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Abstract 

We have created an object recognition system, in the context of the general goal 
of contributing to the development of a visual architecture. The system makes use of 
wavelet transforms, of dynamic link matching, and is of general neural style. We have 
implemented the system in several versions, as an object-oriented modular program 
on a workstation, and as a parallel farm structure on an array of transputers. Object 
recognition from camera images is invariant to translation, scaling and rotation in the 
image plane, and is robust with respect to lighting and to rotation in depth. We have 
tested the system on the task of recognizing human faces. With galleries of about 90 
faces, the system achieved highly confident recognition on ca. 85% of the input images. 

1     Introduction 

1.1     General Goals of the Project 
This project was pursued by the PI (C. v.d. Malsburg) as part of a longer-term effort to 
contribute to the development of a cognitive architecture, or slightly more specifically, 
a visual architecture, to be formulated in neural style. This effort is shaped by the 
conviction that significant progress in that direction can only be achieved by seriously- 
attempting to solve specific problems, as for instance recognition and representation of 
objects in real visual scenes, but was pursued with the more general goal in mind. 

Based on the belief that the brain will eventually by understood in terms of a rela- 
tively simple conceptual system, called cognitive architecture, this project attempted to 
fnr-mri'lafp foprter constraints for th° cpr.et'PKtion of thst system. One of the necessary 
constraints seems to be neural style. By that we here understand two aspects. One, 
formulation of a system that is amenable to fine-grained parallelism. Two, emphasis 
on principled and generic approaches, in contrast to a style in which each new problem 
is solved with the help of its own new algorithm, complete with its own special data 
structure—which used to be the original approach of Artificial Intelligence. Rather, 
neural style calls for a few basic organizational principles and data structures that can 
be specialized (as much as possible by automatic processes) to particular situations 
and problems. It has been one of our design criteria to willingly pay the price for 
simplicity and genericness in terms of data volume'and processing complexity. On the 
side of technology this strategy will pay off since with falling costs of data storage and 
computing power and the rising cost and complexity cf software, emphasis must be 
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placed on simplicity of design. The eventual goal of neural systems must be the re- 
placement of a continued design effort by once-for-all design complemented by methods 
of autonomous adaptation. 

A word of caution is in order here. There is the wide-spread belief that present- 
day neural systems, based on McCulloch-Pitts type neurons and adaptive methods like 
back-propagation, will be all that is needed to realize the neural style. Unfortunately 
it has turned out that it is not possible to just start on any problem with a standard 
network and train it automatically by exposure to a statistical ensemble of example 
cases, the problem being that in going from small to realistically large problems the 
number of examples required grows to an unrealistic, astronomical level—if there is 
convergence at all. The standard solution to this scaling problem is to start the system 
with a network structure already specialized to a large extent to the problem at hand. 
Unfortunately, this just brings us back to the original problem—special system design 
for special problems. In contrast, natural brains have tremendous power to generalize 
from very few examples. This seems to indicate that there are fairly general and yet at 
the same time powerful a priori structures. These seem to fit the natural environment 
just like a glove fits a hand. 

In previous work (21, 17] we had come to the conclusion that many of the problems 
with neural networks can be solved if another layer of variables is added, over and above 
the level of neural signals—variables that we came to call "dynamic links" [22]. These 
variables serve approximately the same purpose as pointers in classical data structures, 
especially, binding more elementary symbols to each other to form complex symbols. 
In the project reported here it was our main goal to develop dynamic links further, and 
while applying them to the specific problem of invariant object recognition we made 
efforts to solve some of the fundamental problems with neural networks. 

1.2 Special Goal of the Project: Invariant Object Recog- 
nition 
We set out to emulate as far as as possible the ability of our visual system to recognize 
and represent objects and to remember new objects from a single exposure. Object 
recognition is a demanding problem since a given object may appear in an infinity of 
ways to the eye or camera, due to changes in position, size and orientation, rotation 
in depth, changes in background and lighting, and due to deformations of the object 
itself. Moreover, our visual system is able to remember new objects from a single 
exposure, without lengthy statistical learning from many exemplars. We therefore 
implemented the basic capability of object recognition without the requirement of 
statistical learning (although we realize that statistical parameter estimation is required 
for the performance of certain discrimination tasks). 

Although the concrete numerical measure of success for our system is its ability to 
classify objects, in its construction we insisted on object representation as well. Al- 
though logically this may not be required for classification, flexible handling of objects 
can only be realized on the basis of an explicit object representation. 

In the spirit of our general goals we kept ourselves from any conscious attempt at 
specializing our system to particular object classes. Although in most of our exper- 
iments and evaluations we let the system recognize human faces, we also showed its 
ability to discriminate arbitrary objects [11], 



During all of the development of the system we had in mind creating a basis for 
later extensions to a more complete visual architecture and the potential for the im- 
plementation of further capabilities, such as derivation of object properties (especially 
surface shape description) from image features, decomposition into object parts, and 
object tracking and handling. 

1.3 The Four-Layer Perceptron and the Dynamic Link 
Architecture 

Implicitly, Rosenblatt's 4-layer perceptron is providing the perceptual background for 
much of present work on neural object recognition. It therefore is a natural point 
of departure for an exposition of the system we developed in this project. The four 
layers are called 5, the sensory layer, in the form of a pixel array; A^\ the layer 
of position-dependent feature detectors ("associators"); A^2\ the layer of position- 
independent feature detectors; and R, the layer of classification ("recognition") cells. 
Layer A^contains one cell (a,z) for each feature type a and each position x. Layer 
A^contains only one cell (a) for each feature type a. If feature a appears once or 
several times in 5, the "invariant feature cell" (a).in A(2Hs fired, independent of the 
position(s) of the a-cell(s) in 5. This is made possible by a large fan-in of connections 
from all the cells (a,x) for different x in A^Ho the one cell (a) in A^. Thus, the 
appearance of a pattern in 5 triggers the activity of a list of invariant feature detectors 
in A^. With appropriate connections from A&ho R, a cell in that latter layer can be 
made to fire selectively to a type of pattern, irrespective of where it appeared in 5. 

The great weakness of the 4-layer perceptron fand Rosenblatt was acutely aware 
of this) is the fact that in the transition from A^'to A^the system, while shedding 
the information it wants to shed—the position of the pattern in S—, involuntarily 
also has to discard all information on spatial relationships between features. This 
leads to the very concrete danger of ambiguity: there may be different patterns that 
are described in A^by the same comprehensive list of features but that contain the 
features in a different spatial arrangement. Another difficulty is the lack of figure- 
ground discrimination in the 4-layer perceptron: the simultaneous presence of several 
objects in the scene in S leads to '"illusory conjunctions", combinations of features 
which really belong to different objects in the scene but which simulate objects, not 
actually present, uniting just those features. 

In the Dynamic Link approach these difficulties are solved in a simple and yet prin- 
cipled way: During presentation of an image in S, the signals sent from A^Ho A(2)are 
not constant but are made to fluctuate in time. Moreover, they are correlated with 
each other, and the correlations are shaped such as to express the spatial neighbor- 
hood relationships in A^and in S. Strong correlations stand for small distance, weak 
correlations for large distance or for features that belong to different objects. Signal 
fluctuations are created by short-range excitatory connections in the layer A^l\ In this 
way, the image of an object is represented in A(1)by a topologically structured network 
of local feature cells and connections between neighbors among them, the connections 
being expressed in the signals to A^in terms of signal correlations. 

These correlations are to be decoded in layer A^. This can be done with the help 
of object-specific networks in A^. In order to store an object, a copy of the network 
representing it in A(1)is created in A^. Thus, A&hs a possibly large collection of 
model networks. When an object is shown, the system has to selectively activate the 



one stored model network in A^that corresponds to its structure. This is possible on 
the basis of a process of self-organization, called "dynamic link matching". It employs 
rapid Bynaptic switching of the connections between A^and A^and the connections 
within A^2'. The result of this process is a selective activation of one of the stored model 
circuits in A^^as well as the connections between corresponding points inside the object 
in A^and in A^. The process makes use of a resonance phenomenon in which neigh- 
boring cells in A^can easily fire neighboring cells in A^K It is essential here that by 
our construction of connections in and between A^and A^we have created an over- 
lapping system of densely coupled sets of cells, each set involving local clusters of cells 
in A^and A^and many connections between them. According to our construction, 
such double-clusters can only be formed if the model network in A^contains the same 
local features as the active network in A^in the same arrangement] The clusters of 
densely coupled cells now dominate the activity process, creating activity events ("ac- 
tive clusters") that involve pairs of corresponding locations in the object in A^and 
its model in A^. With the help of a kind of rapid and reversible Hebbian plasticity 
("dynamic links"), connections between corresponding points in A^and A^and all 
the connections in the correct model network axe selectively activated. This resonance 
is not possible with another model network, even if it contains the same summary 
list of features in another arrangement, since neighboring cells in A^cannot be con- 
sistently connected to neighboring cells in A^by feature-type preserving connections. 
The system thus solves the ambiguity problem of the 4-layer perceptron. 

The price paid by the dynamic link architecture for these functional enhancements is 
the necessity of a period of rapid self-organization in response to the presentation of an 
image, before the system is ready for its reponse. We here explain only that minimum 
of the dynamic link architecture that is necessary to understand and motivate the work 
covered by this report. A more complete account is given in [21, 22, 17, 11]. 

2 Description of the Object Recognition Sys- 
tem 
The project reported here was a battle on two fronts: that of developing a feature set to 
encode images, and that of formulating the matching dynamics that goes on between 
the layers A(1)(here called "image domain") and Adhere called "model domain"). 
For each we have developed a successful strategy, which we will outline in this section. 
The bulk of our effort was spent on the development and testing of alternative forms for 
these two strategies. The result is distinguished by extreme simplicity and efficiency. 

2.1    Image Preprocessing 
In the above parlance, this stage extracts the features from the image presented in 
layer S and forms the representation in the image domain (layer A*1)). The goal of 
the image coding stage is to represent the image in a data format that is robust with 
respect to variations in the image, that is complete (in the sense that the original image 
could be reconstructed from it), and that forms a natural basis for the ensuing process 
of matching against stored object models. 

The first stage of the feature extraction process is based on convolutions. Connected 
to each feature type there is a kernel, acting as the receptive field or neural sensitivity 



function for that feature type. The convolution kernels that we use typically have the 
form 

*i(*o) = ^2 ^P \~~^r) [exP (i*f*°) -exP (~a2/2)] ' 

that is, they consist of a plane wave (with wave number vector k, which determines 
the spatial frequency and orientation of the wave) that is restricted to a Gaussian 
window centered on position x0 of width of\k\, adjusted by the second term to be 
DC free. All of our experiments were based entirely on the wavelet concept. That is, 
we worked with families of similar kernels, each individual kernel being a rotated or 
scaled version of a prototypical kernel. Some effort went into a strategy for sampling 
the image appropriately, that is, into selecting a discrete set of k values and of image 
positions (details are described in [11]). Important selection criteria are the amount 
of detail retained from the image, the robustness of individual features against image 
variation, and robustness and efficiency of the matching process. 

• For the sake of the latter we let the linear wavelet transformation step be followed 
by a non-linear step. Each wavelet component of specific k and x0 contains a cosine and 
a sine part (corresponding to the real and the imaginary part of the above kernel). We 
squared the two parts and added them up (corresponding to the squared magnitude of 
the complex valued wavelet component). Although it is to be expected that the above 
goal of completeness of representation is thereby compromised, the resulting matching 
operation became much more reliable, efficient and robust. 

The present version of our system is based on 4-6 resolution levels (spatial frequen- 
cies) of 8 orientations each. Spatial samples axe arranged as "jets," each jet comprising 
a full family of wavelet types, all centered on the same x~. To represent an object we 
typically use 70 jets of 40 components each. 

Considerable effort was invested over the life-time of the project into investigating 
improvements and alternatives to the data structures and matching procedures. One 
set of experiments centered on orthogonal wavelets, as developed by Y. Meyer and S. 
Mallat. These have the great advantages of permitting a fast transformation algorithm 
(with the same complexity as the Fast Fourier Transform) and precise and efficient 
image reconstruction, and of being optimal in the image coding sense. According to 
our experience, however, orthogonal wavelets are not sufficiently robust against image 
variation (as, for instance, small shifts relative to the sampling grid, or small rotations). 
We made repeated and intense attempts at the re-introduction of the phase (cos/sin 
ratio) abolished by taking jet magnitudes, to improve the precision of matching. The 
,j;-fp;r,,i,-,, r,Bl-;,» fVa ~^i-M*ri variat'o^s o^^asss over the im2^3 which leads to many local 
optima when comparing jets of a model to jets in the image. We have made progress 
on this issue, but have not been able to solve it yet. 

Another excursion had (and has) to do with image-determined feature locations 
(as distinct from rigid sampling grids). We are particularly interested in resolution 
hierarchies of edge detectors. The advantage of this would be a reduction in the image 
data variability that is trivially introduced by the arbitrary positioning of sampling 
grids. This work could not be completed during the project, mainly because an irregular 
sampling grid necessitates a new matching algorithm,   . 



2.2    The Matching Algorithm 
Various practical considerations have made us diverge with the matching algorithm 
from the direct neural version suggested in the dynamic link architecture. The result 
is an efficient and fast elastic matching procedure which, however, is limited in its 
potential for further extensions. Much of the effort in this project was spent on the 
development of alternatives which will bear fruit in work that is in progress now. 

The current matching algorithm is of very simple form. It is based on a similar- 
ity function that compares two jets (that is, strings of visual feature values for two 
locations, taken in two images or in the same image), and expresses the result as a 
"similarity value". This value is 1 if the jets are identical and is small when the jets 
differ strongly. We experimented with many different fuctional versions but so far we 
have always come back to the simple scalar product of normalized jets. In what follows 
we will refer to the layers A^and A^of Rosenblatt as the "image domain" and "model 
domain", respectively. 

A stored object model has the form of a square array of points, each point carrying 
a jet taken from an image of the object. During model formation, the grid is positioned 
over the object. Elastic matching of a stored model to a new image proceeds in two 
steps. In step one the geometrical array of model points is positioned arbitrarily over 
the image. This establishes a tentative correspondende between model points and 
image points. Model points are now compared to the corresponding image points in 
terms of the similarity between model jets and image jets. Point similarities are added 
up to form a total similarity. Now, the model grid is moved rigidly over the image 
to optimi2e total similarity. Our experiments show that the total similarity is a fairly 
smooth function with a distinct and pronounced global optimum which corresponds to 
an acceptable position of the model grid over the image of the object. 

In step two, individual match points are made to diffuse over the image plane in 
search of better local similarity, simultaneously optimizing, however, a "topology cost" 
along with the total model-image similarity. The topology term measures the deforma- 
tion of the array of image points compared to the array of corresponding model points. 
This step of elastic deformation makes it possible to deal with elastic deformation of 
objects, caused, for instance, by rotation in depth. Details of the matching procedure 
are described in [11]. 

As part of the project we have extended the system to deal with invariance not only 
to object position but also to object size and orientation within the image plane. This 
is possible by estimating, in step one of the procedure, not only object position but 
aiso its size ana oricni.ai.iun, scaiin^, anu 1000.11115 mc g^m <->*■ '"&"•" FU1JU5
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domain, in addition to its translation. To compare image jets to model jets, it is now 
necessary to transform them along with the grid transformations. During this stage, it 
suffices according to our experience to compare only the levels of lowest resolution and 
to base initial comparisons only on a small number of model points. This corresponds 
to scaling, orienting and positioning the model in the image only in terms of a low pass 
filtered version of the model. An initial report of this work i3 published in [7]. a full 
publication is in preparation. 



2.3    Implementations of the System 

During development of our system we have, in accord with the philosophy enunciated 
in the introduction, paid more attention to simplicity and generality of our system 
than to its parsimony in terms of computational requirements. The resulting system is 
rather expensive in terms of computation time. The most expensive step is the wavelet 
transform of the image. In our first version, the wavelet transform alone cost a good 
part of an hour on a work station. It is clear, however, that the wavelet transform 
can be computed with a high degree of parallelism and that correspondingly it can be 
performed in very little real time. We therefore had a high incentive to implement our 
system on parallel hardware. 

As part of this project we acquired a system consisting of 23 transputers and devel- 
oped OCCAMcode to implement the whole object recognition system on it (OCCAM 
is the parallel processing language for which the transputer has been developed [10,13]). 
Initial development was hampered somewhat by the low level of support of the OC- 
CAM development system for a large programming project. Once we had solved these 
teething problems, however, parallelizing our system turned out to be easy and very 
efficient. As the compute intensive parts of the recognition system consist of tasks 
working on independant pieces of data, we developed a general-purpose farming sys- 
tem. This has the additional features of automatic configuration and of allowing the 
broadcast, of global read-only data (e.g., the preprocessed image as input to the match- 
ing step); for details, see [12]. Some additional, transputer-specific optimizations were 
introduced so that the system can make efficient use of all available transputers and 
exploits the full processing power of the transputers [12, 23]. Comparing an image to 
a database of some 90 objects with this system requires, on average, 19 seconds; this 
includes preprocessing. 

The OCCAM system has the advantage of being efficient, but it is not a flexible 
basis for system development. We therefore have made an effort to create a platform 
for rapid system development. Our goal here is to create a system that allows rapid 
prototyping on a work station, making use of efficient interactive programming tools 
and graphics, and to download the most computing intensive routines into a parallel 
processing system. As part of the project we have achieved the following. 

We first redesigned and implemented the OCCAM system in C++ (an object ori- 
ented C language) under the Open Windows windowing system. This implementation 
makes full use of the inherent modularity of C++ by using objects to represent algorith- 
mic features such as graphs, links and jets, as well as much of the graphical interface. 

structure and dynamics of the system. To illustrate this flexibility we replaced the 
previously used rectangular grid of jets by a more biologically plausible set of loci, the 
determination of which depends on hypothetized intrinsic saliencies of the faces [14]. 
This modification, otherwise costly in programing efforts, has been realized by the 
mere replacing of the graph object and its associated functions. In the same manner, 
as needs occurred, we added new display routines, allowing further monitoring of the 
state of the system, consequently gaining insights in its functioning and performance. 
However, the natural price to pay for modularity is computing efficiency. Taking again 
advantage of the modularity of this new system, we therefore undertook to create a set 
of efficient objects, the implementation of which could be run on the parallel transputer 
machine mentioned above. 



We chose to use Trollius for this task, a Unix-based environment allowing the easy 
design and implementation of C code (rather than using OCCAM, or waiting for a 
C++ compiler) for the transputers. This environment is fully integrated into Unix and 
allows the easy mixing of Unix C (or C++) based code and transputer C code. We 
therefore implemented the routines performing the convolution of a 128 x 128 image 
with 40 kernels in C under Trollius and could reach performance levels similar to the 
OCCAMsystem. These routines have been designed in order to be ultimately used by 
the C++ based environment described above, as a new set of objects complementing 
those so far used and which were sequentially executed. However, both families of 
objects will coexist in the final version of the system. The sequential one will be used 
for prototyping whereas the parallel one will be used for actual experimentation, the 
user deciding at compile-time which familly is best suited for his/her needs. Ideally, 
this choice would be further allowed at run-time. An analogous implementation of the 
comparison routines is underway. Finally, ParaGraph, a set of graphical tools, has 
been installed and will be used to visualize the behavior of the parallel system (data 
bottlenecks, idle processors) and assess its overall performance. 

3    Recognition Performance of the System 
In order to assess the performance of the system, we collected three galleries of face 
images from 88 persons. One gallery is used to generate the database; the subjects 
were asked to look straight into the camera for this. A second gallery was taken with 
subjects looking approximately 20° to their right, while for the third gallery they were 
asked to modify their facial expression. 

The comparison process described above yields a number for every pair of image 
and stored model. We thus need a mechanism to decide whether the model with the 
best match value is indeed the correct one, or whether a model of this person is not- 
included in the database. For this, we developed two statictical criteria, described in 
detail in [11]. If the values for these criteria exceed a threshold, the model with the 
best match value is deemed recognized; otherwise, the system effectively says "I'm not 
sure." 

The system's performance is given in the table. The thresholds of the criteria were 
adjusted such that for one gallery, no false positives resulted (columns 2 and 5). The 
system then identifies 83% and &4% of the images in a significant way (column 1). 
while at the same time it avoids wrong and significant recognitions (column 6) and 
false positives in the other gallsry. In two (gallery 1) and three (gallery 2) cases, shov,Tl 

in column 4, the best match is not the correct model; conversely, in «97% of the cases, 
the system selects the correct model from the database (sum of columns 1 and 3). 

3.1     Performance with Rotation and Scale Invariance 
While the matching algorithm as described above will tolerate about 5-10% scale differ- 
ence and about 10° rotation angle in the image plane between the image and a model, 
it would fail for larger variations of these global parameters. We thus implemented a 
system to estimate scale and orientation following a similar strategy as used for trans- 
lation invariance. In place of a diffusion type optimization over different positions we 

adopted a hierarchical linear search for the optimal orientation and scale parameters. 



The models are transformed according to the scale and orientation being searched and 
are then compared to the image. Since the affine transformation parameters depend 
on positioning, we used an interleaving scheme between the different global parame- 
ter estimation routines (positioning, scaling, rotation) and iterated from coarse to fine 
resolution. This procedure performed with over 90% recognition rate (85% if no false 
positives were allowed) on 90 test images showing objects at 70% and 50% the size of 
the database models (obtained through additional galleries of our subjects). A similar 
performance was obtained when the 70% gallery was additionally rotated by 30° in the 
image plane. 

As result of the support in this project, the following papers have been published 
[12, 11, 7, 23, 14, 9, 20, 24, 18, 16, 25, 5, 8, 15, 19, ?, 4. 6, 1, 2, 3] 
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gallery criterion case 1 2 3 4 5 6 

gal. 1 
«i 86 100 11 2 0 0 
«2 83 100 15 2 0 j 0 
K 88 j 

100 10 2 0 0 

gal. 2 
Kj 79 100 17 3 0 0 

*2 80 100 16 3 0 0 
K 84 100 13 3 0 0 

Table 1: Results of comparing two galleries (gal. 1, head rotation by 20°; gal. 2, facial expres- 
sions) against the standard image database of the same persons. All entries are expressed 
as percentages. For details, see the text. 
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