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1. INTRODUCTION AND SUMMARY 

1.1 Introduction 

Fiber-reinforced ceramic composites offer the advantages of advanced 

ceramics (high-temperature capability, low density, oxidation and corrosion resistance) 

coupled with a non-catastrophic failure behavior. Application of this new class of 

structural materials, however, requires a new design philosophy that is based on their 

damage tolerance. In this context, the damage tolerance may be defined as the ability of 

the component to sustain crack-like defects that originate in processing as well as those 

that are introduced in service. It is equally important to understand the progress of 

damage, i.e. increase in the number and size of the crack-like defects with increasing load 

or time, in order to be able to predict 'safe' loads for sustainable limiting damage. 

Ceramic-matrix composites can be vulnerable to embrittlement by environmental 

interaction if the total damage exceeds a critical level and continuous paths are opened to 

the fiber-matrix interfaces via the linking of the cracks[l]. 

The initial damage in ceramic-matrix composites often occurs in the matrix 

because the failure strain of the matrix is typically much smaller than the failure strain of 

the fibers. Accordingly, much of the attention in modeling damage resistance of ceramic- 

matrix composites has been focused on matrix cracking[2]. In particular, micromechanics 

and fracture mechanics theories have been developed to model the critical stress for 

extension of preexisting, fully-bridged matrix cracks. The classical theory of Aveston, 

Cooper and Kelly[3] and the theory of Budiansky et al.[4] used energy balance analyses of 

steady-state cracks to define lower-bound matrix-cracking stress. Although these theories 

were based on sound fundamental principles, the restriction of steady-state cracks, i.e. long 

fiber-bridged cracks with uniform crack opening, makes them less useful for treating 

realistic, small-size cracks. Subsequent attention in modeling, therefore, shifted to 

calculating the critical stress for extension of small (non-steady-state) fiber-bridged cracks 

using the stress-intensity approach of fracture-mechanics theory[5-8]. 

All of the above theoretical analyses model the critical stresses for the unstable 

extension of fully-bridged cracks. Careful experiments conducted by Kim and Pagano[9] 

have recently revealed, however, that ceramic-matrix composites develop damage in the 

form of microcracks at applied stresses well below the observed proportional limits on the 

stress-strain curves, i.e. within the initial elastic regime. Further, these microcracks 

increase in number and size with increasing load.   In the context of this picture of the 
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damage accumulation process, the transition from elastic to inelastic regime on the stress- 

strain curve is a consequence of the overall decrease in the elastic modulus of the 

composite due to bulk damage accumulation rather than due to the extension of a single 

fully-bridged crack. 

A comprehensive design methodology for fiber-reinforced ceramic matrix 

composites should be based on mechanistic theories of damage, such as those matrix 

cracking theories noted above, in a framework that accommodates the 'probabilistic' and 

'accumulative' aspects of the damage process [10]. Also, a conservative design philosophy 

should emphasize the use of damage initiation stress rather than the ultimate failure stress 

as a critical design parameter. At the present time, there is no established analytical tool for 

modeling the progressive damage process in fiber-reinforced ceramic matrix composites. 

The present Phase I research was aimed at developing a computational method for 

simulating the progressive damage and failure of fiber-reinforced composites under 

monotonic uniaxial loading. The computational method combines the existing knowledge 

of the fracture mechanics treatment of the stable growth of partially-bridged penny-shaped 

cracks with a size distribution of the fiber-free zones characterized from the microstructure 

of the composite. The size distribution of fiber-free zones is used as an input for the 

initiation of small matrix cracks within the gage section in the early stage of loading. 

Comparison of the predictd stress-strain curves with experimental results on selected 

composites was an essential part of this research. 



1.2 Summary 

A computational model was developed to simulate the progressive damage and 

failure of fiber-reinforced brittle matrix composites under uniaxial tensile loading. In 

conjunction with the basic material properties, this model used a size-distribution of the 

'fiber-free zones' as an input for the development of small penny-shaped cracks at the early 

stage of loading. Stable extension of such non-steady-state cracks and the transition from 

non-steady-state to steady-state (cross-sectional) cracks were modeled using a stress- 

intensity formulation for a partially-bridged crack. The stress-intensity formulation made 

use of a force-displacement relation for the crack-bridging fibers and iterative numerical 

calculations for self-consistency of the bridging tractions and the crack-opening 

displacements. Stress-strain relation was simulated by calculating the total engineering 

strain in the gage section as a function of the applied stress. The total strain was obtained 

by summing the strains contributed from the non-steady-state and the steady-state cracks 

separately. Strain energies of the non-steady-state cracks and displacements of the fibers in 

the sliding zones of the steady-state cracks were calculated to estimate the total strain. Two 

unidirectional fiber-reinforced composites were investigated to test the predictive capability 

of this model. The fiber volume fractions, mean fiber radii, and size-distributions of the 

'fiber-free' zones were characterized using stereological analysis of the microstructures of 

the composites. Material properties such as interfacial sliding stresses and matrix residual 

stresses were taken from the literature. The stress-strain relation predicted by the model 

was in good agreement with that measured experimentally for a SiC-reinforced calcium 

aluminosilicate composite. A SiC-reinforced magnesium aluminosilicate composite 

showed less cumulative strain before fracture due to premature fiber failure. 



2. TECHNICAL BACKGROUND 

A brief review of the current micromechanics theories is given in the following 

paragraphs. This will provide the background for the formulation of the progressive 

damage model, the subject of this research. 

2.1 Critical Stress for Extension of Steady-State Matrix Crack 

Aveston, Cooper, and Kelly[3] and Budiansky et al.[4] analyzed the critical 

stress for the extension of a steady-state crack using energy-balance approach. As shown in 

Figure 1, a large crack experiences a crack opening, u, which asymptotically approaches 

the steady-state maximum separation, UQ, of a matrix crack over the entire cross section. In 

a region far away from the crack tip, the total force in the intact fibers that bridge the crack 

per unit area exactly balances the far-field applied stress. The stress intensity at the crack 

tip is independent of the length of this steady-state crack zone and the stress needed to 

extend the crack is insensitive to the total crack length. Crack growth under this condition 

is referred to as steady-state growth. For composites with unbonded and frictional 

interfaces the critical stress for extension of the steady-state crack was formulated by 

Budiansky et al. as[4]: 

Ec 
JZ,m 1" <£ (1) 

r   ÖTGmV^EfEc2   -, 1/3 
where G0 =   I  m   t   ,   c    J (2) 

d-Vf)Em
2R      J 

where Ec is the Young's modulus of the composite determined by the rule of mixture (i.e., 

Ec = EfVf + EmVm), Em and Ef are Young's moduli of the matrix and the fiber, 

respectively, am is the axial residual stress in the matrix, Gm is the critical energy release 

rate for the matrix, Vf is the volume fraction of the fiber and R is the fiber radius. 

Measurements performed on several glass- and glass-ceramic-matrix composites 

reinforced with SiC fibers showed that the matrix cracking stresses predicted by Eq. (1) 

were indeed close to the proportional limits measured on the stress-strain curves[ll]. It is 

now known, however, that proportional limit on a stress-strain curve, i.e., the stress at the 

deviation from linear behavior, does not correspond to the extension of a single preexisting 

crack. It represents the cumulative effect of the stable growth of a large number of cracks 

on the compliance of the specimen. The critical crack extension stress predicted by Eq. (1) 
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Figure 1. Schematic Representation of a Steady-State Matrix Crack in a Unidirectional 
Fiber-Reinforced Composite. 

is generally considered as the lower bound of the matrix cracking stress of the pertinent 
composite. 

2.2 Critical Stress for Extension of Short Cracks 
For short cracks (as shown in Figure 2), the entire crack contributes to the stress 

intensity, and the stress required to propagate a crack is sensitive to the crack length. The 
critical stress for extension of a short (non-steady-state) crack in CMCs has been analyzed 
using the stress intensity approach by Marshall et al.[5], McCartney[6], Majumdar et al.[7], 
and recently Danchaivijit and Shetty[8,12]. The critical stress is calculated by equating the 
effective stress intensity for the matrix crack, i.e., the stress intensity obtained by 
superposing the contributions of the far-field stress and of the crack-bridging traction, with 
an effective fracture toughness (KQ) of the composite. The calculation requires an explicit 

relation between the crack-closure traction applied by the bridging fibers, p, and the crack- 

opening displacement, u. 



l(x) 

Figure 2. Schematic of a Short (Non-Steady-State) Crack Fully Bridged by Fibers. 

We consider a small penny-shaped crack in an unbonded composite in which the 

sliding of matrix over the fibers is resisted only by frictional forces. By superposing the 

stress intensities caused by the far-field applied stress (aj on an unbridged crack and the 

crack closure distribution traction (p) provided by the bridging fibers, the effective stress 

intensity of the crack, K, is obtained as[6,7] 

K = 2(—)l/2 
71 

0 
V(l-X2) 

dX (3) 

where X is the normalized position coordinate, x/c (see Figure 2). 

For composites with unbonded, frictional interface, Danchaivijit et al.[8,12] 

have developed the following force-displacement relation for crack-bridging fibers: 

P(X) = 
1(1+71) \ 

1+^M*+l]_j 
ri2u0 

(4) 



where r| is equal to EfVf/EmVm, Vm is the volume fraction of the matrix, a' = 0^,+ 

a^VjnQ+ri). It has been shown in Ref. [8] that equivalence of the energy-release rates for 

steady-state cracks in the stress-intensity approach and the energy-balance theory of 

Budiansky et al.[4] suggests that UQ must be defined by the following equation: 

g'2R ,« 
2(3rj+2)EfVf

2x 

In Eq. (4), when the crack-closure distribution traction, p, approaches the far-field applied 

stress, a«,, the crack opening (u) approaches UQ. When the crack-opening (u) approaches 

zero, Eq. (4) predicts a lower limit of p equal to the far-field fiber stress. 

In the p - u relation given above, the crack opening (u) at a given position, 

however, is dependent on the entire distribution of the surface traction [13], for example, 

4(l-v2)c 
u(X) = 

7tHc 

X 

1 S 

r    l  
5c2 

0 

too-pftxit 

Vs2-X2 J      Vs2-t2 
dtds (6) 

for a penny-shaped matrix crack. Thus, it is essential to ensure that the crack-opening 

displacement, u(X), and the crack-bridging traction, p(X), are self-consistent before the 

stress intensity for the fiber-bridged crack is evaluated from Eq. (3). The numerical method 

suggested by Marshall et al.[5] to calculate the self-consistent crack-opening displacement 

function, u(X), and the crack-bridging traction distribution, p(X) was used in the present 

model. 

2.3 Fracture Criterion 

The critical stress for extension of a fiber-bridged crack is obtained by 

combining Eq. (4) (with the self-consistent p(X)) and an appropriate fracture criterion. 

Several different fracture criteria have been used in the literature to define the critical 

condition for extension of a fiber-bridged crack[5-7]. A critical energy release rate 

criterion was used in this study. 



The fracture criterion was developed by equating the critical value of the energy 
release rate, Gc, expressed in terms of the critical composite stress intensity (K^) to the 

effective surface energy dissipated[6]: 

K? (l-v2) c 
E Gc=-^ = 2Vmym (7) 

where v is the Poisson's ratio of the composite and ym is the specific surface energy of the 

matrix. E is a pertinent effective elastic modulus that depends upon the elastic anisotropy 
of the composite. Explict expression for E' is given in Ref. [8]. Equation (7) can be 
rewritten in terms of the fracture toughness of the matrix, Kcm : 

Kc^Kcm L    F m -I ^ 

The p — u relation described in Eqs. (4) and (6) in conjunction with the stress 

intensity calculation (Eq. (3)) and the fracture criterion (Eq. (8)) provided the basis for 
formulating the stable crack growth of partially-bridged penny-shaped cracks in the present 
study. 



3. RESEARCH OBJECTIVES 

The present Phase I research had the following objectives: 

(i)   Develop a computational method for modeling the progressive damage and failure of 

fiber-reinforced ceramic matrix composites. Use this method to simulate the damage 

accumulation process and predict the stress-strain relations of unidirectional 

composites under monotonically increasing load, 

(ii) Compare the theoretical predictions with the experimental results from uniaxial tensile 

tests on two ceramic-matrix composites. 



4. TECHNICAL APPROACH OF THE MODEL 

4.1 Model of Crack Evolution 

The present model assumed that small matrix cracks were initiated within the 

fiber-free zones (FFZs) and were arrested by the surrounding fibers in the early stage of 

loading. Figure 3A schematically illustrates how an internal penny-shaped crack, with 

radius a, is developed within a FFZ. The FFZs are caused by the non-uniform distribution 

of the fibers in the composite. Figure 3B shows the subsequent evolution of such matrix 

cracks. The initiated matrix crack can grow stably with increasing applied stress because of 

the increasing closure traction applied by the bridging fibers. Such cracks are referred to as 

partially-bridged matrix cracks or non-steady-state cracks. A partially-bridged matrix crack 

can extend stably until a critical applied stress is reached. At that stress level, the crack 

becomes unstable and extends throughout the entire cross-section of the composite 

specimen. Such cracks are referred to as steady-state cracks or cross-sectional cracks. 

Stable extension of the non-steady-state cracks and the transition from the non-steady-state 

to the steady-state cracks were modeled using a stress-intensity formulation for a partially- 

bridged crack. The stress-intensity formulation made use of the force-displacement relation 

described in Eqs. (4) and (6) and iterative numerical calculations for self-consistency of the 

bridging traction and the crack opening displacement. The fracture criterion described in 

Eq. (8) was used to calculate the crack extension stress. 

4.2 Materials Properties 

Two unidirectional fiber-reinforced glass-ceramic composites, SiC(Nicalon)- 

CAS (calcium aluminosilicate) and SiC(Nicalon)-MAS.5 (5% BSG-doped magnesium 

aluminosilicate), were selected for investigation in this research. Table 1 lists the material 

properties that were used in the theoretical calculations and their sources. For the SiC-CAS 

material, the coefficient of thermal expansion (CTE) of the matrix is higher than that of the 

fiber; thus the matrix is subject to tensile residual stress in the axial direction. On the other 

hand, in the SiC-MAS composite, the CTE of the matrix is lower than that of the fiber and, 

therefore, the matrix is subject to compressive residual stress. Other properties such as 
fiber radius (R), fiber volume fraction (Vf), and the size distribution of the FFZs were 

characterized using image analysis and are discussed in the next section. 

10 



Matrix Crack 

radius = a 

Figure 3A. Penny-Shaped Crack Initiated within a Fiber-Free Zone. 
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(1). Penny-Shaped Cracks Initiated   (2). Stable Extension of Partially-       (3). Cross Sectional Cracks after 
in the Fiber-Free Zones Bridged Penny-Shaped Cracks Unstable Extension 

Figure 3B. Schematic Illustration of the Crack Evolution Model. 
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Table 1. Materials Properties Used in the Theoretical Calculation 

Properties SiG/CAS SiC/MAS.5 

Coef. of Thermal Expansion (x 10~6/O " 

Fiber (Of) 

Matrix (ccm) 

AT (°C) 

4.0 

5.3 

1100 

4.0 

2.5 

1000 

Elastic Modulus CGPa} 1 

Fiber (Ef) 

Matrix (Em) 
200 

97 

200 

124 
Poisson's Ratio 

0.2 

-   0.2 

0.2 

0.2 

Fiber (Vf) 

Matrix (vm) 

Matrix Fracture Toughness, K^, (MPaVm) 1.63 § 2.38 §§ 

Matrix Residual Stress, Gm (MPa) 89± 13 § * 
-102 

Interfacial Sliding Stress, x (MPa) 19 § 40 # 

H       Corning Inc. (Dr. K. Chyung). 
§      D.S. Beyerle, S. M. Spearing, F. W. Zok, and A. G. Evans, /. Am. Ceram. 

Soc, 75 [10] 2719-25 (1992). 
§§    Measured in the present study using chevron-notched short-bar specimens. 
# Private communication with Dr. F. Heredia and Mr. J. McNulty of University 

of California, Santa Barbara (unpublished work). 
* Theoretical estimation (using the equations proposed by B. Budiansky, J. W. 

Hutchinson, and A. G. Evans, /. Mech. Phys. Solids, Vol. 34 [2], 167-189,1986). 

4.3 Characterization of the Microstructure and the Fiber-Free Zones 

Five rectangular specimens of each composite, each measuring 5x4x3 mm, 

were cut from the same panel from which the tensile specimens were machined. The 

planes perpendicular to the unidirectional fibers were ground and polished. Figures 4A and 

4B show the microstructures of the SiC-CAS and SiC-MAS composites, respectively. 

Quantitative evaluation of such microstructural parameters as mean fiber radius, fiber 

volume fraction, average fiber spacing, and size distribution of the FFZs were conducted 

using an image analyzing system1 connected to an optical microscope. 

1  The software of this system was Vidas (version 2.1), Kontron System, Germany. The 
analysis was performed on a PC. 
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Figure 4A. Microstructure of the Nicalon-CAS Material. 
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Figure 4B. Microstructure of the Nicalon-MAS Material. 
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Figure 5. Schematic Illustration of the Quantitative Image Analysis. 

The algorithms and the procedures of the image analysis used in the present 
study were developed by King and Schneider[14]. Figure 5 schematically illustrates how 
the microstructural parameters were evaluated. The area of each individual fiber and the 
average area fraction of the fibers was measured by producing sufficient contrast between 
the fiber and the matrix phases. The area of the fiber was converted to radius by 
considering a circle with equivalent area. The fiber volume fraction was considered to be 
equal to the area fraction characterized from these sectional planes. Twenty images (each 
image has the dimensions of 244.7 x 229.4 |im) were sampled for each material to 

determine the fiber radius distribution and the average fiber volume fraction. To determine 

the average fiber spacing, the image analyzing system produced many parallel lines on the 

image and the length of each intercept in the matrix phase was measured. Approximately 

6500 intercepts were measured for each composite material. The calculations of the fiber 
volume fraction and the average fiber spacing included a transformation procedure to 

correct the frame effect (i.e. larger fibers and longer intercepts were more likely to be cut 

off by the frame of the image, therefore, being underestimated). 
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A fiber-free zone was defined as a fiber-depleted region with the diameter of the 

maximum circle which could fit into the region being greater than the average fiber 

spacing. The size of a fiber-free zone was defined by its radius indicated as 'a' (as shown in 

Fig. 3A). Due to the limited time and resources in the Phase I research, determination of 

the size distribution of the FFZs was carried out manually by circling out all the possible 

FFZs on the image printouts2. The probability density of the FFZ as a function of the size 

was plotted as a histogram with an interval of 2.5 (im, and the sampling action was 

continued until the distribution of the FFZs did not change significantly with more data. A 

total of 300 FFZs (from 25 images) were measured to determine the size distribution for 

each composite. The density distribution was then transformed to the cumulative 

distribution. The following cumulative distribution function, modified from the two- 

parameter Weibull Distribution function, was used to fit the measured data: 

F (a) = 1 - exp [- exp (B1 + B2 ln(a) + B3 (ln(a))2 + B4 (ln(a))3) ] (9) 

In Eq. (9), the parameters B1? B2, B3, and B4 were determined by fitting a polynomial to 

the data plotted as ln(a) vs. lnln[l/(l-F)]. In addition to the size distribution, the total 

number of fiber-free zones per unit area (area density) was also determined. 

4.4 Distribution of Fiber-Free Zones in the Gage Section of the Composite 

Progressive matrix cracking with increasing applied stress results in a periodic 

crack array in the gage section of the composite. The crack spacing reaches a saturation 

value, S, when the cracks interact with one another, reducing the driving force for 

propagation of additional cracks. The magnitude of the saturation crack spacing is a 

function of the interfacial sliding stress, properties of the fiber and of the matrix. 

To simulate the eventual matrix blocks, the gage section of the composite 

specimen was first assigned a number of equally-spaced planes. The spacing between 

adjacent planes was set to be 2/ as suggested by Zok and Spearing[15] for non-interacting 

condition, where / is the sliding length associated with the steady-state cracks at an applied 
stress a • 

2 With additional effort in computer programming, the probability of finding a fiber-free 
zone with radius a can be determined as a function of the radius using the digital image 
memory technique and a random coordinate selection process. 

15 



/ = Ju=—m_ü^—Lid— (io) 
2(i+n)Vfc 

The total number of planes was determined by the gage length (GL) of the specimen which 

was covered by the extensometer and /: 

GL 
N=Nint[-!fj-] (11) 

where 'Nint' is an operator which selects the nearest integer of the real number being 

considered. The total number of the FFZs that was assigned to each plane was obtained by 

multiplying the cross sectional area of the gage section and the area density of the fiber-free 

zones. The size of each assigned fiber-free zone was randomly selected from the size 

distribution function using a random number generator. Specifically, the 'linear 

congruential method'[16] was used to generate pseudo-random numbers on a computer. 

Integer numbers were generated in the range of (0,121500); each number was normalized 

by 121500 to define a cumulative frequency. Since the smallest FFZs had their radius 

equal to half of the average fiber spacing (but not zero), there was a finite cumulative 

frequency defined by Eq. (9) below which no FFZ existed. Therefore, the initially selected 

frequency was proportionally redefined into the range where the FFZs existed using the 

following equation: 

F = Fi(l-F0)+F0 (12) 

where F and Fj were the redefined and the initially selected cumulative frequencies, 

respectively. FQ was the cumulative frequency below which no FFZ existed. According to 

Eq. (9), the size of the FFZ corresponding to 'F' was determined and assigned in the gage 

section. A random selection process was used to ensure that the size distribution of the 

assigned fiber-free zones was different from plane to plane, and thus simulated the non- 

uniform fiber alignment in these composites. 

4.5 Transformation of FFZs to Cracks and the Cracking Stress - Crack Size Relation 

A model was needed to control the transformation of the fiber-free zones to 

cracks at various stress levels. An ideal methodology would incorporate the initial flaw- 

size distribution of the composite and then use a model to randomly combine the 'flaw-size' 

and the 'fiber-free zone size' distributions to predict the initiation of every penny-shaped 

crack. However, there is little information available on the initial flaw-size distribution in 
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fiber-reinforced brittle matrix composites. Recently, an attempt has been made to 

investigate the possible relation between the residual stress profile in the FFZ and the 

configuration of the surrounding fibers of unidirectional composites using finite element 

analysis[17]. Results have indicated, however, that there is no significant change of the 

stress profile due to different configuration of the surrounding fibers. 

The following model was used in the present research to define the 

transformation of the FFZs to cracks. The model assumed that the size of a fiber-free zone 

had the major influence on the initiation process, i.e. larger fiber-free zones were weaker 

and they became cracks at lower stress levels. To clearly illustrate this model, consider the 

following equations: 

K = 2(-^)1/2{ 
7C 

G~X r P(X)X 

Vd-x2)    JVd-x2) 
} dX (13) 

4(1-V2) 

u(X)=- 

c     1 
r 

% Er 

r r G°°r 

X 
Vs2-X2     JV^-t2 

0 

dt - P(t)t 

V s2_t2 
dt   ds (14) 

Equations (13) and (14) are the expanded forms of Eqs. (3) and (6), respectively, where the 
contributions from the far-field stress (G^) and the crack closure traction applied by the 

bridging fibers (p) are now evaluated separately. When the initial crack is of the same size 

as the fiber-free zone as shown in the first step of Fig. 3B, q = 1 in both equations (i.e. there 

is no contribution from p); when the crack is partially-bridged as shown in the second step 

of Fig. 3B, q has a value in the range of (0,1) and this value represents the portion of the 

crack length which is not bridged. For fully bridged cracks (cross-sectional cracks), q = 0 

and Eqs. (13) and (14) reduce to their original forms. 

Equations (13) and (14) in conjunction with the p-u relation were used to 

calculate the cracking stress - crack size relation for a given initial crack size. Figure 6 

shows the relations calculated for the SiC-CAS material. Material properties listed in Table 

1 were used in the calculations. In curve I, for example, a crack of initial size, c = 40 |im 

and q = 1, can grow stably with increasing applied stress, due to the increasing resistance 
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from the bridging fibers, up to 303.5 MPa. At this stress level, the crack becomes unstable 

since the cracking stress monotonically decreases with crack size and approaches the 
steady-state matrix cracking stress predicted by Budiansky et al.[4]. It is reasonable to 
assume that the crack extends through the entire cross section of the composite when the 
peak (unstable extension) stress is reached. It is also important to note that the peak stress 
decreases with increasing initial crack size, and the unstable extension occurs at a larger 
crack size if the initial crack size is larger. 

In the transformation model used, a fiber-free zone with radius 'a' was assumed 
to transform to a crack of the same size when the applied stress reached the first matrix 
cracking stress, i.e. the first point of each curve in Fig. 6. In other words, this model 
assumed that small matrix cracks were initiated from nuclei within the fiber-free zones and 
then were arrested by the surrounding fibers during the early stage of loading. Following 
this model, larger fiber-free zones became cracks at lower stress levels, and the initial 
matrix cracking stress of a composite was strictly dependent on the size of the largest fiber- 
free zone which had been sampled and assigned to the gage section. This part will be 
addressed further in the results and analysis section. 
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4.6 Simulation of the Stress-Strain Relation 
The stress-strain relation was simulated by calculating the strain in the gage 

section as a function of the applied stress. The length of the gage section was equal to the 
gage length of the extensometer. The strains contributed from the non-steady-state and the 
steady-state cracks were considered separately. The total strain was equal to the sum of the 
two strains. For the non-steady-state cracks and the uncracked bulk subject to the far-field 
applied stress, a strain energy approach was used to first estimate the strain energy increase 
due to stable extension of the partially-bridged cracks, and the strain was calculated from 
the strain energy. For steady-state cracks, the fiber displacement within the sliding zones 
was calculated and normalized by the gage length to obtain the strain. Calculation steps are 

detailed in the following paragraphs. 

4.6.1 Strain of the Composite Subject to Far-Field Stress: Assuming non-interacting 
cracks, the model considered the strain energy of a partially-bridged crack to be the strain 
energy of this crack when it was unbridged (i.e. all the fibers are broken) less the work 
done by the bridging fibers during partial crack closure: 

8 (1-v2) o2 c3 0 r r -. 
Wc = 3E, °°      - 2 7t c2 J p(X) X [ua(X) - ub(X)J dX (15) 

In the above equation, v and E1 are the Poisson's ratio and the effective elastic modulus of 
the composite, respectively; ua(X) and %(X) are the crack opening displacements for the 

unbridged crack and the bridged crack, respectively. Since ua(X) is greater than %(X), the 

strain energy of a bridged crack is less than that of an unbridged crack. Figure 7 shows an 
example of the unbridged and the bridged profiles of a crack in a SiC-CAS composite that 
initiated at a FFZ 40 |im in radius. The unbridged crack has a bigger crack opening than 

the partially-bridged crack. The crack closure traction distribution, at the applied stress of 
276.7 MPa, is also shown in the figure. 

The strain energy of a gage section containing many non-interacting and stably 
growing cracks was the total strain energy of all these cracks plus the strain energy of the 
uncracked body. The strain energy of cracks was the sum of the strain energies of each 

unbridged or partially-bridged crack: 
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G2 

W  = (NjWe! + N2Wc2 + + NiWci) + (—^-) 
2Ec 

(16) 

where Wj is the total strain energy of a unit volume containing 2 Nj cracks at a stress level 
of a«,, Wcj is the strain energy of a bridged crack with crack length c = ci, Nj is the total 

number of cracks per unit volume with c = ci. 

When there were no steady-state cracks present in the gage section (this 
occurred when the specimen was in the early stage of loading), the stress-strain relation was 
simulated by first calculating the total strain energy increase (AW-p) in the gage section due 

to a small increment of the applied stress (Aa«,) and then convert the strain energy increase 

to strain increase (Ae) using the following equations: 

AWT = WT (a = a« + Aa«,) - WT(a = O (17) 
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2AWT 

Ae= T (18) 
G   +  c +Aa 

oo L     OO 00-* 

At zero applied stress the gage section was considered to be uncracked. The gage section 

remained uncracked until the applied stress reached the first matrix cracking (the 

transformation) stress of the largest FFZ(s) present in the gage section. Before the largest 

FFZs transformed to cracks, the stress-strain relation was linear and the elastic modulus 

was equal to the composite modulus, Ec. When there were small cracks present in the gage 

section Eqs. (17) and (18) were repeatedly used to evaluate the stress-strain relation. The 

cumulative strain calculated in this step was denoted as £j. 

4.6.2 Strain Contributed from Steady-State Cracks: When there were steady-state cracks 

present in the gage section the model shown in Figure 8 was considered. In this model, two 

sliding zones with equal sliding length, /, were present on either side of the crack. In 

addition to the strain contributed from the partially-bridged cracks and the uncracked body, 

strain was also contributed from the sliding zones of the steady-state cracks. Within the 

sliding zone, the displacement of the composite was equal to the displacement of the fibers. 

8C= 8f  (over the sliding length) (19) 

Thus, the strain of the composite in the sliding zone was readily assessed by calculating the 

displacement of the fibers. The total displacement of the fibers within the gage section was 

determined by the total number of sliding zones present in the gage section and the fiber 

displacement in each sliding zone: 

5f,otal = 2Nss5f (20) 

where Nss is the total number of steady-state cracks within the gage length, and of is the 

displacement of the fibers within one sliding zone. The assumption of constant interfacial 

sliding stress results in the following expression for the fiber displacement in the sliding 

zone [8]: 

cf 

8f = — l + ^—l1 (21) 
Er REr- 
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where Cf and / are defined in Eq. (5) and Eq. (10), respectively. 

The strain in the sliding zones was calculated by normalizing the fiber 
displacement with the gage length and was denoted as z?. 

e        5c       8f.total 
e2- GL "   GL 

(22) 

The total strain, at a given applied stress, was obtained by summing the two 

contributions: 

e = £i + e2 (23) 



5. EXPERIMENTAL PROCEDURE 

5.1 Specimen Preparation 

The specimen configuration followed the specifications for edge-loading tensile 

tests developed by Holmes[18]. Figure 9 shows the specifications of the specimen. The 

thickness of the SiC-CAS specimens and the Nicalon-MAS specimens were 3.0 mm (16- 

ply panel) and 1.5 mm (8-ply panel), respectively. Specimens were polished using 

diamond compound paste before test. 

5.2 Edge-Loading Tensile Test 

The edge-loading test fixtures were mounted on a universal test machine3. 

Special care was taken to ensure proper alignment of the specimen with the load train[19]. 

Specimens were tested in air, room temperature and a crosshead speed of 0.2 mm/min. 

This crosshead speed translated to a stressing rate of 1.0 MPa/s for the SiC-CAS composite 

and 1.3 MPa/s for the SiC-MAS composite. The strain was measured with an extensometer 

using a gage length (GL) of 31.75 mm. 
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Figure 9. Specifications of the Edge-Loading Tensile Specimens. 

3 Model 4206, Instron Inc., Canton, MA. 
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6. RESULTS AND ANALYSIS 

6.1 Results of the Image Analysis 

Table 2 summarizes the microstructural parameters characterized using the 

image analysis of the two composites. The fiber volume fractions were determined to be 
Vf = 0.396 and 0.343 for the SiC-CAS and the SiC-MAS composites, respectively. Figures 

10 and 11 show the fiber radius distributions in the two composites. As can be seen, in 

both cases, the distributions could be well described by a normal distribution function; the 

calculated means and standard deviations are listed in Table 2. In addition, the average 

fiber spacings were measured to be 19.1 |im and 23.9 |im for the SiC-CAS and the SiC- 

MAS materials, respectively. The larger average fiber spacing of the SiC-MAS composite 

was consistent with the measured fiber volume fractions of the two composites. 

Figure 12(A) shows the size distribution of the FFZs characterized from the 

SiC-CAS composite. The density distribution is plotted as a histogram with an interval of 
2.5 |im. Those small fiber-depleted regions (a < 10 |im) were not measured since they 

were not qualified as FFZs. Figure 12(B) shows the size distributions of the FFZs in a 

cumulative distribution plot. For conservative design, the density distribution data was 

transformed to the cumulative distribution data based on the largest radius of each interval 

in the histogram. Equation (9) was fitted to the measured data, and the best-fit parameters 

were determined to be: Bl = - 30.315, B2 = 23.292, B3 = - 5.8099, B4 = 0.5012. 

Similarly, Figures 13(A) and 13(B) show the size distribution of the FFZs 

characterized from the SiC-MAS composite. The best-fit parameters were determined to be 

Bx = - 62.608, B2 = 55.812, B3 = - 16.726, B4 = 1.7146. The two cumulative distributions 

appeared to be similar except that some large FFZs, with a = 42.5 jim, were sampled from 

the SiC-CAS composite but not from the SiC-MAS material. This led to a slightly faster 

saturation of the distribution function toward unity in the latter material. The area density 

of the FFZs was determined by normalizing the total number of FFZs that were sampled 

with the total imaged area; these values are listed in Table 2. 

6.2 Crack Evolution and Stress-Strain Relation - An Example of Simulation 

First, consider the hypothetical case where the FFZs in the gage section are of a 

uniform size (a = 80 jim). This example will illustrate how the crack evolution and the 

corresponding stress-strain relation are simulated in the present model.   Material properties 
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Table 2. Microstructural Properties Obtained from Image Analysis 

Property Nicalon-CAS Nicalon-MAS 

Fiber Volume Fraction (Vf) 0.396 0.343 

Fiber Radius, R (fim) 
Normal Distribution 

6.90 ±1.14 

Normal Distribution 

6.50 ±0.73 

Average Fiber Spacing, Df (|im) 19.1 23.9 

Size Distribution of Fiber-Free 
Zone, F(a) 

Area Density, #/m2 

Exponential Type 

Function 

2.025 xl08/m2 

Exponential Type 

Function 

2.261 xl08/m2 

of the Nicalon-CAS composite were used in the calculation. Figures 14 and 15 show the 

three important stages of development of a single crack and the corresponding stress-strain 

relation, respectively. In the first stage, the gage section remained uncracked until the 

applied stress reached the transformation stress of the defined FFZ (i.e. the first matrix 

cracking stress, 142.8 MPa). At this point, the FFZ transformed to a crack of the same size. 

The corresponding stress-strain curve is the linear portion from zero stress to point 'a'. In 

the second stage, with increasing applied stress, the crack grow stably with increasing 

applied stress, up to the maximum cracking stress (262.3 MPa). The corresponding c - £ 

relation for this stage is from 'a' to 'b'. The relation is not exactly linear, however, it appears 

to be linear since the additional strain energy contributed from the crack is too small as 

compared to the strain energy of the uncracked bulk. In the third stage, the crack becomes 

a cross-sectional crack and the subsequent stress-strain behavior is calculated according to 

the model illustrated in Fig. 8. The corresponding a - £ relation for this stage is indicated 

as the sudden increment of strain from 'b' to 'c' and the subsequent linear relation from 'c' to 

'f. Also plotted in Fig. 15 are the stress-strain relations for the gage section containing 

multiple (10 and 20) but non-interacting cracks developed from FFZs of the same size. 

Note that the slope of e-h is smaller than the slope of d-g, and the slope of d-g is smaller 

than the slope of b-f. 

The logic and procedure described above were employed to simulate the stress- 

strain relation of the gage section of the composite.  When the entire gage section was 
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considered, there was a large number of FFZs with different sizes that transformed to 
cracks at various stress levels. The stress-strain behavior over the gage section due to this 

crack evolution process was computed based on two assumptions: 

(1).   It was assumed that there was no interaction among the cracks developed on the same 
plane or on adjacent planes. 

(2).   Within a plane, once the largest crack(s) became unstable, it extended through the 
entire cross section, and the other cracks on the same plane were deleted from the 
gage section. 

6.3 Simulated Stress-Strain Relations. Experimental Results, and Comparison of the Two. 

6.3.1 SiC-CAS Composite: Figures 16(a) through 16(f) schematically illustrate the crack 

evolution within the gage section of the SiC-CAS composite. These figures are explained 
as follows: 
Fig. 16(a): Starting with an uncracked gage section, fiber-free zones of different sizes 
were distributed on equally spaced planes. Totally 228 planes were assigned to the gage 
section. Each plane contained 3827 FFZs. With increasing applied stress, the gage section 
remained uncracked until the applied stress reached the transforming stress of the largest 
FFZs present in the gage section. The largest FFZs which were sampled from the 
distribution function and assigned into the gage section were 87.5 fim in radius, the 

transformation stress of such FFZs was 136.5 MPa. 

Fig. 16(b): When the applied stress reached 136.5 MPa, the largest FFZs transformed to 

cracks of the same size. These cracks started stably extending into the surrounding fiber- 
reinforced regime. 

Fig. 16(c): When the applied stress reached the transformation stress of the next largest 
FFZs present in the gage section (85.0 fim in radius, 138.5 MPa), these FFZs became 

cracks. The gage section, at this time, contained both partially-bridged cracks and 

unbridged cracks. With increasing applied stress, the number of non-steady-state cracks 

kept increasing until the instability stress of the largest cracks was reached. 

Fig. 16(d): At the stress level of 259.4 MPa, those cracks initiated from the 87.5 Jim FFZs 

were unstable and became steady-state cracks. At this point the gage section contained 

both steady-state and non-steady-state cracks. 
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Fig. 16(e): As the applied stress increased further, the number of steady-state cracks 

increased, and the number of non-steady-state cracks decreased. 

Fig. 16(f): Eventually, the gage section was filled with equally spaced steady-state cracks. 

The number of steady-state crack was equal to the number of planes initially assigned into 

the gage length. No small cracks were present. 

According to the crack evolution process described above, Figure 17 shows the 

average steady-state crack density as a function of the applied stress. The crack density 

was calculated by dividing the number of steady-state cracks in the gage section by the 

gage length at a specific stress level. The steady-state crack density gradually increased 

with applied stress and finally reached the defined saturation spacing. 

Figure 18 shows the comparison of the predicted and the measured stress-strain 

relations of the SiC-CAS. The predicted relation is indicated by the dashed line. The 

predicted initial matrix cracking stress (136.5 MPa) was very close to the value (132 MPa) 

reported by Kim and Pagano[9] using acoustic emission. After the initial matrix cracking, 

the subsequent stress-strain relation appeared to be linear inspite of the hundreds of non- 

steady-state cracks that developed in the gage section. This was attributed to the small 

strain energy contributed by the cracks as compared to the strain energy of the uncracked 

bulk. The steady-state matrix cracking started at 259.4 MPa (by those cracks initiated from 
the 87.5 |im FFZs), and completed at 285.8 MPa (by those cracks initiated from 50.0 \im 

FFZs). After that, the stress-strain relation represented the tensile behavior of the gage 

section containing periodic matrix blocks. The measured stress-strain relation (indicated by 

the solid line), on the other hand, exhibited more gradual transition from the initial elastic 

regime to the inelastic regime due to matrix cracking. The initial elastic modulus was 

estimated to be 141.9 GPa, and based on that, the proportional limit was located at about 

200 MPa. The lower bound steady-state matrix cracking stress (the BHE limit) was 

calculated to be 231 MPa, slightly higher than the proportional limit. The first steady-state 

matrix cracking stress predicted by the model was higher than the BHE model. In addition, 

the model gave reasonable prediction of the total inelastic strain due to matrix cracking. 

However, the predicted steady-state matrix cracking stresses were approximately 50 MPa 

lower than the experimental results. This discrepancy can be attributed to the uncertainty 

of the material properties such as matrix fracture toughness, residual stress, and the 

interfacial sliding stress. These aspects will be discussed later. 
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Figure 16 (d). Simulated Crack Evolution of Nicalon-CAS Composite - Continued. 
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Figure 16 (e). Simulated Crack Evolution of Nicalon-CAS Composite - Continued. 
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Figure 16 (f). Simulated Crack Evolution of Nicalon-CAS Composite - Continued. 
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Figures 19(A) and 19(B) show the matrix cracks on the failed gage section of 

the SiC-CAS composite specimen. Periodic matrix cracks were observed, however, the 

spacing of the cracks was not constant and some cracks appeared to be not straight cross- 

sectional cracks but were stopped or deviated by the fibers. Such interaction between 

cracks and fibers were not considered in the present model. In addition, fiber fracture, as 

shown in Fig 19(B), was observed in many places. This could produce more strain energy 

in the gage section during loading than the present model estimated. 

6.3.2 SiC-MAS Composite: The simulated crack evolution of the SiC-MAS composite was 

similar to the one shown for the SiC-CAS composite. Therefore, it will not be illustrated 

again. In summary, a total of 281 planes were assigned to the gage section of the specimen, 

and 2137 FFZs were distributed on each plane. The larger number of planes in the gage 

section and smaller number of FFZs on each plane as compared to the SiC-CAS composite 

were due to the shorter sliding length (I) and the smaller cross sectional area for the SiC- 

MAS specimen, respectively. Figure 20 shows the predicted average steady-state crack 

density as a function of the applied stress. The steady-state matrix cracking started at 607.5 
MPa (cracks initiated from the 52.5 p.m FFZs) and completed at 619.3 MPa (cracks 

initiated from 42.5 |im FFZs), after that, the stress-strain relation was governed by the 

completely cracked gage section with periodic matrix blocks. 

Figure 21 shows the comparison of the predicted and the measured stress-strain 

relations. The model predicted an initial matrix cracking stress of 252.8 MPa. There is, 

however, no acoustic emission data available for comparison. Without incorporating fiber 

fractures, the model predicted a stress-strain relation similar to that of the SiC-CAS 

material with the exception of two important features: (1) the steady-state cracking regime 

occurred at much higher stresses. This could be mainly attributed to the compressive 

residual stress present in the matrix, the higher matrix fracture toughness, as well as the 

smaller FFZs sampled from the microstructure; (2) the total inelastic strain due to matrix 

cracking was smaller. This was mainly due to the smaller size range of the FFZs which 

controlled the steady-state cracking on all the planes. In other words, this could be 

attributed to the more uniform fiber distribution in the Nicalon-MAS composite. On the 
other hand, the experimentally measured o - e relation indicated a more brittle type of 

behavior with a failure strain of only 0.4%. This was suspected to be due to the high 

interfacial sliding stress in this composite which enhanced the fracture of fibers and limited 

the ultimate strength. The initial elastic modulus was estimated to be ~ 160 GPa, 

accordingly the proportional limit was at ~ 310 MPa. 
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Figure 22(A) shows a typical failed gage section of the SiC-MAS composite 
specimen. It was found that there were no periodic steady-state cracks in the gage section, 
but only local damage of the matrix in the form of short cracks in the vicinity of the failed 

section. Significant amount of fiber fractures were observed. Figure 22(B) shows a typical 

fracture surface of the Nicalon fiber. The fracture surface morphologies indicated that the 

fractures were initiated from surface flaws. 

It is interesting to make a further correlation here between the failed gage 
section surface and the measured G - e relation. Although the specimen examinations have 

indicated that the ultimate strength of this composite was limited by fiber fractures before 

steady-state cracks could be developed to provide significant inelastic strain, the measured 

stress - strain relation, however, showed pronounced inelastic behavior. In other words, the 

exhibited gradual transition from elastic toward inelastic regime, in the measured stress - 

strain curve, was mainly due to fibers fractures. This observation strongly suggests that the 
present model should take into account the progressive fiber fracture behavior to produce 
more gradual transition from the elastic to the inelastic tensile behaviors. 
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Figure 22(A). SEM Micrograph of the hailure Gage Section (Nicalon-MAS). 

Figure 22(B). Typical Fracture Surface of the Nicalon-Fiber. 
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7. DISCUSSIONS 

7.1 Effect of Variability of the Input Parameters on the Prediction 

The input parameters of the model included the elastic moduli of the matrix and 

the fiber, Em and Ef; the Poisson's ratios of the matrix and the fiber, vm and vf; fiber radius, 

R; fiber volume fraction, Vf; fracture toughness of the matrix, K^; the interfacial sliding 

stress, x; the axial residual stress in the matrix, c^; and the FFZ size distribution. Among 

these parameters, the elastic properties of the constituents are well known, the fiber radius, 

fiber volume fraction, and the FFZ size distribution were accurately measured using 

quantitative image analysis. The remaining parameters (Kcm, x, am), on the other hand, 

had to be based on such independent tests as fracture toughness tests and fiber push-in or 

push-out tests. Different tests, however, usually result in slightly different values of these 

properties[20,21] and consequently result in different predictions. Effects of the variability 

of the material properties on the predicted stress-strain relation could be clearly seen by 

showing their influence on the cracking stress - crack size relations. In the following, 

calculation was performed using the SiC-CAS composite as an example. 

7.1.1 Fracture Toughness of the Matrix: Figure 23 shows the sensitivity of cracking stress - 

crack size relation to the matrix fracture toughness. The calculation was performed using 

the largest cracks which were present in the composite because the initial matrix cracking 

stress was determined by such cracks. The intermediate toughness value shown on the 

figure was used to obtain the predicted ö - e curve. The other two values represent the 

highest and the lowest values which have been reported in the literature [20]. As can be 

seen, higher fracture toughness results in higher matrix cracking stress (including the initial 

cracking stress) of the same crack size. The arrow on the figure indicates the (identical) 

crack size at instability. The variation in the matrix cracking stress at instability due to 

varing fracture toughness is quite significant and it implies that increase in the matrix 

fracture toughness can significantly raise up the steady-state matrix cracking stresses of the 

composite. 

7.1.2 Interfacial Sliding Stress: Figure 24 shows the influence of the interfacial sliding 

stress on the cracking stress - crack size relation. Calculation was also performed on the 

largest crack size present in the SiC-CAS composite. Except the initial matrix cracking 

stress, the subsequent stable and unstable matrix cracking stresses are higher for higher 

interfacial sliding stress. The intermediate x value was used to obtain the prediction of 

the a - E curve while the other two values represented the highest and the lowest sliding 
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Figure 23. Effect of Matrix Fracture Toughness on the Cracking Stress - Crack Size 

Relation. 

friction stresses reported in the literature[21]. The influence of the interfacial sliding 
friction stress on the matrix cracking stress was not as significant as the matrix fracture 
toughness. The identical initial matrix cracking stress predicted for the different sliding 
stresses reflects an intrinsic feature of the stress-intensity model. The difference between 
the two critical matrix cracking stresses predicted by the highest and the lowest sliding 
stresses was ~ 100 MPa, a value smaller than the corresponding difference in Fig. 23. 
Nevertheless, it should be noted that the critical crack size defined by the cracking stress - 
crack size relation was different for different sliding stresses (as indicated by the arrows). 
Specifically, the critical crack size increased with increasing sliding stress. As a result, 
higher sliding stress would produce longer partially-bridged cracks and store more strain 
energy before steady-state cracking would occur. It should be emphasized that sliding 
stress also has influence on the fiber fracture and the ultimate strength of the 
composite[22]. Tailoring and optimization of the interfacial properties of a composite 
should consider its influence on the matrix cracking stress, fiber fracture and the anticipated 

application of the composite. 
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Figure 24. Influence of Interfacial Sliding Stress (T) on the Cracking Stress - Crack Size 

Relation. 

7.1.3 Matrix Residual Stress: Figure 25 shows the effect of residual stress on the matrix 
cracking stress - crack size relation. A higher tensile residual stress predicted lower matrix 
cracking stress. The intermediate residual stress indicated on the figure was used for 
predicting the stress - strain relation of the composite; the other two values represented the 
limiting values reported in the literature[20]. The critical matrix cracking stress predicted 
from the lowest residual stress was about 50 MPa higher than the one predicted from the 
highest residual stress. As can be seen in the figure, the critical crack size also varied with 
matrix residual stress. With decreasing tensile residual stress, the critical crack size became 
larger and thus delayed the occurrence of steady-state matrix cracking. This analysis would 
suggest that a lower tensile residual stress (or compressive residual stress) would be 
preferred for a composite since it provides higher steady-state matrix cracking stresses. 
However, steady-state matrix cracking at appropriate timing (before the ultimate strength 
of the composite) is also necessary since it provides the basic toughening mechanism of the 
composite. Design of a composite should seek the balance between the required inelastic 
toughening behavior and the ultimate strenth of the composite. 
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Figure 25. Effect of Matrix Residual Stress on the Cracking Stress - Crack Size Relation. 

7.2 Directions to Improve the Predictive Capability of the Model 

The present Phase I research was aimed at demonstrating the feasibility of 
combining the micromechanics treatment of a partially-bridged crack and the non-uniform 
fiber distribution nature of the composite to model the progressive damage and failure of 
fiber-reinforced ceramic matrix composites. Initial effort focused on the modeling of 
unidirectional composites. Two composites were selected for investigation. For the SiC- 
CAS composite, the present model gave good predictions of the initial matrix cracking 
stress and the total inelastic strain due to matrix cracking. For the SiC-MAS composite, the 
present model predicted much larger inelastic strain than what was observed 
experimentally. Experimental observations indicated the gradual transition from elastic to 
inelastic regimes on the stress-strain relation was due to fiber fractures. Therefore, 
incorporation of progressive fiber fracture in the present model is an important direction to 
improve the current model. 

In addition, the model should also consider interaction between the matrix 
cracks on the same plane and interaction between cracks on the adjacent planes. Solutions 
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for the stress intensities of such interacting penny-shaped cracks are available in the 

literature[23] and can be incorporated in the model. 

Furthermore, the methodology established in this research can be extended to 

model the stress - strain behavior of two-dimensional cross-ply laminated composites. For 

example, in the 0/90 laminated composites, the initial matrix damage is expected to occur 

in the laminates where the fibers are perpendicular to the loading direction (90°), followed 

by the matrix damage in the 0° laminates. Such two-stage damage process can be modeled 

using the same methodology outlined in this report. 

7.3 What Will Happen If There Are No FFZs ? 

The progressive damage model established in this research is based on the non- 

uniform fiber distribution found in typical commercial-grade fiber-reinforced ceramic 

composites. However, an interesting and hypothetical question is: if these composites can 

be manufactured with perfectly uniform fiber distribution, what does the present model 

predict? To answer this question, we should first review the damage process in the SiC- 

CAS composite: the initial matrix cracking occurred when the largest FFZs (a = 87.5 ^m) 

transformed to cracks. Steady-state matrix cracking started when these cracks extended 
unstably and completed when those cracks initiated from the 50 |im FFZs became unstable. 

The cracks initiated from those FFZs less than 50 Jim does not have significant influence 

on the stress-strain behavior. As a result, the largest FFZs determine the two important 

stresses of the prediction: the initial matrix cracking stress and the onset of steady-state 

matrix cracking. With the same fiber volume fraction, if the composite has uniform fiber 

distribution the FFZ size distribution will become a delta function located at the average 

fiber spacing. Using the SiC-CAS composite as an example, the initial matrix cracking 

stress and the steady-state matrix cracking stress will be raised to 404.7 MPa and 530.3 

MPa, respectively. The much higher load carrying capability due to uniform fiber 

distribution is quite attractive for this composite. 
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8. CONCLUSIONS 

1. A computational model was developed to simulate the matrix-crack evolution and 

predict the stress-strain relation of unidirectional fiber-reinforced brittle matrix 

composites under uniaxial tensile loading. This model combined a micromechanics 

treatment of a partially-bridged crack and a size distribution of the fiber-free zones 

that served as an input for the initiation of small penny-shaped cracks in the early 

stage of loading. 

2. Theoretically simulated stress - strain relation for the SiC-CAS composite achieved 

good agreement with the measured relation in both the initial matrix cracking stress 

and the total inelastic strain due to matrix cracking. 

3. Measured stress - strain relation and the specimen examination of the SiC-MAS 

composite indicated that the ultimate strength and the amount of inelastic strain due to 

matrix cracking were limited by early fiber fracture. Pronounced gradual transition 

from elastic to inelastic stress-strain relation due to fiber fracture suggested that 

incorporation of the progressive fiber fracture in the model was important. 
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