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Overview 

1     Overview 

During the last 3 years we have developed a mathematical theory of algorithms and implementa- < 

tion strategies for DSP computations on RISC and DSP chips and parallel architectures ranging 

from scalable multinode boards to massively parallel multinode computers as typified by the 

Intel's Touchstone systems. 

Recently, our work has centered around implementation of the DFT, convolution and wavelet 4 

multirate filter systems on distributed parallel computing platforms, and embedding of the rou- 

tines in various appHcations in collaboration with several government laboratories, commercial 

institutions and university research groups. 

The general goal of this effort is to establish tools which apply concurrently to software and i 

hardware and create 

• a technology base for developing optimal software, extending the life span of software by 

appropriately targeting suitable hardware. ^ 

• procedures for cost effective system design for special purpose architectures which can be 

expected to efficiently implement a whole class of similar algorithms of interest. 

• immediate utilization of new hardware advances at minimal time and cost in software 

development. 

The director of the group is Richard Tolimieri who is partially supported by the contract. 

The contract also supports Myoung An full time, Chao Lu of Towson University as a consultant, 

and three graduate students two of whom have received PhD during this period. • 

One feature of our approach is that algorithms are modeled in algebraic terms permitting 

software to be optimized by algebraic manipulations as oppose to more time-consuming pro- 

gramming manipulations. This algebra identifies and operates on fundamental computational 

and communication primitives which concurrently model software and machine parameters and \ 

establishes interactive programming tools in the form of transformation rules for selecting highly 

optimized code for a target architecture. 

We have developed a theory of algorithms for DSP computations based on finite abelian 

group theory that divorces the problem of algorithm and system design from the particulars of { 

implementation and application and has led to the development of new algorithms which present 

radically different communication paths and data structures for subcomputations. This is espe- 

cially important in multidimensional processing which incorporates more degrees of freedom for 

system and algorithm design but involves data sizes that challenge hardware memory resources, < 

I/O and interprocessor communication bandwidth. In this framework, new algorithms have been 
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designed for incorporating special data characteristics (real, hermitian, space group symmetric) 

and for embedding code in applications highlighting special local data characteristics. Typically 

such applications involve iteration of distinct computations where standard algorithms result in 

a mismatch between input and output data structures of successive stages. 

These tools have and will significantly impact computations in such diverse application areas 

as image processing, x-ray crystallography, communications, computational fluid dynamics and 

computational electromagnetics. 

We have applied our results summarized below in collaboration with government agencies, 

universities and commercial institutions. 
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1.1    Applied Results 

# 

joals: 

• Develop a theory for data partition and mi- 

gration on shared and distributed memory mul- 

tiprocessors. 

accomplishments: 

• Formulation of data partitioning and migra- 

tion schemes in terms of tensor product algebra. 

• Implementation of the theory developed for 

data partitioning and migration in parallel solu- 

tions for applications. 

• Improve the efficiency of Intel's multidimen- 

sional FFT library. 

• Implementation of routines to interface various 

data partitioning in distributed computing sys- 

tems for general numerical procedures involving 

sequences of computations requiring intermedi- 

ate data redistribution. 

• Implementation of matrix multiplication using 

the theory to change the data flow from existing 

matrix multiplication algorithms. 

• Interface multidimensional FFT for the 

wavelet-Galerkin and capacitance matrix meth- 

ods for the solutions of Euler and Navier-Stokes 

equations. 

•Interleaved communication and computation in 

the 3D FFT, along with the use of efficient vec- 

torized assembly FFT codes improves the 3D 

FFT code up to 50 %. 

• Tensor product formulation of the 2D FFT al- 

lows for maximizing the degree of concurrency 

between computations of row ID FFTs and 

global transposition to result in up to 40 % faster 

codes. 
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goals: accomplishments: 

• Create scalable ID and 2D power of 2 and com- 

posite transform size parallel DFT library using 

reduced interprocessor communication variants 

of MD Cooley-Tukey and Good-Thomas algo- 

rithms. 

• A family of M-D implementations improving 

performance up to 200% over powers of 2 Intel 

2D and 3D code. 

•   Create   a  scalable   ID   and   2D   composite 

transform size parallel DFT library on the In- 

tel IPSC/860 based on standard row-column 

method. 

•a scalable library of composite size ID and 2D 

parallel DFT implementations with CPU com- 

patible with n log n criteria. 

• Create a scalable 2D and 3D library of parallel 

DFT codes based on the vector-radix algorithm 

and compare their performance with the row- 

column approach. 

• A scalable library of 2D and 3D vector-radix 

implementations along with a comparison with 

row-column implementations and identification 

of cases where vector-radix outperforms row- 

column method. 

•   Create a scalable library of efficient  non- 

powers-of-two   parallel   DFT   codes   with   re- 

duced inter-processor communication needs, us- 

ing variants of the RTA algorithm. 

• A family of RTA variants implementations im- 

proves the performance of the parallel DFT up 

to 75 % over the powers-of-two Intel 2D and 3D 

FFT code. 

• Investigate the suitability of the parallel al- 

gorithms we proposed for other parallel multi- 

processor systems (Clusters of workstations). 

• Parallel RTA variants coded to run on a cluster 

of SUN workstations show promising speedup 

and scalability features. 
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goals: 

• Develop of a library of parallel symmetrized 

DFT codes. 

accomplishments: 

• Derivation of a novel symmetrized DFT al- 

gorithm based on group theoretic concepts, im- 

plementable on multi-processor machines, with 

a wide range of applications in crystallography 

and signal processing. 

• Investigate integer and rationally oversam- 

pled Weyl-Heisenberg coefficient computation in 

a distributed memory multiprocessor environ- 

ment. 

• Documentation of employed methods of design 

and implementation of parallel algorithms in the 

most widely available form for the purpose of 

immediate availability by the public. 

• Porting of Touchstone parallel codes to other 

parallel architectures as a test of portability of 

our methods. 

• A library of real time implementation of inte- 

ger and rationally oversampled Weyl-Heisenberg 

coefficient computation on single i860 processor 

and on 4- and 8-node computing systems. 

• In addition to publication of Mathematics 

of Multidimensional Fourier Transform Algo- 

rithms, Springer-Verlag textbook, several papers 

to journals have been submitted and presenta- 

tions were given at conferences. 

• The parallel FFT codes have been successfully 

ported to the IBM SP2 multiprocessor system of 

the NAS NASA Research Center in less than a 

day. 
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These applied results have led to the following technology transfers. 

1.2    Technology transfer 

• David Grimm, Honeywell, Inc., 813 539 4213 

Embeddable Multiprocessor Systems 

We have ported scalable, multiprocessor, multidimensional FFT routine for variable size 

PARAGON systems. Honeywell has agree to act as /3-site for the codes and the given 

machine environment for the codes we have developed. 

• A. King, Intel Corporation, Supercomputer Systems Division, 503 531 5300. 

- i860 

For the Intel i860, we have developed a library of mixed size FFT routines, which 

will soon be available in the commercial market. The library is three times denser in 

transform sizes than existing such libraries. The non-powers-of-two sizes run at the 

linear time scale as the powers-of-two sizes which run competitively with assembly 

coded fully optimized routines in other libraries. 

- Touchstone Systems, DELTA, iPSC/860, PARAGON 

For the Intel Touchstone systems, we have implemented scalable, multiprocessor, 

multidimensional FFT routines optimized for each of the three systems. 

. E. Prince, Reactor Division, NIST, 301 970 6230. 

X-ray crystallographic FFT routines. 

SUN, Microways's NumberSmasher860 accelerator card. 

We worked with Dr. Edward Prince of NIST to embed our crystallographic group specific 

mixed size FFT library. For computational methods in X-ray crystallography, mixed size 

FFT routines are crucial. Library was created in collaboration with Dr. Prince to address 

the most applicable computations for compile-time efficiency. During our collaboration, 

Dr. Prince has changed his computing environments three times, VAX, 486 PC and 

most recently added i860 accelerator card for compute intensive procedures. In each of 

the computing environments, our codes have significantly improved (3 - - 100 times) the 

runtime of the computations. 

• J. Weiss, Aware, Inc., 617 577 1700. 

Computational Fluid Dynamics 
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2D FFT on Intel's Touchstone systems 

We supplied Dr. Weiss of Aware, Inc. with data-restructuring routines for Intel's Delta 

machine for his parallel methods for incompressible Euler and Navier-Stokes equations 

for fluid dynamics in two-space. While parallelization of other computational procedures 

required non-traditional data structures, parallel optimized FFT routines are available only 

for row-column distributed data structure. Our data restructuring routines are formulated 

in terms of global/local stride permutations, and embeddable in row-column distributed 

FFT routines. In fact, we have improved the global FFT routines by 120-200%. 

• C. Lund, Mercury Computer Systems, Inc., 508 256 1300. 

Mercury's MCV6 

We are working to port our parallel multidimensional FFT routines and Weyl-Heisenberg 

coefficient computation routines to Mercury's four-node board. 

• C. Giacovazzo, Departmento Geomineralogico, Campus Univarsitario, Bari, Italia, 39 80 

544 2590. 

- SUN 

We are developing optimized cubic-symmetry-specific FFT code for Dr. Giacovazzo 

of University of Bari, Italy. 

— i860-based multiprocessor boards. 

We are parallelizing Dr.   Giacovazzo's software package for small molecule direct 

methods, SIR92, for an i860-based multiprocessor boards. 

• A. Woo, NASA AMES Research Center, 415 604 6010. 

Computational Electromagnetics. 

Intel's PARAGON, IBM's SP2. 

We have ported mixed-size 3-dimensional parallel FFT code for Intel Paragon and IBM's 

multiprocessor SP2 for applications in computational electromagnetics. 

• G. TenniUe, NASA Langley Research Center, 804 864 5786. 

Intel's PARAGON, IBM's SP2. 

We have transferred multi-dimensional double precision FFT routines for the Intel PARAGON 

and in the process of transferring similar codes on IBM's SP2. 
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• E. Bleszynski, Rockwell International Corporation, North American Aircraft Operations, 

310 647 3675. 

Adaptive Integral Method Solver of Large Scale Electromagnetics Computations. 

Intel's Paragon 

We have transferred a package of scalable mixed-radix 3-dimensional FFT routines for 

Paragon nodes. 

• E. Holbert, Kirtland AFB, 505 846 1995. 

SUN 

We have transferred FT routines of sizes 1000 and 1024 for real data sequences optimized 

for the SUN. 

• R. Pachter, Wright Laboratory, WPAFB, OH, 513 255 6652. 

Intel's Paragon 

Materials Science 

We have ported real/Hermitian 2-dimensional parallel FFT routines to the material science 

division for Paragon. 

• R. Martino, Department of Computer Science and Engineering, NIH, 301 496 1111. 

Intel's iPSC/860 

Molecular Dynamics 

We have ported 3-dimensional parallel FFT routines for iPSC/860 128 node hypercube. 

The performance recorded by NIH of our code was 1.2Gbyte running FFT which is highest 

recorded to. our knowledge. 

• Steven Fried, Microway, Inc. 508 585 1277. 

During the last year we have actively collaborated with Microway, Inc. to produce a 

library for their i860 accelerator card, that is three times denser in transform sizes than 

existing such libraries. This library was ported to Dr. E. Prince of NIST for interface 

with his crystallographic procedures and resulted in a speed-up of twenty times. It will 

soon be commercially available through Microway, Inc. Presently, we are collaborating on 

producing scalable, mixed-radix, parallel FFT library for the quadputer i860 board. We 

have access to Microway's hardware products in these joint efforts. 
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• M. Tzannes, Aware, Inc., 617 577 1700 

Tele-communication project. 

- The converting fixed-point input to floating-point stage was combined with the inverse 

512-point FFT to save arithmetic operations to produce optimal code on ADSP21020. 

- The Frequency-Equalizer stage was combined with the 512-point FFT to save arith- 

metic operations to produce optimized code on ADSP21020. 

- 512-point DCT II and IV (Discrete Cosine Transform) have been optimized for Ana- 

log Devices's ADSP-21020 chip based on FFT and will be optimized on the new 

ADSP21060. 

- 512-point DWMT (Discrete Wavelet Multitone Technique) modulator and demodu- 

lator based on DCT IV has been optimized on ADSP-21020, and wiU be optimized 

on the new ADSP21060. 

• Loral Federal Systems Inc. — Benchmark on the IBM SP2 project. 

- QUICK.CPF.F 

- QUICK.CPF.COMPRESSED.F 

- IPF.F 

- QUICKJPF.F 

the above 4 routines were optimized on IBM SP2 parallel systems, with about 30% im- 

provement. 

• Atlantic Aerospace — FIR filter on ISP multi-processor board based on TI TMS320C40 

chip. 

- 4-point FIR filter 

- 8-point FIR filter 

• 

m 
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1.3    Publications 

1. Mathematics of Multidimensional Fourier Transform Algorithms, R. Tolimieri, M. An and 

C. Lu, Springer-Verlag, New York, 1993. 

2. "Efficient Multidimensional FFT Module Implementation on the Intel i860 Processor", M. 

An, C. Lu, S. Qian and R. Tolimieri, Proc. Inter. Conf. on Signal Processing, Applications 

and Technology, Sept. 28-Oct. 1, CA 1993. 

3. "A Hybrid Parallel FFT Algorithm Without Interprocessor Communication", M. An, C. 

Lu, S. Qian and R. Tolimieri, Proc. of IEEE Inter. Conf. on ASSP, 1993. 

4. "DSP algorithm design and implementation on RISC architectures," M. An, C. Lu and R. 

Tolimieri, presented at the first international conference on Electronics and Information 

Technology (ICEIT'94) held in Beijing, China. 

5. "The computation of Weyl-Heisenberg coefficients for critically sampled and oversampled 

signals," M. An, G. Kechriotis, C. Lu and R. Tolimieri, presented at ICSPAT '94, Dalla, 

TX. 

6. "Self-Sorting In-Place FFT Algorithm with Minimum Working Space," by Z. Qian, C. Lu, 

M. An and R. Tolimieri, IEEE Transactions on Signal Precessing, 42 10, October 1994. 

7. "A New Approach for Computing Multi-Dimensional DFTs on Parallel Machines and 

its Implementation on the iPSC/860 Hypercube," M. An, M. Bletsas, G. Kechriotis, E. 

Manolakos and R. Tolimieri, to appear in IEEE Trans. ASSP., January, 1995. 

8. "Group Invariant Fourier Transform Algorithms," Y. Abdelatif, M. An, N. Anupindi, G. 

Kechriotis, C. Lu and R. Tolimieri, to appear as a chapter in Advances in Electronics and 

Electron Physisc, Acadimic Press. 

9. "Comparison of 2-D FFT Implementations on the Intel Paragon Massively Parallel Super- 

computer", M. An, N. Anupindi, M. Bletsas, G. Kechriotis, C. Lu, E. S. Manolakos and 

R. Tolimieri, to appear at Proc. of the International Conference on Speech, Acoustics and 

Signal Processing (ICASP), April 1994. 

10. "Weyl-Heisenberg systems and the finite Zak transform," M. An, A. Brodzik, G. Kechriotis, 

C. Lu and R.Tolimieri, submitted for publication in Signal Processing, Elsevier Science 

Publishers, Amsterdam, The Netherlands, August 94. 

11. "Group algebras and orthogonal decompositions," M. An and R. Tolimieri, submitted to 

IEEE SP for publication, June, 1994. 
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2    Methodologies 

2.1    Data Partition and Migration on Distributed Memory Multiprocessors 

Problem: Efficiency of parallel implementation depends on the implementation of the data move- 

ments that describe the required communication, since the overhead in distributed comput- 

ing is in the required communication between processors. Although there are algorithms 

which address the complexity in data flow, in addition to arithmetic complexity, there is 

lack in unified methodology for analyzing and designing the data movements. 

Approach: To present a formal methodology for the process of data distribution and redistribution 

using tensor products and stride permutations as tools. The algebraic expressions rep- 

resenting data partition and migration directly operate on data vectors, hence can be 

immediately embedded into an algorithm. 

Goals: To implement and embed data partition and migration algorithms. 

Applications:  General numerical solutions that require successive stages of computation and data redis- 

tributions. 

results: A unique data distribution technique that effectively uses transpose algorithms for multi- 

plication of two rectangular matrices is derived and implemented. Performance of these 

algorithms are evaluated by carrying out implementations on Intel's i860 based iPSC/860, 

Touchstone Delta, Gamma, and Paragon supercomputers. 

Implemented the data redistribution algorithm for Euler partial differential equation (PDE) 

for two-dimensional case using wavelet-Galerkin method, where the two most important 

computation modules in this solution require two different data-partitions for their optimal 

implementation. Results of implementation on overall performance is included. 
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2.2    Efficient Multidimensional DFT Module Implementation on the INTEL 

* i860 Processor 

Problems: A standard method [2] of implementing non-power-of-2 transform size DFT is zero-padding. 

In multi-dimensional DFT computation, this will increase the transform size dramatically, 

not only slowing down the computation but also causing cache thrash and memory over- 

flow. In the case of the parallel computer iPSC/860, each node processor has 8M byte 

memory. If the size of complex data to be processed is 72 x 72 x 72 = 373,248, computa- 

tion is made in the local memory of the processing unit without data segmentation. On 

the other hand, by padding with zeros, the size of complex data to be processed will be 

128 x 128 x 128 = 2,097,152, which is beyond the capacity of local memory; segmentation 

and data loading in and out will cause severe problem. 

Approach: By formulating various DFT algorithms in the language of tensor products, any large size 

# Fourier transform is built up by a collection of small size DFT modules which include as 

parameters decimation step sizes and twiddle factors. These parameters are introduced 

in the DFT modules to take advantage of modern computer architectures with parallel, 

pipelined, multi-functional structures, while providing flexibility into the building blocks. 

* Our library of core computation modules has the following features: 

- We have efficiently implemented prime factors 3, 5, 7, 11, 13, 17 as well as powers of 

2. Thus, transform size on each dimension of a multi-dimensional Fourier transform 

ä can have factors other than 2. 

- One-dimensional small modules take advantage of vector operations on i860 by loop- 

ing on other factors of the same dimension and other dimensions. 

- One-dimensional small modules have pre-calculated twiddle factor array as a param- 

• eter. This provides for intermediate stages of Cooley-Tukey FFT implementation. 

Goals: To create a scalable DFT library on the Intel i860 with mixed radix transform sizes with 

CPU time comparable to that of closest to a power of 2 transform size. 

• Results: Timing results of some sample medium size of 2-dimensional DFT modules with prime 

factor on each dimension is provided on the Intel i860 processor. The results of comparable 

power of 2 FFT package [6] that are commercially available are also included. 
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2.3    Efficient parallel implementation of traditional FFT codes 

Problem: Data partition and migration for efficient communication in distributed memory architec- 

tures are critical for permance of data parallel programs. 

Approach: Data partition and migration for efficient communication in distributed memory archi- 

tectures are critical for performance of data parallel programs. This research presents a 

formal methodology for the process of data distribution and redistribution using tensor 

products and stride permutations as mathematical tools. The algebraic expressions rep- 

resenting data partition and migration directly operate on a data vector, and hence can 

be conveniently embedded into an algorithm. It is also shown that these expressions are 

useful for a clear understanding and to efficiently interleave problems that involve different 

data distributions at different phases. This compatibility made us successfuUy utilize these 

expressions in developing and demonstrating matrix transpose and fast Fourier transform 

algorithms. An endeavor to minimize communication cost using expressions for data dis- 

tribution disclosed routing scheme for Fourier transform evaluation. Results promised that 

for large parallel machines, this scheme is a solution to today's problems which feature 

enormous data. FinaUy, a unique data distribution technique that effectively uses trans- 

pose algorithms for multiplication of two rectangular matrices is derived. Performance 

of these algorithms are evaluated by carrying out implementations on Intel's i860 based 

iPSC/860, Touchstone Delta, Gamma, and Paragon supercomputers. 

The global transposition stage, that interchanges the last two dimensions of the distributed 

among the processors data matrix, is interleaved with ID FFT computations along the 

dimension that is orthogonal to the other two, to hide the communication cost and achieve 

a much better processor utilization. 

In the 2D row-column FFT case, the global transposition can be decomposed into a number 

of smaller global transpositions of partial data that can be performed concurrently with 

the first stage of FFT computations (ID FFTs along the rows). In a similar fashion, the 

second global transposition step that is required if the results are to be returned in their 

original order, can be interleaved with the second FFT computational stage to totally hide 

the communication costs within the computations. For a more detailed description of the 

approach we followed please see Appendix B. 

Goals: Create an efficient global transposition algorithm that interleaves computations with com- 

munications. Take full advantage of iPSC/860 hardware that allows to perform compu- 

tations at the same time with performing communications, such that the data exchange 

stage starts at the same time with one of the computational stages of the 3D and 2D FFT. 
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Produce totally scalable efficient codes for large size multi-dimensional FFTs and evaluate 

) their performance. 

Applications: The power-of-two FFT has become a standard in many applications. The 3D FFT of 

large data size is a major component in a huge variety of signal processing applications in 

seismology, oil exploration, crystallography, meteorology, motion detection etc. The large- 

size 2D FFT has many applications ranging from image processing to system identification 

and signal reconstruction. 
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2.4    Vector-radix on the Paragon 

The Vector-Radix (VR) algorithm is a vector generalization of the Cooley-Tukey algorithm for 

the case of two- and in general multi-dimensional FFT computations. In a uni-processor en- 

vironment it has been shown that the VR can result in more efficient implementations than 

the straight forward application of the Row-Column (RC) method that computes a multi- 

dimensional FFT by sequentiaUy applying ID FFT along each of the dimensions, due mainly to 

the lower frequency of required accessing of a particular data point stored in the local memory 

than that required by the RC. In shared-memory multiprocessor systems, where the cost of data 

accessing is non-uniform, depending on where the data is stored, it is not clear that VR type 

of algorithms wiU be more efficient than RC method. The main advantage however of the VR 

formulation in the case of parallel multi-dimensional FFTs is the increased flexibility in initial 

and final data distribution and data/computations flow that allow for the design of codes that 

match in an optimal way the target multiprocessor machine parameters. 

In the 2D case, VR formulations usually require three instead of two global communication 

stages which makes them unattractive for implementation on machines with high inter-processor 

communication costs. On the other hand, because the local memory accesses are much more 

regular than in the case of the RC implementations, for machines with fast inter-processor 

communication links, the VR results in more efficient implementations. 
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2.5    Reduced transform algorithms 

Problems: Most variants of the Cooley-Tukey FFT algorithm deal with FFT computations as mul- 

tiple stage calculations with data permutation between stages. This requires extensive 

interprocessor communication for implementing large size transpositions. 

Approach: We present a strategy for computing a multidimensional DFT that hybrids a relatively 

new algorithm (Reduced Transform Algorithm) with already implemented single processor 

kernel routines. We will use the reduced transform algorithm to address the reduction and 

optimization of interprocessor communications. Our work has been mainly motivated from 

the distributed memory parallel computing paradigm, which is arguably the most difficult 

to harness due to its exposed interprocessor communication to the programmer. Most 

parallel computers require sophisticated algorithms and programming techniques for their 

optimum utilization. In this discussion, we will make use of algebraic facts in presenting the 

algorithms. The parameters in algebraic formulas give us the important implementation 

parameters. Thus the flexibility to address the variables in implementations is equated 

with flexibility in manipulating algebraic formalism. Initial investment in familiarity with 

some amount of algebra may be necessary, but the payoff is immediate. Most of the 

relevant algebra, not in its most rigorous form but its usage, can be found in [8]. 

In its most general form, the Reduced transform algorithm (RTA) is a full utilization of the 

duality between periodic and decimated data in the Fourier transform. This duality was 

used partially in some algorithms and implementations for restricted cases [4, 2, 5, 10]. A 

description of a generalization in a unified setting is found in [1, 9] along with the work 

of M. Rofheart [7]. In this paper, we will consider the application of RTA to the case 

Z/P x Z/P, for a prime number P. Tensor product formulation of DFT computation on 

Z/N x Z/P x Z/P is interleaved with the periodization step in RTA for Z/P x Z/P to 

produce P + 1 independent data of size NP. 

We use the RTA to address the imbalance between computation and communication rates 

in current distributed memory parallel machines by reducing communication between pro- 

cessors to collective patterns only (broadcast and combine) instead of the all-to-all com- 

munication patterns required in the global matrix transpose needed by the row-column 

(RC) implementations of multidimensional DFT's. Also, since fast algorithms for prime 

size lD-DFT's exist [8] and the case Z/P X Z/P of the RTA is very efficient because its 

computation requires only P + 1 ID transforms (versus 2P for the row column method), 

our approach addresses the issue of storage reduction by providing additional transform 

size options. For example the ability to perform a 181X181 point 2D DFT means potential 
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storage savings up to 50% over the 256 X 256 case, along with the savings in computational 

time. The storage savings can be used for the optimization of the broadcasting step needed 

for the RTA, in environments with long communications latency. 

Via the Chinese remainder theorem, we will extend our method to compute the 3-dimensional 

DFT on Z/iV x Z/MP x Z/KP, where N is an arbitrary integer, M and K are integers 

not divisible by P, for a prime P. We transform the data set to an equivalent 5D data set 

on Z/N x Z/M x Z/K x Z/P x Z/P, and then employs the RTA on the last two indices 

to break the problem into smaller independent sub-problems that can be computed in 

parallel. Each sub-problem is associated with the computation of the value of the Fourier 

Transform along one line in the set Z/P x Z/P passing through the origin. These lines 

intersect only at the origin and cover the index space. When translated from the 5D data 

set back to the original 3D data, each line corresponds to a set of parallel lines covering 

the index space. 

Three stages are needed to compute the values of the DFT along the lines: (1) Periodiza- 

tion stage, which consists of additions of data along lines perpendicular to a given line, (2) 

3D Cooley-Tukey FFT and (3) P-point DFT. In a multiprocessor environment, each pro- 

cessor computes these three steps independently of the others thus allowing for maximum 

parallelism and efficiency. Moreover, the final data distribution among the processors is 

such as to permit further processing in a parallel fashion since every processor holds only 

results belonging to the same geometrical subset. 

The proposed hybrid method (HRTA) can be used in applications such as the computation 

of motion from a sequence of images (multi-frame detection, MFD), a very important task 

in computer vision, HDTV and video telephony. Several methods for MFD have been 

proposed in the literature that are usually divided into two categories: Time Domain 

methods, that estimate the motion by processing the sequence of images directly, and the 

recently proposed Frequency Domain methods [3], [6] that processes the frequency contents 

of the images to estimate the velocity and trajectory of the moving components. The latter 

methods offer more robust detection and huge computational savings since the frequency 

domain representation of the 3D data (sequence of 2D images) is more compact than the 

equivalent time domain representation. With all the processors holding data belonging 

to different lines in the frequency domain, each processor can independently test for the 

presence of motion along its assigned direction. 
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2.6    Non-power-of-two scalable DFT library based on RTA variants 

• Problem: In many applications the data size is not a power of two such that zero padding has to be 

employed to use the efficient FFT algorithms. In the multi-dimensional case, zero padding 

increases tremendously the data size and hence the required computational time. 

Approach: The recently proposed RTA is combined with the Good-Thomas factorization and the 

standard Cooley-Tukey FFT algorithm to give DFT algorithms that require a reduced 

amount of inter-processor communications at the expense of larger data storage needs and 

additional pre-processing stages. The Hybrid RTA variants as well as the implementation 

issues are described in detail in Appendix A. 
# 

Goals: To create a totally scalable non-power-of-two DFT library for 2D and 3D cases employing 

the concepts of the RTA. Investigate in detail the performance and the tradeoffs of the 

new algorithms and propose efficient hardware structures that would further improve the 

# DFT codes. 

Applications: The special structure of the RTA that computes the output of the DFT along particular 

geometrical subsets of the original index set can be used for the fast moving target tracking 

and recognition, as well as for digital video compression. The RTA variants are especially 

suitable for implementation on DSP multi-processor boards and clusters of workstations. 
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2.7    Symmetrized crystallographic parallel DFT algorithms 

Problem: In many applications (crystallography, higher order spectra computations) the data have < 

inherent redundancy due to symmetries in their structure. In most cases these symmetries 

can be expressed as group actions (affine or point groups). If efficient algorithms for the 

computation of the DFT of such data are desired, the inherent data symmetries need to be 

taken into account to result in both data reduction and computational savings. Although ^ 

considerable work has been done in the computation of symmetrized DFTs, algorithms 

that can be implemented in a parallel machine need to be derived. 

Approach: A group theoretic approach is taken to decompose the data set into orbits that are charac- ^ 

terized by constant data value, and to perform a data reduction step by choosing only one 

representative data point for each such orbit. To take advantage of fast DFT routines, the 

representatives of the orbits are being covered with the minimum number of lines through 

the data space, and then RTA variants are being employed to compute the value of the 

DFT along these points efficiently. The algorithm is being generalized for a large collec- 

tion of data sizes by employing the Chinese Remainder Theorem and the Good-Thomas 

permutation. 

Goals: Theoretical study of symmetrized DFT algorithms suitable for implementation in parallel f 

multi-processor machines. Development of a unified theory to treat all symmetries usually 

encountered in practical applications. Development of a general symmetrized DFT library 

for the Intel iPSC/860 and Paragon multiprocessors. 

Applications: Determination of the structure of a crystal from X-ray diffraction data, efficient compu- < 

tation of higher order statistics for signal analysis and reconstruction for appbcation to 

material science and protein crystallography. 
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2.8    Implementation of integer and rationally oversampled Weyl-Heisenberg 

. coefficient computation 

Problem: During the last four years powerful new methods have been introduced for analyzing 

Wigner transforms of discrete and periodic signals based on finite Weyl-Heisenberg (W-H) 

expansions.   A recent work adapted these methods to gain control over the cross-term 
r interference problem by constructing signal systems in time frequency space for expanding 

Wigner transforms from W-H systems based on Gaussian-like signals. The computational 

feasibility of the method depends strongly on the availability of efficient and stable algo- 

rithms for computing W-H expansion coefficients. 

Approach: The finite Zak transform is established as a fundamental and powerful tool for studying 

critically sampled and rationally oversampled W-H systems and for designing algorithms 

for computing W-H coefficients for discrete and periodic signals. The role of the finite 

Zak transform is analogous to that played by the Fourier transform in replacing complex 

convolution computations by simple pointwise multiplication. In this new setting proper- 

ties of W-H systems such as their spanning space and dimension can be determined by 

simple operations on functions in Zak space. This relationship will impact on questions of 

existence, parameterization and computation of W-H expansions. 

Implementation results on single RISC processor of i860 and the PARAGON paraUel 

multiprocessor system are given for sample sizes both of powers of 2 and mixed sizes 

with factors 2, 3, 4, 5, 6, 7, 8, 9. The algorithms described in this paper possess highly 

> parallel structure and are especially suited in a distributed memory parallel processing 

environment. Timing results on single i860 processor and on 4- and 8-node computing 

systems show that real-time computation of W-H expansions is realizable. 

Results: Implementation results on single RISC processor of i860 and the PARAGON parallel 

* multiprocessor system are given for sample sizes both of powers of 2 and mixed sizes 

with factors 2, 3, 4, 5, 6, 7, 8, 9. The algorithms described in this paper possess highly 

paraUel structure and are especially suited in a distributed memory parallel processing 

environment.   Timing results on single i860 processor and on 4- and 8-node computing 

> systems show that real-time computation of W-H expansions is realizable. 
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2.9    Porting parallel multi-dimensional FFT codes to the IBM SP2 shared- 

memory multiprocessor 

Problem: Recent advances in hardware provide vast possibilities in machine variations. Expensive 

and time-consuming efforts in software development are often required for effective uti- 

lization of these advances. In particular, framework for designing algorithms that takes 

architectural variations become most urgent. 

Approach: Tensor product formalism and the finite abelian group theory has been the major tool 

for our algorithm design and implementation. Although our codes have been optimized 

for the Touchstone systems, the flexibility of our design tool allowed us to re-use the 

software and algorithmic skeletons and simply recompile and relink it with the machine- 

specific interprocessor communication and one-dimensional FFT libraries. The availability 

of efficient one- and two-dimensional FFT codes from the ESSL/6000 Engineering and 

Scientific Subroutine Library, including both powers of 2 and non-power of 2 sizes allowed 

us to design general purpose parallel 2D and 3D FFT codes that can handle a wide range 

of sizes. We are currently in the process of porting more codes to the IBM SP2 including 

RTA and Vector-Radix based FFT algorithms. 

Results: The parallel FFT codes have been successfully ported to the IBM SP2 multiprocessor 

system of the NAS NASA Research Center in less than a day. The NAS SP2 machine has 

160 nodes, each having at least 128 Mbytes of main memory and 2 Gbytes of disk space. 

The SP2 nodes are based on the RS6000/590 workstation configuration that relies on the 

POWER2 multi-chip RISC processor equipped with two integer and two floating point 

computation units capable of achieving a peak performance in the order of 250 MFlops. 
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2.10    Parallel DFT codes for Clusters of Workstations 

* Problem: Clusters Of Workstations (COWS) are becoming very attractive as easily available alter- 

natives to expensive parallel supercomputers for certain classes of problems. Due to the 

special nature of this form of parallel machines (workstations connected via a common 

ethernet cable), row-column methods that require a global transposition step that implies 

* all-to-all communication are highly inefficient. On the other hand the RTA variants that 

require no inter-processor communication at the expense of preprocessing the data emerge 

as the only viable approach. 

k Approach: The variants of the RTA decompose the task of DFT computation to a number of sub- 

tasks that can be computed independently at the expense of preprocessing the data. The 

broadcasting of the data to all available processors can be implemented very efficiently on 

the ethernet bus topology, since all processors have access to the broadcasting medium. 

I The details of the parallel RTA implementation on a cluster of workstations are described 

in detail in Appendix C. 

Goals: Develop a set of parallel DFT codes for clusters of workstations that can be used when 

data sizes are large and computational speed is important. Investigate the efficiency and 

> scalability of the codes and improve the loading/unloading of data/results. Investigating 

the tradeoffs between the granularity of the partitioning into subtasks and the amount of 

data pre-processing to choose the most efficient RTA variant for the particular implemen- 

tation. Experiment with large clusters of workstations (100-200) and develop methods for 

* the computation of Giga-size DFTs. 

Applications: Developing efficient codes for clusters of workstations will allow the processing and analysis 

of data sets much larger than with the computers available today to advance the research 

and understanding in a variety of applications in biomedical engineering, image processing, 

systems identification etc. 
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3    Implementation Results 

3.1     Data partition and migration schemes 

Data partition and migration for efficient communication in distributed memory architectures 

are critical for performance of data parallel programs. We have developed a formal methodology 

for the process of data distribution and redistribution in terms of tensor products and stride per- 

mutations. The algebraic expressions representing data partition and migration directly operate 

on a data vector, and hence can be conveniently embedded into an algorithm. It is also shown 

that these expressions are useful for a clear understanding and for efficiently embedding into 

problems that involve different data distributions at different phases. A unique data distribution 

technique that effectively uses transpose algorithms for multiplication of two rectangular matri- 

ces is derived. Performance of these algorithms are evaluated by carrying out implementations 

on Intel's i860 based iPSC/860, Touchstone Delta and Paragon supercomputers. 
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3.1.1     Matrix transpose algorithms in three data distributions 

Results of transpose algorithms on Paragon 

M N Row-Division Col-Division Mesh-Division 

ms ms ms 

128 128 5.236 6.172 1.316 

128 256 5.902 7.051 2.028 

128 512 9.031 10.409 2.159 

128 1024 12.356 15.312 3.866 

256 128 5.501 6.665 1.825 

256 256 8.283 9.746 2.301 

256 512 11.483 14.027 4.018 

256 1024 20.076 22.503 7.548 

512 128 8.310 9.432 3.450 

512 256 11.555 13.359 5.905 

512 512 18.536 21.122 7.954 

512 1024 39.628 38.529 16.434 

1024 128 11.228 13.132 5.815 

1024 256 17.526 20.616 10.631 

1024 512 31.211 37.445 20.889 

1024 1024 50.936 66.403 49.274 
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Results of transpose algorithms on Touchstone Delta 

M N Row-Division Col-Division Mesh-Division 

ms ms ms 

128 128 8.092 8.865 2.681 

128 256 10.042 12.280 5.769 

128 512 13.988 18.980 11.702 

128 1024 23.909 33.014 20.018 

256 128 10.065 12.016 5.041 

256 256 14.228 18.150 11.554 

256 512 23.030 31.237 20.088 

256 1024 43.458 59.109 36.009 

512 128 13.982 17.920 9.822 

512 256 23.002 30.593 19.637 

512 512 44.178 57.799 36.091 

512 1024 95.145 114.215 79.681 

1024 128 22.743 30.400 19.507 

1024 256 42.197 57.171 36.109 

1024 512 83.011 113.416 79.492 

1024 1024 187.484 223.287 167.497 
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3.1.2     Switching data partition schemes in application 

We consider the implementation of numerical solution to Euler partial differential equation 

(PDE) for two-dimensional case using wavelet-Galerkin method. The two most important com- 

putation modules in this solution require two different data-partitions for their optimal imple- 

mentation. First module, Helmholtz, involves two-dimensional filtering with forward and inverse 

Fourier transform methods. The second module computes Jacobian that consists of numerous 

small intra-node matrix multiplications. The module Jacobian requires boundary data from 

other nodes, but upto the necessity for neighboring spatial regions to exchange data, choice of 

any data-partitioning shows ideal concurrency, with no sequential dependence of one processor's 

calculation on other's. Departure from ideal speedup in evolution of Jacobian arises because 

the elements on node boundaries must be shared by geometricaUy neighboring processors. Min- 

imization of the elements on the boundaries minimizes the internode communication, leading to 

the most optimal parallel implementation. 

Optimal implementation of Helmholtz requires the data distribution along rows or columns of 

the data array, while Jacobian requires the data distribution in 2-dimensional subarrays (mesh- 

division). Switching between row-division and mesh-division data-partitions is required to make 

use of the peak performances of these modules individually. 
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Two-dimensional double-precision complex FFT implementation results 

(1) iPSC/860 library code, (2) Interface routines appended at input and output, (3) Algorithm-1, 

(4) Algorithm-2. 

Problem Size Nodes Intel Interface Algorithm-1 Algorithm-2 

ms ms ms ms 

32    x      32 4 0.06054 0.13752 0.12409 0.08476 

16 0.12427 0.25118 0.20137 0.13195 

64    x      64 4 0.15091 0.31761 0.28070 0.23038 

16 0.13451 0.26424 0.23804 0.17571 

64 0.48014 0.72160 0.53387 0.39570 

128    x    128 4 0.50754 0.96545 0.86153 0.76560 

16 0.24929 0.44145 0.42941 0.33604 

64 0.49421 0.76185 0.58775 0.43177 

256    x    256 4 1.94816 3.43353 3.17574 2.91836 

16 0.60610 1.13566 1.15002 1.00119 

64 0.57530 0.94583 0.82859 0.64410 

256 1.96009 2.73886 1.66710 1.54402 

512    x    512 4 8.58407 14.55625 13.08064 12.30499 

16 2.37530 4.07935 4.16807 3.81806 

64 1.09181 2.17609 1.92430 1.63670 

256 2.54740 2.90163 2.29605 1.96358 

Timing results for 128 X 128 size vorticity computations 

Nodes Jacobian Helmholtz Total 

row-D Mesh row-D Meshl Mesh2 row-D Meshl Mesh2 

4 

16 

64 

2.8317 

0.8128 

0.3095 

2.7939 

0.7310 

0.1996 

0.11216 

0.06094 

0.10510 

0.18218 

0.09950 

0.12022 

0.16298 

0.07688 

0.08916 

2.9438 

0.8738 

0.4146 

2.9761 

0.8305 

0.3198 

2.9568 

0.8079 

0.2887 
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3.1.3    Parallel matrix multiplication algorithm for rectangular arrays 

Many applications have numerical solutions in which required computation is presented as matrix 

operations. One of the most elementary operations involving matrices is multiplication of two 

matrices. However, since matrix multiplication requires substantially more data movement than 

most other operations, algorithms that address efficient data movement is crucial for effective 

implementation on concurrent computers. 

We have reviewed and implemented an existing matrix multiplication algorithm that gener- 

ates and accumulates partial results by moving multiplicands through a set of broadcasts and 

shifts. Two extreme cases of data decomposition strategies cases involve either only a set of 

broadcasts or only a set of shifts. We designed a different approach that replaces broadcasts or 

shifts by matrix transpose. Identification of shortcomings in the two extreme cases of broadcast- 

and-shift algorithm and the fact that dot product of two vectors result in a single element is 

the motivation for this new approach. Then, to overcome the hurdles in memory requirement, 

we modified the algorithm for efficient data manipulation with the aid of block transpose algo- 

rithm. We present evaluation of communication costs in broadcast-and-shift algorithm versus 

new approach and timing results of their implementations on Intel's Paragon, Touchstone Delta 

and iPSC/860. 

3.1.4     Implementation results on matrix multiplication algorithm 

Timing results for routing scheme in new method 

Ni N2 Nz 2-nodes 4-nodes 8-nodes 16-nodes 

32 512 32 0.495 1.049 2.294 4.870 

64 512 64 0.801 1.827 3.348 4.970 

128 512 128 2.238 4.375 5.775 8.953 

256 512 256 7.107 12.377 16.724 22.357 

512 512 512 27.340 44.108 57.234 67.113 
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Timing results for routing schemes in matrix multiplication algorithms on 16 node 

Paragon 

Nx iV2 N3 B-S Algor. New App. Performance 

Improvement 

128 128 32 11.811 5.384 119.35 

128 128 64 9.769 7.589 28.73 

128 128 128 10.313 9.290 11.02 

256 128 32 12.108 7.538 60.63 

■ 512 128 32 15.429 9.330 65.37 

1024 128 32 22.604 13.469 67.82 

128 256 32 11.185 5.355 108.88 

128 256 64 11.753 7.573 55.19 

128 256 128 12.853 9.359 37.33 

256 256 32 14.466 7.530 92.10 

256 256 64 14.993 9.339 60.53 

512 256 32 20.114 9.341 115.33 

512 256 64 20.618 13.529 52.40 

1024 256 32 37.661 13.518 178.59 

128 512 32 15.005 5.273 184.58 

128 512 64 16.127 7.511 114.71 

128 512 128 18.651 9.336 99.78 

128 512 256 22.296 13.496 65.21 

256 512 32 20.647 7.571 172.70 

256 512 64 21.557 9.360 130.31 

256 512 128 24.351 13.468 80.81 

512 512 32 32.073 9.333 243.65 

512 512 64 32.874 13.487 143.74 

1024 512 32 66.446 13.524 391.31 

1024 512 64 54.994 23.743 131.63 
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Timing results for routing schemes in matrix multiplication algorithms on 16 node 

Touchstone Delta 

Nx N2 N3 B-S Algor. New App. Performance 

Improvement 

128 128 32 11.742 7.265 61.62 

128 128 64 12.848 11.661 10.79 

256 128 32 18.404 11.661 57.82 

512 128 32 31.486 21.037 49.67 

128 256 32 19.511 7.325 166.67 

128 256 64 21.919 11.669 87.84 

128 256 128 26.588 21.128 25.84 

256 256 32 32.423 11.641 178.52 

256 256 64 34.938 21.032 66.12 

256 256 128 39.837 39.226 1.56 

512 256 32 59.338 20.973 182.93 

512 256 64 61.808 39.322 57.18 

128 512 32 34.936 7.302 378.44 

128 512 64 39.797 11.674 240.90 

128 512 128 49.139 21.112 132.75 

128 512 256 68.786 39.276 75.13 

128 512 512 109.143 75.203 45.13 

256 512 32 61.808 11.672 429.54 

256 512 64 66.710 21.108 216.04 

256 512 128 76.199 39.185 94.45 

256 512 256 96.222 75.287 27.81 

512 512 32 114.326 20.887 447.35 

512 512 64 119.239 39.229 203.96 

512 512 128 128.646 75.244 1 70.97 
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Timing results for routing schemes in matrix multiplication algorithms on 16 node 

iPSC/860 

Ni N2 Ns B-S Algor. New App. Performance 

Improvement 

128 128 32 26.504 18.586 42.60 

256 128 32 44.936 30.932 45.27 

512 128 32 80.056 55.328 44.69 

128 256 32 47.235 19.506 142.15 

128 256 64 53.787 30.849 74.35 

128 256 128 65.542 55.086 18.98 

256 256 32 82.382 30.829 167.22 

256 256 64 89.350 53.987 65.50 

512 256 32 152.873 55.152 177.18 

512 256 64 159.157 102.409 55.41 

128 512 32 88.714 18.271 385.54 

128 512 64 101.255 31.236 224.16 

128 512 128 124.579 55.067 126.23 

128 512 256 185.685 101.661 83.65 

128 512 512 304.817 198.436 53.61 

256 512 32 159.439 30.950 415.15 

256 512 64 171.299 55.532 208.47 

256 512 128 197.331 101.436 94.54 

256 512 256 245.848 198.612 23.78 

512 512 32 300.573 53.400 462.87 

512 512 64 312.586 102.097 206.17 

512 512 128 339.101 199.487 69.97 



Implementation Results 33 

3.2    Single i860 node codes: The building blocks 

Delta nodes (40 MHz i860) 

size forward inverse size forward inverse 

16 8 8 20 11 11 

27 19 19 32 17 17 

40 23 22 64 34 35 

96 70 70 100 74 74 

125 91 91 128 90 90 

140 109 109 160 109 113 

192 145 142 224 169 163 

256 182 179 300 302 303 

360 282 289 400 376 376 

448 370 366 512 395 408 

576 521 526 700 709 707 

768 781 776 800 788 801 

900 970 968 1024 1024 1021 

1024 1024 1021 1125 1393 1394 

1280 1762 1740 1440 1867 1883 

1536 2047 2020 1600 2161 2140 

1800 2623 2553 2048 3745 3707 
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Paragon nodes (50 MHz i860) 

The corresponding timings for the Kuck & Associates power-of-two FFT routines are given for 

comparison purposes. For both codes, the timings have been performed using the same method. 

size Aware Kuck k Associates size Aware Kuck & Associates 

12 5.87 15 8.56 

16 6.81 13.95 20 10.67 

21 13.69 24 11.30 

25 14.73 27 15.69 

28 13.12 32 14.02 30.61 

35 19.73 36 16.73 

40 20.91 45 23.57 

48 29.72 49 31.37 

56 26.73 64 26.98 38.95 

80 49.91 96 57.42 

112 67.57 128 70.88 68.95 

144 80.15 160 121.52 

192 123.39 224 136.14 

256 149.47 126.26 288 202.74 

320 244.88 384 274.98 

448 283.60 512 312.87 271.11 

576 365.86 640 535.47 

768 629.24 896 706.53 

1000 825.14 1024 753.09 645.56 

1152 923.92 1280 1185.01 

1536 1279.45 1792 1536.50 

2048 1793.91 1484.94 __  
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Complex, single precision 2D FFTs on Paragon 

The routines are coded in Fortran calling upon small size DFT assembly modules. Cooley-Tuckey 

algorithm is used. 

size time (ms) size time (ms) 

40x40 2.138 40 x 36 1.753 

40x35 1.815 40x28 1.213 

40x25 0.930 40x24 0.832 

40x20 0.651 40 x 15 0.516 

40 x 12 0.371 36x40 1.799 

36x36 1.493 36x35 1.529 

36x28 0.968 36x25 0.799 

36x24 0.713 36x20 0.574 

36 x 12 0.328 32x32 1.114 

20x40 0.651 20x36 0.594 

20x35 0.595 20x32 0.480 

20x28 0.440 20x25 0.382 

20x24 0.379 20x20 0.311 

20 x 16 0.224 20 x 15 0.249 

20 x 12 0.187 15x40 0.507 

15x36 0.452 15x35 0.465 

15x32 0.382 15x28 0.351 

15x25 0.335 15x24 0.303 

15x20 0.247 15 x 16 0.188 

15x15 0.197 15 x 12 0.143 

12x40 0.371 12x36 0.329 

12x35 0.344 12x32 0.280 

12x28 0.267 12 x 25 0.248 

12x24 0.224 12x20 0.188 

12 x 16 0.130 12 x 15 0.145 

12 x 12 0.111 
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Complex, single precision 2D RTA FFTs on Paragon 

The routines are coded in Fortran calling upon small size DFT assembly modules. The Hybrid 

RTA (HRTA) algorithm is used. Results are given for sizes: p2m x p2n where p is a prime 

number (3,5 or 7). tirnel referes to the time computational time when the data are already 

permuted (CRT has been pre-applied) and the output is being obtained on the algebraic lines. 

time2 refers to the time required when the input is in its natural order (column-wise) and so is 

the output. 

size timel (ms) time2 (ms) size timel (ms) time2 (ms) 

24x24 2.54 3.47 48x48 8.41 22.27 

96x48 16.07 52.18 96x96 31.99 100.10 

192 x 96 63.72 205.68 192 x 192 127.75 429.32 

384 x 192 262.48 895.22 384 x 384 600.77 1882.31 

768 x 384 1206.76 3823.15 768 x 768 2672.44 7903.65 

20x20 2.52 5.13 40x20 3.89 9.31 

40x40 6.26 17.23 80x40 11.71 34.03 

80x80 22.62 66.52 160 x 80 45.31 134.27 

160 x 160 90.51 278.01 320 x 160 180.81 576.84 

320 x 320 361.13 1181.26 640 x 320 773.75 2500.96 

640 x 640 1741.80 5217.32 28x28 4.52 9.67 

56x28 7.37 17.64 56x56 12.57 33.39 

112 x 56 24.05 65.64 112 x 112 46.06 131.22 

224 x 112 91.57 265.79 224 x 224 179.97 549.69 

448 x 224 357.37 1140.63 448 x 448 729.56 2339.62 

896 x 448 1584.03 4904.57 



Implementation Results 37 

3.3    Multi-processor codes 

3.3.1     Complex, ID single precision FFTs 

The Cooley-Tuckey formulation is being used. The 1-D FFT computation is formulated as 

a 2-D FFT with intermediate twiddle factors multiplication. Three global transpositions are 

required for the in-place 1-D FFT and two if it is not required that the distribution of the 

results coincides with that of the data. Furtehrmore, only one global transposition is required 

if the initial distribution of the data is assumed to be in a strided (transposed) fashion. In the 

following table, all times are in sec x 10-3, time! refers to the in-place version and Ume2 to the 

out-of-place version. 
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Timings on the Paragon 

nodes size timel time2 nodes size timel time2 

2 1024 4.08 2.99 2 2048 6.21 4.75 

4096 10.44 8.15 8192 19.36 15.98 

16384 38.23 31.50 32768 71.21 59.22 

65536 139.70 116.71 131072 284.12 237.17 

262144 573.62 486.25 524288 1264.26 1083.69 

1048576 2771.17 2401.54 

4 1024 6.42 4.45 4 2048 7.75 5.32 

4096 10.88 8.09 8192 15.87 12.01 

16384 25.89 19.86 32768 46.62 36.64 

65536 86.68 69.06 131072 165.19 134.03 

262144 327.76 268.21 524288 702.36 581.81 

1048576 1500.23 1268.73 

8 1024 13.46 9.00 8 2048 13.86 9.34 

4096 15.13 10.22 8192 17.19 12.00 

16384 24.42 17.97 32768 35.65 26.50 

65536 56.75 43.36 131072 102.13 79.65 

262144 190.52 150.55 524288 380.92 312.05 

1048576 799.12 664.72 

16 1024 27.05 18.18 16 2048 27.64 18.66 

4096 28.55 19.20 8192 29.82 20.10 

16384 32.45 22.57 32768 37.29 25.95 

65536 51.87 37.84 131072 74.69 55.59 

262144 118.99 91.76 524288 226.34 179.86 

1048576 436.60 357.36 

32 1024 57.18 38.11 32 2048 55.45 36.97 

4096 55.51 37.50 8192 56.91 38.53 

16384 59.45 39.94 32768 62.06 42.81 

65536 66.50 45.78 131072 76.30 53.68 

262144 106.95 77.71 524288 158.60 119.73 

1048576 276.05 216.75 
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3.3.2     Complex, 2D single precision FFTs 

The hypercube transpose algorithm is used for both implementations. In the Intel code, the 

data is being assumed to be distributed row-wise (C convention) and in the Aware codes the 

data are distributed column-wise (Fortran convention). Two sets of timings are being reported: 

For the first set of timings (timel), two global data transpositions are required so that the final 

distribution of the results is the same as the original data distribution. In the second (time2), 

the second global data transposition is being ommited. 

The Intel code, originally designed for the iPSC/860 hypercube, is using synchronous com- 

munication calls (csend) whereas the Aware code uses asynchronous communication calls (isend). 

The Aware code breaks the global transposition stage into two partial global transpositions and 

that are being performed concurrently with one-dimensional FFTs on the nodes. 
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Timing results on the Caltech Delta 

timel = in place, ms, Intel     time2 = transposed, ms, Intel 

timela = in place, ms, Aware     time2a = transposed, ms, Aware 

nodes size timel time2 timela time2a 

2 1024 x 512 

512x512 

512 x 256 

256 x 256 

256 x 128 

128 x 128 

2205 

962 

433 

196 

99 

51 

1706 

737 

332 

145 

72 

36 

1555 

764 

360 

158 

85 

40 

1041 

507 

231 

108 

56 

31 

4 1024 x 1024 

1024 x 512 

512x512 

512 x 256 

256 x 256 

256 x 128 

2227 

1014 

472 

230 

113 

61 

1647 

750 

344 

165 

80 

44 

1760 

878 

424 

194 

96 

55 

1154 

572 

275 

126 

74 

36 

8 2048 x 1024 

1024 x 1024 

1024 x 512 

512x512 

512 x 256 

256 x 256 

2464 

1040 

514 

247 

131 

67 

1869 

749 

364 

173 

90 

46 

1955 

966 

481 

226 

118 

41 

1282 

680 

328 

147 

75 

43 
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nodes size timel time2 timela time2a 

16 2048 x 2048 2728 2078 2292 1491 

2048 x 1024 1212 893 1184 719 

1024 x 1024 533 370 520 333 

1024x512 273 186 255 184 

512x512 133 90 134 82 

512x256 73 50 89 53 

32 4096 x 2048 3406 2278 3116 1887 

2048 x 2048 1656 1099 1419 859 

2048 x 1024 702 490 694 414 

1024 x 1024 413 208 313 188 

1024 x 512 168 108 183 108 

512x512 89 60 129 69 

64 4096 x 4096 3856 2669 3741 2213 

4096 x 2048 1753 1240 1770 1059 

2048 x 2048 1018 599 790 496 

2048 x 1024 440 272 475 242 

1024 x 1024 362 127 221 103 

1024 x 512 135 140 165 - 
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The hypercube transpose algorithm is used. The data is assumed to be distributed column-wise 

(Fortran convention). For the first set of timings (timel), two global data transpositions are 

required so that the final distribution of the results is the same as the original data distribution. 

In the second (time2), the second global data transposition is being ommited. The code is using 

synchronous communication caUs and is based on the original example provided in the iPSC/860 

manuals. For the non-power-of-two ID FFTs, in-house codes (libdft.a) are being employed. The 

timings are being reported for only a limited number of cases. Other DFT sizes, as weU as mixed 

DFT-FFT cases can be treated as well. 

Timings on the Paragon (non-power-of-2 sizes) 

timel = in place, ms, Aware     time2 = transposed, ms, Aware 

nodes size timel time2 nodes size timel time2 

2 224 x 224 83 64 4 1792 x 1792 3291 2642 

300 x 300 165 133 8 224 x 224 36 24 

360 x 360 209 164 360 x 360 77 55 

448 x 448 335 264 448 x 448 110 81 

576 x 576 562 445 576 x 576 174 132 

640 x 640 759 616 640 x 640 226 175 

800 x 800 1134 908 800 x 800 333 256 

900 x 900 1530 1234 1280 x 1280 901 715 

1280 x 1280 3239 2657 1440 x 1440 1104 870 

1440 x 1440 3979 3238 1600 x 1600 1392 1105 

4 224 x 224 51 38 1792 x 1792 1711 1380 

300 x 300 98 75 16 224 x 224 32 21 

360 x 360 121 91 448 x 448 74 51 

448 x 448 188 143 576 x 576 111 78 

576 x 576 309 238 640 x 640 140 103 

640 x 640 410 327 800 x 800 199 147 

800 x 800 610 478 1280 x 1280 486 379 

900 x 900 831 654 1440 x 1440 599 463 

1280 x 1280 1730 1379 1600 x 1600 743 581 

1440 x 1440 2107 1685 1792 x 1792 908 711 

1600 x 1600 2670 2145 
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3.3.3    Real-to-Hermitian, 2D single precision FFTs 

The hypercube transpose algorithm is used. The data is assumed to be distributed column-wise 

(Fortran convention). The timings do not include the final transposition stage, so that the 

results are obtained distributed along the first dimension. 

The code is using asynchronous communication calls and interleaved computation/communication 

is being used. Each node, partitions the local data into two subsets and performs ID FFTs on 

one subset while transposing the other one. 
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Timings on the Paragon (power of 2 sizes): version i2 

time = transposed, ms, Aware 

nodes size time nodes size time 

2 128 x 128 11 16 128 x 128 20 

128 x 256 21 128 x 256 21 

256 x 256 41 256 x 256 24 

256 x 512 87 256 x 512 30 

512x512 201 512x512 44 

512 x 1024 455 512 x 1024 74 

1024 x 1024 997 1024 x 1024 139 

4 128 x 128 9 1024 x 2048 293 

128 x 256 15 2048 x 2048 627 

256 x 256 25 32 128 x 128 38 

256 x 512 48 128 x 256 40 

512 x 512 96 256 x 256 41 

512 x 1024 236 256 x 512 45 

1024 x 1024 515 512x512 50 

1024 x 2048 1061 512 x 1024 65 

8 128 x 128 11 1024 x 1024 102 

128 x 256 14 1024 x 2048 183 

256 x 256 21 2048 x 2048 325 

256 x 512 32 64 256 x 256 80 

512 x 512 54 256 x 512 83 

512 x 1024 117 512x512 89 

1024 x 1024 269 512 x 1024 95 

1024 x 2048 554 1024 x 1024 110 

2048 x 2048 1219 1024 x 2048 140 

2048 x 2048 217 
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The hypercube transpose algorithm is used. The data is assumed to be distributed column-wise 

(Fortran convention). The timings do not include the final transposition stage, so that the 

results are obtained distributed along the first dimension. 

The code is using synchronous communication calls and the hypercube transpose algorithm. 

Timings on the Paragon (power 

time = 

of 2 sizes): version il 

transposed, ms, Aware 

nodes size time nodes size time 

2 128 x 128 10 8 1024 x 2048 443 

128 x 256 20 2048 x 2048 959 

256 x 256 39 2048 x 4096 1728 

256 x 512 80 4096 x 4096 3929 

512x512 163 16 128 x 128 11 

512 x 1024 378 128 x 256 13 

1024 x 1024 818 256 x 256 15 

1024 x 2048 1696 256 x 512 23 

2048 x 2048 3576 512x512 34 

4 128 x 128 7 512 x 1024 64 

128 x 256 12 1024 x 1024 126 

256 x 256 23 1024 x 2048 239 

256 x 512 46 2048 x 2048 479 

512x512 89 2048 x 4096 850 

512 x 1024 197 4096 x 4096 1997 

1024 x 1024 428 32 128 x 128 21 

1024 x 2048 887 128 x 256 21 

2048 x 2048 1855 256 x 256 23 

2048 x 4096 3351 256 x 512 26 

8 128 x 128 7 512 x 512 32 

128 x 256 10 512 x 1024 50 

256 x 256 16 1024 x 1024 80 

256 x 512 28 1024 x 2048 142 

512x512 51 2048 x 2048 271 

512 x 1024 108 2048 x 4096 463 

1024 x 1024 225 4096 x 4096 997 
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3.3.4    Complex-to-Complex, 3D FFT 

The hypercube transpose algorithm is used. The data is assumed to be distributed along the 

last dimension. For the first set of timings {timel), two global data transpositions are required 

so that the final distribution of the results is the same as the original data distribution. In 

the second (time2), the second global data transposition is being ommited. The code is using 

synchronous communication calls and is based on the original example provided in the iPSC/860 

manuals. Synchronous communication calls are being used. 

Timing results on the Delta (power of 2 sizes - single precision) 

timel = in place, ms, Aware     time2 = transposed, ms, Aware 

nodes size timel time2 

2 32 x 32 x 32 122 99 

64 x 32 x 32 230 187 

64 x 64 x 32 442 358 

64 x 64 x 64 843 682 

128 x 64 x 64 1653 1335 

4 32 x 32 x 32 70 54 

64 x 32 x 32 133 103 

64 x 64 x 32 254 196 

64 x 64 x 64 489 373 

128 x 64 x 64 959 732 

128 x 128 x 64 1893 1441 

8 32 x 32 x 32 43 30 

64 x 32 x 32 76 56 

64 x 64 x 32 143 105 

64 x 64 x 64 345 198 

128 x 64 x 64 550 386 

128 x 128 x 64 1047 759 

128 x 128 x 128 2021 1590 

16 32 x 32 x 32 28 16 

64 x 32 x 32 41 25 

64 x 64 x 32 61 41 

64 x 64 x 64 101 72 

128 x 64 x 64 184 136 

128 x 128 x 64 347 263 

128 x 128 x 128 669 517 

256 x 128 x 128 1315 1037 
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The hypercube transpose algorithm is used. The data is assumed to be distributed along the 

last dimension. For the first set of timing results (timel), two global data transpositions are 

required so that the final distribution of the results is the same as the original data distribution. 

In the second (time2), the second global data transposition is being ommited. The code is using 

synchronous communication caUs and is based on the original example provided in the iPSC/860 

manuals. Synchronous communication caUs are being used. The local data permutations are 

being performed by using Kuck & Associates library matrix transposition calls. 

Timings on the Paragon (power of 2 sizes-single 

timel = in place, ms, Aware     time2 = 

precision) 

transposed, ms, Aware 

nodes size timel time2 nodes size timel time2 

2 32 x 32 x 32 71 58 16 32 x 32 x 32 27 16 

64 x 32 x 32 139 113 64 x 32 x 32 40 25 

64 x 64 x 32 279 230 64 x 64 x 32 61 41 

64 x 64 x 64 561 461 64 x 64 x 64 103 73 

128 x 64 x 64 1114 919 128 x 64 x 64 188 139 

4 32 x 32 x 32 47 36 128 x 128 x 64 353 269 

64 x 32 x 32 83 65 128 x 128 x 128 684 531 

64 x 64 x 32 154 124 256 x 128 x 128 1343 1063 

64 x 64 x 64 300 242 32 32 x 32 x 32 43 23 

128 x 64 x 64 583 474 64 x 32 x 32 47 26 

128 x 128 x 64 1165 953 64 x 64 x 32 56 33 

8 32 x 32 x 32 29 20 64 x 64 x 64 82 52 

64 x 32 x 32 49 35 128 x 64 x 64 124 84 

64 x 64 x 32 91 68 128 x 128 x 64 215 155 

64 x 64 x 64 171 131 128 x 128 x 128 398 294 

128 x 64 x 64 325 259 256 x 128 x 128 740 567 

128 x 128 x 64 644 509 256 x 256 x 256 1427 1114 

128 x 128 x 128 1282 1023 
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The hypercube transpose algorithm is used. The data is assumed to be distributed along the 

last dimension. For the first set of timing results (timel), two global data transpositions are 

required so that the final distribution of the results is the same as the original data distribution. 

In the second {timeS), the second global data transposition is being ommited. The code is using 

synchronous communication caUs and is based on the original example provided in the iPSC/860 

manuals. Synchronous communication calls are being used. The local data permutations are 

being performed by using Kuck & Associates library matrix transposition caUs. Since the library 

contains only double precision real transpositions, the double precision complex transpositions 

have been reformulated in terms of the available library functions. 

Timings on the Paragon (power of 2 sizes-double precision) 

timel = in place, ms, Aware     time2 = transposed, ms, Aware 

nodes size timel time2 

2 32 x 32 x 32 141 118 

64 x 32 x 32 274 229 

64 x 64 x 32 539 451 

64 x 64 x 64 1069 894 

4 32 x 32 x 32 82 66 

64 x 32 x 32 151 128 

64 x 64 x 32 291 237 

64 x 64 x 64 567 466 

128 x 64 x 64 1126 926 

8 32 x 32 x 32 52 39 

64 x 32 x 32 90 70 

64 x 64 x 32 164 133 

64 x 64 x 64 307 246 

128 x 64 x 64 593 479 

128 x 128 x 64 1181 962 

nodes size timel time2 

16 32 x 32 x 32 40 30 

64 x 32 x 32 59 45 

64 x 64 x 32 98 76 

64 x 64 x 64 177 138 

128 x 64 x 64 326 258 

128 x 128 x 64 624 501 

128 x 128 x 128 1228 998 

32 32 x 32 x 32 48 27 

64 x 32 x 32 58 34 

64 x 64 x 32 82 53 

64 x 64 x 64 120 83 

128 x 64 x 64 204 148 

128 x 128 x 64 373 278 

128 x 128 x 128 687 532 

256 x 128 x 128 1511 1240 
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3.4    Vector Radix (VR) on the Paragon 

3.4.1     2D Vector Radix (VR) on the Paragon 

Implementation Results 

We have implemented the parallel algorithms described in the previous section on an Intel 

Paragon multiprocessor system, that is based on the i860XR microprocessor and employs a 

mesh interconnection network. Optimized assembly-coded routines for the nodes include ID 

FFTs, routines from BLAS and matrix transposition routines. The RC method can be made 

very efficient since optimized ID FFT routines can be used. For the partial VR algorithm, 

the computation of the p-point FFTs (p is the number of nodes) is being performed either 

via optimized hand coded assembly routines that perform strided small-sized FFTs with twid- 

dle factor multiplication, or by performing the butterflies exphcitly using vectorized complex 

multiply-accumulate routines from the BLAS library. 

In Table 1, we compare the RC and PVR implementations for a variety of test and machine 

sizes. Although the PVR method has not been fully optimized it performs generally better than 

the RC with the advantage being more evident for relatively small sized machine partitions. For 

more than 16 nodes, the PVR algorithm performs only slightly better than the RC, however 

substantial optimization can be performed. 

In Table 3.4.1, we compare the Collect-Distribute (CD) implementation with the FuU VR. In 

both implementations the 2D data are being distributed along both dimensions and the results 

are obtained in-place. Again, as in the case of the RC, the CD method has the advantage of 

using highly optimized ID FFT routines, at the expense of increased data movements. Clearly, 

as we can see from Table 3.4.1, the FVR implementation is more efficient that the CD method, 

and additional optimization in the computation of the radix pxq FFTs is possible. 
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m n nodes PVR RC 

256 256 2 83 90 

256 512 162 190 

512 512 390 400 

512 1024 690 918 

1024 1024 1581 2065 

256 512 4 96 109 

512 512 187 229 

512 1024 371 495 

1024 1024 829 1093 

1024 2048 1729 2282 

2048 2048 3584 4742 

512 512 8 113 123 

512 1024 210 267 

1024 1024 449 582 

1024 2048 900 1186 

2048 2048 1853 2443 

512 512 16 84 66 

512 1024 140 127 

1024 1024 254 260 

1024 2048 484 522 

2048 2048 973 1110 

2048 4096 1945 2061 

512 512 32 93 71 

512 1024 119 104 

1024 1024 189 185 

1024 2048 318 334 

2048 2048 542 608 

2048 4096 1021 1115 

4096 4096 2036 2087 

Comparison of the partial Vector-Radix approach and the Row Column optimized im- 

plementation (execution times are in milliseconds). 
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m n nodes FVR CD 

256 512 4 119 155 

512 512 230 301 

512 1024 464 606 

1024 1024 951 1237 

1024 2048 2111 2676 

512 512 8 132 - 

512 1024 249 - 

1024 1024 487 - 

1024 2048 1062 - 

2048 2048 2180 - 

512 512 16 81 99 

512 1024 151 188 

1024 1024 275 377 

1024 2048 546 750 

2048 2048 1104 1559 

2048 4096 2402 3106 

Table 1: Timings for the Full VR implementation (execution times are in milliseconds). 
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3.4.2     The 3D Vector-Radix Implementation on the Paragon 

Several variations of the 3D VR algorithms have been implemented for a variety of machine sizes. 

The VR algorithm offers a larger flexibility in data and computation flows as well as initial and 

final data distribution. In the timing results reported next, data are assumed to be distributed 

along the last dimension. Since in the 3D case, the length of the ID FFTs that have to be 

computed is in general considerably smaller than in the 2D case (assuming that data should 

have sizes such that they can fit into the processors local memory), efficient vectorized FFT 

routines have been written. Although these routines are coded in Fortran, when they are used 

to compute vectorized FFTs of highly rectangular data structures they perform substantiaUy 

better than the optimized assembly coded library ID FFT routines. The greater flexibility that 

the 3D VR algorithm offers as well as other improvements in inter-processor communication 

strategies resulted in codes that are more than twice as fast than the corresponding RC 3D 

codes especially for relatively small sized machine configurations. 
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Timing results 

nodes size timel time2 

2 32 x 32 x 32 60 (141) 54 (118) 

64 x 32 x 32 125 (274) 112 (229) 

64 x 64 x 32 246 (539) 212 (451) 

64 x 64 x 64 516 (1069) 458 (894) 

4 32 x 32 x 32 30 (82) 27 (66) 

64 x 32 x 32 61 (151) 50 (128) 

64 x 64 x 32 117(291) 102 (237) 

64 x 64 x 64 239 (567) 200 (466) 

128 x 64 x 64 475 (1126) 414 (926) 

8 32 x 32 x 32 16 (52) 12 (39) 

64 x 32 x 32 27 (90) 23 (70) 

64 x 64 x 32 48 (164) 43 (133) 

64 x 64 x 64 116 (307) 97 (246) 

128 x 64 x 64 229 (593) 191 (479) 

128 x 128 x 64 505 (1181) 382 (962) 

16 64 x 64 x 64 87 (177) 70 (138) 

128 x 64 x 64 144 (326) 134 (258) 

128 x 128 x 64 265 (624) 242 (501) 

128 x 128 x 128 502 (1228) 462 (998) 

32 128 x 64 x 64 111 (204) 89 (148) 

128 x 128 x 64 191 (373) 158 (278) 

128 x 128 x 128 318 (687) 286 (532) 

256 x 128 x 128 586(1511) 538 (1240) 

All the timing results reported are in miliseconds.   For convenience, the timings for the Row- 

Column method implementation for the corresponding data sizes are givem in parentheses, 

timel = in place, ms, Aware     time2 = transposed, ms, Aware 
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3.5    Implementation results on IBM SP2 

timel refers to the time required to perform a forward 2D FFT in which the node distribution 

of the output coincides with that of the input, timel is the corresponding time when the results 

are obtained in a transposed fashion, i.e. they are obtained in nodes different than that where 

the data where originally stored. AU times are being measured by using the mclockQ function 

call and they are reported in miliseconds. 

Size (n x m) nodes timel (ms) time2 (ms) 

1024 x 1024 4 380 280 

1024 X 1024 8 190 150 

1024 X 1024 16 110 80 

1024 x 1024 32 60 40 

1024 x 1024 64 40 30 

2048 x 1024 8 410 310 

2048 x 1024 16 210 160 

2048 x 1024 32 130 90 

2048 X 1024 64 80 50 

2048 x 2048 16 450 310 

2048 x 2048 32 240 170 

2048 X 2048 64 150 100 

Table SP2-1:    Time required for forward 2D complex single precision FFT. 

From the timings reported in Table SP2-1 we see that each global matrix transposition 

requires approximate^ 25 In the case of the in-place parallel 2D FFT (i.e. when the node dis- 

tribution of the results coincides with that of the data), about 50 of the total time is needed for 

the inter-processor communication and local data transpositions. This suggests that substantial 

improvements could be achieved by usings asynchronous communication calls to interleave node 

computations with data communications. 

In Table SP2-2 we report timings for the case of parallel 3D FFTs. Again, timel refers to 

the "in-order" case and timel refers to the "out-of-order" case. 
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Size (nXfflXl) nodes timel (ms) time2 (ms) 

128 x 128 x 64 4 390 270 

128 x 128 x 64 8 210 140 

128 x 128 x 64 16 130 70 

128 x 128 x 64 32 80 40 

128 x 128 x 64 64 60 20 

128 x 128 x 128 8 420 270 

128 x 128 x 128 16 230 150 

128 x 128 x 128 32 150 90 

128 x 128 x 128 64 100 80 

Table SP2-2: Time required for forward 3D complex single precision FFT. Again as it for 

the case of the 2D parallel FFT, inter-processor communication requires a substantial part of 

the total FFT time. 
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3.6    RTA multi-processor codes 

For this set of codes, each node is assumed to store in its local memory the whole data set. 

Each node, performs CRT and the corresponding periodization and then computes 3D DFT. 

The timings do not include the final data re-indexing stage. 

nodes size time (ms) 

4 192 x 192 34.79 

384 x 192 71.35 

384 x 384 162.25 

768 x 384 326.89 

768 x 768 715.19 
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3.7    Implementation results for Gabor coefficients 

Table 1. Timing Results on i860 Single Node (Critical Sampling 

• 
57 

-2k)                                                    # 

• 

• 

• 

ixed sizes) 

• 

• 

• 

• 

• 

• 

Sample Size n 2-D L x M Time ms = 10 3sec. 

256 16 x 16 0.67 

512 16 x 32 1.20 

1024 32x32 2.02 

2048 32 x 64 3.98 

4096 64x64 7.41 

8192 64 x 128 14.96 

16384 128 x 128 29.82 

32768 128 x 256 60.89 

65536 256 x 256 125.55 

131072 256 x 512 264.60 

262144 512 x 512 566.99 

Table 2. Timin g on i860 Single Node (Critical Sampling - Mi 

Sample Size n 2-D LxM Time ms = 10 3sec. 

384 8x48 1.47 

768 16x48 1.99 

1536 32x48 3.12 

3072 64x48 5.91 

3072 128 x 24 6.15 

6144 128 x 48 12.07 

6144 64 x 96 12.48 

12288 512 x 24 26.07 

12288 128 x 96 24.05 

24576 256 x 96 48.70 

49152 256 x 192 98.71 

98304 256 x 384 203.52 

98304 512 x 192 209.12 

196608 512 x 384 433.41 

393216 1024 x 384 1011.61 
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Table 3. Timing Results on i860 Single Node (Integer Oversampled) 
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Sample Size n = L'M 2-D L' x M Time ms = 10 3sec. 

512 32 x 16 0.67 

1024 32x32 1.20 

2048 64 x 32 2.02 

4096 64x64 3.98 

8192 128 x 64 7.41 

16384 128 x 128 14.96 

32768 256 x 128 29.82 

65536 256 x 256 60.89 

131072 512 x 256 125.55 

262144 512 x 512 264.60 

524288 1024 x 512 566.99 

Table 4. Timing on i860 Single Node (Fractional Oversampling (3/2)) 

Sample Size n 2-D LxM Time ms = 10~3sec. 

384 16x24 2.06 

768 32 x 24 . 2.97 

768 16x48 3.91 

1536 64x24 5.31 

1536 32x48 6.03 

3072 64x48 10.79 

3072 128 x 24 10.05 

6144 128 x 48 20.85 

6144 64 x 96 22.86 

12288 128 x 96 43.15 

24576 256 x 96 84.71 

49152 256 x 192 171.39 

98304 256 x 384 412.12 

98304 512 x 192 413.50 

196608 512 x 384 840.02 
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Table 5. Timing on i860 Single Node (Fractional Oversampling (5/4)) 

Sample Size n 

320 

640 

1280 

1280 

2560 

2560 

5120 

5120 

5120 

10240 

10240 

20480 

20480 

40960 

81920 

81920 

163840 

163840 

327680 

2-D LxM 

8x40 

16x40 

32x40 

16x80 

64x40 

32 x 80 

128 x 40 

64x80 

32 x 160 

128 x 80 

64 x 160 

128 x 160 

64 x 320 

128 x 320 

256 x 320 

128 x 640 

512 x 320 

256 x 640 

512 X 640 

Time ms = 10 6sec 

2.82 

3.85 

5.66 

7.66 

9.65 

11.35 

16.42 

18.32 

22.49 

32.09 

37.99 

67.65 

74.42 

134.08 

258.40 

276.69 

522.19 

534.90 

1149.76 
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A    Formulating Data-Partition and Migration in Dis- 

tributed Memory Multiprocessors 

Abstract 

This paper presents an algebraic framework for expressing data-partition and mi- 

gration in distributed memory multiprocessors in terms of the algebra of stride 

permutations. This algebra provides powerful tools for visualizing the cost of com- 

munication in parallel computations and for minimizing this cost by straightfor- 

ward algebraic manipulations. We demonstrate the significance of this tool and 

show how it leads to significant performance gains on Intel's Touchstone systems 

(Delta, iPSC/860 and Paragon) in three examples: matrix transpose algorithm, 

two-dimensional discrete Fourier transform algorithm, and solution of Euler partial 

differential equations using wavelet-Galerkin method. 

A.l    Introduction 

It is well known that data-distribution in distributed memory multiprocessors is essential to 

achieve high performance of data-parallel programs. Extensive research has been reported on 

data-decomposition optimization for distributed memory machines [1, 2, 3, 4, 5]. Research 

in this area can be crudely classified into two categories. One aims at finding optimal data- 

partitioning schemes for parallel loop constructs as part of compiler. It has been shown that the 

problem of finding an optimal data-partition is NP-complete [3, 6, 1]. Therefore, researchers 

have to rely on heuristic methods [6, 7, 8, 2, 9]. The other effort aims at special-purpose 

implementations and a large work force for developing optimal implementation of individual 

algorithms is reported [10, 11, 12]. 

Typically, an application requires a number of computation modules linked together to accom- 

plish a specific computation. Global optimization depends not only on optimal implementation 

of the computational modules, but at least equally on the interface between these implementa- 

tions as determined by the data partition and migration across processors. 

In this paper, we present a systematic formulation for data-partition and migration on dis- 

tributed memory multiprocessors in terms of tensor product notation and stride permuta- 

tions. Data-partition and migration are represented using simple tensor algebraic expressions 
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highlighting the computational and communication complexity of parallel algorithms. There- 

fore, optimal data-partition and migration at interfaces between different algorithms becomes 

straightforward tensor algebraic manipulations with the aid of well-established theorems in this 

field. Furthermore, due to the conciseness of the underlying algebra, definitions are simple and 

compact without having to deal with complicated indices in complex data structures. 

In order to demonstrate the significance and usefulness of our framework, we have carried 

out experiments on existing distributed memory multiprocessors such as Intel's Paragon, and 

Touchstone Delta. Initially, our formal definitions are incorporated in three application prob- 

lems: matrix transpose algorithm, two dimensional discrete Fourier transform algorithm, and 

solution of Euler partial differential equation using wavelet-Galerkin approach. Then, simple 

algebraic manipulations on these expressions are carried out to derive optimal data-partition 

and migration schemes. Experimental timing results on these machines show that such simple 

algebraic manipulations result in performance improvement ranging from 30% to 600%. 

The rest of the paper begins with a simple introduction to tensor notation and stride per- 

mutations as a background of our work. In Section 3, we present our formal definitions for 

data-partition and migration in distributed memory multiprocessor systems. Experiments on 

Intel's distributed machines and discussions on numerical results are presented in Section 4. 

Section 5 discusses the related work in the field with respect to our model. We conclude the 

paper in Section 6. 

A.2    Preliminaries 

In this subsection, we review and describe necessary notation and terminology that will be used 

throughout the paper. 

A.2.1    Stride Permutations 

A vector x is an ordered finite linear array. The dimension of x, denoted by dim(x), is the 

number of elements in the linear array. Let dim{x) = LS, for positive integers L and S. Stride 

permutations are natural way of representing data-shuffling operations. We use P{LS,S) to 

represent the stride permutation operation on a vector of length LS with stride S. To define 

P(LS,S), set 
y = P(LS,S)x. 
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The first L elements of y are obtained by collecting elements of x starting at element x0 and 

then striding through x in steps of size S, i.e., [x0, xs, ■ .. X(L.-i)s]- The next L elements of y 

are obtained in the same way starting at x1 of x: [xx, xs+i, • • •, ^(L.-ijs+i], and so on. We can 

represent the stride permutation P(LS, S) by a permutation matrix which we will denote also 

by P(LS,S). 

Example A.l  Permutation matrix P(6,3) operating on vector x = [x0 Xi x2 x3 x4 x5]  , is 

given by 
10   0   0   0   0        x0 

0 0   0   10   0 xl 

0 10   0   0   0 x2 

0 0   0   0   10 x3 

0 0   10   0   0 x4 

0 0   0   0   0   1 x5 

P(6,3)x (1) 

A.2.2    Tensor Product 

Tensor product is a binary operator between two matrices of any size. Given two matrices A and 

B of sizes MA X NA and MB x NB, respectively, a new matrix, C, dimensioned MAMB x NANB 

can be generated by tensor product of A and B as: 

0(o,o)B ß(o,i)B ö(O,2)B       ...      O(0,wA-i)B 

ß(i,o)B a(i,i)B a(i,2)B 

C =A®B = a(2,0) B 0(2,1)B (2,2)J 

a(i,ivA-i)B 

a(2,NA-i)B 

0(MA-l,iVA-l)B 

(2) 

ö(iVfA-l,0)B     Ö(MA-1,1)B     a(A/A-l,2)B 

where a(iJ) is the element on the ith row and jth column of A, and a(iii)B is scalar-matrix 

multiplication. 

Example A.2  Consider the following two matrices: 

A = 
1   2 

3   4 
and     B 

10   11    12 

13   14   15 

Th en 

C = A®B = 
" B 2B 

3B 4B 

' 10 11 12 20 22 24 " 

13 14 15 26 28 30 

30 33 36 40 44 48 

39 42 45 52 56 60 
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according to equation (2). 

Two types of tensor products are of special interest to us here.   One has an identity matrix 

on the left-hand side of a tensor product, called prior identity matrix, and the other has an 

identity matrix on the right-hand side, referred to as post identity matrix. 

Denote the N x N identity matrix by IN.   For an M x M matrix A, IN ® A denotes the 

MN x MN block-diagonal matrix 

A 

A 

Example A.3  Consider a ^-processor machine and the butterfly matrix A 

A = 
1      1 

1   -1 

Then, y = (I4 ® A) x = 

Xo + x1 

x0 -2l 

X2 + x3 

X2 - x3 

X4 + x5 

X4 - x5 

x6 + x7 

x6 -x7 _ 

1      1   0 

1   -1   0 

0   0 

0   0 

0   0 

0   0 

0 

0 

0 0 1 1 0 0 0 0 

0 0 1 -1 0 0 0 0 

0 0 0 0 1 1 0 0 

0 0 0 0 1 -1 0 0 

0   0 

0   0 

0   0 

0   0 

0   1 

0   1 

Xo 

X\ 

X2 

X3 

X4 

x5 

x6 

Xj 

Each processor executes one butterfly on a different part of x, where the node boundaries are 

represented by horizontal lines. If only 2 processors are available, then we can use the identity 

h®A = I2®(h® A) 

to implement the computation where two butterflies are performed in each processor. 
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Tensor products with prior identity matrices can be used to represent parallel tasks. In 

general, on a ^-processor distributed memory machine, execution of (I/v <8> A) would imply k 

parallel tasks, where N = nk and n is a positive integer. 

If an identity matrix appears on the right-hand side of a tensor product (post identity matrix) 

it is performed in a natural way as a vector operation. 

A®IN = 

O(0,0)IjV 

a(i,o)Ijv 

Ö(2,0)I/V 

O(0,l)IiV 

0(l,l)IiV 

0(2,l)IiV 

O(0,2)IjV 

0(l,2)IiV 

ö(2,2)IiV 

a(o,A:-i)Iiv x0 

0(I,A'-I)IN Xi 

a(2,K-l)lN X2 

a{L-\,K-l)^-N _ . XL*~l   . 

(3) 

0-{L-\fi)^N    0-(L-\,\)^N     ö(L-l,2)IiV 

Example A.4  Consider a vector computer with vector register length equal to 3, and opera- 

tional matrix defined as: 

a    b 

c   d 
an d    x = [x0 x\ x2 x3 x4 x5] 

Then, y = (A <g> I3) x 

axQ + bx3 a 0 0 6 0 0 x0 

axi + bx4 0 a 0 0 b 0 xi 

ax2 + bx5 0 0 a 0 0 b x2 

cx0 + dx3 c 0 0 d 0 0 x3 

cxi+dx4 0 c 0 0 d 0 x4 

cx2 + dx5 0 0 c 0 0 d x5 

is performed by partitioning input data into two subvectors Xi = [x0 xx x2]T and x2 = [x3 x4 x5]   , 

and with the vector operations: yx = axa + 6x2 and y2 = cxi + dx2 ■ 

A.2.3    Some Useful Theorems 

Tensor product identities provide powerful tool developing variants of an algorithm. We will 

present these properties without proofs, for there are many texts containing the proofs on diverse 

levels including [13, 14]. We use the convention that a complex tensor product formulation 

should be read from right to left. 



Data, Partition and Migration 65 

Theorem A.l Multiplication of Tensor Products: If Nx = MA and NY = MB, then 

the following multiplication theorem holds true. 

(X-MxxNx ® YMYXNY)     (&MAXNA ® BMBXNB) 

=     (XjV/xxiVx  A-MAxNA)   ®   {YMYXNY &MBXNB) (4) 

This theorem is quite often used to derive parallel or vector computations when identity matrices 

appear in the product. 

Theorem A.2 Commutative Law: 

(&MAXNA <8> BMB*NB) = P(MAMB, MA) {BMBXNB ® &MAXNA) P{NANB, NB)        (5) 

This theorem is quite useful in generating different communication structures of an algorithm. 

Theorem A.3 Inverse of Tensor Products: Unlike the case in multiplication of two ma- 

trices, inverse of tensor product of two matrices does not change the order of its parameters. 

(A®B)_1 = (A-1®B-1) (6) 

Theorem A.4 Multiplication Theorem of Stride Permutations: Any simple-stride per- 

mutation can be decomposed into two stride permutations when stride is a multiple of two 

integers. 

PiNtNiN^NM) = P{N1N2N3,N1)P(N1N2N3,N2) (7) 

Theorem A.5 Inverse Stride Permutation: 

P(iViiV2) N,)-1 = P(N!N2, N2). (8) 

Theorem A.6 Parallel-Vector Tensor Factorization of Stride Permutations: 

PiN.N.Ns^Ns) = [P(NlN3,N3)®IN2][INl®P(N2N3,N3)} (9) 

This is one of the very important theorems to uncover the extent of communication complexity 

hidden in a permutation. When parameter N-i is an integral multiple of number of processing 

elements, this theorem extracts parallel local operations from operations that depend upon 

non-local data. A stride permutation can also be factored in a different way (inverse of theo- 

rem (A.6)) leading to the following theorem. 

Theorem A.7 Vector-Parallel Tensor Factorization of Stride Permutations: 

PiKNiNs, NXN2) = [lNl ® P(N2N3, N2)} [P(AW, Nx) ® 1^] (10) 



Data. Partition and Migration 66 

A.3    Data Partition and Migration: Formal Definitions 

A.3.1     Storing Data in Distributed Memories 

Most large scale applications of scientific computing involve manipulations of data that are 

expressed in terms of matrices and vectors. This is natural because matrix notation gives a 

compact way to express computation. Moreover, storing matrices or vectors in the memory of 

a computer system is the first step of any computation. Different ways of storing data may 

result in different algorithmic structures as well as different computational performance. While 

methodology and algebraic formulations for storing matrices in a linear memory space of a 

single processor system exist, such as row-major and column-major, there is neither a formal 

and commonly agreed way of addressing data stored in distributed memory multiprocessor 

systems, nor an agreed formal description for various storage schemes. Programmers for parallel 

machines usually organize data in a way based on their convenience and efficiency of a specific 

algorithm. As a result, data-allocation and partition in parallel processing are very diversified. 

Therefore, there is a need for a unified approach for formalizing data allocation and partitioning 

in parallel machines, and for a clear and convenient mathematical representation of various data- 

storage schemes. In parallel computers, particularly in distributed memory multiprocessors, 

communication costs are directly related to various data storage schemes. Clear representation 

of storage schemes helps parallel programmer greatly to look into structures of implementations 

and communication costs associated with algorithms. 

Consider a message-passing multiprocessor system with k processors labeled from 0 to k - 1, 

where k = h k2. We would like to partition and store a two-dimensional (2D) matrix, denoted 

by A onto this system. For the purpose of simplicity and clarity of our presentation, we present 

only the cases where the data can be evenly divided into k subsets and concentrate on our main 

interest of algebraic representation of partitioning the matrix and storing them into processors' 

memories. In the following, we assume that the operator Vecijvfiv(A) maps an M x N size 

two-dimensional array, A, into a MW-length single dimension array, a, where (t, j)th element 

of A is mapped to (j - 1) M + ith element of a (column-major). 

Definition A.l Row-Division: Let A be an M x N matrix. We define row-division onto 

k processors as follows. Partition A into k sets of complete rows such that i-th set of rows 

(top-down) is allocated to i-th processor.  In matrix notation, row-division can be represented 

as operating by 

PR(M,N,k) = P{Nk,k)®IM/k (11) 
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on a vector a that is formed as VectMlv(A). 

We use bold faced "P" (P) with appropriate subscript to represent our data-partition def- 

initions while italic "P" (P) to represent operation of stride permutation explained in sec- 

tion (A.2.1). 

Definition A.2 Column-Division: Let A be an M x N matrix. We define column-division 

onto k processors as follows. Partitioning matrix A into k sets of complete columns such that 

i-th set of columns (left-right) is allocated to i-th processor. In matrix notation, column-division 

is represented as operating by 

Pc(M,N,k)=IMN (12) 

on a vector a that is formed as VectMN{A). 

Definition A.3 Mesh-Division: Let A be an M x N matrix. We define mesh-division of 

A onto a system of h x k2 processors as follows. Partition M rows of A into h equal sets 

of rows (top-down) and then partition each set of rows into k2 equal subsets (left-right). Each 

subset is a M/h x N/k2 size matrix but will have neither complete rows nor complete columns. 

Allocation of these subsets to k processors is performed anti-lexicographically (top-down and 

then left-right). In matrix notation, mesh-division is defined as 

PM(M, N, h,k2) = Ik2 ® P{Nh/k2, kx) <g> IM/fcl. (13) 

Definition A.4 Cyclic-Division: Let A be an M x N matrix. We define cyclic-division of 

A onto k processors as follows. Partition the vector VectMN(A) into (MN/k) consecutive 

subvectors such that i-th element of each subvector is allocated to i-th processors. In matrix 

notation, cyclic-division can be represented as operating by 

PCyc(M,N,k) = P(MN,k) (14) 

on a vector a that is formed as VectMN{A). 

Definition A.5 Block-Cyclic-Division: Let A be an M x N matrix. We define block-cyclic- 

division of A onto a system with k processors as follows. Partition the vector VectMN{A) into 

(MN/S) number of S-length consecutive subvectors and assign [i (mod k)]-th subvector to i-th 

processor. In matrix notation, block-cyclic-division can be represented as operating by 

PBC{M, N, k) = P(MN/S, k) <g> Is (15) 

on a vector a that is formed as VectMN^A). 
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Block-cyclic is similar to cyclic except that each time S elements are allocated to a processor in- 

stead of one element. Also note that column-division can be obtained from block-cyclic-division 

for the case of M/k = 5, that is, number of rows assigned to each processor in matrix A is 

equal to the length of subvector in block-cyclic-division. 

Following five equations represent inverse operations of the above five definitions which can be 

derived using theorems (A.3) and (A.5). 

P^(M,N,k) = P(Nk,N)®IM/k (16) 

V-c\M,N,k) = IMN (17) 

P^{M,N,h,k2) = lk2®P{Nhlk2,Nlk2)®lM/kx (18) 

Pclc(M,N,k) = P{MN,MN/k) (19) 

PBc(M,N,k) = P{MN/S,MN/{Sk))®Is (20) 

Example A.5 This example demonstrates data-partitioning of an 8 x 8 matrix, A,onto a 4- 

processor machine. Figure 1 shows how a 64-element vector a formed by Vect64(A.) is par- 

titioned in row-division, column-division, and mesh-division based on definitions (A.l)-(A.S). 

In case of row-division, I2 on the right-hand side o/PÄ(8,8,4) represents moving vectors of 

length 2 according to the permutation matrix P(32,4). When this permutation is applied, re- 

sulting data at processor-0 is shown with dotted-line. For column-division data-partitioning, 

since input permutation is an identity matrix, no action needs to be performed, and the vector 

a is just segmented into four parts for allocating to four processors. For mesh-division data- 

partitioning, I2 on the left-hand side of PM{8,8,2,2) represents an action to divide the vector a 

into two equal sets and perform the vector-stride action P(8,2) <g> I4 on each set. However, this 

vector-stride further divides each set into eight small subvectors of length 4 and shuffle them 

according to the permutation P(8,2). Once again, data residing at processor-0 after the action 

of input permutation is shown with dotted-line. 

General Usage of Data-Partition Definitions 

Consider any computational procedure that is expressed by an operational matrix G operating 

on a vector a to obtain vector b: 

b =  G a. (21) 

This equation ignores the underlying data-partition necessary to carry out the computation in 

distributed memory multiprocessor system. To bring out the data-partition, let a(= Qaa) be a 



Data Partition and Migration 69 

PR (8,8,4) = 

P(32,4)(g)I2 

0 :'8 ..IP Si. .32 .40 A? ,5b 

V J 1? If'' 3»'' 41'' 4? ¥ 
2 10 18 26 34 42 so 58 

3 11 19 27 3S 43 51 59 
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3, 2, 2) = 
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Proc-0 Proc-2 

P   .* 16 2ä 32 40 48 56 

i 19 V & 33 41 49 57 

2! lb; V: & 34 42 50  58 
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Proc-1 Proc-3 

Figure 1: Action of data-partition algebraic expressions onto a 4-processor machine 
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desired data-partition of a among the processors where Qi is one of the data-partition schemes 

(p pc or pM\ defined above. If one expects the output data to be in a particular partition 

after the computation, then resultant data is of the form b where b = Q2b and Q2 is also one 

of the definitions PR, PC, or PM defined above. Then parallel implementation corresponding 

to equation (21) after incorporating our definitions can be rewritten as: 

b = Q2 b = Q2 G a = [Q2 G Qr1] ä  =   G ä (22) 

Therefore G = Q2 G Qfl is the actual-operational matrix that takes into account of the 

complexity associated with the considered data-partition. 

A.3.2    Moving Data among Distributed Memories 

Once input data is partitioned among the processors, data migrations at the interfaces between 

individual algorithms may be necessary in order to achieve global optimal performance of an 

application. One frequently used data migration in numerical applications is well known matrix 

transpose. Let a = VectMN{AMxN), and b = VectNM{BNxM), where BNxM is the transpose 

of AMxN- Then, 
b  = P(MN, M) a. (23) 

Hence P(MN, M) is the operational matrix for transpose algorithms, that is, G = P(MN, M). 

When data-partition schemes are to be incorporated, the actual-operational matrix becomes G 

(see equation (22)). That is, 

P(MW,M) = Qä1 GQi, (24) 

and the equation (23) becomes 

b  =  G a, (25) 

where G = Q2 P(MN,M) Q^1- In the following, we present derivations for the operational 

matrices, G, required to transpose a matrix for the cases of row-, column-, and mesh-division 

data-partitions defined in previous subsection (assume Ch = Q2 for simplicity), and visualize 

their implementation aspects from their tensor product formulations. 

Row-Division 

For row-division data-partition, we have 

G = PR(N,M,k) P{MN,M) P~R\M,N,k). (26) 
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According to definition (A.l), we have 

G = P{Mk, k) ® Itf/fc] P{MN, M) [P{Nk, N) ® IM/k [2T 

or 
G = P{MN, M) = [P{Mk, M) ® Iiv/fc] G [P(iV£, fc) ® IW/fe (28) 

Then, we can obtain expression for G by rewriting G = P{MN, M) as: 

P{MN, M)   =   [P(Mk, M) ® Iyv/fc] [Ik ® P{MN/k, M)) 

by theorem (A.6) 

P(MN,M)   =   F-R\N,M,k)[lk2®P(MN/k2,M/k) 

"(Ik ® ^W *)) ® W 

by theorem (A.7) and equation (16) 

P{MN,M)   =   PR1{N,M,k)[lk®lk®P(MN/k\M/k) 

[P{k\ k) ® Ijv/fc ® lM/k\ [P{Nk, k) ® lM/k 

by applying theorem (A.6) to P(Nk, k) 

P{MN, M)   =   PR
1
(N, M, k) [Ik ®Ik® P{MN/k?, M/k) 

[P{k2,k)®IMN/ki}PR{M,N,k) 

by definition (A.l) 

P(MN, M)   =   ?R   G PR. 

Therefore, the actual-operational matrix in equation (25) for row-division partition can be 

expressed as two stages: 

(30) 

(29) 

G = I* ® h ® P{MN/k\ M/k)] [P{k\ k) ® lMN/k\ ■ 

The first stage, P{k\ k) ® IMN/V, « a global-task involving message-passing among processors, 

since the expression does not contain an identity matrix, Ik, on its left-hand side. The size of 

each message being passed is (MN/V) which is (l/fc)th of the size of the data set residing at 

a processor. This is reflected in the above tensor product expression by lMN/k>- The factor 

P(k\ k) in the expression indicates that each processor has (k- 1) subblocks to send out. Such 

message passing is carried out in (*- 1) stages with one subblock being kept within a processor. 

When the number of processors, k, is a 2-power integer, one-to-one communication structure 

can be obtained with xor binary operator and a pseudo-code implementation for this stage is 

shown in Table 1. 
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me = my node number 

for index = 1 to k - 1 

myswap = xor(me,index) 

Send block-myswap of my associated vector a to processor-myswap 

Receive message from processor-myswap 

Store message at block-myswap of my associated vector a 

end   

Table 1:  Psuedo-code for message passing in transpose algorithms either for row-division or 

column-division partitions 

The second stage, Ifc ® h ® P(MN/k2, M/k), represents a local-task due to the identity 

matrix Ifc on its left-hand side. Each processor performs the parallel-stride operation [lk® 

P(MN/k2,M/k)} locally. 

Column-Division 

For column-division data-partition, we have 

G = Pc{N,M,k) P(MN,M) Pcl(M>N,k) (31) 

According to definition (A.2), we have 

G = IMN P{MN, M)  IMN = P{MN, M) = G. (32) 

Then, we can obtain expression for G as: 

P{MN, M)   =   [Ifc ® P(MN/k, M/k)} [P{Nk, k) ® IM/k 

by theorem (A.6) 

P{MN,M)   =   [Ifc®P(MiV/Ä;,7¥/fc)][{(P(fc2,Ä;)®I,v/ii:)(Ifc®JP(^,A;))}®IM/fc 

by theorem (A.7) 

P(MN,M)   =   \J.k®P{MN/k,M/k)][P{k2,k)®IMN/&_ 

Ik®P{N,k)®IM/k\- (33) 

Therefore, the actual-operational matrix in equation (25) for column-division partitioning can 

be expressed as three stages: 

G = [Ifc <g> P{MN/k, M/k)) [P{k2, k) ® IMN/v\ [ifc ® P{N, k) ® IM/k] (34) 
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The first stage, lk <g> P(N, k) ® IM/k, represents local data permutations without message-passing 

due to the prior identity Ifc. Each processor performs the vector-stride operation [P{N, k)®IM/k] 

which moves N vectors with stride k, each vector is of length (M/k). 

The second stage, P{k\k) ® IMN/k2, is a global-task that is similar to message-passing stage 

explained in row-division transpose algorithm. Hence the total communication is again (k - 1) 

messages, each message is of length (MN/k2). 

The final stage, Ik® P{MN/k,M/k), is a and simple-stride permutation stage with stride 

(M/k) local to each processor. All processors carry out the same operation in parallel without 

communication. 

Mesh-Division 

For mesh-division partition, we have 

G = PM{N, M, k2,h)P(MN, M)?M
1
(M, N, kuk2). 

According to definition (A.3) we have 

G = 

(or) 

P{Nh/k2,h)®IMikA-       (37) P{MN, M) = [lfcl ® P{Mk2/kuM/h) ® IN/k2\ G 

Then we can obtain expression for G by decomposing G = P(MN,M) as follows. 

P(MN,M)   =   [lkl ® P(MN/kuM/h)} \P{Nkuh) ® IM/kl] 

by theorem (A.6) 

P(MN,M)   =   [lh®P{Mk2/kl,M/k1)®IN/k2}{Ik®P{MN/k,M/k1)} 

P(k, h) ® lMNß] [h2 ® P(Nh/k2, k,) ® lM/kK 

by theorem (A.7) on P(MNjkuMlh) and by theorem (A.6) on P(Nkuk 

P(MN,M)   =   P-M\N1M,k2,kl)[Ik®P(MN/k,M/kl)] 

[P{k, h) ® lMN/k] PM{M, N, kuk2) 

by equation (18) and definition (A.3) 

P(MN, M)   =   ?M{N, M, k2,h) [P(k, ki) ® IMN/k 

(35) 

Ikl ® P(Mk2/kuk2) ® IN/k2] P(MN,M) [lk2 ® P(Nh/k2,N/k2) ® IM/kl] ,       (36) 

(38) 

(39) 
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[Ik ® P{MN/k, M/h)\ PM(M, Ar, ku k2) (40) 

by commutative law 

P(MN,M)   =   PM GPM 

Therefore, the actual-operational matrix in equation (25) for mesh-division partition can be 

expressed'as two stages in two different ways (equations (39) and (40)): 

(a) G = [h <8> P{MN/k), Mlh)\ [P{k, h) ® IMN,k], and 

(b) G = [P(k, h) ® IMN/k] [h ® P{MN/k, Mjh)). 

In case of (a), the first stage, P(k, fcQ ® W, is a ^06aW«A involving message-passing 

since there is no prior identity matrix. In fact, it is a single message-passing routine with 

message size being (MNJk) as compared to (* - 1) messages each of size (MN/k>) in either 

row-division or column-division transpose algorithms. 

The second stage, Ik® P(MN/k,M/h), represents that each processor executes a local 

simple-stride permutatlo^^sTT^ior identity matrix I,. In fact, if we consider data 

at each processor to be a matrix of size M/h x N/k2, then action to be performed m this stage 

is k local matrix transposes that are performed simultaneously on k processors. 

A.3.3    Measured Timing of the Three Transpose Algorithms 

Transpose algorithms derived in Section A.3.2 are implemented on Intel's Paragon. The mea- 

sured execution times of the three transpose algorithms are tabulated in Table 2. From the 

derivations in equations (30), (33), (39), and (40), we have seen that transposing a matrix of 

size M xiVona processor machine for row- and column-division each requires (fc -1) commu- 

nications with the size of each message being (MN/k>). For mesh-division one communication 

of size (MNlk) is needed. Though message length in mesh-division is k times more than that 

of any message in either row-division or column-division, results in Table 2 show that transpose 

algorithm for mesh-division reduces the overheads to initiate communications. Smaller number 

of long messages can take advantages of the pipelined nature of wormhole routing [15]. These 

results also show that unlike uniprocessor algorithms, variations in data-decompositions can 

have a great impact on the performance of an algorithm. 
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M N Row-Division Col-Division Mesh-Division 

(msec) (msec) (msec) 

128 128 5.236 6.172 1.316 

128 256 5.902 7.051 2.028 

128 512 9.031 10.409 2.159 

128 1024 12.356 15.312 3.866 

256 128 5.501 6.665 1.825 

256 256 8.283 9.746 2.301 

256 512 11.483 14.027 4.018 

256 1024 20.076 22.503 7.548 

512 128 8.310 9.432 3.450 

512 256 11.555 13.359 5.905 

512 512 18.536 21.122 7.954 

512 1024 39.628 38.529 16.434 

1024 128 11.228 13.132 5.815 

1024 256 17.526 20.616 10.631 

1024 512 31.211 37.445 20.889 

1024 1024 50.936 66.403 49.274 

Table 2: Experimental results of transpose algorithms on 8-node Intel's Paragon. 

Exp|anation: Transpose algorithms for Row-division and Column-Division require seven small com- 

munications while that in mesh requires only one large communication. Effect of communication 

overhead on transpose algorithm clearly results mesh-division more efficient than the other cases. 

Among row-division and column-division structures, row-division requires only one local permutat.on 

while column-division requires one local permutation before the communications and another after 

that. This is also seen from third and fourth columns. 
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Figure 2: Flow Chart for computation of coefficients of Vorticity 

A.4    Application Examples 

A.4.1    An Application in Fluid Mechanics 

This application solves Euler partial differential equation using wavelet-Galerkin method [12, 

16]. Figure 2 shows the flowchart for evaluating the coefficients of vorticity in fluid mechanics at 

each time-step. The major computation blocks in the figure are Jacobian and Helmholtz while 

other modules such as Error Check, computation of vorticity coefficients in next step (At) are 

not time consuming. It is well known that Jacobian prefers mesh-division data-partitioning 

because of boundary conditions, that is, data dependency exists along the four edges of a 

grid. However, Intel's distributed memory machines have efficient two dimensional fast Fourier 

transform algorithms (2D-FFT) based on row- or column-division data-partitions. Therefore, 

switching between different data-partition schemes is necessary to carry out the computation 

of this application efficiently. First, we need to convert the mesh-division data-partitioning to 

row- or column-division at the output of Jacobian (the input of Helmholtz). Then, we need to 

convert back to mesh-division at the input of the Jacobian (output of Helmholtz). 

Converting data-partitioning schemes at the interfaces of different computational modules can 

be very expensive since it involves massive amount of data movements. The communication cost 
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caused by such data movements may well dominate the total computation cost of applications 

even though individual algorithms are optimized. With our formal definitions of data-partitions, 

however, manipulation of communication cost become straightforward. 

Let us consider the computation of the Helmholtz on a ^-processor distributed memory 

system. Assume that k can be factored as k = ks x ks. The input data to this computation 

module is in mesh-division, which can be represented by PM. With this input format, we 

perform 2D-FFT and its inverse (2D-IFFT). The summation form of the 2D-DFT on matrix 

X of size M x N is given by: 
M-\ 

Y(M)= £ 
m=0 

7V-1 2    , 
£X(m,n)e_;^ e -J¥. (41) 

The tensor products representation of equation (41) can be written as: 

y=[Fjv®FM]x, (42) 
v V ' 

G 

where F, is a J x J matrix with entries F(i, k) = exp(-j2*i*/A J = J=l, V = VectMN{Y), 

x = Vec*jw(x)> and G is the operational matrix. 

To compute equation (42) on a fc-processor parallel machine, we first parallelize the opera- 

tional matrix by inserting identity matrices under the assumption that k divides both M and 

N There are two ways of decomposing the equation (42): (a) y = [IN®FM][FN®U x, which 

first computes Fourier transforms on columns (using one dimensional FFT routines) followed 

by transforms on rows, and (b) y = [F* ® IM][IN ® Fw] x, which performs transformation on 

rows followed by that on columns. These two decompositions are well known as row-column 

decomposition for transform methods. Consider the first decomposition (a). The factor on the 

left-hand side represents a parallel computation of FM because of the preceding identity matrix 

IN while the factor on the right-hand side cannot be done in parallel. To parallelize this stage 

of computation, we apply the commutative law presented in theorem (A.2), resulting m 

y = [lN ® FM] P(MN, N) [IM ® Fiv] P(MN, M) x (43) 

If it is required that the Fourier transformed data be in the same data-partition scheme as 

the original data (say mesh-division), then input matrix is x = PM x and output matrix is 

y = FM y {FM = PM(M,N,k.,k,) = I*. ® P(N,N/k.) ® IM/kM).   Equation (43) can be 

rewritten as: 

y = PM [IN ® FM] P(MN, N) [IM ® Fyv] [P(MN, M) PM
1
] X (44) 
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If we use the second parallelization, (b), we have 

y = [PMP{MN, N)] [lM <8> Fiv] P{MN, M) [lN ® FiW] P^ (45) 

In the following, we will see how we utilize our new definitions on data-partition and migra- 

tion to maximize the parallelism and minimize the communication cost while computing equa- 

tion (45). From equation (43), we can see that two transpose algorithms are required P{MN, N) 

and P(MN,M). Each of these transpose algorithms needs (fc - 1) stages of message-passing 

on a ^-processor machine as evidenced in the last subsection. We will show in the following 

how we reduce the communication cost of one of the two transpose algorithms from (k - 1) to 

(2ks - 2) by manipulating the algorithm expressions. Note that k = k2
s. 

Now, let us consider equation (45). The first stage of computation is P~J which converts 

the mesh-division into column-division for FFT computation (Pa Pj} = Pj} since Pc is an 

identity matrix). According to our definition, we have 

p-i    _ 
M 

Ik3®P{N,N/ks)®IM/k3 

Using equation (18) and theorem (A.6), we have 

M 
Ik ® P{N/ks,N/k) ® IM/k,] [ifc. ® P(k, k°) ® lMNß\\ (46) 

Z2 Z\ 

The above factorization on P^1 results in two stages. The first stage, Zu involves (*. - 1) 

communications with h, columns of processors communicating in parallel. The second stage, 

Z2, is a local vector-stride data-shuffling. 

Similarly, at the output of the FFT, we can also manipulate the algebraic expression for 

mesh-division data-partitioning. The last stage of equation (45) converts back to mesh-division 

data-partition, which can be simplified as follows. 

PMP{MN,N) 

=    Ifc, ® P{N,ks) ® IM/*.] [P{Nks,N) ® IM/k, 

[Ik,®P(MN/ks,N)) 

by theorem (A.7) and definition (A.3) 

=    [P{k, ks) ® lMN/k\ [I*, ® P(MN/k3,N)} 

Zu 
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Zn K ® P{Nk3, N) ® l.M/k] [Ik®P{MN/k,N 

Z* 

=   Zu \h ® P(N, Njks) ® IM/k] [I*, ® P[K h) ® iMN/k* Z8 (47; 

Z 10 

From the transpose algorithm derived for mesh-division partition in Section A.3.2, we know 

that Zn represents one single communication. Stage Z9 is also a transpose algorithm similar 

to stage Zx that requires (ks - 1) communications. Therefore, the total number of commu- 

nications required to carry out the FFT is (* + 2ks - 2) as compared to (2k - 2) for direct 

interfacing between the Helmholtz and Jacobian. 

Another variant of the computation can also be obtained easily by manipulating the tensor 

algebra in a different way. Consider the last stage, \PMP{MN, N)]. First, we factor P(MN, N) 

as follows. 

P(MN,N)   =   [Ik, ® P{MN/ka,N/ka)] [P{Mks, k3) ® IN/k, 

by theorem (A.6) 

=   'lfcj ® (P{N, N/K) ® lM,k) {Ik. ® P{MN/k, N/ks)) 

'P{Mks,k3)®IN/k, 

by theorem (A.7) on P{MN/ks,N/ks) 

=   P-J [Ik ® P(MN/k,N/ks)} [P{Mks,ks) ® IN/kr ■ 

by equation (18) 

Therefore by theorem (A.7) we have, 

PMP(MN, N)   =   [Ik ® P{MN/k, N/ks)} [P(Mks,ks) ® IN/k, 

=   [Ik ® PjMN/k, N/ka)\ [Pjkl ks) ® IMNM 

(48) 

Zio 

Ik®P{M/ks,ks)®IN/ks 

Z, 
(49) 

Once again we reduced total communication cost from (2k - 1) to (k + 2ks - 3), eliminating 

the one large and final communication from the previous variant. 

Experiments of running the complete application based on our derivation above have been 

carried out on Intel's iPSC/860. The execution times of the important computational modules 
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Nodes Jacobian Helmholtz Total 

row-D Mesh row-D Meshl Mesh2 row-D Meshl Mesh2 

4 

16 

64 

2.8317 

0.8128 

0.3095 

2.7939 

0.7310 

0.1996 

0.11216 

0.06094 

0.10510 

0.18218 

0.09950 

0.12022 

0.16298 

0.07688 

0.08916 

2.9438 

0.8738 

0.4146 

2.9761 

0.8305 

0.3198 

2.9568 

0.8079 

0.2887 

Table 3: Timing results for 128 x 128 size vorticity computations Explanation: Results demonstrate 

that by restructuring at the interface of Jacobian and Helmholtz using our data-partition expressions, 

we could improve the efficiency of Jacobian at the cost of a slight decrease in efficiency of Helmholtz. 

This resulted in total improvement of the efficiency of application. 

as well as the total execution time were measured. The results reported in Table 3 are averaged 

over a hundred runs. The columns marked row-D are the execution times of row-division while 

those marked Meshl and Mesh2 are for two variants of mesh-division computation derived 

above. From this table, performance improvement of up to 43.61% is observed. 

A.4.2    A New FFT Algorithm 

Existing machine library on Intel's multiprocessors for FFT computation are based on row- 

division or column-division. From our new definitions of data-partitions, we developed a new 

communication structures for parallel FFT algorithm [17]. The main idea is to partition data 

according to mesh-division. Rewriting equation (45), we have 

$ = FM p(MN, N) [IM ® Fiv] P{MN, M) [IN ® FlW]P^x, (50) 

We have seen transpose algorithms similar to the one in the above equation for row- or column- 

division FFT algorithms. Each transpose algorithm requires (2k - 1) communications. Now, 

use the following equality (see equation (40)) to substitute P(MN,M) in the above equation. 

P{MN,M) =PM
!
 [P(Mi)®lMiv/fc] [h^PiMN/k^M/h^PM (51) 

Similarly, for P{MN, N), we interchange the roles of M and N, and h and k2 in equation (39). 

We have 
P(MN, N) = PM [Ik ® P(MN/k, N/k2)} [P{k, k2) <g> IMN/k\ PM- 

Substitute the above equality to equation (50). Then, the 2D-FFT algorithm becomes 

^   =   [ik^p(MN/k,N/k2)}[P(k,k2)®IMN/k 
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PiW (IM ® Fjv) PM P{k,h) ®lMN/k 

{lk®P{MNlKMIh)\ 

PiV/(IiV®FM)PM_ 

Note that terms [P(Jfc, ib2) ® IM*/*] and [P(k, h) ® IMiV/fc] are dummy operations with re- 

spect to implementation because these permutations represent exchange of entire data residing 

at different nodes. This can be done by addressing processors according to the required per- 

mutation instead of data movement. Operations that start with I, are parallel operations with 

no communication. For the remaining two terms that involve PM and Pw\ we can decompose 

PM and P^1 as following 

PM   = 
p-i   _ rM     — 

h2 ® P(kl h) ® lMNik\k2] [ifc ® P{NlhM) ® Iw/fc! 

Ik ® P{N/k2, N/k) ® Iw/fcl] [lfc2 ® P(kl fci) ® ^jv/fe?*. 

Each of PM and PM
a has one communication stage and one local permutation stage. Each of 

these communication stages transmits (h - 1) messages, with the size of each message being 

MN/kjh For the other dimension, each of the PM and Pj£ will have (k2 - 1) communicates 

with size of each message being (MN/ktf). Therefore, the total number of communications 

is reduced from 0{kx * h) to 0(h + k2). 

Experiments to measure the actual performance of the above 2D-FFT and the existing library 

routine on the Touchstone Delta machine have been carried out. The measurements are reported 

in Table A.4.2. The results shown in this table are measured with a library routine called 

dclockO that returns a double precision number. Using this routine at the beginning and at 

the end of each of the algorithms, we obtained double precision time in milliseconds. These 

timings are purely for execution of the task because processors are not time-sharing by multiple 

users however, since each node would execute in a slightly different time due to the underlying 

asynchronous communication network of machines, we considered the maximum value of the 

times reported by all the nodes. Also, we have averaged timings over a set of one hundred 

experiments with forward and inverse two-dimensional transforms for each data size. 

Performance of two different implementations are reported by executing them on 128-node 

and 256-node machine. Various data sizes that we have tested are presented in the first column 

in the table. Second and third columns represent timings for existing and new approaches, 

respectively on 128-node machine while fourth and fifth columns are for the cases of 2o6-node 



Data. Partition and Migration 82 

Dimensions 

M    x   N 

128 nodes 256 nodes 

Old 

(msecs) 

New 

(msecs) 

Old 

(msecs) 

New 

(msecs) 

128 x  128 

256 x  128 

256 x  256 

512 x  128 

512 x  256 

1024 x  128 

512 x  512 

1024 x  256 

1024 x  512 

1024 x 1024 

120.117 

120.151 

121.681 

125.425 

129.847 

128.236 

125.901 

133.562 

152.919 

211.274 

27.727 

31.234 

34.165 

34.401 

44.944 

44.883 

60.946 

64.331 

99.989 

177.306 

193.481 

192.980 

245.634 

210.761 

254.412 

227.441 

270.365 

262.051 

285.066 

294.038 

31.711 

35.017 

39.499 

35.865 

44.948 

43.225 

56.096 

53.420 

76.041 

119.288 

Table 4: Results on Intel's i860 based DELTA machine. Explanation: These results reflect the 

variations in communication structure for "new" and "old" algorithms because "new" algorithm 

requires 44 and 60 communications for the implementations on 128 (16 x 8) and 256 (16 x 16) 

processor systems, respectively, while "old" algorithm requires 254 and 510 communications, respec- 

tively. However, it is to be noted that reduction in number of communications in "new" algorithm 

is traded-off with size of the data begin communicated. 

machine. It can be seen from the table that performance gains of the new FFT are significant. 

We observed up to 600% performance improvement over the existing machine library. 

A.5    Related Work 

Data organization is the key to successful parallelization of data parallel programs. As in- 

dicated in the introduction, there are two tracks of efforts in data-partition and migration in 

distributed memory multiprocessors: automatic data-partitioning for general loop constructs as 

part of compiler and optimal partitioning for a specific algorithm. In this subsection, we briefly 

summarize the existing works in this field as related to our work presented in this paper. For 

more comprehensive review of previous work in data-partitioning and redistribution, readers 

are referred to [3, 2, 5]. 
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Ramanujam and Sadayappan [2] studied compile-time techniques for data-partitioning in dis- 

tributed memory systems. They presented an analysis of communication-free partitions with 

a nice geometric demonstration. The research work performed by Li and Chen [6] focused 

on minimizing data movement among processors due to cross-references of multiple distributed 

arrays (alignment of multiple data structures). They have also presented a method of automati- 

cally generating efficient message-passing routines in parallel programs [6]. Gupta and Banerjee 

introduced the notion of constraints on data-partitioning to obtain good performance. In [9], 

a compiler algorithm was described to automatically finds optimal parallelism and optimal lo- 

cality in general loop nesting. All these studies aimed at optimizing data-partition and data 

alignments as part of compiler. It is known that such optimization problem is NP-comPlete. A 

number of heuristics have been proposed [6, 7, 8, 2, 18, 1]. 

The use of tensor product notation to describe parallel algorithms has a long history beginning 

with Pease [19]. Johnson et d [20] presented a comprehensive discussion on how to use tensor 

notations to design, modify and implement FFT algorithms on various computer architectures. 

Attempts to derive variants of FFT algorithms keeping the underlying architecture in mind have 

proven successful [10, 13]. Huang, Johnson and Johnson [21] have recently used tensor notations 

for formulating Strassen's matrix multiplication algorithm. Using the tensor representation, 

they derived three variant programs and compared their performance characteristics for shared 

memory multiprocessors. 

Kaushik, Huang, Johnson and Sadayappan have proposed a very nice approach for data 

redistribution in distributed memory systems, which appeared recently in [5]. While their 

approach also utilizes the tensor notation as a tool, our work differs in several aspects. First 

of all, our definitions are expressed in matrix forms while theirs are in terms of indices (tensor 

bases'). With their model one can estimate communication cost of a computation precisely while 

with our formulations one can easily manipulate the communication structures of a computation 

to achieve optimal performance. Deriving variants of an algorithm using our definitions are 

relatively simple because the data communication is easily visible. Secondly, all the definitions 

presented in [5] such as cyclic, block, and block cyclic can be defined using our formulations 

as evidenced in Section 3, whereas some of data-partitions such as mesh-division cannot be 

easily expressed using the notations in [5]. In addition, our representation acts directly on 

data vector a(0 : N - 1) to achieve the required data-partition and migration scheme while 

their representation presents ways to manipulate data indices from one distribution to the 
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other (redistribution). Unlike their representation, we can embed our expressions for data 

distribution into an algorithm. As a result, global optimization of an application consisting 

of several computation modules become straightforward by just manipulating the algebraic 

expression at the interfaces between individual algorithms. 

A.6    Conclusions 

In this paper, we have presented a formal description for data-partition in distributed mem- 

ory multiprocessors. Using the algebra of tensor products and stride permutations, different 

schemes of storing data in a distributed memory system are represented in a compact and 

systematic manner. The formalism of various data-partitioning schemes allows for immediate 

embedding of an algebraic expression into a computational algorithm. As a result, optimiza- 

tion of data-partition becomes simple tensor algebra manipulations. We have demonstrated 

the usefulness and significance of our formulations by considering applications. Experiments 

on existing distributed memory machines have been carried out. Numerical results show that 

significant performance gains are possible by using our formulations to generate variants of an 

algorithm tailoring to specific system architectures. 
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B      Efficient Multidimensional DFT Module Implemen- 

tation on the INTEL i860 Processor 

Abstract 
In this paper, we present a unified implementation methodology for computing large one- and 

multi-dimensional Fourier transforms. By formulating various DFT algorithms in the language 

of tensor products, any large size Fourier transform is built up by a collection of small size DFT 

modules which include as parameters decimation step sizes and twiddle factors. These param- 

eters are introduced in the DFT modules to take advantage of modern computer architectures 

with parallel, pipelined, multi-functional structures, while providing flexibility into the building 

blocks. 

B.l    Introduction 

Continuing our work [1] presented in ICSPAT'92, we have developed a unified implementation 

methodology for computing large one- and multi-dimensional Fourier transforms. Tensor prod- 

uct formulation of various DFT algorithms plays a central role in unifying implementation by 

identifying small number of computational cores and necessary parameters. Our library of core 

computation modules has the following features: 

• We have efficiently implemented prime factors 3, 5, 7, 11, 13, 17 as well as powers of 

2. Thus, transform size on each dimension of a multi-dimensional Fourier transform can 

have factors other than 2. 

• One-dimensional small modules take advantage of vector operations on i860 by looping 

on other factors of the same dimension and other dimensions. 

• One-dimensional small modules have pre-calculated twiddle factor array as a parameter. 

This provides for intermediate stages of Cooley-Tukey FFT implementation. 

It is widely believed that data size on each dimension must be a power of two. In fact, 

a popular reference on numerical methods [2] recommends that if the data are defined over a 

period whose size is not a power of two, they are to be filled with zeros up to the next power of 

two. In multi-dimensional DFT computation, this will increase the transform size dramatically, 

not only slowing down the computation but also causing cache thrash and memory overflow. 

In the case of the parallel computer iPSC/860, each node processor has 8M byte memory. If 



the size of complex data to be processed is 72 x 72 x 72 = 373,248, computation is made in the 

local memory of the processing unit without data segmentation. On the other hand, by padding 

with zeros, the size of complex data to be processed will be 128 x 128 x 128 = 2, 097,152, which 

is beyond the capacity of local memory; segmentation and data loading in and out will cause 

severe problem. 

In this paper, we will describe an implementation strategy for efficient multi-dimensional 

DFT routines on the Intel i860 processor. Timing results of some sample medium size of 2- 

dimensional DFT modules with prime factor on each dimension is provided. The results of 

comparable power of 2 FFT package [6] that are commercially avaiable are also included. 

B.2    Tensor Product Formulation 

The tensor product presentation of fast Fourier transform algorithms dates back to Pease's 

paper [7] of 1968. Its role in application has varied during this period, from that of a notational 

convenience for describing a complex algorithm to that of an interactive programming tool. A 

detailed discussion on tensor product identities can be found in [8]. In this paper, we emphasize 

the tensor product as a programming tool in DFT module implementation. The parameters that 

govern the data permutation, vector segmentation, an algorithm's granularity and parallelism, 

come naturally from tensor product formulation of various algorithms. 

One-dimensional iV-point Fourier transform of array x is defined as 

l=F(N)x. 

where F(N) is an N x N matrix defined by 

F(N) = 

where w = e~j2^N. 

The Ni x N2 2-dimensional Fourier transform of X, denoted by 

F{N1,N2)X 

1 1 1 1 

1 w w2 ■     u^-1* 

1 w^N- 1) WW-D    . . u,^-1)3 

(1) 

(2) 

(3) 

can be written in a matrix form as 

Y = F{Nl)XF{N2), (4) 
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where X and Y are Nx x N2 2-dimensional input and output arrays respectively. 

Denote by x the vector in CN, N = NXN2, formed by reading in order, down the columns 

of X, and y formed the same way from Y. We can write the 2-dimensional Fourier transform 

in a tensor product format: 

Z = (F(N2)®F{N1))x. (5) 

(5) can be factored as: 

y = {F(N2) <g> INI)(IN2 ® FiN^x. (6) 

(6) is usually refered to as the row-column method: INa ® F(Ni) computes on the rows, and 

F(N2) <8> INI computes on the columns. 

The tensor product formulation of 2-dimensional Fourier transform in (5) provides a general 

format for multi-dimensional Fourier transforms. Denote the ^-dimensional Fourier transform 

of array X of size iVi x N2 x • ■ • x NK is denoted by 

Y = F(N1,N2,---,NK)X ■     (7) 

Denote by x the vector in CN, N = NrN2 ■ ■ ■ NK, formed by reading in order down the 

columns of X along Nx dimension and then N2 till NK dimension, and y formed the same way 

from Y, we can write multi-dimensional Fourier transform of (7) in a tensor product format: 

y = (F(NK) ® ■ ■ ■ <g> F(N2) ® FiN^x. (8) 

(8) can be factorized into K stages of Fourier transform computation. 

1=(F{NK)®INK-1-N1)--- 

(INK-N3 ® ^(^2) ® INI){INK~N2 ® FiN^x. (9) 

Every stage of (9) is of the form 

IL ® F(M) ® Is. (10) 

The structure of (10) suggests a unified implementation methodology of multi-dimensional 

Fourier transform by a set one-dimensional DFT modules with parameters L and S: S deter- 

mines the stride permutation; L determines the looping. 

The tensor product formulation of multi-dimensional Fourier transform in (9) is exactly 

the row-column method of multi-dimensional Fourier transform computation. The modular 

implementation of (10) immediately suggests an efficient way of taking advantage of parallel 

and vector architectures of the target computer system. The stride parameter replaces the global 

permutation after each stage of DFT computation; The looping parameter replaces calling the 

same subroutine many times. 
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B.3    Cooley-Tukey FFT Algorithms 

Suppose N = LM. The Cooley-Tukey algorithm (decimation-in-frequency) for one-dimensional 

Fourier transform is given by tensor product: 

F{N) = P{N, M)(IL ® F{M))TM{N)(F{L) ® IM), (11) 

where P(N, M) is a N x N stride-M permutation matrix, TM(N) is a JV x TV block diagonal 

matrix of twiddle factors, 

TM(N) = @DM(N), (12) 
;=o 

where 
DM{N) = diag.(l,w,---,wM-1). (13) 

The Cooley-Tukey FFT algorithm given in (11) can be used in an inductive argument to 

derive extension to many factors. Suppose 

N = N1N2---NK. (14) 

Set iV(0) = 1 and 
N(k) = N1N2---Nk,    \<k<K, (15) 

N'(k) = N/N(k),    0<k<K. (16) 

Define 

F'k = T*(JN(fc-i) ® F{Nk) ® IN'{k)), (17) 

where Tk is a diagonal matrix 

Tk = IN{k^)®TNW(N'(k-l)). (18) 

Then we have the Cooley-Tukey FFT algorithm for many factors: 

F{N) = QF'K---F'2F[, (19) 

where Q is the generalized bit-reversal permutation matrix. 

Each stage of Fourier transform F'k, 1 < k < K with the twiddle factor multiplication can 

be written as: 

IN(k-i) ® (TN>(k){N'{k - l))(F(Nk) ® IN.{k)). (20) 

(20) can be implemented as a module 
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N'{k)-1 

/*(*-!) ®[ 0   D>N,{k)(N'(k-l))(F(Nk)®Imk))}. (21) 
j=0 

The parameters of this module are N'(k - 1), N{k - 1) and twiddle factors DJ
N,(k)(N'(k - 1)). 

Although the form (21) does not look as neat as (10), the implementation is as easy. The 

twiddle factors are introduced into the module that varies with the stride parameter. Thus any 

large size Fourier transform computation is made by putting together a set of modules given in 

(10) and (21). 

B.4    Multi-Dimensional FFT Algorithms 

In this section, we will show that various multi-dimensional DFT algorithms can be unified into 

the format described in the previous sections: they can be decomposed into identifiable basic 

building blocks of small size modules. 

Row-Column Method 

Consider the 2-dimensional Fourier transform of (5). The row-column method of computing 

y is written as: 

1={F{N2)®IN1){INI®F{NI))X. (22) 

Suppose Nx = LXMX and N2 = L2M2. Using the Cooley-Tukey FFT algorithm of (11) into 

(22), we have 
((P(N2,M2)(h2®F(M2))TM2(N2) 

x{F{L2) ® IM2)) ® /^)(/iv2 ® (P(NUMi) 

x (JLl ® JP(M1))rMl(iVi)(JF(I1) ® W)) (23) 

The implementation of 2-dimensional DFT in (23) has the same structure as 1-dimensional 

FFT in (19). Two sets of DFT modules are computed; one with twiddle factor multiplications, 

Ln-l 

3=0 

i = 0,1, 0 < j < Mi, and Ln and Lm are the parameters controlling the decimation and 

looping, and twiddle factor parameters come from DJ
L.(Ni); 

The other module without twiddle factors; 

hk ® F{Mi) ® hi, (25) 
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Lk and Li are the parameters of the module. 

Vector-Radix Method 

The vector-radix Cooley-Tukey FFT algorithm to compute (22) is given in the following 

factorization: 

F(N2)®F{NX) = PF'2TF[, (26) 

where 
T = TM2(N2)®TMl(N1), (27) 

P = P(N2,M2)®P(N1,M1), (28) 

F[   =   F(L2)®IM2®F(L1)®IMl 

=   {F(L2) ® IMILIMI) 

{h2M2®F{Lx)®IMl), (29) 

F2'   =   h2®F{M2)®ILl®F(Ml) 

=   {h2®F{M2)®ILlM,) 

(iLML^FiM,)), (30) 

(26) can be computed by using the modules without twiddle factors and a separate stage of 

stride permutation of P and a twiddle factor multiplication stage T. 

B.5    Implementation on Intel i860 Processor 

In this section, we give an example of carrying out the computation of multi-dimensional DFT 

using our tensor product modules. Take the case 40 x 40 2-dimensional Fourier transform. Set 

40 = 5 x 8. The tensor product form of the Cooley-Tukey FFT algorithm (row-column method) 

is 
F(40,40) = 

((P(40,5)(/8 ® F(5))T5(40)(JP(8) ® h)) ® ho) 

x (740 ® (P(40,5)(/8 ® F(5))T5(40)(JF(8) ® h)) (31) 

Variants can be derived from (31). One of them is 

F(40,40) = 
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(P(40,5) <g> /40)(/8 <g> F(5) ® 74O)((T5(40)(F(8) <8> /s)) ® 740) 

x (740 <g> P(40,5))(/32o ® ^(5)))(Ao ® (r5(40)(F(8) <g> 75))) (32) 

Both forms have their advantages. For the Intel i860 processor, algorithm (31) gives rise to 

faster implementation because it minimizes the cache thrash. The implementation of (31) is 

given as: 

c transform on the columns 

do i=0,39 

call ftc8tw( x(0,i), 5, 1, 1, w, isign ) 

call ftc5( x(0,i), y(0,i), 1, 8, 1, isign ) 

call transpose(y, x) 

end do 

c transform on the rows 

The implementation of (32) is given as: 

c transform on the columns 

call ftc8tw( x, 5, 1, 40, w, isign ) 

call ftc5( x, y, 1, 8, 40, isign ) 

c transform on the rows 

call ftc8tw( y, 5*40, 40, 1, w, isign ) 

call ftc5( y, x, 40, 8*40, 1, isign ) 

The module ftcStw computes 

712—1 

/n1®[0^5(4O)(71(8)®7n2)], (33) 
3=0 

isign denotes the forward or reverse transform, w denotes pre-calculated twiddle factors, and 

the module ftc5 computes 
7ni®F(5)®7n2. (34) 

The timing results of some of the one- and 2-dimensional Fourier transform are given in 

tables 1 and 2. They are compared to the Kuck and Associates, Inc. Math Library Package on 

the Intel iPSC/860. It is worth mentioning that Intel's 1-dimensional and 2-dimensional FFT 

routine are hand coded assembly program, while the AwareTime are the hybrid of Fortran calls 

and i860 hand coded assembly modules. 
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Table 1. Timing Results on i860 Processor(l-D) 

FT Size N AwareTime ms. IntelTime[6] ms. 

3 0.000363. 

4 0.000449 0.0119 

5 0.000881 

7 0.00164 

8 0.00139 0.0141 

16 0.007 0.0191 

20 0.0098 

32 0.0133 0.031 

40 0.0211 

64 0.028 0.065 

80 0.0528 

384 0.296 

512 0.350 0.560 

ms. = 10 3 second. 

Table 2. Timing Results on i860 Processor(2-D) 

FT Size nxn AwareTime IntelTime 

32 x32 1.386 ms. 

40 x40 2.400 ms. 

64 x 64 6.65 ms. 

80 x80 12.9 ms. 

128 x 128 24.7 ms. 

160 x 160 58.6 ms 

256 x 256 137 ms. 

384 x 384 296 ms 

512 x 512 777 ms. 
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C A New Approach for Computing MuIti-dimensional DFTs on 

Parallel Machines and its Implementation on the iPSC/860 

Hypercube 

Abstract 

In this paper we propose a new approach for computing multi-dimensional DFTs that reduces in- 

terprocessor communications and is therefore suitable for efficient implementation on a variety of 

multiprocessor machines. Group theoretic concepts are used to formulate a computational strategy 

that hybrids the Reduced Transform Algorithm (RTA) with the Good-Thomas factorization. The 

RTA algorithm is employed not as a data processing but rather as a book-keeping tool in order to 

decompose the problem into many smaller size sub-problems that can be solved independently. Im- 

plementation issues on an Intel iPSC/860 hypercube are discussed and timing results are provided 

for many different cases. The non-optimized realizations of the new approach are shown to out- 

perform the highly optimized realizations of the traditional row-column method in a variety of test 

cases. 

C.l    Introduction-Motivation 

Parallel computing presents a new environment for algorithm design and implementation, along 

with new challenges to the computational scientist. The performance of any given program depends 

on an increased number of parameters compared to the serial case, widening this way the difference 

between theoretical models and practical experience. 

In this paper, we present a strategy for computing a multidimensional DFT that hybrids a 

relatively new algorithm (Reduced Transform Algorithm) with already implemented single proces- 

sor kernel routines. We will use the reduced transform algorithm to address the reduction and 

optimization of interprocessor communications. Our work has been mainly motivated from the 

distributed memory parallel computing paradigm, which is arguably the most difficult to harness 

due to its exposed interprocessor communication to the programmer. Most parallel computers re- 

quire sophisticated algorithms and programming techniques for their optimum utilization. In this 

discussion, we will make use of algebraic facts in presenting the algorithms. The parameters in al- 

gebraic formulas give us the important implementation parameters. Thus the flexibility to address 

the variables in implementations is equated with flexibility in manipulating algebraic formalism. 

Initial investment in familiarity with some amount of algebra may be necessary, but the payoff is 

immediate. Most of the relevant algebra, not in its most rigorous form but its usage, can be found 
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in [1]. 

In its most general form, the Reduced transform algorithm (RTA) is a full utilization of the 

duality between periodic and decimated data in the Fourier transform. This duality was used 

partially in some algorithms and implementations for restricted cases [2, 3, 4, 5]. A description of 

a generalization in a unified setting is found in [6, 7] along with the work of M. Rofheart [8]. In 

this paper, we will consider the application of RTA to the case Z/P x Z/P, for a prime number 

P. Tensor product formulation of DFT computation on Z/N x Z/P x Z/P is interleaved with the 

periodization step in RTA for Z/P x Z/P to produce P + 1 independent data of size NP. 

We will use the RTA to address the imbalance between computation and communication rates 

in current distributed memory parallel machines by reducing communication between processors to 

collective patterns only (broadcast and combine) instead of the all-to-all communication patterns 

required in the global matrix transpose needed by the row-column (RC) implementations of mul- 

tidimensional DFT's. Also, since fast algorithms for prime size lD-DFT's exist [1] and the case 

Z/P x Z/P of the RTA is very efficient because its computation requires only P + 1 ID transforms 

(versus 2P for the row column method), our approach addresses the issue of storage reduction by 

providing additional transform size options. For example the ability to perform a 181 x 181 point 

2D DFT means potential storage savings up to 50% over the 256 x 256 case, along with the savings 

in computational time. The storage savings can be used for the optimization of the broadcasting 

step needed for the RTA, in environments with long communications latency. 

Via the Chinese remainder theorem, we will extend our method to compute the 3-dimensional 

DFT on Z/N X Z/MP X Z/KP, where N is an arbitrary integer, M and K are integers not 

divisible by P, for a prime P. We transform the data set to an equivalent 5D data set on Z/N x 

Z/M X Z/K X Z/P X Z/P, and then employs the RTA on the last two indices to break the problem 

into smaller independent sub-problems that can be computed in parallel. Each sub-problem is 

associated with the computation of the value of the Fourier Transform along one line in the set 

Z/P x Z/P passing through the origin. These lines intersect only at the origin and cover the index 

space. When translated from the 5D data set back to the original 3D data, each line corresponds 

to a set of parallel lines covering the index space. 

Three stages are needed to compute the values of the DFT along the lines: (1) Periodization 

stage, which consists of additions of data along lines perpendicular to a given line, (2) 3D Cooley- 

Tuckey FFT and (3) P-point DFT. In a multiprocessor environment, each processor computes 

these three steps independently of the others thus allowing for maximum parallelism and efficiency. 

Moreover, the final data distribution among the processors is such as to permit further processing 

in a parallel fashion since every processor holds only results belonging to the same geometrical 
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subset. 

The proposed hybrid method (HRTA) can be used in applications such as the computation of 

motion from a sequence of images (multi-frame detection, MFD), a very important task in computer 

vision, HDTV and video telephony. Several methods for MFD have been proposed in the literature 

that are usually divided into two categories: Time Domain methods, that estimate the motion by 

processing the sequence of images directly, and the recently proposed Frequency Domain methods 

[9], [10] that processes the frequency contents of the images to estimate the velocity and trajectory 

of the moving components. The latter methods offer more robust detection and huge computational 

savings since the frequency domain representation of the 3D data (sequence of 2D images) is more 

compact than the equivalent time domain representation. With all the processors holding data 

belonging to different lines in the frequency domain, each processor can independently test for the 

presence of motion along its assigned direction. 

This paper is organized as follows: In section 2 we describe the RTA with an application on 

Z/N x Z/P x Z/P and its parallel processing strategy. In section 3 we discuss the extension via the 

Chinese remainder theorem and introduce hybrid algorithm (HRTA) that we use on Z/NxZ/MPx 

Z/KP, and its parallel variant. In section 4 we discuss issues related to the implementation of the 

hybrid algorithm on the Intel iPSC/860 parallel machine. In section 5 we present detailed timing 

results and a thorough comparison of our approach with the traditional row-column method for a 

variety of 2D and 3D DFT cases. We close the paper in section 6 by summarizing our findings and 

propose directions for further investigation. 

C.2    The Reduced Transform Algorithm (RTA) on Z/P x Z/P 

Before we proceed we need the following definitions: 

Let G be an abelian group of the form 

G = Z/Ni x Z/N2 x • • • x Z/NR. 

For g, h € G, define the bilinear map from G to Cx the complex numbers of magnitude 1 by 

X(g, h) = e-
2^S-2^2 • • .e-2^3RhR, (1) 

where   g = (91,92,- • -,9R), h = (huh2, ■ ■ -,hR).  Since grhr, 1 < r < R, is uniquely defined in 

Z/Nr, (1) is well defined.  For a subgroup S of G, the dual of S, denoted by S1 is the following 

subgroup of G. 

SX = {geG:x(g,s) = l,forall s G S}. 
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In addition to duality, we will use the following definition. Let 5 be a subgroup of an abelian group 

G. A subgroup Sc of G is called a complementary subgroup of S if every element g £ G can be 

written as 

g = s + c,      s £ 5, c 6 Sc. 

In general, the complementary subgroup is not unique. Moreover, not every subgroup has a com- 

plementary subgroup. 

Let G = Z/P x Z/P, where P is a prime number. Non-trivial subgroups of G are of order P, 

and hence cyclic. In addition, every subgroup of G has a complementary subgroup. The Reduced 

Transform Algorithm (RTA) on G proceeds as follows: 

1. DETERMINE OUTPUT DECIMATING SUBGROUPS TO COVER G: 

For 0 < / < P set: 

P, = {a(l,/):0<a < P - 1}, 

and for / = P set: 

PP = {(0,a):0<a<P-l}. 

We have 

{JPl = G. 
1=0 

2. DETERMINE THE INPUT PERIODIZING SUBGROUPS, FOR 0 < I < P. 

Denote by Q;, 0 < / < P, the following subgroups of G. 

Q, = {6(-/,l):0<6<P}. 

Also for / = P 

QP = {6(1,0):0<6<P}. 

Q;, 0 < / < P, is a subgroup of order P and Q; = P,1. 

In Figure 1 we show the output decimating subgroups P; for G — Z/P x Z/P, P = 3 (area 

inside the box). If we extend the index space, each P/ corresponds to a "line". Due to the modulo 

P operations certain points of a line outside the box (marked with a circled +) will be mapped 

inside (to the corresponding circled node with * in the same row/column). Also note that due to 

the periodicity, the two lines labeled P2 are actually the same. All lines intersect at the origin. In 

the same figure we show the input periodizing subgroups Q;. The collection Q; of input lines cover 

the whole index space, as the collection P; of output lines do, and are dual to them. 

3. COMPUTE THE PERIODIZATIONS. 
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+        +   / +        +        +        +    P2CQD 

Figure 1: The output decimating subgroups (lines) P; and the input periodizing subgroups (lines) 

Q/ for the case P = 3. 

A periodization is completely determined by its values on a complementary group. Fix a comple- 

mentary subgroup for Q/, 0 < / < P, and denote it by Qf. 

9l(c)= J2 /(C + H    O</<P, ceQf. 
beQ, 

Although there are many choices for complementary subgroups, we will fixed them to be: 

Q? = {(c,0):0<c<P-l},     0<KP 

Qc
P = {(0,c):0<c<P-l},     l = P 

4. COMPUTE THE DFT. For a € P;, 

/Ka) =   E    E   /(c + b)X(c + b,a). 
ceQ'beQ, 

(2) 

Since x(b,a) = 1> usinS (2) we §et 

/Ka) =   E flKc)x(c,a). 
C€Q« 

(3) 

For 0 <l< P - 1, we will use the following identification to index the computations, 

a*—(a,a/),   b<—(-W,6),   c—+(c,0), 

0 < a, b, c < P,     a G P/, b e Q,, c G Qf. 
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For / = P, the identification is: 

a < — (o,0; ,   b^ (6,0),   c- -(0,c), 

o< '* a, 6, c < :P    aeP/,beQ,, c e Qf. 

Therefore we can rewrite (2) and (3) as follows. 

9i(c) = 

P-i 

6=0 

-bl,b), 0 < / < P, 0 < c< P 

<7P(c) = 
p-1 

E/(* 
6=0 

c),     0 < c < P 

P-i 
s   _lii^^ 

/(a, a/) = X] ff/(c)e-—ac     0 < / < P,      0 < c < P 

101 

c=0 

P-1 

/(0,a)=X;^(C)c-Trac,      0<c<P 
c=0 

C.2.1    Application: The case A = Z/N x Z/P x Z/P 

Let A = Z/N x Z/P x Z/P, for a natural number N and a prime number P. For / € 1(A) and 

(u, v, w) € A, the Fourier transform, /, is defined by 

,-2iri-ä2   -2x;*a   -2TT.-^ 

-=0 j/=0 r=0 

For a € P/, 0 < / < P, 

JV-l 
-2iri-^, ,<a,C> 

ceQ'beQ,*=° 

where u = e-2?1, and < a,c > corresponds to the usual inner product.   Changing the order of 

summation, 

//0,a)=   E 
N-l 

£ 
r=0 

or equivalently, 

E /(*,c + b)|e-2«tf 
VbeQ, 

Ä«,a)=   E   E^K^c)^2-^^^. 
ceQ< x=0 

U) 
<a,c> 
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This computation can also be rewritten, using our identification scheme as follows: 

For 0< /< P- 1, 

f(u, a, al) = £ E 9l(x, c)C-
a*^W°c = £ £ <»(*, 0, c)«"2^^, 

c=0 r=0 c=0 r=0 

and for / = P, 

f(u, 0, a) = £ £ 5/(x, c)e-
2-^c- = £ £ s,(*, c, 0)e-2^u;«. 

c=0 x=0 c=0 i=0 

In Figure 2 we depict the three-dimensional index set A = Z/N x Z/P x Z/P in which planes 

defined by the last two indices are partitioned into lines. In essence, the algorithm can be thought 

of as N times the RTA on data sets: Z/P x Z/P. 

N 

P 

^—""*      '     U^— » 

Figure 2: The 3D index set, partitioned into lines along the last two dimensions, and into parallel 

planes along the first dimension. 

C.2.2    The parallel processing strategy 

In the previous subsection we have shown how the DFT on a 3D index set can be partitioned to 

independent computations. For each one of the P + 1 lines of a plane, P periodizations needs to 

be computed for a total of N ■ (P + 1) • P periodizations. Depending on the number of processors 

(PEs) and the available memory per processor, different parallel implementations can be derived. 

If P + 1 PEs are available, each one can be assigned to compute the DFT on one of the lines, and 

there is no need for interprocessor communications. This scheme however requires that each PE 

has access to the whole data set and is able to store at least the periodized data along a whole line 

for all values of a;   (N ■ P elements). 
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Alternatively if P • (P + 1) processors are available, each one may be assigned to compute the 

values of the DFT for one of the P points that belong to a particular line. For such an implemen- 

tation, the minimum memory requirements for a node is reduced to N, and more parallelism is 

exploited at the expense of some inter-processor communications. The parallel processing strategy- 

is summarized below. 

step 1: Compute in parallel the N(P2 + P) Periodizations 

g,(x,c)    =      X)   /K*,c + b), (4) 
beQ, 

' EK/O^c-M,*),  O</<P-I, 

J$£f(x,b,c), l = P- 

• If P + 1 PEs are used: 

PEi, I = 0,...,P, computes the N ■ P periodizations {gi{x,c), 0 < x < N, 0 < c < P}. No 

interprocessor communications are required. 

• If P2 + P PEs are used: 

PEic I = 0, ...,-P, c = 0,...,P - 1, computes the N periodizations {gi(x,c), 0 < x < N}. 

Since the summation in (4) extends over 0 < b < P - 1 PEi,c needs to receive data residing in each 

PEin, T/C. 

step 2: Compute the ID, N-point DFTs. 

N-l 

x-0 

• If P + 1 then PEi computes the P, ID N-point DFTs {#(u, c), 0 < c < P}. 

• If P2 + P then PE\fi computes an ID N-point DFT, namely gi(u,c). 

No interprocessor communications are required in either cases. 

step 3: Compute the P-point ID DFTs. 

/(U,a)=   X 9i(^c)w<a-c>. (5) 

. If P + 1 then PEt computes the N, ID P-point DFTs {/(«, a), 0 < u < N}. No interprocessor 

communications are required. 

• If P2 + P then PEitC computes an ID P-point DFT, namely /(u,a). Since the summation in (5) 

extends over 0 < c < P- 1 PEitC needs to receive the partial result gi(x,f) from each PP/,7, 7 ^ c. 



JVew Parallel Implementations 104 

C.3    Extension via the Chinese Remainder Theorem 

The Chinese Remainder theorem is a major tool in algorithm design. It is the basis of the prime 

factor algorithm of Good and Thomas [11, 12]. It can be stated in several ways, but we will use the 

theorem as a statement about rings, especially the idempotents, for uniformity and predictability 

in implementation. 

C.4    Extension via the Chinese Remainder Theorem 

The Chinese Remainder theorem is a major tool in algorithm design. It is the basis of the prime 

factor algorithm of Good and Thomas [11, 12]. It can be stated in several ways, but we will use the 

theorem as a statement about rings, especially the idempotents, for uniformity and predictability 

in implementation. 

Theorem 1 Chinese Remainder Theorem [13]. 

Let N = NiN2, where the integers TVi and N2 are relatively prime.  Then 

Z/N ~ Z/Ni x Z/N2. 

Rather than proving the theorem, we state an explicit isomorphism and its inverse. The mapping 

il> : Z/N -> Z/Ni x Z/N2 defined by: 

ij}{n) = {n mod Nu nmodN2) 

is an isomorphism. The inverse is denned in terms of the idempotents. Let eu e2 be the elements 

of Z/NiN2 with 

V>(ei) = (l,0),     V(e2) = (0,l). 

Then the mapping denned below is V-1- 

Z/Ni x Z/N2 — Z/N : (ni,n2) ~ (ei^i + e2n2) modN. 

C.4.1     Good-Thomas Prime Factor Algorithm for Z/MP 

Henceforth we will restrict to the case where N2 is a prime number.  Set N2 - P and Nx = M. 

The system of idempotents in this case will be given according to the residue of M by P. 

Theorem 2 Let M = c mod P.   Then e2 = c~xM, where c"1 is the inverse of c £ U(Z/P), the 

multiplicative group of units ofZ/P. 
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Proof:   M = c + mP for some m £ Z. 

c~lM = c'Hc + mP) = 1 mod P,     c~xM = 0 mod M. 

Thus T/>(C
_1

M) = (0,1). Since ex + e2 = 1 mod MP, we have that ex = MP + 1 - e2. 

Example:     3 and 5 are relatively prime to each other.   We will find the idempotents for the 

isomorphism Z/15 ^ Z/3 x Z/5.   3 = 3 mod 5. 3"1 = 2 € Z/5. Thus. 

e2 = 2 • 3 = 6 e Z/15,      ea = 15 + 1 - e2 = 10 € Z/15. 

We also have the isomorphism Z/15 ~ Z/5 x Z/3.   5 = 2modZ. 2_1 = 2 € Z/3. Thus, 

e2 = 2 • 5 = 10 e Z/15,     ei = 15 + 1 - e2 = 6 <= Z/15. 

Indexing Z/MP by the CRT, DFT on Z/MP is computed by F(P) ® F{M), where F(i) 

denotes the L-point DFT matrix and ® denotes the tensor product of matrices. Many formulations 

of the Prime Factor Algorithm (PFA) exist [14, 15, 16, 17], but the explicit use of idempotents to 

arrive at the tensor product decomposition can can be found in [1, 18]. We will formulate the PFA 

for two factors directly here since the derivation is easy and understanding the role of idempotents 

has a direct impact on parallel implementation. 

To derive the tensor product decomposition in the language of matrices, we will begin by 

describing two distinct orderings of the group Z/MP. Let {e1,e2} be the idempotents for the 

isomorphism Z/MP ~ Z/M x Z/P.  The following presentations for the elements of Z/MP are 

unique. 

x € Z/MP,      x = mex + ae2,   0 < m < M, 0 < a < P. (6) 

y e Z/MP,      y = p,P + aM,   0 < /* < M, 0 < a < P. (7) 

• Order Z/MP antilexicographically by the pair (m, a) obtained by the presentation of the 

elements of Z/MP given in ( 6). We will use this to order the input data. 

• Order Z/MP antilexicographically by the pair (/*, a) obtained by the presentation of the 

elements of Z/MP given in ( 7). We will use this to order the output of the Fourier transform 

computation. 

P-1M-1 , . 

/(MP + aM)=Y,i: /(™i + ae2)e-&l"mP«+aaM«l 
a=0 m=0 

Recall that tx = 1 modM and e2 = 1 mod P. Since 

e -jzL(ßmpei+aaMe2) _ e-^(.mPei e~jjVaaM^ = c"^»me> e^™*2 = e'^ßme^' 



New Parallel Implementations 

we have that p_x M_x 

ffrP + aM) = £ E /(mei + ae2)e-^^e~^aa. (8) 
a=0 m=0 

For a function / defined on Z/MP, denote by / the vector of values f(x) ordered by ( 6). 

Denote by /the vector of the Fourier transform of / ordered by ( 7). We can express ( 8) in terms 

of matrices as follows. 
/ = [P(P)®P(M)]/. 

C.4.2    The Hybrid Good-Thomas and RTA Algorithm on A = Z/N x Z/MP x ZjKP 

Let A = Z/N X Z/MP X Z/KP, for natural numbers N,M,K and a prime number P such 

that GCD{M,P) = GCD(K,P) = 1. By applying the CRT twice, we have the isomorphism 

A ~ Z/N x Z/M x Z/P x Z/K x Z/P. 

For / € L(A) and (u, v, w) e A, the Fourier transform, /, is defined by 

PK-1PM-1N-1 

z=0      y=0    r=0 

Set 
#(n, m, fc, a, b) = /(n, exm + e2a, /ifc + /26), (9) 

where {eue2} is the system of idempotents for the isomorphism Z/MP ~ Z/M X Z/P and {/x^/2} 

is the system of idempotents for the isomorphism Z/KP ~ Z/K x Z/P. We can compute / by 

computing g since 

}(v, ^P + aM, KP + ßM) = g(v, ft, K, a, ß). 

In the previous section, we described an algorithm for the case of an index set A = Z/NxZ/ PxZ/P. 

The same ideas can be applied to the index set A ~ Z/N x Z/M x Z/P x Z/K x Z/P. If N, M 

and Ar are powers of 2, the RTA algorithm can be used to decompose the data set into independent 

computations that can be performed on each of the P + 1 (or P2 + P) processors. The algorithm 

remains essentially the same, with the ID N-point DFT kernel now replaced by the 3D N x M x K 

DFT kernel. The additional data re-indexing defined by equation (9) can be incorporated into the 

computation of the periodizations with respect to the sets Z/P x Z/P during the first step. In 

is interesting to note that with the application of the CRT, the resulting hybrid algorithm now 

computes the DFT on sets of lines that are parallel to the lines of Figure 1 as shown in Figure 3 

for the case P = 3, M = K = 2. 

C.4.3    The parallel hybrid algorithm using P + 1 processors 

The parallel algorithm for the computation of the 3D Fourier Transform of a complex function 

defined on the index set   A = Z/N x Z/MP x Z/KP is given bellow: 
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P3 P3 

* ry,                    PVt                                           P^ 

0 bs   0    Q     b\    o' 
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i 

Figure 3: The output decimating lines for the case P = 3, M = K = 2. 

Processor /   (/ = 0,..., P) 

• step 1: Combined computation of Good-Thomas permutation and Periodizations 

for    c = 0...P-l,    6 = 0...P-1, 

for    n = 0...N-l,    m = 0...M -I,    k = 0...K-l, 

if (/ < P) then 

gi(n, m, k, c) := gt(n, m, k, c) + f(n, (exm + e2(c - M)P)MP, (fik + /2b)KP) 

else 

gi(n, m, k, c) := gi(n, m, k, c) + f(n, (exm + e2b)MP, (M + hc)Kp) 

where we denote by (-)E the modulo Eoperation. Note that at this step every processor needs 

to access the whole data set stored in the array f(N, MP, KP) and at the end produces an 

N X M X K X P array containing the periodized data with respect to the line /. 

• step 2: Computation of P 3D FFTs of size N x M x K 

for    c = 0...P-l 

9l(n, m, *, c) = E^-o1 £*=o Eto *<(Ä» ™, *, c))e 
-2irinfi     —2jrtmm      — 2Trikk 

N     e      M      e     A" 

• step 3: Computation of (N ■ M ■ K), ID   P-point DFTs 

for    n = 0...N-l,    m = 0...M-l,    Ar = 0...Ä"- 1, 

f(n,m,k) = Yli=o 9l(n,m,k,c)e   P 
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Note that the same ideas can be also employed to compute the 2D DFT for a function defined on 

the index set: A = Z/MP x Z/KP. The parallel hybrid algorithm for the case of P + 1 nodes is 

given bellow: 

Processor/   (/ = 0,...,P) 

• step 1: Combined computation of Good-Thomas permutation and periodizations 

for     c = 0...P-l,     6 = 0...P-1, 

for    m = 0...M-l,     k = 0...K-l, 

if (I < P) then 

gi(m, k, c) := ff/(m, k, c) + f{{exm + e2{c - bl)P)MP, (fik + /7b)KP) 

else 

gi(m, k, c) := gi(m, k, c) + f{{exm + e2b)MP, (fik + hc)Kp) 

The array 5/(A/, A', P) contains now the periodized data with respect to the line /. 

• step 2: Computation of P 2D FFTs of size M X K 

for    c = 0 ... P - 1 compute 
1 r    1 r -    i - —2Timm     —2-xik'k 

9i(m, k, c) = E^o1 Efo 5'(7h' fc' c))e^^ e^~ 

• step 3: Computation of (M ■ K) P-point DFTs 

for    m = 0 ... M - 1,    A: = 0 ... A' - 1,    compute 

C.5    Implementation issues 

C.5.1    The Intel iPSC/860 Hypercube 

The Intel iPSC/860 parallel processing system is a distributed memory, Multiple Instruction Mul- 

tiple Data (MIMD) hypercube, containing up to 128 = 27 compute nodes (processing elements, 

PEs) based on the Intel i860 high performance 64-bit RISC microprocessor. The i860 has a peak 

performance of 80 MFlops and is equipped with 8K data and 4K instruction cache memory. Each 

node has 8 to 64 Mbytes of external local memory, a network interface and a message router. The 

router can handle up to 8 bidirectional communication channels, seven of which may be connected 

to neighboring nodes and one is dedicated to external I/O and is directly connected to the host 

processor. 
The PEs are connected to each other via relatively slow full duplex asynchronous commu- 

nication channels that can carry messages of variable length. The channel bandwidth is about 

2.8Mbytes/sec. The wormhole routing technique, which minimizes the delay between receiving a 

message in a node and retransmitting it to its final destination, is used. The message passing can 
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be either synchronous or asynchronous. The synchronous message passing blocks the execution of 

the node programs until the communication has been completed, whereas asynchronous message 

passing returns immediately and is useful if the node processors can perform other computations 

while waiting for the communication to complete. The system is equipped with a Concurrent File 

System (CFS) [19] that distributes files across all available disks in blocks, such that different com- 

pute nodes can access different parts of a file without creating a bottleneck at a particular I/O 

node. 

C.5.2    Initial data loading and distribution 

The hybrid Reduced Transform Algorithm (HRTA) that we propose requires that the whole data 

set is accessible from all the nodes, so that all periodizations with respect to the line assigned to 

a PE can be computed. This does not necessarily mean that every node has to store the whole 

data set, although the latter could be helpful in certain environments. The traditional row-column 

(RC) algorithm on the other hand requires each node to have access to only a subset of the rows 

or the columns of the original data array, but a severe communications overhead is introduced by 

the need to perform one or more global transpositions of the data. 

Data entry to the multi-processor machine depends on the particular application in which the 

DFT is embedded. While in some applications the data are stored in the disk(s) and have to be 

imported to the nodes of the parallel machine, in other applications the data have already been 

imported during previous computational stages or have been generated locally in the nodes. Since 

the initial data loading is application dependent, we have not investigated the implementation 

of this step in detail. We have however considered two different models for the initial stage of 

the HRTA: In the first model, which is referred to as the master-slaves method, a master node 

computes all the periodizations and sends to the other nodes (the slaves) only the periodized data. 

Using this method the need for storage on the nodes is reduced since every one has to store only 

the periodized data. Furthermore the computation of the periodizations by the master node can 

be performed in a way that interleaves computation and communication steps in order to achieve 

optimum performance. 

In the second model, also referred to as the multi-processor model, all nodes have access to 

all the data set, so that in an initial loading phase, either all nodes access a shared file system 

concurrently, or one node reads the data from a file and then broadcasts them to all the other 

nodes. Although the HRTA requires that larger (than for the RC method) data sets be sent to the 

nodes, the fact that these data sets are the same allows for the use of the broadcasting capabilities 

of the parallel machine. This approach is especially attractive for shared bus based machines where 

broadcasting can be performed efficiently.   On the iPSC/860 hypercube broadcasting the whole 
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data set is faster than sending "chunks" of different data elements to each processor, but certainly 

much slower than an one-hop away communication step. After extensive experimentation with the 

iPSC/860 we concluded that the master-slaves model allows for more efficient implementations of 

the HRTA than the multi-processor model. 

Since, for the hybrid algorithm, the node computations are completely independent, there 

is very little need for synchronization among the nodes. Therefore completely asynchronous im- 

plementations that exploit the MIMD nature of the machine and allow each node to perform its 

computations as soon as the data are received are possible. On the other hand, in the row-column 

method, that is the most commonly used method today, a series of distributed global data trans- 

positions has to be performed, and its efficiency is highly dependent on the tight synchronization 

among the processors. Therefore, the increased need for communication during the loading phase 

that the hybrid algorithm has does not make it slower than the row-column method, unless more 

sophisticated methods for data distribution can be employed. (We intend to explore this issue in 

detail by investigating the capabilities, advantages and drawbacks of the CFS that the iPSC/860 

supports). 

C.5.3    Reporting the results to the host 

The final phase of reporting results, as well as the initial phase of loading data depend on the DFT 

application. In some applications upon completion of the DFT the results need not be reported 

back to the host since they are further processed. In others, it is desired to store all the DFT values 

in the external disk memory. In the parallel HRTA we propose, the distribution of the results on 

the nodes is according to the lines they belong to. Whereas in some applications it is desired to 

organize the results in the same order as the original data, in others it is essential to return the 

results along subsets of the original index space (lines or planes) [10], [9]. Since the final reporting 

phase is highly dependent on the application, we have not investigated this issue in detail. We 

would like to mention however that the limited synchronization needs of the HRTA leads to flexible 

implementations of the final reporting phase, because the nodes can finish their computations 

independently and start returning their results asynchronously as soon as they become available. 

C.6    Implementation Results 

It has been a common belief among the signal processing community that with the pipelining 

and dual operations capabilities of the modern RISC microprocessors, there is no need for DFT 

algorithms for data sizes that are not a power of two. This was so because zero padding can be 

employed along with the highly optimized, microprocessor specific, power-of-two FFT routines. 

As we will show here, this is not true for multi-dimensional DFTs.   Zero padding along many 
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dimensions can increase the data size tremendously and reduce the efficiency of the power-of-two 

routines drastically. Moreover, in a multiprocessor environment, the standard power-of-two Row- 

Column (RC) based FFT algorithms require one or more global transposition steps in which all 

processors need to communicate with every other processor in the network. Due to the limited 

bandwidth of the communication links, the global transposition steps result in a bottleneck that 

severely limits the maximum achievable speedup. 

C.6.1    The 2D DFT case, MP x KP 

To demonstrate the advantages of the proposed hybrid RTA algorithm (HRTA) relative to the 

traditional row-column (RC) power-of-two algorithm, we compare an implementation for the 2D 

DFT case with a highly optimized Intel iPSC/860, vendor supplied RC implementation for the case 

P = 3, using L — P + 1 = 4 nodes. The HRTA periodization step was coded in Fortran, whereas 

for the 2D FFTs we used vendor supplied, assembly coded, power-of-two FFT routines, optimized 

for the i860 processor. Finally, for the 3-point DFTs step we also used optimized, hand coded in 

assembly, vectorized routines. We performed several tests for various non-power-of-two data sizes 

and we report the computational time achieved by both methods. The time is measured from 

the point that all the necessary data already reside in the nodes, and until the results have been 

computed and stored in the processors local memory. In both implementations the distribution 

of the results is different from the original data distribution. Using the HRTA the results are 

distributed along the lines assigned to each processor, and using the RC method the results are 

distributed in a transposed fashion. 

In Table 1 we compare the speed of the two algorithms for a variety of data sizes. Depending 

on the amount of zero padding, the RC method could be up to about 70% slower than the HRTA. 

Moreover, our HRTA implementation can be further optimized (assembly coding of the periodiza- 

tion step), whereas the RC implementation is already fully optimized for the Intel iPSC/860. As 

we can see from Table 1, the speedup over the RC method increases with the data size as expected, 

since the amount of zero-padding increases with the size of the original non-power-of-two data set 

as well. 

As an indication of the percentage of time spent on each one of the three major computational 

tasks we refer to the case: M = 256, K = 256, P = 3, (size 768 x 768). The times (in msec) for the 

computation of MKP = 3 • 216 periodizations, P = 3 M x K = 256 x 256 2D FFTs and MK = 216 

3-point DFTs respectively are: tp = 475.0208, t}jt2d = 542.0287 and tdstZp = 97.6183. As we can 

see, the time required for the periodizations almost equals that for the 2D FFTs. A careful assembly 

coding of the periodizations step is expected to reduce this time by at least 50%, thus making an 

optimized HRTA implementation twice as fast as the optimized RC implementation. 
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Hybrid Algorithm Row-Column Method 

MP x KP time (msec) size time (msec) 

192 x 192 66.7470 256 x 256 95.9750 

192 x 384 130.8893 256 x 512 194.5686 

384 x 384 254.7608 512x512 403.3229 

384 x 768 511.9606 512 x 1024 866.7061 

768 x 768 1117.2697 1024 x 1024 1876.8777 

Table 1: Comparison of the performance of the HRTA parallel algorithm vs. the iPSC/860 opti- 

mized RC parallel algorithm implementation, for various data sizes, and P = 3. In both methods 

the data are assumed to initially reside in the nodes. 

C.6.2    The 3D DFT case, N x MP x KP 

We have implemented the parallel HRTA algorithm for the case P = 3, oni = P + l = 4 nodes, 

where N, M and K are assumed to be a power of two. In the 3D case, the periodization step 

can be organized to result in a much more regular memory access than in the 2D case, since now 

vector additions of data stored in consecutive memory locations can be employed. We coded this 

step using a mixture of Fortran and vector addition assembly routines, whereas assembly routines 

have been used for both the 3D FFTs and the 3-point DFTs. 

In Table 2 we compare the HRTA with the optimized iPSC/860 implementation of the RC 

algorithm for a variety of data sizes. Using both methods the data initially reside in the nodes, 

and the time is measured up to the point that the results have been computed and stored in the 

local memory. As we can see from Table 2, the RC algorithm is on the average about 70% slower 

than the HRTA algorithm for a good mix of the cases tested. In the same table we also report the 

computational times required for the DFT of the same data set using the RC method on 8 nodes. 

It is interesting to observe that even if the number of nodes is doubled the performance is increased 

by only 15% on the average relative to the 4-node HRTA implementation. 

In Figure 4 we compare our implementation of the parallel HRTA with the parallel RC method 

by plotting the (base 2) logarithm of the computational times required by both methods for data 

sizes N x 96 x 96, versus logiV. In the same figure we plot the ratio of the computational times 

("speedup") as well. As we can see the RC method can be as much as 1.70 times slower than the 

HRTA for the range of N examined. 

As an indication of the percentage of computational time spent in each stage of the HRTA, we 

report the times (in msec) required for the major tasks involved when the data size is 16 x 192 x 192 

(i.e.   N = 16, P = 3, M - K = 64).   In this case we need to compute:   NMKP = 3 • 216 
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Hybrid Algorithm Row-Column Method 

Nx MPx KP time (msec, 4-PEs) size timel (msec, 4-PEs) time2(msec, 8-PEs) 

8 x 96 x 96 183.6536 8 x 128 x 128 289.6318 150.3773 

8 x 96 x 192 351.6283 8 x 128 x 256 592.9389 298.6226 

8 x 192 x 192 719.3023 8 x 256 x 256 1278.7431 628.8135 

8 x 192 x 384 1522.1512 8 x 256 x 512 2568.7333 1262.5482 

16 x 96 x 96 338.0456 16 x 128 x 128 565.8212 273.1891 

16 x 96 x 192 690.1413 16 x 128 x 256 1134.1762 556.7175 

16 x 192 x 192 1422.3148 16 x 256 x 256 2245.3022 1175.6518 

4 x 384 x 384 1791.1266 4x512x512 2941.7306 - 

Table 2: Performance comparison of the 3D HRTA parallel algorithm vs. the iPSC/860 optimized 

RC parallel implementation, for a variety of data sizes and P = 3. In both methods the data 

are assumed to initially reside in the nodes. For the RC method we report both the 4-nodes and 

8-nodes time. 

periodizations, P = 3 N x M x K = 16 x 64 x 64 3D FFTs, and NMK = 216 3-point DFTs. The 

corresponding times are: tp = 302.2875, tfft3d = 1022.5539 and tdft3p = 97.7224. It is interesting 

to notice that although the number of periodizations is the same (3 • 216) as for the 2D DFT case 

(768 x 768) discussed in the previous subsection, tp is reduced by about 35 %. This is because in the 

3D DFT case, accesses to the data array are more localized than in the 2D case since periodizations 

are computed only along the two-dimensional planes. As we can see, the 3D FFTs computation is 

still the most expensive task. A 3D FFT (16 X 64 x 64), although applied to a data set with the 

same number of elements as in the 2D case (256 x 256), is two times slower than a 2D FFT. This 

is mainly due to the fact that the 3D FFT requires more function calls to the optimized ID FFT 

routine as well as additional transposition steps. The assembly coded 3-point DFT is again as fast 

as in the 2D case. The large percentage of the computational time that the 3D FFT requires makes 

us to believe that trying to limit the need for large 3D FFTs is more important than optimizing 

the periodizations. 

In Table 3 we report execution times that include the initial data loading phase. In both 

implementations the data are assumed to initially reside in one node which then distributes them 

to all the others. For the hybrid method we used the master-slaves model, described in section 4, 

that works as follows: The master PE performs all the periodizations; as soon as one periodization is 

completed, the results are sent via non-blocking communications to a slave PE and the computation 

of the next periodization can start in the master PE. The slave node that receives the periodized 

data can proceed with the 3D FFTs. This interleaving between computations and communications 

• 
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Figure 4: Performance comparison of the 4-node 3D HRTA parallel algorithm vs. the 3D RCA 

method. Left: plots of the (base 2) log. of the computational time (in milliseconds) versus logiV. 

For the HRTA the data sizes used were of the form N x 96 x 96 and for the RC method the 

corresponding sizes were zero padded to N x 128 x 128. Right: the ratio of times Trc/ThTta (speedup) 

achieves optimum performance using the HRTA. In the row-column method each one of the four PEs 

needs only \ of the data set. Including the data loading phase leads to even larger improvements 

over the RC method. This is due to the asynchronous nature of the hybrid method implementation 

that allows data loading in a pipelined fashion to further reduce the total DFT time. 

The final reporting of the results to the master node, can also be done in pipelined fashion. 

The nodes do not finish their computations all at the same time. The master node finishes first; it 

can then re-shuffle its own data back into order and then receive messages from the other nodes. 

As soon as each node finishes its computation, it can return its part of the results to the master 

node. On the other hand, in the RC method all nodes finish almost simultaneously and the total 

reporting time will be the sum of the times required by each individual node to return its results 

to the master node. As we can see from Table 3 (column labeled time2) when the final reporting 

stage is included the advantage of the HRTA becomes even greater. 

C.6.3    The hybrid algorithm implementation for larger sizes of P 

In this subsection we present preliminary results on the performance of the HRTA implementations 

for 3D DFTs of sizes N x MP x KP, where the prime number is P = 5 or P = 7. In Tables 4 and 

5 we report execution times in six and eight nodes respectively. 

In Figure 5 we plot the computational time versus the size of the problem as well as the 
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Hybrid Algorithm (4 nodes) Row-Column Method (4 nodes) 

N xMPx KP timel (msec) time2 (msec) size timel (msec) time2 (msec) 

64 x 48 x 6 121.89 146.97 64 x 64 x 8 148.27 (+21.64%) 229.92 (+56.44 %) 

64 x 96 x 6 210.28 290.53 64 x 128 x 8 291.01 (+38.39%) 451.78 (+55.50%) 

128 x 96 x 6 477.11 573.18 128 x 128 x 8 587.26 (+23.08%) 905.37 (+57.95%) 

128 x 192 x 6 940.17 1136.35 128 x 256 x 8 1214.48 (+29.17%) 1882.26 (+65.64%) 

16 x 96 x 96 791.75 1007.59 16 x 128 x 128 1139.49 (+43.92%) 1764.86 (+75.16%) 

Table 3: Comparison of the performance of the 3D HRTA vs. the RC method. The data initially 

reside in one master node; timel includes the data distribution whereas time2 includes in addi- 

tion the final reporting to the master node. For the RC method, the percentages in parenthesis 

correspond to: 100 • (r^~r^'^ 

Hybrid Algorithm (6-nodes) Row-Column Method (8-nodes) 

N x MP x KP time (msec) size time (msec) 

8 x 160 x 320 745.4254 8 x 256 x 512 1262.5699 

8 x 160 x 160 388.6131 8 x 256 x 256 628.7040 

16 x 80 x 160 395.3691 16 x 128 x 256 556.5085 

32 x 80 x 80 392.0486 32 x 128 x 128 587.5301 

64 x 40 x 80 395.1672 64 x 64 x 128 577.1927 

128 x 40 x 40 414.7549 128 x 64 x 64 578.8189 

2048 x 10 x 10 856.1560 2048 x 16 x 16 714.3222 

Table 4: Comparison of the hybrid algorithm implementation and the row-column method, for 

P = 5. 

speedup ratio over the RC method applied to a data set zero padded up to the next power of two 

in each dimension. As we can see from Figure 5 although the optimized RC algorithm runs on 

8-nodes, instead of 6 for the HRTA algorithm, it is about 1.5 times slower than the non-optimized 

HRTA implementation. 

C.6.4    The node clustering approach 

As we have seen earlier in the four-node 3D DFT case, each node needs to perform three 3D FFTs 

of size M x K x N. If the size of the 3D FFT data is too large to fit into a single node, or faster 

implementations are desired, the four nodes can now be considered as four conceptual clusters of 

nodes. In each of the clusters, the 3D data is distributed along the first dimension, and both the 

periodization and 3-point DFT steps can be performed independently by each node of a cluster. 
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Hybrid Algorithm (8-nodes) Row-Column Method (8-nodes) 

N x MPx KP time (msec) size time (msec) 

8 x 224 x 224 647.1830 8 x 256 x 256 628.7040 

16 x 112 x 224 595.7953 16 x 128 x 256 556.5085 

32 x 112 x 112 584.6240 32 x 128 x 128 587.5301 

64 x 56 x 112 567.5866 64 x 64 x 128 577.1927 

128 x 56 x 56 577.8302 128 x 64 x 64 578.8189 

2048 x 14 x 14 1109.0271 2048 x 16 x 16 714.3222 

Table 5: Comparison of the hybrid algorithm implementation and the row-column method, for 

P = 7. 

For the 3D FFT computation, only communication among the processors of the same cluster is 

needed, thus greatly reducing the total communication requirements. In Figure 6 we show how an 

eight-node hypercube is organized in 4 clusters to compute the 3D DFT of size N x 3M x 3/v. 

Node clustering can be used to create scalable implementations that make full utilization of 

the available hardware. If the number of nodes is 2n and four clusters are used, every node needs 

to store only the ^ of the original data set. In Tables 6, 7 and 8 we present timing results for 

8, 16, and 32 nodes 4-cluster implementations (P = 3) and compare the performance of the HRTA 

with that of the highly optimized row-column method using zero-padding up to the next power of 

two in every dimension. It is again assumed that the data already reside in the nodes before the 

processing starts. Moreover, the three 3D FFTs computed by every cluster are implemented using 

the optimized row-column routines. 

Hybrid Algorithm Row-Column Method 

Nx MPx KP time (msec) size time (msec) 

16 x 192 x 192 1027.9498 16 x 256 x 256 1175.2196 

8 x 384 x 192 1052.3800 8 x 512 x 256 1330.3198 

8 x 384 x 384 2206.7041 8 x 512 x 512 2669.4727 

Table 6: HRTA in 8-nodes = 4 clusters of 2 PEs/cluster vs. 8-nodes RC with zero padding 

In Figure 7, we plot the computational time required by each implementation, versus logJV 

for data sizes of the form N x 96 x 96. In the same figure we also show the ratio Trc/TÄrta as before. 

As we can see from Figure 7, the hybrid algorithm is only slightly better than the row-column 

method. However, the periodization part of our code is just in standard Fortran implementation 

and it can be further optimized. 

In Table 7 we present timing results for a 16-node implementation; P + 1 = 4 clusters (with 
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Figure 5: Comparison of the 6-node HRTA to the 8-node RC implementation: Left: Plots of the 

(base 2) logarithm of the computational time (in msec) vs. log TV. The data sizes used with the 

HRTA were of the form N x 40 x 40, P = 5. The corresponding RCA data sizes were of the form 

N x 64 x 64. Right: the speedup ratio Trc/Tkrta- 

4 PEs/cluster) cooperate to perform the 3D DFT. Each of the cluster has the whole data set 

stored in it. Within a cluster, each of the nodes stores 1/4 of the data (distributed along the 

first dimension). Three four-node row-column 3D FFTs are performed within each cluster. In 

Figure 8 we show the data distribution within one of the clusters. As we can see from Table 

7, the non-optimized HRTA implementation has comparable performance with the optimized RC 

implementation. The computational time versus the size of the data set and the speedup ratio over 

the row-column method is shown in Figure 9. Finally, in Table 8, we present timing results for a 

32-node HRTA implementation, partitioned into 4 clusters with 8 PEs each. 

The node clustering approach can be used in general for any size of the prime number P. As an 

Hybrid Algorithm Row-Column Method 

N x MP x KP time (msec) size time (msec) 

16 x 192 x 192 544.8489 16 x 256 x 256 569.4243 

16 x 384 x 192 1103.3147 16 x 512 x 256 1204.5177 

16 x 384 x 384 2289.6839 16 x 512 x 512 2411.0360 

8 x 384 x 768 2373.4150 8 x 512 x 1024 - 

Table 7: HRTA in 16-nodes = 4 clusters of 4 PEs/cluster vs. 16-nodes RC with zero padding. 
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Figure 6: An 8-node hypercube, organized into P + 1 = 4 clusters of 2 nodes each. Only near- 

neighbor communications inside every cluster are need to compute an N x MP x KP  3D FFT. 

example, we have implemented the case N x 5M x 5A' (P = 5) in a 12-node configuration. The 12 

nodes are partitioned into 6 = P + 1 clusters, each one having two nodes. The data are distributed 

evenly within each cluster along the first dimension, and the row-column 3D FFT kernel is used 

to perform the 3D DFTs inside every cluster. Only communication among PEs in the cluster are 

needed. In Table 9 we compare the HRTA implementation versus the RC method running running 

on 16 nodes. As we can see the 12-node HRTA outperforms the 16-node RC implementation. 

Hybrid Algorithm Row-Column Method 

NxMPxKP time (msec) size time (msec) 

128 x 96 x 96 532.9717 128 x 128 x 128 589.2343 

64 x 192 x 192 1039.3567 64 x 256 x 256 1173.0707 

32 x 384 x 192 1071.3325 32 x 512 x 256 1216.7244 

32 x 384 x 384 2208.9439 32x512x 512 2444.6264 

Table 8: HRTA in 32-nodes = 4 clusters of 8 PEs/cluster vs. 32-nodes RC with zero padding. 
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Figure 7: Performance comparison of the 8-node HRTA (4 clusters with 2 PEs/cluster) vs. the 

RC method. Left: Plots of the (base 2) logarithm of the computational time (in milliseconds) vs. 

logiV. Right: the speedup ratio TrcjThrta- 

Hybrid Algorithm (12-nodes) Row-Column Method (16-nodes) 

Nx MPx KP time (msec) size time (msec) 

16 x 80 x 80 137.7877 16 x 128 x 128 139.8977 

16 x 160 x 80 260.3311 16 x 256 x 128 279.9925 

16 x 160 x 160 512.0763 16 x 256 x 256 567.8107 

16 x 320 x 160 979.6029 16x512x256 1201.9575 

Table 9: Comparison between a 12-node HRTA parallel algorithm with clustering (6 clusters, 2 

PEs/cluster), and the RC method running on 16 nodes. The HRTA is faster although it uses 25 % 

less nodes. 

C.6.5     Conclusions and further Research directions 

A new approach for computing multi-dimensional DFTs with limited interprocessor communica- 

tions has been proposed, and its advantages relative to the standard row-column power-of-two 

based FFT algorithms has been demonstrated. Although it has been a common belief that with 

the available modern RISC microprocessors there is no need for new "exotic" DFT algorithms, we 

have shown that substantial computational savings can be achieved in a parallel environment by 

using a more flexible hybrid scheme. The DFT is a major component of numerous signal and image 

processing applications and if real-time operation is envisioned, only parallel processing can satisfy 

the user demands. 
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Node 12 

Cluster 0 

Figure 8: A 4-node cluster, part of a 16-node, 4-clusters hypercube: Only communications inside 

each cluster need to be performed to compute a 3D FFT. 

The proposed hybrid algorithm combines the advantages of both the recently proposed RTA 

and the Cooley-Tuckey RC method to give optimal parallel realizations for non-power-of-two data 

sizes. We demonstrated the flexibility and the efficiency of the HRTA by implementing it on an 

Intel iPSC/860 hypercube, where our non-optimized HRTA realizations outperform the highly op- 

timized RC method realizations. The HRTA provides an alternative that is suitable for many 

different parallel and distributed processing environments. In a DSP board with 4 compute nodes 

communicating via a shared bus, the HRTA seems to be the only viable parallel processing scheme 

that would achieve real-time performance. In Clusters Of Workstations (COWS), a rapidly emerg- 

ing cost-effective model for parallel computing, the need for an all-to-all communication, that is 

necessary for transposition using the RC method, would render the RC method highly inefficient. 

On the other hand, the HRTA has little or no need for communication between different worksta- 

tions so that very fast implementations can be created. 

We have demonstrated that the HRTA shares the scalability properties of the RC algorithm 

so that multi-dimensional DFTs of large data sizes can be computed efficiently on parallel archi- 

tectures. To optimize the HRTA the periodization step can be further improved. The modulo 

arithmetic based addressing can be avoided if more local memory is allocated to store two integer 

arrays Indl(M,P) and Ind2(K,P) used as index-lookup tables. Their entries can be either computed 

once or preloaded along with the data. An alternative approach is to replace the modulo operations 

with additions and conditional statements. Moreover, since along the index n, the periodizations 

reflect essentially to vector additions, efficient assembly language modules that make full use of the 

pipelining capabilities of the i860's RISC architecture can be employed. Therefore, the larger the 

N the better the use of the CPU pipelining capabilities and of the cache memory. Along the other 
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Figure 9: Performance comparison of the 16-node (4 clusters with 4 PEs/cluster) HRTA vs. the 

16-nodes RC method. Left: Plots of the (base 2) logarithm of the computational time (in msec) 

vs. logiV. The data sizes used are of the form N x 96 x 96, zero padded to N x 128 x 128 for the 

RC method. Right: the speedup ratio Trc/ThTta 

indices, the memory addresses to be referenced do not follow a sequential pattern, so that extra 

care must be taken to prefetch the necessary data before they are needed. 

Also note that there is a lot of flexibility on how the nested loops can be arranged in order 

to compute the periodized data g\ from the original data set /. This flexibility can also be used 

to minimize cache misses. For a large prime number P, the ordering of the nested loops that 

sequentially addresses the elements of the larger data array /, seems more advantageous. This is 

because the ratio of sizes of the two arrays / and gi increases with P, and the whole gi matrix can 

most probably fit into the cache. Therefore accessing the data array / sequentially allows to reduce 

the cache misses since the data / can be imported into the cache in a column by column fashion 

and then transformed to the periodized data. 

The execution of the P multi-dimensional FFTs could become faster by either grouping to- 

gether or interleaving the tasks involved. Recall that each one of the 2D or 3D parallel FFTs using 

clustering consists of three tasks: (i) 2D or ID FFTs, (ii) Communication (global transposition) 

and (iii) ID FFTs. Therefore the following two optimizations are possible: (1) Group all the corre- 

sponding tasks of the P multi-dimensional FFTs together and do the same with the communication 

stages, so that only one communication startup time is needed instead of P. (2) Employ a vector- 

pipelined parallel 3D FFT: Using asynchronous communication calls, computations associated with 

the next FFT can be interleaved with communications required for the previous FFT. Since the 



New Parallel Implementations 122 

communication time accounts for as much as 50 % of the overall time, pipelining strategies are 

expected to greatly improve the performance. 

When each one the nodes has completed the computation of a set of multi-dimensional FFTs, 

the independent P-point DFTs have to be performed. One method is to compute the P-point 

DFTs after all the previous computations associated with the data set have been completed. It 

has the advantage of allowing the use of highly optimized vectorized assembly routines. Another 

method is to use the partial contribution of each sub-block of data after the partial periodization 

and 2D (3D) FFT is being computed and as soon as these data become available. Note that as 

soon as a 2D (3D) FFT for a part of the periodized data, corresponding to a point on the line, 

has been computed the contribution of that buffer to the overall P-point DFT can be computed. 

Although this implementation has the drawback of requiring a larger amount of computations 

relative to the first method, it has the advantage of more efficient balancing between computations 

and communications since these two phases can be interleaved. 

The extension of the HRTA algorithm to include periodizations with respect to sets of higher 

dimensionality (planes instead of lines) is worth investigating. It is expected to lead to completely 

asynchronous implementations that take full advantage of the large number of processors available 

and increase the achievable efficiency for problems of very large size. 
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D    Weyl-Heisenberg Systems and the Finite Zak Trans- 

form 

Abstract 
Previously, a theoretical foundation for designing algorithms for computing Weyl-Heisenberg 

coefficients at critical sampling was established applying the finite Zak transform. This theory 

established clear and easily computable conditions for existence of Weyl-Heisenberg expansion 

and for stability of computations. The main computational task in the resulting algorithm was 

a 2-dimensional finite Fourier transform. 

In this work we extend the applicability of the approach to rationally oversampled Weyl- 

Heisenberg systems by developing a deeper understanding of the relationship established by the 

finite Zak transform between linear algebra properties of Weyl-Heisenberg systems and function 

theory in Zak space. This relationship will impact on questions of existence, parameterization 

and computation of Weyl-Heisenberg expansions. 

Implementation results on single RISC processor of i860 and the PARAGON parallel mul- 

tiprocessor system are given. The algorithms described in this paper possess highly parallel 

structure and are especially suited in a distributed memory parallel processing environment. 

Timing results show that real-time computation of W-H expansions is realizable. 

D.l    Introduction 

During the last four years powerful new methods have been introduced for analyzing Wigner 

transforms of discrete and periodic signals [7, 8, 10] based on finite Weyl-Heisenberg (W-H) 

expansions [1, 4, 5, 9]. A recent work [7] adapted these methods to gain control over the 

cross-term interference problem [6] by constructing signal systems in time frequency space for 

expanding Wigner transforms from W-H systems based on Gaussian-like signals. 

The computational feasibility of the method in [7] depends strongly on the availability of 

efficient and stable algorithms for computing W-H expansion coefficients. Since in general, 

W-H systems are not orthogonal, standard Hilbert space inner product methods do not apply. 

Moreover since critically sampled W-H systems may not form a basis, oversampling in time- 

frequency is necessary for the existence of arbitrary signal expansions. In fact this is usually the 

case for systems based on the Gaussian. In [7, 8, 9, 10, 11], the concept of biorthogonals was 

applied to the problem of W-H coefficient computation.  In [11], the Zak transform provided 
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the framework for computing biorthogonals for rationally oversampled W-H systems forming 

frames. A similar approach for critically and integer oversampled W-H systems can be found 

in [2, 3]. The goal in this work is somewhat different in that major emphasis is placed on 

describing linear spans of W-H systems which are not necessarily complete and on establishing 

in a form suitable for RISC and parallel processing, algorithms for computing W-H coefficients 

of signals in such linear spans. For the most part our approach extends on that developed in 

[2] and frame theory, an important part in [11] plays no role in this work. However as in these 

previous works, the finite Zak transform will be established as a fundamental and powerful 

tool for studying critically sampled and rationally oversampled W-H systems and for designing 

algorithms for computing W-H coefficients for discrete and periodic signals. The role of the 

finite Zak transform is analogous to that played by the Fourier transform in replacing complex 

convolution computations by simple pointwise multiplication. In this new setting properties 

of W-H systems such as their spanning space and dimension can be determined by simple 

operations on functions in Zak space. This relationship will impact on questions of existence, 

parameterization and computation of W-H expansions. 

In the oversampled case both integer and rational oversampling are investigated. Imple- 

mentation results on single RISC processor of i860 and the PARAGON parallel multiprocessor 

system are given for sample sizes both of powers of 2 and mixed sizes with factors 2, 3, 4, 5, 6, 7, 

8, 9. The algorithms described in this paper possess highly parallel structure and are especially 

suited in a distributed memory parallel processing environment. Timing results on single i860 

processor and on 4- and 8-node computing systems show that real-time computation of W-H 

expansions is realizable. 

In section 2, the basic preliminaries will be established. Algorithms will be described in 

section 3 for critically sampled W-H systems, in section 4 for integer oversampled systems and 

in section 5 for rationally oversampled systems. Implementation results will be given in sections 

6, 7 and 8. 

D.2    Preliminaries 

D.2.1    Weyl-Heisenberg systems 

Choose an integer N > 0. A discrete function /(a), a G Z is called N-periodic if 

f{a + N) = f{a),      aeZ. 



# 
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Denote by L(N) the Hubert space of all ./V-periodic functions with inner product 

</,£>= £/(%>),     f,9ZL(N) 
a=0 

For 0 < m, n < N and g G £(iV) define #„,„ € L(N) by 

^,n(a)=5(a + m)e-2™^,      a e Z. (1) 

Suppose N = KM = K'M'.   The Weyl-Heisenberg (W-H) System (g, M', K) is the set of 

functions 

{<7m'M',n'tf :    0<m'<Ä",   0<n'<M}. (2) 

We distinguish three cases 

critically sampled      K = K', M = M', 

oversampled K' > K,   M' < M, 

We further distinguish two classes of oversampled W-H systems. 

Integer oversampled M = RM',   R G Z 

Rational oversampled        M = RM',   R G Q,   Ä £ Z. 

undersampled K' < K,   M' > M. 

An expansion of / € L(N) over a W-H system is called a W-H expansion. 

D.2.2    Finite Zak transform (FZT) 

Suppose TV = KM. For / G Z(JV) define the finite Zak Transform (FZT), Z(K)f(a, b), a, b G 

Zby 

Z(K)f(a, b) = X: f(a + Mr)e2*ibT'K,     a, b G Z. (3) 
r=0 

Elementary properties of FZT including FZT based algorithms for computing W-H expansions 

over complete critically sampled W-H systems can be found in [2]. We will briefly discuss these 

results without proof and extend the role of the FZT to general W-H systems. 
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Theorem 1 /// € L(N) then 

Z(K)f(a + M,b) = e-2*ib/KZ(K)f{a, b),     a,beZ. (4) 

Z{K)f(a, b + K) = Z{K)f{a, b),     a,beZ. (5) 

Theorem 1 implies Z(K)f is TV-periodic in each variable and is completely determined by its 

values 

Z(K)f(a, b),     0 < a < M,   0 < b < K. (6) 

Denote by L(M, K) the Hubert space of all functions F(a, b),   0 < a < M,   0 < 6 < K, with 

inner product 
M-lK-l 

<F,G>=£Z F(a,b)G*(a,6),     F,G G L(M,K). (7) 
a=0   6=0 

Define Z0(K)f € L(M,K) by 

Z0(K)f(a, b) = Z(K)f{a, b),     0 < a < M,   0 < b < K. (8) 

In [2] we find the following theorem. 

Theorem 2  The mapping K~ll2ZQ{K) is an isometry from L(N) onto L(M,K).   If F € 

L(M, K) and f 6 L(N) is defined by 

K-l 

/(a + Mr) = K~l J2 jP(a> b)e~2iribT/K,     0 < a < M,   0 < b < K, (9) 
6=0 

Then F = Z0(K)f. 

For / = L(N) and F = Z0(K)f, we can summarize the preceding discussion by the matrix 

formula 
F(0,Q)       F(1,0) 

F(0,1) 

F(M-1,0) 

F{0,K-l) 

= F(K) 

/(0) 

F(M) 

F(M-1,K-1) 

/(l)   •   •   f(M-l) 

f((K-l)M) f(N -1) 



• 
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where F(K) is the i^-point Fourier transform matrix 

F(K) wjk 

0<j,k<K ' 

Throughout this work we will identify L(N) with L(M,K) by theorem 2 and the matrix 

formula. For the most part, including the computation of W-H expansions, once we are in 

L(M, K) we never need to formally return to L(N). 

D.2.3    Basic formulas 

The following two theorems are proved in [2]. 

Theorem 3 If g 6 L(N), N = KM, and 0 <m,n< N, then 

Z(K)gm,n(a, b) = e-2*ian'NZ{K)g{a + m,b-n),     a, b € Z. (10) 

In particular, if 0 < m! < K, 0 < n' < M, then 

Z(K)gm/M,n>K(a, b) = Z(K)g(a, b)e-**H*W+»VK)^   ^^ (n) 

By theorem 1, the product function 

Z(K)f(a,b)Z*(K)g(a,b),     a,beZ f,geL(N): (12) 

is M-periodic in the variable a and /^-periodic in the variable b and can be viewed as a function 

in L(M, K). The Fourier expansion of the product function is given in the following theorem. 

Theorem 4 For f,g e L(N), N = KM, 

i    K-\ M-l 
Z(K)f(a, b)Z*{K)g{a, b) = ±- £  £ < f,gm,Min.K > e-™(*V"+m'V*) (13) 

M m'=0n'=0 

D.3    Critically Sampled W-H Systems. 

Theorem 4 is a powerful tool for analyzing W-H systems. We first consider critically sampled 

W-H systems by extending the following result [2]. 

Theorem 5  The critically sampled W-H system 

{g, M, K) = {gm<M,n'K 0<m'<K,   0 < ri < M} (14) 

is a basis of L(N) if and only if G = Z0(K)g never vanishes. 
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By theorem 4 and the linear isomorphism established in theorem 2, we can identify the 

space of all / € L(N) satisfying 

< /, gm>M,n>K >= 0,     0 < m' < K,     0 < n' < M, (15) 

with the space of all F € L(M, K) satisfying 

FG = 0,     G = ZQ(K)g. (16) 

The space of such F € L(M, K) can be identified with the orthogonal complement of the linear 

span of (g, M, K). If G never vanishes this complement is {0} and (g, M, K) is a basis of L(N) 

which is the content of theorem 5. More generally, we have the following result. 

Theorem 6 If the zero set ( of G = Z0(K)g has exactly J points then the dimension of the 

linear span of (g, M, K) is N - J. A function f € L(N) is in the linear span of (g, M, K) if 

and only if F = Z0(K)f vanishes on (. 

If F vanishes on (, then we can write 

F = GPy     PeL(M,K). 

In this case 

if and only if 

K-l M-\ 

m'=0 n'=0 

K-l M-l 

P(a,b)= J]   J2c(m'Min'K)e~2Viian'/M+hm'/K)> ^ 
m'=0 n'=0 

The W-H expansion coefficients of / over (g, M, K) are given by the 2D M x K FT of P. 

If G never vanishes then P is uniquely determined and the mapping 

P^F = GP^f,     F = Z0{K)f 

defines a linear isomorphism from L(M,K) onto L(N). 

Suppose that the zero set ( of G has exactly J points with J > 0. Then (g, M, K) is linearly 

dependent and does not span L(N). Choose / 6 L(N) in the linear span of (g,M,K). For 

each function 

define P = Pa G L{M, K) by 

Ple,t)JU    (<"»)«• (19) 
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The space of such P is a J-dimensional subspace of L(M,K). Since F vanishes on (, F = GP 

leading to the next result. 

Theorem 7 If the zero set (ofG = Z0{K)g has exactly J points then every f in the linear 

span of(g, M, K) has a J-dimensional space of W-H expansions over (g, M, K). The coefficient 

space of W-H expansions of f over (g, M, K) is given by the set of all 2D M x K FT of the 

J-dimensional space of functions Pa 6 L(M,K). 

D.4    Integer Oversampled W-H Systems 

Suppose N = MK = M'K' with M = RM', R G Z. The integer oversampled W-H system 

g = (g, M', K) is the disjoint union of critically sampled W-H systems. 

g = Ü gr,     gr = {gr,M,K),   gr= grM,fi,   0 < r < R. (20) 
r=0 

It is just as simple to consider the more general case where g is the disjoint union of 

critically sampled W-H systems gr = (gr,M,K), gr € L[N), 0 < r < R. Denote the zero set 

of Gr = Z0(K)gT by (r and set ( = D^Cr- Arguing as in the preceding section / G L(N) is in 

the linear span of g if and only if F = Z0(K)f can be written the form 

R-l 

F=J2Fr,     Fr = GTPr,  PTeL(M,K). (21) 

In fact, if 

then we can take 

r=0 

R-l K-\ Af-1 

/= E E  E cT(m'M,n'K)(gr)mlM,n'K, 
r=0 m'=0 n'=0 

K-\ M-\ _,    ,__, 

Pr= J2  E cT{m'M,n'K)e- 
m'=0 n'=0 

As a consequence, if / is in the linear span of g then F vanishes on (. 

Conversely, suppose F vanishes on (. The following construction defines the simplest de- 

composition of F of the form (21). Define t/v G L(M, K), 0 < r < R by 

1 0,   («,6)^t. 
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Setting 
F0       =     (1 - i>0)F 

Fl       =    M^-^i)F 

we have 

F = F0 + *!>0F = F0 + F1 + MiF = F0 + F1 + --; + FR.U 

where Fr vanishes on (r. Since (r is in the zero set of GT, we can write FT = GrPT, PT £ L(M, K) 

and / is in the linear span of g, proving the next result. 

Theorem 8 If g is the disjoint union of critically sampled W-H systems gr = (gr,M,K), 

0 < r < R and (r is the zero set of GT = Z0{K)gT, 0 < r < R, then the dimension of the linear 

span of % is N - J where J is the order of C, = C]^~o(r. A function f G L(N) is in the linear 

span of g if and only if F = Z0(K)f vanishes on (. 

If we set 

then we can write 

[Go(a,6),---,GÄ_i(a,6)]> 

F(a,b) = G{a,b) 

Po(a,b) 

PR-i(a,b) 

Choose / G L(N) in the linear span of g. An algorithm for computing a W-H expansion of 

/ over g is given as follows. 

• Decompose F = ZQ(K)f 

F=Y;FT,     Fr€L(M,K) 
r=0 

where Fr vanishes on the zero set (r of GT, 0 < r < R. 

• Compute the collection of 2D M x K FT of 
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This stage is understood to be taken as in the critically sampled case with arbitrary values 

assigned to the quotient at points where the functions Gr, 0 < r < R vanish. 

If we assume that TlogT computations are needed for the T-point FT then the complexity 

of one W-H expansion computation is 

NlogK + R(NlogK + NlogM) + RN (22) 

but advantage can be taken of the large number of zero data values. 

The coefficient set of W-H expansions of / G L(N) over g is parameterized by the collection 

of decompositions of F and by the arbitrarily assigned values to the quotients at the points £., 

0 < r < R. 

D.5    Rationally Oversampled 

Denote the least common multiple of M and M' by M and set M = MS = M'S'.  Then S 

divides K and N = Äff = M$. 

Theorem 9  The rationally oversampled W-H system g = (g,M'K) is the disjoint union of the 

under sampled W-H systems 

g,/ = (gsl,M,K),     g$l = gt>M',o,   0 < s' < S'. 

Proof   We can write 0 < ml < K' uniquely in the form 

K' 
m' = s' + mS',   0<s'<S',   0<m<—. 

The theorem follows from 

9m'M',n'K = (9s'M>,o)rnM,n>Ki    0 < m < —,    0 < 7l' < M. 

Consider the undersampled W-H system (g,M,K) and set G = Z0(K)g. Since 

Z(K)(g^n,K)(a, b) = G(a, b)e~2^a+^b\     0 < a < M,   0<b<K, (23) 

/ € L(N) has a W-H expansion over (g,Id,K) if and only if F = Z0(K)f can be written as 

F = GP where P € L(M, K) satisfies 

p(ajb+j) = P(a,b),     0<a<M,   0<b<K-j. 

For the rationally oversampled W-H system, g = (g,M',K), set Gs< = ZQ(K)gs<, where 

gs' = gs'M',o- By theorem 9, and the preceding discussion we have the following result. 
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Theorem 10 A function f £ L(N) is in the linear span of g if and only if F = Z0(K)f has 

the form 
S'-l 

(24) 
S'-l 

F=   J2Gs'Ps'> 
s'=0 

where Ps< € L(M,K) satisfies 

Psl{a,b+J4r) = PAa,b),     0<s'<S',     0 < a < M,   0 < b < K - -. (25) 5y     -a^-'-"     ------        - -      - s 

A collection of W-H expansion coefficients of f over g is given by the collection of 2D M x j 

FT of 

Ps>,     0 < s' < S1. 

F(a,b + sj) 

For each 0 < a < M, 0 < b < f, define F(a, 6) € C5 by 

F(a,6) = 

and the 5x5" matrix G(a, b) by 

G(a,6) 

0<s<S 

Gs'(a,b + s—) 
0<s<S,0<s'<S' 

By theorem 10, / is in the linear span of g if and only if for each 0 <a < M, 0 <b < -$, there 

exists P(a, b) € C5' such that 

F(a,6) = G(a,6)P(a,6),     0 < a < M,   0 < 6 < —. 

Denote by r(a, b) the rank of G(a, 6). The dimension of the linear span of g is 

E <a,b). 
0<a<M,0<6<f- 

(26) 

K (27) 
In particular, if 

r(a, b) = S,     0<a<M,0<b<j 

then g is complete and every / € L(N) has a W-H expansion over g. 

There are several linear algebra techniques and programming packages that can be applied 

to characterize the linear span of g and to compute W-H expansion coefficients for / € L(N) 

in this linear span. Gauss elimination is perhaps the most well known technique but QR- 

decompositions or singular value decompositions (SVD) of G(a, b) are more suited to appli- 

cations which subject W-H expansion coefficients to least-square constraints. We will briefly 

review and introduce notation for SVD at this time. 
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For each (a, 6) € 0 < a < M, 0 < 6 < -j the singular value decomposition of G(a, b) has the 

form 

G(a,6) = U(a,6)S(a,6)V(a,6) 

where U(a, 6) is a unitary 5x5 matrix, V(a,6) is a unitary 5' x 5' matrix and S(a, b) is a 

'diagonal' 5x5' matrix 

0r0(o,6) 

o-i (a, 6)- 

E(a,6) = 

<TS_i(a,6) 

0 

Denote the s-column of U(a, 6) by ?7s(a, 6). 

Theorem 11 A function f G L(N) is in the linear span of g z/ and only if for every (a,b), 

0 < a < M, 0 <b < ^, F(a, 6) is in the linear span of 

{o-s(a,b)Us(a,b):0<s<S}. 

For / in the linear span of g we can solve for P(a, b) by introducing the pseudo-inverse of 

G(a,b) 

G+(a, 6) = V-a(a, 6)E+(a, fiJU'^a, 6), 

where S+(a, 6) is the S' x S diagonal matrix 

S+(a,6) = 

<7(j"(a 6) 

0 0 

*t l(a *) 

0 

with 

Then 

a+(a,6) = {^'    ^(a'6)^°       0<a<M,0<6< 
\     0,       <rs(a,b) = 0, 

K_ 

5' 

# 
»(a, 6) = G+(a, 6)F(a, b),     0 < a < M, 0 < 6 < —. 



Finite Zak Transform 135 

The multiplicative complexity of the computation is 

NS'       K 
N{logK + S + 1) + -j- {log- + logM + S') 

where NlogN is the complexity of the iV-point FT and S2 is the complexity of the action of 

an S x S matrix on a vector. 
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Integer Oversampling: g = (g, M', K),     M = RM', R 6 Z. 

/ 

FZT 

F(a,b) 

Partition 

FT(a,b) 

Quotient 

Pr(a,b) 

2D M x K FT 

c^(m'M, n'K),     0 < m' < K,     0 < n' < M 

c(rM' + m'M, n'K) = c^(m'M, n'K) 

Then 
K'-lM-l 

/= ^2  J2 c(m'M',n'K)gm:M>yK- 
m'=0 n'=0 
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Rational Oversampling; g = (g, M', K), M = RM\ ReQRgZ. 

f 

FZT 

F(a,6)€C' 

G+M) 

P(a,b)eCs' 

2D M x f FT 

f-1 M-l ,      _„ 
Ps/(a,b)= ^2  J2 cs>(m,n')e- 

m=0 n'=0 

c(m',n') = ca,{m,ri),   m' = s' + mS',   0<m'<K',   0<m'<M. 

K'-lM-l 

f = ^2   ^2 c(m'n')gm'M>,n'K 
m'=0 n'=0 
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D.6    Implementation Results 

In this section we describe implementation issues and present timing results for the implemen- 

tation of the algorithms presented in the previous sections. Implementations on single Intel i860 

RISC microprocessor as well as on the Paragon multi-processor parallel platform are reported. 

D.6.1     Critical sampling (C.S.) 

We have tested three basic analysis functions: 

• Gaussian function 

When K and M are both even integers, the FZT of Gaussian window function has a 

zero at (K/2,M/2). Set Q(K/2,M/2) = 0.0. The total energy of Gabor coefficients will 

be minimum. 

When either K or M is an odd integer, or both of them are odd integers, the FZT 

of Gaussian window function has no zeros. 

• Rectangular function 

A small size rectangular window will result in FZT with no zeros. For example, N = 

K x M = 1200, a window of width 90 centered at 600, has no zeros in Zak space. 

A rectangular window of width 150 centered at 600 has zeros in Zak space located at: 

0,8), (j,16), 0,24), (j,32), where j=0 to 39. 

• Triangular function 

When either K or M is an odd integer, or both of them are odd integers, there are 

no zeros in Zak space. 

A relatively small triangular window will result in a single zero at the center of Zak 

space. For example, N = 40 x 30 = 1200, a window of 61 non-zero values centered at 

600, has one zero in Zak space at (20, 15). 

We have implemented the computation for Critical Sampling case:  the main program is 

in FORTRAN and the FFT modules are fine-tuned i860 assembly with mixed sizes. Timing 
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results are given in tables 1 and 2. 

Complexity 

For a real input signal /, the FZT of / is Hermitian symmetric along K dimension. If the 

analysis signal is also real, then the 2-D M x K Q{a, b) has the same symmetry. The inverses of 

the FZT of g(a, b) are pre-computed and stored in memory. The complexity of the computation 

is (F(n) denotes the complexity of n-point FFT): 

Z(K)f (FZT of /) M x real F(K) 

Z(K)f/Z(K)g K/2 x M multiplications 

2-D FT of Q 

Herrn. Symm. along K 

M 

K 

x Herrn. F(K) 

x real F(M) 

SizeN 2-D KxM Time 

256 16 x 16 0.67 

512 16 x32 1.20 

1024 32 x32 2.02 

2048 32 x64 3.98 

4096 64 x 64 7.41 

8192 64 x 128 14.96 

16384 128 x 128 29.82 

32768 128 x 256 60.89 

65536 256 x 256 125.55 

131072 256 x 512 264.60 

262144 512 x 512 566.99 

Table 1:   Timing Results (in milliseconds) on the Intel i860 RISC microprocessor (Critical 

Sampling - 2k) 

D.7    Integer Oversampling 

We choose the decomposition F = Z{K)f = Er=o Fr such that Flt..., FR-i each has only one 

non-zero point, so that the computation of the 2D FT of Qx{a, b),... QR-i(a, b) is trivial. The 

codes are similar to critically sampled case with data rearrangement at the end. 
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Size N 2-D K x M Time 

384 8 x48 1.47 

768 16 x48 1.99 

1536 32 x48 3.12 

3072 64 x 48 5.91 

3072 128 x 24 6.15 

6144 128 x 48 12.07 

6144 64 x96 12.48 

12288 512 x 24 26.07 

12288 128 x 96 24.05 

24576 256 x 96 48.70 

49152 256 x 192 98.71 

98304 256 x 384 203.52 

98304 512 x 192 209.12 

196608 512 x 384 433.41 

393216 1024 x 384 1011.61 

Table 2: Timing Results (in milliseconds) on the Intel i860 RISC Microprocessor (Critical 

Sampling - Mixed sizes) 

D.7.1     Rational oversampling 

In [9], the authors point out that for Gaussian window function, over-sampled more than 20 

percent (5/4), does not have significant influence. We have implemented the computation for 

oversampling rates 3/2 and 5/4. Again, the main routine is coded in FORTRAN, and the DFT 

routines are fine-tuned i860 assembly codes for mixed sizes. For the complex singular value 

decomposition (SVD) we used the UNPACK routine. We have tested three basis functions: 

• Gaussian basis function 

Rational oversampling of 3/2 and 5/4 were tested. If the rank(G(a, b)) equals to 2 or 4 

correspondingly, then g is complete and every / has a W-H expansion over g. 

• Rectangular basis function 

Rational oversampling by 3/2 and 5/4 are tested.   Rectangular window sizes have to 
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be chosen such that it is not a factor of K along /C-dimension to have every / expandable 

in the W-H system. 

• Triangular basis function 

An example of size N = 40 x 30 = 1200 has been tested with rational oversampling 

by 3/2. The experimental results are: 

A window of size 101 centered at 600 results in an expandable W-H system. 

A window of size 151 centered at 600 results in an expandable W-H system. 

A window of size 201 results in point (20,10) being a zero singular value in Zak transform 

space. 

Complexity 

In the case of real input and real analysis signals the FZT is Hermitian symmetric along K 

dimension. We can show that the 5" 2-D M x K/S Pa(a,b) has Hermitian symmetry along 

K/S dimension. The complexity of real-time computation is: 

FZT of / 

G+(a,b)F(a,b) 

S' 2-D FT of Ps with 

Hermitian Symmetry 

along K/S 

M x real F(K) 

M x K/S matrix 

5" x S multiply a 

vector S 

S' xM x 

Hermitian F(K/S), 

S' x K/S x real F(M) 

Timing results of various sizes are given in the following tables. 

D.8    Parallel Implementation 

Assume that a distributed memory parallel computer has p (< mm(K,M)) processors. Set 

P = K/Kx = M/K2 (28) 
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Size N 2-D K x M Time 

384 16 x 24 2.06 

768 32 x 24 2.97 

1536 64 x 24 5.31 

3072 64 x48 10.79 

3072 128 x 24 10.05 

6144 128 x 48 20.85 

6144 64x96 22.86 

12288 128 x 96 43.15 

24576 256 x 96 84.71 

49152 256 x 192 171.39 

98304 256 x 384 412.12 

98304 512 x 192 413.50 

196608 512 x 384 840.02 

Table 3:   Timing Results (in milliseconds) In the Intel i860 RISC microprocessor (Rational 

Oversampling (3/2)) 

The algorithms described in sections 3, 4 and 5 possess highly parallel structure. They 

are particularly suitable in a distributed memory multiprocessor system. For example, in the 

critically sampled case, the algorithm can be implemented as follows: 

• Each processor receives K\ if-point input data 

• Compute Ki Appoint real FFT 

• Point-wise multiplication of the pre-calculated Zak transform of the basis function l/Z(K)g{a, b) 

• Compute Kx if-point Hermitian FFT 

• Data permutation between processors (matrix transpose) 

• Compute K2 M-point real FFT 

Implementation of integer over-sampled case has similar structure as the critically sampled 

case, and the rationally over-sampled case has a better parallel structure, since it has S' rel- 

atively small 2-dimensional K/S x M FFT's, and they might be carried out locally in each 

processor without interprocessor data permutation. Timing results of critical sampling on the 
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SizeN 2-D K x M Time 

320 8 x40 2.82 

640 16 x40 3.85 

1280 32 x40 5.66 

2560 64 x 40 9.65 

5120 128 x 40 16.42 

5120 64 x 80 18.32 

10240 128 x 80 32.09 

10240 64 x 160 37.99 

20480 128 x 160 67.65 

40960 128 x 320 134.08 

81920 256 x 320 258.40 

163840 512 x 320 522.19 

327680 512 x 640 1149.76 

Table 4: Timing Results (in milliseconds) on the Intel i860 microprocessor (Rational Oversam- 

pling (5/4)) 

Intel 4-nodes and 8-nodes Paragon are given in tables 6 and 7.  The parallel flow diagram is 

given in Fig. 3. 
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Input Data / 

\ 

receive 
/(O + Mr) 

receive 
/(l + Mr) 

receive 
f{M - 1 + Mr) 

K-pt 
real FT 

K-pt 
real FT 

K-pt 
real FT 

Multiply Multiply Multiply 

K-pt 
Herrn. FT 

K-pt 
Herrn. FT 

K-pt 
Herrn. FT 

\ / 

Data Permutation 

/ \ 

M-pt 
real FT 

M-pt 
real FT 

M-pt 
FT 

c(a,0) c(a,l) ••• c(a,K-l) 

0<r<K-l,      0<a<M-l 

Fig. 3. Parallel implementation flow diagram 

D.9     Conclusions 

Algorithms for the computation of Weyl-Heisenberg (W-H) coefficients for the cases of critical 

sampling, integer oversampling and rational oversampling have been presented and easily com- 

putable conditions for the existence of W-H expansions have been derived in terms of the Zak 

transform of the signal and the analysis function. We have shown that the algorithms described 

lead to very efficient FFT based implementations both for single DSP processor systems as well 

as for parallel multi-processor configurations. 
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SizeN 2-D K x M Time 

16384 128 x 128 10.06 

32768 128 x 256 19.66 

65536 256 x 256 39.31 

131072 256 x 512 80.24 

262144 512 x512 163.10 

524288 512 x 1024 368.99 

1048576 1024 x 1024 801.82 

2097152 1024 x 2048 1661.96 

Table 5: Timing Results (in milliseconds) on the Intel Paragon (4-nodes) 

SizeN 2-D K x M Time 

65536 256 x 256 22.18 

131072 256 x 512 42.45 

262144 512 x 512 86.32 

524288 512 x 1024 189.54 

1048576 1024 x 1024 404.32 

2097152 1024 x 2048 840.17 

8388608 2048 x 2048 1716.03 

Table 6: Timing Results (in milliseconds) on the Intel Paragon (8-nodes) 
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E      Group Invariant Fourier Transform Algorithms 

E.l    Introduction 

The design of algorithms for computing the crystallographic Fourier transform is a subject in 

applied group theory. In previous works [2, 19] we exploited several elementary results in 

finite abelian group theory and developed the basic abstract constructs underlying the class 

of divide and conquer algorithms for computing the multidimensional (MD) discrete Fourier 

transform (DFT). This setting provides a convenient landscape for introducing a class of divide 

and conquer crystallographic algorithms. In [2] we outlined a systematic approach for classi- 

fying 3-dimensional (3D) crystallographic groups. Applications to 3D crystallography require 

a detailed understanding of this classification. Similar classifications exist to some extent in 

higher dimensions and are equally important for applications to quasicrystallography. 

The theory developed in this work will operate within the abstract formulation presented in 

[2, 19]. Finite abelian groups will serve as data indexing sets. A class of affine group fast Fourier 

transform (FFT) algorithms will be introduced which fully utilize data invariance with respect 

to subgroups of the affine group of data indexing sets. The affine subgroup need not come from a 

crystallographic group. This approach removes dimension, transform size and crystallographic 

group from algorithm design and serves to bring out fundamental algorithmic procedures rather 

than produce an explicit algorithm. These procedures provide tools for writing code which 

scales over dimension, transform size and crystallographic group and which can be targeted to 

various architectures. In fact these methods apply to all 230 3D crystallographic groups and to 

composite transform sizes. We will show the power of these tools by way of an extensive list of 

implementation examples. 

We distinguish three algorithmic strategies. The first is based on the well-known Good- 

Thomas (GT) or prime factor algorithm which breaks up a FT computation into a sequence 

of smaller size DFT computations determined by the relatively prime factors of the initial 

transform sizes. In [2] we developed an abstract formulation of the GT and applied it as a 

tool for crystallographic algorithms. Our treatment here will be brief and mostly contained in 

examples. 

Reduced transform (RT) algorithms were considered in detail in [2, 19]. A simple general- 

ization of the RT approach based on collections of subgroups will be presented, which provides a 

universal framework for affine group Fourier transform (FT) algorithms. In applications to 3D 

crystallography this class of algorithms replaces the problem of computing the FT of 3D group 

invariant data by that of computing in parallel the FT of collection of ID or 2D group invariant 
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data sets. The latter problem is substantially-simpler and several efficient implementations are 

widely practiced. (See appendix). 

A third approach, based on a generalization of Cooley-Tukey fast FT (CT FFT), will be 

discussed which performs generalized periodizations [19] with respect to affine subgroups. This 

method applies to abelian affine subgroup invariant data and hence to about 100 of the 230 

3D crystallographic groups. A CT FFT algorithms associated to an abelian subgroup X of 

the affine group provides code for Y invariant data with respect to every subgroup Y of X. 

In applications, we choose X such that the associated CT FFT is easy to code and efficient 

and such that X contains a large collection of subgroups Y of interest. X itself need not be a 

crystallographic group. An example will be provided which shows how one code applies to 71 

of the crystallographic groups. 

This work is organized as follows. In chapter II, we will review all the necessary group theory. 

Finite abelian group theory will be briefly considered as it is covered in many elementary texts. 

We reference [19] as it contains all the necessary results. The affine group of a finite abelian 

group will be defined. Constructs related to the action of affine subgroups on data indexing 

sets will be introduced. In chapter III we define the Fourier transform of an abelian group and 

study its fundamental role in interchanging periodization and decimation operations (duality). 

The RT, CT FFT and GT algorithms are presented in chapter IV as applications of this duality 

to different global decomposition strategies. 

Affine group FFT algorithms based on the RT algorithm are discussed in chapter VI, while 

those coming from the application of the affine group CT FFT are introduced in chapter VIII. In 

chapter IX, we briefly sketch a method of incorporating ID symmetry into FFT computations, 

which calls on lower order existing FFT routines using the symmetry condition. 

Throughout this work, we will provide many examples. These examples have been chosen 

to reflect both the theory and our experience and others over several years in writing code for 

the 3D crystallographic FT. 

E.2    Group Theory 

E.2.1    Finite abelian group 

Denote by Z/N the group of integers modulo N consisting of the set 

{0,l,---,iV-l} 

with addition taken modulo N.   Z/N is a cyclic group of order N and every cyclic group of 

order N is isomorphicto Z/N. For example, the multiplicative group UN of complex Nth. roots 
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of unity 
{l,w,---,wN~1},     w = e^, • 

is a cyclic group of order N and the mapping 
1 

w : Z/N -> UN 

denned by u;(ra) = wn,0<n< N, is a group isomorphism from Z/N onto t/jv- 4 
The direct product of two finite abelian groups 

Ai x A2 

is the set of all pairs {aua2), fli G A1; a2 G A2 with componentwise addition. By the funda- 

mental theorem of finite abelian groups, every finite abelian group A is isomorphic to a direct 

product of cyclic groups, 

A ~ Z/Ni x • • • x Z/NR. (!) 

We call Eq. (1) a presentation of A. A finite abelian group can have several presentations 

which vary as to the number of cyclic group factors as well as the orders of the cyclic groups. 

For example 

Z/30   ~   Z/2 x Z/15 ~ Z/3 x Z/10 

~   Z/5 x Z/6 ~ Z/2 x Z/3 x Z/5 

In general, we have 

Theorem E.l  The direct product of cyclic groups having relatively prime orders is a cyclic 

group. 

Theorem E.l is a special case of the Chinese remainder theorem (CRT). 

Theorem E.2 Chinese Remainder Theorem 

Let N = NXN2--- NR be a factorization of N into pairwise relatively prime integers.   Then 

there exist uniquely determined integers 

0 < ex,e2,---,efi< N 

satisfying 

eT = 1 mod Nr 

eT=0modNs,      l<r,s<R,   r ^ s. 
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The set {ei, e2, • • •, eR} is called the complete system of idempotents for the factorization N = 

NlN2---NR. 

Let  {e-L,e2,--- ,eR} be the complete system of idempotents for the factorization N  = 

KNf-NR. By CRT 

eji = eTmodN, (2) 

eres = 0modN,      l<r,s<£,   r^s (3) 

H 

^er = lmo(ivV. (4) 
r=l 

It follows that every n € Z/N has a unique expansion of the form 

n = niei + n2e2 H h nReR mod N,     nT € Z/NT. 

In fact 

nr = nmodNr,      1 < r < R. 

CRT shows that the mapping 

x: z/w -> z/M x z/iv2 x • • • x z/yvr. 

defined by 
x(n) = (ni,n2,---,nr),      nr = nmodNT,   l<r<R (5) 

is an isomorphism having inverse 

X-1(rci,«2,--->rer) = nxei + n2e2H nReRmodN. (6) 

CRT is the basis for many theoretic and applied results in algorithm design. It is a major 

tool for interchanging between ID and MD arrays which is the core of the GT algorithm. The 

use of idempotents in describing this interchange is most important in implementation [19]. 

CRT can be used to derive the primary factorization of a finite abelian group. Suppose A 

is a finite abelian group of order N, and we write 

N = Pfip^...p^,     am>l, (7) 

where P1, P2, ■ • -, PM 
are distinct primes. Choose any presentation of A 

A-Z/iVi x-xZ/JVfll     N^N.-'-NR (8) 

and write 

Nr = P?1^ ■ ■ ■ PM
M{T

\      Om(r)>0,   \<m<M. 



Group Invariant FFT 151 

Then 
z/ivr = z/pr(r)x---xzÄM(r) 

and we have, by rearranging factors, the primary factorization of A 

A ~ Ai x • • • x AM, (9) 

where 

4-z/c(1)x-xZ/c(R)- 
The primary factorization of A is unique as the factors Am can be described as the set of 

all elements in A having order a power of the prime Pm. 

E.2.2    Character group 

Consider a finite abelian group A of order N.   The character group A* of A is the set of all 

group homomorphisms 

a* : A -> UN 

with group addition defined by 

(a* + b*){a) = a*(a)6*(a),     a*, 6* e A*, a e A. (10) 

The character group A* is the natural indexing set for FT as we can view A as the time 

parameter space and A* as the frequency parameter space. 

We will usually write a*(a) as < a,a* >. 

The mapping 
<f> : Z/N -> (Z/N)* 

defined by 
<m,(t>{n)>=e2vin?r,     0<n,m<iV 

establishes an isomorphism 

Z/N ~ (Z/iV)*. 

More generally, the mapping 

</> : Z/W x • • • x Z/A^ -» (Z/iVx x • • • x Z/iVfl)* 

defined by m „ 
o—■mlnl "n-i     R   R /,-,\ 
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establishes an isomorphism 

Z/M x ■ • • x Z/NR ~ (Z/Nx x • • • x Z/NR)*. 

By the fundamental theorem, every finite abelian group A is isomorphic to its character group 

A*. 

Duality 

Fix an isomorphism <f> from A onto A*. The dud BL of a subgroup B of A is defined by 

B1 = {aeA:<b, <j>{a) > = 1, for all & € 5}. (12) 

Since (f> is an isomorphism, 

^(i?1) = W1) : &1 € BL} 

is the subgroup of all characters of A that act trivially on B. 

Consider the quotient group A/B of 5-cosets 

a + B = {a + b:beB} 

with abelian group addition 

(a + B) + {a + B) = (a + a') + B. 

The isomorphism (f> induces isomorphisms 

fa-.B1^ {A/BY,     fa : A/BL -> B\ 

by the formulas 

<a + B,fa{bL) > = <aj{b1)>,     aeA,bxeBL, (13) 

<b,<f>2{a + BL)> = <bJ{a)>,     a £ A,   beB. (14) 

The characterization of <f>{BL) given above implies both induced isomorphisms are well defined, 

i.e., independent of coset representation. 

The induced isomorphisms fa and fa play fundamental roles in the description of divide 

and conquer FT algorithms. 
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The vector space L(X). 

Denote the space of all complex valued functions on a finite set X by L(X). L(X) is a vector 

space over C with addition and scalar multiplication defined by 

(/ + 9){x) = f{x) + g{x),     /, g e L(X),   xGX, 

(a/)(x) = a(/(x)),     aGC,   / € L(X),   x G X. 

Consider a finite abelian group A and a subgroup B of A. For / € L(A) define 

PerBf(a) = £ f(a + b) (15) 
b€B 

and 

I>ecB/(a) = (16) 
I   0, otherwise. 

The periodization operator PerB and the decimation operator DecB are fundamental operators 

on L(A). 

Suppose A has order N.   L(A) has dimension N.   The evaluation basis of 1(A) is the 

collection of functions 

{ea : a 6 A} 

defined by 

e-w=!i' li8' 6eA (17) 
[0,   6^a, 

We will denote the evaluation basis by A. 

The character basis of L(A) is the collection A* of characters of A.   Relative to the inner 

product on L(A) defined by 

(/,*) = £/(«)?W>     f,9€L(A), (18) 

where #(a) denotes the complex conjugate of g(a), the evaluation basis is an orthonormal basis 

of L(A). Since for a*, b* € A*, 

( N,   a* = b* 
(a*,b*) = l 
{ }     \ 0,     a* ^ b\ 

the set 
1 --A* 

/N 

is an orthonormal basis of L(A). 
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Canonical isomorphism 

The evaluation basis A and the character basis A* are canonical in the sense that they depend 

solely on group structures and not on presentation. Although the groups A and A* are iso- 

morphic, there is no canonical isomorphism. Duality is defined relative to a particular choice 

of isomorphism from A onto A*. By extension, the groups A and A*", the dual of A', are also 

isomorphic, and in fact a canonical isomorphism can be defined. The canonical isomorphism, 

as we will see in chapter III, defines the FT of A. 

For a e A, the mapping 0(a) of A* 

6(a)(a*)=<a,a*>,     a* € A*, (19) 

is a character of A*. The mapping 

0 : A -* A** (20) 

is a canonical isomorphism, since it is defined without reference to presentation. 

Consider the evaluation basis A of L(A) and the character basis A** of L(A*). The canonical 

isomorphism 0 of A onto A** defines a linear isomorphism L(Q) from L(A) onto L(A*). 

E.2.3    Point group 

Denote the automorphism group of a finite abelian group A by Aut(A). Subgroups of Aut(A) 

are called point groups. 

For a point group H and a point a £ A, the isotropy subgroup Ha of a in H is defined by 

Ha = {aeH: a{a) = a}. (21) 

Ha is a subgroup of H. A point a G A is called a fixed point of H if H = H*. The H-orbit of 

a, denoted by H(a), is defined by 

H(a) = {a{a) :aeH}. (22) 

The mapping 

a -* a(a) : H -* A (23) 

induces a bijection from the space of right cosets aHa, a € H, onto H(a). 

Fix a group isomorphism <f> : A -► A*. For a € Aui(A), define the aöj'omi a+ € Aut(A) by 

<a,<Ka+(c))> = <a(a),^(c)>,     a, c e A. (24) 
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Set a* — (a+)_1, and observe that 

(aß)* = a*ß*,     (o-1)* = (a#)-1. 

For a point group H, define 

H* = {oc* : a e H). 

The if-orbit H(B) of a subgroup B of A is the collection of subgroups 

H(B) = {a(B) :aeH}. (25) 

Under duality 
H*(BX) = (H(B))\ (26) 

A collection B of subgroups of A is called H-invariant if 

h(B)eß,     heH,   BEB. 

If B is ^-invariant, the action of H partitions B into disjoint if-orbits.   Define a complete 

system of if-orbit representatives in B as any collection of subgroups in B 

Bi,--- ,BR 

such that B is the disjoint union of the collection of #-orbits 

H(Bl)r--,H(BR). 

A covering of A is a collection of subgroups B of A such that 

A = UsesB. 

Set 
BL = {B1 : B € £}. 

We say that £ is a duo/ covering of A if B1 is a covering of A.  We can always construct an 

iJ-invariant covering B of A. 

9 

E.2.4    Affine group 

The affine group of A, 
Aff(A) = A<$  Aut(A), (27) 
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is the set of all (a, a), a 6 A, a e Aut(A), with group composition 

(<z,a)(a>') = {a + a(a'),aa'). (28) 

Aff(A) acts on A by 

(a,a)(c) = a + a(c),      a, c G A,   a € Aut(A). (29) 

For x 6 Aff(A), we write x = (ax, ax), ax G A, ax G Au*(A). 

We define two actions of A//(A) on 1(A). For / € £(A) and x G A//(A), define 

xf(a) = /(x(a)),     a € A. (30) 

x#/(a) = < ax, <f>{a*a) > f(a*a),     a £ A. (31) 

We say that / is x-invariant if xf = / and x*-invariant if x#/ = f. 

Choose a subgroup X of Aff{A).  An / G £(A) is X-invariant if / is x-invariant for all 

x G X, and X*-invariant if / is x#-invariant for all x G X. 

The point group X of X is defined by 

X= {ax:xe X). (32) 

X is a subgroup of Aut(A), but in general is not contained in X. 

E.2.5    Examples 

Example E.l P6X 

Crystallographic group P6i [13] is generated by 

x = (0,0,M2,c*)) 

acting on Z/3N x Z/3iV x Z/6M for natural numbers N and M, 

x(ai, a2, a3) = (ai - a2, ai, a3 + M). 

Throughout the rest of this example, we will set 

A = Z/12 xZ/12 xZ/12. 

For (ai,a2,a3) G A, 

x(ai, a2, o3) = (ai - o2, ax, a3 + 2), 
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x2(ai, a2, 03) = (-02, ai - a2, ^3 + 4), 

x3(ai,a2,a3) = (-ai, -a2,a3 + 6), 

z4(ai,a2,a3) = (o2 - ai,—ai,a4 + 8), 

x5(ai, a2, 03) = (a2, a2 - au a3 + 10), 

x6(ai,a2,a3) = (ai,a2,a3). 

P61 acting on A decomposes A into distinct P6x-orbits each of order 6. 

P61 is also a crystallographic group denoted by P6 [13]. P6 is generated by a. 

a(ai,a2,a3) = (ax - a2,ai,a3). 

P6-orbits also decompose A into distinct orbits. A P6-orbit may have 1, 2, 3 or 6 elements. 

P6(0,0,a3) = {(0,0,a3)},     0 < a3 < 11, 

and (0,0, a3) are fixed points of P6. 

P6(4, 8, a3) = {(4, 8, a3), (8,4, a3)},     0 < a3 < 11. 

The isotropy subgroup of (4, 8, a3) is generated by a2. 

P6(6, 6,03) = {(6, 6, a3), (0, 6, a3), (6,0, a3)},     0 < a3 < 11. 

The isotropy subgroup of (6, 6, a3) is generated by a3. 

The non-trivial isotropy subgroups, {l,a2,a4} and {I, a3}, where 1 denotes the identity 

automorphism, are again crystallographic groups denoted by P3 and P2 [13], respectively. 

With respect to <ß defined in Eq. (11), 

<a_1(a1,a2,a3),^(61,62,63) >< (a2,a2 - aua3),<f>{bi, b2, 63) > 

_ e^i(a26i+(a2-ai)!)2+a3!'3) 

_ e=g-(-a-lb2+a2(b1+b2)+a3b3) 

= < (ai, a2, a3), ^(-62, &i + &2, 63) > 

= < (ai,a2,a3),</'(a#(61,62,63)) >, 

and a#(bi,b2, 63) = (-62, 61 + 62, fe)- 

Example E.2 P6/mmm 
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Crystallographic group P6/mmm is isomorphic to the abstract group 

Z/6<}  Z/2 x Z/2. 

We will describe the group by listing the 3 generators. 

a, 

ß(ai,a2,a3) = (a2,al,-a3),   ß* = ß, 

7(ai,a2,o3) = (a1,a2,-03),   7* = 7. 

This is a nonabelian group, and we have the following commuting relations; 

ßa = a-1/?)     7a = a7>     7^ = ßl- 

Set A = Z/12 x Z/12 x Z/12. We will consider isotropy subgroups of elements. 

P6/mmm(4,8,6) = {(4,8,6), (8,4,6)}, 

1,      a2,      a4,        7,      <* 7.     a 7. 
Fb/mmm^sfi) = < 

l ö 

For a^0,6 

F6/mmm(4Ä6) =      c^   a*/?,   «*/?,   a/37,   *3/?7,   -^7 

P6/mmm(4,8,a) = {(4,8,a), (8,4, a), (8,4,-a), (4,8,-1)}. 

P6/mmm(4,8,o) = ^   ^ j - P3ml, 

where P3ml is a crystallographic point group. 

Example E.3 Pmmm 

Let A = Z/2iV x Z/2M x Z/2L, for natural numbers N, M and L. Pmmm < Aut(A) 

is generated by pi{a1,a2,a3) = (-ai,a2,a3), />2(ai, a2,a3) = (al7-a2,a3), p3(ai,a2,a3) = 

(aijfl2> _a3). Each of the generators is of order 2 and Pmmm has 8 elements. With respect to 

the isomorphism defined in Eq. (11), 

pf = Pi,     i = 1,2,3. 

The subgroup 
B = {(b1N,b2M,b3L):bi = 0,1,   i = 1,2,3} (33) 
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is the group of fixed points of Pmmm. Let 

Bi = {{b1MM,bzL) :0<6i <2N -1,   b2 = 0,1, 63 = 0,1}. 

PmmmBx = -- {hPi P3,P2P3}- 

B2 = {{b,N,b2 ML) 0 <b2 <2M -1,     h = 0,1, 63 = 0,1}. 

PmmmB2 = -- {I,/3! P3,P\P3}- 

Example E.4 Fmmm 

Set A = Z/2N x Z/2M x Z/2L, for natural numbers N, M and L. The crystallographic 

affine group Fmmm < Aff(A) is 

B x Pmmm, 

where 5 < A is the fixed subgroup of Pmmm given in Eq. (33). Each of the generators is of 

order 2 and Fmmm has 64 elements. An element of Fmmm is of the form 

(b,P?P?P?),     beB,   rfc = 0,1, £ = 1,2,3. 

We will denote the elements of Fmmm by an ordered 6-tuple of l's and O's by listing the values 

of bj and r^ in order, i.e., 

{biNMMMLiPiP^Pl3) <-> (M2,&3,ri,r2,r3). 

In this notation, the group composition in Fmmm is given by componentwise addition modulo 

2 in each of the 6 components. We will also index the elements of Fmmm from 0 to 63 by the 

binary expansion of the 6 tuple, 

(61, 62, 63,n,r2,r3) <->*! + 2i2 + 4*3 + 8rx + 16r2 + 32r3. 

In this notation 
B = {s0, S-L, s2, s3, s4, s5, s6, s7}. 

There are no fixed points of Fmmm. 

Fmmms - Pmmm. 

Fmmm= Pmmm = {s0, s8, Si6, S24, 532, ^o, 548, S56j- 
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E.3    FT of a finite abelian group 

• View A as a basis of L(A) and A** as a basis of L(A*). In chapter II, we defined the canonical 

isomorphism 
0 : A -> A** 

• by 
6{a){a*) =<a,a* >,      a € A,   a* € A*. 

The Fourier transform FA of A is the unique linear extension 

FA : L(A) - L(A*) (34) 

of 0. It follows that F^ is a linear isomorphism given by 

FAf(a*) = J2 /(«) <«,«*>,     / G i(A),   a* 6 A*, (35) 

with inverse given by 

/ = If  E *U/(-a>',     / G L(A),   N = o(A). (36) 

The coefficients of / over the character basis are given by jjFAf{-a*), a* € A*. 

For an isomorphism <j> : A -» A*, define the FT presentation 

Ft : L(A) -> L(A) (37) 

W)(a) = (^/)Wa)),     /€I(A),   a 6 A. (38) 

FT presentations associated to different isomorphisms differ by input permutations. The choice 

• of <f> can be an important parameter in algorithm design especially in crystallographic applica- 

tions where <f> can be matched to crystallographic symmetry to simplify coding. Throughout 

this chapter we fix an isomorphism <f>: A —>• A*. 

For a subgroup B of A, define the induced Fourier transforms 

F* : L(A/B) -> L(BL), (39) 

F^ : L(B) - L(A/B^), (40) 

• by the formulas 

(FtJW1) = (FA/BW^)),     feHA/B),   b^eB\ (41) 
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{FtJ)(a + BL) = (FBf)(fa(a + BL)),     feL(B),   a G A, (42) 

where fa and fa are denned in Eqs. (13) and (14). FH and F^ are linear isomorphisms. 

We will write F£ for F^ and' F^ for F^ when we want to bring out the dependence on the 

subgroup B. 

E.3.1     Periodization-Decimation 

Divide and conquer algorithms for computing the action of F^ decompose the computation into 

a collection of induced FT computations. In this chapter, we will see how the FT interchanges 

the fundamental operations of periodization and decimation. 

For a subgroup B of A and / G L{A), PerBf G L(A) is 5-periodic and we can view 

PerBf G L(A/B). 

Theorem E.3 For f G L(A), F^(PerBf) vanishes off of B1 and 

=   F^Perßf)^),      bLeB\ 

Theorem E.3 implies we compute Ftf on the subgroup BL by computing the induced FT 

F^(PerBf). 

For / € L(A), we can view DecBf G L(B). 

Theorem E.4 For f G L{A), F^(DecBf) is BL-periodic and 

PerBL{Ftf){a)   =   o(BL)F^DecBf)(a) 

=   o{BL)F<h{DecBf){a + Bx),     a G A. 

Theorem E.4 computes the periodization of F*f relative to BL by computing the induced FT 

F^Decsf). 

E.4    FFT Algorithms 

E.4.1    Introduction 

Algorithms are distinguished by their strategies for decomposing the global computation. Cooley- 

Tukey fast FT (CT FFT) algorithms partition the computations into FT of periodizations or 

• 
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decimations relative to the cosets of some subgroup B of A. Recently formulated Reduced 

transform (RT) algorithms decompose the computation into FT of periodizations or decima- 

tions relative to a collection of subgroups covering A. Details including implementation stages 

on RISC and massively parallel multiprocessors can be found in [14] with performance results. 

In this chapter, we will briefly outline the structure of the RT, CT FFT and GT algorithms. 

Detailed derivations of these algorithms can be found in   [2, 19]. 

E.4.2    RT algorithm 

RT algorithms decompose the computation of FT into a collection of induced FT taken over 

• the subgroups of a covering or dual covering of the indexing set. One form of the RT algorithm 

begins with a dual covering B of A and computes F^f by 

• forming the collection of periodizations 

PerBf e L{A/B),     BeB 

• computing the collection of induced FT 

F£(PerBf),     BeB. 

This completes the computation since F^(PerBf) equals Frf on BL and B is a dual covering 

of A. 
A dual form RT algorithm begins with a covering B of A. For each a € A define the integer 

valued function \x on A by 

fi(a) = the number of subgroups in B containing a. 

Define the weighted decimations of / by 

Since B covers A 

DecBf(a)=   , 
I  0, otherwise. 

/ = £ DecBf (43) 
Beß 

F,f = E F,DecBf (44) 
Beß 

and we can compute F^f by 
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• Forming the collection of decimations 

DecBfeL{B),     BeB. 

• Computing the collection of induced FT 

F*{DeSBf),     BeB. 

Redundant computation is a necessary part of RT algorithms. An analysis of the advan- 

tages and disadvantages of RT algorithms can be found in [19]. Typically these algorithms are 

targeted to large size MD DFT computations on shared memory multiprocessors but have been 

implemented on distributed memory multiprocessors with significant speed-up as compared to 

standard CT FFT implementations. The RT algorithm on some machines can be bottlenecked 

by the I/O bandwidth required in the initial stage periodizations but offers complete paral- 

lelization (subject to the number of processors and granularity) afterwards and can be easily 

scaled to transform size and machine configuration. This should be compared with standard 

approaches which interleave communication and computation by global transpositions. 

In applications, say, to the M-dimensional FT, the collection B is usually taken such that 

duals are a covering set of /^-dimensional (K < M) planes through the origin. The dimension 

K is an important design parameter as it affects local granularity and global parallelism. 

E.4.3    CT FFT algorithm 

Choose a subgroup B < A. One form of the CT FFT begins by subjecting data to generalized 

periodizations relative to B. This step can be implemented by a collection of Fourier transform 

computations. However we choose to express this step as a collection of generalized periodiza- 

tions to bring out the analogy with the RT algorithm and to clearly distinguish stages requiring 

full data access from stages acting, in parallel, on localized data. 

Choose a subgroup B of A. For / € L(A) and b* € B% define fb. e L(A) by 

Ma) = £/(« + &) <M*>,      aeA. (45) 
b&B 

We call fb* a generalized periodization since 

fb.{a + b) = <b,lf>fb.(a),      aeA,   beB. (46) 

Theorem E.5 For f € L(A), 

• 

m 

• 

°{B) b.eB. 
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• 

F*f = W)£B.
F*!h 

It follows that we can compute F+f by computing the collection of FT F^fo, b* € B*. 

Consider the group isomorphism fa ■ A/B1 -> B*. Choose a complete system of 51-coset 

representatives 

z(V)€ti\n     ^ß*. (47) 

Theorem E.6 i^/&. vanishes off of the BL-coset, z(b*) + Bx, and 

F*f(z(b*) + 61) = ^j^W*) + O,      61 6 B\ 

Fth- determines F*f on the 5x-coset z(b*) + B\ b* e B\ Since the i^-cosets form a disjoint 

partition of A, the computations 

can be implemented in parallel and the second sum in theorem E.5 requires no computation. 

Once the generalized periodizations are computed, the computation can be completed in parallel 

by induced FT computations which output F+f on 5^-cosets.   This is accomplished by first 

performing a twiddle factor multiplication of generalized periodizations defined as follows. 

For b* 6 B\ define gb. € L{A) by 

Ma) = Ma) <a,cf>(z(b*))>,     a G A. (48) 

gb* is 5-periodic and can be viewed as a function in L(A/B). 

Theorem E.7 

Ftfb*(z(n + bL) = o{B)F,l9b.{b%     bL € B\ 

The CT FFT algorithm combines theorems E.6 and E.7 and computes F+f by independent 

computations of Ftf on the disjoint i^-cosets z(b*) + B by the collection of induced smaller 

size FT computations 

F^gAb1),     b^eB\   6* € B\ (49) 
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CT FFT Algorithm 

feL(A)  - 

fb. e L{A), b* e B* 

9b . € L(A/5),   6* G B* 

F^g^€L{B%  b*eB* 

Ftf{z{b*) + bA-) = Fi1gb.{bL) 

E.4.4    Good-Thomas algorithm 

The GT will be derived as a special case of the CT FFT. In   [2, 19], a direct proof was given. 

Choose a subgroup B < A. We require that A has a direct product decomposition. 

A = BxC 

where C is a subgroup of A. Choose group isomorphisms 

4>B:B->B*,     <f>c:C -> C*. 

The mapping 

denned by 

4>: A -* A* 

< (6',c')^(6,c) >=< b',<f>(b)><<?,<j>{c) >,      6,6' Gß,   cy G C 

is a group isomorphism. Relative to ^ 

Since A/5 = B^ and A/^ = S, «frf = ^ and # = **•  In particular, in the notation of 

the previous chapter, we can take 

z(b') = &(?),    b*eB\ 
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which amounts to taking B as a complete system of ^-coset representatives in A. Under these 

assumptions, the CT FFT takes the form 

^/(6 + 6-L) = ^y^/,(5)(6 + 61),     6 €5,   ^G^. (50) 

Ftf(b+b^) = FtBMb)(b^     beB,   b^B\ (51) 

• Compute 

94>B{b)eL{B%    beB. 

• Compute 
F,BA9^))^L{B%     beB. 

The second stage is a collection of FT computations over BL.  We will see that the first 

stage is a collection of FT computations over B. By definition 

9Mb)(bL)=Y,f(b' + b±)<b'>^> 

b'eB 

which equals 

where 
fbX(b) = f(b + bL),    beB, b^eBK 

The precise statement of the stages of the GT can now be given as follows. 

GT algorithm 

• Form the slices 
Ax € L(B),     61 € B\ 

• Compute the collection of FT over B 

FtBfo € L(B),     bL e BL. 

• Form the functions 

g,B(b) e L{B%    beB. 

This step requires data transpose (or permutation). 
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• Compute the collection of FT over BL 

FKLgMb)eL(BL),     beB. 

• Set 
Ftf(b + bL) = FtB±9(t>B(b)(b^. 

This step requires data transpose (or permutation). 

E.5    Examples and implementations 

For applications to X-ray crystallography, we will take a 3D case to illustrate the theory pre- 

sented here. In particular, the smallest non-trivial case, Z/12 x Z/12 x Z/12 is used in many 

of the examples, while Z/3N x Z/3N x Z/6M and Z/2N, x Z/2iV2 x Z/2JV3 are used in the 

implementation for several natural numbers. 

In the all the examples, we will take the fixed isomorphism <f> given in Eq. (11). To simplify 

notation, especially in presenting covering subgroups, we will use the following definition and 

notation. 
Let A be a finite abelian group.  For a G A denote by < a >, the subgroup of A generated 

by a, 
< a >= {a,2a,Za,- ■ ■ ,(K - l)a}, 

where K is the smallest positive integer such that Ka = 0eA. K is called the order of a. 

E.5.1    RT algorithm 

Two forms of RT algorithm will be derived for A = Z/3 x Z/3 x Z/3. Using CRT, we will 

extend our current example to groups of the form 

Z/3 • 2N x Z/3 • 2^ x Z/6M 

for integers N and M. 

Example E.5 RT algorithm I for A = Z/3 x Z/3 x Z/3 

Set A = Z/3 x Z/3 x Z/3. The following 4 subgroups cover A. 

B^ =< (0,1) > xZ/3,     B$ =< (1,1) > xZ/3, 

£3
X =< (2,1) > xZ/3,     Bt =< (1,0) > xZ/3, 
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V(aua2,a3) = 1 for all (aua3la3) € A, except M(0,0,0) = 4. With respect to the isomorphism 

defined in Eq. (11), we have for b = 0,1,2 

£i=< (1,0,0) >,     B2 =< (1,2,0) >, 

53=< (1,1,0) >,     54=< (0,1,0) >. 

To index the periodizations, we will fix the coset representatives of A/Br, 1 < r < 3 and A/B4 

as follows. 

A/Br:    (0,0,0), (0,1,0), (0,2,0), 

(0,0,1), (0,1,1),(0,2,1), 

(0,0,2), (0,1,2),(0,2,2),      r = 1,2,3. 

A/B<:    (0,0,0), (1,0,0), (2,0,0), 

(0,0,1), (1,0,1), (2,0,1), 

((0,0,2), (1,0,2), (2,0,0) 

For ci, c2 = 0,1,2, 

/x(0,c1>oa) = i:/(6.ci»0»)' /2(0,c1>Ca) = i;/(6,26 + c1,c2)1 
6=0 b=0 

2 2 

/3(0,Cl,C2) = V/(6,6 + c1,c2),      /4(c1,0,c2) = ^/(c1,6,C2). 
6=0 b=° 

The collection of induced FT computations is implemented by the 4 independent 2D 3 x 3 

Fourier transforms. 

^/i(o,a1,o3)=i: E/i(o^^)c=|si(fliei+ttaC2)' 
c2=0ci=0 

C2=0Cl=0 

2 2 

Fj3/3(2ai,ai,a2) = £ E ^d^K 
C2=0c!=0 

L(aiC!+a2C2) 

2        2 
-2-7r-i(aici+a2c2) 

^4/4(ai,0,a2)=i;E/4(ci'0'c»)e  3 

C2=0c!=0 

Example E.6 RT algorithm II for A = Z/3 x Z/3 x Z/3 
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We list a collection of 13 covering subgroups along with their dual groups. Each of the covering 

subgroups is of order 3, while the dual group is a subgroup of order 9. For a = 0,1,2 and 

61,62 =0,1,2, 

Df = 

D} = 

Ax2 = 

^3 = 

{(a, 0,0)}, 

{(0,a,0)}, 

{(a,a,0)}, 

{(2a,a,0)}, 

{(2a,2a,a)}, 

{(0,a,a)}, 

{(0,2a,a)}, 

{(0,0,a)}, 

{(a,0,a)}, 

{(2a,0,a)}, 

{(a, a, a)}, 

{(2a, a, a)}, 

{(2a,a,2a)} 

A = {(0,61,62)} 

02 = {(&!, 0,&2)} 

JD3 = {(61,261,62)} 

D4 = {(6i,61,62)} 

£5 = {(6i,62,6i + 62)} 

D6 = {(61,63,262)} 

D7 = {(61,62,62)} 

^ = {(61,62,0)} 

^9 = {(6i,62,26i)} 

JDio = {(6i,62,61)} 

Dn = {(61,62,261 + 262)} 

A2 = {(6i,62,61+262)} 

Di3 = {(61,62,261+ 62)}. 

/x(ai,a2,a3) = 1 for all (ai,a2)a3) € A, except ^(0,0,0) = 13.   We will show 2 of the 

computations explicitly. The rest follows in exactly the same way. To index the periodizations 

with respect to DT, set 
A/D3: {(0,0,0), (1,0,0), (2,0,0)}, (52) 

A/D,: {(0,0,0), (0,0,1), (0,0,2)}. (53) 

Usually, coset representatives are not unique.   Note that although the collection in Eq.   (52) 

can be used as A/D5 as well as A/D3, Eq. (53) cannot be used for A/D3. For a,c = 0, 1, 2, 

2     2 

PerDJ(c,0,0) = £ ]T/(6i + c,26i,62), 
62=0 6i=0 

2 2 

PerDs/(0,0,c)= £ £/(M2,6i + 62 + c). 
b2 =0 6i=0 

—2-KX , 
i^3/3(a,a,0) = £/3(c,0,0)e^ 

c=0 

2 

F^5/5(2a,2a,a) = ]T/5(0,0,C)e 
c=0 
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Remaining cases follow in the same way, and the induced FT computations are implemented 

by 13 independent 3-point FT. 

The above two derivations-show uniform decomposition of a 3D problem into 2D and ID 

problems, respectively. However, the above two cases can be combined to provide various 

decompositions. 

■>N 
Example E.7 RT algorithm for A = Z/2iV x Z/2 

We will list a collection of covering subgroups of A and their dual subgroups of order 2^ by 

listing their generators. 

A is covered by the following 2N + 2N~X subgroups. 

Table E.l  Covering subgroups of Z/2N x Z/2 N 

0 < j < 2 N 

subgroup 

M2N+l 

generator 

(J, 1) 

(1,2/) 

dual group generator 

(-2M) 0 < / < 2N~l 

To organize the periodizations, we will set 

A/<(!,])>     :     <(0,1)>,     0<i<2iV, 

A/<(2/,l)>     :     <(1,0)>,     0<K2N-\ 

For 0 < c < 2 N 

2W-1 

PerBjf{0,c)=  ^mc+bj),     0<J<2N, 
6=0 

2W-1 

Pers2W+i/(c,0)= J2f(c + b,2bl),     0<l<2 
6=0 

N-l 

The collection of induced FT is implemented by 2^ + 2N~' independent 2^-point FT com- 

putation. 
For the dual RT algorithm, we list the values of the function /z on A with respect to the 

collection of covering subgroups given in table E.l. 

Denote by U0 the multiplicative units of Z/2   , i.e., 

U0 = {a£Z/2N :a = l  mod  2.}. 

For 1 <n< N-l, Set 
Un = {aeZ/2N:GCD(a,2N)=2n} 
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Then 

For an € Un, an ^ 0, 

171 

Z/2N = U^Un. 

ß{anj,an) = 2n,     0 < j < 2   , 

Ai(on,2an0 = 2B,     0</<2^v-1, 

/x(0,0)=2iV + 2N-1. 

Let B be the collection of covering subgroups of Z/2* x Z/2^ given in table E.l. For B € 5, 

compute 

To index the induced FT computations, we will fix A/B1-coset representatives, 

A/<(-l,j)>:<(0,l)>,     0<J<2N-l, 

A/<(-2/,l)>:<(l,0)>,     0</<2 N-l -1. 

The collection of induced FT computation is implemented by 2N + 2*"1 independent 2   -point 

FT. To complete the computation of Fh we use the periodicity 

Fl(Dec%f){a + BL) = F*2(Dec»Bf)(a) 

and the formula 

F*f = E F^DecBV- 

Example E.8 Hybrid RT/GT algorithm 

Set A = Z/3 • 2N x Z/3 • 2N for a natural number N. By the fundamental theorem, 

A-Ai* A2, (54) 

where Ax = Z/2" x Z/2iV and A2 = Z/3 x Z/3. The subgroup 

B= {(o^a.aaei) <E A:0 <ai,a2 < 2} 

is isomorphic to Ai, while 

BL = {{nle2,n2e2) € A : 0 < ni,n2 < 2N - 1} 

# 
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is isomorhic to A2, where t\ and e2 are the idempotents associated with the isomorphism in 

Eq. (54). We have 

A = BxB1. 

Using GT algorithm, we can compute FA by computing FAl followed by FM. The induced FT 

computations FAl and FA2 are implemented by RT algorithm. 

Example E.9  Covering subgroup computation via CRT 

Covering subgroups and their dual subgroups for A2 are given in the following table. 

Table E.2  Covering subgroups ofZ/3 x Z/3 

k subgroup generator dual group generator 

0 Lo (0,1) (1,0) 

1 lx (1,1) (2,1) 
2 L2 (2,1) (1,1) 
3 L3 (1,0) (0,1) 

Ai x A2 is covered by 

while dual subgroups are given by 

{AiXLt : 0 <j < 3}, 

(0,0) xLk} : 0<k<3}. 

We can also decompose A\ into covering subgroups. To see this, let N — 2. 

Table E.3  Covering subgroups of A\ = Z/4 x Z/4 

j subgroup generator dual.group generator 

0 Mo (0,1) (1,0) 

1 Mx (1,1) (3,1) 

2 M2 (2,1) (1,2) 

3 M3 (3,1) (1,1) 
4 M4 (1,0) (0,1) 

5 Ms (1,2) (2,1) 

The idempotents in this case are e\ — 9, e2 = 4 and the collection 

BJ;k = 9MJ
L + 4Li,     0 < j < 5,   0 < k < 3, 

of 24 subgroups covers A. Each subgroup has order 12, given in table E.4 on the next page. 



173 
Group Invariant FFT 

E.5.2    CT FFT algorithm 

Example E.10  CT algorithm for Z/12 

Setw = e^. Far f e L(Zfl2), 

a=0 

For B =  {0, 4, 8}, ^ = {0, 3, 6, 9}, relative to rf defined in Eq.    (11).   Generalized 

periodization of / gives rise to 3 functions 

/o.(a) = /(a) + /(a + 4) + /(a + 8), 

/4.(a) = f(a) + w4f{a + 4) + wsf(a + 8), 

/8.(a) = /(a) + ^/(« + 4) + u>V(« + 8)-      a G Z/12" 
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Table E.4  Covering subgroups o/Z/12 x Z/12 

j,k subgroup generator dual group generator 

Boto (0,1) (1,0) 

B\:o (9,1) (7,9) 

#2,0 (6,1) (1,6) 

-63,0 (3,1) (1,9) 

-64,0 (9,4) (4,9) 

-65,0 (9,10) (10,9) 

-#o,i (4,1) (5,4) 

£1,1 (1,1) (H,l) 

-62,1 (10,1) (5,10) 

£3,1 (7,1) (5,1) 

#4,1 (1,4) (8,1) 

5S,i (1,10) (2,1) 

Bo,2 (8,1) (1,4) 

B\,2 (5,1) (7,1) 

B2,2 (2,1) (1,10) 

-^3,2 (11,1) (1,1) 

BA,2 (5,4) (4,1) 

#5,2 (5,10) (10,1) 

-So,3 (4,9) (9,4) 

-Si ,3 (1,9) (3,1) 

#1,3 (10,9) (9,10) 

-#1,3 (7,9) (9,1) 

-^4,3 (1,0) (0,1) 

#5,3 (1,6) (6,1) 

0,0 

1,0 

2,0 

3,0 

4,0 

5,0 

0,1 

1,1 

2,1 

3,1 

4,1 

5,1 

0,2 

1,2 

2,2 

3,2 

4,2 

5,2 

0,3 

1,3 

2,3 

3,3 

4,3 

5,3 

By Eq. (46), fb*{o) needs to be computed only on a set of 5-coset representatives, say, 

{0, 1, 2, 3}. Thus the periodization is usually implemented by 4 independent 3-point Fourier 

transform of the strided values of /. 

Choosing 
z(0*)=0,   *(4*) = 1,   z(8') = 2, 

go'{a) = /o*(a), 
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04.(a) = /4-(a)M(l))=/4-(aK, 

g8.(a) = /8.(a)(a, #2)) = fs*(a)w2\     a € Z/12. 

(a,(f)(z(b*))} is the so-called toicW/e /actor . 

The quotient group A/B contains 4 elements, B, 1 + B, 2 + 5 and 3 + B. Via the homo- 

morphism fa and the ^-periodicity of gb., we have 

Ftf(z(r) + bL)   =   i^*(0 

a=0 

3 

^X^a,^1)). 
a=0 

Since bx = 36> for some 6 € A and w3 = e=^, the computation of F* is completed by the 3 

independent 4-point Fourier transform of #,., 6* € 5*. 

Example E.ll Multidimensional CT FFT 

A = Z/2Nr x Z/2iV2 x Z/2W3. 

5   =   {(0,0,0),(M,0,0),(0,^V2,0),(M,^2,0), 

(0,0,N3),(N},0,N3),(0,N2,N3),(NuN2,N3)} 

=   {{b1N1,b2N2,b3N3) :6n = 0orl,n = 1,2,3}. 

Label the elements of B by bk, 0 < Ä; < 7 in the order given above. 

Table E.5   Va/ues on B of characters of A. 

(55) 

bo K b\ bl K K bl b; 

&0 1 l 1 1 l 1 1 l 

h 1 -l 1 -1 l -1 1 -l 

b2 1 l -1 -1 l 1 -1 -l 

b3 1 -l -1 1 l -1 -1 l 

h 1 l 1 1 -i -1 -1 -l 

h 1 -l 1 -1 -l 1 -1 l 

be 1 l -1 -1 -i -1 1 l 

b7 1 -l -1 1 -l 1 1 -l 
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Note that the matrix of values of the characters in table E.5 is 

F{2)®F{2)®F{2), 

where ® denotes the matrix tensor product and F{2) denotes the 2-point FT matrix, 

F(2) = 
1       1 

1    -1 

By Eq. (46), we need to compute /k. on a set of 5-coset representatives, say, 

C = {(^,02, a3) : 0 < a3 < N3 - 1, j = 1,2,3}. 

Order C antilexicographically Denote by f0, the vector of values of / on C listed in order by 

the ordering of C. Similarly, define the vectors ffcl 0 < k < 7 by listing the values in order of 

C, 
fk = l/(c + h)],   cec. 

Then the periodization is obtained by the matrix operation, 

= (F(2) ® /*, ® ^(2) ® 7JV2 ® ^(2) ® W 

fo 

fi 

f2 

fs 

u 
u 
u 
f7 

where IK denotes the K x K identity matrix. 

BL = {(2ai,2a2,2a3) : 0 < ax < N3 - 1, ; = 1,2,3}. 

With the following choice of £x-coset representatives, 

^60.) = (0,0,0),   s(M = (M,0),   ^2«) = (0,1,0),   *(M = (1,1,0), 

z(64.) = (0,0,1),   z(65.) = (1,0,1),   «(6B.) = (0,1,1),   *(M = (M>1)- 
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Sb*0 k 
gb't k 
gb* k 
g6- 

g&4* 
= [T] k 

k 
g6- k 
S&6* k 

.   g67*    . [kl 
where T is the SN1N2N3 x 8NXN2N3 diagonal matrix whose entry at position a1a2a3 + kN1N2N3 

is 

<(aua2,a3),z(bl)>,     0 < * < 7. 

Since 
A/B ~ ß1 ~ Z/W x Z/iV2 x Z/N3, 

the induced FT is of size M x iV2 x iV3 applied to the 8 independent functions gK, 0 < k < 7. 

E.6    Affine Group RT Algorithms 

E.6.1    Introduction 

A class of affine group RT algorithms will be constructed which act on data / € L{A) invariant 

under the action of affine subgroups X < Aff(A). The effect will be two-fold. 

• reduction in the number of required induced FT computations. 

• the induced FT computations will be on data invariant under a collection of subgroups 

of X. 

For x € Aff{A), we define two actions on L(A). 

xf{a) = f{xa), 

x*f{a) = < ax,<f>(afa) >f{a*a). 

(56) 

(57) 

The first main result we have is 
Theorem E.8 

F*{xf) = x*F+(f). 
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Proof 

a£A 

a£A 

=    £/(a) <<1(a-^)^(c)> 
a€A 

=    < aj1^, ^(c) > 2 /(a) < axlß> <^(c) > 
a&A 

=   x*F<t>{c). 

Corollary      / is z-invariant if and only if F+f is :r#-invariant. 

RT algorithms provide a general framework for computing the FT of data invariant under 

affine subgroups. We begin with data invariant under point groups. 

E.6.2    Point group RT algorithm 

Choose a dual covering B of A. The RT algorithm computes F*f, f G L(A), by the collection 

of induced FT computations 

F»PerBf,     BeB. 

We will now describe how to modify this form of the RT algorithm when / is invariant under the 

action of a point group H < Aut{A). This invariance will reduce the number of required induced 

FT computations to a set of induced FT computations on data invariant under subgroups of 

H. 

Suppose / in ^-invariant. Choose a dual covering B invariant under H, 

h{B) £B,h£H,BeB. 

The collection of dual subgroups BL is invariant under H* and we can choose a subset B0 C B 

such that Bfr is a complete system of ##-orbit representatives in BL. Since / is H invariant, 

Ftf is ##-invariant and it suffices to compute the the following collection of induced FT. 

F*(PerBf),     BeB0. (58) 

This has the effect of reducing the number of induced FT required to complete the computation. 

The periodized data PerBf, B G Bo inherits some of the data redundancy of /.   For a 

subgroup B < A, define 

HB = {heH:h{B) = B}. 
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HB induces a group of automorphisms of A/B by 

h(a + B) = ha + B,     heHB,   a G A. 

Theorem E.9 /// is H-invariant and B is a subgroup of A, then 

PerBf{ha) = Perh-HB)f{"),     a e A>   h e H' 

In particular, PerBf € L(A/B) is HB-invariant. 

By the theorem, the induced FT in Eq.( 58) is computed on ^-invariant PerBf, B € B0. To 

make full use of the tf-invariance of / we must supply code which makes full use of this HB. 

In crystallogrphic applications we can choose B such that A/B is 1-D or 2-D. Standard point 

group FFT algorithms can be applied in the ID case (see appendix). 2D point group invariant 

FFT algorithms have recently been implemented using variants of Winograd's multiplicative 

FFT  [3,5]. 

tf-invariant RT algorithm Choose a dual covering B of A invariant under H and a complete 

system of if-orbit representatives B0 in B. 

• Form the periodizations 
PerBf e L{A/B),     B e B0. 

• Compute the HB-invariant induced FT's 

F*(PerBf),     Be B0. 

• Compute 
F*(PerBf),     BeB, 

by ii^-invariance. 

Example E.12 PQ-invariant RT algorithm I 

Set 
A3 = Z/6M,     A = Z/3 • 2" x Z/3 • 2^ x A3, 

for integers JV and M. Using the Chinese remainder theorem, we can write A as 

(eiAi + e2A2) x A3, 
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where Ax ~ Z/2'v x Z/2N and A2 ^ Z/3 x Z/3.   A is covered by the following collection of 

subgroups, where Lk, & = 0, 1, 2, 3 are given in table E.2. 

B£ = eiAi + e2L^ x A3. 

Bk = {(0,0)} + e2Lkx{0}. 

P6*(ftf) = {B£,Bt,B£}    P6*(Bt) = {B2
L}, 

and {B£ : 0 < k < 3} is a P6#-invariant covering of A. Hence for P6-invariant / e L(A), we 

need to compute FAf only on BQ and B2
X. 

f0 = PerBo,     f2 = PerBJ- 

To index the periodization, set 

A/BT : Ai + e2L±,     r = 0,1, 

A/Jßs:A1 + e2L4
1,     5 = 2,3. 

For 0 < ni,n2 < iV - 1, 0 < A; < 2, 0 < m < 6M - 1, 

2 

/o(eirai + e2k, txn2, m) = Y, /(eini + e2fc, ein2 + e2a, m), 
a=0 

2 

/2(eini, ein2 + e2fc, m) = £ /(eini + e2(^ + 2a)' ein2 + e2a'm^ 
a=0 

/o(a3(eini + e2A;,ein2,m))    =   /i(-eini - e2k, -ein2,m), 
2 

=    ^/(-eini-e2fc,-ein2.+e2a,m), 
a=0 

2 

=    X]/(eini + e2&,ein2 - t2a,m), 
a=0 

=    /i(exni+ e2fc,e1n2,m), 

/2(a(ein1,e1n2 + e2fc,m))   =   /3(-ei«2, ein2 + e2fc - ein2,m) 
2 

=   ]T f{-exn2 + 2e2a, ein2 + e2A; - ein2 + e2a, m) 
a=0 

2 
=   'Yf(eini + e2k + 2e2a,ein2 + e2a,m) 

a=0 

=   /3(e1ni,ein2 + e2fe,m) 
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P6ß0 = P6ßl = PQBi = {1, a3} = ^2,     P6ß2 = P6. 

The induced FT computations F^° and i^2 are made on P2 and P6 invariant data, re- 

spectively. 

Example E.13 P6-invariant RT algorithm II. 

We can further reduce invariance condition on the periodized functions by applying RT on 

Av To this end, we will set Ax = Z/4 x Z/4, and use the covering subgroups that are given in 

table E.4. The collection 

B = Dfth = Bf* x A3,     0<;<5,   0<k<3 

covers 
Z/12 x Z/12 x A3. 

The dual subgroups are given by 

DM = Bjtk x {0},     0<j<5,   0<k<3. 

Let a*Mj x A3 = Mj< x A3 and a*!* x A3 = Lk> x A3. Then we have 

c*# ((eiM,- + e2Lk) x A3) = (eiAfy + e2Lk.) x A3. 

Thus to compute the P6#-orbit decomposition of B, we first decompose the collections {M,- x 

A3 : 0 < j < 5} and {Lk x A3 : 0 < k < 4} independently, then place the decomposition into 

B by CRT. 

Table E.6 PQ*-orbit decomposition of subgroups in Z/4 x Z/4 

(0,1) a#(0,l) = (3,l)            «#(3,1) = (3,0) 

<(0,1)> '      <(3,1)> <(3,0) >=<(1,0) > 

Mo M3                               M4 

(1,1) «#(1,1) = (3,2)            «#(3,2) = (2,1) 

<(1,1)> < (3,2) >=< (1,2) >             <(2,1)> 

Mx Ms                                 M2 
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Table E.7 P6*-orbit decomposition of subgroups in Z/3 x Z/3 

(0,1)       -    a#(0,l) = (2,l) a*(2,l) = (2,0) 

<(0,1)> <(2,1)> < (2,0) >=< (1,0) > 

U L2 L 3 

(1,1) a#(l,l) = (2,2) 

<(1,1)>   < (2,2) >=< (1,1) > 

We have the following P6#-orbit decomposition of A. 

Pf>*{Dbo) = Pio^AU ^#(^o) = {VtoMvD&h 

PQ*(Di0) = {Dit0,Dtt2,Dtfl}, PQ*(Dio) = {Dto,Dt»Dtßh 

P6*(D$fi) = {Dtfl,D£i2,Dtflh PS*(Dto) = {Di0,Di2,Df}3}, 

P6*(D^) = {D^D^D^h PG*(D&) = {^i.^i^iJ 

We will choose as P6#-orbit representatives, 

Bo = {Di0, Dtfi, £>io, D$fi, ^io, Dtfl1 D^DtJ. (59) 

It is easy to show that the periodizations of P6-invariant / € L{A) with respect to the duals of 

the above P6#-orbits representatives are P2-invariant, and the induced FT computations are 

made on this invariant data. 
Let / be the FT of a P6-invariant function / € L{A). f on Djtk G Bo is determined by the 

induced FT of P>i)fc-periodized function /Dj.fc. By the P6#-invariance of /, for example, / of 

DQQ determines / on D32 and / on D^3. 

/(0,l,m) = /(ll,l,m) = /(l,0,m), 

(0,l,m) £ D^,   (ll,l,m) e D£t2,   (ll,0,m) E Di>3. 

Example E.14 P3-invariant RT algorithm 

Crystallographic group P3 is generated by o:2. Since P3 is a subgroup of P6, P6#-invariant 

covering of 
Z/12 xZ/12 x A3. 
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is also PS-invariant. In fact, the P3#-orbits and the P6#-orbits of the covering subgroups are 

the same. Thus as in the case of P6, the induced FT's are computed only on the collection B0. 

However, the periodized functions have only the trivial invariance, and symmetry specific FT 

routines are not required. 

Example E.15 Pß/mmm-invariant covering for Z/12 x Z/12 x A3. 

The above two examples lead to the following unifying strategy. 

Choose a point group H that contains sufficiently many subgroups. Since H*- 

invariant covering is invariant under any subgroup K* < H*, for K-invariant 

data, RT algorithm proceeds by disabling the computations except on the K*-orbit 

representatives. 

As an example, we will consider the crystallographic Pß/mmm which contains all the trigo- 

nal and hexagonal point groups, which comprises 16 of the 53 3D crystallographic point groups. 

P6/mmm*(Difi) = {^^2X3,^0,^2X3}, 

P6/mmm#(Dio) = {^0,^2,^3,^0,^2,^3}, 

P6/mmm*(D^0) = {D^Q,D^2, D^}, 

PQ/mmm*(D^0) = {^0,^2,^3}, 

P6/mmm*(D^) = {D^D^D^}, 

P6/mmm*{Dttl) = {D^Dttl,D^}. 

A collection P6/mmm#-orbit representatives is 

{^0,^0,^0,^0,^1,^1} 

and the computation is required only on this collection of subgroups for a P6/mmm-invariant 

functions. To simplify notation, set Hjlk = PQ/mmmDi.y the invariant group of the Dfy 

periodized functions. 

#0,0 = #2,0 = #o,i = #1,1 = {l,c*3,/3,a3/?,7,a37,/?7,«3/37}- 

#li0 = #3,o = {l,a3,7,a37,}- 

The induced FT computations are made on the #0,0 or ^-invariant functions. 
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Example E.16  Implementation of RT with respect to P6/mmm 

A = Z/3 • 2N x Z/3 • 2^ x Z/6M. 

By the fundamental theorem, 

A ~ Z/2N x Z/2N x Z/3 x Z/3 x Z/3 • 2M. 

Let ei and e2 be the system of idempotents associated with the isomorphism 

Z/3 • 2^ ~ Z/2^ x Z/3 

and again set A3 = Z/6M. 

V = {exLi + e2Mf) x A3, 

where Lj; and Mf are collection of covering subgroups in Z/2N x Z/2JV and Z/3 x Z/3, 

respectively as listed in tables E.2 and E.l. For easier reference, we repeat the tables here. 

Table E.l    Covering subgroups of Z/2N x Z/2 

0 < j < 2N 

0<l< 2N~X 

subgroup 

M2N+l 

generator 

(J,l) 

(1,20 

dual group generator 

(-2/,l) 

We will denote this collection by B. 

Table E.2    Covering subgroups of Z/3 x Z/3 

k 

0 

1 

2 

3 

subgroup 

Lo 

Li 

Li 

generator dual group generator 

(0,1) (1,0) 

(1,1) (2,1) 

(2,1) (1,1) 

(1,0) (0,1) 

It is straightforward show that V is a P6/mmm#-invariant dual covering of A. We will give 

the P6/mmm#-orbit decomposition of V. Recall ß* = ß and 7* = 7. 

P6/mmm#-orbit structure in Z/3 x Z/3 is the same as that of P3#, since actions by ß or 

7 does not change the orbit structure. 

P6/mmm#(Lo) = {Lo, L2, L3},     P6/mmm#(I1) = {Li}. 
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ß{L0) = L3,   ß{Ll) = Ll,   ß(L2) = L2. 

P6#-orbit of < (j, 1) >, 

PQ* < (;, 1) >= {< (j, 1) >, < (-1,; + 1) >, < {-j - W) >} 

contains three distinct subgroups. To see this, note first 

<(-l,j + l)> = <(l,-j-l)>, 

< (-i-i,i) >=< (r\-j - !),!)>■ 

As j ranges through U0, J~lH - 1) ranges through Z/2* - U0, and -j - 1 ranges through 21, 

0 <l< 2N~l - 1. In fact, we have the following partitioning of B into P6#-orbits. 

U {< (j\ 1) >> < H'-? + !)>»< H - ^ >>• 
i6t/o 

/? maps < (j, 1) > onto < (1, j) >. We will show that there are exactly 4 subgroups of the form 

< (j, 1) > with j G U0 that are /^-invariant. Suppose 

< (i, i) > = < (i,i) > = < O'"1, i) > - 

Then j2 = 1 mod 2". j G U0 can be written as 2/ + 1, 0 < / < 2N~l - 1.  In terms of I, the 

following congruences hold. 

(2/ + l)2=4/2 + 4/ + l   =   1   mod2N. 

4/(/ + l)   =   0   mod2N. 

1(1+1)   =   0   mod2N-\ 

The last congruence has exactly 4 solutions for 0 < / < 2  -1 - 1, 

; = o, 
l = 2N~2-l, 

I = 2N-\ 

1 = 2^-1, 

j = 2*"1 - 1, 

j = 2N~' + 1, 

j = 2"-l. 

Partitioning of £ into P6/mmm#-orbits is given below. 

• 1 < j < 2"-1 - 3, 

{ < (2j + 1,1) >, < (-1,2; + 2) >, < (~2j - 2,2j + 1) >, 

< (l,2j + !)>,< (2j + 2, -1) >, < (2j + 1, -2j - 2) >}, 
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. { < (1,1) >, < (-1,2) >, < (-2,1) >}, 

{ < (2*-1 - 1,1) >, < (-1,2^) >, < (-2^,2^ - 1) > }, 

{ < (2"-1 + 1,1) >, < (-1,2*"1 + 2) >, < (-2JV-1 - 2,2""1 + 1) > }• 

{< (-1,1) >,< (-1,0) >,< (0,-1) >}• 

There are 2N~l P6/mmm#-orbits in B, 4 of which contain 3 subgroups. Action by 7 does not 

change the orbit structure. 

We list two examples of P6/mmm#-orbits in V. 

Set l = 2j + l. From the orbit of < (/, 1) > in B and L0, we obtain 

< (eiZ, 1) > xA3,     < (-ei + 2e2, exl + e2) > xA3, 

< {-etl + e2, exl) > XA3,      < (1, eiO > x/L3, 

< (exl + 2e2, -ex + e2) > x A3,      < {etl, -exl + e2) > x A3. 

from the orbit of < (1,1) > and L0, we obtain 

<(ei,l)> xA3,      <(-e1 + 2e2,e1 + l)> xA3l      < (-2d + e2, ei) > xA3. 

In V, there are 4 • • • 2JV~1 P6/mmm#-orbits, 4 of which contain 3 subgroups, the rest contain 

6 subgroups. 

For completeness, we list the values of idempotents. 

(1) If 2N = 1   mod 3, then 

ex=2N+1 + h     e2 = 2" 

(2) If 2N = 2  mod 3, then 

e1=2iV + l,     e2 = 2*+1. 

Choose a P6/mmm-invariant function / € L(A). By the invariance, the induced FT com- 

putation only on a collection of JP6/mmm#-orbit representatives determines the FT of /. As in 

example 6.4, the periodized functions are invariant under one of the two subgroups of P6/mmm, 

tfoo, or Hxo- Specifically, a periodized function fD is ^-invariant if the P6/mmm* orbit 

of D contains 6 subgroups, while fD is ^-invariant if the PQ/mmm* orbit of D contains 3 

subgroups. 
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E.6.3    Affine group RT algorithm 

Choose a subgroup X of Aff{A) and denote the point group of X by X-   For X-invariant 

/ e L(A) we have 

F4>f{a*a)=<ax,d>{a*a)>F<pf(a))     a e A,   x G X. (60) 

.# .# 

a. 

F+f is not invariant under X    but F^f(a) determines F+f at each point in the X  -orbit of 

Choose an X-invariant dual covering B of A and a complete system B0 of X-orbit represen- 

tatives in B. B^ is a complete system of X representatives in the covering Bx of A. In the 

presence of X-invariance, the RT algorithm can be implemented by first computing the induced 

FT 
F*(PerBf),     Be Bo- 

The remaining induced FT computations can be determined by complex multiplications im- 

plied by theorem( E.8). The X-invariance of / reduces the number of required induced FT 

computations. 

For any subgroup B < A, define 

XB = {x e X : ax{B) = B). 

XB is a subgroup of X and acts on L(A/B). 

Theorem E.10 /// is X-invariant then PerBf € L(A/B) is XB-invariant. 

By the theorem the induced FT computations 

F*(PerBf),      Be Bo 

are taken on Xß-mvariant data. To make full use of the X-invariance of / we must provide 

code which make full use of the Xß-invariance of FerBf, B € So- In 1 or 2-D, affine group 

invariant FFT algorithms are substantially simpler due to the restricted class of 1 or 2-D affine 

group actions (see appendix). 
X-invariant RT algorithm      Choose an X-invariant dual covering B of A and a complete 

system B0 of X-orbit representatives in B. 

• Form the periodizations 

PerBf e L(A/B),     B e Bo. 
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Compute XB-invariant FT 

F*(PerBf),      BeB0. 

• Compute 

byEq. (60). 

F»(PerBf),     BeB, 
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Example E.17 Affine group-invariant RT 

There are 5 affine crystallographic groups whose point group is P6. 

Table E.8 Affine groups with point group P6 
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group generator 

P61 (0,0, M, a) 

P62 (0,0,2Af,a) 

P63 (0,0,3M,a) 

P64 (0,0,4M, a) 

PQs (0,0,5M,a) 

RT algorithm proceeds as in the case of P6. Now the invariance condition on FT is given 

by Eq.( 60). For 0 < / < 5, a P6;-invariant / € L(A), the induced FT of the Z^-periodization 

of / determines / on Dfk € B0. To determine / on P6#-orbits of Dfk set 

< (Cl,c2,c3),^(0,0,M) >= w = exp^. 

f(c1,c2,c3)   =   u;C3'/(«#(ci,C2,c3)) 

=   w2c>lf((a2)*(ci,C2,c3)) 

=     ^;/((«3)#(c1;C2,C3)) 

=   w^lf((a4)*(Cl,c2,c3)) 

=   w5c3lf((a5)*(Cl,c2,c3)),     l</<5. 

1 </<5. 

The group that contains all of the 48 tetragonal crystallographic groups is P4/mmm. As 

in the case of P6/mmm, once a P4/mmm#-invariant covering subgroup is partitioned into 

P4/mmm#-orbits, a code for the RT algorithm with respect to this partitioning contains codes 

for FT computation of functions invariant under subgroups of P4/mmm. 

One can also choose a group that contains all the crystallographic point groups; This group 

need not a crystallographic group. 

E.6.4    X#-invariant RT algorithm 

Consider a subgroup X of Aff(A). In many applications we will have to compute the inverse 

FT of X#-invariant data.  Up to index reversal, this problem is equivalent to computing the 
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FT of X#-invariant data. We will embed this problem in the second form RT algorithm. In 

problems requiring several stages of FT and inverse FT, it makes sense to follow the first form 

RT algorithm which outputs decimated data by the second form RT algorithms which inputs 

decimated data and conversely, removing the necessity of data rearrangement steps at each 

cycle. 

In the second form of RT algorithm we compute F+f, f G L(A) by first computing the 

collection of induced FT 

F*2(DecBf),    BeB. 

Theorem E.ll For a subgroup B < A, if f G L(A) is X*-invariant, then 

Ft(DecBf)(-a) = F^(Deca#Bf)(-xa),     a G A, x G X. (61) 

Proof 

Ft(DecBf)(-c)   =   £/(6)<M(c)> 

665 

b€a*B 

=   F^(DecafBf(-xc). 

.# •* 
Choose an X  -invariant covering B of A and a complete system B0 of X  -orbit represen- 

tatives in B. It suffices to compute the collection of induced FT 

F*(DecBf),BeB0 

The remaining induced FT computations can be computed from the theorem. 

Set 

XB = {xeX: ax{B) = B}. 

.# 
Theorem E.12 For X*-invariant f G L(A) and B < A, DecBf is X   -invariant. 

DecBf{b) = <ax,<f>{a*b)>DecBf(a*b),     beB,xeXB. 

In 3D crystallographic applications, specialized routines as described in the preceding two 

subsections can be applied to these induced FT computations. 
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E.7    Implementation Results 

We have implemented symmetrized 3D crystallographic FFTs for the case of P6 symmetric 

data. The data is assumed to be defined on the Z/3/V x Z/3iV x Z/6M lattice, where N and 

M are powers of two. 

Algorithm 1 

1. Use CRT to re-index the data set such that the problem is transformed to an equivalent 

5D computation: 

Z/37V x Z/3N x Z/6M —♦ Z/3 x Z/3 x Z/N x Z/N x Z/6M. 

Although this step is computationally expensive, involving irregular accessing of the data 

stored in the main memory, it should be noted that in many applications where a large 

number of iterations of the forward and inverse FFT are required, the CRT re-indexing 

can be carried out only once and then the optimization can be performed in the 5D 

domain. 

2. Apply the RT algorithm to the Z/3 x Z/3 to compute the periodized data on two out of 

the total four subgroups. The periodization results in two distinct data sets, A\ and A2, 

each defined on Z/3 x Z/N x Z/N x Z/6M. 

3. Perform two 4D FFTs on the data sets A\ and A2 to implement the induced FT. The sets 

A-i and A2 are P2 and P% symmetric correspondingly, such that efficient symmetrized 

FFT code can be used for the computations. 

If symmetrized FFT code is not used in step 3, the computational savings are roughly in the 

order of 1/2. In Figure E.l we plot the speedup over the non-symmetrized FFT versus the size 

of the data set. 
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Figure E.l Speedup of the PQ symmetrized FFT over the non- 

symmetrized FFT versus the data size. Symmetrized RTA on Z/3 x Z/3. 
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The second implementation results in even more speedups over the non-symmetrized FFT: 

Algorithm 2 

1. Use the CRT to re-index the data set such that the problem is transformed to an equiv- 

alent 5D computation: 

Z/3iV x Z/3N x Z/6M —► Z/3 x Z/3 x Z/N x Z/N x Z/6M. 

2. Apply the RT algorithm on Z/3 x Z/3 x Z/N x Z/N and compute the periodized data 

on one third of the total 4 x (3/2)N subgroups. The periodization results in 2N distinct 

data sets, each defined on Z/6M. 

3. Perform 2N independent ID FFTs on data of length QM. These distinct data sets are 

P2 symmetric, so that efficient P2-symmetrized FFT code can be used. 

If symmetrized FFT code is not used in step 3, the computational savings are roughly in the 

order of 1/3. In Figure E.2 we plot the speedup over the non-symmetrized FFT versus the size 

of the data set. If P2 symmetrized FFT code is used, the computational savings are roughly in 

the order of 1/6 which is the theoretical maximum since the original data are P6 symmetric. 

Figure E.2 Speedup of the P6 symmetrized FFT over the non- 

symmetrized FFT versus the data size. 
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The P6 symmetrized RT algorithm based FFTs share the highly parallelizable structure of 

the general RT algorithm. A variety of choices of a multiprocessor algorithm are available al- 

lowing for efficient implementations depending on the characteristics of the particular platform. 

Consider for example Algorithm 1. If two processors are available and all of the 2 • 3 • N ■ N ■ 6M 

data set is stored in each processor, no-interprocessor communication is needed since each pro- 

cessor can independently compute the periodization and 4D FFT. If only half of the data is 

stored in the memory of each processor, then in order to compute the periodizations, each pro- 

cessor has to send its data to the other, resulting in a total amount of communication (number 

of processors x size of messages) equal 2 • 3 • N ■ N ■ 6M. 

If P > 2 processors are available, the data can be divided along the last dimension into sets 

of size 2-3- N ■ N ■ 6M/P, each set being stored into the local memory of one processor. After 

the computation of the periodizations, each processor keeps 3 • N ■ N ■ 6M/P of local data, 

and then performs local FFTs along the first three dimensions. To complete the computation, 

FFTs along the last dimension have to be performed. Since the data are distributed among the 

processors along the last dimension, a global transposition is required: Each processor keeps 

1/P of its local data, and sends (P - 1)/P data to other processors. The total communication 

requirements are then: (P - 1) x local data size = (P - 1) x 3 • N ■ N ■ 6M/P. In an alternative 

implementation, P processors are being divided into P/2 clusters of two processors, with local 

data being duplicated within each cluster. In this implementation, each node stores twice as 

many data as before, but the efficiency can be increased in certain multiprocessor networks 
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since now the global transposition step is replaced with two independent global transpositions 

each involving only P/1 nodes. 

E.7.1    Complexity 

E.7.2    Row-Column Algorithm 

Set 

A = Z/3N x Z/3JV x Z/3M. 

The computation of the 3D FT using conventional row-column algorithm of processing the data 

dimension at a time on many parallel systems pays considerably higher price on interprocessor 

communication than FT computation. RT algorithm offers an alternate data movements in 

MD FT computation. We list some performance results here. 

GT/RT algorithm I 

Using CRT, 

A ~ Ai x A2 = (Z/3 x Z/3) x (Z/3 x Z/N x Z/N x Z/Af). 

Data reduction (periodization) stage costs 4 x 2 x 3N2M additions, which can be combined 

with data loading operation in a broadcasting mode; on some parallel systems it is given for free. 

In a 4 processor system, each processor carries out 2 x ZN2M additions, while receiving input 

data, followed by a local 5D 3 x 3 x N x N x M. FT computation. This algorithm eliminates 

interprocessor communication completely, and each processor has balanced load with uniform 

computation format. 

E.7.3    GT/RT algorithm II 

A ~ Ay. x A2 = (Z/3 x Z/3 x Z/3) x (Z/N x Z/N x Z/Af). 

In this decomposition, each processor carries out (2 x 3) x N2M additions to implement 

periodization while receiving input data, followed by a local 4D3xiVxJVxAfFT computation. 

This decomposition is well suited on a 13 processor system. Both reduction and FT computation 

are carried out in parallel. 

The RT algorithms I and II show uniform decomposition of a 3D problem into subsets. The 

combination of RT algorithms with other fast algorithms will provide a highly scalable feature 

that can be matched to various degrees of parallelism and granularity of a parallel system. 
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The RT algorithm partitions input data at the global level to match each subset into node 

processors, carrying out loading and reduction operations concurrently at each node, then FT 

computations are performed in parallel. 

In tables E.9, E.10, timing results on the Intel iPSC/860 with 4 and 8 node implementations 

are given. The timing results of the next power of 2 sizes of Intel FFT library are also included 

for comparison. (Non-power of 2 routines are not available in the standard library.) The 

GT/RT algorithm I was implemented on the 4-node hypercube architecture. 

The periodization (reduction stage) is coded in standard Fortran whereas the FFT and 3- 

point FT calls on the Kuck & Associates optimized assembly routines and our own vectorized 

3-point FT routines respectively. 

Table E.9  Timing Results on iPSC/860 (3-D) (4-nodes) 

GT/RT (4-nodes) Row-Column (4-nodes) 

size time size time 

48 x 48 x 48 360 ms 64 x 64 x 64 566 ms 

48 x 48 x 96 572 ms 64 x 64 x 128 1122 ms 

48 x 96 x 96 980 ms 64 x 128 x 128 2202 ms 

Table E.10  Timing Results on iPSC/860 (3-D) (4-nodes) 

GT/RT (4-nodes) Row-Column (8-nodes) 

size time size time 

48 X 48 X 48 360 ms 64 x 64 x 64 282 ms 

48 x 48 x 96 572 ms 64 x 64 x 128 585 ms 

48 x 96 x 96 980 ms 64 x 128 x 128 1152 ms 

96 x 96 x 96 2029 ms 128 x 128 x 128 2276 ms 

E.8    Affine group CT FFT 

The global decomposition stage of a CT FFT algorithm computes pseudo-periodizations relative 

to a subgroup B of the indexing group A. In this chapter we present a CT FFT algorithm 

whose pseudo-periodizations are taken relative to an abelian subgroup X < Aff(A). In the 

classical case, X consists of pure translations. If Y is a subgroup of X the CT FFT algorithm 

associated to X can easily be adopted to produce an FFT algorithm for F-invariant data. Code 
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which implements this CT FFT produces by a process of disabling, F-invariant FFT code for 

every subgroup Y of X. 

For applications, the choice of X is motivated by two factors. First code for the CT FFT 

associated to X should be simple to write, scalable and efficient. Second X should contain a 

large collection of subgroups of interest in applications. 

E.8.1    Extended CT FFT: abelian point group 

Choose / € L(A) and an abelian subgroup G of Aut(A).   For 7* G G* define the pseudo- 

periodizations /7« € L(A) by 

/,•(«) =£/(?) <7,7*>,     aeA. (62) 
■yeG 

Since 

V *     = { °^'   7 = identitymaP' (63) 
7.6G*        ' 1 0) otherwise, 

we can write 

<W 7«gG* 

We can compute F^f by computing the collection of FT's 

^/7.,     7* € G*. (65) 

We have replaced a single FT computation by a collection of FT computations. However, 

the pseudo-periodizations satisfy the following group invariance property. 

Theorem E. 13 For 7* € G*, 

•M7(a)) = <7,7*>/r(a),     a € A, 7 € (?. 

F*fAlH«)) =< 7,7* > %•(«)-     a e A, 7 € G. 

We will say that fo is G-invariant with character . The CT FFT associated to G decomposes 

the computation of F+f into a collection of FT computations on G-invariant with character 

data which can be implemented by simple modifications of the point group RT algorithm. 

Suppose K is a subgroup of G. If we begin with a if-invariant data, we can reduce the 

number of FT computations. Set 

K* = {7* € G* :< /c,7* >= 1, for all« € K}. (66) 
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K* is a subgroup of G* isomorphic to the character group (G/!<)*. Choose a complete set of 

representatives of if-cosets in G 

7o, 7i> • • •> 7L-1- (67) 

Then every g £ G can be written uniquely in the form 

7 = K7/)     A € ÜT, 0 < / < L. (68) 

Theorem E.14 If f € £(^4) ss K-invariant then the pseudo-periodization /7« vanishes unless 

7* € ÄV 

L-l 

Proof /r(a)   =    J2J2 f(KVa) < K7«»7* > 

i-1 

=    £/(7ia) <7;,7*>  J2  <«>7*> 
;=o «ex 

by AMnvariance. Since E«eA" < K>7* > vanishes unless 7* € if,, the proof of the theorem is 

complete. 

Code for the CT FFT algorithm associated to G applies to the computation of the FT of the 

K-invariant data, K < G, by disabling all the pseudo-periodizations corresponding to 7* £ K*. 

E.8.2    CT FFT with respect to Pmmm 

For p, T £ Pmmm, 

P = P?P?P?,      r = tiftpti, 

define 

Associate with the function / € L(A), the column vector f0 of length K = 8NML by listing 

f(aua2, a3), antilexicographic ordering of (a1,a2, o3) € A. Also define the vectors f8j-, 0 < j < 7 

by listing f{ssj(au a2, a3)), in order of (oi, o2, a3) € A. The the generalized periodizations of / 
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with respect to Pmmm can be implemented by the vector additions 

f,' S8 

S16 

S24 

432 

s40 

Ä48 

.   56 . 

[F{2) <g> /* ® F(2) ® F(2) ® /A] 

f, so 

LSi 

Lsie 

l«24 

lS32 

l*40 

lS48 

"■«56 

(69) 

where F(2) denotes the 2-point FT matrix, 

F(2) = 

and IK is the K x K identity matrix. 

Crystallographic group P2   [13] is a subgroup of Pmmm, 

P2 = {l,s2i}. 

P2* = {l,S24, 532,356}. 

If / e L(A) is P2-invariant, then 4 of the periodizations vanish. Each of the non-vanishing 

periodizations are Pmmm-invariant up to multiplication by ±1, and FT is computed with this 

invariance. 

Another crystallographic subgroup of Pmmm is P222. 

P222 = {1,524,340,348}- 

P222, = {1,356}. 

For P222-invariant /, all the periodizations except fs* and /a«g vanish. 

If / is Pmmm-invariant, then computation is carried out only for /„.. 

E.8.3    Extended CT FFT : abelian affine group 

The discussion of section E.8.1 will be extended to abelian subgroups X of Aff(A) of the 

form X = B x K where B is a subgroup of A and K is a subgroup of Aut(A). The CT FFT 

algorithm associated to X combines features of the standard CT FFT associated to B and the 
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abelian point group CT FFT associated to K. The pseudo-periodizations are now taken with 

respect to the affine subgroup X. The motivation is to unify the writing of FT code for affine 

group invariant data. 
Choose an abelian subgroup X of Aff{A) of the form X = Bx K. Then X* = B* x K\ 

We will usually write bk for {b,k) and b*k* for {b;k").   Denote a complete set of ^-coset 

representatives by 

z{b") = </>?{?),     b* G B'. (70) 

For / G L(A), define the pseudo-periodizations fx. G L(A), x* € X*, by 

/*•(«) = £ f(xa) < x'x* >'     ° € A, x* G X*. (71) 

/B.(x(a)) = <x,x*>/ar.(o),   seAi'er. (72) 

Since .. 

'^E'- (73) 

we can compute F0/ by the collection of FT computations 

Fifa,     x*eX*. 

A direct computation shows that /s. satisfies the group invariance with character condition. In 

particular 
/,.(& +a) =^6rF>/,.(a),     ^5,,' = iTer. (74) 

Define gx. G 1(A), x* G X*, by 

fc-(a) = /,.(a) < a, #*(&*)) >,     «U,   x' = W. (75) 

^. is 5-invariant and can be viewed as a function in L(A/B). 

Theorem E.15 For x* = b*k* G X*, F+f** vanishes off of z{b*) + BL and we have 

FifA'P) + O = o(B)F+l9AbL),     &X € BL. 

Proof      Choose a complete system of representatives for the 5-cosets in A 

m\, ■ • ■ ,mj. 
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Setting 

c = z(bl) + bL,    bleB*,bLeBL 

_a = mj + b,     l<]<J,b£B, 

in 

*V/(c) = £/(«) <*,*{*)> 
aeA 

we have, applying Eq. (74) 

i=i ies 

which vanishes unless b\ = b*, proving F*f vanishes off of z{b*) + 5X. Then by theorem E.6, 

j 

Ftf(z{b*) + bL) = o{B)Y,9A™i) < ™j,<f>(^) >, 
j=\ 

completing the proof of the theorem. 

For b* € B* define 
S(b*) = {gb.k* : k* € K*}. (76) 

By theorem E.15 

F,f{z{V) + b^) = ^r  £  F^*AbL\     b±eB\ (77) 

which implies that i7^/ on the coset 

z{b*) + BL,  b*eB*, 

is determined by the induced FT of functions in 5(6*). 

The pseudo-periodization operations introduce data redundancies which we will now de- 

scribe. 
Set C = A/B. K acts by the identity mapping on B and induces a group of automorphisms 

of C denoted also by K. For b* 6 B* and k 6 K, there exists a unique (b.(k) € BL such that 

k*(z(b*)) = z(b*) + (b*(k). (78) 

Direct computation shows that 

k#((Ak')) + Cb-(k) = (b.{kk%     k, k' e K. (79) 

Define 
(Ak) = M(Ak))&c*. (so) 
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Theorem E.16 For x* = b*K* G X* and K G K, 

gx.(K(c)) = <K,K*> < c,&{K)>gx.{c),     ceC. (81) 

FMA**^) + &•(*)) = < *. K* > F*9A*%    hL eB\ne K. (82) 

Proof     By Eqs. (72), (75) and (78) 

gx.(K{a)    =    < K,K*> < K(a)J(z(b*)) > fx.(a),      a G A, K G K 

=    <K,K*> < aJ(K*{z{b*))) > /s.(a) 

=    < K,K* > < a,<l>(Cb*(K)) > 9x'{a)- 

The second statement can be proved by usual arguments.   A modified RT algorithm can be 

applied to the induced FT computations. 

For a subgroup Y of X, set 

Y, = K G X* :< y, x* > = 1, for ally G Y}. (83) 

Arguing as in theorem E.14, we have the following theorem. 

Theorem E.17 If X is a subgroup ofAff(A) and Y is a subgroup of X, then for Y-invariant 

f G L(A), the pseudo-periodizations fx*, x* G X* vanishes unless i*6K. 

Affine group CT FFT code for X can be used to compute the FT of F-invariant data, for 

any subgroup Y of X. In several important applications, the group X can be chosen such that 

the corresponding CT FFT algorithm can be implemented by simple 1-D routines while more 

complicated code is required for a direct implementation of the FT of F-invariant data, Y. 

E.8.4    CT FFT with respect to Fmmm 

We will continue with the notations established in example E.4. 

Fmmm = B x Pmmm. 

We will use the 5-periodization computation of example E.ll as the first stage of the two stage 

pseudo-periodizations with respect to Fmmm. Recall the ordering of the elements of Fmmm 

given in example E.4 : 

B = {.So, 5!, s2, s3,s4,s5,s6,s7}. 

Pmmm = {s0, S8, Sl6, 524, -S32, -540, S48, S56J- 
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Fmmm = {s8i+k '■ 0 < k, I < 7}. 

0 For (aia2a3) € A, observe that 

S8i(ai,a2,a3) = s8i+f(°i> °2, a3) + si,     si € 5. 

In example E.ll, periodizations 

• fb;,     0</<7 

are made on the collection of 5-coset representatives 

C = {(aua2, a3) : 0 < a{ < N{,   i = 1,2,3}. 

7       7 

fs;l+k{a)   =   J2 £ f(ssna + sm) < sm,s*k >< s8n,s*8l > 
n=0 m=0 

7 

n=0 
7 

=     S fb'kf(SSn+na) < S„, &£ >< 58n, $£, > 
n=0 

£ CT FFT with respect to Fmmm was implemented on a Sun4 station [1]. 

E.9    Incorporating ID symmetries in FFT 

We have developed various FFT algorithms incorporating certain ID symmetry. In this section, 

we give an example of incorporating invariance conditions in data without giving up the use of 

highly efficient FFT routines. 

Set A = Z/N, for a natural number N.  For / G L(A), the invariance conditions we will 

A consider here are 

f(a) = ±f(-a). (84) 

An efficient algorithm was given by Cooley et al.      [10] and Rabiner    [16] which reduced 

• the computation to that for an JV/2-point FFT with preprocessing and postprocessing.   The 

procedures are summarized as follows. 

a. Compute 
N/4-1 

• 7(0) = 2  £  /(2a+ 1). 
a=0 

b. For a = 1,2,..., iV/4 - 1, formulate the sequence g(a) as 
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g{a)   =   /(2a) + [/(2a + l)-/(2a-l)], 

g(N/2-a)   =   /(2a) - [/(2a + 1) - /(2a - 1)], 

9(0)   =   /(0), 

j(tf/4)   =   /(tf/2). 

c. Take the iV/2-point FFT of g(a); call this result G{b). 

d. Form two sequences 

U(b)   =   Äe[G(6)],    6 = 0,l,2,..,iV/4, 

WM   =      Im[G(b)} L 

e. For b = 1,2,..., iV/4, the transformed data sequence F(ö) is given as 

F(b) = U(b) + V{b), 

F{N/2-b) = U(b)-V(b), 

F(0) = U(0) + V{0), 

F{N/2) = U(0)-V{0). 

Notice that in step d, the computation involves division by {sin(2irb/N)}. This may cause 

stability problem for large size N. 
We summarize here an algorithm proposed in   [15], to overcome the stability problem. 

a. Form two sequences 

h(a)   =   f{a) + f{N/2-a),    a = 0,1,2,..., N/A, 

g(a)   =   [f(a)-f(N/2-a)]cos{2ira/N),    a = 0,1,2, ...,N/4, 

both h(a) and g(a) have invariance conditions. 

b. Take the A^/2-point(half size) symmetric FT of h(a) and g{a). 

c. The transformed data sequence F(b) is given as 

F(2b)   =   H(b),    b = 0,l,2,...,N/A-l, 

F(l)   =   G(0), 

F(2b + 1)   =   2G(b)-F(2b-l),    6=l,2,...,iV/4-l. 
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This algorithm can be recursively used for transform size of N = 2m or N = 2ml, where 

m > 1 and / an odd number. 

In step a, multiplications by {cos(2*a/N)} are required to formulate g(a). If, however, N is 

twice an odd number, then an alternative procedure, based on the Good-Thomas prime factor 

algorithm [12, 18], can be used to avoid these multiplications. In this case, the computational 

procedures can be stated as 

a. Take the iV/2-point (half size) symmetric FFT of h{a) = /(2a) and /2(a) = f(N/2 + 2a); 

call them ^1(6) and F2(b) respectively. 

b   For b _ 0j 1,2,..., {N/2 - l)/2, the transformed data sequence F{b) is given as 

F{2b)   =   F{N-2b) = F1{2b) + F2{2b), 

F{N/2 + 2b)   =   F{N/2-2b) = Fl{2b)-F2{2b). 

If the data is real, the same algorithm can be used with half size real FFTs. The saving in 

FFT computation will be approximately 50 percent in comparison with complex data. 
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