
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

y
in L* di w i Ly *-jH%

^'JUN2 319951 |
^ «XT

flOSEfi»

t THESIS

CVJ

CXJ
CXJ

AN EXAMINATION OF THE COSMOS MODEL
FOR USE IN DEPARTMENT OF DEFENSE
SOFTWARE DEVELOPMENT MANAGEMENT

by

Steven G. Drake

March, 1995

Principal Advisor:
Associate Advisor:

Keith Snider
Tarek Abdel-Hamid

Approved for public release; distribution is unlimited.

DTI« QUALITY INSPECTED 8

REPORT DOCUMENTATION PAGE Foim Approved OMB No. 0704-0188

Public repotting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1995

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE An Examination of The Cosmos Model for use
in Department of Defense Software Development Management

6. AUTHOR(S) Steven G. Drake

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

8. PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILrrY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Currently, the proper management of DoD software development projects is lacking. This is due, in large
part, to the use of models of the software development process which neglect management aspects of the
process. The Commonsense Management Model, "Cosmos", however, presents a complete view of this
process by treating both its production and management facets. This model calls for a software
development project manager to make three essential trade-offs. To make these essential trade-offs, a
manager must consider the six principles of dealing with the dynamic complexity found in software
development. Methods for dealing with these six principles can be found if the manager takes a three
dimensional view of the software development process. Due to the conceptual nature of the Cosmos model,
the model must first be grounded with "real world" examples before it can be effectively applied within
DoD. To accomplish this, the Patriot software development management method is used to relate the
concepts to specific examples for DoD use. By relating the concepts to examples, eight types of tools were
found that could be used by future DoD software development projects to gain the benefit of a holistic view
of the software development process presented by the Cosmos model. Specific recommendations are
contained for inclusion in DoD policy with respect to software development management.

14. SUBJECT TERMS Software Development Management Commonsense
Management Model, Patriot Software Development Management, Patriot
Software Development Process

15. NUMBER OF
PAGES 94

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

AN EXAMINATION OF THE COSMOS MODEL FOR USE IN
DEPARTMENT OF DEFENSE SOFTWARE DEVELOPMENT

MANAGEMENT

by

Steven G. Drake

Captain, United States Army
B.S., University of Texas at El Paso, 1985

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the

Accesion For "I-]
NTIS CRA&I
DTIC TAB
Unannounced
Justification

d
D
D

By
Distribution/

Availability C odes

Dist

fl-l

Avail and,
Special

or

NAVAL POSTGRADUATE SCHOOL
March 1995

Author:

Approved by:

Steven G. Drake

Keith Snider, Principal Advisor

T- UCLUJUuJ

Tarek Ab^tel-Hamid, Associate Advisor

David Wfiipple, Chairman Department of Systems Management

m

IV

ABSTRACT

Currently, the proper management of DoD software development projects

is lacking. This is due, in large part, to the use of models of the software

development process which neglect management aspects of the process. The

Commonsense Management Model, "Cosmos," however, presents a complete view

of theis process by treating both its production and management facets. This model

calls for a software development project manager to make three essential trade-offs.

To make these essential trade-offs, a manager must consider the six principles of

dealing with the dynamic complexity found in software development. Methods for

dealing with these six principles can be found if the manager takes a three

deimensional view of the software development process. Due to the conceptual

nature of the Cosmos model, the model must first be grounded with "real world"

examples before it can be effectively applied within DoD. To accomplish this, the

Patriot software development management method is used to relate the concepts to

specific examples for DoD use. By relating the concepts to examples, eight types

of tools were found that could be used by future DoD software development

projects to gain the benefit of a holistic view of the software development process

presented by the Cosmos model. Specific recommendations are contained for

inclusion in DoD policy with respect to software development management.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. THESIS OBJECTIVE 2

C PRIMARY AND SECONDARY THESIS QUESTIONS 3

D. RESEARCH SCOPE, LINITATIONS, AND ASSUMPTIONS 4

E. METHODOLOGY 4

F. DEFINITIONS AND ABBREVIATIONS 5

G. CHAPTER OUTLINE 5

II. SOFTWARE DEVELOPMENT MODELS 7

A. STATE OF WEAPON SYSTEMS 7

B. MANAGEMENT OF SOFTWARE DEVELOPMENT 8

C. CURRENT WIDELY USED SOFTWARE DEVELOPMENT PROCESS
MODELS 10

D. THE COSMOS MODEL 16

1. Three Essential Trade-offs 16

2. Commonsense Principles 17

3. The Activity, Communication, and Infrastructure

Framework 19

4. Use of the Cosmos Model 21

E. THE INTEGRATED SYSTEM DYNAMICS MODEL OF SOFTWARE
DEVELOPMENT 24

F. MIL-STD-498 25

III. PATRIOT SOFTWARE DEVELOPMENT MANAGEMENT 27

A. THE PATRIOT EFFORT 27

B. SOFTWARE DEVELOPMENT MANAGEMENT METHOD 29

1. Public Laws and DoD Directives/Instructions 29

2. Software Development Management Overview 32

3. PDB Software Development Method 38

4. Configuration Management 42

5. Software Quality Assurance 44

IV. COSMOS IN DOD ANALYSIS 47

A. CONTEXT OF THE ANALYSIS 47

B. ACTIVITY DIMENSION 48

1. Separation of Concerns 48

vu

2. Coevolution 50
3. Protoiteration 51

C . COMMUNICATION DIMENSION 54
1. Inclusion 54
2. Reification 56

D. INFRASTRUCTURE DIMENSION 58
1. Continual Improvement 58

E. INTERACTION OF THE THREE DIMENSIONS 61
F. TOOLS FOR SUCCESSFUL DOD SOFTWARE DEVELOPMENT

MANAGEMENT 63

1. Engineering Service Contract 64
2. Post Deployment Build (PDB) Software Development
Method 65
3 . STEP Metrics 67
4. Risk Management Taxonomy 68
5. Software Development Library 69
6. Project Organizations 69
7. Personell Training Program 71

8. Role Maps 71
V. RECOMMENDATIONS AND AREAS FOR STUDY 73

A. SUMMARY 73

B. RECOMMENDATIONS 73

1. DoD Policy Recommendations 73
2. Recommendations for Patriot 77

C. AREAS RECOMMENDED FOR FURTHER STUDY 78
LIST OF REFERENCES 81
INITIAL DISTRIBUTION LIST 85

vm

I. INTRODUCTION

A. BACKGROUND

Software has become a key element in the design and

development of sophisticated military weapon systems. This

is primarily due to advances in micro-chip technology and

programming techniques which have allowed processes to be

accomplished either for the first time or less expensively

when compared with accomplishing these events with hardware

items. Software is now critical in giving today's modern

weapon systems the ability to carry out crucial mission

functions [Ref. 46:p. 2]. While software is considered an

integral part of a modern weapon systems and allows for

mission functions to occur, it is also known to be an

expensive and technically difficult component that is

estimated to range in cost from $24 billion to $32 billion

annually - about 8 to 11 percent of the total National

Defense budget [Ref. 46:p. 1]. If the current trends

continue, this amount is expected to rise.

Although a great deal of money has been spent on

software development, many times software products still do

not meet the user's needs, and overrun programmed costs and

schedules. In response to this, the Government along with

major defense contractors have realized that successful and

cost effective software development requires management.
[Ref. l:p. 1-1]

In an attempt to manage effectively, industry has turned

to the engineering process of modeling and metrics. Using a

quantitative approach for modeling the software development

process is supported by experts in the field of software

development. [Ref. 16,18,22] They believe that this is the

direction in which software development must move to become a

true engineering discipline and to satisfy the future demands

for software development. Specifically, not only do these

experts believe that we need models of the development

process, but they also believe that we need measures of its

characteristics and practical mechanisms for obtaining those

1

measures. Only then can we effectively manage the

development process.
While the need for modeling of the software development

process is recognized as being important, current models are

inadequate because they only treat one side of the process.
Although a great deal of attention has been given in the
literature to the advancement of the technical side of the
process, little has been given to the management side. [Ref.
16,21] What is needed are models that take a "holistic view"

of the software development process [Ref. 12,16,17].
This means that the model of the software development

process must consider both the management as well as the

production functions of software development [Ref. 16].
These two facets of the software development process are
recognized as distinct yet interrelated views that must be
considered for successful software development [Ref.

15,16,21,24].
Currently, several software development models exist

throughout commercial industry. Most, however, do not
provide a full view of the software development process.
Even so, these models have become the basis for many

Government and industry standards. [Ref. 20,21,24,26,27]

B . THESIS OBJECTIVE
With the realization by both the Government and private

industry that software is essential and a major cost driver
for all new critical weapon system programs, the objective of
this thesis is to analyze a software development management
model presented in the literature and illustrate how it can
be applied to actual large Department of Defense (DoD)
software intensive weapon systems. The benefits of this

analysis are twofold:

1. The identification of a new development management

model that might benefit other programs in which
software development is a large part; and

2. The identification of possible limits for the

effective application of the analyzed software

development management model.

The Commonsense Management Model, "Cosmos," is a highly-

conceptual model that provides a holistic view of the

software development process. To gain benefit from the model

for the use in DoD, it must be grounded in practice.

Therefore, the analysis of the Cosmos model for software

development management will be accomplished by relating the

functions identified in the model with the methods for

software development management used by the Patriot missile

system program office and its prime contractor, Raytheon.

The reasons for use of the Patriot missile system as a case

study in the analysis of the Cosmos model are twofold. The

first reason is that the weapon system is a very large DoD

procurement and is generally considered to be a highly

software intensive, complex, and successful Army weapon

systems program. The second reason stems from a professional

interest in the weapon system that the researcher has

developed through ten years of serving as a Patriot missile

system officer.

C . PRIMARY AND SECONDARY THESIS QUESTIONS

To effectively accomplish the above thesis objective,

the following research questions are asked:

A. Primary Research Question: How does the Cosmos

model present a holistic view of the software

development process, and how can it be used as a basis

for military software development management?

B. Subsidiary Questions:

1. What are methods for software development

management described by the Cosmos model?

2. What methods of software development management

are utilized by the Patriot Program Office and Raytheon?

3. How does the Patriot software development

method illustrate the use of the Cosmos software

development model?

4. What recommendations for changes to DoD

policy/procedures can be made with respect to software

development process management that could benefit future

military software development management projects?

D. RESEARCH SCOPE, LIMITATIONS, AND ASSUMPTIONS

This thesis investigates the current state of software

development management in the military and industry, and how

the Cosmos model provides a holistic view of the software

development management process.

This thesis also investigates the software development

management methods used for Patriot software. Additionally,

it illustrates how the Patriot method represents the use of

the Cosmos model in a DoD environment. This thesis also

determines which types of tools, used by the Patriot software

development management method, could be used by future

military software development management projects.

This thesis does not look at DoD wide software

development management methods, but limits the examples used

for demonstrating the Cosmos model to those gained from the

management of Patriot software development. Also, this

thesis does not analyze to what extent the plans associated

with the development of Patriot software are adhered to in

practice, nor does it delve into the actual benefits and

problems associated with the software code itself.

This thesis assumes that reader has an understanding of

the DoD acquisition process and how it is used in the

acquisition of software products.

E. METHODOLOGY

A comprehensive literature search was conducted to

assess the current state of software development management

in industry and DoD. The results of this search were used to

establish the need, in industry and DoD, for a Cosmos type

model. Next, the Cosmos software development management

model is analyzed to determine how it represents a

comprehensive model of the software development process.

Documents, through collection and review of Patriot

documentation as well as through personal and telephonic

interviews, were used to discern the Patriot software

development management method. This investigation of the

Patriot software development management method includes

consideration for Public Laws and DoD policies governing

military software acquisition and development. Following

this, the Patriot software development method was related to

the Cosmos model to show how the Patriot method demonstrates

the Cosmos model in practice. Lastly, the analysis was

extended to develop recommendations for DoD policy/procedural

changes in software development management.

F. DEFINITIONS AND ABBREVIATIONS

The abbreviations found throughout this thesis are those

that are common to the acquisition vernacular. However, due

to the scope of the possible audience for this thesis, before

an abbreviation is used it will first have its base word

spelled out. When a definition of an abbreviation changes in

this thesis, the abbreviation is redefined in terms of its

new base word. Definitions for important concept words, key

phases, and abbreviations along with their associated base

words will be found in the glossary of the thesis.

G . CHAPTER OUTLINE

This thesis investigates the Cosmos software development

management model and how it can be used for military software

development management. The Patriot software development

method is analyzed and used as a case study to demonstrate

the model's application to military software development

management.

Chapter I introduces the background and focus of the

research. It discusses the current state of the use of

software in modern weapon systems. It considers the need for

management of the software development process and the

requirement for its modeling.

Chapter II considers the current state of software

development management and presents several software

development management models that are currently championed

by industry. Additionally, it presents a complete

description of the Cosmos software development management

model.

Chapter III develops and presents the Patriot software

development management method. It also considers the current

Public Laws and DoD regulations that govern software

acquisition in the military.

Chapter IV illustrates how the Cosmos model can be used

in the DoD environment by providing examples of how the

Patriot software development management method integrates

concepts expressed in the Cosmos model. It discusses the

types of tools used in the Patriot software development

method which capture the concepts of the Cosmos model that

could be used for the development of other large software

intensive modern weapon systems.

Chapter V recommends policy changes for improving the

effectiveness of the software development management methods

used in DoD. It also provides areas of further study that

have been brought to light during the course of this thesis.

II. SOFTWARE DEVELOPMENT MODELS

This chapter will review the current state of software

development modeling for large weapon systems. By doing this

it will make evident that there exists a need for change.

This chapter will then present a possible solution.

A. STATE OF WEAPON SYSTEMS

Over the years military weapon systems have developed to

an extreme point of complexity. Reasons for this can be

found in examining the characteristics of modern development

trends. Currently, trends show that user capability demands

of weapon systems are so great that answers to these demands

can no longer be obtained from simplistic solutions.

Additionally, tighter schedules and smaller budgets for

products cause cleaner simpler solutions to no longer be

possible. In an attempt to deal with providing these complex

solutions, contractors are turning more toward digitally

based systems as a way to meet these complex weapon system

demands. [Ref. l:p. 1-2]

Although these digitally based systems provide

flexibility and capability not possible in hardware intensive

systems, they have not solved all of the problems associated

with complex systems. Many software intensive weapons

systems are still not delivered within schedule.

Additionally, most do not meet acquisition cost ceilings or

performance needs of the user upon initial delivery. [Ref.

1,2,3,4,5,6]

Although software cannot be blamed for all these

problems with current systems, software is recognized as

being on the critical path of system development and as such,

has been found to be a major and many times the only

contributor to the problems. "Software has become the

Achilles heel of weapon systems." [Ref. l:p. 2-7]

Contributing to this is the fact that far too many

weapon system contractors are not fully qualified in the

discipline of software engineering [Ref. 20:p. 279]. This

lack of qualification generally does not stem from a lack of

understanding of the technical aspect of software

engineering, but rather from not fully understanding the

management aspect [Ref. 6,7,8,9,28]. What is needed are

methods for better understanding the management of software

development [Ref. 10,11,12,13,14].

B. MANAGEMENT OF SOFTWARE DEVELOPMENT

The current literature on the topic of software

development offers clues to the answer for better

understanding the management of software development. In

particular, Reifer [Ref. 15:p. 2] writes that managing large

software development projects suffers the same difficulties

as managing other labor intensive activities:

A large work force must be assembled and organized
into teams. The engineering and management process
needed to get the job done have to be solidified.
Tool systems need to be acquired to support
selected methods and to automate tedium.
Requirements need to be specified along with
customer's expectations. Plans need to be
developed, and budgets and schedules need to be
formalized. A variety of controls needs to be put
into place as schedule and deliverables are
defined. Staff must be acquired, trained, and
motivated to perform agreed-upon tasks in a
responsive manner. People need to collaborate,
communicate, and be held accountable for results.
Risk needs to be abated as managers respond , act,
and perform their job, which is aimed at making
things happen through the actions of others.

The focus of software development management then can be

summarized as the art of planning, controlling, staffing,

organizing, directing and integrating the efforts of others

[Ref. 15:p. 2,28].

Reifer states that software development management deals

with the three P's: "people, process, and product" [Ref.

15:p.3], The idea is that a manager must understand the

people involved in the software development process to

include both user and developer. Additionally, the manager

8

must understand the process by which the product is being

developed as well as the product. The management effort is

to "reconcile conflicts" among these three aspects of

software development. [Ref. 15:p. 3] Specifically, this

concept suggests that understanding the process alone will

not be enough for success. The manager must consider how the

people and the product affect the process. In other word,

the process that one uses must be "humanized and productized"

for it to work in practice. [Ref. 15:p. 3]

Considering this, software development can be viewed as

a process that essentially has two facets. One facet of the

process can be looked at as containing "management type

functions" and the other can be looked at as containing

"production type functions" [Ref. 16:p. 6]. Management type

functions are considered those functions which deal with the

concepts of planning, controlling, and staffing of the

software development effort. Production type functions on

the other hand include the concepts of designing, coding,

reviewing, and testing the system software. [Ref. 16:p. 7]

Although this might appear to be a logical breakdown of

the software development process, this concept of looking at

management functions and production functions with equal

weight appears to be a paradigm shift from the way the

Government and the industry has understood software

development in the past. [Ref. 6,8,9,10]

Since the 1970s, attempts have been made to bring

discipline to software development through the use of

engineering principles. Software engineering, as this new

discipline is known, encompasses both the technical and

management aspects of software development. [Ref. 7,17,18]

The problem has been, however, that although a great deal of

attention has been given in the literature to the advancement

of the technical side of the process, little has been given

to the management side. According to Merwin [Ref. 19:p. 20]:

Programming disciplines such as top-down design,
use of standardized high level programming
languages, and program library support systems all

contribute to production of reliable software on
time, within budget. ... What is still missing is
the overall management fabric which allows the
senior project manager to understand and lead major
data processing development efforts.

Evidence for this can be seen in the types of software
development management process models that have been

developed. One such model, the waterfall model, has become
widely accepted and is strongly suggested in the DoD military
standard on the topic of software development. These models,

which are designed for the management of the software
development process, deal principally with the facet of
production type functions. Generally, only cursory attention

is given to the management functions if any attention is

given to them at all. [Ref. 16,21,23]

C . CURRENT WIDELY USED SOFTWARE DEVELOPMENT PROCESS

MODELS
As stated earlier, in an attempt to bring discipline to

the process of software development, the industry applied the
concepts of engineering. One of the concepts of engineering

is to model a process in terms that will allow the viewer to
better understand its ramifications [Ref. 22:p. 90]. Holding

true to this concept, experts in the field have proposed
models for the process of software development. As a first
attempt to manage and solve the problems associated with "ad
hoc" software development management in the past, the
"waterfall" model was created. [Ref. 21:p. 63]

The waterfall model, shown in Figure 1, is a stagewise

model that looks at software development as a sequence of
events that are accomplished in a linear fashion. These

events are system feasibility, software plans and
requirements, product design, detailed design, code,
integration, implementation, and operations and maintenance.
This model is also called a life cycle model because the
sequence outlined in the model takes into consideration all
of the activities that are involved from the conception to

discontinuation of a software based system. [Ref. 21,25]

10

System
feasibility

Revalidation

Figure 1. The Waterfall Model. After Ref.[21].

Aspects of the model that helped eliminate difficulties

previously encountered in software projects are the

recognition of feedback loops between stages, and guidelines

for confining the feedback loops to successive stages to

limit rework expense. Additionally, the concept of

prototyping was introduced with this model as a parallel

action accomplished early in the development cycle in order

11

to define requirements. [Ref.21:p. 63]

Although this model provides advances in the concept of

discipline in software engineering, the focus of this model

is primarily on production or activity functions of the

software development process. While considering software

design, coding, verification, and testing, the model does not

consider the management type functions of planning for the

overall software development effort, control, and staffing.

[Ref. 24:p. 26]

Despite the model's lack of treatment of both facets of

the software development process, it has become widely

accepted as the backbone of most Government and industry

software development standards. [Ref. 21,25] This is seen by

its inclusion in the former DOD MIL-STD-2167A and now DOD

MIL-STD-498 which govern software development in DoD [Ref.

26,27].

This lack of treatment of the management functions,

however, was not the problem that led to the formulation of

alternate process models. The focus of industry's complaints

was that the waterfall model focused on the need for

thoroughly elaborated documents as criteria for completion of

the requirements and design phases. This was found, however,

to be contradictory to the development of certain types of

software. [Ref. 21:p. 63]

The problems with the waterfall model led to the

formulation of the evolutionary model [Ref. 21:p. 64]. The

evolutionary development model dealt with delivery of

incremental capability to the user. The idea is that as the

operational requirements of the user change, software would

evolve to give the user the added capability. A benefit

provided by the evolutionary model is that it brings early

initial capability to users who do not know what they want

but figure they will know it when they see it. Additionally,

it provides a basis for additional product improvements.

[Ref. 21:p. 64]

The issue with the evolutionary model with respect to

this thesis is that, again as with the waterfall model, it

12

does not describe both facets of the software development

process. Although the model introduces a longer term view of

software development, thereby introducing elements of the

management planning and staffing functions, the primary focus

of this model is still on the technical activities of the

software development process. [Ref. 24:p. 26]

As with the waterfall model, there were shortcomings

with the evolutionary model recognized by industry. One

problem with the evolutionary model is that it is difficult

to distinguish it from the "ad hoc" form of software

development because of the ill-formatted "spaghetti code"

that it eventually produces. Also, it is based on the many

times unrealistic assumption that the user's operational

system will be able to accommodate unplanned evolution paths.

[Ref. 21:p. 64]

Because of these shortcomings, the software development

process evolved into the spiral model [Ref. 21:p. 65]. This

model, shown in Figure 2, takes into consideration experience

and refinements of the waterfall model as it has been used in

large Government software projects. Also, not only can it

accommodate previous models as special cases, it also gives

guidance as to which combination of these models best fits a

certain software project. This can in some degree be

accomplished because the model is based on the progression

through software development being tied to project risk. If

the risk of proceeding to the next stage in software

development is seen by the program manager as being low and

acceptable, software development is allowed to continue.

[Ref. 21:p. 66]

Essentially, the radial graphical construct of the model

depicts that, as the project progresses, the risk analysis

that is performed in each successive revolution will

determine whether that project should stay on its current

"evolutionary" path or whether another path should be taken

up. For example, if at the risk analysis point in the

software's development, the program manager is convinced that

13

Cumulative
cost

Determine
objectives,
alternatives,
constraints

Evaluate alternatives,
identify, resolve risks

Develop, verify
next-level product

Figure 2. The Spiral Model. After Ref.[21]

14

requirements have been defined to the point that proceeding

with the project in a waterfall model fashion would be of

benefit, he or she can, at that point, embark on that path.

If, however, further in the project the requirements change,

the resulting risk analysis might emphasize an evolutionary-

model approach in the succeeding cycles of the spiral model.

This flexibility allows the model to benefit from the good

features of other models while the risk-driven approach

avoids many of their difficulties. [Ref. 21:p. 67]

There are, however, problems with the spiral model that

are recognized by industry. One difficulty is that the

spiral model relies heavily on a program manager's or a

software development agency's expertise in risk assessment.

If the manager or his or her team are inexperienced in risk

assessment, there is a probability that easily understood low

risk elements of the project will be expressed in detail

while little attention will be given to the poorly understood

high risk areas. This could easily give the illusion that

the project was on the path to success while actually it was

heading for disaster. [Ref. 21:p. 71]

Another problem with the spiral model pertains to its

lack of treatment of all the aspects of the management facet

of the software development process. While risk management

is well treated, the spiral model only implicitly considers

other planning and controlling aspects of the process, it

does not explicitly take them into consideration. [Ref. 24:p.

26] Therefore, the production side is well treated while the

management facet languishes.

These models demonstrate the effort that has been placed

on the modeling of the software development process in an

attempt to gain an understanding of how better to manage it.

However, they also demonstrate the lack of understanding of

the dual nature of the software development process along

with its requirement to be modeled. What these models do

offer, however, is a basis from which other more

comprehensive models can spring forth. One such model that

has recently been put forth in the literature appears to take

15

into account both facets of the software development process.
This model is called the Commonsense Management Model or the
"Cosmos" model. [Ref. 24]

D. THE COSMOS MODEL

The Cosmos model treats the two complex facets of the
software development process by looking at the issue from a
three dimensional point of view. This three dimensional
aspect is shown in Figure 3. By looking at the process from
the Activity, Communication, and the Infrastructure
dimensions, combined with understanding six principles that
deal with dynamic complexity (that is, complexity that

constantly changes as opposed to static complexity), the
model allows the user to make three essential tradeoffs which
are necessary for successfully managing software development.

[Ref. 24]

Infrastructure

.Communication

Activity

Figure 3. The Cosmos Model. After Ref. [21]

1. Three Essential Trade-offs
In order to effectively manage "large-scale, long-life

projects" [Ref. 24:p. 23] the trade-offs of Flexibility

16

versus Stability, Modularity versus Interconnectivity, and

Broad- versus Narrow-scope must be made.

The Flexibility versus Stability trade-off deals with

the fact that large and lengthy software projects require

schedule predictability and cost control, which is contrary

to the unpredictable and intangible nature of complex

problems. This trade-off is made by working in the Activity

dimension and considering three of the six principles of

dealing with dynamic complexity: separation of concerns,

protoiteration, and coevolution.

The Modularity versus Interconnectivity trade-off deals

with the fact that often the design of a large system is such

that it is broken into modular subsystems. However, this

concept conflicts with the idea that complex systems require

a great deal of communication and interaction among all

involved. This trade-off can be made by considering two of

the six principles which apply to the communication

dimension: inclusion and reification.

The Broad- versus Narrow-Scope (long-term versus short-

term) objectives trade-off states that managers must balance

cost and benefit optimization with predictability and

control. This trade-off can be accomplished by creating

methods that deal with the concepts found in the principle of

continual improvement within the infrastructure dimension.

Understanding these tradeoffs is only part of the answer

to effectively managing software development projects. The

question of "How do we maintain effective balance among these

difficult tradeoffs in the face of complex problems?" must be

answered.

2 . Commonsense Principles

To effectively balance these three tradeoffs, a manager

must understand and implement the concepts of the six

principles for tackling complex problems. The six principles

mentioned above are: separation of concerns, coevolution,

protoiteration, reification, inclusion, and continual

improvement.

17

Separation of concerns deals with the concept of

dividing and conquering. The focus of this principle is on

subdivision and decomposition of a project to deal with its

complexity. The manager must remember, however, that

subdivision only makes sense if it does not add to the

overall complexity. Additionally, the complexity of

reintegration must also be understood.

The issue in the principle of coevolution is that many

activities within the process must be developed in

conjunction with one another. This concept is useful in

deciding which activities might be developed concurrently.

Protoiteration means using prototyping in succession as

a method of understanding the problem. The idea is that a

single prototype cycle will not capture the right solution.

The principle of reification deals with clearly

communicating information and rationale. The more clearly an

objective is expressed, the more easily it can be understood

by those who must accomplish it.

The principle of inclusion states that all individuals,

groups, and stakeholders must be considered and allowed to

participate in the projects development. The rationale for

this is that such participation is beneficial in problem

identification.

Continual improvement is the concept that all things can

be improved upon. Protoiteration is used in this concept to

ensure feedback from previous prototypes is introduced in the

next iterations.

The ability of a software development manager to

successfully manage a project lies with his or her ability to

balance the three tradeoffs mentioned above. To accomplish

this, the manager must understand the six principles of

dealing with dynamic complexity. For example, to trade off

flexibility and stability, managers of software projects that

are ill-defined and poorly understood should be more flexible

and adaptive until goals and means to reach these goals are

well understood. Once goals are defined and means become

available, managers can use more rigid advanced planning. To

18

facilitate this and assist in creating partial solutions,

managers can use separation of concerns, protoiteration, and

coevolution. These principles allow the manager to explore

possible paths each time with incrementally small

commitments.

To accomplish the Modularity versus Interconnectivity

trade-off, two needs must be considered: a manager must

isolate workers from extraneous distractions and ensure that

they receive relevant information. Using the concept of

separation of concern helps identify at various levels

(process, project management, system architecture) how to

break up the project into smaller modular structures that can

be more easily dealt with by workers. The use of reification

makes communication visible and explicit, and therefore

ensures stakeholders in the development of the software

communicate rationally. Inclusion deals with identifying who

needs to be involved at what stage of the software

development process so a manager can establish the proper

communication channels.

Generally, long-term objectives are difficult to

conceptualize, and are often confused with short-term

objectives. By using the principle of continual improvement,

managers can become aware of long-term objectives by creating

infrastructures incrementally to support them. For example,

if a corporate goal is to increase quality, managers might

start toward that goal by implementing a process group to

define, train, and measure quality. The principle of

reification helps the manager to enforce his or her long-term

goal because the rationale and background for the decision

toward that goal are recorded and communicated appropriately.

To effectively visualize these six principles, the

manager must look at his or her program from the following

three dimensions.

3 . The Activity, Communication, and

Infrastructure Framework

The framework of the Cosmos model considers three

19

distinct interdependent dimensions of process modeling:

activity, communication and infrastructure. This framework

provides a method that allows the manager to understand how

best to make the three essential tradeoffs mentioned above by

bringing into focus the six principles of dynamic complexity.

The activity view deals with software project

development with respect to what must be accomplished, how it

must be accomplished, and when it must be accomplished.

This is essential for dealing with the Flexibility versus

Stability trade-off. Generally, this is the same view of the

software development process that is described by models like

the waterfall model.

The problem with the one-dimensional waterfall type

model is that it leads to linear cause and effect type

thinking. This sequential way of thinking by itself does not

work for large software projects because it does not fully

address the fact that many people and organizations must come

together to solve large software development projects.

Managers must realize that it takes time to bring people on

board and train them. Additionally, they must understand that

it takes years to develop systems and nurture management

ability. On top of this, during this entire time, these

processes continually interact. These concepts are not

captured by such a model. Essentially, the one-dimensional

activity view can handle detailed complexity, such as volumes

of stepwise instructions as accomplished by the waterfall

model; however, it is inadequate in handling dynamic

complexity.

Addressing dynamic complexity begins by understanding

the relationship among the various stakeholders, system

components, and other elements of a project. By doing this,

the manager is able to make the modularity versus

interconnectivity trade-off. The catalyst for accomplishing

this is the communication structure which models the

communication channels among all stakeholders. This

structure provides information like who should receive what

information, in what format, and from whom.

20

The infrastructure view goes beyond the activity and

communication views by taking into account what is needed to

achieve project objectives. For example, a proper food

supply is part of the logistical infrastructure to support

military operational objectives. Process management is part

of the infrastructure to build an organization that can

develop a first-rate system.

While supporting communication and activities by

providing structures that allow the accomplishment of these

activities, infrastructure also evolves the process itself.

With infrastructure, the feedback that is received about the

process can then be used by management to make implied

changes.

4 . Use of the Cosmos Model

Important aspects of understanding the use of the Cosmos

model are that the three perspectives of the model--activity,

communication, and infrastructure—interact and assist in the

evolution of each other. For example, if a manager cannot

define the activity structure at a certain level because of

the problem's complexity, he or she might observe the

communication structure or infrastructure. By doing so, the

manager might be able to clarify and create a certain

activity structure and infrastructure from the communication
view point.

Also key in understanding the Cosmos model is the idea

of "a two process hierarchy". This hierarchy consists of the

"control level" and the "execution level" [Ref. 24:p. 28].

Essentially this means that a manager will gain even greater

benefit from the model by looking at it with respect to

things that deal with the managing (control) of the process

and project and also those things that deal with the

technical (execution) aspects of the process.

Understanding this, the idea is to look at the software

development project with respect to the three structures of

the model (activity, communication, and infrastructure) in

light of commonsense principles dealing with dynamic

21

complexity. For example, in looking at the activity

structure which models the "how" of the software development

process, a project manager would discern what activities at

the control level and execution level need to be accomplished

by looking at three of the six principles that apply to this

model: separation of concerns, coevolution, and

protoiteration.

Separation of concerns is obtained by breaking the

project into subproblems or tasks that can be accomplished

independently. This also applies when looking at the

schedule of activities to be accomplished. The idea here is

to decouple the schedule of events with the outputs these

events create. By doing this, the events are freed to be

accomplished the best way possible to meet output deadlines

and not sequentially as perhaps the outputs are scheduled.

To apply the principle of coevolution, a manager must

understand that all requirements for a software project

cannot possibly be foreseen and will have to evolve as the

"architecture and design" of the project evolve [Ref. 24:p.

30]. Additionally, coevolution is related to the separation

of concerns in that a manager must ensure that all

subproblems develop in a common vein so that they can be

reassembled for later use.

Using the principle of protoiteration is required

because rarely are the right solutions to dynamically complex

problems found in the first try. Therefore, the structure of

subproblems and schedules should be such that successive

improvements can easily be made.

By using these three principles, often a manager will be

able to have different activities ongoing concurrently. For

example, the requirements for one software build can be

accomplished while the design, coding and testing of other

builds are also being accomplished. This, however, requires

coordination and communication among the subproblems.

An aspect of the Cosmos model is that activity

structures can be those of existing structures like the

waterfall and spiral models. With well defined requirements,

22

the waterfall model could be used, while if risk management

was a major consideration, the spiral model might be of

greater benefit. This gives managers the flexibility to

utilize different process models for different subproblems.

As stated earlier, the activity structure cannot be

developed without consideration for its dependency on the

other two structures of the Cosmos model. For instance, the

use of separation of concerns, coevolution, and

protoiteration are dependent upon the communication

structure's modeling of "roles, interconnecting communication

channels, and responsibilities and dependencies" [Ref. 24:p.

30] .

The idea behind the communication structure is to make

the act of communicating an explicit rather than an implicit

function within a software development project. By doing

this, the principle of inclusion is satisfied while the

principle of reification acts as a guide to how the modeling

of a role map (a map of who needs to talk to whom and how) is

accomplished.

To develop a communications structure for a project, a

manager must initially follow three steps in order. However,

since communication needs will change as the project

progresses, the communication structure may be updated in a

sequence other than that presented below.

Initially, the manager must first determine who all the

stakeholders for information of the project and subprojects

are. This analysis includes determining who benefits from,

who can constrain, and who will be affected by the structure.

Secondly, the manager must determine "information about

application domains, system use, tool use, relevant

standards, and common practice," as well as each

participant's responsibilities [Ref. 24:p. 31]. Lastly, the

manager must determine how best to exchange information among

and present information to various users.

To round out the complete understanding of the software

development process, the manager must also consider project

infrastructure. The rationale for this is its lack of

23

treatment by either of the other two structures.
Infrastructure captures the methods behind why events

occur. Typically, this means discerning things other than
delivered systems that support the meeting of objectives over

the life process. The types of things included in this
concept are project requirements and specifications,
strategic objectives, communication structure, activity
structure, application-domain modules, reuse strategy and
support, life-process requirements, design and monitoring,

and databases of test cases and scenarios collected from
prototype or actual use. In addition to these tangible areas

of infrastructure, intangible infrastructure such as feedback

mechanisms for user inputs to fielded systems must also be

developed.
With the current complexity of large scale systems and

the increased reliance on digital solutions in the future,
Cosmos offers a method for descriptively modeling the
planning, process, and product of a software development

project.

E . THE INTEGRATED SYSTEM DYNAMICS MODEL OP SOFTWARE

DEVELOPMENT

The ultimate goal of modeling is to have a model define
a process to such an extent that it transitions from being
descriptive and becomes prescriptive in nature. [Ref. 16,22]
With such a model, the user is able to ask "What if?"
questions which allows him or her to discern the outcome of
management decisions before they are implemented. One such
model in the literature is the The Integrated System Dynamics
model presented by Abdel-Hamid et al. Through its use of
interrelated variables from the areas of the Human Resource

Management Subsystem, Software Production Subsystem, Planning
Subsystem, and the Control Subsystem, the model has been
successful in predicting the staffing and schedule
requirements of NASA's DE-A software development project.
[Ref. 16] Although the System Dynamics model is currently
only applicable to medium (16 to 64 thousand lines of code)

24

software projects, its significance to this thesis is that it

demonstrates that a successful model of a software

development process must include variables of the type that

are found by looking at planning, process, and product;

hence, the activity structure, communication structure, and

infrastructure found in the Cosmos model. [Ref. 16,24,25]

F. MIL-STD-498

Realizing that current military standards do not

adequately require a total view of the software development

process, MIL-STD-498, Software Development and Documentation,
was written in an attempt to gain a more holistic view [Ref.

27]. Although no longer required, due to the Secretary of

Defense's order to discontinue use of all military standards,

MIL-STD-498, the latest iteration of military policy

governing DoD software development management, also speaks of

many of the aspects in the Cosmos model. While explicitly

stating that no specific software development management

model is preferred, MIL-STD-498 does require that a software

development process include fourteen major activities. It

states, however, that these activities may overlap, be

applied iteratively, applied differently to different

elements of software, and need not be performed in any

specific order. [Ref. 27] MIL-STD-498 emphasizes that "the

development and recording of management and engineering

information is an intrinsic part of the software development

process..." [Ref. 27:p. 12]. Based on the way the activities

are expressed, it is clear that MIL-STD-498 is designed to

accomplish many of the concepts expressed by the three

dimensions of the Cosmos model. Considering that this latest

Government standard requires a software development manager

to perform the types of activities expressed in the Cosmos

model provides credence that the Cosmos model is on the right
track.

This chapter has demonstrated how current methods of

modeling the software development process fall short of

encompassing both the management and the production facets of

25

the software development process. It also presented a

recently described model that treats these two facets by

viewing the software development process in terms of three

dimensions: activity, communication, and infrastructure.

The next chapter describes the software development

management method used by the Patriot missile system program

office along with its prime contractor, Raytheon. This

description will then be used in chapter four to illustrate

how the Cosmos model can be used to provide for software

development management in the DoD environment.

26

III. PATRIOT SOFTWARE DEVELOPMENT MANAGEMENT

The purpose of this chapter is to present the Patriot

software development management method taking into

consideration the Public Laws and DoD Directives/

Instructions that affect DoD software acquisition. The focus

on the Patriot development method is essential for the

analysis in Chapter IV of the Cosmos model and the Patriot

software development method.

A. THE PATRIOT EFFORT

The Patriot missile weapon system was initially designed

as replacement to the NIKE HERCULES weapon system to provide

very low to very high altitude air defense to counter the air

breathing threat (ABT) expected in the 1980s and 1990s. The

mission of Patriot has since expanded to include anti-

tactical ballistic missile (ATBM) defense. This increase in

mission is provided to some degree by modifications made to

the hardware, but primarily to the software of the system.

[Ref. 29:p. 43,30:p. 1]

The Patriot missile weapon system is composed of several

major essential pieces of equipment. At the Fire Unit

(battery) level, the major end items are an Engagement

Control Station (ECS) for command and control, an Antenna

Mast Group (AMG) for digital voice and data communication,

Launching Stations (LS) for providing fire power, and a

multifunction phased array Radar Set (RS) for providing

surveillance, target acquisition and track, and missile

guidance. At the Battalion level, the Information

Coordination Central (ICC) provides command and coordination

functions for the Patriot Battalion Commander who is

responsible for six Fire Units. [Ref. 31:p. B-l]

The Patriot system is the only ATBM weapon system in the

U.S. military's inventory, and it has created a great demand

for Patriot foreign military sales (FMS) since the Gulf War.

Patriot is the largest fielding in Army Material Command

(AMC) history. Specifically, the Patriot program is a $13

27

billion dollar program that has deployed 6576 missiles, over

80,000 major end items, over 60,000 publications and 250,000

spares, and tools. [Ref. 32]

To accomplish this massive program effort, the Patriot

program's prime contractor, Raytheon, utilizes over 2000

contractors and vendors in 42 states. These contractors

accomplish such tasks as the production of the Patriot

missile, solid rocket motor, the launching stations, and

power supplies. [Ref. 32]

Due to the nature of the risk involved in the creation

and implementation of the technology required for the

advances made within the Patriot system, a cost plus award

fee contract (CPAF) is used to fund contractor work on the

project [Ref. 33]. The statement of work (SOW) within the

contract gives only the basic concept of the work to be

accomplished while a technical directive order, known in the

Patriot Program Office (PPO) as an Engineering Services

Memorandum is used to define the specific work to be

accomplished.

To ensure, however, that the prime contractor is making

progress toward an end product, the PPO convenes an award fee

analysis board to relook Raytheon's progress every six

months. Specifically, the board decides on the evaluation

that the Raytheon program office will receive and ways to

expedite system modifications. Through this method of award,

Raytheon receives a base four percent profit with a potential

of between six and eight percent profit depending on the

findings of the board. This process of award evaluation

takes approximately ninety days to accomplish. [Ref. 34]

In addition to the CPAF contract used in Patriot

program, an Engineering Services Program has also been

implemented. Essentially, this program consists of a

contract in which the Government purchases a number of man

months from the prime contractor for use in the future. The

Government may direct the contractor to use them as the

Government sees the need. This method is extremely effective

in allowing the Government the flexibility in implementing

28

quick changes to the system software to accommodate changes

in requirements. The annual budget for the engineering

services contract is $80 - $100 million of which $30 - $50

million goes to the maintaining and upgrading of software.

[Ref. 33]

Specifically, this money is used to maintain and upgrade

the 1,584,142 unique lines of code within the Patriot system

[Ref. 35]. These lines of code are divided and reused among

four separate areas of the Patriot system. Within the Fire

Unit there are approximately 1,500,000 lines of code; in the

Information Coordination Central (ICC) there are over 800,000

lines of software code; in the On-Line Tactical Training

software there are approximately 400,000 lines of code; and

making up the support software there are approximately

800,000 lines of code. These lines of code give the system

functionality for the user to accomplish tasks ranging from

defense planning, system set-up, and conducting air battle,

to system maintenance, and air defense operation classroom

training. [Ref. 32]

In order to create and upgrade these lines of software

code, the Patriot Management Organization (PMO) has developed

a method for managing effective software development. This

software development management method is a function of

several determining factors that range from Public Laws and

DoD Directives to internal training and experience

requirements.

B. SOFTWARE DEVELOPMENT MANAGEMENT METHOD

1. Public Laws and DoD Directives/Instructions

In order to minimize weapon system software support

costs and to promote interoperability between the various

systems, the Government has established Public Laws,

Department of Defense Directives, and service-specific

regulations that govern the software development and software

development management processes. Although the majority of

these directives and regulations were not initiated until the

29

late 1970s and later, many have since undergone several

revisions and updates as the software development and its

management process have become better understood. [Ref. 1]

Currently, one Public Law and several DoD Directives/

Instructions affect the software development management

method of the Patriot weapon system. This law and these DoD

Directives/Instructions cover topics such as the use of the

Ada programming language, the use of prototyping, risk

management, metrics, and the need for varied acquisition

strategies. Examination of these documents reveals a desire

for a commonsense approach to software acquisition and the

idea of tailoring to meet the needs of a project. The result

is that program managers are relatively free to create

software development processes that meet the needs of their

programs within the confines of the guidance. [Ref.

26,27,37,38,40,42]

In accordance with P.L. 102-396, DoD Directive 5000.1

and DoD instruction 5000.2, all software for DoD usage will

be programmed in the language Ada, unless specific service

level waivers are given. Additionally, any projects

currently in the production phase that have a change in

software greater than 33% over the system life cycle are

required to convert to Ada where it makes economic and

technical sense to do so. [Ref. 36,37,38] Patriot meets this

requirement since developers expect to change the system

software between one to ten percent annually through the use

of Post Deployment Build (PDB) upgrades. These changes are

made to maintain and give the Patriot system the capability

to effectively counter current and future air breathing and

tactical ballistic missile threats. [Ref. 35]

In response to this requirement, the PPO has embarked

on a parallel project to convert almost all of its 1.5

million plus lines of system software code, which are written

in Jovial, Assembly, FORTRAN, and Microcode, into the Ada

language. Because of the stringent timing requirements for

accurate system operation, many time-critical weapons control

component functions will remain in Assembly code to maintain

30

the required processing speed. [Ref. 35]

To accomplish the conversion, the PPO has decided

against a risky and potentially catastrophic "all or nothing

approach", and is instead proceeding with the conversion

process incrementally, in order to mitigate as much of the

risk as possible. The conversion process consists of using

the Patriot system's Maintenance Control System (MCS), which

is written in Jovial and Assembly language, as the initial

conversion test case. Following this and incorporating the

lessons learned in this thirteen month 60,000 standard lines

of code (SLOC) effort, the plan is to program the entire Post

Deployment Build-5 (PDB-5) (expected to be released in

September 1998) in Ada. [Ref. 32]

Although the conversion program has been initiated and

is well under way, several problems and risks had to be

abated, and several risks still remain, which need to be

addressed before the goal of PDB-5 written in Ada can be

reached. One risk that was alleviated occurred prior to the

initiation of the conversion program. To implement the

conversion program, an Ada compiler for the Extended Weapons

Control Computer (EWCC) had to first be created.

Additionally, to automate this conversion process and

mitigate problems with software coding error as well as

delivery schedules, Raytheon developed a Jovial to Ada

transformation tool. Also, due to differences in the way

Jovial and Ada handle data, the system's data structure had

to be redesigned. Lastly, specific functions of the EWCC

system controller had to be modified to use Ada language

outputs. [Ref. 32]

Assuaging these problems and risks was enough to get

the program started, but to fully accomplish the goal of

programming PDB-5 in Ada, other problems with their

associated risks must still be mitigated. One risk that must

be addressed is the completed development of a multiprocessor

run time system. Also needed is unique compiler back ends

for the Ada compiler. Other potential risks are the

continued funding for the project which is expected to cost

31

$100-150 million over a four to seven year period, and the

overall quality and coverage of the transformation tool.

[Ref. 32]

Although the conversion process has several hurdles yet

to overcome, the benefits for this conversion are considered

by the PPO to be much greater. The benefits include the

extensive Ada tool set which increases ease in software

development, and the potentials for software reuse and

maintenance due to the required structure in Ada coding.

[Ref. 32]

MIL-STD-2167A is also a source of guidance that has had

significant effect on the development management of Patriot

software. Prior to the Secretary of Defense's (SECDEF) April

24, 1994 memorandum stating that military standards (MIL-

STDs) were no longer to be used for product definition unless

a service-level waiver was obtained, the software development

team of the Patriot system began converting its software

development process to meet MIL-STD-2167A (DoD Software

Development and Acquisition) guidance. [Ref. 30,42] This

MIL-STD, through the implementation of MIL-STD-1521B,

requires that a contract data requirements list (CDRL) be

provided to the product user in specific data item

description (DID) formats. Also, MIL-STD-2167A suggests the

waterfall model as a possible method for software development

management. [Ref. 26:p. 10] Although this MIL-STD has

recently been superseded both by MIL-STD-498, which provides

similar guidance, and by the SECDEF's directive, currently

the Patriot software development organization continues to

use a tailored version of MIL-STD-2167A in its software

development process. [Ref. 30:p. 1]

The following information is a summary of the software

development management method for the Patriot system as

outlined in the Patriot Software Development Plan. [Ref. 30]

2. Software Development Management Overview

The treatment of the Patriot software development

process will begin with an overview of the Patriot program

32

management concept. This overview includes looking at

organizational structure, schedule and milestones, formal

reviews, risk management, software reuse, and personnel

training. Following this, a more detailed look at the

software development activity as well as software

configuration management and quality assurance is given.

Within the Missile Systems Division (MSD) of the

Raytheon Company exists the Patriot Program Management

Organization (PMO). While the PMO has overall responsibility

for program management, the MSD Missile Systems Laboratory

(MSL) is responsible for the engineering tasks for both

Patriot hardware and software.

Within MSL, Figure 4, several organizations are involved

in the development of Patriot software. The following

paragraphs name these organizations and briefly describe

their functions.

A MSL Lead Engineer who is assigned for each separate

Patriot project of software development has overall

responsibility and will receive reports from the

organizations listed below.

The Systems Design Laboratory (SDL) has the

responsibility for the system requirements and many of the

software requirements.

The Digital Systems Laboratory (DSL) has the

responsibility for the digital design and subsystem

diagnostics of the radar.

The Product Assurance Laboratory (PAL) contains the

Software Quality Assurance (SQA) section which is responsible

for software product evaluations. These product evaluations

ensure that the software meets the requirements set forth by

the Software Development Plan and other internal policy

documents as well as those of the contract with respect to

content and format. The PAL and thus the SQA are

independent of the specific development organization they

support. Therefore, although the SQA works closely with the

software engineering effort, it is managed and reports

through an independent chain.

33

The Configuration Management Laboratory (CML) contains

the Software Configuration Management (SCM) organization

which controls software configuration through configuration

identification, change control, interface compatibility and

status accounting. This organization works closely with the

SQA organization and is under the control of the Software

Lead Engineer.

The Software Laboratory (SWL) has the responsibility for

software design to include related documentation, coding,

unit testing, as well as software integrating, and

validating. Additionally, SWL must analyze and assess all

software requirements and create requirements for some

Computer Software Configuration Items (CSCI).

To accomplish its tasks, the SWL, Figure 4, is further

subdivided into functional departments. Like the MSL, these

departments report to a lead engineer who in turn must report

on a monthly basis to the SWL Manager, supporting departments

and the PMO.

Within the SWL, the Application Software Department

(ASD) has the responsibility for ensuring that build

development and release of the software to the Configuration

Management is accomplished.

The Systems Software Department (SSD) has the

responsibility for developing the interface and validating

Patriot system software. The validation of system software

is accomplished by an independent testing section which is

under separate management controls.

The Diagnostic/Test Software (DTS) Department has the

responsibility for generating and delivering tactical

software to the customer in addition to creating diagnostic

and maintenance software.

The Missile Software Department has the job of creating

embedded missile software.

The Software Development Center (SDC) has the

responsibility of resourcing the software engineering effort.

The Software Engineering/Technology (SET) Department has

the task of capturing data on, as well as improving the

34

software development process. This is accomplished by using

the lead engineers' monthly program reviews to identify

trends and the inputs from established Software Initiative

Working Groups (SIWG). The SIWGs investigate to find ways for

improvement in the areas of: Risk management, Project

Management, Subcontractor Management, Associate Contractor

Management, Requirements Management, Peer Reviews, Trusted

Software, Process Measurement, Process Definition, Technology

Management, Defect Analysis, and Software Quality Assurance.

To manage these departments and hence the software

development effort, the Software Laboratory Lead Engineer

controls schedule and milestone activities, electronically

presenting monthly updates at the Software Lab Program

Review.

SOFTWARE
LABORATORY

APPLICATIONS
SOFTWARE

DEPARTMENT

MISSILE SYSTEMS
LABORATORY

MANAGER

MSL

LEAD ENGINEER

SYSTEMS DESIGN
LABORATORY

DIGITAL SYSTEMS
LABORATORY

MISSILE RADAR
LABORATORY

PATRIOT SOFTWARE
LABORATORY LEAD

SYSTEMS SOFTWARE
DEPARTMENT

DIAGNOSTIC/TEST
SOFTWARE

DEPARTMENT

MISSILE SOFTWARE
DEPARTMENT

CONFIGURATION
MANAGEMENT
LABORATORY

SOFTWARE
DEVELOPMENT

CENTER

PRODUCT
ASSURANCE
LABORATORY

SOFTWARE
ENGINEERING
TECHNOLOGY

DEPARTRMENT

Figure 4. The Patriot Software Develop. Org. After Ref.[30].

The Software Lab Program Review, which at the start of a

project is called the Software Lab Startup Review, has as

members to be briefed: the Patriot Project Management

Organization, the SWL Patriot Lead Engineers, Patriot Project

CSCI heads, Software Engineering and Technology, and MSL

Project Lead Engineers (including SQA). At these reviews,

the SWL Lead Engineer, in addition to providing information

on schedule and milestones, will also provide information on

35

program status (including prototyping activities, and

incremental build activities), cost status, manpower analysis

(including manpower profile), risk management plan,

subcontract management issues, and metrics (including the set

of STEP metrics found in DA PAM 73-1 [Ref. 43]).

Additional formal reviews, which are held to ensure the

proper control and development of software, are the Test

Readiness Review (TRR), the Flight Readiness Review, the MSL

Reviews (which include Concept Review, Equipment Design

Review, Pre-production Review, Product Readiness Review, and

the Transition to Production Review), and the In-Process

Review (IPR). These reviews, which are all internal except

one, are designed to determine software integration readiness

as well as overall software stability prior to start of

Comprehensive Testing.

The IPR, which is chaired by the Government's Patriot

Project Office (PPO), is attended by the user, the training

and test community, and relevant contractors. This periodic

review focuses on program status (including STEP metric

results), problem issues requiring resolution, technical

issues that need concurrence, and technical reviews as called

for by MIL-STD-2167A with areas of interest specified by MIL-

STD-1521B.

One important concept that is used to effectively manage

Patriot project cost, schedule, and performance, and which is

the essence of what is highlighted during the formal reviews,

is risk management. Within Patriot software development,

risk management is seen as a function of risk identification,

analysis, mitigation, tracking, and control.

To accomplish risk identification, a "taxonomy of

risks" [Ref. 30:p. 9-2] list exists which is updated as new

risks that are not on the list are identified. The focus in

risk identification is on finding the reason why a certain

symptom exists. Included in risk identification is defining

as clearly as possible what the risk is, the danger the risk

could pose to the project, and what should be done to

mitigate it.

36

Risk analysis consists of investigating the cost that

the risk poses should it occur, and the likelihood that such

a risk will occur. This enables the risks to be ranked as to

the threat they pose to the project.

Risk mitigation occurs when the top five to seven listed

risks have both strategies and closure criteria for their

elimination. To assist in this process, a list of currently

defined risk strategies exists and is updated as new

strategies are developed. Upon selection of a mitigation

strategy, a method for tracking the progress is identified.

The progress is then reported each month at the SWL Program

Review.

Risk tracking is accomplished by looking at the current,

resolved, and new risks at each monthly SWL Program Review.

Risk control happens when the criteria for risk

mitigation is met. Once this occurs, the risk is

subsequently deleted from the active list. However, the

history of the risk and lessons learned will be included in

the Software Development File (SDF, a file holding

documentation pertaining to a piece of software code) to be

available for risk assessment on the possible reuse of the

software on future software development projects.

The ability to reuse software and the lessons learned

from its development is possible because of the Software

Development Library that is maintained within the MSD. The

Software Development Library is an electronic data base

depository for the storage and controlled access to all

software documentation, design artifacts, source code, object

code, test specifications, test results, and project SDFs.

Reuse of material held in this depository by projects is

accomplished by choosing components from the Reusable

Software Parts Catalog. If reuse is deemed appropriate by a

project, items to be reused must be identified and evaluated

during software detailed design. If on the other hand, a

project identifies software components that have reuse

potential, they are submitted to the reuse catalog and

identified as such at monthly SWL Program Reviews.

37

To accomplish the above activities requires trained,

qualified personnel. The need for proper education is

recognized as an essential part of good software development.

To this end, within each area of expertise with the software

development process, required education and experience levels

have been established for the various job titles.

Additionally, each area has established training programs

that ensure the proper development of its personnel to

satisfy the project's requirements. For example. Software

Engineering has an entry requirement of a minimum of a

bachelors degree in an engineering, math, physics, or other

related field. Upon entry, needed additional training

requirements are established to ensure the person meets job

requirements. These training activities may take place before

or during software activities as necessary.

In addition to the areas discussed above, the Patriot

software development process also includes the activities of

software development, configuration management, and quality

assurance. The following paragraphs provide detailed

summaries of these activities.

3 . PDB Software Development Method

The effects of MIL-STD-2167A can readily be seen in the

sequence of the Patriot software development practice.

Although the Patriot project uses a tailored version the MIL-

STD, much of the terminology used and documentation created

are in language and layout that make them MIL-STD-2167A

compliant. For example, the terms Computer Software Unit is

used to describe the smallest block of code that describes a

complete function, and the term Computer Software

Configuration Item is used to describe a complete software

program (build) within a project. Figure 5 depicts the

sequence of the software development method for the Patriot

missile system. The paragraphs that follow offer

explanations of this software development method.

Software requirements definition consists of the

activities of prototyping, requirements generation,

38

requirements analysis, and requirements approval.

Prototyping allows for early discovery of requirements

definition problems by taking into consideration human

factors, timing and throughput needs, requirement

completeness, and hardware interface issues. Plans for the

prototyping activity are approved by the PMO and the Lead

Engineer of the performing Laboratory, within the SWL

prototyping activities and their relationship with other

activities are documented on the program schedules presented

at the monthly Program Review.

Requirements.
Error

DPSRs
SIRS

Interface
Specification

SDMs Functional
Specifications

SDMs with
Functional Spec

change pages
SPRs

SPRs
CSU Source/

Object Code
CSU Test Plan

CSU Test
Procedure
CSU Test

Results

Sys.
Integration

Test Plan
Build Source/

Object Code

SPRs

Yes

SPRs
CSCITestRept

Evaluate:
Rework Test Plan
Rework Require.

Figure 5. The PDB Software Development Method. After Ref.[30]

39

Following prototyping, the activity of requirements

generation occurs. Essentially, requirements for each

contract are documented and defined. These requirements

generally take the form of Data Processing System

Requirements (DPSR) which define the highest level of

software system requirements and therefore define the

baseline for the products the Software Lab produces. Any

changes to the DPSR are requested by using a Software

Investigation Request (SIR) form. Since Patriot is a

deployed system with an established baseline, changes to the

DPSR through the use of SIRs is the prime driver of

requirements generation.

Once changes are requested by the Patriot PMO, the

Systems Design Laboratory, the Software Laboratory, and

others (such as the user), resulting SIRs are reviewed for

approval and inclusion into future DPSRs. This is

accomplished by an SIR Review Board which is chaired by the

Patriot Software Development Manager (PMO). Once approved,

new SIRs are assigned to the Software Laboratory for

implementation.

Requirements analysis is accomplished by the Software

Lab by analyzing the requests set forth in the SIRs. This

analysis ensures that the specified requirements can be

implemented and are testable. The analysis also ensures that

the scope of the requirement is understood as it pertains to

its implementation, support software, and testing. To

satisfy the requirement, the SWL considers the possibility of

reusing previous code as well as incorporating prototyping

results.

Upon completion of the requirements analysis, the Lead

Engineer schedules the requirements to go before a change

review board for requirements approval. After all issues

have been addressed and system impact understood, the

requirement is approved for implementation.

Requirements implementation begins with the Software

Design phase which includes both the preliminary and the

detailed design. Specifically, as SIR documents affect

40

changes to the DPSRs, changes to the software design

(Functional Specification) are accomplished by using a

Software Design Memo (SDM). Within the SDM, information for

both the preliminary design and detailed (functional

specification) design is contained. Once the detailed design

is completed, a review is held to ensure that the functional

specification is detailed enough to demonstrate the

connection between the DPSR and the code for each Computer

Software Unit (CSU), and that the specification clearly

describes all requirements and design information required to

develop code.

Once the functional specification is approved and

released, the coding process begins. Within Patriot, coding

follows MIL-STD-2167A which, as mentioned earlier, defines

code levels as Computer Software Configuration Items (CSCI),

Computer Software Components (CSC), and CSUs. In Patriot,

the CSCI maps to the term "build" while the CSC and CSU

retain their standard definitions. .

During code testing, should an error be found with the

code or the functional specification, a Software Problem

Report (SPR) is initiated. This report documents the problem

and the corrective change. Once identified, the corrective

change is made in the next coding cycle before the software

is released.

Once coding is complete, CSU level reviews are held, and

CSU testing has occurred, the CSU is then ready for

incorporation into the baseline. This is accomplished through

integration testing.

Software integration begins with a "Call", the request

for the release of programs modified so that the modified

CSUs can be incorporated into a build. Prior to being

incorporated into a build, each program is reviewed by

Software Integration. Programs are either approved or

disapproved. If programs are disapproved, problems are

documented on either a SPR or a Deviation Waiver (DW) and the

program is returned to the author for repair. If the problem

found is critical, an immediate octal patch is used to repair

41

the software and this is documented on a DW. If, however,

the error is minor a SPR is written and a solution is

implemented into the software at a later time. The review

cycle continues until Software Integration approval is given.

The review cycle also ensures notes made by reviewers are

retained for later incorporation into the SDF.

Upon completion of the integration testing and the

formal Test Readiness Review (TRR), the software is then

prepared to begin the formal CSCI testing process. This

process begins with the test development and continues into

Informal Qualification Testing, and culminates in Formal

Qualification Testing (FQT).

FQT is accomplished by an independent test organization

dedicated to software testing and occurs at the Patriot

Software Test Facility and the Missile Command (MICOM)

Software Engineering Directorate Facility.

Once software is found to be correct it is then released

to the user for implementation. Ensuring that only correct

effective software is released to the user is a function of

Software Configuration Organization.

4. Configuration Management

The major configuration management milestones associated

with the software development process are the establishment

of baselines per the software development schedule and the

required reviews and audits scheduled at appropriate points

during the program. To this end the tasks of software

configuration identification, change control, interface

compatibility, and status accounting have been assigned to

the Software Configuration Management (SCM) section of the

Configuration Management organization.

Configuration identification is accomplished when the

documentation specified for a software project is released to

the SCM. Acceptance of the requirements and the interface

documentation by the SCM establishes the software

requirements baseline for development configuration. This

implies that design engineers understand the requirements

42

after the Requirements Review and the documentation has been

placed in the software database. Identification of a

configuration item will consist of the documentation being

marked by project code, and document title, number, format

and release date. When a revision is made to the

specification, document, or code, it is treated as a complete

reissue of the material and must follow the materials

reidentification requirements mentioned above.

The concept of configuration control deals with the

assurance that coordination of decision making functions

occurs. Patriot implements this concept by ensuring

revisions and problems are documented, submitted, reviewed,

and approved/disapproved in accordance with configuration

control procedures. These procedures deal with reporting

documentation, review procedures, and storage, handling and

release of software media.

The documents that are used to track the configuration

process are the Engineering Release (ER) form, Software

Problem Report (SPR), Software Investigation Request (SIR),

Engineering Change Order (ECO), and the Deviation Waiver

(DW). Since SPR, SIR and DW have been defined previously,

the remaining documents will now be defined.

The ER form is used for proposing, transmitting, and

recording the release actions of the Configuration Control

Board (CCB) with respect to engineering documentation that is

used to establish requirements, and design and code
baselines.

Once software documentation or code has been released by

the software CCB and is under SCM control, an ECO is required

to propose, transmit, and record changes to the software CCB

approved configuration. The ECO identifies by document

number and revision level the baseline software and document

to be changed, a complete description of the change, a

justification for the change, and the approval signatures of

the software CCB members.

The CCB has the responsibility of reviewing and

evaluating all proposed engineering document releases and SPR

43

approved document changes to the software and associated

documents. Although all changes to currently released

software documentation and code are first documented on SPRs

which are reviewed for approval/disapproval by the Software

Review Board (SRB), these changes cannot be incorporated into

the baseline until approved by the software CCB.

Once software media is released, the SCM requires two

copies (one master and one working) to be placed in their

control. Working copies will be stored in a central vault

while all masters will be stored in an off-site storage

facility.

Configuration Status Accounting (CSA) is accomplished

through the use of an automated database. This database

supplies the CSA personnel with data elements that are

extracted from the ERs and ECOs that include document number,

nomenclature, security classification, ER number, ECO number,

and software CCB approval date. This data can then be

manipulated into various report formats for use during the

review processes.

While the job of the SCM organization is to control

changes that affect the baseline software through

communication among affected parties, it is the job of

Software Quality Assurance to ensure that this specified

communications continues to occur and that all requirements

for effective development are met.

5 . Software Quality Assurance

Although the responsibility for quality software lies

with all who are involved with Patriot software development,

the formal responsibility of quality assurance rests with the

Software Quality Assurance organization. Members of this

organization are classified as either Senior Engineer,

Engineer, or Member of the Technical Staff depending on their

experience with software quality assurance.

To accomplish software quality assurance, this

organization, which is independent from the organizations

developing the software, utilizes a separate set of databases

44

and utility programs for tracking the progress and ensuring

the accuracy of software being developed. Through automated

comparative analysis, members of the organization are able to

assess differences between two files, discern the extent to

which patch files are used, and to receive file listings of

the CSUs contained on a source tape. During a review or

inspection, should the SQA find a problem with the software

development procedures, the Software Analysis Request (SAR)

system will be used to identify, track, and close these

issues.

Software quality assurance in the Patriot software

development occurs during the entire software development

cycle. For example, during the review boards, members of the

quality assurance organization are present to ensure unbiased

evaluation of the software's readiness to proceed to the next

phase of development. Also, prior to the release of software

to configuration control, SQA organization must certify the

software's traceability of requirements from the DPSR through

the code/build release phase. By this process, SQA ensures

the incorporation of all approved changes into the software

and documentation. Additionally, once the software media is

released to configuration management control, the SQA

maintains one or more copies of the central vault working

copy in a separate location for added configuration control.

Lastly, SQA has the responsibility of auditing the CSA

organizations records as part of the periodic Configuration

Management (CM) audit to ensure compliance of procedures with

specified policies.

This chapter has discussed the Patriot software

development management method. In the next chapter, the

Patriot software development method will be used to

illustrate how the Cosmos model can be implemented for

military software development management. The idea is to

determine areas of correlation between the Patriot method and

the model, and to determine what tools used by the Patriot

method might benefit future military software development

management programs.

45

46

IV. COSMOS IN DOD ANALYSIS

A. CONTEXT OP THE ANALYSIS

The objective of this chapter is to illustrate how

Cosmos model can be used in a DoD environment by providing

examples of how the Patriot software development management

method accomplishes concepts presented in the model.

Additionally in this chapter, this thesis will determine

types of tools used by Patriot software development

management method that can be used for the management of

future military software development projects. Considering

that the Cosmos model represents a model presenting a

"holistic" view of the software development process, the

events within Patriot software development method will be

related with the six principles of dealing with dynamic

complexity set forth in this model.

To effectively organize the relationship of the six

principles with the Patriot software development method, the

analysis will be divided into the three distinct dimensions

of the Cosmos model: Activity, Communication, and

Infrastructure. These dimensions will provide the framework

with which to visualize the applicable principles.

Additionally, this analysis discusses how the Patriot

software development method demonstrates another key aspect

of the Cosmos model. Specifically, the Patriot software

development management method will be observed to determine

if it demonstrates the interaction of the Cosmos model's

three dimensions.

The analysis begins with the discussion of the six

principles within their related dimensional context. This is

followed by treatment of the other key aspect of the model

with respect to the Patriot software development method. The

analysis will be based on information presented in Chapter II

which defines and discusses the Cosmos model, as well as the

information presented in Chapter III concerning the Patriot

software development management method.

47

B. ACTIVITY DIMENSION

As stated in chapter II, this dimension allows insight

into the trade-off of Flexibility versus Stability. To

accomplish this, the software development management process

must take into consideration three of the six principles for

managing dynamic complexity, namely: separation of concerns,

coevolution, and protoiteration. The activities

demonstrating Patriot's treatment of these three principles

are categorized with respect to control level and execution

level activities.

1. Separation of Concerns

The principle of separation of concerns deals with the

concept of breaking a problem or project up into subproblems

to "divide and conquer" a project, or, in other words, to

effectively manage a project's complexity.

Due to the generally large and complex nature of current

and expected future military software development projects,

there is a distinct need within DoD to establish methods that

will allow such projects to broken into manageable parts. At

the control level, DoD projects need ways to accomplish

software development, configuration management, and quality

control. At the execution level, a systematic approach for

actual software development is needed to ensure that system

requirements are methodically translated into accurate

software code.

To satisfy such needs, within the Patriot software

development management method, activities at both the

execution level and control level have been established to

accomplish the principle of separation of concerns.

At the execution level, the Patriot software development

management method uses several activities which demonstrate

the separation of concerns principle. Most obvious is the

use of MIL-STD-2167A as a basis for the actual activity of

software development.

MIL-STD-2167A, through its call for specific documents

in specific formats, reflects the idea of a waterfall

48

approach to software development. Software development is

decomposed into the activities of requirements analysis and

determination, software design, to include preliminary and

detailed design, coding, integration testing, and formal

testing. This method of software development decomposes the

software project into subproblems that can be more easily

dealt with. The waterfall model approach divides up the

overall software development activity into a sequence of sub-

events that follow in a logical progression.

Furthermore, the identification of software is divided

into Computer Software Units (CSU), Computer Software

Components (CSC), and Computer Software Configuration Items

(CSCI) components. Breaking up the software design effort

into CSUs, CSCs, and CSCls allows the programmer to dissect

the overall program into chunks of functionality that are

easier to work with. While easier to code, the CSUs must

always be developed with the understanding that they will

have to be integrated into CSCs and ultimately CSCIs at a

later time.

Also at the execution level, the principle of the

separation of concerns is demonstrated in the Patriot

software development method by the way the transition to Ada

is being handled. To transition to Ada, members of the

Patriot Program Office (PPO) have taken an incremental

approach. They have started the transition by first

attempting the conversion on a small yet central processor

intensive portion of the Patriot software. Using this

smaller portion as a test case, the project is able to reduce

overall complexity by limiting the number of lines of code

that have to be converted, enabling lessons learned from this

case to be used in future code transition.

On a more macro-level, the approach of making the

transition to Ada a separate project as opposed to attempting

to integrate the transition into the development process,

also demonstrates the consideration of separation of

concerns. This separate project allows the transition to

occur on a timeline that is not necessarily tied to the

49

software development timeline established for system software

development, again reducing the complexity of the process.

Additionally, the use of the Ada programming language

allows software developers to define software by code

objects. These objects allow the coding task to broken down

into code structures that are easier to work with and modify.

The control level of the separation of concerns

principle is demonstrated in the Patriot software development

management method by the project's chosen organizational

structure. The division of the organization into subunits by

functional area allows each division or section to focus on

and become expert in one area. For example, the

Configuration Management, Product Assurance, and Software

Laboratory Organizations, and their subdivisions, all have

separate and identifiable missions. Focusing on only a

certain portion of the overall project is less complex than

having to deal with all aspects of the software development

method at one time.

2. Coevolution

The focus of the principle of coevolution is the concept

that activities must develop in conjunction with one another.

This idea is broadened by the realization that all

requirements cannot be known up front, and that they must

evolve as the architecture and the design of the project

evolve.

Within DoD, due to the number of stakeholders of a

software project as well as the evolving nature of the

threat, initial software requirements are generally fuzzy and

do not consider all possible needs. Because of this, a

software project's requirements can be expected to evolve and

change several times during its lifecycle. To accommodate

needed software evolution, DoD software development methods

must establish ways for allowing input into the development

process to occur. Additionally, at the execution level, DoD

software development activities must have methods that ensure

that subproblems are developed with a common thread so they

50

can be reintegrated at a later date.

The Patriot software development management method has

specific ways in which this is accomplished. Demonstrating

this principle, at the control level, the Patriot software

development management method utilizes the Software Problem

Report (SPR), Software Investigation Report (SIR), Software

Assessment Report (SAR), and the Deviation Waiver (DW)

processes. These processes allow inputs to be integrated

into the software development process from the software user

and the various organizations which review and have

responsibility for accurate software development. By having

these processes, the software development management method

deals with the reality that requirements can change or evolve

as information about the threat, more capacity in hardware,

and improvements in technology become available.

Looking at the engineering services contract, the

concept of coevolution can also be seen. The contract allows

for quick reaction to the need for upgrades to the system

software. By having a number of prepaid man months readily

available, the Patriot software development management method

recognizes the idea that changes will occur and that an

efficient method for dealing with them is needed.

At the execution level, a relationship between the

principles of coevolution and separation of concerns can be

seen in the Patriot software development management method.

During integration testing, the idea of the CSUs being

brought together to form a CSCI demonstrates the idea of

coevolution. As elaborated in the Cosmos model, all CSUs

must be developed in conjunction with one another with the

same common goal if they are to be effectively integrated for

successful software development.

3. Protoiteration

The principle of protoiteration deals with the concept

that the right solutions to dynamically complex problems are

rarely found on the first try. Specifically, this principle

expresses the use of prototyping in an iterative fashion as a

51

way of better defining solutions to problems. This concept

also takes into consideration the idea that subproblems must

be properly structured so that they can more easily accept an

iterative change.

Because of the fuzzy nature of initial software

requirements for large military software development

projects, the use of prototyping in an iterative fashion

within DoD to assist in clarifying these requirements is very

beneficial. Also, because of the changing nature of military

software requirements, software should be constructed to

ensure changes to the software can easily be made.

A direct demonstration of protoiteration is seen in the

Patriot software development management method's use of

prototyping during software requirements definition. In an

attempt to realize all the possible aspects of the software

being developed, the Software Laboratory utilizes prototype

software to allow engineers to better visualize what the

software is capable of accomplishing and how it might be

accomplished.

A complement to this which has already been mentioned is

the Ada programming language. Ada's way of defining code in

modular packets allows for changes to be made to specific

packets, thereby making changes to the overall software much

easier. This programming language, currently being used to

develop Patriot software, creates subproblems or CSUs that

are structured to more easily accept changes compared to a

language that does not have a modular construct.

The idea of the principle of protoiteration is also seen

by the way the Patriot software development management method

defines software. By defining software in terms of

developing CSUs, CSCs, and CSCls, the Patriot software

development management method takes into consideration

structuring subprojects which more easily accept change. By

defining software development in terms of specific functions

and creating a specific CSU for that function, the software

development management method allows developers to look at

smaller areas of code and software documentation when

52

attempting to institute a change. This follows the idea of

structuring subproblems to more easily deal with change.

The use of Software Development Files (SDF) by the

Patriot software development management method also provides

a demonstration of the principle of protoiteration. SDFs

archive all relevant information concerning a CSU. By doing

this, they take into account risk management information and

source code structure that can be looked at, possibly easing

the development of software in future iterations.

Facilitating the principle of protoiteration in the

Patriot software development management method, are the

structures of the SPR, SIR, and DW processes which accomplish

coevolution. These processes take into consideration that

requirements inputs, and therefore changes to the software

can happen at anytime during the software development cycle.

By allowing for changes to be input into the development

method, these processes accommodate the iterative concept of

protoiteration.

By having methods and structures that accomplish the

three principles mentioned above: separation of concerns,

coevolution, and protoiteration; the Cosmos model states that

a software development method is able to have several

concurrent software development activities ongoing.

Specifically, one software development activity could be in

the requirements stage, while another is in the design stage,

while yet another is in the coding/testing phase of

development.

Evidence of this in the Patriot software development

method can be seen in that usually three Post Deployment

Builds (PDBs) are ongoing at any one time. Currently, PBD-5

is in the requirements phase of development. At the same

time, the Patriot software development organization is in the

process of integration testing on PDB-4, while it maintains

and provides fixes to software, through the SPR, SIR,and DW

processes, that are needed in the fielded PDB-3 software.
[Ref. 32]

Although having methods and structures that accomplish

53

the concepts of the activity dimension provides a software

development management method with effective ways to

accomplish software development, these methods and structures

cannot effectively be used by managers without also

considering the communications dimension. The communication

dimension provides for the intricate coordination among

responsible software development organizations that is

required to successfully coordinate and manage concurrent

activities and the actions presented in the examples above.

C . COMMUNICATION DIMENSION

As stated previously, the communication dimension allows

for insight to be gained into the Modularity versus

Interconnectivity trade-off. To accomplish this, two

principles of controlling dynamic complexity must be

considered: inclusion and reification.

By creating tools (e.g. role maps) that accomplish the

concepts of these two principles, the communication dimension

affects the interaction of all three dimensions. It also

reinforces or limits their development depending on how

effective the communication dimension is treated.

Specifically, a model of a software development method's

communication structure makes communication an explicit

versus an implicit activity.

1. Inclusion

The principle of inclusion deals with the concept that

all individuals and organizations that are stakeholders in

the software being developed must be considered as to their

needs and responsibilities. The rationale for this is that

participation by all concerned is seen as beneficial to

problem identification.

Because of the number of organizations both in and

outside the military that have a stake in the development of

most large software projects, the customer driving the

efforts of the project is, many times, not well defined for

the software development project manager. Because of this,

54

the need to ensure their inputs can be considered is

imperative. For example, a stakeholder outside the military-

is Congress. To manage effectively, a software development

project manager must understand the stake that congressional

representatives have in his or her program. This will assist

in allowing the manager to determine exactly what

requirements they might place on him or her before

appropriated funds for the project are released. Within DoD,

the software project manager must not only consider the user,

but also organizations like the Independent Test and

Evaluation and Independent Verification and Validation (IV&V)

organizations. Approval by both of these organizations is

required before the software product can be released to the

user. To allow inputs to be considered from these

organizations, both in and out of the military, the software

development process must establish methods that allow them to

be captured.

Within the Patriot software development management

method, consideration for the principle of inclusion is seen

in the use of a formal review process and the use of the SPR,

SIR, and DW processes. The formal review process of the

Patriot software development method allows the organizations

with software development responsibility to provide input to

the process of software development. For example, the formal

review process provides a channel for the Software Quality

Assurance (SQA) organization to inspect the accuracy of the

software as it relates to the requirements to ensure the

software is ready to continue into the next phase of

development. The In-Progress Review (IPR) provides the user

and several other stakeholders, including the IV&V

contractor, a method of ensuring that his or her comments and

needs (e.g. cost, schedule, and performance) are clearly

understood. Additionally, the SPR, SIR, and DW provide

channels in which organizations outside the Application

Software Department (ASD) can provide feedback to the

development team. For example, the Software Configuration

Management organization (SCM) utilizes SPRs in addition to

55

Engineering Change Orders (ECO) and Error Reports (ER) to

describe problems found with software media to ASD and to

ensure that control is maintained over the incorporation of

the fixes.

The Patriot software development method also shows the

principle of inclusion by the early incorporation of the IV&V

contractor into the software development process. The close

working relationship between the independent inspection

organization and the software creator provides an extra set

of unbiased eyes to ensure that the development method is

providing what the user wants in the best possible fashion.

2 . Reification
The principle of reification deals with the concept of

identifying the objectives of an activity in a clear manner

by stating reasons why a particular activity must be

accomplished. This allows persons responsible for the

accomplishment of the objective to do so from a perspective

of truly understanding the ramifications of the objective.

Within DoD, due to the public nature of the

organization, there are many individual and organizational

stakeholders with varied objectives involved with large

software development projects. Due to these numerous

organizations involved in the acquisition process with

oversight of a software project, the objectives of a software

development project designed to satisfy user's needs have a

tendency to become blurred. Because of this, there is a

distinct need to develop methods to ensure that all relevant

personnel receive required information to ensure that a

project's user objectives are reified.

Also, because of the short duration (two to four years)

of military assignments within DoD programs, institutional

knowledge of objectives and communication structures have the

potential becoming lost. Because of this, DoD needs to

establish ways to ensure such concepts are captured to ensure

the smooth transition of software project management from one

regime to the next.

56

To accomplish this, the Cosmos model calls for the use

of modeling roles within the communication structure. The

"role map" deals with identifying who must communicate with

whom, why they must communicate, what they must communicate,

and how they must communicate to ensure that the required

information is disseminated properly to allow for it to be

thoroughly understood. This will translate into effective

software development. Role maps are described by the Cosmos

model authors as actual wire diagrams depicting these aspects

of communication so that the communication structure of a

project will be explicitly defined.

During the investigation of the Patriot software

development management method, the author of this thesis did

not find specific role maps as defined by the Cosmos authors

for the identifying communication structure within Patriot

software development management activity. What was found,

however, was an implicit communication structure in the

Patriot software development management method.

Through the use of formal review process, the SPR, SIR,

DW, SDF, ECO, ER, and the Data Item Descriptions (DIDs), an

understanding of the implicit communication structure of the

Patriot software development management method can be

obtained. The formal review process establishes

communication between the varied organizations with software

development responsibility as mentioned earlier. Within the

Patriot Software Development Plan (SDP) there exists

suggestions on how to structure and which topics to include

in the different reviews. Also covered are suggestions for

the minimum participation of key individuals to attend

several of the reviews. Further, the SPR, SIR, DW, SDF, ECO,

ER, and DIDs all identify what specific information needs to

be passed on to the using organizations and in what format.

Although not specifically a role map, as described in Cosmos,

much information is gained about the communications structure

of the Patriot software development management organization

by understanding the use of formal reviews and reports,

waivers, orders, and descriptions mentioned above.

57

The problem seen with allowing the communication

structure to be implicitly defined is the difficulty of

readily seeing the effects of lack of communication in a

specific area and the effect on the rest of the communication

structure should it occur. To avoid this, one would need

enough familiarity with the overall software development

process to enable him or her to visualize the effects.

Through the use of the role map of the communication

structure, however, an observer could readily understand the

effects that a lack of communication would cause by observing

the nodes on the wire diagram that would be neglected should

communication channels break down.

Although the activity and communication dimensions of

the Cosmos model provide some understanding of the concepts

required for the management of software development, they do

not cover the very important aspect of infrastructure.

D. INFRASTRUCTURE DIMENSION

The infrastructure dimension deals with the concept of

providing frameworks for taking into account what processes

are needed to achieve a software project's objectives. This

dimension provides insight into the trade-off of a Broad-

versus Narrow-Scope focus on issues. To effectively make

this trade-off, tools that capture the concept of the

principle of continual improvement must be created.

1. Continual Improvement

The principle of continual improvement deals with the

idea that all things can be improved upon. To accomplish

this, frameworks or infrastructure that make this possible

must be established.

Currently, most software development within DoD is

contracted out to civilian development organizations.

Considering that most of these organizations are at a

Software Engineering Institute (SEI) process maturity model

level of II or less, [Ref. 20:p. 277] there exists a

distinct need within DoD to establish methods that capture

58

process information for software development. Also, because

of the current lack of trained military personnel in software

management and the limited institutional knowledge of DoD

civilians in the area of the software development process,

DoD is not in a position to assist contractors with the

continual improvement of software development. This is

especially true now considering that the use of military

standards, with their mandated deliverables, is no longer

required. Due to this, it is imperative that military

software development projects establish infrastructure that

captures vital process information to be used for continual

process improvement.

The Patriot software development management method has

several structures that accomplish continual improvement.

Within the Patriot software development management method,

the organizational design of the Missile System Division's

organizations that are responsible for software development

demonstrates infrastructure that takes into consideration the

principle of continual improvement. This can be seen in the

way the functions of the organizations are divided to provide

checks and balances to ensure the established standards are

met, and that identified requirements flow through the

development process and are captured in the functions of the

developed software programs. For example, the responsibility

of the SCM is to ensure that the changes made to the software

media by the ASD are properly controlled and incorporated

only after all responsible parties agree to the changes, and

the proper archives have been updated.

A more direct demonstration of the principle of

continual improvement being accomplished through

infrastructure is the Patriot software development management

method's use of Software Initiative Working Groups (SIWGs).

These working groups have been established for the expressed

purpose of observing the processes of risk management,

project management, subcontractor management, defect

analysis, requirements management, peer reviews, trusted

software, process measurement, process definition, technology

59

management, and software quality assurance. Much of the

information concerning the above processes is gathered

through the use of STEP Metrics. Once observed, SIWGs then

find ways in which to make these processes more effective.

The end result of the SIWG's actions is the improvement of

the overall software development process.

Another infrastructure of the Patriot method that

demonstrates continual improvement is the process of risk

management. The Patriot software development risk management

process utilizes a taxonomy of risks and risk mitigation

methods for software development. These taxonomies not only

provide information on types of risks and ways that they have

been dealt with in the past, but also allow for the

incorporation of new unpublished risks and mitigation

techniques. This improves the ability of the software

development management method to accomplish risk management

which in turn improves the overall software development

process.

Similarly, the infrastructure established to accomplish

software reuse considers the principle of continual

improvement. By reusing known, valid software code, the

Patriot software development management method decreases risk

associated with developing associated CSUs. Hence, reuse has

the potential to improve the efficiency of software

development.

Although personnel training might be considered an

intangible infrastructure for software development, it does

illustrate continual improvement. Better trained personnel

are better prepared to handle complexity and change because

they have a broader base from which to draw on for solutions

to problems. This in the end can have a positive effect on

the continual improvement of developed software. Reflecting

this, the Patriot software development management method has

established training requirements and methods for identifying

and providing for additional training needed by its personnel

to accomplish the various aspects of software development and

management as mentioned in Chapter III.

60

E . INTERACTION OF THE THREE DIMENSIONS

A key aspect of the Cosmos model is that the three

dimensions are all interrelated as the principles of dealing

with dynamic complexity found within these dimensions are

considered. This concept can be seen in the Patriot software

development management method through the examples below.

While treating the division of labor among the

organizations and considering the principle of separation of

concerns within the activity dimension, the idea of having

different organizations work various functions of software

development demonstrates the aspect of infrastructure.

Related to the activity and infrastructure dimensions is a

communication structure among the various organizations

required to allow these organizations to accomplish their

software development tasks. This is accomplished by having

tools which accomplish the principles of inclusion and

reification found in the communication dimension.

Another example of how the Patriot software development

management method demonstrates the relationship among the

three dimensions is seen by observing how it accomplishes the

principle of coevolution within the activity dimension.

Specifically, the SPR and the SIR processes demonstrate that

the Patriot software development management method realizes

that not all requirements can be known up front. These

processes are also part of the infrastructure that provides

for continued improvement. They also help to implicitly

define the communication structure of the software

development management method.

Through the numerous examples found in the Patriot

software development management method that demonstrate

consideration of the principles in the activity and

infrastructure dimensions, the Patriot software development

management method closely relates with the Cosmos model. In

the communication dimension, however, this same correlation

is not found. Although the concept of a communication

structure is dealt with in the Patriot software development

61

management method, it is treated only implicitly. This is

contrary to the explicit role mapping of the communication

structure the Cosmos model's authors call for.

However, because of the close correlation of the

activity and infrastructure dimensions considering the

implied treatment of the communication structure, the Patriot

software development management method demonstrates a

relatively holistic method of software development management

with respect to the holistic method described by the Cosmos

model. Evidence of the capability of the Patriot software

process and its relatively holistic nature is seen in the

ability of the development management method to effectively

manage the complexity brought on by the changes to

requirements during the Gulf War. During the Gulf War, four

system software changes occurred in a short five month

period. Credit for these quick changes was given to what was

called software responsiveness. During a Gulf War After

Action Review (AAR), statements concerning how the software

was developed for responsiveness described several of the key

concepts which are addressed in the Cosmos model. [Ref. 44]

One specific example concerned bringing the IV&V

contractor on board early in the project development cycle.

This idea begins to demonstrate the idea behind principle of

inclusion. In order to effectively manage the software

development process, the manager must have the input of all

stakeholders to the project. By including the IV&V

contractor early on, the developer has an independent set of

eyes offering suggestions about the software development.

Also, by including the IV&V contractor early, the developer

is making a partner out of a potential adversary. Since the

software must be "blessed" by the IV&V before it can be

released, the early inclusion of the IV&V can speed up the

development process.

Also noted in the AAR, was the importance of

experienced, competent software personnel. The need for well

trained persons with system specific knowledge and ability to

effectively employ the programming language, tools, and

62

methodologies demonstrates the principle of continual

improvement. By having a training infrastructure, people can

be continually educated to provide the needed talent to

accomplish quick software updates in a continually changing

environment.

Further, the principle of continual improvement through

infrastructure was again touched on by briefers when they

noted the need for decision makers to have a willingness to

take calculated risks with respect to software development.

During the Gulf War, software development managers took a

calculated risk and sent upgraded software to the field prior

to completing the desired level of testing. The rationale

for this was that the testing accomplished had shown the

software to be capable and that further indepth testing, as

is usually required, would cause fielding delays that might

result in the loss of lives or defended assets due to missed
SCUD engagements.

In summary, the ability of the Patriot software

development management method to quickly respond in the fluid

environment of the Gulf War demonstrates a successful

software development method that offers specific actions and

processes that can be used for future large military software

development projects.

F . TOOLS FOR SUCCESSFUL DOD SOFTWARE DEVELOPMENT

MANAGEMENT

This thesis has shown that the Cosmos model for software

development management is a model that provides a holistic

view of the software development process. Additionally, this

thesis demonstrates how the Patriot software development

management method relates to the Cosmos model. Because of

Patriot's close relationship with the Cosmos model, the

activities and processes that are utilized by this military

software development management method provide a relatively

holistic set of software development management tools. These

software development management tools represent the types of

tools that, when used by future military software development

63

projects, should offer similar software project success. The

rationale for this is that these tools, to include the role

map, provide the software development manager with ways of

dealing with the three essential trade-offs of the Cosmos

model: Flexibility versus Stability, Modularity versus

InterConnectivity, and Broad- versus Narrow-Scope.

The paragraphs that follow provide an explanation of

each of the tools that could be utilized by future large

military software development projects.

1. Engineering Services Contract

The Engineering Services Contract provides a vehicle

which allows a software development project to quickly

implement changes to the software baseline. By purchasing a

block of man-months that can be used as needed in the future,

the project can quickly get to the act of software upgrade

and avoid the contractual "red tape" that can slow the

process down.

From research into the Patriot software development

project, the Engineering Services Contract is found to be a

key factor in enabling software development to occur as

quickly as it does. Without this contract, it is estimated

that the software development process would take an

additional eighteen months over the current eighteen month

time frame for a normal software development cycle. [Ref.

33] .

Therefore, the Engineering Services Contract allows a

manager to deal with the issue of flexibility/stability. The

use of this contract allows a manager to gain flexibility in

the planning process. While the nature of a large software

development project requires that rigid planning occur early

on in order to gain stability and understanding of what must

be accomplished, these plans are usually unable to consider

all possible contingencies. The Engineering Services

Contract, by having man-months readily available, allows the

manager to react quickly to unforeseen events that occur

during the software development cycle. This offers the

64

manager of a large software project the flexibility to

accommodate change while allowing plans to be created early

on in order to stabilize the direction of the project.

2. Post Deployment Build (PDB) Software

Development Method

The PDB method allows a software development project to

accept input from the various stakeholders, and it provides a

tool to optimally develop and test software code. The PDB

method is made up of many subprocesses, structures, and

activities that interact to create accurate system software.

While the Waterfall model of software development

provides a basic logical sequencing of the software

development activity, the SPR, SIR, and DW provide additional

important processes that allow for needed corrective input to

occur during the software development cycle. These reports

and waiver are available for documenting the need for a

corrective action depending on at what point during software

development activity a stakeholder realizes that there is the

need for a corrective action to occur.

For example, the DW documents the fact that during

integration testing an octal patch to the object code of the

software program had to be made to allow the program to run

as required. This waiver would then be used to begin the

process of having the source code changed to match the object

code patch during a subsequent PDB cycle.

If during integration testing, testers realize that

there is a need for a non "show-stopper" corrective change to

the software program, a SPR is issued. The SPR is then used

to begin the process of implementing the correction into the

source code in a subsequent PDB. SPRs are also used to

document any problems and begin the correction process when

problems with the software are realized during requirements,

design, and coding phases.

SIRs normally document requests for changes to the

software that are voiced by stakeholders outside the

Application Software Department. For example, when a user

65

expresses the need for a change to the DPSR a SIR is issued

to document the request change. The SIR is then used to

begin the correction process.

The correction process begins with the convening of a

Software Review Board (for SPRs), or a SIR Review Board to

determine whether the requested change or corrective action

is actually needed, can be accomplished, and to decide when

an accepted change should be implemented. If it is decided

that the change is required the software development activity

of the PDB process is initiated and required software is

developed.

The PDB process also consists of the use of CSUs, CSCs,

and CSCIs. The use of CSUs, CSCs, and CSCIs as defined by

MIL-STD-2167A, although appearing axiomatic with respect to

coding any software program, provides the basis for a "Call"

which begins the important process of integration testing.

This process of integration testing at each level (CSC, CSCI)

of functionality ensures that almost every problem with the

software code is found prior to Informal and Formal

Qualification Testing. Since Formal Qualification Testing is

accomplished by an independent test agency that reports to a

chain of command outside the stakeholders included in the

development process, the need for software problem resolution

prior to this is imperative. The potential outcomes of

Formal Qualification Tests riddled with software problems

could be the delay of future funding or even the

discontinuation of the software development project. [Ref.

45]

The review of the integration testing data provides

information that is incorporated into the SDF. The SDF which

is an artifact of PDB process provides a location where

specific information concerning CSUs is stored. In addition

to integration testing information in applicable SPR, SIR,

and DW format, the SDF holds CSU source code and risk

management information. While providing for configuration

management, the SDF is a vital source of information for

software reuse by providing the type of information on which

66

the decision for software reuse is made.

The use of the programming language Ada is also a vital

part of the PDB process. In addition to being required by-

law unless a waiver is granted, the use of Ada provides for

modular programming that adds to the ability of the

correction process to quickly implement changes to a software

build. Although the use of Ada has not yet been fully

implemented in the Patriot project, the risks overcome in

doing so are expected to be outweighed by the benefits

associated with the positive attributes of the language. An

example of this is the previously cited ease of software

reuse.

The use of the PDB process while offering a manager

methods for dealing with the Flexibility versus Stability

trade-off through the use of methods that allow for

separation of concerns, coevolution, and protoiteration, also

offers insight into the modularity/interconnectivity issue.

The PDB process allows the software development process to be

broken into subdivisions while providing communication

methods which allow interconnectivity to occur. Through the

use of a tailored MIL-STD-2167A type construct requiring

requirements definition, software design, coding, and test,

the process is broken into logical modular subproblems. The

process offers methods for providing communication among the

various subissues through the use of the review processes and

the SPR, SIR, and DW processes.

3 . STEP Metrics

To monitor the activity of the software development

method and to manage risk in the areas of cost, schedule, and

performance, managers of the Patriot software development

method utilize the metrics contained in DA PAM 73-1 which is

the Army's manual defining a set of metrics called the

Software Test and Evaluation Panel (STEP) metrics. [Ref.

32,43]

STEP metrics provide a tool that is used to determine if

the software has achieved the required level of functionality

67

and maturity to proceed to the next stage of development or

test. This occurs because STEP metrics provide for the

continuous measurement of the process throughout all phases

of the software life cycle. These twelve metrics provide

both process and product measures through consistent

interpretation and description of software status in formats

that are objective, timely, and finite. [Ref. 43]

Currently, STEP metrics are briefed during monthly

Program Reviews and during the IPR held to update the user on

software development progress. This schedule and the

provided metric data is considered timely enough and in the

proper format to ensure effective management of software

development events. [Ref. 32]

The use of STEP metrics provide the manager with a tool

to assist in deciding the broad-/narrow-scope issue. These

metrics provide a manager the means to realize the strengths

and weaknesses of the software development process. This

information can be used to determine what immediate changes

must be made to the process as well as to determine

strategies to improve inefficient procedures in the future as

capability to do so becomes available.

4. Risk Management Taxonomy

While risk management is required by DoD Directives for

all software development programs, the use of a taxonomy of

risks and risk mitigation solutions is an effective method

for maintaining the artifacts of Patriot software development

risk management process. It provides a starting place from

which the risks associated with a particular type of software

can be known prior to the software being developed.

Also important in risk management is the use of the SDF

to capture the risk assessment data. This data in the SDF is

used in the decision of whether to possibly reuse a piece of

software in a future software build.

The Risk Management Taxonomy and SDFs assist the manager

in making the Broad versus Narrow-Scope trade-off. These

infrastructures provide methods for institutionalizing

68

information concerning specific actions that where taken to

accomplish or improve software. This ensures that persons

responsible for software development do not repeat costly

mistakes made in the past. These infrastructures give the

software development management method a continually growing

base from which to improve.

5. Software Development Library

The Software Development Library is an electronic data

base depository for the storage and controlled access to all

code, test specifications, test results, and project SDFs.

This library provides a location for the type of information

that is considered to be reusable. Like the Risk Taxonomy,

considering that software reuse has the potential to save

time in software development process, the value of such a

tool and its ability to assist the manager in making the

Broad- versus Narrow-Scope trade-off can readily be seen.

6. Project Organizations

The organizations involved in the development of

Patriot software accomplish functions that provide the

manager with independent yet interrelated views of the

software development activity. The SWL, SCM, and SQA provide

a set of checks and balances that ensures that the developed

software is as error free as possible before being released

to the field.

The SWL is responsible for software design to include

related documentation, coding, unit testing, software

development process improvement as well as software

integrating and validating. Additionally, SWL analyzes and

assesses all the software requirements and creates some

requirements for specific CSCIs. To accomplish these

functions the SWL is further subdivided into four separate

organizations as outlined in Chapter III.

The SCM organization controls software configuration

through configuration identification, change control,

interface compatibility, and status accounting as mentioned

69

previously. Although an independent organization, the SCM

works closely with the SQA organization to ensure the methods

used to accomplish configuration management conform to the

policies and specifications outlined in related corporate

directives.

The SQA organization is responsible for software product

evaluations. These product evaluations ensure that the

software meets the requirements set forth by the Software

Development Plan and other internal policy documents as well

as those of the contract with respect to content and format.

The SQA is independent of specific development organizations

they support. Therefore, although the SQA works closely with

the software engineering effort, it is managed and reports

through an independent chain.

While not specifically an internal software development

organization, the IV&V contractor is part of the military

software development process. Bringing this organization on

board early in the software development cycle provides for

additional input from an unbiased organization that can

assist in spotting deficiencies that could be costly later

on.

These organizations allow the manager to make both the

Flexibility versus Stability and the Broad-versus Narrow-

Scope trade-offs. The flexibility/stability issue is dealt

with since the organizations are independent and flexible,

allowing them accomplish their tasks in the most optimum

manner while also providing unbiased consistent views of the

different aspects of the software development process. The

broad/narrow-scope issue is dealt with by SIWGs within the

SWL organization which provide process information on various

areas of the software development method. This information is

used to continually monitor and improve a software

development method's performance, and it allows a manager to

understand where the process is now and gives a clearer

picture of how to get to a desired level of performance in

the future.

70

7 . Personnel Training Program

Having experienced, competent people was seen as a

reason for the success of Patriot software development

management method during the Gulf War. Each organization

that is part of the software development process has

established training programs that take qualified personnel

and ensure that they receive any additional requisite

training either prior to or during the development of

specific software. This gives the manager insight into

making the Broad versus Narrow Scope trade-off. By providing

a method to ensure that personnel are continually gaining

understanding of new and better technology to be used in

improving software development, a training program forces

the manager to consider training as a factor that must be

figured in when creating timelines for software development.

Hence, a manager is forced to take a longer view of the

software development process.

8 . Role Maps

Although not explicitly found in the Patriot software

development management method, a role map of a project's

communication structure as described in the Cosmos model

provides explicit insight into who, what, when, why, and how

communication should occur during software development. The

role map provides for the quick diagnosis of problems or

potential problems should a communication node discontinue

functioning. This tool of a software development method is

key in identifying where coordination among independent

stakeholders in the development of software is needed.

Role mapping offers a tool for the manager to use in

accomplishing the Modularity versus InterConnectivity trade-

off. Through the use of a role map, a manager can realize

what communications links must be created to allow separate

project modules to pass vital information among them.

The following chapter, Chapter V, will consider

recommendations that can be drawn from this analysis as well

as present areas for further study.

71

72

V. RECOMMENDATIONS AND AREAS FOR STUDY

A. SUMMARY

This thesis has examined how the Cosmos model represents

a holistic view of the software development management

process, and how it can be used as a basis for future

military software development management. This was

accomplished by analyzing the current state of the software

development process in both the military and civilian

sectors, and finding that the emphasis is currently being

placed on only one facet of the overall process. From this,

this thesis identified a need for a more holistic approach

that encompasses both the production and management facets of

the software development process, using the Cosmos model as a

possible solution. A description of the Cosmos model was

presented, providing a comprehensive view of the software

development process through its use of three dimensions and

six principles which allow a manager to make three essential

trade-offs. This was followed by a description of the

Patriot software development management method. This

description was used to provide examples of how the Cosmos

model concepts can be used for DoD software development

management. Based on the analysis of the Patriot examples,

this thesis recommends eight significant types of tools that

could be used by future military software development

projects to ensure that a holistic approach to the software

development process is taken. Within Patriot, these tools

are: an Engineering Services Contract, a Post Deployment

Build (PDB) Software Development Method, a Risk Management

Taxonomy, Software Development Library, Personnel Training

Program, Project Organizations, STEP Metrics, and Role Maps.

B . RECOMMENDATIONS

1. DoD Policy Recommendations

Based on the information contained within MIL-STD-498

and the findings summarized above, it appears that the

73

Secretary of Defense's recent order to discontinue use of

military standards for military product development may have

been a set-back in the area of software development

management. MIL-STD-498 was created as a replacement of MIL-

STD-2167A and other military standards governing various

aspects of the software development process. This was done

in attempt to resolve the problem of these previous military

standards not clearly emphasizing both sides of the software

development process. MIL-STD-498 accomplishes this though

its use of specific requirements which force a manager to

address both the production and management facets of software

development process. [Ref. 27:p. i]

MIL-STD-498 is intended to be an all inclusive standard

in the area of DoD software development management requiring

a holistic view of the software development process.

Essentially, this standard improves compatibility with non-

hierarchical design methods; improves compatibility with

computer aided software engineering (CASE) tools; gives

alternatives to, and more flexibility in, preparing

documents; provides clearer requirements for incorporating

reusable software; enhances supportability; and improves

links to systems engineering. This standard does not specify

or discourage the use of any particular software development

method. This leaves the developer with the responsibility

for selecting software development methods that support the

achievement of contract requirements. Importantly, this

standard is meant to be tailored by the program office or

other DoD agency to ensure that only necessary and cost-

effective requirements are imposed on software development

efforts. [Ref. 27:p. i]

While the standard attempts not to limit the program

office to any specific software development management model,

it does require that the contractor create a software

development management process that includes specific

activities. These activities, however, may overlap, may be

applied iteratively, may be applied differently to different

elements of software, and need not be performed in the order

74

listed below: [Ref. 27:p. 12]

1. Project planning and oversight

2. Establishing a software development environment

3. System requirements analysis

4. System design

5. Software requirements analysis

6. Software design

7. Software implementation and unit testing

8. Unit integration and testing

9. CSCI qualification testing

10. CSCI/Hardware Configuration Item integration and

testing

11. System qualification testing

12. Preparing software for use

13. Preparing for software transition

14. Integral processes: Software configuration

management, Software product evaluation, Software

quality assurance, Corrective action, Joint technical

and management reviews, Other activities (e.g. Risk

management, Use of metrics, Personnel education, and
Reuse)

Although specific requirements in each of these

activities must be accomplished by the developer, the

emphasis lies on the development and recording of planning

and engineering information, an intrinsic part of the

software development process, to be performed regardless of

whether a deliverable is required. Further, the idea is to

tell the developer the "what" of the requirement but not the

"how" of getting the requirement accomplished. [Ref. 27:p.

12] For example, the standard says that the developer must

perform risk management throughout the software development

process. Additionally, it states that:

The developer shall identify, analyze, and
prioritize the areas of the software development
project that involve potential technical, cost, or
schedule risks; develop strategies for managing
those risks; record the risks and strategies in the
software development plan; and implement the

75

strategies in accordance with the plan. The
developer shall identify and define a set of
software management indicators, including the data
to be collected, the methods to be used to
interpret and apply the data, and the planned
reporting mechanism... [Ref. 27:p. 26].

While giving specific guidance that risk management
must be accomplished the standard does not state that the
developer must use, for instance, STEP Metrics to accomplish
this task. Although not specifically requiring this set of
metrics, the standard does provide it as an example
emphasizing that it is only an example and not required to be
used. Examples are also provided for other areas, such as

Joint Management Reviews.
The standard is written to accommodate all sizes of

software development projects to include large projects that

have several different builds. It is also written to

accommodate projects with different acquisition strategies

such as Grand Design, Incremental, and Evolutionary. The
standard provides examples of how it can be used with these
strategies and gives guidelines for the scheduling of
selected activities (from the 14 mentioned above) in each

build.
The standard ends its discussion with a warning to

managers about limiting their software development and
management flexibility. For example, one common mistake that
is made is to treat all CSCls as though they must be
developed in "lock-step", all designed by a certain date,
implemented by a certain date, etc. This can result in a

development process that limits optimum software development.

Flexibility in scheduling gained by decoupling CSCIs from the

same schedule can be effective in avoiding this mistake. The

standard reiterates that the activities in each build should
be laid out in a manner that best suits the work to be done.
[Ref. 27:p. 40] Also, care must be taken to ensure that the
flexibility inherent in the use of the standard is not
nullified by rigid scheduling of the Contract Data
Requirements List (CDRL). If the CDRL lays out a strict

76

"waterfall" sequence of deliverables, little room is left to

propose an innovative development process, and CSCIs are

forced into a lock-step and potentially suboptimum order of

development. [Ref. 27:p. 56]

Considering this information, MIL-STD-498 presents

concepts and examples of activities that force a manager to

manage with a complete view of the software development

process. By no longer requiring this standard, the SECDEF

may be contributing to the continued ineffective state of

software development management. The author of this thesis

recommends that the SECDEF provide for an exception to this

policy with respect to this military standard and require its

use in the development of military software products.

This author further recommends that, at the very least,

the eight types of tools described in Chapter IV of this

thesis be incorporated into the future editions of DoD

Directive 5000.1 or DoD Instruction 5000.2. This should be

done in such a way as to require the concepts of each tool to

be addressed by the unique methods used for software

development described by a project's software development

plan.

2 . Recommendations for Patriot

First, while the lack of role mapping to provide for an

explicit communication structure appears not to severely

hinder Patriot software development management, the explicit

treatment of the communication dimension, as defined by the

Cosmos model, would offer additional insight into the

management of software development. As stated previously,

role mapping would provide an accurate and efficient method

for a manager to quickly realize communication deficiencies

or redundancy. By acting on these issues, the manager could

streamline the software development process which could in

turn allow for more efficient creation of software programs.

This statement considers that the Patriot software

development management method already demonstrates thorough

treatment of the activity and infrastructure dimensions.

77

A complement to the idea of explicit treatment of the

communication dimension is the concept of the Patriot Project

Office (PPO) realizing that its actions are captured by the

Cosmos model. By realizing the Patriot software development

management method's relationship to the Cosmos model, the

program manager can gain a conceptual holistic understanding

of how the various aspects of the software development

management method interrelate. As shown in Chapter II, this

comprehensive understanding provided by the Cosmos model

appears to be a complete way to realize the management

requirements for a large successful software development

project.

C . AREAS RECOMMENDED FOR FURTHER STUDY

1. Creating a prescriptive model for large software
development projects.

In looking at the Patriot software development

management process, it becomes apparent that successful

software development organizations in industry have either

developed methods that can be modeled or are currently using

established models of the software development process. A

study of these methods could reveal a preferred way that

might be modeled, or a preferred model that should be used

for the management of software development. Although the

Cosmos model provides a comprehensive descriptive model of

the software development process and is applicable to large

software projects, what is needed in industry is the

development of a model that has prescriptive capability like

that presented in the System Dynamic Management Model for

small to medium software projects. This could be

accomplished through the study of successful large software

projects, and application of previous research in the area of

prescriptive modeling of large software development projects.

2. Understanding the types of contractual vehicles
that can be used to facilitate efficiency in the software
development process.

As demonstrated in the Patriot software development

78

management method through the Engineering Services Contract,

contracts have the capability to provide DoD software

development managers with needed flexibility to accomplish

efficient software development. Since the problem of

effective software development management has been recognized

for some time, the probability exists that other DoD projects

have devised similar types of contractual vehicles. An

understanding of these contracts and how to implement them

could benefit future software development projects.

4. Understanding how the lack of Military Standards
within DoD software development could affect future software
development programs.

Without a set of military standards combined with the

current lack of industry understanding of software

development management, it appears that a potential exists

for software to become an even greater unknown quantity in

weapon system development. By no longer requiring CDRLs,

specific plans and documents, and reviews, military managers

might not receive the necessary information required to

ensure even current management levels for software

development projects are maintained.

5. Understanding how performance specifications can be
used to ensure the acquisition of effective military weapon
systems.

While design specifications tell the manufacturer how to

create a product to ensure that it performs at a required

level, performance specifications state only what the user

wants the product to accomplish, leaving the how of the

equation up to the manufacturer. In the past, the

acquisition of military equipment has been based on the use

of design specifications. The sudden shift to performance

specifications as the basis for military acquisition,

presents DoD with a dilemma of how best to state these

specifications to receive the requested product. A study

into this area for specific types of products could present

insights that might ease this transition.

79

80

LIST OF REFERENCES

1. Defense Systems Management College, Mission Critical
Computer Resources Management Guide, Ft. Belvior, VA, 1989.

2. Baker, C. and Silverberg, D., Defense News. Vol. 4, No.
51, (December 18, 1989).

3. Frank, W.C., Critical Issues in Software: A Guide to
Software Economics, Strategy, and Profitability. New York,
NY: John Wiley and Sons, Inc. 1983.

4. Mills, H.D., "Software Engineering: Retrospect and
Prospect." The Twelfth Annual International Computer Software
and Applications Conference (COMPSAC), pp. 89-96, October 5-
7, 1988.

5. Sohlender, B.R., "How to Break the Software Logjam."
Fortune, pp. 100-112, September 25, 1989.

6. Thayer, R.H., et al., "Major Issues in Software
Engineering Project Management." IEEE Transactions of
Software Engineering, Vol. SE-7, No. 4, (July 1981).

7. Thayer, R.H., "Modeling a Software Engineering Project
Management System." Unpublished Ph.D. dissertation,
University of California, Santa Barbara, CA, 1979.

8. Gehring, P.F. Jr. and Pooch, V.W., "Software Development
Management." Data Management, pp. 14-38, February 1977.

9. Moore, J.H., "A Framework for MIS Software Development
Projects." MIS Quarterly, Vol. 3, No. 1, pp.29-38, (March
1979) .

10. Department of Defense, Strategy for a DoD Software
Initiative, 1982.

11. Finkelstein, A., "Not Waving but Drowning:
Representation Schemes for Modeling Software Development."
11th International Conference on Software Engineering,
Pittsburgh, PA, pp. 402-403, (May 15-18 1989).

12. McKeen, J.D., "Successful Development Strategies for
Business Application Systems." MIS Quarterly, Vol. 7, No. 3,
(September 1983).

13. Basili, V.R., "Improving Methodology and Productivity
Through Practical Measurement." A Lecture at the Wang
Institute of Graduate Studies, Lowell, MA, (November 1987).

81

14. Humphrey, W.S., Managing the Software Process, Reading,
MA: Addison-Wesley Publishing Company, 1989.

15. Reifer, D.J., Software Management, Los Alamitos, CA:
IEEE Computer Society Press, pp. 2-8, 1993.

16. Abdel-Hamid, T.K. and Modnick, S.E., Software
Development Dynamics: An Integrated Approach, Englewood
Cliffs, N.J.: Prentice-Hall Inc., 1990.

17. Barbucci, M.R., Habermann, A.N. and Shaw, M., "The
Software Engineering Institute: Bridging Practice and
Potential." IEEE Software, pp. 4-21, 1985.

18. Boehm, B.W., "Software Engineering." Software
Engineering. Edited by H. Freeman and P.M. Lewis II. New
York, NY: Academic Press Inc., 1980.

19. Merwin, R.E., "Software Management: We Must Find a Way."
IEEE, p. 20, 1978.

20. Humphrey, W.S., et al., "The State of Software
Engineering , Practice: A Preliminary Report." Proc. 11th
International Conference of Software Engineering, pp. 277-
288, 1989.

21. Boehm, B.W., "A Spiral Model of Software Development
and Enhancement." Computer, Vol. 21, No. 5, pp. 61-72, (May
1988) .

22. Basili, V.R. and Musa, J.D., "The Future Engineering of
Software: A Management Perspective." Computer, Vol. 24, No.
9, pp. 90-96, (September 1991).

23. Genuchten, M.V., "Why is Software Late? An empirical
Study of Reasons for Delay in Software Development.: IEEE
Transactions on Software Engineering, Vol. 17, No. 6, pp.
582-590, (June 1991).

24. Yeh, R.T., et al., "A Commonsense Management Model."
IEEE Software, Vol. 8, No. 6., pp. 23-33, (November 1991).

25. Marciniak, J.J. and Reifer, D.J., "Software Acquisition
Management." Excerpt from Software Acquisition Management,
John Wiley and Sons Inc., New York, 1990.

26. Department of Defense, MIL-STD-2167A, Defense Systems
Software Development, February 1988.

27. Department of Defense, MIL-STD-498, Defense Systems
Software Development, December 1994.

82

28. Brooks, F.P. Jr., The Mythical Man-Month, Reading. MA:
Addison Wesley Publishing Co., 1978.

29. Weeks, P., "Patriot-ATM Defense System." 1993 ADA Year
Book, pp. 40-43, (December 1993).

30. Raytheon, Software Development Plan for the Patriot
System Vol. I and Vol. II, Bedford, MA, 1993.

31. Department of the Army, Field Manual 44-85, Patriot
Battalion Operations, September 1994.

32. Gustine, Col., "Patriot Software Briefing", Naval
Postgraduate School, 15 June 1994.

33. Interview between Mr. H. Brown, Chief Financial Division
for PPO, Huntsville, AL and author, 18 July 1994.

34. interview between Mr. A.Q. Oldacre, Deputy PEO Ballistic
Missile Defense, Huntsville, AL and author, 18 July 1994.

35. Moore, L.E., Patriot ADA Systems Implementation Plan
Memorandum, PPO, Redstone, AL, 28 November 1989.

36. Public Law, 102-396, Sec. 9070, October 1990.

37. Department of Defense, DoD Directive 5000.1, DoD
Acquisition Policy, 1991.

38. Department of Defense, DoD Instruction 5000.2, DoD
Acquisition Policy, 1991.

39. Department of Defense, DoD Instruction 8120.2,
"Automated Information Management Systems", 1992.

40. Department of Defense, DoD Directive 3405.1, "Software
Management", 1994.

41. Department of Defense, MIL-STD-2168, "Software Quality
Program", 1988.

42. Department of Defense, "Implementing Specifications and
Standards Reform" Memorandum, Office of the Secretary of
Defense, 1994.

43. Paul, R.A., Metrics to Improve the U.S. Army Software
Development Process, U.S. Army Software Test and Evaluation
Panel (STEP), 1992.

44. Gustine, Col., "Patriot Software: A Gulf War AAR
Briefing", PPO, Redstone, AL, 6 August 1991.

83

45. Hughes Aircraft, "Software Development Briefing", Naval
Postgraduate School, 16 February 1995.

46. General Accounting Office, Report IMTEC-92-62-BR
Embedded Computer Systems: Defense Does Not Know How Much it
Spends on Software, USGPO, July 1992.

84

INITIAL DISTRIBUTION LIST

 7

1.
No. Copies

Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5101

2

3. Professor David V. Lamm, Code SM/Lt
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5000

4

4. LTC Keith Snider, Code SM/Sk
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5000

3

5. Professor Tarek Abdel-Hamid, Code SM/Al
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5000

1

6. Professor Marty McCaffrey, Code SM/Mf
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5000

1

7. LTC John T. Dillard, Code SM/Dj
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5000

1

8. OSDA (RDA)
ATTN: SARD-ZAC
103 Army Pentagon
Washington, D.C. 20310-0103

1

9. S. G. Drake
5136 Temple Court
El Paso, Texas 79924

2

10. Defense Logistics Studies Information Exchange
U.S. Army Logistics Management College
Fort Lee, Virginia 23801-6043

1

11. PATRIOT Project Office
ATTN: Project Manager
P.O. Box 1500
Huntsville, Alabama 35807-3801

1

85

