implementation-dependent characteristics of the RTE as required
by MIL-STD-1815A, Appendix F. The VADS compiler provides these features:

• shared generic bodies

• all-Ada run time system

• representation clauses to the bit level and pragma PACK (Ada RM 13.1)

• length clauses and unsigned types (8- and 16-bit) (Ada RM 13.2)

• enumeration representation clauses (Ada RM 13.3)

• record representation clauses (Ada RM 13.4)

• interrupt entries (Ada RM 13.5.1)

• representation attributes (Ada RM 13.7.2)

• machine code insertions and pragma IMPLICIT_CODE (Ada RM 13.8)

• interface programming features, including pragma INTERFACE, pragma EXTER-
NAL-NAME, pragma EXTERNAL, pragma INTERFACE-NAME, WITH directives,
VADS INFO, and external dependencies capabilities (Ada RM 13.9)

• unchecked deallocations (Ada RM 13.10.1)

• unchecked conversions (Ada RM 13.10.2)

• pool-based memory allocation option

F.l Implementation-Dependent PRAGMAS

Each of this implementation's pragmas is briefly described here. Additional information on
some of these pragmas is found under discussions of particular language constructs.

505
Defense Systems &:
Electronics Group

MACS Software User's Manual
T^A™,A 4XT0010-00; Version 1.0

Implementation-Dependent PRAGMAS 05 December 1994
PRAGMA alignment APP: Volume 1 of 5

F.l.l PRAGMA alignment

PRAGMA alignment(object, powerjof_2_byte_alignment) (VADScross only)

allows the user to specify alignment for objects declared in a package specifica-
tion or body.

F.1.2 PRAGMA builtJn

PRAGMA built in

may be used in some parts of the code for TEXT JO, MACHINE.CODE, UN-
CHECKED.CONVERSION, UNCHECKEDJDEALLOCATION and lower level
support packages in STANDARD. It is reserved and cannot be accessed directly.

F.1.3 PRAGMA controlled

PRAGMA controlled

is recognized by the implementation but has no effect in the current release.

F.1.4 PRAGMA elaborate

PRAGMA elaborate

is implemented as described in Appendix B of the Ada RM.

F.1.5 PRAGMA external

PRAGMA external(language, subprogram)

supports calling Ada subprograms from foreign languages. The compiler gener-
ates code for the subprogram that is compatible with the calling conventions of
the foreign language. The subprogram may also be called from Ada normally.
The supported languages and restrictions on parameter and result types are the
same as for pragma INTERFACE. This pragma only has an effect when the
calling conventions of the foreign language differ from those of Ada.

F.1.6 PRAGMA external-name

PRAGMA external_name(subprogram, link_name)

allows the user to specify a link for an Ada variable or subprogram so that the
object can be referenced from other languages. The PRAGMA is allowed at
the place of a declarative item in a package specification and must apply to an
object declared earlier in the same package specification.

Objects must be variables defined in a package specification; subprograms can
be either library level or within a package specification.

This pragma is allowed with inline subprograms but disallowed with inline_only
subprograms. It also cannot be used on objects created by renaming declara-
tions.

Defense Systems &
Electronics Group 506

MACS Software User's Manual
4XT0010-00; Version 1.0
05 December 1994
APP: Volume 1 of 5

Implementation-Dependent PRA GMAs
PR A GMA impliciLcode

F.1.7 PRAGMA implicit_code

PRAGMA implicit_code

The IMPLICIT_CODE pragma specifies that implicit code generated by the
compiler is allowed (ON) or disallowed (OFF) and is used only within the
declarative part of a machine code procedure. Implicit code includes pream-
ble and trailer code (e.g., code used to move parameters from and to the stack).
Use of PRAGMA implicit_code does not eliminate code generated for run time
checks nor does it eliminate call/return instructions. These can be eliminated
by PRAGMA suppress and PRAGMA inline, respectively. A warning is issued
if OFF is used and any implicit code needs to be generated. This pragma should
be used with caution.

F.1.8 PRAGMA initialize

PRAGMA initialize(static | dynamic)

when placed in a library-level package, spec or body; causes all objects in the
package to be initialized as indicated, statically or dynamically. Only library-
level objects are subject to static initialization. All objects within procedures
are, by definition, dynamic.

If PRAGMA initialize(static) is used and an object cannot be initialized stati-
cally, code will be generated to initialize the object and a warning message will
be generated.

F.1.9 PRAGMA inline

PRAGMA inline

is implemented as described in Appendix B of the Ada RM with the addition
that recursive calls can be expanded with the pragma up to the maximum depth
of 4. Warnings are produced for bodies that are not available for inline expan-
sion. PRAGMA inline is ignored and a warning is issued when it is applied to
subprograms which declare tasks, packages, exceptions, types or nested subpro-
grams.

F.1.10 PRAGMA inline_only

PRAGMA inlinejonly

when used in the same way as PRAGMA inline, indicates to the compiler that
the subprogram must always be in-lined (very important for some code pro-
cedures.). This pragma also suppresses the generation of a callable version
of the routine which saves code space. If a user erroneously makes an IN-
LINE-ONLY subprogram recursive, a warning message will be emitted and a
PROGRAM-ERROR will be raised at run time.

507
Defense Systems &
Electronics Group

MACS Software User's Manual
4XT0010-00; Version 1.0

Implementation-Dependent PRAGMAS 05 December 1994
PRAGMA interface APP: Volume 1 of 5

F.l.ll PRAGMA interface

PRAGMA interface (language, subprogram)

supports calls to ADA, C, PASCAL, FORTRAN and UNCHECKED language
functions. The Ada specifications can be either functions or procedures. This
pragma can also be used to call code written in unspecified languages using
UNCHECKED for the language name.

For ADA, the compiler will generate the call as if it were to an Ada procedure
but will not expect a matching procedure body.

For C, the types of parameters and the result type for functions must be scalar,
access or the predefined type ADDRESS in SYSTEM.ADDRESS. Record and
array objects can be passed by reference using the 'ADDRESS attribute. All
parameters must have mode IN.

For PASCAL, the types of parameters and the result type for functions must be
scalar, access or the predefined type ADDRESS in SYSTEM.ADDRESS. Record
and array objects can be passed by reference using the ADDRESS attribute.

For FORTRAN, all parameters are passed by reference; the parameter types
must have type SYSTEM.ADDRESS. The result type for a FORTRAN function
must be a scalar type.

UNCHECKED may be used to interface to an unspecified language, such as
assembler. The compiler will generate the call as if it were to an Ada procedure
but will not expect a matching Ada procedure body.

F.1.12 PRAGMA interface_name

PRAGMA interface_name(ada_name, link_name)

with the parameters allows variables or subprograms defined in another language
to be referenced directly in Ada. It replaces all occurrences of Adajiame with
an external reference to link-name in the object file using the syntax:

PRAGMA interface-name (Ada_name, link_name);

If Ada_name denotes an object, the pragma is allowed at the place of a declara-
tive item in a package specification and must apply to an object declared earlier
in the same package specification. The object must be declared as a scalar or
an access type. The object cannot be any of the following.

• loop variable

• constant

• initialized variable

• array

• record

Defense Systems &
Electronics Group 508

MACS Software User's Manual

05 December 1994 Implementation-Dependent PRAGMAs
APP: Volume 1 of 5 PRAGMA link.with

If Adajiame denotes a subprogram, a PRAGMA interface must have already
been specified for the subprogram.

The link_name must be constructed as expected by the linker. For example,
some C compilers and linkers preface the C variable name with an underscore.
Such conventions are denned in package LANGUAGE. The following example
makes the C global variable errno available within an Ada program:

with LANGUAGE;
package PACKAGE.NAME is

ERRNO:INTEGER;
PRAGMA interface.name (ERRNO,LANGUAGE.C.PREFIX & "errno");

end PACKAGE.NAME;

F.1.13 PRAGMA link_with

PRAGMA link_with

can be used to pass arguments to the target linker. It may appear in any
declarative part and accepts one argument, a constant string expression. This
argument is passed to the target linker whenever the unit containing the pragma
is included in a link.

If the constant string expression begins with "-", the string is left untouched.

F.1.14 PRAGMA list

PRAGMA list

is implemented as described in Appendix B of the Ada RM.

F.1.15 PRAGMA memory .size

PRAGMA memory .size

is recognized by the implementation but has no effect in the current release.
The implementation does not allow package SYSTEM to be modified by means
of pragmas; it must be recompiled.

F.1.16 PRAGMA noJmage

PRAGMA noJmage

suppresses the generation of the image array used for the IMAGE attribute of
enumeration types. This eliminates the overhead required to store the array
in the executable image. An attempt to use the IMAGE attribute on a type
whose image array has been suppressed will result in a compilation warning and
PROGRAM-ERROR raised at run time.

Defense Systems &
509 Electronics Group

Implementation-Dependent PRA GMAs
PRAGMA nonjreentrant

MACS Software User's Manual
4XT0010-00; Version 1.0

05 December 1994
APP: Volume 1 of 5

F.1.17 PRAGMA non_reentrant

PRAGMA non_reentrant(subprogram)

takes one argument which can be the name of a library subprogram or a subpro-
gram declared immediately within a library package specification or body. This
pragma indicates to the compiler that the subprogram will not be called recur-
sively allowing the compiler to perform specific optimizations. The pragma can
be applied to a subprogram or a set of overloaded subprograms within a package
specification or package body.

F.1.18 PRAGMA not „elaborated

PRAGMA not_elaborated

suppresses the generation of elaboration code and issues warnings if elaboration
code is required. It indicates that the package will not be elaborated because
it is either part of the RTS, a configuration package or an Ada package that
is referenced from a language other than Ada. It can appear only in a library
package specification.

F.1.19 PRAGMA optimize

PRAGMA optimize

is recognized by the implementation but has no effect in the current release.

F.1.20 PRAGMA optimize_code

PRAGMA optimize_code(off | on)

specifies whether the code should be optimized (ON) by the compiler or not
(OFF). It can be used in any subprogram. When OFF is specified, the compiler
generates unoptimized code. The default is ON.
Optimization can be selectively suppressed using this pragma at the subpro-
gram level. Inline subprograms are optimized even if they have PRAGMA op-
timize_code(off) unless the caller also has PRAGMA optimize_code(off).

F.1.21 PRAGMA pack

PRAGMA pack

will cause the compiler to minimize gaps between components in the represen-
tation of composite types. Objects larger than a single STORAGE-UNIT are
packed to the nearest STORAGEJJNIT.

F.1.22 PRAGMA page

PRAGMA page

is implemented as described in Appendix B of the Ada RM. It is also recognized
by the source code formatting tool VADS PR (VMS).

Defense Systems &
Electronics Group 510

MACS Software User's Manual

05 December 1994 Implementation-Dependent PRAGMAs
APP: Volume 1 of 5 PRAGMA passive

F.1.23 PRAGMA passive

PRAGMA passive is not implemented in the MACS RTE. Refer to the CIFO PRAGMA
threacLoLcontrol described in the other portions of the MACS SUM.

F.1.24 PRAGMA priority

PRAGMA priority

is implemented as described in Appendix B of the Ada RM. The allowable range
for pragma PRIORITY is 0 .. 99.

F.1.25 PRAGMA rtsJnterface

PRAGMA rtsinterface(rts_routine, user_routine)

allows for the replacement of the default calls made implicitly at run-time to the
underlying RTS routines. You can cause the compiler to generate calls to any
routine of your choosing as long as its parameters and RETURN value match
the original. Use this pragma with caution.

F.1.26 PRAGMA share.code

PRAGMA share_code(generic unit/instantiation,boolean) provides for the shar-
ing of object code between multiple instantiations of the same generic sub-
program or package body. A 'parent' instantiation is created and subsequent
instantiations of the same types can share the parent's object code, reducing
program size and compilation times.

The SHARE-CODE pragma takes the name of a generic instantiation or a
generic unit as the first argument and either one of the identifiers TRUE or
FALSE as a second argument. When the first argument is a generic unit, the
pragma applies to all instantiations of that generic. When the first argument
is the name of a generic instantiation, the pragma applies only to the specified
instantiation or overloaded instantiations.

If the second argument is TRUE, the compiler will try to share code generated
for a generic instantiation with code generated for other instantiations of the
same generic. When the second argument is FALSE each instantiation will get
a unique copy of the generated code.

The extent to which code is shared between instantiations depends on this
pragma and the kind of generic formal parameters declared for the generic unit.
It is only allowed immediately at the place of a declarative item in a declarative
part or package specification or after a library unit in a compilation but before
any subsequent compilation unit.

The name PRAGMA share_body may be used instead of share_code with the
same effect.

Defense Systems &
511 Electronics Group

MACS Software User's Manual

Implementation-Dependent PRAGMAs *™°™^0; V™i5
pn^i/i u J 05 December 1994
PRAGMA shared APP: Volume 1 of 5

F.1.27 PRAGMA shared

PRAGMA shared is recognized by the implementation but has no effect in the
current release.

F.1.28 PRAGMA storage.unit

PRAGMA storage.unit is recognized by the implementation but has no effect in
the current release. The implementation does not allow SYSTEM to be modified
by means of pragmas. However, the same effect can be achieved by recompiling
package SYSTEM with altered values.

F.1.29 PRAGMA suppress

PRAGMA suppress

is implemented as described in Appendix B of the Ada RM except that DIVI-
SION.CHECK and in some cases OVERFLOW_CHECK, cannot be suppressed.

The use of PRAGMA suppress(alLchecks) is equivalent to writing at the same
point in the program a suppress pragma for each of the checks listed in RM 11.7.

The pragma SUPPRESS(EXCEPTION_TABLES) informs the code generator
that the tables normally generated to identify exception regions are not to be
generated for the enclosing compilation unit. This reduces the size of the static
data required for a unit but also disables exception handling within that unit.

F.1.30 PRAGMA system_name

PRAGMA system_name

is recognized by the implementation but has no effect in the current release. The
implementation does not allow SYSTEM to be modified by means of pragmas.
However, the file system.a from the STANDARD library can be copied to a local
VADS library and recompiled there with new values.

F.1.31 PRAGMA unchecked_subprogram_invocation

PRAGMA unchecked_subprogram_invocation

is TBD.

F.1.32 PRAGMA volatile

PRAGMA volatile(object)

guarantees that loads and stores to the named object will be performed as
expected after optimization.

The object declaration and the pragma must both occur (in this order) imme-
diately within the same declarative part or package specification.

Defense Systems &
Electronics Group 512

MACS Software User's Manual
4XT0010-00; Version 1.0 ™ i ^ J r> i A J ^
05 December 1994 Predefined Packages And Generics
APP: Volume 1 of 5 PRAGMA warnings

F.1.33 PRAGMA warnings

PRAGMA warnings (on | off)

selectively suppress warnings on a single statement or a group of statements.

PRAGMA warnings (off); statement(s) that generate warnings; PRAGMA warn-
ings (on);

F.2 Predefined Packages And Generics

The following predefined Ada packages given by Ada RM Appendix C(22) are provided in
the STANDARD library. For VADScross products, they are also provided in the CROSS JO
library.

• generic function UNCHECKED_CONVERSION

• generic package DIRECTJO

• generic package SEQUENTIALJO

• generic procedure UNCHECKEDJ>EALLOCATION

• package CALENDAR

• package 10 .EXCEPTIONS

• package L0W_LEVELJ0

• package MACHINE_CODE

• package STANDARD

• package SYSTEM

• package TEXT JO

F.2.1 package SYSTEM

package SYSTEM
The following is the package specification for package SYSTEM:

I RESTRICTED RIGHTS LEGEND
I Use, duplication, or disclosure by the Government is
I subject to restrictions as set forth in subparagraph
I (c)(1)(ii) of the Rights in Technical Data and Computer
I Software Clause at DFARS 252.227-7013.
I Texas Instruments, Inc.
I 6620 Chase Oaks Blvd
I Piano, TX 75023

Defense Systems &
513 Electronics Group

Predefined Packages And Generics
package SYSTEM

MACS Software User's Manual
4XT0010-00; Version 1.0

05 December 1994
APP: Volume 1 of 5

Copyright (c) 1992 Texas Instruments, Inc.
All Rights Reserved.

with UNSIGNEDJTYPES;
package SYSTEM is

pragma SUPPRESS(ALL_CHECKS);

pragma SUPPRESS(EXCEPTIOH.TABLES);
pragma NOT.ELABORATED;
type NAME is (MACS);

SYSTEM.NAME : constant IAME := MACS;
STORAGEJJNIT : constant := 8;

MEMORY_SIZE : constant := 16_777_216;

— System-Dependent Named Numbers

MIN_INT : constant := -2_147_483_648;
MAX_INT : constant := 2_147_483_647;
MAX_DIGITS : constant := 15;
MAX_MANTISSA : constant := 31;
FINE.DELTA : constant := 2.0**(-31);
TICK : constant := 0.01;

— Other System-dependent Declarations
subtype PRIORITY is INTEGER range 0 .. 99;
MAX_REC_SIZE : integer := 64*1024;
type ADDRESS is private;

function ">" (A: ADDRESS; B: ADDRESS) return BOOLEAN
function "<" (A: ADDRESS; B:
function ">="(A:

function "<="(A: ADDRESS;
function "-" (A: ADDRESS;

ADDRESS) return BOOLEAN;
ADDRESS; B: ADDRESS) return BOOLEAN;

B: ADDRESS) return BOOLEAN;
B: ADDRESS) return INTEGER;

I: INTEGER) return ADDRESS;

I: INTEGER) return ADDRESS;

UNSIGNED_TYPES.UNSIGNED_INTEGER) return ADDRESS;
function MEM0RY_ADDRESS (I: UNSIGNED_TYPES.UNSIGNED_INTEGER)

return ADDRESS renames "+";

function "+"

function "-"
function '"+"

(A: ADDRESS;
(A: ADDRESS;

(I:

N0_ADDR : constant ADDRESS;
type TASK_ID is private;

N0_TASK_ID : constant TASK_ID;

subtype SIG_STATUS_T is INTEGER;
SIG_STATUS_SIZE: constant := 4;
type PROGRAM.ID is private;

N0_PR0GRAM_ID : constant PROGRAMED;
type LONG.ADDRESS is private;

N0_L0NG_ADDR : constant L0NG_ADDRESS;

function "+•• (A: LONG.ADDRESS; I: INTEGER) return LONG.ADDRESS;

Defense Systems &

Electronics Group 514

MACS Software User's Manual
4XT0010-00; Version 1.0 „ , „ , n , A J si ■
05 December 1994 Predefined Packages And Genencs
APP: Volume 1 of 5 package CALENDAR

function "-" (A: LONG_ADDRESS; I: INTEGER) return LONG.ADDRESS;
function MAKE_LONG_ADDRESS (A: ADDRESS) return LONG_ADDRESS;
function LOCALIZE(A: LONG_ADDRESS ; BYTE.SIZE : INTEGER)

return ADDRESS;
function STATI0N_0F(A: LONG.ADDRESS) return INTEGER;

— constant for use in attaching tasks to interrupts
SBC_NMI_INTERRUPT: constant ADDRESS;

— Constants describing the configuration of the CIFO add-on product.
SUPPORTS_INVOCATION_BY_ADDRESS : constant BOOLEAN := TRUE;
SUPPORTS_PREELABORATION : constant BOOLEAN := TRUE;
MAKE_ACCESS_SUPPORTED : constant BOOLEAN := TRUE;

— Arguments to the CIFO pragma INTERRUPT_TASK.
type INTERRUPT_TASK_KIND is (SIMPLE, SIGNALLING);

— Returned by 'task_id for passive tasks,
type PASSIVE_TASK_ID is private ;

private
type ADDRESS is new UNSIGNED_TYPES.UNSIGNED_INTEGER;

N0_ADDR : constant ADDRESS := 0;
type PASSIVE_TASK_ID is new UNSIGNED_TYPES.UNSIGNED_INTEGER;

SBC_NMI_INTERRUPT: constant ADDRESS := 16#4000_0000#;

pragma BUILT_IN(">");
pragma BUILT_IN("<");

pragma BUILT_IN(">=");
pragma BUILT_IN("<=");

pragma BUILT_IN("-H);

pragma BUILT_IN("+");
type TASK.ID is new UNSIGNED_TYPES.UNSIGNED_INTEGER;

N0_TASK_ID : constant TASK.ID := 0;
type PROGRAMED is new UNSIGNED_TYPES.UNSIGNED_INTEGER;

N0_PR0GRAM_ID : constant PR0GRAM_ID := 0;
type LONG.ADDRESS is new UNSIGNED_TYPES.UNSIGNED_INTEGER;

N0_L0NG_ADDR : constant LONG.ADDRESS := 0;
pragma BUILT_IN(MAKE_LONG_ADDRESS);

pragma BUILT_IN(LOCALIZE);

pragma BUILT_IN(STATI0N_0F);

end SYSTEM;

F.2.2 package CALENDAR

package CALENDAR
The following is the specification of package CALENDAR:

package CALENDAR is
type TIME is private;

Defense Systems &
515 Electronics Group

Predefined Packages And Generics
package CALENDAR

MACS Software User's Manual
4XT0010-00; Version 1.0

05 December 1994
APP: Volume 1 of 5

subtype YEAR.NUMBER is INTEGER range 1901 .. 2099;

subtype MOHTH_HUMBER is INTEGER range 1 .. 12;

subtype DAY_NUMBER is INTEGER range 1 .. 31;

subtype DAY.DURATION is DURATION range 0.0 .. 86_400.0;

function CLOCK return TIME;

function YEAR (DATE : TIME) return YEAR_NUMBER;
function MONTH (DATE : TIME) return M0NTH_NUMBER;
function DAY (DATE : TIME) return DAY.NUMBER;
function SECONDS(DATE : TIME) return DAY.DURATION;

procedure SPLIT (DATE

YEAR

MONTH

DAY
SECONDS

in TIME;

out YEAR_NUMBER;

out M0NTH_NUMBER;

out DAY.NUMBER;

out DAY_DURATI0N);

function TIME_0F(YEAR
MONTH

DAY

SECONDS

YEAR.NUMBER;
M0NTH_NUMBER;

DAY.NUMBER;

DAY.DURATION : 0.0) return TIME;

function "+"
function "+"

function "-"
function "-"

function "<"
function "<="

function ">"

function ">-"

(LEFT : TIME; RIGHT
(LEFT : DURATION; RIGHT

(LEFT : TIME; RIGHT
(LEFT : TIME; RIGHT

DURATION) return TIME;
TIME) return TIME;

DURATION) return TIME;
TIME) return DURATION;

(LEFT, RIGHT
(LEFT, RIGHT
(LEFT, RIGHT
(LEFT, RIGHT

TIME) return BOOLEAN
TIME) return BOOLEAN
TIME) return BOOLEAN
TIME) return BOOLEAN

TIME_ERROR : exception; can be raised by TIMEJDF, "+", and

private

type TIME is record

MSH : Integer;

LSH : Integer;

end record;

end;

Defense Systems &
Electronics Group 516

MACS Software User's Manual
4XT0010-00; Version 1.0 „ , „ , „ , . , „
05 December 1994 Predefined Packages And Genencs
APP: Volume 1 of 5 package MACHINE-CODE

F.2.3 package MACHINE.CODE

Package MACHINE.CODE provides an assembly language interface for the target machine
including the necessary record types needed in the code statement, an enumeration type
containing all the opcode mnemonics, a set of register definitions, and a set of addressing
mode functions. Also supplied (for use only in units that WITH MACHINE-CODE) are
PRAGMA implicitjcode and the attribute 'REF.
Machine code statements take operands of type OPERAND, a private type that forms the
basis of all machine code address formats for the target.
The general syntax of a machine code statement is

CODE_n'(opcode, operand [, operand]));

where n indicates the number of operands in the aggregate.
When there is a variable number of operands, they are listed within a subaggregate using
this syntax:

CODE_n'(opcode, (operand [, operand]);

For those opcodes requiring no operands, named notation must be used.

CODE_0'(op => opcode);

The opcode must be an enumeration literal (i.e., it cannot be an object, attribute or a
rename). An operand can only be an entity defined in MACHINE.CODE or the 'REF
attribute.
The 'REF attribute denotes the effective address of the first of the storage units allocated
to the object. 'REF is not supported for a package, task unit or entry.
Arguments to any of the functions defined in MACHINE.CODE must be static expressions,
string literals or the functions defined in MACHINE-CODE.

F.2.4 package SEQUENTIALJO

Sequential I/O is not supported by the RTE.

F.2.5 package UNSIGNED_TYPES

package UNSIGNED-TYPES is supplied to illustrate the definition of and services for the
unsigned types supplied in this version of VADS. Rational Software Corporation does not
give any warranty, expressed or implied, for the effectiveness or legality of this package. It
can be used at your own risk.
Rational Software Corporation intends to withdraw this implementation if and when the
AJPO and the Ada community reach agreement on a practical unsigned types specification.
We can then standardize on that accepted version at a practical date thereafter.
The package is supplied in comment form because the actual package cannot be expressed
in normal Ada - the types are not symmetric about 0 as required by the Ada RM. This
package is supplied and is accessible through the Ada WITHn statement as though it were
present in source form.
Example:

Defense Systems &:
517 Electronics Group

MACS Software User's Manual
4XT0010-00; Version 1.0

Implementation-defined Attributes App. YQI^I^ 0f 5

with unsigned_types;
procedure foo(xxx: unsigned_types.unsigned.integer) is ...

CAUTION: Use package UNSIGNED_TYPES at your own risk.
A complete specification of package UNSIGNED.TYPES can be found in Appendix F of
the VADS Programmer's Guide.

F.3 Slices

A slice denotes a one-dimensional array formed by a sequence of consecutive components
of a one-dimensional array. A slice of a variable is a variable; a slice of a constant is a
constant; a slice of a value is a value. The syntax is:

prefix(discrete_range)

The prefix of a slice must be appropriate for a one-dimensional array type. The type of the
slice is the base type of this array type. The bounds of the discrete range define those of
the slice and must be of the type of the index; the slice is a null slice denoting a null array
if the discrete range is a null range.
For the evaluation of a name that is a slice, the prefix and the discrete range are evaluated
in some order that is not defined by the language. The exception CONSTRAINTJERROR
is raised by the evaluation of a slice, other than a null slice, if any of the bounds of the
discrete range does not belong to the index range of the prefixing array. (The bounds of a
null slice need not belong to the subtype of the index.)

F.4 Implementation-defined Attributes

'REF

The 'REF attribute denotes the effective address of the first of the storage
units allocated to the object. 'REF is not supported for a package, task
unit or entry. There are two forms of use for this attribute, X'REF and
SYSTEM.ADDRESS'REF(N). X'REF is used only in machine code proce-
dures while SYSTEM.ADDRESS'REF(N) can be used anywhere to convert
an integer expression to an address.

X'REF

The attribute generates a reference to the entity to which it is applied.
In X'REF, X must be either a constant, variable, procedure, function or la-
bel. The attribute returns a value of the type MACHINE.CODE.OPERAND
and may only be used to designate an operand within a code-statement.
The instruction generated by the code-statement in which the attribute oc-
curs may be preceded by additional instructions needed to facilitate the
reference (i.e., loading a base register). If the declarative section of the pro-
cedure contains PRAGMA implicit-code (off), a warning will be generated
if additional code is required.

Defense Systems &:
Electronics Group 518

MACS Software User's Manual
4XT0010-00; Version 1.0
05 December 1994
APP: Volume 1 of 5 Restrictions On 'Main' Programs

SYSTEM.ADDRESS'REF(N)

The effect of this attribute is similar to the effect of an unchecked con-
version from integer to address. However, SYSTEM.ADDRESS'REF(N)
should be used instead in the following listed circumstances and in these
circumstances, N must be static.
In SYSTEM.ADDRESS'REF(N), N must be an expression of type UNI-
VERSAL JNTEGER and for all products but VADSself on VAX VMS,
SYSTEM.ADDRESS must be the type SYSTEM.ADDRESS. The attribute
returns a value of type SYSTEM.ADDRESS, which represents the address
designated by N.
Within any of the run time configuration packages:

Use of unchecked conversion within an address clause would require
the generation of elaboration code but the configuration packages
are not elaborated.

In any instance where N is greater than INTEGER'LAST:

Such values are required in address clauses which reference the
upper portion of memory. To use unchecked conversion in these
instances would require that the expression be given as a negative
integer.

To place an object at an address, use the 'REF attribute:

The integer_value in the following example is converted to an ad-
dress for use in the address representation clause. The form avoids
UNCHECKEDXONVERSION and is also useful for 32-bit un-
signed addresses.

—place an object at an address
for object use at ADDRESS'REF (integer_value)

—to use unsigned addresses
for VECTOR use at SYSTEM.ADDRESS'REF(16#808000d0#);
T0P_0F\.MEMORY : SYSTEM.ADDRESS :=

SYSTEM.ADDRESS'REF(16#FFFFFFFF#);

X'TASKJD

For a task object or a value, X, X'TASKJD yields the unique task ID
associated with the task. The value of this attribute is of the type SYS-
TEM.TASKJD.

F.5 Restrictions On 'Main' Programs

VADS requires that a 'main' program must be a non-generic subprogram that is either a
procedure or a function returning an Ada STANDARD .INTEGER (the predefined type).
A 'main' program may be neither a generic subprogram nor an instantiation of a generic
subprogram.

519
Defense Systems &;
Electronics Group

Generic Declarations

MACS Software User's Manual
4XT0010-00; Version 1.0

05 December 1994
APP: Volume 1 of 5

F.6 Generic Declarations

VADS does not require that a generic declaration and the corresponding body be part of
the same compilation and they are not required to exist in the same VADS library. An
error is generated if a single compilation contains two versions of the same unit.

F.6.1 Shared Object-code For Generic Subprograms

The VADS compiler generates code for a generic instantiation that can be shared by other
instantiations of the same generic thus reducing the size of the generated code and increasing
compilation speed. There is an overhead associated with the use of shared code instantia-
tions because the generic actual parameters must be accessed indirectly and in the case of a
generic package instantiation, declarations in the package are also accessed indirectly. Also,
greater optimization is possible for unshared instantiations because exact actual parameters
are known. It is the responsibility of the programmer to decide whether space or time is
most critical in a specific application.
To give the programmer control of when an instantiation generates unique code or shares
code with other similar instantiations, PRAGMA share_code is provided. This PRAGMA
can be applied to a generic declaration or to individual instantiations.
It is not practical to share the code for instantiations of all generics. If the generic has a
formal private type parameter the generated code to accommodate an instantiation with
an arbitrary actual type would be extremely inefficient.
The VADS compiler does not share code by default. The INFO directive SHARE.BODY
may be specified in a VADS library to cause the compiler to always share generic code
bodies. PRAGMA share_code may be applied to generic units or generic instances to
control whether specific instances are shared.
To override the default, the PRAGMA share_code(name, false) must be used. If there are
formal subprogram parameters instantiations will not be shared unless an explicit PRAGMA
share_code(name, true) is used.
The PRAGMA share_code is used to indicate desire to share or not share an instantiation.
The PRAGMA can reference either the generic unit or the instantiated unit. When it
references a generic unit, it sets sharing on or off for all instantiations of that generic
unless overridden by specific share_code PRAGMAS for individual instantiations. When it
references an instantiated unit, sharing is on or off only for that unit.
The PRAGMA sharexode is only allowed in the following places: immediately within a
declarative part, immediately within a package specification or after a library unit in a
compilation but before any subsequent compilation unit. The form of this PRAGMA is

PRAGMA share.code (generic, boolean_literal)

Note that a parent instantiation (the instantiation that creates the sharable body) is inde-
pendent of any individual instantiation, therefore reinstantiation of a generic with different
parameters has no effect on other compilations that reference it. The unit that caused com-
pilation of a parent instantiation need not be referenced in any way by subsequent units
that share the parent instantiation.
Sharing generics causes a slight execution time penalty because all type attributes must be
indirectly referenced (as if an extra calling argument were added). However, it substantially
reduces compilation time in most circumstances and reduces program size.

Defense Systems &
Electronics Group 520

MACS Software User's Manual
4XT0010-00; Version 1.0

APP* VohmeTof 5 Change of Representation

We have compiled a unit, SHAREDJO, in the standard library that instantiates all Ada
generic I/O packages for the most commonly used base types. Thus, any instantiation of
an Ada I/O generic package will share one of the parent instantiation generic bodies unless
the following PRAGMA is used:

PRAGMA share.code (generic, false);

F.7 Representation Clauses

F.7.1 Bit-level Representation Clauses

VADS supports bit-level representation clauses.

F.7.2 PRAGMA pack

VADS does not define any additional representation PRAGMAS.

F.7.3 Length Clauses

VADS supports all representation clauses.

F.7.4 Enumeration Representation Clauses

Enumeration representation clauses are supported.

F.7.5 Record Representation Clauses

Representation clauses are based on the target machine's word, byte and bit order num-
bering so that VADS is consistent with machine architecture manuals for both 'big-endian'
and 'little-endian' machines. Bits within a STORAGEJJNIT are also numbered according
to the target machine manuals. It is not necessary for a user to understand the default
layout for records and other aggregates since fine control over the layout is obtained by the
use of record representation clauses. It is then possible to align record fields correctly with
structures and other aggregates from other languages by specifying the location of each
element explicitly. The 'FIRSTJBIT and 'LAST_BIT attributes can be used to construct
bit manipulation code that is applicable to differently bit-numbered systems.
A figure (or figures) illustrating the addressing and bit numbering scheme available for your
target system can be found in Appendix F of the Programmer's Guide.
The only restriction on record representation clauses is that if a component does not start
and end on a storage unit boundary, it must be possible to get it into a register with one
move instruction.

F.8 Change of Representation

Change of representation is supported.

Defense Systems &:
521 Electronics Group

Interface to Other Languages

MACS Software User's Manual
4XT0010-00; Version 1.0

05 December 1994
APP: Volume 1 of 5

F.9 package SYSTEM

The specification of package SYSTEM is available in the Appendix F chapter of the Pro-
grammer's Guide. The PRAGMAs system_name, storage.unit and memory .size are recog-
nized by the implementation but have no effect. The implementation does not allow SYS-
TEM to be modified by means of PRAGMAS, however, the same effect can be achieved by
recompiling the SYSTEM package with altered values. Note that such a compilation will
cause other units in the STANDARD library to become out of date. Consequently, such
recompilations should be made in a library other than standard.

F.9.1 System-Dependent Named Numbers

The specification of package SYSTEM is listed on page F.2.1. This specification is also
available on line in the file system.a in the release standard library.

F.10 Representation Attributes

F.10.1 'ADDRESS attribute

The 'ADDRESS attribute is supported for the following entities.

• variables

• constants

• procedures

• functions

If the prefix of an address attribute is an object that is not aligned on a storage unit
boundary, the attribute yields the address of the storage unit containing the first bit of the
object. This is consistent with the definition of the FIRST_BIT attribute.
All other Ada representation attributes are fully supported.

F.10.2 Representation Attributes of Real Types

These attributes are supported.

F.ll Machine Code Insertions

Machine code insertions are supported.

F.12 Interface to Other Languages

The VADS interface to other languages is discussed in the Interface Programming chapter
in the VADS Reference Guide and in the section PRAGMAS and Their Effects.

Defense Systems &
Electronics Group 522

MACS Software User's Manual
4XT0010-00; Version 1.0
05 December 1994 Parameter Pa v sin a APP: Volume 1 of 5 parameter rassmg

F.13 Unchecked Programming

Both UNCHECKED_DEALLOCATION and UNCHECKED.CONVERSION are provided.

F.13.1 Unchecked Storage Deallocations

Any object that was allocated may be deallocated. When an object is deallocated, its access
variable is set to null. Subsequent deallocations using the null access variable are ignored.

F.13.2 Unchecked Type Conversions

The predefined generic function UNCHECKED-CONVERSION cannot be instantiated with
a target type that is an unconstrained array type or an unconstrained record type with
discriminants.

F.14 Parameter Passing

Parameters are passed in registers and/or by pushing values (or addresses) on the stack.
Extra information is passed for records ('CONSTRAINED) and for arrays (dope vector
address).
Small results are returned in registers; large results with known targets are passed by
reference. Large results of anonymous target and known size are passed by reference to a
temporary created on the caller's stack. Large results of anonymous target and unknown
size are returned by copying the value down from a temporary in the callee so that the
space used by the temporary can be reclaimed.
The compiler assumes the following calling conventions.

1. Caller passes scalar arguments in aO, al, a2 and a3 and floating pointer arguments
in fl2 and fl4. Other arguments are passed on the stack. Inter-language calls (for
example, from a C routine to an Ada routine or from an Ada routine to a C routine) use
the standard MIPS calling convention. To call a C procedure, declare the Ada interface
using PRAGMA interface (language, subprogram). To declare an Ada procedure that
will be called from C or FORTRAN, use PRAGMA external (language, subprogram).

2. Caller calls callee.

3. Callee allocates space for locals, if needed, by subtracting from the stack pointer. If
the stack pointer is changed, then a stack overflow check is executed.

4. Callee preserves registers in the set s0-s7, sp, s8 and ra if they are used. Also, registers
f20 through f30 are saved if used.

5. Callee copies the display, if needed.

6. Callee sets up a frame pointer (r30, aka fp) if the sp is modified by code during the
call. Otherwise, a virtual frame pointer is used.

7. Callee executes.

Defense Systems &
523 Electronics Group

Attributes of Discrete Types

MACS Software User's Manual
4XT0010-00; Version 1.0

05 December 1994
APP: Volume 1 of 5

8. Callee puts return result in vO or fO.

9. Saved registers are restored.

10. The stack pointer is restored, which reclaims local storage.

11. The callee returns to the caller.

Note that machine code insertions can be used to explicitly build a call interface when
compiler conventions are not compatible or when interfacing to assembly language.
It is important to understand the referencing of parameters when using machine_code in-
sertions. Parameters cannot be treated like memory locations since in may cases, they are
being held in registers. Attempting to treat a parameter held in a register like a memory
location will cause a compiler error.

F.15 Conversion And Deallocation

The predefined generic function UNCHECKED-CONVERSION cannot be instantiated with
a target type that is an unconstrained array type or an unconstrained record type with
discriminants.
There are no restrictions on the types with which generic function UNCHECKED-DE-
ALLOCATION can be instantiated. No checks are performed on released objects.

F.16 Types, Ranges and Attributes

The maximum ARRAY, RECORD and TYPE size limits have been increased to 256.000-000.

F.17 Numeric Literals

VADS Ada uses unlimited precision arithmetic for computations with numeric literals.

F.18 Enumeration Types

VADS Ada allows an unlimited number of literals within an enumeration type.

F.19 Attributes of Discrete Types

VADS Ada defines the image of a character that is not a graphic character as the cor-
responding 2- or 3-character identifier from package ASCII of Ada RM Annex C-4. The
identifier is in upper case without enclosing apostrophes. For example, the image for a
carriage return is the 2-character sequence CR (ASCII.CR).

Defense Systems &
Electronics Group 524

MACS Software User's Manual
4XT0010-00; Version 1.0
05 December 1994
APP: Volume 1 of 5

Operation of Floating Point Types

F.20 The type STRING

Except for memory size, VADS Ada places no specific limit on the length of the predefined
type STRING. Any type derived from the type STRING is similarly unlimited.

F.21 The type INTEGER

The following are the INTEGER attribute values:
type INTEGER Attribute Values

Name of
Attribute

Attribute Value
of INTEGER

Attribute Value of
SHORTJNTEGER

Attribute Value of
TINYJNTEGER

SIZE 32 16 8
FIRST -2_147_483_648 -32_768 -128
LAST 2_147_483_647 32.767 127

F.22 Operation of Floating Point Types

VADS Ada floating point typ 3s have the attributes given in the following table:
Floating Point Types

Name of
Attribute

Attribute Value of
LONG-FLOAT

Attribute Value of
FLOAT
SHORT-FLOAT

SIZE 64 32
FIRST -1.79769313486232E+308 -3.40282E+38
LAST 1.79769313486232E+308 3.40282E+38
DIGITS 15 6
MANTISSA 51 21
EPSILON 8.88178419700125E-16 9.53674316406250E-07
EMAX 204 84
SMALL 1.94469227433161E-62 2.58493941422821E-26
LARGE 2.57110087081438E+61 1.93428038904620E+25
SAFE-EMAX 1021 125
SAFE-SMALL 2.22507385850720E-308 1.17549435082229E-38
SAFE-LARGE 2.24711641857789E+307 4.25352755827077E+37
MACHINE-RADIX 2 2
MACHINE^IANTISSA 53 24
MACHINE_EMAX 1024 128
MACHINE-EMIN -1021 -125
MACHINE-ROUNDS TRUE TRUE
MACHINE-OVERFLOWS TRUE TRUE

525
Defense Systems &
Electronics Group

Fixed Point Type Attribute Values

MACS Software User's Manual
4XT0010-00; Version 1.0

05 December 1994
APP: Volume 1 of 5

F.23 Fixed Point Type Attribute Values

VADS Ada fixed point types have the attributes given in the following table:
Fixed Point Type Attribute Values

Name of
Attribute

Attribute Value
for DURATION

SIZE 32
FIRST -214748.3648
LAST 214748.3647
DELTA 1.00000000000000E-04
MANTISSA 31
SMALL 1.00000000000000E-04
LARGE 2.14748364700000E+05
FORE 7
AFT 4
SAFE_SMALL 1.00000000000000E-04
SAFE_LARGE 2.14748364700000E+05
MACHINEJtOUNDS TRUE
MACHINE_OVERFLOWS TRUE

Defense Systems &
Electronics Group 526

