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1    Executive Summary 

Last summer, it was declared as a long-term ARPA goal to "revolutionize wide-area im- 
agery analysis" (Briefing to URI/ATR Community by Jonathan Schonfeld, 3 August 1994). 
This is also our goal as a long-term research objective, and we have been studying two main 
research topics that are directed to this goal: 

• New, highly efficient signal processing techniques to estimate image clut- 
ter models: These methods are similar to highly robust, successful algorithms in 
one-dimensional signal processing applications, such as speech analysis or linear ar- 
rays. But the problems for two-dimensional images are better described as non-causal, 
interpolation-type statistical models, i.e. Markov Random Fields (MRF's). For two- 
dimensional random phenomena, Markov Random Fields are the most general realistic 
model for representing the information contained in a large number of highly correlated 
pixels in an image. By contrast, standard one-dimensional signal processing almost uni- 
versally uses predictive-type models; these one-sided autoregressive models are excellent 
for applications such as linear predictive speech coding, but can be rather unstable with 
respect to model order if one forces them to apply to images ([1]). Thus, to find ade- 
quate statistical models for image clutter, we cannot just copy famous one-dimensional 
algorithms like the Levinson recursion for prediction problems; we have had to develop 
new algebra and analysis for interpolation-type problems, which is genuinely innovative. 
But our work is very similar in spirit overall to the trends and techniques in modern 
one-dimensional signal processing such as Schur methods, split Levinson algorithms, etc. 

Advantages of Lattice Filter Approach: MRF Signal Processing 

- Computational Efficiency 

* Generally, matrix inversion has 0(n3) cost, but Levinson-type methods only 
ö(n2) (n — size of sample covariance) 

* Schur methods even better, ö(n log(n)); easy parallel implementation 
* Particularly advantageous for multichannel sensors, such as polarimetric SAR, 

multispectral IR, where a great number of highly correlated statistical param- 
eters must be estimated 

- Robust: lattice filters for Toeplitz R matrices are guaranteed stable; explicit prop- 
erties (Schur-Cohn test) 

- Well-Conditioned: the orthogonalization process creates new, statistically inde- 
pendent variables 

- Adaptive: Kailath et. al. have developed theory for nonstationary lattices through 
optimization of generalized performance functional 

- Order-Recursive: Easy to build higher-order model out of low-order model 

• Model-based, Bayesian approach to urban clutter: Our group at Brown has a 
decades-long experience in applying Bayesian techniques to problems in vision and pat- 
tern recognition, such as the original paper on maximum likelihood boundary-finding 



2 2.   OVERALL RESEARCH GOALS 

([2]), hierarchical Bayesian image segmentation ([3]), and more recently, Bayesian ob- 
ject recognition by polynomial invariants ([4]). One general expertise is in stochas- 
tic/geometric model-building, involving the use of models such as explicit and im- 
plicit polynomials in Gaussian or non-Gaussian noise, to characterize objects in appli- 
cations such as automated inspection for manufacturing, and robotic navigation. We 
have also studied stochastic processes for representing variable surface and curve shapes, 
useful for natural object recognition and other machine vision applications. In this pro- 
posal, we describe how to extend stochastic/geometric models to the challenges of urban 
clutter. 

Payoff for ARPA Needs and Requirements: The fast, robust, adaptive algorithms 
in the first part will help achieve the lowering of sensor data rates and computational 
complexity, resulting in more efficient, streamlined and affordable sensors (CLIPPING SER- 
VICE, AFFORDABLE RADAR). By advancing the state-of-the-art in identifying different 
image regions (via differences in local statistics), these algorithms also offer the promise of 
faster, more accurate image segmentation. Advanced image segmentation methods are 
absolutely crucial in order to meet many other current ARPA goals, since they benefit the 
detection of man-madeness, identification of moving and articulated vehicles, and recognition 
of characteristic groupings of target populations (MONITOR, DRAGNET, MSTAR). There 
is no way that simple-minded segmenters such as edge detectors could meet these needs, espe- 
cially for SAR targets which are better characterized as collections of separate point scatterers 
rather than as solid geometric shapes. The stochastic/geometric modeling and detection in 
the second part will lower detection false alarm rates because the Automatic Target Detection 
(ATD) algorithm will have a better, more accurate model for the clutter inside a target-test- 
region, and thus permit more accurate decision making in testing the hypothesis of target 
present versus clutter present in a target-test-region. 

2    Overall Research Goals 

Our original research in this grant, on the multicovariance matched filter dealt with optimum 
low resolution target detection in a single-frame, multicolor image, such as a multispectral 
infrared or polarimetric synthetic aperture radar picture. The multicovariance method com- 
pletely uses all the joint variability of the problem, in both space and frequency, in a way that 
generalizes both the traditional spatial matched filter and also techniques involving scalar 
ratios between frequency bands. This full generalization involves possibly very large matrix 
blocks, which describe statistical correlations in both space and frequency, not just scalar 
correlation coefficients between two bands at a time. One of our areas of study is to find 
simple conceptual models which reduce the complexity of this large linear algebra problem, 
and which provide insight into the effect of basic system parameters, such as the amount of 
inter-channel correlation. Performance results coming from these analytical models can be 
formulated as simple closed-form expressions, as well as ROC curves, etc. 

A second focus of our work, directed toward achieving the best target detection perfor- 



mance that is possible, is to develop a preprocessing step involving optimal adaptive estimation 
of the local clutter background. This involves segmenting the image into regions, which corre- 
spond to different background/clutter statistical models. Statistics of real data will be studied 
and used in new, state-of-the-art hierarchical segmentation algorithms based on Markov Ran- 
dom Field, polynomial and autoregressive models for vector-valued random processes. The 
major algorithmic challenges here are in estimating the best possible background/clutter mod- 
els and in accurately estimating the boundaries between different model regions. At region 
boundaries, it is very important to set up a covariance involving the statistics from the models 
on both sides; otherwise, the matched filter's target detection performance would be severely 
degraded. This step is of great practical importance because tanks, missile launchers and 
other critical targets are often concealed at such region boundaries, e.g., at tree lines. 

The main current focus of our work in progress is directed to estimating our basic image 
statistical models (Markov Random Fields = MRF's) with new, more efficient algorithm 
formulations, similar in spirit to those discovered in mainstream signal processing in the last 
two decades. There is an important difference involved, because mainstream signal processing 
is mainly concerned with problems of optimum linear prediction, generally in one dimension, 
whereas Markov Random Fields require solving an optimum interpolation problem, which 
must be two-dimensional for work on images. Whereas methodologies for fast computation 
have been extensively studied for the one-dimensional case, that is not the situation for the 
more difficult two-dimensional case. However, the prediction and interpolation problems are 
similar enough that helpful analogies can be made. Thus, we have been able to benefit 
from some of the insights and progress reflected e.g. in mainstream split Levinson or Schur 
techniques, although the mathematical formulation needed for MRF's does end up being 
somewhat different than that for prediction-based signal processing. 

The other current focus is directed to new stochastic-geometric models and their use for 
urban clutter. Involved here are explicit polynomial surfaces, line and curve boundaries, and 
appropriate use of local clutter measurements in the detection process through use of Bayesian 
methods. 



4 • 3.   SUMMARY YEAR 2 PROGRESS 

2.1    Importance of Markov Random Fields 

What is Innovative in This Research 

Have connected MRF estimation with an optimal interpolation problem; for the first 
time, it is now possible to get the same fast, powerful results for interpolation that modern 
signal processing has achieved for similar prediction problems. 

Importance of Markov Random Fields (MRF's) for ARPA Goals in 
Advanced Target Detection 

• Powerful, advanced method to model a wide variety of spatial statistical phenomena 

• Sophisticated clutter models needed in scenarios with stochastic, partially obscured, 
low-observable or low-SNR targets, time-critical targets 

• Goal: to advance the state-of-the-art in image segmentation, especially accuracy, com- 
putational cost, adaptivity; especially useful for targets at region boundaries (tanks by 
treelines) 

Critique:   Shortcomings of Popular Current Methods to Estimate 
Markov Random Fields 

• Simulated annealing: huge computational complexity 

• Pseudolikelihood: does not use true joint likelihood function, hence does not exploit all 
information available from data; not optimal 

• Circulant method: forces unnatural periodic grid structure on image, does not respect 
natural region boundaries 

3    Summary Year 2 Progress 

3.1    Theoretical Advances 

3.1.1    Multicovariance Matched Filters 

• Have defined and studied new generalized signal-to-noise/clutter ratio, to charac- 
terize detection performance of multicovariance matched filter for multichannel sensors 



3.1    Theoretical Advances 5 

- Shows impact of channel correlation on detectability- can be much better or 
much worse than "textbook" case 

- Figure and Ground: determined quantitatively which targets stand out against 
which backgrounds 

- Sensitive to important statistical features such as variable target signature, channel 
imbalance, clutter second-order statistics, etc. 

3.1.2    Markov Random Fields 

Advantages of Markov Random Fields (MRF's) to Characterize Spatial Clutter 
in Images 

• Mathematically solid, Bayesian formalism- not an ad hoc or purely data-driven 
approach to recognition 

• Allows for nonhomogeneous spatial statistics 

- Typical of SAR images:   different signal processing and statistics for range and 
cross-range, even when resolutions are comparable 

- Typical of many IR and visible scanning sensors- different measurement errors 
associated with crosstrack and along-track directions e.g. in LANDSAT 

• Intuitively Appealing: describes influence of close spatial neighbor values on condi- 
tional probability of value at central pixel 

Also has physical interpretation in terms of Gibbs interaction potential for a lattice 
structure (e.g. Ising model for magnetism is a Markov Random Field model) 

• Estimation can be formulated and solved adaptively 

• We would add: estimation problem is similar to the prediction problem studied in 
modern signal processing; many fast, powerful algorithms can be formulated by analogy 
with mainstream signal processing 

• Much more sophisticated than simple-minded CFAR algorithms, which assume a con- 
stant background level- allows for trends, much more variability or inhomogeneity in 
the data 

• Reasonably low number of parameters, unlike the large number in a sample covariance 
that is estimated from the data with no structure or model assumed 

• A focus of much active research in the community 
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3.1.3    Parameter Estimation For MRF Model Parameters 

• Highly efficient, robust algorithms for spatial statistics: Algorithm development 
in progress, to extend popular signal-processing estimation techniques (lattice filters) to 
estimating two-dimensional image statistics (Markov Random Fields) 

- Introduced Chebyshev transform: similar to Discrete Cosine Transform, Karhunen- 
Loeve expansion, but better orthogonal decomposition of autocorrelation 

- New inversion technique for Toeplitz-plus-Hankel matrices, using fast 3-term re- 
currence to orthogonalize a special set of basis functions 

- Fast covariance inversion also applicable to adaptive SAR processing 

3.2 Initial Progress: Bayesian Models for Urban Clutter 

Developed general approach to testing for target versus clutter image data within a target-test- 
region conditioned on the clutter estimated in the surrounding clutter-measurement-region. 
This powerful test is premised on the observation that knowledge of spatially-local image 
data statistics plays an important role in making a decision about whether the data in 
a specific target-test-region that is compatible or is incompatible with the data measured 
in the surrounding clutter region. In particular, under the hypothesis that clutter only is 
present in a target-test-region, the image data must be continuous in intensity across the 
target-test-region/clutter-measurement-region boundary and statistically consistent on both 
sides. Therefore, accurate and computationally efficient modeling of clutter within the clutter- 
measurement-region leads to a more powerful test than the mean gray-level comparison per- 
formed by conventional CFAR's. 

3.3 Experimental Performance Evaluation 

• Have characterized analytically what constitutes optimistic and pessimistic scenarios for 
multichannel target detection 

• Data sets utilized 

- Multispectral aerial photographic imagery: terrain such as 
Newport, RI, taken from U2 

- LANDSAT and TIMS (6-band, thermal IR) imagery 
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