
Final Report

Contract No. F49620-C-91-0098

If ü JP"V

x. k \zA

ELEGIEp
JUN2 2 19951

proved for public release,
Sri^tionunn,ited

Richard Tolimieri

This document has been approved
for public release and salej its
distribution is unlimited

Aware Inc.
One Memorial Drive,

Cambridge, MA 02145.

December 6,1994

■••}

'■■•: ';,' J 5 3.
: L.: 7

19950619 012

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reDcti^c burden for this collection of Information 's estimated to average * hour per -esponse, ^eluding the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the'colleaion of information Send comments reaarding this burden estimate or any other aspect of this
collection c' information,"including suggestions tor reducing this Puraen. to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
lavis Highway, Suite 1204, Arlington, V£ 22202-4302. and fc the Off ice of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
FINAL/30 SEP 91 TO 31 DEC 94

4. TITLE AND SUBTITLE

f-r
I
S

EFFICIENT & FLEXIBLE ALGORITHMS FOR DIGITAL
SIGNAL PROCESSING ON MULTIPLE INDEPENDENT NODE
PARALLEL COMPUTERS

DR. T0LIMIERI

5. FUNDING NUMBERS

8099/03
F49620-91-C- 0098

^AWÄREN'I'NQ or»GAf»iZATiCu UAML{SJ AI»ü AOE/RESSIES;

ONE MEMORIAL DRIVE
CAMBRIDGE, MA 02145

6. rERFORIViiliiG ORGANIZATION
REPORT NUMBER

8-95-0429

SAcpgSflpRflUlG/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

110 DUNCAN AVE, SUTE B115
B0LLING AFB DC 20332-0001

10. SPONSORING / MONITORING

11. SUPPLEMENTARY NOTES

|

ptYa7Di?TRrSÜT!C~rC7AVAILABILITY STATEMENT

. APPROVED FOR PUBLIC
■

RELEASE: DISTRIBUTION IS UNLIMITED \

I

13. ABSTRACT (Maximum 200 v^ords)

During the last 3 years we have developed a mathematical theory of algorithms and
implementation strategies for DSP computations on RISC and DSP chips and parallel
architectures ranging from scalable multinode boards to massively parallel
multinode computers as typified by the Intel's touchstone systems.

■

XSIC QpiiMTY INSPECTED 3 -

U. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

; UNCLASSIFIED

IS. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION'
OF THIS FACE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAR(SAME AS REPORT)
i

:500 298 (Rev 2-39)

«>~ f ** .

Table of Contents
1 Overview 1

1.1 Applied Results 3
1.2 Technology transfer 6
1.3 Publications 1 o

2 Methodologies 11
2.1 Data Partition and Migration on Distributed

Memory Multiprocessors 11
2.2 Efficient Multidimensional DFT Module Implementa-

tion on the INTEL i860 Processor 12
2.3 Efficient parallel implementation of traditional FFT codes 13
2.4 Vector-radix on the Paragon 15
2.5 Reduced transform algorithms 16
2.6 Non-power-of-two scalable DFT library based on RTA variants 18
2.7 Symmetrized crystallographic parallel DFT algorithms 19
2.8 Implementation of integer and rationally oversampled Weyl-

Heisenberg coefficient computation 20
2.9 Porting parallel multi-dimensional FFT codes to the IBM SP2

shared memory multiprocessor 21
2.10 Parallel DFT codes for Clusters of Workstations 22

References 23

3 Implementation Results
3.1 Data partition and migration schemes 24

3.1.1 Matrix transpose algorithms in three data distributions 25
3.1.2 Switching data partition schemes in application 27
3.1.3 Parallel matrix multiplication algorithm for rectangular

arrays 29
3.2 Single i860 node codes: The building blocks 33
3.3 Multi-processor codes 37

3.3.1 Complex, ID single precision FFTs 37
3.3.2 Complex, 2D single precision FFTs 39
3.3.3 Real-to-Hermitian, 2D single precision FFTs 43
3.3.4 Complex-to-Complex, 3D FFT 46

3.4 Vector Radix (VR) on the Paragon 49
3.4.1 2D Vector Radix (VR) on the Paragon 49
3.4.2 The 3D Vector-Radix Implementation on the Paragon 52

3.5 Implementation results on IBM SP2 54
3.6 RTA multi-processor codes 56
3.7 Implementation results for Gabor coefficients 57

Appendix A: Formulating Data-Partition and Migration in
Distributed Memory Multiprocessors 60
A.l Introduction 60
A.2 Preliminaries 61

A.2.1 Stride Permutations 61
A.2.2 Tensor Product 62
A.2.3 Some Useful Theorems 64

A.3 Data Partition and Migration: Formal Definitions 66
A.3.1 Storing Data in Distributed Memories 66
A.3.2 Moving Data among Distributed Memories 70
A.3.3 Measured Timing of the Three Transpose Algorithms 74

A.4 Application Examples 76
A.4.1 An Application in Fluid Mechanics 76

A.4.2 A New FFT Algorithm 80
A.5 Related Work 82
A.6 Conclusions 84

References 84

Appendix B: Efficient Multidimensional DFT Module Imple-
mentation on the INTEL i860 Processor 8 7
B.l Introduction 87
B.2 Tensor Product Formulation 88
B.3 Cooley-Tukey FFT Algorithms 89
B.4 Multi-Dimensional FFT Algorithms 91
B.5 Implementation on Intel i860 Processor 92
B.6 References 94

Appendix C: A New Approach for Computing Multi-dimensional
DFTs on Parallel Machines and its Implementation on the
iPSC/860 Hypercube 96
C.l Introduction-Motivation 96
C.2 The Reduced Transform Algorithm (RTA) on Z/P x Z/P 98

C.2.1 Application: The case A=Z/N x Z/P xZ/P 101
C.2.2 The parallel processing strategy 102

C.3 Extension via the Chinese Remainder Theorem 104
C.4 Extension via the Chinese Remainder Theorem' 104

C.4.1 Good-Thomas Prime Factor Algorithm for Z/MP 104
C.4.2 The Hybrid Good-Thomas and RTA Algorithm

on A = Z/N x Z/MP x Z/KP 106
C.4.3 The parallel hybrid algorithm using P+l processors 106

C.5 Implementation issues 108
C.5.1 The Intel iPSC/860 Hypercube 108
C.5.2 Initial data loading and distribution 109
C.5.3 Reporting the results to the host 110

C.6 Implementation Results 110
C.6.1 The 2D DFT case, MP xKP 111
C.6.2 The 3D DFT case, N xMP xKP 112
C6.3 The hybrid algorithm implementation for larger sizes of P 114
C.6.4 The node clustering approach 115
C.6.5 Conclusions and further Research directions 119
C.6.6 Acknowledgments 122

C.7 References 122

Appendix D: Weyl-Heisenberg Systems and the Finite Zak Transform
Abstract 124

D.l Introduction 124
D.2 Preliminaries 125

D.2.1 Weyl-Heisenberg systems 125
D.2.2 Finite Zak transform (FZT) 126
D.2.3 Basic formulas 128

D.3 Critically Sampled W-H Systems 128
D.4 Integer Oversampled W-H Systems 130
D.5 Rationally Oversampled 132
D.6 Implementation Results 138

D.6.1 Critical sampling 138
D.7 Integer Oversampling 139

D.7.1 Rational oversampling 140
D.8 Parallel Implementation 141
D.9 Conclusions 144

References 145

Appendix E: Group Invariant Fourier Transform Algorithms
E.l Introduction 147
E.2 Group Theory 148

E.2.1 Finite abelian group 148
E.2.2 Character group 151
E.2.3 Point group 154
E.2.4 Affine group 155
E.2.5 Examples 156

E.3 FT of a finite abelian group 160
E.3.1 Periodization-Decimation 161

E.4 FFT Algorithms 161
E.4.1 Introduction 161
E.4.2 RT algorithm 162
E.4.3 CT FF algorithm 163
E.4.4 Good-Thomas algorithm 165

E.5 Examples and implementations 167
E.5.1 RT algorithm 167
E.5.2 CT FF algorithm 173

E.6 Affine Group RT Algorithms 177
E.6.1 Introduction 177
E.6.2 Point group RT algorithm 178
E.6.3 Affine group RT algorithm 187
E.6.4 X#-invariant RT algorithm 189

E.7 Implementation Results 191
E.7.1 Complexity 194
E.7.2 Row-Column Algorithm 194
E.7.3 GT/RT algorithm II 194

E.8 Affine group CT FF 195
E.8.1 Extended CT FFT: abelian point group 196
E.8.2 CT FF with respect to Pmmm 197
E.8.3 Extended CT FFT: abelian affine group 198
E.8.4 CT FF with respect to Fmmm 201

E.9 Incorporating ID symmetries in FFT 202
References 204

Accesion For

NTIS CRA&I ^1
DTIC TAB p
Unannounced [..■
Justification

By
' Distribi itionf

i/ailabiiit A i Codes

ad 1 or Avail <
Dist Special

A4

Overview

1 Overview

During the last 3 years we have developed a mathematical theory of algorithms and implementa- <

tion strategies for DSP computations on RISC and DSP chips and parallel architectures ranging

from scalable multinode boards to massively parallel multinode computers as typified by the

Intel's Touchstone systems.

Recently, our work has centered around implementation of the DFT, convolution and wavelet 4

multirate filter systems on distributed parallel computing platforms, and embedding of the rou-

tines in various appHcations in collaboration with several government laboratories, commercial

institutions and university research groups.

The general goal of this effort is to establish tools which apply concurrently to software and i

hardware and create

• a technology base for developing optimal software, extending the life span of software by

appropriately targeting suitable hardware. ^

• procedures for cost effective system design for special purpose architectures which can be

expected to efficiently implement a whole class of similar algorithms of interest.

• immediate utilization of new hardware advances at minimal time and cost in software

development.

The director of the group is Richard Tolimieri who is partially supported by the contract.

The contract also supports Myoung An full time, Chao Lu of Towson University as a consultant,

and three graduate students two of whom have received PhD during this period. •

One feature of our approach is that algorithms are modeled in algebraic terms permitting

software to be optimized by algebraic manipulations as oppose to more time-consuming pro-

gramming manipulations. This algebra identifies and operates on fundamental computational

and communication primitives which concurrently model software and machine parameters and \

establishes interactive programming tools in the form of transformation rules for selecting highly

optimized code for a target architecture.

We have developed a theory of algorithms for DSP computations based on finite abelian

group theory that divorces the problem of algorithm and system design from the particulars of {

implementation and application and has led to the development of new algorithms which present

radically different communication paths and data structures for subcomputations. This is espe-

cially important in multidimensional processing which incorporates more degrees of freedom for

system and algorithm design but involves data sizes that challenge hardware memory resources, <

I/O and interprocessor communication bandwidth. In this framework, new algorithms have been

Overview 2

designed for incorporating special data characteristics (real, hermitian, space group symmetric)

and for embedding code in applications highlighting special local data characteristics. Typically

such applications involve iteration of distinct computations where standard algorithms result in

a mismatch between input and output data structures of successive stages.

These tools have and will significantly impact computations in such diverse application areas

as image processing, x-ray crystallography, communications, computational fluid dynamics and

computational electromagnetics.

We have applied our results summarized below in collaboration with government agencies,

universities and commercial institutions.

Overview

1.1 Applied Results

joals:

• Develop a theory for data partition and mi-

gration on shared and distributed memory mul-

tiprocessors.

accomplishments:

• Formulation of data partitioning and migra-

tion schemes in terms of tensor product algebra.

• Implementation of the theory developed for

data partitioning and migration in parallel solu-

tions for applications.

• Improve the efficiency of Intel's multidimen-

sional FFT library.

• Implementation of routines to interface various

data partitioning in distributed computing sys-

tems for general numerical procedures involving

sequences of computations requiring intermedi-

ate data redistribution.

• Implementation of matrix multiplication using

the theory to change the data flow from existing

matrix multiplication algorithms.

• Interface multidimensional FFT for the

wavelet-Galerkin and capacitance matrix meth-

ods for the solutions of Euler and Navier-Stokes

equations.

•Interleaved communication and computation in

the 3D FFT, along with the use of efficient vec-

torized assembly FFT codes improves the 3D

FFT code up to 50 %.

• Tensor product formulation of the 2D FFT al-

lows for maximizing the degree of concurrency

between computations of row ID FFTs and

global transposition to result in up to 40 % faster

codes.

Overview

goals: accomplishments:

• Create scalable ID and 2D power of 2 and com-

posite transform size parallel DFT library using

reduced interprocessor communication variants

of MD Cooley-Tukey and Good-Thomas algo-

rithms.

• A family of M-D implementations improving

performance up to 200% over powers of 2 Intel

2D and 3D code.

• Create a scalable ID and 2D composite

transform size parallel DFT library on the In-

tel IPSC/860 based on standard row-column

method.

•a scalable library of composite size ID and 2D

parallel DFT implementations with CPU com-

patible with n log n criteria.

• Create a scalable 2D and 3D library of parallel

DFT codes based on the vector-radix algorithm

and compare their performance with the row-

column approach.

• A scalable library of 2D and 3D vector-radix

implementations along with a comparison with

row-column implementations and identification

of cases where vector-radix outperforms row-

column method.

• Create a scalable library of efficient non-

powers-of-two parallel DFT codes with re-

duced inter-processor communication needs, us-

ing variants of the RTA algorithm.

• A family of RTA variants implementations im-

proves the performance of the parallel DFT up

to 75 % over the powers-of-two Intel 2D and 3D

FFT code.

• Investigate the suitability of the parallel al-

gorithms we proposed for other parallel multi-

processor systems (Clusters of workstations).

• Parallel RTA variants coded to run on a cluster

of SUN workstations show promising speedup

and scalability features.

Overview

goals:

• Develop of a library of parallel symmetrized

DFT codes.

accomplishments:

• Derivation of a novel symmetrized DFT al-

gorithm based on group theoretic concepts, im-

plementable on multi-processor machines, with

a wide range of applications in crystallography

and signal processing.

• Investigate integer and rationally oversam-

pled Weyl-Heisenberg coefficient computation in

a distributed memory multiprocessor environ-

ment.

• Documentation of employed methods of design

and implementation of parallel algorithms in the

most widely available form for the purpose of

immediate availability by the public.

• Porting of Touchstone parallel codes to other

parallel architectures as a test of portability of

our methods.

• A library of real time implementation of inte-

ger and rationally oversampled Weyl-Heisenberg

coefficient computation on single i860 processor

and on 4- and 8-node computing systems.

• In addition to publication of Mathematics

of Multidimensional Fourier Transform Algo-

rithms, Springer-Verlag textbook, several papers

to journals have been submitted and presenta-

tions were given at conferences.

• The parallel FFT codes have been successfully

ported to the IBM SP2 multiprocessor system of

the NAS NASA Research Center in less than a

day.

Overview

These applied results have led to the following technology transfers.

1.2 Technology transfer

• David Grimm, Honeywell, Inc., 813 539 4213

Embeddable Multiprocessor Systems

We have ported scalable, multiprocessor, multidimensional FFT routine for variable size

PARAGON systems. Honeywell has agree to act as /3-site for the codes and the given

machine environment for the codes we have developed.

• A. King, Intel Corporation, Supercomputer Systems Division, 503 531 5300.

- i860

For the Intel i860, we have developed a library of mixed size FFT routines, which

will soon be available in the commercial market. The library is three times denser in

transform sizes than existing such libraries. The non-powers-of-two sizes run at the

linear time scale as the powers-of-two sizes which run competitively with assembly

coded fully optimized routines in other libraries.

- Touchstone Systems, DELTA, iPSC/860, PARAGON

For the Intel Touchstone systems, we have implemented scalable, multiprocessor,

multidimensional FFT routines optimized for each of the three systems.

. E. Prince, Reactor Division, NIST, 301 970 6230.

X-ray crystallographic FFT routines.

SUN, Microways's NumberSmasher860 accelerator card.

We worked with Dr. Edward Prince of NIST to embed our crystallographic group specific

mixed size FFT library. For computational methods in X-ray crystallography, mixed size

FFT routines are crucial. Library was created in collaboration with Dr. Prince to address

the most applicable computations for compile-time efficiency. During our collaboration,

Dr. Prince has changed his computing environments three times, VAX, 486 PC and

most recently added i860 accelerator card for compute intensive procedures. In each of

the computing environments, our codes have significantly improved (3 - - 100 times) the

runtime of the computations.

• J. Weiss, Aware, Inc., 617 577 1700.

Computational Fluid Dynamics

Overview j

2D FFT on Intel's Touchstone systems

We supplied Dr. Weiss of Aware, Inc. with data-restructuring routines for Intel's Delta

machine for his parallel methods for incompressible Euler and Navier-Stokes equations

for fluid dynamics in two-space. While parallelization of other computational procedures

required non-traditional data structures, parallel optimized FFT routines are available only

for row-column distributed data structure. Our data restructuring routines are formulated

in terms of global/local stride permutations, and embeddable in row-column distributed

FFT routines. In fact, we have improved the global FFT routines by 120-200%.

• C. Lund, Mercury Computer Systems, Inc., 508 256 1300.

Mercury's MCV6

We are working to port our parallel multidimensional FFT routines and Weyl-Heisenberg

coefficient computation routines to Mercury's four-node board.

• C. Giacovazzo, Departmento Geomineralogico, Campus Univarsitario, Bari, Italia, 39 80

544 2590.

- SUN

We are developing optimized cubic-symmetry-specific FFT code for Dr. Giacovazzo

of University of Bari, Italy.

— i860-based multiprocessor boards.

We are parallelizing Dr. Giacovazzo's software package for small molecule direct

methods, SIR92, for an i860-based multiprocessor boards.

• A. Woo, NASA AMES Research Center, 415 604 6010.

Computational Electromagnetics.

Intel's PARAGON, IBM's SP2.

We have ported mixed-size 3-dimensional parallel FFT code for Intel Paragon and IBM's

multiprocessor SP2 for applications in computational electromagnetics.

• G. TenniUe, NASA Langley Research Center, 804 864 5786.

Intel's PARAGON, IBM's SP2.

We have transferred multi-dimensional double precision FFT routines for the Intel PARAGON

and in the process of transferring similar codes on IBM's SP2.

Overview 8

• E. Bleszynski, Rockwell International Corporation, North American Aircraft Operations,

310 647 3675.

Adaptive Integral Method Solver of Large Scale Electromagnetics Computations.

Intel's Paragon

We have transferred a package of scalable mixed-radix 3-dimensional FFT routines for

Paragon nodes.

• E. Holbert, Kirtland AFB, 505 846 1995.

SUN

We have transferred FT routines of sizes 1000 and 1024 for real data sequences optimized

for the SUN.

• R. Pachter, Wright Laboratory, WPAFB, OH, 513 255 6652.

Intel's Paragon

Materials Science

We have ported real/Hermitian 2-dimensional parallel FFT routines to the material science

division for Paragon.

• R. Martino, Department of Computer Science and Engineering, NIH, 301 496 1111.

Intel's iPSC/860

Molecular Dynamics

We have ported 3-dimensional parallel FFT routines for iPSC/860 128 node hypercube.

The performance recorded by NIH of our code was 1.2Gbyte running FFT which is highest

recorded to. our knowledge.

• Steven Fried, Microway, Inc. 508 585 1277.

During the last year we have actively collaborated with Microway, Inc. to produce a

library for their i860 accelerator card, that is three times denser in transform sizes than

existing such libraries. This library was ported to Dr. E. Prince of NIST for interface

with his crystallographic procedures and resulted in a speed-up of twenty times. It will

soon be commercially available through Microway, Inc. Presently, we are collaborating on

producing scalable, mixed-radix, parallel FFT library for the quadputer i860 board. We

have access to Microway's hardware products in these joint efforts.

Overview

• M. Tzannes, Aware, Inc., 617 577 1700

Tele-communication project.

- The converting fixed-point input to floating-point stage was combined with the inverse

512-point FFT to save arithmetic operations to produce optimal code on ADSP21020.

- The Frequency-Equalizer stage was combined with the 512-point FFT to save arith-

metic operations to produce optimized code on ADSP21020.

- 512-point DCT II and IV (Discrete Cosine Transform) have been optimized for Ana-

log Devices's ADSP-21020 chip based on FFT and will be optimized on the new

ADSP21060.

- 512-point DWMT (Discrete Wavelet Multitone Technique) modulator and demodu-

lator based on DCT IV has been optimized on ADSP-21020, and wiU be optimized

on the new ADSP21060.

• Loral Federal Systems Inc. — Benchmark on the IBM SP2 project.

- QUICK.CPF.F

- QUICK.CPF.COMPRESSED.F

- IPF.F

- QUICKJPF.F

the above 4 routines were optimized on IBM SP2 parallel systems, with about 30% im-

provement.

• Atlantic Aerospace — FIR filter on ISP multi-processor board based on TI TMS320C40

chip.

- 4-point FIR filter

- 8-point FIR filter

•

m

Overview 10

1.3 Publications

1. Mathematics of Multidimensional Fourier Transform Algorithms, R. Tolimieri, M. An and

C. Lu, Springer-Verlag, New York, 1993.

2. "Efficient Multidimensional FFT Module Implementation on the Intel i860 Processor", M.

An, C. Lu, S. Qian and R. Tolimieri, Proc. Inter. Conf. on Signal Processing, Applications

and Technology, Sept. 28-Oct. 1, CA 1993.

3. "A Hybrid Parallel FFT Algorithm Without Interprocessor Communication", M. An, C.

Lu, S. Qian and R. Tolimieri, Proc. of IEEE Inter. Conf. on ASSP, 1993.

4. "DSP algorithm design and implementation on RISC architectures," M. An, C. Lu and R.

Tolimieri, presented at the first international conference on Electronics and Information

Technology (ICEIT'94) held in Beijing, China.

5. "The computation of Weyl-Heisenberg coefficients for critically sampled and oversampled

signals," M. An, G. Kechriotis, C. Lu and R. Tolimieri, presented at ICSPAT '94, Dalla,

TX.

6. "Self-Sorting In-Place FFT Algorithm with Minimum Working Space," by Z. Qian, C. Lu,

M. An and R. Tolimieri, IEEE Transactions on Signal Precessing, 42 10, October 1994.

7. "A New Approach for Computing Multi-Dimensional DFTs on Parallel Machines and

its Implementation on the iPSC/860 Hypercube," M. An, M. Bletsas, G. Kechriotis, E.

Manolakos and R. Tolimieri, to appear in IEEE Trans. ASSP., January, 1995.

8. "Group Invariant Fourier Transform Algorithms," Y. Abdelatif, M. An, N. Anupindi, G.

Kechriotis, C. Lu and R. Tolimieri, to appear as a chapter in Advances in Electronics and

Electron Physisc, Acadimic Press.

9. "Comparison of 2-D FFT Implementations on the Intel Paragon Massively Parallel Super-

computer", M. An, N. Anupindi, M. Bletsas, G. Kechriotis, C. Lu, E. S. Manolakos and

R. Tolimieri, to appear at Proc. of the International Conference on Speech, Acoustics and

Signal Processing (ICASP), April 1994.

10. "Weyl-Heisenberg systems and the finite Zak transform," M. An, A. Brodzik, G. Kechriotis,

C. Lu and R.Tolimieri, submitted for publication in Signal Processing, Elsevier Science

Publishers, Amsterdam, The Netherlands, August 94.

11. "Group algebras and orthogonal decompositions," M. An and R. Tolimieri, submitted to

IEEE SP for publication, June, 1994.

Methodologies H

2 Methodologies

2.1 Data Partition and Migration on Distributed Memory Multiprocessors

Problem: Efficiency of parallel implementation depends on the implementation of the data move-

ments that describe the required communication, since the overhead in distributed comput-

ing is in the required communication between processors. Although there are algorithms

which address the complexity in data flow, in addition to arithmetic complexity, there is

lack in unified methodology for analyzing and designing the data movements.

Approach: To present a formal methodology for the process of data distribution and redistribution

using tensor products and stride permutations as tools. The algebraic expressions rep-

resenting data partition and migration directly operate on data vectors, hence can be

immediately embedded into an algorithm.

Goals: To implement and embed data partition and migration algorithms.

Applications: General numerical solutions that require successive stages of computation and data redis-

tributions.

results: A unique data distribution technique that effectively uses transpose algorithms for multi-

plication of two rectangular matrices is derived and implemented. Performance of these

algorithms are evaluated by carrying out implementations on Intel's i860 based iPSC/860,

Touchstone Delta, Gamma, and Paragon supercomputers.

Implemented the data redistribution algorithm for Euler partial differential equation (PDE)

for two-dimensional case using wavelet-Galerkin method, where the two most important

computation modules in this solution require two different data-partitions for their optimal

implementation. Results of implementation on overall performance is included.

Methodologies 12

2.2 Efficient Multidimensional DFT Module Implementation on the INTEL

* i860 Processor

Problems: A standard method [2] of implementing non-power-of-2 transform size DFT is zero-padding.

In multi-dimensional DFT computation, this will increase the transform size dramatically,

not only slowing down the computation but also causing cache thrash and memory over-

flow. In the case of the parallel computer iPSC/860, each node processor has 8M byte

memory. If the size of complex data to be processed is 72 x 72 x 72 = 373,248, computa-

tion is made in the local memory of the processing unit without data segmentation. On

the other hand, by padding with zeros, the size of complex data to be processed will be

128 x 128 x 128 = 2,097,152, which is beyond the capacity of local memory; segmentation

and data loading in and out will cause severe problem.

Approach: By formulating various DFT algorithms in the language of tensor products, any large size

Fourier transform is built up by a collection of small size DFT modules which include as

parameters decimation step sizes and twiddle factors. These parameters are introduced

in the DFT modules to take advantage of modern computer architectures with parallel,

pipelined, multi-functional structures, while providing flexibility into the building blocks.

* Our library of core computation modules has the following features:

- We have efficiently implemented prime factors 3, 5, 7, 11, 13, 17 as well as powers of

2. Thus, transform size on each dimension of a multi-dimensional Fourier transform

ä can have factors other than 2.

- One-dimensional small modules take advantage of vector operations on i860 by loop-

ing on other factors of the same dimension and other dimensions.

- One-dimensional small modules have pre-calculated twiddle factor array as a param-

• eter. This provides for intermediate stages of Cooley-Tukey FFT implementation.

Goals: To create a scalable DFT library on the Intel i860 with mixed radix transform sizes with

CPU time comparable to that of closest to a power of 2 transform size.

• Results: Timing results of some sample medium size of 2-dimensional DFT modules with prime

factor on each dimension is provided on the Intel i860 processor. The results of comparable

power of 2 FFT package [6] that are commercially available are also included.

Methodologies 13

2.3 Efficient parallel implementation of traditional FFT codes

Problem: Data partition and migration for efficient communication in distributed memory architec-

tures are critical for permance of data parallel programs.

Approach: Data partition and migration for efficient communication in distributed memory archi-

tectures are critical for performance of data parallel programs. This research presents a

formal methodology for the process of data distribution and redistribution using tensor

products and stride permutations as mathematical tools. The algebraic expressions rep-

resenting data partition and migration directly operate on a data vector, and hence can

be conveniently embedded into an algorithm. It is also shown that these expressions are

useful for a clear understanding and to efficiently interleave problems that involve different

data distributions at different phases. This compatibility made us successfuUy utilize these

expressions in developing and demonstrating matrix transpose and fast Fourier transform

algorithms. An endeavor to minimize communication cost using expressions for data dis-

tribution disclosed routing scheme for Fourier transform evaluation. Results promised that

for large parallel machines, this scheme is a solution to today's problems which feature

enormous data. FinaUy, a unique data distribution technique that effectively uses trans-

pose algorithms for multiplication of two rectangular matrices is derived. Performance

of these algorithms are evaluated by carrying out implementations on Intel's i860 based

iPSC/860, Touchstone Delta, Gamma, and Paragon supercomputers.

The global transposition stage, that interchanges the last two dimensions of the distributed

among the processors data matrix, is interleaved with ID FFT computations along the

dimension that is orthogonal to the other two, to hide the communication cost and achieve

a much better processor utilization.

In the 2D row-column FFT case, the global transposition can be decomposed into a number

of smaller global transpositions of partial data that can be performed concurrently with

the first stage of FFT computations (ID FFTs along the rows). In a similar fashion, the

second global transposition step that is required if the results are to be returned in their

original order, can be interleaved with the second FFT computational stage to totally hide

the communication costs within the computations. For a more detailed description of the

approach we followed please see Appendix B.

Goals: Create an efficient global transposition algorithm that interleaves computations with com-

munications. Take full advantage of iPSC/860 hardware that allows to perform compu-

tations at the same time with performing communications, such that the data exchange

stage starts at the same time with one of the computational stages of the 3D and 2D FFT.

Methodologies 14

Produce totally scalable efficient codes for large size multi-dimensional FFTs and evaluate

) their performance.

Applications: The power-of-two FFT has become a standard in many applications. The 3D FFT of

large data size is a major component in a huge variety of signal processing applications in

seismology, oil exploration, crystallography, meteorology, motion detection etc. The large-

size 2D FFT has many applications ranging from image processing to system identification

and signal reconstruction.

Methodologies lD

2.4 Vector-radix on the Paragon

The Vector-Radix (VR) algorithm is a vector generalization of the Cooley-Tukey algorithm for

the case of two- and in general multi-dimensional FFT computations. In a uni-processor en-

vironment it has been shown that the VR can result in more efficient implementations than

the straight forward application of the Row-Column (RC) method that computes a multi-

dimensional FFT by sequentiaUy applying ID FFT along each of the dimensions, due mainly to

the lower frequency of required accessing of a particular data point stored in the local memory

than that required by the RC. In shared-memory multiprocessor systems, where the cost of data

accessing is non-uniform, depending on where the data is stored, it is not clear that VR type

of algorithms wiU be more efficient than RC method. The main advantage however of the VR

formulation in the case of parallel multi-dimensional FFTs is the increased flexibility in initial

and final data distribution and data/computations flow that allow for the design of codes that

match in an optimal way the target multiprocessor machine parameters.

In the 2D case, VR formulations usually require three instead of two global communication

stages which makes them unattractive for implementation on machines with high inter-processor

communication costs. On the other hand, because the local memory accesses are much more

regular than in the case of the RC implementations, for machines with fast inter-processor

communication links, the VR results in more efficient implementations.

Methodologies 16

2.5 Reduced transform algorithms

Problems: Most variants of the Cooley-Tukey FFT algorithm deal with FFT computations as mul-

tiple stage calculations with data permutation between stages. This requires extensive

interprocessor communication for implementing large size transpositions.

Approach: We present a strategy for computing a multidimensional DFT that hybrids a relatively

new algorithm (Reduced Transform Algorithm) with already implemented single processor

kernel routines. We will use the reduced transform algorithm to address the reduction and

optimization of interprocessor communications. Our work has been mainly motivated from

the distributed memory parallel computing paradigm, which is arguably the most difficult

to harness due to its exposed interprocessor communication to the programmer. Most

parallel computers require sophisticated algorithms and programming techniques for their

optimum utilization. In this discussion, we will make use of algebraic facts in presenting the

algorithms. The parameters in algebraic formulas give us the important implementation

parameters. Thus the flexibility to address the variables in implementations is equated

with flexibility in manipulating algebraic formalism. Initial investment in familiarity with

some amount of algebra may be necessary, but the payoff is immediate. Most of the

relevant algebra, not in its most rigorous form but its usage, can be found in [8].

In its most general form, the Reduced transform algorithm (RTA) is a full utilization of the

duality between periodic and decimated data in the Fourier transform. This duality was

used partially in some algorithms and implementations for restricted cases [4, 2, 5, 10]. A

description of a generalization in a unified setting is found in [1, 9] along with the work

of M. Rofheart [7]. In this paper, we will consider the application of RTA to the case

Z/P x Z/P, for a prime number P. Tensor product formulation of DFT computation on

Z/N x Z/P x Z/P is interleaved with the periodization step in RTA for Z/P x Z/P to

produce P + 1 independent data of size NP.

We use the RTA to address the imbalance between computation and communication rates

in current distributed memory parallel machines by reducing communication between pro-

cessors to collective patterns only (broadcast and combine) instead of the all-to-all com-

munication patterns required in the global matrix transpose needed by the row-column

(RC) implementations of multidimensional DFT's. Also, since fast algorithms for prime

size lD-DFT's exist [8] and the case Z/P X Z/P of the RTA is very efficient because its

computation requires only P + 1 ID transforms (versus 2P for the row column method),

our approach addresses the issue of storage reduction by providing additional transform

size options. For example the ability to perform a 181X181 point 2D DFT means potential

Methodologies 17

storage savings up to 50% over the 256 X 256 case, along with the savings in computational

time. The storage savings can be used for the optimization of the broadcasting step needed

for the RTA, in environments with long communications latency.

Via the Chinese remainder theorem, we will extend our method to compute the 3-dimensional

DFT on Z/iV x Z/MP x Z/KP, where N is an arbitrary integer, M and K are integers

not divisible by P, for a prime P. We transform the data set to an equivalent 5D data set

on Z/N x Z/M x Z/K x Z/P x Z/P, and then employs the RTA on the last two indices

to break the problem into smaller independent sub-problems that can be computed in

parallel. Each sub-problem is associated with the computation of the value of the Fourier

Transform along one line in the set Z/P x Z/P passing through the origin. These lines

intersect only at the origin and cover the index space. When translated from the 5D data

set back to the original 3D data, each line corresponds to a set of parallel lines covering

the index space.

Three stages are needed to compute the values of the DFT along the lines: (1) Periodiza-

tion stage, which consists of additions of data along lines perpendicular to a given line, (2)

3D Cooley-Tukey FFT and (3) P-point DFT. In a multiprocessor environment, each pro-

cessor computes these three steps independently of the others thus allowing for maximum

parallelism and efficiency. Moreover, the final data distribution among the processors is

such as to permit further processing in a parallel fashion since every processor holds only

results belonging to the same geometrical subset.

The proposed hybrid method (HRTA) can be used in applications such as the computation

of motion from a sequence of images (multi-frame detection, MFD), a very important task

in computer vision, HDTV and video telephony. Several methods for MFD have been

proposed in the literature that are usually divided into two categories: Time Domain

methods, that estimate the motion by processing the sequence of images directly, and the

recently proposed Frequency Domain methods [3], [6] that processes the frequency contents

of the images to estimate the velocity and trajectory of the moving components. The latter

methods offer more robust detection and huge computational savings since the frequency

domain representation of the 3D data (sequence of 2D images) is more compact than the

equivalent time domain representation. With all the processors holding data belonging

to different lines in the frequency domain, each processor can independently test for the

presence of motion along its assigned direction.

Methodologies 18

2.6 Non-power-of-two scalable DFT library based on RTA variants

• Problem: In many applications the data size is not a power of two such that zero padding has to be

employed to use the efficient FFT algorithms. In the multi-dimensional case, zero padding

increases tremendously the data size and hence the required computational time.

Approach: The recently proposed RTA is combined with the Good-Thomas factorization and the

standard Cooley-Tukey FFT algorithm to give DFT algorithms that require a reduced

amount of inter-processor communications at the expense of larger data storage needs and

additional pre-processing stages. The Hybrid RTA variants as well as the implementation

issues are described in detail in Appendix A.

Goals: To create a totally scalable non-power-of-two DFT library for 2D and 3D cases employing

the concepts of the RTA. Investigate in detail the performance and the tradeoffs of the

new algorithms and propose efficient hardware structures that would further improve the

DFT codes.

Applications: The special structure of the RTA that computes the output of the DFT along particular

geometrical subsets of the original index set can be used for the fast moving target tracking

and recognition, as well as for digital video compression. The RTA variants are especially

suitable for implementation on DSP multi-processor boards and clusters of workstations.

Methodologies

2.7 Symmetrized crystallographic parallel DFT algorithms

Problem: In many applications (crystallography, higher order spectra computations) the data have <

inherent redundancy due to symmetries in their structure. In most cases these symmetries

can be expressed as group actions (affine or point groups). If efficient algorithms for the

computation of the DFT of such data are desired, the inherent data symmetries need to be

taken into account to result in both data reduction and computational savings. Although ^

considerable work has been done in the computation of symmetrized DFTs, algorithms

that can be implemented in a parallel machine need to be derived.

Approach: A group theoretic approach is taken to decompose the data set into orbits that are charac- ^

terized by constant data value, and to perform a data reduction step by choosing only one

representative data point for each such orbit. To take advantage of fast DFT routines, the

representatives of the orbits are being covered with the minimum number of lines through

the data space, and then RTA variants are being employed to compute the value of the

DFT along these points efficiently. The algorithm is being generalized for a large collec-

tion of data sizes by employing the Chinese Remainder Theorem and the Good-Thomas

permutation.

Goals: Theoretical study of symmetrized DFT algorithms suitable for implementation in parallel f

multi-processor machines. Development of a unified theory to treat all symmetries usually

encountered in practical applications. Development of a general symmetrized DFT library

for the Intel iPSC/860 and Paragon multiprocessors.

Applications: Determination of the structure of a crystal from X-ray diffraction data, efficient compu- <

tation of higher order statistics for signal analysis and reconstruction for appbcation to

material science and protein crystallography.

Methodologies 20

2.8 Implementation of integer and rationally oversampled Weyl-Heisenberg

. coefficient computation

Problem: During the last four years powerful new methods have been introduced for analyzing

Wigner transforms of discrete and periodic signals based on finite Weyl-Heisenberg (W-H)

expansions. A recent work adapted these methods to gain control over the cross-term
r interference problem by constructing signal systems in time frequency space for expanding

Wigner transforms from W-H systems based on Gaussian-like signals. The computational

feasibility of the method depends strongly on the availability of efficient and stable algo-

rithms for computing W-H expansion coefficients.

Approach: The finite Zak transform is established as a fundamental and powerful tool for studying

critically sampled and rationally oversampled W-H systems and for designing algorithms

for computing W-H coefficients for discrete and periodic signals. The role of the finite

Zak transform is analogous to that played by the Fourier transform in replacing complex

convolution computations by simple pointwise multiplication. In this new setting proper-

ties of W-H systems such as their spanning space and dimension can be determined by

simple operations on functions in Zak space. This relationship will impact on questions of

existence, parameterization and computation of W-H expansions.

Implementation results on single RISC processor of i860 and the PARAGON paraUel

multiprocessor system are given for sample sizes both of powers of 2 and mixed sizes

with factors 2, 3, 4, 5, 6, 7, 8, 9. The algorithms described in this paper possess highly

> parallel structure and are especially suited in a distributed memory parallel processing

environment. Timing results on single i860 processor and on 4- and 8-node computing

systems show that real-time computation of W-H expansions is realizable.

Results: Implementation results on single RISC processor of i860 and the PARAGON parallel

* multiprocessor system are given for sample sizes both of powers of 2 and mixed sizes

with factors 2, 3, 4, 5, 6, 7, 8, 9. The algorithms described in this paper possess highly

paraUel structure and are especially suited in a distributed memory parallel processing

environment. Timing results on single i860 processor and on 4- and 8-node computing

> systems show that real-time computation of W-H expansions is realizable.

Methodologies 21

2.9 Porting parallel multi-dimensional FFT codes to the IBM SP2 shared-

memory multiprocessor

Problem: Recent advances in hardware provide vast possibilities in machine variations. Expensive

and time-consuming efforts in software development are often required for effective uti-

lization of these advances. In particular, framework for designing algorithms that takes

architectural variations become most urgent.

Approach: Tensor product formalism and the finite abelian group theory has been the major tool

for our algorithm design and implementation. Although our codes have been optimized

for the Touchstone systems, the flexibility of our design tool allowed us to re-use the

software and algorithmic skeletons and simply recompile and relink it with the machine-

specific interprocessor communication and one-dimensional FFT libraries. The availability

of efficient one- and two-dimensional FFT codes from the ESSL/6000 Engineering and

Scientific Subroutine Library, including both powers of 2 and non-power of 2 sizes allowed

us to design general purpose parallel 2D and 3D FFT codes that can handle a wide range

of sizes. We are currently in the process of porting more codes to the IBM SP2 including

RTA and Vector-Radix based FFT algorithms.

Results: The parallel FFT codes have been successfully ported to the IBM SP2 multiprocessor

system of the NAS NASA Research Center in less than a day. The NAS SP2 machine has

160 nodes, each having at least 128 Mbytes of main memory and 2 Gbytes of disk space.

The SP2 nodes are based on the RS6000/590 workstation configuration that relies on the

POWER2 multi-chip RISC processor equipped with two integer and two floating point

computation units capable of achieving a peak performance in the order of 250 MFlops.

Methodologies 22

2.10 Parallel DFT codes for Clusters of Workstations

* Problem: Clusters Of Workstations (COWS) are becoming very attractive as easily available alter-

natives to expensive parallel supercomputers for certain classes of problems. Due to the

special nature of this form of parallel machines (workstations connected via a common

ethernet cable), row-column methods that require a global transposition step that implies

* all-to-all communication are highly inefficient. On the other hand the RTA variants that

require no inter-processor communication at the expense of preprocessing the data emerge

as the only viable approach.

k Approach: The variants of the RTA decompose the task of DFT computation to a number of sub-

tasks that can be computed independently at the expense of preprocessing the data. The

broadcasting of the data to all available processors can be implemented very efficiently on

the ethernet bus topology, since all processors have access to the broadcasting medium.

I The details of the parallel RTA implementation on a cluster of workstations are described

in detail in Appendix C.

Goals: Develop a set of parallel DFT codes for clusters of workstations that can be used when

data sizes are large and computational speed is important. Investigate the efficiency and

> scalability of the codes and improve the loading/unloading of data/results. Investigating

the tradeoffs between the granularity of the partitioning into subtasks and the amount of

data pre-processing to choose the most efficient RTA variant for the particular implemen-

tation. Experiment with large clusters of workstations (100-200) and develop methods for

* the computation of Giga-size DFTs.

Applications: Developing efficient codes for clusters of workstations will allow the processing and analysis

of data sets much larger than with the computers available today to advance the research

and understanding in a variety of applications in biomedical engineering, image processing,

systems identification etc.

Methodologies 23

References

[1] M. An, I. Gertner, M. Rofhear, and R. Tolimieri. Discrete Fast-Fourier Transforms: A

Tutorial Survey. In Advances in Electronics and Electron Physics, volume 80, pages 2-69.

Academic Press, 1991.

[2] I. Gertner. A New Efficient Algorithm to compute the Two-Dimensional Discrete Fourier

Transform. IEEE Transactions on ASSP, 36:1036-1050, July 1988.

[3] A. Kojima, N. Sakurai, and J. Kishigami. Motion Detection using 3D-FFT Spectrum. In

ICASSP Int. Conf. Accoustics, Speech and Signal Proc, volume 5, pages 213-216, 1993.

[4] Auslander L., Feig E., and S. Winograd. New Algorithms for the Multidimensional Discrete

Fourier Transform. IEEE Transactions on ASSP, 31:388-403, February 1983.

[5] H.J. Nussbaumer and P. Qualdalle. Fast Computation of Discrete Fourier Transforms using

Polynomial Transforms. IEEE Transactions on ASSP, 27:169-181, 1979.

[6] Boaz Porat and Benjamin Friedlander. A Frequency Domain Algorithm for Multiframe

Detection and Estimation of Dim Targets. IEEE Trans, on PAMI, 12:398-401, April 1990.

[7] M. Rofheart. Algorithms and Methods for Multidimensional Digital Signal Processing. PhD

thesis, CUNY, 1991.

[8] R. Tolimieri, M. An, and C. Lu. Algorithms for Discrete Fourier Transform and Convolu-

tion. Springer-Verlag, New York, 1989.

[9] R. Tolimieri, M. An, and C. Lu. Mathematics of Multidimensional Fourier Transform

Algoritms. Springer-Verlag, New York, 1993.

[10] M. Vulis. The Weighted Redundancy Transform. IEEE Transactions on ASSP, 37:1687-

1692, November 1989.

•

Implementation Results 24

3 Implementation Results

3.1 Data partition and migration schemes

Data partition and migration for efficient communication in distributed memory architectures

are critical for performance of data parallel programs. We have developed a formal methodology

for the process of data distribution and redistribution in terms of tensor products and stride per-

mutations. The algebraic expressions representing data partition and migration directly operate

on a data vector, and hence can be conveniently embedded into an algorithm. It is also shown

that these expressions are useful for a clear understanding and for efficiently embedding into

problems that involve different data distributions at different phases. A unique data distribution

technique that effectively uses transpose algorithms for multiplication of two rectangular matri-

ces is derived. Performance of these algorithms are evaluated by carrying out implementations

on Intel's i860 based iPSC/860, Touchstone Delta and Paragon supercomputers.

Implementation Results 25

3.1.1 Matrix transpose algorithms in three data distributions

Results of transpose algorithms on Paragon

M N Row-Division Col-Division Mesh-Division

ms ms ms

128 128 5.236 6.172 1.316

128 256 5.902 7.051 2.028

128 512 9.031 10.409 2.159

128 1024 12.356 15.312 3.866

256 128 5.501 6.665 1.825

256 256 8.283 9.746 2.301

256 512 11.483 14.027 4.018

256 1024 20.076 22.503 7.548

512 128 8.310 9.432 3.450

512 256 11.555 13.359 5.905

512 512 18.536 21.122 7.954

512 1024 39.628 38.529 16.434

1024 128 11.228 13.132 5.815

1024 256 17.526 20.616 10.631

1024 512 31.211 37.445 20.889

1024 1024 50.936 66.403 49.274

Implementation Results 26

Results of transpose algorithms on Touchstone Delta

M N Row-Division Col-Division Mesh-Division

ms ms ms

128 128 8.092 8.865 2.681

128 256 10.042 12.280 5.769

128 512 13.988 18.980 11.702

128 1024 23.909 33.014 20.018

256 128 10.065 12.016 5.041

256 256 14.228 18.150 11.554

256 512 23.030 31.237 20.088

256 1024 43.458 59.109 36.009

512 128 13.982 17.920 9.822

512 256 23.002 30.593 19.637

512 512 44.178 57.799 36.091

512 1024 95.145 114.215 79.681

1024 128 22.743 30.400 19.507

1024 256 42.197 57.171 36.109

1024 512 83.011 113.416 79.492

1024 1024 187.484 223.287 167.497

Implementation Results 27

3.1.2 Switching data partition schemes in application

We consider the implementation of numerical solution to Euler partial differential equation

(PDE) for two-dimensional case using wavelet-Galerkin method. The two most important com-

putation modules in this solution require two different data-partitions for their optimal imple-

mentation. First module, Helmholtz, involves two-dimensional filtering with forward and inverse

Fourier transform methods. The second module computes Jacobian that consists of numerous

small intra-node matrix multiplications. The module Jacobian requires boundary data from

other nodes, but upto the necessity for neighboring spatial regions to exchange data, choice of

any data-partitioning shows ideal concurrency, with no sequential dependence of one processor's

calculation on other's. Departure from ideal speedup in evolution of Jacobian arises because

the elements on node boundaries must be shared by geometricaUy neighboring processors. Min-

imization of the elements on the boundaries minimizes the internode communication, leading to

the most optimal parallel implementation.

Optimal implementation of Helmholtz requires the data distribution along rows or columns of

the data array, while Jacobian requires the data distribution in 2-dimensional subarrays (mesh-

division). Switching between row-division and mesh-division data-partitions is required to make

use of the peak performances of these modules individually.

Implementation Results 28

Two-dimensional double-precision complex FFT implementation results

(1) iPSC/860 library code, (2) Interface routines appended at input and output, (3) Algorithm-1,

(4) Algorithm-2.

Problem Size Nodes Intel Interface Algorithm-1 Algorithm-2

ms ms ms ms

32 x 32 4 0.06054 0.13752 0.12409 0.08476

16 0.12427 0.25118 0.20137 0.13195

64 x 64 4 0.15091 0.31761 0.28070 0.23038

16 0.13451 0.26424 0.23804 0.17571

64 0.48014 0.72160 0.53387 0.39570

128 x 128 4 0.50754 0.96545 0.86153 0.76560

16 0.24929 0.44145 0.42941 0.33604

64 0.49421 0.76185 0.58775 0.43177

256 x 256 4 1.94816 3.43353 3.17574 2.91836

16 0.60610 1.13566 1.15002 1.00119

64 0.57530 0.94583 0.82859 0.64410

256 1.96009 2.73886 1.66710 1.54402

512 x 512 4 8.58407 14.55625 13.08064 12.30499

16 2.37530 4.07935 4.16807 3.81806

64 1.09181 2.17609 1.92430 1.63670

256 2.54740 2.90163 2.29605 1.96358

Timing results for 128 X 128 size vorticity computations

Nodes Jacobian Helmholtz Total

row-D Mesh row-D Meshl Mesh2 row-D Meshl Mesh2

4

16

64

2.8317

0.8128

0.3095

2.7939

0.7310

0.1996

0.11216

0.06094

0.10510

0.18218

0.09950

0.12022

0.16298

0.07688

0.08916

2.9438

0.8738

0.4146

2.9761

0.8305

0.3198

2.9568

0.8079

0.2887

Implementation Results 29

3.1.3 Parallel matrix multiplication algorithm for rectangular arrays

Many applications have numerical solutions in which required computation is presented as matrix

operations. One of the most elementary operations involving matrices is multiplication of two

matrices. However, since matrix multiplication requires substantially more data movement than

most other operations, algorithms that address efficient data movement is crucial for effective

implementation on concurrent computers.

We have reviewed and implemented an existing matrix multiplication algorithm that gener-

ates and accumulates partial results by moving multiplicands through a set of broadcasts and

shifts. Two extreme cases of data decomposition strategies cases involve either only a set of

broadcasts or only a set of shifts. We designed a different approach that replaces broadcasts or

shifts by matrix transpose. Identification of shortcomings in the two extreme cases of broadcast-

and-shift algorithm and the fact that dot product of two vectors result in a single element is

the motivation for this new approach. Then, to overcome the hurdles in memory requirement,

we modified the algorithm for efficient data manipulation with the aid of block transpose algo-

rithm. We present evaluation of communication costs in broadcast-and-shift algorithm versus

new approach and timing results of their implementations on Intel's Paragon, Touchstone Delta

and iPSC/860.

3.1.4 Implementation results on matrix multiplication algorithm

Timing results for routing scheme in new method

Ni N2 Nz 2-nodes 4-nodes 8-nodes 16-nodes

32 512 32 0.495 1.049 2.294 4.870

64 512 64 0.801 1.827 3.348 4.970

128 512 128 2.238 4.375 5.775 8.953

256 512 256 7.107 12.377 16.724 22.357

512 512 512 27.340 44.108 57.234 67.113

Implementation Results 30

Timing results for routing schemes in matrix multiplication algorithms on 16 node

Paragon

Nx iV2 N3 B-S Algor. New App. Performance

Improvement

128 128 32 11.811 5.384 119.35

128 128 64 9.769 7.589 28.73

128 128 128 10.313 9.290 11.02

256 128 32 12.108 7.538 60.63

■ 512 128 32 15.429 9.330 65.37

1024 128 32 22.604 13.469 67.82

128 256 32 11.185 5.355 108.88

128 256 64 11.753 7.573 55.19

128 256 128 12.853 9.359 37.33

256 256 32 14.466 7.530 92.10

256 256 64 14.993 9.339 60.53

512 256 32 20.114 9.341 115.33

512 256 64 20.618 13.529 52.40

1024 256 32 37.661 13.518 178.59

128 512 32 15.005 5.273 184.58

128 512 64 16.127 7.511 114.71

128 512 128 18.651 9.336 99.78

128 512 256 22.296 13.496 65.21

256 512 32 20.647 7.571 172.70

256 512 64 21.557 9.360 130.31

256 512 128 24.351 13.468 80.81

512 512 32 32.073 9.333 243.65

512 512 64 32.874 13.487 143.74

1024 512 32 66.446 13.524 391.31

1024 512 64 54.994 23.743 131.63

Implementation Results 31

Timing results for routing schemes in matrix multiplication algorithms on 16 node

Touchstone Delta

Nx N2 N3 B-S Algor. New App. Performance

Improvement

128 128 32 11.742 7.265 61.62

128 128 64 12.848 11.661 10.79

256 128 32 18.404 11.661 57.82

512 128 32 31.486 21.037 49.67

128 256 32 19.511 7.325 166.67

128 256 64 21.919 11.669 87.84

128 256 128 26.588 21.128 25.84

256 256 32 32.423 11.641 178.52

256 256 64 34.938 21.032 66.12

256 256 128 39.837 39.226 1.56

512 256 32 59.338 20.973 182.93

512 256 64 61.808 39.322 57.18

128 512 32 34.936 7.302 378.44

128 512 64 39.797 11.674 240.90

128 512 128 49.139 21.112 132.75

128 512 256 68.786 39.276 75.13

128 512 512 109.143 75.203 45.13

256 512 32 61.808 11.672 429.54

256 512 64 66.710 21.108 216.04

256 512 128 76.199 39.185 94.45

256 512 256 96.222 75.287 27.81

512 512 32 114.326 20.887 447.35

512 512 64 119.239 39.229 203.96

512 512 128 128.646 75.244 1 70.97

Implementation Results 32

Timing results for routing schemes in matrix multiplication algorithms on 16 node

iPSC/860

Ni N2 Ns B-S Algor. New App. Performance

Improvement

128 128 32 26.504 18.586 42.60

256 128 32 44.936 30.932 45.27

512 128 32 80.056 55.328 44.69

128 256 32 47.235 19.506 142.15

128 256 64 53.787 30.849 74.35

128 256 128 65.542 55.086 18.98

256 256 32 82.382 30.829 167.22

256 256 64 89.350 53.987 65.50

512 256 32 152.873 55.152 177.18

512 256 64 159.157 102.409 55.41

128 512 32 88.714 18.271 385.54

128 512 64 101.255 31.236 224.16

128 512 128 124.579 55.067 126.23

128 512 256 185.685 101.661 83.65

128 512 512 304.817 198.436 53.61

256 512 32 159.439 30.950 415.15

256 512 64 171.299 55.532 208.47

256 512 128 197.331 101.436 94.54

256 512 256 245.848 198.612 23.78

512 512 32 300.573 53.400 462.87

512 512 64 312.586 102.097 206.17

512 512 128 339.101 199.487 69.97

Implementation Results 33

3.2 Single i860 node codes: The building blocks

Delta nodes (40 MHz i860)

size forward inverse size forward inverse

16 8 8 20 11 11

27 19 19 32 17 17

40 23 22 64 34 35

96 70 70 100 74 74

125 91 91 128 90 90

140 109 109 160 109 113

192 145 142 224 169 163

256 182 179 300 302 303

360 282 289 400 376 376

448 370 366 512 395 408

576 521 526 700 709 707

768 781 776 800 788 801

900 970 968 1024 1024 1021

1024 1024 1021 1125 1393 1394

1280 1762 1740 1440 1867 1883

1536 2047 2020 1600 2161 2140

1800 2623 2553 2048 3745 3707

Implementation Results 34

Paragon nodes (50 MHz i860)

The corresponding timings for the Kuck & Associates power-of-two FFT routines are given for

comparison purposes. For both codes, the timings have been performed using the same method.

size Aware Kuck k Associates size Aware Kuck & Associates

12 5.87 15 8.56

16 6.81 13.95 20 10.67

21 13.69 24 11.30

25 14.73 27 15.69

28 13.12 32 14.02 30.61

35 19.73 36 16.73

40 20.91 45 23.57

48 29.72 49 31.37

56 26.73 64 26.98 38.95

80 49.91 96 57.42

112 67.57 128 70.88 68.95

144 80.15 160 121.52

192 123.39 224 136.14

256 149.47 126.26 288 202.74

320 244.88 384 274.98

448 283.60 512 312.87 271.11

576 365.86 640 535.47

768 629.24 896 706.53

1000 825.14 1024 753.09 645.56

1152 923.92 1280 1185.01

1536 1279.45 1792 1536.50

2048 1793.91 1484.94 __

Implementation Results 35

Complex, single precision 2D FFTs on Paragon

The routines are coded in Fortran calling upon small size DFT assembly modules. Cooley-Tuckey

algorithm is used.

size time (ms) size time (ms)

40x40 2.138 40 x 36 1.753

40x35 1.815 40x28 1.213

40x25 0.930 40x24 0.832

40x20 0.651 40 x 15 0.516

40 x 12 0.371 36x40 1.799

36x36 1.493 36x35 1.529

36x28 0.968 36x25 0.799

36x24 0.713 36x20 0.574

36 x 12 0.328 32x32 1.114

20x40 0.651 20x36 0.594

20x35 0.595 20x32 0.480

20x28 0.440 20x25 0.382

20x24 0.379 20x20 0.311

20 x 16 0.224 20 x 15 0.249

20 x 12 0.187 15x40 0.507

15x36 0.452 15x35 0.465

15x32 0.382 15x28 0.351

15x25 0.335 15x24 0.303

15x20 0.247 15 x 16 0.188

15x15 0.197 15 x 12 0.143

12x40 0.371 12x36 0.329

12x35 0.344 12x32 0.280

12x28 0.267 12 x 25 0.248

12x24 0.224 12x20 0.188

12 x 16 0.130 12 x 15 0.145

12 x 12 0.111

Implementation Results 36

Complex, single precision 2D RTA FFTs on Paragon

The routines are coded in Fortran calling upon small size DFT assembly modules. The Hybrid

RTA (HRTA) algorithm is used. Results are given for sizes: p2m x p2n where p is a prime

number (3,5 or 7). tirnel referes to the time computational time when the data are already

permuted (CRT has been pre-applied) and the output is being obtained on the algebraic lines.

time2 refers to the time required when the input is in its natural order (column-wise) and so is

the output.

size timel (ms) time2 (ms) size timel (ms) time2 (ms)

24x24 2.54 3.47 48x48 8.41 22.27

96x48 16.07 52.18 96x96 31.99 100.10

192 x 96 63.72 205.68 192 x 192 127.75 429.32

384 x 192 262.48 895.22 384 x 384 600.77 1882.31

768 x 384 1206.76 3823.15 768 x 768 2672.44 7903.65

20x20 2.52 5.13 40x20 3.89 9.31

40x40 6.26 17.23 80x40 11.71 34.03

80x80 22.62 66.52 160 x 80 45.31 134.27

160 x 160 90.51 278.01 320 x 160 180.81 576.84

320 x 320 361.13 1181.26 640 x 320 773.75 2500.96

640 x 640 1741.80 5217.32 28x28 4.52 9.67

56x28 7.37 17.64 56x56 12.57 33.39

112 x 56 24.05 65.64 112 x 112 46.06 131.22

224 x 112 91.57 265.79 224 x 224 179.97 549.69

448 x 224 357.37 1140.63 448 x 448 729.56 2339.62

896 x 448 1584.03 4904.57

Implementation Results 37

3.3 Multi-processor codes

3.3.1 Complex, ID single precision FFTs

The Cooley-Tuckey formulation is being used. The 1-D FFT computation is formulated as

a 2-D FFT with intermediate twiddle factors multiplication. Three global transpositions are

required for the in-place 1-D FFT and two if it is not required that the distribution of the

results coincides with that of the data. Furtehrmore, only one global transposition is required

if the initial distribution of the data is assumed to be in a strided (transposed) fashion. In the

following table, all times are in sec x 10-3, time! refers to the in-place version and Ume2 to the

out-of-place version.

Implementation Results 38

Timings on the Paragon

nodes size timel time2 nodes size timel time2

2 1024 4.08 2.99 2 2048 6.21 4.75

4096 10.44 8.15 8192 19.36 15.98

16384 38.23 31.50 32768 71.21 59.22

65536 139.70 116.71 131072 284.12 237.17

262144 573.62 486.25 524288 1264.26 1083.69

1048576 2771.17 2401.54

4 1024 6.42 4.45 4 2048 7.75 5.32

4096 10.88 8.09 8192 15.87 12.01

16384 25.89 19.86 32768 46.62 36.64

65536 86.68 69.06 131072 165.19 134.03

262144 327.76 268.21 524288 702.36 581.81

1048576 1500.23 1268.73

8 1024 13.46 9.00 8 2048 13.86 9.34

4096 15.13 10.22 8192 17.19 12.00

16384 24.42 17.97 32768 35.65 26.50

65536 56.75 43.36 131072 102.13 79.65

262144 190.52 150.55 524288 380.92 312.05

1048576 799.12 664.72

16 1024 27.05 18.18 16 2048 27.64 18.66

4096 28.55 19.20 8192 29.82 20.10

16384 32.45 22.57 32768 37.29 25.95

65536 51.87 37.84 131072 74.69 55.59

262144 118.99 91.76 524288 226.34 179.86

1048576 436.60 357.36

32 1024 57.18 38.11 32 2048 55.45 36.97

4096 55.51 37.50 8192 56.91 38.53

16384 59.45 39.94 32768 62.06 42.81

65536 66.50 45.78 131072 76.30 53.68

262144 106.95 77.71 524288 158.60 119.73

1048576 276.05 216.75

Implementation Results 39

3.3.2 Complex, 2D single precision FFTs

The hypercube transpose algorithm is used for both implementations. In the Intel code, the

data is being assumed to be distributed row-wise (C convention) and in the Aware codes the

data are distributed column-wise (Fortran convention). Two sets of timings are being reported:

For the first set of timings (timel), two global data transpositions are required so that the final

distribution of the results is the same as the original data distribution. In the second (time2),

the second global data transposition is being ommited.

The Intel code, originally designed for the iPSC/860 hypercube, is using synchronous com-

munication calls (csend) whereas the Aware code uses asynchronous communication calls (isend).

The Aware code breaks the global transposition stage into two partial global transpositions and

that are being performed concurrently with one-dimensional FFTs on the nodes.

Implementation Results 40

Timing results on the Caltech Delta

timel = in place, ms, Intel time2 = transposed, ms, Intel

timela = in place, ms, Aware time2a = transposed, ms, Aware

nodes size timel time2 timela time2a

2 1024 x 512

512x512

512 x 256

256 x 256

256 x 128

128 x 128

2205

962

433

196

99

51

1706

737

332

145

72

36

1555

764

360

158

85

40

1041

507

231

108

56

31

4 1024 x 1024

1024 x 512

512x512

512 x 256

256 x 256

256 x 128

2227

1014

472

230

113

61

1647

750

344

165

80

44

1760

878

424

194

96

55

1154

572

275

126

74

36

8 2048 x 1024

1024 x 1024

1024 x 512

512x512

512 x 256

256 x 256

2464

1040

514

247

131

67

1869

749

364

173

90

46

1955

966

481

226

118

41

1282

680

328

147

75

43

Implementation Results 41

nodes size timel time2 timela time2a

16 2048 x 2048 2728 2078 2292 1491

2048 x 1024 1212 893 1184 719

1024 x 1024 533 370 520 333

1024x512 273 186 255 184

512x512 133 90 134 82

512x256 73 50 89 53

32 4096 x 2048 3406 2278 3116 1887

2048 x 2048 1656 1099 1419 859

2048 x 1024 702 490 694 414

1024 x 1024 413 208 313 188

1024 x 512 168 108 183 108

512x512 89 60 129 69

64 4096 x 4096 3856 2669 3741 2213

4096 x 2048 1753 1240 1770 1059

2048 x 2048 1018 599 790 496

2048 x 1024 440 272 475 242

1024 x 1024 362 127 221 103

1024 x 512 135 140 165 -

Implementa-tion Results 42

The hypercube transpose algorithm is used. The data is assumed to be distributed column-wise

(Fortran convention). For the first set of timings (timel), two global data transpositions are

required so that the final distribution of the results is the same as the original data distribution.

In the second (time2), the second global data transposition is being ommited. The code is using

synchronous communication caUs and is based on the original example provided in the iPSC/860

manuals. For the non-power-of-two ID FFTs, in-house codes (libdft.a) are being employed. The

timings are being reported for only a limited number of cases. Other DFT sizes, as weU as mixed

DFT-FFT cases can be treated as well.

Timings on the Paragon (non-power-of-2 sizes)

timel = in place, ms, Aware time2 = transposed, ms, Aware

nodes size timel time2 nodes size timel time2

2 224 x 224 83 64 4 1792 x 1792 3291 2642

300 x 300 165 133 8 224 x 224 36 24

360 x 360 209 164 360 x 360 77 55

448 x 448 335 264 448 x 448 110 81

576 x 576 562 445 576 x 576 174 132

640 x 640 759 616 640 x 640 226 175

800 x 800 1134 908 800 x 800 333 256

900 x 900 1530 1234 1280 x 1280 901 715

1280 x 1280 3239 2657 1440 x 1440 1104 870

1440 x 1440 3979 3238 1600 x 1600 1392 1105

4 224 x 224 51 38 1792 x 1792 1711 1380

300 x 300 98 75 16 224 x 224 32 21

360 x 360 121 91 448 x 448 74 51

448 x 448 188 143 576 x 576 111 78

576 x 576 309 238 640 x 640 140 103

640 x 640 410 327 800 x 800 199 147

800 x 800 610 478 1280 x 1280 486 379

900 x 900 831 654 1440 x 1440 599 463

1280 x 1280 1730 1379 1600 x 1600 743 581

1440 x 1440 2107 1685 1792 x 1792 908 711

1600 x 1600 2670 2145

Implementation Results 43

3.3.3 Real-to-Hermitian, 2D single precision FFTs

The hypercube transpose algorithm is used. The data is assumed to be distributed column-wise

(Fortran convention). The timings do not include the final transposition stage, so that the

results are obtained distributed along the first dimension.

The code is using asynchronous communication calls and interleaved computation/communication

is being used. Each node, partitions the local data into two subsets and performs ID FFTs on

one subset while transposing the other one.

Implementation Results 44

Timings on the Paragon (power of 2 sizes): version i2

time = transposed, ms, Aware

nodes size time nodes size time

2 128 x 128 11 16 128 x 128 20

128 x 256 21 128 x 256 21

256 x 256 41 256 x 256 24

256 x 512 87 256 x 512 30

512x512 201 512x512 44

512 x 1024 455 512 x 1024 74

1024 x 1024 997 1024 x 1024 139

4 128 x 128 9 1024 x 2048 293

128 x 256 15 2048 x 2048 627

256 x 256 25 32 128 x 128 38

256 x 512 48 128 x 256 40

512 x 512 96 256 x 256 41

512 x 1024 236 256 x 512 45

1024 x 1024 515 512x512 50

1024 x 2048 1061 512 x 1024 65

8 128 x 128 11 1024 x 1024 102

128 x 256 14 1024 x 2048 183

256 x 256 21 2048 x 2048 325

256 x 512 32 64 256 x 256 80

512 x 512 54 256 x 512 83

512 x 1024 117 512x512 89

1024 x 1024 269 512 x 1024 95

1024 x 2048 554 1024 x 1024 110

2048 x 2048 1219 1024 x 2048 140

2048 x 2048 217

Implementation Results 45

The hypercube transpose algorithm is used. The data is assumed to be distributed column-wise

(Fortran convention). The timings do not include the final transposition stage, so that the

results are obtained distributed along the first dimension.

The code is using synchronous communication calls and the hypercube transpose algorithm.

Timings on the Paragon (power

time =

of 2 sizes): version il

transposed, ms, Aware

nodes size time nodes size time

2 128 x 128 10 8 1024 x 2048 443

128 x 256 20 2048 x 2048 959

256 x 256 39 2048 x 4096 1728

256 x 512 80 4096 x 4096 3929

512x512 163 16 128 x 128 11

512 x 1024 378 128 x 256 13

1024 x 1024 818 256 x 256 15

1024 x 2048 1696 256 x 512 23

2048 x 2048 3576 512x512 34

4 128 x 128 7 512 x 1024 64

128 x 256 12 1024 x 1024 126

256 x 256 23 1024 x 2048 239

256 x 512 46 2048 x 2048 479

512x512 89 2048 x 4096 850

512 x 1024 197 4096 x 4096 1997

1024 x 1024 428 32 128 x 128 21

1024 x 2048 887 128 x 256 21

2048 x 2048 1855 256 x 256 23

2048 x 4096 3351 256 x 512 26

8 128 x 128 7 512 x 512 32

128 x 256 10 512 x 1024 50

256 x 256 16 1024 x 1024 80

256 x 512 28 1024 x 2048 142

512x512 51 2048 x 2048 271

512 x 1024 108 2048 x 4096 463

1024 x 1024 225 4096 x 4096 997

Implementation Results 46

3.3.4 Complex-to-Complex, 3D FFT

The hypercube transpose algorithm is used. The data is assumed to be distributed along the

last dimension. For the first set of timings {timel), two global data transpositions are required

so that the final distribution of the results is the same as the original data distribution. In

the second (time2), the second global data transposition is being ommited. The code is using

synchronous communication calls and is based on the original example provided in the iPSC/860

manuals. Synchronous communication calls are being used.

Timing results on the Delta (power of 2 sizes - single precision)

timel = in place, ms, Aware time2 = transposed, ms, Aware

nodes size timel time2

2 32 x 32 x 32 122 99

64 x 32 x 32 230 187

64 x 64 x 32 442 358

64 x 64 x 64 843 682

128 x 64 x 64 1653 1335

4 32 x 32 x 32 70 54

64 x 32 x 32 133 103

64 x 64 x 32 254 196

64 x 64 x 64 489 373

128 x 64 x 64 959 732

128 x 128 x 64 1893 1441

8 32 x 32 x 32 43 30

64 x 32 x 32 76 56

64 x 64 x 32 143 105

64 x 64 x 64 345 198

128 x 64 x 64 550 386

128 x 128 x 64 1047 759

128 x 128 x 128 2021 1590

16 32 x 32 x 32 28 16

64 x 32 x 32 41 25

64 x 64 x 32 61 41

64 x 64 x 64 101 72

128 x 64 x 64 184 136

128 x 128 x 64 347 263

128 x 128 x 128 669 517

256 x 128 x 128 1315 1037

Implementation Results 47

The hypercube transpose algorithm is used. The data is assumed to be distributed along the

last dimension. For the first set of timing results (timel), two global data transpositions are

required so that the final distribution of the results is the same as the original data distribution.

In the second (time2), the second global data transposition is being ommited. The code is using

synchronous communication caUs and is based on the original example provided in the iPSC/860

manuals. Synchronous communication caUs are being used. The local data permutations are

being performed by using Kuck & Associates library matrix transposition calls.

Timings on the Paragon (power of 2 sizes-single

timel = in place, ms, Aware time2 =

precision)

transposed, ms, Aware

nodes size timel time2 nodes size timel time2

2 32 x 32 x 32 71 58 16 32 x 32 x 32 27 16

64 x 32 x 32 139 113 64 x 32 x 32 40 25

64 x 64 x 32 279 230 64 x 64 x 32 61 41

64 x 64 x 64 561 461 64 x 64 x 64 103 73

128 x 64 x 64 1114 919 128 x 64 x 64 188 139

4 32 x 32 x 32 47 36 128 x 128 x 64 353 269

64 x 32 x 32 83 65 128 x 128 x 128 684 531

64 x 64 x 32 154 124 256 x 128 x 128 1343 1063

64 x 64 x 64 300 242 32 32 x 32 x 32 43 23

128 x 64 x 64 583 474 64 x 32 x 32 47 26

128 x 128 x 64 1165 953 64 x 64 x 32 56 33

8 32 x 32 x 32 29 20 64 x 64 x 64 82 52

64 x 32 x 32 49 35 128 x 64 x 64 124 84

64 x 64 x 32 91 68 128 x 128 x 64 215 155

64 x 64 x 64 171 131 128 x 128 x 128 398 294

128 x 64 x 64 325 259 256 x 128 x 128 740 567

128 x 128 x 64 644 509 256 x 256 x 256 1427 1114

128 x 128 x 128 1282 1023

Implementation Results
48

The hypercube transpose algorithm is used. The data is assumed to be distributed along the

last dimension. For the first set of timing results (timel), two global data transpositions are

required so that the final distribution of the results is the same as the original data distribution.

In the second {timeS), the second global data transposition is being ommited. The code is using

synchronous communication caUs and is based on the original example provided in the iPSC/860

manuals. Synchronous communication calls are being used. The local data permutations are

being performed by using Kuck & Associates library matrix transposition caUs. Since the library

contains only double precision real transpositions, the double precision complex transpositions

have been reformulated in terms of the available library functions.

Timings on the Paragon (power of 2 sizes-double precision)

timel = in place, ms, Aware time2 = transposed, ms, Aware

nodes size timel time2

2 32 x 32 x 32 141 118

64 x 32 x 32 274 229

64 x 64 x 32 539 451

64 x 64 x 64 1069 894

4 32 x 32 x 32 82 66

64 x 32 x 32 151 128

64 x 64 x 32 291 237

64 x 64 x 64 567 466

128 x 64 x 64 1126 926

8 32 x 32 x 32 52 39

64 x 32 x 32 90 70

64 x 64 x 32 164 133

64 x 64 x 64 307 246

128 x 64 x 64 593 479

128 x 128 x 64 1181 962

nodes size timel time2

16 32 x 32 x 32 40 30

64 x 32 x 32 59 45

64 x 64 x 32 98 76

64 x 64 x 64 177 138

128 x 64 x 64 326 258

128 x 128 x 64 624 501

128 x 128 x 128 1228 998

32 32 x 32 x 32 48 27

64 x 32 x 32 58 34

64 x 64 x 32 82 53

64 x 64 x 64 120 83

128 x 64 x 64 204 148

128 x 128 x 64 373 278

128 x 128 x 128 687 532

256 x 128 x 128 1511 1240

Implementation Results 49

3.4 Vector Radix (VR) on the Paragon

3.4.1 2D Vector Radix (VR) on the Paragon

Implementation Results

We have implemented the parallel algorithms described in the previous section on an Intel

Paragon multiprocessor system, that is based on the i860XR microprocessor and employs a

mesh interconnection network. Optimized assembly-coded routines for the nodes include ID

FFTs, routines from BLAS and matrix transposition routines. The RC method can be made

very efficient since optimized ID FFT routines can be used. For the partial VR algorithm,

the computation of the p-point FFTs (p is the number of nodes) is being performed either

via optimized hand coded assembly routines that perform strided small-sized FFTs with twid-

dle factor multiplication, or by performing the butterflies exphcitly using vectorized complex

multiply-accumulate routines from the BLAS library.

In Table 1, we compare the RC and PVR implementations for a variety of test and machine

sizes. Although the PVR method has not been fully optimized it performs generally better than

the RC with the advantage being more evident for relatively small sized machine partitions. For

more than 16 nodes, the PVR algorithm performs only slightly better than the RC, however

substantial optimization can be performed.

In Table 3.4.1, we compare the Collect-Distribute (CD) implementation with the FuU VR. In

both implementations the 2D data are being distributed along both dimensions and the results

are obtained in-place. Again, as in the case of the RC, the CD method has the advantage of

using highly optimized ID FFT routines, at the expense of increased data movements. Clearly,

as we can see from Table 3.4.1, the FVR implementation is more efficient that the CD method,

and additional optimization in the computation of the radix pxq FFTs is possible.

Implementation Results 50

m n nodes PVR RC

256 256 2 83 90

256 512 162 190

512 512 390 400

512 1024 690 918

1024 1024 1581 2065

256 512 4 96 109

512 512 187 229

512 1024 371 495

1024 1024 829 1093

1024 2048 1729 2282

2048 2048 3584 4742

512 512 8 113 123

512 1024 210 267

1024 1024 449 582

1024 2048 900 1186

2048 2048 1853 2443

512 512 16 84 66

512 1024 140 127

1024 1024 254 260

1024 2048 484 522

2048 2048 973 1110

2048 4096 1945 2061

512 512 32 93 71

512 1024 119 104

1024 1024 189 185

1024 2048 318 334

2048 2048 542 608

2048 4096 1021 1115

4096 4096 2036 2087

Comparison of the partial Vector-Radix approach and the Row Column optimized im-

plementation (execution times are in milliseconds).

Implementation Results
51

m n nodes FVR CD

256 512 4 119 155

512 512 230 301

512 1024 464 606

1024 1024 951 1237

1024 2048 2111 2676

512 512 8 132 -

512 1024 249 -

1024 1024 487 -

1024 2048 1062 -

2048 2048 2180 -

512 512 16 81 99

512 1024 151 188

1024 1024 275 377

1024 2048 546 750

2048 2048 1104 1559

2048 4096 2402 3106

Table 1: Timings for the Full VR implementation (execution times are in milliseconds).

Implementation Results 52

3.4.2 The 3D Vector-Radix Implementation on the Paragon

Several variations of the 3D VR algorithms have been implemented for a variety of machine sizes.

The VR algorithm offers a larger flexibility in data and computation flows as well as initial and

final data distribution. In the timing results reported next, data are assumed to be distributed

along the last dimension. Since in the 3D case, the length of the ID FFTs that have to be

computed is in general considerably smaller than in the 2D case (assuming that data should

have sizes such that they can fit into the processors local memory), efficient vectorized FFT

routines have been written. Although these routines are coded in Fortran, when they are used

to compute vectorized FFTs of highly rectangular data structures they perform substantiaUy

better than the optimized assembly coded library ID FFT routines. The greater flexibility that

the 3D VR algorithm offers as well as other improvements in inter-processor communication

strategies resulted in codes that are more than twice as fast than the corresponding RC 3D

codes especially for relatively small sized machine configurations.

Implementation Results 53

Timing results

nodes size timel time2

2 32 x 32 x 32 60 (141) 54 (118)

64 x 32 x 32 125 (274) 112 (229)

64 x 64 x 32 246 (539) 212 (451)

64 x 64 x 64 516 (1069) 458 (894)

4 32 x 32 x 32 30 (82) 27 (66)

64 x 32 x 32 61 (151) 50 (128)

64 x 64 x 32 117(291) 102 (237)

64 x 64 x 64 239 (567) 200 (466)

128 x 64 x 64 475 (1126) 414 (926)

8 32 x 32 x 32 16 (52) 12 (39)

64 x 32 x 32 27 (90) 23 (70)

64 x 64 x 32 48 (164) 43 (133)

64 x 64 x 64 116 (307) 97 (246)

128 x 64 x 64 229 (593) 191 (479)

128 x 128 x 64 505 (1181) 382 (962)

16 64 x 64 x 64 87 (177) 70 (138)

128 x 64 x 64 144 (326) 134 (258)

128 x 128 x 64 265 (624) 242 (501)

128 x 128 x 128 502 (1228) 462 (998)

32 128 x 64 x 64 111 (204) 89 (148)

128 x 128 x 64 191 (373) 158 (278)

128 x 128 x 128 318 (687) 286 (532)

256 x 128 x 128 586(1511) 538 (1240)

All the timing results reported are in miliseconds. For convenience, the timings for the Row-

Column method implementation for the corresponding data sizes are givem in parentheses,

timel = in place, ms, Aware time2 = transposed, ms, Aware

ZA

Implementation Results

3.5 Implementation results on IBM SP2

timel refers to the time required to perform a forward 2D FFT in which the node distribution

of the output coincides with that of the input, timel is the corresponding time when the results

are obtained in a transposed fashion, i.e. they are obtained in nodes different than that where

the data where originally stored. AU times are being measured by using the mclockQ function

call and they are reported in miliseconds.

Size (n x m) nodes timel (ms) time2 (ms)

1024 x 1024 4 380 280

1024 X 1024 8 190 150

1024 X 1024 16 110 80

1024 x 1024 32 60 40

1024 x 1024 64 40 30

2048 x 1024 8 410 310

2048 x 1024 16 210 160

2048 x 1024 32 130 90

2048 X 1024 64 80 50

2048 x 2048 16 450 310

2048 x 2048 32 240 170

2048 X 2048 64 150 100

Table SP2-1: Time required for forward 2D complex single precision FFT.

From the timings reported in Table SP2-1 we see that each global matrix transposition

requires approximate^ 25 In the case of the in-place parallel 2D FFT (i.e. when the node dis-

tribution of the results coincides with that of the data), about 50 of the total time is needed for

the inter-processor communication and local data transpositions. This suggests that substantial

improvements could be achieved by usings asynchronous communication calls to interleave node

computations with data communications.

In Table SP2-2 we report timings for the case of parallel 3D FFTs. Again, timel refers to

the "in-order" case and timel refers to the "out-of-order" case.

Implementation Results oo

Size (nXfflXl) nodes timel (ms) time2 (ms)

128 x 128 x 64 4 390 270

128 x 128 x 64 8 210 140

128 x 128 x 64 16 130 70

128 x 128 x 64 32 80 40

128 x 128 x 64 64 60 20

128 x 128 x 128 8 420 270

128 x 128 x 128 16 230 150

128 x 128 x 128 32 150 90

128 x 128 x 128 64 100 80

Table SP2-2: Time required for forward 3D complex single precision FFT. Again as it for

the case of the 2D parallel FFT, inter-processor communication requires a substantial part of

the total FFT time.

Implementation Results
56

3.6 RTA multi-processor codes

For this set of codes, each node is assumed to store in its local memory the whole data set.

Each node, performs CRT and the corresponding periodization and then computes 3D DFT.

The timings do not include the final data re-indexing stage.

nodes size time (ms)

4 192 x 192 34.79

384 x 192 71.35

384 x 384 162.25

768 x 384 326.89

768 x 768 715.19

Implementation Results

3.7 Implementation results for Gabor coefficients

Table 1. Timing Results on i860 Single Node (Critical Sampling

•
57

-2k) #

•

•

•

ixed sizes)

•

•

•

•

•

•

Sample Size n 2-D L x M Time ms = 10 3sec.

256 16 x 16 0.67

512 16 x 32 1.20

1024 32x32 2.02

2048 32 x 64 3.98

4096 64x64 7.41

8192 64 x 128 14.96

16384 128 x 128 29.82

32768 128 x 256 60.89

65536 256 x 256 125.55

131072 256 x 512 264.60

262144 512 x 512 566.99

Table 2. Timin g on i860 Single Node (Critical Sampling - Mi

Sample Size n 2-D LxM Time ms = 10 3sec.

384 8x48 1.47

768 16x48 1.99

1536 32x48 3.12

3072 64x48 5.91

3072 128 x 24 6.15

6144 128 x 48 12.07

6144 64 x 96 12.48

12288 512 x 24 26.07

12288 128 x 96 24.05

24576 256 x 96 48.70

49152 256 x 192 98.71

98304 256 x 384 203.52

98304 512 x 192 209.12

196608 512 x 384 433.41

393216 1024 x 384 1011.61

Implementation Results

Table 3. Timing Results on i860 Single Node (Integer Oversampled)

58

Sample Size n = L'M 2-D L' x M Time ms = 10 3sec.

512 32 x 16 0.67

1024 32x32 1.20

2048 64 x 32 2.02

4096 64x64 3.98

8192 128 x 64 7.41

16384 128 x 128 14.96

32768 256 x 128 29.82

65536 256 x 256 60.89

131072 512 x 256 125.55

262144 512 x 512 264.60

524288 1024 x 512 566.99

Table 4. Timing on i860 Single Node (Fractional Oversampling (3/2))

Sample Size n 2-D LxM Time ms = 10~3sec.

384 16x24 2.06

768 32 x 24 . 2.97

768 16x48 3.91

1536 64x24 5.31

1536 32x48 6.03

3072 64x48 10.79

3072 128 x 24 10.05

6144 128 x 48 20.85

6144 64 x 96 22.86

12288 128 x 96 43.15

24576 256 x 96 84.71

49152 256 x 192 171.39

98304 256 x 384 412.12

98304 512 x 192 413.50

196608 512 x 384 840.02

Implementation Results 59

Table 5. Timing on i860 Single Node (Fractional Oversampling (5/4))

Sample Size n

320

640

1280

1280

2560

2560

5120

5120

5120

10240

10240

20480

20480

40960

81920

81920

163840

163840

327680

2-D LxM

8x40

16x40

32x40

16x80

64x40

32 x 80

128 x 40

64x80

32 x 160

128 x 80

64 x 160

128 x 160

64 x 320

128 x 320

256 x 320

128 x 640

512 x 320

256 x 640

512 X 640

Time ms = 10 6sec

2.82

3.85

5.66

7.66

9.65

11.35

16.42

18.32

22.49

32.09

37.99

67.65

74.42

134.08

258.40

276.69

522.19

534.90

1149.76

60

A Formulating Data-Partition and Migration in Dis-

tributed Memory Multiprocessors

Abstract

This paper presents an algebraic framework for expressing data-partition and mi-

gration in distributed memory multiprocessors in terms of the algebra of stride

permutations. This algebra provides powerful tools for visualizing the cost of com-

munication in parallel computations and for minimizing this cost by straightfor-

ward algebraic manipulations. We demonstrate the significance of this tool and

show how it leads to significant performance gains on Intel's Touchstone systems

(Delta, iPSC/860 and Paragon) in three examples: matrix transpose algorithm,

two-dimensional discrete Fourier transform algorithm, and solution of Euler partial

differential equations using wavelet-Galerkin method.

A.l Introduction

It is well known that data-distribution in distributed memory multiprocessors is essential to

achieve high performance of data-parallel programs. Extensive research has been reported on

data-decomposition optimization for distributed memory machines [1, 2, 3, 4, 5]. Research

in this area can be crudely classified into two categories. One aims at finding optimal data-

partitioning schemes for parallel loop constructs as part of compiler. It has been shown that the

problem of finding an optimal data-partition is NP-complete [3, 6, 1]. Therefore, researchers

have to rely on heuristic methods [6, 7, 8, 2, 9]. The other effort aims at special-purpose

implementations and a large work force for developing optimal implementation of individual

algorithms is reported [10, 11, 12].

Typically, an application requires a number of computation modules linked together to accom-

plish a specific computation. Global optimization depends not only on optimal implementation

of the computational modules, but at least equally on the interface between these implementa-

tions as determined by the data partition and migration across processors.

In this paper, we present a systematic formulation for data-partition and migration on dis-

tributed memory multiprocessors in terms of tensor product notation and stride permuta-

tions. Data-partition and migration are represented using simple tensor algebraic expressions

Data Partition and Migration 61

highlighting the computational and communication complexity of parallel algorithms. There-

fore, optimal data-partition and migration at interfaces between different algorithms becomes

straightforward tensor algebraic manipulations with the aid of well-established theorems in this

field. Furthermore, due to the conciseness of the underlying algebra, definitions are simple and

compact without having to deal with complicated indices in complex data structures.

In order to demonstrate the significance and usefulness of our framework, we have carried

out experiments on existing distributed memory multiprocessors such as Intel's Paragon, and

Touchstone Delta. Initially, our formal definitions are incorporated in three application prob-

lems: matrix transpose algorithm, two dimensional discrete Fourier transform algorithm, and

solution of Euler partial differential equation using wavelet-Galerkin approach. Then, simple

algebraic manipulations on these expressions are carried out to derive optimal data-partition

and migration schemes. Experimental timing results on these machines show that such simple

algebraic manipulations result in performance improvement ranging from 30% to 600%.

The rest of the paper begins with a simple introduction to tensor notation and stride per-

mutations as a background of our work. In Section 3, we present our formal definitions for

data-partition and migration in distributed memory multiprocessor systems. Experiments on

Intel's distributed machines and discussions on numerical results are presented in Section 4.

Section 5 discusses the related work in the field with respect to our model. We conclude the

paper in Section 6.

A.2 Preliminaries

In this subsection, we review and describe necessary notation and terminology that will be used

throughout the paper.

A.2.1 Stride Permutations

A vector x is an ordered finite linear array. The dimension of x, denoted by dim(x), is the

number of elements in the linear array. Let dim{x) = LS, for positive integers L and S. Stride

permutations are natural way of representing data-shuffling operations. We use P{LS,S) to

represent the stride permutation operation on a vector of length LS with stride S. To define

P(LS,S), set
y = P(LS,S)x.

Data Partition and Migration 62

The first L elements of y are obtained by collecting elements of x starting at element x0 and

then striding through x in steps of size S, i.e., [x0, xs, ■ .. X(L.-i)s]- The next L elements of y

are obtained in the same way starting at x1 of x: [xx, xs+i, • • •, ^(L.-ijs+i], and so on. We can

represent the stride permutation P(LS, S) by a permutation matrix which we will denote also

by P(LS,S).

Example A.l Permutation matrix P(6,3) operating on vector x = [x0 Xi x2 x3 x4 x5] , is

given by
10 0 0 0 0 x0

0 0 0 10 0 xl

0 10 0 0 0 x2

0 0 0 0 10 x3

0 0 10 0 0 x4

0 0 0 0 0 1 x5

P(6,3)x (1)

A.2.2 Tensor Product

Tensor product is a binary operator between two matrices of any size. Given two matrices A and

B of sizes MA X NA and MB x NB, respectively, a new matrix, C, dimensioned MAMB x NANB

can be generated by tensor product of A and B as:

0(o,o)B ß(o,i)B ö(O,2)B ... O(0,wA-i)B

ß(i,o)B a(i,i)B a(i,2)B

C =A®B = a(2,0) B 0(2,1)B (2,2)J

a(i,ivA-i)B

a(2,NA-i)B

0(MA-l,iVA-l)B

(2)

ö(iVfA-l,0)B Ö(MA-1,1)B a(A/A-l,2)B

where a(iJ) is the element on the ith row and jth column of A, and a(iii)B is scalar-matrix

multiplication.

Example A.2 Consider the following two matrices:

A =
1 2

3 4
and B

10 11 12

13 14 15

Th en

C = A®B =
" B 2B

3B 4B

' 10 11 12 20 22 24 "

13 14 15 26 28 30

30 33 36 40 44 48

39 42 45 52 56 60

Data Partition and Migration 63

according to equation (2).

Two types of tensor products are of special interest to us here. One has an identity matrix

on the left-hand side of a tensor product, called prior identity matrix, and the other has an

identity matrix on the right-hand side, referred to as post identity matrix.

Denote the N x N identity matrix by IN. For an M x M matrix A, IN ® A denotes the

MN x MN block-diagonal matrix

A

A

Example A.3 Consider a ^-processor machine and the butterfly matrix A

A =
1 1

1 -1

Then, y = (I4 ® A) x =

Xo + x1

x0 -2l

X2 + x3

X2 - x3

X4 + x5

X4 - x5

x6 + x7

x6 -x7 _

1 1 0

1 -1 0

0 0

0 0

0 0

0 0

0

0

0 0 1 1 0 0 0 0

0 0 1 -1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 -1 0 0

0 0

0 0

0 0

0 0

0 1

0 1

Xo

X\

X2

X3

X4

x5

x6

Xj

Each processor executes one butterfly on a different part of x, where the node boundaries are

represented by horizontal lines. If only 2 processors are available, then we can use the identity

h®A = I2®(h® A)

to implement the computation where two butterflies are performed in each processor.

Data Partition and Migration 64

Tensor products with prior identity matrices can be used to represent parallel tasks. In

general, on a ^-processor distributed memory machine, execution of (I/v <8> A) would imply k

parallel tasks, where N = nk and n is a positive integer.

If an identity matrix appears on the right-hand side of a tensor product (post identity matrix)

it is performed in a natural way as a vector operation.

A®IN =

O(0,0)IjV

a(i,o)Ijv

Ö(2,0)I/V

O(0,l)IiV

0(l,l)IiV

0(2,l)IiV

O(0,2)IjV

0(l,2)IiV

ö(2,2)IiV

a(o,A:-i)Iiv x0

0(I,A'-I)IN Xi

a(2,K-l)lN X2

a{L-\,K-l)^-N _ . XL*~l .

(3)

0-{L-\fi)^N 0-(L-\,\)^N ö(L-l,2)IiV

Example A.4 Consider a vector computer with vector register length equal to 3, and opera-

tional matrix defined as:

a b

c d
an d x = [x0 x\ x2 x3 x4 x5]

Then, y = (A <g> I3) x

axQ + bx3 a 0 0 6 0 0 x0

axi + bx4 0 a 0 0 b 0 xi

ax2 + bx5 0 0 a 0 0 b x2

cx0 + dx3 c 0 0 d 0 0 x3

cxi+dx4 0 c 0 0 d 0 x4

cx2 + dx5 0 0 c 0 0 d x5

is performed by partitioning input data into two subvectors Xi = [x0 xx x2]T and x2 = [x3 x4 x5] ,

and with the vector operations: yx = axa + 6x2 and y2 = cxi + dx2 ■

A.2.3 Some Useful Theorems

Tensor product identities provide powerful tool developing variants of an algorithm. We will

present these properties without proofs, for there are many texts containing the proofs on diverse

levels including [13, 14]. We use the convention that a complex tensor product formulation

should be read from right to left.

Data, Partition and Migration 65

Theorem A.l Multiplication of Tensor Products: If Nx = MA and NY = MB, then

the following multiplication theorem holds true.

(X-MxxNx ® YMYXNY) (&MAXNA ® BMBXNB)

= (XjV/xxiVx A-MAxNA) ® {YMYXNY &MBXNB) (4)

This theorem is quite often used to derive parallel or vector computations when identity matrices

appear in the product.

Theorem A.2 Commutative Law:

(&MAXNA <8> BMB*NB) = P(MAMB, MA) {BMBXNB ® &MAXNA) P{NANB, NB) (5)

This theorem is quite useful in generating different communication structures of an algorithm.

Theorem A.3 Inverse of Tensor Products: Unlike the case in multiplication of two ma-

trices, inverse of tensor product of two matrices does not change the order of its parameters.

(A®B)_1 = (A-1®B-1) (6)

Theorem A.4 Multiplication Theorem of Stride Permutations: Any simple-stride per-

mutation can be decomposed into two stride permutations when stride is a multiple of two

integers.

PiNtNiN^NM) = P{N1N2N3,N1)P(N1N2N3,N2) (7)

Theorem A.5 Inverse Stride Permutation:

P(iViiV2) N,)-1 = P(N!N2, N2). (8)

Theorem A.6 Parallel-Vector Tensor Factorization of Stride Permutations:

PiN.N.Ns^Ns) = [P(NlN3,N3)®IN2][INl®P(N2N3,N3)} (9)

This is one of the very important theorems to uncover the extent of communication complexity

hidden in a permutation. When parameter N-i is an integral multiple of number of processing

elements, this theorem extracts parallel local operations from operations that depend upon

non-local data. A stride permutation can also be factored in a different way (inverse of theo-

rem (A.6)) leading to the following theorem.

Theorem A.7 Vector-Parallel Tensor Factorization of Stride Permutations:

PiKNiNs, NXN2) = [lNl ® P(N2N3, N2)} [P(AW, Nx) ® 1^] (10)

Data. Partition and Migration 66

A.3 Data Partition and Migration: Formal Definitions

A.3.1 Storing Data in Distributed Memories

Most large scale applications of scientific computing involve manipulations of data that are

expressed in terms of matrices and vectors. This is natural because matrix notation gives a

compact way to express computation. Moreover, storing matrices or vectors in the memory of

a computer system is the first step of any computation. Different ways of storing data may

result in different algorithmic structures as well as different computational performance. While

methodology and algebraic formulations for storing matrices in a linear memory space of a

single processor system exist, such as row-major and column-major, there is neither a formal

and commonly agreed way of addressing data stored in distributed memory multiprocessor

systems, nor an agreed formal description for various storage schemes. Programmers for parallel

machines usually organize data in a way based on their convenience and efficiency of a specific

algorithm. As a result, data-allocation and partition in parallel processing are very diversified.

Therefore, there is a need for a unified approach for formalizing data allocation and partitioning

in parallel machines, and for a clear and convenient mathematical representation of various data-

storage schemes. In parallel computers, particularly in distributed memory multiprocessors,

communication costs are directly related to various data storage schemes. Clear representation

of storage schemes helps parallel programmer greatly to look into structures of implementations

and communication costs associated with algorithms.

Consider a message-passing multiprocessor system with k processors labeled from 0 to k - 1,

where k = h k2. We would like to partition and store a two-dimensional (2D) matrix, denoted

by A onto this system. For the purpose of simplicity and clarity of our presentation, we present

only the cases where the data can be evenly divided into k subsets and concentrate on our main

interest of algebraic representation of partitioning the matrix and storing them into processors'

memories. In the following, we assume that the operator Vecijvfiv(A) maps an M x N size

two-dimensional array, A, into a MW-length single dimension array, a, where (t, j)th element

of A is mapped to (j - 1) M + ith element of a (column-major).

Definition A.l Row-Division: Let A be an M x N matrix. We define row-division onto

k processors as follows. Partition A into k sets of complete rows such that i-th set of rows

(top-down) is allocated to i-th processor. In matrix notation, row-division can be represented

as operating by

PR(M,N,k) = P{Nk,k)®IM/k (11)

f\7
Data Partition and Migration

on a vector a that is formed as VectMlv(A).

We use bold faced "P" (P) with appropriate subscript to represent our data-partition def-

initions while italic "P" (P) to represent operation of stride permutation explained in sec-

tion (A.2.1).

Definition A.2 Column-Division: Let A be an M x N matrix. We define column-division

onto k processors as follows. Partitioning matrix A into k sets of complete columns such that

i-th set of columns (left-right) is allocated to i-th processor. In matrix notation, column-division

is represented as operating by

Pc(M,N,k)=IMN (12)

on a vector a that is formed as VectMN{A).

Definition A.3 Mesh-Division: Let A be an M x N matrix. We define mesh-division of

A onto a system of h x k2 processors as follows. Partition M rows of A into h equal sets

of rows (top-down) and then partition each set of rows into k2 equal subsets (left-right). Each

subset is a M/h x N/k2 size matrix but will have neither complete rows nor complete columns.

Allocation of these subsets to k processors is performed anti-lexicographically (top-down and

then left-right). In matrix notation, mesh-division is defined as

PM(M, N, h,k2) = Ik2 ® P{Nh/k2, kx) <g> IM/fcl. (13)

Definition A.4 Cyclic-Division: Let A be an M x N matrix. We define cyclic-division of

A onto k processors as follows. Partition the vector VectMN(A) into (MN/k) consecutive

subvectors such that i-th element of each subvector is allocated to i-th processors. In matrix

notation, cyclic-division can be represented as operating by

PCyc(M,N,k) = P(MN,k) (14)

on a vector a that is formed as VectMN{A).

Definition A.5 Block-Cyclic-Division: Let A be an M x N matrix. We define block-cyclic-

division of A onto a system with k processors as follows. Partition the vector VectMN{A) into

(MN/S) number of S-length consecutive subvectors and assign [i (mod k)]-th subvector to i-th

processor. In matrix notation, block-cyclic-division can be represented as operating by

PBC{M, N, k) = P(MN/S, k) <g> Is (15)

on a vector a that is formed as VectMN^A).

Data Partition and Migration 68

Block-cyclic is similar to cyclic except that each time S elements are allocated to a processor in-

stead of one element. Also note that column-division can be obtained from block-cyclic-division

for the case of M/k = 5, that is, number of rows assigned to each processor in matrix A is

equal to the length of subvector in block-cyclic-division.

Following five equations represent inverse operations of the above five definitions which can be

derived using theorems (A.3) and (A.5).

P^(M,N,k) = P(Nk,N)®IM/k (16)

V-c\M,N,k) = IMN (17)

P^{M,N,h,k2) = lk2®P{Nhlk2,Nlk2)®lM/kx (18)

Pclc(M,N,k) = P{MN,MN/k) (19)

PBc(M,N,k) = P{MN/S,MN/{Sk))®Is (20)

Example A.5 This example demonstrates data-partitioning of an 8 x 8 matrix, A,onto a 4-

processor machine. Figure 1 shows how a 64-element vector a formed by Vect64(A.) is par-

titioned in row-division, column-division, and mesh-division based on definitions (A.l)-(A.S).

In case of row-division, I2 on the right-hand side o/PÄ(8,8,4) represents moving vectors of

length 2 according to the permutation matrix P(32,4). When this permutation is applied, re-

sulting data at processor-0 is shown with dotted-line. For column-division data-partitioning,

since input permutation is an identity matrix, no action needs to be performed, and the vector

a is just segmented into four parts for allocating to four processors. For mesh-division data-

partitioning, I2 on the left-hand side of PM{8,8,2,2) represents an action to divide the vector a

into two equal sets and perform the vector-stride action P(8,2) <g> I4 on each set. However, this

vector-stride further divides each set into eight small subvectors of length 4 and shuffle them

according to the permutation P(8,2). Once again, data residing at processor-0 after the action

of input permutation is shown with dotted-line.

General Usage of Data-Partition Definitions

Consider any computational procedure that is expressed by an operational matrix G operating

on a vector a to obtain vector b:

b = G a. (21)

This equation ignores the underlying data-partition necessary to carry out the computation in

distributed memory multiprocessor system. To bring out the data-partition, let a(= Qaa) be a

Data Partition and Migration 69

PR (8,8,4) =

P(32,4)(g)I2

0 :'8 ..IP Si. .32 .40 A? ,5b

V J 1? If'' 3»'' 41'' 4? ¥
2 10 18 26 34 42 so 58

3 11 19 27 3S 43 51 59

4 12 20 28 36 44 32 60

5 13 21 29 37 45 S3 61

6 14

7 IS

22 30 38 46 54 62

23 31 39 47 55 63

Proc-0

Proc-1

Proc-2

Proc-3

0 8 16 24 32 40 4S 36

1 9 17 25 33 41 49 37

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 32 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 34 62

7 15 23 31 39 47 55 63

Pc(3,8,4)

P ?

} I?
2 ip

'fin
i;iJ2

5: 13

B 14

H

16 24

17 25

18 26

19 27

20 28

21 29

22 30

23 31

32 40

33 41

34 42

33 43

36 44

37 45

38 46

39 47

; 63

I2®
3, 2, 2) =

P(3, 2) ® h

Proc-0 Proc-2

P .* 16 2ä 32 40 48 56

i 19 V & 33 41 49 57

2! lb; V: & 34 42 50 58

s' ill 1? z\ 35 43 SI 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61
!64 6 14 22 30 38 46 S4 62

7 13 23 31 39 47 S3 63

48 56 Proc-1 Proc-3

49 57

SO 58

51 59

52 60

53 61

34 62

55 63

•

Proc-0 Proc-2

Proc-1 Proc-3

Figure 1: Action of data-partition algebraic expressions onto a 4-processor machine

Data Partition and Migration 70

desired data-partition of a among the processors where Qi is one of the data-partition schemes

(p pc or pM\ defined above. If one expects the output data to be in a particular partition

after the computation, then resultant data is of the form b where b = Q2b and Q2 is also one

of the definitions PR, PC, or PM defined above. Then parallel implementation corresponding

to equation (21) after incorporating our definitions can be rewritten as:

b = Q2 b = Q2 G a = [Q2 G Qr1] ä = G ä (22)

Therefore G = Q2 G Qfl is the actual-operational matrix that takes into account of the

complexity associated with the considered data-partition.

A.3.2 Moving Data among Distributed Memories

Once input data is partitioned among the processors, data migrations at the interfaces between

individual algorithms may be necessary in order to achieve global optimal performance of an

application. One frequently used data migration in numerical applications is well known matrix

transpose. Let a = VectMN{AMxN), and b = VectNM{BNxM), where BNxM is the transpose

of AMxN- Then,
b = P(MN, M) a. (23)

Hence P(MN, M) is the operational matrix for transpose algorithms, that is, G = P(MN, M).

When data-partition schemes are to be incorporated, the actual-operational matrix becomes G

(see equation (22)). That is,

P(MW,M) = Qä1 GQi, (24)

and the equation (23) becomes

b = G a, (25)

where G = Q2 P(MN,M) Q^1- In the following, we present derivations for the operational

matrices, G, required to transpose a matrix for the cases of row-, column-, and mesh-division

data-partitions defined in previous subsection (assume Ch = Q2 for simplicity), and visualize

their implementation aspects from their tensor product formulations.

Row-Division

For row-division data-partition, we have

G = PR(N,M,k) P{MN,M) P~R\M,N,k). (26)

Data Partition and Migration 71

According to definition (A.l), we have

G = P{Mk, k) ® Itf/fc] P{MN, M) [P{Nk, N) ® IM/k [2T

or
G = P{MN, M) = [P{Mk, M) ® Iiv/fc] G [P(iV£, fc) ® IW/fe (28)

Then, we can obtain expression for G by rewriting G = P{MN, M) as:

P{MN, M) = [P(Mk, M) ® Iyv/fc] [Ik ® P{MN/k, M))

by theorem (A.6)

P(MN,M) = F-R\N,M,k)[lk2®P(MN/k2,M/k)

"(Ik ® ^W *)) ® W

by theorem (A.7) and equation (16)

P{MN,M) = PR1{N,M,k)[lk®lk®P(MN/k\M/k)

[P{k\ k) ® Ijv/fc ® lM/k\ [P{Nk, k) ® lM/k

by applying theorem (A.6) to P(Nk, k)

P{MN, M) = PR
1
(N, M, k) [Ik ®Ik® P{MN/k?, M/k)

[P{k2,k)®IMN/ki}PR{M,N,k)

by definition (A.l)

P(MN, M) = ?R G PR.

Therefore, the actual-operational matrix in equation (25) for row-division partition can be

expressed as two stages:

(30)

(29)

G = I* ® h ® P{MN/k\ M/k)] [P{k\ k) ® lMN/k\ ■

The first stage, P{k\ k) ® IMN/V, « a global-task involving message-passing among processors,

since the expression does not contain an identity matrix, Ik, on its left-hand side. The size of

each message being passed is (MN/V) which is (l/fc)th of the size of the data set residing at

a processor. This is reflected in the above tensor product expression by lMN/k>- The factor

P(k\ k) in the expression indicates that each processor has (k- 1) subblocks to send out. Such

message passing is carried out in (*- 1) stages with one subblock being kept within a processor.

When the number of processors, k, is a 2-power integer, one-to-one communication structure

can be obtained with xor binary operator and a pseudo-code implementation for this stage is

shown in Table 1.

Data Partition and Migration 72

me = my node number

for index = 1 to k - 1

myswap = xor(me,index)

Send block-myswap of my associated vector a to processor-myswap

Receive message from processor-myswap

Store message at block-myswap of my associated vector a

end

Table 1: Psuedo-code for message passing in transpose algorithms either for row-division or

column-division partitions

The second stage, Ifc ® h ® P(MN/k2, M/k), represents a local-task due to the identity

matrix Ifc on its left-hand side. Each processor performs the parallel-stride operation [lk®

P(MN/k2,M/k)} locally.

Column-Division

For column-division data-partition, we have

G = Pc{N,M,k) P(MN,M) Pcl(M>N,k) (31)

According to definition (A.2), we have

G = IMN P{MN, M) IMN = P{MN, M) = G. (32)

Then, we can obtain expression for G as:

P{MN, M) = [Ifc ® P(MN/k, M/k)} [P{Nk, k) ® IM/k

by theorem (A.6)

P{MN,M) = [Ifc®P(MiV/Ä;,7¥/fc)][{(P(fc2,Ä;)®I,v/ii:)(Ifc®JP(^,A;))}®IM/fc

by theorem (A.7)

P(MN,M) = \J.k®P{MN/k,M/k)][P{k2,k)®IMN/&_

Ik®P{N,k)®IM/k\- (33)

Therefore, the actual-operational matrix in equation (25) for column-division partitioning can

be expressed as three stages:

G = [Ifc <g> P{MN/k, M/k)) [P{k2, k) ® IMN/v\ [ifc ® P{N, k) ® IM/k] (34)

Data Partition and Migration 73

The first stage, lk <g> P(N, k) ® IM/k, represents local data permutations without message-passing

due to the prior identity Ifc. Each processor performs the vector-stride operation [P{N, k)®IM/k]

which moves N vectors with stride k, each vector is of length (M/k).

The second stage, P{k\k) ® IMN/k2, is a global-task that is similar to message-passing stage

explained in row-division transpose algorithm. Hence the total communication is again (k - 1)

messages, each message is of length (MN/k2).

The final stage, Ik® P{MN/k,M/k), is a and simple-stride permutation stage with stride

(M/k) local to each processor. All processors carry out the same operation in parallel without

communication.

Mesh-Division

For mesh-division partition, we have

G = PM{N, M, k2,h)P(MN, M)?M
1
(M, N, kuk2).

According to definition (A.3) we have

G =

(or)

P{Nh/k2,h)®IMikA- (37) P{MN, M) = [lfcl ® P{Mk2/kuM/h) ® IN/k2\ G

Then we can obtain expression for G by decomposing G = P(MN,M) as follows.

P(MN,M) = [lkl ® P(MN/kuM/h)} \P{Nkuh) ® IM/kl]

by theorem (A.6)

P(MN,M) = [lh®P{Mk2/kl,M/k1)®IN/k2}{Ik®P{MN/k,M/k1)}

P(k, h) ® lMNß] [h2 ® P(Nh/k2, k,) ® lM/kK

by theorem (A.7) on P(MNjkuMlh) and by theorem (A.6) on P(Nkuk

P(MN,M) = P-M\N1M,k2,kl)[Ik®P(MN/k,M/kl)]

[P{k, h) ® lMN/k] PM{M, N, kuk2)

by equation (18) and definition (A.3)

P(MN, M) = ?M{N, M, k2,h) [P(k, ki) ® IMN/k

(35)

Ikl ® P(Mk2/kuk2) ® IN/k2] P(MN,M) [lk2 ® P(Nh/k2,N/k2) ® IM/kl] , (36)

(38)

(39)

Data Partition and Migration

[Ik ® P{MN/k, M/h)\ PM(M, Ar, ku k2) (40)

by commutative law

P(MN,M) = PM GPM

Therefore, the actual-operational matrix in equation (25) for mesh-division partition can be

expressed'as two stages in two different ways (equations (39) and (40)):

(a) G = [h <8> P{MN/k), Mlh)\ [P{k, h) ® IMN,k], and

(b) G = [P(k, h) ® IMN/k] [h ® P{MN/k, Mjh)).

In case of (a), the first stage, P(k, fcQ ® W, is a ^06aW«A involving message-passing

since there is no prior identity matrix. In fact, it is a single message-passing routine with

message size being (MNJk) as compared to (* - 1) messages each of size (MN/k>) in either

row-division or column-division transpose algorithms.

The second stage, Ik® P(MN/k,M/h), represents that each processor executes a local

simple-stride permutatlo^^sTT^ior identity matrix I,. In fact, if we consider data

at each processor to be a matrix of size M/h x N/k2, then action to be performed m this stage

is k local matrix transposes that are performed simultaneously on k processors.

A.3.3 Measured Timing of the Three Transpose Algorithms

Transpose algorithms derived in Section A.3.2 are implemented on Intel's Paragon. The mea-

sured execution times of the three transpose algorithms are tabulated in Table 2. From the

derivations in equations (30), (33), (39), and (40), we have seen that transposing a matrix of

size M xiVona processor machine for row- and column-division each requires (fc -1) commu-

nications with the size of each message being (MN/k>). For mesh-division one communication

of size (MNlk) is needed. Though message length in mesh-division is k times more than that

of any message in either row-division or column-division, results in Table 2 show that transpose

algorithm for mesh-division reduces the overheads to initiate communications. Smaller number

of long messages can take advantages of the pipelined nature of wormhole routing [15]. These

results also show that unlike uniprocessor algorithms, variations in data-decompositions can

have a great impact on the performance of an algorithm.

Data Partition and Migration 10

M N Row-Division Col-Division Mesh-Division

(msec) (msec) (msec)

128 128 5.236 6.172 1.316

128 256 5.902 7.051 2.028

128 512 9.031 10.409 2.159

128 1024 12.356 15.312 3.866

256 128 5.501 6.665 1.825

256 256 8.283 9.746 2.301

256 512 11.483 14.027 4.018

256 1024 20.076 22.503 7.548

512 128 8.310 9.432 3.450

512 256 11.555 13.359 5.905

512 512 18.536 21.122 7.954

512 1024 39.628 38.529 16.434

1024 128 11.228 13.132 5.815

1024 256 17.526 20.616 10.631

1024 512 31.211 37.445 20.889

1024 1024 50.936 66.403 49.274

Table 2: Experimental results of transpose algorithms on 8-node Intel's Paragon.

Exp|anation: Transpose algorithms for Row-division and Column-Division require seven small com-

munications while that in mesh requires only one large communication. Effect of communication

overhead on transpose algorithm clearly results mesh-division more efficient than the other cases.

Among row-division and column-division structures, row-division requires only one local permutat.on

while column-division requires one local permutation before the communications and another after

that. This is also seen from third and fourth columns.

Data. Partition and Migration 76

n100 ft001

Co(t

Figure 2: Flow Chart for computation of coefficients of Vorticity

A.4 Application Examples

A.4.1 An Application in Fluid Mechanics

This application solves Euler partial differential equation using wavelet-Galerkin method [12,

16]. Figure 2 shows the flowchart for evaluating the coefficients of vorticity in fluid mechanics at

each time-step. The major computation blocks in the figure are Jacobian and Helmholtz while

other modules such as Error Check, computation of vorticity coefficients in next step (At) are

not time consuming. It is well known that Jacobian prefers mesh-division data-partitioning

because of boundary conditions, that is, data dependency exists along the four edges of a

grid. However, Intel's distributed memory machines have efficient two dimensional fast Fourier

transform algorithms (2D-FFT) based on row- or column-division data-partitions. Therefore,

switching between different data-partition schemes is necessary to carry out the computation

of this application efficiently. First, we need to convert the mesh-division data-partitioning to

row- or column-division at the output of Jacobian (the input of Helmholtz). Then, we need to

convert back to mesh-division at the input of the Jacobian (output of Helmholtz).

Converting data-partitioning schemes at the interfaces of different computational modules can

be very expensive since it involves massive amount of data movements. The communication cost

Data Partition and Migration

caused by such data movements may well dominate the total computation cost of applications

even though individual algorithms are optimized. With our formal definitions of data-partitions,

however, manipulation of communication cost become straightforward.

Let us consider the computation of the Helmholtz on a ^-processor distributed memory

system. Assume that k can be factored as k = ks x ks. The input data to this computation

module is in mesh-division, which can be represented by PM. With this input format, we

perform 2D-FFT and its inverse (2D-IFFT). The summation form of the 2D-DFT on matrix

X of size M x N is given by:
M-\

Y(M)= £
m=0

7V-1 2 ,
£X(m,n)e_;^ e -J¥. (41)

The tensor products representation of equation (41) can be written as:

y=[Fjv®FM]x, (42)
v V '

G

where F, is a J x J matrix with entries F(i, k) = exp(-j2*i*/A J = J=l, V = VectMN{Y),

x = Vec*jw(x)> and G is the operational matrix.

To compute equation (42) on a fc-processor parallel machine, we first parallelize the opera-

tional matrix by inserting identity matrices under the assumption that k divides both M and

N There are two ways of decomposing the equation (42): (a) y = [IN®FM][FN®U x, which

first computes Fourier transforms on columns (using one dimensional FFT routines) followed

by transforms on rows, and (b) y = [F* ® IM][IN ® Fw] x, which performs transformation on

rows followed by that on columns. These two decompositions are well known as row-column

decomposition for transform methods. Consider the first decomposition (a). The factor on the

left-hand side represents a parallel computation of FM because of the preceding identity matrix

IN while the factor on the right-hand side cannot be done in parallel. To parallelize this stage

of computation, we apply the commutative law presented in theorem (A.2), resulting m

y = [lN ® FM] P(MN, N) [IM ® Fiv] P(MN, M) x (43)

If it is required that the Fourier transformed data be in the same data-partition scheme as

the original data (say mesh-division), then input matrix is x = PM x and output matrix is

y = FM y {FM = PM(M,N,k.,k,) = I*. ® P(N,N/k.) ® IM/kM). Equation (43) can be

rewritten as:

y = PM [IN ® FM] P(MN, N) [IM ® Fyv] [P(MN, M) PM
1
] X (44)

Data. Partition and Migration '8

If we use the second parallelization, (b), we have

y = [PMP{MN, N)] [lM <8> Fiv] P{MN, M) [lN ® FiW] P^ (45)

In the following, we will see how we utilize our new definitions on data-partition and migra-

tion to maximize the parallelism and minimize the communication cost while computing equa-

tion (45). From equation (43), we can see that two transpose algorithms are required P{MN, N)

and P(MN,M). Each of these transpose algorithms needs (fc - 1) stages of message-passing

on a ^-processor machine as evidenced in the last subsection. We will show in the following

how we reduce the communication cost of one of the two transpose algorithms from (k - 1) to

(2ks - 2) by manipulating the algorithm expressions. Note that k = k2
s.

Now, let us consider equation (45). The first stage of computation is P~J which converts

the mesh-division into column-division for FFT computation (Pa Pj} = Pj} since Pc is an

identity matrix). According to our definition, we have

p-i _
M

Ik3®P{N,N/ks)®IM/k3

Using equation (18) and theorem (A.6), we have

M
Ik ® P{N/ks,N/k) ® IM/k,] [ifc. ® P(k, k°) ® lMNß\\ (46)

Z2 Z\

The above factorization on P^1 results in two stages. The first stage, Zu involves (*. - 1)

communications with h, columns of processors communicating in parallel. The second stage,

Z2, is a local vector-stride data-shuffling.

Similarly, at the output of the FFT, we can also manipulate the algebraic expression for

mesh-division data-partitioning. The last stage of equation (45) converts back to mesh-division

data-partition, which can be simplified as follows.

PMP{MN,N)

= Ifc, ® P{N,ks) ® IM/*.] [P{Nks,N) ® IM/k,

[Ik,®P(MN/ks,N))

by theorem (A.7) and definition (A.3)

= [P{k, ks) ® lMN/k\ [I*, ® P(MN/k3,N)}

Zu

Data. Partition and Migration 79

Zn K ® P{Nk3, N) ® l.M/k] [Ik®P{MN/k,N

Z*

= Zu \h ® P(N, Njks) ® IM/k] [I*, ® P[K h) ® iMN/k* Z8 (47;

Z 10

From the transpose algorithm derived for mesh-division partition in Section A.3.2, we know

that Zn represents one single communication. Stage Z9 is also a transpose algorithm similar

to stage Zx that requires (ks - 1) communications. Therefore, the total number of commu-

nications required to carry out the FFT is (* + 2ks - 2) as compared to (2k - 2) for direct

interfacing between the Helmholtz and Jacobian.

Another variant of the computation can also be obtained easily by manipulating the tensor

algebra in a different way. Consider the last stage, \PMP{MN, N)]. First, we factor P(MN, N)

as follows.

P(MN,N) = [Ik, ® P{MN/ka,N/ka)] [P{Mks, k3) ® IN/k,

by theorem (A.6)

= 'lfcj ® (P{N, N/K) ® lM,k) {Ik. ® P{MN/k, N/ks))

'P{Mks,k3)®IN/k,

by theorem (A.7) on P{MN/ks,N/ks)

= P-J [Ik ® P(MN/k,N/ks)} [P{Mks,ks) ® IN/kr ■

by equation (18)

Therefore by theorem (A.7) we have,

PMP(MN, N) = [Ik ® P{MN/k, N/ks)} [P(Mks,ks) ® IN/k,

= [Ik ® PjMN/k, N/ka)\ [Pjkl ks) ® IMNM

(48)

Zio

Ik®P{M/ks,ks)®IN/ks

Z,
(49)

Once again we reduced total communication cost from (2k - 1) to (k + 2ks - 3), eliminating

the one large and final communication from the previous variant.

Experiments of running the complete application based on our derivation above have been

carried out on Intel's iPSC/860. The execution times of the important computational modules

Data Partition and Migration 80

Nodes Jacobian Helmholtz Total

row-D Mesh row-D Meshl Mesh2 row-D Meshl Mesh2

4

16

64

2.8317

0.8128

0.3095

2.7939

0.7310

0.1996

0.11216

0.06094

0.10510

0.18218

0.09950

0.12022

0.16298

0.07688

0.08916

2.9438

0.8738

0.4146

2.9761

0.8305

0.3198

2.9568

0.8079

0.2887

Table 3: Timing results for 128 x 128 size vorticity computations Explanation: Results demonstrate

that by restructuring at the interface of Jacobian and Helmholtz using our data-partition expressions,

we could improve the efficiency of Jacobian at the cost of a slight decrease in efficiency of Helmholtz.

This resulted in total improvement of the efficiency of application.

as well as the total execution time were measured. The results reported in Table 3 are averaged

over a hundred runs. The columns marked row-D are the execution times of row-division while

those marked Meshl and Mesh2 are for two variants of mesh-division computation derived

above. From this table, performance improvement of up to 43.61% is observed.

A.4.2 A New FFT Algorithm

Existing machine library on Intel's multiprocessors for FFT computation are based on row-

division or column-division. From our new definitions of data-partitions, we developed a new

communication structures for parallel FFT algorithm [17]. The main idea is to partition data

according to mesh-division. Rewriting equation (45), we have

$ = FM p(MN, N) [IM ® Fiv] P{MN, M) [IN ® FlW]P^x, (50)

We have seen transpose algorithms similar to the one in the above equation for row- or column-

division FFT algorithms. Each transpose algorithm requires (2k - 1) communications. Now,

use the following equality (see equation (40)) to substitute P(MN,M) in the above equation.

P{MN,M) =PM
!
 [P(Mi)®lMiv/fc] [h^PiMN/k^M/h^PM (51)

Similarly, for P{MN, N), we interchange the roles of M and N, and h and k2 in equation (39).

We have
P(MN, N) = PM [Ik ® P(MN/k, N/k2)} [P{k, k2) <g> IMN/k\ PM-

Substitute the above equality to equation (50). Then, the 2D-FFT algorithm becomes

^ = [ik^p(MN/k,N/k2)}[P(k,k2)®IMN/k

Data Partition and Migration

PiW (IM ® Fjv) PM P{k,h) ®lMN/k

{lk®P{MNlKMIh)\

PiV/(IiV®FM)PM_

Note that terms [P(Jfc, ib2) ® IM*/*] and [P(k, h) ® IMiV/fc] are dummy operations with re-

spect to implementation because these permutations represent exchange of entire data residing

at different nodes. This can be done by addressing processors according to the required per-

mutation instead of data movement. Operations that start with I, are parallel operations with

no communication. For the remaining two terms that involve PM and Pw\ we can decompose

PM and P^1 as following

PM =
p-i _ rM —

h2 ® P(kl h) ® lMNik\k2] [ifc ® P{NlhM) ® Iw/fc!

Ik ® P{N/k2, N/k) ® Iw/fcl] [lfc2 ® P(kl fci) ® ^jv/fe?*.

Each of PM and PM
a has one communication stage and one local permutation stage. Each of

these communication stages transmits (h - 1) messages, with the size of each message being

MN/kjh For the other dimension, each of the PM and Pj£ will have (k2 - 1) communicates

with size of each message being (MN/ktf). Therefore, the total number of communications

is reduced from 0{kx * h) to 0(h + k2).

Experiments to measure the actual performance of the above 2D-FFT and the existing library

routine on the Touchstone Delta machine have been carried out. The measurements are reported

in Table A.4.2. The results shown in this table are measured with a library routine called

dclockO that returns a double precision number. Using this routine at the beginning and at

the end of each of the algorithms, we obtained double precision time in milliseconds. These

timings are purely for execution of the task because processors are not time-sharing by multiple

users however, since each node would execute in a slightly different time due to the underlying

asynchronous communication network of machines, we considered the maximum value of the

times reported by all the nodes. Also, we have averaged timings over a set of one hundred

experiments with forward and inverse two-dimensional transforms for each data size.

Performance of two different implementations are reported by executing them on 128-node

and 256-node machine. Various data sizes that we have tested are presented in the first column

in the table. Second and third columns represent timings for existing and new approaches,

respectively on 128-node machine while fourth and fifth columns are for the cases of 2o6-node

Data. Partition and Migration 82

Dimensions

M x N

128 nodes 256 nodes

Old

(msecs)

New

(msecs)

Old

(msecs)

New

(msecs)

128 x 128

256 x 128

256 x 256

512 x 128

512 x 256

1024 x 128

512 x 512

1024 x 256

1024 x 512

1024 x 1024

120.117

120.151

121.681

125.425

129.847

128.236

125.901

133.562

152.919

211.274

27.727

31.234

34.165

34.401

44.944

44.883

60.946

64.331

99.989

177.306

193.481

192.980

245.634

210.761

254.412

227.441

270.365

262.051

285.066

294.038

31.711

35.017

39.499

35.865

44.948

43.225

56.096

53.420

76.041

119.288

Table 4: Results on Intel's i860 based DELTA machine. Explanation: These results reflect the

variations in communication structure for "new" and "old" algorithms because "new" algorithm

requires 44 and 60 communications for the implementations on 128 (16 x 8) and 256 (16 x 16)

processor systems, respectively, while "old" algorithm requires 254 and 510 communications, respec-

tively. However, it is to be noted that reduction in number of communications in "new" algorithm

is traded-off with size of the data begin communicated.

machine. It can be seen from the table that performance gains of the new FFT are significant.

We observed up to 600% performance improvement over the existing machine library.

A.5 Related Work

Data organization is the key to successful parallelization of data parallel programs. As in-

dicated in the introduction, there are two tracks of efforts in data-partition and migration in

distributed memory multiprocessors: automatic data-partitioning for general loop constructs as

part of compiler and optimal partitioning for a specific algorithm. In this subsection, we briefly

summarize the existing works in this field as related to our work presented in this paper. For

more comprehensive review of previous work in data-partitioning and redistribution, readers

are referred to [3, 2, 5].

Data Partition and Migration 83

Ramanujam and Sadayappan [2] studied compile-time techniques for data-partitioning in dis-

tributed memory systems. They presented an analysis of communication-free partitions with

a nice geometric demonstration. The research work performed by Li and Chen [6] focused

on minimizing data movement among processors due to cross-references of multiple distributed

arrays (alignment of multiple data structures). They have also presented a method of automati-

cally generating efficient message-passing routines in parallel programs [6]. Gupta and Banerjee

introduced the notion of constraints on data-partitioning to obtain good performance. In [9],

a compiler algorithm was described to automatically finds optimal parallelism and optimal lo-

cality in general loop nesting. All these studies aimed at optimizing data-partition and data

alignments as part of compiler. It is known that such optimization problem is NP-comPlete. A

number of heuristics have been proposed [6, 7, 8, 2, 18, 1].

The use of tensor product notation to describe parallel algorithms has a long history beginning

with Pease [19]. Johnson et d [20] presented a comprehensive discussion on how to use tensor

notations to design, modify and implement FFT algorithms on various computer architectures.

Attempts to derive variants of FFT algorithms keeping the underlying architecture in mind have

proven successful [10, 13]. Huang, Johnson and Johnson [21] have recently used tensor notations

for formulating Strassen's matrix multiplication algorithm. Using the tensor representation,

they derived three variant programs and compared their performance characteristics for shared

memory multiprocessors.

Kaushik, Huang, Johnson and Sadayappan have proposed a very nice approach for data

redistribution in distributed memory systems, which appeared recently in [5]. While their

approach also utilizes the tensor notation as a tool, our work differs in several aspects. First

of all, our definitions are expressed in matrix forms while theirs are in terms of indices (tensor

bases'). With their model one can estimate communication cost of a computation precisely while

with our formulations one can easily manipulate the communication structures of a computation

to achieve optimal performance. Deriving variants of an algorithm using our definitions are

relatively simple because the data communication is easily visible. Secondly, all the definitions

presented in [5] such as cyclic, block, and block cyclic can be defined using our formulations

as evidenced in Section 3, whereas some of data-partitions such as mesh-division cannot be

easily expressed using the notations in [5]. In addition, our representation acts directly on

data vector a(0 : N - 1) to achieve the required data-partition and migration scheme while

their representation presents ways to manipulate data indices from one distribution to the

Data Partition and Migration

other (redistribution). Unlike their representation, we can embed our expressions for data

distribution into an algorithm. As a result, global optimization of an application consisting

of several computation modules become straightforward by just manipulating the algebraic

expression at the interfaces between individual algorithms.

A.6 Conclusions

In this paper, we have presented a formal description for data-partition in distributed mem-

ory multiprocessors. Using the algebra of tensor products and stride permutations, different

schemes of storing data in a distributed memory system are represented in a compact and

systematic manner. The formalism of various data-partitioning schemes allows for immediate

embedding of an algebraic expression into a computational algorithm. As a result, optimiza-

tion of data-partition becomes simple tensor algebra manipulations. We have demonstrated

the usefulness and significance of our formulations by considering applications. Experiments

on existing distributed memory machines have been carried out. Numerical results show that

significant performance gains are possible by using our formulations to generate variants of an

algorithm tailoring to specific system architectures.

References

[1] H. Xu and L. M. Ni, "Optimizing Data Decomposition for Data Parallel Programs," in

International Conference on Parallel Processing, pp. 225-232, 1994.

[2] J Ramanujam and P. Sadayappan, "Compile-Time Techniques for Data Distribution in

Distributed Memory Machines," IEEE Transactions on Parallel and Distributed Systems,

vol. 2, pp. 472-482, Oct. 1991.

[31 M Gupta and P. Banerjee, "Demonstration of Automatic Data Partitioning Techniques for

Parallelizing Compiler on Multicomputers," IEEE Transactions on Parallel and Distributed

Systems, vol. 3, pp. 179-193, Mar. 1992.

[41 S K S Gupta, S. D. Kaushik, S. Mufti, S. Sharma, C. H. Huang, and P. Sadayappan, "On

Compiling Array Expressions F Efficient Execution on Distributed-Memory Machines," in

Proceedings of International Conference on Parallel Processing, pp. 301-305, 1993.

[5] S. D. Kaushik, C.-H. Huang, R. W. Johnson, and P. Sadayappan, "An Approach to

Communication-Efficient Data Redistribution," in Super computing H, pp. 364-373, 1994.

85
Data. Partition and Migration

[6] J. Li and M. Chen, "The Data Alignment Phase in Compiling Programs for Distributed-

Memory Machines," Journal of Parallel and Distributed Computing, vol. 13, pp. 213-221,

Oct. 1991.

[7] K. Knob, J. D. Lukas, and G. L. Steel, "Data Optimization: Allocation of Arrays to Re-

duce Communication on SIMD Machines," Journal of Parallel and Distributed Computing,

vol. 3, pp. 102-118, Feb. 1990.

[8] S Chatterjee, J. R. Gilbert, R. Schreiber, and S. H. Teng, "Automatic Array Alignment

in Data Parallel Algorithms," in Twentieth Annual ACMSIGACT/SIGPLANSymposium

on Principles of Programming Languages, pp. 16-28, Jan. 1993.

[9] J M Anderson and M. S. Lam, "Global Optimization for Parallelism and Locality on

Scalable Parallel Machines," in Proceedings of the ACM SIGPLAN'93 Conference on Pro-

gramming Language Design and Implementation, pp. 112-125, June 1993.

[10] M. An, I. Gertner, M. Rofheart, and R. Tolimieri, "Discrete Fast Fourier Transform Al-

gorithms: A Tutorial Survey," Advances in Elec. and Electron Physics, vol. 80, 1991.

[11] G. Fox, A. J. C Hey, and S. Otto, "Matrix Algorithms on the Hypercube I: Matrix

Multiplication," Parallel Computing, vol. 4, pp. 17-31, 1987.

[12] Z. Qian and J. Weiss, "Wavelets and The Numerical Solution of Partial Differential Equa-

tions," Journal of Computational Physics, vol. 106, pp. 155-175, 1993.

[13] R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier Transform and Convolu-

tion. Springer-Verlag Publishing Company, 1989.

[14] M. Davio, "Kronecker Products and Shuffle Algebra," IEEE Transactions on Computers,

vol. C-30, pp. 116-125, 1981.

[15] L. M. Ni and P. K. McKinley, "A Survey of Wormhole Routing Techniques in Direct

Networks," IEEE Computer, pp. 62-76, 1993.

[16] J Weiss "Wavelets and The Study of Two-Dimensional Turbulence," Technical Report

AD910628, Aware Inc., One Memorial Dr., Cambridge, MA 02142-1301, 1992. and the

Proceedings of French-USA Workshop on Wavelets and Turbulence, Princeton University,

June 1991, Ed. Y. Maday, Springer-Verlag.

Data Partition and Migration

[17] N. Anupindi, M. An, J. W. Cooley, and Q. Yang, "A New and Efficient FFT Algorithm

for Distributed Memory Systems," to appear in International Conference on Parallel and

Distributed Systems-94, 1994.

[18] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, "IBM system/360 model 91: Ma-

chine philosophy and instruction handling," IBM J. Research and Development, pp. 8-24,

Jan. 1967.

[19] M. C. Pease, "An adaptation of the fast Fourier transform for parallel processing," J. ACM,

vol. 15, pp. 252-264, Apr. 1968.

[20] J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, "A Methodology for

Designing, Modifying, and Implementing Fourier Transform Algorithms on Various Ar-

chitectures," IEEE Transactions on Circuits, Systems, and Signal Processing, vol. 9, pp.

449-500, 1990.

[21] C.-H. Huang, J. R. Johnson, and R. W. Johnson, "A Tensor Product Fromulation of

Strassen's Matrix Multiplication Algorithm," App. Math. Lett, vol. 3, pp. 67-71, 1990.

B Efficient Multidimensional DFT Module Implemen-

tation on the INTEL i860 Processor

Abstract
In this paper, we present a unified implementation methodology for computing large one- and

multi-dimensional Fourier transforms. By formulating various DFT algorithms in the language

of tensor products, any large size Fourier transform is built up by a collection of small size DFT

modules which include as parameters decimation step sizes and twiddle factors. These param-

eters are introduced in the DFT modules to take advantage of modern computer architectures

with parallel, pipelined, multi-functional structures, while providing flexibility into the building

blocks.

B.l Introduction

Continuing our work [1] presented in ICSPAT'92, we have developed a unified implementation

methodology for computing large one- and multi-dimensional Fourier transforms. Tensor prod-

uct formulation of various DFT algorithms plays a central role in unifying implementation by

identifying small number of computational cores and necessary parameters. Our library of core

computation modules has the following features:

• We have efficiently implemented prime factors 3, 5, 7, 11, 13, 17 as well as powers of

2. Thus, transform size on each dimension of a multi-dimensional Fourier transform can

have factors other than 2.

• One-dimensional small modules take advantage of vector operations on i860 by looping

on other factors of the same dimension and other dimensions.

• One-dimensional small modules have pre-calculated twiddle factor array as a parameter.

This provides for intermediate stages of Cooley-Tukey FFT implementation.

It is widely believed that data size on each dimension must be a power of two. In fact,

a popular reference on numerical methods [2] recommends that if the data are defined over a

period whose size is not a power of two, they are to be filled with zeros up to the next power of

two. In multi-dimensional DFT computation, this will increase the transform size dramatically,

not only slowing down the computation but also causing cache thrash and memory overflow.

In the case of the parallel computer iPSC/860, each node processor has 8M byte memory. If

the size of complex data to be processed is 72 x 72 x 72 = 373,248, computation is made in the

local memory of the processing unit without data segmentation. On the other hand, by padding

with zeros, the size of complex data to be processed will be 128 x 128 x 128 = 2, 097,152, which

is beyond the capacity of local memory; segmentation and data loading in and out will cause

severe problem.

In this paper, we will describe an implementation strategy for efficient multi-dimensional

DFT routines on the Intel i860 processor. Timing results of some sample medium size of 2-

dimensional DFT modules with prime factor on each dimension is provided. The results of

comparable power of 2 FFT package [6] that are commercially avaiable are also included.

B.2 Tensor Product Formulation

The tensor product presentation of fast Fourier transform algorithms dates back to Pease's

paper [7] of 1968. Its role in application has varied during this period, from that of a notational

convenience for describing a complex algorithm to that of an interactive programming tool. A

detailed discussion on tensor product identities can be found in [8]. In this paper, we emphasize

the tensor product as a programming tool in DFT module implementation. The parameters that

govern the data permutation, vector segmentation, an algorithm's granularity and parallelism,

come naturally from tensor product formulation of various algorithms.

One-dimensional iV-point Fourier transform of array x is defined as

l=F(N)x.

where F(N) is an N x N matrix defined by

F(N) =

where w = e~j2^N.

The Ni x N2 2-dimensional Fourier transform of X, denoted by

F{N1,N2)X

1 1 1 1

1 w w2 ■ u^-1*

1 w^N- 1) WW-D . . u,^-1)3

(1)

(2)

(3)

can be written in a matrix form as

Y = F{Nl)XF{N2), (4)

88

where X and Y are Nx x N2 2-dimensional input and output arrays respectively.

Denote by x the vector in CN, N = NXN2, formed by reading in order, down the columns

of X, and y formed the same way from Y. We can write the 2-dimensional Fourier transform

in a tensor product format:

Z = (F(N2)®F{N1))x. (5)

(5) can be factored as:

y = {F(N2) <g> INI)(IN2 ® FiN^x. (6)

(6) is usually refered to as the row-column method: INa ® F(Ni) computes on the rows, and

F(N2) <8> INI computes on the columns.

The tensor product formulation of 2-dimensional Fourier transform in (5) provides a general

format for multi-dimensional Fourier transforms. Denote the ^-dimensional Fourier transform

of array X of size iVi x N2 x • ■ • x NK is denoted by

Y = F(N1,N2,---,NK)X ■ (7)

Denote by x the vector in CN, N = NrN2 ■ ■ ■ NK, formed by reading in order down the

columns of X along Nx dimension and then N2 till NK dimension, and y formed the same way

from Y, we can write multi-dimensional Fourier transform of (7) in a tensor product format:

y = (F(NK) ® ■ ■ ■ <g> F(N2) ® FiN^x. (8)

(8) can be factorized into K stages of Fourier transform computation.

1=(F{NK)®INK-1-N1)---

(INK-N3 ® ^(^2) ® INI){INK~N2 ® FiN^x. (9)

Every stage of (9) is of the form

IL ® F(M) ® Is. (10)

The structure of (10) suggests a unified implementation methodology of multi-dimensional

Fourier transform by a set one-dimensional DFT modules with parameters L and S: S deter-

mines the stride permutation; L determines the looping.

The tensor product formulation of multi-dimensional Fourier transform in (9) is exactly

the row-column method of multi-dimensional Fourier transform computation. The modular

implementation of (10) immediately suggests an efficient way of taking advantage of parallel

and vector architectures of the target computer system. The stride parameter replaces the global

permutation after each stage of DFT computation; The looping parameter replaces calling the

same subroutine many times.

89

B.3 Cooley-Tukey FFT Algorithms

Suppose N = LM. The Cooley-Tukey algorithm (decimation-in-frequency) for one-dimensional

Fourier transform is given by tensor product:

F{N) = P{N, M)(IL ® F{M))TM{N)(F{L) ® IM), (11)

where P(N, M) is a N x N stride-M permutation matrix, TM(N) is a JV x TV block diagonal

matrix of twiddle factors,

TM(N) = @DM(N), (12)
;=o

where
DM{N) = diag.(l,w,---,wM-1). (13)

The Cooley-Tukey FFT algorithm given in (11) can be used in an inductive argument to

derive extension to many factors. Suppose

N = N1N2---NK. (14)

Set iV(0) = 1 and
N(k) = N1N2---Nk, \<k<K, (15)

N'(k) = N/N(k), 0<k<K. (16)

Define

F'k = T*(JN(fc-i) ® F{Nk) ® IN'{k)), (17)

where Tk is a diagonal matrix

Tk = IN{k^)®TNW(N'(k-l)). (18)

Then we have the Cooley-Tukey FFT algorithm for many factors:

F{N) = QF'K---F'2F[, (19)

where Q is the generalized bit-reversal permutation matrix.

Each stage of Fourier transform F'k, 1 < k < K with the twiddle factor multiplication can

be written as:

IN(k-i) ® (TN>(k){N'{k - l))(F(Nk) ® IN.{k)). (20)

(20) can be implemented as a module

90

N'{k)-1

/*(*-!) ®[0 D>N,{k)(N'(k-l))(F(Nk)®Imk))}. (21)
j=0

The parameters of this module are N'(k - 1), N{k - 1) and twiddle factors DJ
N,(k)(N'(k - 1)).

Although the form (21) does not look as neat as (10), the implementation is as easy. The

twiddle factors are introduced into the module that varies with the stride parameter. Thus any

large size Fourier transform computation is made by putting together a set of modules given in

(10) and (21).

B.4 Multi-Dimensional FFT Algorithms

In this section, we will show that various multi-dimensional DFT algorithms can be unified into

the format described in the previous sections: they can be decomposed into identifiable basic

building blocks of small size modules.

Row-Column Method

Consider the 2-dimensional Fourier transform of (5). The row-column method of computing

y is written as:

1={F{N2)®IN1){INI®F{NI))X. (22)

Suppose Nx = LXMX and N2 = L2M2. Using the Cooley-Tukey FFT algorithm of (11) into

(22), we have
((P(N2,M2)(h2®F(M2))TM2(N2)

x{F{L2) ® IM2)) ® /^)(/iv2 ® (P(NUMi)

x (JLl ® JP(M1))rMl(iVi)(JF(I1) ® W)) (23)

The implementation of 2-dimensional DFT in (23) has the same structure as 1-dimensional

FFT in (19). Two sets of DFT modules are computed; one with twiddle factor multiplications,

Ln-l

3=0

i = 0,1, 0 < j < Mi, and Ln and Lm are the parameters controlling the decimation and

looping, and twiddle factor parameters come from DJ
L.(Ni);

The other module without twiddle factors;

hk ® F{Mi) ® hi, (25)

91

Lk and Li are the parameters of the module.

Vector-Radix Method

The vector-radix Cooley-Tukey FFT algorithm to compute (22) is given in the following

factorization:

F(N2)®F{NX) = PF'2TF[, (26)

where
T = TM2(N2)®TMl(N1), (27)

P = P(N2,M2)®P(N1,M1), (28)

F[= F(L2)®IM2®F(L1)®IMl

= {F(L2) ® IMILIMI)

{h2M2®F{Lx)®IMl), (29)

F2' = h2®F{M2)®ILl®F(Ml)

= {h2®F{M2)®ILlM,)

(iLML^FiM,)), (30)

(26) can be computed by using the modules without twiddle factors and a separate stage of

stride permutation of P and a twiddle factor multiplication stage T.

B.5 Implementation on Intel i860 Processor

In this section, we give an example of carrying out the computation of multi-dimensional DFT

using our tensor product modules. Take the case 40 x 40 2-dimensional Fourier transform. Set

40 = 5 x 8. The tensor product form of the Cooley-Tukey FFT algorithm (row-column method)

is
F(40,40) =

((P(40,5)(/8 ® F(5))T5(40)(JP(8) ® h)) ® ho)

x (740 ® (P(40,5)(/8 ® F(5))T5(40)(JF(8) ® h)) (31)

Variants can be derived from (31). One of them is

F(40,40) =

92

(P(40,5) <g> /40)(/8 <g> F(5) ® 74O)((T5(40)(F(8) <8> /s)) ® 740)

x (740 <g> P(40,5))(/32o ® ^(5)))(Ao ® (r5(40)(F(8) <g> 75))) (32)

Both forms have their advantages. For the Intel i860 processor, algorithm (31) gives rise to

faster implementation because it minimizes the cache thrash. The implementation of (31) is

given as:

c transform on the columns

do i=0,39

call ftc8tw(x(0,i), 5, 1, 1, w, isign)

call ftc5(x(0,i), y(0,i), 1, 8, 1, isign)

call transpose(y, x)

end do

c transform on the rows

The implementation of (32) is given as:

c transform on the columns

call ftc8tw(x, 5, 1, 40, w, isign)

call ftc5(x, y, 1, 8, 40, isign)

c transform on the rows

call ftc8tw(y, 5*40, 40, 1, w, isign)

call ftc5(y, x, 40, 8*40, 1, isign)

The module ftcStw computes

712—1

/n1®[0^5(4O)(71(8)®7n2)], (33)
3=0

isign denotes the forward or reverse transform, w denotes pre-calculated twiddle factors, and

the module ftc5 computes
7ni®F(5)®7n2. (34)

The timing results of some of the one- and 2-dimensional Fourier transform are given in

tables 1 and 2. They are compared to the Kuck and Associates, Inc. Math Library Package on

the Intel iPSC/860. It is worth mentioning that Intel's 1-dimensional and 2-dimensional FFT

routine are hand coded assembly program, while the AwareTime are the hybrid of Fortran calls

and i860 hand coded assembly modules.

93

Table 1. Timing Results on i860 Processor(l-D)

FT Size N AwareTime ms. IntelTime[6] ms.

3 0.000363.

4 0.000449 0.0119

5 0.000881

7 0.00164

8 0.00139 0.0141

16 0.007 0.0191

20 0.0098

32 0.0133 0.031

40 0.0211

64 0.028 0.065

80 0.0528

384 0.296

512 0.350 0.560

ms. = 10 3 second.

Table 2. Timing Results on i860 Processor(2-D)

FT Size nxn AwareTime IntelTime

32 x32 1.386 ms.

40 x40 2.400 ms.

64 x 64 6.65 ms.

80 x80 12.9 ms.

128 x 128 24.7 ms.

160 x 160 58.6 ms

256 x 256 137 ms.

384 x 384 296 ms

512 x 512 777 ms.

B.6 References

[1] C. Lu, M. An, Z. Qian and R. Tolimieri, "Small FFT Module Implementation on the Intel

i860 Processor", the proceedings of ICSPAT'92, Cambridge, MA.

94

[21 W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes: the

Art of Scientific Computing, Cambridge University Press, 1986.

[3] M. An, C. Lu, E. Prince and R. Tolimieri, "Fast Fourier Transforms for Space Groups

Containing Rotation Axes of Order Three and Higher", Ada Cryst., (1992), A48, 346-349.

[4] M. An, C. Lu, E. Prince and R. Tolimieri, "Fast Fourier Transforms for Real and Hermitian

Symmetric Data ", Ada Cryst, (1992), A48, 415-418.

[5] G. Bricogne and R. Tolimieri, "Symmetrized FFT Algorithms", IMA, Math, and Its Appl,

23, Springer-Verlag, New York/Berlin, 1990.

[6] The Kuck and Associates, Inc. Math Library on the Intel iPSC/860.

[7] M. C. Pease, "An Adaption of the Fast Fourier Transform for Parallel Processing", Journal

of the ACM, April, 1968.

[8] R. Tolimieri, M. An and C. Lu, Algorithms for Discrete Fourier Transform and Convolutions,

Springer-Verlag. 1989.

[9] R. Tolimieri, M. An and C. Lu, The Mathematics of Multi-dimensional Fourier Transform

Algorithms, Springer-Verlag, in printing, 1993.

[10] Lu C, Cooley, J.W. and Tolimieri, R. (1992),"FFT Algorithms for Prime Transform Sizes

and Their Implementations on VAX, IBM 3090VF and RS/6000", IEEE Trans, on Signal

Processing, Feb, 1993.

[11] Margulis, N. (1990), i860 Microprocessor Architecture, McGraw-Hill.

[12] IBM Journal of Research and Development: Special Issue on IBM RISC System/6000

Processor, June, 1990.

[13] iPSC/860 Supercomputer Advanced Information Fact Sheet. Intel 1990.

95

C A New Approach for Computing MuIti-dimensional DFTs on

Parallel Machines and its Implementation on the iPSC/860

Hypercube

Abstract

In this paper we propose a new approach for computing multi-dimensional DFTs that reduces in-

terprocessor communications and is therefore suitable for efficient implementation on a variety of

multiprocessor machines. Group theoretic concepts are used to formulate a computational strategy

that hybrids the Reduced Transform Algorithm (RTA) with the Good-Thomas factorization. The

RTA algorithm is employed not as a data processing but rather as a book-keeping tool in order to

decompose the problem into many smaller size sub-problems that can be solved independently. Im-

plementation issues on an Intel iPSC/860 hypercube are discussed and timing results are provided

for many different cases. The non-optimized realizations of the new approach are shown to out-

perform the highly optimized realizations of the traditional row-column method in a variety of test

cases.

C.l Introduction-Motivation

Parallel computing presents a new environment for algorithm design and implementation, along

with new challenges to the computational scientist. The performance of any given program depends

on an increased number of parameters compared to the serial case, widening this way the difference

between theoretical models and practical experience.

In this paper, we present a strategy for computing a multidimensional DFT that hybrids a

relatively new algorithm (Reduced Transform Algorithm) with already implemented single proces-

sor kernel routines. We will use the reduced transform algorithm to address the reduction and

optimization of interprocessor communications. Our work has been mainly motivated from the

distributed memory parallel computing paradigm, which is arguably the most difficult to harness

due to its exposed interprocessor communication to the programmer. Most parallel computers re-

quire sophisticated algorithms and programming techniques for their optimum utilization. In this

discussion, we will make use of algebraic facts in presenting the algorithms. The parameters in al-

gebraic formulas give us the important implementation parameters. Thus the flexibility to address

the variables in implementations is equated with flexibility in manipulating algebraic formalism.

Initial investment in familiarity with some amount of algebra may be necessary, but the payoff is

immediate. Most of the relevant algebra, not in its most rigorous form but its usage, can be found

New Parallel Implementations 97

in [1].

In its most general form, the Reduced transform algorithm (RTA) is a full utilization of the

duality between periodic and decimated data in the Fourier transform. This duality was used

partially in some algorithms and implementations for restricted cases [2, 3, 4, 5]. A description of

a generalization in a unified setting is found in [6, 7] along with the work of M. Rofheart [8]. In

this paper, we will consider the application of RTA to the case Z/P x Z/P, for a prime number

P. Tensor product formulation of DFT computation on Z/N x Z/P x Z/P is interleaved with the

periodization step in RTA for Z/P x Z/P to produce P + 1 independent data of size NP.

We will use the RTA to address the imbalance between computation and communication rates

in current distributed memory parallel machines by reducing communication between processors to

collective patterns only (broadcast and combine) instead of the all-to-all communication patterns

required in the global matrix transpose needed by the row-column (RC) implementations of mul-

tidimensional DFT's. Also, since fast algorithms for prime size lD-DFT's exist [1] and the case

Z/P x Z/P of the RTA is very efficient because its computation requires only P + 1 ID transforms

(versus 2P for the row column method), our approach addresses the issue of storage reduction by

providing additional transform size options. For example the ability to perform a 181 x 181 point

2D DFT means potential storage savings up to 50% over the 256 x 256 case, along with the savings

in computational time. The storage savings can be used for the optimization of the broadcasting

step needed for the RTA, in environments with long communications latency.

Via the Chinese remainder theorem, we will extend our method to compute the 3-dimensional

DFT on Z/N X Z/MP X Z/KP, where N is an arbitrary integer, M and K are integers not

divisible by P, for a prime P. We transform the data set to an equivalent 5D data set on Z/N x

Z/M X Z/K X Z/P X Z/P, and then employs the RTA on the last two indices to break the problem

into smaller independent sub-problems that can be computed in parallel. Each sub-problem is

associated with the computation of the value of the Fourier Transform along one line in the set

Z/P x Z/P passing through the origin. These lines intersect only at the origin and cover the index

space. When translated from the 5D data set back to the original 3D data, each line corresponds

to a set of parallel lines covering the index space.

Three stages are needed to compute the values of the DFT along the lines: (1) Periodization

stage, which consists of additions of data along lines perpendicular to a given line, (2) 3D Cooley-

Tuckey FFT and (3) P-point DFT. In a multiprocessor environment, each processor computes

these three steps independently of the others thus allowing for maximum parallelism and efficiency.

Moreover, the final data distribution among the processors is such as to permit further processing

in a parallel fashion since every processor holds only results belonging to the same geometrical

New Parallel Implementations 98

subset.

The proposed hybrid method (HRTA) can be used in applications such as the computation of

motion from a sequence of images (multi-frame detection, MFD), a very important task in computer

vision, HDTV and video telephony. Several methods for MFD have been proposed in the literature

that are usually divided into two categories: Time Domain methods, that estimate the motion by

processing the sequence of images directly, and the recently proposed Frequency Domain methods

[9], [10] that processes the frequency contents of the images to estimate the velocity and trajectory

of the moving components. The latter methods offer more robust detection and huge computational

savings since the frequency domain representation of the 3D data (sequence of 2D images) is more

compact than the equivalent time domain representation. With all the processors holding data

belonging to different lines in the frequency domain, each processor can independently test for the

presence of motion along its assigned direction.

This paper is organized as follows: In section 2 we describe the RTA with an application on

Z/N x Z/P x Z/P and its parallel processing strategy. In section 3 we discuss the extension via the

Chinese remainder theorem and introduce hybrid algorithm (HRTA) that we use on Z/NxZ/MPx

Z/KP, and its parallel variant. In section 4 we discuss issues related to the implementation of the

hybrid algorithm on the Intel iPSC/860 parallel machine. In section 5 we present detailed timing

results and a thorough comparison of our approach with the traditional row-column method for a

variety of 2D and 3D DFT cases. We close the paper in section 6 by summarizing our findings and

propose directions for further investigation.

C.2 The Reduced Transform Algorithm (RTA) on Z/P x Z/P

Before we proceed we need the following definitions:

Let G be an abelian group of the form

G = Z/Ni x Z/N2 x • • • x Z/NR.

For g, h € G, define the bilinear map from G to Cx the complex numbers of magnitude 1 by

X(g, h) = e-
2^S-2^2 • • .e-2^3RhR, (1)

where g = (91,92,- • -,9R), h = (huh2, ■ ■ -,hR). Since grhr, 1 < r < R, is uniquely defined in

Z/Nr, (1) is well defined. For a subgroup S of G, the dual of S, denoted by S1 is the following

subgroup of G.

SX = {geG:x(g,s) = l,forall s G S}.

JVew Parallel Implementations 99

In addition to duality, we will use the following definition. Let 5 be a subgroup of an abelian group

G. A subgroup Sc of G is called a complementary subgroup of S if every element g £ G can be

written as

g = s + c, s £ 5, c 6 Sc.

In general, the complementary subgroup is not unique. Moreover, not every subgroup has a com-

plementary subgroup.

Let G = Z/P x Z/P, where P is a prime number. Non-trivial subgroups of G are of order P,

and hence cyclic. In addition, every subgroup of G has a complementary subgroup. The Reduced

Transform Algorithm (RTA) on G proceeds as follows:

1. DETERMINE OUTPUT DECIMATING SUBGROUPS TO COVER G:

For 0 < / < P set:

P, = {a(l,/):0<a < P - 1},

and for / = P set:

PP = {(0,a):0<a<P-l}.

We have

{JPl = G.
1=0

2. DETERMINE THE INPUT PERIODIZING SUBGROUPS, FOR 0 < I < P.

Denote by Q;, 0 < / < P, the following subgroups of G.

Q, = {6(-/,l):0<6<P}.

Also for / = P

QP = {6(1,0):0<6<P}.

Q;, 0 < / < P, is a subgroup of order P and Q; = P,1.

In Figure 1 we show the output decimating subgroups P; for G — Z/P x Z/P, P = 3 (area

inside the box). If we extend the index space, each P/ corresponds to a "line". Due to the modulo

P operations certain points of a line outside the box (marked with a circled +) will be mapped

inside (to the corresponding circled node with * in the same row/column). Also note that due to

the periodicity, the two lines labeled P2 are actually the same. All lines intersect at the origin. In

the same figure we show the input periodizing subgroups Q;. The collection Q; of input lines cover

the whole index space, as the collection P; of output lines do, and are dual to them.

3. COMPUTE THE PERIODIZATIONS.

New Parallel Implementations 100

+ + / + + + + P2CQD

Figure 1: The output decimating subgroups (lines) P; and the input periodizing subgroups (lines)

Q/ for the case P = 3.

A periodization is completely determined by its values on a complementary group. Fix a comple-

mentary subgroup for Q/, 0 < / < P, and denote it by Qf.

9l(c)= J2 /(C + H O</<P, ceQf.
beQ,

Although there are many choices for complementary subgroups, we will fixed them to be:

Q? = {(c,0):0<c<P-l}, 0<KP

Qc
P = {(0,c):0<c<P-l}, l = P

4. COMPUTE THE DFT. For a € P;,

/Ka) = E E /(c + b)X(c + b,a).
ceQ'beQ,

(2)

Since x(b,a) = 1> usinS (2) we §et

/Ka) = E flKc)x(c,a).
C€Q«

(3)

For 0 <l< P - 1, we will use the following identification to index the computations,

a*—(a,a/), b<—(-W,6), c—+(c,0),

0 < a, b, c < P, a G P/, b e Q,, c G Qf.

New Parallel Implementations

For / = P, the identification is:

a < — (o,0; , b^ (6,0), c- -(0,c),

o< '* a, 6, c < :P aeP/,beQ,, c e Qf.

Therefore we can rewrite (2) and (3) as follows.

9i(c) =

P-i

6=0

-bl,b), 0 < / < P, 0 < c< P

<7P(c) =
p-1

E/(*
6=0

c), 0 < c < P

P-i
s _lii^^

/(a, a/) = X] ff/(c)e-—ac 0 < / < P, 0 < c < P

101

c=0

P-1

/(0,a)=X;^(C)c-Trac, 0<c<P
c=0

C.2.1 Application: The case A = Z/N x Z/P x Z/P

Let A = Z/N x Z/P x Z/P, for a natural number N and a prime number P. For / € 1(A) and

(u, v, w) € A, the Fourier transform, /, is defined by

,-2iri-ä2 -2x;*a -2TT.-^

-=0 j/=0 r=0

For a € P/, 0 < / < P,

JV-l
-2iri-^, ,<a,C>

ceQ'beQ,*=°

where u = e-2?1, and < a,c > corresponds to the usual inner product. Changing the order of

summation,

//0,a)= E
N-l

£
r=0

or equivalently,

E /(*,c + b)|e-2«tf
VbeQ,

Ä«,a)= E E^K^c)^2-^^^.
ceQ< x=0

U)
<a,c>

New Parallel Implementations 102

This computation can also be rewritten, using our identification scheme as follows:

For 0< /< P- 1,

f(u, a, al) = £ E 9l(x, c)C-
a*^W°c = £ £ <»(*, 0, c)«"2^^,

c=0 r=0 c=0 r=0

and for / = P,

f(u, 0, a) = £ £ 5/(x, c)e-
2-^c- = £ £ s,(*, c, 0)e-2^u;«.

c=0 x=0 c=0 i=0

In Figure 2 we depict the three-dimensional index set A = Z/N x Z/P x Z/P in which planes

defined by the last two indices are partitioned into lines. In essence, the algorithm can be thought

of as N times the RTA on data sets: Z/P x Z/P.

N

P

^—""* ' U^— »

Figure 2: The 3D index set, partitioned into lines along the last two dimensions, and into parallel

planes along the first dimension.

C.2.2 The parallel processing strategy

In the previous subsection we have shown how the DFT on a 3D index set can be partitioned to

independent computations. For each one of the P + 1 lines of a plane, P periodizations needs to

be computed for a total of N ■ (P + 1) • P periodizations. Depending on the number of processors

(PEs) and the available memory per processor, different parallel implementations can be derived.

If P + 1 PEs are available, each one can be assigned to compute the DFT on one of the lines, and

there is no need for interprocessor communications. This scheme however requires that each PE

has access to the whole data set and is able to store at least the periodized data along a whole line

for all values of a; (N ■ P elements).

New Parallel Implementations 103

Alternatively if P • (P + 1) processors are available, each one may be assigned to compute the

values of the DFT for one of the P points that belong to a particular line. For such an implemen-

tation, the minimum memory requirements for a node is reduced to N, and more parallelism is

exploited at the expense of some inter-processor communications. The parallel processing strategy-

is summarized below.

step 1: Compute in parallel the N(P2 + P) Periodizations

g,(x,c) = X) /K*,c + b), (4)
beQ,

' EK/O^c-M,*), O</<P-I,

J$£f(x,b,c), l = P-

• If P + 1 PEs are used:

PEi, I = 0,...,P, computes the N ■ P periodizations {gi{x,c), 0 < x < N, 0 < c < P}. No

interprocessor communications are required.

• If P2 + P PEs are used:

PEic I = 0, ...,-P, c = 0,...,P - 1, computes the N periodizations {gi(x,c), 0 < x < N}.

Since the summation in (4) extends over 0 < b < P - 1 PEi,c needs to receive data residing in each

PEin, T/C.

step 2: Compute the ID, N-point DFTs.

N-l

x-0

• If P + 1 then PEi computes the P, ID N-point DFTs {#(u, c), 0 < c < P}.

• If P2 + P then PE\fi computes an ID N-point DFT, namely gi(u,c).

No interprocessor communications are required in either cases.

step 3: Compute the P-point ID DFTs.

/(U,a)= X 9i(^c)w<a-c>. (5)

. If P + 1 then PEt computes the N, ID P-point DFTs {/(«, a), 0 < u < N}. No interprocessor

communications are required.

• If P2 + P then PEitC computes an ID P-point DFT, namely /(u,a). Since the summation in (5)

extends over 0 < c < P- 1 PEitC needs to receive the partial result gi(x,f) from each PP/,7, 7 ^ c.

JVew Parallel Implementations 104

C.3 Extension via the Chinese Remainder Theorem

The Chinese Remainder theorem is a major tool in algorithm design. It is the basis of the prime

factor algorithm of Good and Thomas [11, 12]. It can be stated in several ways, but we will use the

theorem as a statement about rings, especially the idempotents, for uniformity and predictability

in implementation.

C.4 Extension via the Chinese Remainder Theorem

The Chinese Remainder theorem is a major tool in algorithm design. It is the basis of the prime

factor algorithm of Good and Thomas [11, 12]. It can be stated in several ways, but we will use the

theorem as a statement about rings, especially the idempotents, for uniformity and predictability

in implementation.

Theorem 1 Chinese Remainder Theorem [13].

Let N = NiN2, where the integers TVi and N2 are relatively prime. Then

Z/N ~ Z/Ni x Z/N2.

Rather than proving the theorem, we state an explicit isomorphism and its inverse. The mapping

il> : Z/N -> Z/Ni x Z/N2 defined by:

ij}{n) = {n mod Nu nmodN2)

is an isomorphism. The inverse is denned in terms of the idempotents. Let eu e2 be the elements

of Z/NiN2 with

V>(ei) = (l,0), V(e2) = (0,l).

Then the mapping denned below is V-1-

Z/Ni x Z/N2 — Z/N : (ni,n2) ~ (ei^i + e2n2) modN.

C.4.1 Good-Thomas Prime Factor Algorithm for Z/MP

Henceforth we will restrict to the case where N2 is a prime number. Set N2 - P and Nx = M.

The system of idempotents in this case will be given according to the residue of M by P.

Theorem 2 Let M = c mod P. Then e2 = c~xM, where c"1 is the inverse of c £ U(Z/P), the

multiplicative group of units ofZ/P.

jVew Parallel Implementations ^^5

Proof: M = c + mP for some m £ Z.

c~lM = c'Hc + mP) = 1 mod P, c~xM = 0 mod M.

Thus T/>(C
_1

M) = (0,1). Since ex + e2 = 1 mod MP, we have that ex = MP + 1 - e2.

Example: 3 and 5 are relatively prime to each other. We will find the idempotents for the

isomorphism Z/15 ^ Z/3 x Z/5. 3 = 3 mod 5. 3"1 = 2 € Z/5. Thus.

e2 = 2 • 3 = 6 e Z/15, ea = 15 + 1 - e2 = 10 € Z/15.

We also have the isomorphism Z/15 ~ Z/5 x Z/3. 5 = 2modZ. 2_1 = 2 € Z/3. Thus,

e2 = 2 • 5 = 10 e Z/15, ei = 15 + 1 - e2 = 6 <= Z/15.

Indexing Z/MP by the CRT, DFT on Z/MP is computed by F(P) ® F{M), where F(i)

denotes the L-point DFT matrix and ® denotes the tensor product of matrices. Many formulations

of the Prime Factor Algorithm (PFA) exist [14, 15, 16, 17], but the explicit use of idempotents to

arrive at the tensor product decomposition can can be found in [1, 18]. We will formulate the PFA

for two factors directly here since the derivation is easy and understanding the role of idempotents

has a direct impact on parallel implementation.

To derive the tensor product decomposition in the language of matrices, we will begin by

describing two distinct orderings of the group Z/MP. Let {e1,e2} be the idempotents for the

isomorphism Z/MP ~ Z/M x Z/P. The following presentations for the elements of Z/MP are

unique.

x € Z/MP, x = mex + ae2, 0 < m < M, 0 < a < P. (6)

y e Z/MP, y = p,P + aM, 0 < /* < M, 0 < a < P. (7)

• Order Z/MP antilexicographically by the pair (m, a) obtained by the presentation of the

elements of Z/MP given in (6). We will use this to order the input data.

• Order Z/MP antilexicographically by the pair (/*, a) obtained by the presentation of the

elements of Z/MP given in (7). We will use this to order the output of the Fourier transform

computation.

P-1M-1 , .

/(MP + aM)=Y,i: /(™i + ae2)e-&l"mP«+aaM«l
a=0 m=0

Recall that tx = 1 modM and e2 = 1 mod P. Since

e -jzL(ßmpei+aaMe2) _ e-^(.mPei e~jjVaaM^ = c"^»me> e^™*2 = e'^ßme^'

New Parallel Implementations

we have that p_x M_x

ffrP + aM) = £ E /(mei + ae2)e-^^e~^aa. (8)
a=0 m=0

For a function / defined on Z/MP, denote by / the vector of values f(x) ordered by (6).

Denote by /the vector of the Fourier transform of / ordered by (7). We can express (8) in terms

of matrices as follows.
/ = [P(P)®P(M)]/.

C.4.2 The Hybrid Good-Thomas and RTA Algorithm on A = Z/N x Z/MP x ZjKP

Let A = Z/N X Z/MP X Z/KP, for natural numbers N,M,K and a prime number P such

that GCD{M,P) = GCD(K,P) = 1. By applying the CRT twice, we have the isomorphism

A ~ Z/N x Z/M x Z/P x Z/K x Z/P.

For / € L(A) and (u, v, w) e A, the Fourier transform, /, is defined by

PK-1PM-1N-1

z=0 y=0 r=0

Set
#(n, m, fc, a, b) = /(n, exm + e2a, /ifc + /26), (9)

where {eue2} is the system of idempotents for the isomorphism Z/MP ~ Z/M X Z/P and {/x^/2}

is the system of idempotents for the isomorphism Z/KP ~ Z/K x Z/P. We can compute / by

computing g since

}(v, ^P + aM, KP + ßM) = g(v, ft, K, a, ß).

In the previous section, we described an algorithm for the case of an index set A = Z/NxZ/ PxZ/P.

The same ideas can be applied to the index set A ~ Z/N x Z/M x Z/P x Z/K x Z/P. If N, M

and Ar are powers of 2, the RTA algorithm can be used to decompose the data set into independent

computations that can be performed on each of the P + 1 (or P2 + P) processors. The algorithm

remains essentially the same, with the ID N-point DFT kernel now replaced by the 3D N x M x K

DFT kernel. The additional data re-indexing defined by equation (9) can be incorporated into the

computation of the periodizations with respect to the sets Z/P x Z/P during the first step. In

is interesting to note that with the application of the CRT, the resulting hybrid algorithm now

computes the DFT on sets of lines that are parallel to the lines of Figure 1 as shown in Figure 3

for the case P = 3, M = K = 2.

C.4.3 The parallel hybrid algorithm using P + 1 processors

The parallel algorithm for the computation of the 3D Fourier Transform of a complex function

defined on the index set A = Z/N x Z/MP x Z/KP is given bellow:

New Parallel Implementations 107

P3 P3

* ry, PVt P^

0 bs 0 Q b\ o'
' V ' v'
! ' \ ! /\

P2 ö 6 b, <j> p' bN

~-&:~Qr—o—${—e—-o—*> po
^ i v / , \ y

1 v / \ \ /
1 s ' I ^ ' PI o a ,0 cp Q p
i \ / I \ /

q> ,G' b <p pr' \

—;#-'—©—-0—^—0-—0—» PO

/ i
i

Figure 3: The output decimating lines for the case P = 3, M = K = 2.

Processor / (/ = 0,..., P)

• step 1: Combined computation of Good-Thomas permutation and Periodizations

for c = 0...P-l, 6 = 0...P-1,

for n = 0...N-l, m = 0...M -I, k = 0...K-l,

if (/ < P) then

gi(n, m, k, c) := gt(n, m, k, c) + f(n, (exm + e2(c - M)P)MP, (fik + /2b)KP)

else

gi(n, m, k, c) := gi(n, m, k, c) + f(n, (exm + e2b)MP, (M + hc)Kp)

where we denote by (-)E the modulo Eoperation. Note that at this step every processor needs

to access the whole data set stored in the array f(N, MP, KP) and at the end produces an

N X M X K X P array containing the periodized data with respect to the line /.

• step 2: Computation of P 3D FFTs of size N x M x K

for c = 0...P-l

9l(n, m, *, c) = E^-o1 £*=o Eto *<(Ä» ™, *, c))e
-2irinfi —2jrtmm — 2Trikk

N e M e A"

• step 3: Computation of (N ■ M ■ K), ID P-point DFTs

for n = 0...N-l, m = 0...M-l, Ar = 0...Ä"- 1,

f(n,m,k) = Yli=o 9l(n,m,k,c)e P

New Pa.ra.llel Implementations 10°

Note that the same ideas can be also employed to compute the 2D DFT for a function defined on

the index set: A = Z/MP x Z/KP. The parallel hybrid algorithm for the case of P + 1 nodes is

given bellow:

Processor/ (/ = 0,...,P)

• step 1: Combined computation of Good-Thomas permutation and periodizations

for c = 0...P-l, 6 = 0...P-1,

for m = 0...M-l, k = 0...K-l,

if (I < P) then

gi(m, k, c) := ff/(m, k, c) + f{{exm + e2{c - bl)P)MP, (fik + /7b)KP)

else

gi(m, k, c) := gi(m, k, c) + f{{exm + e2b)MP, (fik + hc)Kp)

The array 5/(A/, A', P) contains now the periodized data with respect to the line /.

• step 2: Computation of P 2D FFTs of size M X K

for c = 0 ... P - 1 compute
1 r 1 r - i - —2Timm —2-xik'k

9i(m, k, c) = E^o1 Efo 5'(7h' fc' c))e^^ e^~

• step 3: Computation of (M ■ K) P-point DFTs

for m = 0 ... M - 1, A: = 0 ... A' - 1, compute

C.5 Implementation issues

C.5.1 The Intel iPSC/860 Hypercube

The Intel iPSC/860 parallel processing system is a distributed memory, Multiple Instruction Mul-

tiple Data (MIMD) hypercube, containing up to 128 = 27 compute nodes (processing elements,

PEs) based on the Intel i860 high performance 64-bit RISC microprocessor. The i860 has a peak

performance of 80 MFlops and is equipped with 8K data and 4K instruction cache memory. Each

node has 8 to 64 Mbytes of external local memory, a network interface and a message router. The

router can handle up to 8 bidirectional communication channels, seven of which may be connected

to neighboring nodes and one is dedicated to external I/O and is directly connected to the host

processor.
The PEs are connected to each other via relatively slow full duplex asynchronous commu-

nication channels that can carry messages of variable length. The channel bandwidth is about

2.8Mbytes/sec. The wormhole routing technique, which minimizes the delay between receiving a

message in a node and retransmitting it to its final destination, is used. The message passing can

New Parallel Implementations 109

be either synchronous or asynchronous. The synchronous message passing blocks the execution of

the node programs until the communication has been completed, whereas asynchronous message

passing returns immediately and is useful if the node processors can perform other computations

while waiting for the communication to complete. The system is equipped with a Concurrent File

System (CFS) [19] that distributes files across all available disks in blocks, such that different com-

pute nodes can access different parts of a file without creating a bottleneck at a particular I/O

node.

C.5.2 Initial data loading and distribution

The hybrid Reduced Transform Algorithm (HRTA) that we propose requires that the whole data

set is accessible from all the nodes, so that all periodizations with respect to the line assigned to

a PE can be computed. This does not necessarily mean that every node has to store the whole

data set, although the latter could be helpful in certain environments. The traditional row-column

(RC) algorithm on the other hand requires each node to have access to only a subset of the rows

or the columns of the original data array, but a severe communications overhead is introduced by

the need to perform one or more global transpositions of the data.

Data entry to the multi-processor machine depends on the particular application in which the

DFT is embedded. While in some applications the data are stored in the disk(s) and have to be

imported to the nodes of the parallel machine, in other applications the data have already been

imported during previous computational stages or have been generated locally in the nodes. Since

the initial data loading is application dependent, we have not investigated the implementation

of this step in detail. We have however considered two different models for the initial stage of

the HRTA: In the first model, which is referred to as the master-slaves method, a master node

computes all the periodizations and sends to the other nodes (the slaves) only the periodized data.

Using this method the need for storage on the nodes is reduced since every one has to store only

the periodized data. Furthermore the computation of the periodizations by the master node can

be performed in a way that interleaves computation and communication steps in order to achieve

optimum performance.

In the second model, also referred to as the multi-processor model, all nodes have access to

all the data set, so that in an initial loading phase, either all nodes access a shared file system

concurrently, or one node reads the data from a file and then broadcasts them to all the other

nodes. Although the HRTA requires that larger (than for the RC method) data sets be sent to the

nodes, the fact that these data sets are the same allows for the use of the broadcasting capabilities

of the parallel machine. This approach is especially attractive for shared bus based machines where

broadcasting can be performed efficiently. On the iPSC/860 hypercube broadcasting the whole

New Parallel Implementations 110

data set is faster than sending "chunks" of different data elements to each processor, but certainly

much slower than an one-hop away communication step. After extensive experimentation with the

iPSC/860 we concluded that the master-slaves model allows for more efficient implementations of

the HRTA than the multi-processor model.

Since, for the hybrid algorithm, the node computations are completely independent, there

is very little need for synchronization among the nodes. Therefore completely asynchronous im-

plementations that exploit the MIMD nature of the machine and allow each node to perform its

computations as soon as the data are received are possible. On the other hand, in the row-column

method, that is the most commonly used method today, a series of distributed global data trans-

positions has to be performed, and its efficiency is highly dependent on the tight synchronization

among the processors. Therefore, the increased need for communication during the loading phase

that the hybrid algorithm has does not make it slower than the row-column method, unless more

sophisticated methods for data distribution can be employed. (We intend to explore this issue in

detail by investigating the capabilities, advantages and drawbacks of the CFS that the iPSC/860

supports).

C.5.3 Reporting the results to the host

The final phase of reporting results, as well as the initial phase of loading data depend on the DFT

application. In some applications upon completion of the DFT the results need not be reported

back to the host since they are further processed. In others, it is desired to store all the DFT values

in the external disk memory. In the parallel HRTA we propose, the distribution of the results on

the nodes is according to the lines they belong to. Whereas in some applications it is desired to

organize the results in the same order as the original data, in others it is essential to return the

results along subsets of the original index space (lines or planes) [10], [9]. Since the final reporting

phase is highly dependent on the application, we have not investigated this issue in detail. We

would like to mention however that the limited synchronization needs of the HRTA leads to flexible

implementations of the final reporting phase, because the nodes can finish their computations

independently and start returning their results asynchronously as soon as they become available.

C.6 Implementation Results

It has been a common belief among the signal processing community that with the pipelining

and dual operations capabilities of the modern RISC microprocessors, there is no need for DFT

algorithms for data sizes that are not a power of two. This was so because zero padding can be

employed along with the highly optimized, microprocessor specific, power-of-two FFT routines.

As we will show here, this is not true for multi-dimensional DFTs. Zero padding along many

New Parallel Implementations 111

dimensions can increase the data size tremendously and reduce the efficiency of the power-of-two

routines drastically. Moreover, in a multiprocessor environment, the standard power-of-two Row-

Column (RC) based FFT algorithms require one or more global transposition steps in which all

processors need to communicate with every other processor in the network. Due to the limited

bandwidth of the communication links, the global transposition steps result in a bottleneck that

severely limits the maximum achievable speedup.

C.6.1 The 2D DFT case, MP x KP

To demonstrate the advantages of the proposed hybrid RTA algorithm (HRTA) relative to the

traditional row-column (RC) power-of-two algorithm, we compare an implementation for the 2D

DFT case with a highly optimized Intel iPSC/860, vendor supplied RC implementation for the case

P = 3, using L — P + 1 = 4 nodes. The HRTA periodization step was coded in Fortran, whereas

for the 2D FFTs we used vendor supplied, assembly coded, power-of-two FFT routines, optimized

for the i860 processor. Finally, for the 3-point DFTs step we also used optimized, hand coded in

assembly, vectorized routines. We performed several tests for various non-power-of-two data sizes

and we report the computational time achieved by both methods. The time is measured from

the point that all the necessary data already reside in the nodes, and until the results have been

computed and stored in the processors local memory. In both implementations the distribution

of the results is different from the original data distribution. Using the HRTA the results are

distributed along the lines assigned to each processor, and using the RC method the results are

distributed in a transposed fashion.

In Table 1 we compare the speed of the two algorithms for a variety of data sizes. Depending

on the amount of zero padding, the RC method could be up to about 70% slower than the HRTA.

Moreover, our HRTA implementation can be further optimized (assembly coding of the periodiza-

tion step), whereas the RC implementation is already fully optimized for the Intel iPSC/860. As

we can see from Table 1, the speedup over the RC method increases with the data size as expected,

since the amount of zero-padding increases with the size of the original non-power-of-two data set

as well.

As an indication of the percentage of time spent on each one of the three major computational

tasks we refer to the case: M = 256, K = 256, P = 3, (size 768 x 768). The times (in msec) for the

computation of MKP = 3 • 216 periodizations, P = 3 M x K = 256 x 256 2D FFTs and MK = 216

3-point DFTs respectively are: tp = 475.0208, t}jt2d = 542.0287 and tdstZp = 97.6183. As we can

see, the time required for the periodizations almost equals that for the 2D FFTs. A careful assembly

coding of the periodizations step is expected to reduce this time by at least 50%, thus making an

optimized HRTA implementation twice as fast as the optimized RC implementation.

New Parallel Implementations 112

Hybrid Algorithm Row-Column Method

MP x KP time (msec) size time (msec)

192 x 192 66.7470 256 x 256 95.9750

192 x 384 130.8893 256 x 512 194.5686

384 x 384 254.7608 512x512 403.3229

384 x 768 511.9606 512 x 1024 866.7061

768 x 768 1117.2697 1024 x 1024 1876.8777

Table 1: Comparison of the performance of the HRTA parallel algorithm vs. the iPSC/860 opti-

mized RC parallel algorithm implementation, for various data sizes, and P = 3. In both methods

the data are assumed to initially reside in the nodes.

C.6.2 The 3D DFT case, N x MP x KP

We have implemented the parallel HRTA algorithm for the case P = 3, oni = P + l = 4 nodes,

where N, M and K are assumed to be a power of two. In the 3D case, the periodization step

can be organized to result in a much more regular memory access than in the 2D case, since now

vector additions of data stored in consecutive memory locations can be employed. We coded this

step using a mixture of Fortran and vector addition assembly routines, whereas assembly routines

have been used for both the 3D FFTs and the 3-point DFTs.

In Table 2 we compare the HRTA with the optimized iPSC/860 implementation of the RC

algorithm for a variety of data sizes. Using both methods the data initially reside in the nodes,

and the time is measured up to the point that the results have been computed and stored in the

local memory. As we can see from Table 2, the RC algorithm is on the average about 70% slower

than the HRTA algorithm for a good mix of the cases tested. In the same table we also report the

computational times required for the DFT of the same data set using the RC method on 8 nodes.

It is interesting to observe that even if the number of nodes is doubled the performance is increased

by only 15% on the average relative to the 4-node HRTA implementation.

In Figure 4 we compare our implementation of the parallel HRTA with the parallel RC method

by plotting the (base 2) logarithm of the computational times required by both methods for data

sizes N x 96 x 96, versus logiV. In the same figure we plot the ratio of the computational times

("speedup") as well. As we can see the RC method can be as much as 1.70 times slower than the

HRTA for the range of N examined.

As an indication of the percentage of computational time spent in each stage of the HRTA, we

report the times (in msec) required for the major tasks involved when the data size is 16 x 192 x 192

(i.e. N = 16, P = 3, M - K = 64). In this case we need to compute: NMKP = 3 • 216

New Parallel Implementations 113

Hybrid Algorithm Row-Column Method

Nx MPx KP time (msec, 4-PEs) size timel (msec, 4-PEs) time2(msec, 8-PEs)

8 x 96 x 96 183.6536 8 x 128 x 128 289.6318 150.3773

8 x 96 x 192 351.6283 8 x 128 x 256 592.9389 298.6226

8 x 192 x 192 719.3023 8 x 256 x 256 1278.7431 628.8135

8 x 192 x 384 1522.1512 8 x 256 x 512 2568.7333 1262.5482

16 x 96 x 96 338.0456 16 x 128 x 128 565.8212 273.1891

16 x 96 x 192 690.1413 16 x 128 x 256 1134.1762 556.7175

16 x 192 x 192 1422.3148 16 x 256 x 256 2245.3022 1175.6518

4 x 384 x 384 1791.1266 4x512x512 2941.7306 -

Table 2: Performance comparison of the 3D HRTA parallel algorithm vs. the iPSC/860 optimized

RC parallel implementation, for a variety of data sizes and P = 3. In both methods the data

are assumed to initially reside in the nodes. For the RC method we report both the 4-nodes and

8-nodes time.

periodizations, P = 3 N x M x K = 16 x 64 x 64 3D FFTs, and NMK = 216 3-point DFTs. The

corresponding times are: tp = 302.2875, tfft3d = 1022.5539 and tdft3p = 97.7224. It is interesting

to notice that although the number of periodizations is the same (3 • 216) as for the 2D DFT case

(768 x 768) discussed in the previous subsection, tp is reduced by about 35 %. This is because in the

3D DFT case, accesses to the data array are more localized than in the 2D case since periodizations

are computed only along the two-dimensional planes. As we can see, the 3D FFTs computation is

still the most expensive task. A 3D FFT (16 X 64 x 64), although applied to a data set with the

same number of elements as in the 2D case (256 x 256), is two times slower than a 2D FFT. This

is mainly due to the fact that the 3D FFT requires more function calls to the optimized ID FFT

routine as well as additional transposition steps. The assembly coded 3-point DFT is again as fast

as in the 2D case. The large percentage of the computational time that the 3D FFT requires makes

us to believe that trying to limit the need for large 3D FFTs is more important than optimizing

the periodizations.

In Table 3 we report execution times that include the initial data loading phase. In both

implementations the data are assumed to initially reside in one node which then distributes them

to all the others. For the hybrid method we used the master-slaves model, described in section 4,

that works as follows: The master PE performs all the periodizations; as soon as one periodization is

completed, the results are sent via non-blocking communications to a slave PE and the computation

of the next periodization can start in the master PE. The slave node that receives the periodized

data can proceed with the 3D FFTs. This interleaving between computations and communications

•

New Parallel Implementations 114

log2f ime) (ms»c) N x 96 x 96: 4-nodes

11.b ■

11 >'

10.5

10

9.5

9

8.5

/ it'
RC st

' if'

S y ,''' HRTA
* '

7.5

7
r'

Jk'

-

6.5
2 2.5 3 3.5 4 4.5 5 5.5 6

log2(N)

speedup N x 96 x 96:4-node

Figure 4: Performance comparison of the 4-node 3D HRTA parallel algorithm vs. the 3D RCA

method. Left: plots of the (base 2) log. of the computational time (in milliseconds) versus logiV.

For the HRTA the data sizes used were of the form N x 96 x 96 and for the RC method the

corresponding sizes were zero padded to N x 128 x 128. Right: the ratio of times Trc/ThTta (speedup)

achieves optimum performance using the HRTA. In the row-column method each one of the four PEs

needs only \ of the data set. Including the data loading phase leads to even larger improvements

over the RC method. This is due to the asynchronous nature of the hybrid method implementation

that allows data loading in a pipelined fashion to further reduce the total DFT time.

The final reporting of the results to the master node, can also be done in pipelined fashion.

The nodes do not finish their computations all at the same time. The master node finishes first; it

can then re-shuffle its own data back into order and then receive messages from the other nodes.

As soon as each node finishes its computation, it can return its part of the results to the master

node. On the other hand, in the RC method all nodes finish almost simultaneously and the total

reporting time will be the sum of the times required by each individual node to return its results

to the master node. As we can see from Table 3 (column labeled time2) when the final reporting

stage is included the advantage of the HRTA becomes even greater.

C.6.3 The hybrid algorithm implementation for larger sizes of P

In this subsection we present preliminary results on the performance of the HRTA implementations

for 3D DFTs of sizes N x MP x KP, where the prime number is P = 5 or P = 7. In Tables 4 and

5 we report execution times in six and eight nodes respectively.

In Figure 5 we plot the computational time versus the size of the problem as well as the

New Parallel Implementations 115

Hybrid Algorithm (4 nodes) Row-Column Method (4 nodes)

N xMPx KP timel (msec) time2 (msec) size timel (msec) time2 (msec)

64 x 48 x 6 121.89 146.97 64 x 64 x 8 148.27 (+21.64%) 229.92 (+56.44 %)

64 x 96 x 6 210.28 290.53 64 x 128 x 8 291.01 (+38.39%) 451.78 (+55.50%)

128 x 96 x 6 477.11 573.18 128 x 128 x 8 587.26 (+23.08%) 905.37 (+57.95%)

128 x 192 x 6 940.17 1136.35 128 x 256 x 8 1214.48 (+29.17%) 1882.26 (+65.64%)

16 x 96 x 96 791.75 1007.59 16 x 128 x 128 1139.49 (+43.92%) 1764.86 (+75.16%)

Table 3: Comparison of the performance of the 3D HRTA vs. the RC method. The data initially

reside in one master node; timel includes the data distribution whereas time2 includes in addi-

tion the final reporting to the master node. For the RC method, the percentages in parenthesis

correspond to: 100 • (r^~r^'^

Hybrid Algorithm (6-nodes) Row-Column Method (8-nodes)

N x MP x KP time (msec) size time (msec)

8 x 160 x 320 745.4254 8 x 256 x 512 1262.5699

8 x 160 x 160 388.6131 8 x 256 x 256 628.7040

16 x 80 x 160 395.3691 16 x 128 x 256 556.5085

32 x 80 x 80 392.0486 32 x 128 x 128 587.5301

64 x 40 x 80 395.1672 64 x 64 x 128 577.1927

128 x 40 x 40 414.7549 128 x 64 x 64 578.8189

2048 x 10 x 10 856.1560 2048 x 16 x 16 714.3222

Table 4: Comparison of the hybrid algorithm implementation and the row-column method, for

P = 5.

speedup ratio over the RC method applied to a data set zero padded up to the next power of two

in each dimension. As we can see from Figure 5 although the optimized RC algorithm runs on

8-nodes, instead of 6 for the HRTA algorithm, it is about 1.5 times slower than the non-optimized

HRTA implementation.

C.6.4 The node clustering approach

As we have seen earlier in the four-node 3D DFT case, each node needs to perform three 3D FFTs

of size M x K x N. If the size of the 3D FFT data is too large to fit into a single node, or faster

implementations are desired, the four nodes can now be considered as four conceptual clusters of

nodes. In each of the clusters, the 3D data is distributed along the first dimension, and both the

periodization and 3-point DFT steps can be performed independently by each node of a cluster.

JVew Parallel Implementations 116

Hybrid Algorithm (8-nodes) Row-Column Method (8-nodes)

N x MPx KP time (msec) size time (msec)

8 x 224 x 224 647.1830 8 x 256 x 256 628.7040

16 x 112 x 224 595.7953 16 x 128 x 256 556.5085

32 x 112 x 112 584.6240 32 x 128 x 128 587.5301

64 x 56 x 112 567.5866 64 x 64 x 128 577.1927

128 x 56 x 56 577.8302 128 x 64 x 64 578.8189

2048 x 14 x 14 1109.0271 2048 x 16 x 16 714.3222

Table 5: Comparison of the hybrid algorithm implementation and the row-column method, for

P = 7.

For the 3D FFT computation, only communication among the processors of the same cluster is

needed, thus greatly reducing the total communication requirements. In Figure 6 we show how an

eight-node hypercube is organized in 4 clusters to compute the 3D DFT of size N x 3M x 3/v.

Node clustering can be used to create scalable implementations that make full utilization of

the available hardware. If the number of nodes is 2n and four clusters are used, every node needs

to store only the ^ of the original data set. In Tables 6, 7 and 8 we present timing results for

8, 16, and 32 nodes 4-cluster implementations (P = 3) and compare the performance of the HRTA

with that of the highly optimized row-column method using zero-padding up to the next power of

two in every dimension. It is again assumed that the data already reside in the nodes before the

processing starts. Moreover, the three 3D FFTs computed by every cluster are implemented using

the optimized row-column routines.

Hybrid Algorithm Row-Column Method

Nx MPx KP time (msec) size time (msec)

16 x 192 x 192 1027.9498 16 x 256 x 256 1175.2196

8 x 384 x 192 1052.3800 8 x 512 x 256 1330.3198

8 x 384 x 384 2206.7041 8 x 512 x 512 2669.4727

Table 6: HRTA in 8-nodes = 4 clusters of 2 PEs/cluster vs. 8-nodes RC with zero padding

In Figure 7, we plot the computational time required by each implementation, versus logJV

for data sizes of the form N x 96 x 96. In the same figure we also show the ratio Trc/TÄrta as before.

As we can see from Figure 7, the hybrid algorithm is only slightly better than the row-column

method. However, the periodization part of our code is just in standard Fortran implementation

and it can be further optimized.

In Table 7 we present timing results for a 16-node implementation; P + 1 = 4 clusters (with

New Parallel Implementations 117

log2(time) (msec)

11
N x 40 x 40:6-nodes spa «iup N x 40 x 40:6-rrodes

t
i

1.45

\
\

■ \

\
\
\

1.4

\
\
\

1.35 \ RC/HRTA/

1.3

i / \ /
> »' 1

 \L1 1 1 1

log2(N)

Figure 5: Comparison of the 6-node HRTA to the 8-node RC implementation: Left: Plots of the

(base 2) logarithm of the computational time (in msec) vs. log TV. The data sizes used with the

HRTA were of the form N x 40 x 40, P = 5. The corresponding RCA data sizes were of the form

N x 64 x 64. Right: the speedup ratio Trc/Tkrta-

4 PEs/cluster) cooperate to perform the 3D DFT. Each of the cluster has the whole data set

stored in it. Within a cluster, each of the nodes stores 1/4 of the data (distributed along the

first dimension). Three four-node row-column 3D FFTs are performed within each cluster. In

Figure 8 we show the data distribution within one of the clusters. As we can see from Table

7, the non-optimized HRTA implementation has comparable performance with the optimized RC

implementation. The computational time versus the size of the data set and the speedup ratio over

the row-column method is shown in Figure 9. Finally, in Table 8, we present timing results for a

32-node HRTA implementation, partitioned into 4 clusters with 8 PEs each.

The node clustering approach can be used in general for any size of the prime number P. As an

Hybrid Algorithm Row-Column Method

N x MP x KP time (msec) size time (msec)

16 x 192 x 192 544.8489 16 x 256 x 256 569.4243

16 x 384 x 192 1103.3147 16 x 512 x 256 1204.5177

16 x 384 x 384 2289.6839 16 x 512 x 512 2411.0360

8 x 384 x 768 2373.4150 8 x 512 x 1024 -

Table 7: HRTA in 16-nodes = 4 clusters of 4 PEs/cluster vs. 16-nodes RC with zero padding.

New Parallel Implementations 118

Node 0

Node 4

Cluster 0

V V

N/2
N/2"

M M M

Cluster 1

Cluster 2

V V Z^

^ V N(
\ \ \ \

k

Cluster 3
\ \ V NT
\ X \ \

Node 3

Node 7

Figure 6: An 8-node hypercube, organized into P + 1 = 4 clusters of 2 nodes each. Only near-

neighbor communications inside every cluster are need to compute an N x MP x KP 3D FFT.

example, we have implemented the case N x 5M x 5A' (P = 5) in a 12-node configuration. The 12

nodes are partitioned into 6 = P + 1 clusters, each one having two nodes. The data are distributed

evenly within each cluster along the first dimension, and the row-column 3D FFT kernel is used

to perform the 3D DFTs inside every cluster. Only communication among PEs in the cluster are

needed. In Table 9 we compare the HRTA implementation versus the RC method running running

on 16 nodes. As we can see the 12-node HRTA outperforms the 16-node RC implementation.

Hybrid Algorithm Row-Column Method

NxMPxKP time (msec) size time (msec)

128 x 96 x 96 532.9717 128 x 128 x 128 589.2343

64 x 192 x 192 1039.3567 64 x 256 x 256 1173.0707

32 x 384 x 192 1071.3325 32 x 512 x 256 1216.7244

32 x 384 x 384 2208.9439 32x512x 512 2444.6264

Table 8: HRTA in 32-nodes = 4 clusters of 8 PEs/cluster vs. 32-nodes RC with zero padding.

New Parallel Implementations 119

log2(time) (msec]

11.5

N x 96 x 96:8-nodes/4-dusters
speedup N x 96 x 96:8-nodes/4-dusters

Figure 7: Performance comparison of the 8-node HRTA (4 clusters with 2 PEs/cluster) vs. the

RC method. Left: Plots of the (base 2) logarithm of the computational time (in milliseconds) vs.

logiV. Right: the speedup ratio TrcjThrta-

Hybrid Algorithm (12-nodes) Row-Column Method (16-nodes)

Nx MPx KP time (msec) size time (msec)

16 x 80 x 80 137.7877 16 x 128 x 128 139.8977

16 x 160 x 80 260.3311 16 x 256 x 128 279.9925

16 x 160 x 160 512.0763 16 x 256 x 256 567.8107

16 x 320 x 160 979.6029 16x512x256 1201.9575

Table 9: Comparison between a 12-node HRTA parallel algorithm with clustering (6 clusters, 2

PEs/cluster), and the RC method running on 16 nodes. The HRTA is faster although it uses 25 %

less nodes.

C.6.5 Conclusions and further Research directions

A new approach for computing multi-dimensional DFTs with limited interprocessor communica-

tions has been proposed, and its advantages relative to the standard row-column power-of-two

based FFT algorithms has been demonstrated. Although it has been a common belief that with

the available modern RISC microprocessors there is no need for new "exotic" DFT algorithms, we

have shown that substantial computational savings can be achieved in a parallel environment by

using a more flexible hybrid scheme. The DFT is a major component of numerous signal and image

processing applications and if real-time operation is envisioned, only parallel processing can satisfy

the user demands.

New Parallel Implementations 120

Node 12

Cluster 0

Figure 8: A 4-node cluster, part of a 16-node, 4-clusters hypercube: Only communications inside

each cluster need to be performed to compute a 3D FFT.

The proposed hybrid algorithm combines the advantages of both the recently proposed RTA

and the Cooley-Tuckey RC method to give optimal parallel realizations for non-power-of-two data

sizes. We demonstrated the flexibility and the efficiency of the HRTA by implementing it on an

Intel iPSC/860 hypercube, where our non-optimized HRTA realizations outperform the highly op-

timized RC method realizations. The HRTA provides an alternative that is suitable for many

different parallel and distributed processing environments. In a DSP board with 4 compute nodes

communicating via a shared bus, the HRTA seems to be the only viable parallel processing scheme

that would achieve real-time performance. In Clusters Of Workstations (COWS), a rapidly emerg-

ing cost-effective model for parallel computing, the need for an all-to-all communication, that is

necessary for transposition using the RC method, would render the RC method highly inefficient.

On the other hand, the HRTA has little or no need for communication between different worksta-

tions so that very fast implementations can be created.

We have demonstrated that the HRTA shares the scalability properties of the RC algorithm

so that multi-dimensional DFTs of large data sizes can be computed efficiently on parallel archi-

tectures. To optimize the HRTA the periodization step can be further improved. The modulo

arithmetic based addressing can be avoided if more local memory is allocated to store two integer

arrays Indl(M,P) and Ind2(K,P) used as index-lookup tables. Their entries can be either computed

once or preloaded along with the data. An alternative approach is to replace the modulo operations

with additions and conditional statements. Moreover, since along the index n, the periodizations

reflect essentially to vector additions, efficient assembly language modules that make full use of the

pipelining capabilities of the i860's RISC architecture can be employed. Therefore, the larger the

N the better the use of the CPU pipelining capabilities and of the cache memory. Along the other

New Parallel Implementations 121

log2(time) (msec] N x 96 x 96:16-nodes/4-ciustere speedup N x 96 x 96:16-nodes/4-okjsters

7 7.5 8

log2(N)

7 7.5 8
log2{N)

Figure 9: Performance comparison of the 16-node (4 clusters with 4 PEs/cluster) HRTA vs. the

16-nodes RC method. Left: Plots of the (base 2) logarithm of the computational time (in msec)

vs. logiV. The data sizes used are of the form N x 96 x 96, zero padded to N x 128 x 128 for the

RC method. Right: the speedup ratio Trc/ThTta

indices, the memory addresses to be referenced do not follow a sequential pattern, so that extra

care must be taken to prefetch the necessary data before they are needed.

Also note that there is a lot of flexibility on how the nested loops can be arranged in order

to compute the periodized data g\ from the original data set /. This flexibility can also be used

to minimize cache misses. For a large prime number P, the ordering of the nested loops that

sequentially addresses the elements of the larger data array /, seems more advantageous. This is

because the ratio of sizes of the two arrays / and gi increases with P, and the whole gi matrix can

most probably fit into the cache. Therefore accessing the data array / sequentially allows to reduce

the cache misses since the data / can be imported into the cache in a column by column fashion

and then transformed to the periodized data.

The execution of the P multi-dimensional FFTs could become faster by either grouping to-

gether or interleaving the tasks involved. Recall that each one of the 2D or 3D parallel FFTs using

clustering consists of three tasks: (i) 2D or ID FFTs, (ii) Communication (global transposition)

and (iii) ID FFTs. Therefore the following two optimizations are possible: (1) Group all the corre-

sponding tasks of the P multi-dimensional FFTs together and do the same with the communication

stages, so that only one communication startup time is needed instead of P. (2) Employ a vector-

pipelined parallel 3D FFT: Using asynchronous communication calls, computations associated with

the next FFT can be interleaved with communications required for the previous FFT. Since the

New Parallel Implementations 122

communication time accounts for as much as 50 % of the overall time, pipelining strategies are

expected to greatly improve the performance.

When each one the nodes has completed the computation of a set of multi-dimensional FFTs,

the independent P-point DFTs have to be performed. One method is to compute the P-point

DFTs after all the previous computations associated with the data set have been completed. It

has the advantage of allowing the use of highly optimized vectorized assembly routines. Another

method is to use the partial contribution of each sub-block of data after the partial periodization

and 2D (3D) FFT is being computed and as soon as these data become available. Note that as

soon as a 2D (3D) FFT for a part of the periodized data, corresponding to a point on the line,

has been computed the contribution of that buffer to the overall P-point DFT can be computed.

Although this implementation has the drawback of requiring a larger amount of computations

relative to the first method, it has the advantage of more efficient balancing between computations

and communications since these two phases can be interleaved.

The extension of the HRTA algorithm to include periodizations with respect to sets of higher

dimensionality (planes instead of lines) is worth investigating. It is expected to lead to completely

asynchronous implementations that take full advantage of the large number of processors available

and increase the achievable efficiency for problems of very large size.

C.6.6 Acknowledgements

We would like to thank the Intel Supercomputing Center, Oregon for their assistance and advice

and for providing us the iPSC/860 hypercube to develop our programs. We would also like to thank

Dr. S. Qian for providing us with the efficient vectorized P-point DFT assembly codes and for the

fruitful discussions and his assistance for the completion of the project.

References

[1] R. Tolimieri, M. An, and C. Lu. Algorithms for Discrete Fourier Transform and Convolution.

Springer-Verlag, New York, 1989.

[2] Auslander L., Feig E., and S. Winograd. New Algorithms for the Multidimensional Discrete

Fourier Transform. IEEE Transactions on ASSP, 31:388-403, February 1983.

[3] I. Gertner. A New Efficient Algorithm to compute the Two-Dimensional Discrete Fourier

Transform. IEEE Transactions on ASSP, 36:1036-1050, July 1988.

[4] H.J. Nussbaumer and P. Qualdalle. Fast Computation of Discrete Fourier Transforms using

Polynomial Transforms. IEEE Transactions on ASSP, 27:169-181, 1979.

New Parallel Implementations *■'*■•>

[5] M. Vulis. The Weighted Redundancy Transform. IEEE Transactions on ASSP, 37:1687-1692,

November 1989.

[6] M. An, I. Gertner, M. Rofhear, and R. Tolimieri. Discrete Fast-Fourier Transforms: A Tutorial

Survey. In Advances in Electronics and Electron Physics, volume 80, pages 2-69. Academic

Press, 1991.

[7] R. Tolimieri, M. An, and C. Lu. Mathematics of Multidimensional Fourier Transform Algo-

ritms. Springer-Verlag, New York, 1993.

[8] M. Rofheart. Algorithms and Methods for Multidimensional Digital Signal Processing. PhD

thesis, CUNY, 1991.

[9] A. Kojima, N. Sakurai, and J. Kishigami. Motion Detection using 3D-FFT Spectrum. In

ICASSP Int. Conf. Accoustics, Speech and Signal Proc, volume 5, pages 213-216, 1993.

[10] Boaz Porat and Benjamin Friedlander. A Frequency Domain Algorithm for Multiframe De-

tection and Estimation of Dim Targets. IEEE Trans, on PAMI, 12:398-401, April 1990.

[11] I.J. Good. The Interaction Algorithm and Practical Fourier Analysis. ./. Roy. Stat. Soc. Ser.

B, 20:361-372,1958.

[12] L.H. Thomas. Using a Computer to Solve Problems in Physics. In Applications of Digital

Computers. Ginn and Co., Boston, MA, 1963.

[13] S. Lang. Algebra. Addison Wesley Publising Company, 1970.

[14] C.S. Burrus and P.W. Eschenbacher. An In-Place In-Order Prime Factor FFT Algorithm.

IEEE Transactions on ASSP, 29:806-817, 1981.

[15] D.P. Kolbe and T.W. Parks. A Prime Factor FFT Algorithms Using High-Speed Convolution.

IEEE Transactions on ASSP, 25, 1977.

[16] C. Temperton. A new set of Minimum-add Small-n Rotated DFT Modules. J. of Comput.

Physics, to appear, 1993.

[17] S. Chu and C.S. Burrus. A Prime Factor FFT Algorithm using Distributed Arithmetic. IEEE

Transactions on ASSP, 30:217-227, February 1982.

[18] c. Van Loan. Computational Frameworks for the Fast Fourier Transform. In SIAM Frontiers

in Applied Mathematics, Philadelphia, 1992.

[19] D. S. Scott. Parallel I/O and Solving Out of Core Systems of Linear Equations. In Proc.

DAGS'93 Symposium, pages 125-130, Hanover, NH, 1993.

D Weyl-Heisenberg Systems and the Finite Zak Trans-

form

Abstract
Previously, a theoretical foundation for designing algorithms for computing Weyl-Heisenberg

coefficients at critical sampling was established applying the finite Zak transform. This theory

established clear and easily computable conditions for existence of Weyl-Heisenberg expansion

and for stability of computations. The main computational task in the resulting algorithm was

a 2-dimensional finite Fourier transform.

In this work we extend the applicability of the approach to rationally oversampled Weyl-

Heisenberg systems by developing a deeper understanding of the relationship established by the

finite Zak transform between linear algebra properties of Weyl-Heisenberg systems and function

theory in Zak space. This relationship will impact on questions of existence, parameterization

and computation of Weyl-Heisenberg expansions.

Implementation results on single RISC processor of i860 and the PARAGON parallel mul-

tiprocessor system are given. The algorithms described in this paper possess highly parallel

structure and are especially suited in a distributed memory parallel processing environment.

Timing results show that real-time computation of W-H expansions is realizable.

D.l Introduction

During the last four years powerful new methods have been introduced for analyzing Wigner

transforms of discrete and periodic signals [7, 8, 10] based on finite Weyl-Heisenberg (W-H)

expansions [1, 4, 5, 9]. A recent work [7] adapted these methods to gain control over the

cross-term interference problem [6] by constructing signal systems in time frequency space for

expanding Wigner transforms from W-H systems based on Gaussian-like signals.

The computational feasibility of the method in [7] depends strongly on the availability of

efficient and stable algorithms for computing W-H expansion coefficients. Since in general,

W-H systems are not orthogonal, standard Hilbert space inner product methods do not apply.

Moreover since critically sampled W-H systems may not form a basis, oversampling in time-

frequency is necessary for the existence of arbitrary signal expansions. In fact this is usually the

case for systems based on the Gaussian. In [7, 8, 9, 10, 11], the concept of biorthogonals was

applied to the problem of W-H coefficient computation. In [11], the Zak transform provided

Finite Zak Transform 125

the framework for computing biorthogonals for rationally oversampled W-H systems forming

frames. A similar approach for critically and integer oversampled W-H systems can be found

in [2, 3]. The goal in this work is somewhat different in that major emphasis is placed on

describing linear spans of W-H systems which are not necessarily complete and on establishing

in a form suitable for RISC and parallel processing, algorithms for computing W-H coefficients

of signals in such linear spans. For the most part our approach extends on that developed in

[2] and frame theory, an important part in [11] plays no role in this work. However as in these

previous works, the finite Zak transform will be established as a fundamental and powerful

tool for studying critically sampled and rationally oversampled W-H systems and for designing

algorithms for computing W-H coefficients for discrete and periodic signals. The role of the

finite Zak transform is analogous to that played by the Fourier transform in replacing complex

convolution computations by simple pointwise multiplication. In this new setting properties

of W-H systems such as their spanning space and dimension can be determined by simple

operations on functions in Zak space. This relationship will impact on questions of existence,

parameterization and computation of W-H expansions.

In the oversampled case both integer and rational oversampling are investigated. Imple-

mentation results on single RISC processor of i860 and the PARAGON parallel multiprocessor

system are given for sample sizes both of powers of 2 and mixed sizes with factors 2, 3, 4, 5, 6, 7,

8, 9. The algorithms described in this paper possess highly parallel structure and are especially

suited in a distributed memory parallel processing environment. Timing results on single i860

processor and on 4- and 8-node computing systems show that real-time computation of W-H

expansions is realizable.

In section 2, the basic preliminaries will be established. Algorithms will be described in

section 3 for critically sampled W-H systems, in section 4 for integer oversampled systems and

in section 5 for rationally oversampled systems. Implementation results will be given in sections

6, 7 and 8.

D.2 Preliminaries

D.2.1 Weyl-Heisenberg systems

Choose an integer N > 0. A discrete function /(a), a G Z is called N-periodic if

f{a + N) = f{a), aeZ.

Finite Zak Transform 126

Denote by L(N) the Hubert space of all ./V-periodic functions with inner product

</,£>= £/(%>), f,9ZL(N)
a=0

For 0 < m, n < N and g G £(iV) define #„,„ € L(N) by

^,n(a)=5(a + m)e-2™^, a e Z. (1)

Suppose N = KM = K'M'. The Weyl-Heisenberg (W-H) System (g, M', K) is the set of

functions

{<7m'M',n'tf : 0<m'<Ä", 0<n'<M}. (2)

We distinguish three cases

critically sampled K = K', M = M',

oversampled K' > K, M' < M,

We further distinguish two classes of oversampled W-H systems.

Integer oversampled M = RM', R G Z

Rational oversampled M = RM', R G Q, Ä £ Z.

undersampled K' < K, M' > M.

An expansion of / € L(N) over a W-H system is called a W-H expansion.

D.2.2 Finite Zak transform (FZT)

Suppose TV = KM. For / G Z(JV) define the finite Zak Transform (FZT), Z(K)f(a, b), a, b G

Zby

Z(K)f(a, b) = X: f(a + Mr)e2*ibT'K, a, b G Z. (3)
r=0

Elementary properties of FZT including FZT based algorithms for computing W-H expansions

over complete critically sampled W-H systems can be found in [2]. We will briefly discuss these

results without proof and extend the role of the FZT to general W-H systems.

Finite Zak Transform 127

Theorem 1 /// € L(N) then

Z(K)f(a + M,b) = e-2*ib/KZ(K)f{a, b), a,beZ. (4)

Z{K)f(a, b + K) = Z{K)f{a, b), a,beZ. (5)

Theorem 1 implies Z(K)f is TV-periodic in each variable and is completely determined by its

values

Z(K)f(a, b), 0 < a < M, 0 < b < K. (6)

Denote by L(M, K) the Hubert space of all functions F(a, b), 0 < a < M, 0 < 6 < K, with

inner product
M-lK-l

<F,G>=£Z F(a,b)G*(a,6), F,G G L(M,K). (7)
a=0 6=0

Define Z0(K)f € L(M,K) by

Z0(K)f(a, b) = Z(K)f{a, b), 0 < a < M, 0 < b < K. (8)

In [2] we find the following theorem.

Theorem 2 The mapping K~ll2ZQ{K) is an isometry from L(N) onto L(M,K). If F €

L(M, K) and f 6 L(N) is defined by

K-l

/(a + Mr) = K~l J2 jP(a> b)e~2iribT/K, 0 < a < M, 0 < b < K, (9)
6=0

Then F = Z0(K)f.

For / = L(N) and F = Z0(K)f, we can summarize the preceding discussion by the matrix

formula
F(0,Q) F(1,0)

F(0,1)

F(M-1,0)

F{0,K-l)

= F(K)

/(0)

F(M)

F(M-1,K-1)

/(l) • • f(M-l)

f((K-l)M) f(N -1)

•

Finite Zak Transform 128

where F(K) is the i^-point Fourier transform matrix

F(K) wjk

0<j,k<K '

Throughout this work we will identify L(N) with L(M,K) by theorem 2 and the matrix

formula. For the most part, including the computation of W-H expansions, once we are in

L(M, K) we never need to formally return to L(N).

D.2.3 Basic formulas

The following two theorems are proved in [2].

Theorem 3 If g 6 L(N), N = KM, and 0 <m,n< N, then

Z(K)gm,n(a, b) = e-2*ian'NZ{K)g{a + m,b-n), a, b € Z. (10)

In particular, if 0 < m! < K, 0 < n' < M, then

Z(K)gm/M,n>K(a, b) = Z(K)g(a, b)e-**H*W+»VK)^ ^^ (n)

By theorem 1, the product function

Z(K)f(a,b)Z*(K)g(a,b), a,beZ f,geL(N): (12)

is M-periodic in the variable a and /^-periodic in the variable b and can be viewed as a function

in L(M, K). The Fourier expansion of the product function is given in the following theorem.

Theorem 4 For f,g e L(N), N = KM,

i K-\ M-l
Z(K)f(a, b)Z*{K)g{a, b) = ±- £ £ < f,gm,Min.K > e-™(*V"+m'V*) (13)

M m'=0n'=0

D.3 Critically Sampled W-H Systems.

Theorem 4 is a powerful tool for analyzing W-H systems. We first consider critically sampled

W-H systems by extending the following result [2].

Theorem 5 The critically sampled W-H system

{g, M, K) = {gm<M,n'K 0<m'<K, 0 < ri < M} (14)

is a basis of L(N) if and only if G = Z0(K)g never vanishes.

Finite Zak Transform 129

By theorem 4 and the linear isomorphism established in theorem 2, we can identify the

space of all / € L(N) satisfying

< /, gm>M,n>K >= 0, 0 < m' < K, 0 < n' < M, (15)

with the space of all F € L(M, K) satisfying

FG = 0, G = ZQ(K)g. (16)

The space of such F € L(M, K) can be identified with the orthogonal complement of the linear

span of (g, M, K). If G never vanishes this complement is {0} and (g, M, K) is a basis of L(N)

which is the content of theorem 5. More generally, we have the following result.

Theorem 6 If the zero set (of G = Z0(K)g has exactly J points then the dimension of the

linear span of (g, M, K) is N - J. A function f € L(N) is in the linear span of (g, M, K) if

and only if F = Z0(K)f vanishes on (.

If F vanishes on (, then we can write

F = GPy PeL(M,K).

In this case

if and only if

K-l M-\

m'=0 n'=0

K-l M-l

P(a,b)= J] J2c(m'Min'K)e~2Viian'/M+hm'/K)> ^
m'=0 n'=0

The W-H expansion coefficients of / over (g, M, K) are given by the 2D M x K FT of P.

If G never vanishes then P is uniquely determined and the mapping

P^F = GP^f, F = Z0{K)f

defines a linear isomorphism from L(M,K) onto L(N).

Suppose that the zero set (of G has exactly J points with J > 0. Then (g, M, K) is linearly

dependent and does not span L(N). Choose / 6 L(N) in the linear span of (g,M,K). For

each function

define P = Pa G L{M, K) by

Ple,t)JU (<"»)«• (19)

Finite Zak Transform 130

The space of such P is a J-dimensional subspace of L(M,K). Since F vanishes on (, F = GP

leading to the next result.

Theorem 7 If the zero set (ofG = Z0{K)g has exactly J points then every f in the linear

span of(g, M, K) has a J-dimensional space of W-H expansions over (g, M, K). The coefficient

space of W-H expansions of f over (g, M, K) is given by the set of all 2D M x K FT of the

J-dimensional space of functions Pa 6 L(M,K).

D.4 Integer Oversampled W-H Systems

Suppose N = MK = M'K' with M = RM', R G Z. The integer oversampled W-H system

g = (g, M', K) is the disjoint union of critically sampled W-H systems.

g = Ü gr, gr = {gr,M,K), gr= grM,fi, 0 < r < R. (20)
r=0

It is just as simple to consider the more general case where g is the disjoint union of

critically sampled W-H systems gr = (gr,M,K), gr € L[N), 0 < r < R. Denote the zero set

of Gr = Z0(K)gT by (r and set (= D^Cr- Arguing as in the preceding section / G L(N) is in

the linear span of g if and only if F = Z0(K)f can be written the form

R-l

F=J2Fr, Fr = GTPr, PTeL(M,K). (21)

In fact, if

then we can take

r=0

R-l K-\ Af-1

/= E E E cT(m'M,n'K)(gr)mlM,n'K,
r=0 m'=0 n'=0

K-\ M-\ _, ,__,

Pr= J2 E cT{m'M,n'K)e-
m'=0 n'=0

As a consequence, if / is in the linear span of g then F vanishes on (.

Conversely, suppose F vanishes on (. The following construction defines the simplest de-

composition of F of the form (21). Define t/v G L(M, K), 0 < r < R by

1 0, («,6)^t.

Finite Zak Transform 131

Setting
F0 = (1 - i>0)F

Fl = M^-^i)F

we have

F = F0 + *!>0F = F0 + F1 + MiF = F0 + F1 + --; + FR.U

where Fr vanishes on (r. Since (r is in the zero set of GT, we can write FT = GrPT, PT £ L(M, K)

and / is in the linear span of g, proving the next result.

Theorem 8 If g is the disjoint union of critically sampled W-H systems gr = (gr,M,K),

0 < r < R and (r is the zero set of GT = Z0{K)gT, 0 < r < R, then the dimension of the linear

span of % is N - J where J is the order of C, = C]^~o(r. A function f G L(N) is in the linear

span of g if and only if F = Z0(K)f vanishes on (.

If we set

then we can write

[Go(a,6),---,GÄ_i(a,6)]>

F(a,b) = G{a,b)

Po(a,b)

PR-i(a,b)

Choose / G L(N) in the linear span of g. An algorithm for computing a W-H expansion of

/ over g is given as follows.

• Decompose F = ZQ(K)f

F=Y;FT, Fr€L(M,K)
r=0

where Fr vanishes on the zero set (r of GT, 0 < r < R.

• Compute the collection of 2D M x K FT of

Finite Zak Transform 132

This stage is understood to be taken as in the critically sampled case with arbitrary values

assigned to the quotient at points where the functions Gr, 0 < r < R vanish.

If we assume that TlogT computations are needed for the T-point FT then the complexity

of one W-H expansion computation is

NlogK + R(NlogK + NlogM) + RN (22)

but advantage can be taken of the large number of zero data values.

The coefficient set of W-H expansions of / G L(N) over g is parameterized by the collection

of decompositions of F and by the arbitrarily assigned values to the quotients at the points £.,

0 < r < R.

D.5 Rationally Oversampled

Denote the least common multiple of M and M' by M and set M = MS = M'S'. Then S

divides K and N = Äff = M$.

Theorem 9 The rationally oversampled W-H system g = (g,M'K) is the disjoint union of the

under sampled W-H systems

g,/ = (gsl,M,K), g$l = gt>M',o, 0 < s' < S'.

Proof We can write 0 < ml < K' uniquely in the form

K'
m' = s' + mS', 0<s'<S', 0<m<—.

The theorem follows from

9m'M',n'K = (9s'M>,o)rnM,n>Ki 0 < m < —, 0 < 7l' < M.

Consider the undersampled W-H system (g,M,K) and set G = Z0(K)g. Since

Z(K)(g^n,K)(a, b) = G(a, b)e~2^a+^b\ 0 < a < M, 0<b<K, (23)

/ € L(N) has a W-H expansion over (g,Id,K) if and only if F = Z0(K)f can be written as

F = GP where P € L(M, K) satisfies

p(ajb+j) = P(a,b), 0<a<M, 0<b<K-j.

For the rationally oversampled W-H system, g = (g,M',K), set Gs< = ZQ(K)gs<, where

gs' = gs'M',o- By theorem 9, and the preceding discussion we have the following result.

Finite Zak Transform 133

Theorem 10 A function f £ L(N) is in the linear span of g if and only if F = Z0(K)f has

the form
S'-l

(24)
S'-l

F= J2Gs'Ps'>
s'=0

where Ps< € L(M,K) satisfies

Psl{a,b+J4r) = PAa,b), 0<s'<S', 0 < a < M, 0 < b < K - -. (25) 5y -a^-'-" ------ - - - s

A collection of W-H expansion coefficients of f over g is given by the collection of 2D M x j

FT of

Ps>, 0 < s' < S1.

F(a,b + sj)

For each 0 < a < M, 0 < b < f, define F(a, 6) € C5 by

F(a,6) =

and the 5x5" matrix G(a, b) by

G(a,6)

0<s<S

Gs'(a,b + s—)
0<s<S,0<s'<S'

By theorem 10, / is in the linear span of g if and only if for each 0 <a < M, 0 <b < -$, there

exists P(a, b) € C5' such that

F(a,6) = G(a,6)P(a,6), 0 < a < M, 0 < 6 < —.

Denote by r(a, b) the rank of G(a, 6). The dimension of the linear span of g is

E <a,b).
0<a<M,0<6<f-

(26)

K (27)
In particular, if

r(a, b) = S, 0<a<M,0<b<j

then g is complete and every / € L(N) has a W-H expansion over g.

There are several linear algebra techniques and programming packages that can be applied

to characterize the linear span of g and to compute W-H expansion coefficients for / € L(N)

in this linear span. Gauss elimination is perhaps the most well known technique but QR-

decompositions or singular value decompositions (SVD) of G(a, b) are more suited to appli-

cations which subject W-H expansion coefficients to least-square constraints. We will briefly

review and introduce notation for SVD at this time.

Finite Zak Transform 134

For each (a, 6) € 0 < a < M, 0 < 6 < -j the singular value decomposition of G(a, b) has the

form

G(a,6) = U(a,6)S(a,6)V(a,6)

where U(a, 6) is a unitary 5x5 matrix, V(a,6) is a unitary 5' x 5' matrix and S(a, b) is a

'diagonal' 5x5' matrix

0r0(o,6)

o-i (a, 6)-

E(a,6) =

<TS_i(a,6)

0

Denote the s-column of U(a, 6) by ?7s(a, 6).

Theorem 11 A function f G L(N) is in the linear span of g z/ and only if for every (a,b),

0 < a < M, 0 <b < ^, F(a, 6) is in the linear span of

{o-s(a,b)Us(a,b):0<s<S}.

For / in the linear span of g we can solve for P(a, b) by introducing the pseudo-inverse of

G(a,b)

G+(a, 6) = V-a(a, 6)E+(a, fiJU'^a, 6),

where S+(a, 6) is the S' x S diagonal matrix

S+(a,6) =

<7(j"(a 6)

0 0

*t l(a *)

0

with

Then

a+(a,6) = {^' ^(a'6)^° 0<a<M,0<6<
\ 0, <rs(a,b) = 0,

K_

5'

»(a, 6) = G+(a, 6)F(a, b), 0 < a < M, 0 < 6 < —.

Finite Zak Transform 135

The multiplicative complexity of the computation is

NS' K
N{logK + S + 1) + -j- {log- + logM + S')

where NlogN is the complexity of the iV-point FT and S2 is the complexity of the action of

an S x S matrix on a vector.

Finite Zak Transform 136

Integer Oversampling: g = (g, M', K), M = RM', R 6 Z.

/

FZT

F(a,b)

Partition

FT(a,b)

Quotient

Pr(a,b)

2D M x K FT

c^(m'M, n'K), 0 < m' < K, 0 < n' < M

c(rM' + m'M, n'K) = c^(m'M, n'K)

Then
K'-lM-l

/= ^2 J2 c(m'M',n'K)gm:M>yK-
m'=0 n'=0

Finite Zak Transform 137

Rational Oversampling; g = (g, M', K), M = RM\ ReQRgZ.

f

FZT

F(a,6)€C'

G+M)

P(a,b)eCs'

2D M x f FT

f-1 M-l , _„
Ps/(a,b)= ^2 J2 cs>(m,n')e-

m=0 n'=0

c(m',n') = ca,{m,ri), m' = s' + mS', 0<m'<K', 0<m'<M.

K'-lM-l

f = ^2 ^2 c(m'n')gm'M>,n'K
m'=0 n'=0

Finite Zak Transform 138

D.6 Implementation Results

In this section we describe implementation issues and present timing results for the implemen-

tation of the algorithms presented in the previous sections. Implementations on single Intel i860

RISC microprocessor as well as on the Paragon multi-processor parallel platform are reported.

D.6.1 Critical sampling (C.S.)

We have tested three basic analysis functions:

• Gaussian function

When K and M are both even integers, the FZT of Gaussian window function has a

zero at (K/2,M/2). Set Q(K/2,M/2) = 0.0. The total energy of Gabor coefficients will

be minimum.

When either K or M is an odd integer, or both of them are odd integers, the FZT

of Gaussian window function has no zeros.

• Rectangular function

A small size rectangular window will result in FZT with no zeros. For example, N =

K x M = 1200, a window of width 90 centered at 600, has no zeros in Zak space.

A rectangular window of width 150 centered at 600 has zeros in Zak space located at:

0,8), (j,16), 0,24), (j,32), where j=0 to 39.

• Triangular function

When either K or M is an odd integer, or both of them are odd integers, there are

no zeros in Zak space.

A relatively small triangular window will result in a single zero at the center of Zak

space. For example, N = 40 x 30 = 1200, a window of 61 non-zero values centered at

600, has one zero in Zak space at (20, 15).

We have implemented the computation for Critical Sampling case: the main program is

in FORTRAN and the FFT modules are fine-tuned i860 assembly with mixed sizes. Timing

Finite Zak Transform 139

results are given in tables 1 and 2.

Complexity

For a real input signal /, the FZT of / is Hermitian symmetric along K dimension. If the

analysis signal is also real, then the 2-D M x K Q{a, b) has the same symmetry. The inverses of

the FZT of g(a, b) are pre-computed and stored in memory. The complexity of the computation

is (F(n) denotes the complexity of n-point FFT):

Z(K)f (FZT of /) M x real F(K)

Z(K)f/Z(K)g K/2 x M multiplications

2-D FT of Q

Herrn. Symm. along K

M

K

x Herrn. F(K)

x real F(M)

SizeN 2-D KxM Time

256 16 x 16 0.67

512 16 x32 1.20

1024 32 x32 2.02

2048 32 x64 3.98

4096 64 x 64 7.41

8192 64 x 128 14.96

16384 128 x 128 29.82

32768 128 x 256 60.89

65536 256 x 256 125.55

131072 256 x 512 264.60

262144 512 x 512 566.99

Table 1: Timing Results (in milliseconds) on the Intel i860 RISC microprocessor (Critical

Sampling - 2k)

D.7 Integer Oversampling

We choose the decomposition F = Z{K)f = Er=o Fr such that Flt..., FR-i each has only one

non-zero point, so that the computation of the 2D FT of Qx{a, b),... QR-i(a, b) is trivial. The

codes are similar to critically sampled case with data rearrangement at the end.

Finite Zak Transform 140

Size N 2-D K x M Time

384 8 x48 1.47

768 16 x48 1.99

1536 32 x48 3.12

3072 64 x 48 5.91

3072 128 x 24 6.15

6144 128 x 48 12.07

6144 64 x96 12.48

12288 512 x 24 26.07

12288 128 x 96 24.05

24576 256 x 96 48.70

49152 256 x 192 98.71

98304 256 x 384 203.52

98304 512 x 192 209.12

196608 512 x 384 433.41

393216 1024 x 384 1011.61

Table 2: Timing Results (in milliseconds) on the Intel i860 RISC Microprocessor (Critical

Sampling - Mixed sizes)

D.7.1 Rational oversampling

In [9], the authors point out that for Gaussian window function, over-sampled more than 20

percent (5/4), does not have significant influence. We have implemented the computation for

oversampling rates 3/2 and 5/4. Again, the main routine is coded in FORTRAN, and the DFT

routines are fine-tuned i860 assembly codes for mixed sizes. For the complex singular value

decomposition (SVD) we used the UNPACK routine. We have tested three basis functions:

• Gaussian basis function

Rational oversampling of 3/2 and 5/4 were tested. If the rank(G(a, b)) equals to 2 or 4

correspondingly, then g is complete and every / has a W-H expansion over g.

• Rectangular basis function

Rational oversampling by 3/2 and 5/4 are tested. Rectangular window sizes have to

Finite Zak Transform 141

be chosen such that it is not a factor of K along /C-dimension to have every / expandable

in the W-H system.

• Triangular basis function

An example of size N = 40 x 30 = 1200 has been tested with rational oversampling

by 3/2. The experimental results are:

A window of size 101 centered at 600 results in an expandable W-H system.

A window of size 151 centered at 600 results in an expandable W-H system.

A window of size 201 results in point (20,10) being a zero singular value in Zak transform

space.

Complexity

In the case of real input and real analysis signals the FZT is Hermitian symmetric along K

dimension. We can show that the 5" 2-D M x K/S Pa(a,b) has Hermitian symmetry along

K/S dimension. The complexity of real-time computation is:

FZT of /

G+(a,b)F(a,b)

S' 2-D FT of Ps with

Hermitian Symmetry

along K/S

M x real F(K)

M x K/S matrix

5" x S multiply a

vector S

S' xM x

Hermitian F(K/S),

S' x K/S x real F(M)

Timing results of various sizes are given in the following tables.

D.8 Parallel Implementation

Assume that a distributed memory parallel computer has p (< mm(K,M)) processors. Set

P = K/Kx = M/K2 (28)

Finite Zak Transform 142

Size N 2-D K x M Time

384 16 x 24 2.06

768 32 x 24 2.97

1536 64 x 24 5.31

3072 64 x48 10.79

3072 128 x 24 10.05

6144 128 x 48 20.85

6144 64x96 22.86

12288 128 x 96 43.15

24576 256 x 96 84.71

49152 256 x 192 171.39

98304 256 x 384 412.12

98304 512 x 192 413.50

196608 512 x 384 840.02

Table 3: Timing Results (in milliseconds) In the Intel i860 RISC microprocessor (Rational

Oversampling (3/2))

The algorithms described in sections 3, 4 and 5 possess highly parallel structure. They

are particularly suitable in a distributed memory multiprocessor system. For example, in the

critically sampled case, the algorithm can be implemented as follows:

• Each processor receives K\ if-point input data

• Compute Ki Appoint real FFT

• Point-wise multiplication of the pre-calculated Zak transform of the basis function l/Z(K)g{a, b)

• Compute Kx if-point Hermitian FFT

• Data permutation between processors (matrix transpose)

• Compute K2 M-point real FFT

Implementation of integer over-sampled case has similar structure as the critically sampled

case, and the rationally over-sampled case has a better parallel structure, since it has S' rel-

atively small 2-dimensional K/S x M FFT's, and they might be carried out locally in each

processor without interprocessor data permutation. Timing results of critical sampling on the

Finite Zak Transform 143

SizeN 2-D K x M Time

320 8 x40 2.82

640 16 x40 3.85

1280 32 x40 5.66

2560 64 x 40 9.65

5120 128 x 40 16.42

5120 64 x 80 18.32

10240 128 x 80 32.09

10240 64 x 160 37.99

20480 128 x 160 67.65

40960 128 x 320 134.08

81920 256 x 320 258.40

163840 512 x 320 522.19

327680 512 x 640 1149.76

Table 4: Timing Results (in milliseconds) on the Intel i860 microprocessor (Rational Oversam-

pling (5/4))

Intel 4-nodes and 8-nodes Paragon are given in tables 6 and 7. The parallel flow diagram is

given in Fig. 3.

Finite Zak Transform 144

Input Data /

\

receive
/(O + Mr)

receive
/(l + Mr)

receive
f{M - 1 + Mr)

K-pt
real FT

K-pt
real FT

K-pt
real FT

Multiply Multiply Multiply

K-pt
Herrn. FT

K-pt
Herrn. FT

K-pt
Herrn. FT

\ /

Data Permutation

/ \

M-pt
real FT

M-pt
real FT

M-pt
FT

c(a,0) c(a,l) ••• c(a,K-l)

0<r<K-l, 0<a<M-l

Fig. 3. Parallel implementation flow diagram

D.9 Conclusions

Algorithms for the computation of Weyl-Heisenberg (W-H) coefficients for the cases of critical

sampling, integer oversampling and rational oversampling have been presented and easily com-

putable conditions for the existence of W-H expansions have been derived in terms of the Zak

transform of the signal and the analysis function. We have shown that the algorithms described

lead to very efficient FFT based implementations both for single DSP processor systems as well

as for parallel multi-processor configurations.

Finite Zak Transform 145

SizeN 2-D K x M Time

16384 128 x 128 10.06

32768 128 x 256 19.66

65536 256 x 256 39.31

131072 256 x 512 80.24

262144 512 x512 163.10

524288 512 x 1024 368.99

1048576 1024 x 1024 801.82

2097152 1024 x 2048 1661.96

Table 5: Timing Results (in milliseconds) on the Intel Paragon (4-nodes)

SizeN 2-D K x M Time

65536 256 x 256 22.18

131072 256 x 512 42.45

262144 512 x 512 86.32

524288 512 x 1024 189.54

1048576 1024 x 1024 404.32

2097152 1024 x 2048 840.17

8388608 2048 x 2048 1716.03

Table 6: Timing Results (in milliseconds) on the Intel Paragon (8-nodes)

References

[1] L. Auslander and R. Tolimieri, On Finite Gabor expansion of signals, IMA Proceedings on

Signal Processing, Minneapolis, 1988.

[2] L. Auslander, I. Gertner and R. Tolimieri, Finite Zak transforms and the finite Fourier

transforms, IMA on Radar and Sonar, Part II, 39 21-36, Springer-Verlag, New York, 1991.

[3] L. Auslander, I. Gertner and R. Tolimieri, The discrete Zak transform application to time-

frequency analysis and synthesis of nonstationary signals, IEEE Trans. Signal Processing,

39 4 825-835, April 1991.

[4] M. J. Bastiaans, Gabor signal expansion and degree of freedom of a signal, Optica Acta,

29 1223-1229, 1982.

Finite Zak Transform 146

[5] D. Gabor, Theory of communications, J. IEE, 93, III, 429-457, November 1946.

[6] F. Hlawatsch, Interference terms in the Wigner distribution, Proc. 1984 Internat. Conf. on

DSP, Florence, Italy, 363-367.

[7] S. Qian and J.M. Morris, Wigner distribution decomposition and cross-term deleted repre-

sentation, Signal Processing, 27, 125-144, Elsevier Publishers, 1992.

[8] S. Raz, Synthesis of signals from Wigner distributions: Representation on biorthogonal

basis, Signal Processing, 20 4, 303-314, Elsevier Publishers, 1990.

[9] J. Wexler and S. Raz, Discrete Gabor expansions, Signal Processing, 21 3, 207-220, Elsevier

Publishers, 1990.

[10] J. Wexler and S. Raz, "Wigner-space synthesis of discrete-time periodic signals," IEEE

Trans, on Signal Processing, 40 8, August 1990.

[11] M. Zibulski and Y.Y. Zeevi, "Oversampling in the Gabor Scheme," IEEE Trans, on Signal

Processing, 41 8, August 1993.

E Group Invariant Fourier Transform Algorithms

E.l Introduction

The design of algorithms for computing the crystallographic Fourier transform is a subject in

applied group theory. In previous works [2, 19] we exploited several elementary results in

finite abelian group theory and developed the basic abstract constructs underlying the class

of divide and conquer algorithms for computing the multidimensional (MD) discrete Fourier

transform (DFT). This setting provides a convenient landscape for introducing a class of divide

and conquer crystallographic algorithms. In [2] we outlined a systematic approach for classi-

fying 3-dimensional (3D) crystallographic groups. Applications to 3D crystallography require

a detailed understanding of this classification. Similar classifications exist to some extent in

higher dimensions and are equally important for applications to quasicrystallography.

The theory developed in this work will operate within the abstract formulation presented in

[2, 19]. Finite abelian groups will serve as data indexing sets. A class of affine group fast Fourier

transform (FFT) algorithms will be introduced which fully utilize data invariance with respect

to subgroups of the affine group of data indexing sets. The affine subgroup need not come from a

crystallographic group. This approach removes dimension, transform size and crystallographic

group from algorithm design and serves to bring out fundamental algorithmic procedures rather

than produce an explicit algorithm. These procedures provide tools for writing code which

scales over dimension, transform size and crystallographic group and which can be targeted to

various architectures. In fact these methods apply to all 230 3D crystallographic groups and to

composite transform sizes. We will show the power of these tools by way of an extensive list of

implementation examples.

We distinguish three algorithmic strategies. The first is based on the well-known Good-

Thomas (GT) or prime factor algorithm which breaks up a FT computation into a sequence

of smaller size DFT computations determined by the relatively prime factors of the initial

transform sizes. In [2] we developed an abstract formulation of the GT and applied it as a

tool for crystallographic algorithms. Our treatment here will be brief and mostly contained in

examples.

Reduced transform (RT) algorithms were considered in detail in [2, 19]. A simple general-

ization of the RT approach based on collections of subgroups will be presented, which provides a

universal framework for affine group Fourier transform (FT) algorithms. In applications to 3D

crystallography this class of algorithms replaces the problem of computing the FT of 3D group

invariant data by that of computing in parallel the FT of collection of ID or 2D group invariant

Group Invariant FFT 148

data sets. The latter problem is substantially-simpler and several efficient implementations are

widely practiced. (See appendix).

A third approach, based on a generalization of Cooley-Tukey fast FT (CT FFT), will be

discussed which performs generalized periodizations [19] with respect to affine subgroups. This

method applies to abelian affine subgroup invariant data and hence to about 100 of the 230

3D crystallographic groups. A CT FFT algorithms associated to an abelian subgroup X of

the affine group provides code for Y invariant data with respect to every subgroup Y of X.

In applications, we choose X such that the associated CT FFT is easy to code and efficient

and such that X contains a large collection of subgroups Y of interest. X itself need not be a

crystallographic group. An example will be provided which shows how one code applies to 71

of the crystallographic groups.

This work is organized as follows. In chapter II, we will review all the necessary group theory.

Finite abelian group theory will be briefly considered as it is covered in many elementary texts.

We reference [19] as it contains all the necessary results. The affine group of a finite abelian

group will be defined. Constructs related to the action of affine subgroups on data indexing

sets will be introduced. In chapter III we define the Fourier transform of an abelian group and

study its fundamental role in interchanging periodization and decimation operations (duality).

The RT, CT FFT and GT algorithms are presented in chapter IV as applications of this duality

to different global decomposition strategies.

Affine group FFT algorithms based on the RT algorithm are discussed in chapter VI, while

those coming from the application of the affine group CT FFT are introduced in chapter VIII. In

chapter IX, we briefly sketch a method of incorporating ID symmetry into FFT computations,

which calls on lower order existing FFT routines using the symmetry condition.

Throughout this work, we will provide many examples. These examples have been chosen

to reflect both the theory and our experience and others over several years in writing code for

the 3D crystallographic FT.

E.2 Group Theory

E.2.1 Finite abelian group

Denote by Z/N the group of integers modulo N consisting of the set

{0,l,---,iV-l}

with addition taken modulo N. Z/N is a cyclic group of order N and every cyclic group of

order N is isomorphicto Z/N. For example, the multiplicative group UN of complex Nth. roots

Group Invariant FFT 149 |

of unity
{l,w,---,wN~1}, w = e^, •

is a cyclic group of order N and the mapping
1

w : Z/N -> UN

denned by u;(ra) = wn,0<n< N, is a group isomorphism from Z/N onto t/jv- 4
The direct product of two finite abelian groups

Ai x A2

is the set of all pairs {aua2), fli G A1; a2 G A2 with componentwise addition. By the funda-

mental theorem of finite abelian groups, every finite abelian group A is isomorphic to a direct

product of cyclic groups,

A ~ Z/Ni x • • • x Z/NR. (!)

We call Eq. (1) a presentation of A. A finite abelian group can have several presentations

which vary as to the number of cyclic group factors as well as the orders of the cyclic groups.

For example

Z/30 ~ Z/2 x Z/15 ~ Z/3 x Z/10

~ Z/5 x Z/6 ~ Z/2 x Z/3 x Z/5

In general, we have

Theorem E.l The direct product of cyclic groups having relatively prime orders is a cyclic

group.

Theorem E.l is a special case of the Chinese remainder theorem (CRT).

Theorem E.2 Chinese Remainder Theorem

Let N = NXN2--- NR be a factorization of N into pairwise relatively prime integers. Then

there exist uniquely determined integers

0 < ex,e2,---,efi< N

satisfying

eT = 1 mod Nr

eT=0modNs, l<r,s<R, r ^ s.

Group Invariant FFT 150

The set {ei, e2, • • •, eR} is called the complete system of idempotents for the factorization N =

NlN2---NR.

Let {e-L,e2,--- ,eR} be the complete system of idempotents for the factorization N =

KNf-NR. By CRT

eji = eTmodN, (2)

eres = 0modN, l<r,s<£, r^s (3)

H

^er = lmo(ivV. (4)
r=l

It follows that every n € Z/N has a unique expansion of the form

n = niei + n2e2 H h nReR mod N, nT € Z/NT.

In fact

nr = nmodNr, 1 < r < R.

CRT shows that the mapping

x: z/w -> z/M x z/iv2 x • • • x z/yvr.

defined by
x(n) = (ni,n2,---,nr), nr = nmodNT, l<r<R (5)

is an isomorphism having inverse

X-1(rci,«2,--->rer) = nxei + n2e2H nReRmodN. (6)

CRT is the basis for many theoretic and applied results in algorithm design. It is a major

tool for interchanging between ID and MD arrays which is the core of the GT algorithm. The

use of idempotents in describing this interchange is most important in implementation [19].

CRT can be used to derive the primary factorization of a finite abelian group. Suppose A

is a finite abelian group of order N, and we write

N = Pfip^...p^, am>l, (7)

where P1, P2, ■ • -, PM
are distinct primes. Choose any presentation of A

A-Z/iVi x-xZ/JVfll N^N.-'-NR (8)

and write

Nr = P?1^ ■ ■ ■ PM
M{T

\ Om(r)>0, \<m<M.

Group Invariant FFT 151

Then
z/ivr = z/pr(r)x---xzÄM(r)

and we have, by rearranging factors, the primary factorization of A

A ~ Ai x • • • x AM, (9)

where

4-z/c(1)x-xZ/c(R)-
The primary factorization of A is unique as the factors Am can be described as the set of

all elements in A having order a power of the prime Pm.

E.2.2 Character group

Consider a finite abelian group A of order N. The character group A* of A is the set of all

group homomorphisms

a* : A -> UN

with group addition defined by

(a* + b*){a) = a*(a)6*(a), a*, 6* e A*, a e A. (10)

The character group A* is the natural indexing set for FT as we can view A as the time

parameter space and A* as the frequency parameter space.

We will usually write a*(a) as < a,a* >.

The mapping
<f> : Z/N -> (Z/N)*

defined by
<m,(t>{n)>=e2vin?r, 0<n,m<iV

establishes an isomorphism

Z/N ~ (Z/iV)*.

More generally, the mapping

</> : Z/W x • • • x Z/A^ -» (Z/iVx x • • • x Z/iVfl)*

defined by m „
o—■mlnl "n-i R R /,-,\

Group Invariant FFT 152

establishes an isomorphism

Z/M x ■ • • x Z/NR ~ (Z/Nx x • • • x Z/NR)*.

By the fundamental theorem, every finite abelian group A is isomorphic to its character group

A*.

Duality

Fix an isomorphism <f> from A onto A*. The dud BL of a subgroup B of A is defined by

B1 = {aeA:<b, <j>{a) > = 1, for all & € 5}. (12)

Since (f> is an isomorphism,

^(i?1) = W1) : &1 € BL}

is the subgroup of all characters of A that act trivially on B.

Consider the quotient group A/B of 5-cosets

a + B = {a + b:beB}

with abelian group addition

(a + B) + {a + B) = (a + a') + B.

The isomorphism (f> induces isomorphisms

fa-.B1^ {A/BY, fa : A/BL -> B\

by the formulas

<a + B,fa{bL) > = <aj{b1)>, aeA,bxeBL, (13)

<b,<f>2{a + BL)> = <bJ{a)>, a £ A, beB. (14)

The characterization of <f>{BL) given above implies both induced isomorphisms are well defined,

i.e., independent of coset representation.

The induced isomorphisms fa and fa play fundamental roles in the description of divide

and conquer FT algorithms.

Group Invariant FFT 153

The vector space L(X).

Denote the space of all complex valued functions on a finite set X by L(X). L(X) is a vector

space over C with addition and scalar multiplication defined by

(/ + 9){x) = f{x) + g{x), /, g e L(X), xGX,

(a/)(x) = a(/(x)), aGC, / € L(X), x G X.

Consider a finite abelian group A and a subgroup B of A. For / € L(A) define

PerBf(a) = £ f(a + b) (15)
b€B

and

I>ecB/(a) = (16)
I 0, otherwise.

The periodization operator PerB and the decimation operator DecB are fundamental operators

on L(A).

Suppose A has order N. L(A) has dimension N. The evaluation basis of 1(A) is the

collection of functions

{ea : a 6 A}

defined by

e-w=!i' li8' 6eA (17)
[0, 6^a,

We will denote the evaluation basis by A.

The character basis of L(A) is the collection A* of characters of A. Relative to the inner

product on L(A) defined by

(/,*) = £/(«)?W> f,9€L(A), (18)

where #(a) denotes the complex conjugate of g(a), the evaluation basis is an orthonormal basis

of L(A). Since for a*, b* € A*,

(N, a* = b*
(a*,b*) = l
{ } \ 0, a* ^ b\

the set
1 --A*

/N

is an orthonormal basis of L(A).

Group Invariant FFT 154

Canonical isomorphism

The evaluation basis A and the character basis A* are canonical in the sense that they depend

solely on group structures and not on presentation. Although the groups A and A* are iso-

morphic, there is no canonical isomorphism. Duality is defined relative to a particular choice

of isomorphism from A onto A*. By extension, the groups A and A*", the dual of A', are also

isomorphic, and in fact a canonical isomorphism can be defined. The canonical isomorphism,

as we will see in chapter III, defines the FT of A.

For a e A, the mapping 0(a) of A*

6(a)(a*)=<a,a*>, a* € A*, (19)

is a character of A*. The mapping

0 : A -* A** (20)

is a canonical isomorphism, since it is defined without reference to presentation.

Consider the evaluation basis A of L(A) and the character basis A** of L(A*). The canonical

isomorphism 0 of A onto A** defines a linear isomorphism L(Q) from L(A) onto L(A*).

E.2.3 Point group

Denote the automorphism group of a finite abelian group A by Aut(A). Subgroups of Aut(A)

are called point groups.

For a point group H and a point a £ A, the isotropy subgroup Ha of a in H is defined by

Ha = {aeH: a{a) = a}. (21)

Ha is a subgroup of H. A point a G A is called a fixed point of H if H = H*. The H-orbit of

a, denoted by H(a), is defined by

H(a) = {a{a) :aeH}. (22)

The mapping

a -* a(a) : H -* A (23)

induces a bijection from the space of right cosets aHa, a € H, onto H(a).

Fix a group isomorphism <f> : A -► A*. For a € Aui(A), define the aöj'omi a+ € Aut(A) by

<a,<Ka+(c))> = <a(a),^(c)>, a, c e A. (24)

Group Invariant FFT 155

Set a* — (a+)_1, and observe that

(aß)* = a*ß*, (o-1)* = (a#)-1.

For a point group H, define

H* = {oc* : a e H).

The if-orbit H(B) of a subgroup B of A is the collection of subgroups

H(B) = {a(B) :aeH}. (25)

Under duality
H*(BX) = (H(B))\ (26)

A collection B of subgroups of A is called H-invariant if

h(B)eß, heH, BEB.

If B is ^-invariant, the action of H partitions B into disjoint if-orbits. Define a complete

system of if-orbit representatives in B as any collection of subgroups in B

Bi,--- ,BR

such that B is the disjoint union of the collection of #-orbits

H(Bl)r--,H(BR).

A covering of A is a collection of subgroups B of A such that

A = UsesB.

Set
BL = {B1 : B € £}.

We say that £ is a duo/ covering of A if B1 is a covering of A. We can always construct an

iJ-invariant covering B of A.

9

E.2.4 Affine group

The affine group of A,
Aff(A) = A<$ Aut(A), (27)

Group Invariant FFT 156

is the set of all (a, a), a 6 A, a e Aut(A), with group composition

(<z,a)(a>') = {a + a(a'),aa'). (28)

Aff(A) acts on A by

(a,a)(c) = a + a(c), a, c G A, a € Aut(A). (29)

For x 6 Aff(A), we write x = (ax, ax), ax G A, ax G Au*(A).

We define two actions of A//(A) on 1(A). For / € £(A) and x G A//(A), define

xf(a) = /(x(a)), a € A. (30)

x#/(a) = < ax, <f>{a*a) > f(a*a), a £ A. (31)

We say that / is x-invariant if xf = / and x*-invariant if x#/ = f.

Choose a subgroup X of Aff{A). An / G £(A) is X-invariant if / is x-invariant for all

x G X, and X*-invariant if / is x#-invariant for all x G X.

The point group X of X is defined by

X= {ax:xe X). (32)

X is a subgroup of Aut(A), but in general is not contained in X.

E.2.5 Examples

Example E.l P6X

Crystallographic group P6i [13] is generated by

x = (0,0,M2,c*))

acting on Z/3N x Z/3iV x Z/6M for natural numbers N and M,

x(ai, a2, a3) = (ai - a2, ai, a3 + M).

Throughout the rest of this example, we will set

A = Z/12 xZ/12 xZ/12.

For (ai,a2,a3) G A,

x(ai, a2, o3) = (ai - o2, ax, a3 + 2),

Group Invariant FFT 157

x2(ai, a2, 03) = (-02, ai - a2, ^3 + 4),

x3(ai,a2,a3) = (-ai, -a2,a3 + 6),

z4(ai,a2,a3) = (o2 - ai,—ai,a4 + 8),

x5(ai, a2, 03) = (a2, a2 - au a3 + 10),

x6(ai,a2,a3) = (ai,a2,a3).

P61 acting on A decomposes A into distinct P6x-orbits each of order 6.

P61 is also a crystallographic group denoted by P6 [13]. P6 is generated by a.

a(ai,a2,a3) = (ax - a2,ai,a3).

P6-orbits also decompose A into distinct orbits. A P6-orbit may have 1, 2, 3 or 6 elements.

P6(0,0,a3) = {(0,0,a3)}, 0 < a3 < 11,

and (0,0, a3) are fixed points of P6.

P6(4, 8, a3) = {(4, 8, a3), (8,4, a3)}, 0 < a3 < 11.

The isotropy subgroup of (4, 8, a3) is generated by a2.

P6(6, 6,03) = {(6, 6, a3), (0, 6, a3), (6,0, a3)}, 0 < a3 < 11.

The isotropy subgroup of (6, 6, a3) is generated by a3.

The non-trivial isotropy subgroups, {l,a2,a4} and {I, a3}, where 1 denotes the identity

automorphism, are again crystallographic groups denoted by P3 and P2 [13], respectively.

With respect to <ß defined in Eq. (11),

<a_1(a1,a2,a3),^(61,62,63) >< (a2,a2 - aua3),<f>{bi, b2, 63) >

_ e^i(a26i+(a2-ai)!)2+a3!'3)

_ e=g-(-a-lb2+a2(b1+b2)+a3b3)

= < (ai, a2, a3), ^(-62, &i + &2, 63) >

= < (ai,a2,a3),</'(a#(61,62,63)) >,

and a#(bi,b2, 63) = (-62, 61 + 62, fe)-

Example E.2 P6/mmm

Group Invariant FFT 158

Crystallographic group P6/mmm is isomorphic to the abstract group

Z/6<} Z/2 x Z/2.

We will describe the group by listing the 3 generators.

a,

ß(ai,a2,a3) = (a2,al,-a3), ß* = ß,

7(ai,a2,o3) = (a1,a2,-03), 7* = 7.

This is a nonabelian group, and we have the following commuting relations;

ßa = a-1/?) 7a = a7> 7^ = ßl-

Set A = Z/12 x Z/12 x Z/12. We will consider isotropy subgroups of elements.

P6/mmm(4,8,6) = {(4,8,6), (8,4,6)},

1, a2, a4, 7, <* 7. a 7.
Fb/mmm^sfi) = <

l ö

For a^0,6

F6/mmm(4Ä6) = c^ a*/?, «*/?, a/37, *3/?7, -^7

P6/mmm(4,8,a) = {(4,8,a), (8,4, a), (8,4,-a), (4,8,-1)}.

P6/mmm(4,8,o) = ^ ^ j - P3ml,

where P3ml is a crystallographic point group.

Example E.3 Pmmm

Let A = Z/2iV x Z/2M x Z/2L, for natural numbers N, M and L. Pmmm < Aut(A)

is generated by pi{a1,a2,a3) = (-ai,a2,a3), />2(ai, a2,a3) = (al7-a2,a3), p3(ai,a2,a3) =

(aijfl2> _a3). Each of the generators is of order 2 and Pmmm has 8 elements. With respect to

the isomorphism defined in Eq. (11),

pf = Pi, i = 1,2,3.

The subgroup
B = {(b1N,b2M,b3L):bi = 0,1, i = 1,2,3} (33)

Group Invariant FFT 159

is the group of fixed points of Pmmm. Let

Bi = {{b1MM,bzL) :0<6i <2N -1, b2 = 0,1, 63 = 0,1}.

PmmmBx = -- {hPi P3,P2P3}-

B2 = {{b,N,b2 ML) 0 <b2 <2M -1, h = 0,1, 63 = 0,1}.

PmmmB2 = -- {I,/3! P3,P\P3}-

Example E.4 Fmmm

Set A = Z/2N x Z/2M x Z/2L, for natural numbers N, M and L. The crystallographic

affine group Fmmm < Aff(A) is

B x Pmmm,

where 5 < A is the fixed subgroup of Pmmm given in Eq. (33). Each of the generators is of

order 2 and Fmmm has 64 elements. An element of Fmmm is of the form

(b,P?P?P?), beB, rfc = 0,1, £ = 1,2,3.

We will denote the elements of Fmmm by an ordered 6-tuple of l's and O's by listing the values

of bj and r^ in order, i.e.,

{biNMMMLiPiP^Pl3) <-> (M2,&3,ri,r2,r3).

In this notation, the group composition in Fmmm is given by componentwise addition modulo

2 in each of the 6 components. We will also index the elements of Fmmm from 0 to 63 by the

binary expansion of the 6 tuple,

(61, 62, 63,n,r2,r3) <->*! + 2i2 + 4*3 + 8rx + 16r2 + 32r3.

In this notation
B = {s0, S-L, s2, s3, s4, s5, s6, s7}.

There are no fixed points of Fmmm.

Fmmms - Pmmm.

Fmmm= Pmmm = {s0, s8, Si6, S24, 532, ^o, 548, S56j-

Group Invariant FFT 160

E.3 FT of a finite abelian group

• View A as a basis of L(A) and A** as a basis of L(A*). In chapter II, we defined the canonical

isomorphism
0 : A -> A**

• by
6{a){a*) =<a,a* >, a € A, a* € A*.

The Fourier transform FA of A is the unique linear extension

FA : L(A) - L(A*) (34)

of 0. It follows that F^ is a linear isomorphism given by

FAf(a*) = J2 /(«) <«,«*>, / G i(A), a* 6 A*, (35)

with inverse given by

/ = If E *U/(-a>', / G L(A), N = o(A). (36)

The coefficients of / over the character basis are given by jjFAf{-a*), a* € A*.

For an isomorphism <j> : A -» A*, define the FT presentation

Ft : L(A) -> L(A) (37)

W)(a) = (^/)Wa)), /€I(A), a 6 A. (38)

FT presentations associated to different isomorphisms differ by input permutations. The choice

• of <f> can be an important parameter in algorithm design especially in crystallographic applica-

tions where <f> can be matched to crystallographic symmetry to simplify coding. Throughout

this chapter we fix an isomorphism <f>: A —>• A*.

For a subgroup B of A, define the induced Fourier transforms

F* : L(A/B) -> L(BL), (39)

F^ : L(B) - L(A/B^), (40)

• by the formulas

(FtJW1) = (FA/BW^)), feHA/B), b^eB\ (41)

Group Invariant FFT 161

{FtJ)(a + BL) = (FBf)(fa(a + BL)), feL(B), a G A, (42)

where fa and fa are denned in Eqs. (13) and (14). FH and F^ are linear isomorphisms.

We will write F£ for F^ and' F^ for F^ when we want to bring out the dependence on the

subgroup B.

E.3.1 Periodization-Decimation

Divide and conquer algorithms for computing the action of F^ decompose the computation into

a collection of induced FT computations. In this chapter, we will see how the FT interchanges

the fundamental operations of periodization and decimation.

For a subgroup B of A and / G L{A), PerBf G L(A) is 5-periodic and we can view

PerBf G L(A/B).

Theorem E.3 For f G L(A), F^(PerBf) vanishes off of B1 and

= F^Perßf)^), bLeB\

Theorem E.3 implies we compute Ftf on the subgroup BL by computing the induced FT

F^(PerBf).

For / € L(A), we can view DecBf G L(B).

Theorem E.4 For f G L{A), F^(DecBf) is BL-periodic and

PerBL{Ftf){a) = o(BL)F^DecBf)(a)

= o{BL)F<h{DecBf){a + Bx), a G A.

Theorem E.4 computes the periodization of F*f relative to BL by computing the induced FT

F^Decsf).

E.4 FFT Algorithms

E.4.1 Introduction

Algorithms are distinguished by their strategies for decomposing the global computation. Cooley-

Tukey fast FT (CT FFT) algorithms partition the computations into FT of periodizations or

•

Group Invariant FFT 162

decimations relative to the cosets of some subgroup B of A. Recently formulated Reduced

transform (RT) algorithms decompose the computation into FT of periodizations or decima-

tions relative to a collection of subgroups covering A. Details including implementation stages

on RISC and massively parallel multiprocessors can be found in [14] with performance results.

In this chapter, we will briefly outline the structure of the RT, CT FFT and GT algorithms.

Detailed derivations of these algorithms can be found in [2, 19].

E.4.2 RT algorithm

RT algorithms decompose the computation of FT into a collection of induced FT taken over

• the subgroups of a covering or dual covering of the indexing set. One form of the RT algorithm

begins with a dual covering B of A and computes F^f by

• forming the collection of periodizations

PerBf e L{A/B), BeB

• computing the collection of induced FT

F£(PerBf), BeB.

This completes the computation since F^(PerBf) equals Frf on BL and B is a dual covering

of A.
A dual form RT algorithm begins with a covering B of A. For each a € A define the integer

valued function \x on A by

fi(a) = the number of subgroups in B containing a.

Define the weighted decimations of / by

Since B covers A

DecBf(a)= ,
I 0, otherwise.

/ = £ DecBf (43)
Beß

F,f = E F,DecBf (44)
Beß

and we can compute F^f by

Group Invariant FFT 163

• Forming the collection of decimations

DecBfeL{B), BeB.

• Computing the collection of induced FT

F*{DeSBf), BeB.

Redundant computation is a necessary part of RT algorithms. An analysis of the advan-

tages and disadvantages of RT algorithms can be found in [19]. Typically these algorithms are

targeted to large size MD DFT computations on shared memory multiprocessors but have been

implemented on distributed memory multiprocessors with significant speed-up as compared to

standard CT FFT implementations. The RT algorithm on some machines can be bottlenecked

by the I/O bandwidth required in the initial stage periodizations but offers complete paral-

lelization (subject to the number of processors and granularity) afterwards and can be easily

scaled to transform size and machine configuration. This should be compared with standard

approaches which interleave communication and computation by global transpositions.

In applications, say, to the M-dimensional FT, the collection B is usually taken such that

duals are a covering set of /^-dimensional (K < M) planes through the origin. The dimension

K is an important design parameter as it affects local granularity and global parallelism.

E.4.3 CT FFT algorithm

Choose a subgroup B < A. One form of the CT FFT begins by subjecting data to generalized

periodizations relative to B. This step can be implemented by a collection of Fourier transform

computations. However we choose to express this step as a collection of generalized periodiza-

tions to bring out the analogy with the RT algorithm and to clearly distinguish stages requiring

full data access from stages acting, in parallel, on localized data.

Choose a subgroup B of A. For / € L(A) and b* € B% define fb. e L(A) by

Ma) = £/(« + &) <M*>, aeA. (45)
b&B

We call fb* a generalized periodization since

fb.{a + b) = <b,lf>fb.(a), aeA, beB. (46)

Theorem E.5 For f € L(A),

•

m

•

°{B) b.eB.

Group Invariant FFT 164

•

F*f = W)£B.
F*!h

It follows that we can compute F+f by computing the collection of FT F^fo, b* € B*.

Consider the group isomorphism fa ■ A/B1 -> B*. Choose a complete system of 51-coset

representatives

z(V)€ti\n ^ß*. (47)

Theorem E.6 i^/&. vanishes off of the BL-coset, z(b*) + Bx, and

F*f(z(b*) + 61) = ^j^W*) + O, 61 6 B\

Fth- determines F*f on the 5x-coset z(b*) + B\ b* e B\ Since the i^-cosets form a disjoint

partition of A, the computations

can be implemented in parallel and the second sum in theorem E.5 requires no computation.

Once the generalized periodizations are computed, the computation can be completed in parallel

by induced FT computations which output F+f on 5^-cosets. This is accomplished by first

performing a twiddle factor multiplication of generalized periodizations defined as follows.

For b* 6 B\ define gb. € L{A) by

Ma) = Ma) <a,cf>(z(b*))>, a G A. (48)

gb* is 5-periodic and can be viewed as a function in L(A/B).

Theorem E.7

Ftfb*(z(n + bL) = o{B)F,l9b.{b% bL € B\

The CT FFT algorithm combines theorems E.6 and E.7 and computes F+f by independent

computations of Ftf on the disjoint i^-cosets z(b*) + B by the collection of induced smaller

size FT computations

F^gAb1), b^eB\ 6* € B\ (49)

Group Invariant FFT 165

CT FFT Algorithm

feL(A) -

fb. e L{A), b* e B*

9b . € L(A/5), 6* G B*

F^g^€L{B% b*eB*

Ftf{z{b*) + bA-) = Fi1gb.{bL)

E.4.4 Good-Thomas algorithm

The GT will be derived as a special case of the CT FFT. In [2, 19], a direct proof was given.

Choose a subgroup B < A. We require that A has a direct product decomposition.

A = BxC

where C is a subgroup of A. Choose group isomorphisms

4>B:B->B*, <f>c:C -> C*.

The mapping

denned by

4>: A -* A*

< (6',c')^(6,c) >=< b',<f>(b)><<?,<j>{c) >, 6,6' Gß, cy G C

is a group isomorphism. Relative to ^

Since A/5 = B^ and A/^ = S, «frf = ^ and # = **• In particular, in the notation of

the previous chapter, we can take

z(b') = &(?), b*eB\

Group Invariant FFT

which amounts to taking B as a complete system of ^-coset representatives in A. Under these

assumptions, the CT FFT takes the form

^/(6 + 6-L) = ^y^/,(5)(6 + 61), 6 €5, ^G^. (50)

Ftf(b+b^) = FtBMb)(b^ beB, b^B\ (51)

• Compute

94>B{b)eL{B% beB.

• Compute
F,BA9^))^L{B% beB.

The second stage is a collection of FT computations over BL. We will see that the first

stage is a collection of FT computations over B. By definition

9Mb)(bL)=Y,f(b' + b±)<b'>^>

b'eB

which equals

where
fbX(b) = f(b + bL), beB, b^eBK

The precise statement of the stages of the GT can now be given as follows.

GT algorithm

• Form the slices
Ax € L(B), 61 € B\

• Compute the collection of FT over B

FtBfo € L(B), bL e BL.

• Form the functions

g,B(b) e L{B% beB.

This step requires data transpose (or permutation).

Group Invariant FFT

• Compute the collection of FT over BL

FKLgMb)eL(BL), beB.

• Set
Ftf(b + bL) = FtB±9(t>B(b)(b^.

This step requires data transpose (or permutation).

E.5 Examples and implementations

For applications to X-ray crystallography, we will take a 3D case to illustrate the theory pre-

sented here. In particular, the smallest non-trivial case, Z/12 x Z/12 x Z/12 is used in many

of the examples, while Z/3N x Z/3N x Z/6M and Z/2N, x Z/2iV2 x Z/2JV3 are used in the

implementation for several natural numbers.

In the all the examples, we will take the fixed isomorphism <f> given in Eq. (11). To simplify

notation, especially in presenting covering subgroups, we will use the following definition and

notation.
Let A be a finite abelian group. For a G A denote by < a >, the subgroup of A generated

by a,
< a >= {a,2a,Za,- ■ ■ ,(K - l)a},

where K is the smallest positive integer such that Ka = 0eA. K is called the order of a.

E.5.1 RT algorithm

Two forms of RT algorithm will be derived for A = Z/3 x Z/3 x Z/3. Using CRT, we will

extend our current example to groups of the form

Z/3 • 2N x Z/3 • 2^ x Z/6M

for integers N and M.

Example E.5 RT algorithm I for A = Z/3 x Z/3 x Z/3

Set A = Z/3 x Z/3 x Z/3. The following 4 subgroups cover A.

B^ =< (0,1) > xZ/3, B$ =< (1,1) > xZ/3,

£3
X =< (2,1) > xZ/3, Bt =< (1,0) > xZ/3,

Group Invariant FFT

V(aua2,a3) = 1 for all (aua3la3) € A, except M(0,0,0) = 4. With respect to the isomorphism

defined in Eq. (11), we have for b = 0,1,2

£i=< (1,0,0) >, B2 =< (1,2,0) >,

53=< (1,1,0) >, 54=< (0,1,0) >.

To index the periodizations, we will fix the coset representatives of A/Br, 1 < r < 3 and A/B4

as follows.

A/Br: (0,0,0), (0,1,0), (0,2,0),

(0,0,1), (0,1,1),(0,2,1),

(0,0,2), (0,1,2),(0,2,2), r = 1,2,3.

A/B<: (0,0,0), (1,0,0), (2,0,0),

(0,0,1), (1,0,1), (2,0,1),

((0,0,2), (1,0,2), (2,0,0)

For ci, c2 = 0,1,2,

/x(0,c1>oa) = i:/(6.ci»0»)' /2(0,c1>Ca) = i;/(6,26 + c1,c2)1
6=0 b=0

2 2

/3(0,Cl,C2) = V/(6,6 + c1,c2), /4(c1,0,c2) = ^/(c1,6,C2).
6=0 b=°

The collection of induced FT computations is implemented by the 4 independent 2D 3 x 3

Fourier transforms.

^/i(o,a1,o3)=i: E/i(o^^)c=|si(fliei+ttaC2)'
c2=0ci=0

C2=0Cl=0

2 2

Fj3/3(2ai,ai,a2) = £ E ^d^K
C2=0c!=0

L(aiC!+a2C2)

2 2
-2-7r-i(aici+a2c2)

^4/4(ai,0,a2)=i;E/4(ci'0'c»)e 3

C2=0c!=0

Example E.6 RT algorithm II for A = Z/3 x Z/3 x Z/3

Group Invariant FFT 169

We list a collection of 13 covering subgroups along with their dual groups. Each of the covering

subgroups is of order 3, while the dual group is a subgroup of order 9. For a = 0,1,2 and

61,62 =0,1,2,

Df =

D} =

Ax2 =

^3 =

{(a, 0,0)},

{(0,a,0)},

{(a,a,0)},

{(2a,a,0)},

{(2a,2a,a)},

{(0,a,a)},

{(0,2a,a)},

{(0,0,a)},

{(a,0,a)},

{(2a,0,a)},

{(a, a, a)},

{(2a, a, a)},

{(2a,a,2a)}

A = {(0,61,62)}

02 = {(&!, 0,&2)}

JD3 = {(61,261,62)}

D4 = {(6i,61,62)}

£5 = {(6i,62,6i + 62)}

D6 = {(61,63,262)}

D7 = {(61,62,62)}

^ = {(61,62,0)}

^9 = {(6i,62,26i)}

JDio = {(6i,62,61)}

Dn = {(61,62,261 + 262)}

A2 = {(6i,62,61+262)}

Di3 = {(61,62,261+ 62)}.

/x(ai,a2,a3) = 1 for all (ai,a2)a3) € A, except ^(0,0,0) = 13. We will show 2 of the

computations explicitly. The rest follows in exactly the same way. To index the periodizations

with respect to DT, set
A/D3: {(0,0,0), (1,0,0), (2,0,0)}, (52)

A/D,: {(0,0,0), (0,0,1), (0,0,2)}. (53)

Usually, coset representatives are not unique. Note that although the collection in Eq. (52)

can be used as A/D5 as well as A/D3, Eq. (53) cannot be used for A/D3. For a,c = 0, 1, 2,

2 2

PerDJ(c,0,0) = £]T/(6i + c,26i,62),
62=0 6i=0

2 2

PerDs/(0,0,c)= £ £/(M2,6i + 62 + c).
b2 =0 6i=0

—2-KX ,
i^3/3(a,a,0) = £/3(c,0,0)e^

c=0

2

F^5/5(2a,2a,a) =]T/5(0,0,C)e
c=0

Group Invariant FFT 170

Remaining cases follow in the same way, and the induced FT computations are implemented

by 13 independent 3-point FT.

The above two derivations-show uniform decomposition of a 3D problem into 2D and ID

problems, respectively. However, the above two cases can be combined to provide various

decompositions.

■>N
Example E.7 RT algorithm for A = Z/2iV x Z/2

We will list a collection of covering subgroups of A and their dual subgroups of order 2^ by

listing their generators.

A is covered by the following 2N + 2N~X subgroups.

Table E.l Covering subgroups of Z/2N x Z/2 N

0 < j < 2 N

subgroup

M2N+l

generator

(J, 1)

(1,2/)

dual group generator

(-2M) 0 < / < 2N~l

To organize the periodizations, we will set

A/<(!,])> : <(0,1)>, 0<i<2iV,

A/<(2/,l)> : <(1,0)>, 0<K2N-\

For 0 < c < 2 N

2W-1

PerBjf{0,c)= ^mc+bj), 0<J<2N,
6=0

2W-1

Pers2W+i/(c,0)= J2f(c + b,2bl), 0<l<2
6=0

N-l

The collection of induced FT is implemented by 2^ + 2N~' independent 2^-point FT com-

putation.
For the dual RT algorithm, we list the values of the function /z on A with respect to the

collection of covering subgroups given in table E.l.

Denote by U0 the multiplicative units of Z/2 , i.e.,

U0 = {a£Z/2N :a = l mod 2.}.

For 1 <n< N-l, Set
Un = {aeZ/2N:GCD(a,2N)=2n}

Group Invariant FFT

Then

For an € Un, an ^ 0,

171

Z/2N = U^Un.

ß{anj,an) = 2n, 0 < j < 2 ,

Ai(on,2an0 = 2B, 0</<2^v-1,

/x(0,0)=2iV + 2N-1.

Let B be the collection of covering subgroups of Z/2* x Z/2^ given in table E.l. For B € 5,

compute

To index the induced FT computations, we will fix A/B1-coset representatives,

A/<(-l,j)>:<(0,l)>, 0<J<2N-l,

A/<(-2/,l)>:<(l,0)>, 0</<2 N-l -1.

The collection of induced FT computation is implemented by 2N + 2*"1 independent 2 -point

FT. To complete the computation of Fh we use the periodicity

Fl(Dec%f){a + BL) = F*2(Dec»Bf)(a)

and the formula

F*f = E F^DecBV-

Example E.8 Hybrid RT/GT algorithm

Set A = Z/3 • 2N x Z/3 • 2N for a natural number N. By the fundamental theorem,

A-Ai* A2, (54)

where Ax = Z/2" x Z/2iV and A2 = Z/3 x Z/3. The subgroup

B= {(o^a.aaei) <E A:0 <ai,a2 < 2}

is isomorphic to Ai, while

BL = {{nle2,n2e2) € A : 0 < ni,n2 < 2N - 1}

Group Invariant FFT 172

is isomorhic to A2, where t\ and e2 are the idempotents associated with the isomorphism in

Eq. (54). We have

A = BxB1.

Using GT algorithm, we can compute FA by computing FAl followed by FM. The induced FT

computations FAl and FA2 are implemented by RT algorithm.

Example E.9 Covering subgroup computation via CRT

Covering subgroups and their dual subgroups for A2 are given in the following table.

Table E.2 Covering subgroups ofZ/3 x Z/3

k subgroup generator dual group generator

0 Lo (0,1) (1,0)

1 lx (1,1) (2,1)
2 L2 (2,1) (1,1)
3 L3 (1,0) (0,1)

Ai x A2 is covered by

while dual subgroups are given by

{AiXLt : 0 <j < 3},

(0,0) xLk} : 0<k<3}.

We can also decompose A\ into covering subgroups. To see this, let N — 2.

Table E.3 Covering subgroups of A\ = Z/4 x Z/4

j subgroup generator dual.group generator

0 Mo (0,1) (1,0)

1 Mx (1,1) (3,1)

2 M2 (2,1) (1,2)

3 M3 (3,1) (1,1)
4 M4 (1,0) (0,1)

5 Ms (1,2) (2,1)

The idempotents in this case are e\ — 9, e2 = 4 and the collection

BJ;k = 9MJ
L + 4Li, 0 < j < 5, 0 < k < 3,

of 24 subgroups covers A. Each subgroup has order 12, given in table E.4 on the next page.

173
Group Invariant FFT

E.5.2 CT FFT algorithm

Example E.10 CT algorithm for Z/12

Setw = e^. Far f e L(Zfl2),

a=0

For B = {0, 4, 8}, ^ = {0, 3, 6, 9}, relative to rf defined in Eq. (11). Generalized

periodization of / gives rise to 3 functions

/o.(a) = /(a) + /(a + 4) + /(a + 8),

/4.(a) = f(a) + w4f{a + 4) + wsf(a + 8),

/8.(a) = /(a) + ^/(« + 4) + u>V(« + 8)- a G Z/12"

Group Invariant FFT 174

Table E.4 Covering subgroups o/Z/12 x Z/12

j,k subgroup generator dual group generator

Boto (0,1) (1,0)

B\:o (9,1) (7,9)

#2,0 (6,1) (1,6)

-63,0 (3,1) (1,9)

-64,0 (9,4) (4,9)

-65,0 (9,10) (10,9)

-#o,i (4,1) (5,4)

£1,1 (1,1) (H,l)

-62,1 (10,1) (5,10)

£3,1 (7,1) (5,1)

#4,1 (1,4) (8,1)

5S,i (1,10) (2,1)

Bo,2 (8,1) (1,4)

B\,2 (5,1) (7,1)

B2,2 (2,1) (1,10)

-^3,2 (11,1) (1,1)

BA,2 (5,4) (4,1)

#5,2 (5,10) (10,1)

-So,3 (4,9) (9,4)

-Si ,3 (1,9) (3,1)

#1,3 (10,9) (9,10)

-#1,3 (7,9) (9,1)

-^4,3 (1,0) (0,1)

#5,3 (1,6) (6,1)

0,0

1,0

2,0

3,0

4,0

5,0

0,1

1,1

2,1

3,1

4,1

5,1

0,2

1,2

2,2

3,2

4,2

5,2

0,3

1,3

2,3

3,3

4,3

5,3

By Eq. (46), fb*{o) needs to be computed only on a set of 5-coset representatives, say,

{0, 1, 2, 3}. Thus the periodization is usually implemented by 4 independent 3-point Fourier

transform of the strided values of /.

Choosing
z(0*)=0, *(4*) = 1, z(8') = 2,

go'{a) = /o*(a),

Group Invariant FFT 175

04.(a) = /4-(a)M(l))=/4-(aK,

g8.(a) = /8.(a)(a, #2)) = fs*(a)w2\ a € Z/12.

(a,(f)(z(b*))} is the so-called toicW/e /actor .

The quotient group A/B contains 4 elements, B, 1 + B, 2 + 5 and 3 + B. Via the homo-

morphism fa and the ^-periodicity of gb., we have

Ftf(z(r) + bL) = i^*(0

a=0

3

^X^a,^1)).
a=0

Since bx = 36> for some 6 € A and w3 = e=^, the computation of F* is completed by the 3

independent 4-point Fourier transform of #,., 6* € 5*.

Example E.ll Multidimensional CT FFT

A = Z/2Nr x Z/2iV2 x Z/2W3.

5 = {(0,0,0),(M,0,0),(0,^V2,0),(M,^2,0),

(0,0,N3),(N},0,N3),(0,N2,N3),(NuN2,N3)}

= {{b1N1,b2N2,b3N3) :6n = 0orl,n = 1,2,3}.

Label the elements of B by bk, 0 < Ä; < 7 in the order given above.

Table E.5 Va/ues on B of characters of A.

(55)

bo K b\ bl K K bl b;

&0 1 l 1 1 l 1 1 l

h 1 -l 1 -1 l -1 1 -l

b2 1 l -1 -1 l 1 -1 -l

b3 1 -l -1 1 l -1 -1 l

h 1 l 1 1 -i -1 -1 -l

h 1 -l 1 -1 -l 1 -1 l

be 1 l -1 -1 -i -1 1 l

b7 1 -l -1 1 -l 1 1 -l

Group Invariant FFT
176

Note that the matrix of values of the characters in table E.5 is

F{2)®F{2)®F{2),

where ® denotes the matrix tensor product and F{2) denotes the 2-point FT matrix,

F(2) =
1 1

1 -1

By Eq. (46), we need to compute /k. on a set of 5-coset representatives, say,

C = {(^,02, a3) : 0 < a3 < N3 - 1, j = 1,2,3}.

Order C antilexicographically Denote by f0, the vector of values of / on C listed in order by

the ordering of C. Similarly, define the vectors ffcl 0 < k < 7 by listing the values in order of

C,
fk = l/(c + h)], cec.

Then the periodization is obtained by the matrix operation,

= (F(2) ® /*, ® ^(2) ® 7JV2 ® ^(2) ® W

fo

fi

f2

fs

u
u
u
f7

where IK denotes the K x K identity matrix.

BL = {(2ai,2a2,2a3) : 0 < ax < N3 - 1, ; = 1,2,3}.

With the following choice of £x-coset representatives,

^60.) = (0,0,0), s(M = (M,0), ^2«) = (0,1,0), *(M = (1,1,0),

z(64.) = (0,0,1), z(65.) = (1,0,1), «(6B.) = (0,1,1), *(M = (M>1)-

Group Invariant FFT 177

Sb*0 k
gb't k
gb* k
g6-

g&4*
= [T] k

k
g6- k
S&6* k

. g67* . [kl
where T is the SN1N2N3 x 8NXN2N3 diagonal matrix whose entry at position a1a2a3 + kN1N2N3

is

<(aua2,a3),z(bl)>, 0 < * < 7.

Since
A/B ~ ß1 ~ Z/W x Z/iV2 x Z/N3,

the induced FT is of size M x iV2 x iV3 applied to the 8 independent functions gK, 0 < k < 7.

E.6 Affine Group RT Algorithms

E.6.1 Introduction

A class of affine group RT algorithms will be constructed which act on data / € L{A) invariant

under the action of affine subgroups X < Aff(A). The effect will be two-fold.

• reduction in the number of required induced FT computations.

• the induced FT computations will be on data invariant under a collection of subgroups

of X.

For x € Aff{A), we define two actions on L(A).

xf{a) = f{xa),

x*f{a) = < ax,<f>(afa) >f{a*a).

(56)

(57)

The first main result we have is
Theorem E.8

F*{xf) = x*F+(f).

Group Invariant FFT 178

Proof

a£A

a£A

= £/(a) <<1(a-^)^(c)>
a€A

= < aj1^, ^(c) > 2 /(a) < axlß> <^(c) >
a&A

= x*F<t>{c).

Corollary / is z-invariant if and only if F+f is :r#-invariant.

RT algorithms provide a general framework for computing the FT of data invariant under

affine subgroups. We begin with data invariant under point groups.

E.6.2 Point group RT algorithm

Choose a dual covering B of A. The RT algorithm computes F*f, f G L(A), by the collection

of induced FT computations

F»PerBf, BeB.

We will now describe how to modify this form of the RT algorithm when / is invariant under the

action of a point group H < Aut{A). This invariance will reduce the number of required induced

FT computations to a set of induced FT computations on data invariant under subgroups of

H.

Suppose / in ^-invariant. Choose a dual covering B invariant under H,

h{B) £B,h£H,BeB.

The collection of dual subgroups BL is invariant under H* and we can choose a subset B0 C B

such that Bfr is a complete system of ##-orbit representatives in BL. Since / is H invariant,

Ftf is ##-invariant and it suffices to compute the the following collection of induced FT.

F*(PerBf), BeB0. (58)

This has the effect of reducing the number of induced FT required to complete the computation.

The periodized data PerBf, B G Bo inherits some of the data redundancy of /. For a

subgroup B < A, define

HB = {heH:h{B) = B}.

179
Group Invariant FFT

HB induces a group of automorphisms of A/B by

h(a + B) = ha + B, heHB, a G A.

Theorem E.9 /// is H-invariant and B is a subgroup of A, then

PerBf{ha) = Perh-HB)f{"), a e A> h e H'

In particular, PerBf € L(A/B) is HB-invariant.

By the theorem, the induced FT in Eq.(58) is computed on ^-invariant PerBf, B € B0. To

make full use of the tf-invariance of / we must supply code which makes full use of this HB.

In crystallogrphic applications we can choose B such that A/B is 1-D or 2-D. Standard point

group FFT algorithms can be applied in the ID case (see appendix). 2D point group invariant

FFT algorithms have recently been implemented using variants of Winograd's multiplicative

FFT [3,5].

tf-invariant RT algorithm Choose a dual covering B of A invariant under H and a complete

system of if-orbit representatives B0 in B.

• Form the periodizations
PerBf e L{A/B), B e B0.

• Compute the HB-invariant induced FT's

F*(PerBf), Be B0.

• Compute
F*(PerBf), BeB,

by ii^-invariance.

Example E.12 PQ-invariant RT algorithm I

Set
A3 = Z/6M, A = Z/3 • 2" x Z/3 • 2^ x A3,

for integers JV and M. Using the Chinese remainder theorem, we can write A as

(eiAi + e2A2) x A3,

Group Invariant FFT 180

where Ax ~ Z/2'v x Z/2N and A2 ^ Z/3 x Z/3. A is covered by the following collection of

subgroups, where Lk, & = 0, 1, 2, 3 are given in table E.2.

B£ = eiAi + e2L^ x A3.

Bk = {(0,0)} + e2Lkx{0}.

P6*(ftf) = {B£,Bt,B£} P6*(Bt) = {B2
L},

and {B£ : 0 < k < 3} is a P6#-invariant covering of A. Hence for P6-invariant / e L(A), we

need to compute FAf only on BQ and B2
X.

f0 = PerBo, f2 = PerBJ-

To index the periodization, set

A/BT : Ai + e2L±, r = 0,1,

A/Jßs:A1 + e2L4
1, 5 = 2,3.

For 0 < ni,n2 < iV - 1, 0 < A; < 2, 0 < m < 6M - 1,

2

/o(eirai + e2k, txn2, m) = Y, /(eini + e2fc, ein2 + e2a, m),
a=0

2

/2(eini, ein2 + e2fc, m) = £ /(eini + e2(^ + 2a)' ein2 + e2a'm^
a=0

/o(a3(eini + e2A;,ein2,m)) = /i(-eini - e2k, -ein2,m),
2

= ^/(-eini-e2fc,-ein2.+e2a,m),
a=0

2

= X]/(eini + e2&,ein2 - t2a,m),
a=0

= /i(exni+ e2fc,e1n2,m),

/2(a(ein1,e1n2 + e2fc,m)) = /3(-ei«2, ein2 + e2fc - ein2,m)
2

=]T f{-exn2 + 2e2a, ein2 + e2A; - ein2 + e2a, m)
a=0

2
= 'Yf(eini + e2k + 2e2a,ein2 + e2a,m)

a=0

= /3(e1ni,ein2 + e2fe,m)

Group Invariant FFT 181

P6ß0 = P6ßl = PQBi = {1, a3} = ^2, P6ß2 = P6.

The induced FT computations F^° and i^2 are made on P2 and P6 invariant data, re-

spectively.

Example E.13 P6-invariant RT algorithm II.

We can further reduce invariance condition on the periodized functions by applying RT on

Av To this end, we will set Ax = Z/4 x Z/4, and use the covering subgroups that are given in

table E.4. The collection

B = Dfth = Bf* x A3, 0<;<5, 0<k<3

covers
Z/12 x Z/12 x A3.

The dual subgroups are given by

DM = Bjtk x {0}, 0<j<5, 0<k<3.

Let a*Mj x A3 = Mj< x A3 and a*!* x A3 = Lk> x A3. Then we have

c*# ((eiM,- + e2Lk) x A3) = (eiAfy + e2Lk.) x A3.

Thus to compute the P6#-orbit decomposition of B, we first decompose the collections {M,- x

A3 : 0 < j < 5} and {Lk x A3 : 0 < k < 4} independently, then place the decomposition into

B by CRT.

Table E.6 PQ*-orbit decomposition of subgroups in Z/4 x Z/4

(0,1) a#(0,l) = (3,l) «#(3,1) = (3,0)

<(0,1)> ' <(3,1)> <(3,0) >=<(1,0) >

Mo M3 M4

(1,1) «#(1,1) = (3,2) «#(3,2) = (2,1)

<(1,1)> < (3,2) >=< (1,2) > <(2,1)>

Mx Ms M2

Group Invariant FFT 182

Table E.7 P6*-orbit decomposition of subgroups in Z/3 x Z/3

(0,1) - a#(0,l) = (2,l) a*(2,l) = (2,0)

<(0,1)> <(2,1)> < (2,0) >=< (1,0) >

U L2 L 3

(1,1) a#(l,l) = (2,2)

<(1,1)> < (2,2) >=< (1,1) >

We have the following P6#-orbit decomposition of A.

Pf>*{Dbo) = Pio^AU ^#(^o) = {VtoMvD&h

PQ*(Di0) = {Dit0,Dtt2,Dtfl}, PQ*(Dio) = {Dto,Dt»Dtßh

P6*(D$fi) = {Dtfl,D£i2,Dtflh PS*(Dto) = {Di0,Di2,Df}3},

P6*(D^) = {D^D^D^h PG*(D&) = {^i.^i^iJ

We will choose as P6#-orbit representatives,

Bo = {Di0, Dtfi, £>io, D$fi, ^io, Dtfl1 D^DtJ. (59)

It is easy to show that the periodizations of P6-invariant / € L{A) with respect to the duals of

the above P6#-orbits representatives are P2-invariant, and the induced FT computations are

made on this invariant data.
Let / be the FT of a P6-invariant function / € L{A). f on Djtk G Bo is determined by the

induced FT of P>i)fc-periodized function /Dj.fc. By the P6#-invariance of /, for example, / of

DQQ determines / on D32 and / on D^3.

/(0,l,m) = /(ll,l,m) = /(l,0,m),

(0,l,m) £ D^, (ll,l,m) e D£t2, (ll,0,m) E Di>3.

Example E.14 P3-invariant RT algorithm

Crystallographic group P3 is generated by o:2. Since P3 is a subgroup of P6, P6#-invariant

covering of
Z/12 xZ/12 x A3.

Group Invariant FFT 183

is also PS-invariant. In fact, the P3#-orbits and the P6#-orbits of the covering subgroups are

the same. Thus as in the case of P6, the induced FT's are computed only on the collection B0.

However, the periodized functions have only the trivial invariance, and symmetry specific FT

routines are not required.

Example E.15 Pß/mmm-invariant covering for Z/12 x Z/12 x A3.

The above two examples lead to the following unifying strategy.

Choose a point group H that contains sufficiently many subgroups. Since H*-

invariant covering is invariant under any subgroup K* < H*, for K-invariant

data, RT algorithm proceeds by disabling the computations except on the K*-orbit

representatives.

As an example, we will consider the crystallographic Pß/mmm which contains all the trigo-

nal and hexagonal point groups, which comprises 16 of the 53 3D crystallographic point groups.

P6/mmm*(Difi) = {^^2X3,^0,^2X3},

P6/mmm#(Dio) = {^0,^2,^3,^0,^2,^3},

P6/mmm*(D^0) = {D^Q,D^2, D^},

PQ/mmm*(D^0) = {^0,^2,^3},

P6/mmm*(D^) = {D^D^D^},

P6/mmm*{Dttl) = {D^Dttl,D^}.

A collection P6/mmm#-orbit representatives is

{^0,^0,^0,^0,^1,^1}

and the computation is required only on this collection of subgroups for a P6/mmm-invariant

functions. To simplify notation, set Hjlk = PQ/mmmDi.y the invariant group of the Dfy

periodized functions.

#0,0 = #2,0 = #o,i = #1,1 = {l,c*3,/3,a3/?,7,a37,/?7,«3/37}-

#li0 = #3,o = {l,a3,7,a37,}-

The induced FT computations are made on the #0,0 or ^-invariant functions.

Group Invariant FFT 184

Example E.16 Implementation of RT with respect to P6/mmm

A = Z/3 • 2N x Z/3 • 2^ x Z/6M.

By the fundamental theorem,

A ~ Z/2N x Z/2N x Z/3 x Z/3 x Z/3 • 2M.

Let ei and e2 be the system of idempotents associated with the isomorphism

Z/3 • 2^ ~ Z/2^ x Z/3

and again set A3 = Z/6M.

V = {exLi + e2Mf) x A3,

where Lj; and Mf are collection of covering subgroups in Z/2N x Z/2JV and Z/3 x Z/3,

respectively as listed in tables E.2 and E.l. For easier reference, we repeat the tables here.

Table E.l Covering subgroups of Z/2N x Z/2

0 < j < 2N

0<l< 2N~X

subgroup

M2N+l

generator

(J,l)

(1,20

dual group generator

(-2/,l)

We will denote this collection by B.

Table E.2 Covering subgroups of Z/3 x Z/3

k

0

1

2

3

subgroup

Lo

Li

Li

generator dual group generator

(0,1) (1,0)

(1,1) (2,1)

(2,1) (1,1)

(1,0) (0,1)

It is straightforward show that V is a P6/mmm#-invariant dual covering of A. We will give

the P6/mmm#-orbit decomposition of V. Recall ß* = ß and 7* = 7.

P6/mmm#-orbit structure in Z/3 x Z/3 is the same as that of P3#, since actions by ß or

7 does not change the orbit structure.

P6/mmm#(Lo) = {Lo, L2, L3}, P6/mmm#(I1) = {Li}.

Group Invariant FFT 185

ß{L0) = L3, ß{Ll) = Ll, ß(L2) = L2.

P6#-orbit of < (j, 1) >,

PQ* < (;, 1) >= {< (j, 1) >, < (-1,; + 1) >, < {-j - W) >}

contains three distinct subgroups. To see this, note first

<(-l,j + l)> = <(l,-j-l)>,

< (-i-i,i) >=< (r\-j - !),!)>■

As j ranges through U0, J~lH - 1) ranges through Z/2* - U0, and -j - 1 ranges through 21,

0 <l< 2N~l - 1. In fact, we have the following partitioning of B into P6#-orbits.

U {< (j\ 1) >> < H'-? + !)>»< H - ^ >>•
i6t/o

/? maps < (j, 1) > onto < (1, j) >. We will show that there are exactly 4 subgroups of the form

< (j, 1) > with j G U0 that are /^-invariant. Suppose

< (i, i) > = < (i,i) > = < O'"1, i) > -

Then j2 = 1 mod 2". j G U0 can be written as 2/ + 1, 0 < / < 2N~l - 1. In terms of I, the

following congruences hold.

(2/ + l)2=4/2 + 4/ + l = 1 mod2N.

4/(/ + l) = 0 mod2N.

1(1+1) = 0 mod2N-\

The last congruence has exactly 4 solutions for 0 < / < 2 -1 - 1,

; = o,
l = 2N~2-l,

I = 2N-\

1 = 2^-1,

j = 2*"1 - 1,

j = 2N~' + 1,

j = 2"-l.

Partitioning of £ into P6/mmm#-orbits is given below.

• 1 < j < 2"-1 - 3,

{ < (2j + 1,1) >, < (-1,2; + 2) >, < (~2j - 2,2j + 1) >,

< (l,2j + !)>,< (2j + 2, -1) >, < (2j + 1, -2j - 2) >},

Group Invariant FFT

. { < (1,1) >, < (-1,2) >, < (-2,1) >},

{ < (2*-1 - 1,1) >, < (-1,2^) >, < (-2^,2^ - 1) > },

{ < (2"-1 + 1,1) >, < (-1,2*"1 + 2) >, < (-2JV-1 - 2,2""1 + 1) > }•

{< (-1,1) >,< (-1,0) >,< (0,-1) >}•

There are 2N~l P6/mmm#-orbits in B, 4 of which contain 3 subgroups. Action by 7 does not

change the orbit structure.

We list two examples of P6/mmm#-orbits in V.

Set l = 2j + l. From the orbit of < (/, 1) > in B and L0, we obtain

< (eiZ, 1) > xA3, < (-ei + 2e2, exl + e2) > xA3,

< {-etl + e2, exl) > XA3, < (1, eiO > x/L3,

< (exl + 2e2, -ex + e2) > x A3, < {etl, -exl + e2) > x A3.

from the orbit of < (1,1) > and L0, we obtain

<(ei,l)> xA3, <(-e1 + 2e2,e1 + l)> xA3l < (-2d + e2, ei) > xA3.

In V, there are 4 • • • 2JV~1 P6/mmm#-orbits, 4 of which contain 3 subgroups, the rest contain

6 subgroups.

For completeness, we list the values of idempotents.

(1) If 2N = 1 mod 3, then

ex=2N+1 + h e2 = 2"

(2) If 2N = 2 mod 3, then

e1=2iV + l, e2 = 2*+1.

Choose a P6/mmm-invariant function / € L(A). By the invariance, the induced FT com-

putation only on a collection of JP6/mmm#-orbit representatives determines the FT of /. As in

example 6.4, the periodized functions are invariant under one of the two subgroups of P6/mmm,

tfoo, or Hxo- Specifically, a periodized function fD is ^-invariant if the P6/mmm* orbit

of D contains 6 subgroups, while fD is ^-invariant if the PQ/mmm* orbit of D contains 3

subgroups.

Group Invariant FFT 187

E.6.3 Affine group RT algorithm

Choose a subgroup X of Aff{A) and denote the point group of X by X- For X-invariant

/ e L(A) we have

F4>f{a*a)=<ax,d>{a*a)>F<pf(a)) a e A, x G X. (60)

.# .#

a.

F+f is not invariant under X but F^f(a) determines F+f at each point in the X -orbit of

Choose an X-invariant dual covering B of A and a complete system B0 of X-orbit represen-

tatives in B. B^ is a complete system of X representatives in the covering Bx of A. In the

presence of X-invariance, the RT algorithm can be implemented by first computing the induced

FT
F*(PerBf), Be Bo-

The remaining induced FT computations can be determined by complex multiplications im-

plied by theorem(E.8). The X-invariance of / reduces the number of required induced FT

computations.

For any subgroup B < A, define

XB = {x e X : ax{B) = B).

XB is a subgroup of X and acts on L(A/B).

Theorem E.10 /// is X-invariant then PerBf € L(A/B) is XB-invariant.

By the theorem the induced FT computations

F*(PerBf), Be Bo

are taken on Xß-mvariant data. To make full use of the X-invariance of / we must provide

code which make full use of the Xß-invariance of FerBf, B € So- In 1 or 2-D, affine group

invariant FFT algorithms are substantially simpler due to the restricted class of 1 or 2-D affine

group actions (see appendix).
X-invariant RT algorithm Choose an X-invariant dual covering B of A and a complete

system B0 of X-orbit representatives in B.

• Form the periodizations

PerBf e L(A/B), B e Bo.

Group Invariant FFT

Compute XB-invariant FT

F*(PerBf), BeB0.

• Compute

byEq. (60).

F»(PerBf), BeB,

Group Invariant FFT

Example E.17 Affine group-invariant RT

There are 5 affine crystallographic groups whose point group is P6.

Table E.8 Affine groups with point group P6

189

group generator

P61 (0,0, M, a)

P62 (0,0,2Af,a)

P63 (0,0,3M,a)

P64 (0,0,4M, a)

PQs (0,0,5M,a)

RT algorithm proceeds as in the case of P6. Now the invariance condition on FT is given

by Eq.(60). For 0 < / < 5, a P6;-invariant / € L(A), the induced FT of the Z^-periodization

of / determines / on Dfk € B0. To determine / on P6#-orbits of Dfk set

< (Cl,c2,c3),^(0,0,M) >= w = exp^.

f(c1,c2,c3) = u;C3'/(«#(ci,C2,c3))

= w2c>lf((a2)*(ci,C2,c3))

= ^;/((«3)#(c1;C2,C3))

= w^lf((a4)*(Cl,c2,c3))

= w5c3lf((a5)*(Cl,c2,c3)), l</<5.

1 </<5.

The group that contains all of the 48 tetragonal crystallographic groups is P4/mmm. As

in the case of P6/mmm, once a P4/mmm#-invariant covering subgroup is partitioned into

P4/mmm#-orbits, a code for the RT algorithm with respect to this partitioning contains codes

for FT computation of functions invariant under subgroups of P4/mmm.

One can also choose a group that contains all the crystallographic point groups; This group

need not a crystallographic group.

E.6.4 X#-invariant RT algorithm

Consider a subgroup X of Aff(A). In many applications we will have to compute the inverse

FT of X#-invariant data. Up to index reversal, this problem is equivalent to computing the

Group Invariant FFT 190

FT of X#-invariant data. We will embed this problem in the second form RT algorithm. In

problems requiring several stages of FT and inverse FT, it makes sense to follow the first form

RT algorithm which outputs decimated data by the second form RT algorithms which inputs

decimated data and conversely, removing the necessity of data rearrangement steps at each

cycle.

In the second form of RT algorithm we compute F+f, f G L(A) by first computing the

collection of induced FT

F*2(DecBf), BeB.

Theorem E.ll For a subgroup B < A, if f G L(A) is X*-invariant, then

Ft(DecBf)(-a) = F^(Deca#Bf)(-xa), a G A, x G X. (61)

Proof

Ft(DecBf)(-c) = £/(6)<M(c)>

665

b€a*B

= F^(DecafBf(-xc).

.# •*
Choose an X -invariant covering B of A and a complete system B0 of X -orbit represen-

tatives in B. It suffices to compute the collection of induced FT

F*(DecBf),BeB0

The remaining induced FT computations can be computed from the theorem.

Set

XB = {xeX: ax{B) = B}.

.#
Theorem E.12 For X*-invariant f G L(A) and B < A, DecBf is X -invariant.

DecBf{b) = <ax,<f>{a*b)>DecBf(a*b), beB,xeXB.

In 3D crystallographic applications, specialized routines as described in the preceding two

subsections can be applied to these induced FT computations.

Group Invariant FFT 191

E.7 Implementation Results

We have implemented symmetrized 3D crystallographic FFTs for the case of P6 symmetric

data. The data is assumed to be defined on the Z/3/V x Z/3iV x Z/6M lattice, where N and

M are powers of two.

Algorithm 1

1. Use CRT to re-index the data set such that the problem is transformed to an equivalent

5D computation:

Z/37V x Z/3N x Z/6M —♦ Z/3 x Z/3 x Z/N x Z/N x Z/6M.

Although this step is computationally expensive, involving irregular accessing of the data

stored in the main memory, it should be noted that in many applications where a large

number of iterations of the forward and inverse FFT are required, the CRT re-indexing

can be carried out only once and then the optimization can be performed in the 5D

domain.

2. Apply the RT algorithm to the Z/3 x Z/3 to compute the periodized data on two out of

the total four subgroups. The periodization results in two distinct data sets, A\ and A2,

each defined on Z/3 x Z/N x Z/N x Z/6M.

3. Perform two 4D FFTs on the data sets A\ and A2 to implement the induced FT. The sets

A-i and A2 are P2 and P% symmetric correspondingly, such that efficient symmetrized

FFT code can be used for the computations.

If symmetrized FFT code is not used in step 3, the computational savings are roughly in the

order of 1/2. In Figure E.l we plot the speedup over the non-symmetrized FFT versus the size

of the data set.

Group Invariant FFT

Figure E.l Speedup of the PQ symmetrized FFT over the non-

symmetrized FFT versus the data size. Symmetrized RTA on Z/3 x Z/3.

192

0.5 1.5
Data Size x10

The second implementation results in even more speedups over the non-symmetrized FFT:

Algorithm 2

1. Use the CRT to re-index the data set such that the problem is transformed to an equiv-

alent 5D computation:

Z/3iV x Z/3N x Z/6M —► Z/3 x Z/3 x Z/N x Z/N x Z/6M.

2. Apply the RT algorithm on Z/3 x Z/3 x Z/N x Z/N and compute the periodized data

on one third of the total 4 x (3/2)N subgroups. The periodization results in 2N distinct

data sets, each defined on Z/6M.

3. Perform 2N independent ID FFTs on data of length QM. These distinct data sets are

P2 symmetric, so that efficient P2-symmetrized FFT code can be used.

If symmetrized FFT code is not used in step 3, the computational savings are roughly in the

order of 1/3. In Figure E.2 we plot the speedup over the non-symmetrized FFT versus the size

of the data set. If P2 symmetrized FFT code is used, the computational savings are roughly in

the order of 1/6 which is the theoretical maximum since the original data are P6 symmetric.

Figure E.2 Speedup of the P6 symmetrized FFT over the non-

symmetrized FFT versus the data size.

Group Invariant FFT 193

Speedup

2.7-

2.6

2.5. 10
Data Size x i o

12
4

The P6 symmetrized RT algorithm based FFTs share the highly parallelizable structure of

the general RT algorithm. A variety of choices of a multiprocessor algorithm are available al-

lowing for efficient implementations depending on the characteristics of the particular platform.

Consider for example Algorithm 1. If two processors are available and all of the 2 • 3 • N ■ N ■ 6M

data set is stored in each processor, no-interprocessor communication is needed since each pro-

cessor can independently compute the periodization and 4D FFT. If only half of the data is

stored in the memory of each processor, then in order to compute the periodizations, each pro-

cessor has to send its data to the other, resulting in a total amount of communication (number

of processors x size of messages) equal 2 • 3 • N ■ N ■ 6M.

If P > 2 processors are available, the data can be divided along the last dimension into sets

of size 2-3- N ■ N ■ 6M/P, each set being stored into the local memory of one processor. After

the computation of the periodizations, each processor keeps 3 • N ■ N ■ 6M/P of local data,

and then performs local FFTs along the first three dimensions. To complete the computation,

FFTs along the last dimension have to be performed. Since the data are distributed among the

processors along the last dimension, a global transposition is required: Each processor keeps

1/P of its local data, and sends (P - 1)/P data to other processors. The total communication

requirements are then: (P - 1) x local data size = (P - 1) x 3 • N ■ N ■ 6M/P. In an alternative

implementation, P processors are being divided into P/2 clusters of two processors, with local

data being duplicated within each cluster. In this implementation, each node stores twice as

many data as before, but the efficiency can be increased in certain multiprocessor networks

Group Invariant FFT 194

since now the global transposition step is replaced with two independent global transpositions

each involving only P/1 nodes.

E.7.1 Complexity

E.7.2 Row-Column Algorithm

Set

A = Z/3N x Z/3JV x Z/3M.

The computation of the 3D FT using conventional row-column algorithm of processing the data

dimension at a time on many parallel systems pays considerably higher price on interprocessor

communication than FT computation. RT algorithm offers an alternate data movements in

MD FT computation. We list some performance results here.

GT/RT algorithm I

Using CRT,

A ~ Ai x A2 = (Z/3 x Z/3) x (Z/3 x Z/N x Z/N x Z/Af).

Data reduction (periodization) stage costs 4 x 2 x 3N2M additions, which can be combined

with data loading operation in a broadcasting mode; on some parallel systems it is given for free.

In a 4 processor system, each processor carries out 2 x ZN2M additions, while receiving input

data, followed by a local 5D 3 x 3 x N x N x M. FT computation. This algorithm eliminates

interprocessor communication completely, and each processor has balanced load with uniform

computation format.

E.7.3 GT/RT algorithm II

A ~ Ay. x A2 = (Z/3 x Z/3 x Z/3) x (Z/N x Z/N x Z/Af).

In this decomposition, each processor carries out (2 x 3) x N2M additions to implement

periodization while receiving input data, followed by a local 4D3xiVxJVxAfFT computation.

This decomposition is well suited on a 13 processor system. Both reduction and FT computation

are carried out in parallel.

The RT algorithms I and II show uniform decomposition of a 3D problem into subsets. The

combination of RT algorithms with other fast algorithms will provide a highly scalable feature

that can be matched to various degrees of parallelism and granularity of a parallel system.

Group Invariant FFT 195

The RT algorithm partitions input data at the global level to match each subset into node

processors, carrying out loading and reduction operations concurrently at each node, then FT

computations are performed in parallel.

In tables E.9, E.10, timing results on the Intel iPSC/860 with 4 and 8 node implementations

are given. The timing results of the next power of 2 sizes of Intel FFT library are also included

for comparison. (Non-power of 2 routines are not available in the standard library.) The

GT/RT algorithm I was implemented on the 4-node hypercube architecture.

The periodization (reduction stage) is coded in standard Fortran whereas the FFT and 3-

point FT calls on the Kuck & Associates optimized assembly routines and our own vectorized

3-point FT routines respectively.

Table E.9 Timing Results on iPSC/860 (3-D) (4-nodes)

GT/RT (4-nodes) Row-Column (4-nodes)

size time size time

48 x 48 x 48 360 ms 64 x 64 x 64 566 ms

48 x 48 x 96 572 ms 64 x 64 x 128 1122 ms

48 x 96 x 96 980 ms 64 x 128 x 128 2202 ms

Table E.10 Timing Results on iPSC/860 (3-D) (4-nodes)

GT/RT (4-nodes) Row-Column (8-nodes)

size time size time

48 X 48 X 48 360 ms 64 x 64 x 64 282 ms

48 x 48 x 96 572 ms 64 x 64 x 128 585 ms

48 x 96 x 96 980 ms 64 x 128 x 128 1152 ms

96 x 96 x 96 2029 ms 128 x 128 x 128 2276 ms

E.8 Affine group CT FFT

The global decomposition stage of a CT FFT algorithm computes pseudo-periodizations relative

to a subgroup B of the indexing group A. In this chapter we present a CT FFT algorithm

whose pseudo-periodizations are taken relative to an abelian subgroup X < Aff(A). In the

classical case, X consists of pure translations. If Y is a subgroup of X the CT FFT algorithm

associated to X can easily be adopted to produce an FFT algorithm for F-invariant data. Code

Group Invariant FFT 196

which implements this CT FFT produces by a process of disabling, F-invariant FFT code for

every subgroup Y of X.

For applications, the choice of X is motivated by two factors. First code for the CT FFT

associated to X should be simple to write, scalable and efficient. Second X should contain a

large collection of subgroups of interest in applications.

E.8.1 Extended CT FFT: abelian point group

Choose / € L(A) and an abelian subgroup G of Aut(A). For 7* G G* define the pseudo-

periodizations /7« € L(A) by

/,•(«) =£/(?) <7,7*>, aeA. (62)
■yeG

Since

V * = { °^' 7 = identitymaP' (63)
7.6G* ' 1 0) otherwise,

we can write

<W 7«gG*

We can compute F^f by computing the collection of FT's

^/7., 7* € G*. (65)

We have replaced a single FT computation by a collection of FT computations. However,

the pseudo-periodizations satisfy the following group invariance property.

Theorem E. 13 For 7* € G*,

•M7(a)) = <7,7*>/r(a), a € A, 7 € (?.

F*fAlH«)) =< 7,7* > %•(«)- a e A, 7 € G.

We will say that fo is G-invariant with character . The CT FFT associated to G decomposes

the computation of F+f into a collection of FT computations on G-invariant with character

data which can be implemented by simple modifications of the point group RT algorithm.

Suppose K is a subgroup of G. If we begin with a if-invariant data, we can reduce the

number of FT computations. Set

K* = {7* € G* :< /c,7* >= 1, for all« € K}. (66)

Group Invariant FFT 197

K* is a subgroup of G* isomorphic to the character group (G/!<)*. Choose a complete set of

representatives of if-cosets in G

7o, 7i> • • •> 7L-1- (67)

Then every g £ G can be written uniquely in the form

7 = K7/) A € ÜT, 0 < / < L. (68)

Theorem E.14 If f € £(^4) ss K-invariant then the pseudo-periodization /7« vanishes unless

7* € ÄV

L-l

Proof /r(a) = J2J2 f(KVa) < K7«»7* >

i-1

= £/(7ia) <7;,7*> J2 <«>7*>
;=o «ex

by AMnvariance. Since E«eA" < K>7* > vanishes unless 7* € if,, the proof of the theorem is

complete.

Code for the CT FFT algorithm associated to G applies to the computation of the FT of the

K-invariant data, K < G, by disabling all the pseudo-periodizations corresponding to 7* £ K*.

E.8.2 CT FFT with respect to Pmmm

For p, T £ Pmmm,

P = P?P?P?, r = tiftpti,

define

Associate with the function / € L(A), the column vector f0 of length K = 8NML by listing

f(aua2, a3), antilexicographic ordering of (a1,a2, o3) € A. Also define the vectors f8j-, 0 < j < 7

by listing f{ssj(au a2, a3)), in order of (oi, o2, a3) € A. The the generalized periodizations of /

Group Invariant FFT 198

with respect to Pmmm can be implemented by the vector additions

f,' S8

S16

S24

432

s40

Ä48

. 56 .

[F{2) <g> /* ® F(2) ® F(2) ® /A]

f, so

LSi

Lsie

l«24

lS32

l*40

lS48

"■«56

(69)

where F(2) denotes the 2-point FT matrix,

F(2) =

and IK is the K x K identity matrix.

Crystallographic group P2 [13] is a subgroup of Pmmm,

P2 = {l,s2i}.

P2* = {l,S24, 532,356}.

If / e L(A) is P2-invariant, then 4 of the periodizations vanish. Each of the non-vanishing

periodizations are Pmmm-invariant up to multiplication by ±1, and FT is computed with this

invariance.

Another crystallographic subgroup of Pmmm is P222.

P222 = {1,524,340,348}-

P222, = {1,356}.

For P222-invariant /, all the periodizations except fs* and /a«g vanish.

If / is Pmmm-invariant, then computation is carried out only for /„..

E.8.3 Extended CT FFT : abelian affine group

The discussion of section E.8.1 will be extended to abelian subgroups X of Aff(A) of the

form X = B x K where B is a subgroup of A and K is a subgroup of Aut(A). The CT FFT

algorithm associated to X combines features of the standard CT FFT associated to B and the

Group Invariant FFT

abelian point group CT FFT associated to K. The pseudo-periodizations are now taken with

respect to the affine subgroup X. The motivation is to unify the writing of FT code for affine

group invariant data.
Choose an abelian subgroup X of Aff{A) of the form X = Bx K. Then X* = B* x K\

We will usually write bk for {b,k) and b*k* for {b;k"). Denote a complete set of ^-coset

representatives by

z{b") = </>?{?), b* G B'. (70)

For / G L(A), define the pseudo-periodizations fx. G L(A), x* € X*, by

/*•(«) = £ f(xa) < x'x* >' ° € A, x* G X*. (71)

/B.(x(a)) = <x,x*>/ar.(o), seAi'er. (72)

Since ..

'^E'- (73)

we can compute F0/ by the collection of FT computations

Fifa, x*eX*.

A direct computation shows that /s. satisfies the group invariance with character condition. In

particular
/,.(& +a) =^6rF>/,.(a), ^5,,' = iTer. (74)

Define gx. G 1(A), x* G X*, by

fc-(a) = /,.(a) < a, #*(&*)) >, «U, x' = W. (75)

^. is 5-invariant and can be viewed as a function in L(A/B).

Theorem E.15 For x* = b*k* G X*, F+f** vanishes off of z{b*) + BL and we have

FifA'P) + O = o(B)F+l9AbL), &X € BL.

Proof Choose a complete system of representatives for the 5-cosets in A

m\, ■ • ■ ,mj.

200 Group Invariant FFT

Setting

c = z(bl) + bL, bleB*,bLeBL

_a = mj + b, l<]<J,b£B,

in

V/(c) = £/(«) <,*{*)>
aeA

we have, applying Eq. (74)

i=i ies

which vanishes unless b\ = b*, proving F*f vanishes off of z{b*) + 5X. Then by theorem E.6,

j

Ftf(z{b*) + bL) = o{B)Y,9A™i) < ™j,<f>(^) >,
j=\

completing the proof of the theorem.

For b* € B* define
S(b*) = {gb.k* : k* € K*}. (76)

By theorem E.15

F,f{z{V) + b^) = ^r £ F^*AbL\ b±eB\ (77)

which implies that i7^/ on the coset

z{b*) + BL, b*eB*,

is determined by the induced FT of functions in 5(6*).

The pseudo-periodization operations introduce data redundancies which we will now de-

scribe.
Set C = A/B. K acts by the identity mapping on B and induces a group of automorphisms

of C denoted also by K. For b* 6 B* and k 6 K, there exists a unique (b.(k) € BL such that

k*(z(b*)) = z(b*) + (b*(k). (78)

Direct computation shows that

k#((Ak')) + Cb-(k) = (b.{kk% k, k' e K. (79)

Define
(Ak) = M(Ak))&c*. (so)

Group Invariant FFT 201

Theorem E.16 For x* = b*K* G X* and K G K,

gx.(K(c)) = <K,K*> < c,&{K)>gx.{c), ceC. (81)

FMA**^) + &•(*)) = < *. K* > F*9A*% hL eB\ne K. (82)

Proof By Eqs. (72), (75) and (78)

gx.(K{a) = < K,K*> < K(a)J(z(b*)) > fx.(a), a G A, K G K

= <K,K*> < aJ(K*{z{b*))) > /s.(a)

= < K,K* > < a,<l>(Cb*(K)) > 9x'{a)-

The second statement can be proved by usual arguments. A modified RT algorithm can be

applied to the induced FT computations.

For a subgroup Y of X, set

Y, = K G X* :< y, x* > = 1, for ally G Y}. (83)

Arguing as in theorem E.14, we have the following theorem.

Theorem E.17 If X is a subgroup ofAff(A) and Y is a subgroup of X, then for Y-invariant

f G L(A), the pseudo-periodizations fx*, x* G X* vanishes unless i*6K.

Affine group CT FFT code for X can be used to compute the FT of F-invariant data, for

any subgroup Y of X. In several important applications, the group X can be chosen such that

the corresponding CT FFT algorithm can be implemented by simple 1-D routines while more

complicated code is required for a direct implementation of the FT of F-invariant data, Y.

E.8.4 CT FFT with respect to Fmmm

We will continue with the notations established in example E.4.

Fmmm = B x Pmmm.

We will use the 5-periodization computation of example E.ll as the first stage of the two stage

pseudo-periodizations with respect to Fmmm. Recall the ordering of the elements of Fmmm

given in example E.4 :

B = {.So, 5!, s2, s3,s4,s5,s6,s7}.

Pmmm = {s0, S8, Sl6, 524, -S32, -540, S48, S56J-

Group Invariant FFT 202

Fmmm = {s8i+k '■ 0 < k, I < 7}.

0 For (aia2a3) € A, observe that

S8i(ai,a2,a3) = s8i+f(°i> °2, a3) + si, si € 5.

In example E.ll, periodizations

• fb;, 0</<7

are made on the collection of 5-coset representatives

C = {(aua2, a3) : 0 < a{ < N{, i = 1,2,3}.

7 7

fs;l+k{a) = J2 £ f(ssna + sm) < sm,s*k >< s8n,s*8l >
n=0 m=0

7

n=0
7

= S fb'kf(SSn+na) < S„, &£ >< 58n, $£, >
n=0

£ CT FFT with respect to Fmmm was implemented on a Sun4 station [1].

E.9 Incorporating ID symmetries in FFT

We have developed various FFT algorithms incorporating certain ID symmetry. In this section,

we give an example of incorporating invariance conditions in data without giving up the use of

highly efficient FFT routines.

Set A = Z/N, for a natural number N. For / G L(A), the invariance conditions we will

A consider here are

f(a) = ±f(-a). (84)

An efficient algorithm was given by Cooley et al. [10] and Rabiner [16] which reduced

• the computation to that for an JV/2-point FFT with preprocessing and postprocessing. The

procedures are summarized as follows.

a. Compute
N/4-1

• 7(0) = 2 £ /(2a+ 1).
a=0

b. For a = 1,2,..., iV/4 - 1, formulate the sequence g(a) as

Group Invariant FFT 203

g{a) = /(2a) + [/(2a + l)-/(2a-l)],

g(N/2-a) = /(2a) - [/(2a + 1) - /(2a - 1)],

9(0) = /(0),

j(tf/4) = /(tf/2).

c. Take the iV/2-point FFT of g(a); call this result G{b).

d. Form two sequences

U(b) = Äe[G(6)], 6 = 0,l,2,..,iV/4,

WM = Im[G(b)} L

e. For b = 1,2,..., iV/4, the transformed data sequence F(ö) is given as

F(b) = U(b) + V{b),

F{N/2-b) = U(b)-V(b),

F(0) = U(0) + V{0),

F{N/2) = U(0)-V{0).

Notice that in step d, the computation involves division by {sin(2irb/N)}. This may cause

stability problem for large size N.
We summarize here an algorithm proposed in [15], to overcome the stability problem.

a. Form two sequences

h(a) = f{a) + f{N/2-a), a = 0,1,2,..., N/A,

g(a) = [f(a)-f(N/2-a)]cos{2ira/N), a = 0,1,2, ...,N/4,

both h(a) and g(a) have invariance conditions.

b. Take the A^/2-point(half size) symmetric FT of h(a) and g{a).

c. The transformed data sequence F(b) is given as

F(2b) = H(b), b = 0,l,2,...,N/A-l,

F(l) = G(0),

F(2b + 1) = 2G(b)-F(2b-l), 6=l,2,...,iV/4-l.

Group Invariant FFT

This algorithm can be recursively used for transform size of N = 2m or N = 2ml, where

m > 1 and / an odd number.

In step a, multiplications by {cos(2*a/N)} are required to formulate g(a). If, however, N is

twice an odd number, then an alternative procedure, based on the Good-Thomas prime factor

algorithm [12, 18], can be used to avoid these multiplications. In this case, the computational

procedures can be stated as

a. Take the iV/2-point (half size) symmetric FFT of h{a) = /(2a) and /2(a) = f(N/2 + 2a);

call them ^1(6) and F2(b) respectively.

b For b _ 0j 1,2,..., {N/2 - l)/2, the transformed data sequence F{b) is given as

F{2b) = F{N-2b) = F1{2b) + F2{2b),

F{N/2 + 2b) = F{N/2-2b) = Fl{2b)-F2{2b).

If the data is real, the same algorithm can be used with half size real FFTs. The saving in

FFT computation will be approximately 50 percent in comparison with complex data.

References

[1] Y. Abdelatif, Periodization and Decimation for FFTs and crystallography FFTs, Ph.D

Thesis, CCNY, CUNY, 1994.

[2] M. An, I. Gertner, M. Rofheart and R. Tolimieri, "Discrete Fast Fourier Transform Algo-

rithms: A Tutorial Survey," Advances in Electronics and Electron Physics, 80 Academic

Press, 1991.

[3] M. An, J. W. Cooley and R. Tolimieri, "Factorization Method for Crystallographic Fourier

Transforms", Advances in Applied Mathematics, 11, 358-371, (1990).

[4] M. An, C. Lu, E. Prince and R. Tolimieri, "Fast Fourier Transform Algorithms for Real

and Symmetric Data", ACTA Cryst, (1992). A48, 415-418.

[5] M An, C. Lu, E. Prince and R. Tolimieri, "Fast Fourier Transforms for Space Groups

Containing Rotation Axes of Order Three and Higher", ACTA Cryst., (1992). A48, 346-

349.

[6] N. Anupindi and K. M. Prabhu, "Split-Radix FHT Algorithm for Real-Symmetric Data",

Electronics Letters, 8th Nov. 90, Vol. 26, No. 23, 1973-1975.

Group Invariant FFT 205

[7] G. Bricogne, "Geometric Sources of Redundency in Intensity Data and their Use for Phase

Determination", Ada Cryst, A30, (1974), 395-405.

[8] G. Bricogne and R. Tolimieri, "Symmetrized FFT Algorithms", The IMA Volumes in

Mathematics and Its Applications, vol. 23, Springer-Verlag, New York/Berlin, 1990.

[9] C. S. Burrus, "Index Mappings for Multidimensional Formulation of the DFT and Convo-

lution", IEEE Trans, on ASSP, vol. ASSP-25, 239-242, June 1977.

[10] J. W. Cooley, P. A. Lewis and P. D. Welch, "The Fast Fourier Transform Algorithms:

Programming Considerations in the Calculation of Sine, Cosine and Laplace Transforms",

J. Sound Vib., Vol. 12, 315-337, July 1970.

[11] I. Gertner, "A new efficient algorithm to compute the twodimensional discrete Fourier

transform," IEEE Trans. ASSP 37(7), 1036-1050, 1988.

[12] I. J. Good, "The Interaction Algorithm and Practical Fourier Analysis", J. R. Statis. Soc.

B., vol. 20, No. 2, 1958.

[13] N.F.M. Henry and K. Londsdale, Ed., International Tables for X-Ray Crystallography,

Volume I, 1952, The Kynoch Press, England.

[14] G. Kechriotis, M. An, M.Bletsas, E. Manolakos and R. Tolimieri, "A hybrid approach

for computaing multidimensional DFT's on parallel machines and its implementation on

the iPSC/860 hypercube," accepted for publication in IEEE Trans. Signal Proc, August,

1993.

[15] C. Lu and R. Tolimieri, "New Algorithms for the FFT Computation of Symmetric and

Translational Complex Conjugate Sequences", the Proceedings of IEEE 1992 International

Conference on ASSP, March 23-26, 1992.

[16] L. Rabiner, "On the Use of Symmetry in FFT Computation", IEEE Trans, on ASSP, Vol.

ASSP-27, No. 3, June 1979.

[17] L. F. Ten Eyck, "Crystallographic Fast Fourier Transforms", ACTA Cryst., (1973). A29,

183-19L

[18] L. H. Thomas, "Using a Computer to Solve Problems in Physics, Application of Digital

Computers", Ginn and Co. Boston, MAss. 1963.

Group Invariant FFT 206

[19] R. Tolimieri, M. An and C. Lu, Mathematics of Multidimensional Fourier Transform Al-

gorithms, Springer-Verlag, New York/Berlin, 1993.

[20] R. Tolimieri, M. An and C. Lu, Algorithms for Discrete Fourier Transform and Convolu-

tions Springer-Verlag, New York/Berlin, 1989.

