uniclassified 🦳 🦳	•		\mathcal{C}			
ECUNITY CLASSIFICATION OF THIS PAGE	DOCUMENTATION	N PAGE			Form Approved OMB No: 0704-0188	
A REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE N	ARKINGS	. <u></u>	L	
Unclassified	2116					
2. SECURITY CLASSIFICATION AUTHORITE ET	LECTE	3. DISTRIBUTION/ ADDROVED 1	availability of for public re	elease	e; distribution	
26 DECLASSIFICATION / DOWNGRADING WIELUNE 1 9 1995		unlimited				
A PERFORMING ORGANIZATION REPORT NUMBE	(S)	5 MONITORING ORGANIZATION REPORT NUMBER(S)				
4.130		AFOSR-TR-95-0315				
6. NAME OF PERFORMING ORGANIZATION	66 OFFICE SYMBOL	7. NAME OF MO	INITORING ORGAN	IZATION	1	
Arizona Board of Regents University of Arizona	(if applicable)	AFOS	SR			
SC ADDRESS (City, State, and ZIP Code)	_ h	76 ADDRESS (CIN	y, State, and ZIP Co	ode)	CD	
Laboratory for X-Ray Optics Arizona Research Laboratorie	э с		an Ave., Sui Air Force Ba		50	
Univ. of Arizona, Tucson, AZ		Washington, DC 20332-0001				
B. NAME OF FINDING / SPUNSURING	AD OFFICE SYMBOL		I INSTRUMENT IDE	NTIFICA	TION NUMBER	
organization Al'OSR/NF	(If applicable)	F49620-9	3-0201- 93-1-020/			
BC ADDRESS (City, State, and ZIP Code)			UNUING NUMBERS	5		
110 Duncan Ave., Suite 115B		PROGRAM ELEMENT NO	PROJECT	TASK NO	NORK UNIT	
 Bolling Air Force Base 		61102P	2301	B		
Washington, DC 20332		10/1001		<u> </u>	l	
Multilayer Optics for Soft X	(-Ravs					
					<u></u>	
C.M. Falco and J.M. Slaughte	er					
13. TYPE OF REPORT 136 TIME (COVERED		DRT (Year, Month,	Day)	IS PAGE COUNT	
Final FROM 4	4/1/93 10. <u>9/30/</u> 94	1994 Nove	mber 15	l	7	
16 SUPPLEMENTARY NOTATION						
17. CUSATI COUES	18 SUBJECT TERMS	(Lontinue on rever	se if necessary are	d identil	ly by block number)	
FIELD GROUP SUR GROUP						
19 ABSTRACT (Continue on reverse if necessar	ry and intentify by block	number)			is a with the relative	
We have shown that high quality lattice mismatches, films grown on Si(1	ity Be films may be grow	vn on α -Al ₂ O ₃ , Si(111), and Get (11)	:). Con: d those	grown on Ge(111) are	
of the highest quality. The epitaxial Be	films grown on Ge durit	ng this grant period	d are the best qual	lity Be I	films that we or anyone	
else have ever produced. Growth of the	rse high quality films is a	a significant step t	loward single-crys	stal hete	rostructures containing	
Be Such Be-containing structures may	y be useful, not only in [EUV optics, but a	also in IR optics, (electron	nic devices, and studies	
of thin-film superconductivity. We have or Ge/Be superlattices. In both cases the	be problem is related to	limitations of our	equipment. To p	nursue t	his work further would	
require an upgrade to our MBE apparate	lus. Our very recent suc	cesses with sputte	er-deposited Y- an	ıd B₄C-I	based multilayers show	
that there is still much to be gained by	studying and optimizin	ig the growth of c	carefully chosen n	iew mat	terial pairs. The Y/Mo	
reflectivity results we obtained during region. Our B_4C/Si multilayers are much	this grant period impro	for superior stabili	or the art by 50% of the compared with	previou	us coatings for the same	
wavelength region. Many applications in	involving synchrotron rad	diation or laser-pro	oduced plasmas w	ill bene	fit from both the optical	
characteristics and excellent stability of	f these EUV reflectors.					
20 DISTRIBUTION / AVAILABILITY OF ABSTRAC			SECURITY CLASSIFI	ATION	QUALITY INSPECTED	
UNCLASSIFIED UNUMITED SAME A		unclass				
12. HAME OF RESPONSIBLE INDIVIDUAL Howard Schlossberg		126 (202) 7	Elincinde Area Con 57-4904	de) (22		

-

Contract No. F49620-93-0201 Multilayer Optics for Soft X-Rays

Charles M. Falco Jon M. Slaughter

Laboratory for X-Ray Optics Arizona Research Laboratories The University of Arizona Tucson, Arizona 85721

Final Technical Report Grant Period 1 April 1993 – 30 September 1994

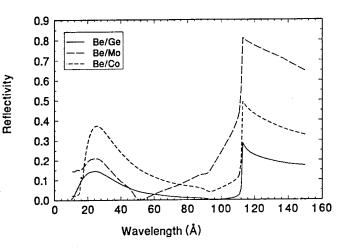
November 15, 1994

Accesio	n F o r		
NTIS	CRA&I	4	0
DTIC	TAB	C]
Unannounced 🗌]
Justification			
By Distribution / Availability Codes			
Dist		and / or ecial	
A-1			

ABSTRACT

We have shown that high quality Be films may be grown on α -Al₂O₃, Si(111), and Ge(111). Consistent with the relative lattice mismatches, films grown on Si(111) are of higher quality than those grown on α -Al₂O₃, and those grown on Ge(111) are of the highest quality. The epitaxial Be films grown on Ge during this grant period are the best quality Be films that we or anyone else have ever produced. Growth of these high quality films is a significant step toward single-crystal heterostructures containing Be. Such Be-containing structures may be useful, not only in EUV optics, but also in IR optics, electronic devices, and studies of thin-film superconductivity.

We have been successful in growing epitaxial Co-on-Be and Ge-on-Be, but not in making Co/Be or Ge/Be superlattices. In both cases the problem is related to limitations of our equipment. To pursue this work further would require an upgrade to our MBE apparatus.


Our very recent successes with sputter-deposited Y- and B₄C-based multilayers show that there is still much to be gained by studying and optimizing the growth of carefully chosen new material pairs. The Y/Mo reflectivity results we obtained during this grant period improved on the state-of-the-art by 50% to 100% in the λ =80–110 Å region. Our B₄C/Si multilayers are much better filters and have far superior stability compared with previous coatings for the same wavelength region. Many applications involving synchrotron radiation or laser-produced plasmas will benefit from both the optical characteristics and excellent stability of these EUV reflectors.

19950615 081

Epitaxial Growth of Beryllium

Our calculations for multilayer mirrors with Be spacer layers show that they should have high reflectivities for the wavelength ranges $\lambda < 44$ Å and $\lambda = 111-200$ Å. Other desirable properties of beryllium are its high thermal conductivity, low thermal expansion coefficient, good oxidation resistance, and good thermal stability. Our recent epitaxial growth of Be thin films on single-crystal substrates is a significant first step toward producing single-crystal multilayers.

calculated Figure shows 1 maximum attainable reflectivities for some The curves multilayers. Be-based reflectivity of ideal represent the multilayers that are optimized for each The figure illustrates the wavelength. wavelength regions where Be-based multilayers should be most useful are above its absorption edge at λ≈111 Å, and below $\lambda = 44$ Å where C-based multilayers would not perform as well. Note that the theoretical maximum reflectivity of Mo/Be at λ≈115 Å is over 80%. Again at short wavelengths Be, this time in combination with Co, looks very good theoretically and has a lattice match that may be close enough for epitaxial growth. For these reasons, several years ago we started growing films of Be, as a first step toward the growth studies of epitaxial superlattices.

Figure 1. Calculated maximum attainable reflectivities for some Be-based multilayers. Each point on a curve represents the reflectivity of an ideal multilayer that is optimized for that wavelength.

In choosing substrates on which to grow Be films, we used two main selection criteria: (1) a small lattice mismatch with hcp Be and (2) low chemical reactivity with Be. Three materials meeting these criteria are α -Al₂O₃, Si, and Ge. Al₂O₃ and Si have very low reactivity with Be, and Ge and Be are completely immiscible. Furthermore, the lattice mismatches for Be(0001) and α -Al₂O₃(0001), Si(111), and Ge(111) are, respectively, 3.9%, 3.4%, and 1.0%. For Si(111) and Ge(111) this small mismatch occurs when the lattices are rotated 30° with respect to each other. Prior to this grant period we studied Be-on- α -Al₂O₃ and Be-on-Si in detail, and began studies of Be-on-Ge. During this grant period we filled in some gaps in the Be-on-Si studies and performed detailed studies of Be-on-Ge. The epitaxial Be films grown on Ge during this grant period are the best quality Be films that we or anyone else have ever produced.

We grew all of our Be samples with our Riber-1000 MBE machine (base pressure of 2×10^{-10} Torr). Each film was grown while monitoring the surface structure with reflection highenergy electron diffraction (RHEED). RHEED analysis reveals the epitaxial orientation of the Be films as well as qualitative information about the roughness of the surface. We also analyzed each of these Be films *ex situ* with electron and atomic force microscopy, x-ray diffraction, Rutherford backscattering analysis, and ion beam channeling. Our work shows that epitaxial Be films of varying quality can be grown on these substrates. For all three substrates studied, we found the Be crystalline quality is strongly dependent on the substrate temperature during deposition. The best growth temperatures, as well as structural parameters determined from x-ray diffraction and ion beam channeling, are given in Table I. X-ray linewidths improve for Be grown at even higher temperatures, but the increased mobility results a three-dimensional growth mode and therefore very rough films.

Substrate	Growth Temperature (°C)	Rocking Curve FWHM	Channeling X _{min}
α- Al ₂ O ₃ (0001)	125	0.51±0.02	0.81 ± 0.02
Si(111)	300	0.24 ± 0.02	0.33 ± 0.02
Ge(111)	300	0.19±0.02	0.18±0.02

Table I. Summary of our best Be films grown on each of the three substrates considered to date.

High-angle θ -2 θ x-ray diffraction and RHEED analysis indicate that the beryllium films are preferentially oriented with the (0001) planes parallel to the α -Al₂O₃(0001), Si(111), or Ge(111) substrate planes. We performed x-ray rocking curve measurements on the (0002) peaks, and ion beam channeling measurements along the [0001] direction to judge the crystalline quality of the films. The FWHM of these rocking curves decreases with increasing substrate temperature. As shown in Table I, the FWHM for optimized Be-on-Si growth is approximately a factor of two narrower than for Be-on- α -Al₂O₃. For Be-on-Ge it is narrower still. The ion beam channeling results are described by the parameter χ_{min} , which is the ratio of the backscattering yield in the aligned and random directions. This ratio will be lower for better crystalline quality Be overlayers. To make a channeling measurement on the small atomic mass Be overlayer, the resonance in the ¹H on ⁹Be cross section at 2525 KeV was exploited to provide a Be signal which was measurable above the background caused by the substrate. Observation of channeling in these films is direct evidence that the Be overlayers have long range order and are aligned with the substrate. As shown in the Table, the channeling results are in agreement with the trend observed in the rocking curve FWHM data. Not surprisingly, our results show that the crystalline perfection improves with improving lattice match.

We have been successful in growing epitaxial Co-on-Be, but not in making Co/Be superlattices. We find that Co suffers from island growth at temperatures significantly above 100 °C, while growth of single-crystal Be is best at 300 °C. Although we can heat quickly from 100 °C to 300 °C, we cannot quickly return the substrate temperature to 100 °C. This limitation of our equipment makes it difficult to produce good Co/Be samples with many layers. Similar problems were encountered in our attempts to grow Ge/Be superlattices. To pursue this work further would require an upgrade to our MBE apparatus. One possibility is a new sample manipulator that would allow fast changes in substrate temperature. Another possible way to proceed is to find a means to grow single-crystal Be at lower temperatures, such as the use of ion-assisted deposition.

To summarize this section, we have shown that high quality Be films may be grown on α -Al₂O₃, Si(111), and Ge(111). Consistent with the relative lattice mismatches, films grown on Si(111) are of higher quality than those grown on α -Al₂O₃, and those grown on Ge(111) are of

the highest quality. Growth of these high quality films is a significant step toward single-crystal heterostructures containing Be. Such Be-containing structures may be useful, not only in EUV optics, but also in IR optics, electronic devices, and studies of thin-films superconductivity.

Multilayers Made With New Material Combinations

A typical material pair has a small region of high reflectivity for $\lambda > \lambda_{edge'}$, where λ_{edge} is the wavelength of an absorption edge in the spacer material. Thus, to make mirrors for the entire wavelength region of interest, several different spacer materials are needed, each of which will be optimal over only a small wavelength region. For a given spacer, several absorbers typically yield similar theoretical reflectivity curves. Our approach to date has been to study each spacer material in turn, combining them with several of the most promising absorbers. We chose the absorbers to study based on optical constants, binary phase diagrams, literature searches for growth properties, and previous experience in our laboratory. To test a new material pair we normally begin by sputter-depositing several test multilayers of that pair under various sputtering conditions. During this grant period we have had success with two new pairs made by sputter deposition: Mo/Y and B₄C/Si.

We chose to study Mo/Y mirrors because Y is a good spacer from λ =124 Å down to approximately λ =75 Å. A Mo/Y mirror we recently made and measured at the Wisconsin Synchrotron Radiation Center, in a collaborative effort between our group and a group from NRC-Canada, had a normal-incidence reflectivity of 46% at 114 Å. Another mirror made in the same series of experiments had R=32% at 95 Å. Although there is still much work to be done to optimize Mo/Y multilayers, already our measurements show that this new pair performs better in the $\lambda \approx 100$ Å region than any previously-reported pair.

Figure 2 illustrates the importance of these It shows Mo/Y results. the best near normalreflectivities incidence measured to date in the wavelength region **λ**=40–140 Å. The circles represent the state-of-theart before our Mo/Y work. It is clear that this new pair has material dramatically increased the potential for applications in the region between the yttrium M-edge and the beryllium K-edge, i.e. $\lambda = 80-111$ Å. The fact that these results and the Mo/Be result shown in the figure were just obtained 1994 supports our in argument that there is

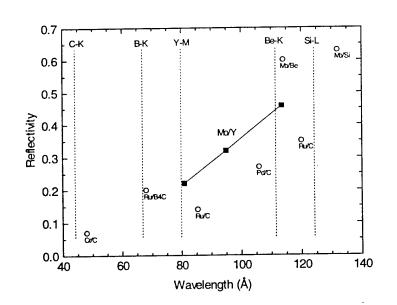


Figure 2. Near normal-incidence reflectivities measured to date. Our Mo/Y work (\blacksquare) resulted in a great improvement over the previous state-of-the-art (O).

much to be gained by exploring new material pairs.

We also recently studied sputter-deposited B₄C/Si multilayers. Like Mo/Si, these multilayers perform well for λ >124 Å where the absorption of Si is very low. However, our interest in this new material pair stems from applications that require high selectivity more than maximum reflectivity. Compared to Mo/Si multilayers, B₄C/Si have a much narrower bandpass ($\delta \lambda$) and better rejection of off-peak light, albeit by sacrificing maximum peak reflectivity (R_0). However, mirrors with better filtering characteristics are needed for plasma diagnostics and for a variety of instruments that rely on synchrotron radiation from bending magnets. We made mirrors for three different peak wavelengths (λ_0) and angles: λ_0 =133 Å at near-normal-incidence; λ_0 =182 Å at 45°; and λ_0 =236 Å at 45°. Because the Brewster angle is approximately 45° for these mirrors, the 45° mirrors act as polarizing filters. We have shown that B₄C/Si multilayers are far superior in this respect.

Table II summarizes the measured performance of our B_4C/Si mirrors with a comparison to similar Mo/Si mirrors. As can be seen, the B_4C/Si peaks are much narrower than for Mo/Si, ranging between 1.7 and 2.7 times narrower. In addition, the tails on both sides of the reflectivity maxima are typically one to two orders-of-magnitude lower than for Mo/Si, providing much better off-peak rejection. Although the reflectivities are good, as expected they are lower than for Mo/Si. Another very important property of these multilayers is that they exhibit excellent stability upon annealing at temperatures up to 600 °C. This result is in contrast to, and an important improvement upon, the behavior of Mo/Si multilayers, which undergo significant structural changes and a contraction in Λ upon annealing at 400 °C for only 30 minutes.

	B ₄ C	C/Si	Mo	/Si
Design	R	δ λ (Å)	R	δλ (Å)
133 Å, normal incidence	0.275	3.1	0.61	5.3
182 Å, 45°	0.33	11	0.53	26.5
236 Å, 45°	0.30	20	0.39	46

Table II. Measured performance of our B₄C/Si mirrors compared to similar Mo/Si mirrors. The B₄C/Si mirrors have lower peak reflectivity R, but much narrower bandpass $\delta \lambda$.

From this work we conclude that when high reflectivity under moderate heat loads is the only concern, Mo/Si will continue to be the material pair of choice for λ >124 Å. However, B₄C/Si multilayers are clearly superior when narrow bandpass, good off-peak rejection, or thermal stability is important. The comparison is particularly favorable for B₄C/Si at the longer wavelengths, where the difference in the reflectivity decreases, and the filtering characteristics of B₄C/Si are far superior. Many applications involving synchrotron radiation or laser-produced plasmas will benefit from both the optical characteristics and excellent stability of these EUV reflectors.

To summarize this section, our group's very recent successes with sputter-deposited Yand B_4C -based multilayers show that there is still much to be gained by studying and optimizing To summarize this section, our group's very recent successes with sputter-deposited Yand B₄C-based multilayers show that there is still much to be gained by studying and optimizing the growth of carefully chosen new material pairs. The Y/Mo reflectivity results we obtained during this grant period improved on the state-of-the-art by 50% to 100% in the λ =80–110 Å region. Our B₄C/Si multilayers are much better filters and have far superior stability compared with previous coatings for the same wavelength region.

R. Watts C. Tarrio, and T. Lucatorto of NIST made the reflectivity measurements on the B_4C/Si mirrors at the SURF-II beamline. The Mo/Y multilayers were made and their reflectivity measured in collaboration with C. Montcalm and B. Sullivan of the National Research Council of Canada. J. A. Leavitt and L.C. McIntyre of the University of Arizona Physics Department did the ion beam analysis.

Publications

- 1. Epitaxial Growth and Surface Structure of (0001) Be on (111) Si. Judith A. Ruffner, J.M. Slaughter, James Eickmann, and Charles M. Falco, Appl. Phys. Lett., 64, 31 (1994).
- Roughness Correlations in Si/ Mo Multilayers. J. M. Slaughter, D. G. Stearns, and Charles M. Falco, *Physics of X-Ray Multilayer Structures*, 1994 Technical Digest Series, vol. 6 (Optical Society of America, Washington, D.C., 1994) pp. 19–22.
- 3. Epitaxial Growth of Be(0001) on Ge(111) and Ge(111) on Be(0001). James Eickmann, J.M. Slaughter, and Charles M. Falco, *Physics of X-Ray Multilayer Structures*, 1994 Technical Digest Series, vol. 6 (Optical Society of America, Washington, D.C., 1994) pp. 178–181.
- 4. Si/ B₄C Soft X-Ray Multilayer Mirrors. Charles M. Falco, Brian S. Medower, and J. M. Slaughter, *Physics of X-Ray Multilayer Structures*, 1994 Technical Digest Series, vol. 6 (Optical Society of America, Washington, D.C., 1994) pp. 166–169.
- Preliminary Survey of Material Pairs for XUV Multilayer Mirrors for Wavelengths Below 130 Å. Claude Montcalm, Patrick A. Kearney, J.M. Slaughter, M. Chaker, and Charles M. Falco, *Physics of X-Ray Multilayer Structures*, 1994 Technical Digest Series, vol. 6 (Optical Society of America, Washington, D.C., 1994) pp. 3–6.
- 6. **Structure and Performance of Si/ Mo Multilayer Mirrors for the Extreme Ultraviolet**. J.M. Slaughter, Dean W. Schulze, C.R. Hills, A. Mirone, R. Stalio, R.N. Watts, C. Tarrio, T.B. Lucatorto, M. Krumrey, P. Mueller, and Charles M. Falco, J. Applied Physics, **76**, 2144 (1994).
- Y/ Mo Multilayer Mirrors for XUV Wavelengths. Claude Montcalm, Brian T. Sullivan, M. Ranger, J.M. Slaughter, P.A. Kearney, Charles M. Falco, and M. Chaker, Optics Letters, 19, 1173 (1994).
- 8. Si/ B₄C Narrow-Bandpass Mirrors for the Extreme Ultraviolet. J.M. Slaughter, Brian S. Medower, R.N. Watts, C. Tarrio, T.B. Lucatorto, and Charles M. Falco, Optics Letters, accepted.
- 9. Growth Modes of Pd, Ag, and Si Thin Films on B. Patrick A. Kearney, J.M. Slaughter, Dian Hong Shen, and Charles M. Falco, J. Vac. Sci Tech. B, accepted.
- 10. **Growth and Surface Structure of Epitaxial Be Thin Films.** Charles M. Falco, James Eickmann, Judith A. Ruffner, and J.M. Slaughter, Proc. 2nd Conference on Thin Film Physics and Applications, Shanghi, China, April 15–17, 1994, submitted.
- 11. On Developing a Table Top Soft X-Ray Laser. A. Morozov, K. Krushelnick, L. Polonsky, C.H. Skinner, S. Suckewer, C.M. Falco, and J.M. Slaughter, Proc. IV Inter. Colloq. on X-Ray Lasers, Williamsburg, May 1994, submitted.

Degrees Awarded	
Patrick A. Kearney	Ph.D., passed oral exam 3 May, 1994.