
DEVELOPMENT AND IMPLEMENTATION OF AN EXPERT
SYSTEM FOR REMOTELY ACCESSING A RELATIONAL DATABASE

BY

AGUSTIN ORTIZ, JR.

A THESIS SUBMITTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

19950621 027

UNIVERSITY OF FLORIDA

1988
DTI« QTJALi'i'* iI^u,^J

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Form Approved
OMB No 0704-0188
Exp. Date Jun30, 1986

la. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISj

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
rh-gtrihiitittn Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

Development and Implementation of an Expert
System to Remotely Access a Relational Databas

5. MONITORING ORGANIZATION REPORT NUMBER(S)

Final Report, 21 July 1988
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL

(If applicable)
7a. NAME OF MONITORING ORGANIZATION

HQDA, MILPERCEN

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Alexandria, VA 22332

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION |: ;gg%

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Student, HQDA, MILPERCEN (DAPC-OPA-E), 200
Stovall St., Alexandria, VA 22332

8c. ADDRESS (City, State, and ZIP Code). ':;\ c' , 11-J '*»

.,,;-■ Sfgf;* '

 j Q
11. TITLE (Include Security Classiffcation)- ■■-■"-----""'"■■~^'"-~

10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO

HQDA, MILPERCEN, ATTN: DAPC-OPA-E, 200 Stovall St., Alexandria, Virginia 22332
12. PERSONAL AUTHOR(S) . __.

Ortiz. Agustin *ll JUL. 3$
13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Year, Month, Day)

1988. July. 21

15. PAGE COUNT

89
16. SUPPLEMENTARY NOTATION

Approved for public release; distribution is unlimited.

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Masters Thesis, University of Florida, 1988

19. ABSTRACT (Continue on reverse if necessary and identify by block number) ^ knowledge based expert system has

been designed to allow a relational database to be queried by a user who has no training on
database management systems. A relational database was chosen as an efficient method of
storing information about Cub Scout Packs, the Dens that comprise them, the people involved
in the administration of each Pack as well as the members of their Dens, their leaders and
parents. The database can provide administrative information about the packs or dens, eithei
collectively or individually as well as information about the pack staff or den members.
Since more than one member of the same family is usually involved in the same pack, the in-
formation common to all members of the family was stored in a table separate from the infor-
mation that was unique to the individual people. The fact that a person could hold more thai
one position in the pack made it necessary to create tables to establish the relationships
between the pack and its staff and between the den and its members. In order to access the
information stored in the database without extensive training about relational databases or
structured query languages (SQL), a knowledge-based expert system was designed on the Texas

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

El UNCLASSIFIED/UNLIMITED □ SAME AS RPT. □ DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL

[J AGUSTIN ORTIZ

21. ABSTRACT SECURITY CLASSIFICATION

UNCLAS
22b TELEPHONE (Include Area Code)

(C02) 530 OOO'i

22c. OFFICE SYMBOL

ASOD PEP C

DD FORM 1473,84 MAR
LZKC

83 APR edition may be used until exhausted.

All other editions are obsolete
SECURITY CLASSIFICATION OF THIS PAGE

oiete. rt,, " "

(410) xn-uP3 Jsc-M

Development and impleme.nta.tion of an Expert System to Remotely
Access a Relational Database

MAJ AGUSTIN ORTIZ
HQDA, MILPERCEN (DAPC-OPÄ-E)
200 Stovall Street
Alexandria, VÄ 22332

Final Report, 21 July 1988

Approved for public release; distribution is unlimited.

A thesis submitted to the University of Florida in partial
fulfillment of the requirements
Science.

for the degree of Master of

ACKNOWLEDGMENTS

The author would like to express his appreciation and

esteem to his advisor, Dr. A. Antonio Arroyo, for his

guidance and support throughout the course of this

research, and throughout the majority of the author's

graduate studies.

The author is grateful to Dr. Donald G. Childers and

Dr. Jose C. Principe for serving on the supervisory

committee.

The author is grateful to Captain Richard Routh,

Director of the United States Army Artificial Intelligence

Training Facility, Fort Gordon, Georgia, for suggesting the

project and providing assistance in the development of the

expert system.

The author is grateful to Mr. Craig Lanning of the

United States Army Artificial Intelligence Training

Facility, Fort Gordon, Georgia, for assisting in the

implementation of the expert system.

The author is extremely grateful for the love and

support of his wife and family throughout his graduate

studies and the preparation of this document.

The author is grateful for the technical assistance of

the following individuals: Richard McCurdy, Electrical

ii

Engineering Department, University of Florida; Andy Wilcox

and Eric Johnson, Computer and Information Sciences

Department, University of Florida; Quinton May, Texas

Instruments, Incorporated, Tampa, Florida.

The author is extremely grateful to the Almighty God

who provided for all of his needs throughout his graduate

studies and the preparation of this document.

This research, as well as all of the author's graduate

studies, was funded by the Department of the Army under

provisions of the fully funded program in accordance with

Army Regulation 621-1.

Explorer is a trademark of Texas Instruments,

Incorporated. Automated Reasoning Tool (ART) is a

trademark of Inference Corporation. Unify is a trademark

of Unify Corporation. Remote Procedure Call (RPC) and

External Data Representation (XDR) are trademarks of Sun

Microsystems, Incorporated.

111

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS Ü

LIST OF FIGURES V

ABSTRACT vi

CHAPTERS

I INTRODUCTION 1

II DESIGN OF THE DATABASE 6

III EXPERT SYSTEM DESIGN 16

Overview of Expert Systems 16
Automated Reasoning Tool (ART) 17
Scout-Data 18

IV IMPLEMENTATION OF THE DESIGN 30

V SYSTEM EVALUATION AND RESULTS 37

VI CONCLUSION 42

APPENDICES

A RELATIONAL DATABASE SCHEMA 45

B EXPERT SYSTEM SOURCE CODE 51

C USER'S MANUAL FOR EXPERT SYSTEM 61

D DRIBBLE FILE OF SAMPLE SESSION 64

E NOTES ON NETWORKING AND REMOTE PROCEDURE CALLS..69

REFERENCES 77

BIOGRAPHICAL SKETCH 80

IV

LIST OF FIGURES

FIGURES

2-1 The FAMILY File (Table) 7

2-2 Relational Database Schema (Tables) 8

2-3 Database Schema (Types) 9

2-4 Entity-Relationship (ER) Diagram 14

2-5 Results of Example Query 15

3-1 Expert System Flowchart 20

E-l Computer Communications Architecture 70

E-2 Network Reference Models and Layering 72

E-3 DOD Military Standard Protocols 72

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

DEVELOPMENT AND IMPLEMENTATION OF AN EXPERT
SYSTEM FOR REMOTELY ACCESSING A RELATIONAL DATABASE

BY

AGUSTIN ORTIZ, JR.

August 1988

Chairman: A. Antonio Arroyo
Major Department: Electrical Engineering

A knowledge based expert system has been designed to

allow a relational database to be queried by a user who

has no training on database management systems. A

relational database was chosen as an efficient method of

storing information about Cub Scout Packs, the Dens that

comprise them, the people involved in the administration

of each Pack as well as the members of the Dens, their

leaders and parents. The database can provide

administrative information about the packs or dens, either

collectively or individually as well as information about

the pack staff or den members. Since more than one member

of the same family is usually involved in the same pack,

the information common to all members of the family was

stored in a table separate from the information that was

unique to the individual people. The fact that a person

could hold more than one position in the pack made it

vi

necessary to create tables to establish the relationships

between the pack and its staff and between the den and its

members. In order to allow an individual to access the

information stored in the database without extensive

training about relational databases or structured query

languages (SQL), a knowledge-based expert system was

designed on the Texas Instruments Explorer using the

Inference Corporation's Automated Reasoning Tool (ART).

The system uses rules based on the designer's expert

knowledge of the database structure and Structured Query

Language (SQL) to determine the exact query that is

desired, then prints the required query on the screen and

issues the query through an ETHERNET network to the

database located on another computer. The major objective

of this research is to take advantage of the capabilities

of an existing "artificial intelligence" machine to act as

an interface between the average human user and the

database management system on another computer.

Vll

CHAPTER I
INTRODUCTION

This thesis proposes the use of an expert system on a

Lisp-based artificial intelligence computer to act as the

interface between a human user and a relational database on

another computer connected via an Ethernet to the first

computer. The purpose of the expert system is to allow a

user with no training in database management systems to

obtain information from the database.

During the past ten years there has been an increase in

the availability of relational database management systems

[Da86, Gr87]. This has caused many organizations to store

data in relational databases. These same organizations

have had to spend time and money training people on the use

of the database management systems. It would greatly

benefit any organization that used a database management

system if there were a way for their employees to use the

database without the need for extensive training. During

the past ten years there also has been research done in the

field of artificial intelligence on the use of rule-based

or knowledge-based expert systems to execute tasks

previously requiring the expertise of a human specialist

[Ch87, C187, Ge83, Ha85, Ha83, Le85, Mc82, Pr85, St82,

Wa86, Wi84]. Some research was done combining the two

1

2

fields of database management and artificial intelligence

to produce intelligent databases[Da86, Gr87].

A database management system provides a means of

storing and retrieving data in order to obtain informa-

tion. The data, itself, is stored in files (also referred

to as tables) [Gr87]. The user may be allowed to perform

the following operations on the database:

Add new files to the database

Insert data into existing files

Retrieve data from existing files

Update the data in an existing file

Delete data from an existing file

Remove existing files from the database

A database can provide an organization centralized control

of operational data while allowing many users to access the

data simultaneously[Da86]. In order to avoid anomalies

caused by functional dependencies between the attributes of

a table in the database, it is necessary to normalize the

database. A relational database is considered to be in

third normal form (3NF) if all of the attributes in one

table that could determine an attribute of another table

are keys or all of the attributes of the second table are

part of the key of some table. This aspect was used to

determine which data was to be stored in each table.

Access to the information in the database is usually

accomplished via a high level Data Manipulation Language

(DML). Structured Query Language (SQL) has been

3

established as the standard language for relational

databases by the American National Standards Institute

(ANSI)[Gr87].

The principle behind expert systems is the use of a

knowledge base to produce intelligent behavior modeling

that of the human[Ch87, Ge83, St82]. It is desirable to

have the system interact with the user in the same way that

another human would[Ch87]. The system used in this project

provides a "rule-driven, mixed-initiative inter-face"

allowing the user and the system to exchange responses

while the program runs. This means that sometimes the

computer is answering the user's questions and sometimes

the user is answering the computer's questions[C187, Vol.

4, 3]. The user is also able to modify the knowledge base

at any time while the program is running, if desired[Ch87,

C187]. The ultimate success of the expert system in

accomplishing the desired objective will depend on the

ability of the knowledge engineer to extract the

information on which to base the rules from the expert on

the subject domain[C187]. In this project, the author has

played the role of subject matter expert as well as

knowledge engineer. The rules of the expert system consist

of "if conditions then action-listl else action-list2"

structures [C187, Wa86, Wi84]. At any time that the

conditions specified by a rule are true in the knowledge

base, that rule is triggered. Many rules could be

triggered by the same set of conditions[C187, Wi84]. Some

4

method must be used to determine which of the triggered

rules will actually fire[Wi84], When a rule fires, it will

take the specified actions in accordance with the

appropriate action-list. This could alter the facts in the

knowledge base, taking some rules off of the triggered list

(agenda) and adding others[Cl87, wi84]. This process will

continue as long as the system is active. The command to

halt may come from a user or be part of the action-list of

one of the rules[C187].

In order to be able to access a database on one

computer from another computer, it is necessary that the

two machines be interconnected via some type of network

(hardware) and have a common protocol (software)[Em87,

Ra87, Sp87, St87a, St87b, St88]. In this case, the two

computers were interconnected to a local area network via

an ethernet and were able to communicate using Transmission

Control Protocol/ Internet Protocol (TCP/IP) and Sun

Microsystems Remote Procedure Call (RPC).

In this project, a relational database was designed to

efficiently store data about Cub Scout packs, the dens

comprising each pack and the people associated with both.

The next chapter discusses the details of the database

design. An expert system was designed to determine the

appropriate query syntax needed to obtain the information

desired by the user. Chapter III discusses the design of

the expert system. Chapter IV discusses the implementation

of the expert system and Chapter V provides an evaluation

5

of the system and discusses the results of the research to

date. Chapter VI presents conclusions drawn from the

current research and provides a projection of further

research that is desirable.

CHAPTER II
DESIGN OF THE DATABASE

In recent years, businesses and organizations have

realized that information can be very valuable to

them[Gr87]. This has resulted in extensive research into

the development of database management systems (DBMS) to

allow data to be stored conveniently and retrieved to

provide the needed information[Gr87, Da86]. As might be

expected, these DBMS are complex software packages that

usually require extensive user training. There are three

major database models in use today: network, hierarchic

and relational. They differ in the way relationships

between files are represented. Although it is beyond the

scope of this paper to explain the first two models, it

must be stated here that the network and hierarchic models

allow one-to-many relationships to be represented directly

in a data structure diagram, while the relational database

model represents relationships implicitly in the file

attributes[Gr87]. To illustrate the basic concepts of

computerized databases, the extract of the FAMILY file in

figure 2-1 will be used. This file contains some

information about the families associated with a certain

Cub Scout pack.

family_number|last_name |street_addr |city |state| zip_code|area_code|number

1|Barnett |1121 NU 34th St|Gville|FL

60|0rtiz |3215 NU 53rd AV|Gville|FL
2|Betyew (2001 Space Odys|Gvi Ue|FL

10|Jones |2835 NU 41st PL|Gville|FL

11|Davis |3444 NU 50th Ua|Gville|FL

20|Arrants |6102 NU 33rd St|Gville|FL

Figure 2-1. The FAMILY File (Table)

| 32605| 9041

| 32605| 9041371-1930
| 32606| 9041
| 32605| 9041

| 32605| 904|378-6199
| 32605| 904|375-3921

Files. The file is the basic component of the database

system. Files contain data and are also referred to as

relations or tables. The row across the top of the table

gives information about the types of objects present in the

file. The elements of this row are the attributes or field

names. The actual data from the database is found in the

remaining rows of the table, with the data in each column

corresponding to the type of the attribute. Since it is

common to visualize files in the two-dimensional manner

displayed above, with rows and columns, they are usually

referred to as tables[Gr87].

Schema. The schema of a database is a description of

the structure of its tables. This description includes the

names of the attributes, their data types, and the

relationships between tables of the database. This is

contrasted with an instance of the database, which is a

description of the contents of the files of the database.

Each row of a table is called a record. In Figure 2-1,

above, the first record is

8

1|Barnett |1121 NW 34th St|GvUle|FL | 326051 9041

The individual elements of the record (e.g. 1, Barnett) are

called fields or field values. The DBMS allows the user to

store data in tables and later access the data from more

than one table in order to obtain information. In order to

develop the database, a conceptual view or schema must be

constructed to define the tables, the attributes of each

table, the data types of the attributes and the data

integrity constraints. The schema for our database is

located in Figures 2-2 and 2-3 below.

Tables

Pack

Den

People

Family

Staff

Members

Attributes
(Key Fields Underlined)

NUMBER. CHARTER_ORG, CHARTER_DATE,
COUNCIL

DEN NUMBER. PACKNUMBER.
MEETING_NIGHT, MEETING_LOCATION

PERSON NUMBER. FAMILYNUMBER.
FIRST_NAME, MI, WORK_PHONE

FAMILY NUMBER. LAST_NAME,
STREET_ADDR, CITY, STATE,
ZIP_CODE, AREA_CODE, NUMBER

PERSONNUMBER. FAMILY NUMBER.
PACKNUMBER. POSITION

PERSONNUMBER. FAMILYNUMBER.
DENNUMBER. PACK_NUMBER. POSITION

Figure 2-2. Relational Database Schema (Tables)

Types

DATE

NUMERIC (1)

NUMERIC (3)

NUMERIC (5)

NUMERIC (9)

STRING (1)

STRING (2)

STRING (3)

STRING (5)

STRING (8)

STRING (10)

STRING (11)

STRING (15)

STRING (22)

Attributes

CHARTER_DATE

DEN NUMBER

PACK_NUMBER, FAMILY_NUMBER,
AREA_CODE

ZIP_CODE

PERSON_NUMBER

MI

STATE

MEETING_NIGHT

POSITION

NUMBER, WORK_PHONE

CITY

LAST_NAME, FIRST_NAME,
MEETING_LOCATION

COUNCIL, STREET_ADDR

CHARTER ORG

Figure 2-3. Database Schema (Types)

There are three types of relationships possible between two

files of a database: one-to-one, one-to-many, and many-to-

many. In a one-to-one relationship, there is only one

record in a file corresponding to each record in the other

file where the two records have a common value in one of

the fields. There are no examples of this relationship in

our database. In a one-to-many relationship, many records

from the second file may be associated with each record of

the first file. The relationship between the pack table

10

and the den table is such a relationship — there may be

many dens in each pack. In the many-to-many relationship,

there may be many records from the second file associated

with each record of the first file and many records from

the first file may be associated with each record of the

second file[Gr87]. In our database, there are many people

associated with each den and some people are associated

with more than one den.

The Cub Scout Database. The database used for this

project was kept relatively simple in order to focus on the

aspects of expert system design and networking. The rest

of this chapter explains the basis for the database

design. The Cub Scout pack is an organization found in

most communities which has parallels in its structure to

larger organizations.

Integrity. Integrity is a measure of the correctness

of the data in the database at any given time. The primary

integrity constraint used is called a key constraint[Gr87].

It is used to insure that two records are not allowed to

exist in a table with the same value in the key field. For

instance, there should not be two dens with the same number

in the same pack. The other integrity constraint that is

sometimes allowed by a DBMS is that a field may not be

NULL, in other words, it must have a value. The Unify

Corporation's Unify relational database management system

(Unify) enforces this constraint for key fields only[Un85a,

Un85b, Un85c].

11

Relational Database. In a relational database, a table

is considered to be a relation, where a relation is a

subset of a set of elements. Operations are performed on

the relations based on the relational algebra to obtain

data from related tables. The relational databases are

easier to use than the other two types because of the

ability to perform these operations[Gr87]. The most

significant operations are listed below:

Projection omit some of the columns

Selection omit some of the rows
(Natural) Join obtain the product of two tables

Relations. Each pack has a number to distinguish it

from other packs in the same council. This number was used

as the key for the pack relation. Each pack is chartered

to an organization in the local community. Thus, the

attributes associated with the pack, itself, are its

number, charter organization, the date it was chartered and

the council it is associated with. The actual active units

in which the Cub Scouts participate are the dens. There

are usually several dens in a pack. Each den has a number

unique within the pack. Other information that might be

stored about the den includes the night and location that

meetings are held. By making the pack number one of the

attributes of the DEN table, the dependency of the den on

the pack is established. The pack is a family-oriented

organization[Bo86] . It is administered by a committee that

usually is composed of parents of scouts. The den leader

may also be the parent of one of the boys in the den.

12

Additionally, there may be boys from the same family in

different dens. In order to avoid duplicating the

information that is common to the family (e.g. last name,

address and home phone number) for each member of the

family, two tables were created. The FAMILY table contains

the information common to the entire family and is

distinguished by a unique three-digit family number. The

PEOPLE table contains only the information that is unique

to the individual person (first name, middle initial and

work phone number) in addition to the family number and a

unique person number for easy retrieval of information

about the individual. The family number establishes the

dependency of the individual person on the family.

Relationships. The FAMILY table and the PACK table are

independent of each other so there is no implicit

relationship. In order to establish the relationships

between the people in the database and the appropriate

organization, tables had to be created that made the

relationship explicit. The MEMBERS relationship allows the

members of a den to be identified by their person number,

family number, their position in the den (e.g. scout,

leader, parent), the den number and pack number. The STAFF

relationship identifies pack committee members similarly by

their person number, family number, committee position

(e.g. cubmaster, committee chief, etc.) and the pack

number. By storing this information in separate tables, a

person's position can be changed without interfering with

13

the personal or family information. The relationships

between tables are often depicted in an Entity-Relationship

(ER) diagram like the one in Figure 2-4 below. In the ER

diagram, the rectangular boxes represent the tables or

relations (entities), the diamonds represent relationships,

and ovals represent attributes[Gr87, Da86]. Straight lines

are used to represent connections between tables, with 1

and N written on the line to represent a one-to-many

relationship between connected files. The key attributes

are usually underlined and weak entities (those that only

have meaning with respect to an instance of the connected

table) are in double boxes[Gr87]. In our database, people

have no meaning without a corresponding family and dens

cannot exist without a corresponding pack.

Queries. By joining tables on shared attributes, it is

possible to obtain information about one or more packs, to

include any or all of the following: the first and last

names, middle initial, home address, home and work phone

numbers of committee members. Similarly, any information

in the database may be obtained about a den member in

addition to the administrative data about the den, itself.

For example, to obtain the first names, last names,

addresses and home phone numbers of all the members of den

3, pack 83, the following SQL query would be used:

14

(NUMBEfQ (CHARTER-DRG~Q (CHARTER-DATE)

(CDUNCIL)

(DEN-NUMBER)

(MEETING-NIGHT)

MEETING-LDCATIDN

'PERSON-NUMBER^)
y

[NAME)
|

(FIRST-NAME)

(MI)

(WORK-PHONE)

(^FAMILY-NUMBER)) FAMILY

(FAMILY-NUMBER) (LAST-NAME ")

(PHONE-NUM)

(AREA-CODE) (NUMBER^)

) f ADDRESS)

(STREET-ADDR y K CITY)

(STAT E) -(ZIP-CODE)

Figure 2-4. Entity-Relationship (ER) Diagram

15

select unique firstjiame, last_name, street_addr, city, number

from members m, people p, family f
where m.person_number=p.person_number

and m.family_number=p.family_number

and m.family_number=f.family_number

and m.pack_number=83
and m.den_number=3

order by last_name, first_name/

The results of the example query are shown in Figure 2-5,

below.

first_name |last_name |street_addr |city I number

Jason | Davis |3444 NU 50th Wa|Gville |378-6199

John |Davis [3444 NU 50th Ua|Gville |378-6199

Linda | Davis |3444 NU 50th Ua|Gville 1378-6199

Agustin |Ortiz |3215 NU 53rd AV|Gville |371-1930

Carlos |Ortiz |3215 NU 53rd AV|Gville |371-1930

Kathy | Ortiz |3215 NU 53rd AV|Gville |371-1930

Figure 2-5. Results of Example Query

The complexity of the above query illustrates the need for

extensive training to enable a user to execute queries

involving multiple tables. The user would need to know in

advance the attributes of each table and which ones were

keys. Additionally, the user must know the syntax of SQL.

CHAPTER III
EXPERT SYSTEM DESIGN

This chapter contains background information about the

history and characteristics of expert systems. Rule-based

systems are the basis of the most popular paradigm used for

solving problems in knowledge engineering. It is this

branch of Artificial Intelligence that specializes in in

building expert systems. There are many examples of rule-

based systems that have proven themselves. Among them are

XCON, MYCIN, and PROSPECTOR[Wi84].

Overview of Expert Systems

Knowledge-based expert systems have been in use since

the mid-1960s. They have been used for the performance of

tasks that normally require a professional specialist. The

expert system, itself, is a special-purpose computer

program constructed to handle problems within a narrow

domain [Ch87]. It depends on the expertise of one or more

human experts as extracted by a knowledge engineer. This

expert advice is coded as a series of rules and applied to

a special knowledge base that contains information about a

situation. The situation may be either real or

hypothetical. The action that a human expert would take

given the same circumstances are simulated by the actions

specified by the rules of the system. Although the

16

17

computerized expert system is limited in that it cannot be

programmed to do something that no human knows how to do,

it has many advantages over the human expert. The properly

programmed expert system can use the combined knowledge of

several experts. It is fully informed at all times,

considering all facts in the knowledge base before taking

any action[C187]. Expert systems are not subject to human

emotions, physical fatigue, or illness. Since the actions

taken depend entirely on the facts (knowledge), it is often

said that the real power of the expert system is a function

of the knowledge it contains[Ch87, C187, Wi84]. The major

issue in the development of an expert system is the

construction and manipulation of the knowledge base.

Expert systems usually consist of the following

components: a knowledge base, a data base, a control

mechanism, and a knowledge-base editor. The knowledge can

be separated into modules and the control mechanism tries

to match data from the data base to the knowledge

base[Ch87]. The knowledge editor is a user interface that

allows the user to modify the data in the knowledge base.

Automated Reasoning Tool (ART)

Inference Corporation's ART can be used to develop

expert systems. ART provides the knowledge engineer with

the following capabilities:

Rule-based programming

Forward chaining

Backward chaining

Schema-based knowledge representation, allowing a program to reason about

the relationships between objects
A method of modeling situations that change dynamically using viewpoints

18

An interactive environment for developing and debugging the system.

A graphics interface package[C187].

Scout-Data

Overview. The Scout-Data expert system uses a series

of facts and rules to determine the proper SQL query needed

to obtain the desired information. For the purpose of this

project, the number of queries was limited to some commonly

useful ones. The system is initialized in an unknown

state. It must ask the user if he wants to query the

database in order to determine whether or not it is

finished. If the user wants to query the database, the

system asks if the desired information is about packs or

dens. These are the two types of information of interest

to a user of the database. With respect to the pack, there

are two types of information of interest: administrative

and staff. Administrative information is found in the pack

table, itself, while staff information identifies the

committee members (people) associated with the pack. With

respect to the dens, there are likewise two types of

information: administrative information contained in the

den table and information identifying the members of the

den. The expert system must determine the type of query to

be executed by asking the user which type of information is

desired. Once the type of query has been determined, it is

possible to get the information about all of the units in

the database or only some selected units. Again, the

system asks the user a series of questions in order to

determine which query to execute. After the query has been

19

executed, the system will ask the user whether or not

another query is desired and react accordingly. Figure 3-1

below is a flowchart depicting the flow of control in the

system.

Facts. The initial flag asserts dummy facts to insure

that the appropriate rules are triggered to obtain

information from the user. The required facts are as

follows:

use-db whether or not to query the

database (y/n)

type-query information about pack (p) or

den (d)

type-info administrative info (a), info

about pack staff (s) or den

members (m)

(deffacts initial-flag ;Initial facts used to
;start the system

(use-db unknown)
(type-query unknown)
(type-info unknown)

)

Schemata. The term schema, when used in relation to

ART, has a meaning different from that which has been used

above in discussing the relational database. An ART schema

is a collection of facts about a particular object that

has been given a name. This will allow ART to reason about

the facts that relate to the object. The definition

parallels that of a semantic net. The definition of

schemata provides symbols to represent objects within the

knowledge base. Inheritance relations are used to bind

schemata into semantic nets[C187], The following schemata

were defined to establish the semantic network representing

20

(START j

GETTING-STARTED

END LETS-QUIT

PACK-QUERY

-iÜ

ANGTHER-QUERY

DEN-QUERY

DEN-ADMIN DEN-MEMBERS

Y

QUERY1 QUERY2 QUERY3 QUERY4

QUERY5

' "N

A

N

QUERY6

I
QUERY7

I

QUERY8

Y

N

QUERY9 QUERY10

Figure 3-1. Expert System Flowchart

21

the relationships between the tables of the scout

database.

Subclass-of. Subclass-of is used to establish the

inheritance of attributes from the class to its

subclasses. In this system, this allows the den schema to

inherit the information from the pack schema and the people

schema to inherit information from the family schema.

(defschema subclass-of
(instance-of inh-relation)
(new-relations (is-a (?domain)(subclass)))
(inverse has-subclasses))

Has-subclasses. This is the inverse of subclass-of.

Pack. Pack has slots for each of the attributes of the

pack relation.

Den. Den has slots for each of the attributes of the

den relation.

People. People has slots for each of the attributes

of the people relation.

Family. Family has slots for each of the attributes of

the family relation.

Rules. Described below are the rules used by the

expert system. The commented source code containing all of

the rules is located in Appendix B.

Gettinq-started. This rule retracts the dummy use-db

fact, displays a greeting and asks the user if the database

is to be queried. Asserts a new use-db fact based on the

user response.

(defrule getting-started
?x<-(use-db ~Y & -N) ;WHETHER to query the DB or

;NOT unclear or unknown.

22

;(Should only occur at the beginning of the session.)
=>

(set-interactive-mode nil) ;turn off warning messages
(retract ?x) ;remove unsatisfactory fact,
(select-window 'command-window)
(reshape-window #L'command-window 10 10 660 300)
(clear-window #1/command-window)
(printout t t t ;output to screen.

"Hello. My name is ART. I can help you access the
Cub Scout Data Base." t t)

(if (y-or-n-p (format nil "Do you wish to query the Data
Base? "))

then
(assert (use-db Y))
else
(assert (use-db N))))

Ouery-db. In the presence of a (use-db Y) fact and a

dummy type-query fact, this rule retracts the type-query

fact, then asks the user whether information is desired

about packs or dens. Asserts a new type-query fact based

on the user response.

(defrule query-db
"An SQL query is desired"

(use-db Y)
?x<-(type-query -P&-D)

=>
(retract ?x)
(printout t t t "Do You want information about a pack [P]
or a den [D]?")
(assert (type-query =(read))))

Pack-query. In the presence of a (use-db Y) fact, a

(type-query P) fact and a dummy type-info fact, this rule

retracts the dummy fact, then asks the user whether

information is desired about the pack or its staff.

Asserts a new type-info fact based on the user response.

(defrule pack-query
"determine whether info is desired about the pack,

itself, (admin)
or about the people that run it (staff)"

(use-db y)
(type-query P)

23

?x<-(type-info -A&-S)
=>
(retract ?x)
(printout t t "Do you want administrative information about
the pack [A]
or information about the pack staff [S]? ")
(assert (type-info =(read))))

Den-query. In the presence of a (use-db Y) fact, a

(type-query D) fact and a dummy type-info fact, this rule

retracts the dummy fact, then asks the user whether

information is desired about the den or its members.

Asserts a new type-info fact based on the user response.

(defrule den-query
"determine whether info is desired about the den,

itself, (admin)
or about the people associated with it (members)"

(use-db y)
(type-query D)
?x<-(type-info ~A&~M)

=>
(retract ?x)
(printout t t "Do you want administrative information about
the den [A]
or information about the den members [M]? ")
(assert (type-info =(read))))

Pack-admin. In the presence of a (use-db Y) fact, a

(type-query P) fact and a (type-info A) fact, this rule

asks the user whether the information is desired about all

packs in the database. If the user response is Y, the

specified query is displayed on the screen with its output

below it. Otherwise, the user is asked for the number of

the pack in order to generate the query as described above.

Callrpc is used to remotely execute the query on the host

computer.

(defrule pack-admin
"User wants admin info about the pack"

(use-db Y)

24

(type-query P)
(type-info A)
=>
(reshape-window #L'command-window 10 10 660 300)
(if (y-or-n-p (format nil "Do you want the information on
all packs? "))

then
(clear-window #L'command-window)
(printout t t "The required SQL query is"

t t "select *"
t t "from pack"
t t "order by number/" t t)

(printout t t "Here is the information you requested:"
t t)

(reshape-window #1/command-window 10 10 660 450)

(callrpc "beach" 20118651 1 1 :xdr_void nil :xdr_string
"lm:gus;packs.text" :udp)

(view-file "lm:gus;packs.text")
else
(printout t t "Please enter the Pack number [0-999]: ")
(bind ?number (read))
(clear-window #1/command-window)
(printout t t "The required SQL query is"

t t "select *"
t t "from pack"
t t "where number=" ?number"/" t t)))

Pack-staff. In the presence of a (use-db Y) fact, a

(type-query P) fact and a (type-info S) fact, this rule

asks the user whether the information is desired about all

packs in the database. If the user response is Y, the

specified query is displayed on the screen with its output

below it. otherwise, the user is asked for the number of

the pack in order to generate the query as described above.

(defrule pack-staff
"User wants staff info about the pack"

(use-db Y)
(type-query P)
(type-info S)
=>
(reshape-window #L'command-window 10 10 660 300)
(if (y-or-n-p (format nil "Do you want the information on
all packs? "))

then
(clear-window #L'command-window)

25

(printout t t "The required SQL query is"
t t "select pack_number, position, first_name, MI,

last_name, number, work_phone"
t t "from staff s,people p, family f"
t t "where s.person_number=p.person_number and"
t t "s.family_number=p.family_number and"
t t "s.family_number=f.family_number"
t t "order by pack_number/" t t)

else
(printout t t "Please enter the Pack number [0-999]: ")
(bind ?pnum (read))
(clear-window #L'command-window)
(printout t t "The required SQL query is"

t t "select pack_number, position, first_name, MI,
last_name, number, work_phone"

t t "from staff s,people p, family f"
t t "where s.person_number=p.person_number and"
t t "s.family_number=p.family_number and"
t t "s.family_number=f.family_number and"
t t "pack_number=" ?pnum"/" t t)))

Den-admin. In the presence of a (use-db Y) fact, a

(type-query D) fact and a (type-info A) fact, this rule

asks the user whether the information is desired about all

dens in the database. If the user response is Y, the

specified query is displayed on the screen with its output

below it. otherwise, the user is asked for the number of

the pack. Then asks the user whether the information is

desired about all dens in the pack. If the user response

is Y, the specified query is displayed on the screen with

its output below it. Otherwise, the user is asked for the

number of the den in order to generate the query as

described above.

(defrule den-admin
"User wants admin info about the den"

(use-db Y)
(type-query D)
(type-info A)
=>
(reshape-window #L'command-window 10 10 660 300)
(if (y-or-n-p (format nil "Do you want the information on
all dens in the DB? "))

26

then
(clear-window #1/command-window)
(printout t t "The required SQL query is"

t t "select *"
t t "from den"
t t "order by pack_number,den_number/" t t)

else
(printout t t "Please enter the Pack number [0-999]: ")
(bind ?pnum (read))
(if (y-or-n-p (format nil "Do you want the information

on all dens in the pack? "))
then
(clear-window #1/command-window)
(printout t t "The required SQL query is"

t t "select *"
t t "from den"
t t "where pack_number=" ?pnum
t t "order by den_number/" t t)

else
(printout t t "Please enter the Den number [0-9]: ")
(bind ?dnum (read))
(clear-window #L'command-window)
(printout t t "The required SQL query is"

t t "select *"
t t "from den"
t t "where pack_number=" ?pnum " and"
t t "den_number=" ?dnum"/" t t))))

Den-member. In the presence of a (use-db Y) fact, a

(type-query D) fact and a (type-info M) fact, this rule

asks the user whether the information is desired about all

dens in the database. If the user response is Y, the

specified query is displayed on the screen with its output

below it. otherwise, the user is asked for the number of

the pack. Then asks the user whether the information is

desired about all dens in the pack. If the user response

is Y, the specified query is displayed on the screen with

its output below it. Otherwise, the user is asked for the

number of the den in order to generate the query as

described above.

(defrule den-member
"User wants member info about the den"

27

(use-db Y)
(type-query D)
(type-info M)
=>
(reshape-window #L'command-window 10 16 780 350)
(if (y-or-n-p (format nil "Do you want the information on
all dens? "))

then

(clear-window #1/command-window)
(printout t t "The required SQL query is"

t t "select den_number, pack_number, position,
first_name, MI, last_name, number, work_phone"

t t "from member ra,people p, family f"
t t "where m.person_number=p.person_number and"
t t "m.family_number=p.family_number and"
t t "m.family_number=f.family_number"
t t "order by

pack_number,den_number,position,last_name/" t t)
else
(printout t t "Please enter the Pack number [0-999]: ")
(bind ?pnum (read))
(if (y-or-n-p (format nil "Do you want the information

on all dens in the pack? "))
then

(clear-window #L'command-window)
(printout t t "The required SQL query is"

t t "select den_number, pack_number, position,
first_name, MI, last_name, number, work_phone"

t t "from member m,people p, family f"
t t "where m.person_number=p.person_number and"
t t "m.family_number=p.family_number and"
t t "m.family_number=f.family_number and"
t t "pack_number=" ?pnum
t t "order by den_number,position,last_name/" t t)

else
(printout t t "Please enter the Den number [0-9]: ")
(bind ?dnum (read))

(clear-window #L'command-window)
(printout t t "The required SQL query is"

t t "select den_number, pack_number, position,
first_name, MI, last_name, number, work_phone"

t t "from member m,people p, family f"
t t "where m.person_number=p.person_number and"
t t "m.family_number=p.family_number and"
t t "m.family_number=f.family_number and"
t t "pack_number=" ?pnum " and"
t t "den_number=" ?dnum
t t "order by position,last_name/" t t))))

28

Another-ouerv. In the presence of a (use-db Y) fact, a

type-query fact and a type-info fact, this rule asks the

user whether or not another query is desired. If the user

response is Y, all of the facts are retracted, (use-db Y)

is asserted, together with two dummy facts. Otherwise, the

use-db fact is retracted and (use-db N) is asserted. This

rule will only fire after all other rules with a higher

salience (priority) have fired, because it has been

assigned a salience of -1.

(defrule another-query
"Find out if user wants to make another query."

(declare (salience -1)) ;make this wait until other
rules have fired

?use-db<-(use-db Y)
?type-query<-(type-query ?D & -unknown)
?type-info<-(type-info ?M & -unknown)

=>

(if (y-or-n-p (format nil "Do you wish to query the Data
Base again? "))

then
(retract ?use-db

?type-query
?type-info)
(clear-window #L'command-window)
(assert (use-db Y)

(type-query unknown)
(type-info unknown))

else
(retract ?use-db)
(assert (use-db N))))

Lets-quit. In the presence of a (use-db N) fact, this

rule halts execution and resets the knowledge base.

(defrule lets-quit
"User doesn't want to query the data base"

(use-db N)
=>
(reshape-window #L'command-window 19 16 398 166)
(clear-window #L'command-window)
(printout t t "Goodbye, have a nice day.")

29

(halt)
(reset))

CHAPTER IV
IMPLEMENTATION OF THE DESIGN

Database. The Cub Scout Database described in Chapter

II and Appendix A was implemented on the Computer and

Information Sciences (CIS) department's Gould Powernode

using the Unify Corporation's Unify relational database

management system.' The database resides in the

/cisg/grad/gus/scouts subdirectory. In order to access the

database directly, the user must either set the DBPATH

environment variable to this path or change directory to

this subdirectory before entering the "unify" command from

the operating system shell. Alternately, SQL queries and

updates may be executed from the shell by entering "SQL"

followed by the name of a file containing a valid query.

If there is no query file or the user wishes to type the

query interactively, "SQL" may be entered without

arguments. The "sql=>" prompt will be displayed to

indicate that the system is ready for a query. Queries

must end with a slash (/) . After the queries have been

completed, the "end" command will return the user to the

operating system shell. Unify also provides a Host

Language Interface which allows a programmer to write a

program in the C language to access the database[Un85a].

30

31

Expert System. The expert system described in Chapter

III was implemented on the Applied Artificial Intelligence

Laboratory (AAIL) Texas Instruments Explorer using the

source code contained in Appendix B. The system was

compiled using Inference Corporation's Automated Reasoning

Tool (ART), version 3.0. A user's manual is provided at

Appendix C.

Communications Interface. The objective of this

project requires that the expert system be able to

communicate with the database. This is possible because

both machines are connected to a broadband coaxial cable

Radio Frequency (RF) Ethernet. The University of Florida

campus has a computer network known as UFNET that provides

several network services on a bidirectional RF cable.

Several of the computers used by the Electrical Engineering

(EE) department on the fourth floor of the Computer Science

and Engineering building (CSE) are interconnected via an RF

Ethernet operating according to published Institute of

Electrical and Electronics Engineers (IEEE) protocol. The

EE segment was connected to other segments by a bridge

device [Mc88]. It is this bridge that allows the AAIL to

communicate with the CIS Gould computer. In order for the

expert system to execute an SQL query against the Unify

database on behalf of a user, the system must access the

transport layer of the Transmission Control Protocol (TCP)

or use the Sun Microsystems Remote Procedure Call (RPC) to

call a remote procedure server on the remote host[Su86,

32

St88, Te87]. The transport layer is one of the seven

layers of the International Standards Organization (ISO)

Open Systems Interconnection (OSI) Model. Its purpose is

to provide for the exchange of data between processes in

different systems by ensuring that data units are delivered

error-free, in seguence and without loss or

duplication[St88]. In order to access the transport layer

directly from the expert system, a special protocol must be

written. This protocol would be similar to the TELNET

protocol currently used for remote terminal operations, but

would take its input from a file of command specifications

instead of from the user's keyboard[St88, Te87].

Remote Procedure Call. The remote procedure call model

uses two processes to accomplish a procedure call—the

caller's process and the server process on the remote

host. The calling process must send a message containing

the procedure's identification parameters to the server and

wait for a response containing the result of the

procedure. The calling process resumes execution upon

receipt of the server's message. Although the RPC protocol

is independent of the transport protocol, the reliability

will be improved by using TCP/IP. RPC provides the means

for the user to authenticate into the remote system as well

as the means of uniguely identifying the remote procedure

to be called[Su86]. The call message must specify the

remote program number, version number, and procedure number

as well as the external data representation of the input

33

and output data streams. RPC is not a commonly used

procedure and there is not much local expertise about how

to implement the actual call. For this reason, this aspect

of the project required extensive research and assistance

from agencies outside the university. The need to

interface two totally different computers using different

operating systems (UNIX versus Lisp with FLAVORS)

introduced many interesting issues, some of which are still

being researched. The fact that Unify is a proprietary

product and its source code is not available to the author

caused a problem with the use of the RPC. The Host

Language Interface made it possible to write a program to

access the database. The individual functions of this C

program can be registered with RPC for use by the remote

machine. The expert system's rules must use the callrpc

function to call the registered function. The requirements

of network communications and RPC are discussed further in

Appendix E. The following code segment was used to test

the use of the Unify Host Language Interface with

registerrpc:

sample.c

UNIFY functions Used:

bseqaccO

bgfieldO

iniubufO
bfaccessO

Based on the bseqsimpl.c example in the Unify Programmers' Manual.

This C program uses the Unify Host Language Interface and the Sun Microsystems

Remote Procedure Call (RPC) to enable a remote user to access all records of the

pack table from the Cub Scout database. */

34

/* include Database header file */

Sinclude "/cisg/grad/gus/scouts/file.h"

#include <stdio.h>

#include "/sys/rpc/rpc.h"

#include "/sys/rpc/xdr.h"

«define SIZE 8192 /* the size of the buffer */

«define program_number 0x20118651

«define version_number 1
«define procedure_number 1

int *current_query();

rpc_initialize()

{ /* the following procedure call is used to register the program and

procedure with RPC so that it may be called from a remote machine.*/

if (registerrpc (programjiumber,
version_number,

procedure_number,

current_query,

xdr_void,

xdr_int) != 0) {

printf ("Error in registerrpc\n");

>

int *current_query()

i
int current_query;

char *malloc(),

»buffer,

print_buffer[80];

int line_number;

/* Allocate SIZE bytes of memory, where buffer is a pointer
to the designated memory location (buffer).*/

if ((buffer = malloc(SIZE)) == (char *) 0)

i
printf ("Not enough memory available");

exit ();

>
else

C
iniubuf (buffer, SIZE);

/* Tells Unify where the buffer is and its size.*/

if ((bseqacc(pack, first)) != 0)

35

/* makes the first pack record current */

t
printf ("there are no packs in the database\n");

exitO;

>

prmp(1f4,"number charter_org charter_date");

prmp(50,4," council");

prmp(1,5,"_ ") ;

prmp(50,5," ");

line_number=7;

do

i
/* make the number of the pack current, using bfaccess to get

the pointer to the number from the buffer */

bfaccess(pack,pack_num);

pritm (line_number++);

>
while ((bseqacc (pack,next)) == 0);

>
return (¤t_query);

>

pritm(x)

/* a function used to specify the format of the output */

int x;

{
pdata (3,x,pack_num);

pdata (10,x,org);

pdata (36,x,cdate);

pdata (50,x,council);

>

main ()

{
/* the function call below is used to register the procedure for remote calls*/

rpc_i ni t i aIi ze();

/* The code below was used to test the function on the host

computer, but is not used by the remote client at all, since

RPC only calls the numbered procedure. */

if (current_query () != OX

printf ("\n");

>

36

/* set up the server process */

svc_run<);

fprintf(stderr, "Error: svc_run should never return\n");

>

CHAPTER V
SYSTEM EVALUATION AND RESULTS

The expert system correctly performs the task of

determining the required SQL query and displaying it on the

screen. The designated query is then executed remotely

using the Sun Microsystems Remote Procedure Call (RPC).

The results of the query are displayed on the screen using

the Lisp view-file function. Research continues into the

proper procedure for executing the queries remotely. The

expert knowledge part of the system works correctly to the

degree that it was implemented. The system could easily be

modified to formulate other queries through the addition of

the appropriate rules. The system will not accept invalid

responses for the yes-or-no questions or the type-query and

type-info facts, however, it currently does not perform any

range-checking of the pack or den numbers when they are

entered. The user is requested to enter a number between 0

and 999 for the pack and between 0 and 9 for the den.

Although the expert system does not check for numbers out

of range, the Unify database does according to the types in

Appendix A. Therefore, the database will return an error

message or a message stating that no records were found.

The expert system actually formulates ten different types

of query for the user as depicted in the flowchart in

37

38

Figure 3-1, above. Since many of the queries depend on the

user's input for values, the actual number of queries

possible is much greater. Although the number of queries

possible is virtually unlimited, it is normally the case

that several types of query will be executed on a regular

basis by a given user or group of users. If the expert

system designer is provided with sufficient information,

the appropriate query types could be implemented by the

proposed expert system. It should be noted that different

departments could be given different expert systems or the

same expert system could be designed to ask what department

the user was from in order to determine which set of

queries to make available.

Sample Expert System Session. The following is a

dribble file generated during a session with the scout-data

expert system in an ART window on the AAIL.

=> reset

=> run

Hello. My name is ART. I can help you access the

Cub Scout Data Base.

Do you wish to query the Data Base? (Y or N) No.

Goodbye, have a nice day.

=> run

Hello. My name is ART. I can help you access the

Cub Scout Data Base.

Do you wish to query the Data Base? (Y or N) Yes.

Do You want information about a pack [P] or a den [D]?P

Do you want administrative information about the pack [A]

39

or information about the pack staff [S]? A

Do you want the information on all packs? (Y or N) Yes.

The required SQL query is

select *

from pack

order by number/

Here is the information you requested:

number|charter_org |charter_date|counciI

83|Westside Christian Ch | 01/02/84jNorth Florida

566|Diamond Elem. Sch | 12/03/82|Savannah

Do you wish to query the Data Base again? (Y or N) Yes.

Do You want information about a pack [P] or a den [D]?D

Do you want administrative information about the den [A] or information about

the den members [M]? M

Do you want the information on all dens? (Y or N) No.

Please enter the Pack number [0-999]: 83

Do you want the information on all dens in the pack? (Y or N) No.

Please enter the Den number [0-9]: 3

The required SQL query is

select den_number,pack_number,position/first_name,MI

last_name,number,work_phone

from member m,people p, family f
where m.person_number=p.person_number and

m.family_number=p.family_number and

m. f ami ly_number=f. f ami ly_number and

pack_number=83 and

den_number=3
order by position,last_name/

Here is the information you requested:
den_number|pack_number|pos i t i on|f i rst_name |M111ast_name |number |work_phone

3| 83|leadr |Linda

3| 83|parnt |John

3| 83|parnt |Linda

3| 83|parnt |Agustin

3| 83|parnt |Kathy

3| 83|scout |Jason

3| 83|scout jCarlos

|Davis |378-6199|

|Davis |378-6199|497-3045

|Davis |378-6199|
|0rtiz |371-1930|335-8447

E |0rtiz |371-1930|

|Davis |378-6199|

R |0rtiz |371-1930|

40

Do you wish to query the Data Base again? (Y or N) No.

Goodbye, have a nice day.

=> exit

The session above demonstrates the fact that even for a

relatively complex query involving the joining of three

tables, the expert system only needs to ask the user six

questions in order to determine the required query. It was

necessary to capture the session results in a dribble file

because it is not currently possible to capture screen

images on the printer and ART cannot be accessed from a

remote terminal. It is, however, possible to capture the

results of the session in a dribble file in order to

demonstrate the firing of rules, as well as the assertion

and retraction of facts. Another dribble file showing the

rules and facts that were asserted and retracted for the

above session is included as Appendix D.

Evaluation. The scout-data expert system produces ten

types of SQL queries correctly after asking the user a few

questions to determine the type of information that is

desired. This eliminates the need for the user to be

familiar with DBMS or the schema of the database being

used. Even without the communications interface, the

system serves a useful purpose in this regard. The full

implementation of the expert system with a communication

protocol and interface could potentially save an

organization many hours of training together with the

monetary costs associated with the training. Additionally,

the queries could be executed faster because instead of the

41

user having to type them in, the expert system would be

calling them as soon as the knowledge base required it.

Using ART, it is very easy to modify the expert system to

ask other questions or perform other actions. This makes

it a very flexible system, thus increasing its potential

usefulness.

CHAPTER VI
CONCLUSION

The use of an expert system on an artificial

intelligence machine as a front end processor to interface

with a relational database could potentially save an

organization a lot of training time and money by elimina-

ting the need for Database Management Systems (DBMS)

training for those employees who will only need to use the

database occasionally. The organization will still need a

trained Database Administrator to maintain the DBMS,

however, the expert system could include rules for allowing

the input and updating of data as well as queries. The

expert system knowledge base and rules can be custom-

designed to the organization's requirement and as long as

there is a physical communications link to the host

computer on which the database resides and the appropriate

software protocol is in place on both machines, the system

can be fully implemented as described above. As previously

stated, the expert system can formulate a complex SQL query

after asking the user only a few simple questions. As long

as the questions are designed in natural language that the

potential users can understand, this is an effective way to

operate the database, since it will allow untrained users

to execute queries that formerly required DBMS training.

42

43

Since the rule-based actions are limited only by the amount

of expertise and information provided to the knowledge

engineer, this type of expert system could easily be used

in almost any other area where a predefined set of actions

are to be executed based upon the existence of some

predefined conditions. The execution of the actual query

would be faster using the expert system because the system

would activate the query at the speed of the computer

processor as soon as the knowledge base supported that

action. Using an expert system would also reduce the

number of errors caused by executing incorrect queries.

This would result in additional savings of time and money.

Remote procedure calls had never been attempted

previously on either of the computers involved in this

research. This made it difficult to obtain local

assistance in solving networking problems. As remote

procedure calls become more common, the difficulties

encountered in implementing the communications interface

aspect of this project will greatly diminish as more

computers will already have communications software

installed and in use.

Future research in this area should include designing

the expert system to completely generate the query by

establishing facts and inheritances to determine exactly

which attributes are desired, rather than merely executing

"canned queries" that have been coded previously. Although

the use of these queries is a limitation, it would not

44

normally be a major one even in the industry, because,

usually, the same queries will be executed again and

again. Also, the insertion, deletion and correction of

data should be incorporated into future revisions of the

system.

APPENDIX A
RELATIONAL DATABASE SCHEMA

Description

A database containing data about one or more Cub Scout

Packs as well as the Dens and people (Staff and Den-

members) associated with each pack was developed using the

Unify database management system on the Computer and

Information Sciences department's Gould powernode. There

are several types of Staff-members: cubmaster, secretary,

treasurer, committee chief and committee members. An adult

may be a staff (committee) member as well as a Den member.

There are three types of Den-members: scouts, leaders, and

parents. An adult may be a leader as well as a parent and

may be associated with more than one Den. Since there may

be more than one member of a family associated with the

pack, there is a need to store information about each

individual separately. Using the Schema described below,

it is possible to avoid duplication of the information

common to all members of the same family in the database.

By joining the Family and People tables, it is possible to

obtain information pertaining to one or more members of any

family. Although Unify supports the creation of data entry

and query screens which allow a user to obtain information

from multiple tables on a single screen, it also allows

45

46

users to call Structured Query Language (SQL) queries

directly from the operating system (UNIX) shell as well as

add and extract data from the database using C language

programs[Un85a, Un85b, Un85c].

Relational Database Form (Schema)

Tables

Pack

Den

People

Family

Staff

Members

Attributes
(Key Fields Underlined)

NUMBER. CHARTER_ORG, CHARTER_DATE,
COUNCIL

DENNUMBER. PACK NUMBER.
MEETING_NIGHT, MEETING_LOCATION

PERSON NUMBER. FAMILY NUMBER.
FIRST_NAME, MI, WORK_PHONE

FAMILY NUMBER. LAST_NAME,
STREET_ADDR, CITY, STATE,
ZIP_CODE, AREA_CODE, NUMBER

PERSON NUMBER. FAMILYNUMBER.
PACK NUMBER. POSITION

PERSON NUMBER. FAMILY NUMBER.
DENNUMBER. PACKNUMBER. POSITION

47

Types Attributes

DATE CHARTER_DATE

NUMERIC (1) DEN_NUMBER

NUMERIC (3) PACK NUMBER, FAMILY NUMBER,
AREA_CODE

NUMERIC (5) ZIP_CODE

NUMERIC (9) PERSON_NUMBER

STRING (1) MI

STRING (2) STATE

STRING (3) MEETING_NIGHT

STRING (5) POSITION

STRING (8) NUMBER, WORK_PHONE

STRING (10) CITY

STRING (11) LAST NAME, FIRST NAME,
MEETING_LOCATION

STRING (15) COUNCIL, STREET_ADDR

STRING (22) CHARTER_ORG

Entitv-Relationship Model

ty Sets

Pack

Den

Family

People

: Entity Tvpes

Den depends on Pack

People depend on Family

48

Relationships. Below is a list of the relationships

with the key attributes of each relation that participates

in the relationship. The data types of the attributes are

described below.

PACK-HAS-DEN

PEOPLE-BELONG-FAMILY

PEOPLE-STAFF-PACK

DEN-MEMBERS-PEOPLE

pnum

fid

spack, spid

unid, nam

Detailed List of Entity Sets and Attributes

NAME

Pack

Den

ATTRIBUTE
NAME

TYPE SIZE CONSTRAINTS

PACKNUM INTEGER 3 1-999,
[NOT NULL]

A unique 3 digit number identifier.

ORG

CDATE

DENID

NUMBER

PNUM

NIGHT

STRING

DATE

COMBINED

INTEGER

INTEGER

STRING
'WED', 'THU

22

NA

[NOT NULL]

DD/MM/YY

', 'FRI'

1-9,
[NOT NULL]

[NOT NULL]
IN PACK.PACK_NUM

IN ['MON', 'TUE',
rSAT', 'SUN']

SITE STRING 11

49

People

Family

PID

PNO

FID

NAME

FNAME

MI

PHONE_NO

T

FAM ID

LNAME

ADDRESS

STREET

CITY

STATE

ZIP

PHONE

AREA

NUM

Members

MEMID

NAM

UNID

MTYPE

COMBINED

INTEGER

INTEGER

COMBINED

STRING

CHAR

STRING

0-999999999
[NOT NULL]

1-999
[NOT NULL]
IN FAMILY.FAM ID

11 [NOT NULL]

1

8 IN ['0'..'9','-']

INTEGER 3 [NOT NULL], 1-999
Numbers are unique within the DB.

STRING

STRING 15

STRING 10

STRING 2

INTEGER 5

INTEGER 3

STRING 8

11 [NOT NULL]

[NOT NULL]

[NOT NULL]

[NOT NULL]

[NOT NULL]

[NOT NULL]

IN ['0'..'9','-']

COMBINED

COMBINED

COMBINED

STRING

IN PEOPLE.PID
[NOT NULL]

IN DEN.DEN_ID
[NOT NULL]

[NOT NULL]
IN ['SCOUT',
'PARNT', 'LEADR']

50

Staff

SID

SPID

SPACK

STYPE

COMBINED

COMBINED

COMBINED

STRING

IN PEOPLE.PID
[NOT NULL]
IN PACK.PACK_NUM
[NOT NULL]

[NOT NULL]
IN ['MASTR',
'COMMC, 'COMMM',
'SECRY', 'TREAS']

APPENDIX B
EXPERT SYSTEM SOURCE CODE

Listed below is the commented source file for the Cub

Scout Data expert system. This file exists on the Applied

Artificial Intelligence Laboratory (AAIL) Texas Instruments

Explorer as AAIL: GUS; SCOUT-DATA.ART#>.

... _*_ Mode: ART; Package: art-user; Base: 10.;;■ Syntax:
Common-

lisp -*-

Cub Scout Data Base

Agustin Ortiz
Major, US Army Signal Corps

10 JUN 88

MASTER'S THESIS PROJECT

AN EXPERT SYSTEM TO ACCESS A RELATIONAL DATABASE

This program was written using the ZMACS editor and
compiled using ART V 3.0 on the Texas Instruments
Explorer. The program asks the user several
questions in order to determine what type of query is
needed using structured query language (SQL). The
command window is then cleared and the appropriate
SQL query is displayed. When fully implemented, the
query will be executed against the Cub Scout database
located in the /cisg/grad/gus/scouts subdirectory of
the CIS Gould (host beach.cis.ufl.edu).

Relations must first be defined before being used in an
ART program. This tells ART how many parameters to
expect in order for error-checking to be performed
automatically

51

52

(defrelation use-db (?boolean))

(defrelation type-query (?which))

(defrelation type-info (?which))

(deffacts initial-flag ;Initial facts used to start the
system

(use-db unknown)
(type-query unknown)
(type-info unknown))

(defrule getting-started
?x<-(use-db ~Y & -N)
;WHETHER to query the DB or NOT

;unclear or unknown.
;(Should only occur at the beginning of the

session.)
=>

(set-interactive-mode nil)
;turn off warning messages

(retract ?x)
;remove unsatisfactory fact,

(select-window 'command-window)
(reshape-window #L'command-window 10 10 660 300)
(clear-window #1/command-window)
(printout t t t ;output to

screen.
"Hello. My name is ART. I can help you access the
Cub Scout Data Base." t t)

(if (y-or-n-p (format nil "Do you wish to query the Data
Base? "))

then
;assert a new fact according to the user response

(assert (use-db Y))
else
(assert (use-db N))))

The following schemata can be used to show how
attributes are inherited. Future plans are to use
them to make ART form its own queries using
inheritance.

(defschema subclass-of
(instance-of inh-relation)

(new-relations (is-a (?domain)(subclass)))
(inverse has-subclasses))

(defschema has-subclasses
(instance-of relation))

53

(defschema pack
"Cub Scout Packs" ;info about the pack

(pack-number)
(org)
(charter-date)
(council))

(defschema den
"Cub Scout Dens" ;info about the den

(subclass-of pack)
(den-number)
(night)
(site))

(defschema people
"Individual People" ;info about the individual

(subclass-of family)
(person-number)

(first-name)
(mi)
(work-phone))

(defschema family
"Families"

;info common to all members of the same family

(family-number)
(last-name)
(street)
(city)
(state)
(zip)
(area)
(home-phone))

(defrule query-db
"An SQL query"

/information needed to query the data base

(use-db Y)
?x<-(type-query ~P&~D)

=>
(retract ?x)
(printout t t t "Do You want information about a pack [P]
or a den [D]?")
(assert (type-query =(read))))

(defrule pack-query

54

"determine whether info is desired about the pack,
itself, (admin) or about the people that run it (staff)11

(use-db y)
(type-query P)
?x<-(type-info -A&-S)

=>
(retract ?x)
(printout t t "Do you want administrative information about
the pack [A] or information about the pack staff [S]? ")
(assert (type-info =(read))))

(defrule den-query
"determine whether info is desired about the den,

itself, (admin) or about the people associated with it
(members)"

(use-db y)
(type-query D)
?x<-(type-info ~A&~M)

=>
(retract ?x)
(printout t t "Do you want administrative information about
the den [A] or information about the den members [M]? ")
(assert (type-info =(read))))

(defrule pack-admin
"User wants admin info about the pack"

(use-db Y)
(type-query P)
(type-info A)
=>
(reshape-window #L'command-window 10 10 660 300)
(if (y-or-n-p (format nil "Do you want the information on
all packs? "))

then
(clear-window #L'command-window)
(printout t t "The required SQL query is"

t t "select *"
t t "from pack"
t t "order by number/" t t)

(printout t t "Here is the information you requested:"
t t)

(reshape-window #1/command-window 10 10 660 450)

;This is the RPC call
(callrpc "beach" 20118651 1 1 :xdr_void nil :xdr_string

"lm:gus;packs.text" :udp)

(view-file "lm:gus;packs.text")
else
(printout t t "Please enter the Pack number [0-999]: ")

55

(bind ?number (read))
(clear-window #1/command-window)
(printout t t "The required SQL query is"

t t "select *"
t t "from pack"
t t "where number=" ?number"/" t t)

(if (= ?number 83)
then
(printout t t "Here is the information you requested:"

t t)
(reshape-window #L'command-window 10 10 660 450)

(view-file "lm:gus;packs3-admin.text")
;This is where the RPC call belongs

else (if (= ?number 566)
then

(printout t t "Here is the information you
requested:" t t)

(reshape-window #1/command-window 10 10 660 450)

(view-file "lm:gus;pack-566-admin.text")
;This is where the RPC call belongs

else
(printout t t "But that pack is not in the

database.")))))

(defrule pack-staff
"User wants staff info about the pack"

(use-db Y)
(type-query P)
(type-info S)
=>
(reshape-window #L'command-window 10 10 660 300)
(if (y-or-n-p (format nil "Do you want the information on
all packs? "))

then
(clear-window #1/command-window)
(printout t t "The required SQL query is"

t t "select pack_number,position,first_name,
MI,last_name,number,work_phone"

t t "from staff s,people p, family f"
t t "where s.person_number=p.person_number and"
t t "s.family_number=p.family_number and"
t t "s.family_number=f.family_number"
t t "order by pack_number/" t t)

(printout t t "Here is the information you requested:")
(reshape-window #L'command-window 10 10 860 650)

(view-file "lm:gus;packs-staff.text")
;This is where the RPC call belongs

else
(printout t t "Please enter the Pack number [0-999]: ")
(bind ?pnum (read))

56

(clear-window #L'command-window)
(printout t t "The required SQL query is"

t t "select pack_number,position,first_name,
MI,last_name,number,work_phone"

t t "from staff s,people p, family f"
t t "where s.person_number=p.person_number and"
t t "s.family_number=p.family_number and"
t t "s.family_number=f.family_number and"
t t "pack_number=" ?pnum"/" t t)

(if (= ?pnum 83)
then
(printout t t "Here is the information you

requested:")
(reshape-window #L'command-window 10 10 660 450)

(view-file "lm:gus;packs3-staff.text")
;This is where the RPC call belongs

else
(if (= ?pnum 566)

then
(printout t t "Here is the information you

requested:")
(reshape-window #L'command-window 10 10 660 450)

(view-file "lm:gus;pack-566-staff.text")
;This is where the RPC call belongs

else
(printout t t "But that pack is not in the

database.")))))
(defrule den-admin

"User wants admin info about the den"
(use-db Y)
(type-query D)
(type-info A)
=>
(reshape-window #L'command-window 10 10 660 300)
(if (y-or-n-p (format nil "Do you want the information on
all dens in the DB? ")
)

then
(clear-window #1/command-window)
(printout t t "The required SQL query is"

t t "select *"
t t "from den"
t t "order by pack_number,den_number/" t t)

(printout t t "Here is the information you requested:"
t t)

(reshape-window #L'command-window 10 10 660 450)

(view-file "lm:gus;dens-admin.text")

;This is where the RPC call belongs

else

57

(printout t t "Please enter the Pack number [0-999]: ")
(bind ?pnum (read))
(if (y-or-n-p (format nil "Do you want the information

on all dens in the pack? "))
then
(clear-window #1/command-window)
(printout t t "The required SQL query is"

t t "select *"
t t "from den"
t t "where pack_number=" ?pnum
t t "order by den_number/" t t)

(if (= ?pnum 83)
then
(printout t t "Here is the information you

requested:" t t)
(reshape-window #L'command-window 10 10 660 450)

(view-file "lm:gus;dens-83-admin.text")
;This is where the RPC call belongs

else
(if (= ?pnum 566)
then
(printout t t "Here is the information you

requested:" t t)
(reshape-window #1/command-window 10 10 660 450)

(view-file "lm:gus;dens-566-admin.text")
;This is where the RPC call belongs

else
(printout t t "But that pack is not in the

database.")))

else
(printout t t "Please enter the Den number [0-9]: ")
(bind ?dnum (read))
(clear-window #L'command-window)
(printout t t "The required SQL query is"

t t "select *"
t t "from den"
t t "where pack_number=" ?pnum " and"
t t "den_number=" ?dnum"/" t t)

(if (and (= ?pnum 83)
(= ?dnum 3))

then
(printout t t "Here is the information you

requested:" t t)
(reshape-window #L'command-window 10 10 660 450)

(view-file "lm:gus;den3-83-admin.text")
;This is where the RPC call belongs

else
(if (and (= ?pnum 83)

(= ?dnum 9))
then

58

(printout t t "Here is the information you
requested:" t t)

(reshape-window #L'command-window 10 10 660 450)

(view-file Hlm:gus;den9-83-admin.text")
;This is where the RPC call belongs

else
(printout t t "But that den is not in the

database."))))))

(defrule den-member
"User wants member info about the den"

(use-db Y)
(type-query D)
(type-info M)
=>
(reshape-window #1/command-window 10 16 780 450)
(if (y-or-n-p (format nil "Do you want the information on
all dens? "))

then

(clear-window #1/command-window)
(printout t t "The required SQL query is"

t t "select den_number,pack_number,position,
first_name,MI,last_name,number,work_phone"

t t "from member m,people p, family f"
t t "where m.person_number=p.person_number and"
t t "m.family_number=p.family_number and"
t t "m.family_number=f.family_number"
t t "order by pack_number,den_number,position,

last_name/" t t)
(printout t t "Here is the information you requested:"

t t)
(reshape-window #1/command-window 10 10 800 750)

(view-file "lm:gus;dens-mem.text")
;This is where the RPC call belongs

else
(printout t t "Please enter the Pack number [0-999]: ")
(bind ?pnum (read))
(if (y-or-n-p (format nil "Do you want the information

on all dens in the pack? "))
then

(clear-window #1/command-window)
(printout t t "The required SQL query is"

t t "select den_number,pack_number,position,
first_name,MI,last_name,number,workjphone"

t t "from member m,people p, family f"
t t "where m.person_number=p.person_number and"
t t "m.family_number=p.family_number and"
t t "m.family_number=f.family_number and"

59

t t "pack_number=" ?pnum
t t "order by den_number,position,last_name/" t

t)
(if (= ?pnum 83)

then
(printout t "Here is the information you

requested:")
(reshape-window #L'command-window 10 10 800 700)

(view-file "lm:gus;dens83-mem.text")
;This is where the RPC call belongs

else
(if (= ?pnum 566)
then
(printout t t "Here is the information you

requested:")
(reshape-window #1/command-window 10 10 850 550)

(view-file "lm:gus;dens-566-mem.text")
;This is where the RPC call belongs

else
(printout t t "But that pack is not in the

database.")))
else
(printout t t "Please enter the Den number [0-9]: ")
(bind ?dnum (read))

(clear-window #1/command-window)
(reshape-window #L'command-window 10 10 850 560)
(printout t t "The required SQL query is"

t t "select den^umbe^packjiumbe^position,
first_name,MI,last_name,number,work_phone"

t t "from member m,people p, family f"
t t "where m.person_number=p.person_number and"
t t "m.family_number=p.family_number and"
t t "m.family_number=f.family_number and"
t t "pack_number=" ?pnum " and"
t t "den_number=" ?dnum
t t "order by position,last_name/" t t)

(if (and (= ?pnum 83)
(= ?dnum 3))

then
(printout t t "Here is the information you

requested:")
(reshape-window #1/command-window 10 10 850 600)

(view-file "lnKguSj-denS-SS-mem.text")
;This is where the RPC call belongs

else
(if (and (= ?pnum 83)

(= ?dnum 9))
then
(printout t t "Here is the information you

requested:")

60

(reshape-window #1/command-window 10 10 850 660)

(view-file "lm:gus;den9-83-mem.text")
;This.is where the RPC call belongs

else
(printout t t "But that den is not in the

database."))))))

(defrule another-query
"Find out if user wants to make another query."

(declare (salience -1))
;make this wait until other rules have fired
?use-db<-(use-db Y)
?type-query<-(type-query ?D & -unknown)
?type-info<-(type-info ?M & -unknown)

=>

(if (y-or-n-p (format nil "

Do you wish to query the Data Base again? "))
then
(retract ?use-db
?type-query
?type-info)

(clear-window #1/command-window)
(assert (use-db Y)

(type-query unknown)
(type-info unknown))

else
(retract ?use-db)
(assert (use-db N))))

(defrule lets-quit
"User doesn't want to query the data base"

(use-db N)
=>
(reshape-window #1/command-window 19 16 398 166)
(clear-window #L'command-window)
(printout t t "Goodbye, have a nice day.")
(halt)
(reset))

APPENDIX C
USER'S MANUAL FOR EXPERT SYSTEM

The following procedure must be followed in order to

use the Cub Scout database expert system on the Texas

Instruments Explorer in the Applied Artificial Intelligence

Laboratory (AAIL).

Cold-Boot and Login. The system should be cold-booted

if the previous user failed to do so. This can be done by

pressing META-C0NTR0L-META-CONTROL-RUB0UT. This is not

necessary if other processes have been started previously

by the same user since the last time the system was cold-

booted. If this is the first application to be run after

cold-booting, the operating system will ask the user to

login by typing "(login 'yourname)".

Accessing the Automated Reasoning Tool (ART). To

access ART, regardless of what the user had been doing

previously, the SYSTEM key should be pressed followed by

the letter 'A'. The first time this is done, ART will be

initialized and the root menu will be displayed in the

upper right corner of the screen with the command window in

the upper left corner of the screen.

Loading AAIL:GUS;SCOUT-DATA. The load command may be

typed directly into the command window followed by a

carriage return or it may be selected by clicking the left

61

62

button of the mouse while highlighting 'load'. Either way,

the system will respond by requesting the filename to be

loaded. The name above will load the newest version of

SCOUT-DATA.ART, the file containing the definitions, rules

and facts for the expert system.

Resetting the Knowledge Base. Prior to running the

expert system, ART must be reset. Again, this command may

be typed into the command window or selected with the left

mouse button. When the cursor returns, the system is ready

for use.

Running Scout-Data. The run command also may be

entered using either the keyboard or the mouse. After the

run command is issued, the command window will be cleared

and reshaped. The following initial message will be

displayed in the command window:

Hello. My name is ART. I can help you access the Cub
Scout data base.

Do you wish to query the database? (Y or N)

The only valid responses are 'y' and 'n'. If the user

responds with 'n', ART clears and reshapes the command

window, displays a farewell message and resets the

knowledge base. If the user responds with 'y', ART

responds by asking if the user wants information about

Packs or Dens. All other inputs besides 'p' and 'd' are

rejected. According to the type of query desired, ART will

ask whether administrative information or information about

the people associated with the pack is desired. Once this

63

information has been supplied, again, by entering a single

letter from the supplied choices, ART will ask whether the

information is to be about all packs (dens) in the data

base, all the dens in a specific pack (after asking for the

pack number), or a specific den (by asking for the den

number) . Once all of the information has been supplied by

the user, the command window is cleared, reshaped, if

necessary, and the required Structured Query Language (SQL)

query is displayed in the command window. The designated

query should be executed against the database via the

ETHERNET and the results displayed in the command window.

ART will then ask the user if he or she wants to execute

another query. If the user responds 'n' ART displays the

farewell message and resets the knowledge base as above.

For 'y' ART will clear the command window and ask the user

what type query is desired.

APPENDIX D
DRIBBLE FILE OF SAMPLE SESSION

The file listed below is an extract of a dribble file

obtained by running the sample ART session described in

Chapter V while watching facts and rules. This option

allows the user to see which rules are fired as well as

which facts are asserted and retracted by each rule. In

the-file below, the following symbols are used:

==> indicates a fact asserted

<== indicates a retracted fact

=> load
File name: gus;scout-data

Loading AAIL: GUS; SCOUT-DATA.ART#74 in package ART-USER
and base 10.
Compiling rule GETTING-STARTED... +P+J
Booting the schema system...
Compiling schema SUBCLASS-OF...
Compiling schema HAS-SUBCLASSES...
Compiling schema PACK...
Compiling schema DEN...
Compiling schema PEOPLE...
Compiling schema FAMILY...
Compiling rule QUERY-DB... +P+P+J
Compiling rule PACK-QUERY... =P+P+J+P+J
Compiling rule DEN-QUERY... =P+P+J+P+J
Compiling rule LETS-QUIT— +P+J
Compiling rule PACK-ADMIN... =P=P=J+P+J
Compiling rule PACK-STAFF... =P=P=J+P+j
Compiling rule DEN-ADMIN... =P=P=J=P+J
Compiling rule DEN-MEMBER... =P=P=J+P+J
Compiling rule ANOTHER-QUERY... =P+P+J+P+J
=> reset

=> watch

64

65

=> rules

=> facts

=> pop

=> run

FIRE 0 GETTING-STARTED (f-1302,)
<== f-1302 [USE-DB UNKNOWN]

Hello. My name is ART. I can help you access the
Cub Scout Data Base.

Do you wish to query the Data Base? (Y or N) No.
==> f-1306 [USE-DB N]

FIRE 1 LETS-QUIT (f-1306,)
Goodbye, have a nice day.

==> f-1301 [|lnitialFact|]
==> f-1302 [USE-DB UNKNOWN]
==> f-1303 [TYPE-QUERY UNKNOWN]
==> f-1304 [TYPE-INFO UNKNOWN]
=> run

FIRE 1 GETTING-STARTED (f-1302,)
<== f-1302 [USE-DB UNKNOWN]

Hello. My name is ART. I can help you access the
Cub Scout Data Base.

Do you wish to query the Data Base? (Y or N) Yes.
==> f-1305 [USE-DB Y]

FIRE 2 QUERY-DB (f-1305,f-1303)
<== f-1303 [TYPE-QUERY UNKNOWN]

Do You want information about a pack [P] or a den [D]?P

==> f-1306 [TYPE-QUERY P]

FIRE 3 PACK-QUERY (f-1305,f-1306,f-1304)
<== f-1304 [TYPE-INFO UNKNOWN]

Do you want administrative information about the pack [A]
or information about the pack staff [S]? A

==> f-13 07 [TYPE-INFO A]

FIRE 4 PACK-ADMIN (f-1305,f-1306,f-1307)

66

Do you want the information on all packs? (Y or N) Yes.
The required SQL query is

select *

from pack

order by number/

Here is the information you requested:

number|charter_org |charter_date|council

83
566

Westside Christian Ch
Diamond Elem. Sch

01/02/84
12/03/82

North Florida
Savannah

FIRE 5 ANOTHER-QUERY (f-1305,f-1306,f-1307)

Do you wish to query the Data Base again? (Y or N) Yes.

<== f-1305 [USE-DB Y]
<== f-1306 [TYPE-QUERY P]
<== f-13 07 [TYPE-INFO A]
==> f-1308 [USE-DB Y]
==> f-1309 [TYPE-QUERY UNKNOWN]
==> f-1310 [TYPE-INFO UNKNOWN]

FIRE 6 QUERY-DB (f-1308,f-1309)
<== f-1309 [TYPE-QUERY UNKNOWN]

Do You want information about a pack [P] or a den [D]?D

==> f-1311 [TYPE-QUERY D]

FIRE 7 DEN-QUERY (f-1308,f-1311,f-1310)
<== f-1310 [TYPE-INFO UNKNOWN]

Do you want administrative information about the den [A]
or information about the den members [M]? M

==> f-1312 [TYPE-INFO M]

FIRE 8 DEN-MEMBER (f-1308,f-1311,f-1312)

Do you want the information on all dens? (Y or N) No.

Please enter the Pack number [0-999]: 83

Do you want the information on all dens in the pack? (Y or
N) No.

67

Please enter the Den number [0-9]: 3

The required SQL query is

select den_number,pack_number,position,first_name,
MI,last_name,number,work_phone

from member m,people p, family f

where m.person_number=p.person_number and

m.family_number=p.family_number and

m.family_number=f.family_number and

pack_number=83 and

den_number=3

order by position,last_name/

Here is the information you requested:

den_number|pack_number|position|first_naine |MI|last_name |number |work_phone

3|

3|

3|

3|
3|
3|
31

83|leadr | Linda |Davis |378-6199|

83|parnt | John |Davis |378-6199|497-3045

83|parnt |Linda |Davis |378-6199|

83|pamt |Agustin |Ortiz |371-1930|335-8447

83|parnt |Kathy E |0rtiz |371-1930|

83|scout |Jason |Davis |378-6199|

831scout |Carlos R |0rtiz |371-1930|

FIRE 9 ANOTHER-QUERY (f-1308,f-1311,f-1312)

Do you wish to query the Data Base again? (Y or N) No.
<== f-1308 [USE-DB Y]
==> f-1313 [USE-DB N]

FIRE 10 LETS-QUIT (f-1313,)
Goodbye, have a nice day.

<== f-1311 [TYPE-QUERY D]
<== f-1312 [TYPE-INFO M]
<== f-1313 [USE-DB N]

68

=> f-1301 [|lnitialFact|]
=> f-1302 [USE-DB UNKNOWN]
=> f-1303 [TYPE-QUERY UNKNOWN]
=> f-1304 [TYPE-INFO UNKNOWN]
=> exit

APPENDIX E
NOTES ON NETWORKING AND REMOTE PROCEDURE CALLS

The use of two different computers required

familiarization with the operating systems of both and how

they support network operations. This appendix contains

observations about the requirements and capabilities of

both computers involved in this project. In order to

transfer data effectively between two computers, a data

path must be established, either directly or indirectly.

Additionally, the following tasks must be performed:

1. The source system must either activate the direct data communication path or

inform the communication network of the identity of the desired destination

system.

2. The source system must ascertain that the destination system is prepared to

receive data.

3. The file transfer application on the source system must ascertain that the file

management program on the destination system is prepared to accept and store the

file.

4. If the file formats used on the two systems are incompatible, one or the other

system must perform a format translation function.

The actions described above are commonly referred to as

computer communications. The set of computer stations

interconnected by means of a communication network is

referred to as a computer network[ST87a]. Five types of

computer networking facilities have been established:

Private Links

Private meshed networks

Public switched networks
69

70

Public data networks and value-added networks

Local-area networks[Bo83]

Two concepts must be understood in order to discuss

computer networks:

Protocols

Computer-communications architecture[St87a]

Protocols are rules that have been established to define

how information is to be formatted for transmission as well

as the command syntax for a particular network

transaction[Bo83].

A computer-communications architecture is the set of

protocols and processes needed in order for communications

to be carried out. Figure E-l below illustrates the

layered hierarchy of structured protocols.

STATION 1 STATION 2

I I
FILE TRANSFER APPLICATION ORIENTED PROTOCOL FILE TRANSFER

II II
II II

NETWORK SVCS SYSTEM TO SYSTEM PROTOCOL | NETWORK SVCS

 I I

-> { communications network >
<-

FIGURE E-l. Computer Communications Architecture [ST87a]

Gould Powernode

The Gould Powernode uses the Berkeley UNIX operating

system. Although the earliest Unix implementations were

71

not good at interprocess communication, almost all current

Unix systems support the UUCP (Unix to Unix Communications

Protocol). 4.2BSD supports the DARPA Internet protocols

UDP, TCP, IP, ICMP on many Ethernet, token ring and Arpanet

interfaces. The operating system kernel makes communi-

cations protocols available through the socket system call

which was originally written by Gurwitz of BBN[Pe85].

In the Open Systems Interconnection (OSI) model deve-

loped in 1984 by the international Organization for Stan-

dardization (ISO), a protocol implementation may only commu-

nicate with another entity that uses the same protocol at

the same layer, or with the interface to the next protocol

layer above or below in the same system[St87a]. This model

was designed to set the standard for new communications net-

works and is currently being used on many applications by

the U. S. government.

The Unix networking support is more closely related to

the Arpanet Reference Model (ARM). ARM is a predecessor of

the OSI model. The ARM consists of the following three

protocol layers:

Process/Applications

Host-Host

Network interface

A user's process must communicate with network protocols

using socket to set up and control communications. This

corresponds to the session layer of OSI. The process may

access any layer of protocol if it uses the raw socket

72

type. The actual transfer of data is usually done using

buffers called mbufs. Figure E-2 below shows a comparison

of the network reference model layers.

OS I ARPANET 4.2BSD EXAMPLE

MODEL MODEL LAYERS LAYERING

ADDIication User Programs telnet

Presentation Process/ and Libraries

Session ADDlications Sockets SOCK-STREAM

TCP

TransDort Host-Host Protocols IP.

Network
Network Network Ethernet

Data Link Interface Interface Driver

Hardware Network Network Interlan

Hardware Hardware Controller

Figure E-2. Network Reference Models and Layering [Pe85]

The Department of Defense (DOD) issued a set of standard

protocols as listed in Figure E-3, below:

MIL-STD-1777 Internet Protocol (IP)
Provides a connectionless service for end systems to communicate across one or more

networks. Does not assume the networks to be reliable.

MIL-STD-1778 Transmission Control Protocol (TCP)
A reliable end-to end data transfer service. Equivalent to the ISO Class 4

transport protocol.

MIL-STD-1780 File Transfer Control Protocol (FTP)
A simple application for transfer of ASCII, EBCDIC, and binary files.

MIL-STD-1781 Simple Mail Transfer Protocol (SMTP)

A simple electronic mail facility.

MIL-STD-1782 TELNET Protocol
Provides a simple scroll-mode terminal capability.

Figure E-3. DOD Military Standard Protocols

There are two major applications that can be carried out

73

between stations on the Arpanet: File Transfer

Protocol(FTP) and TELNET. FTP provides a way to transfer

files between two computers while TELNET enables a user to

perform a remote login to a distant computer. A user

obtains the FTP function via an unprivileged process. This

FTP program is only called when there is traffic to be

sent, terminating upon completion of the transfer. The FTP

process opens a TCP connection to the desired destination

and creates another data process to assist with the

management of the transfer. When the transaction is

completed, the server closes the connection, signalling the

waiting user. The Unix server has a process that is

created when the system is booted and stays in a sleeping

state until signalled by an inbound request for FTP. When

this happens, the server creates a new process to take care

of the transaction, then goes back to sleep[St88].

The process described above is largely transparent to

the user. In order to invoke the desired function, the

user merely enters "ftp hostname" or "telnet hostname".

Texas Instruments Explorer

The Explorer supports network operations in several

protocols including CHAOSNET, INTERNET PROTOCOL (IP),

TRANSMISSION CONTROL PROTOCOL (TCP), TELNET, FILE TRANSFER

PROTOCOL (FTP). The network protocols are installed as

FLAVORS intermixed to achieve the effect of the seven

layers of the Open Systems Interconnection (OSI) standard.

74

Because of the way FLAVORS are implemented, it is possible

for a user to access the network services in many different

ways, either interactively or from within a program. The

multiprocessing capability of the Explorer allows more than

one network process to be executed simultaneously. VT100

emulation is available as a separate process, although it

does, in fact, run as a process above the TELNET protocol,

which likewise is running TCP/IP[Ti87]. The Explorer also

supports the RPC procedure, although in order to use it,

the user must issue a call to "make-system" after logging

in to the system: (make-system 'rpc :noconfirm :silent).

Remote Procedure Call (RPC)

RPC was developed by Sun Microsystems to allow different

computers using different software to interact at the

procedure level on any network. Using RPC, a computer can

call a procedure on another computer, passing one argument

to the procedure, and receive the value returned by the

procedure. The External Data Representation (XDR) protocol

is used to ensure the compatibility of data between

machines. The two parts of the RPC protocol are listed

below:

Caller calls a procedure on a remote
host

Server services RPC requests on the
remote host

External Data Representation (XDR). The XDR protocol

developed by Sun Microsystems permits computers to exchange

operands over a network even though they may use different

75

word lengths, floating point representations or byte

orders. In order to make this possible, the sending

machine must filter its data types into a standard

representation to be output to the network. The receiving

machine, in turn, filters the data received from the

network into its native data types. Both machines must use

the same XDR types in the same order for a transfer to be

successful. The filters for primitive data types are

included as part of RPC, but the user can also build custom

filters, if desired.

Client. In order to make a remote procedure call, the

following steps must be followed:

1. Find out the program number, procedure number and
version number of the procedure to be called.

2. Determine the appropriate filter type for the
argument to be passed to the procedure.

3. Call the procedure with the required argument, then
check for the occurrence of errors.

4. Use the value returned in the local program.

Server. A programmer at the remote host must perform

the following functions:

1. Select the correct filter type for the argument of
the procedure call

2. Write the procedure. It must accept only one
argument and return only one value.

3. Register the procedure for being called remotely.

Filter Types. Listed below are some of the filter

types available for use with XDR:

LISP XDR C

:XDR-INTEGER INTEGER XDR-INT

76

XDR-LONG

XDR-SHORT

:XDR-FLOAT FLOAT XDR-FLOAT

:XDR-STRING STRING XDR-STRING

Reaisterrpc. The registerrpc function is used to

register a procedure so that it may be called from a remote

machine. It is generally invoked as part of the main C

program in which the procedure is defined as illustrated

below:

registerrpc(prog#, vers#, proc#, function-name, xdr-in, xdr-out)

Callrpc. The callrpc function is used to make the

actual call to the remote procedure using the syntax below:

callrpc host prog# vers# proc# xdr-in in xdr-out out Soptional credentials (protocol :udp)

The arguments of the function call are explained below:

host: identifies the remote computer (e.g. BEACH)

prog#: a 32 bit unsigned integer to identify the remote program
vers#: a 32 bit unsigned integer to identify the version number, if applicable, of the

program

proc#: a 32 bit unsigned integer to identify which procedure within the remote program to

execute

xdr-in: the XDR filter function to be used for encoding into the net

in: a pointer to the object to be passed to the remote procedure

xdr-out: the XDR filter function to be used for decoding from the net

out: a pointer to the object into which the result of the remote procedure will be passed

protocol: :udp for User Datagram Protocol[Te88]

REFERENCES

Bo83 Grayce M. Booth, The Design of Complex Information
Systems, McGraw-Hill, New York, 1983.

B086 Boy Scouts of America, Wolf Cub Scout Book, Boy
Scouts of America, Irving, Texas, 1986.

Ch87 Tae Gyu Chang, "Development of an Expert System
for Multichannel EEG Signal Analysis," Ph.D.
Dissertation, University of Florida, 1987.

C187 Bruce D. Clayton, ART Programming Tutorial, 4
Vols., Inference Corporation, Los Angeles,
California, 1987.

Da86 C. J. Date, An Introduction to Database Systems,
Vol. 1, 4th ed., Addison-Wesley, Reading,
Massachusetts, 1986

Em87 John Emrich, "Remote File Systems, Streams, and
Transport Level Interface," In UNIX Papers for
UNIX Developers and Power Users, ed. Mitchell
Waite, Howard W. Sams & Company, Indianapolis,
1987, 260 - 305.

Ge83 W. B. Gevarter, "Expert Systems: Limited But
Powerful," IEEE Spectrum, Vol. 20, No. 8, Aug.
1983, 39-44.

Gr87 John Grant, Logical Introduction to Databases,
Harcourt Brace Jovanovich, Orlando, Florida, 1987.

Ha85 F. Hayes-Roth, "Rule-Based Expert Systems,"
Communications of the ACM, Vol. 28, No. 9, Sep.
1985, 921-932.

Ha83 F. Hayes-Roth, D. A. Waterman, and D. B. Lenat,
Building Expert Systems, Addison-Wesley, Reading,
Massachusetts, 1983.

Le85 C. N. Lee, "Expert System Design and
Implementation for Multichannel Sleep EEG Signal
Processing," Ph.D. Dissertation, University of
Florida, 1985.

77

78

Mc88 Richard McCurdy, "UFNET the University of Florida
Broadband Network", unpublished information paper
distributed to students and faculty, University of
Florida, 1988.

Mc82 J. McDermott, "Rl: A Rule-based Configurer of
Computer Systems," Artificial Intelligence, Vol.
19, 1982, 39-88.

Pe85 James L. Peterson and Abraham Silberschatz,
Operating Systems Concepts, 2d Ed., Addison-
Wesley, Reading, Massachusetts, 1985.

Pr85 D. S. Prerau, "Selection of an Appropriate Domain
for an Expert System," The AI Magazine, Summer
1985, 26-30.

Ra87 Eric Raymond, "The Future of UNIX and Open System
Standards," In UNIX Papers for UNIX Developers and
Power Users, ed. Mitchell Waite, Howard W. Sams &
Company, Indianapolis, 1987, 486 - 504.

Sp87 Charles Spurgeon, "Ethernet: A UNIX LAN," In UNIX
Papers for UNIX Developers and Power Users, ed.
Mitchell Waite, Howard W. Sams & Company,
Indianapolis, 1987, 306 - 341.

St87a William Stallings, The Open Systems
Interconnection (OSI) Model and OSI-Related
Standards, Handbook of Computer Communications
Standards, Macmillan, New York, 1987.

St87b William Stallings, Local Network Standards,
Handbook of Computer Communications Standards,
Macmillan, New York, 1987.

St88 William Stallings, Department of Defense (DOD)
Protocol Standards, Handbook of Computer
Communications Standards, Macmillan, New York,
1988.

St82 M. Stefik, J. Aikins, R. Balzer, J. Benoit, L.
Birnbaum, F. Hayes-Roth, and E. Sacerdoti, "The
Organization of Expert Systems, A Tutorial,"
Artificial Intelligence, Vol. 18, No. 2, 135-173.

Su86 Sun Microsystems, Incorporated, "RPC System
Manual," Sun Microsystems, Mountain View, Calif.,
1986.

Te87 Texas Instruments, "Explorer System Manuals",
Texas Instruments, Incorporated, Austin, Texas,
1987.

79

Te88

Un85a

Un85b

Un85c

Wa86

Wi84

Texas Instruments,
Texas Instruments,
1988.

Unify Corporation,
Management System

"microExplorer Programming",
Incorporated, Austin, Texas,

Unify Relational Data Base
Programmers' Manual, Unify

Corporation, Lake Oswego, Oregon, 1985.

Unify Corporation, Unify Relational Data Base
Management System Reference Manual, Unify
Corporation, Lake Oswego, Oregon, 1985.

Unify Corporation, Unify Relational Data Base
Management System Tutorial Manual, Unify
Corporation, Lake Oswego, Oregon, 1985.

D. A. Waterman, A Guide to Expert Systems, Addison-
Wesley, Reading, Massachusetts, 1986.

Patrick Henry Winston, Artificial Intelligence,
Addison-Wesley, Reading, Massachusetts, 1984.

BIOGRAPHICAL SKETCH

Agustin Ortiz, Jr., was born on July 11, 1954, in San

Juan, Puerto Rico. He graduated in June 1972 from Antilles

High School, Fort Buchanan, Puerto Rico. He received his

Bachelor of Science degree in June 1976 from the United

States Military Academy, West Point, New York, and was

commissioned in the Regular Army Signal Corps where he

currently holds the rank of Major. He was certified as an

Engineer in Training by the Commonwealth of Pennsylvania in

September 1976. He is a graduate of the Jungle Warfare

School, Basic Airborne Course, Signal Officer Basic Course,

Jumpmaster Course, Special Forces Officer Course, Signal

Officer Advanced Course, Recruiting Commanders Course, Unit

Discussion Leaders Course, Combined Arms and Services Staff

School, TACFIRE Command and Staff Course and the United

States Army Command and General Staff Officer Course. He

is fluent in Spanish as well as English and has

conversational knowledge of German. His military awards

include the Jungle Expert Badge, the National Defense

Service Medal, the Master Parachute Badge, the Army

Service Ribbon, the Army Overseas Ribbon, and three awards

of the Army Commendation Medal. He is a member in good

standing of the Association for Computing Machinery. He

80

81

has been attending the University of Florida in pursuit of

the Master of Science degree in electrical engineering

since August 1986. After graduation from the University of

Florida, Major Ortiz will be assigned to the United States

Army Computer Engineering Center, Fort Huachuca, Arizona.

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality,
as a thesis for the degree of Master of Science.

A. Antonio Arroyo, Chairman
Associate Professor of Electrical

Engineering

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality,
as a thesis for the degree of Master of Science.

Donald G. Childers
Professor of Electrical

Engineering

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality,
as a thesis for the degree of Master of Science.

issor of Electrical
"Engineering

This thesis was submitted to the Graduate Faculty of the
College of Engineering and to the Graduate School and was
accepted as partial fulfillment of the requirements for the
degree of Master of Science.

August 1988

Dean, College of Engineering

Dean, Graduate School

