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1     Introduction 

Conventional spectral methods impose rigid requirements on the computational grids used. 

The grid points are the nodes of Gauss-like quadrature formulas (Gauss, Gauss Radau, or 

Gauss Lobatto (GL) formulas). These nodes are denser at the boundaries than in the middle 

of the domain. Although this property is suitable for boundary-layer problems, it may create 

difficulties for other types of problems, particularly those with disparate length scales that 

occur in multiple regions of the domain (e.g., diffusive burning or detonation and reacting 

mixing layers). The principle reason for the degradation in performance on these disparate 

problems is that the predetermined node points do not, in general, coincide with the features 

that are being resolved. Extensive mappings can concentrate the node points into regions 

more ideally suited for accurate resolution but present a serious limitation for complicated 

problems. For this reason, spectral multidomain techniques have an obvious advantage for 

complicated problems [l]-[3]. 

Another complication that conventional spectral methods have, is their implementation 

in complex geometries. Meshes that are predetermined present a significant constraint. 

Flexible mesh distributions are easily extended to geometries that are not tensor products 

of straight lines (to be shown in a later work). 

Spectral methods that are not constrained to specific nodal points would clearly be 

more flexible than conventional spectral methods. Specifically, a distribution of points that 

more closely approximates the disparate features in the domain could be adopted from 

the outset. Subsequent adaptation to solution features in the domain need not rely on 

smooth mappings. In addition, these "arbitrary-grid spectral techniques" could be used in 

conjunction with multidomain ideas. We focus on formalizing these ideas within the context 

of spectral techniques. 

In this paper, we present some ideas for constructing spectral methods with arbitrary 

grids. We demonstrate these ideas for a case of spectral solutions of hyperbolic equations; 

however, these ideas can be applied to any partial differential equation. To illustrate the 

basic idea, consider the following hyperbolic system of equations in conservation form: 

% = ?m   _!<,<, (1) 
at        ox 

with arbitrary initial and boundary conditions. For spectral methods, a polynomial (in the 

spatial variable x) of degree N, ÜN{x,t), and a projection operator IN are sought such that 

'dUN     dINF(UN) 

Of the spectral techniques, the most popular method is the Chebyshev collocation method, 

in which 7JV/(X) collocates f(x) at the Chebyshev GL points £,- = cos(^).   Note that we 

1 



have here two projections; one involves the differentiation of F(UN), and the other involves 

the way that the equation is satisfied. Thus, the first application of the operator IN occurs 

when we approximate 9' ' by the derivative of the interpolation polynomial that interpo- 

lates F(U) at the Chebyshev GL quadrature nodes. The second application of IN occurs 

when we satisfy the approximate equation 

8UN     dINF(UN) 
dt dx 

= 0 

at the Chebyshev GL points. 

The basic premise for unstructured spectral methods is that equation (2) does not have to 

be satisfied in the same manner in which the operation N
d^ N' is carried out. In particular, 

the derivative operation can be carried out by interpolation at any selected points; the 

equation is satisfied by either a Galerkin formulation or by a collocation method at a different 

set of points. Most importantly, the equation must be satisfied correctly. 

Mathematically speaking, we can replace equation (2) with 

IN 
dUN     dJNF(UN) 
dt dx 

0 (3) 

where IN ^ JN- 

In reference [4], a particular case with this approach has been discussed. The operator 

JN was defined by the Chebyshev collocation operator, and IN was the Legendre collocation 

operator. In the constant-coefficient case (F(U) = U), this method reduces to the Legendre 

collocation method with an efficient way of calculating the derivative by using Chebyshev 

collocation points. We now generalize this notion to an arbitrary set of points, which enables 

us to apply spectral methods in circumstances for which the grid points are not nodes of 

some Gauss quadrature formula. 

The method discussed in this paper is different from using a transformation to redis- 

tribute the grid points. The use of a transformation to redistribute the grid points involves 

approximation of the solution by a polynomial in the transformed variable; as a result, the 

approximation is not a polynomial in the original variable. Our method utilizes a polynomial 

in the original variable. Moreover, the new method can be applied to totally unstructured 

grids. 

Finally, it should be noted that the new method has many similarities with spectral 

elements, although the method of derivation is different. For instance, Patera [5] or Korczak 

et. al [1] used global polynomials (Lagrangian interpolants), passed through the Chebyshev 

collocation points, to obtain spectral elements. However, their work was not generalized to 

arbitrary grids. 
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2    The Differentiation Matrix for Unstructured Grids 

Consider the set of points (xo = 1, £1,2:2? ...,2:^-1,2:AT = — 1), where the points 2:1,2:2, ...,2;JV-I 

are arbitrary. Let f(x) be a function defined everywhere in [—1,1]. The interpolation 

polynomial /N(X) that collocates f(x) at the points Xj is given by 

fN(x) = JNf = Ylf(xj)Lj(x) (4) 
i=o 

where the Lagrange polynomials Lj(x) are defined by 

L(x)   =   (x - xi)(x - x2)...{x -XM-2){X -Z/V-I) (5) 

™ - (i-^-S-w i<-}<-N-1       (6) 

r   , , (l-xU(x) 
iwW   "       2L(=i) (8) 

The Lagrange polynomial evaluated at the discrete points Xk for k ^ j, is equal to 0; 

Lj(xk) = Sjik ■ 

We use N/Jx' as the approximation to -^s Note that -^ has two alternative repre- 

sentations; the first is obtained by differentiating (4) as 

**®=±ftom (9) 

The second representation stems from the fact that NJJX> is a polynomial of degree N — 1; 

therefore, 

^^EfsMLAx) (10) 
ax j=0 

Equations (9) and (10) are used to relate the grid-point values of the derivative f'N(xj) 

to those of the function. The most obvious way is to equate the expressions in (9) and (10) 

at the grid points xk (0 < k < N) to obtain: 

N 

f'N(xk) = J2L'J(xk)f(xj) (11) 
i=o 

To rewrite expression (11) in matrix form, we first denote 

/' = L/irfco), -, f'N(xN)]T,      f = [f'(x0),..., f(xN)]T 
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which yields 

/' = Df (12) 

where the differentiation matrix D is given by 

D = fe) = [L'k(x,) (13) 

Another method for expressing the equivalency between (9) and (10) is to state that the 

difference between these expressions (which is identically 0) is orthogonal to all polynomials 
of degree < N: 

f1   N 

/ n E \f(xj)L'j(x) - fN{x3)Lj{x)\ Lk{x)dx = 0       0 < k < N (14) 

The system of equations that follows from (14) can be rewritten as 

N               i                    N 

X! mk,jf'N(
xj) = J2 skjf(xj)    o<k<N 

j=0                                     j=0 
(15) 

where 

mkij   =    /   Lj(x)Lk(x)dx 
J — 1 

(16) 

and 

Sk,j   -    1   L'j(x)Lk(x)dx (17) 

In the matrix form, equation (15) becomes 

M/'   =   S/ (18) 

where 

M   =   (mkij)       0<j,k<N (19) 

and 

S   =   (skj)       0<j,k<N (20) 

Equations (14) and (11) are different manifestations of the same fact: (9) and 

equivalent.  Therefore, the differentiation matrices derived from (14) must be the 

the matrix derived from (11) (with the assumption that M is invertible): 

(10) are 

same as 

D = M~1S 

4 
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To prove this directly, we show that 

MD = S (22) 

By writing the (i, k) term on the left-hand side of (22), we obtain 

N 

3=0 

If we substitute (13) and (16) into (2), then we get 

(MZ))iffc = £/,,-(*) 
N 

J2Lj(x)L'k(xj) 
j=o 

We now use the fact that every polynomial of degree N is identical with its N-degree inter- 

polation polynomial. Thus, because Lk(x) is a polynomial of degree N — 1 and 

N 

YlL'k(xj)LAx) 
3=0 

is its interpolant at the points Xj (0 < j < N) then 

N 

Y,Li(X)Lk(X3) = L'k(X) 
3=0 

which yields 

(MD)iJc = f Li(x)L'k(x) = shk 

(which is apparent from (17)). This establishes expression (22). 

D 

Thus, we have defined a new method, based on the arbitrary distribution of points, to 

approximate the derivative of a function. The attractive features of the representation (21) 

of the differentiation matrix are summarized in lemma 3.1 and lemma 3.2: 

Lemma 3.1: 

The matrix M defined in (16) is a symmetric positive-definite matrix. 



Proof: 

The fact that M is symmetric follows immediately from the definition (16). In fact, 

m*,j = /   Lj(x)Lk(x)dx = mjik 
J — 1 

We must show that M is positive definite. Let V be an N + 1 component vector: 

V = (v0,...,vN) 

Then, 
N    N 

VTMV = j:j:ml>JvtvJ 
i=0 j=0 

Recall the definition of m,-j from (16). We get 

VTMV =ff ViLi{x) J2 VjLjWdx > 0 

Clearly, the equality sign holds only if V is the null vector. 

(23) 

D 

Equation (23) can be interpreted in a different way. Let v(x) be the polynomial of degree 
iV defined by 

v(xj) = VJ       0 < j < N 

so that 

v{x) = YJVjLj{x) 
3=0 

Then, (23) can be rewritten as 

VTMV = £ v{xfdx (24) 

Thus, every vector V can be identified with a polynomial v{x) that takes the values of its 

components at the grid points XJ. The vector space norm 

VTMV 

is equivalent to the function space norm 

/   v(x)2dx 

Next, we will consider the properties of the matrix S. 



Lemma 3.2: 

Let S be defined in (17), and let V be defined as before. Then 

1 
V1 SV = ^-{vl - v2

N) (25) 

Proof: 

We start by showing that S is almost antisymmetric. ^,From the definition (17) 

sk,j = /   L'j(x)Lk(x)dx 
J — 1 

and integration by parts, we get 

sk,j = L5{l)Lk{l) - L3{-\)Lk{-\) - Sj,k 

We now use the definition of the Lagrange polynomials (6)-(8) and note that the bound- 

ary terms vanish for 0 ^ j, k ^ N to yield 

Sk,j + Sjtk = 8kflSjto — f>k,NOj,N 

Thus, 

N    N 
vTsv = Y,12vJvksk,j 

k=0 j=0 

I   N    N 

z k=0 j=0 

i    N    N 
=     «EE ViVk (Sk,0Öj,0 ~ Sk,N6j,N) 

z k=oj=o 

/   2 2 \ 

which completes the proof of (25). 
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As before, equation (25) has a natural interpretation in the polynomial space. Let v(x) 

be the polynomial of degree N such that V(XJ) = Vj. Then, 

N    N 

vTsv = ^2 ]C vjvkßk,j 
fc=0 j=0 

N    N 

J2 J2 vivk /   Lk(x)Lj(x)da 
k=0 i=0 

=     /    v(x)v (x)dx 

=    ^2(l)--2(-l)] 

Note that 

v(l) = i?o,      v(-l) = vN 

Thus, (25) is an integration-by-parts formula. 

The last issue that we will discuss in this section is the relationship between differentiation 

matrices, based on different grid-point distributions. Consider two grids Xj and yj (j = 

0,...,N). Let the Lagrange polynomial Lj(x) be defined as in (6)-(8), and let Lj(x) be 

defined in a similar way, based on the set of points yj. This defines two differentiation 

matrices (see (11)): 

£* = (<&)=  (Lt)(xj) 

and 

Dy = «*) = \{Ll)'{y3) 

We now show that the two matrices are similar. 

(26) 

(27) 

Theorem 3.1: 

Define the matrix T by 

Then define 

T=(tij)=  L'Ayt) (28) 

and 

(r-1)* = L){Xi) 

Dy = TDXT-X 

(29) 

(30) 



Proof: 

1. Because L\ is a polynomial of degree N, 

Y.Lx
3(*)Ll{xi) = Ll(x) 

3=0 

If we substitute x = ymi then we get 

EL-(ym)Ll(xj) = Li(ym) = 6k,m 
3=0 

which proves 1. 

2. Again, the Lagrange polynomials, based on the grid points Vj, are polynomials of degree 

N; therefore, their derivative can be represented as 

N 

j=0 

By the same token, 

N 

W)'0O  = E **(*;) W)'(*) (31) 

(m*) = nm*i)m*) (32) 

Now, we substitute x = ym in (31) and (32) to get 

W)\ym)   =   ZELUxiXLWxOLKyn) (33) 

The left-hand side is the (m, i) element of Dy, whereas the right-hand side is the (m, i) 
element of T~lDxT; thus, (30) has been proved. 

D 

3    The Legendre Galerkin Method Based on Arbi- 
trary Grids 

Consider now the linear form of (1): 

Ut(x,t)   =   Ux(x,t)        -l<x<l (34) 

"M)   =   f{x) (35) 
UM   =  9{t) (36) 
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We introduce a new method for the discretization of (34), based on the differentiation 

matrix introduced in the last section. Note that the differentiation matrix uses the arbitrary 

grid Xj. With the new method, we seek a vector 

u= [uQ(t),...,uN(t)]T 

that satisfies 

dxi 
M—    =   Su - re0[u0 - g(t)] (37) 

where 

e0 = (1,0,0, ...Of 

The discussion on imposing the initial condition is deferred until later in the paper because 

of subtle issues that involve convergence. Here, we generally will not use 

«i(0) = /(*;)       0<3<N 

unless the grid points Xj have special properties. 

The structure of the matrices M and S, indicated in (34) and (37), leads immediately to 

the following stability result: 

Theorem 4.1: 

The method described in (37) is stable for r > |. 

Proof: 

We multiply (37) by u   to get 

rp Q/Lli miiT _* OP 

u M—   =   u Sa - r« eo[«o - ^(i)j 

(38) 

We use the symmetry property for M and the almost skew symmetric property (25) for 

S to obtain 

1/7 1 

2ltüTMÜ   =   2(ul-u2N)-TMuo-9{t)] (39) 

For stability, we consider the case g(t) = 0; from this case we can clearly determine that 

if r > |, then 

-—uTMu   <   0 (40) 

and stability exists in the norm induced by the positive-definite matrix M. 
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The stability result (39) can be represented in a different way in view of the equivalency 

between vectors and polynomials established in (24). Specifically, let uN(x,t) be an JVth- 
degree polynomial such that 

uN(xj,t) = Uj(t)        0<j<N 

Then, from (24) we see that 

dt 
1 

-- J^Mxtfdx   =   -f^Mu 

=    2Ml,*)2 - «JV(-1,0
2

] - ruN(l,t)2 

Thus, for the polynomial v,N(x,t) we have stability in the usual L2 norm. 

Now, we examine equation (37) from yet another point of view. By, multiplying (37) by 
M_1, we get 

du , , 
—   =   M 1SM-rM-1eo[tto-fl'(0] (41) 

or in view of (21), we obtain 

du 
—   =   Du-TM-%[uo-g(t)]. (42) 

The expression M_1e0 can be evaluated explicitly. 

Theorem 4.2:. 

Let M be the mass matrix defined in (16). Define the residual vector r by 

M-1e0 = f=(ro,...,r7v)r 

Then, 

_ P'N+I(
X

J) + P'N(
X

J) 
j~ 2 

where PN{X) is the Legendre polynomial of order TV. 

(43) 
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Proof: 

We must verify that if f satisfies (43), then the expression 

Mr = e0 

is also satisfied. Substituting (16) into expression (3) yields 

N 

(Mr);   =   Y,mi,JrJ 
i=o 

=    /   Lj(x)y^ Lj(x)rjdx 
J~1 j=o 

Substituting expression (43) into (44) yields 

(Mr),-   =    f Lt(x)f:L3(x) 

(44) 

PN+I(
X

J) + PN(
X

J) 

2 
<£r (45) 

Because P^+1 and P'N are polynomials of degree < N, they coincide with their Nth- 

degree interpolation polynomials; therefore, 

JZL3{x) 
3=0 

P
'N+I(

X
J) + P'N(

X
J) P'N+1(x) + P'N(x) 

so that 

(Mr),-    =   J\(x) 
P'N+l(x) + P'N{x) 

dx 

U(l) 
PN+1(1) + PN(1) 

~LL'i{x) 
Li(-l) 

PN+1(-l) + pN(-l) 

PN+1(x) + PN(x) 
dx 

Recall that 

PN(l) = l,PN(-l) = (-lf 

and that PN and PN+1 are orthogonal to all polynomials of degree < N; the last two terms 

in the right-hand side of (46) vanish, and we are left with 

(Mr); = Li(l) = 6z,o 

which proves theorem 4.2. 

D 
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Theorem 4.2 sheds a new light on the connection between the method defined in (37) 

that uses the arbitrary set of grid points Xj and the Legendre Galerkin method. They are 

the same method. 

Theorem 4.3: 

The method defined in (37) is equivalent to the Legendre Galerkin method. 

Proof: 

Define 
N 

uN(x,t) = Y^Uji^Ljix) 
3=0 

where Uj(t) are the elements of u defined in (37). Then, u^(x, t) satisfies the error equation 

duN(x,t) dux{x,i) 

dt dx 
PN+I(*) + Pkixl [Ml, t)-g(t)] (46) 

The error equation is satisfied because both sides of expression (46) are polynomials of degree 

N. The two sides agree at N + 1 points Xj (j = 0, ...,iV) by virtue of (37), which indicates 

that they are equivalent. Because the right-hand side is orthogonal to all polynomials of 

degree N that vanish on the boundary x = 1, this error equation is the same equation that 

is satisfied by the Legendre Galerkin method [6]. 

D 

As equation (46) demonstrates, the precise method for imposing the boundary conditions 

affects the overall behavior of the method. Section 3 shows that two differentiation operators 

defined on different grids are similar and, thus, have the same eigenvalues. We now show 

that the modified differentiation matrix also has this property. Equation (42) produces a 

modified differentiation matrix (i.e., a differentiation matrix that takes into account the 

boundary conditions): 

D-rR 

where the boundary matrix R is defined as 

Ri,j = TiSjfi (47) 
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Suppose now that we have two grids Xj, yj (j = 0,..., TV). We have shown in theorem 2.3 

that Dx and Dy are similar: 

Dy = TDxT~l 

where the matrices T and T_1 are defined in (28) and (29).  We show now that the same 

similarity transformation exists for the modified differentiation matrices. That is, 

Dy-TRy = T(Dx-rRx)T-1 (48) 

or (with theorem 3.1) 

Ry = TRXT~ 

Consider element (i,j) of the right-hand side: 

N    N 

1=0 m=0 

We recall that 

r\ = 
2 

= RN(xi) 

where RN(x) is a polynomial of degree N and is, therefore, equal to its interpolant. Thus, 

(TRxT~l)i3 = RN(yt)LV(xo) = RN^O 

which proves that the similarity transformation is valid even for the modified derivative 

matrix. 

The Legendre Galerkin method defined by equation (37) is stable; therefore, the initial 

error is not amplified. However, the effects of initial conditions must be carefully taken into 

account. We know that polynomials based on arbitrary grid distributions may generally be 

nonconvergent (the Runge phenomenon). 

The initial error can be decreased with the number of mesh points TV by constructing the 

Chebyshev interpolation as an initial condition. Thus, let 

6   =   cos(^)       0<j<N (49) 

Lt(x)   =   (l-x>)rN(x) (50) 

LiiX)   =    (*-&)(*)'&) (51) 

The Chebyshev approximation for the initial condition is, then, 

CNJ(X)   =   £/(&)Z;fc) (52) 
j=o 
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so that the recommended initial approximation will be 

/(*i)~E/(fc)J*j(*i) 
j=0 

This approximation will provide a convergent approximation for the initial condition. Of 

course, the Chebyshev approximation is not the only possibility; any other spectral or pseu- 

dospectral approximation would do as well. 

We now briefly discuss the issue of implementation. Two methods are available for 

implementing the arbitrary-grid spectral methods. The first method is to form the matrices 

M and S by carrying out explicitly the integrations in (16) and (17). (This technique is 

utilized in the two examples presented later in the text.) This procedure is done once and 

for all for every given set of grid points. Then, the equations are solved as described in 

(37). A more convenient method that does not involve evaluating integrals is to use the 

differentiation matrix D defined in (13) and solve the system (42) with the identity 

M    e0- - 

proven in theorem 4.2. For a large N, the method that will be the most successful is the one 

with the least sensitivity to round-off errors. This point has not been fully investigated at 

this time. 

Finally, an observation in regard to the maximum allowable time step for the arbitrary- 

grid spectral schemes. All spatial operators have the same eigenvalues, regardless of the 

spatial distribution of points (48). Therefore, the maximum allowable time step is the 

same for all schemes. Stability is a matrix property, and depends on all the points in 

the distribution. This observation is somewhat counter to the conventional finite-difference 

notion, in which the maximum time step is governed by the smallest grid spacing. 

4    The Legendre Collocation for Unstructured Grids 

The Legendre collocation for unstructured grids involves the approximation of the integrals 

in (16) and (17) by the Gauss-Lobatto-Legendre (GLL) quadrature formula. Let (T)0 = 

1, rji,..., r/AT-i, T]N = — 1) be the nodes of the GLL quadrature formula and u>/, 0 < / < N be 

the weights. We define a new mass matrix Mc by 

N 

Mc(i,j)   =   J2Lj(vi)Lk{Vipi (53) 
/=o 

where the Lj(x) are the Lagrange polynomials at the points (x0 — l,X\,x2,..., XN_1:XN = 

— 1). Note that this is an arbitrary set of grid points. 
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The matrix Mc may be different from M because the GLL formula is exact to order 27V-1 

and Lj(x)Lk(x) is a polynomial of order 2iV. The matrix Mc is, however, a symmetric and 

positive-definite matrix. 

By introducing quadrature to equation (17), we define a new stiffness matrix Sc as 

N 
sc(i,j)   =   J2L'j(Vi)Lk(m)^i (54) 

/=o 

Note that because of the exactness of the GLL formula, the sum on the right-hand side of 

(54) is the same as the integral in the right-hand side of (17); therefore, 

SC = S 

For this reason, the property (25) is true for the stiffness matrix Sc also. 

The uniqueness of the differentiation matrix D also yields 

M;1SC = M-1S 

which does not contradict the fact that 

because the matrices Sc and S are singular. 

In the Legendre collocation method of (34) with arbitrary grids, we seek a vector 

w= [u0(t),...,uN(t)f 

that satisfies 

CLxi 
Mc—   =   Scu - reQ[uQ - g{t)] (55) 

dt 

where 

Alternatively, 

e0 = (1,0,0,...Of 

du 
—   =   DÜ-TM-le0[u0-g{t)] (56) 

The stability of (55) follows immediately from the fact that Mc is symmetric positive 

definite and Sc satisfies (25). Our aim is to show that (55) is equivalent to the usual Legendre 

collocation method. 
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Theorem 4.1: 

Let Mc be the mass matrix defined in (53). We define the residual vector r by 

M;1e0 = r = (rcn...,rN)T 

Then, 

rj = Plr(*i)(l + *i)2Jp (57) 

where PN{X) is the Legendre polynomial of order N. 

Proof: 

We start by noting that the nodes rji of the GLL formula are the zeroes of the polynomial 

PN{x){l-x2) 

Also, because PN(1 + x) is a polynomial of degree JV, 

N 

Therefore, 

j=0 

2N2(MC^   =   EMc(«',i)^i)(l+*i) 
j=0 

N    N 

=     £ J2 L3(Vl)Li(Vl)P'N(Xj){l + Xj)ui 
3=0 1=0 

N 

=   YlLi(vi)P'N(Vi)(l + Vi)ui 
1=0 

=   2N260,< 

which proves the theorem. 

D 

Equation (56) also can be viewed as shown in the following example. We seek a polyno- 

mial (in x) v,N(x,t) of the form 

AT 

uN(x,t)   =   ^2uN(xj,t)Lj(x) (58) 
3=0 

17 



such that 

dupj(xic t) N 

—K-f^- = j«JV(Ii)t)i;.(IJt)-T^(I|t)K(i)i)-j(f)] (59) 
j-o 

where 

RN{x) = (1 + x)P'N{x) 

This approach is equivalent to the Legendre Collocation Method [6]. 

The extension of the arbitrary-grid Legendre collocation method from the linear case (34) 

to the solution of the nonlinear case (1) is immediate. The issue of implementation could be 

significant. To avoid computing the points % the best choice is to use the formulation (56) 

rather than (55). In this case, Mc and Sc do not need to be computed. 

At this stage, note that for the case 

RN(X) = PN(X) 

we have the Legendre Tau method, with the additional property of an improved time step. 

However, we do not have the representation of the Legendre Tau method in the form of (55). 

5    Unstructured Grids for Unbounded Domains: La- 
guerre Methods 

Consider the equation 

dU dU 
-ft   =   —fc        0<x<oo (60) 

U(0,t)   =   g(t) (61) 

U(x,0)   =   h(x) 

Note that the domain is semibounded. Note also that if g(t) = 0, then 

— j    e~xU2(x,t)dx   =    -I    e-xU2(x,t)dx (62) 

Assume that we have an arbitrary set of grid points 

(x0 = Q,xi,...,xN) 

In the Galerkin procedure, we approximate the derivative of a function f(x) whose values 

at Xj are given by the derivative of its interpolant JN{X). After we define 

L(x) = (x - x0)...(x - xN) (63) 
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we define the Lagrange polynomials by 

Lj(x) = 
L(x) 

(x - Xj)L'(xj) 

The derivative of the interpolant //v(rc) has two equivalent expressions: 

dfN(x) A        ,dLj(x) 

(64) 

dx 

and 

i=o dx 
(65) 

%^ = E/Wfe)£i(») a,c j=0 
(66) 

In the Galerkin Laguerre method, we express the equivalency between the expressions by 

/■oo N 

/(*i)^-/*(*i)£i(*) Lk{x)dx   =   0       0 < k < N (67) 

Equation (67) defines the differentiation matrix D. In fact, if we define 

mk,j   =   (Lj,Lk) 

and 

5fcJ   =   {Lj,Lk) 

where the scalar product (u,v) is defined as 

(68) 

(69) 

/•oo 

(u,u)= /    e-2;u(a;)u(a;)c/a 
Jo 

then we get 

D = M_1S 

As before, the differentiation matrix is unique. The manner in which the matrices M and S 

are constructed leads immediately to the following lemma. 

Lemma 6.1: 

The matrix M is symmetric positive definite. The matrix S satisfies 

S + Sr   =   M-diagonal(l,0,0,...,0) (70) 
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Proof: 

,;.From the definition of the matrix S, we have 

Sk,j   =   {Lj,Lk) 
f°°  _    ' 

=    /    e xL-(x)Lk{x)dx 
Jo 

f°° i 
=   -L3{0)Lk{0) - I    e-xLj(x)Lk{x)da 

J u 
J/-O0 

'    e~xLj(x)Lk(x)dx 
o 

By using the definition of the matrix M and the properties of the Lagrange polynomials, we 

get 

Sk,j   =   -öiflöjß - Sj,k + mk,j (71) 

which proves (70). 

D 

To discretize (60), we introduce the unknown vector 

u= [u0(t)i...,uN(t)]T 

that satisfies 

dix 
M—   =   -Su-Te0[u0-g(t)] (72) 

The stability is immediate, as shown in the following lemma. 

Lemma 6.2: 

Let u satisfy (72), with g(t) = 0. Then, we have the energy estimate 

—uTMu   =   -uTMu - (2r - l)u2
0 (73) 

Proof: 

Equation (73) follows immediately from multiplying (72) by uT and using (70). 

D 
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Lemma 6.1 implies that the method is stable, provided that r > \. Note that the energy 

estimate (73) for the approximation is nearly the same as for the differential equation (64). 

We still must show that the method described in (72) is equivalent to the Laguerre 

Galerkin method. We begin by rewriting (72) as 

^   =   -M-1S«-rM-1cb[«o-fl'(*)] (74) at 

The key issue is to identify the vector 

M-ae0 

which is done in the following theorem. 

Theorem 6.1: 

Let M be the mass matrix defined in (68). Define the residual vector f by 

M_1e0 = r =(r0,...,rN)T 

Then 

where C$ is the Laguerre polynomial of order N. 

Proof: 

We must verify that f satisfies (75) and that 

Mr = e0 

We begin by expanding (Mr) as 

N 

(Mr);   =   X)m«Jri 

=    /    e~xLi(x) J2 Lj(x)rjdx (76) 
J° 3=0 

If we substitute (75) into (76 ), then we get 

N 

(Mr),    =    /    e-LiWYtLfr) 
JO ■   n j=0 
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Because jr;ÖN'+1 is a polynomial of order TV, it coincides with its interpolant; therefore, 

—£(0)   (r) 
N 

i=0 

l/-(0)    i 
dx   N+llx=x> 

Thus, 

If we integrate the right-hand side by parts, we get 

(Mr),- = -L,-(0)4&i(0) + /    e^O*)/^*)«** - /    e"L'^C^^dx 
•JO JO 

The last two terms on the right vanish because of the orthogonality of &°\ and the first 

term vanishes if i ^ 0; thus, 

(Mr), = -Sifi 

and the theorem is proven. 

D 

Another method for getting the Lageurre method on the grid Xj is to seek a polynomial 

upf(x, t) such that 

du?j(xir t) N 

V  ' '    =   EL'jMM*J,t)-rJPA*k)[M*o,i)-9(t)] (78) 
ai j=0 

where (LG)jv(x) is the jVth-degree Laguerre polynomial.   This approach is the Laguerre 

collocation method. 

6     Numerical Results 

We now test the previous theoretical results with two numerical examples. The linear equa- 

tions (34)-(36) are solved with f(x) = sin(7r:r), g(t) = sin[7r(l + t)], and the exact solution 

U(x, t) = sin[7r(a: + t)]. A variety of grids, from Chebyshev to "randomly generated" grids, 

are used to test the accuracy and stability of the method. For all calculations, 128-bit 

arithmetic is used to ensure adequate precision. 
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Figure 1 shows the refinement study on five different grids: 

1. Uniform grid Xj = ^ (j = 0,..., N) 

2. Chebyshev grid Xj — cos(^- 

3. A linear combination of the uniform grid and Chebyshev grid (i.e, Xj = 0.5^—\- 

0.5cos(f)) 

4. Chebyshev2 (i.e., Xj = cos2(^-)) 

5. (Chebyshev)2 for —1    <   x   < 0 and (Chebyshev) 2  for 0   <    x   <  1, where 

(Chebyshev)2 js defined by the grid points XJ = cos2"(^). 

The log10 of the L2 error, plotted against the number of points in the approximating 

polynomials is shown in Figure 1. The problems are run to the physical time T — 2. The 

convergence is exponential for all cases until machine round off is encountered. These results 

are consistent with the previous numerical results. (Note that the Chebyshev grid is the 

least sensitive to round off.) 

The Legendre Galerkin method defined by equation (37) is stable; therefore, the initial 

error is not amplified. However, the effects of initial conditions must be carefully taken 

into account. We know that polynomials based on arbitrary grid distributions generally 

may be nonconvergent. This property, called the Runge phenomena, is easily demonstrated 

by approximating the function f(x) — x h „ ( — 1 < x < 1) on a uniform grid. The 

global approximating polynomials oscillate wildly at each end of the domain, which yields 

a poor approximation in those regions. The Runge phenomena is alleviated by using a grid 

distribution (like the Chebyshev grid distribution), which clusters points near the boundaries 

— 1 and 1. 

Figure 2 illustrates that a Runge-like phenomena exists within the arbitrary-grid spectral 

methods if special precautions are not taken in the initialization step. In this problem, the 

linear equations (34)-(36) are solved with f(x) = J, „2, g(t) = 1+r5^,^p, and the exact 

solution U(x,t) — 1+r5A+i)i2 ■ The simulation is run to time T = 0.001 (a physical time that 

occurs well before the influence of the initialization is lost.) (Running to a physical time 

T > 2 yields exponential convergence on all grids.) Convergence is achieved only for the 

Chebyshev grid distribution. 

The source of the error in this problem is the failure of the arbitrary grid that approx- 

imates the polynomial to converge to the initial condition. For small times (less than 1 

convective sweep), erroneous information is left in the domain, and the resulting method is 

nonconvergent. By changing the problem slightly, however, convergence can be recovered on 

all grids. 
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To initialize the problem, we must construct an approximation to the initial condition 

f(x), based on the grid points Xj (0 < j < N). We want to keep the flexibility and rigid 

structure of the original grid distribution; however, the interpolation polynomial, based on 

the grid points Xj, generally is not convergent. Therefore, we use the method outlined in 

(49) and (52). With this initialization, spectral convergence is recovered. 

7 Conclusions 

A new technique for implementing spectral methods for hyperbolic equations has been devel- 

oped that does not require grid points that are nodes of some Gauss quadrature formula. For 

this reason, this method is referred to as an arbitrary-grid spectral method. Both Galerkin 

and collocation formulations are presented for the conventional Legendre method, and a 

Galerkin formulation is presented for the conventional Laguerre method. 

The basis for the stability of the unstructured spectral schemes relies on a weighted 

energy norm in all cases. Stability is proven for the constant coefficient hyperbolic system. 

All unstructured spectral methods utilize a "weak" imposition of the boundary condition, 

similar to the technique used in the penalty formulations of the finite element method. With 

this imposition, the complete differentiation matrix, including boundary conditions, is similar 

to (i.e., it has the same eigenvalues) the conventional differentiation operator; therefore, this 

matrix behaves similarly. 

The new formulations are demonstrated on two scalar hyperbolic problems. The arbitrary- 

grid Legendre Galerkin method is used in both cases. Exponential accuracy is shown in both 

cases on arbitrary grids. Care must be exercised in the initialization procedure to ensure 

convergence of the new schemes. 
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FIGURE 1. Convergence of the arbitrary grid Legendre Galerkin method on various grids. 
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