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ABSTRACT 

Language identification systems that employ acoustic likelihoods from language- 

dependent phoneme recognizers to perform language classification have been shown 
to yield high performance on clean speech. In this report, such a method was 
applied to language identification of telephone speech. Phoneme recognizers were 
developed for English, German, Japanese, Mandarin, and Spanish using hidden 
Markov models. Each of these processed the input speech and output a phoneme 
sequence in their respective languages along with a likelihood score. The language 
of the incoming speech was hypothesized as the language of the model having the 
highest likelihood. The main differences between this system and those developed 
in the past are that this system processed telephone speech, could identify up to five 
languages, and used phonetic transcriptions to train the language-specific models. 

The five-language, forced-choice recognition rate on 45-s utterances was 71.9%. On 

10-s utterances the recognition decreased to 70.3%. In addition, it was found that 
adding word-specific phonemes to the training set had a negligible effect on language 

identification results. 
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1.   INTRODUCTION 

In the past five years, language identification (LID) of speech messages has become an increas- 

ingly important part of digital speech processing systems. LID systems can be used as preprocessors 

in automatic language translators, in systems used by operators to identify the language of a caller, 

and in information centers at public airports and train stations. 

Language identification performed by running several different language-dependent phoneme 

recognizers has been shown to be successful in experiments run on language pairs [1,2]. The primary 
purpose of this report' was to determine the feasibility and performance of a parallel phoneme 

recognition LID system on telephone speech spoken in any of five languages. In addition, this 

report measured the effect of adding word-specific phonemes to each language's training set. 

The rest of this report is organized as follows: Section 2 contains background information 

and presents several LID systems and their results. Section 3 explains the implementation and 
results from the baseline system, and Section 4 compares these results with those attained when 

the system trains on word-specific phonemes as well. Section 5 presents the results of using phone- 
based acoustic likelihoods to perform five-language identification. Finally, Section 6 summarizes 

the results and suggests future research directions. 



2.   PREVIOUS WORK 

2.1     Introduction 

Several language identification methods, including a phoneme recognition system similar to 

the one used in this report, have already been developed and tested in the past. In this section, a 

few of the major language identification systems are presented. Each subsection details a specific 

LID system, including the model, method, type of data, training data, and results. In addition, 

where appropriate, observations are made that pertain directly to this report. 

2.2     Language-Dependent Phone Recognition 

Lamel and Gauvain [1] developed an LID system based on phoneme recognition. Their 

system processed incoming speech in parallel through French and English phone networks. The 
phone models were three-state, left-to-right, continuous-density HMMs with Gaussian mixture 
observation densities. The language of the speech was hypothesized as the language of the phone 

network with the highest likelihood score. A graphic representation of this system is shown in 
Figure 1. Lamel and Gauvain used four corpora containing read speech to train and test their 
system. These were the Base de Donnees des Sons du Frangais (BDSONS) corpus and the BREF 
corpus for French speech, and the DARPA Wall Street Journal and TIMIT corpora for English 

speech. They achieved a 99% accuracy rate with 2 s of the clean speech. However, this result may 

not be as conclusive as it first appears as the speech used for training and testing was not collected 

consistently. 
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Figure 1.    Lamel-Gauvain LID system. 

More recently, Lamel and Gauvain performed language identification on the Oregon Graduate 
Institute (OGI) Multi-Language Telephone Speech (OGI-TS) Corpus [3], the same corpus used 

in this report;  however, their language-specific models were trained without the use of phone 



transcriptions. Rather, they used speaker-independent, context-independent phone models, trained 

using the NTIMIT [4] corpus, to label the training data and then used these labels to train language- 

specific, OGI phone models. They achieved a 59% accuracy rate for 10-language identification on 

10-s utterances. In comparison with their previous French/English efforts, two-way French/English 
language identification using this method and the OGI corpus operated with 82% accuracy [5]. 

Some of the advantages of parallel phone recognition are that it can [6]: 

• Take advantage of phonotactic constraints, i.e., the restrictions found on phoneme 
sequences for different languages. 

• Be integrated easily into existing recognizers based on phone models. 

This system also has several disadvantages in that it: 

• Requires phonetically or orthographically labeled training speech in all languages. 

• May require a great deal of computation, i.e., a phone recognizer must be run in each 
language of interest. 

2.3     Language-Independent Phone Recognition Followed by Language Modeling 

Hazen and Zue [7] developed an automatic language identification system that incorporated 
separate models for the phonotactic, prosodic, and acoustic information of each language. Their 
system employs an English front-end phone recognizer followed by rc-gram language modeling in 
each language to be recognized. When trained and tested using all 10 languages of the OGI-TS 
corpus, they initially achieved an overall system performance of 57% on 45-s utterances and 46% 

on 10-s utterances on the National Institute of Science and Technology (NIST) 1993 evaluation 
data.1 Subsequently, they have improved performance to 69% on 45-s utterances and 64%, on 10-s 
utterances as reported at the NIST 1994 evaluation. 

A recently developed method used at MIT Lincoln Laboratory for language identification 
is the parallel phoneme recognition followed by language modeling (PRLM-P) method, which in- 

volves the use of multiple phoneme recognizers with n-gram language models [8]. The sequence of 

phonemes output from each phoneme recognizer is compared with n-gram language models com- 

puted from training speech for each of the various languages under consideration. The language 

with the highest likelihood score is determined to be the language of the speech. It is not nec- 

essary to have a phone recognizer in each language to be identified; rather, one language model 
per front-end recognizer per input language is trained, as shown in Figure 2. At the 1994 March 

NIST evaluation, this system exhibited the best identification performance across many different 

JThe 1993 and 1994 NIST evaluation techniques and results can be obtained from Dr. Alvin Martin 
at NIST in Gaithersburg, MD. 



test scenarios. For example, OGI telephone speech language identification performance was 80% 
for 45-s test utterances and 70% for 10-s utterances. Average language pair performance was 95% 

for 45-s utterances and 92% for 10-s utterances. 
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Figure 2.    MIT Lincoln Laboratory PRLM-P system.. 

2.4     Phonetic-Class-Based Approaches 

Phonetic-class-based approaches are very similar to phoneme-based approaches. The main 
difference is in the types of units that are recognized in each system. In phonetic-class-based 

approaches, the objective is the recognition of broad phonetic class elements (i.e., vowel; fricative; 
stop; pre-, inter-, and post-vocalic sonorant; silence or background noise, etc.). The system requires 

phonetic-class-labeled data for training. The smaller number of units relative to phoneme-based 

approaches makes the class recognition faster and more accurate. 

House and Neuburg were the first to propose the phonetic-class-based approach [9]. They 
developed an HMM for each language. A maximum likelihood decision rule was then used to 

hypothesize the language of the incoming speech. They tested their system on eight phonetic 

texts of the same fable, each in a different language. These fables were reduced to four-character 

alphabets and tested on the statistical models of each language. 

Muthusamy and Cole [10] developed a similar system that segmented the speech into seven 

broad phonetic categories and classified the feature measurements from these categories. They 
trained and tested their system on the 10 languages in the OGI-TS Corpus, achieving 66% accuracy 
on 45-s utterances and 48% accuracy on 10-s utterances at the NIST 1993 evaluation. 



2.5     Frame-Based Approaches 

Frame-based approaches differ from both preceding approaches in that they do not require la- 
beled data for training. Goodman [11] applied this approach to a very noisy, six-language database. 
He used a formant-cluster algorithm in which linear prediction coding (LPC)-based formants were 
extracted and the Euclidean distance measure was used to determine the closest clusters to the 
input vector. This distance was accumulated and the language was determined to be the one with 
the smallest total distance. 

Sugiyama [12] and Nakagawa [13] performed vector quantization (VQ) classification on LPC 
features. Sugiyama investigated the differences between using a VQ codebook for each language and 
a universal VQ codebook for all languages. The algorithms had 65% and 80% recognition rates, 
respectively. Nakagawa investigated the use of a codebook with a continuous HMM (CHMM), 
a discrete HMM (DHMM), and an HMM with continuous mixture density output probability 
functions (CMDF). The CHMM and CMDF had comparable performance, with an 86.3% accuracy 
rate, while the DHMM had worse results, with a 47.6% accuracy rate. 

Zissman studied the use of continuous observation, ergodic HMMs with tied Gaussian obser- 
vation probability densities [14]. The HMMs were trained for each language using the mel-weighted 
cepstra and mel-weighted delta cepstra taken from the training speech. The same feature vectors 
were extracted from the test speech to test the HMMs. Likelihood scores for each language were 
generated from which the language of the incoming speech was determined. Ten-language classifi- 
cation performance on the OGI Corpus was 53% on 45-s utterances and 50% on 10-s utterances on 
the NIST 1993 data. Generally, the multistate HMMs performed no better than simpler Gaussian 
mixture classifiers. 



3.   BASELINE SYSTEM 

3.1 Introduction 

A system similar to the Lamel and Gauvain LID system was developed as a baseline for 
this report. Phoneme recognizers were developed for English and Spanish. The baseline system 
was used to determine the best implementation for performing language identification. One of the 
components investigated was the set of phonemes on which the system was trained. In particular, 
the effect of the addition of word-specific phonemes was determined. This section explains the 
implementation and results of the baseline system. Section 4 compares these results with those 
obtained when word-specific phonemes are included. 

3.2 The System 

The baseline system was a parallel phoneme recognition system similar to that of Lamel and 
Gauvain (discussed in Section 2). Incoming speech was processed in parallel through an English 
phone model network and a Spanish phone model network. The baseline system used the difference 
in likelihood scores to sort the messages according to their likelihood of being either English or 
Spanish. A graphic representation of the baseline system is shown in Figure 3. 

PHONE MODEL 
NETWORKS 

INPUT SPEECH — 

ENGLISH 
52 PHONES 

—► SPANISH    | 
38 PHONES | 

LIKELIHOOD SCORE  1 

h LIKELIHOOD SCORE 

LIKELIHOOD 
' RATIO 

Figure 3.    Baseline system. 

The HMM Toolkit (HTK) [15] was used to build the phoneme recognizers. Mel-weighted cep- 
stra and mel-weighted delta cepstra observation streams were processed statistically independently 



of each other. Each phone model had three emitting states, and each state used one six-component 

Gaussian mixture model to model the cepstra and another six-component model for the delta cep- 

stra. Diagonal variances were employed. Training was performed using the Baum-Welsh algorithm. 

Recognition was performed using a Viterbi recognizer, which produced the most likely phone se- 

quence along with that sequence's log likelihood score normalized by the number of frames.2 The 

intermodel log transition probabilities between two connected phoneme models were defined as: 

slog[P(j\i)]   , (1) 

where s is the grammar scale factor, the value of which was set during preliminary tests. P(j\i) was 

defined using bigram probabilities determined from the phone labels during training. The phone 

networks contained monophones and the top 100 most frequently occurring right-diphones3 from 
the training data for both languages. 

3.3     OGI Telephone Speech Corpus 

The OGI-TS Corpus was used to train and test the system [3]. It was designed to support 

research on automatic language identification and multilanguage speech recognition. Each caller 

gave up to nine separate responses, ranging from single words and short topic-specific descriptions to 

60 s of unconstrained spontaneous speech. The utterances were spoken over commercial telephone 
lines by speakers in English, Farsi (Persian), French, German, Japanese, Korean, Mandarin Chinese, 

Spanish, Tamil, and Vietnamese. The speech files for each language were divided into 50 training 

messages, 20 development test messages, and 20 evaluation test messages. 

Because the parallel phoneme recognizers used in this system required phonetically labeled 

data for training, only the 45-s-long "story-before-the-tone" (story-bt) utterances could be used, as 

these were the only labeled data in the corpus. To get the input speech into a more useful format for 
training, the 45-s story-bt utterances were broken down into smaller segments by removing silences 

and superfluous sounds. Thus the original 44 English and 48 Spanish training speech files were 
broken into 677 and 806 smaller files, respectively, mostly under 6 s in length. The final amounts 
of training as well as testing data are given in Table l.4 After cepstra and delta cepstra vectors 
were computed from input files, RelAtive SpecTrAl (RASTA) filtering [16] was used as a front-end 

processor to remove the effects of variable telephone line channels.   In all, these data were used 

For the rest of this report, the term "likelihood score" refers to these normalized log likelihood 
scores. 

3A right-diphone is a right context-dependent phone model. 

4It appears that there are more testing than training data because the silences were removed from 
the training data and left in the testing data. 



to train 52 English monophones and 38 Spanish monophones, as well as the 100 most frequently 

occurring diphones in each language. 

TABLE 1 

Amounts of English and Spanish Training and Testing Data 

Language 

English 

Spanish 

Training Data 

27.23 min 

26.29 min 

Testing Data 

27.03 min 

24.53 min 

Testing was carried out according to the NIST April 1993 specification. Sixty-three English 

and 54 Spanish 10-s utterances were used. 

3.4     Performance Metrics 

Rather than assessing the system by performing language identification between the two 
languages, the likelihood ratio output from the baseline system was used to generate receiver 

operating curves (R.OCs) and their figures of merit (FOMs). This method was preferable because 
likelihood score biases had been observed in previous tests of such systems at Lincoln. By taking 

the difference in the likelihood scores, this bias problem was eliminated. 

ROCs were generated by plotting the probability of detection, PD, on the j/-axis versus the 

probability of false alarm, PF, on the x-axis for all possible score thresholds. The area under this 
curve is the FOM. For an ideal system, PD = 1 and PF = 0, so the ROC would be two straight 

lines from (0,0) to (0,1) to (1,1) and the FOM would be equal to one. The closer a system's ROC 

is to this ideal curve (i.e., the closer the FOM is to one), the better the system performance. 

3.5     Results 

The grammar scale factor, s, was set after running some preliminary tests to determine its 
effect on language identification. Several different tests were run with the only difference being 
this factor. The value of this factor in the various tests along with the FOM from the resulting 
ROCs are given in Table 2. The ROCs for these tests are shown in Figure 4 for the case of English 

targets and Spanish background. These data show that performance was relatively insensitive to 
s, so s = 3 was used in all subsequent tests. With s - 3, the baseline system had a 0.979 FOM. 



TABLE 2 

Grammar Scale Factor Values and LID Figures of Merit 

Grammar Scale Factor Figure of Merit 

s = 1 0.976 

s = 3 0.979 

s = 5 0.978 

s= 10 0.966 

0.20 0.40 0.60 0.80 

PROBABILITY OF FALSE ALARM 

Figure 4-     ROCs for various grammar scale factor values; 10-s utterances; target = En- 
glish, background = Spanish. 
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4.   WORD-SPECIFIC PHONEME TESTS 

4.1     Introduction 

The inclusion of word-specific phone models was investigated to determine whether it would 
improve the performance of the baseline system. These new phone models were trained only on 
occurrences in certain words. For example, the word the is usually composed of two phones, /DH/ 
and /AX/. Considering the /DH/ phone, a general /DH/ phone was trained on occurrences of/DH/ 
in all words other than the, such as this and there. A separate phone, /DH-the/ was trained from 
occurrences of the. Word-specific phone models of commonly occurring words were incorporated 
into the baseline system to see how they affected the system's language identification performance. 

To incorporate this change into the baseline system, the commonly occurring words needed 
to be manually tagged in the segmented input data. The top five most frequently occurring words 
in spoken English are [17] 

• I 

• and 

• the 

• to 

• that. 

The top six5 most frequently occurring words in Spanish are [18] 

• de 

• el 

• la 

• y 

• a 

• en. 

Because the OGI training speech is phonetically, but not orthographically, transcribed, listeners 
tagged occurrences of these frequent words manually and then recorded the OGI phonetic labels 
corresponding to each word occurrence. For the word the, several different phonetic expansions 
might be observed, e.g., /DH AX/, /DH IY/, etc.   The word-specific phonemes, along with the 

5The sixth word, en, was added to the list after initial tagging of the training data had begun and 
it was found to occur as often as the other words in the list. 

11 



number of occurrences of each, are given in Tables 3 and 4. These tables also show the percentage 
of all phones that were included in these words. With the addition of these word-specific phonemes, 

the original monophone list was expanded from 52 to 76 monophones for English and from 38 to 
52 monophones for Spanish. 

4.2     Results 

Running on English versus Spanish data as described in Section 3.3, this word-specific phone 

system also had a 0.979 FOM. The ROC for this system is compared with that of the baseline 
system in Figure 5. 

CD UJ 
O Q 
SF u- °- o 

242881-5 

1.00 
1                                        1                                       1 

0.90 

0.80    UAbLLINL 
 WORD SPECIFIC 

0.70  1       i                       i 
0.20 0.40 0.60 0.80 

PROBABILITY OF FALSE ALARM 

Figure 5.    ROC for word-specific phoneme system versus baseline system; 10-s utterances; 
target = English, background = Spanish. 

The inclusion of the word-specific phonemes brought no improvement in language identi- 

fication, perhaps because the word-specific phones covered only approximately 5% of the data. 
However, to measure the small-scale effectiveness of this change, further analysis was done. In par- 

ticular, the number of times the system correctly or incorrectly detected the word-specific phonemes 

was determined. This result was compared with the phonemes specified by the baseline system. 
The results of this analysis are given in Tables 5 and 6. 

These results indicate that the baseline system actually recognized the word-specific phonemes 
better than the system that was trained on them. In particular, almost all the word-specific 

phonemes in both English and Spanish were recognized by both systems or by neither system. Of 

12 



TABLE 3 

Phonetic Breakdown and Frequency of Occurrences of English Word-Specific 
Phones 

Word 
Phonetic 

Transcription 

Frequency in 
Training 

Data 

Frequency in 
Testing 

Data 

Percentage of 
All Phones in 
Training Data 

Percentage of 
All Phones in 
Testing Data 

1 

/AY-I/ 

/AE-I/ 

/AH-I/ 

77 

3 

4 

57 

3 

10 

0.3197% 0.8463% 

and 

/AE-and/ 

/EH-and/ 

/N-and/ 

/VCL-and/ 

/D-and/ 

83 

2 

82 

14 

21 

39 

11 

50 

13 

17 

0.7687% 1.5720% 

the 

/DH-the/ 

/TH-the/ 

/IH-the/ 

/AX-the/ 

/AH-the/ 

/IY-the/ 

247 

4 

22 

104 

48 

64 

69 

2 

14 

15 

24 

13 

1.8610% 1.6560% 

to 

/T-to/ 

/AH-to/ 

/AX-to/ 

/IX-to/ 

/UW-to/ 

122 

10 

22 

16 

51 

36 

1 

7 

2 

16 

0.8410% 0.7496% 

that 

/DH-that/ 

/AH-that/ 

/AE-that/ 

/CL-that/ 

/T-that/ 

64 

6 

42 

15 

11 

24 

3 

14 

2 

2 

0.5251% 0.5441% 

Total 1134 444 4.3155% 5.3680% 

13 



TABLE 4 

Phonetic Breakdown and Frequency of Occurrences of Spanish Word-Specific 
Phones 

Word Phonetic 
Transcription 

Frequency in 
Training Data 

Frequency in 
Testing 

Data 

Percentage of 
All Phones in 
Training Data 

Percentage of 
All Phones in 
Testing Data 

de 

/D-de/ 

/DX-de/ 

/EY-de/ 

77 

88 

161 

15 

32 

48 

1.3790% 1.2650% 

el /EY-el/ 

/L-el/ 

62 

78 

27 

34 

0.5924% 0.8124% 

la /L-la/ 

/AA-la/ 

111 

110 

44 

45 

0.9351% 1.1850% 

y 

/EY-y/ 

/IY-y/ 

/Y-y/ 

17 

126 

2 

8 

48 

1 

0.6135% 0.7591% 

a /AA-a/ 47 9 0.1989% 0.1199% 

en 

/EY-en/ 

/N-en/ 

/NG-en/ 

98 

86 

21 

51 

41 

6 

0.8674% 1.3050% 

Total 1084 409 4.5863% 5.4464% 

the word-specific phonemes that were only recognized by one, the baseline system detected more 
than the word-specific phoneme system. 

4.3     Conclusion and Future Work 

Preliminary experiments were run to determine the effect of adding word-specific phonemes 
to the training set. The evidence seems to weigh in favor of leaving out the word-specific phonemes, 
especially considering the additional man-hours needed to tag them. If there were larger ortho- 
graphically transcribed databases, a word-spotting or word-recognition approach to language iden- 
tification could be pursued. Investigating this approach with the current OGI database, which may 
be too small to train word-specific phone models and is not orthographically transcribed, would be 
difficult. 

14 



TABLE 5 

Comparison of Recognition Performance for English 

Figure of Merit 

Basis Baseline System Word-Specific Phone System 

Overall 0.979 0.979 

Phone Recognition Performance on "Keywords" 

Basis Baseline System 
Word-Specific Phone 

System0 

Overall 

Recognized by this system only 

Recognized by neither system 

46.8% 

10.6% 

40.8% 

4.62% 

48.6% 

"Includes recognizing the base phone only, i.e., if the word-specific phone system recognized /AE/ when 
the actual word was /AE-and/, it was counted as correctly recognizing the phone. 

TABLE 6 

Comparison of Recognition Performance for Spanish 

Figure of Merit 

Basis Baseline System Word-Specific Phone System 

Overall 0.979 0.979 

Phone Recognition Performance on "Keywords" 

Basis Baseline System 
Word-Specific Phone 

System0 

Overall 

Recognized by this system only 

60.9% 

7.40% 

59.1% 

0.77% 

Recognized by neither system 33.4% 

"Includes recognizing the base phone only, i.e., if the word-specific phone system recognized /EY/ when 
the actual word was /EY-en/, it was counted as correctly recognizing the phone.  

15 



5.   FURTHER EXPERIMENTS USING ACOUSTIC LIKELIHOODS 

5.1 Introduction 

This section details the development of the complete LID system using phone-based acoustic 

likelihoods. Phoneme recognizers were developed in English, German, Japanese, Mandarin, and 

Spanish and were used to create an LID system similar to that of the baseline. The system was 

built and tested to determine the feasibility and performance of a parallel phoneme recognition 

system on telephone speech. 

5.2 The System 

The LID system developed for these tests was a parallel phoneme recognition (PPR-C)6 

similar to that of the baseline system described in Section 3. Incoming speech was processed in 
parallel through English, German, Japanese, Mandarin, and Spanish phone model networks. The 
language of the incoming speech was hypothesized as the language of the model having the highest 

likelihood. A graphic representation of this system is shown in Figure 6. 

As was done for the baseline system, the 45-s story-bt training utterances in German, Japanese, 
and Mandarin were broken down into smaller segments and the superfluous sounds were removed. 

The final amounts of training and testing data for all five languages are given in Table 7' along 

with the number of monophones trained in each language. The implementation of this system is 

the same as that of the baseline system that was detailed in Section 3. However, each of the five 
phone networks used when testing this system contained only monophones. 

5.3 Performance Measures 

Five-way language classification was used to assess the performance of the system. The likeli- 
hood scores output from the system were adjusted before language identification was performed to 
address the bias issue that had been noticed in previous language identification tests. An adjust- 
ment was made by postprocessing the raw likelihood scores such that for each recognizer, the mean 

of the scores from all messages processed by the recognizer was set to zero. Thus the adjustment 
took the form of a recognizer-dependent addition or subtraction. The resulting likelihood scores 

were compared and the language of the model with the highest likelihood score was hypothesized 

as the language of the incoming speech. Language identification performance is given by the ratio 
of the number of speech files the language of which was correctly identified divided by the total 

number of files. 

6Parallel phoneme recognition performed by Chou. 
7It appears that there are more testing than training data because the silences were removed from 

the training data and left in the testing data. 
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PHONE MODEL 
NETWORKS 

INPUT SPEECH ( 

ENGLISH 
52 PHONES b LIKELIHOOD SCORE. 

GERMAN 
57 PHONES 

JAPANESE 
27 PHONES 

LIKELIHOOD SCORE 

-LIKELIHOOD SCORE 

MANDARIN 
43 PHONES b LIKELIHOOD SCORE 

SPANISH 
38 PHONES 

-LIKELIHOOD SCORE 

LANGUAGE 

Figure 6.    LID system using acoustic likelihoods. 

TABLE 7 

Amounts of Training and Testing Data for Five-Language Identification 
System 

Language Training Data Testing Data 
No. of 

Monophones 

English 

German 

Japanese 

Mandarin 

Spanish 

27.23 min 

24.45 min 

23.44 min 

17.69 min 

26.29 min 

27.03 min 

26.54 min 

25.16 min 

26.93 min 

24.53 min 

52 

57 

27 

43 

38 
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5.4     Results 

Running according to the NIST 1993 specifications, the PPR-C system attained a five- 

language recognition rate of 70.3% correct on the 10-s utterances. On 45-s utterances, this recogni- 

tion rate increased to 71.9%. Table 8 shows the five-language confusion matrix. Table 9 compares 

these results with those of Zissman's PRLM-P system, which was described briefly in Section 2. 

When the PRLM-P system was tested on the same five languages, it achieved a language recognition 

rate of 75.7% on the 10-s utterances and 86.5% on the 45-s utterances. The standard deviations 

(a), estimated according to a Bernoulli model, are shown in the bottom row of Table 9. 

TABLE 8 

Five-Language Confusion Matrices 

It i-s Utterances Test 

Actual Language 

Hypothesized Language 

English German Japanese Mandarin Spanish 

English 47 10 3 1 2 

German 12 46 2 0 3 

Japanese 1 0 53 1 2 

Mandarin 7 14 8 26 4 

Spanish 3 6 9 0 36 

4! >-s Utterances Test 

Actual Language 

Hypothesized Language 

English German Japanese Mandarin Spanish 

English 12 6 0 0 0 

German 1 16 0 0 1 

Japanese 0 0 16 0 1 

Mandarin 2 6 1 9 1 

Spanish 0 5 1 0 11 

Additional analysis was done comparing the two systems' two-language identification results 

averaged over the 10 language pairs. These results are also given in Table 9. Again, it is evident that 
the Chou PPR-C system developed in this report has lower accuracy than the Zissman PRLM-P 

approach. 
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TABLE 9 

Identification Results 

System 

Five Language Two Language 

45 s 10 s 45 s 10 s 

PRLM-P 

PPR-C 

a 

86.5% 

71.9% 

5% 

75.7% 

70.3% 

3% 

94.7% 

88.0% 

2% 

89.2% 

86.5% 

1% 

English/Japanese/Spanish experiments were also performed on the Chou PPR-C system for 
further comparison with Zissman's PRLM-P and PPR systems. These results are presented in 
Tables 10 and 11 and show that Chou's PPR-C system has comparable performance with Zissman's 
PPR and PRLM-P systems on each of the three language pairs. This outcome is expected because 
the two systems are trained and tested on the same data and are using basically the same approach. 

TABLE 10 

English/Japanese/Spanish Language Pair Identification Results 

System 

Two-Language Identification 

English/Spanish English/Japanese Japanese/Spanish Average 

45 s 10 s 45 s 10 s 45 s 10 s 45 s 10 s 

PRLM-P 

PPR 

PPR-C 

a 

97.1% 

97.1% 

97.1% 

88.0% 

92.3% 

91.5% 

91.4% 

94.3% 

94.3% 

90.0% 

92.5% 

90.8% 

94.1% 

85.3% 

85.3% 

90.1% 

87.4% 

86.5% 

94.2% 

92.2% 

92.2% 

3% 

89.4% 

90.7% 

89.3% 

2% 

The results of three-language (English/Japanese/Spanish) identification are given in Table 11. 
The Zissman PRLM-P system had the best results (with the PPR system performing slightly 
below), and the Chou PPR-C system had the worst results (slightly below the Zissman PPR 
system). Although the statistical significance of the difference is marginal, the discrepancy between 
the two PPR systems could be attributed to Zissman's PPR system using the monophones plus the 
top 100 most commonly occurring diphones from the training data, whereas Chou's PPR-C system 
used only monophones. 
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TABLE 11 

English/Japanese/Spanish Three-Language Identification Results 

System 45 s 10 s 

PRLM-P 92.3% 85.1% 

PPR 86.5% 85.1% 

PPR-C 82.7% 82.2% 

a 6% 3% 

5.5     Conclusion 

The results from the English/Japanese/Spanish experiments validate the Chou PPR-C system 

because these results are comparable with those of Zissman's PPR tests. In addition, both PPR 
systems had comparable results with Zissman's PRLM-P system. Thus for identifying up to three 

languages, the method of using phone-based acoustic likelihoods is good and produces relatively 

accurate results. 

The results for the five-language tests show larger differences in the performance between 
Chou's PPR-C and Zissman's PRLM-P systems. This discrepancy seems to indicate that as the 

number of languages increases, the PPR-C system may have inferior recognition capabilities. Be- 

cause there is some evidence that adding context-dependent diphones can improve PPR perfor- 
mance, future comparisons should be performed using context-dependent phone models in PPR 

systems. 
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6.   CONCLUSION 

This work demonstrates that language identification on telephone speech using phone-based 
acoustic likelihoods is feasible but does not yet produce results comparablewith other systems. On 
three-language identification, Chou's PPR-C system developed here had similar results to Zissman's 
PRLM-P and PPR systems. However, for five-language identification the PPR-C system attained 
a recognition rate of 71.9% correct, much lower than the 86.5% correct achieved by the PRLM-P 
system. Adding context-dependent phones to the phone recognizers might improve PPR perfor- 
mance and should be the subject of future work. Additionally, it was shown that simple addition 
of commonly occurring word-specific phonemes did not improve PPR performance. Perhaps with 
the advent, of larger multilanguage speech corpora, word-specific modeling approaches will be more 
appropriate. 
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