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FOREWORD

This IMA Volume in Mathematics a,'•d its Applications

FLOW CONTROL

i-- b•e(! ,'n fhe pr•(•ccdings of a workshop that w• an it•tcgra| par• of the
1993-93 IMA program ,•n •Contro| Theory." Historically, flf)w control prob-

lems ha•e beea addr•.-•d through cxperimcnta| investigations. Analytic and
computatioa! r•'s•.arch had heen ba.•'d on drastically simplified flow mod-
els. llowever, recent[), a ))umber of ma'h•ma•icians and other so|enlists have
been addressing tto•, c,)lLtrol prqblems without invoking such simplitications.
The purpose of the •orkshop w•s to bring t•gether thee scientists and other
mahematicians intere•led is el|t-ring this rapidly" growing re.search area that
will have significant impact ,•n applications.

•s• •hank Max D. Gunzburg,*r for organiting the. workshop and for edi'dng
the proceedings. We aim take '.his opportunity to thank the National Science
Foundation and Office of Naval Ec•careh whose financial support made the
workshop poss)h!e.

Avner l'¥iedman

Willard Miller. Jr.

i
xi



PRErACE

This volurrie cow~ainis the proceedings of the Period of Concentration
in Flow Control held at the IMA in November, L92. This gathering (if
engineers and matheinisicians wn,; especiaily timely ar it cohicided Vk h
t~ho ormergence of the role of mathemnatics, and systematic engineering anal.l
yik ini flow control and optimizai~tion. Since this m~eeting. this role has
sipi~fiantly expandIed to the point where now sophisticated mathematical
and computattional tool!s arc being increwsingly applied to the control and
Optimization of fluid Hlow'. '11111. threse proceedings ser~e as a valuable
neeordi of sorne important wt.ric Ibth has gone on to influence the practi-
ral, everyday desian of flows Mnorover, they also represent very neArly
the state '4f the ait. it, the formulation, analysis, anid computation (of flo'w
co)ntrol prohleniq.

Mly own article in the proce.edings attempts to sct the stage for the
rernninhIg articles by dleseriloing the hist0Tv Of 3t~teMptS at flow cont~rcl arid
ontimiration and explaiiiing why the itinie is rip' fur tle introduction of
sophisticated tools froin the theory of partial diffcrwitial equationsi, from
optimization th--ory, and from computational flufid dynamics into the ,tudy
of flow control. The, remainit.g articles in the volume( show how these tools
may be introdiiccd to attack flow control prrih11ems. Mathematical issues
in opinimal control, feedback control, and controllability of fluid flows are
treated in the. articles by E. ('asas, A. Fu;ý-ik~lv and 0. Imanuvilov. K. Ito,
H. Trait and J. scroggs, s. stitharan, s. stojinnovic. r. Sv.obodny, and R.
1einan. Compntational studies of algorithmrs and of 1-rticular applica-
tionis are, found in the artickcs bv 11. Hank' and R. Smth . llorggaard. J.
Borggaard and J. flurns. .1. Brock and W. .Ng, J. Burkardt. and J. Peterson.
Y.-R. Ou, G. St~rin-nilo, and A. Taylor, 1'. Newiniin. G. Hou., and 11. Jones.
Among the applivatiow, considered in this volume aire' a-mstics' compress-
ible fiows ated ilnCwn~rersiblte flows, chemical vapor d. pns'fion, turbulent
flows, and flows with shock waves.

I would like t~o expre~s my sincere thanks to all of the participants in
the Period of Con cent rat ion, and especially to, the specakers and those who
cont~ributted to therse, proceedings. 'Ibankt, ar', also disc t'O the sta1ff of the
151A for tht,-ir hell, in the production of' these proonrirngs. Of special note
in this regard arn Patrici-i V. Brick, Ruth Capp, Stcrphan J. Skogerboe and
Kaye Sm-ith. Finally. I would like to acknowledgo. the hiospitality and help
extended to me- and the other participanis by Avner rriedman and W illard
Miller. Jr.. Withcout, therni. neither tbe Pf-riod of C-onc-entratioi iM Flow
C o n t r o l n o r t h i s vd o lm e w o u l d h w~ e b e e n p o s s i b l e . M x R G m b r c

fllacksbur%, 1991
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ACTIVE CONTROL OF ACOUSTIC PRESSURE FIELDS
USING SMART MATERIAL TECHNOLOGIES -

H.T. BANKSt AND .C, SMITh'

Abstract. An overview describing the use of pietoeramic patches in reducing noise
in a *tritiiral acoustics settig is presented. The passive and active contributions due to
patrhes which arc bonded to an Luler-Bernnulli beam or thin shell are briefly discussed
and the results arc incvrpsrated into a 2-1) structural acoustics model. In this model,
an exterior ntoise svurce causýes structural vibrations which in turn lead to interior noise
as a result of noulintear fluid/structure coupling mechanisms. Interior sound pressure
levels are reiluced via patches hbndprd to the flexible boundary (a beam in this case)
which generate arrr bending moments when an out.of-phase voltage is applied. Weil-
posed•nes retoki. for the infinite dmensional ysterm art discussed and a Galerkin scheme
for approximating tiw system dynamics is outlined, Control is implcmented by using
LQR optimal cont rol theory to calcilate gains for the linearized system and then feeding
these,- gains back into the nonlinear system of interest, The effectiveness of this strategy
for this pt oblm is illuhcrat•d in an cxarmnpi.

1. Introdtction. The recent developtent of highly fuel efficient tur
boprop and turbofan engines which also produce high levels of interior cabin
noise (estecially at low frequencies) has stimulated a substantial effort on
the developmenrt of a comprehensive active control methodology for interior
pressure field eavities that have been excited by wmte primary or external
source In this o.vrvi.-w paper, we shall discuss recent approaches and
preliminary results in the growing effort to develop "sinart' or "adaptiv&'
material concepts (n•ttriala tlmr possess the capability for both sfnsing
and actuation are often called "smart" materials) and control strategies for
such a comprehensive methodology.

Interior cavity noise in aireraft with turbroprop engines is produced pri-
marily through (tnonlinear) fluidlbtrueturc interartion mechanisms. Tihe
turboprop blades produce an external acoustic pressure field which is con-
verted into mechanical vibrations through fluid/structure interactions at
the exterior aircraft cabin walls. In turn, these mechanical vibrations pro-
duce, through interactions of the interior cahin walls with the air in the
cabin cavity, pressure waves or aln interior acoustic pressure field.

Our disrussion here focuses on a time domain statr space approach
to active or feedback control of noise in the interior acoustic cavity. We
aro espereinly interested in models and methodologies which treat trait-

" The research of KI.1B. was supported in pprt bv the Air Force Office .f Scientifie
Research under grant A FORt -43-1 91.tE9 This research was also supported by the National
Aeronautics iandr S-pace Administration under NASA Cnntract Numbers NAsI-IilOS
and NASI-1•,080 while HL8113 was a visiting *cientist and R.C.S. was in r-idtence at
the Institute for Computer Applications in Science and Enginecring (ICASE), NASA
Langlcy Reisarch Center. liampten. VA 23681.

t Center for Research in iein,- Computation, North Carolina State Univen4N.ty
Raleigh, NC 27695.

* Depertment of Mathtnmatics, Iowha S:tate University. Am'si,. IA 53011.
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2 HlT. Banks and H.C. Smiu It

sient. dynamics. There is a substantial literature on active control of noise
in a frequency domain setting (see 118,21,24,26.28] for sonme examples and
further references to both expcrimental and analytic efforts) as well as
a growing literature on infinite dimensional state 9pace timie dotnain ap-
proaches (e.g. f2,1,8,0,101). Earlier efforts by most researchers focuted on
a control methodology implemented through stcondary source lechniques
with the input or tecondary noise bassed on feedback of noise levels in the
acoustic cavity. In this approach, a system of microphones and speakers is
strategic'ally placed in the interior cavity where one can sense the pressure
field (composed of the primary source plus any secondary sources present.).
Trhis information is used as feedback for the actuators or speakers which
produce a (hopefully) optimally interfering signal (secondary noise) to re-
duce the total noisý' levoŽls in certain critical zones (related t~o passenger
comfort). Both frcqiuency and time domain settings hle been used in pro-
viding not. only "proof rf concept" analyses but also in designing and and
implementing these idea.- (to datc, mainly in luxury cla~ss autoinobilt,).

More recently, a second approach utilizing smart materials tech nology
has captured the attention of investigators. There are a hirge number of
classes of smart materials (e.g. electrorheological fluids. nlagnetostrictivces,
shape memory alloys) but we shall restrict our discussions in this paper
to piezacerarnic devices such as piezoceramic patches which, when bodndd
to a structture such as a beam. plate, or curved cylindrical -hell, act as an
rlectro-niechanical transdlurer. When excited hy an electric fleld, the patch
induce-s a qtrain in the mAteriel t~o which it is bionded and hience can be
employed ;L9 an actuator. Moreover, if the lao~t. material undergoes a defor-
mation (eithcr bending or extenslon/coxitraction), this produces, a straiii in
the patch which results in a voltage across the patch that is proportional
to the stra~in and thereby peýrmits the use of the patch a-S a mechanical
sensor. If conetructed and wviredl with proper circuits, these patches can
be employed a- s lf-qerv-i!ig itcfutmtcrm" f20i]. Ot reby providing a smrart or
adaptive mnaterial capability fojr the 0,itrucire to which the devic-e i.- bonded
or which it is embedded. When combined with a computitional adaptive
or feedback control element, the potential for self-controlled or intelligent
structures is enormous.

In our presentation and discussions of active control of noise, we Ishall
concentrate on artuator aspects of piezoceramics. In the noise euppre"sion
example detailed below, we tacitly assume that acoustic pressure in the
cavity and wall displacements and velocities are sensed for feedback. for a
complete smart material system, one would use piezoceramic. (5train) sen-
sors and cavity pres-Ure sensors to construct a state e-stimator for feedback.

The motivating example we consider consists of ata exterior nioiseý source
which is separated from an intexior cavity by an active wall or plate. This
plate transmits noise or vibrations from the exterior field to the interior
cavity via fluid '/structure interactions thus leading to the formulation of
a system of partial dilferential equations consisting of an acoustic wave
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equation coupled with elasticity equations for the plate. The control is
implemented in the example via piezoceramic patches on the plate which
are excited in a manner so as to produce pure bending moments. It should
he noted that. the incorporation of the feedback control in this manner
leads to a system with an unbounded input term (in this case, a system with
input coefficients involving the Dirac delta "function" and its "derivative").
Experiments are being designed and carried out at NASA Langley Research
Cenuter in which the interior cavity is taken to be cylindrical with a circular
active plate to which sectorial piezoceramic patches are bonded.

While the motivating structural acoustics applications are three dimen-
sional in nature. many of the theoretical and numerical iRaUt5 concerning
system modeling, the simulation of system dynamics, estimation of physi-
cal parameters, awl the developments of feasible control strategies can be
studied in 2-1 geornetriei, In this work, we consider a 2-D domain Q(t)
which is bounded on three qides by hard wails and on the fourth by a flexible
beam (see Figure 1). A periodic forcing function f. modeling an exterinr
noise source, causes vibrations in the beam which then lead to unwanted
interior noiseý.

y

Wi() r

SJ
r,(t)

Fio. 1. The 2-D domain.

"This specific problem was chosen since it is a two dimensional slice
from a three dimensional cylindrical domain which models an experimental
apparatus consisting of a rigid cylindrical pipe with a clamped aluminum
plate at one end.

As a 2-D analogue of the plate. the perturbable boundary t1(1) (see
Figure 1) is modeled by a fixed.end Euler-Bernoulli beam having Kelvin-
Voigt damping. Bonded to the beam are s pairs of piezoceramir. patches
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which are configured and excited in a manner so as to produce pure bending
moments (see Figure 2). We reiterate that it is through the excitation of
these patches that the sound pressure levels are controlled.

The acoustic response inside the cavity is modeled by a linear wave
equation with zero normal velocity boundary conditions taken on three
walls in order to simulate the rigid walls of the experimental pipe. The
boundary conditions on the fourth (beam) side of the acoustic cavity result
from nonlinvar velocity and pressure couplings between the acoustic and
structural rE.sponse" (as discussed in [14], these coupling terms are nonlinear
since they take place along the surface of the vibrating beam). Finally,
under the assumption of small beam displacements which is inherent in the
Euler-Bernoulli theory, the variable domain %I(I) is replaced by the fixed
domain Q = [0, a] x [0. 1' as shown in Figure 2.

Y ,r

I t

" 4,

Fia. 2. Acoustic caoity with pi"nccram~c p-tcoj crc!in•-p-r. .

Tn termq of the velocity potential di (so that p pJ 6t is the acoustic
pressire) and the transverse beam displarements ir. the strong form of the
approximate controlled model for the cmupled systrm is thrn ghvun b%

V oy.n , c ry , >o.

V, p , w(f. x)) . h = w..(t,x) 0 < .r <0 . t o > 0,

0"2.M < a"<
(1.1) Pt+ t9. = -PfO, (t1X: u(tx)) + f(tX)

S--)-=-(t,0) = -w(t. )-•=-(,)) = t > 0

O(Oz, y) = 'O(x,?0) u:(O,.c) = u;,(x)

,(O. ,. = - , , u ( x) = ')
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(for further details concerning the development of this model. see [14]).
Here p, p! and e are the beam density, equilibrium density of the atmo-
sphere. and speed of sound in the cavity, respectively. The general beam
moment M(1, z) consists of an internal component, depending on material
and geometric properties of the beam and patches. and an external com-
ponent (the control term) which rcsults from the activatiou of the patches
through an applied voltage. Specific descriptions of these moments in a
variety of settings arc given in the next section. Finally, the nonlinear cou-
pling between the beam vibrations and the interior acoustic field manifests
itself in the velocity tram VU(t, r, uw4, z)) -. = w,(•. x) and the backpres-
sure p;ý%(tr,-vf, z)).

2. Piezoceramic Patch/Structure Interactions. As discussed i1
the last section, control is implemented in the systenm through the excita-
tion of piezoceramic patches which are bonded to the beam. This affects
the dynamics of the beam in two ways. The first effect is passýi4v and results
from the structural changes incurrcd with the bonding of the patches to the
structure. In addition to the patch thickness, there is a niontrivial bond-
ing layer. and both contribute to a moment of inertia which differs from
that foerud in regions of the structure not covered with patches. More-
over. the density, Young's modulus and damping coefficient of the glue
and patch differ from those of the beam, and as a result, these paramne-
tees must he modeled as piecewise constarnts in order to accurately match
sysot•m frequencies (see 1117). The third passive contribution is due to the
piezoelectric property which dictates that when the patch is subjected to
an in-plane, strain, a voltage proportional to the strain is produced, Hence
longitudinal and transverse vibrations in the beam lead to the generation
of current which provides additional damping in the Ftructure. The final
(active) contribution fron the piezocerainic patches results from the in-
planke strains which are produiced when a voltage is applied. This leads to
the generation of external moments and forces which enter the equations
of motion as external loads,

The initial part of this section contains a discussion concerning the
contributions due to patches which are bonded to an Euler-Bernoulli 112 am.
The changes which are necessary for extending these arguments to plates
and shells are then ontlinted in the latter part of the section with further
details given in [11].

2.1. Piezocerarnic Patch/Beam Interactions. In the discussion
which follows, we consider an Euler-Bernoulli beam of length t, width b and
thickn(es h as depicted in Figure 3. The Young's modulus, ma.s density
(in mass per unit volume) and damping coefficient for the homogeneous
beam are denoted by Eb.pb and cDb, respectively. Bonded to the beam
are piezoceramic patches which can be mounted either individually or in
pairs as shown in Figures 3 ond 4. In the initial discussiron concerning the



ADA294785

H.T. BwuJs wid R.C. Sudih

contribution due to the patch pairs, it is assumed that both patches have
thickness T, Young's modulus Ep,. density p,,, and damping coefficient
CD,.,. Moreover, it is a~.sumed that the bonding layers for each patch have
the same thickness, Young's modulus, density and damping coefficient, and
these parameters are tienoted by T61 , E~t: pbt and CDbe, respectively. We
emphasize' that these assijmptions are made solely for clarity of presenta-
tion, and similar resu;hs can be obtaincd in an analogous manner for the
more general case in which thie patches and bonding layers have differing
thicknesses and mattrial properties (see, for example. [16]).

For an Euler-Bernoulli hbani having this configuration, force and mo-
nient balancing yields the strong form of the dynamic equations

8?t", 014,;

(2.1)
LL ' _ - 0__

where N, and Al, are the internal force and moment resultants. respectively
(see [12,16]). As depicted in Figure 3. u: and u denote the transverse and
longitudinal displarements, respectively. The external surface loads 4,q,4
and ih., denote normal forces, in-plane forces and moments, respectively.
For patch pairs with edges at x, and z 2, the density of the btructure is

p(z) = pshb + 2b(pbtTbt + ppeT) .r,(x)

where the characteristic function is given by

X I 5 X 5• X2r'L
(2 .- { , otherwi•e

y

h " 0 I 2

z 3 hNx

Fir,. 3. Cimztilci'cr beam with pitzoccramic patches.
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A corresponding weak or variational form of the equations can be de-
termined by choosing V = iql (ro) x H2(ro) for the space of trial functions
where ro denotes the beam and the subscript b again d'notes the set of
functions which must satisfy the essential boundary conditions. Through
an energy derivation, one arrives at the variational form for the beant equa-
tions

Ix()-i- ,' -" d-rJ = o
(r•.OI

(2.3)

for all ol 6 H'(F0 ) and 6a C H2(t'o). Hltre .', and M.. are external hIr
force and moment resultants. At distuh-id in [16*, the surface load, 4,
and fhi of (2. 1) are locally related to the forces and montets N, and it,
(which are more natural quanlitim, to use in a weak formulation) through
the expresions 4, = -.- rn = -- Global exprcssinns for the
specific loads which rtsult from the activation of the patches in both the
strong and weak formulatiun, are discussed later in the section.

TII

(a)

strain

Fts. 4. Strain distr•bution for tht compoite itructure undetgoirty &cnding and
eternsion: (a) patch pair, and (b) singto patch.
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Internal Moment and Force Reslitants

In order to determine, expressions for tile internal force and moment
resultants N, and G,, the patch pair confitgration illustrated in Figure 4a
is considered first. fRci use thete resultants depend upon the stresses and
ultimately upon the strains occurring in tile structure, the description of
the resultants begins with a description of the in-plane strains.

In acerordance with the Euler-Bernoulli theory, the strain is assumed to
be linear and is continuous throughout the combined structure. With c and
K denoting the inidsurface strain and change in curvature, respectively, the
strain at an arbitrary point in the beam, bonding layer. or patch is given
by e = c - Pz where : is the distance of the point from the middle surface
of the beam (see Figure 4n). Bec anqe of the differing Young's moduli and
damping coefficients in the. beam, bornding layer and patch, the stress slopes
will differ in the various layers. Under the &asumption that the stress is
proportianal to a linear combination of strain and strain rate, the stress is
given by

J Eb + colbe beam
(2.4) c b E&e + Dtt/ ht,1iling layers

Ert'e + cDri patches .

"Fihe eOeflicients CD, and cl)!t are the Kelvin. Voigt damping coefficientis
for the beam and I,onding layer while the ceefcient er,,.. is taken to be
a combination of the Kelvin-Voigt damping cocffh-ient for th, patch and
the damping which results from the produetion of current when the struc-
ture vibrates. This latter contrihution to the damping results from the
piezoelectric effect of the patche-v which dictates that. a voltage is produced
when the patch is subjected to in-plane strains. Under the a.sujuptiou that
the Kelvin-Voigt (material) and electrical damping have approximately the
same types of effect in the pnrch. we have combined the two into the co
efficient CDr,. which is considered to he unknown and like the other pa-
ramet*.rs. must ultimately he estimated using data fitting techniques with
experimental data when con.sidering actual applications. We also point out
that the expr m-sion (2.4) can emaily he generalize, to include the possibility
of differing marerial properties in th'- two patches or bending layers.

The force and momrnf. retultantr are obtained by integrating the stress
acrosF the thicknem; of the structure thus yielding the expressions

b ] dz . regions without pathest
(U•5) "\: = .!÷r,+

= ] , dz , regions with patches
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and

(TO .11, b/n., dz , regions without patches

(2.6) Mr =2+r+

el t& regions with patches

The substitution of (24) into (2.5) and (2.6) yields expressions for the
resultants it termis of the utidsurfact strain cr and change in curvature te.

By considering infinitesimal deformations of the middle surface. e and K
can be related to the longitudinal and transverse displacements us and u
through the strain-displacement equations

OU 02w

(see f25J pages 9 a•d 46). For a beam having two patch•s bonded fo it:
the internal (material) force and moment re;ultants are then given by

On.V Eh(x) + Ch(t 82u
(2,7)01aa

M(2, El(z)•Tz- + eJ(r)

where

Elx) E&lU f 21, lJwbT + FEVtI XP(Z P

14-,h~ + 2- '4erTe, I+ Fpt.a4r.] ~r~)12 3

cpA (r) =Cp~bM + +2& fez) sITM + trir TI xprd(r)

Cq1(r) C Dt.- 14 T rtlhiCr6 ~i>s

Here vx,(r) again denotes the characteristic function described in (2V.),
and the constants a•bi and a3p, are given by abte = (4/2 + 7-)0 - (h/2)s
and aspe = (h/2 + •it + T)3 - (4/2 + it)'.

The substitution of the force and moment rultantvs in (2 7) into the
dynamic equations (2.1) yields the equations of motion for the combined
structure in terms of the transverse and longitudinal displacements w and
u. As should be expected for a brain containing a pair of identical patches
which are bonded symmetrically about the middle- surface, the differential
equations (under the first order Euler-Bernoulli asslimptions) describing
the vibrations in the two coordinate directions are wnroaqtpld.

To see how this differs from the case in which a single patch is bonded
to the beam, we now consider the case in which a patch of width T is
bonded to the beam over the regiou rj < a; <_ x2 as shown in Figure 4,W
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Integrating the stresses through the combined thickness of the structure
yields the resultant expressions

Ou , 02u O•'•, . •w
IV, = Eh(x) - + cDh(Z).r -2 + E2 (.r)f- + c42.() 0"'

(2.8) 0 02,,

= EIX) +C-D r) + E2 ( )- + ei, 2(X)L
Ox 2z~

The parameters in this case are given by

.'h(x) = Eshb + b 'EbtT + E•VT] X)

E 1(.T) = E12 [E .,'aabn + Ere.a3rtl Xp(z)
b

Ej(X) = b ~ ~r

_,h(x.) = rhn + b [(c.NTU 4 CIJ,] .1(,e(r)

C ()=b [r a. + r,,j.7.p,] X,1,(X)
) 2 +

b
CD'-T ý-- [CoH(126 + C fl~plp(.r)

with a36 and a3r, defiieJ as before rind tvj.; and a2r, given by a~t1  =
(h/2 + Tbl) 2 

- (h/2)2 , a•.r = (h2 4 T + T)2 - (h/2 _4- T,)2.
When the force and inoiient expr,,esions in (2.8) are substituted into

the dynamic equations (2.1). it is apparent, that the longitudinal and trans
verse vibrations are couphtd as a result of the asymmetry of the structure
due to the single patch. This is in contrast to the case when patch pairs
are bonded to the beam and helps to indicate the, in general, nontrivia!
effect that the patches have on the passive or material prope-rties of the
structure.

External Moment and Force Resultants

The second contribution from the piozoceramic patches is the gen-
eration of external rionients and forc-s which results from the conver..-.
piezoelectric property that whe,, a voltage is applied, in-plane strains are
induced in the patch. TIhe magniitu de of these induced free strains is given
by

dai •

T I
where d3: is a piezocerarnic strain constant, and 11 .nd 1; are the voltagez
into the two patches: ini the pair. We point. ouT that when a voltage is applied
to a free patch with edge cmordinates rI and x,, the point iý = (ri + x 2 )/2
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will not move whereas the symmetric points on either side will move an
equal amount in opposite directions. This motivates the use of the indicator
function in several of the following definitions.

The stresses due to the excitation of the patches are given by

(ff},)pe = -E.r,,e , (r, =-Ee,.

with lhe negative signs resulting from conscrvation of for"cs when balancing
the material anid induced stresses in the patch.

The integration of these stresses through the thirknris of the patches
VieldI the expressin.,

(,,,,,= ft..)"o., + 01,01-X1,W

(N.),.. = (N,¥.),., + (N,')1 ,2] x,,(z)S: ,(r

where

=-2 V,1 o5d+h -4 211; + 1TWI
22+t ~ . = -G ,J d , i(h 4 2 T t, f rT ++j

(Tt,)1,, -... rbdait5

for the external momentr and forces generated by the activation of the
patchese The preseucr of the indicator function

Z < (I) + X2,)/2

(2.10) SI2r).= 0 + x*)12
z > (z 2 - 12t/2

reselts from the fact that for homog.neous patches having uniform thick-
ntss, opposite but equal strains are generated about the point z = (z, +
Z2)/2.

ihrr expres-"ions can then be substituted directly into the weak cqua-
tions (2.3) as load con the beham (with 4,, = 0 and IV. = ( I4-.,, Ar. =
(M, le). It order to determine the patch loads for the strong form of the
beam equations, the corresponding surface moments and forces are found
via the relationships

and these latter vajlues are used in (2.1). We point iour that this recultr
in the need to differentiate across diseontinuities in characteristic and in-
dicator futctions (once for the forct, and twice for the moment) whereas
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this problem is avoided in the weak formulation since the derivatie" are
transferred on the test finctions. In fact, the effect of the characteristic
functions in the latter ca-w is to simply restrict the integrals to the region
covered by the patches.

The gcneral niOrneiit.s in the beam component. of the structural acous-
tic system (1.1) can now be drscribed in terms of the internal and external
moments just discuwsed. By combining both the passive and active contri-
butions due to a single pair of patches which are excited out-of-phase: the
general moment is given by

•M• = Mt- (r

where the internal and external moments are

o"11, 83 U
AI±+ = CD rDl(:)-)

(A),,,=- Er,bd3a(/ + 215, + T)Vk,{() = ATlxr,(r)

as given in (2.7) and (2.9), respectively (the latter exprcssioij is oLthined
by taking V V V1 = -V.: in (2-9)). We nmphasize that the out of-phase
excitation of the patches produc,.> pur" bending moments and hence only
transverse vibrations are prernt in the beani response.

For a system in which 6 pairs of pathc-, are hvzded to .& hbam and
are excited omt-of-phalr', the beam component of t. s~yir.m (1.1) has the
forir

P()!!i'-' + a,.Efix)•,' +" e),• (-• " u;,:)
00 -o, ..,azqM
f+ ,t).- 2 - X.

where , dermiles the charartrristir finction over .Ihv i"ý p',itd pair
and uiO) is the voltage into the ith pair. The parameters El and CDJ are
given by

EI(x) = 2b [E +.a3 , +

hPb 2b ~~~,3r.

CDI(X) =- Cn, 12 "T tcb,(: , 4 apcG1V,:, kpej-,('

while the patch paramcrrrs are given by K51 = E~r,1 ,(h + 2Tq, + 7;)
(in these definitionis, the bonding layers and patcies in the iP4 pnir nre
considered to hawr. thickness Tj;, and T, respectively). We n,,t, that the
discontinuous parameter. P. El. en) and K.5 lead to seconfd dc-rivatives of
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ehararteri'tic functions which causes difficulties in the strong form of the
equations. The transfer of thise derivatives onto test functions eliminates
these problems in the weak form of the equations and is one motivation
for using the weak form of the system equations as discussed in the next
se',tion.

2.2. Patch Contributlons to Plate and Shell Dynamics. In the
first part of thiv section, the contributions from pie~oceramic patches to
the longitudinal and transverse vibrations of an Euler Bernoulli beam were
examined. It was noted that the patch contributions could be categorized
into two types: the first resulted from the structural changes incurrcd when
the patche% irtc: bonded to the beam while the second effect was due to
the activation of the patches when a voltage was applied. These same types
of effects result when piozoceramic patche are bonded to more complex

structures such as thin plates or shells.
The motion of a plate differs firm that of a beam in that two 'et'

of longitudinal motion are present with the stretching ii one coordinate

direction related to the contraction in the other through the Poisson ratio
v. In thin shells, the transverse and longitudinal vibrations are coupled due
to the underlying curvature of the structure. However, tonce ih,. unele.dying
dynamic equations in terms of the force and moment resultants are known.
the effects, due to the presence and activation of the piezoceraznic patches
cAn be determined in a manner analogous to that di-cussed above for thin
beamns (see [16*).

To illustrate, we consider a thin circular cylindrical shell of radius R,
thicknms h and having the axial coordinate z as shown in Pi~ure 5. As
in the beam discussion, the variable : measures the distance of a point oil
the strurture from the corresponding point on the middle turface (z = 0)
along thr normal to the middle surface.

Fir.. 5. The then cyhudrtcalshtlt,

An A ?)9A9-'?q
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As discussed iu [16], the infiluite±siinal Stratin relationslhip.- for a cylin-
drical shell are

=r '0. + ZKZ

T4 = (l Z,

I [.r#+1

wI:-r. C:. and v-o are' nncrnial tranril at an arbitrary point within the cyhin-
drical Ohell awld '., iF4 the' i~har Farain. lle'rc r,c,,~ and r~ are the normal
and shecar ,train4 In tie'- ni,iddlvqiirfarc and K~, K, and r are the midsurface
chiatigo's in eiirvati:re and midsurface twist (see [23), page 8).

In t.~rnr of.Ow ihe~xial. tangentini and radial displacements u, I- arid
u* respecti%.cly. tlv? txjprvssiow for tho mi(Wlirfro, strains arid changes in

curvat ure! for th cylindrical dilel are'

r)u 1 (91 U, ( 1 i

1 49214 1 Ov a!,' i i' = 2 2 01i'
KY + -

If a ge'ne'raizd llooke's law in whic~h strest is afrýum~ed to he proportional
to a linear conibinalion of'si rain a.,,,] strain r~tc. is iiscd '15 the constirutive-
r-rIation. the stress,'s in th ý-tl are? givtn lo,

CI))

EI~

where' a,. and crý are normral btr#Et-c' a2d (,, aii (re., art- taneential shr-ar
srressý7s The conw:anis L, v', at,.i cLv. aie tiw Y-uing's~ mc~diflus, Po~isson
ratio, and danmping coefficie'nt EPr the rhell. Sirarilar relhtions ar"r found in
the hrnnding Inyryrs and rarches 've~ (.2.4) for at.-dogouy ýxpro'sinrs for the,

The irtcrina) or mwaerial ,:(-jn(art and force, resultanrts are obtained I-,
inrgt'ra-.ing 1het t's the hc~iknrs 4~ the struicturct. For patxlita
havir.z tfiirkY:vt! I av,! 1wiriing bwcrr of 'hirkness T,,, this yiel'k Llef.



ADA294785

Active Contra) of Ac, - Pv-.atre F iJ, |5

expressions

[I, /2+7'= J 'j)dz

[ =, I /b-T" ."-T

in regions of the structure covered by the patches with similar expresaions
in those region of the structure consisting solely of shell material (thre limits
of integration in this lt~ter case are -h/2 and b/2). Explicit dc.tcriptions
for these internal moment and force resultants can he Ibimnd in rioj.

In a shell which is excited| by the activation of piezoceranzic pat•ches.
the external moment s and forces are due to ¶1w in-plane s'tratns

hl2+ + 7)v *•v

,,= {(Girt, = (t•).t, * =-(- pe = (I•,t =

which resmit from the input of the voltages ¾• and V.• into the outer and
*nncr patches. The resulting external stresses are given by

(V~e (or 1 = - -*: (aro)pe = (o4,v. - -
(I:, (:o, - 1• - 2•"

For a patch with bounding values r1 , r2. 6; and 62 t~he total entem•a?
line moments and forces are

(M : = (-• - (mr)rt"7 Cox "

(Mie = j(,•h W, + (M8 ]x.{z•O)

(2.12)
VN 1 )r. [ ,•}e + {N7 )p•e; X{pe(Z* G)S,.2 (x)Sj,.(Ql)

(,', )pe = h', )v,, + (A', )voI.v.j • Apt .-(t .}6S1 .2)i.2$J

where the indicatr function Su,2 () is defined in (2.10}) (with a similar
definition for 6 g er c)) antd

£l z<r•<_,O.C:O<O,,
,•,(z.g) = . otherwise .
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The individual patch moments are obtained by integrating the external
stress distribution through the thickness of the patches in the same manner
used in the beam analysis (see L16]).

In order to obtain a strong form of the equations of motion, force and
rmoment balancing can he umed to obtain Donncll-Mushtari shell equations

0"1 a__ axe, _O(N,.,

&2 ) .2 R 502 2 ( 5- .

2(Mz) ) 1R (M9)X.
= , Ox 0 O0

(see 'l6.23] for a raonre detailed derivation of these equation.s as well a.,s a
discussio, conRcering the nssur ptions that are made in obtaining this and

other forms of the equations of motion for a thin shell). The contributions
due to the patches are incorporated in the internal moments and forces
(2.11), the extrrnal moments and forces (2.12), and the variable density

3. Weak Form and WVell-P(,sedness of the Structural Acous-
tics Model. Am discussed in the last two sections, the incorporation of
the piezoceramic patch contributions into the s~rong form of the model-
ing system equations leads to first and second derivatives of characteristic
functions since both the internal and external inomnents contain disconti-
uuities at the rdges of the patches. This yields an unbounded control input
operator and leads to difficulties when approximating the dynamics of the
coupled system. To rkvoid these difficulties, it is advantageous to formulate
the problem in weak or variational form (the use of the variational form
also permits the use of basis funitions having less smoothness than those
used when approximating the solution to the strong form of the equations ).

3.1. Weak Form of the System Equations. The stat51, for the
secnnd-order form of the 2-D structural acoustics problem i.s taken to be
c = (n. ut, in the Hilbert space H = L'(Q.) x L2 1l,,) with the r-nrrgy inner
product

, = •¢€,~dw + p.J5''( " ) I ( I ) L IP, iur+

The choice of thi space 1710), defined as the quotient of L2'(S) o\ve(r the
constant finctions, results from the fact that the potential, are dc~rrmined
only up to a. const ant.
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To provide a class of functions which are considered when deflning
a variational form of the problem. we also define the Hilbert space V =
f(t(n) x H02(r 0 ) where ft(jQ) is the quotient space of H1 over the constant
functions and H1('(o) is given by Ht1(ro) = {0 C HJ(ro) : O(z) = t,'(z) =
0 at z = 0. a}. The V inner product is taken as (here and below we use
the notation D = A)

As disnssed in j14I integration in combination with, the use of Green's
theorem then yields the nonlinear first-order variational form

/ + %¼puinedwd+

+ Pi<5vcýi V -w lfr+ EID'tD 2'id7

('3-1)
(3.1) 42trj D 212 + pi Iot'du)q - wv,g)}d

the ith patch). We note that the nonlinear coupling term can be written
asMt Z , (zuItrX)) of((, z, 0) ±0,(. X,u .) where 6t4t,T. w(tz ))
6tM. Z, w(t, z)) - 0t(t, r. (). We will make uie of this decomposition in the
abstract formulation of the nonlinear system as a perturbation of a lit-
earizPd system in our discussion below. Again, a more complete discussion
and motivation concerning the formulation of the first-order sy.stem in weak
form is given in 1141.

We point on? that in this variational form the derivatives have been
transferred from the plate and patch momentsonto the test fuirotions. This
eliminats the problem of having to approximate the derivative. of the
characteristic function and the Dirac delta as is the case with the strung
form of the equations.

The system (3.1) can be formally approximated by replacing the state
variables by their finite dimensional approximations and constructing the
resulting matrix system. Hence it is in a form which is suitable for use in
applications. In order to discust the well-potrdnemss of the model, however.
it is advantageous to pose the problem in terms of sesquilinear forms and
the bounded operators which they define, and this is the subject of the rest
of the section.
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3.2. Abstract First-Order Formulation. As motivated by theoret-
ical results in [3.4.6,15-, we consider the Gelfand triple V - 1- =1' V*
with pivot space H and define sesqtilinear forms ar ; V x V -- IR., i = 1,2
by

"" 10 pf "ý% Ire F, D wD qdy,

L2(0',%P) = f {c) !D 2 wtD2, + pf (6q - u'E)}d-ý

where 4' = (i", w) and IR = ti, q) are in V (see [29] for basic definitions and
fundamental functional analysis theory).

As detailed for a similar problem in [1.5), it is straightforward to show
that with these definitions, tri and o2 are bounded (there exist ec and e2

such that kIr( 4' ,*j) '_. cijj-vIPjv and jT2((D, *)ij < r214'IVI4'IVv), 0. is
V-elliptic and or is H-semielliptic (there exist e > 0 and b > 0 such that
Re o"(4', i) Ž cl*'•, and Re 02(4',4') > b,(D12 for all 4, E V) and that 7rj

issymmetric (a'(., %') = ri(T. 4k) for all (b, * E V). As a result oif the
boundedness, we can define operators A&, A2 E £(1 l') by

(A.), T)v..= V..V , ( '1 )

for i= 1,2.
To account for the control contributions, we let U denote the Hilbert

space containing the control inputs (U = U? in our structural acoustics
example). and we define the control operator D E £(U. V*) by

(Btil = j tK Kuj,t,(z)D2 rd-',

for 4E V. where (.. ")v.. is the usual duality pairing. Finally, let-

ting F = (tj.-pý) and G(:.z,) = (f,-p!•,(u)) where again. pt(tv)

(,z. w(i. a,)) = ,(t, . (, ir)) - 6.(f: x,O) denotes the nonlinear pertur-
batix to the linear coupling term, we can write the control system in weak
or variational form

(zt,(t), -)t' I, r ( : T, ) + '( ( }, )(3.2)
= (Bu(t) + F(t) + G(:(t). :Zt)). .

for T' in V. This then yields the sv.,,tnio

:.t(l) + .4..,.-(I) + A, z(f) = B,(t) + F(I) I G(z(1), :,!t))

in' V'.
To apply infinite dimensional c'ontrol results for periodic, forcing furic-

tions to this problem, it is advantageons to write the system in first-order
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form. This is accomplished by defining the product spaces 11 = V/x 1 and

V = V x V with the norms
S(0.,&)12 = 1012 + WIT?,

-)12 = 1h12 1%12

IWe point out .hat v• - 7 = ?" •- V* again forms a Crlfand tripl..
The sesquilinear form a': V x V - 11 is then defined by

$eox) = ((T. A), (4,,) = - (A,,)V + a1 (T. *) + a2(A. I)
t where I = (0, *) and e = (T. A).

For the state Z(t) = (:p), :t(1)) in Nt, we can tubsequently write thE
system in the firt.-order variatinno1 form

(3.3) (Z,(t). )4. , + o{Z().• y°) = (Bu,(t) + 7(1) ÷9•(Z(t)). Yv..v

where 7r0t)! (0, r(t)), GIZ(t)) = (0, G(4(*) .t(t))) and Bu( 6 = (0, Bu(i)).
As usual, the relation (3.3) must hold for all X E V. Finally, the weak form
(3.3) is formally equivalent to the system

(3.4) Z,(t) = AZ~t) + C(,, £(tl)

in V* where

(3.5) C(t, ?(t)) = Bu(t) + 7(1) l-C,((tM)

and

domA= = =(T.A) f 'H: Ar V.A1T+ A2A E H}
(3 -6) 

[ I
A A, -A2

3.3. Model Ve-ll-Posedness. In the previous disrucwinn, the weak
fort of the coupled structmral acountic equations was written as an abstract
first-order semilinear initial valne problem with a state in 7X. The nonlinear
forcing tero C(tt Z()) = Bt() + 7(t) + G(Z(t)) however lies in V* rather
than 7N since the control term B E ((U, V*) de-fines the product space
control tern B1u() = (0. Rn(S)) C 10) x v" C V x V' -. V'. Hence the
standard theory for abstract enuilinear Cauchy problems does not apply
directly, and the first step in the following discussion is the outline for
arguments which can be used to extend the operator A to a apace where
the throry does apply. A more extensive discussion concerning the well-
posedness of a linear problem of this type can be found in (15) and details
for the following arguments can be found in that work.

The first step in determining the well-posedtest of the systeti model
is to argue that A generates a C0-semigroup on 7X. As noted earlier, the
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sesquilinear form al is V-elliptic; continuous and symmetric while C11 is Con-
tinuous and H-seminfliptic. From the Lumer-Philips theorem (with further
arguments found in [1] and pagas 82-84 of [4]) this then implies that the
operator A defined in (3.6) generates a Co-semigroup on the state space Xf.
Moreover, the semigroup satisfies the exponential bound jT(t)l < eC.1 for
t > 0 (where in fact, w = 0 due to the fact that. A4 i.• diqsipativ,, as s-hown
in [4]).

Since Bu(t) lies in V" rather than 'H, the next step is to extend the
semigroup 7(1) on ?i to a semigroup f(t) on a larger space W D {0} x I"
so as to be comipatib.e with the forcing term (this is accomplished using
"extrapolation space" ideas and arguments similar to those presented in
[6.7,22,).

As detailed in [15], the space of interest i;, ,,"Md,,,, in ,cm of,,,r ,
whcre -

domA* (,X = (IVT) E •If• E V,,A*q,- A, E EH)

Specifically, the spare 11' , [domA'] is taken to be donA* with the inner
product

(C •)w = ((Ao - A")$, (A - ')q,)7

for some arbitrary but fixed At, with A( > ,.; (rceall that the original solution
semigroup satisfies the bund 17 (t) _: e"). As proven in [7], the resulting
W norm is equivalent to th,- graph norm corresponding to 4". Moreover.
we' have that {O} x V' C W = [domA*]A (sf.e [15] for dctails).

From the definition vf ." and the equivalence of the 1,V norm with the
graph norm corresponding to A*. we can define AO- E W" by

(AO .(")

for all O C It, X E 1IV. With this definition A•nd the Ries7 representation
theor-m it ii chown in [15: that A is an extension of the original operator
A from domA C If to all of X". Finally, as proven in (7]. the operator A
is the infinitesimal generator of a G0-scntigroup T(t) on W- which is an
extensior, of 7(t) from Nf to W -.

In the corresponding linear problem, under reasonable regularity con-
ditions on t -- tit) and t - F(I), one can immediately argue the existence
of a unique strong solution t.o the .system in t(rms of the extended semi-
group "!(t). For the. snmihljnar problem of ivterest. how,-ver. th r onlinear
nonh(•ior , etteonts frrms InuIsU satisfy certain continuity criteria in order to
obtain similar refhs. For example, if vve I.-t X denote the rflrriv,. Banach
space IV' and aasrnme that C : [0. 7] x X - X defined in (3.5) is rontinuc,1us
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in t on fO, TJ and uniformly Lipschitz continuous on X, then the integral
equation

(3.7) Z(Q) = 1(t)Zo + j (t - 0) (B ) + + ) d)

is w•el-defined for Bt + F + G(Z) E L2 ((O. T). VU). Moreover, for 2(0) =
Zn, the solution Z(1) of (3.7) is a unique mild solution to (3.4) (see Theo-
rem 1.2. page 181 of t27). In addition, if C: [0,7l x X - X is Lipschitz
continuous in both variables, then it follows from Theorem 1.6., page 189 of
27) that (3.7) provides the strong solution to (3.4) interpreted in the W"

sense.
The required continuity of the nonhomogeneous terms Rri and F is

demonstrated in I15) and hence the remaining question concerns the Lip-
schitz continuity of the nonlinear coupling term G(:, z,) = (0,-p:6dwW
If we assume that the input terms F and Iu are stmfficiently smooth so as
to assure the necessary continuity in G(z, :t), then our open loop nonlinear
system is well-posed.

3.4. Well-Posednoss of the Closed Loop System. The arguments
leading to the well-posednesq rosults for the linear and nonlinear open loop
models can also be extended to the closed loop systems which result when
the gains determined for a corresponding LQR problem are fed back into
the system. In determining these gains, the perturbing force Y is assumed
to be periodic (this is a reasonable assumption since . miodels the exterior
noise which in this problem is generated by the revolution of turboprop or
turbofan blades).

Discussing first the lincartief problem, the periodic LQ11 problem con-
sists of finding u e LN(O, r: U) which minimizes a quadratic cost functional
of the form

J(U) = j (QZ(i). Z(t)l + (Ru4t),u(t)ly;} dt

subject to Zt(t) = AZUt) + Be(S) + F(t) with 2(0) (- Zr). Since Z =
(6, w,,4t, u,:), the operator Q can he chosen so as to emphasize the rmin
imization of patiiculer state variahle, as well as to create windows that
can be uspd to decrease state variations of certain frequencies. The control
space U1 is taken to be //' if s patches are used in the model, and it is
assumed that the operator R e L(U) is an s x s diagonal matrix where
ri, > Ji =- 1,-- -,s is the weight on the controlling voltage into the it"
patch. In the case that B is hounded on X. a complete feedback theory fur
this periodic probl,.n can he given a- discussed in [19f. ibis theory cal
be extended to also include the case of unbounded B, i.e.. B e (U, VP).
of interest here (see 15'). Under usual stabilizability and detectability as-
sumptions on the system ns well •s standard assumptions on Q, the optimal
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control is given by

(3•.8) u(t) = -R-'B•['lZ(f) - r(t)j

where II E £(V*. V) is the unique nonnegativc self-adjoint solution of the
algebraic Riccati equation

(3.0) A'II + TIA - IIR•'I+ Q = 0.

Here r is the unique r-periodic solution of

(3.10) 0(t) = -(A' - lIBR-W'f;)r(I) -+- lY(/)

and the optimal trajectory 2. is the s5oution of

(3.11) 3(t) = (A - BR-S'IR)Z.(t) + BR-'3'*r(t) + 5(I).

As discussed in (.5 for fhe case when 16 E C(U: V"), one also finds
that the operator 4 - LBR-'WTl generates an exponentially stable (3-
senaigroup S(1) on the state space "W. From Corollary 10.6. page 41 of
[271, this implies that A* - IH1R-'8".generate.q the correqponding adjoint
semigroup 8'() on -- ?. T'The semigroup S(t) can then he extnded
through the extrapolation space techniques just discus•ed to a larger space
WA/ .; {0) x V*,, and with reaonnable regularity awsumptions on t - F(t),
this implies the existence of solutions to the tracking equation (3.10) and
closed loop system (3.11) for r(O) = r0 and Z(0) -- Zn.

As discussed in greater detail in th,, next section where'thr corrs.;pond-
ing finite dimensional coutrol problem is cozisidered. an effective etrategy
for controlling the original nonlinear system is to dctermine the gains for
the linearized model and feed these back into the nonlinear system. This
then yields the nonlinear closed loop system

Z(i = (A - Bt<-'BIU)Z(t) + tR-'W r(t) + YQ() + G((Z7÷))

where again, A - BR-'BI*I generate.; the CI--smigroup S(t) which can
then be extended to W. With the asurnption that the input term F is
sufficiently smooth so as to assure the necessary continuity in ncnhcinoge
neous terms, the closed loop nonlinear system is also well-posed.

4. System Appruximation and the Finite Dimensional Con-
trol Problem. 'he discussivit thus far has cit.ver.-d aroind the infinitr
dimensional model for the structural aeto.ilic .4y'-t,'m a, wri)) a. .- ues con-
cerning its vw.ell-posrdrcs.. Hlowcver. in otder to develop viable schemes
for approximating the nonlinear system dynamics, estimating physical pa-
rameter.;. and determining control gains, appropriate finite dimensional
approximations to the state variables u and 6 must he developed For
reasons discussed in (3,, a Galerkin scheeme was chosen and the potential
and beam displacemernt were discretized in terms (f spliJe and t-pecral
expansions, respectively.
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4.1. System Approximation. A tensored Legendre basis was used
for the discretization of the acoustic velocity potential. Letting Pa4(z) and
Pt(y) denote the standard Legendre polynomials that have been scaled

by transformation to the intervals (0, a] and [0.13, respectively, the basis
functions { B,) I for the cavity were then defined as

1V7(rT,u)-=P(z)P% .. ) for i=O,1,--,m 1 . j=O,I,--,m•, i+sj$O,

where m = (m, -+ I). (mi, + 1) - 1. The condition i+j # 0 eliminates the
constant function thu, guvaranteeing that the set of functions is suitable as
a basis for the quotient space. The in dimensional cavity approximating
subspace is taken to be Hr` _-- span {Bi?)7-- and the approximate cavity
solution is give.l by

Cubic splines were used as a basis for the beam displacement since
they satisfy the smoothness requirement as well as being easily imple-
niented when adapting to the fixed-end boundary conditions and patch
discretizations. lttaing $ 17 1"1 denote the cubic splines which have been
modified to sati-fy the boundary conditions (see (3,1-3 for details), the cor-
responding n - 1 dimensional beam approximating subspace it given by

= span (B,$ 1J"-1 and the approximate beam solution is taken toi be

n-i

=,~t Z) Y@(LB¼>(

The approximatirg state space was then taken to be HX = 117" x H--
where N = in - n - I, and the product space for the firs.t order *yste.m is
7i-'v = H` x H1 1 . By restricting the infinite dimensional syst.-n (3.1) to
N- x , one obtain• the nonlinear finite dimensional systemu

M'Nif t) = kv (Y"V(f)) + hNuU(t) + FN ()
,Axv(O) =

or equivalently

(4.1)= ANr (yv(t)) + -1 0(t) + ,-v(t)
(4.1) N)

Explicit descript ions of the mass and stiffnrss operators MN,/i and ,jN(.,2N j))

as well as detailed definitiwus ,f the control matrix &V and the force vector
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t'(t) can be found in [3,13]. The vector yX(t) = ('(1,'. , (f). u'(t),
•., _ 6 (t),... (t), 1;', (), 1.. , f-())r contains the 2N × 1

approximate state coefficients while u(t) = (ui(t),...t,(f))T contains the
s control variables. As detailed in [14], the nonlinearity in the operator
A (!(t)) manifests itself in the dependence of the operator on the un-
known coefficients {u,(t)}.

4.2. The Finite Dimensional Control Problem. Due to the non-
linearity in the infinite diineusionalsystein (3.1) and hence the finite dimeni-
sional inatrix systetm (4.1). LQR feedback control results for problellvý with
periodic forcing terms can not be directly applied as there were in (3). In-
stead. the following strategy was adopted. The infinite dimensional system
was linearized by replacing the nonlinear coupling term qp(f '. U)(f. T)) by
its linear component. 0,(i. x, 0) (this is equivalent to taking G(z(t). z- (t)) =
0 in (3.2) ur ( ='(Z(f)) 0 in (3.3) or (3.4)). This linearization is motivated
by the as•umption of snittll beam displncements which is inherent in the
Euler-Bernoulli theory (for phy.siCally reasonable input forces, the beani
di.;placements are of the order 10- 5 m for the geometries of interest). The
feedback gains for this approximate linearized system were calculated from
a periodic LQR theory (see [3]) and were then fed back into the nonlinear
problem to create a stable noniinear clos.ed lop control ýystein.

To illu ot.rate this con.rol strategy, the LQR theory for problems with
periodic input terms is briefly outlinted. The remulting gains are then applied
to the nonlinear problein of interest with the results being illustrated in an
example.

Linear Periodic Control Problem

As discussed in [3], the approximation of the nonliinear coupling tfrm
a(tr, u(t, 2:)) by its linear component, and the projection of the resulting

system into the finite dimensional subspace 7'" x × , yields the linear
finite direnewinal Cauchy equation

(2N(t) AN,"y'(t) + DBv u(t) + F N U)

.rV(0) =0-1,
(this system ran also hr obtained by restricting the: infinite dimensional
system (3.2) with G(z(f), :r(l)) = 0 to "- x X'). The components of the
linear stiffn-.s matrix can be found in (3].

The periodic finite dimensional control problemru is Ohen to Find u
0.0(, 7) which minimizes

J.V(u) = i . ,"' +I +Ru(t), u(I)}'j} dl, N = u+n-1

where y" solves (4.2), r is the period. R is an s x s diagonal matrix and
ri; > 0, i = 1. ". s is the weight or penalty on the controlling voltage into
the it' patch.
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"The nonnegative definite matrix QN is chosen in a manner so as to
to emphasize the minimization of particular state variables. From energy
considerations ar discussed in [3), an appropriate choice for QV in this case
is

where MI is the mass matrix, and the diagonal matrix P is given by

P =diagjd1Jhr',d 2 '•-'Id13 Jmd 4 lj -

Here 11 ,k = mn - 1, denotes a k x k identity and the parameters di are
chosen to enhance stability and performance of the feedback.

The optimal control is then given by

qv(1 = R1 (N)T (- r 'y'(]

where I1V is the solution to the algebraic Riccati equation

(4.3) (A-")Tf\ - f•.4 - 1I BXR- ARN7rIP + QN = 0

For the regulator problem with periodic forcing function FX(I), rX(l) must
satisfy the linear differential equation

(A')(t) = - [AN - BVR" I(BNj )rTflNJT r•V(Q) IItF. Q)

r,(O) = r*(r)

while the optimal trajectory is the solutioin to the linear differential equa-
tion
# -(t)= [A" - BVR-I(B'V)TIIN t), + N R-itBN)TrN() + F7t)(B"

tN(0)u =)

The finite dimensional optimal control, Riccati solution, tracking equa-
tion and closed loop system can be compared with the original infinite
dimensional relations given in (3.8), (3.9). (3. 10) and (3.11), respectively.
In order to guarantee the convergence 11 v - It. rt - r, and hence the
convergence of t-aV -_ u. it is sufficient to impose various conditions on the
original and approximate systems. These hypotheses include convergence
requirements for the uncontrolled problem as well as the requirement that
the approximation systems preserve stahilizability and detectability mar-
gins uniformly. A fully developed theory (see (5J) is available for the case
when 7 E 0 (in this case the tracking variable r does not appear in the
solution) even when B is unbounded. However, the theory in fj5 requirei
strong damping in the second-order system whereas the only damping in
our system is the strong Kelvin-Voigt damping in the beam (damping in
the cavity was omitted due to the relatively small dimensions involved).

AMA^^ - - - -
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Although the convergence theory of [51 doe" not directly apply here, nu-
merical tests indicate that convergence is obtained even though this system
contains only weak or boundary damping.

Nonlinear Control Problem

To extend these results to th.' nonlinear sysr.rm of intc.r., the linear
gains were calculated and fed back into the nonlinear ,ystem (4.1), thus
yielding the suboptimal control

,fiv(l =R- (13.) [rV(t) - yX(!)]

and the closed loop system
ý`(,) = A"" (y"i-(1)) + BR-,(B.v)riiY.(tI + B^.R-1 (D^j)r (1) . FVtt)

Y"(0) -= ,y'(r-) .
The Ricicati matrix 1'v and tracking vector r" (t) ar, esvutionui to (4.3) an]d

(4.4) which ari.. whcn formulating the rorrespcnding LQR problern.

Example: Nonlinear Control

To illustrate the dynamics and effects of feedback control on a nonlinear
system modeling a 2-D analogue of a 3-D experimental smup, a .6 in hy
I m cavity with a flexible beam at one end wa& considered (see Figure 6).
The bearn was assumed to have width and thickness .1 rn and .005 in,
respectively, and the Young's modulus and beam density were taken to
be E = 7.1 x 101" N/mr and pb = 2700 kg/in3 . This yielded the stiffness
parameter El = 73.96 Nm 2 and linear mass density p 1 -.25 kg/m. The
damping parameter for the beam was chosen to be CDJ = .001 kg m3lsec.
The speed of sound and atmospheric density inside the cavity were taken
to be e = 3.13 m/see and p! = 1.21 kg/m 3 , respetively.

.15 .45

0 .6

rIG. 6. Acoustic car'iy with one centered 1/2 lengih patch.



ADA294785

Active Comtol of Acoustic Pressure Fields 2T

Several forcing functions modeling uniform (in space) periodic exterior
sound sources were considered. In this example, the forcing function was
taken to be 1(t, z) = 2.04 sin(470,t) which models a periodic plane wave
with a root mean square (rms) sound pressure level of 117 dB. The fre-
quency of 235 hertz is approximately halfway between the first and fourth
natural frequencies of the system (as shown in [1 )I, these occur at 65.9
hertz and 387.8 hertz, respectively).

The dynamics of the uncontrolled system were approximated using
80 cavity basis functions (inr = ui = $) and 11 beam basis functions
(n = 12). The time interval of interest was taken to be [0, 16/235) which
awlmittcd 16 periods of the driving frequency, and time histories of the
beam displacement at X = .3 and cavity pressure at N = .3. Y .1 on
this temporal interval are plotted in Figures 7 and 8.

The frequency plots of the uncontrolled beam displacement and cavity
pressure in Figures 9 and 19 exhibit not only the driving frequency but also
transient responses at 65,9, 181.6,345,2.387.7 and 519.5 hertr which are dime
to the natural frequencies of the coupled system (see 1131 for a ccýmpl.tr
discussion of the dynamics and natural frequencies for the corresponding
linearized system). In particular, the high energy response at 181.6 hertz
indicates a strong excitation of the system at what corresponds to the
frequency for the first mode of the uncoupled cavity (care must be taken
when describing the dynamics of the system in terms of the undamped
beam and cavity modes sinco the nonlinear coupling and beam damping
yield system responses which differ somewhat from those of the isolated
components) TVie presence of the multiple frequencies can also be seen in
the time histýru plots of the unrontrolled beam displacement and cavity
pressure in Figures 7 and 8.

Control was then implemented by nqing Potter's method to calculate
the gains for the linearized system and feeding them hark into the nonlinear
system as discussed previously. The following ressults wvrre obtained with an
out-of phase single pair (so as to create pure bending moments) of centered
patches covering one half of the beam length as shown in Figure 6. The
quadratic cost functional parameters were taken to be d = d2 = d4 =
l,d4 -= 1(1 and R i-- 10- with d.3 chosen to have larger magnitude so ax
to more heavily penalize large pressure variations.

Figure 11 contains a plot of the controlling voltage u(t). As expected,
it is periodic, and the magnitude remains below 25 V which is a physically
reasonable voltage to apply to the piezoceramic patches.

We point out that the application of the controlling voltage resulted in
a high frequency transient response atnd WS cavity basis functions (in, -=

M. -- 12) and 15 beam basis functions (n = 16) were needed to resolve the
controlled system dynamics.

From Figures 7 and 8, it can be seen that the controlled responses
undergo a transient phase or approximately three periods and then are
maintained at a low magnitude throughout the rest of the time interval.
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By calculating the rmrn pressure levels, it was determined that at the point
(XI Y) =(.3. A). the uncontrolled sound pressmie level is 82.8 dBl whereas
.hie controlled buund prekture is rieduced 15~.7 dfl to 67.1 dB. The level
of reduction becotto". even more ~ignificant n.m one mojves deeper into the
cavity biunce- the strLoug cavity excitation in the uncontrolled case yields high
maVgnlitude presiure oscillationis near the. hark will which arp uniformly
reduced 1wv th applicationi of the controlling vnltageý. Fin.1lly, it is noted
that t~ie rielathve redejcwvn in prebsure is miiresignific~tnt thnn hle. reduction
in bevam displacenier.T. This is due to the heavier penalization of prfe'Ssure
flujetuaticins throucwh tho! choices d2 = I and d3 = 11

The, fr4,qeie(,n. plcoti of the ccrntrulled responses (iii Figure- 9 anid 10)
.,Iijw that the liflfo l ri-r..'nse. is now at. the driving frequency or 233
hertz. I hey ako- dei:ivnst rat,' the presence of high frequency transicrnt
responses which are timcl; more- significant. that) those found in the un-
con. rolked case. 'I ý6ýii~dizdcalts ¶ihat the intiti jr presisurte oscillations are
reduc'-d throupli t~o nitchainisis %lien the cirntroling voltagc is applied:
thi. fi.-st is J~je to the redimed 11agnili eed cf thr bean dlisplacements, while
the s(econd is due to the excitaliou or high fre-qumncy beamn oscillations
which couple less rdiywit!i the )umrerior ae'oustic field. The combination)
of the two rcsullts ini signifi~ca-itly re-Iincer int~rrior sound pressure levels.

ml it

, 'If

IFCI

Fit;. 7. Uncon trolldad epn'1co:r~~lbed wime dligpitic rite nIt tit X .3.
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5. Conclusion. In this paper. we have discussed several of the issues
which are involved in using piezoceramic patches as actuators in a non-
linear structural acoustics application. The patcher affect the dynamics
of the coupled system by contributing external forces and moments to the
structure when a voltage is applied, and the first part of the discussion is
centered around a description of the interactions between the patches and
an Euler-Bernoulli beam and a thin cylindrical shell. In this discussion, care

was taken to distinguish between the passive (material) contributions, due
to the added thickness and differing material properties of the patch and
bonding layer. and the active (external) contributions which result from
the strains which are produced when a voltage is applied to the patches.

As a result of the differing material properties and presence of the
piezoceramic patcheý, the material and control parameters of the combined
structure are piecewise constant in nature and hence lead to discontinuities
in the moment and force resultants. This leads to difficulties in the strong
form of the system equations when the moments arc differentiated and is
one motivation for using the weak or variational form where the derivatives
are transferred outo, the test functions. The weak form is also advantageous
for many approximation schfmes since it reduces the sm athnest require-
ments for the basis elements. Finally, well-posedness issues were considered
by posing the weak form in the context of sesquilinear foreis.

Due to the nonli near itifn arising in the coupling between the beam vi-
brations and the interior acoustic filda, LQR feedback control results could
not he directly applied to the problem. Instrad, gains corresponding to the
linearized problem were calculated and fed back into the nonlinear system.
As demonstrated by the resulhs in the example as well as the more exten-
sive set of examples in [1411, this strategy is very effective for this problem.
This is partly due to the weakrcm of the nonlinearity. By comparing the
nonlinear results reported here and in [14] with the corresponding linear
ones in [111, one can see that qualitatively, the two sets agree closely. This
can be explained by the fact that the beam displacements are very small
and hence the linearized coupling terms quite accurately approximate the
true nonlinear expression;,
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ON THE PRESENCE OF SHOCKS IN DOMAIN
OPTIMIZATION OF EULER FLOWS

J.T. BORGGAARD°

Abstract. In this paper we consider a shape optimization problem for a I-D Euler
flow We show that for problem4 with shocks, the use of high order CFD schemes
c,•n produce artificial local minima in the approximate cost functional. These local
minima can cause optimization algorithms to fail. We illustrate this phenomenon, show
how hybrid algorithms may be constructed to overcome this problem and sper,,late on
potential difficulties that may occur in more complex situatinns.

1. Introduction and motivation. The use of domain optimization
techniques in the design of fluid flow systems has shown great promise in
many areas of application. In this paper, we focus on domain optimization
problems which involve shocks. An example of a problem of this type
is the optimal forebody simulator design problem. A forebody-simulator
(FBS) is a device that is shaped and attached to a jet engine in order
to produce a flow that "simulates" the flow that would result from a full
aircraft forchody. The optimization problem is to find the shape of this FBS
which will provide flow to the engine inlet which is as close as possible to the
flow which the engine would receive in flight. This problem is described
in detail in papers by lluddleston (6] and Borggaard, Burns, Cliff and
Gunzhurger [1].

Fluid flow systems which are modeled by Euler equations are inter-
esting since they are of mixed type, which can lead to discontinuities (or
shocks) in their flow solutions. The existence of shocks produces some
interesting difficulties in the resulting optimization problem, which is pri-
marily caused by the choice of a numerica approximation. To understand
this behavior, we study a simple model which displays the same features
ms the optimal FBS design problem.

The model problem consists of a steady-state Euler flow in a 1-D duct
with variable cross-sectional area. The goal of the optimal design problem is
to find the cross sectional area that minimizes the. distance between the flow
and adesired flow. With the proper choice of inlet and outlet conditions and
constraints on the variation of the duct cross sectional area, this problem
contains a shock. Although this problem is complex enough to capture the
difficulties presented 1y shocks in the flow, the 1-D problem can be solved
analytically. Constecltnr•ly, the cost functional can easily be computed
and there are several numerical schemes which can be used to solve this

ThWa work was supported in part by the Air Force Office of Scientific Research tn-
der grunt AFOSR 1r49620 92-4-007g. The author would like to express his aprpreciation
to Dr. John A. Borne fOr his hIelpful suggestions. Depaitment of Mathematics, Inter-
disciplinary Center fnr Applied Mathematics. Virginia Pulytechnic Institut, and State
University, Bac.kshurg. Virginia 24061.
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problem. This model problem has been used by Frank and Shuhin J5] in
their study of optimal design.

As noted above: steady state Euler equations produce interesting be-
havior when used in an optimization scheme. The basic problem comes
from trying to ýmatclC discontinuous flow solutions. We shall see that in
theory the minimum is very distinct, i.e. the cost functional has a clear
global minimum caused by the penalty of not matching shock locations.
However, using numerical methods to solve the minimization problem can
cause local minima in the approximate cost functional. Thus, optimization
strategies which are used to solve this class of problems have to account
for this phenoomena.

The remainder of this paper is organized as follows. We present a
description of the model problem in the next section. This 1-D problem
may be found in the paper by Frank and Shubin [5J. However, for com-
pleteness we present a description of the reduction of the Euler equations
to a single ordinary differential equation and give the solution. The op
titnal design problem is presented and approximated by using numerical
schemes to solve the Euler equations. We show how the approximate cost
functional is affected by different numerical approximation schemes and
demonstrate how using a particular numerical method (which accurately
models the shock) can lead to negative results when used in conjunction
with an optimization algorithm. A hybrid optimal design algorithm is pre-
sented which produces an optimal derign and avoids the probleut caused

by the local minima. Finally. we summarize our findings and discnsr the
potential applicability to more complex problems, such as the optimal FBS
design problem.

2. Model problem description.

2.1. One dimensional Euler equations. Although the formulation
presented below may be found in (5]. it is included here for completeness
and to introduce notation. Assuming a steady. inviscid flow in a duct (spe
Figure 2.1) where the flow variables (p, u, e and p denoting density, velocity,
internal energy and pressure) depend only on the length along the duct,
the balance laws produce the following fornm of the Euler equations;

(2.1) puA = constant -- C

(2.2) [pou 2AJ, = -pfA

(2.3) f + p ] uA = constant = L,

where A(4) is the cross-sectional area as shown in Figure 2.1. This set of
equations can be reduced to a single ordinary differential equation for the
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velocity by substituting equations (2.1), (2.3) and the ideal gas law,

(2.4) p =- (7) - l)pe, (,y = 1.4 for air)

into tile momentum balance equation (2.2). The resulting equation is

[2.5) u + t(+ -( =r U A~

whre 1-• - l)/(i 1- 1) and f1 = 2j•LC. Defining

(2.6) f(,0) = 7 + - and g(u, A) = -- H),

u A it

we describe the state u, given a cross-sectional area A(.) (with At > 0). as
the solution to the following two-point boundary value probkm:

[f(u)], -- g(u,A) = 0

(2.7) ,u(0) = uvi and u(1) = u,,.

U.uuin A(4)

FIG. 2.1. 1 LD Dirf Ltit Varyi ros C:s' -Stcfional A rca

When u is smootb, cquation (2.5) can be "'ritte' a•

(2.S' ) Au H i _ .
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where K is a constant. Since A( > 0, it follows from the theory of hyper-
bolic equations ([2] and [7)) that the geometry of a diffusing duct (AC > 0)
can produce at most one (normal) shock. Thus, equation (2.8) can be used
to determine the flow on either side of the shock (by using the boundary
conditions to determine the values of the constants Kim and K0 ,1 ). All
that remains is to determine the location of the shock.

Since the flow is steady, the shock speed a is zero. This implies that

(2.-9) (U.) = (u.) 1 - =0, (=-, U.

where u. is the speed of tound. Applying the Rankine-Hugoniot condition
(7* yields

(2.10) Uir = H,

where u! and u, represent the limiting velocity from the left and from the
right of the shock, respectively. The value of the shock location, 4•. can be
determined by solving the equation

(2. L) + ( - u?) =-A- f)= 1 ,(= - u --

along with (2.10). for uj and u-. Applying (2.81. A(ý.) can be found and
since At > 0 it fnllowc that one can solve for 4..

Consider the solution of equation (2.7) with

(212) A(4) = 1.0& + (1.745 - 1.051 - 0.09rsin(2-4),

"f = 0.4/2.4 if = 1.14. uin 1.299 and uo, = 3500. ULing the technique
described above, we get A(4,) = 1.3705 which leads to ,4,, = 0.4786 (uising
MATLAB to invert equation (2.12)). The resulting solution for ii is plotted
in Figure 2.2.

2.2. Optthnizaton problem, LetA = {A :f. I]- IRmA A C1(0, 1It
At(f) > 0) and define,7 A -- I by

(2.13) J(A) J Iu(: A(-)I- I (r)j'dx

where u(r;A(-)) is the solution of the boundary value problem (2.7). The
optimal design problem is to find A' E A such that

J.(A.) • J(A) for all A C A.

This is now an inriiit+' dimensional optimal control problem and one could
use the theory of distributed parameter control to attack this problem.
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1.0 ,-
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FIG. 2.2. Erict Svhfi•n of 1.- Varying Durf Probiem

However, we shall restrict our attention to the case (as is common in prac-
tice) where A(.) has been parainettrized. This leads to the problem of
minimizing . over a finite dimensional subspace B C A.

In our example, we consider a subspace of the Bernsteiti-Bezier quadratic.
polynomials, B2. Bernstein-Bezier polynomials possess several nice prop.
erties when used in approximations. The most important for us are the
convex bull and cndpoint interpolation properties (see e.g [4]). These
properties allow us to satisfý the monotonicity requiren,.nt and match the
inflow and outflow cros., sectional area easily. 1'hus we look at optimization
over

(2.141) B B [ 0, 11 - 11.1R = 1.0513' + bl, B1 + 1.745B2;
bjr E (1.0.5, 1.7,15))

where

Hi, (0 i ) (io- v'-1, •E(c, 1j.

In particular. wl.' optimize over a one parameter family of ("I curves.
It is also the caze that (as in the optimal FBS problem) given arty A E

B, it may not be possible to analytically solve (2.7) for u. Conse(puinfly, one
must consider numerical approximations, such as finite difference mnethods.
for solving (2.7). In any practical problem one must consider a discrC-.e
analog of the optimization problem above.

The discretized optitrilzation problem now becomes: Find A* E B tU
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minimize

(2-15) ,7v(A) = ,J(b•) = { T frg(A) -

where u•"(A) is a numerical approximation of u(.A) at discrete points in
[0.1] and 44g is discrete data. For our problem, u;'N will come from finite
difference solutions of (2.7) discussed in Section 3, and 0j• will correspond
to points taken from the curve given in Figure 2.2. Note that we assume
that experimental data is given at the finite difference mesh points. If this
were not true, then some type of interpolation must be used.

3. Numerical results.

3.1. Introduction. In this sect-in, we study the phenomenon of lo-
cal minima in the approximate cost functional. 7V. We consider three
numerical schemes f5, for finding approximations nA' of the boundary halue
problem (2.7). These are the Godunov, the Enquist-Osher and the arti-
ficial viscosity methods. The methods discretize the interval 0,1j into N
cells of length h = 1/NA, with centers. 4, = h(j - 1/2). j = I ..... V. The
flow velocity u is modeled as a constant over each of these cells (ua is the
constant associated with the jth cell). In all of these methods, u is found
as the root of a system of nonlinear equations.

(3.1) f.+il - +- m./sA + g,--O 0 1l...N

where fa = f(,fl and Yj -g(,j",A )). The three methods differ in
how the flux f.+11:. is determined from fj, f,+l and f(n4.). The Godunov
method uss the formula

f)Y'+1U -• Uj +2 < u.:

• +I12 Up U; +• ý'+ > U...
= (u.) , < a. < uj+1:
nmax(f 1,f,+I) u,+1 < u. < ujb

the Enquist-Osher method uses

11+1 uj. ts+C < u.;
fj+in, = u1. Us+y > V.;

f(..) u1 < u. < us+J:
h. +f+,1 -f(u. u.j+, < U. < Uj.

and the artificial viscosity method uses

j+1f2 = 1/2 {f;+! + L€ - uj+i + 4-})

These three methods were applied to (2.7) where the cross-sectional
area was given by equation (2,12). Plots of these solutions for N = 45
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along with the exact solution are shown in Figure 3.1. Of the three inethod-
considered here, the Godunov method provides the better approximation
to the discontinuous solution a~. The Etiquist-Oshor method gives similar
results except. there is one inore n~ie point in the transition region bet~wexn
the supersonic end sub.,onic flow. The artificial visceisity method, an the
other hand, has 5igmiificammt error in this region.

I a.Godiunov Me4thod
1 .8~ - Si'quel-;or Mrnhod

-Art~fimal Viscosity Mettlod

1.4

04
0 02 04 06 1H

Duct Langth

rinu. 3A.1 `Vbnmr.ija So'Iulctos of 1.0r-z, Dtt Pro~jtm.

Ab shown in the riext. wectionc, the, approxirnate rcst function~al J.",
which is obtained using the- Coduniov method to solve (2.7) focr wv ront ains
(numerically generated) loc-al mninima, while the approximat~e cost function-
als Obtained using (lhe Enquist.Osher and artificial viscosity methods do
not. Furthermore, anl examnple i., p)resent~ed wherie cascading the Godtmnov
mnethod into anl optimnizatiomn algorithmn does. not prodlurr the global mini-
irrium. Ill addititn, a byhrid schrmre is pr~r.si'ntrd which Circumvents the,
optimization prohirnis caiised by the local minima and achieves the global
minimum.

3.2. Cost fun ctionals. Two levels of approxiil.at ion were .Fed to
obtain .7- from .1. TIhe first was to replace thne integral operator inl *7 by
the surn of terrms :(,;A.)-is weighted by N'(= I.'Ilie second %vas
to replace v(ýi;A(.)) by uYr and ii(ýi) by ii-v. The accu'racy of thc second
level] of approximaticii is solely determined by thce particular choice of the
nuimerical schemec (for this problenm, there is no error in replacing ~i(.ý,) by
iiT') Howevc-r, it is thec first level of approximation which can introduce
thc interc-sting behavior in the approximate cost functionals.

WVe demonstrate thiil faci by plotting the rust functizonal 3 v77 tv
Bezier parameter b. inl Figtire 3.2. 'file cost functional j7 :ontaiwý a well de.
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fined unique minimum due to the large penalty associated with not match-
ing the shock locations. Figure 3.3 contains plots of J- vs. 6, (for a few
vlues of N) where ,u" consists of (mesh) point evaluations of the exact
solution to (2.7). Therefnre, only the first level of approximation is used.
We swe that the resulting approximate cost functionals contain steps which
are clearly local minima when 6. it to the left of the global minimum, •.

0.1 8-- .. ..--

o is
0.14-

OA,
on06

1 1.2 1.3 rPaf~tme.v 1

F W.. 3.1. C all, FUNd• = Oin2*Lt E --,; t I~t• hn, "'Ouff
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Sof - mesh size of 13b
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0.;1
O--I
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The re•son for the existence of these steps (and! henrc the local min

A r% At "i A 7 nM-
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ima) in the approximate cost functional may be explained as follows. The
approximatp cost functional JY' contains a weighted sum of termis of thie
form lt(u(;A) -~ ii(ýi)]. If u(4j: .A) and ii(,ýi) represent flow on different,
sides of the shock. i.e. if tu(4j: A) is supersonic and 6ti(Ij) is subsonic, or
visa versa, then the. ith term in the sum adds a large contribution to j;
Whercao, if es n A nd it(ýc) represent flow on the same side of the. shock.
i.e. eithecr hoth are smperronic or both are subsonic, then the ith term~ is
not nearly av; signifirant. As the Br.iie-r parameter b,. varies, the locatioin
of the- ShOck in u ako varins. Henre, as the shock location passes throughi
f", u(%1j, A) will jumip from qiurierscinic to subsonic, or vi.a. versa. This will

sigunificaitly chaiage (he value of the ith term in the summnation. It iý this
chiauiie whichd Callses the lsteps

1 his reagoInir& allso lead,, to the conclusiona that perforiiigh i~
level of approxiniu Joln of j by a Hiv~ianul S1111

where {cj} are weiplits and {.r,) is any 'practical" distribution of points in
[0,1) (ije. not all clutlrrr-d nrar the endlooints), produces the same behavior
in .7.Remarkably, this includes Gaussian inutegration rults of arbitrary
accuracy.

We turn now to the second level of approximation. where u(.ci: A) is
replaerd by ?j'() one. of the nunierical approximations to the boundary
value prrehiem (2.7). As shown in Figure 3. 1. there is ,omet approximation
error itrar the slarek u-;ng H!;% oft hesf-e nw-.ljods. Cronst-ciiently, there are
valules of IN~ whichi lir. hct~rwn the snperso-nic and sub,b'onic. flow curve~s.
Vic. te-rn-' in th, si~nmnatit.-r whi.-h corrcespond to these pointq do not have
Ill,. mmi-e ,lramtircf rlirligý ;n vFiliue when the qhock lies juist on --ither ýidr
of them. Terct.this apprnximration erro-r in a, IV end, to smnooth o1t.

The approximnte- cost functienals J's and J"~ obtained using the-
Godunov schcne,( arne shown in Figure .3.4. We notc that there are local
minima to theý left of the global minimum. This is similar to the behavior
in rigure 3.3. except the approximate cost functional is much "Fmoother".
For the( cases when~ the Enquist-Oshcr and artificial viscosity methods are
used to compute jlý and J` ~plotted in Figures 3.5 and 3.6, respectively).
these artificial local min-ima. do not occur. The fact that there are more
me-sh points connecting the supersonic- and the suh.ronir flow crijves, account
for the Pnoot~h aR17,7XI.nlate cost fiunctionals

3.3. Optiniization results. In this section. we pretsent optimuization
resuilts using a -Ulack liox" method t5]. This rnethod couples the evalua-
tion of jA dcscrihed in S,?rtionu 2.2 with a I3FGS bast-d quasi Ncwton min-
inmization alrgorit hin using liiiite diffterence approximlatioris to evaluate tile
gradient [3j *lhi- iuwtld isappliedl tc the ct~tizaiiLation probitm (2.15).
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TAALn 3.1
Afi~.,iotiq &AiL CctrAfctivt~d

Iteration Bezier Parametr I Objective Function Gradient
0 1.13000 6.24486 -6.92614
1 1.13937 6.20974 -1.19887
2 1.14133 6.2081$ -0.4408.52
3 1.14235 6.20795 -0.04043
4 1.14246 6.20795 -0.00156
5 1.14246 6.20795 -0.00001
6 1.142.16 6.20795 0.00000

This "black box" method it tied to try to find the Bezier parameter fi
which uniquely describes the cross-sectional area A* E B. We will compare
the convergence of minimiiation schemps when the cost functional J" is
computed using numerical swlutions u," obtained using b,,oth the Godunov
and the Enquist-Osher mtethods.

We saw in the last section that when the cost functionil is computed
using the Godunor nietrlod: therer were a large number of hIca) minima.
Observe that when an iteration is started with an initial guest; Pir the
Hzier parameter of 1.13 (near a local minimum), the iteration stalls at a
;ocal minimum since the gradient goes to zero. This itetration history is
prsent(ed in Table 3.1 above.

When the iteration is started to the right of this local minima. e.g.
an initial Bezier parameter of 1.18, we find that the iteration converges
(tee Tablte .12) to the global minimum s.ef-n in Figure 3A. low-ver, the
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TAFILI 3.2

Iteration Bczter Parameter i Objective. Function Gradient
0 1.18000 5.28376 -89.36653
1 1.19309 4.60160 -26.30958
2 1.19,55 4.49142 -14.93566
3 1.20572 ,1.41886 -6.18889

1.21580 4.29234 -F5.33195
11 1.24494 3.49924 -2.23058
22 1.30412 1.7693-4 -5.01563
33 1.35964 1.705S6 -11.89953
44 i 1.37125 0.108689 0.43637

convcrgence is slow, taking 14 stepb. 1 he Alow convergvunc is caused b%
the algorithm havini~ to pa. over the "steps" in the approximate cost
functional.

Fart conve.rgence is observed. however, whey., we compute t11 approx-
imate cost functional using the Enouist-Osher methed. This is expected
since, Ls we saw in Figure 3.5. the extra point in the Ahock rggion re'fr.ves
the local minima from J' . Starting at the same initial point of 1.13 which
caused the Godunov mothiod to fail, we lind that convergence is reached in
just. 6 iterations. The iteration history using the Enquist-Osher method in
our "black box" .sch'c(.me is presented in Table 3.3 below. It is important to
note that although this convergence is rapid, the value of the global mini-
niite.r for this approximate cost functional J` is still not the best estimate
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TABL 3.3

Iteration 1 Bzier Parameter Objective Function _Gradient_

0 1.13000 6.15394 -j23,0509
1 1.33000 0.90353 -27.61271
2 1.37000 0. 15503 5.4G034

3 1.36310 0. 14660 -2.92231
4 1.36357 0.14329 0.02460
5 1.36554 0.14329 0.00040
6 1,36558 0.14320 0.00040

of b; (the minimum of J7) we can achieve. As we saw above (and in Figure
3.4) the Godunov method produces a more accurate approximation of ,7.

3.4. Hybrid optimization schenri. Examining the approximate opt
functiovals in Figure 3.3, we see that erroneous results could be obtained
from optimization schemes which would ust: a perfect numerical solution
of the boundary value problem (2.7). We have also seen that using the
Godunov seblime to evaluate the approximate cost functional can lead to
problems if we are unlucky enough to start near a local minimum.

Here we propose a strategy designed to overcome the problem when
approximate cost functionals have artificial local minima as those in Figures
3.3 or 3.4. We begin the iteration computing JN using a numerical Scheme
which uses enough dissipation to "tmnar' the shock over several grid points.
"This would allow us to converge quickly to a region which is close to the
minimum. At this point, we use the more accurate estimate of w1 in jN
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TABL, 3.4
MAhmi'afion using HRrid MetA.od

Iteration Bezier Parameter I Objective Function Gradient
0 1.13000 6.15394 -23.80509
1 1.33000 0.90358 -27.611271
2 1.37000 0.15503 5.46034
3 1.36340 1.14660 -2.92231
0 1.36340 0.12991 -5.72003
1 1.37050 0.10929 -0.70580
2 1.371150 0.10917 0,18529
3 1.37077 0.10911 -0.57659
4 1.37094 0.10902 -0.49796
5 1.37138 0.10890 1.21808
6 1.37107 0.10896 -0.44042
7 1.37115 0.10892 -0.40346
8 1-37123 0.10889 -0.36974
9 1.37126 0.10889 0.49282
10 1.37125 0.10889 -0.36076

Il 1.37125 0.10889 0.46915
12 1.37125 0.10989 0.16183

and continue the optimization. This hybrid method will work only if (as
is the case here) the first itntLod produces a global minimum close enough
to the global miniature of the second approximation to that using this as a
starting value avoids local minima and converges to a more accurate global
rnininumn.

An example of this hybrid method is presented below. The scheme
switches from the Enquist-Osher to the Godunov method when the change
in JI " is le, than 0.01. The opptimization results are given in Table 3A
below. We set- that starting with an initial guess of 1.13, this algorithm
converged to the optimuni value asclieved in 'lable 3.2. The first 3 iterations
used the Ejnquist-Oher method amd then switched to the Godunov method
for the remaining 12 iteratious.

4. Comments. Shape optimization problenis for systemi with shocks
can produce unexpected results. We illustrated one of the.e fe-ature4 by
studying a particular Euler flow using a model I-Dl steady state duct prob-
lem. Numerical approximations of the cost functional coupled with dis-
continuous solutions (shocks) axising from the Euler equations, produced
artificial local minima in the approximate cost functional, as we expected.
It was ob,•erved (hat these local minima are more pronounced when the
numerical approximation scheme predicts the shock more accurately. A lso,
th e exitence of these numnerically generated local minima caused a domain
optimization schemie to fail to converge to the global mini-r.um. The point
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of this example is to show that applying opt imization loops to "accurate"
Euler flow solvers may produce designs that. are not optimal.

We demonstrated that Euler flow solvers which have sufficient numer-
ical dissipation do not produce these artificial minima. This was used to
construct a hybrid algorithm which used a flow solver containing numerical
dissipation to produce a better initial guess for an optimization algorithm
based on a more accurate flow solver. This hybrid method requires that
one can find an initial guess which is close enough to the minimum so that.
the numerically generatcd local minima are not encountered.

HIowever. other strategies for avoiding the local minima problem can
be considered. A natural approach is to find a good initial guess by first
optimizing on a coarse mesh. In addition to the isr ue of efficiency, one
should encounter fewer local minima. As noted above, introduction or
implicit numerical dissipation (present in some numerical schemres) may
avoid the local minima problem altogether. In practice, one may he able
to increase the artificial dissipation level in those numerical schcmes using
artificial dissipation for staLility. This may be necessary when computing
on very fine meshes. Experience with the optimal FBS design problem
has shown that the dissipation present for stabilizing the nutmerical scheme
may itself by saufficient to avoid the problem.

A desirable strategy would be to use numerical methods which track
the shock locations. If the location of the shocks in the experimental data is
also known, then the integration in equation (2.13) could he approximated
more carefuilly and avoid the problem altogether. Unoirtinately this is not
always feasible. The optimal FBS design problem is an example where the
shock location is not known.
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A SENSITMTY EQUATION APPROACH TO SHAPE
OPTIMIZATION IN FLUID FLOWS

JEFF BORGGAARD* AND JOHN BURNSt

Abstract. hi this paper we apply a se€nitivity equation method to shape optirnia-
tiOn problems. An algorithm is developed and tested on a problem of designing optimal
forebody simulators for a 2D. invi.trid supersonic flow. The algoritlun uses a BFGS/'Irust
Region optimization mcheme with sensitivities computed by uumerically approximating
the linear partial differential eqnations that determine the flow sensitivities. Numerical
exampleA are presented to jslut rate the method.

1. Introduction. The dovelopment of practical computational meth
ods for optifiination ba!edr de-sign and control often relics on cascading
simulation software into optini~ation algorithms. Black box methods are
examples of this approach. Although the precise form of the overall "op-
timal design" (OD) algorithm may change. there is an often unstated as-
sumption that properly comhining the "host" simulation algorithm with
the "best" optinization scheme will produce a good OD algorithm. There
are many examples to show that in general this assumption is not valid.
However, in many cases it is a valid assuniptiun and often this approach
is the only practical way of attacking complex optitial design problems.
If one uses this cascading appr,•achm, then it. is still important to carefully
pass information between the simulation and the optimizer. Typically.
one uses a simulation code to produce a finite dimensional model and this
discrete model is then used to supply approximate function vvaluations
to the, optimization algorithm. Moreover, the appruximnate functions are
then differentiatmd to supply gradients needed by Lhe optimizer. Although
there are numerous variations on this theme, they all may be formulated as
"approximat(e-then-optiniize" approaches. There are other approaches that
first formulate the problem as an infinite dimnensional optiaizatior: prob-
leni and then use numerical schemes to approximate the eptirnal desigi:.
All-at-once, one-shot and adjoint methods are examples of this "optimize-
then-approximate" approach. Regardless of which approach one chooses,
some type of approximation must he introduced at some point in the design
process.

Sipp•rled in part. by tf .Air Force Office. of Scvicy:!;fk R--,!r-h u:,-""r grant . !X.20-
92- T-00178. Interdisciplinary Center for Applied Mathematics, Dep:u-tment of Mathemat
ics. Virginia Pol.' tcclujmik htitute and State University, Biacksý.xirg, Virginia 2.i(xil.
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1NT-89-224'M and by the National Aeronautitt and Space Administration under (',n-
traet No. NASI-19480 %hile the author was a visiting scientist am the Ingtitute for
Computer Applications in Science and Engineetiigi (ICASEL, NASA langley Recearch
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Department of Mathieattic,. Virginia Polvt echnic Inst itit and State I Iniveritmy, 81arks-
burg, Virginia 240C.1.

49



ADA294785

) 3.7 T. BORGCAARD AND J. A. BURNS

The sensitivity equation (SE) method is an approach that views the
simulation scheme as a device to produce approximations of both the func-
tion and the sensitivities. The basic idea is to produce approximetions of
the infinite dimensional sensitivities and to pass these "approximate deriva-
tirese to the optimizer along with the approximate function evaluations.
There are several theoretical and practical issues that need to he consid-
ered when this approach is used. For example, there is no assurance that
the SE niethod produces "consistent derivatives." This will depend on the
particular numerical scheme used to discretize the problem. However, the
SE method allows one the option of using separate numerical schemes for
flow solves and sensitivities, so that consistent derivatives can be forced.
We shall not address Iheme iteuwe in this short paper. The goal here is to
illustrate that a SE based method can be used with standard optimization
schemes to produce a practical fast algorithm for optimal design. We con-
centrate on a particular application (the optimal forebody design problem)
and use a specific iterative solver for the flow equations (PARC). Many
flow solvers are iterative and for these types of codes, the SE method has
perhaps the maximum potential for improving speed and accuracy.

In the next section we describe the forebody design problem and for-
mulate the optimal design problem. In Sections 3 and 4 we review the
derivation of the sensitivity equations and in Secticyn 5 we disenss mod-
ifications tt, an existing ;imulation code that are needed in order to us•e
that code for computing sensitivities. In Section 6, we present numerical
results for the optimml design problem and Section 7 contains condlusions.
and suggestions for futue work.

2. Optimal design of a forebody simulator. This problem is a
2D version of the problem described in [1,4:8] . The Arnold Engineering
Development Center (AFDC.) is developing a fre-Cjet test facility for full-
scale testing of engines in various free, flight conditions. Although the
test cells are large enough to house the jet engines, they are too small
to contain the full airplane forebody and engine. Thus, the effect of the
forward fuselage on the engine inlet flow conditions must he "'simulated."
Otne approacu to soivig t1hi probwrna is to £tplace tite actual lorebody by
a smaller object, called a "forebody simulator" (IBS), and determine the
shape of the EBS that, produces the best flow match at the engine inlet.
The 2D version of this problem is illustrated in Figure 2.1 (see [1],4]. [81
and t91),

The underlying mathematical model is based on conscrvation laws fo•t
mass. momentum and energy. For inviscid flow, we have that

(2.1)

wthere
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FIGtfnl 2.1: ,,D Fhrcdo4 Pr'4.,,n

m + P/

(2.2) Q= + . and F, f + P=,

E + P)u ( E- P)v

The velocity compotients u and fl" the prcsSure P, thf. tmperatur. T. and
the Mach number M are related to the conservation variables, i.e., theŽ
components of the %xctor Q, by

aL= -, t=-. P (-)E ,u• t

P P

I'E 1 112
(2.3) T= -(I)- I - U. 4+ 0:) and M"2 = "

\p 2' /T2

At, the inflow boundary, we want to simulate a free-jet. ,o that we specify
the total prmssurr P,-, the total temperature T3 and the Mach nautab'r
MO. We also set i = 0 at,. the inflow boundary. If ul. P: and T, denote
the inflow values of the x- component or tIwt. velucity. th. rir,.-uro and the
temperature, these may he recovered from nj, Tj and Al hy

T,-, and 0 -=iM[,IT,I =

(2.4)
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The components of Q at the inflow may then be determined from (2.4)
through the relations

(2,5) pl= m,=ppq,, nJ=O and Ei=- +Pi

The forebody is a solid surface, so that the normal component of the

velocity vanishes. i.e.,

(2.6) u~ll + e11: = 0 on the forebody.

where q- and q2 are the components of the unit normal vector to the
Inindary. Note that we impose (2.6) on the velocity components u and v,

and not tn the momentum components rn and n. Insofar as the state is
*oncerned, it is clear that it does not make any difference whether (2.6) is
impoed on rn and n or ,n n and v, since m = pu and n = pib and p 1 0.
It can be shown that it does not make any difference to the sensitivities as
well.

Assume that at xs = ;j the desirrd steady state flow Q y = ,( is given
as data on the line (called the !nlet Reference Plane)

IRP= {f(, Y)z =3. • _< y

Also, we assume here that. the inflow (total) Mach number Mo cat be iAsed
as a design (control) variable along with the shape of the forebody. Let
the forebody be determined by the curve F = ['(x). o < x < J3 and let
p = (Me, The problem can be stated as the folirwing optimization
problem;

Problem FBS. Given data (0 -: (XY) on the IRP, find the parameters
p" = (M.;, 1"(.)) svch that the functional

(2.7) J(p) = Q.( ;3 y) - 2(y) dy

is minimized, where (.k(r,y) = Qy(j•.p) is -,he sol;;tio,,t th. . ,,t.-
state Euler cqua!ti'n

(2T8) G(QýP) -P 1 + ----F2 -ax dy

In the FBS design problem. the data Q is gencrated both experimen
tally and numnerically. Ii particular, the full airplane forebody (which is
longer and larger than the desired FBS) is used to generate the data. Since
the FBS is "constrained" to Fe shorter and smaller, we shall consider the
optimization problem illustrated in Figure 2.2. The data ( is generated
by solving (21)-(2.G) for the long forebody in Tigure 2.2-(a) and the prob-
lern is to find p' to niinimize j where the shortened rBS is constrained
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to be one half the length of the 'real forebody." This problem provides
a realistic test of the optimal design algorithm in that the data can not
be fitted exactly. Also, we note that we have a problem with shocks in
the flow field. As shown in [2], optimizati( i of flows with shocks can be
difficult and requirrs some -understanding o.' the impact that shocks have
on the smrouthnmess (if the cost functional.

"'SI1rTfEiL WALL

IN"IW

(a) DATA GENERATED AT Mach # = 2L0 AND LONG FOREBODY

TSTCELI.L WALL

ROLOW OL"• •i

czmuu~SHORTk FOUoDY

(b) FOREBODY RESTRICTED TO 12 LENGTH

FIGURE2 2.2: 2D Opti •.et Desiqrn Preeh,,

Clearly the statement of the problem is not compIete tur examuplv.
one should carefully specify th" set of admissible curves 1"1.) and que.-tions
remain about existence, nuniqlucne- and intogrability of "th&e" tolution Q,,.
We will not addre,' t.he.pe issues in this short paper.

Most optimizatioI•n bAsed design methods require the computation of
the deriýativeý !-Q.,(a.r y. p). These derivatives are called sensitivities and
variou, schemes hive been developed to approximate the seu.zitivitirs ni-
mericall" (seýe (7]. IS]. [I0] and [11'). A corrsmo,, approach iý, to ,,-, fi-
nite differences. In particular, the steady state equation (2.6) i.- orlved
for P and again for P -4- Ap and then -, P) j is apprxiznsted 11N
Q'(:.'j.€r+A•-QJ", • 'This method is often costlv and can introdu:e

large errors. Anot hcr approarh i• to first. derive an equation (th" sensitivity
equation) for •Q:.: (x, ,.! I) and then nmmerically solve this equation\ We



ADA294785

64 J. T. BORGGAARD AND J. A. BURNS

shall illustrate this approach for the forebody design problem. In the next
two sections we derive the sensitivity equations. Although the*e derivaltions
may he found in :3ý we repeat them here. for tcompletentm.

3. Sensitivities with respect to the inflow Mach number. First,
we consider the design parameter M,. We will derive equations for the
.ansitivitv

E'

where
P1 p a Oam on OE

(32 p j~ ina and E'-

The differential equation system (2.1) has no explicit dr-pendence on
the design parameter .M102. so that equations for the components of Q' are
easily determined by formally differentiating (2.1) with respect to MJe. The
result is the system

eQ' or8 or;
(3.3) at & 0,

al ( n'

(3.41 r;= "" '"d "'
(E+ P)u'-(PE' + P*)t \(L]+P)t:W+(E'+PW)

and where.
,85 &/ O , o, p =ffP1' •

(1-5) u -- = t P'=-p and T -:- &04 61!?'

and where, through (2.3). the sensiwivitic (3.2) and (3.5) arc relatrd by

p 2

Note thn,' (3.3) is of the samewfornm as (2.1), with a different flux vector.
In particular. (3.3) is in conservation form, A4s a result of thle fact that (3.1-1*
is linear in the primed variables, and th~at by j3.6) ut', v' and P' area linar
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in the components of Q', (3.3) is a linear system in the sensitivity (3.1),
i.e., in the components of Q'.

Now, we need to discuss the boundary conditions for Q'. Except for
the inflow conditions, all boundary conditions are independent of the design
parameter MI. Thus, the latter may be differentiated with respect to Mf1

to obtain boundary conditions for the sensitivities. For example. at the
forebody where (2.6) holds, wn simply would have that

(3.7) 1/q; + 1612 = 0 on the forebody.

Similar Iofral.imis yield boundary conditions for the sersitivities along
symmetry lines: other solid surfaces and at the outflow boundary. Note
that if instead of (2.6). one interprets the no penetrat ion condil i,n as one"
on the utorneutUtni, i.e., nmll + nr2 = 0 on the forebody, then instead of
(3.7) we would hate that.

(3.8) Yn'ri, + n',I2 = 0 on th,- forebody

which is seemingly different from (3.71. Howc-ver. (2.6) and (3.6'1 can be
used to show that

(3.9) m'n7 4 n'ri: = p(u'qh + z;' -jt+) - ((u;+'u -1 r':;rr

so that. since p -0, (3.7) and (3.S) are identiral.
The inihw houndarv condit ions for the sensitivjriit' may bc ,Iterrnined

by differe•niating (2.4) and (2.5) with rcspect, to the de-ign paranmeter v..
Note that !hiq parameter appears explicitly in the right-hand-.sid,-s of the
equation.- in (2.4) and (2.5). Without difficulty. one finds from (2..j) that

/=I - -l ,,- pp?= , + ,

(3.10ý ,4: 0 And r; = . I+ -,F' + P1 PI upU J

where. frcm (2.4),

(3.11)aind ui--- +- , 6+,' -,. 11"
J, + yif 10•-•: • • •u., •1+ "-'•-1 ,r

4. Sensitivities with respect to the forebody design paramne-
ters. We as.,min that the forebody is described in terms of a finite niimcbr
of dt-ign paraniters which we denote by P 4, k = I,..K, and that the
for,,hody may be d.-cribed by the relation

. (X:P:-, [ ."-- PK). a < < 3;
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We express the dependence of the state variable Q on the coordinates
and the design parameters by Q = Q(tz,y; .r, P. P2,.... P). We have
already seen what. equations can be used to determi v (Ie ttensitivity of the
state with respect to AP?, i.e., for Q'. We now discuss what equations can
be used to determine the sensitivities with respect to the forebody design
parameters P. k .... K. i.e., for

(Pk)
(4.2 Qts=1$E -I n "

where

0)pkST6.1 flj 11k= n -Ur and K.-

System t2.1) hlis to explicit dependence on the design paranewttrs Pk.
so that equations for the componntf; of Qj are ,nsily determined by dif-
ferentiating f2.1% with respect to PI. k = I- .-.. K. This produces the
systems. k I... giv,-n iy

d%• fiFk OI4~z
(.-4) o-i + -- + -q:- 0.

where

1flV 5$.fllU+1¾ and!' 2=( _ nrMkr +flh7e'I + fk

(4.) E4 Pp, +-(E.. +P :A F(Fi4 P) +(Fk+P ]
(4.,5)

and where-.

On l. 6P OT
(16) tt = -T v 77Th and Tk=

Moreover. Uk (C2.3). the sensitiviti-cs (4-1. and (4.61 are related by

u4 =.7) -,i- ald = f, - 1) Q• sh_1 -P, WP

p` p

for k=l,.. ..,K
All boundary conrdlitin., except the free on the fc'rEdbcy also do nct

depend on the forehody design parameters Pj. k = 1.....K. For example.
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consider the iinflow limindary conditions (2.4) (2A.5). Differentiating these

with respect to Pk. k K .' yi !ds that.

pL.1 _ inki n'Th. = f jL'k =Iki1 = Phi -uf= ihiO

.,t t~he inflow boun(htry. N ow ronfidnr the boundary condition (2.6) onl tile
forchodv. We have that onl the forthcidy

(2okii~iing (2.6)-i) nd (4.9) we have that

altnig thr fercho'iy or, tlizrpIa~ ing th;. fui! finmt :-n; dqvndn.rc on the co
ordinntrrs and dcsign piraniet'.-rs, vve lime iii. -point. 'x,v) on the forebody,
and( at ally tilm. t,

0 Ox'

(4. 11) -- v (f. x,~ y '(x: ill, j) . ... g); 2 P,P P2 .  PA

Wet can proceed to diffieruntiat'- (,i.11) with respect to ýnvy of tlie foreý-
hody tiosign paranvietfr% Ilk, k = 1,. .N . The result is that, along- the
forohody for k =1. .. K.

ý4. 12) O(DPI 2 ao-~h%.) C/~-I j 7 1)
;g w' 6 T

where u. and thivr d~~eI. i -anae tthelfOrebody (.r..y= = x)
If an iteratjive scheme i, u~ed L) find a strady state solution of this
sysem (l.1, 4.,S) (4.12's). thfen we wasnipn that pyesent gue,,aes for the

state variabks !i and i; md their derivautives it, i0hj and iiv/&t, and for
the dcsign Paramteters A!- and Pk, k :=1_.,K. are known. It oow
that the right-hand sidt of (.1 12) i., kncown as well and equaton 4,.12) the

boundry c~ndiiionskn~ ty fcddV for the Sensitivitic. with i se
to thc. fcrrtod% design parauiet-t~s, is n,-nr(,lv an inhomogencous versiont of

1. l0j. 0~;f. !fuundr- rornditi Mons:Ia the forebody for thie state.
Let Vr n1oV. _-PoeiAize to the, typie of forehedics considered by H~udilit-

(4.13" (D x: P,. P-' PI Y'\ PP6x
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where Or(x), k = I, .. K..K. are prescribed functions, e.g., Bezier curves
(see [6]). In this case,

00 (04\ d4 1,a.
(4.14) Mr) and Ox \', d

and

Combining (4.12)-(4.15), ono obtains that. at any poin't (:()) nn thp
forebody and for ich k= I. . K,

For forebodies of the type (4.13), (4.16) gives the boundary conditions
along the forebody for the sensitivities with respect to the forchody design
parameters Pj. k = I,..., K. It is now clear that, given gnats" for the
state variables it and t. and their derivatives Oua/y and ar/Oy and for the
design paramterr If' and Pk. k = 1.... , A' then the right-hand-side of
(4.16) is known.

Consider now the problem of minimizing 17'p) as defined above. Most
optimization algorithms use gradient information. In particular. if PJ' de-
notes one of the shape parameters, then the derivative

(4.17) 4 ?(r j < [ Q ,e t i t } ~ ~ ) le;-k ," Y.•) . y(, ý,y) ~) >dy

miy be required in the uptimization loop. The senAitivity 4Qc•(r. V. P)
satisfies the steady-state version of the ensitvitv equations (4.4). In prac-
tice one must construct approximations to , O=, y, •) and feed this
information into the optimize-r.

Assume that one has a particular simulation scheme (finite differencexs,
finite elements, etc ) to approximate the flow Q.J, y.fr) on a given grid,
i.e.

(4.18) (z .)--O,(, bl

as the "btep size" h - 0. Given thr design parameter ý. one constructs a
grid (depending on On) and then computes Q,(r, y. fl) _ Q(,=(x ., Pr). This
procepss may require sorme type of iterative scimvne. We will address this
issue below. In tbhecry, on" could rse the same grid and computatinal
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scheme to app~ro~xima7te Fp0,,(r, y,A) so that one genierates "approximate
sensitivities"

(4.19) QaX-AQ: Z .P

w~ h - (I. It is important to note that ;M gewnera

i.e. thi~s approach may lnot providn "consistent sensifivities'. However,
.,onic, schemnes do provide consistent. dierivatives and even if (4.20) holds.
thfe error

(4.2 1 11M' Q,= (.,Y P P N(X ,

mmy he sufficiertly sniall so that the opt~imr/atior. algorithni converges.
Trust region innihods are particularly wel]l suit,.,d for problems of this type.
where derivative information may contain (,sinall.) error.,. A5 wc shall see

below, there are certain casps whecre (ay~]call he ColipUttel

fast. and accurately. Ilence, the SE intwthod provide., estinlates for sensi-
tivities thiat inay prove -good enjough' for eritiminiation and yet relatively

cheap to compute. A comparison of [7jQ (r y. Po and various finite

diffo'reiwe approximatio~ns of -% [Qth(.. y. ;4) mnay bhe found in [L.1
It is important to note that the details of the coxnputations needed

to approximate a senisitivity are noct the central issue here. For r-xaniple,
the sensitivity equatAions, ('0.3 anid (4.4) arm viewed as' ind-ependent partial
differential equations that must be solved by "some" niumerical ticheme.'
Thip srhemer doee not necessarily have to be the s ame srheme se to solve
the flow equation (2.1 ). although as we shall see Lclow, tlire are mqass
whecre usin.- the same scheme is a useful approach.

Also, notec that, the sensitivity eqtuations- are derived for the problem
formuijlated on *'- physical" domain. If one u,,(- a conupni.it~irnal merthod
that rnlaptz thr problem to a computational domain (as du-.; PARC), then
the SE nietlmod- dcoe5: not require derivatives of thi, rmappinig. One simply
maps the sensitivity equation (including the necessary 13oundary condi-
tions). grid., the romnputational domain, solves time resulting transqforme~d
equation.s and then maps back to the physical domnair. If. on the other
hand. one mappeýd the flow equation (2.1) anid derived a rensitivity equa-
tion in the computational domain, then to obtain the Correct sensitivities
one would have lo rompute tl,. lrapping sensitivity. Therefore, it is more
efficient to de-rive the(- sý-nsitivitv equjations in the physical donlaini.

Finally', wye norte tbat ilie SE method d&scribed here has onet additional
benefit. To cuinpite a. senrsitivity. s~ay Qý, (a'y, j), thmen ont. firat se-
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leers the parameter value 5. constructs a computational grid and solves for

[i-Qc(z., y. ). There is no need to compute grid sensitivities.

5. Computing sensitivities using an existing code for the state.
Suppose one has available a code to compute the state variables, i.e.. to find
approximate solutions of (2.1) along with boundary and initial conditions.
In principle, it is an easy matter to amend such a code so that it can also
,ompute sensitivities.

First, let us compare (2.1) with (3.3). If one wishes to amend the
existing code that can handle (2.1) so that it can treat (3.3) as well. one
has to change the definitions of the flux functions from those given in (2.2)
to those given in (3.4). Note that, the solution for the state is needed in
order to evaluate the flux functions of (3.4).

Next, note that (3.3) and (4.4) are identical differential equations.
Trius. the change, inade ti thf- rode in order to treat (3.3) can also be
used to treat (4.4] li fact, aw loig asw the differential equation and any
other part of tflw problem specification do not explicitly depend on the
design parameters, the analogous relations will le the soime for ;Cil the
sensitivities.

The only changes that vary from one sensitivity calculation to another
are those that arise from conditions in which the design parameters appear
explicitly. In our example. for the sensitivity with respect to M11. one must
change the portion of the code that treats the inflow conditions (2.4)-2.5)

so that it can instead treat (3.10)-j3.11). In the problem considered here,
the nature (i.e. what variables are specified) of the boundary conditions at
the inflow, and everywhere else. is not affected. Note that for the sensitivity
with respect to AJA, the boundary condition (3.7) on the forcbody is the
same as that for the slate. given by (•6.).

For the sensitivities with respect to the forebody designi parameters,
the inflow boundary conditions simpliIý to (4.8). i.e., they become lbotno-
geneous. The boundary condition at the forebody is now given by (4.12)
or (4.16). Once again, the nature of the boundary conditions is unchanged
from that for the state and only the specified data is different. For the
inflow boundary condition., we may still specify the same conditions for
the sensitivities-, but now they would be homogeneous. The boundary con-
ditions along the forebody change in that they become inhomogeneous,
(compare (4.10) and (4.i3)).

In summary. to change a code for the state so that it also handles
the sensitivitirs, one must redefine the flux functions in the differential
equations, and the data in the boundary conditions. The changes necessary
in the code to account for any particular relation that does not explicity
involve the design parameters are independent of which sensitivity one is

presently considering.
The previous remarks are concerned only with the changes one mut

effect in a state code in order to handle the fact that one is discretizing
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a different problem when one considers the sensitvities. We have seen
that these changes are not major in nature. However, there are additional
changes that may he needed when one attempts, to solve the discrete equa-
tions. In the nnmerical results presented below we use the finite difference
cod,: "PARC' (see [4' and 18]) to solve the state and sensitivity equations.
However. the following comments apply equally well to other CMr) codes
of this type.

Since we are interested in steady design problems, the time derivative
in (2.1) i. considered only to provide a means for marching to a steady state.
Noav waed that at any stage of a Gnus.-Newton, or other iteration, we
have use-d PAR( to find an approximate steady s:ate solution of (2.1) plus
boundary conditions. In order to do this, one has to solve a sequence of
linear algebraic systems of the type

(,5.1) l (Qr .AlBQbi) .(1 = u,.1,2.,

where the sequence -6 terminated when one is satisfied that a steady state
has been reached and where Qý, denrt.e the. discrete approximation to
the state Q at the time I = nAl. We denote this steady state solution for
the approximation to the state by Q.. One problem of the type (5.1) is
solved for every time step. In (1.1), the mat.rix A and vector B arise front
the spatial discretization of the fiiixrs and the boundary conditions. Both
of these' depend on the state at the prev.ons time level.

Having computed a steady state solution by (5.1). the task at hand is
now to compute the sensitivities. Wer- will focus on Q'. the sensitivity with
rcspecl to the inflow Macl! number. Analogous results hold fr the sensi-
tivities with respect to the forehody design parameters. Recall that given
a state. the sensitivity equationfn are linear in the sensitivities. Therefore.
if one is interested in the steady btate .rnsitivities. instead of (3.3) one may
directly treat its stationary version

(5.2' + -- = 0.
Ox d

Since (52) is linear in Oie components of Q', one does not need ',, considor
marching algrithml, in order to compute a steady sensitivity. One mcrely
discretizes (5.2) and solves the resultant linear syste-r, which has the form

(5.3) A(Qh)Q' =

where Q,. denoTos the discrete approximation to the steady sensitivity. The
matrix A and vector £; differ from the A and B of (5.1) hecause we have
discretizrd different differential equations and bouindary conditions. Note
that. A and B in (5.3) depend only on the steady state Qj, and thus (5.3)
is a linear system of algebraic equltons for the discrete sen.;itivity Qh.

The cost. of finding a solution of (5.3) is similar to that for finding the
solution of (5.1) for a single value of n, i.e. for a single tiroe step. The
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differences in the asenmbly of the coefficient matrices and right-hand-sides
of (5.1) and (5.3) are minor. Thus, in theory at least, one can obtain a
steady sensitirity in the same computer time it takes to perform one time
step in a state calculatton. If one wants to obtain all the sensitivities, e.g.,
K - I in our example. one can do so at a cost similar to , e.g., K+i time
steps of the stare calculation. This is very cheap compared to the multiple
state calculations neceisary in order to compute sensitivities through the
use of difference quotients.

Although (5.3) is in theory no more complex than one time step in
(5.1). we can solve (5-2) by using the same iterative (or another) scheme.
The simplest approach (hut cn tainly not the optimal approach) is to use
the PARC code to ,olve (5.2) by time urarching. In particular, assume that

Q$7) is a solution o (.-), t.Then the system

(5.4) I1+ AtI'(Q.'" ')J (Qt)(l+ = [(Q )r) + AID'(Q, 1

can be u-ed to lind (Q')+') given (Q')h"). Thus, one makes an initial
guess for Qh) and (Q,)t) and then iterates (5.1) and (5.4) simultaneously.
Also. the same scheme can be used to computt any Qt - i.e.,

(5.5) + A-tA'(Q~" Q)''

In practice, these "optimal" estimates of speed up are rarely achievc.d.
Moreover. as noted above, it is important to note that finite difference (FD)
and sensitivity equation (SE) methods do not nece(ssarily produce the same
results. Since the ultimate goal is to find useful and cheap gradients for
optimization, the most. important issue is whether or not t.he SE method
combined with an optimization algorithm produces a convergnt optimal
design as fast as possiblc. We have tested this scheme on the forehody
design problem and the next section contains a summary of these results.

6. An optimal design example. In order to illustrate the SE method
and to test its use in an optimization problem, we used the PAROC code as
described above to compute sensitivities and the used these sensitivities in
a BFGS/:ý-Trust Region scheme to find an optimal shortened forebody sim-
ulator As shown in Figure 2.2, data was generated by solving the Euler
equations over the long forebody at, a Mach number of 2.0. The objective
is to find a forebody simulator with length one half of the long forehody
and such that the resulting flow matches the data as well a; possible. i.e.
minimizes " along the outflow boundary.

The shortened foreb,dy was parameterized by a flezier curve using two
parameters. Thus, there are three design parameters p = (M,10. pt. P2).
The algorithm used in this numerical experiment was based on using the
PARC code to simultaneously martch to the steady state solutions of the
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flow and sensitivity equations. We made no attempt to optimize the algo-
rithm sin:e the main goal was to test for convergence.

The design algorithm proceeds as follows. First, an initial guess for the
optimal design is made, i.e., we select a pO = ((2)O P1P, P2).. A good
selection of initial parameters can be made knowing the operating rondi-
tions of the aircraft and some rough guess of the shape from the aircraft
forebody. In our example, we chose ,'0 as the inlet Mach number from the
computation which generated our data. The initial guess for the parame.
ters were those used to generate the long forebody (although corresponding
to different x-localions). These parameters. po, are used to generate a grid.
the inflow and iort-hody boundary conditions for both the flow (2.1) and
sensitivity equations ((3.1) and (4.4)) and an initial guess for bth Q c;

and (4Q),,. In our example, a rough guess for the flow field Q O), ses
the constant, inflow boundary condition throughout the flow domain. Like-
wise, the initial guess for (Q')•) is taken &s the inflow boundary conditions
(given in equation (3.10)) throughout the flow domain. The initial guess

for (Q.)(o) is initially taken a,3 zero (except on the forebody). The systenis
(5.1), (5.4) and (5.5) are then solved simultaneously (in our case the left
hand side matrix is the same for (5.1) as for the sensitivity equations (5.4)

and (5.5) i.e. A = A') for the updat,,d Q5,'' (Q1)'""1 ) and ( Q i)

The updated Q'n) is then used to formulate (5.1). (5.4) and (5.5) and solve

for (Qh)(,,+I and (.Q )). Then one iterates until the desired conver-

gence is achieved. In our example. the rtsiduials, AQh = [Qf"+, - 'frj
were converged to approximately 10 -`' (in "00 time steps). The outflow
data Qh and ( )h are then used to compute J(pr) and VJ(p0 ).

The optunization algorithm consisted of a B3"GS secan~t method cc-u-
pled with a "hook" step model trust region method [5]. The initial Helssian
was obtained by finite differcnc.is on 7J(f). T'e function aetd gradient
information needed by rher optimization algorithm is obtained by calling
the modified PARC., code with p = p.

This algorithm was tested for the ca.s" where the forebody simulator
was allowed to havw the full length rf the body generating the data. In this
case the optimization alg,,rithm produced exact data fits. i.e. J(p-) = 0
and it recovered the parameters used to generate the data. However, the
more realistic test (constraining the length of the forebody simulator) alson
produced a convergent design and reduced the cost functional significantly.

Figure i.1 shows the flow field over the long forebody. Observe, that
there is a shock in the flow. As noted in j2', rho,-k.s can cause difficulties
if one is not careful in the selection of an appropriate numerical scheme.
High order schemes can produre (numerically generated) local minimum
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that can cause the opt imization loop to fail. This problem 6, avoided here
because the numerical viscosity in PARC (required for stability) is bufficient
to "sinooth- the cott functional (w~e !21 for details).

DonsitZ XMoxentuzR

Pi~~ 61: 91' F~e'~ (Oi~ 'c Z R ~' .
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rigure 6.2 shows the shape and flow field of the. optimal shortened fore
body. This design wvas obtained after 12 iterat~ions of the optimiz.ation loop.
figures 0.3 -6.6 show the 1", 2 "ld. 3 d, 5'4 and 12w" iterations for eath of
the flow~ variables.

0.7 0.5

0.2 4 0.2

Density N-omantux

~ 0.3

T-Nomentum Energy

Fiot rtE 6.2 Ok)rv,,,l S'orte'a~$I dP i



ADA294785

68 J. T. BORGGAARD AND J. A. BURNS

Initial Guess Iteration 1 Iteration 2

Iteration 3 Iteration 5 Iteration 12

0.20 0.70

FIGURE 6.3: Itfrcfsr to OpflaI Fjýorio Dtspi.n Drrsyi
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initial Queen Iteration 1 Iteration 2

Iteration 3 Iteration 5 Xteration 12

0.30 1.20
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Znitial guess !teratian I. Iteration 2

Ztoration 3 iteration 5 Xtorat ion 12

0.20 0.50

Ftrtu~r 6-S: Itr t:, fa 'l:ir-Y F--fhd~y D-jr X-
7rj -7, fl f -
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initial Guess iteration I Iteration 2

Iteration 3 iteration 5 Iteration 12

0.00 0.20

Frrrw" M . P: l fiv! -e .r!,'r.•i Fjrfed .
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The initial guess for the parameters were

= ((.10)t P., ) =(2.0.0-10.0.15)

and

j(po) = 3.2339.

The "converged" optimal parame-ters are

=" p' =• (2.029,.0.294,.151 51)

with

r(pe) = 0.2229.

Observe that, the coat function was decreased by more than 93.. Figures
0.7- 5.10 shvw a comparison of the flow fields for the optimal shortened fore-
bodE tsiniulatr anild the data. Dhe op:imization loops converged rapidly.
Fur examiplde, .7c) = 0.2334 and ,7(p6 ) = 0.22,;9. This is due to the fact
thatI the showk location was fcound quickly.

Optimal Design Long Forebody (Data)

0.20 0.70
Fuufr.7:Crcna fOtneS9hr O.'ri Or. o
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Optimal DesIgn Long Forebody (Data)
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Optimal Design Long Vorobody (Data)

0.20 0.50
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optimal Design Long Forebody (Data)
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th- u~o~ 'I'}jis za-n a'szj hr -i-*n iii tie pb in 1itre 6 'I'l r)A 1 .

It ~ wrhwiieto ncichat. ttc, mati-h it ou v'.'mnisii'irng, ýhf fact die
A.ortencd forvVidy is row~traiirre' ti- I,- oute hair 1;L lergtli cf the -re~al-
fort-I,'h ý.r.' onty two Bt7,ir parwiwlrr, are 'icIto. 1i~' I(.). It is

hi. joirlrujar. mt~i Figjres 6.3-6.6 h(-,w thr- -jj,!ivi~itkiu .lk aizrtlr
.1t~~tli: fLr ,1'J f' bc-dv so that thce c-.i inal A;Ipc hias niILr

ii'.ýt Thl., V, llec"-ary in c~rder to g,-neralr the crirrerl hI'.ek kvuitk-i at

filerrtti
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7. Crinclummisn. rhe,. numerical experiment. amovc i"11trates that thn
SE method ,nn prodne s(n ivitei .q uitnble for optimization based de
sin. There arc, a number of interesting thereoical issues that need to be
addr ;sed in order to analy2e the convergence of this approach. Moreover.
one should investigat(- "fast ,oler!" for the •.n-itivity equpatious (multi-
grid, etc.) as weil as develop numerical sci:enie" that are not wily fat. but
produces consistent deria! ives when porssiule.

Finallv, we note that we have conducted a number or timing testQ
'hiCh Comput"e sef-ttivitiC,. to ompare the. ST, method with the' finite dif
fertnme method. In particular. we rbsrrvcd thfit for the problei above,
(with three design par;amct.rs), the SE metlned nided only oi•, of the
C21W time required bv finite differencing. When twenty de-sign paranicter-
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were usie, the SrE method produced these sensitivitie' in about 3871 of the
time requited by finite differencing. These early numerical re~sult, indicate
that considerable computational savings may be possible if one extend'w and
refines the basie SE mrethod presented here.
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QUASI-ANALYTICAL SHAPE MODIFICATION FOR
NEIGHBORING STEADY-STATE EULER SOLUTIONS

J.S. BROCK* AND W.F. NG*

Abstract. Aemdnamic inverme design methods which are governing equation con-
fiotint are generall)- limited to the Full Potential equations. Consistent dtsign methods
use identical governing eq itinns for all fluid dynamic segments of the aigorithini. includ-
ing shape modifirat.inn. Thit ensures that all relevant physical infurmation is included
within each dusign estimate, and tleref, re., a minimum number of analysis/design it-
eration. are required. Thik report pretentot a new, and consistent, shape modification
method fnr future ute within a direct-iterative inverse design algorithm. The method is
simple, b6ring devehoped from a truncated quami-analytical Tayinr's series expansion of
the global governing equations. The method is general, since- it may ntse either the Euler
or Navier-6t1vkes equations, any combination of numerical tecthniqn, and any number
of spatial dimenbions. The proposed method also inrludes a uniepi, iterative algorithm,
and new geometry/grid ýcnstraints, to solve the over-determined design prnhlem. An
upwind. cell centered. fimite-vchinic formulation of the two-dimenrirona Euler ,equations
is uied within the present efrurt. "Ihe inethod is evaluated within a symmetric ,hanT•,l
where the dl.sign variable is a r' d-chamnel rcunp angle whith is nominally 0 -= M°. Text%
were conductedfor three taigtt rurai., angle pcrturbations, A6 -2S, 10%, and 40'X, and
three inlet .Mach numbers, Al = 0.30. 0.85, and 2.00. For a single design estimate. teing
design like test eonditi•,s, tthe new nietliod is dcemonstrated to accurately predict geonm-
etry shape changes. "Ihis includes the transonic test case with an extreme 40t.• design
variabhle pertirh;.crion where the target geoeitiry wat, predicted with 95% accuracy.

1. Introduction. The ability of ompu'atiral Flid Dvriauics (CFJ))
methods to solve direct. or analysis. problem. ha.i progrresed rapidly in the
last two decades. Direct solutians for c0omplcx two or three diimelsional (2-
D or 3-D) configurations using the Euler or Navier-Stokt.s (N-S) equations
are 'ommon. The direct problem is characl,6ri7,d by Ohw .pecification of
the geometry and bcoundary conditions ;WC's). followed Iy a s,.olution of
the field equations gov'rning. continuity, rnomentute, and f.nergy exchanqt..

Of equal imp.ortance to the CI"D communit) i5 the aerodynaanic design
problem. The design problem determine. th#- getnmetry required to support
a given set. of BC's, ph' sical conslraints, and targ1Ct det ts i ;oans. I tie target
design goa!s may be a surface functio~n. such wý surface pressure, or a global
parameter, su4h as a shock frec flow field. Drlelclment of more elfiei-nt
and effective aerodynamic design tcchnongies c•nt:aues to reecrve great

emphasis, and is the focus of the present re.seahrcl.
There artc many wayi i,. which aerodynamic design metnhods cnn hbe

catcrgorized [1-3]. ThiiS report. considers two general categories: opti1'7ia-
tior design and invercý design. lnverse desigxn methods may be subdivided

as classical [t-7]. shock-fre•. :.9.. dire,-t-iterativ. (10-12]. and stream-tulp

methods [13-16]. Al of t., rnethrc.• pvs,-s uniiqw't strengtha ar-I s-c-
cializations, and each will continue to s,.rv. i•, , dign community.

Medmallical EnghIK,.g' "tii Depa-t nt. Virginia T,',lyytchnit Institute-ai'Jl Stuit.- U.i-
vrsity, ftarksburg, VA 24.1-02"i.
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Optimization design methods are generally considered the more ad-
vauced of the two aerodynamic design categories. One reason may be the
capability to perform design tasks using the Euler or N-S equations for all
fluid dynamic portions of the method. This includes both the analysis and
sensitivity derivative codes which arc coupled within a design optimization
algorithm.

Inverse design niethods u.s various sets of governing equations and im-
plementation algorithm's. Some methods use the Euler of N-S equations
as part of the algorithm, while others use the Full Potential (FP) equations
exclusively. Some methods couple a boundary layer (BL) model with the
FP equations for the initial and intermediate direct solutions. However.
the relationship within each inverse design algorithm which actually pre-
dicts shapes, the design methodologies. are in general limited to the rP
equations.

Direct- iterative inW•rtr design methods are conceptually simple. rela-
tively easy to implemnut. and so the most cununonly used inverse design
method. These are alsi, considered to be the motre advanced inverse deb'ign
method since they may u.se any existing CHD analysis code. and therefore
governing equations, as a portion of the inethod. Direct-iterative methods
require an initial geometry. BCEs, an initial solution, and a target surface
pressure profile.

Direct-iterative inverse design methods use two distinct code portions.
A shape modification code is coupled with ant analysis code, and the design
geometry is determined iteratively. The shape modification code contains
the relationship between the difference in the initial or cnrrent surface
function and the target function, txo the change in geometry necessary to
obtain the target. These relationships are termed Body Shape Rule's !BSR)
{12).

Separation of the direct and design porti•on of the direct-iterative
method provides benefits and disadvantages. The most advanced analysis
code, using the most dr-criptivc set of governing cqtations, may be used
for initial and intermediate direct solutions. Th' algorithm separation alho
allows relatively simple BSR's to be distinct from, but equally valid for,
any set of analysis governing equations or CU) methods. However, cur-
rent BSR's are based on Mach numbcr dependent potential theory. This
disadvantage requires a differe.ut BSR. to be used within each flow regime:
subhonic, transoni:, atnd supersonie.

Ana-ther disadvantage of these popular inverse dtsign methods is that
BSR's are only local, or sutrface, applications of potential the.ry. This is
in contrast to the global Euler or N-S equations Governing equation com-
patibility, that is anal' sis and shape modification %kith the same governing
equations. at either the Fule-r or N-S level is ther, fore not presently p;'ssi-
WIe. Compatible. or comnsitent, direct iterative, hapt' mridiflcation* and so

inverse design. is then limited et the EP equationt:
'flht limitation of consistent iiverse design at the F1l level does have
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exceptions. A unique stream-tube method has been successfully demon-
strated for inversc design using the potential equations and includes ro-
Lational effects '161. Another type of stream-tube method uses the quasi
1 - D Euler equations within a 2 - D coordinate system [15]. These meth-
ods provide both direct and inverse design solutions in 2- D which satisfy"
their respective equations. However, consistent extension of these design
methods to include viscous effects, or a - D extension, is not possible.

A general invers•e design method would he equally valid for any set of
governing equations. CFD terhnol-gies, and number of spatial dimensions.
Alto, gnverning equation consistency would ensure the inclusion of all rel-
evsnt physican information within each shape modification estimate. This
may reduce the number of shape modifications required to satisfy the de-
sign targets. and would be inherently Mach number independent. The goal
of the present research is to drvelop and test a shape modification method
with thece qualities which my be incorporated within a direct-iterative in-
verse design algorithm.

Following this introduction, the fundamental development of the pro-
posed new shape niodification method will be presented. A truncated Tay-
lor's series expansion of the discrete, global governing equations is the basis
of development. Ihli trmcated serie relates solution and geometry changes
with (luasi-analytical flux Jacobian matrices. This simple and general con-
cept has I'reviouCly hct'n dcnmonstrated to provide consistent neighboring
steady-stette soluition predictions nnd .vnsitivity derivatives [17-22]. The
attributes of the truncated serics satisfy the goals of the present research
and it provides a general and consistent means for shape modification.

The present research is the first. attempt to use the truncated series
within the area of shape modification. and therefore inverse design. A
number of unique challenges exist in this effort which were not of concern
in the previou- studies. Impl.mnntation considerations for the 2 - D Eu-
ler equations and a unique solution algorithm will be pr.srnted. A simple
channel geometry, and desigxl-like test paralneters will then be defiled. Rb--
suits of the new method will be presented and discussed for tests including
subsnie., trarisojic, and superrnnir inkt. Mach numbers. and a summary
of the research will conclude the document

2. Theory. lin this section the basic theory and fujdaitewi vlequa-
tions for the new hliue molification itiethO are presented. Thi. initiAl
developjnrent iq g~nrrPl in nature. In n following section the particular set
of governing equations used in this research will be presented, along wit),
the specific details of tle implementation.

The non-linar. tine-dei'pendent, coupled partial differential equations
for eithr thi Eul'-r or N-S cquntions can be expressed as

(2.1) nO + R(Q)

where Q is the ve•-.,r i4f crv'rsNd variblk• Th,, vectror Q contains ccro-
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binations of density, component. velocities. and energy terms. The size of
Q and the residual vector, R(Q), depends on the number of spatial dimen-
sions chosen. The residual represents Lite steady-st ate forim of the governing
equations and is an explicit function of the conserved variables. At steady-
state conditions the residual is exactly zero and the governing equations,
together with proper BC's. are satitfed.

The numerical description or discrete version of the residual can take
maky forms. Two choices herein are either litinte-difference or thiite-volurste
spatial discretization. and either upwind or central difference flux evalua-
tion. The culnination of these and other decisions determine the set of
CFD technologies used, which in sum determine the CFD method. Irre-
spective of the CFD nmethod chosen to des-cribe the residual, the governing
partial differential equations must be discretized over the domain in ques-
tion. The semi discrete form is then expressed ais

(22) 1 L1 + R;. (Q) = 0

where the (j. k; indices are used here on!y is an example for (X, l) corordi
nates in 2- DI This expression represents one equation within a system of
non-linear, coupled, ordiiary differential equations. The system of equa
lions play he integrated ill time for unsteady sohlitions g;ven a proper set
of RBs and initial conditions (C).

A coInison practice in determining steady state sclintirnm to the gov-
erning equation, is to integrate the coupled *syatesl inl ps,-sd*-timr fiom a
reawonally selected sc of IC's. [ll,. is perfornied in either an explicit or
an implicit dnansia it-ratively, where implicit integration is prtferred. the
Euler implicit, or backward Euler, time integration l'lbthod is cossistnnly

used,

(2.3) [ - _ 3 {"AQ} = - 1"(Q1 -1i

Hlere {1AQ} is the finite difference for the vector of discrete conserved
variablks• between the (n ; 1) st and the (nllth time level.

(2.4) {"AQ) {- " IQ"') -_ j
The explicit dr.pendence of the governing -quations or the coneirved

variables, Q hm* bieven empht-irte4 ahove. Whotr is understood, bitt nort

explicitly showli, is the dcpfrindence onl the discretized doinain, the grid,
which on thr homindaric; inclhidec the body geormeitry. This genmc-trv/grid
dependence is generally not ,.xpressed since direct soitions genrraly us,--
a. fixed gri,d with only the discrete valuse, of the conserve-d variable;i ifeing
of interest-

To thid point only comm-o an t w¢ell undcrstoeid rinalysi; conrcpt; h; v-
ben pms.•ntrd for suhsrquenr comprison. llc, wever, the geonietry/grid de-
pendence of the residual bezomxns equally important when cosnputaticna!
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design method-. are considered. The. discrete residual vector is then explic-
itly defined to b,ý a function of both the discrete. solution vector. Q, and
discrete geomet~ry/grid vector, X.

(2-5) {R} R(,=

The vector X reprot~sents the phy~tical (x,y~) coordinates of the discretized
geometry and doniaiii.

(2-6) T Y)T

'The new shape modification methoid begins with the discrete residual
systemn of equations. Equation 2.5. Consider two non-linear, steady-state
solutions to the governing equations, Q, anld Q2, which were, obtainerd on
two %imilnr geomletrics/grids. X and A.A relatic~riship betwmtn the o-
tions and geomnetries/grids ran he obtained with a Taylor series expansion.
in both Q and A, fromn the first to the second sobinion and geome~try/grid.

(2.7) RJ? (Q .Vi +&QX I l,(Q--Y

+

+ 0'(AQ) 2. AQATY, (A.V) 2]

Th vc-ctors AQ agil A.A an, (irfned to br the fi:-Jifc chanrge in conscrv-d
variables and 1.ricri t wreen the snititirmý

(2.84) {AQ) IQ?) (Q
(2.9J) {fa {J y{)

If t.he two -n~tin-.5 ant .orere,.gi: are~C05I related thicc. tLi
higle r-rorder trrro- ( f the sr~rirs ran 1-c truncated for a ftrinally firs.i-crder
hrr-rair ferjivitic.'i Also. ,r both soliuticrrs are aL sicady :t-'t contd-
tions' ,both residuld V''c'rs are exactly zero ar~d ca~i 1,r dr'4pptd o'.. obtain
Ecpntiutn 2A.10

Ihi epre!_-ionr i4 terin' -1 0;- ta~rird prdc o/ds ý.~quation j-
%va.- fml 4rvo'tw ;,yj~.lI Ta~lor. rt, ail in V'-41 '17^. The fur :ic'na drspen-
dt-iwte of the JI,-r r-i .,-i:n on roth thr sewl'ticn vertor ;tin !:,e remi-
,try/grid ccrir~it,L is w- ia.t te111V ror-r~-pt. lJbW,.-Vrr pkia of this
prop,ýrty in c .ri with, th,1 irmv:nc:! Trv.y17r sr.; '*xrnnsizr. is a

srp!yvt piwei u'.t wi. h1a; r: 1m faN11v k~'
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The relationship between anty finite change in solution, AQ, to the cor-
responding finite change in geomtetry/grid, AX. is quite evident in Equla-
tion 2.10. The vectors AQ and AX are, related by two flux Jacoibian nmtri-
cen. O9R/OQ and OR/4DC, which are derived from the. global, dfiscrete form
of the governing equations. Thereforn, both Jacobi-in matrices are quasi-
analytical expressiowi and are, explicitly derived from the flux evaluation
mnethod of choice.

'The sensitivity of the governing e~quations to the solution variables,
OR/OQ, is a standard matrix used within implicitanlsslgrtmuc
as Equation 2.3. The shortened phrase flux Jac~obian is the commonly used
term for this matrix. The sentsitivity of the governing equations to the
geometry/grid. OR/OX, is the focus of thre preihsza research and represents
a new B'SR for direct-itrrative inverse design methods. This it; a retlt ivelv
new matrix within the CFI) community and requires special distinction.
The short and simple phase- metric Jacobian. while strictly a misnomer, is
suggested and used throughout thtis report.

The standard predicvion/de-ign equation can be used in matsý wrx'; If
a finite. change in the geometry/lgrid is speciflted, AT7, thbm the geometrie
forcing funct~ion, F,. is knowvn and a change iii solution can be- predicted.
AQ. In this format the exprcssion is wermed the standard i'redicxionl requs-
ticon and the results are referred to ab gem-netric wdnitiosi pretliction;,

(2.11) [1~ h 1{AQ} = - [1~ IX17 =

N-utr that the susrpshave been dropped her"ý f-r an- wAl!
be thowni tsubsequenýitly only wh' n necenssary for clarity.

Geomnetric sulusioan preeittirin have be.en deninrstrarrd for both theý
2-L) Euler [117 an'I Thin Layerr N-S {T-I.NS) [ 2liemr~ationis. Non-geometric
solution predictioý,ns have also, been demonsr1trjte]A with a ntedifirdl Version

ofi Eutawjýn 2.11 [-14. Tues-ý sulutiot.i predfirtions are dri~ven by variation of

non- geovmetric (lesigrn variables Ntih as hinle Mach nwulsrid angle of attack.
and exit pressure. The r~ca gelonittric forat v tie- tii-tanard ;ditin qua-
tno:n is de~veloped in tL.e saitw maxine: as al-we- aft.er the dtrrct- rrsniuMi
is expres~ed as an explicit furrtctio of flic iýon-goxe,)ttri- dt~iz xaralfr

T'he major use? of' the- st-indard pred~cti'i-u r'efltas has bt'.ii ini Oli-
diently obtairi-ng scnmitiv'tv derivativ#es for use wrhi iJ.titittt* Iett
algorithmsi 11P 22J. Thit is alsoý accornp)0hnl Ly tunes io'd ff#tlii
rnc'difiration! of the di-crctc+ residual to include spe~cific Cesnng. vari-L-s.
tcv'ethcr with repeated usej fof -lhe chai:4 rule 'Ihsesnstavdria.v'
have, been ottaine'1 with Pie Euler and .jjLAS MiuaiUn- for 1.-alt ut-

diffe-rence and hntte iosn liscr*izaltor mtenw wetedsttml dxt1erfnr- andi
upwind flux ev'iluat v.xns, ýnd tit !-(& it 24) ,nw) $11

The pre-e-x.t rrsrnarch huxl'- oni 11,.sc~r- timl ttibtv if tit- stan-
dard r-lirt--!'7:f&i-ign cquntiaion in the area of inverse dedi~n zhrrý;:;' shape
nni(Yirasir:. If a finite sc-Iil.hn; chaxxcr. is spenýfl'--i AQ 'In L,- -rtnt wu
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forcing fuinction. 17,. is known and a shape modification prediction can be
found, AX. In this format the expression is termed the stnndard design
equation And the results are referred to as design predictions.

(2.12) -I j1X JA )=-IF

rhe stan-dahrd dt.sigii t2quar ion i, the fuindameintal cqu~atiton for the pro-
posed nc%% shape' Mui11ifCA1 ion niot hod. This equation cnahkcs shape modi-
fication to [be %~rr~~ ithi thc- samev gc-'erning equations, and successful
(TD redliuqiqus, wt ciri-1111y !;electcd for thr analysis solution. This is
the emivnvce 'ofn~ii~tent dcsigii and is gioa.ranteed since the method begini;
with tht. discrete %--rsinn nf t-ie governing equations. Also. since the govern-
ing cquatioz±s ajppl forý all lriw rgines. the consistent -hape modification
melhc.' is .;iniiarlY M-.ch ziuiber ~indtpeidtenf

Since the hicigh'r-o-der trr~ms were trii,'atd in tht- 'Ittylo series ex.
p rs~m a-hb r witi icvicnn is strictly fire-i-ordtr accurate. U-ze of all

domain rind BC f-l~iations alsc produ~ces a glvb?.l sybtem (ifequtt iniiý whirlh
i-4 fi1lq -o-tly it,~lv than current local inefliods. Hlowever, "asisterit
tde,;n -r."Ilros thalo '111 relovant near and har-field physwcal imfurniiation it.

julhin the metric .Iacobian BSII. Inc orporeliiig all the relevant ph.ioic
withi'n e01 sh1are modificatic:1 estimatc ila) red ure tht- total iauiiillwr of
annlvsis,'des.ign iterzttior~s.

Tn -urn~niary, the dual futictiona! (ftpciidence, of the( di..crretere~~h
oil Q r~in N. iii conjunction with the trunc-ated 'a,-Iur s2ries exc'sninton.
provides a iae% shiape ncorlificait ion methend which is simple in conce:'pt andl
Strai;ghtforw"Ard ill app)iiCatioiui U; nn restrict rions wcrre placed in the de-
velc~prnent th fit nw melt,-lao'? ha genrn I l 1rplicability. That. is. it is nct
restricted to aiiy sel of gokerning ecluat ions. (T)C eulaiD or spnw lal
din~c'nsions. In (fhe f-loAn~~'~m ptcifir d( t ii~sof imprknivuiat tion will
be disc7ussed For t~e 2-1) Euler eqluaticin,.

3. Eider~, Eilt~tiratios.1 T e overning eq~uations used in the presmnt
rebsazrl: asr' tie.'_F*2-) FjjlCr rquoticjti. Aftf-r ai transfc-rmialion from cartesian

(. Qt t) gt'mrlz- (..vjoordinati-s thes'- cquations way he writtcn a'

wher~tv J i- hr' 'ieterm~ininr of tin' 1acohiar in atrix of (lie cc-,c.v'flntiat t~rans
furvit gnu. 'I I'- rconsrv~d v'artmths and rc-sidu-tl are

(3.2) Q ip,pyt"pt )I*1

(33 drtQ) + GQ
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where p is the density, u and v are the velocity components in cartesian
coordinates, and e0 is the total energy

(3.4) CE= + I-
2

and e is the specific internal energy. Also, the 2- D primitive variables nre
defined below and include the pressure. P.

(3.5) q= (p. u,)v,

The generalized ronrdinate flux v vctor; arc given as
(36) •Q(c) = 9 r(Q) + 4j(7(Q)

,(Q) = F1.Q) + jC;(Q)

with the cartea•iju counterparts givet in Eqnttrion 3.7.
(3-7) FIQ'M = [pu.paa + P,piv ,pbhjr

G(Q) = , p '' + P!p•,ho)T

The stagnation enthalpy, ho. is defincd in Equation 3.8

(3.8) hi) + -

and the caloricýallh perfect ideal ga, law i- uisd to evalhate the fpress.re,
P. with the rat'o of specific heats is equal to - = 1 4

(3.9) P(=Or-iUP~t 2)

These governing tquatit.ns are compnltsii rieilly;,h-scril,,, itn atr ingte-
gral. conse.tatiln law furm, using an tipwind. crll-rruterr'd firti.-vllumr
formulation t231 'Ihis fornmvlatitn i% id•-•tical for o•oh the analysis and
shape inodifiatioMt shltieos, and is intended for •tructured Ht, or C
type grids within the present recearch,

To ensure that additional errors rim not added to the original series ex-
pansion, Van teer's continmuously differentiable flux vector splitting method
is used [241. Second order upwind and third order upwind biased primitive
variable extrapolation is performed in the. stream n ise and normal direc-
tions respectively. Also, both flux and metric Jarobian matrices require
proper linearization of all boundary equation,.

4. Incremental Nr•nral Equations. The- global eattire cf qe;ta-i-
analytical shape itiodificativn requires thte i•vvrse of the metric Ja-chbian
matrix. Since the- pre•0.-t retsearch is (he firer n isnerrit if the" ,tzlnlard
designj equatiolis potenltial for shajpe asodifiertion, it is also the first at-
telmpt of thiei inversion Uihi section discusses iv. iitv'rt-ine diffi'ult ir,-
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and prese.nts the Incremental Normal Equations (TNE) as a simple solution
algorithm which circumvents these. However, first consider the vector AQ
in Equation 2.12 as known. Together with the flux 3acobian matrix this
vector defines the solution forcing function, F,, for the standard design
equation.

The first difficulty encountered in solving the standard deign equation
is the evaluation of each Jacobian matrix, and the inversion of the metric
Jacobian matrix. Both the flux and metric Jacobian niatriceq must be
evaluated exactly to get. the proper solution for A7. This requires the
proper linearization and inclusion of the BC equations within each matrix.
The proper solution for AX al-o rcquires a non-iterative inveraion of the
metric. Jacobian which is costly in terms of storage and cornilutational
effort.

The second difficulty encountered in solving the standard design equa-
tion for AX requiret an ,.xamination of the size of the metric Jacobian
matrix. Recall that the governing equations were transformed froni :i cartc-
sian. (x,y), to a geiiralird. (,f, q). coordinate system and the dr, in i.m

diseretized. In the pre#snt effort, (j, k) corresponds to the (4. ?j) direc-
tions respectively. with JDIM and lIMfIM defined as the maximum (j,k)
dimensions.

The total nunubr of domain governing and boundary BC equations,
and the total number of ph-:ical (r,y) coordinate unknowns within the
domain are given by in and na respectively. Both the number of equativ.ue
and tfhe coordinate unknowns are functions of JDIM and KDIM as dtlnc'd
in Equation 4.1.

in (.YDIM + I)(KDIMA + l)(4,)
(4.1) n = (JDJM)(KDIfM1(2)

Thewe vahlus define the size of the flux and metric Jacobian matri,7es, and
the AQ and A.X vecters as shown in Equati.n 4.2.

(4.2) L ,,, T V,= L. .-_

1er,. aIre approximately twice the ,nu111.1er of irlf~tiolls, in. A% there are
unknowt'. n for the 2"- D equations considered. (An practice, 11C fquations
are not ,c-lv(-d at tile domain corners amd therfor,, in -ouhld be reduced
by sixteen huit this will not be further noted.)

Coi.si~tent. aerodynamic inverse designm with tihe Uiiuhr or A' .- ,S equa
lion- is a naturally over determined prohlcm. I h- original 2 D fluid
dyllanne partial diffcrential equation has four equationsa while r~nlv two 11n
kunownq for shape modification, (Z..i). (i)vernimA hnd BC' equntions arc
also solved at morr pnsilions within the discretized diompion thin tf-rc atr,
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phymsical coordinate positions. Together, these factors produce a massively
over-determined system of linear equations and so an exact solution for
AX° is not possible.

In summary, two difficulties exist for the quasi-analytical shape mod-
ification solution. The first is the requirement of exact matrix inversion
which is coetly. This is feasible for 2 - D cases, but it is prohibitive for
3 - D. The second problem is the over-determined nature of the system.
Neither of these difficulties is unique to the 2-D Euler equations. The first
problem is universal to governing equations, CFD techniques, and spatial
dimensions. The second problem, the over-determined nature of the sys-
tern. is also universal. The ratio of the number of equations to the number
of unknowns will change slightly for 3- D, but a massively over-determined
system of equations will remain.

Two simj •: techniques are now applied to the standard design equat ivn
to overcome both difficulties and to obtain the best solution possible. Firkt,
it is beneficial to define new terms and re-cast Equation 4.2.

(4-3) Am xn [aImYQ ImJ n ;a j.

(4.4) =o~~) aka ~~~ = {Jj

The standard design equation is now simply defined in Equation 4.5.

(4.5) Amrntww + bmEI = 01

The first technique is to apply Newton's iterntit ime tho.d tothe• Ii*-r-
system in Equation 4.5 as shown in Equation 4.6.

(4.6) , = -(Aj,ý_yj + bmnrlh)mnii

This technique is typically applied to root finding methods for systems
of non-linear equations. Recvntly however. this method was successfully
demonstrated to reduce the storage and computational cost of the solution
for a linear system [251.

"The standard design equation is now in incrementat , or iterative form
As the iterations converge, A: approaches -ro such thar any Approxima-
tions to the left-hand-side (LIIS) metric Jncobian roatrix will not affect
the solution of the right-hand-side (RHS) equations. The LHS matrix may
be partitioned such that large 3 - D problems can be efficiently solved.
Approximations may also stabilize its inverscin aPnd reduce the cost of its
evaluation. rhese approximations include inconsistent bItS/fiRS numer
ilal evaluation amd the addition of a diagonal term. A).,, aly C0ommon
iterative algorithm can be used to solve these- equations.
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The over- determined nature of the standard design equation remains
as the sicond inversion difficulty. The best solution possible for AX would
occur if each equation in the system is satisfied in a least-squared sense.
Singular Value Decomposition (SVD) is one popular least-squared method
[26]. However, the SVD method is storage intensive and involves arbitrAry
tolerance filtering of the singular values. Both of these properties eliminate
SVD from consideration for fluid dynamic problems which are typicall,,
large and include complex physical phenomena.

The normal equations miethod of solution also obtains a least-squared
soitition for an over- determ ined linear sys;Trn 1261. Simple pre-multipl~cation
of both sides of Equation 4.6 b~y the transpose of the metric Jacobian mna-
trix. AT, defines the normal tquation format as shown in Equation 4.7.

(4-7) [AT. A,,-.ýnbnieAnxi -ATcn(AmnxnZnrs: +6x)-

Th le linear 5ystem is now determined in A:. and AX is found in a
lea-t-squared sonse. This total method, Newton's root findinig method4 cast
in incrementals formulation. defines the INE's. This algorithmi is the k--y
development within this research, and therefore is ant integral part of th,,
proposed method. The INE's provide an algorithri which is not limited
to any set of governing equiations. CI'D teci~nologies, or number of spatial
dimensions.

Recall that the INE's provide the flexibility to approximate the LHS
matrix and still obtain the. least-squared solution for AA. Therefore, both
metric Jacobian matrices within the normal maitrix, AT A, may be differenti
in a numericnl qviise than eithrer of the two which appear on thie RHS. I he
original normal matrix may t hen he replaced by an approximate one a
shown in Equation 4.8.

(4.P) [A7'xm.4mxrv,1..n-

An efficient miethod of approximating the normal matrix would use
identical metric Jacobians for its evahtation, and thiR also produces a sym-
metric normal matrix. All Jacobiasa on the flIS mu~t. be, evaluated in a
numerically consistent manner to obtain the lewit-squaired solution. There-
fore, both the LHS and RIIS sides of tlmt INE's arc srparatcly consistent in
a numerical sense, while each side inay be distinct from the other.

Whibe the l.NE*, provide~ the best. pn."ihle solution for the over`-determinimd
linear system. a. Irakt-wqinared solution. additional errors arc introduced.
This mninintized error snlmition does not satisfy each equation within the
system exactly and A: A(AX) is found only in a least-squared sense.
AzLSq. The least-squared error of the solution, tLS, is theni ndditional to
the seconrd-order te-rms truncated in the original T1aylor's ývrir-, expansi6on.
This error is the square of the 12 norm of the standard de~ipia etimat ion with
the converged vector -L.9 as shown in Equation 4.9.
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Further details of the metric Jacobian and normal matrices structure
and elements are given in Appendix A. However, general propertirs of the
INE's are of special interest. The normal matrix is sparse and contains
nine diagonals, A through I, each element of which is a block 2 x 2 matrix.
One equation within the INE system is given in Equation 4.10 and clearly
shows the structure of the system.

.4j,#AB, a-z 4- + Qr:A-,jjr+
(4.10) DjA..jA- ..k--I + E.j&A:S-.,& + Fj.sA-, I kht+

G, .rzI k -a + ,j.,Azs+ 1 , -t 1,.kAz.\' , tz j :I -kFvi

The INE forcing function, FN, shown in Equation 4.11. is a product of the
metric Jacobian and the standard debian tqaa~i~u.

(4.11) Fi n.1 = A',.m(Amxnznx: -bm*)x:

The numher of diagonals in the normal matrix is indepen&ent of The
solution variable extrapolation order wusd in either coordinate direction.
This is in contrast to the flux Jacobian matrix where the extraptdativu
order determines the number of diagonals. Thc bandwidth of the normal
matrix is approximately one half of the flux Jaeobianc bandwidth which
requires 1CM storage and invercion cetst-. Also, if the normal matrix it
symmetric the cost of storage atnd slution are further reduced.

6. Geometry and Grid Constraints. UTnlike direct analysis solhi-
tions of the fluid dynamic equations. physical constraints for aerodynamic
design solutions must be included 127, 28>. Thesr constraints are both ge-
ometric and aerodynamic in nature. and each must. be satisfied within a
design algorithm. Geometric constraints refer to the restriction of shape
modification to certain conditions or limits. Exampk.c are the fixed l'ngth
of a diffuser, the maximum diameter of an inlet, and cloed rading and
trailing edges fo-r a blaide or an airfoil.

Optimnization design nnethods maximize or minimize aerodynamic quan-
tites such as lift and drag. Aerodynamic constraints for these methods
would then define bounds for a design region. However, inverse design
methods attempt to satisfy target functions. These met hods require some
means of determining whether the target function, together with gcemetric
conulraint& and B("s, are physically possible. If a target function is not
physically possible, then aerodynamic constraints alter the initial target
such that a valid solution of the flow equations is possible. The resulting
geometry then satisfies the adjusted design targets.

Since the present research is focused on shape modification, and not
inverse design. theseý aerodynamic constraints are nc.t included at thi, time.
However, the new shape modification method prnseas tiniqtie ge-ometrie
constraint requirements which current design methods are not required to
consider.
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Geometric constraints within current design methods are applied lo-
cally at the body, which occupies only a smiall portion of the discretized
boundary. Governing equation consistency is the major advantage of the
proposed uew method and is inherently global in nature. A global shape
inodifical ion method requires consideration of glohal geometric constraints,
including the interior of the grid and all free or solid surface boundaries.

These new global geome~tric constraints, like current local geometric
and ae~rodynamnic const raints, are problem dependent and based on physical
cons~iderat ions of the body and donman. Examples are the. outer boundary
of an aitfoil grid, the inlet and exit planes of an impeller, and the centerline
of a conibustion chamber. Tnese surfazes should be held fixed in their
original positions since tlnvy axe typically not considered design variables.

Therf-fore,` both current local avid new global, or grid, geometric cont-
straints must be adldre~sed within the quasi. analytical shape modification
method. TIhese 'omjbined( geomectric/grid constraints are expres~ed as arldi-
tional equations, And sounld he satisfied simultaneously with tile standard
design equation. lIn practice, these, additional equations are of (lhe form

.Ajk =0, since thle initial geometry/grid naturally satislfv the constraints.
However, the geomnetry/wrid contrimint equations cannot. eimply be

addied to the design system of eqitAtionia, Equnation 4.5. All equations.
including the constrainits. are only sat~itfkd wirthin the INNE's in a least-
stintavid sense. Alternately, if these equations are added to the design
t-ystem. and proper adjustments made to tile mietr:ý. .Tcohian and solution
forcing function, they would be exactly satisfied. However, both of three
ofptinnis rcquire dynamic storage definitions in thr baisic code structure that
would be problem and constraitit depeaidt-nt. This would greatly increase
the complexity of the code and is nut recommitendled at thi5 timec.

A third alternat ive, which maintains simple codiiig and gcnf-ralstrg
requjirements, includes adjusting thle, systemn to rr:fl(ect the constraint, and
then to replace one equation withii t11w standard design systemn for each
constraint [213]. This inethod is applid to the. stindrird design equation.
Equaition 4.5, and exactly satisfiv!s thne -vworaints which appear within the
4olutinn vector. This process does, however, violat-e cr~ntimtetnry to some
degree. While no attempt to quiantify thle additional error is. presently
attempted, this method is considert-d the beti alt-r-native. Details of the
implementation are given in Appendix B.

6. LNE Sisigularity. Thie solution of an over- determ ined systemi of'
equations with the nominAl equation technique is subject to singularity pr(ob-
lems. A tion-sin-ular normal matrix for the INE's would be. ensured if each
equation sithlin tine- ctandard design system of equations is liniearly 1iii,>.
pendent. Buth acrrodynarnic ind geomettric singularity i."ttes for tile iNE S
are discussced in thi., section. A simplo method Of Auatant-ring a% non-
rsingular normal matrix is propovzfd .u .1 is an i tegral part. of the- prescnit
sshape modification methodI
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The wnknowns in the global shape modification met.hod are the physical
(z. y) coordinates of each grid point within the domain. If two grid points
within the initial, or an intermediate, grid occupy the same point in space,
then linear independence is violated for two equations within the system. A
singular normal matrix may then be produced if this occurred often within
the gridc

Viscous and nighly non-linear inviscid problems require somn level of
grid refinement. For these conditions grid points may lie close together and
the normal matrix may be nearly singnlar. However, due to the inherently
independent discretiration methods employed in CFD. both of these geo

metric singularity problems should not occur. However. another possible
singularity problem does exist for the quasi- analytical shape modification
method which is aterodynamic in nature.

Consider a solution prediction with Equation 2.11 where a change in
geometries/grids, Al j 0,A is used to predict the change in s.olution vari-
ables, AQ. Specialize this case to one with localized regions of uniform
flow. If the grid is simply shifted over this region, the proper result is
that no change in solution variables be predicted. AQ = 0.0. This re-
sult is guaranteed since tihe local metric Jacobians associated with uniform
flow are zero. Thi, may however be det riment al for quasi-analytical shape
modification.

Each equation within the standard design sys.tem which is associated
with uniform flow conditions contains metric Jacohi.in matrix eleinents
which are icro. If the uniform flow area is large enough then the normal
matrix. may be singular or nearly tingular. 1he solution forcing function
would also be zero since AQ = 0.0. A number of options are available
to avoid this- problem and still olve the standard dessin system with the
INEs.

One alternative is to test the metric Jacobian matrix and identify those
row elements or equations which may cause the singularity. In practice this
is the evaluation of solution variable gradients by some nrbi'rary tolerance
level. These equations may then he replaced With sonic b|enign identity
statement since they do not contribute to the systent of equations. This
would avoid dynamic storage adjustment and is analogous to the SM''s
method of filtering singular values. However, to maintais a general and
simple method another alternative is recommended.

Recall that one benefit of an incremental formulation was the flexibility
to approximate the LHS matrix to ensure stability while not affecting the
final results. In thin case the normal inatrix would be altered to ensture a
stable inversion. However, simply altering this matrix to begin the itera-
tions wnuld be of no benefit since the original singularity problem would he
encountered again at convergnene. Therefore. a combination of techniques
is recommended and tcstcl for all eases withini the present effort.

The first techniqui! is to add the identity matrix to the normal matrix
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as shown in Equation 6.1.

61A~xm.Amnxd.cnx= [A" ?YAmxnJn xn + Mtsxn

This LHS approximation ensures a stable inversion. The second technique
is to restrict convergence, measured by the 12 norm of the A: = A(AX)
vector, to engineering accuracy. Combined, these techniques solve the ini-
portAnt equations within the system to an acceptable level of accuracy.
At the same time these techniques provide a general, simple, and robust
solution of the INE's.

Incomplete convergence of the INE's however does not satisfy the least-
squared solution cf the normal equations and is therefore an additional er-
ror. The total error within the quasi-analytic shape modification method
includes a least-squared error, a geometry/grid constraint error, and the
incomplete convergence error. If th"ses are equivalent to the second or-
der terms truncated in the original Taylor's .eiies expansion, then they
contribute no additional error to the method. At this time no attempt is
made to estimate these error.-, however a general ass Msment of the method's
strengths is made with results that follow.

7. Design-Like Test. Thlie foircing function for the standard design
equation is the flux Jacobian matrix, bR/aQ. post multiplied by the AQ
vector. The flux Jacobian matrix is evaluated with the initial, or current
solution and grid, and therefore is known at all times. The vector AQ is the
finite change in solution variables from the current to the desired tolution.
This vector is defined at all discrete points within the domain, and contains
four or flve con.served variables for either a 2 - D or 3- D problem. Unlike
the flux Jacobian matrix, the vector AQ is only partially known for each
shape niodilication estimate within an iterative design algorithm.

Recall that direct-iterative inverse, design methods specify a target sur-
face function as the de.sign goal. This target function is typically only
defined over a portion of the surface. On the remaining portion of the
boundary, and within the interior, AQ is unknown. The target, funiction
is also generally only one of the four or live priuiitive .ariahles defined at
each discrete point in the design region. Therefore. the known portion of
the vector AQ is very small. Curreunt BSR's are applied locally and this
limited, or partial, _%Q is sufficient. However, the qasi-analytical method
is a global method. an~d therefore requires a full AQ vector.

The focus of the present research is an initial asrssment of the stan-
dard design equations and the INE's ability to accurately predict shape
modification. A design-like test is then defined as one in which the full
AQ vector is specified. This provides a simple means of implementing the
test, focutse on the methods9 ability, and is the best-case Scenario for evalu-
ation. The as,,umption implied herein is that if this new method performs
well within a dcsign-like environment, then further development effort is
warranted. It may then be modified at a later time to perform within a
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direct-iterative inverse design algorithtn.
The design-like trst begins by defining a baseline geometry and iden-

tifying one or more dfsign variables. A similar geometry, with perturbed
design variables, d-fines the targrt geometry. Grids, and non-linear solu-
tions for both the baseline and target geometries are then obtained, and
the difference between the solutions defines AQ. The baseline grid and
solution. and the target solution, but not the target grid, are then used for
one shape modification estimate. The goal is to predict the target. geome-
try and grid. Success of the method will be measuted by the comparison
of the estimated geometry/grid to the known target.

8. Geometry mid Test Paranimpters. The geometry used in the
present design-like test is the symnmelrical channel shown in Figure 8.1.
The channel contains three equal length sections, with a ramp in the mid-
die section. T'lih channel inl,!t half height, H, is the reference length and
the total channel length i, three times this valu. The ramp angle, 0. is the
derign variable. Target geometries are those with perturbed ramp angles.
while each sectio;s length, and the, inlet height remain constant. Also, to
test the Mach number independence of the method, subsonic, tranmunic.
and supersonic inlet Mach numbers test cams were used: . = 0.30,0.85,
and 2.0.

Since the tet geometry is syminetrirtd about the ehannrl centerline,

only the lower portion was computationally modeld. Initially, grids. con-
taining ramp angles of 0 = 5.0Q, M.51. 5.5. and 7.0' were generated. Each
grid contained 31 and 21 lines in the x and y-direction respectively, and
were evenly distributed. The baseline grid, with 6 = 51', is shown in
rigure A.2. The three target grids represpnt design variahkl ehangc; of

AO = 2%, 100%, and 40%.
A tangency BC was applied along the lower wall ind symmetry was

enforced along the channel centerlihe for all eases. For the subsonic and
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FIG. 8.2. B4a'.c',, C.aar,i Grid (5 = 5.0")

transonic test cases. the inlet BC held the stagnation enthalpy and entropy

fixed at free stream values. Also, the vertical component, of velocity wa.4

zero and the presstire was extrapolated froun the interior. Th,- ontler RC

for these casens extrapolated the density and both components of velocity

from the interior. and set the back pressure ratio P6/iP' = 1L0. The inlet

BC for the supersonic test case set the ratios p/p,. = 1.0, u/u,. = 1.0,

v/u,. = 0.0, and PIP,, = 1.0. The supersonic outlet HC extrapolated all

primitive, variables from the interior.
Non-linear Euler solutions were then obtained with all four grid.s at

each Mach number. All INE solulionb used h bamded matrix direct solver

[3.0 and completed -500 iterations of the INE's which eonverged the 12 norm

of the A: vector by at least three orders of magnitude. The goal for these

tests is to predict the = 5.10, 5,5:, anu T0V geoiteiltes and grids uuing

the INE's.

9. Results. Results for two 5et. of dc.sign-likc test cases are presented

within this section. The first set i, for An unconstrained shape modification
it-st whl:r., the g-rnmcrry/grid constraints are not, included. These tests

were complefed for all nine targrt geometry and inlet. Mach number caseZ,
and are shown for comnparison putrrpoyee only. The more important. and

physically jeai6npgfidl,.wt iof nine constrained 6hape modification estimatrs

are ahso presentt-d.
The first unconstrained test case is the target ramp angle of 6 = 5.1" at

the subsonic inlet Mach number of 0-10. i he predicted qeomtetry and grid

are shown in Figure 9.1. The results are excellent in a global. qualitative
sensr, with the predicted grid being similar to the baseline grid. However.

mcorp revealing reoilts are predictions of local geometry changes. fX. from
which th,- artnal predicted geometry is easily inferred.

Figure 9.2 illustratles the local variation of geometry. Ay. tused ini this

report to ass-ss the success of each shap," niodlij( catio'n. All subsequent
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geometry shape chaageb will cmnpare the known target function of Ay to
the predicted function. |oth the target and the predicted dhape changes
are normalized iv thbe known change in height along the channel exit plate.
Ayrf, which varics for each target geometry. The local predirt ionrs for the
! = 0.30 and 0 = 5.1 tcst case are presented in igure 9,3.

Th,: predicted AV changes in channel inlet, ramp. and exit plates are
straight line.q that are ev-erywhere parallel to the target g('nMnry but are
shifted slightly downward. The Ay changes for the channel -ntcrline ex-
hibited the-se same characteristics with a smaller vertical shift, but are not
shown. Al.so, minor horizontal translations. A.x. for both the •rnterline and
lower wall were noted in the results but are not shown. Thewe translations
did not alter the total channel le.tgth. or elrectively the end points of the
ramp. which can be inferred from Figure 9.3.

The results in Figure 9.3 imply that the target, 0 = 5 .1' ramp geome
try is obtained stince the predicted lines are parallel to the targets, and the
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lengths and horizontal positions are unchanged. Ilowtvar, the entire do-
main has been shifted slightly down and expar;ded in height. "J'his vertical
shifting and stretching. and the excellent global resnlts in Figure 9.1. are
common traits for all of the unconstrained result.s. Lower wall results for
all unconstrained test cases arc shown in Figur, 9.4. EUach graph reprevsents
a different inlet Mach nuirber tredt erse, At = 0.30, 0.ý5, Paid 2 0, and each
contains results for all target geometries, 0 = 51. 5. 5ý, and 7.0'. For
each inlet Mach number and target ramp angle. the desired geometry is
obtained but agan the domain is vertically shifted-

Collectively, the unconstrained results are very encouraging. Each grid
point within the domain was free to move and yet the target g-mcntry wvat
obtained with uitsI minor vertical shifting and stretching of the domain.
'The next set of results are a constrained version of those just pre.sentcd:
and therefore represent a more practical application of the, I NE's.

Tire geometry/grid constraints for the symmctrical channel fix the
(z,y) positions of the channel inlet plane, the ocnterline, and the ,ltrance
plate. All x coordinates within the domain are also fixed at the bawe-
line positions. All y coordinates within the domain, on the exit planr, on
the ramp, and on the exit plate are free to move. These constraints ef.
fectively fix the chann•:l inlet height and the total length while allowing
geometry claonges of the ramp. the channel exit plate. and the exit plane.
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FIG, ' 9.1, Prdi-(~i Clunntl G!

'lite- vitii-ins for ilif-,.e constrained teat cast-s however remain~r massively
0ctr-dkter n-,irf.

TheI, r-diz~eil rrici- ffr rrirh of the nine constrained tesl casuS, while
not shjuii. wtew agrin cxellent in a global sense. The lowver wall remult~s
for ea-li of dswte test- Are iw in Figuire 9.5. Each graph is hgailn for it

difir~rolt inlk, Nadi winihber. Al -O A..¶. O.5, an]i 2.0. and each (oultaiius
reSul(, fur all trsrgrt gmonv tries-, 0 5. 11 5.5', and 7.0c.

For each inlet Mucvh tiumlwr tc;,t crno the 0 ::5.10 and 5.50 target
vinwtriez arc- Alaiand 1Imete two -nt; with a maximum design vari-
R61tlr hanve c.1 _V0 = l0.are. cor-milered within a normal design range.
H,,we-%'r. ovn T), xtre7mv ramrp angle changto uf _% = 4/-wns predicted
to wlbv , of it, iarg~t value for th~e ttansouic te~o eaar. Therefore.
01C. qulasi an:llytical m~ethod. with proper gromn Trir/ grid constraints and
drsign !ikc. testsý does pros mdc accurmt,- anjd phy~is-ally me(aningful shape
niodificat on etuuk

Tb- I. r.ýni oft, Amnd;ard design equation with zL5, and the I2 norinm
rorf, !, tirg.'t izrA :utvsni thf' predictod grid, (St - Xr). arr ml.so mnrfl5kittre

4 tircrra for this shape muodificat ion methvod. fli,wevor, any di.;cussion of
thf'sf w~ctor norms or any' other errfmlrn term 'i'lvation. using design-like
tests~rtsits %c-ultl be itusrading. The most relevant evaluatiozi of this
method nu~t- te itadt withini A tniti design environment in which oxil) a
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small portion of the AQ vector is known. Therefore, a through assessment
of error terms and equation norms is not included within the present report.

i0. Summary. A new method for shape modification was proposed
for future inclusion within a direct iterative aerodynamic inverwe design
algorithm. The method is based on a truncated quasi-analytical Taylor's
series expansion of the global governing equations. The method is general
and provides consistent governing equation shape modification for either
the Euler or N - S equations, any combination of CFD techniques, and
any number of spatial dimensions.

An iterative solution algorithm, the Incremental Normal Equations
(INE): was developed to provide a least squared solution for the inherently
global and over-determined consistent shape modification problem. Global
geometry/grid constraints were also included to provide practical shape
modification estimates, An upwind, cell-centered, finite-volume formjula-
tion of the Euler equations in 2 - D was uswed within the pretent effort for
both the initial ditrct solutions and the .shap modification estimates.

The method was evaluated with a symmetric channel which contained
a mid-channel ramp. The baseline geometry defined the design variable
ramp angle at 0 = 5'. A total of nine tets case,,, were defined which
included combinations of three target ramp auigle perturbat ions W0 = 2S.
10%, and 407. and three inlet Mach numdiers 11 = 0.30. 0.85, and 2.06.
The global finite change in solution variables frorn the baseline to the target
solutions was provided for testing within a design-like environment.

The quasi-nnalytical shape modification method was demonstrated ti
accurately predict target geometries for both it unconstr.rained and con-
strained set of design-like tests. This includr!& the transonic test with an
extreme 40% change in the design vari-Ale. The constrained version of
the method providýs snore physically nwz.r:'rgful results since geometry
changes were eff-ctively retricted to the ch anel geometry. All test ease.
results were obtained with a .ingle design , ;imate and clearly reflects the
power of consistent shape modification. 'Taese results also demonetrats-
that the method is Mach number indepenient.
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A. Appendix. The purpose of this app.'ndix is to complr-t, the pre-
sentation of the inetric Jacobimi and normal matricrs, and their associated
system of equations. The sparse and systematic structurr, of each Jacobian
matrix iq a function of the domain discretization used il, the pre.sent re-
search. An illustration of the typical (j, k)th computational cell is shjwn in
Figure A. 1. The (r. y) grid points surrounding each domain cell and botrid-
ary cell.-face are labeled one through four, but are ,rely for local devjilnatiou
purposes.

Each eq, ation within the standard design systent of equations, EIqua-
tion 4,2. is a function of four local metric ,lacobians. WI - IVI. four local
physical coordinate vectorsq X e "-- and one solution forcing function
vector, F,. One equation within (he mrandard dcsign -.ystem is given in
Equation A.I.

(A.j 1)Xa . ,k + R'2j &-%.j.P. f(A.1) { ••~s,
HW3j, A1X 3J, + 11'4, kAY,.j k = j kPjA

vie local metric Jacobian inatrices, ph)sical coordinate" vrctors, and
iolution forcing function vectorW Or, of Si7p 4X2. 2Xl, and 4XI resprcc
tively. Details of Ihe local metric Jacobimn matrices, and the evaluation
of t.hrsi for Van Leer's flux vector splitting met hod, are given in referenrt,
1171.
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The s•trulcture of the glabal metric Jacohiait matrix mod thev stitdard
depign system of equations are presente-d in Figure A.2. The size of (tire
global tnetric Jacubian matrix is-nxt.x, The auumber of equations within thle

s vte~ , m = Jl~ ,'i + I{K II.I-•!)( ),is equa! to the nu mbe~r otd omaini
rell-center governing and boundaryv cell-face BJC equations. "The numrber of
columns of tire metric Jaaobian matrix. n = (JD1M)(KDI.,I )2). is equal
to the number of (z, yt) unknowns within the domain. 'I he system in Figure
AI is shown such that KDIM controls the structure of the metric Pacobian
matrix.

The metric Iacobian matrix has JDIMI column sve(ýions, each o~f length
(KDINI)(2), There are also JDI1Wf+ I row sections in the matrix, each of
length (KDIM+I}{4). For simplicity, Figure ,A.2 is drawn for JIDTM=3.
Also recaill the number of equations defined throughout the domain is
sixteen less than m. However. these ext ra, equations_ are included in Figure
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A.2 to maintain a systemrtic struct:irc.

'fhe over-determined tzandard d#-sirn ,y~teuz of equation•, ib solved
with (lie INE',, E-utwtion 4.7, which require.s the normal triatrix, ,T A .
One equation iv witlhhItis system was given in Eqluationz 4.10. 'The sparse
diagonal ctricture or the nornmal matr ix. and the INE, syytein of equations
are shown in Figure A.3. Again, the example in this. figure is f6r JDIM=3
and K1)1I conrn-! fh: normal matrix ,tructurc. Thr mncýriur which
repres'nts each e'qrrtion within the syacnm and the grid corrrsopde'nre of
the normal mantrix diagonalq arc shown in Figrerr A.4.

'l.'e niornial uat.rix is •qzire arid has JDIM row and c'olumn sections.

each of lenath (KDIM)(2). 'The half bundwidth of the norrwil matrix is
(KDIM)(2) and is approximately one hadf the size of the square flux Ja-
cobian matrix. Each element of the tiorzod niatrices nine diagonals is a
linear combinations of local metric Jacobian multiplications and are given
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E B -H k

__ __A Gk-1

in Equation A.2.

Aor )+ k2 W

jit! j~ + t "
3

+IS*

£5, 4!I)if 142;L+ I I++ +2' '1'3

fiji 11"41" - 11
(A.2) . I 3*4V'. +112jjl'1,

1), V +,ýk+i ,j+S.141

Rtefall that thie normal mnatrix coefficicnts are defined at ceil-coraters
and the metric. Jarohiansr are defined at cell cent(iE and boundary cell-
fare-s. Two sets of indices are then usrd; one set for the cell-centers. and
another set for the cell-cornern. A graphical reprotsetation of bquation
A.2. and the dual set of cell -center and cr-11-corner indices, are pr.-*i-'vd- in
Figure AS.5

The normal matrix is symmnetric if both owitric Jtjcuhinn matrirfr ucrd
in its evaluation are identicaU l. 1 h symmetrienl corne~pondrnecr between
the lower the upper diagonal te~rms is evidentit in Equation A.2. Symmetry
of thle mafin dia-gonal B. and the lower diagonal symnmetry correspondence
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to tpper diagonals are emphasized in Equation A.3.

Bj' k = )'7?
A, k = r-, _,

(A,3)

Also, the INE norinal forcing function, Fv, is defiued in E(IIafio .AA.
and a graphical represenitatior ib shown in Figure Ai.,

(Al) kN , = IV I T.F - b+ + T'V27 )" - j

)+.-,k+1 -

B. Appendix. The purpos, of this appendix is to present the details
of implern.M.ation for (lie geou,.etry/grid coiitraint:- which are nece.wary
for physically meaningful quasi-analytical shape modification. The method
used in the present research includes adjusting the standard design system
• c)f equations. Equation ,1.5, to account for each constraint. This is followed
by replacing one equation withili the system with each constraint. This is
a simple method which guarantees that the constraint is exactly satisfied
and naturally appears within the solution vector.

In the present code the metric Jacobian matrix is stored such that
JDIM controls the structure. This is the opposite storage sequence of that
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J~k~lj.1,k.1

5Lk J.1,k

Flo. A46 NL" VEosverl Farerin.g•ti•

represented in Figure A,2. but re~td&s in a •imilar matrix strilnrtir. t'|T

practice only the local tnetric Jacobian vectors. 1V I - W4, are storrd, hut
for this discussion consider the entire Feurric Jarcian eatrix as stored)

Each of the (JDIM)(KDIM) cohlmn pairs within t he metric Jacobian
matrix are associated with an z and y variable in that order. Each of
the (3DI1Nl+-)(KDIM+I) raw sections of the standard desi-n system of
equations aresoiated with a set of four cell-cen'er governing or cell-
face HC equations. Theoe equation. are gencrally ordered in a continuity,
f-momenitim, r,-momenturn, mad vnergy eqiiation srIq¶ic. The metric.
Jacobian matrix and solution forcing function are reprr-snted by A,
and F .nx respectively. Each clenwnt within the matrix and the forcing
function are denotid by A 1 j and F; ;. whwrc i = I. m andj = I. n.

Each geometry/grid constraint is expressed as Ar, . = t where At
is a generic variable for either the change in r or y. iiVw J)th 4•,lnz, 1 of
the matrix, and so the (j)t.h r' or y coordinate, def ermCiI. tht, valued-f both
me and ne. To adjust the standard design systevn of eqjuations for each
constraint the following sequence of operationvs is perf,,rmed-

lB.,-q -• F¢j - A.i,,, - r i = 1. ,n
At, n-' i i fit

The (me)th equation i! alho selected to remove the sy-w. and i, rophrard
by the constraint equation, T1his iivohle, the following wequruw.r (f opera-
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tions for each constraint.
A,e.j-O ; j ,n

(1.2) Ame,n, 1 and F9  me -- (

This method of implementation adjust' All equations within the sys-
tent for each geometric constraint. However, only the first n, of the total
m, equations are considered for replacement. Given the present storage se-
quence of Lite nietric Jacobian matrix, this method efTcutively concentrates
the constraint enforcP:ment to the lower half of the domain. An equation
in the lower grid sectioi itmay be replaced by a constraint which was writ-
ten for an upper section grid point. This is considered inappropriate for a
gencýral design algorithm, but. is used here only for the initial assmssment of
the quasi-analytical shape modification method.
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CONTROL OF STEADY INCOMPRESSIBLE 2D CHANNEL
FLOW

JOHN BURKARDT AND JANET PETERSONt

Abstract. We consider steady incompressible flow-s in a 2D channel with flow
quantities measured along some fixed, transverse sampling line. From a set of allowable
flows it is deired| to produce a flow that matches a given set of measurements as closely
as. possible. Allowable flows are completely specified by a set of control parameters
which determine the shape of the infliw at the boundary and the shape of an internal
hump which partially obstructs the flow. Difficulties concerning the transformation of
this problem into a stAutdatid optinization problem are discussed, including the correct
chnice of functional and altorIthm, and the existen e of local ninima.

1. Introduction. If a log falls into a stream, it disrupts the flow,
creating a pattern of ripples and whirls. If the log lies hidden under a
bridge, a wize b.server standing on the bridge and staring downstream
could nonetheles• detect the change in the flow, and make a guess as to
the size and position of the obstacle. But as the flow rushes on, it rapidly
destroys this information. and just a few yards downstream there will be
no discernible record of the intrusion into the flow.

in aeronautical design. a similar problem occurs. Instead of a stream,
a wind tunnel is used, through which a steady flow of air is driven. It is
not a log. hbt a mockup of an aircraft wing. or fuselage, or forebody. which
is deliberatsey insertcd into the flow. Instead of an observer on a bridge, a
string of measuring devices are used to record the velo:ity and pressure of
the flow at a fixed pteition downstream from the obstacle.

For a given orientation and position of the object within the wind tun-
nel, and for a given pattern of inflowing air, the measured values of velocity
and pre~sure can he regarded as the "signature" of the obstacle. Generally,
if two obJects differ in shape: tht;r signatures will differ. However, it is
possible for one shape to "forge" or approximate the signature of another.
Ibis fact can be vrry useful for sine kinds of wind tunnel tests. Certain
parts of a plane conic "after" other parts: that is, they are further down-
stream in the airflow. Thus the flow field that strikes the downstreamt, part
has already been changed by it- interactinfn with thi- upstream part and so
although it's possible to test a propeller, say, by itself in a wind tunnel, to
test a tail assembly requires a mockup of the entire forebody of the airplane
as well.

* Department of •athematics, interliseiplinar- C•eter for Apptied Mhthemvrtic,
Virginia Polytecrhnic Tnttitute and State Vniversity Rlacksbuhrg, Virginia. 241M 1. RSup
ported by the Air Force Office of Scientific Research ultm r grant AFOSR 't4.l{-0ti1i

t Department of Mathematics, Interdisciplinary C•nter fur Applier Mathematics,
Virginia Polytechnic Institute and Stat" thiversity. HlArksburg, Virginia. 24tit1. 5up.
ported by the OfMe of Naval R,:sardt under giunt N00014-1,-J-1493.
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Sometimi a full model cannot be tested because it is too large for the
wind tunnel. Bnt it may be possible to find a smaller shape which will fit
in the wind tunnel ahead of the object to be tested and which will have
the same "signature" as the true forebody. Such a forebody' "simulator"
should have the property that, the velocity and pressure of the air flow,
along some transver"e downstream plane, will closely match the values
associated with the true forebody. A complete description of the forebody
simulator problem is available in Huddleston [1] and in Borggaard, Burns,
Cliff and Gunzburger [21.

The problem described above is the motivation for the preliminary
study given here. This is an ongoing project whose goal is the development
of algorithms to ,elect, from an allowable family, a set of flow pArnmeters,
and a shape which can he inqerted into that flow. which will must closely
match a given set of downstream measurements. In Section 2 we give the
equations which model stady. viscous, incompressible flow in a channel.
We choose to use finite elements to discretize these equations, so in Section 3
we discuss the choice of approximating spaces and give the set of ijonlinear
equations which must be solved. In Section 4 we discuss the optimization
problem using flow sensitivities. The next three sections describe problems
in which wc allow one or more param.-ters to vary in order to obtain a flow
which matches a given velocity profile. The first. problem is simple channel
flow with no obstacle in the flow field; here we allow the inflow to vary, in
order to match a give.n flow. For the second problem we allow an obstacle
to be placed in the flow feld but we require that it be modeled by a single
parameter. In this cam-e the inflow is fixed and the shape of the hump is
allowed to vary. For the third problem we conmbiive the first two and also
allow the bIump and inflow to be described by more than one parameter.
We conclude the report by discussing future ,urk in S'.ction 8.

2. Mathematical modl . The equations governing steady, viscous,
incompressible flows are the Navier-Stoes equations whi.h can be written
in terms of the %elocity u = (i, t-) and the pressure p as

(2.1) -v.iu+ u .qradu + grad!p = f in 0
(2.2) dir' u = 0 in ?

plus appropriate boundary conditions. Here av is the constant inverse
Reynolds number, f the given forcing function and R? the domain in /R2
modeling the wind tumnel. We make the assumption that. the prmblem cMn
be restricted to two'dimensions: that is, we assurie that, the behavior of
the wind tunnel. the flow field, and the shape are all constant alon. the :-
direction. For the cas. of simple channel flow "'ith no obstacle, Q) is focrmed
by two paralldl horirontal walls. The boundary conditions cho.-n describe
a flow entering the region from the left and passing out of the region at the
right. At the inflow we Ret u = q(,y), 1; = 0 at the top and bottom of tbe
channel we set both comprnent.; of the velocity to zero; and at the ouflow
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we set, the usual conditions v = 0 and r- = 0.o~r
The weak formulation Equations (2,1)-(2.2) which we consider follows

fjay We seek it E H I (U?) and p E L23(0) such that

I L gradu: grad,: d(/ + jn u -gradeu w , do - f, pdi, ' u1d

i O div u d9 = 0.
(2.:;) -j

and surh that it - t, = 0 on the top and bottom walls. u = q(wt), =
0 at the inflow, and v r7 0 at the outflow. lere JI1(Q) represents the
spare of vector-valuei functions each of whose components is in H1(I1).
the standanrl Sobolev space of real-valued functions with square integrable
derivative• of order up to one. L3(Q) is defined by all functions in L2 (fZ)
with zero maran over 0. Again see (3] for details.

3. Finite element approximations. In orler to approximate the
flow we r.oust choose a particular discretization. Our choice here is to use
the finite element method. although clearly other discretization me:hods
could he employed. Using the standard techniques of finite elements we
diseretize our flow region inro a finite. number of subregions called elernnits.
inside each of which we will assume that the flow has a simple structure.
For our problems. we choose triangles t, -reate this mcsh. Fir our first
problem, which has no internal obstacle, the flow region is rectangular and
so it is a simple matter to divide the region ujp into rectangle-s, each of
which can be split to form two triangle5. Howevver, for the problem with an
internal obstacle, the flow region is thoight of as being a mild distortion
of a rectangle and so we are forced to use elements with curvilinear sides.
This will requlire the ujse of isrparnmetric elements.

Hawving represeented the region by a mesh oif finite elements, we now
approximatc the continuously varying physical quantities u and 1, by func-
tions which can be determined from a finite set of data associated with
each finite element. Typically thc.e functions will be represented over the
entire region by continuous, piccewise pclynomials. An examination of
the error estimates lor the velocity and pressure indicate that one should
usually choose one degree higher polynomial for the ;elocity than for the
pressure. For our computations, the velocities are represented by quadrat¶.
polynomials and the pressure by linear polynomials. The finite data which
represents the velocity, for instance, is then simply the, value of the Velocity
at six particular nudts in the eteunent, which are the vertices of the triangle
and the midpoints of its sidet. Similarly, the pressure is s-pecified by it,
value at just the three vertices.

We now deflne a problkm which will yield approximate solutinns of the
weak formulation given in Equations (2,3) (2.4). Let V'4 be the spaer of
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vector-valued functions whose component.q are continuous piecewise quadratic
polynomials over the triangles. let S' be the space of piecewise linear poly-
nomials over the triangles. and let So" denote the functions in Sb" which
are -onstrained to have zero mean. Thlien we seek a u" E Vh and ph E S•
satisfying

4 gradu" :gradwh df? + f u' ..qradu h wh dil

- J o dit, whd!= f 1 10 h df2 Vwh c "h

Je/'di uvt d.Q 0 VhE S4

The P--*ntial bIundarv connditions are enforced in the usual manner. In
particular, W tlhe inflow, Po = q(y), where q'(y) is the piecewise quadratic
it,,'polant of q(v).

Using standard techniques from the theory of finite elernents, we can
write these equations ai a ýet of algebraic equations. Fach pair of unknown
velocities is uniqu~-y as,,ciatvd with a velocity node at which we have
two Kcalar equatioai . Similarly. each unknown pressure corresponds to a
pressure jno,.t. and A prrsý.sure equation. Thus, we should be able to solve
the systein anid compute th," valhet of the flow quantities at each node.

The finite element equations are nonlinear, and so they must. he solved
via an iterative method. The iterative method we employ is Newton s

|method See [4) for th,. formulation and convergence results for the Navier-
Stokes equationrs.

4. The optimization problem. Our goal in thi.; study is to sp(,ify
the values of some of the flow quantities alonmg a line in the region .Q and
then to dedjce from that a flow over the wvhole region, whose value, of
v and p rmatch (or mome as close as possible to) the original given %alues
along sormn sampling line. We will assume that we have some family of
possible flows front whichr to select, In fact, we will a'rume that. thore are
one or more parant eftrs which chlrraderize this family, so that sprcifying
thc va!ue of the parameters complet.ely specifies a flow. In such a case, we
may regard the flow quantitirs a, ftunc'iwns cof the I)rhnitetrs. 1i- will rise
the letters A and a fer typical parazneters.

In order to s.lve the imatcrhing prohkm. wr must first specify a math
ernatical rmeausure ,f how well an arl,itrary flow matches the given data. It
would be desirable tu produce a 'score", that is, a single number which
reprcsents the c'osenss of the fit. and which is tminimized for a perfect fit.
On- rosmihlr choice of a functional to mininize is the integral of the selrttre
of the differenccs bc.tueen the data and the computed ho•.;, ntal velocity
variables; i.e.,

0.1)f (u (.r,, yl) - t,(y)) 2 dV .
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where S denotes the sampling line, x, denotes the z-coordinate of the
sampling line, and u,(y) represents the sampled velocity data we are at-
tempting to match. Other choices of functionals to be minimized will be
discused in Section 7.

Once we have chosen a particular functional, we can formulate a min-
wnization pro~lem. which is to find a flow (u, p) which minimizes the given

functional. If we have a single free parameter A, we can phrase this problem
as followc:

Given a functional f(u,p), where u. p are functions of a
parameter A, find the value of A that minimizes f.

Clearly there are many different approacheb to solving this one.
dimensional minimization problem. Rather than reeking to minimize the
functional fPn,p) itself, we choose to seek a zero of the derivative of the
functional with r.espect to A. It was not considered feasible to compute the
derivative of the functional with respect to the parameter directly, since
the effect of the parameter on the functional is expre.;sed only indirectly,
through the flow field. Instead, equations for the flouw sfns tirvtes are usd
to approximate the required derivative.

Suppose we can represent a flw field that satisfies a se•. of flow equa-
tions involving a single parameter A as

G(u v, p,A) = 0.

Then the corresponding flow sentitivitits

(du. A dp,/
Ad dA' SA'

are defined by the linear equations

UG dtu OG dA 00( dip OG

If the original nonlinetr flow equations have just been solvwd. thle cor-
responding flow s•ensitivities are inexpensive to compute: this is because
Newton's method, which is used to solve the nonlinear system, uscs an
iteration matrix which converges to the sensitivity matrix as the iteratr-
converge to the correct solution. Thus. if the iteration has been deeimed
to converge. the eurrrnt, fac.tored iteration matrix may then be used to
immediately solve for the sensitivities at. very low computational cst.

Now we can reframe the problem of finding a minimum of the oputtauiza-
tion functional f(u,p) = f(A) in terms of finding a i, ero of tlh derivative
off with respert to A given by

df Of df + Of dim Of dp1
dA Klud'A Tb dA 'OpdA
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Once we have a method of computing df/dA we can pose the problem of
finding a zero of this derivative, and hope that such a zero corresponds to
a minimum of the original optimization function. that. is. a best match to
the flow data.

There are numerous choices for finding the zeros of a function, Since
calculating the derivative of the function df/dA requires calculating the
second derivative of f, the scalar secant method is an obvious choice when
we have only one paramctcr since it uses only function evaluations. Of
course, such a method is not guaranteed to find a minimum; a zero value
of the derivative is just as likely to represent a maximum or inflection
point. This problem can be forestalled by beginning the optimization with
starting points close enough to the correct solution so that convergence to
a minimum was very likely. Thus the u..filne.M of thist approach is limited
to testing one's code and some very simple problems. When we report on
the solution of multiparanieter problems in Section 7, wc discuss the choice
of a suitable optimizatiori package.

5. Simple channe. flow. Our first example is the simple crase of
channel flow with no obstacles in the flow field. These comiputationts were
made to test the umderlying flow solver and to begin to get some experience
with the optimization techniques necessary to solve a grneral problem.

'flhe channel is modeled by two parallel horizorital walls separated by
3 units asld extending from 0 < z < 10 units. The boundary conditions
chosen for this problem describe a simple. parallel fklw entering the region
from the left and passing out. of the region at the right. T'he inflow profile
is required to be parabolic. but the actual strength of the inflow is allowed
to vary, according to the vahe eif a parameter A. In particular, we set

u(O, y) = Ay(3 - y).

As usual, the pressure it.ust lie rcq~iir, d to satisfy an additional coriditiOi
such as having zero nmean or fixing its valr at sonme point.

To eirnulatre th1 experionral prorec.s of making measurements and
then trying to produce a flow configuration that matched them, a "target"
value of A was chosen. 'the flow wa, determined for this value and the
flow profile at i.he sampling lie, was recorded. It was this 'experimental
data"' that we attempted to match. Because the target flow wat actually
generatced by a particular value of A. we knew tiar the minimum value of
the functional was zero, This made it emy to dtermine when the search
.should halt or when the search was inot converging.

A simnple test case was set tip wler, th, CoLrrect solution was A 1.0
and the code was started with the two inearby estimates A1 - 6.1. A2 - ,.
The secant method was wsed to find the zero of df/dA where f oiven by
Equation (4.1). For The family of solutions centtrlled by A, thi fi'ictional
was neti,ally a quadratic function of A. Heirce it, Arrivative was linear.
and the s-ecant. method converged to the solution in on, stop. The channel
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flow results were only useful in that they gave us confidence that the flow
field was being solved correctly and that the snsitivities were correctly
being used to evaluate the derivative function. In the next problem we
allow an obstacle to lie in the flow field. but still require the obstacle to be
characterized by just one parameter.

6. Flow over a bump using one parameter. For the second prob-
kim. we use a single parameter as a means of selecting a geometric shape
which lies in the flow field as an obstacle. The inflow does not vary for this
problem, but rather has a fixed strength and parabolic shape.

A "hump' is placed at a fixed location on the bottom of the channel
which is again modeled by two parallel walls of length 0 < x < 10 units
separated by 3 units. The bump is required to be parabolic in shape and
extend horizontally from 1 < r < 3, but the height of the hump is allowed
to vary. being characterized by a parameter o.

The houndary ronditions are similar to thoe for the channel flow, with
two exceptions. Firtl since the inflow does not vary, the inflow equations
simplify to

uo, v) = y(. - y).

Secondl.y, because tL-E !utqkt of the lower bnundary between I < r < 3
now varies. the boundary conditions for that portion of the lower wall are
rewritten as

"n(r, Y•r,)) 0

Y(ra) = a(r-1)(3-.r).

for I < x<3.

FIGURE I: A typical region with a hunmp showing eleme-nts.

Because cf the curvatture of the bump, the computational nmsh or the
region mtost also 1-e curve.d, at least in the vicinity of th+e humip, lnstf-ad of
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triangular elements with straight sides, iiopurarnetrie elements were tiyed
so that the curved edges of the bump could be modeled. A typical trian-
gulation of tie channel with a bump is shown in Figure 1.

Another complication in this problem resulted from the fact that at
each step of the optimization, a new value of o was produced for which the
corresponding flow had to be computed. B-cause each a changed the shape
of the region. all of the mesh calculations had to be redone at the beginning
of every optimization. Thus, the geometry of the region changed at each
step, with effects that were harder to predict than those that were caused
by simply varying the inflow as in the first. example of simple channel flow.

For our computations we set the Reynolds number to one and chose the
secant method to find the zero of the functional given hy Equation (4.1).
This is analogous to the first problem described in Section 5.

The choice of the location of the profile, ampling line considerably
affected the results. If the profile samiplinig line was set near the outflow.
say at x, z- 9, then we often encountered problems. For starting parameters
that were quite close to the target. value, we were able to get conivergenjce.
but often what seemed only slightly greater perturbations of the starting
point would cause the pr-igrarm to take many more steps, or in 5ome cases
even to fail to converge. We concluded that the difficulty rested in the
combined problem of the location of the sampling line relative to the bump
alud the low leyltolds number of the flov, .% e cal, ww 1,4i:h,: ellSil G i.ies
to see the problem. In Figure 2 the plot s.•hws a bumip of height 0.5 and
the velocity sensilivity field. Eac-h vector represents the effect that a unit
increase in the height parameter would have on the local velocity. As is
obvious from the graph, the infhi.vire is extremely strong above the bump,
but drops off dramatically within a few unit. downstream. This illustrates
the fact that low Rey)iolds uunibcrs art, prohblmatic for flow optimization;
i.e., for such cases large changes in the contrm] parameters produce only
small changes in the flow.

'P A '4: .. ... . . .. .
, . .s.. j.• •, C. ....... .. .. .

t 'P.4 ý ý '
• ~~*...*. .........

FctrRE 2: The velocity ,ensitivity field for a hump sol0tion.

For this reason, the profilte line waf moved to x, = 3. immediately behinid
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the bump. This vastly improved the responsiveness of the functional to
changes in the bump.

7. Multiparameter flow past an obstacle. This problem is a gen-
eraliation; as well as a combination. of the first two problems. In this
example we ' arameterize both the inflow and the shape of the obstacle
and allow th number of parameters for each to be greater than one. Due
to the more ýomplicated nature of this problem, a major change in the
optimization method was needed, since the secant method was not suitable
for further use.

A •earch was made for a more suitable optimization package to use

with the code. Robustness and flexibility were key considerations. We
chose ACM roms algorithm 611 *5], which uses a model/trust region
approach for choosing the step. and a BFGS procedure for updating an ap-
proximate Hcssian matrix. Some of the advantages of this code included:
access to the somrce code. good doecument ttion. good portability with ma-
chine dependent quantities handled through calls to a machine dependent
function, a etcerst communcalown formulation which made it ea•sy to in-
tegrate the package into the existing program, three versions of the code
in case Hfessian or gradients, are not available, the fact that it will not ar-
cept an iterate if its functional value is higher than that of thw current
approximate solution, and the fact that it handles an arbitrary number of
dimensions.

Another consideration was how to hanidle more complicated shapes.
It was asýsumed that this would be done by adding more parameters, but

it was not clear how thosc parameters should he used to determine the
shapes. In the first two problems dtiscussed above, a single parameter con-
trolled the height of a simple. parabolic shape. In order to model more
complicated shapes, we had to chocse a reasonable smt of shapes and a
finite set of paramrtf-rrs to catalog them: we chose to use cubic splines 16:
to represrnt The bumps. Such a representation requires the value of the
shape at a specified sequence of nodes. Then a shape is produced which is
a piecewise cubic polynomial betveen the Diodes, and which is c-ni itmous,
with continuous deriat ives, at the nodes, In order to complett the sy-tem,
typical spline representatio•n also require that the slope of the shape be
given at the end nodes.

For our hapeo., whether they represent an) inflow, or an obstacle, we
set the value at the first and last nodes to zero. We did not specify the
slopes at the end nodes, but rather, used the "not-a-knot" option. This

permitted us to define a shape by specifying only the values. The pe-nalty
for this simplification wa, that the shape was required to have one greater
degree of continuity at the firnt and last interior nodes.

Once any shape could he specified uniquely by giving its valus at
a sequence of nodes, it was natural to consider these values to be the
parameters that would be varied in the optimization. Ot, set of nodes
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would be placcd along the inflow boundary. The value of the inflow at. those
nodes could be used to specify an inflow function defined along the entire
line. A-second set of nodes would be placed on the bottom or the channel,
for 1 < x < ,. where the internal obstacle would be placed. The height of
the obstacle at each node would be enough to define the whole shape of the
obstacle. The number of nodes placed at either location was arbitrary, and
hence we could study different inflows or complicated obstacles or both.

The inflow parameters are given in a vector A and the bump parameters
in a vector a. The parnmeters enter the flow problem through the boundary
conditions. In particular, the value of the inflow velocity at any inlet point
(0. y) is given by a function of y and the inflow parameter vector:

ut0,ty) = inflote(yA)
r:(0,Y) =0

and the height of the lower channel for I < x < 3 is determine-d as a

function of x and the bump parameter vector:

y(z,ck) heigh/(a':•i .

Secondly. the vector of parameters requirs that the optimization search
be conducted in M"f rather th.in IR'. The sensitivities are now defined as
parfiw derivatives of the flow quantities with respect to the several pararn
eters.

Various problems became apparent as we attempted to solve these
multiparameter problems. The first difficulty we encountered was when
the optimization code seemed to "geto stuck" on an incorrect minimizer.
The optimization code at first produced a rapid decrease in the func'tional
value and a correspondingly better approximation to the known solutioun.
However, after a few steps the convergence ground to a hall. Vie opti-
mization code: took progrssively bsnaller steps, and "converged" to a point
that was still a sigiiificant distance from the target solution. A ýtudy of
the data showed that. the problem was rooted ini a discrepanicy between
the functional and the approximate derivative data we were supplyig. We

had been computing the sensitivities of the functional with respect to the
parameters. These quantities are easily computed from the ",me linear
system used during the Newton-type iteration that produrcs th- flow field
it.elf. They are only approximations to the derivatives of the functi(,nal
with re-spect to the parnmete.rs, and their accuracy depends on the fineness
of the grid of the region. When the optimization code had gotten fairly
close to the correct solution, greater accuracy in the derivatives was re-
quired than the sensitivities could deliver. In fact, at the false convergence
point, the dot product of the sensitivities with the direction vector poitting



ADA294785

-CONTROL OF STEADY INCOMN1PRESSIBLE 20 CHANNEL FLOW 121

towards the true solution was positive, suggesting incorrectly that the func-
tional would increase in that direction, when in fact it was monotonically
decreasing. This problem disappeared if the mesh was refined, which im-
proved the sensitivities enough to permit convergence. On the other hand,
if we wanted to do calculations on a coarse mesh, an alternative was to
use the derivative-free version of the ACM code. in which derivatives with
respect to the parameters are approximated internally by finite differences
and the accuracy could be improved. This increased the cost of computa-
tion on a coarse mesh areatly but also allowed the optimization mtthod to
reach the correct target solution.

A second problem that arose was in the choice of the co' functional
given in Equation (4.1). To analyze the difficulty, consider the following
problem which has one inflow and three bump parameters. The starting
point was given as

A = (0)
a (0.o0.o0)

and the 'target" profile was generated at

which corresponds to an inflow with parabolic shape and strcrgth 1 and
a bump which "happened" to be a parabola of height 1 although it lies in
a space of more complicated shapes. The computation proceeded satisfac-
torily at first, but after four or five steps, the solution ceaid to approach
the target solution. Instead, the second and fourth components of the pa-
rameter vector became negative! In fact, after abbout twenty iterations,
the optimization code returned with the ressage that the iteration had
"converged"', though the computed solution wax not our intendedl target
solution. The compuitd solution is shown in Figure 3

A graph of the shape corresponding to the converged values shows that
the resulting bump had roughly the same height as the target hump, but
with a "gutter" before and after it. To the eye, at least. the resulting
horizontal flow at the sampling line looks "4clase"' to the target values,

The cost fun :tional we used. ft. seemed to have a local minimum which
the optimizer had found. We tested this belief by marching along the line
between the computed solution and the target solution. T'he rorresponding
functional values are shown in Figure 4 and clearly display a "double dip"
curve.



ADA294785

122 i.V. BURKARDT AND J.S. PETERSON

tt?•Jtt ?JJJ" ...... ".....
4 4 - - 4 4.0. -9 -9 4 4 4 444 4 494 49 4

-444 44~ 4 44 0444 4 4 44 44444. 04 0- . 0. 0. 4444 4

. ..... ..... . . . .. .44 4 4 9 * 4 44 4 4 4 4 4

FIGURr 3: A "local minimum" solution that was not the "target".
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FIGURE: 4: The fuutional valuA from loral minimum to target.
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The question then arose as to whether this was actually a local min-
imuna or a spurious numerical solution. As other local minima solutions
were found, they all tended to share the property of being oscillatory. That
is, the ishape would either be a cret sandwiched between two valleys, or a
valley between two crests. When the mesh was refined for a particular case,
the "valleys" doubled in depth, while the crest remained roughly where it
had been. This suggested that the program was not approximating a real
local minimunm, which would have a fixed, finite shape. Rather, some
instability in the program or in the problem formulation was generating
numenrical behavior that did not correspond to a physical solution.

One obvious modification to the problem formulation which might al-
leviate the problem was to increase the value of the Reynolds number. The
fact that the functional seemed to be so insensitive to large changes in
geometry was pos.ibly due to the very low Reynolds of the problem. In
such a setting, the viscous effects could be expected to dominate the flow,
and quickly overwhelm disturbances that the functional would be trying to
nlett;rc.

Some tests of the program seemed indirectly to bear out this state-
ment. In one test we controlled the inflow with three parameters and the
target profile was generated by specifying a parabolic inflow. The program
produced as a solution an inflow with a "double hump", having a deep
drop in the middle. Nonethelw:ls, this crintorted inflow assumed essentially
a parabolic shape within two mesh units. In another problem we "et tup
a simple channel flow with no bump. There were I I equally spaced nodes
along the left haud boundtary at which an inflow velocity was specified with
only the first node having a nonzero velocity. Nonetheless, a. derornotrated
in Figures 5 and 6. the flow very quickly took on a parabolic profile.

S- •9 9 4444 4444 44444 44444444444-4

FIGUR. .4- 4444o4i•4 444 4 4444 4 4 4 4 44 444444
. ............... .....4.4.4.4.4.4.4.4.4.4.*.4.4.4.4.4 .

oGRns S.- Vetociti vectors for the single, inflow nrode( test.
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FIGURE 6: Streamlines for the single inflow node test..

Therefore, it woulh be naural to expc:rt that only at higher Reynolds
number (fa.&cter inflow or lower viscosity). would the program be able to
distinguish between the convex target bump, and the oscillatory solution
that had been found. Calculations using higher Reynolds numbers can be
done with o-ar code by incorporating a continuation n.ethod. We plan to
do this in future work. Another modification to the problem formulation
is a change in the cost function .A given by Equation (4.1). One posbibk
change wag to include the discrepancies in the vertical velocity and pressure
along the sampling line a- well. This gave the functional

f2(U, ,.p) = (I-(Y(r,.Y) - u,(y)) 2  Y (t'(r,,y) - ,',v))' + (PT,. Y)

_pA(y))2dy)

We used this cost functional f2 for the same problem that the functional
f: had displayed a local mininurm. The new functional also produced a
local minimum, differing frorm (he previous one only in that the bump did
not aetumlly have "gut.ters", but rather "low shoulders".

Another choice of the cost functional was one that included thi: cost
of the control. An obvious choice wa4 to cstimate the cost of the bump
control by approximating the L2 norm of the height of the bump about. the
channel bottom:

gi (a) =(jhqhcIg(z, o))2dz)

However, this st.ill allowed oscillatory solutions. We only began to get
smoother solution,; when we took the 02 normn of the .sope cf !he height:

2 (rs) = ( hea(hrig!ht (x, a))2dz)
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The smoothing was so effective that we immediately added the correspond-
ing cost function for the inflow control:

3l

h2(A) = (/infbowsu(. \))'dy)

Combining these, we have the cost function

Cost(a. A) = ,(a, A) + g? a) + h2 (A).

'This produced smooth solutions, but not correct ones. The effect of the
two addeed cost integrals depends partly on their scale relative to the first
integral. If g2 and h2 are relatively sinali, then the optimization code will
work for most of the time onrtiininiizijg f2, and only towards the end of
the optimization will the control costs perturb the solution slightly. But
since a flow with a flat bump and a zero inflow will minimize the control
integrals, it's clear that a mistake in scale would cause the optimizer to
spend most of its effort smoothing a poor solution.

To avoid this problem, we modified the cost functional to include
weights and then allowed these weights to be changed at any time dur-
ing the run. If the weights were modified. however. ihe optimizer had to
be restarted. since the functional was changed. The new cost function had
the form

Cst(nA) uifa,A) + w2g.(a) + wabA).

With these modifications. a typical run of the code would involve sev-
eral steps. A first run of the code would start from a zero solution, and
find a minimizer of the cost function with weights (1, 0.001. 0.001). The
solution would he used as the starting point for a second cptimization of
the cost function with weights (1, 0 00001, 0.00001). Finally, this solution
would be used as a starting point for an optimization of the cost function
with weights (1L 0, 0). Thus, the control costs kept the shapes from wig-
gling too much while a "crude solution was being sought. After - few snuh
procedures. with decreasing weight, the -crude" solution was clov- enough
to the true solution that minimization of the original functivi.a! %:nuld pro-
duce the true solution. Using the control costs allowed the pr.'-,m to
avoid the undesirable local minima that had trapped the original pC'gram.

8. Future work. The original problem that motivated this iivet'ti-
gation sought to find a flow obstacle from a given test set whih had a
downstream profile similar to one generated by a particular shape which
was not a member of the test set. We have not handled such canze.s yet.
although they require no change to the pr-,gramn. The optimizer do,.- not
require that the functional to be minimized achieve a value of ze.

The spurious solutions that were encountered with the munhixr,- .oe-er
problem corresponded to a bump that had a very sharply -..: ng pro-
file. Because the simple gridding routine that was used dctermines the
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grid of the region by the shape of the boundary, sharp variations in the
bump caused distortions of the grid. These distortions, if severe enough.
could cause the calculations to become unreliable. Thus, a better grid-
ding method is desirable, whose accuracy will be less dependent on the
smoothiness of the boundary.

We chose to reprsent the space of allowable shapes by cubic splines.
We imposed nio convexity or positivity requirements on the shapes gen-
er.ntcd by the splines. We found that the program often generated unac-
ceptable shape.;, sonl'times only as trial solutions for an iteration, but on
occaLsion as the final solutions of the overall optin'jization. It is possible that
we could avoid this problem by choosing a more restrictive set of allowable
shapes.

Finally. we. note that we need to be able to handle higher Reynolds
number flows. This is s, fcor several reasons. The wind tunnel flow we
are ultimately interested in has- a very high Reynolds number. Also. our
method of trying to march a downstream profile is hampered when the
%iscosity effects dampen out. the perturbations caused by the obstacle.

9. Acknowledgements. The authors would like tx thank the IMA
for providing a forum for the discussion of flow control i.sucs and they
would like to thank Max Gunmburger for many helpfitl suggrstions.
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OPTIMALITY CONDITIONS FOR SOME CONTROL
PROBLEMS OF TURBULENT FLOWS"

ELDUARDO CASASt

Abstract. In this article, we are concerned with the control of the turbulence of
viscous, incompressib!e flows. The control are the body forces or the heat flux through
tl boundary of the domain occupjed by the fluid. t he state is the velurity of the
fluid and the turbulence is measured by some integr.pa involving the vorticity within the
flow. We consider steady and time-dependent three-dimensional flows described by the
Navier-Stokes equations, sometimes coupled with the heat equation. We prove existence
of optimal controls and derive some first order optimality conditions.

Key words. optimal control problem-'. Navier-SrtoAe equations, U-Smq
tions, optimality condinrion

AMS(MOS) subject claws'iirwatianas. 49ttW. 412,35*Q-10. 3503Q3'. ?nUs

1. Introduction. We consider the problem of controlling the turbu-
lence behaviour of viscous, incompressible thret-dimensivnaI flows. The
control variables are the body forces or the heat flux through the boundary
of the domain occupied by thle fluid. The state is the velocity of the fluid
and the cost functional involves the norn of the vorticity of the fluid. This
norm gives a good measure of the turbulence within the flow. The relation
between the control and the state, that is, the state equation, is described
by the Navier-Stokes equationt, couplet! with the heat equation when the
control is the he-at flux. The first paper dealing with this problem was
published by Abergcl and Temarn '23. They considered two-dimensional
flows: described by evolution equations, the threr-dimensional case. bing
more difficult hecatyse of the lack of an existence and uniepsenesp theorem
of solution for the evolution Navier-Stokes equations. Othler papers dealing
with the optimal control of these, equations are: Casas j44, Fattrfrini and
Sritharan rTj. 161, Js!8, Sritharan II9, (201. In J3, (¶ and (203 existence of an
optimal control was investigated. In [7) and j19, a Fontryagin maximum
principle was proved by using the .vmigroup theory to deal with the state
equations. In j4). exitrenre of an optimal control and optimality conditiors
offirst order were studied, by using variational methods in the study of the
state equations.

When steady flows are considered, the nonuniqueness of solution of
the state equations occurs in dimensions two and three. To simplify the
exposition, we will only consider three-dimensionaI flows in this paper. but
the results and methods are readily extended to the two dimensional case.

The research of this author was partially #uprrted by Direrci6n General de hnves-

tigaci6n Cientifica y Ttcnica (Madrid).
t Dpto. de Materntrica Apticada y Cienriag dr l Conmputarin. rE.T.S.J. de Caninrs,

Univemidad dc Cantabria, 39071 Santandcr. Spain. E-mail: casasccucvxiueiran.es
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Two different approaches have been considered to derive the optimality
conditions in this case. The first one, followed by Gunzburger et a]. [III,
(12], uses an abstract theorem for optimality due to loffe and 'rikhomirov
113]. The second one, due to Abergel and Casas [1], consists in introducing
a family of approximate control problems, obtained by linearization of the
btate eqlation with the help of an additional control and setting a penalty
term in the cortr functional; these approximate problems are well possed and
it is easy to derive the optimality conditions for them; finally, it is passed
to the limit in these optirnality systems. This last approach provides a
inumnerical method to deal with these ill-possed state equations and solve
the control problems.

The plan of this paper is as follows. In §2 and J3, we study the sta-
tionary case corresponding to the distributed control of the Navier-Stokes
equation and the boundary control of the system coupled with the heat
equation, respectively. In these sections we describe the method uted in [I]
to derive the optiniality conditions. In §4 and §5 the corresponding time-
dependent cases are considered. To derive the conditions for optimalitv
in the evolu, ior ctow, we must make a suitable formulation of the control
problem. different of that one of [2]. This rormulation requires every feasi-
ble state of the control problem to be a stroug solution of the Navier-Stokes
equations. Here we follow the idea developed in Casas [I].

Let us give some notation, which we will follow in this paper. First. we
assume (hat the fluid occupies a physical domain Q C I?3, which iv bounded
and has a Lipschitz boundary r. In 0i we conrider the u-ual Sobolev spaces
W'mat(i) and lo".r(Q); see. for instance, Adams (3] or Neqas [17]. When
p = 2 we write g'(Ql) and H" (Q) instead of W'"(0) and Pyf 2(e)
respectively. We al,o put

(1I.1) Y=' (9E H() 3 :div7 = 01 and Y0 =,Y l.o.)',

where div denotes the divergence operator. It is easy to check that Y
and Y,. are separable Hlilbert spaces when they are endowed with the inner
products

U, -:01' = (.q zLc> +a(,

and

U7, Ei,. = a(R. z7,

reqpectively, where

(1.2) a(g#,:) f w denote (t d = at, T) Hnd ' × tOT)

Now. given T > 0. we denote QT = Qx (0,T) and ST I' x (0,T).
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Following Lions and Magenes [16. Vol. 1] we write

H 2 1(fnr) Y {E L2 (lr) : 2&yA~ e2 yC L2(Cir). I < i,jca
8xi O 2', at j

and

Uyiiu~~~'~~nn 1 j ( e +f f2) t d

1•t2 sdxdtp

j drdt+ Z
In [16, Vol. I it is proved that every element of 124(Elrl), after a modifica-
tion over a zero measure set. is a continuous function from [0, 7]- -. 1' (0),
so we can consider H2,1(fl7) C C(107 Tj, 1I(.Q)), rorevetr the inclusimn is
continuous.

2. Steady flow: distributed control. Let tus consider a stationary
viscous incompresmib!e flow in R; the equativn4 of rmiotion are

-vAt+ (f. V.);+ Vp f 4 Cu in ft.
('.1) divg= 0 in , j= Or on r,
where m > O. fE 1t'-U(2)3f. C E £(U,1: -lf 3 ), u C U, U bein; g a Hbert

space. and 6 r E n"(rNi We assume that

(2.2) 3, c 112(0?) such that , ;t (V x L•)ii

where

(2.3) VX f=(61•3$-rsX.fr1,Y.il, OX .,13-.&X2&- t ,I).

Under this hypothesis, it is obvious tha! the us.tna!,
holds:

: frr(,r) R(--)d(.r) -- 0,(2.4) 44r.Zrd~)O
i(z) denoting the ouytward unit normal vector ti r at the point x: see NeEas
[17). Assumptiont on cr alowing to prove the existence off satisfyiig (2.V)
are given in Lions (153 and Temam [213.

In (2A). N. |enores the ,doecity, p the pressure. !the body forces and
u is the control that can act over all domain 01. or only over a part (if 0.
or even only in a given direction of the spare. All these possibilities ran
be treated by choosing a suitable space V and the corresponding linear

mapping C.
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It is well known that (2.1) has at least one solution (f, p) E Hol (0), X
L 2 (f)p. see, for examplc, [15] or [21]. However there is not general unique-
ness results. Moreover, we have the following estimate for the solutions of
(2.1):

PROPOSITIoN 2.1. Let fie HI(Q)3 sattsfy (2.1) for some p E L2 (f).
Then there exist constants MA > 0. i = 1,2, independent of U E U and !l
such that

(2.5) tlf0l1qnp, -< Ahl +l~.:n IICiIllUII) -r 12

Aforetovcr M12 = 0 tchencter Or = 0.
Proof Let dD(, r) denote the distance from z to r. Then there exists

a function of class C' in R' schb that

-., = I in some neighbourhood of r,

(2.6) ", = 0 if p(r) > 2 (r). 6(c) = exp(-1/f),

O,.,j(z)I !5 f if p(x) _< 26(r), I < j < n.

Thus, given it > 0 arbitrary, we can take e > 0 sniall enough and t
V x (•.O), note (2.2), in such a way that jSlr = 6•r and

(2.7) lY'ZH~~z-< V':,1?~•;' •,(n :I Y"I

see [15] or [21].
Let us take f > 0 such that ý2.7) hulds withi p = v/2 and I us set

F --- - C YV. Then multiplying (2.1) by F.we obtain

(2.8) a(F jS. )+6.,+ + n C

where
3

(2.9) h(Z-1 Z',2,.3) =~ J:d~d
Rpcralling that

and

6(F, •,: I' =- -b(r, r. ,
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we deduce from (2.8) that

VIIAVO <SCi (nih"-or + fenuliultu) -1Y. + [b(£L' ""J ± ;L(& '!

Finally, due to the inclusion JP(IU) C L4(1). we obtain from (2.7). the

above inequality and the well known relation

lb(':, --Z2 1, s [_ UL'(uIYIk, i-"V Ik -,niL

thaf

t?9 • c1 ( + l, t.) t + n+c,1'111
which, together with the inequality

llu-l~n'(n:, <_ Ilw-inr:, + 1Ig, dbuv' < CafV•Ir0 -÷I ,ll~'.

leads to (2.5). 0
Now we define the finctional .1 : II(') 3 x U - R by

1 U'V) x jtjjdr + U1'?

with N > 0 and V x ,f denoting the vorticity of the flow. defined as in (2.3).

'fihe physically relevant terin m J is of rourse

,4 IV" x€•1

which provides an estimate of the level of turbulence within the flow: the
other term is put there for technical rea,ons and it is not necessary if the
set of admissible controls is bounded

Given a nonempty convex closed suisct AK of (1. we formulate the
optimal control problem as follows:

Minimize J(uyi
(Pt) { (u~fi) C AT x H'? satisfxing H2.1) for some p )

The first quepstion to study is the existence of a solution for (P1).
T'HeoRavt 2.1. Assumed that N > 0 or K is bounded mn U: thrn (P1)

has at lettsf one solution.
"lb prove this result, it is enough to consider, as usua), a minimizirg

sequence. which is hounded in U x Hi(fli\ due to the assumptions of the
theorem, and to take into account the convexity and continuity of J; see

[I] for the details.
Our next goal is to derive the optimality conditions for Problem (PI),

which is made in the following theorem,
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THEOREm 2.2. If(uo,97) E U x H'(fl) is a souion of(P1), then
there exist a number a > 0 and some elements j3o C H'(?)3 and po,.o E
L2(f) Vterifying

(2.10) a+ fI-oII•0l•t(f) > 0;

(2 ) -vA - (! . V )y, + Vpo = f+ Cuo trn Q,
(2.11) divjT = 0 in Q. go = 0 on I;

(2.12) -v o - (oo V)t, (VPo), 4 Vr; . oV V (V = QV xn V
S...div,;"u= 0iufO, •0 =on f;

(2.13) (C*j + *Nun, i - ?1-)I; > 0 Vu C K.

Let us remark that sometimes it is possible to get (2.11)412.13) with
a = 1. Indeed. following Gunzburger et al. [12] we say that the control set
K has property C at (uu, :7•) if for any rionzero solution (', X) E H1(1?)3 x
L-(fl) of the system

-VAi5 - (#4. -VW+ (V.Y )Ti+ V'- = 0 in Q.
(2.14) dive= 0 in f1. $= 0 on 1,

we can find u C K such that

(2.15) (C'$, u - uc) < 0.

Convention will have it that property C is to hold vacuously if there arc
no nonzero solutions of (2.14).

COROLLARY 2.1. If K hai propcry C at (u0. jj), thrn thcrc etist
,F0 E H-(fl)3 and pu,,r E LV(fQ) verfyIinq (2.11) (2.13) with ct = 1.

Proof It is enough to remark that (2.141) anid 2.14) implies that o . 0
in (2.11)-(2.13). Then we can replace i. by A./a and so deduce the desired
result. C

Remark 1. It is olwvious that if U = K = L.(Q)a and C = inclusion
operator from L2(fl) 3 into 11'-(Q)-, then K has property C at (u'i,"40 ).

ror a detailed demonstration of this theorem, the reader is rCferre'd to
Abergel and Casas [1]. In the §2.1 and J2.2 we sketch the proof.

2.1. The problmins (PI,). The main difficillty to pruve Theorem 2.2
is the multivalied character of the relation between the control and the
state. To prove this theorem, we inrri-c,Ddli a family of problems (Pi),) with
woll-possed state equations, whose solutions converge' tiward th. solution
(uo,fo), then we derive the optimality conditions for these problems and
finally we pass to the limit in thems conditions.
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For every f > 0 we define the functional J, : U x Y - R by

)=J(u'(u�I ))+- IVY,(u,tt,)-Vuwj 2dz

+ , _ Iy. - yoi!2dz + 1Ila.,- u,1,.i?

j=1 i

where gu, C?) is the unique element of HI(fl)3 that satisfies. together with
some p C L'V(I). the system

(16- + (T rw)+ Vp = f-4 Cu in 0,
div= 0 inQ. F O•=On 1,

"To check that this system has a unique solution, it is enough to consider
its variational formulaTion

Find j E V such that
,,a(;.i3)+b417;gr) (f+cu.4i W.e C-yo

and to apply the Lax-Milgram theorem, noting that the lj(fl.)3 -coercivity
of the bilinear form is an immediate consequence of the following orthogo-
nality property of b.

(Fd f)=0 VT EY and Z-e-H(U)P'.

Note (2.9) for the definition of b.
Now we formulate the problems (Pl) in the following way

Minimize J,(u. C).
(u,9)eKxY and C=ron r.

The next propcsition states that the problems (P13) constitute an ap-
proximating family of (P1).

PROPOSITtox 2.2. For ercrp e > 0 there flist 4d leas1t one solution
(u,. 0q) of (Pl,). Moreover if we denote by g the solution of (2.16) orrv-
aponding to (1s,. 4). then we have

(2.17) Jim1-, - 2 ,c-11t- •dx =.
40 j=1

(2.1$) P,, - fo and g,- #I; wfokly i, VY

(2.19) lint u. IF() = J(0o. 4)0)
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Taking into account that System (2.16) has a unique rohition 7 E
H IfQ)3 for every pair of controls (u, ti) E U x Y, the relation (tA, ri,)
being C 1 , and

K x I,7 IE Y: ilr = ;r)

is convex, it is enough some computations to prove the following result
PROPOSiriox 2.3. L0 us suppose that (ut,,iF) is a sohlttion of(Pl)).

then there exist elements .. A E H I (Q) 3 and p,, r, E L 2() sqUeh thoi the
following Ystlemn holds

-L(2 ) + Or" • V. )9f + Vp, f+ C,,, in 11,
(2.20) divzZ = 0 i . = on r;

- ,- (,. ) + (vsi )'s: + V7r,
(2.21) V (V x g) + g, -yc, Inft.

div?-Ornf. A =Oonr;

(2.22) (C' ;-I -A'tt, '-+-Uo, t--U ,)U > I rUE 11'.

Remark 2. The method described in this setion provides an efficient
numerical scheme to solve Problem (P1); obviouisly, the fimnctinal .1, should
be modified by removing the last two terms. Then Proposition 2.2 may fail
to be true, but. under the assumptions o/fTheorem 2.1, it is still possible to
prove that {u,},>o is a bounded sequence in U ard every weak limit point,
when r - 0, is a solution of (II1). In fact these subsequences converge
strongly in U if N > 0. furthermore g, - goc weakly in H'(S1)3 and
inf(P,) -- inf(PI).

2.2. Sketch of proof of Theorem 2.3. We are going to pass to the
limit in the system (2.20) (2.22) with thr help of Proposition 2.2. In this
process the essential point is the boundcdncss of {f, ),>n in 11: (M)3. First.
let us assume that f()}>,j ik hounded in L2(f0) 3 . Mulliplying (2.21) by

, and using the orthrigonality property of b, defined in (2.9), we get

(2.23) ff.II, :.,j> < C1 ,f (ell.dtn)l + C++:iIlur, 1,.

From the inequality (Temain [21. page 296])

(2.24) 5ll.•, _<V"2l•l•~•lll•::.

and (2.23). we obtain

.+'/I''cnu ,+ ,, If



ADA294785

CONTROL PROBLEMS OF TURBULEUN FLWAV is;

which proves the boundednesq of {)},>a in H'(j)1. Then we can extract
a subsequence, denoted in the same way, and an element j4 E H'(0)'

such that ; -- o weakly in Nl(.1)3. Now it is easy to pass to the limit
in (2.20)-(2.22) and to deduce (2.11)-(2.13) with a = 1.

if fj ,>o is not bounded in L 2 (flj' we take

IIl -o0 whenc-*x

and again we denote n,,•. by 4, 'Now repeating the previous argument, we

derive (2. 10)--(2.13) with a = 0. It remains to prove (2.10) or equivalently
that io 9# 0. From the weak convergence j, - jo in H'(Q})3 and Rellich's
theorem, follow- the strong convergence of IA I :>o to jF in L2(fl9), which

proves that

1n= imJll, 1,' = 1.

3. Steady flow: boundary control. Now we consider th6c applica-
hility of the method introdnce-d in the previous section to a more realistic

problem. In this section, the state equations are the equations of thermo-
hydraulics in the Bourssinesq approximation:

-vA-+ (1 5 r)g7+ Vp j+ fr in 0,

(3.1) -A + . Vr =gin i,
div j = 0 in f), p:- 4Ir on r,
r= hon fo. A,-.= uon r-,

where Y, K> 0, fC H-'(12)3. fiE Lr(2)Th &r C H"ý(1". g E LEH(f),
h E H 1/2(NP), u e L2(r 1), r = *, U Ir,, r. n r, -: 0 and .r(v). au(rl) > 0.

We still assumr that (2.2) holdsand moreover

(3.2) Or(z) .i;:) = 0 s.r. z r I'r.

Here j, p and f are the same things as in (2.1). r it the temperature
inside the fluid arnd u is the heat flux through the boundary. Let us remark
that the hypothesis g y L 5IS(fl) is made to give a sense to the Neumnann
boundary condition of(3.1). Thanks to this ass~tmption the term 0,. r is well
defined and the usual variational formulation of this problem is equivalent
to (3.1); wee, for instance, Casas and Fernindez 15j.

The control problem is formulated in the following way

(P2) Minimize A(U Y-).
(u,y-) CE K x H'(f0): and satisfies (3.1) for rnjmi (p: ?'.

with J : fl(fl)" x L2(r1•) R- defined by

J(u,yUl= - L 1x rWnd J + N a 1,Ltd,
2|
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N > 0 and K C L2(rj) nonempty, convex and closed. In this problem the
role of the control is to cool suitably the fluid from a part of the boundary
in order to minimize the turbulence inside the flow. The reader is referred
to [2] for an application of Problem (P2) to the case of a fluid in a driven
cavity.

To prove the existence of a solution of (3.1), it is usual to make some
anunmption on the size of the viscosity v and the diffusion coefficient K;

bee, for example, Caultier and Lezaun [10'. flowever we show in the next
theorem that it is not uecsary. Let us note that, in general, there is no
uniqueness of solution (see Rahinowitz [18]), therefore we are again dealing
with a multistate equation.

THEoREM 3.1. Under the above conditions, Syt•em (3.1) has at hast
one solution (gp, I) C III (Q))3 x LV(t) x III(Q). Furthermorf thIrc erist
constants M3 , M4 > 0 sucWh that
(3.3) Ilfrlj-('<j + J[yjjH-jj-!,

5 < f 3 (4 1II-,(n) I + 11911ll:(1 + ' 11h- r + A4,

where .4-,1 depends on Qr. being :cro henvc this ftinclion t. zrro.
The prooif of this theorcrm uscs the following lemma:
Ls.:NMA 3.1. Let us assume that 1 1 I 1(p)3 . tth divO = 0 and

p;=0 oon r,, and B e £Z(YY). wilh

(3.4) [(B(Z-)-Z).1 L• 'I -F,., Y(,.

Then there exists at least one solation (Z.p. r) E (fl)' x L'(fQ) x 1f1 (0)

of the system
-vA± (i. V). + B(r ) + Vp f+ ar in ft,

-&Ar + (i'+ j). Vr = Y in•0,
divi= 0 in, .2,7- " on r.
r = ih on 1"o, (9,,7 = I on ri.

Furthermore, there exists M5 > 0 suc'h Itat

(3.6) +ir!g40) ± IfllVa

< . lfiu-,,fl), + 119l1,I;M, + !IIZII,,,(r& + I!"IIL''))

Proof. Let is take

X= firEL4 (f)*" :div 7=O and ti.4=0on rj.
Let us note that wi.il is definced in a trace SC... on ; ih , , E "!-l44•,
and

,•. ,¢,z =:(uT •, •,)VO E H"' 4;3(0);
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see Casas and Fernindez [5]. Space X, endowed with the norm of L4 (Q)S3 .
is a Banach space.

Now we define a mapping F X - X. with F(t1) = r being the
solution, together with some r C -P(S) and p E LP(Q), of the system

-vAF'+ (t- V)F+ B(.) + Vp = f-+ Sr in Q.
(3.) -,cAr + ( + 6)- Vr = g in 11

div.F = 0 in O), 1 = C on r,
r=hon F0, Or=uonbr.

Indeed. this system is uncoupled. then we can solve first the problem in r.
which is immediate from Lax+Milgram theorem, and then obtain z7 The
existence and uniquenes of F can be proved in the same way than for
Stokes problem, it is enough to note that

(3R) statE. i) + 6(Zti - + (8(5. 5
= ins(tt 5 + (110:), 0

a~ vti-,-_ 2viiy", - •I:h---21 l- +,+'+ =

Let uts estinate f-f y,,. To do this, we first take v- E HIf(1 ) urh that
h= ho rL and o = - on F1, for example c can be the solution of

-t,=0 in 11.

¢=h. on1C.
&'e=0 onf1.

Let now p, C D(R3 ) verifying

Pd') = ifd(tF)tf/2.

0 ifd(z,f) > .

Given 6 > U arbitrary, redefining ts as pt' antd taken t sinali enough. we
can suppose that
(3.9) ll,:il .,cm) S.*

We set C = r - +, then we have

- J[1(++± • V,(],dr

= {( ~. ,~~ (')r, - j[c -- +.~ VoJedr

= -J;#•+ •J V(',T'dr.

+n
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hence

fn[(d, + 0) •,a .

Analogously we can prove

f (r )-V =- - fi + V w3dr

Now multiplying the second equation of (3.7) by •, integrating by parts

and u-Sing the two above identities follows

xJ I7,i-Idz= fgC&x +r j udr - KJ 7, TVdx +i j(tr,+ t~).

Front this equality and (3.9) we obtain that

51' ,. C- +", - U L•r,2 I) 4 tzil'!!ý .,H'P + t!tr+ Slit 4(fli3)

Estimating 0' in terms lf h we get

(3.10)

< .c2 (ll.-a,+ IfhiIH,,,rr, + fIu i-Lr,: + 1iI711i.ii,,) 4 ,sc1-It'i{L,4fl•.

with C3 independent of 6t.
On the other hand, multiplying the first equation of (3.7) by F, we

derive with (3.8) and (3.1 1) that

(3.11) §l-•r <_ (. II/ilq-:,.m) + fJ '•,.q;~,, -,.. . ,it!- , .- ,,.... .
Ir , ,.L(), 6C+fItt,, (,,.

Iul ,r + ... AIF ,j

with (0, independent, of ý. This : u l " mp" ,. that

IIh1',, :- C6 + C7. jtIFll.-Mný.

Thus choosing t in such a way that CU• • 1/2 and setting r ?".. we
deduce that F applies the ball B,(0) de X into itsdf Fiualal the exiztence
of a fixed point of r follows from the conipactuess of the inchi.ion Y- C X
and Schaudcr's theorem. Estimate (3.6) followb from (3.11) and t3.11). [a

Pioof of Theorenz 9..I, L-t us take -C and ý, satisfyiug (21) and (26).
respectively. We take c > 0 small enolgh, so that the folloning inequality
holds

(3'.12) - ., •u :
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we Temam 21. page 177]. Then we defiuc

B(.:) = (S,- V)E+ (Sr V)W,.

Fcom (3.12) and the orthogonality property of b we have

< << l1f :,O,:,9•,'dr _< • 5•.,'dL••l:%l~c)< rld

Now we take a solution (F, -p) of (3.5), changing the right hand side
of the first equation for f+ •r - (,. V)0,. It is enough to s.t ff F WZ

to conclude the proof of the thcorem. a
A different proof of Theorem 3.1 was given by Abergel and Csas f11,

where Brouwer's theorem. after a discretization of the state equations (3. 1),
was used instead of Schauder's theorem.

Once we have proved the existence of solutions of the state equations.
we can establish a theorem of existence of a solution for Problem (P2)
analogous to Theorem 2.1.

THEoREM 3.2. IfN > 0 or K• is bounihd in L2(l'I). then cP2) • at
least onf Solultort,.

Alto we have the following conditions for optimality
'THE~OREM 3.3, Lt (o) be a sohutirmn of (P2). then therf endt i

constant a >_ 0 and etmints n4 E H"(')t3 , ro, o E H- (Q) anf4 ,(. -eE
L 2 01) such Ithat

(3.13) a + IIU011IW(I: > 0;

-vAysk +(Fv) $+-Vpp=f+4Tb mn fj.
(3.14) -KAhro + Vri , = g in Q.

divtj = 0 in Q., go or on r.

-rv, +aV x (V" x g-) in Q.
(3.15) -KtA ib - f*. r, 'r, = 4gr, in ftl

div#ý,0 inO0, jo o onfr,
o ot, ro, sa , o on r,;

3 . (6o + aNuo)(u -- u-)d" _> 0 Yu K.

The proofofthis theorem follows the samesteps as that of Theorem 2.2;
see [1J for the derails. Similarly to Theorem 2.2 here we could formulate a
statement analogous to that of Corollary 2.1, which would allow to conclude
(3.14)-(3.16) with a = 1 if K had property C at (i-0. u0).
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4. Time-dependent flow: distributed control. This section and
the following one are devoted to the control of the turbulence in time-
dependent flows. Here we study the case of a distributed control and the
state equations are the Navier-Stokes equations:

a._, + (.•. V-+ V f+ L- in (IT,

(4.1)

divff = 0 in QT. y-(O) = •o in 0. i= 0 on ST,

where v > 0 is a constant. fJE L2([0, T], L2(fl)3), C'E C(V, L2([0.7T).L 2(f 2)3)
it E U, U being a [filbert space. and 6S E I' is the initial velocity. We will
henceforth assume that F is of clas C2.

The existence of a weak solution of(4. I) is well known: see, for instance.
Lady~henskaya [14,, Lions [15], Temain [21]. etc. However itc uniqueness
is an open question so far. We recall that an element 9E Lf([0, 2J, 1) n
Cý,[C0, TJ, L2(0) 3 ) is said a weak solution of (4.1) if it satisfies

Find 7E L2([( O/j, 1,Yo)surh that

d

(f(t)+ Cu(t),,,,)La V0E EC1, a.e. I E (0.7T).

and the energy inequality

(4.3) g...)jfL23 1. + 2 ' "(•)

< [o•0$a•gm:i + 2 W(f(s) + Cu(s). -gIs))1 a.ldS V1. [0, T].

With CU.([(j,TJ, LV(0)11) w(, denote the space of functions• ff : [0. 1]
L2(f.) 3 weakly continuous: that is: Yjis continuous when L2(Q):' is endowed

with the weak topology. Thiu. the initial conditions g(0) := Sý makes -nse.
Once a solution g of (4 2) has been found, the existence of the presqsure
p E D•(t.) can be proved, in surh a way that (gfp) is a solution of (4.1).
sat.h.fving th• partial differential equations in the distribution t-ense. the
boundary condition in the trace sense and the initial condition weakly in
L2(f))3 . The prte.oure is unique up to the addition of a real distributiuin in
(0,T).

Therefore, if we. forimnlate an optimal control problem lettiag the weak
solutions of (4.1) to be feasible states. we find (fe same type of diffietilty
than in problems (PI) and (P2) to derive thhe optim.aitvy cr:,id.iron.s: thr
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relation control - state is not well defined. It seems natural to try the
same technique than in the previous sections to derive these conditions for
optimality. Thus we can introduce a new control ; C L'([0,7'1,t ) and
consider the new system

Of V-44 Org (r- •)i +- r~p: fu inr.TO~l tV-1(V~)4-~p=!Cu infr
at

pivr m= 0 in SIT ,f(0) ='o in f(2 = 1 onSt f tir.
IUrfortnnately, we can riot prove uniqueness of a weak solution for this

problem; one falls essentially on the same difficu~es than in the study of
the uniqueness of (4.1). Conscquently, the method used in the previous
problems does not work for time-dependent flows.

To overcome this diffirculty motivated for the lack of uniqueness of (4.1).
we can consider a more restrictive class of solutions, namely, strong solu-
tions. We say that ff is a strong solution of (4.1) if it is a weak solution
and fYE LA([O, T]. LU{fQ) 3 ). It is well known that (4.1) does not how' more
than one strong solution. Strong solitionm satisfy the energy r.quality in-
stead of the inequality (4.3). So they seem to he physically more significant
than weak solutions. Unfortunately. there is no existence result of strong
solutions. However, we can formulate the optimal control problem in such
a way that the only feasible states are strong solutions. *Ilis hi-eanle thai
we will work with a subset of controls providing strong solutions of (41).
Moreover, the relation between the control and the state becomes differen-
tiable when the controls are taken in this set. To attain this goal. instoadl
of taking the cost functional as in [2]. we put

J(u.f) -!j 1vZ. x l'dr) dl+ T-ii u11.

Then the optimal control problem is formulated in the follu..inig way

( Minimize J(u, ).

(PJ)j (n, ffy E r X r2,:(s-)& satisfying (4.1) for some p E L 2 ('O. TJ. IJ'(fl)).

The fact of raking H2 -'(i2T) a, state spare is motivated for the tM?-
lIwing result. whoee proof can be found in Ca&sas 14J.

TiswoRLm 4.1. Let uis assume that (g, p) is a strong solutionr of qys-
tem (4.1), fhen ff E I'(•(r)a n CQ0,T7,1$) and p C L 2([O.TIH'(Q})).
Moreover

1/ < (11;0 Y. + 10iV ft TJL'22 ; . It'IL -t- '" . )
(4.4)
trhere : j0,+oo) -- j0. +x+) is an increasinq funutioti deptndinq only on
O and v.
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The first term of the cost functional give-- a measure of the turbulence
in the flow through the norm of the vortinity in the space Le([O, 2I, L'(P)').
The reason of the choice of this norm is that any weak solution of (4.1)
verifying J(u, - < +,o is a strong solution, which reduces the fea.sible
states of (P3) to strong solutions of (4.1). The following proposition proves
this statement.

PROPOsI'rON 4.1. Let7 bc a weak solution of(4.1) verifyinq J(t,. y) <
4 cc, then .q is a strong solution. Moreover

(4.5) li1:5l.l,-a , < ft;

for somte con.•ftnt .Mt, depEnding on J(u, VI and 1tuilu.
Proof. Let u, brgin noting that there exist.s a constant C, > 0 stich

that.

(4.6) IIFr Y ("::IV" X :tlp+n), v-- C 1,U:

se, for instance, Temamn [21, Lemma 1.6; page 465]. Then the inrrqlality
J(u, v- < + implies that 9 ( L"(10, T*, 1;). On the other hand. since f
is a weak solution, we have that i C LE ( O. 71. L2(q)2). Therefore. from
(2.23) we ohtain that

.V,40 1/2 1.!•,311 314.,,•+
llt~t~ll~qal, < 'd1i 0 i• lo 1,fl)3)l.vt )iY• = ---IW• ,)tiiho

which implies that

Finally. (.1.5) follows from this inequality and (4.6). 0
To prove the existenc. ofa solution for (P3). in -ddition to the ýtandard

hypothesis assumed in thlorr'ms 2.1 and 3.2, we i,,ut suppose the existence
of a feasible pair (u, y-) for (P1). To check the existence of these pairs,

we can rake an element, .V C H'-'(Pr)3 n (7q], 72, pC). with i,() =q
awl obtain u from the partial differential equations. If u is an element
of K. then the assumption is satisfied. For instance, this is the ca.st- if
K 7 L2([O, ],(fQ)3) and C is the identity. The precise result it
formulated as follows

THEoREM 4.2. Let ins assume that the follorling two hIV,0 lthses hold:
1. Th, . a feasible pair (W. 9 1E A, X H11.(f)1..)3 Satfi.ynq (4. 1).
2. £Either N > 0 or K is boundtd in U.

Then there erists at least one optimal solhdton li(o. if7) of(P3).
The next strp is to derive the conditions for cptinmality satisfied by

these optimal solutions. The crucial point is that the s,:t of eontrrls of U
having associated a strong solution form an open sc.; rw.reovfr !he relations
between the control and the state is differentiable on thifs set.

TnHORaM 4.3. If System (4.1) has a strong solution for .,;nnr cleent

is of U and sonC ,• oi E )(, then 1herc erisl.q an optri ngqhbo,,rhrrd U of
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U in U such that the Narier-Stokes quations with body forces j = f+ Cv,
r E U. and initial condition equal to po have a strong solution q,. Moreover
the mapping r : 1 - 112.2((1r) 3 OG ([O,TI,'o). defined by G(u) = C. is
of cla.x C". Finally, if F- = DC(u). v, for some u EU U and some v E U,
thrn 5 is the unique strong solution of the problem

& -- a•,+ (R- V,)F'+ (OF7 V,)A, + VzP = Cv , in r.
(47) ot

divF= 0 in I 0, 0 in) , I= 0 onET,

for some p C L 2([0,TH(fl)), which is uniqui up Lb the ad N .. /...
function of L0O, TA.

By using thi.- rrnult. it is not difficult to prove the following theorem
Tnit;ontEm 4.4. Let u5 assume that (u-,;) Us a so0ti1on of(P3) and pt,

the pressure corresponding to the velocily ffu, Thin thte e txrst a unique rk-
*nmnt 0 ;o 1 H'(Qr)3 C- C([0T7I,T ) and a function wro C LeI[O, 7,H'(P)),
unique up to th additinrm of a function of L*(0, T). such that the follotwing
syste In is satsfirtCd

- PL, f(*1ýVr)*( +r'rpctf-Cuo in fr,
(4.8) ot

=iv.r i n Olr. idO()j = &z in QI. ffa = 0 on 7

-- - ,,- (f . V)+ (V,QJ) T Jý + V,,,

'it

4. 1;X j-)"'L. Vr X (1: X 17)] in 12r,

divr, 0 In QT, 4o(T)= inQ, Fo1 =0 onrr:

(4.10) (C*.i, + ., U0o. U - ut,)u >•0 V•• E K.

The detailed proofs of the two previous thererms can bc found in 4..

5. Tihnt-Jeprndent flow: boundary control. As in the previous
section, we assure, r r,-obe of rlna. C2 . v > 1. fG L2 jL{0.).L-'(58)3) and
6 o E Y&. Morrover we take, af E L')Or)y LO(jO,.Lf($), 0Co
LP41), 11' = F'e x (0,7)... = rY x (0,T), with V1 and r, as in §3, and
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u E L2 (54). Then the state equations are

.V~p = f+Yr in 0-,

0:"I

(5.I (-- •, r t.V in f2T

0ilM, = 90 in f )=, 0 on S7.

r(0)--0 Pnt , 0 on EC,r • -u On 'ýr.

'[he physical interpretation of r and u is as in J'3.
This system has similar properties to (4.1). So the existence of a

weak solution (j. r,p), with g E C,,([0, T]. L(S) 3 ) n L2([C. T]. Y). 'r e
C([O,T-,L2(9)) r) L2 ([[0, T, HI(5Q)) and p E IY(Q-r), satisfying an energy
inequality can be proved by using the methods of (1.4, [151 or [21]; see
also Foias et al. [9]. Again the uniqun-nrs is an open question. We follow
the method of §4 to control the turbulence of the fluid described by (5.1).
Therefore we consider the cost functional

,jT (1 V7  3 jlud) d + d ITJ(ti, Y-I = T, . v.. X Y.12dr) dt + f rl!• c t

"'hcn the optimal control problem is formulated in the following way

(14 Minimize J(t,,'l.
(u.P7) () E iK x H2-':()hr)a satisfying (5.1) together with some (r.p),

with (r,p) C C([0,TI. L2(P.)) r, LI([0. T]. H1(9)) x L2VC,, 0T, IP(,Q)) and
K C I.2(E") nonempty, convex and closed.

We say that (17. r, p) is a strong solution (-f (5. 1) if it is a weak solution
and moreover 9 C LV('0. 71, L 4(1) 3 ). 'lie folklwing result is an immediate
consequence of Theorem 4.1.

"1 !;OREM .5.1. Let ts assamte that (tr:p) is a ,strong sola(iovn of
Systeim (5.!), then 9E Hr'(fI")aC(fV, "TJ, •) ,I ' L2{[0. 2', T,'?)).
MoreerOr

(0.2) Ilui.'*:m-T3 + t.'t.r 'iN '(St + [I7ILt-,u,rlT-,L2,.).

<~ ~ ~ ~~~~J1 r13olv I"~o.:oT. .ra,,' 1V (JU 7),L~:,• IluJlh,: Ij )+ !f0l~n

where • : f[, +:m.-) - (0, +oc) is an increasing functwn depct diM9 ,nnv on
Q, K and v.

1Propobationi 4.1 remains true and an existence tlmeoreii analogoms to 4.2
cars le strted for Problem (P4). We have also the following result about
differentiability of mapping u - #t,
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THEOREM 5.2. If System (5.1) has a strong solution for some element

u of LN(E) and some SO E Y and G. C (NO), then there eisis an open
neighbourhood U of u in L2(4.) such that System (& I): with v instead of
u as Neumann condition, has a strong solution g.. Moreover the mapping
G : U - H 2 4:(QT) 3 fl C([.1, yo). deflncd by G(u) = fJZ4 is of class CO'.
Finally, if F= DG(u) -v, for some u. ElU and some v, E LNS(4), then Z is
the unique strong solution of the problem

- - ,(j + V' 'r),F+tT- •"(bV j V = 0;k, -qn

(5.3) MOT,

div 2:$= 0 in f!lI. •4(0) = 0 en P., 5= 0 on Sr,

((0)=0 f f, 1(=0 on So, 0n(, = 4. on -:T

for some p C- L2([0U.rj.Jl(f•. which is unique up to the addition of a
Junction of L'(0. I).

The proof of this theorem follows. from the implicit function theorem
and regularity H2,1(11)3 for strong sol,,tions: see COsas !4J. Finally, by
using this theorem, it is immediate to derive the following conditions for
optimality

THEOREM 5.3. Let us assume that (u 0,ju) is a solution nf(P4) and
r0 and po are the temperature and the pressure, rcsewrtiely, corrs•ponding
to the velocity jp. Then thert erist two unique elt nmin so C- H 2 (fjr)3f
CUO,T',,Yo) and %ý f; Q(03'1-LP(()) f)L 2(19,TV. H'(0)) and a function

Ir C L 2(0. TJ. H'(i)). unique up to tht, addition of a function of L 2(0. T),
such that the following systft is satisfied

Oro - or,7 + f . .o -1 9r, , = g in S17-,,Oz
Ot

(5.4) #9-K.st. ~ = nfr

divrO = 0 in! 1 , fi(Ohi = fit! P =0 on Er,

rOilui!.r=0onL 0.r O un,=u S'.;
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- -(fo 'p)o + (V 0Tj0+ Vrr

- oruV~o _r 11"X YOIIL'fl)$[V? x (Vra x go)) inOF

_55 OL'u - 1 - VxV` = 3ýo in QT -
19t

diviF'.O in~r 5?,?;(T) =0 in 0, 0 on!ZEr.

6'(7)()=0 in Q. V':=0 on 10, 0" o=u 0  on r'i

(5.6) IJT, ' - Nuo)(u - uo)dffd? >Ž0 Vu E A'.

T11e detailed prrofi; of the theorems of this section will be, given in a
fortheonfin~g paper.
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ON CONTROLLABILITY OF CERTAIN SYSTEMS
SIMULATING A FLUID FLOW

ANDREI V. FURSIKOV* AND OLEG Wl. IAUI(V

Abstract. Approximate contrnllability of the Stokes system is established by a con-
structive method when control is a right-hand-side concentrated in subdomain i.e. ill the
ewse of local tistrilmtedA rontrol. Approximate uncontrollability of the Burger* equation
is shown in the cases of bomunry aneI local distributed controls. A local thecoremn of
exact enntrnllability for the Burgerq equation with bowuldary control is proved. With its
help it i-t Ahnvn that the controlled trajectory going out an arbitrary initial point can
achieve the attractor of the Burgers equation during a lunite time and after that belong$
to attractor. The sets possessing such property we call an absorbing set of reachability.
For the boundary and local dit-tributed controls the description of absorbing pointsi of
reachability for the Buriters equation is given.

Key words. approximate con'trollability. exact controllability, abegOrbuing ;nt -o.
reachability.

ARIS(MOS) Poubject claqsifications. 031305

Introduction. This paper is devoted to the investigation of controlla-
bilit~y of certnii, distributed systems which simulate a fluid flow. In Section
I we study the approximate controllability of tho nonstationary Stokes sys
tern defined in a domain Q1. It. is considered the c&ane when a control is a
density of external forces concentrated in an arbitrary fixed subdomain W
of the domain Ql. We call such kind of control Hts local distributed one.
The approximate controllability of the Stokes system with such control
has been proved by A.N. Fursikov and 0. Yu. [marnuvilov (sev [1*, [21).
Here we discuss a method of construction of the controls concentrated in
w which gcnrratr the solutions of the Stokes system approximating ek given
solenoidal vector field. This method is based onl applicatiotn of an extreinma
problem depending on parameter. The solution of this extrernal problem
determines the control sought for. For analyzing of the constructed conitrol
the boundary value problem is applied which is the optinmality system of
the extremal problem. Note that this method was applied earlier by A's'.
Fursikov in j13, [41 for the investigation of analogous problem.- in th~e nAse
of the Cauchy problem for an elliptic operator of t~he second order.

The rest. of thi; paper is devoted to the investigation of nonlinear mod-
els. First of all the problem of approximate controllability in nonlinear case
arises. In the. papers of C. Fabre. 3.-P. Puel. E. Zuazua j51, 16] approxi-
miate controllability has. been proved in the case of semnilinear heat equation
with a local distrihutxed control as well as with a local Dirichlet bouivdary

* D&partment of Medhanies And NlfomAtl~mai, \lnseow clate Vniversiti;. Lujuin Hills
119899. Moscow, RUSS(A.

t Department of Applied Mathematics, Moscow rorees-technical Tnssitute. 141000
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control. In that papers the masumption that the nonlinear term satisfies
the global Lipschitz condition is essential. The situation changes cardinally
when this condition is broken. Below, in Section 2 (see also A X. Fursikov,
0. Yu. Imanuvilov [2]) an estimate of solution of the Burgers equation has
been obtained which shows that this equation is not approximately con-
trollable with respect to boundary control as well as- with respect to local
distributed control. Similar negative results have been obtained in the case
of semiline-' equations with a power nonlinearity (see A. Bamberger in [7J.
J.1 Diaz [8j). Note that the conjecture on approximate controllabiliky of
the Navier-Stokes system formulated by J.L. Lions (see 19J. :10:) remains
open until now.

In this situation it is natural to look for new formulations of contrcl-
lability problem for nonlinear models. It would be possible to formulate a
problem of investigation of reachable sets i.e. such sets in the phase space
which can be achieved by the controlled trajectory going out an arbitrary
initial point when controls from a given set are applied. But. we think that
it is interesting to study more narrow class of sets. The point is that, usu-
ally, in applications one has to achieve some set of controlled trajtctory and
not only to achieve but to hold it on this set or in its small neighbourhood.
A subset of the phase space will be called an absorbing set of teachability
if it can be achieved by the controlled tn.jiecbory gouig out an arbitrary
initial point and this trajectory can be held on this sWt during the rnst of
time by means of controls from a given class.

Below., in Section 3 we study absorbing points of reachability in the
case of the simple model of the Burgers equation with secrw right hand-side
and the boundary control. The complete description of all absorbing points
of reachability is given. The analogous result hasý been obtained also in the
cas*- of local distributed control.

The situation when a dynamical system has the attractor with a coni-
plicate structure is much more difficult. Sections 4.5 are devoted to the
proof of a fundamental theorem which can he applied in this situation. (It
is applied in Section 3 also). This theorem is as fo-llowns: Let (t: 0r) be a so-
lution of the Burgers equation with a fixed right-hand-side g(r). Then for
an arbitrary initial function yt(z) from a sufficiently small neighbourhood
of #(O..) there exists such boundary control v(t) that the solution 1(f. x)
of the mixed boundary problem for the Burgers eqotaion satisfits relation
y(T,z) =_ 4(r). This method consists in drduction th•- nonlinear problem
to the exact controllability problem for a linear parabolic equation with
variable coefficients by means of the Sehouder fixed point theorem. The
exact. controllability of a linear equation is proved with hellp of some Car
If. man estimate. Similar estimate was applied earlier by O.Yu.Imanuvilov
in I 11,[12', and [13J for the case of semilinear parabo!ic equations with a
stblincar nonlinearity. Note that beside,4 th, proof of existence of a solution
we have to choose the solution dependiug compactly on coefficients of the
linear equation. Such choice of a sh:tion is realized with help of a certain
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extrenial problem. The linear problem of exact controllability is studied in
Section 4. In Section 5 the local theorem of exact controllability is proved.
And, besides. we give some corollaries of this theorem. In particular. it is
shown that the attractor of the dynamical system defined by the Burgers
equation with zero boundary conditions is an absorbing set of reachability
by means of boundary controls. After that we show that. singular points of
the same dynamical system (and, in particular, hyperbolic singular points)
can be made stable if one would apply a boundary control. The last fact
does more clear some points of problem formulated by J.L. Lions: "Are
there connections between turbulence and controllability?"

1. A constructive proof of approximate controllability of the
Stokes system.

1.1. Preliminaries. We con~ider the Stokes system which describes
a viscous unrompressible fluid flow in a bounded domain 0 C Rd:

(1.1) Oty(l,r) - ,y(t,z) -Vtq(t. )=(.,,), divy(t. r) = 0

where z = (x x..., x•) E P, 1 E [0, T, y --- (y, ... Yd) is a velocity vector
field, Vq(t,z) is a premuure i.radient, •9y O= by/Ot. u(l. z) = (at .... uj)
is a density of external forces which will be a control in this section. It is
assumed that u(t,x) is concentrated in a given subd,.hmin of the domain:

(1.2) Vt E [O,T] suppu(t..) C...; C P.

We suppose that the boundary cond .t.o.n

(1.3) Mn 0

and the initial condition

(1.4) Y(t.Xz)I,-t,- 0

hold.
Let 1.11 Y Q, H be Banach spaces and for every v E U the unique solu-

tion (y,,q) E Y x- Q of problem (1.1), (1.3), (1.4) exists. We denote by IVT

the operator of restrictirmn of a function y(. ax) at I = T: -- y = y(T, -) and
suppose that, the operator "1-r : Y - II, is continuous. We remind

DEFiNirIO.X I .1. Prob!n (1.1l/ (1..-', (1.4 r-i call(d H1-app rozimate
controllable with resprct it a ronlrol spact U if for arbitrary .6 E H and any
r > 0 there exists such contrt u C U that for the solation (y, q) of probifin
(1.1), (1.3), (1.4) the ivequalify

lIdpy -- 0t < f
holdi.
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Let us introduce concrete spaces to study the approximate controlla-
bility of the Stokes system. For a domain C C Q we set

V(G) = {t,(z) E (CG(0))' :supp vc G, dirt = 0)

(1.5) H0 ((;) = the closure of V(G) in (L(24)))
(1.6) N'(G) = theclosureofV(G) in(WV(Q))'

(1.7) JI2(G) = (W(S))) f H 1(0)

where 1T(P.) is the Soholev space of fuinction.; .. fnwid on, 5 hav'-ing th
finite norm

(1.8) EI , I JIPu(z2dx

Here a (a (..., ad) is a multiindex. al - a,.. .+ao. Ddu = bOlkft4' W..

"We shall consider the space

V = L2 (0. T, 11(w))

as a space of controls. Then

1 -- {y(f-) E L,(0. T; li•(t)): iM, E 4•(0.7':HII NP))}.
(1.9)

Q =pq1z (.7 i):V 4) )' ))4)

where D(Lo, ] ×x fl) is !*e spare of distribnwinns on [0,077 x P. It is known
(J.L. Lions, E. Magez s [14j) that t-7-Y = H'(f0) C HN.Q) and. hcnrr. for
U,YQ indicated r, ove it is posible to take HR(fl).i = 0, 1 P- a spare H.
We shall consid-gr the case

I,' = N -,.").

In papers by AN. rursikov and O.Yu. Imanuvilov (1]. [2J dte H"(Q)-
approximate controllability of the Stokes system wiah respect to the control
sparc 12(0. T; HO(.;)), has been proved. Below, we will give an independent
constructive proof of lhe same theorem applying the theory of extrenial
problems.

1.2. An extremal problem and its systemn of opthoality. Let
G C Rd be a domnain. We denote by -r; tine orthoprojector of the space
(LA(G))dt onto HC(G) and set -n = r when G = !. Applying the operator
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r to the both sides of (1. 1) and taking into account that u E L 2 (0, T; H'(w))

and y E Y, where Y is space (1.9), we obtain the equation

(1.10) .01(0 .-) - wAy(t. r) = ut,X).

Let us consider the extremal problem

T

( 1.1 1 ) J ,(y ,u ) = 1 2 !:u (r)! Il ( ,.d r " in,

which is defined on the space of couples (y, u) E Y x L 2(0, T; 11C(4)) sat-
isKying equation (1.10), (1.4).

PROPOSITION 1.1. For an arbitrary e > 0 their, cr?4.t thr unique
solution (y,,c,) E Y x L 2(0,t: H 0(w)) of problem (1.11). (1.)f0), (1.4).

This proposition can be proved by means of well known methods. (see,
for example, A.V. Fursikov [4], 115]).. Tv prove thn Wl(Q)-approximate controllibility of the Sthkes system
with respect to L-,(0. T; 111(w)) it is sufficient to show that

(1.12) IIrYe - yI'notn' - 0 as e - 0

We will prove (1.12) by means of the optimality system of problems
(1.11), (1.10), (1.4).

PROPOSITION 1.2. A coupte (y,u) =- (y0, u,) E Y x L?(O,T;110 (w)) is
a sohtion, of problem (1.11), (l.1O), (1.4) ifuand ol~y if it satisfies (1.10),
(1.-4) and there crlsfs such p E Y thqt

(1.13) -Op(t.X)- 0= , PI: n = 0

(1.14) p(T,.) = T
(1.15) Cn,(t: .) = p,.

uv.*Fre the operator -.. is a superposition of tree rperotorr: the restriction
operator 1. onto w, the operator r, and the operator L, of extending of
functions by zero outside w:

Proof. We apply the Lagrange principlc for smooth problems (see V.M.
Afckseev. V.M. Tikhoniirov, S.V. Fomin [16', A.V. Mirsikov f4]): Let Z, W
be Banach spaces and be a solution of the extremal problem

(1.17) Yq(z) - inf, G: = 0
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where g: Z - R is a continuonsly differentiable strictly convex functional.
G: Z ---* W is a linear c:ntinuous operator such that linG = IW. Then
there exists such linear continuous functional w* on IV that the Lagrange
function L(z, 9*) = g(:) + (1G. w')w satisfie" the equality

(L(.zi, w-u), h)z = (#j(),h)z 4- (Chw =0 YAE Z

where (., -)v is duality bhtween a Banach space V and its conjugated V*.
Besides, if : E Z satisfies (1118). (1.172) then ± is the solution of problem
(1.17).

We take: = (yu), G: = a -- TAy - U. g(:) = J1(yu) (see (1.11)).
W = L2(0,7: , {(fh)), Z = I' x L2 (0. T; 11'(w)) where , = {y(t.-) E Y;
y(O, .1 = 0). Then the condition Zrog = W follows from the theorem of
the unique solvability of the boundary value problem for the Stokev system
(see O.AK Ladyzhenskaya [17J, R. "Ienam [18)). The Lagrange function is
M followl:

L(y, ut.p) = JY(y, u) + (Oty-- rAy - u,p)

and (1.18) can be written &s two equations:

(1.19) (•rv - e:.vrh)n•(•cz + (O - ....... n....1 V ^cV
I

(1.20) tJ(ti(t. a;(t))jgcy•,;dt -- (t',p1L.• TN(Sit =)"

Vt C 1.2(0,7: ll(%4).

Equalities (1.13). (1.14) and the inclusion p ;3 Y are derived from (1.19) as
in A.V. Fursikov [.1]. Equation (1.20) together with the equality

(vp) gr;....q) = (M.P)Lj(Uj.T;HOt It.& Vt: E L2(l'T:l 110(;))

imply (1.15). 0
Substituting (1.15) into (1.10) and taking into account (1A) we obtain

the equalities

(1.21) d1 t yf.z) - rAy -(ilpfl,zX). yY.=n 0

Let us solve problem (1.13), (1.14), (1.21). A- in MI. Vichk. AN.
Fursikov 119) we deduce from (1.13), (1.14) that

(1.22j) P ): I t ,A -)(,-0 rT 4).
and from (1.21) that

I .d

(1.23) YO) = I
0
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Substituting (1.22) into (1.23) and taking t = T we obtain equality

T

(1.24) T(T..) =

Denote

T
(1.25) H: =/ ,frA( -T w(~ '( -v ) l

Then it is possille to rewrite (1.24) in the form

(1.26) (1 +- 1-R),(T:..) = •-Ry

To solve (1.26) we must study R.

1.3. Properties of the operator R.

LEMMA 1.1. Operotor

(1.27) R: H:(P.) - HD(Q)

defined by (1.25) is a compact stlf-adjoinf and nonnegatiie one.

Proof. The self-adjoint nem and negative definitin-bs of 7A imply the
self-adjointness in HR(Q) of the operator e ,:-'ý. Therefore. taking (1.16)
into account we obtain the equalities

(R (R ,-2),I.,(t) = n( " m , . . ": '. ), :I) id , > r

aM

00

2*

8

Inequality

j

(1.29) (R:, :)H o:f. = Jl#e . 1I-IV- t d ., 0-
-0( )" -
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can be proved as in (1.28). It was shown in MI. Vishik. AX. Fursikov [19,
p. 27] that the mapping: - e e"-- -'z acts continuously from HO(D) into
L2{0. T; He(t)). therefore the operator : - r-(e'4 ( T -z) is continuous
from H0 (S) into L2(0: T; 11(fl)) and, hence, again by means of M.I. Vishik.
AN. Fursikov [19, p. 27) operator (1.25) acts continuously from H'(fl) into
HJ(•). Since the embedding H'(O) C 10(f)) is compact then operator
(1.27) is compact also.

T'ie following property of operator R will be essential in a future.

LEMMA 1.2. The equahly KerR = 0 hold.q.

Proof. I Suppose that for a certain zo E Hp19) the equality R = !
holds. By (1.29) we havc:

(1.30) (Ik•, :o)nnrnj = J lr•.jp(r, .)L)ll~;tJ..dr -

where

(1.31)

Let C he a bounded domain with a boundary 0G of chlss r.(7 We note
that for an arbitrary vector field w C (L 2(G))4 the Weyl decomposition

(1.32) u, = Taw + VTi

holds where 1rGw E HJi(G),; E 117(G). Applying to the both parts of
(1.32) the operator div we obtain that 9 is a solution of the Neumanm
problem

(1.33) A;=divuw, 0./f•no (uun)Iaa

where n is the tector field of external normals to 0G. Let Q be the operator
which transforms a right-hand-sidŽ div u, and a bounday value (w, u)!&a
to the solution p of problem (1.33) which satisfies the condition f pdr = 0:

(1.34) Q(div w, (w. n)Iuc) =

Relations (1.32), (1.34) involve the formula defining -ru:

(1.35) r.ow = it: - Q(div w, !'. n)fl)i)

The function pt, r) is a oluTion of the followi.ig Stokes problem with the
inverse time:

(1.36) - Oy(f•, z) - irApilr) = 0, ~Pan =. pht=r =%

Actu.-ly. lemma ha* been p-omed in A.N. Fimiku'v and 0. Yu. lnemntvi!nv pa-
pers [1), [21 WPe give the proof here only Aor the tomp•Ietrn"-. of an harount.
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In virtue of the theorem of the smoothness of solutions of this problem
(see O.A. Ladyzhernskaya [171) we have, that p(t. x) E C(((0, T) x Q) n
L2 (0, T: BP(1)). By (1.30) the equality

p(t.:r)1 = V, , q C Wf"1);

holds for an arbitrary I C (0. T). It fohiows from thij rclafi,ni arid (" .35)
that

(1.37) p(t, .)f. = VQ(div p, (p, i) , = 7Q(0. (p, n)A.)

because div p = 0. Subtituting (1.35) with G = Q and t: = Ap into (I 3t;I
we obtain that ,(l .x) satisfins the equation

(I.3-S) - Orp(t,r) - Ap+ VQ(0, (Ap, n)0an) = 0

We denote u, = Ap. Applying the operator A to the both parts of (1.3&)
we obtain that

(1.3) u O ,x) -- Au(t,x) = 0. t E (0.T),-J. e

Applying tht, opt'rator A to the both parts of (1.37) we obtain the equality

(I,0 itX.) 0 tE (O, T), x E w

The function u-,0, x) it a sulation of inverse heat equation (1.39) and hene
it is analytic with respect to r. Therefcre by (1.-0) %e have the equlality
u,(t.z) = 0. t E (9,T), x E f which implies together with (1.302), the
relations

Ap(t,z) = 0, P&u = 0

and, 1pence, the relation p(t. j) = 0, t C (0. 7"). x C Q holds. Thus. isilng
(1.36:.' we obtain that z0 - 0. 0

1.4. Proof of thp main results. lemnmas 1.1, 1.2 and the Gilbert.-
Schmidt theorein involv,- that the operator R has a deamarierablc- system
of eigenfunctioiis jr } with vig-nvalues A, - A. - . A. -- 0 as j x.
Moreover, {f'j } forms an orthonormal basis in H' (lQ) and for an arbitrary
2 r H"(f0) we havr.:

(1.41) ifz = zS then Rz = ,z)e 2

It follows from (1.26), (1.41) týat if p -- ý. e; then

(1.•421) # -. tT )--

+i
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THEOREM 1.I. For an arbitrary c > 0 problem (1.13). (1.14), (1.21)

has the unique solution (pi(t),y1 (t)) and

(1.43) pr(t) = eV 4 C?,)s(rI + R)-4.

twhere R is operator (1.25) and y,(t) is determirgWd by 1.23% Beudes
relation (1.72/ holds.

Proof Equality (1.43) follows from (1.22), (1.42). Relations (1.43).
(1.23) involve the existence and uniqueness of a solution of problem (1.13).
(1.14), (1.21). Let us prove (1.12). It is evident that

(1-44) < +
(r+z + 0

+ 2 lvi12

For any 6 > 0 there exists such A' that the second terin in the right-hand-
side of inequality i1.41) is less than t. For this N and for sufficiently small
r the first term will be less than A also 0

Tnrmotst 1.2. Problem (1.1). (1. 4) (1.4) s IV(Q)-approzimate
controllable with rspclct to the control space L2(0. T; HI (w)). Besides, if
(y,(t, .).u,(t.-)) is the solution of problhm (1.1), (1.3%) (1.4) with control

(1.45) u()=t+R ')

then y stsis11)

Theorem 1.2 follows from theorem 1. 1 immediati-ly.

REMARK 1.1. In A. V Furttkot., 0. Vuu.Imonu? do, I2] appronamofe
controllabitly af th•+ Stokes p*ytrm has been proved tn covnsruetulrly terth
respect to tAh fo lloi'Mg rla.CISs of controls fe ridf.4 the cas4e V a• considered
alovte. 1. DA ritirt of eemr4a! forces haring fhe form 6(t - to)tl(r) tcere
Aft - to) is the Diracnmeasure and supp i: C w C fl 2. Densities of external
forces concentrated on hyperiurface S C Ch. J. Initial value concentrated
in a subdomain w C 7. 4. Dirichtet boundary values concenrrated in
subdomains of the boundary 00. The methods of this sarion can be applied
to all cases mentioned above.

2. On approximate uncontrollability of the. Burgers equation.
In this section we show that the Burgers equation is not approximately
controllable on nn arbitrary finite time interval.
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2.1. The main estimate. Let us consider the Burgers equation

(2.1) O~y(Lx) - •y,,) + yay = t(t, :), E (oa),t • (o T),

where a > 0, T > 0 are arbitrary fixed numbers. We suppo•n that a
solution y(t,z) satisfies zero boundary and initial conditions

(2,2) y(t.O)= Y(t'a) = O, (O.X) =O.

Atsuine that tW(1,x) C L,([O,T) x [0,a]) and for any t E (0.T) the
inclusion

(2.3) supp (tt:r) C (b.e), 0 < b < c < a.

holds.
It is wellknown that for an arbitrary u E Lu([0, T] x [0, a]) there exists

the unique solution y(t, x) E L2 (0. T; IVY(0, a)) of problem (2.1). (2.2). It i';
possible to see, expressing by/01 from (2.1) that by(l, xr)/0 E L2 ((0. T) x
(0, a)). We deduce one estimate for a solution y(l, x) of probleri (2.1). (2.2)
which simply involves the uncontrollability of this problem.

LEMMA 2.1. Let ,t E L2([0,T] x [0, a]) satisfy condition (,.3), and
y(t,r) be a solution of problem (e.1), (P.2). Drot.e y.+(t, 4) = max(y(t. X), 0).
Then for arbitrairy N > 5 the estimate

(2.4) 1 J(b- zX)Y!4(t.)dr < ,

holds where b is the consfant from (;'.,Y) and e,(N) > 0 is. a constant,
depending on N only.

Proof. We multiply both Aides of (2.1) by (h-x•)^'y+(t. z) and integrate
them with respect to xc from 0 upto 6. Integrating by parts in the spcond
term of the left-hand-side of the obtained identity wc shall have

(- ry,(rly,,y4.dx + J(b - £)'3y+'(O-y+)(0Ort)d1r -

o 0

(2.5)

- J V(b - z)N-14a Oydx + J(b - x) 'i4y4+0.dx. = 0.

0 0

It follows from the theorem on smoothness of solution of Burgers equation
that y(t z) C C0((0,t) x (0, a)). Denote y- = min(y. 0). '[hen

ty+ = Y+(t Y+ + Ofy) = .4' O,+= V 10' A
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The following identities are proved similarly:

(O yV 6av+ = I v

Uising thisr equjalities and integrating by parts, in the last. two terms of
equation (2.5) we obtain

0 0

(2,6)

_(.t 1~ -r) 2Y4d '.J!(b - .r/"1,+d, 0.
0 0

By the libider inequality

zV 2 d 7r S I ~ Q - ,r)N -dr) (f - 1Y4. =-y'

0'

Usaing the Young inequality we shlotl have

(2.8) 'Vf106 z)11-'4d+-Ir -
0

((N - zpis rt'4dx) 4/; n(Nlbs-t

where a(N) is a positive cnnstant, depending on N > 5 only. Substituting
(2.7}, (2.8q) into 12.6) we obtain (2.4). 0

2Z2. The results on approxin-tate uncontrollatbillity.

THmoREM 2.1. LetYT> 0 be an arbitrar~yflaik ntembrr. Then problem
(2.1% (21?) is not L2(0. a)-aipprorimaitety ontirollable- 10th respcect o set of
controls u t: L2((0. T) x (0, a)) satisfying ('2. ,
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Proof. Let 9(z) C L2(0,a), (x) > 0, y be a solution of problem (2.1),
(2.2) and T > 0. Then

(! ij(r) - y(T, z) > (J ,.z) - y+(T,z) 2dx >_
"0

(2.9)

Ž! IIILw &,/• - Ily-T, ".!L.o,412)

By the Cauchy-Bunyakovskii inequality we, have:

11Y+(Tv, ")1lL,!,b/o,:5
p$/2 IgI h/

"(2.10) (Jb N_ z)10 V.b (T ( )T. dr) <(•Io)~ ~ ~~~1 (/1,2•#)''P-o'-

"-< )- I /(7- r)Nly+(Tx)J'dx)

In virtue of (2.4) for any T > 0 inequality

(2.11) (b ,- 1)- (Tz)14dr < T,(N)b,--

holds. Let T > 0 be fixed and ,."(X) E 1,(0.,a) satisfies condition

(2.12) IIY!,.(0,/2 > (i-- 1) + 1.

Then it. follows from (2.9)-(2.12) that for any control ui E L.((0 T) x (I, a))
satisfying (2.3) the solution y of problem (2.1), (2.2) satisfies inequality

Ilia- .y(T',.l ro > I.-

This inequality ascertains the approximate uncontrollability of problem
(2.1)j (2.2). C

Now we consider the Burgers equation with bbundary control u:

(2.13) 69,(t, ')-O +.y+y8, y=0,ze(0.a),I S(0,T)
(2.14) y(l,0) = G.y(ta) = u(t),y't=o = 0. u C- L 2(0. T).

THEoREM 2.2. Problem (2.13), (2.14) is not L2(0,a)-approximately
controllabl. with respect to tht control space L 2(0. T) for arbitrary T > 0.
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Proof. Estimate (2.4) holds for a solution y of problem (2.13), (2.14)
and its proof does not differ from the proof of Lemma 2.1. We obtain the
assertion of theorem by means of this estimate after repeating the proof of

Theorem 2. .0
REMARK 2.1. Actaltly, estimate (f2.4) is based on the following prop-

arty of solutions of tIh Hopf equation (i.e. the Burgers equation without the
Itrm O81y4: a positive wave moves to the right and a negative one motes
to the left. Therefore it seems real to gfneralize estimate (2.4) on Ih case
of th/ equation

(2.15) St + 49.(v) - = 0

with some f(y). It is intersting to ronmdr Ihe race when (.i) is a
system of equations a4s vell as other one-dimensional parabuhe qusdilinear
systems of equatiou. It is possa'irc ht y an It study many-dimensional case

from the .wny.diuznnod Burver, equation

(2.16) z?,, + •rr = A,, rot , = 0. v 1 : = -Vdt)
j=1

?herer t(t,z) " (trj. r2, v3) s uinknoun r..tor-fcid and- ;4X) i.. s-.. " . ..-.f
ftgncion.

3. Absorbing points of reachability for the Burgers equation.
In previous section the approximate uncontrollability of the Burgers equa-
tiot taes been proved. The analogous situation takes place for a number
semilinear equations (see [7], 181). Therefore it seems to be expedient to
consider s•ctne new fortiialations of the controllability problem for nonlinear
partial differential equations with nonlinearities of a power growth.

3.1. Absorbing points of reachability in the case of the bound-
ary control. We consider the Burgers equation

(3.1) DyV~t,4-BO5 y(tx)+&yv•t,z) =0. z" E O,4]t > 0

with a boundary control

(3.2) y(t 0) utij). tit. a) -"(t)

and with an initial condition

(3-3) y(tzf)!t = (,= )

where yf.r) E L2(0,a) P• a given fulctio.'.

DEFINHION 3.1. A function ý.r() E L2(O,) is called an absorbing
point of reachability for the Burgers cqgatwn with a boundary control ijfor
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an arbitrary iniuialfunrlion ya(X) E L2 (0, 0) there crist T = T(y,.) > 0 and
such controls u,(i) E Lýo"(R+) j = 0, 1. that the solution y(f, z) of problem
(3.1)-(3.3) with the indicatcd data satisfies condition

Ilut.") YIL:o.J 0V'> T(Yfi).

We will need also the other notion which looks more ,1,ck f.m )th forma!
point of view.

DDEFNrIION 3.2. A function ý(z) E L?(O,a) is calhd approimatk.ly
absorbing point of reachabiliy for the Burgers equation with a boundary
control if for arbitrary initial function y.,(z) E L2(0,a) there erist such
controls u,(t) E L£.,(R+). j 0 1.. that the solution of problhm (3. 1)--
(3.3. sattsfir.; conditions

(3.4) IIY(t ,') - •IlLo - 0 as t - 00
I?

(3.5) VjP C- C(0, a) / ¢9y(t. z) ;ix)dx --- 0 a.; I --- oc..

C

Firstly. we describe the set of all approximately absorbing points of
reachability of the Burgers equation with a boundary control.

Suppose. that ,(z) E L2 (0,U) is an approximately absorbing point
of reachability, y(t,z) is the solutiun of the Burgers equation satisfying
conditions (3.4) and (3.5) and

(3.6) u,(,) = ,(t, z) - X).

Let ue substitoe u,(t,x) 4 &(z) into (3.1) and scale in L2(0.a) the
obtaining equality (n i E-•(0. a). Then we obtain the identitya a
(3.7) -](0; + 0, 2-(z));(z)/Id, = j u ,+ , -".

0 0

+(2ý'w + tw)O: ) or

It is easy to pass to limit in the right-hand-eide of equality (3.7) with an
arbitrary function E CGG(O, a) ifwe will use (3.4), (3.5), (3.6). As a result
we obtain relation

(3.8) - O;.,.(z) + 8&.(0 ) = 0.

Thus, we have proved

.EMNIA 3.1. If.&(x) is an approximately stable point of reachabilit•y for
the Burgers equation with a boundary control thrn t(z) satisfies equation
(..8).
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We set

(3.) $0) = ,,b(a)

and show that an arbitrary solution of problem (3.8). (3.9) with finite a(,
a2 is the approximately absorbing point of reachability. For this we. firstly,
solve problem (3.8). (3.9).

LMMA 3.2. For arbitrary finife a* _ &2 there crisis the unique solu-
twan $() of probl ti ('3,8, (5.9. Moreover

J if a, - *: > aoto then ý(r) :1Ft 9(v•(: + d))
(3.10) ifa2 - a, = aona2 then $(z) = - l/(x + d)

ifo02 - a0 < aan1o then (.r) --- -eth(V/(r + d)).

For*, oŽ _2 problem (8.8, (3.9) has the solution

(3.11) *(z) 0 a, ifa0=a.n

(3.12) 4(r) = -AvI h,((z + d)), if a: > a 2

and the constants c. d in (3.10)-(J.12) are determined uniquely by 0;,a2.

Proof. Integrating (3.8) one timeý we obtain

(3.13) 0,4 = y't + e.

If c > 0 then integrating (3.13) we obtain the equality

1 ,4
(3.14) - arctg =y + d

which implies (310). We show that the constants c > 0,d in this equality
is determined uniquely by ni, a02 . It follows from (3.14), (3.9) that

aVr- arctg Z3. - arctg

Applying to the both parts of this equality the operation tg we obtain
that

t9 (aV-C) = e02- UA)Ic + 010A)

Solving this equation b1 the method of grapbics We obtaiN that itf 0, 02
satisfy conditiom (3.101) then the unique positive solution c of this equation
exists.

If r = 0 then we obtain (3.102) after integrating (3.13). Equation (3.13)
with c < 0 implies the equality

(Y3.1I ,=



ADA294785

ON CONTROLLABILITY OF CERTAIN SYSTEMS SIMULATING 165

where el = -c. It follows from (3.15), (3.9) that

2"= C(2 - ')(' +7)
(a2 + 0(a,, -")

where -f = I,-t. Solving this equation by method of graphics, it is easy
to show that this equation has the unique positive solution if o1, 02 sat-
isfy condition (3.12), (3 .103). The case (3.11) ii evident. Thus, we have
obtained the complttc sibstantiation of (3.10)-(3.12). 0

TnEOREM 3.1. Let a., a2 E R satisfy condition 02 2: aj and 3l(z) is
a solution of probhm (v.8), (3.9,. Then V(.r) is appro"imately absorbing
point of reachability which can be approached by solution ,(t,z) of problem
(3.1)- (3.3) trith control uc;(t) - al, ul(t) =- a2 . Morrorert l U , ( t : j 2 ' < e - 1'y

')i .:old) •" 'lo ylL •.•
(3.16)

J O-'(t ,)lo t < ;iao - )

where t" is function ('3.6) A > 0.

Proof Let (t. z) be the solution of(3.1)-(3.3) with vL,(t) al, uj(t) =
a. and u: be function (3.6). In virtue of (3.1)-(3.3), (3.8), u;(l,) is a
solution of the problem

(3.17) Otu ,- ;w + 20,(,,;ý) + a:. U,2= 0

(3.18) w,(t,o) = u'(,.a) = 0. w,(0,z) = yo(x) - •(z)

Scaling in L2(O, a) both part.; of (3.17) on w(t.x) and taking into account

(3.18) we obtain after simple transformations, that

(3.19) !al'w(f, .)112 + lIO8,'(t: .)ji, + J(0ýj)r,2(t, z)d• = 0.2 L.

Let A• be the minimal eigen-value of the spectral problem

O)+ (0Ni(.a))?'(r) = V;~() I(0 .(a

Since by Lemma 3.2 the inequality 0,ý(z) > 0 hold;, then A, > 0. It
follows from (3.19) that

1
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This inequality and (3.19) imply (3.16). Relation (3.5) is deduced easily
from (3.16), (3.17). 1

Let y(t, z) E W\ 2((0.T) x (0,a)) = fy E L2( 5,T; Ii(Oa)) : AY E
L2(Q)} be a solution of equation (3.1) and B,(yr,) = :(z) E W21(0. a)
1Iz - yc'11 < r) be the ball of radius r with the center Ya E W(01 a).

THEOREM 3.2. For suffciently small r and for an arbitrary 4r) E
Br.(j(0t, r)) there ezists the soluhon z(tz) E 1V'2((O0, T) x (0, a)) of equa-
(ton (3.1) which satisfies conditions

4(0,r,) = :o(r), 4(T, r) = 4(7'.)

We denote :(t, l)-c = uji). 4(. z%-4 = u(t). By means of The-
orem 3.2 boundary controls uit), u;(t) transform the solution z(t,z) of
(3.1). (3.2), (3.3) with y; = zL to the given solution ý at moment T :
:(T, z) = y(T' z). The proof of one more general amsertion than Theorem
3.2 will be given below at subsection 5.1 of Sectiion 5 (See Theorem 5.1).

TusKohEMi 3.3. Lfet a,. 02 E C-R satisfv condition a... > al, and &1fr)
be a solution of problem (3.1), £3.9). Then 4(z) is an ab.sorbing point of
rearchoility for the Burgers tquation with a boundary contro.

Proof Let $(t.r) be the solution of problem (3.1) (3.3) with uo(t) =
o*, uj-t) = a2. We apply Theorem 3.1. By virtue of (3,10) for r as small
as we want there exists such t- that

fliwlt:- zM1w,ý:.:r) = fiy0to r) - Y(Th1w;,:O,,) < r

Now we apply Theorem 3.2 with 4(t: z) = r(r). zr(:) -to.r). In virtue
of this theorem by means of correct choice of boundary controls it is possible
to do that the corresponding solution z(t4 z) will coincide with &I() when
t = T. 0

The solution 4(r) of (3.8)1 (3.9) is an absorbing point of reachability in
the ca.se when &I > a2. This assertion will be proved at the ernd of section
0.

3.2. Absorbing points of reachability in the case of local dis-
tributepd control. We consider the Burgers equation with distributed con-
trol

(3.20) dgtr)-aw r)+ A?=wt r

with periodic boundary conditions

(3.21) y(t. , -- 2,r) = y(t,jr). 0t,z + 2-) = u(t,z)
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and with initial condition (3.3). We assume that the support of control
u(t,x) is concentrated on subinterval

(3.22) supp U(1,.) C U((a, 2:0) + 21rk) Vt > 0.
kfz

Note that by (3.21) we can suppose that equation (3.20) is defined on the
circumference S = {z f (0,2r); the points 0 and 27r are identified).

As in Definition 3.1 a function y E L 2(S) will be called an absorbing
point of reas-hability for problem (3.2U)--(3.22), (3.3) if for an arbitrary
initial function yu0 C L2 (S) there exists such control u(t,z) C Llo-(2+ x S)
satisfying (3.22) that for the solution y(t. x) of problem (3.20)1 (3.21), (3.3)
the relation

(3.23) UI(t, ) - = 0 when I > t,

holds where I - tj (yo ý) is a sufficiently large number.
We show that an arbitrary solution 9(.T) rif equation

(3.2.1) -• r)+ 0V(z) = f(x),
where f(.) E L?(S), supp! E (a.,2,r)

is the stable point of reachability.

TItirmR.M 3.4. Let o(r), x£ ES safirfy cquation (#.2L' Then ts MEli
absorbing point of reaclhabdy.j fr pronl,,m (3.,O)-(.7"22 (3).

Proof. We denote

ai a2= .4(a).

Then j(x) is a solution of problem (3.4), (3.9) on interval (0, a). Therefore
in virtue of Theorem 3.3 y(t,) - ý(x) = 0 if t > I for the solution y(t,z)
of problem (3.1)-(3.3) with the controls utc(t). u:(1) chosen correctly.

Let ;pjx) E-C"' (a 2zr). j = 1.2. and

x. zEr(a, a +

0 x (a (2,r -- a.), -r)

Let w•(, x) be function (3.6) defined for z C (0, a). We extend the function
u(t,. z) from z E (0. a) up to x E ; hy formula

{(t x.z),x E (0. a)
(3.25) wtAvI,) W ()(4, (t, u - ) -- 3w(t,2a -))

+ ýP2(X) (I ( 3,(t, 2r - x I (a, 27r)
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It follows immediately from (3.25) that

W1(t'a+O) = t, a,-0).01w1(t.r)f,=°÷ = D,. (t,Z)1 x.-o

uw,(t,2r) = w,(t0),wx(t,z)I•=, = bi wj(tz)Jno

By means of this formulas and (3.25) it is easy to dedu-ce ftnjat.t

(3.26) fl8widt,-UL2,O) < eU11(t,- KU1L4.J)

(3.27) :Iw(tc.fwafs, C< w(tO.A)flw(oa)

with a constant e which dmes not depend on f. It follows from (3.25) and

from the method of construction of u~t. z) that

(3.28) Wi(t'X)- O when t > t,

We denote

(3129) Y1;(t,:Z) = it1 (f.X :1 ý(r)

and define the function u4t, z) by the equality

(3.30) C7ts y= _ 114ry + O9'Y2

It follows from estimates (3.26), (3.27) that u(t. z) E L•"'(R+ x S). Besides,
equalities (3.29), (3.25) imply that yj(I.z) =_ y(t.r) for z E (O,a) and
therefore by (3.30) the inclusion supp t4(1, z) C If x [a, 2r] holds. Note
that it follows from (3.28), (3.29) that yj(t,z) u 4(x), u~t,z) s f(x) when
t > bt. Thus, the control v((. r) defined in (3.30) transforms the initial
function p,(z) by trajectory ys(t,z) to &(r) during a finite time. 0

REMARK 3.1. Apparently, some gcneralizations of the secltont s 3 the-
ory can be done on the case of semihnear one-dimenstonal paraboltc equa-
lions as well as on the case of equations (I2.ItJ. It is possible to try to con-
struct the threorV of section 5 e the ease of the mang-dirmensional Buryers
equation '2.J5% taking into account that this equation can he rt duct d to the
heal-equation as in one-dntenstonal case.

4. Exact controllability of a linear parabolic equation. To prove
the local theorem of exact controllability for the Burgers cquation we es-
tablish in this section one theorem on exact controllability of parabolic
equations with variable coefficients in the Sobolev space H'I '(Q). Note
that analogous results on the exact controllability of linear parabolic equa-
tion-i in the Robolev space WI- L(Q) was obtained by 0. Yu. lmanuvilov
([11)- 113)). Here we use such important tools of these works as Carletnan
estimates.
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4.1. Fbormulation of the problem. Reduction to the homoge-
neous boundary conditions. In the domain Q = (0,T) x 12. where
Q = (-2, 2) we consider the linearized Burgers equation

(4,1) Ly8gy(f:i)- i,(t, r) + Oz(:(ix)y(t, ))O, (t,z)EQ

where :(f,z) C 1,W*ý2 (Q) is a datum and y(f,x) E WIr2(Q) is an unknown
function. It is ,ssumed that y(t,x) satisfies conditions:

(4.•2) W(tr)01= = YO(x)
(4.3) y(t,.)I,= = 0.

where &t(x) C WIV(S) is a datum.
We use thr- following functional spaces: the Sobolev space IVk(f?) of

functions defined in P1 and possessing finite norm (1.8), the space (W•'(1),
that is the closure of Cu(.i) in norma (L.s) and, at last, the space

t.'.++= {y('t,, ;.0or:rq ( )•
: 2"Di y(t, x) E L 12(0, T: - +(k7)), =,

ST

S=+: 2 l a, Y(1 ,: -,:,' 't

The problew of exact controllability of equation (4.1) is m' follows: onae

mnst find such boundary controls t, (t) E L2(0, T). j = 0, 1, i.e.

(4.4) y(f, x-=-. = t,_(),£J~z -2

that the ,olitioi of mixed boundary problen (4.1), (4.2), (4.4) would sat-
isfy condition (4.3'.

We rcduco' the problem of exact, controllabilit.y to a similar one having
initial function Vtjx) from (4.2) which equals zero. Let k(t,,x) hr" thr
solution of problvm (4.1), (4.2), (4.4) with the boundary conditions tv'(t)
0. The solution v(/. J-) belrngs to, IW3 2(Q).

Let 1(t) E C""(0: T). A(t) ý= 1 when f E (0. ), ,;(1) 0_- 0wlaentE(.i/,7'). D)enote

(4.5) y(t.,,) = x(I,,)A(). -I, =

It is evident. that ioequalicies

(4.6) ili !L.¢,_ ' l,,.,'L'Q" < "+l'.l'.,n

hold where the constants c1 , c, depend continuously on
We set

(4.7) Y(1, X) = '(t,,.-' (.,)
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where 4(t, z) is function (4.5). It is easy to show that the following assertion
holds.

PROPOSITION 4.1. A function y(fr) E L,(Q) is a solution of cract
controllability poblem (4.Ip- (4. 1) if and only if fe furnction t,(t, z) defined
in 14. 7) sathfies qunalitics

(4.8) Lw = Jo,
(4.5) tw(t,01 0= = 0, w(t.xfl, =r=

Uhere f. is Mhe function defin;ed in (4?.

4.2. Boundary value problem. Thus. our prubldu has beeui r,-
duced t. construrtinn of a finction unt. r) e L2(Q) satisfying (It. (4 9).
We consider the following extremal problem: To minimize the functional

(4.10) J(w) = X f u',2 t, z)dxdt - inf

on the set of functicn- tatit fying (4.8). (4.9)

LEMMA 4.1. If a(t,r) C t2 (Q) is a solution of probleni (4.10). 1.8,
(4.9) thin thete tris the fupnction p(t.r) satisfying the rclattrns

(4.11) Vp = &p(t,z) -f ',.p(t. x) + .(t. r)1Jp(t,z) = u(tz), (1. x) F Q
(41.12) i0(t,x)jk2i• = , .p(Lt,)j,=_ 2 = 0,

The proof of this lemma ran be realited, for insta•ce, as in 0. Yu.
Imanuvilov 120] in spite of it's complicAtion. But we do not need to have
this proof, as well is a proof of the exist•nce theorem for extremal problem
(4.8)-(4.10). The point is that to prove the solvability of problem (4.8),
(4.9) it is sufficient to prove the solvability of problem (4.A). (4.9)., (4.11),
(4.12). Prol.lem (1.8)- (1. 10) and Lemma 4.1 are useful only to under-1 and
how boundary value problem (4-8), (4.9) (4 11). (4.12) was obtain•ed.

To exclude from (4.8). (4.9), (-.11). (4.12) unknown function wrf, a')
we apply to both parts of (4.11) the operator L. By weans of (4.6) we
obtain equal ion

(4.13) LL'pfo = (,-) F Q

Besides boundary conditions (4.121, equation (4..13) satisfies the boundary
conditious

(4.14) L'JpjIt- = 0, LVp -=r = 0

'fieshi ronditions arise from (4.9). (4.11).
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4.3. An otprinri estimate of Carkinan type,.

THEOREM 41.1. Lcip(t..z) %alisfife rdabons ,4U (4.1,;,' where- te(t. a-) E
L2(Q). Then fu'r an arbitraryi -r E (0.,T) and lfen~ arge k Ar esfi-

(4 15J( dxdxd+

holds tibere the cv1.qz'n? dfpend5 (vnfmvl'tuy(1q j:'i Qt

,4. 1G) :,(I. : 4i((T V U

ror an arbitrary s~ > 0 v de~lav Oxc qp-z:.tl f.

'11,1 ýL*' ' '

where L* is f:.pwraifr (I. o i ) 1Y .Iratcr Ml canlov %%!' ri n nI tly f-;r!

'4iitrCd;-e also tljrp cpfra*:')Ns

(4.17) =f q +

(i1 U P. u. = e .=-d~-~~~-

It is ca.-) to .rr, thu i ynr 11~ 4 1 ic...

whaere MI. M., . itIar- l.-fiiad in. 1A.171. f~l. i~. It l'o~ows from ( 1ITO

We trinsfr-,,- ths, !cst ter:a in t hl' right iiat~j-~i'it or (12I)1 :iktin, cint,

account th-at by (.1. 12;. (1 IC 2. 7.1 IS) t~r:oc

(4.21) 0i, I eb,~-
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bold we obtain

(4122) 2 (d;2u + t2 (O~w) 2t. 31ti+ 2s(t9;ý)&m) =

r 2J[..jcvt'u9+ S2 .0'(t9)2otI+

+S(IorW)PxorýU)2 + sN ihpro3 07 r1 drdt=

1,J1 2;)f ti.,p)2 u2drdt +

q+

it fo-llows froni (1,.IS) that

(4M2) ;If f <~il-q LJWI~)UIW.~QI 1
71LQ +

+ HzI1,p1aý .CQ!

Substituting (1.22), (4.23, into (4.210) we obtain that

(4.24) 2 ii )k 2 0) ~~xlrt+

cll(!wi11L2.Q) + jII & 2JV ~ l t P ,* :,f ;u 2 ,

¶fakim~itwo account tha, by (4,16" 4X> C>.> >C n

ire nhv -iil tha 3Ut fuhzt 1.2; s wq:a1t

(4 2q) / 4~PU(OwY 4~a4d +

hrrrr1 i aj ct.nstat3:j'11) alnubdrrvbl cIntinimously on if
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Note that the following relations hold

(4.26) ! J !-9,11I2 drdt= V -3fU-2(~y~f.d

Q

(4.27); J -123.u~dd ) Jxd <L~~ 2 (~vdd

:5 C4 1.J1;!U12 + $0(O2ý)jujI, 2)dIxdt
Q

It follows from (4.25)-(4.27) that

(4.28) J ( tdcUP2 + ,a;'.U12 iq)ý 4iLV11u" 2 +

QýQ'

it is P;Ltilv dtedurcd fromi (4.2S) th~t fcr, an atrary E~.T

(4.29) 1( , ~ u.0 r12 + W,2 Ui r) u? (1, X) da

Returning ini (.1.28), (4.29) from, the vuriabi(es u. t, o th(% variabif-
p, u, we obtpin, the ineyip~lnt%

(4.30) + (&e,.p)2%

< .I- " sdd + , J d dt.

Since P s3 2The, iuverý p~rakvlic- equa.iiuni (4.11) anId b1-ujjarý cviidqitkný
j4.12) then for an .rilrar-Y t E tO. 11 the f(1,ltwiijg e~4iII,;Ee bolds:

(4.311 lip < c OII(. .!?ýf)+
IV. L .
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JIequality (4.15) follows from (4,30), (4411). 0

4.4. Unique solvability of the boundary problem. We define the
functional space 4 of functions defined on cylinder Q for which the norm

(4.2) IIPII " = ULP1I 2L QI + F--C ((afp)2 + (Opp)2+
Q

+(&p.)2 + p2) dzdt

is finite and houndary conditions (4.12) hold.

DsriNrrboN 4.1. A functwn p E D is called generab:ed solution of
problem (4. 13), (1.14) if it satisfies thr equation

(4.33) (Lp. Vgktgq = -(foghlcQ Vg E$

THEOREM 4.2. Three exists unique gentralizrd solution p E 4 of
probhm (4.13 -. For an orbitrary subdomaun 6 C Q the funclion p
btlongs to I '4 (9) and s2ttifics eqnanfon (4.13)1 as well as boundary eondt-
lions (4.14) which are understood as egolbifs in thf spact 1VJl 1(Q).

Proof By virtue of (4.5) supp E (1 4J n and, hence. applying
Theorem 4.1 we obtain the inequality

(434) I(f`,,.)L•:it • fr f j gdrdt) <

This estimate sxowý that the functional y - A(,g)L,,Q) is a contintous
one on 4. It follows from Theorem 1.1 that the norm g-nerated by die
scalar product (ULp, L'q)LifQ is equivalent to tie norm ji t. Therdbore
the existence of the anique function p E t satisf) ing (4.33) follows from
the Riesz theorem on thv r-presentation of a functional oe a Ililbert space.

Equality (4.33) with y E Q.I•(Qi implies equation (4,13) understood
in the rense of distributions theory. Since the pperator T V" is hypoelliptic
(see L. l6rmander [21]) then p C U'2 4(to where 0 C Q i! -n ai.itrary
subdomain of Q. Using the denotion u- Vp we obtain by (4.32) that
uw E L-(Q) and by (4.13) that

(4.35) Ltu = foa e 12(Q)

where L is operator (.1). Since u. C 1'2(Q) then (I" a, ( ! ,LiO. T. W11 2(1.}
and expres~irmc) bu from (4 3$) we obt-,uin •ha: i~u &: L4W. T. I.fk, .
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Therefore, using the theorem on restrictions (J.-L. Lions, E. Magenes [14])
it is easy to show that the restrictions w(O, ")i w(T..) of u; is defined in the
space W,'*-(f?). Integrating by parts in (4.33) with g C C:i(Q) satisfying
(4.12) we dcduce that w(T,.) = w(0, .) = 0. This proves (4.14). 0

4.5. Compact dependness on coefficient.

LUMNmA 4.2. Lei p,, be the solution of pr bliem (4.1.3), (4.14,) with
coefficient- = :- (see (4.1), (4.11)) and un = L'p,. Suppose that z, - :o
weakly in 1.'

2 (Q) as n - x. Then

(4.36) u.. - wo strongly in Lý(Q) as n - x.

Proof It follows from definition (4.5) of f- that.

(4.37) ID(Zr.) - fo(:o) strongly in L?(Q) ab n - oo

(4.3-) fo(:r,)(, T) 0 when f E (k 3T]

We prove (4.3T). I,rt :,, - Zo weakly in M' 2(Q) and ,, be the

solution of prohblm (4.1), (4.2). (4.4) where t'= 0 and coeffcicnt z :- z
in (4.1). Denote v, =.It - X,.. Then

(4.39) ofV. - OL zt + O(:ov.) = k'((Zn -

. :0 = 0

In virue cif rmpartimss of the enibcdlings W.! '2 Q C 'Q V'()
L 2(0, T: "'(I)) and hc,undedness of I\.,lw1.,•Q. we have that

( -:t.)X,,) :(f(:,.- z.:))Xn-- (n - :z t "0 in L,(Q)

as zr - ZC, weakly in 4'-(Q).

'JTherefore. takiJn; juto account a well kn,,-A: ,rtinte for s1',uti,.nq of

prohleim (4.39) wP o!',t.atif that

I[rI~fw:.2..Q " (0 a. :., -,. weakly in -21' 'Q).

Relation (4.37) follows from this one. Let p,, be the sclutiou of equation
(4.33) with the co.officieet . = z.,. We %uhstiytte - = z,,, p = 9 = p,, into

(4.33). 'Then takiiut; itto account (4.37), (4.3ý) and cs.fimat' (4 15) wr
obtain as in (4..34) that

II ", <, < cilfa I.2, ,IU'.I. 2 Io wh-re u'. = L'p,,
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and, hence,

I1cWn:L,(Q) C; fOIJLd(Q)

where e does not depend on n. It follows from this estimate and from
uniqueness of the solution of problem (4.33) that

(4.40) w. - wo weakly in LA(Qj.

Applying (115) we establish analogously that

(4.41) p,- po weakly in L2 (Q 3 ?)x

Substituting into (4.33) p = q = p,, and tnking into account (4.41), (4.37).
(4.38) we can pass to the limit in (4.33) as n - xc. As result we can obtain
that

(4.42) =- )

Relation (4.36) f•llows fvm (4.40)t (4.42). 0

We prove ahso one lemma which will let to establhsh the compact de-
pendence the function w, on the coefficient z in the spare ITVI;(Q).

LEMMA 4.3. Lft n'(tlz) C L,(Q) satisfy the rtlahton%

(4.43) Lw(t. r) = f(tr) E Q,li:- =- 0

wheiv L is operator (4.1), f E L2(Q). Dnot, p(r) (4 - 2`). Then for
the function u, the following estimates hold:

(4.44) sup J w2p~dr + /(O<updxdt <

It

(4.45)J 11:)2e + (i)')p 4dxd! ccf P; (14td-- r9444 x
< I + U:ff.: )Q")

,v.here -I(A) > 0. yj(A) > 0j ore rontinuous functi•u,.
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Proof. We scale in L2(Q) both parts of (4.43) on wp 2. After simple
transformations we obtain the equality

1, J u2'p2 dar + f(0,,)2p'dz + • j Ozu'O.c -

- tt J- uw'&p' ) dz- fu'p2 dx

After integrating both parts of this equality with re.spcct tn t we obtain the
estimate

1r I

f w2(, z) (2(xh)d + f/(c), u-'p'dzdl •cJJ w2djd(,t
z 02 (1!

, + +i

(. + +t.,• I!-:11,) + i (O&tw) p.zdt +ff•'p~drdt

Carrying the term with (6&)r) 2 from the right side to the. left one, we obtain
(4.44).

Multiplying (4.43) on p2 and doing simple transformations we ohbaiah
the equality

(4.46) 0A(ttp 2) - 9,2,(uwpl) + 0.(zupl) =

f'p - 2(0xWu,)Op 2 - WO8,;)2 4 Ovii, p2

Function wp2 satisfies equation (1.46) as well as the folbwing initial
and boundary condition5:

(4.47) t 0p,21,=6 = O, Wp 2..=+±• = 0

Applying to the solution u:p2 ofmixed boundary problehm " ,16). ( A.,,4 "

well-known inrquality

II.Pjt2Ij;.,2(Q < cjipi - 2(0,t.)0 • "' - .,..

where . depends continuously on IjziI4i.2(q, and estimaling the right-hand-

side of this inequality by irieAns of (4.44) we obtain (4.45). L

4.6. Terminiiation -if solution of the exact controllability proh-
leni. Thus, we study the following problem of exact controll!•ility: In the
domain Qi = (0,T) / 0Q where Q1 , = 1-1. 1) the equa!ion

(,1.t) ,,jt .)- O,•~tz)+ b(U )• )
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is considered with initial condition

(4.49) sEQ. r-)fsc = ud~z)

One haR to find a solution of equaition (4.4$)1 which, bescidtf (+4.491,
satisfied the condition

(4M5) yQfit- 0.t= =O

TtaEotttx.:N 4.31 Jet funcso jj, t,:) C" W2 'Q () E V(0)hr,
data. Thrn therc fxists 4 Jolutio y"~)EW (Q1) of prohi~rm (448f
(4.50)1. Besides, it ib p&.441c to dt-fine tile imap, tvuns.fnnntnq coffficenlf,
r(t.z) to a solution y(f,z) of problttm 44).f. which act compactyy
fromt Wj'I(Q:) to1_~ HI(Q

Provf. Let R I?1VI *ftQl%) - W?'(Q) ethelie riconitnuoas operator.

which extends 1(1.:z), (1,r) E- Q! up to a ft., ct ion RI(i,rx), (t, x) E Q=
(0-T X (-2,2) and R?: : W(PI) - W4

1(P) be a linear continuous operator
of extension of a function;g from ill up to It = (-2,2) such that RygqVsz = 0.
Denote : I = : y,. R: Rjj. Thenl

(0151) C cIZfl11.Ž 4 9Q,. "i..I <r~I~

where constants c. c1 don't depead on --I, yj correspondinigly. We consider
instead of (4.48 )-.4450) problemn (4.1 '1 (4.3) definedl in thr wider domtain
Q = (0, T) x(-2. 2). Tosolve it. we p&m to probplem (439). (4.9) by transfr-m
mation (4.7). To solve (4.8) f,4.9) we u'- boundary value problem (4.13),
(4.14) which has the unique solution pG C-( in virtue of Theorem 4.2. As it
was shown int the prooif of this theorem: the- funiction tr = U'p where L, is
operator (4.11). satisfiri relfttions (4.8), (4.9) and the inclusion ii' E L?(Q).
By mueanis of Lemmia 4.3 the restriclion onto Q1 of thisý function belongs

to te spce 2(Q1). Deno(te by TP the matp fIliat transfkirrnS Cofficiet I
I-V e2(~ Q) fromi 14.1) to the funiction it, and let V be the operator of re-

Mariction of a funcrtion fromj Q ontof Q,. We bhow that the operator j* acts-
cormpactly from III 2! (Q) to lV;'2NQ1 ). InI Lemma 1-2 it wab estahlislwd
that the operator

(4.52) 'P .(t(Q) - 4ý,(Q)

is conpart. 'it, mark the dependence of oipirator t, from (4.1) on : we
deno~te it by L(.[et

(4.53) A~f f)I(; f',

and :. u -are eq'ial zeýro when T,.2 '
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We denote

(4.54) V, -W-

Substituting (4.532) from (4.531) wr obtain the equality

(4.5•5) ,,-02,,+ 0(,)=,,•,)

Applying estimate (4.,45) to equation (4.55) we will have:

(4.56) (A 2(( +) + (,8v) 2 )p4 + (9,,)Ip'2j dxdt <

+11611(-Q/ J (O.wi)'p2 dxdt +

+],•,,•:to f 2WI•,! 'P'drdi)

Applying inequality (4.44) to the equation L(z +-6)ui = f) we can 6ee that
for 5I6J]]w..q, < const the inequality

(2pdd,,f )p'dJrdt < e

Q €Q

holds where e does not depend on 6. Therefore by the coxnpactuns of
operator (4.52) and by the compactness of embeddings C(ýQ) ) W, (Q)i
L2(0,T; EV4(O)) W 14 2(Q) it follows from (4.56) ilat

(4.Ti) J [((of,) 2 + (0;,.)p, + (0, ).U2 dat -

as 6 - 0 weakly in TV'(Q,. Relation (4.57) implies the coinipartues of

operator
(4.58) : W. 2(Q) - Ivr.2,•Ql)

Applying estimats (4.51), the continuity of the operator I I aud the com-
pact dependence of the function ý from (.1.5) on - proved mii Len~iia 4.2 we
obtain assertion of the theorem on the compact dependnerc of the solution
y on the coefficient :•.
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S. The local theorem of exact controllability of the Burgers
equation.

5.1. The main theorem. Let in the domain Q1 = (0. T) x Clz where
= (-It 1) the Burgers equiation

(5.1) C7(y) = 0,9(1, r) - $ZrY(t,t) 48 •-•tQr) = 9(x). (1.:) E Qi

be defined where g(f) E L2(9) is a fixed function. We consider a function
#(f, z) E WtN**(Q1 ) satisfied equation (5.1). Introduce the denotions

(5.2) (z=444 97.)=grr.

Obviously. o(.r) E W2(Q 1 ). irdz) E H4(Th). L•t

(5.3) Br.f.) = e 2Ifx l fwte

be the hall of radius r in H'({•i) with the center at the point -. The
problem of local exact controllability of the Burgers equation is as fol-
lows: To find for an arbitrary initial function yoC() E: BX(o) where r is
sufficiently small number, bu"ch boundary control (v_(),.t)l that. the
solution y(. r) E W. 1(Q) ofequcation (5.1) with the boundary conditions

(5.4) 1t,-1) = 01L), , 1) = v+(t)

and with the initial condition

satisfies the equality

(5.6) X(14K X) It Z.7 1

where frr(r) is defined in (5.2).

THIOREM 51. 1f r is 6nffiirntly small then for an arbtrrg y- (r) E

R,(fr') there triste such confrol (r .(t), t+(/t) iF (C%(OT))? that the soln-
(ion gYf z) of problcrn 07. 1,). (5.4). 0-5. belongs to uIV, -(Q) anq faisfies
condition (.6%

Proof It is sufcient to prove the existeone of such ball B,(0) C
W-J(fl1 ) that for arbitrary 4.(z) •e 2•,) a solution (t.z) E W1* 2(Q4)
of problem

(5.1) ) +t. •)h=)= x) C
(5.9) ('0
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exists. Inde.d, if we posses such a function ((I, x), then the function

Y(t, r) = f(t. z) + Wt. X)

satisfies all asertions of the theorem, because it is the solution of problem
(5.1), (5.4), (5.5) with yo(z) = n(x)+ýo(x) and with the boundary control
(v,- (1) v,+(1)) C (C(O, T))' which is the restriction of the function y(l, z)
at X = =I1.

For an arbitrary function A E [' 2(Q1 ) we consider the operat•r

(5.10) L(6)t = 0,c-Oz 0.ý)+8(ý = 0

and look for a function 4 C W1•2(Ql) satisfying (5.81-t5• 01. n 'Nt d•en.i,
by 0 the operaor

(5.11) 02 W Q)-

which transforms a function (2ý- fl) to the solution f of(5.8)-(5.1O) which
hai been built in Theorem 4.3. Operator (5.11) is compact as it was ,huwIi
in Theorem 4.3. Besides. relationi (4.6), (4.8), (4.9). (1.44), and (4.-45)
imply the inequality

(5.12) 1fl IlW;.(q,) :5 110(2y + 6)111 <>i

where .,(A) > 0 is a certain continuoun. function with respect to A > 0. It
follows from (5.12) that for any ýý E B7 (0) where radius r is sufficiently
small the operatorA -- (y+A) transforms the ball B, -- {lllV1.2(q,ýI < I}

into itself. 1imce, by the Shauder fixed point theorem (see, for example, L.
Nirnnherg [221) there exists e E B, such that 6 = 6(2k + ý). This function
Sis a solution of problem (5.7)-5.9). [

5.2. Some corollaries of the main theorem.

DEFINITION .5.1. A srf RI C 3J (P) is caldl an absorbing F: of rcach-
ability for the lfa.qrs equation if for -n arbitrary fundlion y.- (ý tf))
there exist such Ivme moinvul T and a control (v(t). v+(l)) t > 0 that the
solution y(I, ) of the boundary problem

Gy g q(.r, y1,' = t0. .(f,-1) = yo. Y. ttt. 1) = ;+(I)

belongs to the set H f7r any t > T.

We conqider the BIurgers equati,'. (5.1) with zerot Ltundary cornditions-

(5.13) y(t. .x) = 0
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It is known that the dytnamical systemisgenerated by (5.1). (5.I1) possesses
the (1>(0.( (0)).attractor (seec AN. Jiabin, MrT. Vishik 2)

THEOREMI 5.2. The attiactor of dynamtiral syshm (5.1), (3.2) is an
absorbing set oftreaehahility of the Burgers equation.

Proof. It is known (ANV. Habin, NIT Vishik [23]) that the- attractor A
of dynamical systemi (5.1). (pa) is a bounded, closed ret in W(,.By
virtue of the definition of an attractor for an arbitrary trajectory yt. -) of
dynamical sysýtemi (5.11, {5.01 and for any 6 > 0 there exists, such time11
Mioiment T,1 that

dist (A,yV(t, ))C6 V1 >El
%-'I)

Chou,ýing 6 sufficienttly smnall we transfer the trajectory y of the dynamical
system onto, attractor by means of boundary control (r- (t). t,+tM) which
exmstence hiat been provedl in theorem 5.1. After that takecv (tj) S 0. By
the invariaznness of the, set .4 the trajectory will remain on the attractor
during all posterior timer. 0

Let. for a function grE L,(fl) the, boundary value problemn

"-0y(z) + t9&y2(r) # (z). 3/(X{I. -f =0C

has several s;olutions ,j)../C'.(uey they a:-,- '. ~nth'n
dynamnical Izystemn §5.1% (15.1 31))

THEOREM 15.3. Let htl C I-?'(0) arc singular poitas of sti.semi (51J),
('5.13%) Th( n for mnyj I .. N t rn ert is 1 a n umnbe r r, = r.y.:) > 0
such that for 4#1 arbitrary y1 E 17, (m) thet soluoin yt,rx) c-J~Q1 of
the cruet contrcdlobulitg problem

CY = g(x). Yllý.s = YO, yb,-r = Y,

This tlworer is an easy corollary of Tleorem 51. Iti means that, ant
arbitrary singuflar point. of dynamnical systent (5-1), (5 13) (for instsnce,
the hyperbolic oner) is the !rtable if we can use a boundary coutroll fur
stalnilization.

The knowledge of attractor's propcrties can he applied to t hein'ti-
thio of albsorhing set; of n'aehahility. As an example we give the fcollowing

PRPaoOSITION WI. Lit It stognlor pointf y,tr) of sysim '31.(5.13,)
posstsises the property- A4n arbitrary trajectory of Ny'tri I5/ (5..0he
longing to Ib lt i'eu nterr.4rtsi a .snffiruenlly smnall netqhbourhoed oft
yi. Then !1ý is the abibwt'inq ptorl &.f Yarh41,,htit,
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Proof, We consider an arbitrary initial condition Y-(z) E I (ln1 ).
Letting the trajectory of system (5.1). (5.13) to go out yo and applying
theorem 5.2 we will be found after some time on a trajectory belonging to
the attractor A of system (5.1). (5.13). By the mssumption of Proposition
'5.1 aftfer nn other period of time a point moving along our trajectory will
be clow, to yj, enough for application of Theorem 5.3. At this moment we
appl). Theorem 5.3. 0

PROPOSIlrO.N 5.2. Let &) be a eolulion of (3.b,) (3.9) with the
bouudarl ror, ditons o•, a2 batiSffJinq inequaitY (VI > 02. Then r(x.) is an
absorbing point of reachabziliht for the Burgers equation uwth the boundarye
control.

Proof L, eal > o2 but a, - o2 is thus far small that the minimal
eigenvalue A, of the spc~ctral problem written below (3.19) is positive. 'Then
the proof of Theorm 3.1 i5 true. Suppcoe that 01 > a• do not satisfy this
assumption but the boundary condition 31 = ,.(0), o2 = O(a) where a, >

01 > e2 satisfy it. Dhen by Theorem 3.1 the controlled trajectory y(t,a-)
going out an arbitrary i:nitiai condition ,(r) can reach at a finite time
nmoment T', th- knlution ý:(z) of (3.8) satisfying the bounrdary condition;.:

(0) = y:, .V(a) = oa if we would choose the appropriatle boundary
control. Thus. y(Tj,x') -: ýz(). Let 2(x) be the solution of (3.8) with
the boundary conditions .,'(O) = 31 + e. y2(a) = c* whefre C > 0 in
small enough. Applying Theorem 5.1 we can proloug the solution Y(t,i,)
behind T (t > T1 ) sucrh that at a time moment T2. > T, the equality
y(T.,,t) = y.2(x) holds. If ý.(O) - ý2 > al then the proof is finished (we
can take 6ý) = u.). If P.(O) : ;? < o, we consider the solution Y3(r)
of (3.8) with .4(0) = !32 + r (5 > 0 is small). 9,1(a) = a2 and repeat the
previous argument-. After sevwral steps wc will prove the Prop,,,ii... 0

REMARK 5.1. The inolodc of Saltions f,.5 are general. Besidhs tlhý
.'atier-Stokes ,.yslfi for uhch., suryly. these methods can bt gencrvhi-rd,
there are a nuvnber tof othfr sy.tms in mathematicat physgcs pos(sssing
nontritia( attralhrs .v t•eith a control by mrcns of boundary values vv
intecresingq.

li coniv.ction With control of motion on attracters, genieral pr,;l1,.! oi
attrac•tors stru lure means very important anrd interesttin"g.
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A PB.EIIISTORY OF ]FLOW CONTRIOL AND
OPTIMIZATION

MAX I). GUN7PW¶RrIR

1. Intrcidtirtion. Flow control aad op~tiixiizft1tiO. iS All ~nnrnt prne.

tice of man. For example any dams, sluice, canal, 1kVer, irrigatiotn ditch.

valvt. duct, pipr, pump, hose. vane etc., is an exerci.-t in flow Control or

Uptiniization, ii'.. and wttrnpt to
ct'ntrol th. ch, ~ Isae e.g.. the Yale and dtimlwio of
molivit;n arif/0r the the modyn am tni tale. teq. IIhe tý ,uni r.

altsrg. of a fbtid in ordr 1(, achi~vt a drssrrd pnrpo,ýr.

kLspt (he animal kiingdrm hasi exarnpk(,, e.g.. beaver daims, of aftrrnpts at

flow control.
However, uittil rerent.y, flow control and optimiz~ationI has l..e.for, t!-".~

most part, eF~ected without t~hv uise of sophisticated fluid nud.el- aol-/or

without the ut~ of 4ophi-Atirmtrd coprimiration techniques. In spite' of tlai*.

suhstantial succebws' jza~r hven achioved. On the other haind, 'soph~isti-

cared current and future uses (if flow conlrols, require a more systematic

approac'h to thrse problenis, and Iii particular, will require ,!ir us", of so-

pljii!tiCat.:d Optimli7alion techniques in conjunction with snrhisticnrcd flow
models. Even 1.1i pop'ilar literature has recognized 06-~ necd. For cxamnple,
the Jantivry ItMý3 issuce of Pcopulayr Meclianturs &qcw;,c's th, Ilse iflj~ctiofl

of fluid netar the nc-.c of an aircraft in order to Qtcetr the aircraft in stall

etivirownmens. Anothcr example is the Nlarclw 1, 1993 issue of Ai'ration

II'.k & Sparr Terhrolog!, in. which ilit need ft~r flow control theories in-

volving throisands of degrees ot freedomw to replace, current ones involving

10 dqrgrres of frecdom is discusse:d.
Ifere. our main golal it to, briefly rrvit-w -snw of the past ,:uccemes 1in

flow control and op-tinzizatiuwa We also discuss why the titne is now ri.ght

for the incorporation of souli~stieatr d fluid models and sophisticated opti-

rniznsinr, techniques into practical flow conttrol and optimization method-
,,! -v Indeed. the purpose of thit, ý,clune aud of the, ir'rT ing from which

it. ema,.Ptns. is to review some of thet recent ainthernatical ard cngineering

developmnen:: tnfhis reirard. We close with some re£jiimý ft.,Onit the struc-

ture of flow control w,, .,fimi-tionl problems. and w-ith somew exarnpics

of intercs,.ing ob iectivte funmet~ic-ims mid Control mechani~snis

Lest one thinks that flow conTrol ind optimization is a recent. que~t

among rwtiwmi'us,.ngincer.,. andi scientists, cowti'Jtr the f,,lbowing
drag minimization problem-

ILriat is (hAar,-zp that a surface of rcraclution mnoviq at
cot.,lant ri fi.,cdl in lbs fdircclon of it.i ariSso en!. hat~ j[i

Virginia li-ch, rit~rk-.oir.-, VA 14twit-UJi~.
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is to offer the least restance to fhe motion?
The body is sketched in Figure 1.1.

y(r)

FIG. .. A h elf 4 #,nIiown

AftM r making certain aisumptions about the flow, one can show this
problem is equivalent to linding a yfr), ri < 'x • xr, that minimize;

Jr(v = , 1 * .ri`1)

This is the first ,,inificant problem in the cablttis of variations a•d wara
posed (1IS7) and solved (1694) by Newton!

2. Flow control without fluids. By flow control tithout flids we
mean attempts to coitrol a fluid flow and state without the utilization of
sopl.sticated fluid models involving partial differential equations such as
the Navier-Stokes equations, or the Euler equations. or the potc-ntial flow
equations, etc., For the examples of dams. pumps, etc.. mentioned above.
flow control is effected without any attempt to solve such fluid equations.

An example of a very successful application of flow control without
an accurate modeling of the fluid is the design of the heatin9 mnd cooling
qystlm in a building. ilere, one designs a system of ducts, fans, registers.
vanes, sensors, actuators, heat pumps, furnaces, air conditioners. etre, so
that the temperature in a building is close to a uniform, comfortable value
and so that the heating/cooling hill is as low a~s ps•si(hle. In the design
process, the air flow i' not computted using *ophitticatcd models involving
partial differential equations. Rather, one slimply uses empirical rul-s for
determining the flow rates necessary for carr) ing out the design. One also
assumes that pumps. fans, furnaces. etc.. move the air at. constant flow
rates through the ducts. register. etc. Heat and temperature losses are
ilso determined in all empirical manner.

Pe-rhnps the must '-pe-rtacular esarriple of succeýsful flow control with-
outt fluids is that( of arrodynainic coutwls. Here. one determines a position
of the rudder, wing flaps, elevatcor., airelon.•, thrttle, etc.. so that an air-
craft executes a desired mantuver. To some extent, all modern aircraft
employ automatic conttrols. i.e.. crntrols that are not determined by the
pilot., but perhaps by a computer. The extreme example in this regard is
the Grumman X-29) airplane which uses s.uh autonmatic control to keep. the
plane from going "unstable". Typically, aerodynamic controls are srt by
solving a small system of ordinary differential equations. The influence of
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the fluid flow on the controls appears as functions or constants in the dif-
ferential equations. These functions and constants are determined a priori.
very often using an empirical process. When the control settings ace being
determined, no attempt is made to solve partial differential equations for
the fliud flow.

In tlwse and numerous other examples, no attempts are made to em-
plby sophisticated fluid models such as those involving partial differential
equations. The flow of the fluid is modeled by a few constants, or at best
functions of time, appearing in syst-emn of ordinary differential equations
that determine the optimal control settings, or by using a Bernoulli equa-
tion to relate niass flow AInd presicure, or, most often, by assuming conistant

mass flow rates. In this bense, one may view thes., efforts as constituting
flow control tr'ilout fluids.

3. Flow optimization without optimization. By flow, optmrni:a-
Iron wdihout opliimizaaion we mean attempts to control a fluid flow and
state in order to mect a desired objective without the utilization of so-
phisticated optimization technique.s such as Lagrange multiplier methods.,
quasi-Newton methods. etc. In many cases, including the ones described

below. although ,ophisticated optimization algorithms are not involved, a
detailed descriplion of the fluid motion and state is employed. The latter
arc determined by experimoental measurements, or analytical solutions, or
computational simulations.

ror the first. example of flow optimization without optimization, we
consider the large body of ,'xperiniental work and somewhat smaller body
of analytical work on boundary layer control. Here, the size, shape, forma-
tion., ef.c., of a boundary layer is to ')e affected, e.g., controlled, in order to
llevet a d&'sired objective. Control nechanisnis that. have been considered
art th,- movement, of solid walls such as for a rotating cylinder, the injec-
tion or suction of fluid through orifices, shape variations such as camber,
thickness. and flaps adjustments, etc. Objectives that have been considered
are maximizing lift, mininli~ing drag, preventing separation, preventing or
facilitating traitsition to turbulence, etc.

For exanpk, consider the following question. Can the drag on a body
be lowered by thee Suftion of fluid through a narrow slit? Specifieally.
consider the sketch in Figure 3.1. Here. we have a cylinder in a uniform
stream and we have fluid sucked through a slit on the back-side of th"
cylinder. This problem was the subject of Prandtl's first paper in 1904 t3l!
What Prandtl foand. through experimentation, is that indeed the drag on
the cylinder could be reduced by suckinig fluid out through the slit.

Another example is attempts towards the cancellation of wave drag.
The Busemann biplane (1930) was an attlvmpt to design a wing shape in
order to reduce wave or shock drag: see Figure 3.2. The left-hand figure
shows the shock waves unmder design conditions; the wedge angles are ex-
actly those needed to cancel out the out-going waves. The right-lhand figure
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Fir.. 3A. A cythdtr in ?sndorn flou ~uttk nctivn thnuq a slitg

show cMff-des.ign condition-, for which the outt-going waves are not completely
cancelhlJ.

Ftu;. 3.2. Tht BPTSrs Aitls*n

More recently. Garabedian and his co-workers [I!, and others, hbave de-
signed transonic airfoil shapes that generate shock-fre- flows. Again, under
design conditions, there is no shock presient at the back of thty supersonic
bubble on the upper side of the airfoil; at off-design conditions. a weak
shock is prement there.

itn these examples, and many others P well. sophisticated flow models
were used in experiment,, analysrs. or computations of optimal designs.
However, no attempt was mrade to employ -ophi.ticat-d c-ptimization algo-
rithms. Solutions were obtained by doing experintents ur solving equations
for a (small) set of configurations. and then comparing results, In essence,
optimization, e.g., minimization, is effected by variants of the following al-
gorithm (which for simplicity, we describe in the ca-•e of having only one

design parmeter):

Given a functional f(p) to be minimizcd with respect to the parameter

P.
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L.choose n distinct values {p,,p . pn) of the parameter;
2.evaluate f(p,) for i = 1..... ,; and
3.examine the set fA(pI) ... f(p,)) and choose a value pj such thait, f(pj) <_

f(pi) for i= 1....,n.

For example, plot the values of f(pi), i = 1, ... n, as in Figure 3.3. and
then choose the parameter that yields the mininmal value of f among the
plotted values. One may view such efforts as flow optimi.1-ation w.,hou,
optimization.

f(p)

I ! I II I

P) P2 P3 P4 Pi P

1; ic. 3.3. Grpht ramir.imiztion tf a Jun ctional

4. Flow control without objectives. By flow control without ob.
jcrlives we mean attempts to use control and optimization ideas in a fluids
setting. not to have the fluid flow meet some desired objective, but in order
"to meet some indepeitdent ohjective.

As an example. we consider the work reported in [2J and related papers
on the use of optimnization ideas to gnrrate incompressible computational
fluil dynamics algurtthnis. The connection between a CFD algorithm and
flow iptimization is made as follows. If (u.p) is a solution of the Navier-
Stokes e'iamfions

-vAU+u.Vu+ Vp=f in•f.

r.u=0 inf),

and

u =g onP!?,
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in some region f), then u minimizes the functional

.7(v) = jV4(v)j' d
over a suitable function class, where, for given v. (*,,) is a solution of the
Stokes problem

-vA V -- A + v. Vv - f minQ,

V4 =0 = inQ,

and

0 =0 oil ,0.

Moreover, if u is minimizer of J, then

4=O, t:---p. and J(u)=O.

The problem of minimizing J can be solved by a conjugate gradient algi
rithm having the property that at each iteration only a sequence of Stokes
solves is required. Thus, and efficient CFI) algorithm is generated. How-
ever, note that no intrinsic property of the flow iL being optinized; hence,
in this sense. we have flow rontrul without anty objtctere.

5. Tin,4iness of flow control problemi;. A1t this It i natu .r.al
to ask:

can one put togetliher sophisticated flow model and sophi. -
ficated optimization tethniques in order to meet desired
objectives7

An affirmative answer to this question depends cn being able to obtain a
like answer to the next. question:

has flow control and optimization become a subject ready
for rigottrous mathematical treatment and sylemahc corn-
pulational resolution uhing sophtiecatted fluid models and
aphisti'ahd opthmzation algorithins?

An affirmative answr-r to the second question follows from the observations
that there hap recently been significant advances in the thcorq of partial
diffcrntaal equations for the equations of fluid mechanics, especially for the
Navier-Stoka equat ions for incompressible flows, and there have also been
significant advances in efficient and robust algorithms for computational
fluid dynamics for all types of flow regimes that enable the analysis and
apprxim ntion of flow control froblems.
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6. The structure of flow control probiems. The structure of a
flow control or optimization problem is similar to that of any such problem.
First, one has an

objective. i.e., a reason why one wants to control the flow.
There are numerous objectives of interest in applications, e.g., flow match-
ing, drag minimization, lift enhancement, preventing separation, preventing
transition to turbulence, deterring temperature variations, enhancing mix-
ing, deterring mixing, etc. Mathematically, such an objective is expressed
as a cost functional.

Next. one has
constraints that must be imposed on candidate optimizers
that determine whnt type of flow one is interested in.

One must decide what type of fluid model is adequate for the flows one
is interested in, i.e., is one sarified with assuming the flow is a potential flow,
an invsicid flow. a viscous flow. an incompressible flow. a compressible flow,
a stationary flow. a time dependent, flow, etc. Mathematically, the type of
flow is expressed in terms of a spccific set of partial differential tqolation.q.

Finally, on has
controls or design lirirmrters at one's disposal in order to
meet the objective.

One can have boundary rtuir confrols such as injection or suction of fluid
and heating or cooling or temperature controls, etc.; one could have dSi-
tributcd controls such as heat. sourc,s or magnetic fields, etc.; or, one could
have shape controls such as leading or trailing edge flaps. movable walls,
rudders, propeller pitch, surface roughness. or domain design, etc. Miathe-
matically, controls are expres-sed in terms of unknoun data in the problem
speci'cation.

Thus, the mathematical specification of a flow control or optimization
problem involves:

state iartables
6 = u. p, T. c, etc. . the velocity, pressur, tempe.ra-
ture, internal energy, etc.;

confrol variables or design parameters
g, e.g., the velority on the boundary, the heat flux on
the boundary. the shape of the boundary, etc.,

an objectire or cost fancuwnal
e.g.. drag. temperature gradient. etc.

constraints
.F((0..) = 0, i.e., flow equations.

The flow control problem is then simply stated as the following ianmtI:a.
tion problem:

find controls q and states 6 such that J(0. g) is iniuiiinized,
subject, to f!(oU) = 0.
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The functionals to be minimized do not usually explicitly depend on
the controls or design parameters; this may result in unbounded optimal
controls. Thus, one must limit the si:e of the control. There are two ways
to do this. One may place some a priori constraints on the size of admissible
controls so that one looks for optimal controls within a bounded set, e.g.,
one could look for optimal controls g such that, for some suitable norm.

flgf _< K.

A second nwtliod for limiting the size of the control is to penalize the ob-
ject ive functional with some norm of the control, i.e., instead of minimizing
a functional J(6) one could minimize

5(0) + digi,'.

By making judicious choices for the parameters ( and 3 and for the norm
on g, one may at the same time effectively limit the size of the control and
obtain states such that the value of J is small.

7. Sample objectives. We now give a short sample of the many
possible objectives that arise in practical flow control and optimization
problems. We emphasize that there are many other.useful and interesting
objective functionals that have or should be considered.

Flow tracking. Let u denote the velocity fie'd and Ud denote a pre-
scribed desired velocity field. We want to control the flow so that u is
"close' to U4 . It is natural to minimize some norm of the difference be-
tween It and Ud. For example, one choice that has been considered is to
minimize

J(u)= 4j;u-UA dQ.

where Q denotes the flow domain. (The particular choice of the L4 norta is
governed by technical considerations.) One can also try to match the fltw
on part of the flow domain, or even on some surface. For example, one may
minimize

J 1 In l- U,4 1'2dr

where ro is some plane in the flow field.

Viscou5 drag ininitnzation. An important objective in many applica-
tions is the minimization of drag. For some itcompressible flows, the drag
on a body can be computed fromn the integral of the dissipation function

J(12) = fJ(Vu) + (VuY( ýd(2.

where pu denotes the viscosity coeflicient. 11'hus. if omw wisbes to minim-re
the drag on a body, one werely minimiz7es the above fintional.
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Avoiding hot spots. In many applications it is desirable to avoid "hot
spots" along bounding surfaces, i.e.. places where temperature peaks occur,
since often such phenomena lead to meltdown or to flexural failures. Such
diffieuhies may be avoided by minimizing the functional

J(T) =] jT: 2 dr,

wh,:rt, T denote, the !emperature. V, the surface gradient. and rT the
portion of the boundary along which one would like to avoid the above
problems. Another candidate functional to be minimized is given by

J(T) = f IT-Tj!.2 dr,

where Tj denotes a desired temperaturt. distribution.

Well-mixed flow.. One. common objective is to have two (or more) flu-
ids become well-mixed at., for example, the outflow of some flow region.
At the inflo%, perhapc. the fliuids are not well- mixed- we could have an air
flow with fudl being injected through an orifice. By controlling the flow.
we would like, by the time the fluids reach the outflow region. not to have
high concentrations of cither fluid present. One way to achieve this is to
minimite

(c) = J ~I-,rJ` dT,
J0

c denotes the inas fraction of fuel. V, the surface gradient. and ro the
outflow boundary. By minimizing the above functional we achieve a quasi-
uniform concentration distribution at the outflow boundary.

Poorly nixed Ilows. In other applirationf; one wants two or more fluids
to mix a.s little as possible. For example, one would like one fluid to remain
conlimled to a certain portion of the flow domain, and not penetrate into
other portions of the" flow domain. If one wants to exclude a particular
species from the portion 00 of the flow domain Q we could. in this case.
achieve our objective ny minimizing

J(c) = Nxc6h'

where . denotes the characteristic function for fOf.

8. Sample control mecnhnisms and design parameters. .\e now
give a. short .samplr of the many control mechanisms that arise in practical
flow control and optimization problems. Again. we emphasize that there
are many other useful and interesting control inecahnistos that have or
should be considered.
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Veloci"y along portions of the boundaryý A very much used mechanism
of control is to inject or suck fluid through orifices along bounding surfaces.
Thus, if r, denotes the portion of the boundary covered by the orifices, we
would seek a control g such that one of the functionals is minimized, subject
to the appropriate flow equations, and also

u=g onr,.

Temperature and hearing controls, Another common control ujecha-
nisin is to adjust the temperature, or even more often, the heat flux, along
portions of the boundary of the flow domain in order to achieve one of
the d,-sired objectives. Within this class of cntrols we find "heating" and
"cooling" controls. For example, one could seek a control q such that one
of the functionals is minirnied, subject to the appropriate flow equations,
and also

q on F-T.

where" r- dcnotre.s the portion of the boundary along which one allows the
control to art and 0/On denotes the normal derivative at the boundary.

Distributed controls. One could try to effect control through the body
force in the Navicr-Stoke. equation. Thus, one wmold sock a rontrol, defined
on the flow domain Q or en a portion of 91, zurch that some funtiional is
minimized and subject to the appropriate flow equations. Physically, one
way to effect such control is by a magnetic field acting oni an ionized fluid
or an electrically cunducting fluid. Another distributed control of intere~t
is a heat source in the energy equation. Physically, one way to effect such a
control is through radiation mindranis:ns, or through a targeted laser beam.

Shape control.. The control mechani.-ýsn discussed so far are ctIlcc-
tively known as 1,alue controls; thi5- refers to the fact that we try to effect
control through the adjuctment of the values of the: data of the j,.,hl.in.
Another class ef controls are known collective-ly aR shape -ennirols: in this
case control is effected by rIjusting the shape of the flow dot dn. The
shape of the flow domain may be changed in many ways. For example. one
could use leading and/or trailing edge flaps, or movable walls, or rudders,
or propeller pitch. A related problcm is the opfimrl design problem. Here,
we want to choose a flow domain, .g.. the, exterior of an airfoil, so that
Solme objective is achieved. Of c.Oturse, the flow doinain is determiined by

its hmindary, e.g.. the airfoil itself.
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MATHEMATICAL ISSUES IN OPTIMAL DESIGN OF A

VAPOR TRANSPORT REACTOR

KAZUTUMI [TO', t•rN T. TRAN' . AND jrFFERr q. SCROCGS*

Abstract. In tlds paper the optimal design of a vertical reactor for growing crystals
and epitaxita laycrs by physt al vapor transport technique is dic-ussed. The transport
phenomena invohed in the deposition process is modeled hy the gudynasnics eqnations
and themical kinanaticb. The problem is formulated as a shape optimiration with re-
spect to the geometry of the reactor and an optimal control problem by controlling
the wall temp-ertNre. The material and shape derivatives of solutions to the so-called
Boussineeq approximation are derived. Optimalty condition and a numerical uptiml, a-
tion method based on the augmectctJLagrangiat method are discuss•el for the boendary
control of the Bous-incsq flow A awutuerical approximation hbaed on the Jlachi poly-
wnoniabý fur the axi symmetric flow is developed along with a discussion of an iterative
method band on GMI {ES for solving rhe resulting system of nonliner equations.

1. Introduction. In this paper we discuss t•e mathematical issues
involved in designing an optimal reactor for growing crystals and epitaxial
layers by vapor transport techniques. The application of these materials
in modern computers, communication systems, and other electronic and
optical devices demand precisely controlled electrical and optical proper-
ties, and henre extremely high purity and uniformity. Our design effort i5
focused on the Scholz geometry depicted in Figure i. The source material
and the growing crystal are sealed in a fused silica ampoule that is heated
by an isothermnl furnace liner at its outer cylindrical surface, The sub-
strate (the single crystal) is located on a fused silica window (W) which is
cooled by a jet of helium gas from the outer surface. HPVT proces-ses are
based on physical vapor transport and can be described very roughly as
proceeding via evaporation at. the polycrystalline source and condensation
at the surface of the cooler substrate.

Our effort on inal hematical modeling of transport and growth process
in the high presssure vapor transport (TIPVT) arises from collaboration
with Klaius Bachmnnn in a joint project between the Center for Research
in Scientific Computing and the Material Research Laboratory, both at
North Carolina Stat P University. Preliminary studies in the laboratory have
shown that crysr.al grown by HPVT of ZnGeP2 exhibit superior properties
than those grown by the existing techniques. We have begun t) explore
the conditions that favor these properties by modeling a vertical reactor
along with a numerical simulation of 2-D axi-syrnmetric steady flow of
a homogenous P2 gas at 1 and 10 attn pressure using the lous1sinesq
equation [TSB]. Numerical simulations were performed in UFB53 to sttudy
the flow dynamics and temperature distribution inside the reactor chamber
and to illustrate the feasibility of an optimal reactor design study.

Center for fieseuch in Scientiflr CGomputation. North Carolina State University,

Raleigh. North Carolitta 27C-t2tfl.
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Our study ip concerned with the transport mechanisms inside the re-
actor. We quantify the uniformity of the epitaxial layer and formulate the
optimization problems in terms of the following performance indices:

(1) the variation of the temperature of the substrate
- less variation should increase uniformity and purity,

(2) variations in the relative fluxes of reactants
- this determines the stoichiometry which must be controlled to
. within I percent,

(3) the net flux of reactants onto the substrate
- this determines thie growth rate,

(4) Absence of local re!irculaiion flow.

The possible control variables consist of the shape of the reactor, Lqpect
ratio, total pressure. orientation of the reactor with respect to the gravity
vector, wall temperature distribution.

The mathematical model for the transport phe'nomena involved in
the deposition process involves the gasdynamic6 equations (conservation
of mass, momentum and energy) and the cowservawioIn of speries equation
for the reactants: i.e.,

a

-Fp + V '. (p ,,) = 0

P(N" "U V11) + VP = it (AU + V(V ,)) - PQ £3
(1.1)

I ,1

pC, (-T ++ ur VT) ÷ p(V , u) = V . (k V T) + 2,;+ -p )-,

0
p(- c4 + u,. Vc,) = V. (pD (V.', + a crVlogT)) + Piat,

where e.j = Jr ,-a + - the state fonction fp. u, T, ci) irchudes !he den

sit.y p(t,r), the mass-average velocity u(t, x) E R,. the temperatlre T(1, a'),
and the masq fractions = (el. -... c,,) of each specie i with E', ci = 1.
In the equation ri is the reaction rate of the i-th specie, ir 6 the thermal
diffusion factor (Soret coeflicient), D is the bolutal diffusivity, k is thermal
diffusivity, and C, is the specific heat. We assune the, perfect gas law for
all species; i.e..

pci RoT
(1.2)

In,

where RD is the universal gas law cofntant and mi is the molecular weight
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of the i-th specie. We assume that the velocity field satisfies the non-
thp boundary condition and the temperat•meý distrihution is given at the
boundary I; i.e.,

(1.3) u=O anmd 2=9 on r

In the cma- of binary (carrier and reactant) gases we may consider the fol-
lowing boundary condition for the concentration, which models the surface
reactions and deposition along the substrate [YIICj

(lIe) -(VWt + a reVIogT) - cc, -: 0

Iwhere n is the outward normal vector at the boutvlary and t is th.-
Diimkohler number. On the wall we assume

(lAb) n ({rc .- a c, VlogT) = 0

and at the source the coumccrs ration cl is assumed to be given.

The paper is organized as follows. In J2 existnce of solution• to the
steady problem is discussed, In §3 a numerical method ba~ed on Jacobi-
polynomial based spectral (tau-I approximation is develohopd for thet axi-
bymmet-ric St01 inn to the BHussinesq equation. An itcrative methnd based
on a preconditioned projection method and GNMRES for solving the re
suiting system of nonlinear t-quiatiomta is developed. In §4 the shapcr opti-
Inization fo)r the tIlnus4nes•q flow is formulated and the sensitivity equation
based on the sliape derivative is d, rived. In §5 the optimal control for the
Boussine-q flow i' di-russed and the first order and second order optimal-

ity condition is e.tsttlished- A solution trchniqu•e based on the augmented
Lagratigian inethud with seconmd order update is described.

2. Existence of soltttions. In this section we discu•ssLe rxisfiine.e"..
of solutions to the steady problem. For simplicity of our discussions we
consider the case when no reaction is taking place (i.e., involving only a
single carrier gas). Then it is not difficult to show that if 2' = & (a
constan), then

(2.1) i=t, = = B. =pjxp(--RI- z) and p,:--p

iLs sulution to the 4taeC y e-pation of (1.1) where po = --,-)a. Then it

is shown in JMN} that there exists, a global unique (classical) solution to
(1.1) provided that the initial cc-idition is sufficiently clese to (p, u. T) in
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The steady equation can be written , l

V.u -UP.
VP

22) - (. + • u) + V-P = -pq •t - rt •
3

--T* (kV'1') = i, (P(Du) - pV it - C,.p,,. VT.

We will show the. vxilstv,'r r .oluthi.•i-. in a i.iglhborhood of (p, u. T) by
applving !he inrhep!i( furict:,:n thlory to (2.2) (Contvider lhe' .tnte Space;
(p. u, T) E iV'l1(f1) r ?' 1

3 
X It" '"/(1) for r > 2. ASSime that. P > 4.

Then bilice 11" '(fto 'I, is rrtiniiotslly embedded into LX ((2) tle rigtlii hand
side of (2-2) helongs ti L' x (U) 3 x L/ll. Then it follows frcin [(;ij that
the lilier vpiation (2 21 has a unique solution (v ý p. T) = S'(p. u. T) it
t0'(fP).K V(f 'xIV "`i•(0). givrn the right hand side inL' x ( L *11 L /2.

llowever fruotli the lrfect ga. law

n)

we inuO IV'i( p. That is. w? have a inisitiatch of the rtg-Ilarity
for tilhe .r~sir- p. In order to overcome thik diltilu1,v we a-suait a hulk
vi.-cv.itv a.-4.mmPtic chi

(2.3) p=, p 4pV. Ti and p,#. =

3 fit

where p,., is the thrrincdy.iamiic press.,orF. Notrf thai for thr incormpressible
flow the thermodyniaiic irurr " e-,ivu?, tol hr hinehani!al pressure and at
the inviscid liwit (osuniing siich s limit exists) (2.3) reduc(s to lhe perfect
gas law.

From !FN] )We !.ave the %.-tur field d rompotition of [,(U) 3 : that is.

where •S(l0) is the cl-,oirr o)f (.. so.lnoidal (V •u = Q1 fulictiou'- with
compact bupport ill P with rcapect to .'(Q2) topology and G.(.Q) it the
gradiknt field = {fVo : E EI" (")). S1'poP) I i = v + u, with t. (- SýtQf)
and u.- ý: G,.(P2) then tLe left hand side, cf the -,-rond equiation ill (2.2) Call
be written as

-P A + 7VIP -- 4 " V -)
3p u
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Trie linearized equation of (2.2) - (2.3) at (p. fi,T,p) is given by

-Aw r-- UV.) 1VP + llg3 = F2 e (Lr)3

(2,4)
-T.( kVR(-) +PV =F 3 LrE2L`1 a ed r=e

4 - ,
P- IVU-- .... (TII + pO) = F4 EW"

Ilence by the implicit fitncyi.n theory if (24) has a unique solution (II. US.
P) E X = 11*'' x /v')3 × X q- that continuously depends on
F = (Pr,F 2. F3, 114 ) E = L' xLW)' x L"/! x U!"'" and 0 C E = the
trace of TV"2 on 1', then there is a unique continuous rolution mapping
of equation (2.2) - (2 31 defined in a neighborhood V of To in E: V -
(p, u, T,p) C} X.

Assume the oprrator Q defined by QU = 7. U -" . on W'' is

surjective. The first two equ.itions orf 124) ha- a unique solution (U, P) E
( ItP)3 x L', where P is uniquely determined by the condition that the
total thervial presture. = (pgj, l)n is a constant. Moreover if U = V + WV
with V E -S(fWl and IT E G0(4) then the second equation of (2.4) is
written as

(2.5) -IAt + V(P- 4-11V .V) = F, - 119e

in the sense of distributions since gradA =: Agrad. Since divA = Adiv in
the sense of distributiois it lhub follows from the vector field decomposition
of (LU) 3 that P - 3pV.- V e L' is continuoulsly depend on 1I and F2 E
(LW)3. Then the third equation has a unique solution 8 e T:•2,r/2 aý a
continuous function of U E (V,,). "Thus, the last. equation of (2.4) can
be equivalently written a.

(T.6) .012 n f *(fl) = F4 in jpIY

where V C C(Wt-. W"'*) is defined by the solution (U.8, P) to the first
three equation of (2.4), described as above and is compact s!ince 17'' is
compactly embedded into L'. It then follows from the Riesz-Sliauder the-
ory that if-- RIa is not an eigenvalueof the linear operator * then (2.8) has
a unique solution I1 C 110"' that in turn implies (T.4) has a unique srolution.
The range conditions on the operators Q, '. which depend continuously
on the total pressure, are generically satidied.

3. Axi-syrninetrke flow and Jacobi polynomial based spectral
metlhod. In this secrtion we consider a numerical approximation of the
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axi-@y-mrictric flow of a homogeneous carrier gas. The so-called Boussinesq
approximation of (1.1) assumes that the density p is ronstant. Thus, from
the mass conservation we have V .u = 0. 'he buoyancy force in the presence
of a gravitational force is modeled by

00-T - 0

which is obtained by the Taylor expansion of the perfect gas law (1.2): i.e.,

_ P - pe T - lo

ru 00

where the pressure dependent term is neglected when no reaction is taking
place. This results in

P0 & " it- V Vu) + Vp = 1 iAu + (7 - 0o)gra.

(3.1) V. =O, "r 0 ,

SuC, (IT ,,. VT)= V.(k VT). Tir=0.

Furthermore, we consider the axi-symnietric flow: i.e., i•-- (uc oad, usin6, u')
where u, w, th," radial and vertical coinpncnt. of the velocity field it, sat-
isfies

8U + u Ou +_ _,

at 0" 1 . Tz+9r r2

0 Ot +i " + + (T - 9,;).q

(3.2) (11, it!) = ! (ru) + w 0

rT Or 0 T;
C',: (I) +" L' OT:•)' k A, T

uu; = 0 T = 0 on r.

Here. A,.0 = 1-(r -'. , , + 67:,.. The dornain Q, can be paraIJet-eriztAl by
(3.3) fl,, = J(r,:) 0 < r < R and 0 < z < alr)}

where we assume that a C C"(0, 11) is positive. Note the singutirity ap-
pt-aring in the operator A-, is removable in the sense that

(3.4) ], 6':r = 00( , + o., )rdrdfa O Or 0z(
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for v E C'(GO) and vr = 0. Similarly,

F F q Oq
(3(5) - V, .(uf(Lqrdrd: = fJ'r) +n 19 r , 0rI

for q E C'6tQ,). Define the Hilbert spaces H = L2(f(L rdrdz) and V =

{0 E It: V- 0 E H and or = 0). Then the right hand side of (3.4) defines
a bounded. symmetric, coercive sesquiliner form a on V x V. Thus A, with
dorm(A.) = 16 E V : A,6 e H) is a self-adjoint operator on H (see, fTra).
From (3.5)I -V,. = V" with doui(Vr.) = V. Hence the weak or variational

formulatirn of (3.2) is given by

,du~t) .

"PO ({ - bj ((u, U'). C) + ajmt). 6) =
dtU

eoff- -- t + b2(~)V)+adi.r=0
(U.) dt

Qp: .ý-T• 1) . bY) (u w,,T),h))J + ka(T(t), i) = 0

7. - (u(t), v(ttI = 0. (u(f). r(f). T(I)l E V3 + iWt- ).0),

for all (6, e, I ) c i" satisfying 7, - (p. t:) = 0. The pressure dependent
term is eliminated by the fact that (V'p. Ia c) = 0. Here the sesquilinear
form a- on V x V is defined by

(3.7) 0'r(61i,9) = 6•(d;,6 + -ojo 2 drdz

and the tri-limmear forms bi. kb, ard3 b3 are de-fined by

r 2 I
(1)f - (?1 + wt2)) - it curl. (u w rdridz

(0 .. 1
(3.8) b((u,wl.,t,"J,• = ] (-(- (,c + ,&,)j + ,,curl . (,,.,,w),frrdrdr

6~((u.it, T) L7 ((t o) .-VT- V, .- ",,. )T)>,r"drdz

for 6, V-, t. V, where cirl.( ). = - •- Note that

bx((u.' W), U) + 62Km it,). 10) V(#I .+ U) (u. w)rdrdz = 0

and

,V. ,t) VT = V,. (( )T., )
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for (u, w) E V2 satisfying V, . (u, W) = 0.

Consider a boundary value problem

(39) - d (rd tr(r))+-M2u(r)- f(r). "(R)=0.
r dr dr r

in order to present the basic idea of the taii-method based on Jacobi-
polynomials. A weak (or variational) form is given by

(3.10) (() = (d-dr + 2u,) rdr = fti' rdr.

for all i' E C 1(0,R) with V,(0) = V'(R) = 0. Let W4' be the completion of
C'(0,R) with ý'(R) = 0 with respect to the norm defined by X/c (..); i.e.,
if m > 0 then

W= E ACi,,,(0. R) : O(R) = 0 and r 12dý, r 1 12  L2(f.

Then a define. a bounded coercive sesqciilinear form on W x W and thus
for f E W"P there exists a unique i E W that satisfies (3.10). Tan-
approximation is based on represcnting an approximate solition u" of u
by

, uk JJ'(2r - R)/R)

where JA:(.) is the k Uaccbi polynomial and satisfies the orthogonality
[CHQZj:

: Jt.(r)Jj(x)(1 +.r)dz = 0. k •l.

Then u" e Z" x W satisfies

(3.11) jft(•u n•¢+ it' w),r - f (r"-f),;,rdr

for all 6, E Z" x IV, where Z' is the space of polynomils of degree at
most n on (0, R) and p" 2 is the orthogonal projection of !2(O, R, rdr)
onto "-2 . Note that u" E Z" x TV implies u"(0o) = tg(R1 = 0 and such
conditions are forced on the approximate solution v" [not on each element).
The projection P,- 2 reflects the fact that the dimension of the suhpace
Z' x IV is i- 1. Using the standard argument tCIIQZ]. one can show that
lu" - u~w - 0 as n -- x.

Similarly, the above outlined method can be applied to (0.6): i.e.. an
approximate solution (u", u,, T7-) is represented as

"(= 2-

LkC 0 r.
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and similarly for u,0 and T" where L&~) is the Legendre polynomial of
degree I {CIIQZ3. The divergence free condition V, (is(l),wv.4)) =0 is
approximated by

(V7.(u(t)1w 0 )). Ph, = (WO0(), w"'(,)), Vp),. = 0 fOr ' Z h'-n-

where (. .denotes the inner product of H = L2 (11. r drd:) and

z n n f= E 0j, Z I A((2r - R)/R)Lj((2:- - o(r))/a(rfl}.

Let P" he the orthogonatl projection of H onto, 701- 2 and It'" be thr
divor~gren.' frir' 'iubspacrnof (7r' "2 fl V')?, defined by

WF" = (W.tiU!") e: (Zn: , x V2:((u"(I),w"(I)). 7p), = 0
(3.12)

for all p E 201-2 n2-2),

Then (ul"(I) w"9 It"' and T"(t) E Znl"'" 1-ilV + 0 satitlies

d tp' , ). e + 1b7((n". ý"),cI) + 070~"(f ). 4) = 0

(3.13) SO q "(1)(' t"10 f

Cpc.((P"ý-., qlt +0~(t"X) ?u" A-

St

for all (,)C W" and qj E Z",,'2 x 1". Here, the approximnatcr form14ts
b?, b" and b~arc de-fine-d by
(3.14)

b~h~te) (,t(1 p7.( ? + - P'((P'u] crurl N,tt)) Oh

62 ((u, Wt), V) = 0 '( P '4n, 2  + iv'}) + p n` pr P' ) curl .(u,. tv)), tiý

b; ifu. w, 7T), rj) = 4W, wv) -VT, il) t - ((u, ,") VT;, Tf.

The sesquilincear formis a', a' are given by

Note that the above. approximation is ecergy coitselvative iin the satse that

=0and b(u~r7)T)
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for (u",w") E W" and 7" C Z'-"? .

Next, we disc.uss an iterative method based on the Generalized Mini-
mum Residual Method (GMRES) [SS] and the prc-conditioned projection
method [Gi],[DI] for solving the steady problem of (3.12) - (3.15). First
note that Z1','12 r V ir isomorphic to Z'1- 2 n2-2 ConF.ider the Stokes
projection Ps onto the divergence free subspace W", defined by

(3.16) A4%r+B"p=f and (BY)' =0

where A'. BD is the matrix representation of the (au-approximation of--++ 0 ) +
and

respectivelý and

P-1 = i.1,h((2r - f)/R)Lt4A2. - kr)n).

"That is, in ordcr to calculate the Stakes projection P- onto It" we require
a solution to the (approxinmate) Stuke" equation (3.16). Ai alternative and
less expensive projection is the L, 2-projection:

PL, = I)-

which corresponds to (3.16) where A' is replaced by 1. Thus the precon
ditioned projection based ol the L,- projection PL, is defined by

P2 = PL,(A`)"PL,.

"fie preconditioning for the thermal equation ma% be given by the ellip
tic pre-conditioner (-A"- llowfvcr. the elliptic preconditioner is les
effective for the convective domiinant flow (i.e.. high density or high pres-
sure flow). Hence the pre-conditiontd problem of (3.1:3) is written as a
constrained nonlinear equation:

(3.17) PF(y) = 0 and y E range(P).

where y consists of the solution vwctors for (u". u', T') and P represents
(lie :matrix representation of the pre-ronditioning described above and sym
metric po.4itive definite. Sinje the nonlinearity in (3.13) is quadratic it is
easy to calculate the Jacobian J(y) of F. We extend the hybrid Krylov
method for nonlinear equations in IBSJ to (3.17). Set J = J(y.) at a current
iterate y, and r = - PF(,V). Let K,,ý he the Krylov subspace

Em = st.pan{r, PJr,.. (PJ)" - 1r).
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We define an approximate solution tin) to the Newton update PJb = r
(i.e.. the Newton iterate is given by Y+ = yc + f) by the least square
mininization:

(3.18) minimize (JH + F(yJP))(P(,J6 + F,.y.,,) over b C FC,,

The following algorithm is an extension of the nonlinear version of the
MIRES algorithm develored in IRSJ] to equation of form (3.17), which

involves the Gram-Schmit; orthogonalization of the Krylov subspace Kmi.

Algorithm: Newton-GMRES

(1) Choose y• and in and smt k = 1.

(2) Set. r = -PY where F = i'(yw) and J = J(yp). Compute ft - -(r, r)
and ,. = ri,'d. for j = 1,2, -, m do

h11 = (Jr,. ib. i = 1.2,-j,

r1 4 =ph, - >- i

/ = (K 11. Pkv=) - 2~h,,P1 and r,+x = i%+i!hI+i..

(3) Define Hr, to he the (in -1- I x in (Ilessenberg) matrix whser nonzero-
entries: are the coellicients h,;, I < i < j + 1 1 jm. Compute the
least square solution

r = 4((Rtflff'Uf-rnt,)c: and set M" I-- :Z vi.

(4) Set yk;+i = y;+ t1"- if ronvergrnre criterion is not satisfied then set
k- k + 1 and go to (2).

Numerical implemenation and convergence analysis of the prmposed method
will be reported in a forthcoming paper.

4. Shape optimization and shape derivative. In this veticn we
di&ruti the shape derivative of solutions to the thermally coupled Navier-
Stoke.s equatioms. iur the sak- of clarity of our presentation we con-
sider the 2-fl steady ene (evnlution. 3-D. axi-syminetric problems and
a more gencral boundary condition can he treated as well); i.e.. (u, p,T) c
(HJJflio))? x L 2(fl(n)) x (H1 Rfq,)',+D) satisfie!! the Bztu',sinesq equation

-vAu-uVun-Vp :gTr.+,f. V nu=O
(4. 1)

-kAT-t- u VT -( 0

Throughout this section we assume that 0(n) is sufficiently smoloth and $
is giveni as th( trace of a function in !12 (fl(a)). litre, thr solutioln (u,pT)
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depends on the shape of domain P(n) which is parameterized by a E Q•,,.
Consider the shape minimization problem [lHNi,[Pi]:

(4.2) minimize J(u, Ta, ) over a c Qa

subject to (4.1). For example. the cost functional J is given as follows

J(u.a) :fn(,) !"- ud' 2 dr + $N(a)

(4.3) J(.ra) = f.) JV,,lda• + ,\*(a)

J(T,a)=f,) IT-- Td12 dx + dN(o)

where u., 1'd is the target vector field and thermal distrihntion, respec-
tively, #3 - 0 and N(a) denotes the regularizntion of the shape of domain
fl(a). A succebsfdl winrcrical optinizRtion method is commonly based on
the gradient of tlo cost functional with respect to o. In order to calculate
the gradient of J we. will employ the so-called material derivative method.
Material derivative concepts are well-known in continutin mechanics and
have been applied to sh:ape optimization problems in [c7C,tZoJ.[IICK] and
the references therein.

Let a C Qý,t be fixed and for Itl sufficiently small, let g(c(k) = Fj((I))
be the image of f.(s) obtained by the mapping r, ; IP - R*? defined

Ft(XI, (.2) ( ( z2 ) + t h(xl. r2).

In the context of §3 we have

fl,(a) = (at) = Q(a + t v). r E C2 (fl. R).

In what follows the dependency of £Ž(a) on o will he diopped. Fi-r .
HIMZ) and c, C JJ'(p.•) let, u. define

(4.4) = a oF.

The material derivntive odf ; for R.t]d h C (!11iO))II2 ;- re•'n hy

(4.5) O(Z) = lint I(z + t h) - ( for z c P,.

If p. has a regular extension to a neighborhood of Q1, then

(4.6) •.'(m) = lira i( -- =(x) - h(x) -V ), x E S)

is called the shape derivative of p. Define

It = det(DFI) and A, = (DFJ')*(DP1 "1 )It.
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where * denotet the transpose of a matrix and DFt is the Jacobian of Ft.
It is then eapy to verify that

h., -'(DF,)I.=, = Dh. tDFY')lt = -(D
(4.7)

d It J.== divh and "At 1-, = divhI- ((Dh)* + DV).

Moreover we have

Lemma 4.1 Let

E, qt •tdxt, i: F H'(St).

Thcn

di
(4.F) F.'= it -,t=1 +- O- piv hdx = divf h dr.

Proof: Using fubini's :horrm we ohtain

F.= L ph dr

By difTerentiating F- with recpcct to t wc obtain
d d d
ýii, =f WIf. .'p,€ + I,.• T •, I;

Since To = I and 1,1=o =div h (4.8) followt by setting I = Ui.

Note that Vt :: (DFj')V-2 . Thus. (4.1) - (43) is equivdlently written
as: (u•,ptT') satisfies
(4.9)

fu' (J:V-'). 0) + a(A, Vu'. V¢t) +7Yrp', $) = (I: (jrT II f

(,s', .h,•,') = 0

(at"- (JVtV'. sP) + k (A, VTV, I) = 0

for 6 e (1v(12)V, •e HIP(f) and ta E H'(f., where .h= I. DFT7 and
(- denotes the L2(tZ)-ianier product.

We will sketch a proof of the exirtence and regularity of solutions to
(41). Let V1 be the divergence free suhspaee of (HQ))2 . Define the
solution map S on V1 x (HJ(Q) +0) by S(uT) = (itT) where (iii. t) is a
unique weak solution to

- vAfi+iuu.Vi-I Vp=gTe2 +rf. V'u=O

-k AT - u VT = 0
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First we. show that

01 =nin<T< max=0 2 a.e. xE
rEr- - XEr

Let ý.(z) = inf('ft,0). Then i," E Hl(0) [TY] and we have

k (VT, v•:) + (u VT, V) = 0.

Thus,

k(V:. Vw- ) + 0(,, V l',') = O

Since V.. u = 0 we obtain IV, ?-12 = 0 whirh implii, r. = 0 an hence
T> 01. Similarly, one can prove that T _< 02, choosing the t(,st function

= sup(T.. 2) Next define a sesquiliner form a on Vo x Vý by

I ,(wI, t,) -= V (7r., 7V;) + (U• Vtv, t,).

Then f satisfies

(4.10) Tr(,) (gt cq + f, 0) for all c Cz Vo.

Note that cr is boundd and coercive since ey(,. v) = v I7[t;1 (e.g., see (Tel).
Thus by Lax-Milgrarn theorem (4.10) possesses a unique solution , E 14o
and we have

1FIv-,ý < _ (If11, + g ITIi,,) for some M1 > 0.

Let C be a closed convex subhspace of V" x (H,.(.() + 0) defined by

C = (u, T) : Ivlv <5 A (IfIL,• + .: IQl[) aud 01 <ý T < .9,. a.,:. z. E Q').

where 0.1.... = ninx(1I0 I. 10,_)). Then S maps from C into C. Note that.

(U , V )i', V)I 5 MA tilL,4 uini It'jn1, for u. W*. v E V

for some M, > 0 and that If (Q') is compactly embrdded into L4(41).
Hence one can show (e.g.. see [1DI]) that the solution map S is compact. By
Shauder fixed point theorem (e.g. see ['Tr]) there exists at least one solution
to (4.1). Define the Stokes operator As on H = {6 E (T.-(fl))2  V • d, 0
and n.-670} by

(-As.u,) =(Vu, V7) for 6C V

with domain

dnm(-%.) = ju E V : 1(,u, V7)j <ý c !5lm for all 0 E
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rThen it is known [Ta] that -As is a positive self-adjoint operator on H.

dom( -As) C JJ2(Q) and V =dom(--4' 2 ) jHIdom(-As%/ 2 . More-

over, we have 0-7 6 E V.t. 2 =domn(-A' 4 ) for 6 6 V, Thus,

i = (-As)-'(gTe t.+f-un-V ) E dom(-A2 4) = (V dur(-As)J2; C H312(P).

Hence. t E L'(f) and u - r. it. u -7T E L 2tf)). This implies that (u, T) E
(112(fl))3.

Assume that h E C'•(R'). Then there exist.- a solution (u',p '. T') E
(H'(f)) f H2 (fl 2))2 X H 1 (S)/Rx H2 (f) to (4.9) provided that fi E L2 (Q.).
Assume that the linearized equation of (4.9) at (it. .7 T) (i.e. t = 0)

-vAr+u-V7++ Vu-+Vq=ge 2-i+-f. 7'(=f2
(4.11)

it V 9+ V . VT = k Al + f3

hao a unique solt ion ( ) Eq. R) (1(Hi (0) HýH )' x H'(I x H!(Q)lf
H12(Q) which depeuds continuously on fA, 13 E•, 2lQ) and f: E Hf'f f with
(1, f) = 0. fLh. since FtAl . It and J, is cont inhously differr. ntiable ill
I and Lipbrhitz in j: it follows from the implicit function fhliory that for :t'
sufficiently timall (4 9) has- a (locally) unique solution (u', p1, T7). Mor orv-r,
one can argue that

Utl -- V f-

Pm = and 1a1 =7'
f-0 1 -fl

exist in 112(Q)) and i exists in IL'(P). Note that

d
f(bfr'•- . 6)lh=Ž =(divhf, 1)+(i.Vf) = (div(f1I). -) = 1 7 1• ) ij, ,*

Since 4j, =divh. = A =divh I - ((Dh)* + D2', and div r

(Dh)" it folloow• from (4,9) that (itfir T) -atisfles
(4.12)

v(V. Vi )+ v(AVu, T76) + (fuit + it Vu + u -(JVu), o)

+(Vj,, 4)+ (JVp. •) = (gtc 2 o,) - (. h, 7,)

(4. V7-)+ (it. JVC) = 0

k (VT-P, 777) * 1- fA V T. 7,) + (u VT- , 7VT ui (JVT), 1) =it

for all 6 C Ill(I), -E 1 J(j!) and q 1 II(Q).

Next we derive an equation for the shape derivative (ut'.T). Note
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that.
(4.13)
(7(h Vu), 0) +~ (A Vu: V 0) - (Au~. h -

(hO): 3  (hj):L) -(hi), + (h2) 1, Uz" Oz.
= ( ()L2): + (h2),,) (h). -( + (h2)22) Ufa Or

+ ((h1  ur,2 + hiur2 :2 -+(h 2,)r1ti2 2 + h2u:*..,; hi(U,,~, + U,31. ) "
((hj )rUi, + +ii1  (h.-'), 2 ti,2l + h2fl~lr 2  h2(fly,, 4+ U,.a 1 )/

=(hu - hi tir,)::. 0, ) - ((h~u hvm... i.

= (curt(h2u,, gradm) =0,

where we assunied thai, 9 E H(',?) r, P(.Q) samisfies r" -0., Sirn~i!mrj.
we' have
(4.14)

(7 (h -V p. o) + (J 7,p. ~)±(V p, h -7p)

(hip., + .2Pr,.
IPI,1 + 112P,, (6?1y3/1

(crurl(h, 62 - h-_61), grad p) = 0

ror the cornvective terma

+(div h(u- vu. 0) + (U V, . /I -7 .V')

-((h . V u). -Vu + u - ( - V (7,u)jý 4p) - (h -V(u . Vu). p) = 6

Moreover. %ye have

(41.16) '4 - TT. o) + (di'. hT, 6) + (T1, ht Vd -A r'

Since jP' h- 7 .V? it follows from (4,1) and (1.12) - (41.16) that

(V U. V (i - 7, u, I- 11,' 6) =, u.j e
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for all 6 C (I4(O)tnJ (fl))2 satisfving n.% 0 0= Using exactly thile nanuw

agaunents ax above, we obtain

k (VT'. Vq;) + (ti -VT' + VT. q1) = 0

for all qE 11h3(iI)QHN(Q) satisfying n-Vq = 0, Fina+`. ibr .d..
frec equation we have
(4.17)

(h. -,. rV t ) + (u, JVa?4) + (V7 U, h. V- )

- (bi(',)r, + +a,1) + (ht(U2)r, + 1l2(t12)zr, Vj,)

+(tui- (h2 )}7 +'+, (-2).,++,) + (112, -(b1 ,, )rsr -+Qrj)"+,,, ,,,"

-((ui )g, + (u hl)r,, h•,.., + h2 t,,)

- (curl(h, u2 - h•211), grad 10) = 0

provided that IA E h12(f). Thus, from 4.12),(4.17) we obtain

(a'. Výt) = 0 for t! E F Q

[ience one can conclude that if the assumption (4 11) holds. thfen for field
h F C, •'(R') th- shape derivative (U,-p',T') C X(Q)-2 L2(Q)?x H:(pQ)
exists and satisfies

--v• n' + ul-u'+u'.Vut+V••4•p'="-g~T'e 2. V'+u'0- (

-kAT' + 7. VT' -t u' VT = 0

with boundary conditions

u'+hVu=O and T'+h-.,I T=O ouF.

S. A ugmented Lagrangian method with second-order tipdIntte.
In thi- section we discuss an application of the autgmented Lagrangian
method fur concsraincd minimization problems that arise is, flow control.
Let H, U and Y he Illubert spaces and set X = 11 x U. Consider the
constrained minimization pioblem:

(5.1) minimize f(ua) ovcer aU /H and a F K

subject to e(uta) = 0,

where K is a rinsed convex set in U. In practice, the coutrol spare U is
of finite dimensional (i.e.. which is parameterized or invo•lve, finite many
inputs). For example. consider the following optimal control prohh m

(5.2) nhiflilniZe I = j IT- Tii2 d over o • K I,"'
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pcuI-VS is Vp = pAu--LO(7* 0-')ge

Where we a.mtmcim that 9i is the trace of Lipschitz continuoub runction
el, on U and i(ius in H' 2 ijl. 11sing thr same. argument~s as described
in 5.4. given a E K Onei chn Show that (haere exjM4t at leagi. one solution
0, pT) C 112 Q(?2 x 11oi x H1(!?) f~l 'Q) to (.5 ). If we define
a funtiion t byv T -- T - n, 6 then the third equal ion of (5.3) is

7~C.*T= 7 - (k 7t)+ V 5-Ot Ti- 0.

Let Ur b-c (he di'.ergcne'it free stil-ipAre of Itf~ f~ xI 111> I~(Q) and
Y X11 W.I. 'I'en (Z.3) C811 be- written ns; r(fu. T). a) -. 0 where

r (fl(u. 7'. t). tU.(f' I it.)) is d,-fiiwd by

%le u .a 4) = p (V i, 76' + p, v' ,is,. 6)- ~- El T -~ Oo p

(f 2u.2 ,a). t': 0- (VT. Vti-) + prC, (v -T 77,l) -;-(k T(F1 o R, C),

for 6 C V' and t' iý 11' (QI), A lhure EF1 a +~ , Oi . The divcrgenrc free
constraint is absorbcd in the delaiuition of 1'. Recall again that

and that HIM(fl is rompactl ' ernbtcdded into L4(M). Thiiq, the cost. func-
tionil J1 is sequentially weakly lowe,(r stiii-coiitinuc'iis (r.&, see [DII'). and
therde-frn tF5.2).(5.3) fias at least one Soluliova

Ammine the following hypotliees".

(Ill) there exists a Solutkiel X = (',, a) to (5.1).

(112) f. c re twirt, ccntirmeuoilv 1-differentiat'Ie in a convex
Lueighl4 prlio'd 4f r*.

(H3) z'* is a rfegular peint in tht sernse -'%Z]' !haf

(5.5) 0 E int{' htI) :' v If and It E K - o)

Then it fulit ,ý froin !NI7.] ilial the-re exists, a Laarangk- multiplier A* C- Y
stuch that
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for all V F X and a C- K. The at., rangian method is based on

an equivalent formulation of (5.1):

(5.7) minimire f(.,a) + j ;e(u.a)ff. over ut c X and a C K.

where c > 0. Then the augmented Lagrangian algorithm (Poj,[Hel is the
multiplier method applied to (5.7); i.e.. it involves a sequence of minimiza-
tions of the functional

(5$S)2
subject to a E K.

where the mnuhiplier sequence (A*) in Yl is gen~rared by the first, ordr

update

(5.9) Ak+: = A1 + (ek - CO) O(u4t ak),

for k I. Here the pair (u, ',at) is a minimizcr of L,(', .. Atj and assume
that 1" = 1'. otherwise each element in Y* has its Riesz representation.
To carry out this iterative a sequence of monotonically nondecreasing, pos
itive real numbers {Ik), C1 > co _> 0 and a start up value A' for the
Lagrange multiplier for the equality constraint t(tt, a) = 0 need he cho-
sen. The convergence results of the augmented Lagrangian method for the
infinite dimensional optimization problem are established, for example, in
IlKl],)PTJ. The augmented Lagrangian method is a hybrid method of the
penalty method (i.e.. A* = 0) and the Lagrange multiplier method (i.e.,

0= ) and combines good properties of the both methojds. It overcomes
the difficulty of the penalty method which requires to have a large value
of es. The cost functional L,,(z. a. A*) is locally strictly camwvx provided
that At is sufficiently close to A* and the second order optimality condition

Lg(t,,tt . A )((;. 1h), (v, It) > (:1,12 _; )hl
($.i0)

for all (x. h)E X satisfying e'(ua, ct)(v, h) = 0.

for some ,r > 0, is satisfied. Here. L(u" c r,¶ A*) denotes the bilinear
form that characterizes the second derivative of Ldugr. A) = f(u,a) f
(A, e(u,a)) with respect to r = (u,a) at (z. A*). That is, the cost func-
tional f is not necessary to be (locally) convex, which is required for con
vergence of the multiplier method. The algorithm (5.9) -- (5.9) has been
successfully applied to parameter estimatien problems in elliptic PD!s
jlK2j.t 1KKq and optima! control problems for 2-D incompressible Navier-
Stokes [DI]. The first order update (5..9) provides q-linear convergence of
the iterates (ua,a*) in X. In 'IK31 we have investigated a second order

-... . . ... . I
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update scheme for the augmented Lagrangian method. In what. follows we

assume that a* Gint (K). Thus, (113) reduces to

(5.11) '(z*) is surjective.

Hence the nec-ssary condition (5.6) implies that

(5.12) L,(u*,,',,A')=O and e(u',a')=O,

for all c > 0. An algorithm proposed in [IK3! is to apply the Newton method
to (5.12). Then the resulting algorithm is stated as: given a current iterate
(z, A) the next item ate (n.r A+) satisfies( L'(r.A)c'(.rr* x - r /L((5.13) (L'.,ke() e(.') + r)+ =-( '(k)e(z) "

e'(z 0 A-

Note that

L'(C. A) = 0 A + cc(a)

and

(5.14) L•'(•r,A) = L"(x,A, + ct()) + c(e'(.)(). ,'.1.)

Consequently, suppose I(.. A) - (x*, A')[ is sufficiently small then it follows
from (5.10) [IK3] that L"(z, A) is coercive on X x Y. Thus equation (5.13)
can be regarded as a general Stokes equation. Following an argument due
to Bertsekes one can avoid forming L" during the iteration. From the
second equation of (5.13) we have e'(x)(z+ - x) = -e(xr). Thus the firs(
equation can be written as

L.(x, A + ec(x))(z+ - x) + e'()'(A+ - (A + ce(z))) = -I.:(, A + ee(x))

and hence (5.13) is equivalent to

(5.-15) A+ - )A.)
wbere A = A + ce(').

Note tflat A is nothing but the first order update of the Lagrange multi-
plier if the current iterate z minimizes L•(x, A). Equation (5.15) is more
advantageous than (5.13) since the squaring term ce'(x)*e'(x) is absorbed
and les calculation is involved. If we define a matrix operator 5 on X x Y
by

s(Z. A)
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then it follows from (5.10) that S(ztA*) is boundedly invertible. Thus.
suppose (zA) is sufficiently close to (r*,At) then equation (5.15) has a
unique solution. We summarize our discussions aw

Algorithm 5.1

(I) Choose A' ElY, r > ;_> 0., andset =e-e, k= I.

(2) Determiner = (uwt) C X x K such that

L,(.aA) < L,(u, o. A) = (x*).
(3) Set A A t + ?(s).

(4) Solve for (Zx. A÷) 4 X xY:

(5) Set nk.- = Jt and A"4' = A÷.- If the convergence criterion is s!atisfied
then set k = k + I and go to (2).

Remark 5.2 A vat iant of Algorithm 5. 1 is obtained by skipping step (2).
Then it is reduced to the Newton method applied to equation (5.12). If
x = (u. a) mininmizes L,(.. A*) over f x K then step (2) is completed. Step
(2) implies a sufficient reduction of the merit functional (the augmented
Lagrange functional). let (Hl),(112) and (5,10),5.11) hold. 'ihen it is
proved in [IK3] that if JA' - Aily is sufficiently small then Algorithm 5.1
is well-posed and (xk, At) converges to (2r, A-) q-quadratically.
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MATHEMATICAL MODELING AND NUMERICAL
SIMULATION IN EXTERNAL FLOW CONTROL

YUH-ROUNCI CU°

Abstract. This paper pretents an invtstigation of some active control problems for
an external flow field. A series of numerical simulations are performed to investigate an
urte•a.y vicous flow generated hy a circvar cylinder undergoing a combined rotary and
rectilinear motion. By treating the rotation rate as a control variable, we present results
of the time histories of forces acting on the cylinder burface and their time-averaged
values under scvcral types of rotations. The impact of changing rotation rate on the
vortex formaticn. hwluhdng the synchrunr.zation of cylinder and wake, is demonstrated.
Based on the optimal control thenry, an optimality system is formulated to determine
the optimal rntation rate- and the snoltion orbits. Though only the moving boundary
mechanism is diseissnL the rosults presented here add insight to the optimal design
of rn•rol mechanism and may provide guidance to the formulation of other complex
optimal flow control prnblems.

Kcy words. external flow, optimal control. rotating cylinder

AMS(MOS) subject classifications. 76105. 49320M 93(C20

1. Introduction. Flow control has become a critical issue in aerody-
namic improvement and design which may provide real-time effect for many
important applications, such as highly instantaneous maneuvers for the

super-maneuverable aircraft 115j , and the optimum design of arrodynarnic
ennfigurat ions 'lI,. It haq been demonstrated in a number of experiments
that the control m-chanisms, such as moving surfaces. blowing, suction,
injection of a different gas, etc, may provide useful tools in flow control.
Considerable effort has been devoted to the improvement of control mecha-

nisms. However, the principal progress to- date has been essentially accom-

plished by experimental investigations [11]. Most recently, the areas of both

theore-tical and computational approaches have received growing attention
and bercome a subject of research focus [12,1.4,13.21,,3.0,11J7,22,24'25,
31,32.51

This paper preisents a systematic investigation on simulation and con-
trol of an external flow by using a moving surface mechanism. In order to

keep the problem easv for analysis and simulation, we restrict our study to

"a simple geometry, i.e. a rotating cylinder. An unsteady flow generated by
" circular cylinder undergoing a combined (steady or unsteady) rotary and
rectilinear motion was studied. In this model, the rate of cylinder rotation

"Intvr#Usriplinary Center for Applied Mathematics, wnd Arro-pace and Ocean En-
gineerng Department, Virginia Polytechnic Institute and Statr U-niversity. Blacksburg,
VA 24 J61-0531. Ihis work was supported by Air Fbrce Office of Scientific Research tn-
der AFOSR Grant F-49620-92-J-0o07. The author gratefully acknovledges Profevsors
John Burns and S. S. Sritharan for manky valuable discussions on various aspects of this

project. Thanks art a!s, due to DVi M. Coutaaceau for providing the experimental
results.
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is treated as a control parameter. Several specific flow control problems
were formulated which depend on their corresponding objectives and con-
straints. The overall goal is to gain insight into the possible form of an
optimal controller and demonstrate the feasibility of using tim -dependrnt
moving boundary mechanisms in external flow control.

Basically, this paper consists of two parts: numerical simulation and
mathematical modeling. In J2, the problems of active control of flow around
a circular cylinder are formulated. The governing equations and two types
of flow control problems are described. In §3, a velocity/vorticity formula-
tion of the governing equations and a computational algorithm used in this
study are briefly described. All numerical results and discussion are pre-
sented in §4. The results demonstrate the feasibility of moving boundary
mechanism in flow control. A mathematical theory in flow control associ-
ated with the problem of a rotating cylinder is formulated in §5. In §6, we
outline the future direction% in the area of external flow control. Although
this investigation is mainly concentrated on the flow control problem of
a rotating cylinder, we can extend the numerical algorithm and mathe-
matical analysis into other type. of flow geometry and control mechanism.
For example, the utility of blowing/suction control mechanism in many in-
vestigations may only need little modification in both existing numerical
algorithm and mathematical formulation [10,25,32].

2. Problems for a rotating cylinder. 'he most. di.tinguishing fea-
ture of a rotating body traveling through a fluid is that the separation is
eliminated on one side while the other side of the cylinder separation is con
rinuously developed. In consequence, Ihis asymmetry of flow development
results in a transverse force acting on the cylinder surface in a direction
perpendicular to that of flowing stream [33]. The research on the problem
of a uniform stream past a cylindrical rotating body has been the subject
of many experimental investigations and numerical simulations since the
pioneered work of Prandtl [26,27]. See the papers by Taneda [35], Mo [191
and Tokumarn and Dimotakis [361 for a cylinder undergoing rotary oscil-
lations, Taneda [34), Koromilas and Telionis [18). Coutanceau and MWnard
[9], Badr and Dennis [31, Badr et al. [2], Chen, Ou and Pearldtein [8],
Chang and Chern [61 and Ou and Burns [24] for a cylinder with a constant
speed of rotation.

2.1. Governing equations. Let B denote a circular cylinder en-
closed by an impermeable boundary F, while the two-dimensional exte-
rior domain D = R2 \{B U F) is the zegion occupied by an incompressible
viscous fluid. In this unbounded quiescent fluid, the circular cylinjer is
impulsively started with a translational velocity U(')er in the i-direction
normal to its generator and simultaneously a time-dependent angular veloc-
ity Q(l~er about its axis. In an inertial frame fixed in space, the problem
considered can be mathematically described by the Navier-Stokes equa-
tions:
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a

Fi,. 2.1. Schematic o ta rotating cylludc: in so i.vtie! f.snu:

(2.0) 61 +&i-V)ii= -V ui+ in D(L),

(2.2) V-fi=O. in D(T),

with the following boundary conditions and initial ,ondition

(2.3) 6(i. llxr = -U(i)e + f/tO(-Vcr + ie).
(2.4) 60~J)=O. as II-Oc.
(2.5) fii, 0) = 0, t = f P) E D(),

where F. ii = (i, v). p and it are, respectively, the position vector, the
velocity field, the pressure field and the coefficient of kinematic vieýcocity.
Also. e., P. and Cs are denoted as the unit vector in the direction of i-,
f- and i-coordinate, respectively. Notice that in this coordinate framle, the
exterior domain D(T) is a time varying region as shown in Figure 2.1.

In order that the region occupied by the fluid may be treated as a time-
independent domain, it is necessary to recast these governing equations
into a non-tnertial reference frame attached to the body (i.e. the circular
cylinder) without rotating of the reference frame. This can be done by
introducing a new coordinate system (Z. y) such that

z = z + f,• v(r)dr

Thus, the new velocity field it = (u,, t) is given by

{ u = u+ U(i)
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In this new non-rotating reference frame, the system of equations (2.1)-(2.5)
can be rewritten as

(2.6) u+e(u.V)u= -Vp+VV' 2 u+ ý e., in Dx ,,,TJ
dlet

(2.7) V. u = 0, in D x [0,T],
(2.8) u(r, f)11, = Q()(-.y, + re,),

(2.9) u(r,;) - U(t)en, as Irl -oc,

(2.10) ,,(r,0) = 0. r = (r,y) C D.

Tile translational acceleration dU(t)/dt of the body relative to the inertial
frame appears as a fictitious body force in the equation of motion when
written in the non-inertial frame. In this new reference frame, the domain
occupied by the viscous fluid becomes time-independtnt D(1) =_ D. More-
over, this formulation is equivalent to the problem of a uniform flow past
a rotating cylinder. la all control problems considered in this study, the
rotation rate 0](t) will be varied while the rectilinear speed iU is fixed to a
constant value. In consequence, the fictitious body force is eliminated in
the formulation.

2.2. Optimal control of fow field. From the standpoint of opti-
mal corxtrol theory, various optimization problems may be formulated for
a rotating cylinder that depend on the desired perfor.ninces and control
constraints. A simple example of optinial control problem is to drive the
solution orbit u(t;P) of system (2.6)-(2.10) to a. desired flow field zl by
controllin, the rotation rate fP(l) with a minimum effort. Thus. one call
define a cost functional as

(2.11) J(n) = LI Q - ZdJ 2'drdt.

For example, zd is a desired equilibrium state in which nn vortex shedding
occurs. Then the problem ik to find an optimal trajectory of f0(t) such that
it will drive the -olution orbit u(t; 0l) as closed as possible (in anl appropriate
working space) to the desired flow field zd in a fixed time-interval with a
minimum cost of (2.11).

In fact, the questions of possibility of suppressing vortex shedding
by active control of rotation rate have been investigated by Taneda [35],
Coutanceau and Meaard [91. Chen et al. [8) and Ou [23]. The studies of
active control (or feedback control) of flow/structure interactions are of
considerable practical important from the sta-idpoint of wake modification
and the reduction of flow-induced vibration [28]. In particular, the isu.ues
of suppressing the vortex shedding or tailoring the wake development have
many potential applications in marine structure, civil engineerinlg and ad-
vanced design of aero/hydro-waneiuvering vehicles. However, the quebtiolls
of whether cylinder rotation can destroy the Kirmin vortex street and con-
sequently suppress the vortex shedding have remained to be answered. VUp
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to now, no previous attempt has been made in this area from the standpoint
of optimization and control theory.

2.3. Optirmal control of force coefficients. Although many exper-
imental and numerical investigations have been conducted on the problems
of rotating cylinder, most of previous works were primarily focused on the
formation and development of vortices in cylinder wake. It appears that.
the effect of the rotation rate on the cylinder forces exerted by the fluid
hnq received far lIts attention despite the fact that it has many important
practical engineering applications. In this area, various problems of opti-
mizing force performance can be formulated. For example. we can consider
problems of finding an optimal control 0", among a set of restricted control
parametrrs that will achieve the maximum value of the time-averaged lift
functional

or the minimum valut of the time-averaged drag functional

(2.13) J1(W) = •-' CO( S)df.

Here. '1) is the final time of mrotion after the cylinder impulsively started.
Similarly, we can also formulate the optimization problem, by seeking an
optimal control that maximizes the following two important performnnce
functionals

(2.,14) Ja() ttL _ki IJ d.T, U )t' sl)]

and
oTs (t. (1 S .1) dt

(2.15) J(4) = . if h .l?)dIffC- ( ot, 1)d

All above performance functionais may provide us the vnlnnblr implication
and insight to the optimal design of control mechanism.

In fact. the objective of optimal control of forces around the cylinder
surface has a clote relation to the objective me-ntioned in §2.2. From the
fundamental theory of fluid inerhanics, it is well known that there is no drag
force on a circular cylinder which is immersed in a uniform potential flow.
Thus. such control problem is to ask whether we can drive an arbitrary flow
field to the potentia flow (or at leasLt as close a,- possible to the potential
flow field) which no vortex shedding occurs.
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3. Direct numerical simulation. In many practical numerical sim-
ulations for the laminar motion of a viscous incompressible fluid, both
exterior as well as the interior flow domains, the formulation based on
the velocity/vorticity variables would provide many advantages over the
primitive-variable formulation of (2.6)-(2.10). The velocity/vorticity for-
mulation is especially well suited to treating initial development of flow
generated by an impulsively started body, in which the flow field is com-
posed of a relatively small vortical viscous region embedded in a much large
inviscid potential flow. In consequence, the computational domain may be
restricted to a smaller region where all vorticity contributions are con-
tained. In the numerical simulation part of this study, a velocity/vorticity
formulation of governing equations wasq used in all computationq.

3.1. Velocity/vorticity formulation. For a two-dimensional viscous
flow, when the velocity field is rotational, the vorticity is defined by

(3-1) we. = x u.

Here w iq the. vorticity field. The vorticity transport equation is obtained
by applying the curl operator to equation (2.6). The pressure term is thus
eliminated when the continuity equation (2.7) and the definition of vorticity
in (3. 1) are used. Ihe Carterian coordinate form of the governing equation
for the vorticity field can be expressed in the dimensionless form as

(3.2) + 1 V . .

In addition, the vector Poisson equation

(3.3) V•u = -V x (we.)

again obtained from the continuity equation and the definition of vort icity.
which can determine a velocity field from a known vorticity field. All the
variables are made dimensionless by mean. of the characteristic quantitil..
The cylinder radius a is used as the length scale while a/l' is used as the
time scale. The Reynolds number Re = 2Ua/v is based on the cylinder
diameter 2a and the magnitude U of the rectilinear velocity.

In a non-rotating reference frame the dimensionless boundary condi-
tions for a rotating cylinder can be written as

t =: -- (t)ye2r + oQ(t)rey. for (z.. y) E r

and

u =e", for VP71 ,.

Here, the ratio of speed of cylinder rotation to spred of translation is de-
noted as *(I) = fl(t)a/U. This speed ratio is the primary control parameter
throughout this work.
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3.2. Computational procedure. The numerical approach is based
on an explicit finitc-diffc-rence/pseudo-spectral technique, and a new imple-
mentation of Biot-Savart law is used to produce accurate solutions to the
governing equations (3.2)-(3.3) 17,8,23,51. The vorticity transport equation
(3.2) is first discretized by a second order central differences in the radial
direction and a pseudrspectral transform method in the. circumferential di-
rection for all spatial derivatives. This semi-discretization form of vorticity
transport equation, consisting of a system of ordinary differential equations
in time. can be written a'

(3.4) l=4

for all the interior grid points, Hlere .t, N are denoted as the number of
grid points in the circumferential and radial direction, respectively. The
calculation proceduare to advance the solution for any given time increment
can be summnarized as follows:

Step 1: Internal vorticity over the fluid region at each interior field
point is calculated hy solving the discretized vorticity transport equation.
An explicit secor ,-rder rational Runge-Kutta marching scheme {37] is
used to advance in time for (3.4):

and J' =F(29)A1
•b= F(•' t +O0SJD:AI

t j'3 =2j, - §2.

where (:,) denotes the scalar product.
Step 2; Using known internal vorticity values at all the interior grid

points from step 1, the generalized Biot-Savart law

f xe(rt)ex(r-r )
-(ro2, = 2  f.J r- r•t•31 2

(35) - I 212(1)e, x (r-i:s r) dA + Ue,

is used to update the boundary vorticity values at all the surface nodes.
Here rQ represents all grid points located on the solid boundary. This
integra' method proposed by Wit and Thompson 1,111 provides t he basir link
between velocity and vorticity fields throughout the numerical procedure.

Step 3: At this stage. all the vorticity values in the computationFt

domain are known at the new timn level. Then, the velocity at points on
the outer perimeter of the computational domain is calculated by (3.5). In
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equation (3.5) now r0 denotes the points located on the outer perimeter of
the computational domain.

Step 4: The new velocity field can be established hyv solving the. Pois-
son equation (3.3) with presmrbed solid boundary con lition; and outer
boundary conditions that have been calculated from step 3. The resulting
discrotized Poisson equation is then solved by a preconditioned biconjugare
gradient. routine. This step completes the computational loop for each tinite
level.

One further important point, to be rioted in this integral approach is the
determination of (lie initial flow field. In contrasit to the special t.echnique
used by other methods. this integral approach enables the. numerical code
to generate the initial velocity field by executing onle cycle of a s~oluition
procedure (froitn step 2 to step 4) rather than employing any additional
treatments.

An important. cons4'quenc~e of using the velocity/vorticity foirrnu lat ion
is that the forces can be directly evaluated from the knjown vorticity vnlues
on the cylinder surface. In a viscous flow, it is well known that the total lift.
and drag forcesý are contributed by the pressure and skin friction due to the
viscous lflects. Hence, for known vorticity values on the cylinder surrace.
the lift, and drag cnefficie:ts can be calculated in the r- 0 coordinates by

CL~t = CP(0 C1 Y) f2w (-iQ)cas d
(3.6) Ret=C~t+Cjl = Orf: (tr csO

arid

(.) C~n(t) = C'ViL(1) + CDJl(t) =#2 ( )r -ji, 6d9
w-e f2V ()i sin dý

wherc the subscript r denotes quantitit-s evalupited on the cylinder surface.
The subscripts p and f represent the contribution from pressure and skin
friction, respectively. In particular, we denote the positive values of C'L in
the negative y-direction (as rioted in Figure 3.1).

4. Numerical results and discussion. In this section we present
computntional results for an unsteady flow around a rotating cylinder that
undergoes a wide variety of steady and unsteady angular/recti) n car specd
ratios at. a Rirynolds number of 200. In this model, the rectilinear speed is
fixed to, a constant value while the angular velocity is treated as a control
variable.. Although the choice of time-dependent rotat~ion rates that. may
be used t~o control the rotating cylinder are unlimited, the computational
results presented here are restricted to the following three types of rotation:
1) constant r-perd of rotation, or = constant, 2) time-harmionic rotary oscil-
lation. c$i() = Asin srf; 3) time-periodic rotation, as(l) = A:.4in r(F/2')1I.
All variables arc normalized to the nondirnensional form,ý in thc formula-
tion. for R type of time periodic rotation, F = 2(if /U is the re-duceod forcing
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FIG. 3.1. Schematic af the rotating cylinde-r with three types of rtation: a a--

02/U constant. (b;~ ot?)= 41i,%t;(c ~t ! n (F/2)tj.

frequency and A - •rFO is the normalized maximum rotation rate of the

forcing onsillations. Also, f,O are denoted as tlhe frcing frequency •ald

the angular amplitude of rotation, respectively. In a non-rotating frame

attached to the cylinder, the configurations for the different onatrols coil-

sidered in the physical space are sketched in Figure 31. together with the

corresponding rime evolution (f the angular velocity.

In the case of time periodic rotation shown in Figure 3.1(r), the cylin-

der under contrTol is rotated int the counterclockwise direction about its

axis with a time periodic angular spefd. Thi. particular type of rotation

is expected to provide a substantial lill enhanrcment and drag redullction

through a proper dec i•e of both the angular amplitude (thuit the normal-

ized maximum rotation rate A) and fotting frequency (thus the reduchd

frequency F). This improvement can be demonstrated by comparing its

respective force performances against the time- harmonic rotary oscillation.

ror a complete discussion of the-c performance improvements and rompar-
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isons, the reader is referred to Burns and Ou [5].

To assess the accuracy of the numerical algorithm, computations were
first performed over a wide range of constant speed ratios up to 3.25 at
a Reynolds number of 200. Several particular speed ratio parameters
wcre chosen to allow for the comparison against the experimental work of
Cotutanreaii and Mnard [9]. For a constant value Of speed ratio a = 2.07,
Figure 4.1(a) showt an experimental flow visulization picture which is pho-
lographed by a camera representing an instantaneous streamline plot, at
time I = 9.0. 'tle calculated result under the same conditions is shown
in Figure 1.1(b). In tlhe comrputation, the non-rotating reference frame is
translating with the cylinder while the camera in the experiment is znov-
ing with the cylinder w; well. Exetelent. agreement is ohtained, despite the
fact that a high velocity gradient is induced in the near wake due to the
cylinder rctation. In Figures 1L2(a.1)) a simiiar excellent agreenient. is also
demonstr,.ted at a greater speed ratio a = 3.25. A detailed discussion of
the accuracy of thc numerical sq-heme can be found in f8].

4.1. Forz.c performance" Constant speed of rotation. Figure
4,3 show, plot. of the time histories of lift, drag and lift/drag coefficients
at various values of !peed ratios (U < e < 3.25) and for time in the interval
0 < I < 21. As seen in Figure 4.3(a), when the speed ratio is increased to
2.07, the lift increases timewise proportionally, However, as the speed ratio
further increases, lift, nppears to initially decrease then increai.%ns gradually
at later timcs. Not surprisirgly, the maximumr value of Ct that can be
achieved by rotation is also higher as the speed ratio grows. It is also
observed that, at speed ratios lower than 2, the respective lift curves exhibit
a well established periodic evoluti-,n. However. in the range of a > 2. it is
not known whet her the nature of this periodicity will continue if the time of
investigalion is expanded. Apparently, as can bc seen from Figure 4.3(a),
the cylinder rot at•to) (worked a.s; a bounidary moving control mnechiarisin)
doos yield a substantial lift enhancement.

At illustrated by the drat, curve in Figure 4.3(b) there is a substantial
increa-s in drag when the spLed ratio is increased. In all cases considered
here, these drag curves seeilm to couiverge after a certain time and then
oscillate under different amplitudes and frequencies thereafter. Detaile.
numerical results on the effect of the speed ratio to the resulting lift/drag
curve are shown in Figure .4.3(r). In the range 0 < a < 2 07, the lift/drag
performance appears to improve timewise (for 0 < i < 24) with an increase
of a. If a comparison is made between a = 2.07 and a = 0.05, a no-
ticeable improvement of the lift/drag performance is observed. Although
a higher lift/drag ratio is achieved by increasing the rotation rate in this
range. the, question arises whrther any furthb(r increase, of irs will result in
a continued improvement, of the lift/drag ratio. Intuitively, it is natural
to ex.ect a monotoniral increase in the lift/drag ratio as a increases to
a = 3.25. However, this is not the case as a comparison is made between
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j1

FIG.. 4.1. Inst anlarnt-ius streamline plots for R- 2*00. a 2.07 at tI 90 (a)
flow- visulkzation pict tre', (b) computed result.
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a = 3.25 and a = 2.07. In fact. the lift/drag curves illustrate a gradually
decrease in performance over certain time interval when the speed ratio
increases beyond 2. Moreover, this tendency toward lower lift/dr3g ratio
becomes noticeable when a reaches the highest value (a = 3.25) considered
here. Nevertheless. for all a considered here, a significant increase in the
maximum value of C1./Gi) can be obtained by increasing a. However, it is
found that it will reach its maximum value at a much later time for higher
values of a.

From the results of force improvement observed in Figure 4.3, it is
interesting to examine these performance functionals described in (2.12)-
(2.15) as the speed ratio is altered. Figure 4.4 illustrates the use of direct
computation to calrullate J., i = 1, . .. 4 tinder various constant speeds of
rotation. Viewe curves shown in Figure 4.4(a) represent the time-averaged
lift, drag and lift/drag coefficients with respect to the speed ratio in the
range 0 < o < 3.25 and for time in the interval 0 < t < 24. It illustrates
that the time-averaged lift J, is almost linearly proportional to the speed
ratio, while the time averaged drag J2 remains as a constant value up to
a := 2, then monotonically increases with speed ratio thereafter. As shown
in the figure, the optimal speed ratios corresponding to the maximuam value
of .J, and the minimum value of J2_ are a, = 3.25 and a! - 0, respectively.
Most importantly, the resulting time-averaged lift/drag is not linearly pro-
portional to the speed ratio. As shown in the figure, the highest value of the
speed ratio a = 3.25 considered here is not the optimal constant rotation
rate corresponding to the maximum value of .3. The maximum value of .13
occur.s at a lower speed ratio. approximately a* = 2.38. and it represents
a substantial incrcase of 440% over the lower speed ratio a = 0.5.

In Figure 4,4(b), the variation of the (total lift)/(total drag) force ratio
(i.e. J4 in (2.15)) with respect to the speed iatio is shown for o in the range
0 < a < 3.25. Although the maximmn valu. of J4 is achieved at a value a,*

between a = 2.0 and a = 2.38. it should he noted that this optimal speed
ratio a• is not necossarily thel same optimal value nr as sqhown in Figure
4.4(a). The results presented in Figures 4.4(a,h) demonstrate an effective
way of improving performance by changing the rotation rate and illustrate
the important of selecting a proper rotation rate in order to optimize the
force performance.

4.2. Force performance: Time periodic inputs. The previous
results only applitd to constant rotation rates. In this section we con;ider
time-var)ing rotations. Beca-ts the goal of this report is to demonstrate
the franihility of using a time-dependent movi-vg surface mechanism for op-
thnizing force performance, we shall restrict our simulations to two periodic
inpujts. That is, the time,-harmonic rotary oscillation a(t) = sin F•F and
the time-periodic rotation oijl) =I sinnr(F/2)tI.

It is well known that when a cylinder oscillates in a uniform flow the
associated forcing oscillating frequency and amplitude can influence the
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vortex formulation and force. response substantially [38,40j. It has been
experimentally shown that at Rr = 200. the natural Strouhal frequency of
a non-rotating circular cylinder (a = 0) is approximately F& = 0.185 [M'.
It is of important to study the behavior of fluctuating forces at imposed
forcing frequencies which lie in the neighborhood of the natural frequency.
The temporal evolutions of lift, drag and lift/drag are shown separately
in Figures 4.5(a.b.c) for a time-periodic rotation a(t) = jsin0.25tj and a
time-harmonic rotary oscillation o(t) = sin 0.5t, respectively. Notice that
these two types of rotation are employed by the same forcing frequency
(i.e. F = 0.16) which lies in the neighborhood of the natural frequency.
The numeric-al resultq clearly confirm the expected benefit of this time-
periodic rotation for both lift and drag forces, as shown in Figure 4.5(ab).

In comparing these two types of rot aoion, it should he noted that rotat-
ing in the satire direction ,atzses. the lift curve to be shifted upwards due to
the nature of rotation, whIe the drag curve is shifted downwards. In terms
of performance, this corresponds to an increase of the time averaged lift
force in the time-span of the investigation, while in the same tiute interval,
a substantial reduc-tion of the time-averaged drag as well. The resulting
improvement of the lift/drag ratio is shown in Figure 4.5(c). There is an
interest in addressing the relationship between the force improvement and
the vortex development around the cylinder surface. Although not shown
here, one particular interesting feature is the phase difference betwcvn the

maximum value of lift and the vortex sheet cutting time [231- A thorough
investigation regarding such issue may gain some insight into the pessible
form of an optimal controller.

To demonstrate the intfluence of time-varying rot ation on the frmporal
development of these force coefficients, several additional values of forcing
frequency were performed. Figures 4.6(anh,c) show the comparisons of the
time-averaged value, of lift, drag and lift/drag coefficients (i.e. J: J: and
Ja) between these two time periodic inputs with variation of the reduced
forcing frequency in a rauge of 0.08 < F < n).32. These forces were averaged
with respect to the rime interval 0 < t Z 24.

In the case of time-harmonic rotary oscillation, the local maximum
value of time-averaged lift, drag and lift/drag ratios correspond to the

forcing frequency which lies in the neighborhood of the nat ural frequency,
as shown ih the Figure 4.6. This particular feature was also observed in
the numerical results of Mo [19] where it was shown that the drag peak
occur.s at the forcing frequency equal to the natural frequency.

As for the cases of time periodic rotation. it illustrates that a variation
of forcing frequency in this range (i.e. 0.08 < F < 0.32) has litter effect on
the time-averaged forces. Although the dilferences in tirne-averaged forces
are minor, the forcing frequency which lies in the neighborhood of the nat-
ural frequency (F = 0,185) corresponds to a larger tite-averag-d drag and
a smaller time-averaged lift. In terms of performance. rigure 4.6 presents
a clear improvement for the time-periodic rotation (o(t) = Isin ,r(r/241)
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when compared to the time-harmonic rotary ocilation (a(t) = sin rFt)
at every tested forcing frequency. It appears that the forcing frequency
which lies in the neighborhood of the natural frequency exhibits a smaller
lift increase and larger drag reduction when compared to these frequencies
lie outside the neighborhood of the natural frequency.

At this stage, we have demonstrated that the particular type of time-
periodic rotation exhibits clear improvement of force performance. This
motivated us to examine the effect of angular amplitude on the force de-
velopment while the forcing frequency is fixed to a constant value. The
parameter A now becomes the c-ntrol variable in the optimal control cal-
culations. Figure 4.7 shows that. resulting forces on the cylinder cani differ
significantly at. different angular amplitudes for a(t) = Al sintO.314ti. This
type of rotation corres-ponds to a forcing Strothal nnunher of 0,2 which is
in the neighborhood of the natural Strotuhal number of 0.185. The angular
amplitudes considercd here are A = 1.0. 2.07 and 3.25. Apparently, as can
be seen from these figures, a larger angular amplitude definitely yields an
incremental lift coefficient over the time-span of investigation (0 < < 36).
However, initially the drag increases with an increase of A. then after a
certain time it oscillates with almost the --inne amplitude and frequency
around an averaged value- Consequently. this leads to a substantial im-
provement in lift/drag with increasing A, as clearly shown in Figure 4 7(c).

The effect of angular amplitude on the time-averaged values of lift, drag
and lift/drag coefficients is shown in Figure 1.8 for a(t) = Alsin0.314t1

averaged over 0 < t < 36. In a range of I < A < 3.25. it illustrates
that all the time-averaged values are almost linearly proportional to the
angular amplitude. Significant increment in !ift coefficients with increasing
angular amplitude is particularly noticeable. This can be demonstrated by
the c•mparison of A = 3.2$ with A = 1. It represents a 2.10% increment
of lift performantce. Ilowver, a slight increment in drag coefficients with
increasing angildar amplitude is observed. A moderate improvement of
time-averaged lift/drag ratio is also seen, Moreover, the effect of angular
amplitude on these time-averaged forces is very noticeable when compared
to the effect of the forcing frequency shown in Figure 4.6.

As noted in equatiotiq (3.6) and (3.7), the total lift and drag forces
are contributed by the pressure and skin friction die to the viscous effect.
In Figure. 4 9(a,b), the pressure and skin friction contributions to the lift
and drag are shown separated for o(t) = lAin 0.283tl over the time span
of investigation (0 < t < 36). It appears thtit the pressure has larger
contribution to the lift, and drag at this particular Reynolds number (i.e.
Rt = 200), As a mattrr of fact, similar contributions are also observed for
all frequencies and amplitudes considered in this study.

4.3. Synichronizatitn of cylinder and wake. The synehroniration
of cylinder and wake has lonu, been known to be an important component
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that the forcing frequency of rotation (F = 0.141) lies in the neighborhood of
the natural frequency (A, = 0.185). Notice that in the case of time-periodic
rotation shown in rigure 4.5, both lift and drag curves oscillate with the
forcing frequency (corresponding to a time peri-d of T = 12.5), clearly
"exhibiting a periodic re"ponse. However, in the e.se of time-harmonic ro-
tary oscillation, the lift curve oscillates with the same forcing frequency
(I = 12.5) while drag curve o•cillates with the period of T/2. C(ince-
que•ntly, the lift/,drag ratit, oscillate at the sanme frequency (T = 12.5) for
bith typev of rontation.

For the case of tinie-pI,-riodir rotation (t) = AlsinO.314tf presented in
Figure 4 7, we exte-nlt|ed our observation to a relntively longer time. For 0 <
I < 3ý. anl examination of the-e force curves for A = 1.0 exhibits a periodic
rtspone with a frequienry (F = 0.2) precisel e(qlni to the input forcing
freqi:ency (i.e. 7' - 10). Although this periodic behavior is not established
fur A = 207 and 3.25, the corrrspondirg curves ate almost periodic in time.
In order to Confirmll thlis periutlicit. a sequence of in;tantanrcdn streamlines
plots are shown in Figure 4.10. In Figure 4,10, each plot is stparated with
an interval of one time period. 'ih..e streauilinets are plotted in a franie
fixed with the undisturbed fluid. The pcriodicity of the flow ik clearly
noticeable. 'two uppvoste-stn wrt iree are shed alternately oil opposite
sides of the cyliitit'r at .act wyle of rotation The vortex formation in the
wake i6 similar to the came of a non-roTatieg cylirnder (o = 01. Ho~wever,
the midline of tl. JtIrex street tia.* ,.l'n d&splated slightly upwards due
to the nature of rotation (in the counterclockwise (irtction ). 'these retnults
indicate that rotation may provide an effective conuetol 4 the eylinder wake.

4.4. Controlling of vortex sheddiig. lin the caSe of constant rota-
tion. the most complete investigdtion by experiment regarding tie iss;ue of
vortex shedding was accomplished by Coutanceau and M&:ýurd fOJ in their
experiments, it was concluded that a Kirinini vortex street disappears as
speed ratio increases to a limiting value OL Z 2. Their experiments indicate
that there is no formation of any eddy after the first eddy created, One par-
ticular interesting feature is the difference between the experinental work
and our calculated observation regarding the conclusion of suppressing of
vortex shedding at high speed ratios.

Figuros 4.l1(ahcd} show the calculated equi-vorticity contours for
variotu constant specd ratios at I = 24. These calculated plots indicate:
that vortex shedding continues to occur even at high rotation rate's (A >
2.07). However, at these high a, the observed formation of the vortex street
behind a rotating cylinder seems to contradict the experimental conclusion
described in fj9. This difference is due to the fact that the experimental
apparattus was such that only 10 dimensionlcss time units of data could
he collected and in part by the flow visualization techniques used in their
experiments. For a detailed discussion of this contradictory result. the
reader is referred to {8J.
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. I,

FIG. 4.12. Eqgui-vorticitv contours for Re 200 and a 3.25 at = 54.0.

To bettcr elucidate the continuation of vortex fo-mation and conse-
quently its evolution in the wake. we extend the computation to a relative
large time-span for a high speed ratio a = 3.25. Figure 4.12 shows the
computed equi-vorticity contour at i = 54. It illustrates that. votices are
continuously created and shed to the downstream. However, the vortex
shedding process and flow pattern are qualitatively different from that of
lower speed ratios. In order to confirm the continuous existence of vortex
shedding even at higher speed ratios. Figure 4.13 shows the core trajectory
of the first vortex up to t = 24 for variu. o. It appears that the vortex
core moves further away the centerline (.q = 0) of cylinder motion when
the speed ratio is increaced.

It is important to note a recent investigation by Badr et Al. [2] regard-
ing the issues of vortex formation and shcddding. 'I heir c)hC-rvations were
performed both experimentally and numerically at Reynolds numbers of
Re = 10 and Re = 104. For a rotation rate at a -L 3 and R, = 103,
they show that. no other eddy is created after the shrdding of twcn vortice•.
lII addition. the temnporal evolutions of the lift. and drag coefficients imply
that a steady state is in(ldeei approached. However, for a fixed Reynolds
number the issue of whether there exists a limiting value of spee'd ratio Ot.
beyond which vortex shedding completely disappears in the wake rrmains
to le determined. If such a critical value does indeed exist, then it is of
interest to know its dependcnce on the Reyuolds number.

Although the supprrs!ion of vortvx shedding may be achif'ved at cer-
tain Reynolds number und.r a constant high specd ratio, this does not
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FIG. 4.13. rTajectory of the core of the irst vortex up to thijet = 24.0. CI: a -. 0: A:
a2.07:.*: a = 3.25.

imm•diately imply that the constant rotation is the moot effective way to
suppress the vortex shedding among all possible forms of rotation. In fact.
the effect of a time-harmonic rotary oscillation on thI vortex shedding pro-
eses had been studied experimentally by 'raneda Z353 At several values

of Reynolds number. his experiments demonstrates that vortex shedding

can be eliminated under a sufficiently large value of forcing amplitude and
frequency. As motivated by his experimental observations, we have tested
a similar ca;P of high amplitude and frequency by using our computational

algorithm. As shown in Figure 4.14, the time development of equi vorticity
contours indicates that there is no vortex shedding in the wake at. least in
the time-span of investigation. There are only two attached eddies cre-
ated on both side of the cylinder surface. NMoreovcr, thes eddies grow

and elongate toward a tongue fhape around the cylinder as time evolves.
Nevertheless, the disappearance of tltese vortsicec at. large time has not yet
been determined due to the computational time limitation.

Figures 4. 15(n.h:c) show the calculated equi-vorticity contours for time-

harmonic rotary oscillations undcr three values of forcing frequency at time
t = 24 . ror the forcing frequency F = 0.16 (i.e. (Wl) = .•i 0.5f) which lies
in the neighborhood of the Natural frequency asL shown in Figure 4.15(b),
the process of vortex formation and sbhedding is qualitatively similar to the
non-rotating case (i.e. a = 0). However, when a forcing frequency moves
away the nat ural frrgttzrncy, the vortex shedding patterns are changed sig-
nifiantly as illstrated in Figure 41.15(a) and (c), The calculated equi-
vorticity contours for the time periodic rotation a(t) = in r(F72)tl are
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shown in Figure 4.16(a,b.c). Although the vortex shedding process is sin-
ilar to the case of a = 0, the midline of vortex street has been displaced
upward away the centerline (p = 0). This demonstrates that the type of
rotation can influence the formation of vortex street.

Now, the next question is to ask whether a time periodic input or any

constant rotations will produce the most effective way To suppress the vor-
tex shedding. If we treat the rotation rate as a control variable, it is of
interet to find an optimal control such that vortex shedding will be sup-
pres~ed with a minimum effort. This leads us to consider the following
more challenging and practical control problem. That is, to find the opti-

nial trajectory of the rotation rate that will drive the solution to a desircd
flow field over a fixed time interval mentioned in §2.2. Notice that there
are many control mechanisms other than moving surface can be applied
for controlling flow field around a circular cylinder. For example, the blow-
ing/suction on the cylinder surface may produce a similar result P25,321.

5. Mathpmatical theory. A precise understanding of time-varying
moving surfaces in boundary layer coLtrol may provide an effective way
for lift, enhancement and drag reduction. By treating the rotation rate as
a control variable, we will eventually be interested in finding the optima,
control (i.e. a time history of the rotation rate) based on optimal control
theory. Although here the optimal control problem associated with the
constant rotation rate was solved by direct computations, it is still irupor-
tant to explore the possible implementation of a computational algorithm
to calculate the optimal solution for the more genernl problems. In order

to construct a systcmatic computational algorithm for practical designs. a
mathematical approach is proposed which is based on the mathcmatical
works described in [3l,2j. The detail of mathematiral analysis of gener-
alized solutions o,, lhie Navier-Stokls equation, asaociated with external
flow; can he found in 12S

The following discussion is specifically formulated for control and op-
timization problem; of a rotating cylinder. However, for other types flow

control problem encountered in incompressible viscous flows, such adjoint
method muay be also used.

5.1. Existence theorem of optimal controls. In this section. we
will establish an exislence theorem of optimal controls. Firstly, the system

of equations (2.6)-(2.l0) is recast into an evolutionary equation with h07omo-

geneons boundary conditions. Namely,one need to construct two soletoirial

vector fields 9(r) and , (r) such that

9(r) = 2 f (r)



ADA294785

248 YUH.ROUING OU

(b)

Fia 4. S %,ortx hcdirg ýatsrn of(h ficp -ri .i t SuinM i- 1w(

various~~~* fotigfcutce frR 0.tý2.0 a .S

F = 0.32.



ADA294785

MATHEMATICAL MODELING AND NUMEPTCAL SIMPLATION 24)

(b)

Fla. 4A6G. V.artex shedding patte'rns of the timPe-pmadic rocar iv u.,,cillations CWf••
I sin r-(F12)fI wah various forcin*g frequencir.- f~rf = - 20U, t = 24A0 (a)/ F- = .08. (b)
F = 0,M ir) F = 0.32.



ADA294785

250 Y'H-ROUNG OU

V*.,I=0

=1r -Ye, + rey{= 0, for p(r) > 2(,-11'

and

.(r) = V x (y (I -E)(r)e

V.'4=0
V, = 0I -- e,, for p(r) Ž> 2<'--'

The.e two vector fi'lds *P(r) and 4(r) would carry the non homogeneous
boux•dary vahmv-s at. the solid surface and far field, respectively. Hkere On(r)
is a positive scalar cut-off smooth function such that for t > 0.I e.(r) = 1, rE N(r ,c), neighborhood of r

OE)(r) = 03, p(r) ?> 2r-•/

• < t' p(r) < 2e-", k = 1.2

where- p(r) = dist(r,r),r E D.
Let us now introduce a change of variable such that,.

n(r,t) = v(r, t) + U,(r) +-t)4(r).

A system of equmations with homogc ,u. bz ... " ...... i .. aie-,

Vt + (v. V)v + U(v. Vi,. + SI(t)(v • V* + U(4 . v) + p(1)(, Vv)
= -Vp + vV' v + f,•p in D x [0, 11

V. v = 0, in D x [0, T',
vIr = 0,
v - 0, as !ri -.- x.
u(r, 0) =0. r - (..j ) C- D.

where fp,,t, = f(U.,Q, 4, 1,,) and ujupP{ff, * D.
In consequence, t.his system of.f,.,imtionv ir tb.cn projected to the solenoidal

subspace H by the ortv,,gonal proj-ctor i'll : L2(D) --- I(D), we get

(5.1) �{ Ov(t;,r2) + vAv(t: Q) + N(,s, . v(t( ))= H(, , ,•
v(0) = 0,

where H = {v : D ---. R2:v C L2(D).' .v = 0. and v nly = 0). In
(5.1). A is the St,,kea op,-rator and F is all known quantities. while N
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includes the inertial term of original equations. Also, P(1) is the angular
speed and is treated as a control variable in the formulation. The proof
of existence theorem for the system (5.1) is analogous to the procedure
outlined in j29,3l] we will omit the proof here.

A simple example of optimal control problems as mentioned in j2.2 is to
drive a solution Orbit u(t;fQ) to a desired flow field zd by using the rotation
rate SI(t) as a control parameter. Hence the optimal control problem is to
find an admi.;i6k pair (v. U) such that Iinihnizes the cost functional

(3.2) J(v,fP) jjv(t: Q)-- t+U + $('),- "z2d Ddf j + ., A,.

over an admissiblr .4 rt (14. li;cre 1 1, is the set of all adminsible pair (v, P)
that sati-fy eqnation (55.1) and

(i) (v.) E L2 (0,T:V) x 11(0,T):
(ii) J(vY) M< 0*.

Notice that the cost functional in (5.2) is penalized by the control, which
is rnecezsary in the proof of existence of an optinmal control AMio, V is a
suspace- of If. Th- existence theorem can be stated a, follows:
Existence Theorem. There exists an optimal soluttn (v*fPQ) E 'la?
such Mlant A corrrponding ralue of the (ostfunctional tcLti, cs the a21ol,4 r
finnimum u$ ..

J(v''tW) = inf J(v,ýQ).
(vAt•14).e

5.2. An optimality system. The next qurttion is to ask I'ow to
determine the optimal controls This canf hr arromplished by introducing
an adjoint state which correpomnding to the adjoint of a liniearized vcrsion
of state equatiozi system (5.1). Thr optimal controlf I* is thus determined
by the solution of the optimality system:{ 8.v(!') + r'Av(W) + A'(v(WI). W) = F(W)

-0,p(fr) - vAv(W) - N t(flp(f") = v(*) - Ut + I1' - Z,

v(O) = 0, p"T) = 0,
(5,3)
and

(4.4) Vifp..Sn, F'(i,.D', -Q;(f): - Sn1 dt >0.

where p is the adioint state and N'(v-) is the [richet derivative of N(.)
at. v*. This optimality systenm consists of the evolutionary Navier-StokeN
equations, the adjoint equatiun and an optiniality condition (5.4) that re-
lates the optimal control 0* with the optimal state v*i However, the re-
sulting oy'timality system is complex and formidable. h'lerefore, the next
step is to implement an efficient numerical algorithm to solve the equations

5.3>)(54) computationally.
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Fit;. 6.1. Apphrat;onq of houndrm, nvingsufaccs , s .. ,..

6. Conclusion. The objecdivt' to demonst rate the feasibility of a
time-dependent moving surface as a control mechanism in enhancing force
performance and changing the flow fit-ld were achieved. Although all op
timal control problerns for a rotatiz.g cylinder in this study were directly
computed by trail and error variation of controls, the numerical results are
significant because they show a proper choice of the rotation rate can lead
to improved flow fields. For the case of a ronstant speed of rotation, sev-
eral optimal control problems were considered and solved computationally.
Using time-periodic rotations leads to a considerable improvement in the
force coefficients and was shown to be very effective, espocially compared to
time-harmonic rotary oscillations. Very precise periodicity of the force for
crtain cases was established, and this periodic behavior has considerable
impact on controlling the vortex formation in the cylinder wake. The pos-
sible form of controller to suppress vortex shedding was discussed. Based
on the theoretical approach described in previous section, a computational
algorithnit may be implemented to scek an optimal control such that it will
suppress the vortex shedding with a minimum cost.

The rotating cylinder mechanism (a, a moving surface control) devel-
oped here can also be used to investigate fundamental question regarding
unsteady separation control. For example. the moving surfaces mechanism
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has been successfully applied to boundary-layer control in a number of ex-
periments by Modi et a]. [20], In their experiments, the boundary-layer
flow is controlled by an application of two rotating cylinders located at the
leading and trailing edges of an airfoil. It has been shown that this mech-
anism can prevent flow separation by retarding the initial growth of the
boundary layer. with the important consequences of lift enhancement and
stall delay. In spite of the fact that considerable aerodynamic benefits were
gained by changing the cylinder speed ratio, in their experiments the speed
of rotation wag performedl merely with constant values, However, it should
be noted that if the rotating cylinder mechanism is applied to a region of
flow domain in which rime-dependent separations occurred, a constant ro-
tatiion rate may nct correspond to the optimal performance when an airfoil
is undergoing a rapid maneuver. Such observation provide the motivation
for us to consider problems of unsteady flow control by means of a time-
dependent moving surface, merhanism. Figure 6.1 shows sonie pomssible flow
geronxerit- for future invetigations. Using such rterhanissn as a controller
allows us to formulate a wide variety of practical control problems in real
engineering applications. Modifications of existing numerical algorithms
needed for these types of control problems depend on performance and de-
sign constraints. It is our ho)e that this investigation will represent a step
toward control 6f external flow, and serve as a guide on the formulation of
many prartical optimal flow control problems.
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OPTIMAL FEEDBACK CONTROL OF HYDRODYNAMICS:
A PROGRESS REPORT

S.S. SRITHAR.AN

Abstract. Ini thk article we review some of the -e(cent results Wi the zinatheierat-
ical theory n( nptim,%I feedbac-k control of viscous flow. Vlain results are existence of
ordlinary and chattering cntirco, Pcntryagin mlaximiun principle widE~ feedback synthesbis
using infinite efimenei,)na Hamilton-Jacobi equaltion of dyinwaric programminng. Sonme
preliminary regiit- r-n Atecr~atir control at~o pmcnted.

AMS(NMOS) -abtject classifications. WV ¶13,7G,CAO49.:154f

1. Introduc~tion. Orpinall feedback rontrol of viscous flow has mjany
applications in engineerin- 5.ciencrs. *.this context. both deterministic
as well as stochastic coi trol of Navier-Stokeis equations are of interest.
During the past few year., several fundamimal adv'ances were made in
the. dcterndmnistic case. Mtain questions addresscir werre rxistfnce theorem
for ordinary optimal controls [21,32.28,19], existence of chattering Controls
[17,18.], necessary conditions for free terzininazI state- problem 121,30,1.23] as
well ws the full Pontryagin inaxiniuni principle for prohilems with termi-
nal constraint [16,1 and feedback byvnthesit. usiing llAmiltocn-3acohi -13ellm-an
equitation [3().16,31). Finite element, methods for the maximuim principle
with free end slate arc. analyzed in [221. See also the forthcoming book
[33] for rc-port~s of progress by various authors of this fteld The. concepts
used in those works have! their origins in t.he classical work-s of Filler, La-
grange, Hiamilton, Jarobi and Weierstrass and also in the rnlo'errn w'orks of
Carailtheioori. Tonrili, Voting, Pontryagin and Bellmani. LA this article w
will review rnm.e of the-se developnments. Some initial thoughttF r-ri stochastic.
optimal rontrol theory will also be piesented.

As shown in the above papers of Sritharan and of Fattorini and Stitha-
ran, time dependent flow problemus wit h lioundarly rontrol can he reduced
to infinite drniensiortal semiilinear evohit ion equations of the following type
in a separable Huibert space X:

(1.1) r, +ý VAt + 8(v) = (v. b*)

(1.2) tt)=C hE X.

Here A and B arm respectively the well know~n Stok"_ ope-rator and the.
injertia f, rrn. A' is the control operator whose form is dictated by the type--

C,'Jt 57.1, Na~val Co~mmand. Control .anfi Ocean Riirvrilance Center. San Diego,
CA 9215-1-5000. Supported LY the Mathernatita! Scs' i. h Nfr ' ;ý.n! of
ONR.
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of forcing (boundary forcing, distributed forcing etc). The special cases of

the control operator

(1.3) K(v.U) LNU

and

(1.4) 'V(11 U) ! + f

where LN is a bounded linear operator and f is a given element of X are
alzo of interest. As shown in 1.91, for a large class of flow control problems
including exterior hydrodynamicA and flow through water tunnels the con-
trol operator appears as a linear term similar to (1.3). When the boundary
control is distributed (l7j we obtain a nonlinear rontrol operator similar to
(1.1). Similar models have also been proposed by experimentalists [25.24].
The simple control operator of the type (1.4) was proposed 1y Fursikov
[211.

When we do not have adequate convexity, the controls will be taken as
probability measures (chatterine controls) p defined on the control set U
and the control operator K(., .1 will be formally replaced by

N(v)p) = fu 'V(r, U)p(dU).

Then N(r)ps C- ?6i7VA(v, U) with -losure in the weak topology of X. The
corresponding trajectories will le called relaxed trajectories. In such citu-
ations, as discusbed b'elow, a similar relaxation should also be introduced
in the cost functionals.

In some of our problems the state will have a terminal o-rnstraint of
the type

r(T) E Y C X

where Y is a closed subset.
We will consider two classes of cost functionalsv
(1) Finite 1174i:mn:

(1.5) (v(T))) + f 4 (tf)U(ti)}dt - inf.

(2) Infith Rorz:on:

(.6 -'L(t: V(t)y .U(t))dt - inf.

whore A > 0 is some disqeoint factor and (-, -) is the Lagrangian (for
specific forms o'f the l.agrangian see the papers quot.d above). The corre-
sponding, relax, d funetionals will be,
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4(4v(T))) + jo ju C(,,v(t),U)/(t, dU)dt - inf

and

S v(t), U)pj(t, dU)dt - inf

respectively.
LA.t (T, :M,) be a complete probability space, where T be a set of

elementary eventts. Ly is a sigma algebra of bubsets of T and m(.) : T-

[0. 1] is a complete probability measure. For stochastic. control we will
consider the razidom evolution system on (T, 4,-n,m) with a white noise
forcing,

(1.7) dr = )(v, U)dl + d%7

where the "drift" trmn i, givc.n by

(1.8) FOt',U) = -vAv - L;tv) + .(v, b),

and W is the X-vluhrd Wiener process with covariance Q C £(X:X)
being a symmetric, nornegative, nuclear operator (it. of finit e trace Tr Q <
+0c).

We will considpr three closes of cost functionals:
(1) Fi,,lh: Hori.on:

(e9 1& Hvu ) 4 J £: v(t). fi(1))dt] inCf.

(2) Infinitt Jori:on:

(1.10) S. [J'" e-'ý' Cm ,(1), U (t) )dt]- inf .

(3) Ergodir Control

(1.11) lim nfl £(l. v(t). U(t))dt -- inf almost surely.

In the above. .[.] reprements the expectation.

(1l.12) ,,) =[ (,(')md.
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2. Definition of trajectories. Let us first recall some of the proper-
ties of the operators .A, 8 and N from earlier papers. In this paper we will
restrict ourselves to fluid flow in bounded domains and refer the readers
to the literature quoted for analysis in unbounded domains. The Stokes
operator A satisfier the following well known properties 17j.

PROPOSITION 2.1. A is self.adjoinf and positive definite.
These results have the following consequences. -A generates a holo-

morphic semigroup S(t) = exp(-LA). The fractional powers A", a E R
are well defined and A4 for a < 0 are bounded. For a >_ 0 we write
X, = D(A*) and equip this space with the natural inner product (v, u)0 =
(G01.A'u), corresponding to the norm iil,- = IlAckl. For a <' 0. X, is
the completion of X under I1- 11,

The inertia terin V(.) satisfies the following
PROPOSITION 2.2. There exists 3, 0 <C 3 < 1/2 such that r,() mips

X112 into X-.. Morcover, B(.) : X12 -' X-A is continous, locally
bounded, and lorally Lipschitz continuous, i.e. for (tery C > 0 there c•r1it
constants Kii = K.(('), L8 = L11(C) such that

(2.1) f-(v)- <KB. for f , E X 1pI, and 1IjrjHi;2 < C,

11B(v) - B(u)jj.-,j • Lofts - 'u1l1.2.

(2.2) for v,u E X 112 and B!rIU:12, 1tH011.: _* C

The control V(.) takes its values in the control set U which is a normal
topological space. The control operator AV(v, U) is defined in X ,2 r U

PROPOSITION 2., )(. -) continu•osly mapA X 1/2 X U into X. There
erisfs a continuous function K(.) : U - R. K(U) Ž I such that, for every
C > 0 there enist KA, = KN(C) and LN = Lv(C) suck that

(2.3) flfl (ti.)ft C tvK,,t), for re X212, jt"jj 12 5 C: < U U.

ftV(r,, ) - K(u. U)II < L.vlti - unIt-2K([,).

(2.4) forr E X:, 2,u C X112 , r u andt 4 IEU tab2,iili 2 C_ C.

h'lje 'pace ljad(0,T;U, x) of admissible controls conaists of all U-
valued functions defined almost evexywheerc and satihsfying,

(2.5) ,(Ut,()) � L'(0, T).

This implies that 117j, Vv(-) e C(f0,.j;X1 2 ). the cotrol operator
K\:(n'),U(QP) is strongly measurahkle In fact, we have K(n(.). Ufl))
L'(0. T; X).
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2.1. Ordinary trajectories. By definition, solutions or lrajectornes
of the initial value problem (1.1)-(1.2) in an interval 0 < I < T' are XI/2-
valued functions v(.) continuous in the norm of X11 2 and satisfying

v(t) = S(I)c - A"S(t - r)A-"'(v(r))dr

(2.6) +4 S(t - r).'(t(r), U(r))dr, 0 < t <_ .

The following results defines the trajectory for our control system.
TniOntx, 2.1. Let C E X/•2 and U(.) E ad(O.T;U,N). Then (2.6)

possesses a unique solution v(.) E C('0.T1]: X3/2) fi some n" <_ 7". MoI'-"
over, suppose that

(2.7) Itv(t)li,/2 < C, 0 < t < T'.

Then, if[0,T,,.) is the mazximal. interac! ,,f•cln, f,,(.) ., ,.. .,'r"

This implies that, if v(t) is a solution of (2.6) in a closed interval
0 < I < T', then v(t) can always be extended to a larger interval 0 <
i < T", T" > T' solving the equation in t > T' with ti(T') as initial
condition. This implies that each solution v() of (2.6) either exists in
0 < t < T or possiess a maximal interval of existence [0,T•,), T,' < T
with limsup:, 7 , I,(t)I1h/2 = +•.

2.2. Chattering controls and relaxed trajectories. We will be-
gin with the the class Vb,(0, T: U. •c) of chattering controls [17). Here the
control set U is required to be a normal topological space and the in-
stantaneous values of the chattering controls are regular finitely additive
probability measures Irba(U, 4c) defind on an algehra 4C of suhsets of
U. This Banach space of measures coincides with the strong dupl of the
Banach space Ub(U) of bounded continuous functione.

DLFINITI-oN 2.1. Chattering Controls: The space Vb,(O. T; U, C)
of chaftering controls consists of all

l,(•) C (LI(0. T;C,(U))" - L¢ T:.Erha( .'))

that satisfy

(2.8) (i) 5 , < I.

(ii) f(-) E L'(0,T:CbU))

is such that for U C U, f(1. U) > 0, ac.. in 0 < 1 < 7' thIn

(2.9) j (t. U),t dU)dt > 0.
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hiiJ) if Xe() is the crharacelrite function of a measurable set e t •0. 71
and XU(ý) is the functon identically 1 in U th(en

(2,10) j f (f r(t) 2. Xu(U))v(tdu)dt = rates (e).oJU

(2411) (it) jU 4U)%fdU) E 1,(0,T).

lNote that ordinary controls in the pace Uad(, T TU,K) can be dupli-
cated by chattering controls. If V(-) E 14ad(O.T;U. K), we define a chat
teritig control by the Dirac measure conrentrated on V(t): Pi(t) =
It is obvir,us that Atft) satisfies conditions (i),(ii).(iii): as to (iv).

f ,-(V ) ju ( ., dU ) = K (V (.)) -

which belongs to Ll(0. 7') by the condition '2.5).
We proceed to the definition of the- relaxrd system. It will be of the

form (1 b)-.2). hut with different control set and control operator. lihe
relaxed counterparts (of the control st. U and control operator A' I wil

be denoted by RU and N respectively.
Let tLrba(U, *c,K) he the subspace of rba (U, 4c) whose cemcm-fs

satisfy

KPIU) (d;) < nc"

We will aloz denote K(p) = IJ,
The chattering (or relaxed) control set RU curre_-ponds to all

A C Srba(U, AC,4 K) that satisfy

,fA) Ž 0, VA E 4 c and p(U) = 1.

Chattering controls take values in RU and satisfy the control space "fypoth
esis (2.5) with Kite) playing the part of K1(U). Concerning the structure of
chattering control. we have

PROPOSITION 2.4. Lvi) D bc the sft of all Dirar mr-,asturesl defind as:

D = Ry RU; IL:= hv. '-' E U)

and let ThZT(D) he itt closed coner hull wdth cloirr takern in the Cb(U)-
wtteak topology of Srha(U; #4 r). Then

(i) RU = 7-nnf-t(D).

(it) Element'. of D are exactly Mrh extremal points ovf R11.
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The relaxed control operator N : X'12 X RU -. X will be denoted
N(v)ts to emphasize the linearity in ts and is defined in the following way:
N(v)Ip is the unique element of X satisf'ing

(z, N()t,)) = fU(=,A'(vV)P(drq. Vz E X.

In fact we can show that.
PROPOSITION 2.5. N(v)tt iS continuous in X112 x RU and locally

Lipschitz cotinuos: if K.v = KAN(C) and LN = L.P,(C) are ih constants
in (1-34--4) the,"

(2.12) IIN(v')teII < '.v•,'K(). for v E X11 2, liI;,. 5 C.

[2.la II2%'(v)t, - N(z)pfl -- zlh,,-.,(.},

for,, E Xil.,, E X,.,,. p E RU and itvllp2, 1111,/42 < C.

Morcorrr, Vt(.) C C(O,T;X,1 2 ) and Vp(.) E Vbc(O,T;U,K). N(t.(.))p(.)
is strongly masureb1•.

The relaxed ;ysteni corresponding to Vbc(o. T; U, t) is

(2.14) V,(t) + Ar(t) + 8(v(t)) = IN(v(t)

ind the unique solvahilify can he deduced from Theorem 1.
THEOREM 2.2. Let C E X 1/2 and p(.) * Vbc(O,T: U,). "lh,, (?.14)

possesses a uniqut soltion v(.) E .(-fl. T'; Xip.) for some V' < T. Mor'-
over, suppose that

(2.15) tin,(t)¶Ii,/ < C, 0 < t < T'.

Then: if[O. T,) is the miazwtal inl,'vuo of cristhnrr oft,(.), ve have 7'. >
T'.

2.3. Relayntion theorem. Let us now d&scribe certain interesting
approximation result5 for relaxed trajectories fiS]. Firet result is a contin-
uous dependence theorem for the relaxed problem (2.11).(1.2).

PROPOSITION 2.6. Let p(.) E V'c(O, T; U, n) 6e such that the Irujec-
tory t,(t, p) for (0.14) erishi. in () < I < T. 10e fja..)) C Vbc(O,T:U,.i)
br a generalized sequence u'ith

11II,,(I) - jL(t)ll2: dt - 0

Then throe ewtsts cr.-, and a constant C such ,ha,. ifa > no"
exisls in. 0 < t < T and

!lv(t, 9,,) - t,((, 0)11/2 C

(2.16)

111,(r) - !](r).dr Vt E *0 71.
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The main result below assures that the chattering control space is not
too large and each relaxed trajectory (of (2.14). (1.2) ) can be uniformly
approximated by an ordinary trajectory (of (1.1), (1.2)).

THEOREM 2.3. Let ,(.) E Vb(0, T; U. K) Ar such that the trajectory
4u(1p) for (2.14) exists zn 0 < t < T and let e > 0. Then there crists a
counl4ably valued ordinary control U(-) E 0bc(O. T; U. n) satisfying

CAs. sUPeO 7,lK•(U(t)) < 0o

such that the trajectory v(t, U) crestsf in 0 <_ f < T and

(2.17) flv(t. pi) - r(Q. U)Nl•u _ f,. Vt E [0. TI.

2.4. Trajectories for stochastic Navier-Stokes equation. Solv-
ability theorem for uncontroll-dstocha!stic Iavicr-Stokes equation (ie (1.2),

(1.4 and (1.7)) with U = 0) with additive and multiplicative noise has been
established by many authors[.,34,3.6]. Here we will present a solvability
theorem for the controlled system (1.2)-( .A) and (1.7) for the case of two
dimensions. Proof of this result is only slightly different and will be given
in [.11.

Let us denote by El the a-algebra generated by {W(s),s < • }.

We will define the class of admits.0hk controls U"j(R+;X) as X-valued
stochastic process.s 1(1.,w) which satisa the following two conditions.

(1) U(tw) is Brownian adapted. That is, for each t > 0, ; --- U(t,i;) is
measurable fhiro (t, Er") - (X. B(X)) where B(X) is the Borel algebra
generated by the clo~ed s,.ts of X.

(2) C ff1 IIUQ)ll2dfI < o, VT >

THLoREM 2.4. Let U eU C- (R; X( ) I f L•i E R (R;X). E X and
let W be an X-valued Wietcr proce.4.4 uith trace tlass corararace Q. Then
there exists a unique solution v, to (I.2)-(l.4) and (1.7) such that

(2.18 + Loc(R+; Xll, -(+ ),- C-" "
(2.18) v(.,w) e Lioc(R~; ;X 1  flX�)K *.

and

( 1) _ v ,,I <fiL L•x,,

(2.19) + !r II Il cc,:,x;1 + . Trr. vt > o,

(2.20) (2) C [llt, l-(Ot:X)J < C(T) < Io. VT > 0,L O,

and Vs > 1. 0 < K < 1/2,

(2.21) (3) f {(T) < x, VT > 0
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IHere C'" denote the class of continuous functions from (0, T] - X-,
such that

=Ilc;. - jpv,(t2) - v(12 )II-,
Sur 1'(6 <( D

0<14 <Ij< T'I I.-t~l_< 5 2 - 1'tj <I"

and C-" '= f< C".

3. Existence of optimal controls. In this sction we will give a
flavor of the type of existence theorems established in our papers. More
general theorems can be found in those papers. Results of this section rely
on global unique solvability of (1 .1)-(1.2).

3.1. Tonelli Type: Ordinary Controls. When adeqiiate form of
convexity is available, optimal controls can be sought within the ctass of
ordinary controls. Such existence theorems were established in [21,32.19].
Simplest of this type of thorenis can be formulatrd am follows. Let us
consider the case of free terminal condition (i.e Y = X) and linear control
operator .,(v, U) = I .U. Control set U (Z F is a clo~ed convex subset of
a Hilhert. space. F. We will consider a special cost finctional of the form,IT
(4. 1)( (r, v(r). U(r))dr - itif

where £(CQ v,) U - R+ is a convex function.
THEOREM 3.1. LOt tht Lagrangian satisfies the grouth condition,

(3.2) £(f, v. U) > alIvII-I V .- G . F,
1/2 +- ,'ý, J r :, r C- X 2 "I"

with 3 > 0 and ai. > 0. Then there exists an optimal control U E
L2 (O, T: F).

3.2. Young type: Chattering controls. For genewral flow control
problems existence theorems u•iug Young neasures can bie established
without requiring the convexity ofr(v, .) and of U. Moreover, it is possible
to handle the nonlinear form of the control operator A,(r, U). We will work
with tie relaxed evoluion syýtem (2.14) and the relaxed cc; t functional,

(3-3) IT k (r, v(r), U)p4r, dU)dr - inif5 k/

The following theorem is a special case of the rsults in 117].
Tmmi:ou.M 3.2. Ldt the Lagrangian satisfies the grovth condifion,

(3.4) +(t,,.,, .)> [ff2+.- (U)2 -y, V,' E Xt/t,VU E U,

with 3 > 0 and o, - ? 0. 71htn 1er exzitS on optlinal cLath rin') control
A. E Vbc(O,'1; U, K).



ADA294785

266 &S. SRITHARAX

4. Pontryagin maximum principle. In this section. we will present
the Pontryagin maximum principle which provides the necessary conditions
for optimal controls. In its complete form, this theorem iq proven in [16%,
using the Ekeland's variational principle. A special case of this theorem was
proven in [301 using viscosity solution technique for the Hamilton-Jacobi
equation.

4.1. Poutryagin maximum principle for ordinary controls. Let
us consider the control system (1.1)-(1.2) with control operator (1.3). cost
functional (1.5) and target condition v(T) E Y C_ X. Let us define the
PAc ado-if amilton ran,

14.1) li(t, vp, U) =-< p, Y(v,,U) > -£(1. r, U),

where $a.U) is given by (1.6) and (!.3). NA'! tt'ht we can now write
(1.1) at

(4.2) tt = V7i(t, v.1, U).

TnRnoaR.M 4.1. itt L'E r,T; L) b an optimal controlt and (. t C. ), f!)
be the corrrtpondin# trajectory irith mitial data C c - 1 oft = r, Then
the•r•ex-A an adjotnt state p E C(0r. T; :X'2I Xi1" " ) suc'h that

(4.3) P, =

with final data,

(4.4) -p(T) - 76(i,(T), E Ny.(tv{))

wbhcr Ny(r(l')) is the Clarke normal cvne to Y at is(T). Moreover,

(4.5 ) Wf 6.p, , ) = max 8ft(ti+, p. U).
uCU

41.2. Pontryagin maximum principle for chatterinig controls.
Let ut consider teh rclaxed co-ntrol systrm (2.11) with gene-ral centrol op
erartor, initial data (1.2), cost functional (1f5) and target condition r(T) S
Y C X. Let us define the Rtcahrd PsRaido-Ilamiflonran,

(4.6j) ft(l. v,,vp) =< p, F(t,g) > -LUt. ti)l,

where

(4.7) F(v, o) = -vAiv-- 1(v) -4. F V*'u : t, dt,,

and

(4.8 (l.,,) f = f u (t,,. U)j. dU).
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Hence also,

(1.9) 7, (lp. o) = fu ,(t, ,,pb,,(t, ,).

Note that we can how write (2.14) a:

(4I. 10) t,, = -rl¶R(t.Vp, p).

The following generalization of the Pontryagin maximum principle can be
proven by methods analogous to those used in the previous theorem. De-
tails of the proof is given in *33].

THEOREM 4.2. LO it E Vbc(O,T;U,^') be an optimal control and
v(l. r, C. P) be the co'rt servtd~in trajectory 't:•1h Itnfiat dtfa C CX at
t = 7. T1,rn lh,Arr remls an adjoint state p E C([r. T]: X)' L2 (r, T: X,,)
-uch that

(4.11) A,=-,•~f/,,)

with final dalu.

(4.12) - pT) - 7Oii,(T)) - Nv(i,(T)),

wlhe Ny.(i,(T)) 1.- tM, Clarke normal cone: to Y a! i(T iforrovcr,

(4.13) "kR(t,i,p. ji) = max "fR(t.i,'p.lL).
pERU

5. Dynamic programming and feedback analysis: Determin-
istic case. In this section we will describe the results on f~eiback contrI
theory originated iia [(30 and elalorattd in [16,31]. let us define the valur
fntruion for the romtrrl problem (1.1).,!,.2) and the relaxed cost corre-
sponding to (1.5) as

,(r,nC) m (VJ)Y=,)+ L+D. m,(t!))p(t)dt; p(.) ;=- V'l,(r.7l: U,K)}

with a similar definition for the infirfite horizcn ca.e. From this drfinition
it is possible to establish the Bt lhan prncz Ilt of olinaltty-

V~r,4) ý-inf jj~~)t(~,+•(trO;•. 'cr t;K•).

For the case of inflnite.A horiznn this princirle takcs the form,

V(:)= iuf {j .- •I', ~v,(r~)p(r)dr+ V( ,{t)l; , h1 .) (VbC(0. t U..,) .
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From this, if the value function is differentiable we obtain the infinite

dimensional, first order, Haxnilton-Jacobi-Dellmnan e(•uation,

(5.1) Or-flnj(r,C,-DV) = 0.

with

V(T' C) =4(), VC E X.

Here the. trite Hamiltonian 71j1 (., , -) is defined ni

(5.2) ltp(t.ttp) = max ftR(t.tp,I).

pe*U ,1.

For the infinite Horizon cast we get

(5-3) AV + iR(C,--$ V, : 0.

WeP will note the: following important r-onit. If we define a true Hamiltonian
"H. "..) using ordinary controls.

(3.4) f(I.r,..p) = sup l(ft,p. , P.
ueU

then, we- have
PROPOSITION 5.1.

(5.3) ?ft, .Vp) = WIHf. .,p).

Proof: Note that in (1.9). taking a Dirac mueasure it ;r we obtain.

(5.6) 'H(t. V.p) < R,•tP. r,.).

Now,

lR(t,vi. p) /1 (t1. r,p.U dt.

f sup r (T l, it p,Uipit.lutdU)

(5.7)

-(, , p(d = t, .p,

(i.2), (5.7t) and (5.6) give us (5.5).
In general the value funrtion doef. not have sitfiient differrntmi'dility.

In fact as prerenrcd in lheorer-' 9 below, a,." ty know that it is lo,ýclv
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Lipschitz continuous. Therefore. equation (5.1) needs to be interpreted
eithef in the sense of nonsnooth nalysis 18,9] or in the sensv of viscosity
solutions [11.10,12.13,14]. We will begin by recalling certain usful notions
of derivatives.

DEFINITION 5.1. Let f : X - R be locally Lipschil: funriton.
(i) The superdijfferenfial off at a point xr E X is The qt:bsrt of X dfinrd
as

(5.8) 0+f(z) = ' CSX;limisup *J-f . 1- 0

(6i) he subdiffere itial of f at ci point 2- E X is lhc( Aub-;rl of X defined as

(5.9) -f(x)= 4E X: limn ij [f(Y) '(T) ((, -T) > 0, - 1 1 ..1
(tii,) The Clark" g,'nrrhaocd gradient off at a point z E X is the subst of
X defined as

(5•.10) df(x) ={• EX; f"(x-, ) >_(C,,,), Vi EX ,

-herre ft(z~i,) denotes the directional derivative.

fl1 tv) -fu(5.11)f"(.rt) = linisup

1.r0 Y-

PROPOS•!TION 5.2. : Let f : X - R be ,a ioralyLp ... . t € .
Then for any point x E X.

(i) thf sets O+ f(z), 0-f(r) and of(O() are clo.ird n-irrr,

(5.12) (fi) - 9" (-f)() = (,

(5.13) (,ii - o(-f)(2) =,f(.

(5-14) and tit) ýi- f(zxU) ;+f(z c f C X

We now return, to 1he le-m~tcn-J Aacnbji., , (S,1 ,
define generalized ýclutioiis.

DEFINITION" .5.2. ( Viscosity soltitons ) Let V : :0, T] x X -R be
a locally Lipsch,,l. function. Then toV is oilld a .rernsut, subsohlion to the
equation (1.1) if for raicrh (t. V) E (0, T) x X1,

(a5.15) -• i3/(tin,-{) f O , V((ah ,y ) . +V(t,y)

and ri.%cosify ..,pormtaion if for each (fIy) ý: (0. 1) x X1,
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If satisfes (115) and (5.16) then it is called a Viscosity soltiotn..
DEFInITION 5.3. ( Clarke generalizod solutions ) Let IV : [0, 7 x

X - R be a locally Lipschit function, Then V is calld a Clarke gent ral.
zed .saluion to the equation (5.1) if for ach (l,y) C (0,T) x X 1.

(5.17) rnax{-(r-. (t,y,-4); (C.f) OV(t.y)} - 0.

lsihzg the continuity properties of the cost functional anld continuous
drpendence theorems for the state with respect to the data r, ( and Control
U, the following theorem is proved in ;3029,16; for the control problem
(1.1), (2), (1.3) and (1.5) with quadratic 44.) X - Rt and quadratic
Lagrangian (.,) :X 11, x F- -

"THEoREM 5.1. Verification Theorem Tht raliae function V(...)
C(10,71 x X). For each t Es -rTJ. V,,.) is toattl Lpchitz: in X and
for each ( E X 1 . V(.. C) is abisolutely continuous in I E (r. T). Moreover.
Vi -,-) : Jr.I' x X *- H i,; a ,iscosity solution of thet Iamdton-Ifcobi-
Bellman equottwn and Vy E X 1 ,

-C + 74(1, y, -C) = 0. for some (C. 4) E .+V(tU Y).

fort a., in [O.TJ.
A major open problem in f(dbiack con el theory of Na'ier-ct

tionf is the ,eiqeuinuss of viscosity soluwno.
For the above class of flow control probleui-. we have the followitil

connection between the two eypes of generalieed soýlutions. A similar re-ieh
for the finite dimensional cas- was proven bl Frankowska t20]. Our erae,
however, is considerably mute involved because of the iifinite liniention-
ality and the unboundedness of the lamiltonian. The following lypertai.i
is motivated by a weaker result of Preiss 1271.

DiFrFnTaNIrMaITY 11YPOTHLSIS 5.2. Let OV(t. y) be the Clarke
deriratirt (,I V at some arbitrary point (fy)F [0,F ! 1 , X,. Then

OV(t.y) fl: n-I{VV(r, r) E R Y X: (r.4l C B#, t x,((f, V);

wchere the closure htrt is zn thee weak tfplogy.
"THEORLM, 5.3. Let V: [0,T] x X - R be hocally Ltpschttr.

( Suppose that V is a ,,craotg solutton. sa•tefiic Y(tY) e (Oa .2I I' X:,

(5.18) - ( -1(1, V, -41 = 0, for some (C, 4) C 0Vt y)

and satisfies the diff.rentiabelilit hypothesis L. Then V is atr, a Clarke yeTn-
cralized solution and V(t W y) E (0. T) x X 1.

( f5.) -(- 71(t% 4t,-f =0, WC,4) a -VYt.,P.

Or the other hind.
(!t if V is a Clrl:e generalieed solution and s,,fies• tf. 1 ,G) 1 u .... 4- h.,,
a tIscroi;t• solutwn.
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It I.; of inf r.st to tnlpro';r thi* throrrmin h the dzrictioni of rt 71n oung

Let us mow cunsider the cotmrol problemi (1.1), (1.2), (1.,,) and (1.5)
and give specific forjni of die liamiiliozuianr %hen the Lag_,raiigiali is of (he
form.

C(11. V) = E)(v) + r!TII'.

CASE 1- 11 = A'n~ (Co~vj. 117r thnii writr

76ý. ) (Al tB(c)p) ., -)() - ino .,: [j-,1,2

VWe get

opt

anti

=-(.4ý + I?i',,p) -- O , + .

hi (his ~ the formiulti f-.r tie feedlhark is~

When the value farictk'n ,s not d:Wf.-rentiahlze ti;~n the above formnula hr

wlicre t~he derika'iv' is niv fl:,? in the ot'.:' f('l'.rk,.
CASE 2: It = it' a- X: ?,I! < R) (Cons/rain? (a!ý i Wý now doine

"UP) = Ma (1) r - (u

I1 lom It is' L).' Sh.Iow tlhud,

711111- fur pý < R?

R!!ll! - f~r ;p > H

Thus the lHaminihcraa is

Thc. f-Mbdack formu'.i a in jI cfii ' IS
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where

ff(>Vr4P> p if Uvp!$< ft

I T( P ) = T p h ~ ) -f - i f jt p i I Ž? R
When the value function is nondifferentiabie we hlave as hi-fore.

with p C -8~V, V(trf)) wid.i derivative interpreted in the sen~se of Clark,,,

8. Stochastic dynnamic pragraxaniug: Preliminlary results. We
will consider the stochastic control problem (1.7),(1,2) with cost given by
(1.9). Let uts define the value function,

Vjr T4C) = mini {f fO{ticri) + j Uvj), U(t)d:J U(.e-2"rjT.U}}

We canl then esýtabhls the Bellman principle of o'pt itnabty.

Vt r.C = if{ [ft f( Ir) U~fd r± +Y, it t))] ; o. C- 1;ad

(C.2)
where 14WF( 0 7- U) CUflO.T-;U) is the class of jfreback con bol which
are progressi~vly snmrsnn? 41e1f with respect to the sigma algrbra generated
by the process v(.). For the infinite horizon cabe (cost fuinctional (1.10))
this principle take the form.

V )-= inf {e fVc'evx'urv ~e ; ~t ui(w )

If the -,alut? function is differentiable then frmm (6.2) and the unflmnte di-
irrnsional Ito fornmula 24. 15]. we get the wocondi -rdr-r. infinite dimnesio~nal
Tiannilteni acubli-Belm1man Pquation,

(6.4 O tV f> ýuVj+ -Ilr(Q VI

Witht2

For the inflnfteV Hc~rizouv C~C wcgc

(6)-AV -- 11((, -&(V) - r(- ra"t'v) o. 0

ft is known. in the c,,ntrxr of finitte dirnensioinal contr-ol theory [2,5J. th:at
the- ergod~ic ccntrtd pruklero (t-nst functional 11-11)) is, Yr~ted tco the limlit
problemT1 A .--- 0in f1.10) anld (6.51 adso to the prý)drtn of invarvint measures
for tliY stc-hastic Navier-'Stokeis vqnationsý3I.
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NONSMOOTH ANALYSIS AND FREE BOUNDARY
PROBLEMS FOR POTENTIAL FLOW

SRDJAN STOJANOVIC*

Abstract. Ncw approach to some Free boundary problems, is introduccd. Those
problems arc studied fu'rt by Alt and Cajrarelli 12: in the case of a potential flow. Their
approach ecem nut to be possible to extend to the case of a Stoke! flow. It. this paper,
the variable domain probena is rcla.Ned so that it bctomes a nonsmooth optimization
problem on the fixed doinain for the somewhat singular state equation. State equation
is considered. and the inultivalued generalized gradient of the variutional functional is
studied. Here, we considered Potential How.

1. Statement of the problem. In this paper we introduce a new

approach to some Free boundary problems in fluid mechanics. Here, we
shall consider only the case of a Potential flow. but the same method can
be adopted for the Stokes flow. which will be the subject of the fortcoming
paper.

Consider the set of admis.,ible shapes, i.e., the control .kt
(I.I) ~ ~ i U r = 3, • (_1.1):0 < ll(X) _< I,_I< X- < I.

Denote

(1.2) = {(z, u(x)): -I < r < I),

and extend it E L.' as zero outside of (-1L 11. Define the domain

(1.3) Q. = f{(.r, y); '-I < at i(.r) < 9 < 2).

Also. let 0 D Q. be a dotiain defined by

(1.4) 0 = {(x, y): Ir < a, 0 < y < 2}.

Now, consider inviscid, incompressible, irretatiorna! flow in a finite channel
Q• with an immrrsrd ohstaoAr %, with shape u C U. So, the flow actually
takeq place in 9•.

It is well known that. such a flo, w ran be described Ky the st.reTam funr-
tion i, = tv", which i., a x,lution of (t,, fix ideas, w, tal-r flux to he equal
to one)

Aw=0 in r'~w - 0in {(r,fl);-a < z<c-I or et <.r < a)

,= O i~r.~

i,, 2 in (X. 2); -a < t < a)

(1.5) ,,= 9 ii, {(,, y: 0 < < < I}.

Supported in part by the NSF Grant DMS-9i-11794.
Department of.%hithcma'i-:a! Scicrwes. V' nivv• r :•f nr'r.,,i/: '
0023.
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We could also takea = cc in (1.5), i.e., consider a flow in an infinite
channel. Then the last condition in (.5) is substituted by the requirement
that u; is bounded.

If the stream function u, is known then, of course, the velocity vector
field v can be computed easily as v =< t,,, -u, >.

The problem we propose iq the following:
For given g = g(r, y) - W2.C(F), q > 2, (occasionally we will not hlave

to assume that much) and such Ithat

(IA) g0.in Q•; 1)jx > O.

find (if possible) u EV U (the shape of the, immersed oblsack•) such that, if
ut- is the co-r(sponding solution of (15), then ,lso

(ISj) jvj = 1v,, = g in r,.

By Bernoulli's la"

(1 9) P.1V1+ ••{ 2 = toni.
2

throughout the fluid (here P denjotes the prs.ure). Hence, we see that the
requtsting -perifir velocity profile on tlhe immersed obstacle is equivalent
to requesting fhr ;pterific pressure profile. Obviously, this is a problem with
side po~siilities for applications.

We note that this problem is closely related to the fcl6lowinig, by now,
well known variational problem (see [2,3.6'; I-e IIe I [11) for numerical cc.i-
siderations):

Find w C H1 (f)t satisfying tle boundary conditions

t,: 0 in {((,0);-a <x < a)

(1 10) =2 in {(,2); -,7 C < al

and such that the variationai functional

(l.IIi J(a) = 1Wi {V1 2 + gd.€', >r,,}

is mininized. THere I1 is a characteristic function of the set D. i.,e

(1-121 1vr~{ if FV
c ifKD

The reason to de'ik'p the ,nethod introduced here is that it exte.nds
to other equatzs for wh:-h there is no known analg 4 J (for cxaniplr.
Stokes problem, to ¼,e dis- :,;cd in Ptrt 21.
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2. A rolaxatial of the problemn. In thiq ý(crion we n thm

(2.1) g E hrf(Q).

Sqippone thnt there exists an u E U such that corresponding uw' solves
(1.5,1.8). We shall say then that. u is an ezact control. Now. extend U.'
from O to 0 a% z":

(2.2) =W onfl

10 on QQ

It follows
LEMMA 2.1. If u E U is an (xaol confrol, the, :` E H'(-Q). ani! i zs

a sotuzon of the folhu-in. elliptic boundary eulut probhem (With siiigular
right hand side)

'= 0 in {((. 0): -a < x <' a}

= 2 in 1(r. 2);-a -n< < o}
(2.3) in") = ((2a. y): 0< y <

where G E H- (S?) is a measure giveite by

(2.4) t (ip) = .j yder.

Proof: Obviously, since by tlliptic estimates ,,, is regular in Q",
CU C CcO'(fl) (regarding rcgul.brity near cornerb wee (he be-ii;in of the

proof of the Theorem 3.1). and in Fnrticular H Q).
By the Trace Theorem,

10V g tda' :1•.9[= < ~p~ 19 vr';iI.2•]L:r.l

(2.5)-< ,. ql ,n l! i , ,

So. in padticular. H- E 1 -x(.). Also, sinte q > g . r, is a ineaur-.
Now, more explicitly. (2.3) can be written as: f-ind - 11' ,() (Q :

that

-- 0in {(.. 0):--a < J'< a)

(2.6)u 2 in {',);--a < x < a)

and

(2.7) - / ; =
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for all c E H-:(Q) such that

(2.$) t;=Oin {(r,O):-u < ;r< o}U {(r,2);-a<c<a}.

"To check (2.7), we note that by the maximum principle, a solution of
(1.5) is positive, Hliece (1.8) and the boundary condition in (1.5) imply
that

t~- 2-9 -. in r.,

rhrrt m,~ 1-, the e-xterior imit normrall to 'Ifl. Hence,

-frt = -/•I Vi*V;7 "

(2.10) = / Auu(); - j-•k.4=cvf da

which compltis the proof of the Letnma
LEMMA 2.2. Lfft -- be a soiuitwn of (tO-A 1 . If rt happens thoa

-UlI = 0, thut 2"in, 1. shiti of (1.. 1.3b, i'e., u is an Tract contro.

Proof: li Ol! next se-rtion we shall prove that z' is regular enough
so that calcultuions performed here arcs legitimate. More precisely, by (3.6)
below, it sullhcf-i to a(um:ne, that. .; a CA,(Q). We have

fr. - VO 7 ;.

(2.11) - &',

Let v he exterior to Q,. and let

(2.12) 5,, d -

Then (2.11) inp!i& that

(2.13) ý:f;dr j C( y.Ll? .. AZ)wd.

So,

(2,14) J: , , ,,F
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We ob,,rve that (2.14) always holds for the solution of (2.3).

Now, if :uh1. = 0, then z"•lj\p. = 0. so that ,-'" = 0. and then

(2.15) on - 0 ,'- " .

i.e..

(2.If) g = (z, In) I on 0

i.e.. (1.8) holds. 0
Lemma 2.2 motivates the followips,
DI\iI'' iox 2. J. W 4 U is said lo solv' tlhf rt'laxed •harjr optimization

prohl,.m tfthe corresponding z' defined by (2.)t is .-uah that

(2.17) *(U) = I (Z,10.

is minimized, i.e.. Air! tlherx mx-0.; an i' C- sunhl IIb10

(2.1S) ,(u) = i (u).

Of nourse, an exact control is a minimizer, i.e.. a st!t4t itm nf (2.1 ). On
the other hand. a solution of (2.18) is an exact, .ontrol rovided an exact
control exists.

We do not consider the exact cortrollability. Rather, we shall ttudy
the relaxed probhlin ihtrodiired in Definition 2.1.

3. The state' equation. It. will be convenient to state the regularity
theorem for the ginrral boundary value. So let , be a given functiom (in
1 such that :' = v' on 0c ,C rO&. We ass-unme that the boundary anr i
are sufficiently re-tz!ar (t-e *12] for detnils: alýo we shall give sorne dtlailh
in the case of the bouadary and bomndary values in our case). Fr any

(3.1) l z"! .b1 >d 0r-if{mm>-n < mon DV in H P)},

wher,- in,-qualiti,- inll I(!Q) are defmiud ir; e.g. r,, A. .I

(3.2) 1*1,>, i

We have
I HEORIM 3 1. Foi any u E U the stoai equaftitn ' i"i hvi..e a nniq

wtal scf.,tin L, t q -t,. ich that 2 < q < '. If g e It"'?.? Ag i,

(3 3 1 V" -_ (if."1{ C:C •i Q • \ ,.)
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and the apriori estimate

•3.4I) DIi w,.'; i) <c,(1 +. iiuiic,.(-.a)...ij(iiw. ..... 4

holds. If in addition q > 2 then also

jL5,) :; .L,-JJ, < c (1 -r Iull, ,(-1t.1)) (iio1w,.,•n) t hIWL.*(Or:,

Morroizer, i'fg E l~ffl), and (1.7) hold.s! then (see (2.12))

and the apriari cstimatrs

(3.7) hizu:tj"±H, .< c (!iu .l;[,,: ,. hIulhW..,flb Iw~iwm)

and

nizu i l11i

hold.
Proo-f: Since - C 1-'(Q) existence and uniqurnetis of a weak solu-

tion 9' of (2.3) i trivial. Also, since :1 is harmonic in % \ rF, it follows
that -' E C-(.i \ f.). Few words are needed here due to the prt.scnce of
corners in fI To prove regularity of z' in the neighborhood of corners, say
in the neighborhood of (--,7, 0). one can extend 9' in f{ < -o, 0 < y < 2)
as ZU by the formula

- y"(-2a-,) ifr<c-a
(3.9) ztrY)" z•(* .V) if t > -0.

Then since z .is continuous on f{ = -a) aid . , on Ix = --a). it
is elementary to show that .' is harmonic acro, (xa = -a). Indeed, let
Dp(A) = B1 U (B,(A) fl (- -:- -a}) u, B 2 C { < y < 2) he a hall centered
at A E Ix = -al with radius pH Here, BI = B,(A) r f-r > -a) and
B2 2B(A) n {r < -a1. Then.

I. - /,- :,,-
S ++:' A

for nft ;E ,l't.4 AD so that C' i.ý harmonic acros ft = -a) a, flamed.
Hen'rforth L" is as regular iii the neighhborh^ood of j-a O} as tLe (extended)
bmndary data :a In particular. in our case - 0 ;larc. tit that (3 3)
follow s
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Set

(3.11)Z

in (2.7). It easily follows

JIZ,12  --')der - fn7z -j Vz'

< ( g*t (4)[/. tL,.d(7) 4 f .(j( u)2dc,) I

Now since z' ( vu _ t.) + using Poincarý inequality. we have

(3.13) < C , z i:' -I;ln (.-)

Combining (3.12.3.13) we got
I. z..2 S ( + II,,llc e,,(- •,,) [P gll,,,:, (i.l, ,,1 + -" ,, , )

In (3.14) the inequality follows from the proof of the Trace Tl,,:orm:i (see
e.g. [10]. or [51). Indeed, one can see ([5], p. 132) that for 1 < q < -x) one
has

(3.1-5) -I~j< ~ ~ )*

which implies

(3.16) j! - i,' r . c (1 .,u, ',-i II)' Y i,

41rom (5.14) we eisily conchltc.d that (3.4) holds for q .- 2.
Proceedinig, (we aj7 I - =

< c(1 :iu Wt.,. ,.l:) " e~~ H~'-~: pI:,~

(3.17) 11( .is, f!* .. " " : ltY '' ....

So. . ' ( .( ) (here XY rpre stnx h c i d,,-un,,tl 4 . ef.t, e , .YX
r.an..d . .. . ... . .

(3.l1I(
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We know (see e.g. (1]) that 4 has a representationl

(3.19) ((9) + ho+xP + LA.P

for some fi e Ll (Q), i = 0. 1. 2, and

2

(3.20) :ýujl~jwtYgj f=Y lJL(*

Now foram illiprtic re-;,u!arity (see 4T2, r) 717) we haveý

/2

(3.21) 1ih~ 4,~ iJ~ Ir l i <i

zjrorn (3.1S,3.2M.3.21i arA sincer we already proved (,31 in tilt raste q =2
we conclude !hi- 0A)4 hld~Us,

To prove 1.j we- recall fisec e.g. $121 mý ]1O3) that if q > 2 ;and if

z' 0 tln &f? in the sra:ýe of jj:A!), then

(3.22) cssp: < c V1A! - zIL:w

Hence,

ess sup (Z" - 1 i~tn
it

(3.23) <c + Ufll) +4

and sintilarly for -z' + litz an This eatily isnplicý_ 3.A).
Now, we shall con,iýlvr firtlier regularity of 2tI1!. and :lx¶ Siucl'

the singular set i. cni I', wn expe~rt higher regularity inl tlll 1,1:tngenit ai
direction. To prove that this is the- case we ffiatcýn the I first, Pnirc then

it is easier to dilitrrentinte.
Defhin- 7% 4 and F by

(3.24) xj z) :~(r. p + u 4r1).

(3.2.5) Y1~) = gfz. Y+ utr x)l/1- -7 (
(3.26) 2(r,', = ;xy-'+ u (X))

and operator L by

(3.2T) 1'r: .1' -. t..'.t u: -
2 tr;i a;z - I, sr,
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Of cotirsv, L is 11niformly elliptic, since the matrix

(3.28) V. (1 + *~
isý positivo drfinit(e. Indeed.

(3.29) 2-'p

So, if c is such t hat. 'uI c. thun if ~I< -LT!i I the'n

(3.30) v~i - uý) 4-

On the olhor hani if le~ >'c I then

(13.31) >

So, it is vasy to stet Il.b. if wi- take (j = m (, a thin

(3.32's ,

Lat, also, -=,, be the nizip wifith (h inige •0 gwer. by the formiula

(3,33) ,(X, Y) =X (z--u- ,,i)),

The~n,

l(3,34.) AN E~=

Rnd rincr' jdrtD*:..j ( here ME,; is tihe gadietw me±.trix o.f +hr- map so
that IdfE.is the Thcobian)

(3.35) =(:

I.

So.

(3.37) L
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in the sense of distributions. Since the singular .et is now on li =Oj
we expect higher regularity in r-direction. To prove thit, we want to
differentiate (or more precisely, difference) equation (3.37) with r'spcct to
.. Somewhat more precisely, define the standard differelnce operatsrr (in

the r direction) e. as

I
f h I h

"I len from (3.137) we get

(3.39) (Lx ('A, 45)=

We shall dst-:ss ini sr,mt: ,ils only the right-haind sidc. We have

it' -- dr

( 3.40) = 44 J f j. 1 x

as -- We 'onchu it, that

(3.4WI tZ.),t>Q :•i•

and hence

(3.42, Lli: rr .?iU + (r,

where

43.43 J= Ar: i inj
2

'; 2u, urj i- 1s1'

and vwhure

(344• 443:

(3.t45 , - 4 .,2t., ,- r'

1n .,.. q F I•'2 U [ ax.? alsý, cA--trve :... :` z t- T:
I, . Also, cl.r. L : tr ir.ht L L rý

&l.pici. ras wce!.
Now (3 rail c:Ldt l:nr ( ,42 ii .
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Thais iTTnPI-eR, by the Trace Theorem, that tcl4.ej) E Wl'',so that

(3.47) "I,'IjwL E 3`'- it 9.

We obst.rve 0.m~ 1)wcauis of. (1.1 .1.7), the preciding analysis is true also
il~tY Ow ý > tJ-i.hirodof (thec pre-image of) (=I. 0). so that (3.47)
ht.dds up !,j til initiial and termninal poinit.; of (the pre-image of) r,. Elliptic

ti fortimat, ly. wr cani not clainm the. same global result for v1~<j( bcause
of Lwthe~m~ii~ of 0ý \ Ql.,). i.e., we have to localize in fiv < 0}.
'I LI:s coiiclud~s !hc r~r.)nf r'f 1,3-6 3. N-oW, Teg.arding estimwts (3.7,3.8) we
h~ave

slid tilvil!rlN. (afN kizito n 'y < fl) for fl.whc"cl -~,h

proQ.f of .1w Theor-in.D
COROLL RY.n 3 1 If 9 c 13' q(.Q) for some q > 2. and if (1L holds,

Mtn -' Ez C- qnd 1h, folloii,'n#7 apriori (stimrale holds

for apay,( > 0.
Proof: J.ron,. (37 " andl by (lie. rImbedding thcrorm (soe e.g. [7]),

we havo

This irnrlie. (5ý
(ORO:INARY 3I2. 1flg E: W2" '(0) fniw .qonr q > 2. and if (1.7) holds.

then

hldt.,1 inTerest in tlis Corollary is due to (lie lack .if (9' -gc'i

reg~ularity of2"
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Proof: Let r and v be unit tangent and unit normal to r,. more
precisely. set

I
(3-54) I ('

and

It is elementary to compute that. then

(3-56) On 4 Uj' t

But .incc, by Thcoreiu 3.1 .. ' -' and (also, by L'mma 2.2) u =

On I';' wlý- have

(3.5T) Ig + z" j,--
The Corollary foillows due to the SI. q-obal regularity of , and bt. i

Imbuedding theorem. Idt.-d.

C-i7 V -0

4. Existenec of a minimizr. In order to dca, erxktenre of a min-
imnizer, i.e.. existence of a soluti,,n of the relaxed prublem, one needs coun-
pactness. Ow, way of introducing -nmpacfness would be to bound the set
of adwisýibk- conttrols to

(4.1) Ut=(u E 1,ý jivi-.)f b)

where b is• ome pre.,:rilw (large) positihe cowutant.
P.oroxrzezy 4.1. 10 g Ei 0•,(0), f'or ,•omr q > 2. Then. Mcre

(4.2) 4(,,) = min4 (u)
U
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Proof: Let (u,,),,,.2.,... C Ub be a minimizing sequence. By Theorem
I. we know that.

(4.3) lr:U" I[HI(n) + jIIjZ""CG0(nj <

By taking subioquences, if necessary, we can amsume without loss of gener-
ality that therm exist V E U§ and _- E HI(Q) such that

(4.4) U" --- , u"in q?(-1, 1)

(4.5) zu.. z" weakly in HI(Q)

(4.6) - inCf)

Recall that.

(4.7) - J . V J gda

for all t E 1I1(Q) such that -{=o: = = 0. If, in addition,
i E Cl(fl) then it is easy t.o s-. that

(4.8) lim- q J 'dir J gcda.

Hence, for such ,; we call pa.•q n - xr, in (4.7) to coclude

(4.9) - Jo Vz" j 7; gdo

for any ; C- C'() such that = = 0. But thOn, by the
density, (4.q) holds for all V E JH1(f) such that VI= =,." " = 0.
We conclude, by uniquene.ss, that

Now since
(4.11) 1. f

(4.11) ~.)= ; j (z"")•do•

(4.4,4.6) imply flit

(4.12) lirm '(u,) = p(1').

This complete.? th-, pr,',:f (if tir Pror-itiion.
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5. Differentiability properties of the variational functional 4C
Our goal is to derive information about the mulltvalued generaliied gra-
dient of 4. To make our results more precise we shall introduce several
definitions.

Let 4 be a real-valued function on the subset U of the Ba-ach space

X.
DgnrNTiowN 5.1. 4 is said to be directionally differentiable at u e U

if the limit

(5.1) 4r(u + AV) - 4(11)

exists for any v E X. such that i + At, E U. for small enogh A > 9. If that
is the case. then the limit in (5. !) is called directional derivative and it is
denoted by 4'(u: V)-

DELMXTION 5.2. 4D as said to be subdifferenti;ble ot it. if there exists
an f E X2 such that

(5.2) *'(u; A0 > 1(v)

for tt cry v E X such that u 4 Ar E U, fur small enough A > 0. SOt of all
such f's is called subdifferential, and it is dtnoted h 0.4(u).

DErlNITION 5.3. 4 is said to be superdifferentiable of it. if there erists

an f E XA suCA that

(5.3) 4(u; r) S f(t)

for terry r E X such that i + At C U. for small enoigh A > 0. SOt of all
such fs is called superdifker'ninl, and it as denoted •y 804(e).

If 4 is both sub- and superdifferentiable a it E int(U), and moreover
0,4(u)n94D(u) #$, then b.tCu)•fl4'(u) it a singketon and 4 is Gateaux
differentiable,

We go back now to outr problem. Of course. X = Hfý'- 1, 1), U is
defined in (1.1).Proreeding. define the ad join~t variable C, as a .-w!utien ct tbr (,djoin:!)
equatlon

Ap" = t,~ in Q

p = 0 in {(z, 0); -Oa < x < al UJ {(¼ 2).-a < x < a)

(.5A) p, = Din ((to. y):0 < y < 2}

where it, E If` (Q) is a (signed) nwam:re given by

O5.5) (.(;)) = Jr. a p o art.

Obviously, (5.4) is the same type of equaiofrn as (2.3).
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In this section. as before, . = ,t1In and u,,% = zu9 \f.; aso,

below we shall use the notation p"et, = pUZIn and pV~mnt = iU In\n . That

if essential in this calculation. since z' and p' are fti differentiable across

the ru.
LF.MMA 5.1. Let g E W 2-(S), for some q > 2. Then

and the apriorz esstinat•s
(5.7) fly"' q"lw , ., <5 c l•!'-,• {,~=.{q,!•!w , ,)

and

(5.8) _ ((, - i). W ' I h'IIw ,2

hold.
Proof: Comparing (2.3) and (5.4) we see that the only differt.nee is

in right-hand sides. Namely, in (5.5), :" N W•'(2). 1.evertbhi,'s. for
example, z•' '" E 112 I(Q,), and since qj. depends on :z only through the
trace on r., and .ince Z" rtnd z' "' have same traces on r,, we easily
conclude the proof of the Lemma.

We vhalt ue the ,sua] notation: t. de: c , d !

So, t'= +- -

Now we are rf-ady to stat-e the foliowi,.
THEOREM 5.1. Let 9 • W 2 (). for some q > 2. Then - is dhrec-

tionally diff rtflia6h at any u C U such that u(x) > 0 for -- I < x < 1,
and

= f (.iqYu I:t 4 -u *"' 2 +'Iu t) =x
J- \ . ,, v/ + u'2 ]d

(5.9) .+- ((•pU 1) - (*qp'"')h,-)dr + .qp, Vl+?L:!

Mot'orcr, if

y • + (,qf 4"')y <_ .5- (gTp" ,"W a.•.,,-( ! )

then $ý is sob iff(rrt vnabte at v and

u~0.,,(!,, Off

t- :• + (pl"'"')%) 0 + (.P )

62 -74 ((:").2 -1 qPu))
VI -Iu,_-
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On the other Aand. if
u512 z u,int n .U'u~st 'e

((gpUSI) 1 > "4-'u + (gp"'u t i *t m (-1,1),

then 4' is superdifferentwable at u and

ert + (gp: t 'h) v'i + U,2 (zo(yl! + (gp'') +

(3.13) tt j4(utr&4'(n)J C L¶-l, 1)

Proof: We attempt to differentiate 1'. To this end, for given u E U
and a suitable direction r e Ih3(-1. 1) (suitable in a sense that u-,At! E V
for small enough A > 0) we try to compute the (one sided) directional
derivative $'(u; ,.) Using the regularity result (Theorem 3.1. and Corollary
3.2), we compute

y(U: r) =lim" A -- f(u)
A.. A

(5.14) + firm J (G"+A ' t9)? )

(j, 2Al1-

Before pr-cee-ding with the proof, we •h;l uiccd t1 nor e llrgi,,n mnr.,ar.c
pr':cisely, its Corollary).

LEMMA 52. Unidr t rrvitlt ahes truphon-4 on 11, and v, and for any
a < I the fOdloqng eatsvnafr holds
(5.13) -!u+ t -:Uc'¢,.n• < eM'.

Proof: We need to compare "+A*' and zu. This is diflicult to dio) i
the original domain it since (singudar)I right hatid sides of the equations that
they satisfy act on disjoint sets, so lisat thern iv lit ol,vious -ancelancdson. So,
the idea of the proof is to map the original dcmniti. into differert donwinis
in •uch a way that the cancelaticn doe-, take place.

Let, as before, E,. be the map with the inmage It ghein.m by the forniula

(.. 16) Z.r',V) = (ry+ U(•).

Then

(5.17) rg,4 (ayu (rI)
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and (se't A =(,y)

(51)disf (3;.+,,(A) - .=-(,) cA.

Now cnnsider .-'" and P~ defined as

;-.+AV U+At'

and operators L,, and L,. defined by

(5~.20) L%,u, = %it+ tv.y(u, )2 - 2rw0. e-- ll'ýIlhz'

Lux~'= L~l+ ?I4.1(tir *+ Air)2 - 2wa'((u' 4 Av'i) - u;v.(t': + Atr,)
(5.21) =r_11: I- A juw,(2ut._t + Ai.) -21exyvrt - ity'g

'Then i''I' - _z sat isfieq thf, (euatior,

(5.22) A {~'(2?trvr + Av2) - 2- +rr - z~tT
in n Fl-I(f), wliere

(5.23) IW (GI - G-') ýdr

and wlivre

fS.2'I) +2 xy t~r ))2 -u.)iVW77

Observe that

(5.25)~~ - CA.

Now since

and beeanso. of the~ H61dter voiuftliity of z"''" and we conclud.e thaRt

Thteii (.3.22,5.25.5.27) imnply Oii;t

(,5.2 8 zu- Zýv~ i1 cA'.
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Then we have (set A = (zy)

-+AL.(A) - t(A)t =

= j -+AU= (t(At ) - -Su (E;(A))I <

+(ou ,(A)) - U(E;'())j

(5.2.9) cA0 + e? = eA0.

In (5.29) we also used H61dtr continuity of ". Thie romplp'rts the proof of
the Lemma. ,

COROLLARY 3.1.

(5.30) m. j (:&+A"- 1 ,U)

Proof: 'Fake a> in the Lenuiua. Then

(5.31) A < rV, I = 2o - I > 0.
A

Now, we can proceed with the proof of the Thcorem. We compute the
lact tur= in (1.14).

lim zu A, -).-dc -,-li nt I Ir ((.,u•..t (,uj)2dtvMIA u•v..)" - ')&

=Iim / (u÷,,._,):ud..firn, re, (zr-~z)d
lit lir- f (2 +dAr - 9Pu) dc

A!o2A JrJ
= -m lirt1 t'

,• tu A J,+, jr ]

f -/ gpgd) -, g__t5.. - ul. / :

(-.32)

Now from (5.14,5432) we conclude that I is directionally differrntinlhb, and
Ithat (5.9) hMds. Furthermore. if (5.10) holds, then

4'I(n)l)
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+•j ((gpu,-..), ÷- (gpU, ')•-) du+ W • , 1 '

(.5.33) 1 ((z)2 + v)) vd

for all
rE :. ,..U i t +_(gpui!' )

(5.3.1) ( $"'z Y + (pI p"t)) vW]+

This proves that - is subdiffert'ntiablk at u and that. (5.11) holds. Simi-
larly, one can consider superdifferentiability of 4t. So, the 'rhlrem follows.

6. Remnnrks. The above suggests the numerical algorithm (the sktep-
rst desce• mc1hod't for minimization of ;. i.e., for the numerical solution
of the relaxed shape optimization problen-:

Chomoe uo. E U. If ?,,, E U is already known, then u,+, is determined
by:

"* computte z"" an, a solution of (2.3):
"* compute pl, as a solution of (5.4);
"* if (5.10) holdq, cornpute an u,.+, such that

(6.1) u,,,, E• (",, -p., A (- ( 7.$(. ))) U U, p," > 0,

and if (5.12) holds, compute an t÷... such -hat

(62) %,,,,, E (it., - p..-- (8"(i.))) 'n U, p,, > 0.

Hcre. A is the isomorphism between 113(-_, 1) and its dual. So we see that
it would be much better to work on llj(-1. 1) instead. since then A would

be a second crde.r operator - -i, instead of the sixth order operator.
If neither (5.10) nor (5.12) hold.s, i.e.. if 6 is neither convex nor concave

at the point u,,, thin it iq more delicate to determine the steep(est) descent
direct ion.

The actual choice of it, in (A.1) or (6.2) if an, interesting question.
Soriewhat formal consideram ions Ruggrst that the following rules should be
adopted

o if (5.1(j holds and 0.'4(u,,) Ž•0 a.e. in (-1, 1), then

(6.3) 0,1+1 = ij. -- pA- 1 (['.4(u,,)) , p, >0;

* if (5.10) holds and !.45(tt,) <0 a.e. in (-1, 1)! tOwn

(6.4) V,,+ i-t,. -- p,, A- (r8. 1(u,), , > 0;
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* if (5.12) holds and 84,(e,,,) > 0 n.e. in (-1. 1). then

(6.5) un+1 = un - poA-' (raO4%(u.)). p, > 0;

* if (5.12) holds and 8*41(un) < 0 a.e. in (-1. 1). then

!s.6) ,.+j = uo - p.A- 1 (t?4'(u4)), p. > 0.

One can show- that if a is a local minimizer for 4D then (5.10) does
hold. Also, we obsierve that in terms of Clarke's nonsmooth analysis (5U34)
implits that (if (5.10) holds)

where .5t is the generalimed gradient of -0 lolsrrve that 4, is nonsmooth.
i.e., 8 is m01 uzlued4)

Finally. we nose that the method introduced liere is an unexpected
follow-up of the retearch in the completely diffe-r'nt context (eleetropho-
tography, se [4]: see also (8). The difference i6 that in 14, instead of (2.3),
die state equation 1E (up to nonensential details)

Az1 = TP, in Q

t =Oin {(x. 0): -a < x < a)

I = Pin {(z. 1) -a < z < a}

(Z8)" 0=in {f(aY);0 < Y < 1}

where D,, is the Eet enclnscd by r.. and the functiomal to minimize is.
inst-ad of (2.17),

(6-9) =~ ~)~o

Observe that in (2.3) the right hand side. i.e., the measure P iN. es'tnfially.
"derivative" of ID. the right hand side ini (66). On the other hand in (6.9).
Zt" is under derivative. So, in the final balance those two prohlcms have
the samie level of smoothness (which happens to be a kind of Lipschitz
continuity), and hence. the analcngons general ideas apply.
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COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF THE

FLOW IN AN APCVD APPLICATOR SYSTEM

GARY S. STRUMOLO

Abstract. Application of Atmospheric Pressure Chemical Vapor Deposition
(APCVD) to the production of coated glass is addressed in this study. Several lay-
en- of thin films arc deposited on the surface of the glass as it moves underneath tile
APCVD applicator system at 4gh temperature. A memory effect in the form of filmt
thic.klss strraks. curresponding to the location of the inlet holes located upstream in
the upper manifol-1 feed chanmel, is evident on the glass. This nonunifort film across
the glass causes a color variation of the coating. Effective mixing of the gas streams
is required to treat the hole memory problem |lowever. a premature reaction is to he
avoided. Optihmnn design paramrersr- to correct this problem inrlude the geometry of
the applicator and the* sensitivity of the flow field to boundary conditions is of major
interest. The Compuitaional FlHid Dynamics (CFD) simulation and analysis package
Mrm is used toI predict the fl4w. The flow of gases involvtd is treated as that of a

steady, vigcous, incrmpr-.-ihl- fltud. Resultg for both two- and three-dimensional cases
demonstrate that the deposition process can be improved by injecting the flow at an
angle comnter to the dirr-tion of giass motir.n. and that CFD techniqu.s can be suc-
cosefully used to predict the flow behavior of an APCVD appliLator system and help
optimize its design.
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i. Introduction. Atmospheric Pressure Chemical Vapor Deposition
(APCVD)applicators are used in the production of thin-film, coated glass
products like architectural glass where, for exampic: low emis.sivity thin
coatings such as tin oxide are applied to the interior surface for the purpose
of reducing the heat loss from buildingl. They can also play a significant
role in the deve~opment of automotive parts such as car windshields (thin
films sandwiched in laminated glass to :eve as transparent heaters) and
sidelights (privacy glass with solar load reduction [20-30% transmission!).
The design of applicators to deposit these films is crucial to the quality
of the end product. In addition, APC\VD applicators may be employed in
tandem to lay down a seqience of coatings. An effective APrVD applicator
system must keep the operation of adjacent applica•ors indepcndent of each

other.
Presently. many on-line glass coatings are performed using powder

spray applicators. This process is open to the atmnisphere and. therefore.
susceptible to air ,urrcmnts leading to imperfections in the final product
One of the problems asociated with this process i• the mnottl#,!haze cre
atrd on the tinted glass product. On the other hand. APCVD applicators
arc placed inside the tin bath where gas currents are rnininizied. In present
APCVD applicatous design: the deposition gases are fed through a narrow
channel at its lower exit; this is showin schematically in figure 1.1. The
glass ribbon underneath is; moing at aspeed of 400 in/minm (0.169 M/s) at. a
temperature of about 605"C.(l 120'F). The gases are t01.1 extracted through
two exhaust ranaifild. positioned at opposite sides of the applicator. The
exhaust dcsign inmut remove reaction by-products without inhibiting the
reaction or interfering with the reducing tin bath at.mosphere.

In thi, architectural glass example, a tin oxideisilicon dioxide four-layer
stack could be used as an interferenve filter to reduce the coloe from a thick
tin oxide' film coated on top of the stack. The tin cxide reflect.. heat, while
the four-layer stack underneath supprc.-ssrs the unwanted color of the tin
and acts as a pa.ssive diffusion barrier to insulate and protect it from the-
soda lini glass. Any non-uniformity in the gam flow across the glass ribbmn
would lead to film thickness non-uniformities that. would become evidt:lt
through a dramatic discoloration on the glass stirfacc. With the APCV I.)
applicatots bh ing considered the velocity field retains a " reniory'" of the
holes corresponding their locations upstream in the feed manifold. The
effect of the applicator feed hole" on the applied coatings is evide.jt. by
concentration "peaks". as depicted in Figure 1.2. It is difficult to eras, thiQ
hole memory e.ffvct. if the mixing procufes of the gas streams is inefficiont.
However. maintaining a simple and yet robust applicator sytpm is ,'sqntial
to the manufacturing process.

Computer modelling and simulation of A PCVT) applicators is attrac-
tive. since it i• cost effective, versatile and fiexible. The result is an en-
hanced ability to visualize t1he flow and monitor gas mixing within the
applicator environment, as functions of the g•ometry and boundary rondi-
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air'

exhaust g as feed

--

moving glass surface

Fi. Li. I Scctmant rt¢r•! . t'm , Jo !j jcu' APC.'D cVj'ctir s;I3tft

t(onm, through a variety cf flow parameters such as velocitie., temperatuzes,
etc. The primary objective of the present study is to model and simulate
the steady. viscous, incompressible gas flow in a APCVVD applicator s.s-
tent. Trie Computational Fluid Dynamics (CFD) package I' IRE is u._ed for
this purpose. Twi and three-dimensional modcL ane invextigated.

Knowledge of the flow field within the applicator is necessary to allevi-
ate the problems outlined earlier and suggest poisible design modification:
mainly to eliminate any deposition hole memory efe.ct. improve the film
thickness uniformity acro,,s the ribbon width. reduce haze due to ga, phase
nucleating particulates. and generally inmprove fill, deposition efficiencv

2. Proevss and apparatuts descrij$ ion. APCVD is a proecss that
combines Chemical Vapor I)eposition (('VD) with a crovrvier ope-rated fiur-
nace st atmospheric presstre. It originated in the microelrctronics industry
as a wa, to manufacture printed cirrcuit hoards. Todary, it is principally u1sed
to produce thin films's, for diffl rent coatirg pro•reses withbout the use of a
vacuum, It is considered to he a proiuction-oriented. cost-effective means
for providing high qualitycoatings (Gralencki, l%4,t). CVD usually involves
the delivery of more than one gasrous chemical to a loatrd surface where a
reaction occurs. The reaction can aI~o happen hpefc.re the chemicals reach
(ie surface, alt hough this i, not often dcsirable. Reaction by- products are
vetlte r out. through etxhauts chimney.s NMultipl: coatings are also poscible

The thirkne•.e nf thpee filims is en tlte order few hundred Angstroms 0i Ang-troI

_______________________________________________________
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located mifidvay

/ ehwaen t'Icks

- ~ Flow!

Veoiy i~ eliS"emr"cfh~ oclcr

r~iimnw~w, Vel t cdirny fied reparents rnnmorcf hone bing slidionsgi

in; Figurv 21.1 It. ;A5 leigiied to diitribute thc mixed gases akcross a 5-ft
wi-.- gla,:z ribhomi pitssing %nrder thle .:oatiag applicator SyStrejz2. '[he ga.'
frf-d Aide cojIisif.4 of ar upper manamfzfd in thet, form of a 0.5 in.-wid't anld 2.5
in.- long cOiatjiel that contains tile ga inklets and a narrou-rr lo.we-r Channel
0.125 ill in %virth and 3.0 inl. in Iengith that operates aý, all injector with
all exit inl thi .ep:si area facing the. g1AS.t top Surface. 'flit, fulntion
Cof tlhe injector ist, I r fferti%-Av deli ~er the gasq-r1ou chemicals to Ow. hieated

, he-r" are ~paýt-.it, stre3flms of gast.! w)hid, are int roduced kipst ream)

from Opposite sýdv li,! tie rper channel thirmtgh two arrays ojf 0.U'37i-in.-
diair.-tv- ditr~ihition hnole (ýt* Figure 1.1). The holes are di~triiuLci1 0.5
In apart arA positicnwd 11.25 'In. bplow the top of the channel ill thle 2-

-d~ .gn-innt 'A do~ 60-in. applicator spani. Thte tw fluids flow thr~mgh
ihr sid" lioles in l~ ll Qsreans at 30" anigl- with the normal to meich sucr-

fa.credt2Iirj tweo strc ims counter to one ;inother. 'Eli giso Are supplied
ti, the, holes friut:m one crA of the 0.hi.'itntrhorizontal tulip of tho feed
chnn+ý-t, The- total I1.iw rate is 200 hiteriznin o~ver a 2 ft width. Thprr is a

?!l- r p~late s6-paratii~g the two gas; strcallis xs tlikev enter the upp.:r man.-t
Jm Lihnr&!. this plAt.- extends aiong hailf the le~ngth of thie chiannel. The

fiairti~ro of Owe sp~ittýr plvi, iq to delaý the mixing process in o.rder to r~rr-
V-nl' i'vros~ibl'e g~revpiricjt, n res-Thing frnti prer natiire react i(ii bvtweern
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infiow cord.

ojti"civccr& 2. outflow cond.

AI I

H, ii!
ouflovcwcond, ------- t.5.. veloclty

5.; ___ ___ profie

moving glass (873 ceg K)

F 7m. :.!. Ttfi.nimen iir*c! r-Fe-snit in of a 4i APCD appuia tvr s.!t N.

the two gas strenrr' spontanweous lo- emperalturll, t ,• 1,41 . .,.x, OCr z;

some t-lCMOS.
The two gases ere then passed through to the second narrow,' channel

to eventuially impact the surface of the moving glass ribbon. Th'hi- injector

charinel exit is 0.5 in, above the glass top surface. The lcw,;. channel of

the applirator is intebrnlly cooled with water. However, tl1e, :-mperattinre

of the fIlwing gas it niaintaine•d around or over 150'(" in eiý- ease of tin

oxide reactor. Most of the mixing bt-twevwt the two streanis o r Ur prior to

the entry to the narrow charinel As stated earlier, the glass suktrate is

moving inderea•th fi," alplicaftro at an approximate speed o ,100 in/min

(0.169 m!s). Thr coating gas is applied to the glasir while it if. tnoving inside

the molten tin bath. At this point the glants•'lurfae is at an, approximale

temperature ofE05'Ci (1120'1j. The ulppr ,s-r^fc • tiwle applitater systemli

facing the glasms ist maintained ait a controlled temperature.

In the silit reactors, the silicon dioxide (SiO2 ) layer; Are forited froull

the reaction ofsilane (Silh)(0.5- %7, with oxygrn (> 50 O"). 111he ri actAlits
afre pre-mixed (1-2%(, silane) in the applicator manifold and maintained at
oorn temperature (20'C). Prcmetinre reaction may occur if the reataint

iemiperatire andI flow are not kept under control. In the tin oxide reactor

tile tin oxide (SitU2 ) layers are forrred from the reaction of tin tetrachi.-

ride (StICl4)(2-3 %) and water vapor (27 1120) in nitrogn at about I Wl'C.

These reactants can be pre-mixed before entry to the feed inanifrAd if do-

sired.
The two exhautst chimneyos are in the fcra of two "rtvcd " 'tagihar
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channels 0.6 in. in width and located at a distance cf 6.0 in. from either
side of the injector channel. Their task i- to remove Jhe by-products of the
reaction without inhibiting it. The exit ports of the exhaust manifolds are
maintained at a controlled temperature and pressure near vacuum. This
ensures that the flow from two adjacent applicator systeirs stays separated.
Makeup air, if needed for the chemical reaction and/or to prevent the
reaction deposits from fouling the exhaust manifolds. is supplied from ports
located between the adjacent applicators. "he ambient air is nitrogen wikh
3-5 % hydrogen. flecause of the motion of the glass. there is a strong flow
of gas along the ribbon towards the uting-out (at the end of the tin bath).
Th,. excess gasg flow rate due to entrainment is ignored since it does not
substantially contribute the main flow.

There are several problems associated with this prwce. rorerost is
the development of non-uniformityon the glass surface in the form of streak
lines, due to the hob" memnry effect that is created as the flow propagates
downstream from the holes. Any non-unifornify or streaking due to the
gas flow shows up as a discoloration of the coating o•i the glass surface, it
is important to, note that in thin film technology, thickne.s variations often
produce appreciahle varintions in physical, chemical. clectrical, or optical
properties (Grd',nski, 1984).

3. Flow charaeteristies. It is helpful to have an idea of the basic
features of the flow so that we can evaluate our numerical pr,-dictions for
reasonableness. The velocity distribution of the flow at the itzlt In the
feed manifoMd is considered uniform. Examining the Reynolds iiutziber of
the, flow based on a~crage velocity and channel width, we obtain

R,= 400,

in the upper chamnel: rtoom conditions are assumed for the fluid, i.e.. rc~ormn
temperature of 20"C and artospheric pressure. In the above definition.
U im the average velocity. 11 is the channel width. and t, is the kinematic
viscosity.

'he low Reynolds number sug estb that the flr,w is well into the lamfinar
range For steady, two-diniensionad, ineompre.sible. isothermal Ilow of a
Newtonian, isotropic. hornogenze.us. v ikotis fluid between two fixed I;:r.11e1
flat plates the critical Ruynilds number at which transition from laminar
to turbulent flow occurs is apprcxiniately 1Y10 (Potter and ross, 19S2). At
the end of ihe narrow injector channel, the fl,.,%% exceeds its laminar entry
length Lt given by the rt.lationship (Schlichting. 079)

IIoL,-- = .i ,

and is fully-developed with Poiseuille's pa~aholic veO'rity prcfile; L, = LM
in. wherea' the 1;irgth of the wirrew injector channel is -I in.
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In the absence of turbulenee. there is no effective mechanism for mixing
between the two gas streams. It is clear that the laminar mixing (primar-
ily due to molecular diffusion) between the two streams occur in the upper
manifold channel, after the splitter plate prohibits any milxing that may
otherwise take place. Further downstream, we would expect two small sep-
arated regions to exist on both sides of the upper channel in the region of
contact with the lower narrow channel. where the area is reduced signif-
icantly. Massive separation is not expected in this region due to the low
Reynolds number. However, we expect to see a more pronounced sepa-
ration occurs in the vicinity of the exit of the injector channel where the
flow meets the moving glass. There should also be recirculating regions on
either side of the exiting jet, with different pattern of recirculating fluid
due to the motion of the glass ribbon underneath.

A vortex structtre can .e identified near where the depofrition occurs.
As the exiting jet approachel, the moving glass, e, vortex loop forms from
the action of the jet velrcity profile. This loop moves toward the stagnation
streamline, and reorients its path to diffusre into the boundary-layer fluid.
Inside the boundary layer the loop is stretched and its vorticity is increased
as the flow spreads alovn the glass.

Awky from the separated flow zone, the velocity profile above the mov-
ing glass surface would he that of general Couette flow between two parallel
flat walls (Schlichting, 1979). with decreased pressure in tlie direction of
wall motion (i.e. Inegative pressure gradient, dpfdr < 0). Front the no-slip
boundary condition, the velocity on the lower wall is identical to that of
the moving glass and becomes zero at the upper fixed wall; a simple Con-
ette flow with linear distribution will result in the ease of zero pressure
gradient. Actually, the velocity distribution should be a superposition of
the simple Coueett flow and the parabolic profile of a. sqtady parallel flow
in a straight channrl with two parallel fixed walls. The flow should not be
evenly split between the two aide-s of the chamber due to the motion of the
glaŽs. This would result in a lowe-r vchwity in the region where the flow is
moving in the direction opposite to the motion of the glass. Moreover, the
buoyancy effect due to the temperature differential between the lower and
upper walls should play a role in the dynamics of the flow here.

At the far ends of the mriving glass, both u1pstrearm awtil dItuwvslrrala,
the velocity prrofil,. woulld he th, kAume i tlit dt-.cribhd above.. However,
an amttnption of bimple Courtte flow is used in the rornputer model due
to the negligible eff, ct of the.e prrfiles, on the romputaitoin. A repeated
boundary condition, which is presently not an available feature in FIRE.
would have been more appropriate. The outflow conditions at ,he exit
plane of both exhaust manifolds are assumed to resemble fully -developed
channel flow. wit i a near parabolic velocity distribution.

It is certain that the vrlocity field within the applicator system de-
srbied af:ove will be influened by boundary conditions. Thcse include
the velocity profiles at she inlets and outlets, speed of the moving glass.
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pressure considerations at the exhaust ports, as well as the temperature
distributions within the flow and among the boundaries., The velocity field
does not change significantly as the fluid enters the narrow injector channel,
and retains memonv of the holes corresponding the their upstream locations
in the feed manifold. Additionally, it is interesting to note that we observe
hole memory effects even when the glass is moving slowly or at a standstill.
These streaks are more pronounced in the case of tIn oxide rather than the
silica.

Regarding the fluid properties, the gases involved are essentially pres-
surized nitrogen (> 95%) which is passed through liquid chemicals to create
the desired gaseous solution. Practically, the fluid flow is considered as that
of an inconspressihle air, and the fluid density and viscosity are the same
as that of air at atmospheric pressure.

4. Project goal. Our goal is the design of an APCVD applicatur
that exhibit. optimum coating performance. This implies creating a film
thickiiess across the entire ribbon width lhati is uniform and devoid of any
deposition hole memory. Additionally. adjacent, applicator systems niu-t.

operate independently. The geometry and dimensions of the applicator
are of particular interest. Ihese inrcelud lengths and widths of the upper
manifold channel and lower inkiector channel of the feed system, hright of
injector channel above the glass surface, position of both upstream and
downstream exhaust manifolds, location of makeup air inlets. as well a,
the separating distance between adjacent applicators. Also. the influence
of varioLLs hole shipes, sizes. spacing, distribution patterns, and Ihe auigl#,
of the flow through the holes into the feed manifold. While these are
important parameters. they will not be the suhject of analysis in this paper.

In deference then to the above geometrical parameters. we are con-
cerned with investigating the effect of the following on the gaw, flow pattt-rn
and mixing effiriency:
'l Gua flow rakt and velocities, including the inflow and the outflow

ports (which are affected by the speed of the glass ribbor creating
an unbalanced exhaust hlow).

* Entrainment air flow above the glass ribbon (which is draftd from
the surroundings at the edge of the applicator)

* Temperature gradieiis and hiuoyancy efferts.
E Boundary layer Hlow ,eparation. and stagnaton region formation

in the near vicinity of the exit of the narrow injedlor channýl (as
the flow hits the moving glass); these phenomena may enhance the
formation of undt.•irahle particulates.

Oa Manner of gas introdurtion (e.g.. through holes. slits) and the angle
of the injector channel.

Another motivation for our effort is the deý(eloprnent of a clear under-
standing of the kinetics of the chernical reaction, primirily to identify the
reaction time and reaction ione length. This is also related to the available
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flow rates and exhaust manifolds design, which must allow the removal of
reaction by-products without inhibiting film deposition. The chemical re-
actions involved in the APCVD process take place on an atomic scale are
by no meanis trivial to assess. We will not address these icsues, however, in
this study.

5. Simulation software. Solutions to extremely large and/or coin-
plex flow problems are increasingly more feasible due to continuing ad-
vancements in computing pow,-r. The CFD code FIRE, developed by AVL,
Austria. is used to solve this flow problem. FIRE (Bachler et al.: 1992) is
a general purpose finite volume based computational fluid dynamics anal-ysis package, used to solve incompressible and compressible, viscous fluid

flow problems. It is a menu-driven, fully interactive (with built-in graph-
ics capabilities), multidimensional software that can simulat,- steady and
unsteady flows that contain fixed or moving boundaries. It can handle
both laminar or turbulent flows, Newtonian or non-Ncwtonian fluids, and
non-isothermal flows as well.

We perforued calculations on both the Apollo DN10000 and I1P730
workstations. Ruit times varied according to the number of volume grids,
time step size. and convergence criterion. As one might expect, the choice
of a suitable time step was critical to the convergence characteristics antd
and validity rof the end r,'uthls.

6. RlesltIts and discussion. We calculated velocity components, pres-
sures. amd temperatflrezi andi present plots of these variables along with
contours of a quantity called "pa.•ive -calar." The passive scalar represent
a trace of fluid particles as the calculation advances in time. Think of it as
injecting colored dye into the flow. Expres.sed as a number between 0 and
1, it represents the fraction of n,-w fluid preent in a computational cell.
The results can he divided as two-dimensionnl or three-dimensional. The
latter is critical to understanding the hole rlemnor) t-ffect while the former
becomes rele-vant once this effert i* minimiized

6,1. Two-dimensional flow test cases. The startieg point for our
analysis is t!'e consideration of the two-dimensional flow problem. It is
important to thoroughly analyse this case becamul once the hole memory
effect is eliminated the flow will indeed become two-dimen)sional.

We assume the flow to enter the top of the upper manifold channel at
a uniform velocity of 0, 431 ti/s per unit depth. The two gases in the upper
channel start to form a parabolic velocity profile after they pass thi splitter
plate. Two small recirculation regions form in the brottom cojrners prior to
entering the narrow injector channel. as erxpeced. Two distinct separated
regions with recirculating flow are pr-esnt below the exit of the istector.
The size of these s-pnra~ed regions depends ol the velocity, inclination.
and height above the ghla surface of the jet issuing front the exit of the
injecttor, a; well as the speed of the glass surface and any thermal gradients
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present. In general, the separated region upstream is smaller than that aft
of the jet. The different cases used to investigate the influence these factors
on the flow field are presnted below.

6.1.1. Injector flow normal to the glass motion. This section
considers the geometry where the injector channel meets the deposition
chamber at a right angle, as shown in Figure 2.1. The velocity profiles,
passive scalar contours, and temperature distribution are given, respec-
tively, in Figures 6.1, 6.2 and 6.3 at time t = 0.61 sec. There is a large
separated region just downstream of the jet near the upper surface of the
deposition chamber, as well as a smaller. but still significant, recirculation
region just upstream. A large downstream separated region aids in increas-
ing the gas vlority near the glas surface by effectively acting as a barrier
around which the gas jet must go. However, the upstream sw.paration coain-
teracts this effect somewhat since it is located near the glass surface and
causes the fluid to lift, up. The passive scalar indicates that, as one might
expect, the fluid has a strong tendency to move in the direction of glass
motion. Although the glass surface is heated. we initially maintained both
thme injected gas and the remaining applicator walls at room temperature.
From the temperature dis:tribution in Figure 6.3. it is evident that the jet,
due to its high velocity, causes a local cooling in the deposition zone, and
that the temperature gradient in the upstream segment of the deposition
chamber is tlmost uniform. The same flow pattern described above is also
demonstrated at f = 3.0 sec in the plots of the velocity profiles (Figure
6.4) and passive scalar (Figure 6.5). The latter shows a near total flush of
the old fluid inside the applicator system by this time. The total pressure
distribution, exhibited in Figure 6.6 at t = 2.98 sec, imdicalep a pressure
loss ab thr flow moves down the injector channel, as well as a relatively high
pressure in the deposition zone located next te the low pressure separated
flow.
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FIG. 6.6. Total prfss-irt di r:-,uti , for the f.:i - firnMP"A.-'eIl floi, C*Sr uWtA .orr'.tj

isJe•tfo? t - 2.98 a•c.

To examine the influence that the effici.'ncy of the exhaust manifold
of an upstream applicator hab on the flow field of the next applicator,
we imposed the oullet vlocityv on (tip left, ,s r,, boundary condition on the
upstream (right) end or the depositfion chamhrr. This would model the case
where the previous applicator wa4 allowr'd to flow freel.v into the next one.
The velocity profiles and pas-,ive scalar ire pr.ccnted in Figu:res 6.7 and C.8
respectively, at t = 0.37 sc. It is clear that the jet flow is dominated hy
the high velocity upstr,•am incoming flow, producing low velocities and a
lift up of the jet froin the glas. sirfaer- in the depposition zone. This reSults
in low applicator elficiency. aud implies that we have to insulate adjacent
applicators from each other.
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Figure 6.9 depicts the velocity profiles of the flow at t 0.127 sec
when the glass ribbon is slowly moving at 12 in/min (0.005lm/s) 2. It
shows a censiderably larger upstream separated region, more flow moving
upstream, and lower velocity by thc glass surface.

FIG. 6.9. Vtkcifi pr~ifi1Es Jor ght!! fl r~ er.t t'i#ý. normal iiere and plos~'s ri,ý

,notaing a't I-- tr./;ivi; t = 0.127 jec.

6.1.2. Effect of tempt-raturr, gradient. We next reduce rheý tem~-
perature difference acr')s the height of the depos;ition chamber by increa.-
ing the upper gurface from rooin terlaverature to 34W~u C. The.. veltwity pr'ý-
files are presented in Figurcv 6. 10 at. I = 8.5 sec. It shows a rathei diininillted
upstream recirculation as the flow bt-coiiies leiis- buoyant.. The vclocity ticar
the glass in the deposition zone is decreased %vith decreased temnperaturv
differential; its ruaxiniun value is 1.21 in/s comipared to 1.47 -rnfr for the
case of high tliernial gradient. This posw a (klieafe. probleni. On the one
hand, too much recirculation created by a high thictma) gradient. roiad pro.-
hibit the chemical reactioni anid/Ior cau~se inwantetd partic~illates to drposit
on the- glass; surfacc. On the o~ther, elevating the temperatuie along the
tipper walls coula promote a premature reaction.

6.1.3. Effect of inikection angle: flow at 30". -15'~ and -45'. To
study the effect of inijectioni ang~le on the jet inipacý, on the gblss and the size
of the separated recions, wt! modeled theý jet with different. inje-ction angles.

2 We allowepd the g1&.k ribbon tý- muove at tlh:ýSSI1-11 spud 0i- t.........'U a V-

devices
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t _________________ t__ II

Fir., f.1. V'rhciItpr~it ~ tht ev;51 enet wtvk norrnzi tryrbr-, and upper depq.
AC12it Aa Cit,Ar suirsrt r. yiltzined at 3S'.Y'C'I; = 8491 Ift

The injection angle 9 is measured from the vertical axis perpendicular to
the glass surface. and defined to he positive in the clockwise dtrztion.
Thus positive anelrs have the irt.iection channel printing in the direction
of gla•s motion. while negative angles have the channel pointing ctunter,
to g!ass motion. The velocity profile for thwse flow are dirplayod in Figure
6.11 for D = 30' and t 4, 0. sec, Figure 6.12 for 1 = -15' and t = 8.47 •-ec,
and Figure f.13 for 0 = -45' and f = 0.127 sec. AIba the total prassure
distribution for the case with 6f = -15" is shown in Figurc 6.14 at t = 4.1
see. For all of these casei. the temperature of the uipper surface of the
deposition chamber is maintained at 3:50"C.'



ADA294705

314 GARY S. STRUMOLO

FIG. C.12 bIoor;' p'.,JIl for Ao U-~ 1%tfo nn1*P -tf~ a t''
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S * 2~

0.4

-45 -30 *15 0 15 30 45 so 75 90

Itt the case of 0 = 30'. we clearly observe x Trduccd downstreami 41PA,
rated reglion andl at increatsed upstream recirculation. This upttrtanm 7one,
'lifts' the jet upward and away from the: glass stirface. causing Ilth: veklri-
fit's by the glass surface if. he smaller in magnitude Fo)r 0 1.5;, with the
jet direction counter to tile gla%,mt 10?ion. there is a larger downstream sep-
aration comipared to the titandard crase of injection at a right angle (0 = 00,

see igure 6. 10). The reduction in flow area due the presener of the larger
downsrtream separated region pushes the jet furt Ker d -xin toward the glass
-%urfacet. and also accelerates theý flow in the prox~imif o f the glass surfacce.
11dis rfcite is accentuateff in the came of 0 -45,' in th'nt it foreca the ict

even further down. 'fle recirculat~ion upstreamn almos(,t disappears and tile
incoming flow near th, uppe-r surface is slowedl down; but there is a bigi~er
separated region downstrearn. From thIle proctding obstrwitkons. it is e.vi-
dent thamt til! depo~ition V(elocity 3 dcrpeat asq a ucto f jh jt ngle
0, as shown in Figure 6.15. 1he asy mptntic value depicts the limiting case
of a jet moving parallel to the glett (P ~- 9'

It thus appears that by angling thle injtection channel in a direction
oppoqite to thc glas inotion we can supprebs time upotream separated region
itsd move it further upstrenni. This causes tile inaximumi velecity and
the total prcqtsure near the. glnss surface in thie iimmiediate vicinity of tile
deposition Yon'o to increate, which is, desirable for highrr quality depotition.

D eftbad as the moorimumm vcdoci~y ainong th! mr. if crid t-eU jtiýt ~r~thlml
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and keeps the jet on or near the glass surface for a longer distance. This
is an interesting upshot and rather counterintuitive, since present APCVD
systems have injector devices jetting the fluid either normallyor at an angle
in the direction of glass motion. We are currently developing an invention
disclosure on this new approach.

6.2. Three-Dimensional flow test case.

6.2.1. Injection via side holes. We need three-dimensional mod-
elling to both detect and correct for the effect of hole memory on the flow
field. This test case corresponds to the original design of the actual experi-
mental model. Since the number of volume grids required is lprge resulting
in extensive computation, only a section of the applicator is slcated. This
section contains two holes, oine on each side, frding the gases at .10 angles
normal to the channel sides (',e diagram below). The area of each hole is
0.002811 in2 (dictated by the compntational grid) and the magnitude of the
gas velocity through the holes is 15.95 m/s (resulhip$ in an x-component
velocity or 13,813 iu/s and a y-componemt velocity of 7.975 m/s). Although
the two flows are in opposite directions•. symmetry planes were assumed to
exist midway beteen adjacent hoeke. In the absence of a repeated bound-
ary condition feature in FIRE, this choice saves ,onsiderable computation
time since the next option is t1, -onsider a model with few rows of holes
(possible three), which can make the nutmber of volurme grids prohibitive
for practical computation cr; a wznrkstatioa.

Flow Rlow

Plts of the pjssi,.ev scalar are shown in Figure" 6 16 an, G.17 -t dif-
ferent cer-t sectins are in the flow. for t=0.11 ec and t1=.169 sve. rr-
spectively. The velocity field retains memory or the hok t,rresponding to
their locations upstream in the feed llaliwfirld, whihlt persists as the flow
propagates downstreamr nThis is evident ly the clustering at the center to
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form ani elliptical pattern. Now that we. have verified the Itole inemr~ry ef-
fect comptitationally, lets examiine deqign alternatives aimed at alle~viating

FIG . 6. 155 Pf en I c r.4 A.,'', rru i us'' 's, a ar I'i.0k' fo'r Ot C AF -lo u ~ith gas
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stir Al tIC: 1 0.162 stt.-

0.2.2. Injection via the top: holes & slits. Our first approach
was to modify the charinnl by replacing the hole gas inlets with islits. This
configuration resembles the laboratory model without the splitter plat' anid
the side holes replaced by slits on top of fthe feed manifold (see diagram on
next page). As before, we simplified this model to that of thrcr-dimentional
channel flow with 0.5 in. x 0.5 in. square acros dtion and symmetry
planes. first, the flow from two slits with no overlap is simulntrd. Thc" ,dit
dimensions are O.03125x0.5 in wrti flow velocity of 5.904 m//.
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In rigure 6.18 the pasrive scalar at various cro.s sections for the flow at
I = 0.2,5 ser shows that the flow from the two slit.-, rrprated at a dislance
of 0.062.5 in., interacts and twie!.s with a high concentration region at the
center, and lowevr concentration on the sides of the channel. As the sepa-
rating distance between the slits is increased to ,C7BT in., a more uniform
distribution of the flow across the cross-sectional area of tlh' channel is ob-
served, as derrnonstrated in Figure 6.19 for the passive scalar at 1 = 0.2.14
see.
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fl.&MS Passive sr'2tsr -Anrto;nr fi- iL'! 70 sni rhr7'twe~lffn rage welt gait inlef
ihnnghl 0,.03125 x 0.5 sin. sitti ssanret 5, UAeIlS ir,: t 0.= Apr .

FIG. 6.19, Prsiic r-chr rtn!As f J & D sqvcn- ý&,2I.tl flotu cast w.ith gut inhi
iL rough 0,031235 x 0.5 in. sitis snpx7sfr by Ol.395 rn.; t 0.O244 stc.
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Additional calculations are planned using different arrangements of
slits and haols to obtain a more homogeneous distribution of gases.

7. Concluding remarks. We have observed a number of problems
in applying APCVTD technology successfully to produce high quality coated
glass. Some of the these relate to the memory of the gas feeds. the shape
of the deposition jet, separation and recirculation zones, stagnation region
where particulates can form, and exhaust efficiency. To predict the flow and
de-dign improved APCVD applicators to help alleviatc the aforementioned
problems, the gais fPed avytem and injection augle must be modified based
on the observation of their efTect, on the flow in the deposition 7cue near the
glass surface. Parameters affecting the deposition pruce.s include: injection
velocity and angle, height of injection jet exit above the, glass surface, and
speed of tile moving glass. The preceding varialdes, except for the glass
speed, can be individually altered for each applicator in order to achieve
the desired performance.

The re-ults of t-his study show that the velocity field does not change
significantly as the laminar flow movw.• into the narrow injector chantm#l,
and retains memory of the hole locations upstream in the feed manifold.
The memory problem is a result of the manner of injection and is crerted
due to iziisufcicnt mixing in the upper manifold channel. Therefore, a
mech.ni•si is nec4esary to force the gases to turn and mix after flowing
through the holcs into the feed inminifold, and before entering the in*iector.
Turbulence can srve as a vehicle for that purpos,. However, perturbations
created to trigger turhulience will be dampened due to the low Hleynolds
number of the flow.

From experimental observations high velocity in the vicinity of thlo
deposition onne is required for bettt-r eosting. This translates into a higher
total pressure on the surface of the glass. In the case of low velocities,
the deposition filmi is vulnerable to outside disturbances. ['he effert of the
injector channel angle is to accelerate the gas in the direction of the drawn
glams. This results in a stronger impactr for the gases with tOh glass in the
proximity of the deposition 7on,-. It is interesting to v.,bs-rve theft due to
the temperature diffcrential between the lowe'r and upper surfaces of the
deposition chamber. the buoyancy effect is r,,sponcihle for reducing tile size

of th(e uptreiam separated region Uhlf rle of temperature itn enhancitig
any buoyancy effcrt will become itmsignifirant if the upstream flow rate is
increased. as it would then be doaminat0,d by the inertia of the Hlow.
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SHAPE OPTIMIZATION AND CONTROL or SEPARATING
FLOW IN HYDRODYNAMICS

THOMAS SVOBODNY*

Ab~.tract. A model for computing flows with %pecified si~paration characteristics

is presenutd. Tlils is based on a shape optimization method for constructing PL eitrfari'

with a given tanasjetial vurticity field.

1. Introduction. The Dirichlet problem for the Stokes operator is
well-posed. That is, if we specify precisely the velocity on the boundary,
then there exists a unique solution to the boundary value problem. Since
the Stokes operator is the principal operator for the equations of viscous
flow, the same considerations apply vis-a-vis the boundary conditions. The
specification of velocity on the boundary is the relation that expresses the
phenomenon of the fluid~s adherence to a solid surface due to intermoleculir
forces. In -some situations, one would perhaps want to model a botindary
interaction by giving some other quantity on the surfaeo, suc~h As surface
stress, or pressure, or vorticity ('11.[61). In the present. irti'cl we presmnt

a situation where one wou'd like to specify both a surface vorticity wh~ile
adhering to the requiirement that the velority be zero on the bounsthry.
Clearly, somethinrg must give; what gives is t~he boundary. we- mpecify vor-
ticity arnd then the houndary velocity is a rodl that. we wish to drive to zero
by finding the right ,urface. Even in the case where zero is unattainable.
we can interpret the solution to this minimization prrohltm in a physical
way. The method dcrcribed in this article can be us~ed not. (ml" to construct.
stiarfas with prescribed flow propertie5 but also to compute flows with free
surfaces.

In (he next section the mnodel of Hlow separat ion that motivates the use
of the vorticity boundary condition is explained. In §3 we put everything in
the context of shape optimization and compute the gradient. of the relevant.
functional. In ý4 we show that the optimization prohl-)ni has n~ soluition
and how to define the gradient in a variational manner. In the concluding
section, we difcuss briefly the numerical computation.

2. Flow separation. The stall of an airplane wing is a familiar phe-
nomenon: as the angle of attack is slowly increased, the form of the wing
relative to the mean stream is no longer such that. a strearriwise pressure
gradient on the Ice-side of the wing invokes a favorable circulation over the
wing to ensure the required lift. At a sufficiently high angle of attack this
pressure is so reducerd that there is a region on the lee-side where the Hlow is
reversed nmr the surface; the si rearnwise velocity turns away froin thfe sur-
face and circumnavigates a "bubble" of the reversed flow or joins in a wake

Supportertin part by the Office of Navai }tesemrdi Grant N00014-91-1 9i.
Depaninint rif tttsthp.nmric, and~ai t Wrtright UtrLniversitY, Vayten. Off n.115.
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behind the wing. In either case we say that the flow has separated from the
surface. Thus, separation is typically defined ([3fr23) as the departure of
a streamline from the surface or as the occurence of a singularity so as to
render invalid the boundary layer approximation. We make no direct use of
this definition in the present work. nor do we conwider the boundary layer
approximation except to make some intuitive remarks to motivate interest
in the role of the surface vorticity field in the separation phenomenon.

The separation at the surface plays a major part in the development
of the global flow picture. Particularly, when separation occurs, there is
usually formed a vortex-like structure or structures. In typical examples,
we have the large vortical rolls that develop at the ends of wings of large
transport planes: here there is no separation until close to the trailing edge
of the wing: on the other hand, in swept-wing fighters separation occurs
oil the forchody and vortices form whkch can effect the flow over the aft
portion of the wing as well as serve as dynamical drivers for structures such
as vertical stahilizers. Worthy of mention in this context is the concept
of vortex-lift, whereby the vortical structure over a delta wing induces
favorable-to-lift pressure field. Actually. the story of lift for separated flow
is not in good theoretical voice and i, presently being told mainly through
experimental and observational sttldics.

We should also make reference to the significauce of separation to other
engineering problems such as drag, pressure recovery, and noise generation.
When one consider., the wide range of flow, that can occur in naturf, and
indeed of xdhich man could make use, one sirs that attached flcw• with
stable boundary layers form a very restricted clahs, ( this is analogous to,
the situation in spitems theory via a vis linear system, s): yet, these flow5
are the only ones understood.

10 observe separated flows and the attendant surface action, exptri-
mentalists can roat the surface of a wing or hydrodynamic surface with a
viscous material such as paint, dye. or oil 1231. In the observed flow. the
coating forms streaks along the surface: thres follow the lield line of the
tangential surface shear. T his vector field ii known as the skini-friction, and
it is observed that separation is characterized by the appearance of critical
conditions in thisi vertor f eld. (Hirsute individuals can do this very chealply
in the bath tuth.) Mathematically. it is more convenient to work with th-
tangential vortirity, to which the skin-friction is closely related. Let its con-
sider coordinates (4,. fn, q) in a region of the flow domain near a portiou
of the (smooth) boundary. The coordinates (•t,.2) refer to the bounding
surface and rq to the normal (into the flow domain), which latter wv take
to be euclidean distance from the boundary. so that every point near the
boundary has the reprisentat ion R = r((,. 2) -" ,qn. where r is the surfnce
parametrization atd n is the unit normal. We use an ort.honornnal frame in
a neighb-rhood of the boundary- t, = R ti it t, where sr

is arr.length in the directiron f increasing (t- 6 h.d,. Assunintig th0
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linear constitutive law of the Navier-Stokes equations, the surface stress is
T = p931tt + p;932 t 2 + (py 3 -p)n, where p is viscosity and fij are shear
strain rate components. The skin-friction is the tangcntial component, r,,

114-It' ?ti +t91.' )

(21) tj + 11 t

Here. the flow vehncity is u =- ut, 4- t;t + u'n and we have used the condition
u = 0 for ad]hefrtnce .o the boundary. The expression for the vorticity.
W = curl u. i%, iji thiese coordinatez.

cI, I Irthat,),,,i10h-u) , O(h2 t;) I 8A(hA)
06ý h2 O h, O s h2os, It, Ob2

and so

n 9u I w- h2t' + w 1 Ohu31

n 062 h12 011 O+(S- hI nB

which on the surfare reduces to

(2.2) w x n I_- U t I + t.

which is just -Ilr, (2.1). (Notice that this is still the correct, expression
even if utr / 0. The tangential vorticity field, w x n: (actually this is
vorticity rotated a right-angle about n), will be the surface vector field of
iuterest to us throughtotit the work. From 2.2 . we see that it = ( x n))q U
o(q). and so, for small q, the velocity field is tangent to the sulrface, excfept
at critical points of w x n. To see what the normrs courponent is we enn
integrate thl' inComprTs.ihilitV condition, divu = 0: a•ain assiiming that
71 is small. we hlve

On .(ul..)
= -div,,,.(w x n0

or. upon ihtegratiin,

U. = -divt,(W x .) = -(,-.riw .-n -.

The tangential dikerge•ice. div,,,. can be defined without reference to co-
ordinates in the foll,)v.ir way. Let A denote a small surface patch cetered
at s8 with area ;Al. then

li 'AlI x u) dl.IAI--.i ,
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Thus.

divtd,,(wxn)= lim A'' f w-dI=(urlw-. n).

the vector field, eurlw = curlcurlu, which can be seen to be of major
importance near critical points of w x n, and which appears as a termt
in the Navier-Stokes equationst and is seen to mearnre the rotation and
stretching of vortex lines, is known as the flexion-field f22J.

In summary. then, streamlines will he expected to be parallel to the
surface for si,, It q. as long as aw n 96 0. When wt n xx 0 which genrally
happens at isolated points (one needs special symmetry for Ws x n = 0 to
hold on a curve), we have [11] (i) a point of separation if curla -n < O, or
(ii) a point of attachment if curluw- n > 0. If separat ion happens then the
streandines will tend away from the surface; following Lighthlill [12j. we can
see that this is char-arrerired by the convergence of near-surface strciaiilines
toward a separating surface determined by a wa n field line. Look ar tft
volume flt.w through a streamtube E. whose base: is on the surface bctwern
two skin friction lines and the height of the tube is q:

volume flow = [f dS P niujed&d = x nlq2 h

If h - 0, then e2 gets big, i.e., streamlines diverge from the surface. I hus,
"a necessary condition for separation is that skin-friction lines converge on
"a limiting line. What role, then, do the surace vortirity and flexion fields
fulfill in forming the character of the mean outer flow? In particular. how
are " vortices" generated at the surface. and how are their characteris-
tics determined by what happens at the surface? Engineers are particu-
larly interested in how to contrAl forelidy vortices on swept-wing planes
(fl8]).These questions will be dealt with in a future work; what is clear.
from the above analysis is that the surface vorticity field plays an important
part in any flow field and particularly in those flows which are said to be
separating. Thus an important first step in the control theory of vortiral
and/or 6eparnti-g flows is to be able to have some control over thi. surface
vorticity. In this work we are interested in the problem of how to achieve
a prescribed tangential vorticity fieid by use of either a gevnirtrir control
(shape of bounding surfare) or boundary control (tangential blowing). In
the next section, we discusis this in the context. of shape optimization.

3. Shape optimization with a prescribed surface vorticity. We
consider a body , in a viscous incompressible fluid moving %jith respect to
the far-fluid at a uniform velocity h. The flow is sonsidered in a bounded
region A containing 5, The boundary of the region A will be denoted as
&A. The boundary of the body $8• includes a connected component I'. that
we will consider to be t'rtah47 or subject to design. Since the body can be
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parame'trized by the variable part of the boundary r, we shall write also
B = rvr, and we denote by Q2 the actual flow region

to th~at we suippress, the use of the parameter r fr ot.
'The flow velocit~y ii and the pressure field p, are assumed to satisfy the

Navier-Stokes- equation in the flow domain:

(3.2) p(u. + u - Vt) = -grad (p + t,') - curl (pcuri u).

wliere the mass density, p. and the viscosity, /t, are both constant parani-
,etrM The mathematical problem that we wish to Consider is : Given a
81u1ooth vector field f (given paramietrically on the unkinown siurfacce), find
the surface r that mrinimnizes

(3.3) 1 Ir)X 1jt 112 d(7

where it sat~i~fies the Nvc.t~c qain .,wt ebud"
d~t ions

(3.4) h.
(3.5) ui -nIr = 0,

(3.6) (x u) x !r = If xn.

The first condition gives the, motion with respect. to the far-fluid; the w'cond
condition itriphviea that? the surface is not to be penetrated by the. flu1id: the
third condition fixes the tangential vcrticity. In this work, we will only
consider the case that none, of the bouindary surfaces are deormerd in time.
and that the vector fields ]h and f are not time varying. nre outer flo.,w of
a separated Hlow is typically non-stationary' and we will eventually Consider
this possibility. moreover, we will have t~o allow for this possibility Otha
is x n may not he coristniat oin the hotirdary. For the tirne being however,
our main goal is to study 1he shapt, derivativle of this optimization problem
and it will be conven'ient to first couch this 5tudy in the contextA of a *steady
flow. Notice that the condition (3.5) implies- that, the functional

~1(r)= jux nl,2da

could be used. The opthimality qsystems for these two runctkiinal arf- the
same. An equivalent. weak formulation of the governing eýquaticons Cani be
found by partial integration. fle.ining

X u {e H' (P2) : 7. t =0, 1116ns,r: uunji = 0),
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the equivalent problem is to find n so that u - h e- X and satisfies

(3.1) (vVxu).(7xv) + (Vxn)xu.rdz

jd(fxnu.rdr, VrNX.

Here, v lp-1, is the kinematic viscosity or momentum diffusion coeffi-
cient. Now we have a framework for our problem, We want to minimize the
functional j where the it in the integrard is constrained by (3.7). These
state equations are well-posed: we will delineate suitable hypotheses tinder
which there exists a minimum to the functional. For mininirnization in
this context one naturally considers an invesigation of the gradient. We
will show that such an object exists. Moreover, it is straightforward to
see that the solution t,, the optinniiation problem gives us some kind of a
solution to our original problem: we arc given a surface P" upon which (fe
adherence condition does not necessarily hold; thus u" x nir = g x n where
one now considers g to be the (Dirichlet) control (tangential blowing or
suction) [71. This is one method of hybrid-control.

We want to compute an expression for the shape derivative of the
functional J with respect to varialions of the surface 1'. For this purpose
let us gather togeTher a few facts from the theory of shape optimization
([17].[19].ESj.[15j). Let V denote a vectrr field (in IV) defin-d in a normal-
neighborhood of r. and vanishin.g on Oft \ r. ror example. V ran he given
on r as v = Vitt +1't 2+Vn and then extended into!? in some way; i.e.,
if x = r + tin, then V can be extended in a constant way, V(x) =V(r),
or perhaps as V(x) = V(r)h(fL where I is a cutrff function, etc., A
deformation of the boundary and thus the domain will be given by

F'(x) = x + AV(x)

The deformed control surface is rA = rP(I). We will now define the
material derivative of a functional defined on the domain or boundary Let
O~x(or (A) be afunction defined on FA(f)(or on FA( )). Standard notation
in shape optimization (f,14l9) for the pullback to a function defined on
Q(or r) is

&• = (rl)*Oj = OA oFP

(and. of course. Q' = (fvrch , F

The nateat dcrm atirte is

d
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we pull back to form the difference quotient in (lie fixed domain. The
material derivative of a function on r is defined in an analogous way. Now
suppose that x G fl rl n , for some A, then

dd
ý(x) TA6k=(F'(x))

(3.8) = lim A 1((6)L)(x) - 6(x)) + V(x) . V7.
A-0

The first term on the right side of the last equation i6 known ae the s$hpe
dermotirf; it is denoted by 0' and can be shown to depend only on Vjj_0 ,
and thus we ein nnalogously define the shape derivative of a function de-
finPd on T:

C'(r) = ((r) - V (r). V.

where •Vi,. = V - V- = V - 315-. The shape derivative measures the

change in a function on a domain due to rhanges in the domain. For
example, the function could be the solution to a differential equation to be
solved on a domain whose shape may be suhject to change. It. is clear that,
the shape derivative is the object that appears to first order in an expansion
of the solution in powers of A. Notice that if f is defined everywhere on
R", independently of r or Q, then its shape derivative, f' = 0, since, in
that. case, for A .small enough, J.-z) = f(r). The shape derivative can be
shown to d&pend only on the component of V normal to the boundary.

To ralcolate the derivative of J, we will change variables to write J(l'")
as an integral ovc:r the fixed r, for this we will need to calculate the Jaco-
bian of the resulting change of variables, at luast to first order in A. This
Jacohian is defined as

(3.9) Jac(A)dr (rA)'Wdr.

Using the notation of the previous sectirn, we let sObcripts dcnc,,et deriva-
tives of the vectors r and v, i.e.,

tOr
r•= - = h~ttr.

Then 

4k

S(F•P).dltA(ri, r2) = drA(F.•ri, F.Ar2)

= dTA(rA -t AVnIr2 +%AV,)

= ICr, + AV2 ) Y (r:,, + AV,.)Ijdý.dfS
((r, x r2 ) (VI x r2 + r, x V.,)

SIr l X r.212d +(

1r, x. r2I'dEjdt2
= Jae(A)Ir, x r212dlldb2:
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and we have the change of variables formula:

j fdr• = j(FA)'(fdr•) =4(1o FA)Jac(A)dP.

An expression for the derivative of the Jacobiar ca- be found a-- folows: 1

d (rxxr2)}(Vxr 2 +rxV2 )
Jr, x r2 !2

- (Izh 2)-'IVt- (r 2 x n) + (V2 -(u x rx)'
- h •'(V -If)+h'( - t2 )

- 7..", +hlqv.ý+ h, h,)- 1(v- M,+ vl-n)
(r1 I + r22))

- h;'-(h2 V') + h-/'i (hV2) f 2111'

= divsanVt'+ + 2HV"

= divf.,,V.

In this expression. H denotes the mean curvature of the surface. Notice
that, we can then uýe Stokes thoerem and the conditions on V to write

(3.10) jr divwr 4 dr = I2H(F-. n) dr.

We can now proceed to calculate the derivative of the functional. Before
we consider the form of our specific functional t .3. let us compute J' for

j(0) =4 J(lI)drA,

where J is defined on r' and u = u= --- Iru.. Pulling back to r.

r(r)= jr J(u)d4 = f o J(, F)Jzac(A)dl.

then

t= lint )rIJ(rl) - j(r))
A-O

= lirt Ak-4If f4(uA) - J(u)) + J(daA)(Jec(A) - 1)dr

I of vanm , it is my to set what it ;a we w cni1tm+nr hore (mrnt the followint
uiimple consideratiret As indicated by 3,4.

J-A) Apstir:) = Aet(I + A,~)
and thus,

F\JM.\=ti = tr4V(n.V) = divtnV,

and the calculativn in the text givts this function in t"rm of thu compoutentI of V.
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- J(u)V + J(u)div,anV dr

- + V'(u)V + V J(u)divg,,Vd +'

(3.11) = f(2 H(u)+±J'u))
Ir Jr Oil

having used (3.10). By use of the chain rule, the first integral can be seen
to measure the way that the solution to (3.2,3.4-3.6) changes with respect
to the boundary: we will deal with that term later. Our interest for the
moment is on the second integral (we'll refer to the term in the integrand
multiplying I" as boundary flux). which for the functional (3.3 ) takes the
form:

(3.12) xtf,, x n"2 ,'-(L-!)I- ' ,dr

Because of the non-penetrability condition, the first term is mean curvature
times the square speed on the boundary which of course is zero if the fluid
adheres to the boundary and there is no forcing. Both terms can be linked
with the rate of vorticity gereration at the bounding surface ([12]), but this
doesn't seem to very useful in terms of a design sensitivity analysis, which
is our concern here. Instrad we will re-write the second term in terms of
the ,quarn speed and the flux of the square speed and a third term which
can be related to 'effective" curvature.

If we compute, the normal derivative in the expression (..12),

li Ix nt2  n - ~u x nI 2

Via 2 2
= .((n x u). -'(n x u))+ n (n x it) x (V, x (ni x ))

we see that the first term on the right hand side simplifi,,. ,,-ckau; of "I'",
boundary condition of nL-p,:netration:

n. ((n x i) .V(n x u))= -(it xui) -((n x is). n)
(3.13) -. -(.(u x n),n x u).

This condition also simplifies the the second term

a -(it Y. i) Y.(7' Y (n x to))
n x (n x ).( x (n x u))

= f(n.u)n - (n .n)u][V x (n x u)]
-1= -U-(u. Vn- n Vn- 21tu)

(3.14) = 2Ifjul + V,(!uI 2 ) - (Su. u);

here S is the shape operator from surfae theory (14'. If u were a unit vector
on the surface then (Siu, it) would be normal curvature of the surface in the
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direction of u. Thus in the case that u does not vanish on the surface, we
can consider this tangential blowing as an enhancement to the curvature
of the surface; the complete flux term for the boundary variation is then

HIU2+ I ) + ((III- S)uu)+ ((HI- S)lu x n' ,u I n"))

If the surface streamlines are regular, it is seen that. the last two ternis
cancel; however, we will keep them because they may be of some use in
certain numerical xrianeovres.

The first integral in describes the variation of the integral due to the
change of the solution on the changing domain. By the chain rule [21] we
get (again we use to simplify)

jJ'iu)Vdr = (t x nw x n)+(u X n,ux

(3.15) = ruW.

The variable w = u' is the shape derivative of u at A = 0; it satisfies the
system of differential equ•tions ard boundary conditions

(3.16) ug + u Vrw + w- Vu = -grad (p) - curtl curl w).
divw = 0.

wlan\r = O)
(3.17) w -nir = -div.•.f(u)(V -n),

(3.18) VT Xw Xnl, = S(u).
where t(u) = - x n!,-o = O -t(t, + f-t2 ), (cf. 2.2). This then is the
description of the directional gradient of our functional. For computational
purpovss it is desirable to put this derivative in a variational framework.
We will introduce this weak derivative later in the artidle. For the moment
we will discuss some technical matters.

4. Existence, uniqueness, and differentiability. WVe will gather
here just a few facts regarding the well-posednfss of our state equations.
As our intent is to prepent a method by which we can construct a surface,
we are interested in the conditions under which a minimum exists to our
optimization and when we can define a gradient. The variational systena
of equations (3.7) has a solution if the surface ficld f is in Hl1 2(11, Ihis
can be shown as in IV, as our system of eqations falls into the clap!s of
equations studied there. Furthermore, one can show regularity results of
the following form j20j: the solution map

(r.f)- u

is continuous on

Lip x Hi''(1') - H'(0) n CC 1(11)
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We will always assume at least this much regularity with regard to the data
(that is, the boundary and objects defined on the boundary).

It turns out that uniqueness of the state equation is necessary for the
existence of a minimum; for this purpose, one can define a generalized
Reynold's number 2: io that if < oo then the solution to (3.7) is unique.
This number depends on the geometry, boundary data, and visc-sity. being
large for a large domain, large data, and small viscosity. For details on this
construction. consult ([10].f1].29]). Furthermore, we need a compactness
condition in order to establisli existence of a minimum; essentially what is
need is some uniform control over the Lipshitzne-s of tvie boundary. The
easiest way to see how to do this is to awsumie that r is given by a Monge
patch [203:

r• = {(il,) C2 : C = 0(41 4): (6, 6) E D)
Of rourxe, we generalize to the case where r is given by a finite number of

Monge patches. Now define

PROPOSITION 4.1. Assume hf4la h and f are in 1H2; .uppo-se that
R < 1. i'1,ire ttisI a 0" -such thal

J(r'") = min i.(rf)

Proof: Let {1.) C Ut. be a mnininiizing sequence, and let {u,,} be the
corresponding solutions to the state efquatiou. 'The a.sunlptifbl.a are morr
than enough to gcirantce that,

SI;" IH + .1 1 + , c,"11'- _ C

And so (pa&sing to subtequences):

o, - 6" in 113(D).

W u in I1'(Q).

U,- U* in 0(1')

"[he equation for 1,,, is

uf . uJ/ U .) - V+ j(V 1 ) x11 11,1 - r

&,_ (f , n).- rdr, Yr .\'
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If r e C1 (fl) then clearly

(fn) ,rd .- .(f x n) rdr;

and so,

J (r xu.) (vxr) + (Vxu.jxu.-rdx

=jfwxn).rdI, VrTXflC';

but C1 is dense. Since, 1Z < 1, the solutions to this system are unique and
we ronclude that u. = u(6*). Finally, we can pa!s to the limit

We proceed to establish a variational form far the dirertinnnl derivative
of the functional. the gradient in this weak form will be of interest in
devisirg a computational method for computing r. The gradient of J at
r is

14.1) jrU.w+ { bu{I- + - -

and the equation for w is (3.16), which was derived by applying the chain
rule whereby iU = -U' is the shape derivative of u with respect to bound-
ary variations. "u snake this expression for the gradient well-definted, one
must show that this shape derivative exists. One would like to do this by
computing the material derihative of the solution and applying (3.8), for
example, as explained in !f17 for the crase of a linear equation: one pulls
back to the A = 0 domain and constructs the equation that the pull-back
It satisfies on Q. This will be an equation

G(AV,,$) = 0

of the form of the Navier Stokes equations bat with continously varying
coefficients (assuming V E (0). One can get that it exists by applying the
implicit function theorem at the point (0. u), i.e., G0(1, i!) arc the equations
(3.2). In our case. however, we cannot express directly it' in powers of
A because the map D2G(O: u) is not bijective. This operator is, similar to
that given by the left-hand side of (316). As pointed out in (5Jj3) this
operator is s-emi-Fredholm and onto and thus tine can apply the surjective
versiezk of the implicit function theorem 124J to conclude that the material
lerivative and thus the shape derivative is well-defined.*Thus the gradient
(4.1) is well-defined.

In formulating the weak version of this gradient by introducing an
adjoint variable, the es-ential non-homogeneous boundary condition (3.17)
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presents us with a difficulty. One possibility for dealing with this is to
first enforce this condition by introducing a multiplier as in [5] and then
dualizing. However. since here it is only the normal component that is
involved, it seems easiest to introduce into the derivative J' a potential
term u- V7 that will take care of the condition. More precisely, let w =
W + V6, where

"• = 0, in 0•

(4.2) 09 - -divt 0.u "•". on r
5-n

That this Neuman problem is solvable follows from the fact that w is
solenoidal. It is clear that w vlves the same system as w, hut now with
homogeneous boundary condition (3.17). At this point we introduct, the
ad joint variable ý C X that satisfies

(4.3) L(V x %)- ( x r} -(r x 1) x rdt

-Vx(uC).v" = frr.rdr, VT•EX.

This is in fact dual to (3.16) as can be verified by an intepgration by parts,
noting that

n (V x )(V w) dr= V x (u •) .wd.,

since n x t is a vector norindl to r. Now choose. in the equation (4.3).
r = *. Then, by an integration by parts,

jru .*dr In(7 x 0).(V x) -(Vx U) x .,dt

-r x * x .U = Jt E(,),.Cdr.

where we have uwd the weak furmulatinn of (3.1M). Then we have the
following

PitoPosiTIoN 4.2. Tbh boundary functional J has a deTr1alivr at any
r E H4 in any direction V q C2 and

j'(r)v=
(4.4) /S (u)- u. ÷u•v6 - p it,,,2+ •(-)V"dr

rIr Ott 2

wi'frc 4 and 0, are definted es abover.



ADA294785

338 THOMAS SYOBODNY

5. Conelusion. Once one has an expression such as (4.4), the real
work can begin. One would like a discrete version of the gradient to be
able to use a gradient-like algorithm for minimizing the functional. We have
in mind here what is apparently known in the trade as a design sensitivity
analysis ({8j415j,16]41). Simply, this name is descriptive of its origins
in design. Subsequent to discretization, a direction in the approximation
space is typically associated with the node of a triangulation of the design
surface and a variation in that direction (in approximation space) is associ-
ated with the movement of that node in a particular direction (in physical
space). Thus. with the idea that we associate minima with stationarity of
the functional (local extrema are always a problem), we can push the phys-
ical nodes in different directions to see how 'sensitive? the functional i.s to
such movement. Of course, by the time one gets around to constructing an
algorithm for this it resembles a gradient-type programming algorithm.

Front the expression for the gradient of j7 it is seen that the it needs
to have at each -tep current values for the state variable it as well as the
auxiliary variables f and 6. A steady flow is found by computing the state
equation in time until a suitable mean flow is achieved which is then fed
to the adjoint eqn which is integrated backward in time until steady. The
initial condition is always the steady condition from the previous optimiza-
tion step. Thus the flow takes some time to settle down adjusting to the
new boundary at, each step in the optimization. The spatial discretization
is donw through a finite element approximation. The finite-element grid
is dictated by the discretization of the surface. For example. if r is given
by a superposition of height functions, then it is easy enough to align the
grid with the outer glow; however if the surface is given by an orthogonal
mesh of curvature lines, then clearly one wants to move out normally in
the mesh. Although the computational requirements of this problem seem
enormous, it does provide a one shot method for constructing surfaces that
do not allow separation.
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RECENT ADVANCES IN STEADY COMPRESSIBLE
AERODYNAMIC SENSITIVITY ANALYSIS

ARTHUR C. TAYLOR III% PERRY A. NEWMANt, GENE $-IW. HOW, AND
HENRY E. JONES1

1. Iutroduction. An overview is given of some recent accomplish-
ments by different researchers in calculating gradient information of inter-
est from modern flow-analysis codes. Of particular interest here is advanced
computational fluid dynamics (CFD) software, which solves the nonlinear
multidimensional Euler and/or Navier-Stokes equations. The accurate, ef-
ficient calculation of aerodynamic sensitivity derivatives is very important
in design-oriented applications of these CFD codes to single discipline and
multidisciplinary problems j1,2].

Sensitivity analysis methods are classified in this study as belonging to
either of two categories: the discrete (quasianalytiral) approach or the con-
tinuous approach This roughly follows the classification presented in Ref.
[3), where the two methods are referred to as the implicit gradient approach
and the variational approach, respectively. These two broad categories in
-,s-nce differ by the order in which discretization and differentiation of tbe
gov,•ning equations and boundary conditions is undertaken: for the. forril"
approach, the discretization precedes differentiation. In the final analysis
of e-ither ra.s, a large discrete system of linear equations must be solved
when rn!enlatinx the sensitivity derivatives.

The principal focus of the present discussion is the discrete approach.
for which the basic equations are p'resented; the major difficulties, together
with proposed solutions. are reviewed in sotme detail. However, advantages
and disadv-antagcs are associated with each of the two categories of meth-
ods. Thus. a brief discussion of some recent re6earch activity that involves
the continuous approach is also included.

2. The discrete approach.

2.1. Summary of basic equations. After discretizaeion, the non-
linear. mutt idimentional steady-state governing equations of fluid flow and
the boundary conditions are approximated as a large system of coupled
nonlinear algebraic equations Pas

(2.1) R(Q(D), X(D), D) = 0
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where Q ii the vector of field variables, X is the computational grid, and
D is a vector of independent input (design) variables. Differentiation of
Eq. (2.1) yields the matrix equation

(.2), 8R.. OR(22.•) R' 8R + ýR-X0 + LI = o
OQ da OD

where R' =4d Q' , Q (the sensitivity of the field variables); andAl W

AX d (li. 'grid s.nsiwivity'). This latter sensitivity will be discussed
subsequently in greater detail. The linear Eq. (2.2) is first solved for Q', in
order that the sen-itivity derivatives of aerodynamic output functrionus F,
can be calculated subsequently. That is,

(2.3) P = F(Q(D). X-D), D)

and differentiatio, of Eq. (2.3) yields

(2.4) F' = , + FL , OF

where F' P which are senoit ivitv derivatives. of intcrest. Alternatively,
the nertssity of solving Eq. (2.2) for Q' is eliminated by firs- solving the
linear equation

(2 / c)nT (OF) T 
=(2..)t( )' a+ 0,/ =

where A is a discrete adjoint variable matrix associated with the functions
F. Then F' is computed as

(2.6) F' = - , ' + + ATR . .4 - OR

For rraxiurun computational efficiency, Eq. (2.2) iN solved for Q' if the
dimension of F is greater than that of D; otherwise. Eq. (2.5) is solved for
A if the dimension of D is greater than that, of F.

A number of researrhers have succe.;sfully pursued the preceding qu:asi-
analytical approaeh c, calculate sensitivity derivatives fronm vonlinear flow-
analysis codes of varying degrees of complexity. For example. Elhanna and
Carlson (Ref. [4]) have computed sc.nsitivity derivatives for various airfoil
flows from the transonie small-disturbance equation. and, titore rec.-ntly, for
three-dimensiona] (3D) flow over a wing from the full potential flow equa-
tion (Ref [5]). Drela (Ref. [6]) has computed derivatives for airfoil flows
from a streamline coordinate formulation of the two-dimensional (2D) Eu-
ler equations, coupled with the boundary layer equations, to account for
viscous effects.

The calculation of qua.i analytical sensitivity derivatives is reportc-d by
Taylor et al. (Ref. [7,8]), Hou -t al. (Ref. [9]), and Baysal et Al (Ref.
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[10,11]) for interior channel flows from a conventional upwind finitt-volume
solution strategy applied to the 2D Euler equations in body-oriented co-
ordinates. These researchers have subsequently extended this work to
calculate sensitivity derivatives for 2D laminar flows from the thin-layer
Navicr-Stokes (TLNS) equation*, including external flows over isolated air-
foils (lefs. 112.13]). Calculation of quasianalytical aerodynamic sensitivity
derivatives with an upwind finite-volume solution of the Euler equations
lia!a also been reported by Býeux and Dervirnx (Ref. [14) for a 2D channel
flow. In many of the references cited thus far. the quasianalytical sensitiv-
ity derivatives were not only shown to agree very well (as expected) wvith
derivatives computed by the method of fii~ite di-rornenes, but were obtained
with significantly Iens computational effort.

Despirt the success reported in these works, however. severe difficulties
remain, and these must he overcome. so that efficient, accurate calculation
of gradient information from large-scale modern CFD software can benome
routine, particularly Ior t urbulent 31) flows "ver complex geometries. 1 hree
such major difirjlties identified here arc

1. Solution of the extremely large s.ystem of linear equations (eith.er
Eq. (2.2) for Q' or Eq. (2.5) for A)

2. Accurate differentiation of all tarms in the flow-analysis code (which
can become an extremely complex task) to be used in computing
the sensitivity derivatives

3. Evaluation of the "grid sensitivity ' term X', in Eqs. (2.2) and
(2.4). or in Eq. (2.6).

These three problems will be discured subsequently in greater detail;
included in this discussion will be some recent research efforts that have
been undertaken to overcome theýe ob•taeles Further discussion of thefre
and other diffculties is also found in Ref. 115].

2.2. Methods for equation solution. Ifa strict application of New-
ton iteration is possible and applied in solving the nonlinear flow Eq. (2.1)
for Q, then clearly the solutiorn of the linear Eq. (2.2) for Q' (or Eq. (2,5)
for A) becomes simply an efficient bark-substitution procedure, This pro-
cedure has been demonstrated in the references cited thus far. However.
the formal implementation of Newton iteration is not feasible for advanced
CFD codes on current supercomputers because available menmory dtws not
permit direct LU fartoriration of the coefficient matrix when solving the
Euler or Navier-Stokes equations for large 2D or practical 3D problems,

As an alternativr- to pure Newton iteration, typical CFD codes employ
what is sometimea called "quasi-Newton" ileration which can be expressed
as
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(2.7) - = R`

Q"+ = Q" + AQ
(2.8)= 1,2,3...

The left-hand-side coefficient matrix operator 1'- of Eq. (2.7) is, in many
C'D) codes, at best only a very rough approximation to the cxacr Jaco-
hian matrix operator that is associated witi' true Newton iteration. Thus,
Eqs. (2.7) and (2.8) are intended to represent a broad Fpectrium of implicit
and e.plicit iterative algorithms that, are common to C(FD software.

Some important computational difficulties are associated with thi liei-
ear sensitivity equntions when they are iteratively solved in the standard
form given by Eqs. (2.2) and (2.5). Most importantly, the coefficient ma-
trix. -, ( and also i)', ' characterized by a lack of diagonal dominance
(for spatially higher order accurate. standard CFD methods) and perhaps
by poor overall conditioning. The result is poor performance, or even fail-
ure (divergence), of conventional iterative rnethod., when applicd to the
sensitivity equations in standard form (Refs. 3)] rand [121). Furthernmore,
approximations of computational convenience cannot Le introduced into
any of the terms of these equations witnout affecting the accuracy of the
sellsitivity dorivativc~s that are computed at convergence.

One- npproach that addresses these dilliculties is given by Fklshaky and
Bp.yval (Ref. 116]). In this work. a domain decomposition strategy, together
with a preconditioned conjugate-gradient (CC) algorithm, is successfully
applird to itratively solve the sensitivity equatio'is in standard form for an
airfoil flow from the TLNS equationb. An initial indicationi of the feasibility
of this approach in 3V was recently drnionstrated on an axisyrunetric
nacelle configuration (Ref. [17]). A CG tchnique was also introduced
in Ref. 15] for obtaining sensitivity derivatives from the 3D full potential
equation for a wing.

AnoTher strategy has been developed by Korivi -t al. (Ref. [181) and
Newman et al. (Ref. [19]). where the sensitivity equations are recast and
olved in incrementol iterait e jorm; for Eq. (2.2), this form is

(2.9) - - = -_R"' ORQ? _--f, + OR
(QOQ ox VD

Qfr'+l Q'"' 4. AQ'
(2.10) 

l u = 1,2,3 ....

In Eq. (2,9). the left-hAnd-side roffficient matrix:. - represents any c,,n-
vergent, coompuatai.,nally convcniont approximation of the exact J8cobian
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matrix. In particular, the identical approximate left-hand-side operator
and algorithm that are used to solve the nonlinear flow equations can also
he used to solve the linear sensitivity equations. Comparisons of Eqs. (2.7)
and (2.8) with Eqs. (2.9) and (2.10) reveal that the linear sentitivity equa-
tions (Eq. (2.2)) are solved by interchanging the right-hand side of Eq+ (2.7)
with that of Eq. (2.9) and 'freezing" the left-hand-side operator. At con-
vergence., the nccuracy of the sensitivity derivatives is not compromised if
the the term, on the right-hand side of Eq. (2.9) are evluated consistently.
The use of the incremental iterative strategy is also applicable in solving
Eq. (2.5); in this case, the left-hand-side operator. •, must be transposed.

Implementation of the incremental iterative strategy for Solving Eqs.
(22) and (2.5) has beent successfully deutonstrated in Ref. [18]. In this
work, two airfoil problems using the TLNS equationa were considered: low
Reynolds sumnber laminar flow and high Reynolds number turbulent flow.
The well known, spatially split, approximate factorization algorithm was
used to solve the nonlinear flow and the linear sensitivity equations in
incremerntal iterarve form. Derivatives, with respect to geometric shape
and nongeomretric shape input variables, were accurately computed; they
compared well with the mel hod of finite differencet. hut were significantily
less costly to obtain. For these two airfoil problems, attempts to solve the
sensitivity equations in standard form with conventional iterative mzcihods
failed because of the lack of diagonal dominance, as discussed previously.
Fu,'thermore. use of an "in-core" direct solution of these equations was not
feavsible; the large number of points in the computational grid exceedc-a the
storage allocation on the standard Cray-2 computer queues. Burgreen and
Baysal (Ref. [20') have rece-ntly extended their earlier work to combine the
efficient preconditioned coiijugate gradient algorithm with the incremental
iterative formulation to solve the sensitivity equations for an airfoil flow.

The incremental iterative formulation is very flexible. This formulation
should allow the future development of algorithms which are specifically
tailored for the highly efficient solution of these equations on advanced
machines, including massively parallel architectures. Mo-st significantly.
the incremental iterative formulat ion increases the feasibility of solving the
sensitivity equations for advanced 3D CFD codes. Korivi et al, (Ref. 12111
have demonstrated the use of this strategy to efficiently and accurately
calculate quasianalytical sensitivity derivatives for a space- marching 3D
Euler code with supersonic flow over a blended wing-body configuration.

2.3. Construction of complicated derivatives. Application of the
qunaianalytical imet.hods that have been described requires the cotrt r:uctl0on
and evaluation of mtany derivatives (e.g. the Jacobian matrices, 4 and

found in the preceding equations For advanced (I)D cod&s. the tas k
of constructing exactly all of these required derivatives 'by hand" and then
building the software for evaluating these terms is extremely complex, error
prone. and practically speaking. impossible. For example, the inclusion of
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even the moa~t elementary turbulence model adds a tremendous leve of
complexity to the Jarobian matrices, OR and '9", even in 2D. Rteference
[181 shows that failure to consistently differentiate the turbulence modeling
terms can result in unexpectedly large errors in the sensitivity derivatives
that are calculated. Other common features associated with advanced CFD
software that are expected to severely increase the complexity of these
ternms include the use of multigrid for convergence acceleration, and/or
either strtaetured multiblock or unstructured grid capability for application
to complex geo.metric configurations.

A promising possible solution to this problem may be found in the
use of a technique known as automatic differentiation (AD), which involvesý
application of a precornpiler software tool that automatically differentiates
the application program source code from which sensitivity derivatives, are
to be obtained. The output. of the AD prrci:'mpilnr procedure is a new
source code whichi, upon compilation and execution. will compute the nu-
rnerical value(s) of the derivative(,%) of any specificd output function(s) with
respect tco any specified input paranieter(ts). In addition, this new pro.grain
will perform thr: fuinction evaluations of the original code. Computation of
derivative~s via AT) shouHI not be confused with the use of a mathemati-
cal symbolic manipulation software parkage. (e.g., MACSYMIA. Ref. [22]).
This latter tipproach was employed extensively in Ref. *5, for example.

An AD precompilar software tool called ADIFOR (A utomatic DIfferen-
tiation of FORtran, Ref. [23]) has recently been ttested hy Bischof et 11.
(Ref. 124]1) and Green Pt al. (Refs. [25,26]) in applications, to an advanced
CFI) flow-analysis code called T1'NS3D (Ref. [27]). Thle TLNS3I) code
solves the 3D '11NS equations using central difference approxcimations of
all spatial derivative-s and emiploy:' an explicit solution algorithm that in-
cludes a highly efficientt stat~e~of.thc-art multigritl conavergenice acceleration
technique. In these studies. a high Reynolds number, turbule.nt. 3D tran-
sonic flow over the ON ERA W6 wing was selected ab thet example problem.

The ADIFOR procedure gernerated a new version of thle 'rLNS33) code
that. was augmented with the capability to calculate th(e derivntives of lift.
drag, and pitching meoment with respect to a variety of diffrent, types of
input paramneters (including parameters related to the geomentric shpe of
the wing). *fhe *ewiitivily derivatives that were- calculalcd by AD com-
pared very well with the same derivatives calculatedl by finite differences.
The computational cosýt of genernting the result.- was roughly the same
for both methods-, howvever, this cost was very high. Never-theless. the re-
sults reported in Refs. "24.2-5,26) are enrouragin~g in that they confirnm the
feiAsihilit~y of applying AL) to advanced 3D CFI) codes. In particular, the
AD 1j.roecdure was proven to be capah4,,of generating accurateý dnrivatives.
even for a complicated iterati~v soluition algorithm such as miltigrid and
with the extra level of comp~lexity lue to turbulence modelinig.

When AD is applied directly to a typical iterative CFI) codte, the re-
sulting AD-enhanced CF) rode mus~tr encnate, the, required s.-yjitiviiy
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derivatives through a similar iterative process. From the discussion in
Refs. [23,243, the process whereby sensitivity derivatives are iteratively
calculated after the application of AD can be represented conceptually by
combining Eqs. (2.7) and (2.8) (i.e., the basic CFD solution procedure) and
differentiating with respect to D; the result is

(2.11) Qin+I = - pn Rin - pmRt

n= 1. 2,3...

where P_=
References [23,24J note that aw an option for improved overall com-

putational efficiency, the original CrD code can he used to first generate
a well-converged numerical solution of the nonlinear flow equations be.-
fore the AD-enhanced CFD code is executed to calculate the sensitivity
derivatives. When implemented in this way, the de, ivative calculations. via
Eq. (2.11) and AD essentially reduce to the previously discussed incremen-
tal iterative formulation of Eqs. (2.9) and (2.10) because R"! is very small.
Unfortunately, differentiation through the complete iterative CFD solution
algorithm and repeated calculation of its derivatives (represented hy P'"
in rq. (2.11)), although unnecessary, is not avoided. The coinputationm-ly
wasteful, repeated calculation of P" is probably a very significant part of
the total work represnted by Eq. (2.11). Furthermore, the AD-enhanced
CFD code will continue to iterate on the well-converged solution to the
nonlinear flow equations. A concept for deactivation of the AD for sonic
parts of the tode or calculations was suggested in Ref. [24'.

An alternative strategy has been proposed by Newman c al. (Ref.
[19)) for applying AD to large-scale CFD codes. If successful. the method
would circumvent the conputationally wasteful aspects (previously dis-
cussed) associated with the cunventional direct application of AD to CFD
codes. Reference [193 proposes that AD be judiciously applied to differen-
Piate only the right-hand sidle of Eq. (2.7); the resulting ternas would be
placed on the right-hand side of the incremental iterative formulation of
Eq. (2.9). That is, AD would be used to assist in the accurate construction
of the t*rms required on the right-hand side of Eq. (2T9); the original CFD
code and solution algorithm would be used "as is" for the eft-hand sbide
of Eq. (2.9). The resultinlg methrd should effectively nhmbine an existing.
highly efficient, iterative solution algorithm with a fast, re•iable procedure
for constructing all of the r,-quired derivative-s.

2.4. Discussion of grid sensitivity terms. Typical C7D calcula-
tions are performed on a comnputational mesh that is 'todv-or;-nted."
Changes in the gvonnetric shape result in the movement of grid points
throghout the entirn mcsh - not just on the boundaries. Therefore, for
design variabl)s that are related to geometric shape, the grid sensitivity
matrix, X'. of Eqs. (2.2), (2.4), and (2.) is nonzero, nonsparse. and re
quires special consideration to evaluate computationally.
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One method for calculating these grid sensitivity terms is by finite
differences. If forward finite difference approximations are selected. for
example, the mesh generation code is used to produce one additional per-
turbed grid for a slightly perturbed value of each geometric tshape design
variable of interest. This approach has been successfully used in many of
the references cited thus far. This procedure is generally expected to be
reliable in producing accurate grid sensitivity terms because the relationl-
ships that are axsociated with the miesha generation process., should be very
smooth by desingn.

An analytical method for evaluating the grid sensitivity derivatives,
has been proposed by Taylor et al. (Ref. WS), which involves the chain
rule and direct differentiation o'f the relationships that are used by the
mesh gr'ncration code to distribute the grid points throughout the interior
of the comnputationalI domain. Com putation ally, the geoometric shape of
the domain is defined by the grid point~s that. lice on the boundaries (i.e.,
on the- body surfaces). These boundary grid points, X0 , can be viewed
as the principal input variables of the mesh generation code, whereas tile
complete sot of mesh points, X, are the output. variables. Furthermore, tiie
boundary grid points of interest, tire a function of the geometric shape design
paramieters. Thus, the function of the mesh grneration code is expreFsed

(2.12) x = x(xB(n))

Differentiation of Eq. (2.12) with respect to D yields the working relation

ship for X'

(2.13) ox TB

where the matrix, X' z !f-X, is a very small subset of X'.. Typically.
the derivative X',, can be evaluated atnalytically: it depends onl the spe-
cific shape and particular parameiterization of thn. body surface in terins
of the design variables, D. The matrix ý;-ý is unique to the particular
mneab gtneration program emploýyed to distribute grid points throughout
the domain and can be evaluated by a one-time direct differentiation of the
relationsi ips used. Smith and Sadrehiaghighi (Re-f. [2R]) and Sadrehaghiglig
et al. (Refs. [29.301) have pursued iii soine depth the analytical approach
of Eq. (2.13) to efficiently calculate accurate grid sensitivity derivatives fmr
airfoil flows. This method is also us~ed hy Jlurgreen et al. in 1ef. [311.

Another approach for calculating grid sensitivity derivativrs ik pro.-
posed by Taylor et al. (Ref. tl2]) and is also used by Korivi rt Ah. (Ref.
[19)). The method eninploysq an e~lastic membraiie analogy applied to the
computational domain. Trhat is, to renmesh after a geoniutric. shape change
and to calculate grid sensitivity derivative:s, the domain isý w~uied to oibey
the laws of linear elatticity. Thme procedure invvlvres the tice of a finite-
element computer code for strurtural analysis to volImt'pI tho required
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grid sensitivity information. A detailed expianation of this method is given~in Re~f. [121.
iGreen et a). (Ref [26,1) have applied Al. (i.e., ADIFOR) directly to

the grid generation program to successfully calculate the g;rid sensitivity

terms. These grid derivatives were subsequently coupled directly to the
AD-enhanted UINS3D flow code. As previously discu,.sed, the final result
is the sncce,ýsful caklcuation of aerodynamic sensitivity derivatives, with re-
spect to geometric design parameters for 3D turbulent flow over the ON-
EPRA M6 wiug.

2.5. Comments on simultaneous analysis and optimization.
Gradient information, whether it be sensitivity derivatives or adjoint vari.
ables, is required for design-oriented applications. In the approach of So-
bieski (Ref. 12,), the global optimization. with its multidisciplinary objec-
tive functior and constraints, is the outermost iteration loop and drives
the various single discipline analyses and their corresponding sensitivity
codes. Each discipline furnishes both functional and gradient information
at each optimization iteration step. In the case of iterative singlC-discipline
solutions, both the functional and gradient information thould be well con-
verged. Other formulations for the multidisciplinary design optimization
problem have been proposed by Cramer et a]. (Ref. 132J). Thesc formula-
tions involve the natture and extent of optimization and analysis partition-
ing or mixing.

When a single-discipline analysis code employs an iterative solution
algorithm (i.e.. CFD), then embedding the optimization iteration within
the discipline solution iteration may have significant computational advan-
tages. This approach, of cotirse, is possible and hba been (lone for single-
discipline (optimization) design codes in both the discrete (discussed here)
and continuous (discussed in the next section) approaches.

Rizk (Ref. [33,) proposed a simultaneous analysis and optimization
technique called the single-cycle sehe-ue and recently suimnarized several
CFD applications of thii technique (Ref. I34)) The design ver.ion of
TRANAIR, as discussed by Huffmnn et aL. (Ref. =)1), incorporates wscm-
sitivity analysis via both direct (such as Eq. (2.2)) and adjoint (such as
Eq. (2.5)) techniques. For the adjoints, however, the output functions F
(such as Eq. (2.3)) are the objective function and the constraints: these
adjoint solutions are embedded in the flow-analysis solutions (i.e., simulta-
neous analysis and optimization).

Two other discret- approach techniques for ejmultanoous analysi- and
optimiration have bri-u reported by Orozen and Ghattas (Ref. 136)) and
Hou er aL (Rf. '371). these independent derivations e.sentially arrive at
the same set of equations to so,!ve for the flow and adjoint variables and are
also closely relatM to the variational or control theory techniques dicussed
in the next section.
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3. The cozatinuous approach. An important advantage is assonci-
ate~d with the continuous method for computing gradient information, where
the governing equations and boundary conditions, or their corresponding
weak variational form, are diffe.rentiated with respect to the design variables
prior to the discretization and solution of the resulting sensitivity equa-
tions. The advantage is increased fir ribilify. For example, a completely
different strattegy mighrt be selected to discretize and woive the sensitivity
equations from the strategy used to solve the flow equations. A simpler
governing equation or set Of gQVCrning equations other than those used in
the flow analysis mig~ht be selected and solved to estimate flow sensitivity
information With this increased flexibility conies the possibility that some
of the major difficulties associatted with the discrete approach (whjich were
discussed earlier) might. he tnitig~ated. or completely avoid'ed.

Shuhin and frank (Ref. 13)) have concluded that aerodynamic sensi-
tivity derivative "-used with gradient- bacred design optiniiintion procedures
should be con~itentiy discrr Ic. That ik, they *hould be essentially the ex-
act derivatives of the discrete algebrair s-ystem that, approximately models
the continuous problem. Shubin and P'rank assert that then use of inconsis-
tently di.screte derivatives, can cause significant slowdown or even complete
failure of optirniiiation procedures. Furthermore. they note that uge of a
continuous formulation can yield derivatives that are not. consistenitly dis-
crete; according to Ref. 131. derivative inconsistency tracedi to this source
can create severe problems for the optimizat ion algoPrithra. Generally, the
continuous approach can yirld consistently discrete derivatives, (or At least.
very close approximnations of the sainc-.) when a careful discretfizatiott of the
sensitivity equations is selected that is compatible with the one used to
discretize the Hlow equation.s: in additionj. o-f courze, the sensitivity equa-
tion-, must also be derived froni the original flow equations. Therefore., the
requirement that the sensitivity dlerivativ,-s be. consistently discrete. will
severely restrict the principal advantage of the continuous approach (i.e.,
flexibility). However. the necessity of always using consisttently discrete
sensitivity derivativcs for gradient-hased opt imizat ion is refuted ill part by
Bo~rggaarcl (Ref. 1381), who examines the identical qiiasi-on- din iension al
nozzle ifow problemn with a normal shock (as investigated previously in) Ref.
r,3]), In Ref. [38). the judicions use of incon~istentl, discrete dcrivatives iF
shown in some. eases to be benieficial, resuliting in `successqful'* optimization,
whereas use of the conqistently discrete derivatives results in failure.

A continuous formulation by Yates Ref. 1'39]) and Yates and flcs-
marina (Ref. j40') has successflmlly demons.trated the accurate and e'ffi-
cient calculation of arrodynamnic sensxitivity derivatives from the integral-
equation representation of the governing eqiintions of aerodynamics and
of the. resulting aerodynaitic. sensitivity equations. Results to date have
been reported only for linear aerodynamic thcory, in whicli the inethod
reduces to A conventional bontindary clcremeif procedure. In p'rinciple, how-
ever, this strategy might. Ibe exte~nded to tfficiently compute ardiat
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sensitivity derivatives for 3D, nonlinear, viscous flow. An integral-equation
representation results in solution procedures that are unique and that have
advantages over standard finite-difference and/or finite-volume methods for
solving the flow equations; these advantages then carry over in solution of
the resulting sensitivity eqnationsv (Refs. 139,40]).

Continuous formulations for aerodynamic sensitivity derivatives ap-
plied to the 2D Euler equations are reported in Refs. [14; and [41]. Recall
that Ref. [14] also gave results for the discrete approach. Borggaard et al.
(Ref. :41]) succesfully used the continuous approach to calculate sensitiv-
ity derivatives by direct differentiation of the 2D Euler equations together
with the boundary conditions. With the methods of Ref. (41], the existing
CFD software can be auoitied in a relatively straightforward manner to
also efficiently solve the linear sensitivity equations. In particular, both the
nonlinear flow and the linear sensitivity equations are solved in incremental
iterative forni using the identical approximate operator. The extension of
this methodology to 3D viscous flow appears to be feasible in principle.

Another important consequence of the methods presented in Ref. [411
is the apparent absenee of grid sensitivity terms of the type discussed pre-
viously for the discrete approach. Of course., with the complete lack of any
grid sensitivity terms, the rnsitivity derivatives that are. calculated cannot
be consistently diwrete (for design parameters that are geometric shape
related). In Ref. [41]. the govwrning fluid equations and boundary condi-
tions are first differettiated in physical (Cartesian) coordinatts; thereaft-r,
the resuiiing sen:itivity eq'ntions are tran'formed to and then numerically
solved in generalized conputational coordinates (as are the nonlirear flow
equations). However. if the governing fluid equations are first transformed
to computational coordinates and are thereafter differentiated, then the
resulting sensitivity equations are the same as those obtained in Ref [(11].
with one important exception. For design variables related to the geometric
shape, some additional terms appear that involve derivatives of the tran-
formation from physical to computational coordinates, The discretization
and subsequent solution of the sensitivity equations would then involve
appraximation of these ternis as "grid sensitivity" terms

Jameson (Refs. [t2.43]) has demonstrated the use of control theory
applied to aerodynamic optimization, wherein the 2D Euler equations are
used. In this work. gradient information used in the optimization is ob-
tained through numerical solution of a continuous atdjoint variable problem.
A similar technique has also been used in Ref. (44]. 'fa'asan et al. (Ref.
(45]) demonstrated the use of a continuous adjoint variabil forrmulation for
the gradient-basd aerodynamic design optimization of an airfoil from the
small-disturbance equation. More recently, this work has beens extended

to the 2D full potential equation (Ref. f4ti). Of particular interest in
Refs. 145,4V; is that dite optimization •trategy feature- simultaneous mini-
tnization of the objerct function and s.olntion of the discrete nonlinear flow

equations, and includes a heavy dependence on the careful use of multigrid
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for efficiency. In Refs. [43.45,46], an incremental iterative formulation is
used to solve the equations (i.e., the nonlinear flow and the linear adjoint
equations), after discretization.

4. Summary. An overview has been presented of some recent re-
search activities that have concentrated on the problem of efficient and
accurate calculation of gradient information from advanced CFD codes.
This review was not intended to be exhaustive (i.e., some important re-
cent advances have likely been overlooked). In particular, some studies,
which appear to he more related to optimization procedures. have also
been omitted. For the discrete approach. the basic equations of aerody-
namic sensitivity analysis were outlined, and three of the most important
computational difficulties associated with solving the sensitivity equations
were discussed. In addition some potential remedies for these problems
were Murveyed. Although significant advances using the discrete approach
have been made, many obstacles remain that must be overcome before the
calculation of quasianalytical sensitivity derivatives becomes routine for
turbulent. 3D flows.

In principle, the flexible nature of the continuous approach might pos-
sibly be exploited to overcome some of the computational difficulties that
have been discussed for the discrete approach. At the same time, however,
the consequenees of this flexibility are typically sensitivity derivatives that
are different in the sense that they are w,'t consistently discrete. This re-
suit can have an impact on the performance of optimization algorithms;
whether the impact is large or small, or even good or bad. is not yet clear.
The continuous formulation can be applied in a careful manner to pro-
duce the consistently discrete derivatives (or very nearly these derivatives).
However, then the advantage of flexibility for the continuous approach is
sacrificed and the difference between the discrete and the continuous ap-
proaches becomes more an issue of philosu,,phy than of substance.
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REMARKS ON THE CONTROL OF TURU, L",• • VT •'LOWX

ROGER TEMAM*

Introduction
Our aim in the article is to address some theoretical and computational

quostions related to the control of viscous incompressible flows governed by
the Navier-Srokcs equations or related equations.

Thin article comprises threp parts, where we study three types of prob-
leme which correspond to different preoccupations and utilize different tools
for their solution.

In Section I we study some control problems where the objective is to
mininpize, in sounie bse. turbulence. DiStributed control, boindary control
problems for therniohydrau!ics and for a channel flow in sparce dimension
two are conuidIered. After modoling the problem, we show the existence
of an optimal contrul, andI derive the necersary cmnditions of optimality
(NCO) for the probhem. using the adjoint. state.

In Section 2 we consider in space dininsiun three one of the problerns
from Section 1, namely the distributed contrcl problem. The snalysis (,f
Section I does not apply here since the initial value problem for the Navier-
Stokes equations is not known to be well posed in dimension three. The
existence of an optimal control is u;tablished and. if the optimal state is
sufficiently regular, we are able with appropriate methods, to derive the
necersary condit ion; of optirnm ity.

In Section 3 we Atudy the optimal control of the Stochastic Burgers
equati-rns. It. was shown that the Burgers equations forced by a white
noise produce tihurbirence ph-nomenn similar to those observed for fluid.
The uojectives and tIl, m,,:1,od0 arc now diffierent. Instead of looking for
an optimal control, we only try to decrea.e the cost, function by using a
one step control prUcedure. Theoretical questions are not addressed here
but we report on nurmerical results which show a very significant decrease
of the cost function.

The results in Sections 1, 2. 3 are based on references [1], [2] and r
where further d&tai!s can be found.

1. Modeling of some control problems. We dt.rri17,e three model
problems in control of fluids (control of turbulence).

1.1. A model distributed control problem: control by vol-
unte forc•s. We consider the. iicompressible Navier--Stokes equations in
asmooth bounded two -dimensional domain Q?. on an interval of tine f•. 7-1

" Laboratoire d'Analyse Numriiquc, Bat. 425. UuivcritL Pawis Sud. Oisay aid Ih
stitute for Scientific Computing and Applied Mbutlavitics, hIdiana Uvisity, BL1 -1-
ington, lnfadnan.
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We set (r = 0 x [0. 1 and recall the equations

-N- Au+(u. V)u+ Vp f in Qr.
at

(1.1) V-u=0 in Qr,

u=0 an 80xl0,T7.

UL, = uo.

Here u = (jn, in) is the velocity vector, p the pressure, ' > 0 the
kinematic vi-ctity: f, which will be the control. relprehents volume forces.

The mathematical setting of the equation is well known and we do not
recall it with full details (vee e.g. [131, 16lj). Let

V fI E 14(f)'div: = 0),

Icet H be the closure of 1" in L(OP1, we consider the linear unbounded
operator A in H associated with the Stokes problem, and the uorulimear
operator B dcfited by

B(u) = B(u~u), Vu E r,

(u:,,•),)= 0,' Or

Then (1.1) is equivalent to a differential equation in It for ui u(t). where
U(1) E V:

(12 + -+ Au +B(u) = fin H. I (c(O T}j.
(1.2) d.

We will use subsequtiely the ratchet derivative of B and, j' ad&'t

B'(9)t~~ -(9t)B(t/op)
(e'•). :, ) --(B(p, o), •5} + (B(,g# ), •:).

The •ontrol problem
In the language of control theory (see [14) f is the control. u =u is

the state. We want to reduce the turbu!ence a- mepac|red by

jT Jcurl ul(z.t )f"ldrdi,

and hence we introduce the cost function:

J(f) = lf(-. ldrd t+ f JJ -url ulz. f)l,2 dxdt.
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The problem is then

(111) To minimize J(f), for f E V(0, T; I!).

Concerning the existence of an optimal control be have

'I'tlWOREM 1.1. For u, given in II, there exi~t. at lcaqf an &liri.nt f
in L2 (0. 1 : I), and if E C(:O. TJ; 11 n L2(O. 1'; t,), such that, J(f) attains
its '2inimunm at. f and 4 = t"j"

Remark 1.2. Of tour; , since J(f) is not a convex function, we cannot

assert that, f i6- unique.

The necessary conditions of optimality (NC.O)
Basically (see e.g. [1101).. they consist il %%ritiug that.

j.3) ,'(f) 03,

nr

Ni / ,/ = o , V f ,

whrre 1' Ps the Frgchet derivative of J.
A ,.vv.--tient. expression of J' can be given tlv using the aotJoint state

which is defiincd by the adjoint of the linearizetl ,quations.
Equatiun (1.2) linr-arizc-d around an orbii u = u, rrads

4 vl ir 4 B'(u) .t= 0. in H. t E(r, ),

(1.4) C(t) E V a.e..

1411Ct1• ix,.'ml.y Ro,) 1 = fl(uy, V) + Bil, uy).
'The adjoint 'qulation ,f (1.4) is

.--- { $ t-1A + B'(u )w h, in H, tE (O,T),
•1 .5)w (f) ,C- V a.e. .

ir(T) = 0,

Here B' ii.)" i; thc adjoint, of B'fuj) in 11 armd we have int;r-duced h in
the tillt Land -ic,. of the first equationi (1.5). Norte that w depends on f
(tiuruuh u,0 anm on h: for cornplettun-m ue ran write U, = w.,(h) or u(h).
Now 6r. adjoint stot fc-r the pre-ezut. control problem is rl: = uj(h) for
h; = Vx V x u. lntrodwii',• the. pre-ýire ike- fmrrt.ions, we can in(rrpr.t
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(I.5) as the following set of partial differential equations and boundary
conditions:

-• - vad, + (vi)f & iY - (u . V)0 + Vi = r x V x ii,

in Q = Qf x (Q. T),
(1.6) j div ti = 0 in Qr,

ti,=0 on Oilx(O,T),

,i(rT) = O, xEe fl.

Using d: = tiý(V x V x u;) one can prove that

J'(U) zf + w,#( V x) Vx u4l.

(flf),fP = [f+ ,,j(V x V x ul)]f'dxdt, VfY.

The following theorem follows theit promptly from (1.3) (see [I,21).

THEOREM 1.3. Let { IU be an optional pair for problem (PI). Then
the following equality holds

(1.) f +i(VrxVx •)=O

where i is the adjoint state, solution of the adjoint linearized problem.
&ntherniore. we have the following regularity property for f:

] E LSNQ. T; V) 12(0.7 T; H12(9)2 ).

The NCO for problem *P, consist of

- equation (1.2) with f fu = a,

- equation (1.5) (or (16) with w ,h = V x V x u.f =f,

equation (1.7).
Of course this set of equations is not easy to solve: however one can

comptit" (or hope to cotmpute) Qfjt by using optimitatiorn alogrithms

such as the gradient or conjugate gradient algorithm.
Numerical Algorithms

The clat-,ical gradient algorithin for ( P2) consists in defining recursively
a sequence of f, E LN'(QT). Starting from an arbitrary fr E L 2(Qr), we
write (U,ý = xV X T•+ =t L-r))):

A.+I =bA -ndP(
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i.e.'

A,+, =A - P,,(U4 + w.,).

The numbers pn > 0 rjust be chosen properly.
The conjugate gradient algorithm for (PI) consists in defining recur-

sively two sequences f71,k.,. Starting from an arbitrary fcý C TA(QT) we
write (U',, = :!,(7 x V x ?If,,)):

A= f + U,,

J+ TU_ ( - A-1  + W'l - u -,,.-j) (A + u,,),drdt
f¢, IJ,- -'u,,_ . 2dxdt

A'+1 A - pk,,:

where p > 0.

Both algorithms converge to f if ho is choseun close enough to f and
the p,. are suitable. Unfortunately, for realistic flows, these algori(lhns
necessitate a computing power beyond that presently available. In the rest
of this section we describe. in a similar manner, the modeling rf some
related flow control problems. In Section 3 we will describe suboptimal
procedure which are more feasible.

1.2. A boundary control problem in thermohydrnailics. The
"system"' that we consider here is a two- dimensir-nal layer of fluid heated
(or cooled) from above and below. The flow is periodic in direction rx
(period LI). at rest at the bottom of the layer X2 = 0. driven at velocity
a = oon top of the layer. X2 = L 2 . The boundary velocity V is the control;
the .,0ale of the system is given by the field of velocities it = uV and the field
of temperatures r - . solutions of the classical lloutsinesq equations:

-vAu + (u -V),, + Vp, = -q(7 -ro),'. in QT - - x (0, T):

T +(u.7)r= - PAr=0 in QT,

The density is ont. t,,.k. g are positive constantsr,, . = (0: 1) isý the unit
vertical vector: Q} is die domjain (0, LI) x (0, L-,). Tlhesi, eqiiations nre
supplemented by tile boundary conditions, df.scribrd before, namely the

periodicity in the x, direction and{ u = :. r = -2 at zx L2.
(1. )= 0, = -' at X- = 0,

I In thi sefle Gf cwltrol theory
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and by initial conditions

(1.0) {u(r.0) = ,o(c)1, r(r,0) = (z), ret?.

For V, r2, rT given in L2 (0, T; H'12(0, L,)), one can show that eqnations
(I.)-(I.O) posses a unique solution lu,r} = {u, 7,,).

We encolnter a regularity difficulty for the choice of the cost function.
A simple choice would be

.7 (i f' jrL, ;ý I;(ri1)R2dzidt + m IV. X u,(zt) 2dzdt.

m, f > 0. However it is not easy to obtain the existence and uniqueness of
solution of (1.8)-(1.10) if we only assume that 9 E L2 (0. T; H'/1(O. L,)).
This result may not be true if we require u, E L2(0. T;RN(0)2 ). On the
other hand for p e L2(0, T: H•12(0. Lj)2)1 the function J, above may not
attain its infimum. Hence we choose the less convenient cost function

= Cf . •f i x u•(rf)rdrd:t.
-21: = ý 1'"0,•,'1'd• + 7" 0

It can be shown as for Tfheorem 1.1, that this function J2 attains its
minimum on L(0, T:H 11/2(O, L 1)2), at least at one point • with corre-
sponding statte {u. f.} -- {u0. ro}-

The necessary condition of optimality (NCO) is 44bta-ied by writing

=0

It is not easy to make it explicit becauce of the space H 1/2(0, L )2. How-
ever, if we do notr emphasize the existence of the optimal control but only
the NCO, then %vN- can make the NCO explicit in the case of J1-

Indeed the Fr~chet derivative J! can be computed using the adjoint
state ui,,& which is solution of the followiting problem with g' = and I
h= xVx u•: -vi-sVd+~

fl~f TciI1: Vr-+tq~h in QI(I.11)~ ~ -tlý 0_. in Qr. )- A,=t iQr

"The boundary conditions are (1.9) homogeneized. and the 'initial' condi-

tions fit f :=T read i z T =O z. ' = x flt Al,)=, &(rT) =0, xE 0.|
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at;.
Then J'(,) is equal to i3- v -491 and the NCO is

0X2

# -vz• =0 on (0, T) x (0, L 1).

The (usual) gradient algorithm consists in constructing a sequence of func-
tions •;, s'.UC1 that

= 11+1 -lp, - " AIJI(9n

where d,. is the solution of (J. 11) with p replaced by P,,. h by 7- x V x v,,,.

Remark 1.4. Of course we coin!d have chosen the top and bottom

leatings, -1, w. a. the control fufn(tion.; for this problem.

1.3. Boundary control of channenl flows.. This control problein
is a very importvant one. L~arge scale computations are being performied oil
this probl.em at this time with the methods of Section 3 (f:. [3:). [i this
section we pre.ent the modeling of the control problem arid de-cribe briefly
the theorptical results similar to those of Sections 1.1 and 1.2.

The •vystemr is a channel. it = (0. L 1 ) x (0. L2). The flow is inocm-

pre~sible and driven by a given flux. Hence we write the incompressihhl,
Navier Stok.S equations in Q- = Qi x (0. T):

(1.12) --- vAl+(u.')u p=, iV, Q',

V.V-u= 0, in QT.

The flow IV is pr,'vcrihecl , i.e.. if u = {,t,):

(1.13) 1 (,(O z,; )dx = F (given).

The prcmstir p is of the form

P - P(t)Xl - p',

wherfe P 7 P(t) is an unknown pressure gradient determined by r.

"The boundary conditions are the periodicity of T and I/ in dire.ctioi,
(period LI). and on the walls x2 = 0,L 2 , we hate
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Here r2 is the vector (0, 1) in the plane and w is the controL Of course the
state is the pair {u.p) defined by (l.10)-(1.14) which we supplement with
an initial condition

(1.15) u(zAJ) =u:(z), rEQ ..

More precisely the functional setting of (I.12)-(1.15) is as follows. Let V
be the space of functions v in H1(Q)' which are LI-periodic in direction
zj which vanish at x2 = 0 and L2, and such that divv = 0. Let H be the I
closure of V in 73(fl)2 .

For F E I- and wp C HJJ1/ 2(1'1 ?) given, we denote by VF,, the set of
functions v in V such that I

,.i)/¢ .(.•. - -, .1•.=0.-. L, " I
In particular for F =0 0,; = 0, we write I% '- = 1. Of course Vr,, is the
affine space I

g-,. = 12 + 4, I
where 4 E V is any :unetion of V satisfring (1.16). Let also I11%, and Ho
be defined in a similar way: Ho 9 -- H0.a and Hr- is the space of functions
v in H such that 2

(1.17) J n(0.,zl)dr 2 = Ft. j'2 j = p.

Again

Hr, = frHo+ C

Now for 4 given in L2(0. T; 1'). for ito given in !H1%, there exits a unique
pair Iu = u,. p = p.} solution of(I .12)-(1.15); in particular u C- LI(0. T; W.,.,)
As usual p is only defined up to an additive corstant: as indicated beforethe pair {u•,p4, I is the state associated with the rortl jp.

lu the control problem we want tI choose ip so as to reduce the mag-
nitude of t{he drag nn he wall

A possible choice of the cost function J is (f, m > 0):

2 Note the differenee with (1,16).

I
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including a time average of the square of the drag. An alternate, seemingly
more interesting choice is

J26P = j' X T ( ) 7Y Idt.

the integral term in .J2 corresponding to a time average of surface stresses.
As in Section 1.2, we have to choo"e X properly. The simplest choice.
L2(O,T;I Pir)) is not suitable; hence we take X - L'(0, T; H11 2(r,) 2):
more precisely X is the space of traces on the wall r1 of the functions r
of L2(0,T:; V), satisfying the first. condition in (1.16) (the flux condition),
and such that v' = Or/f.l belongs to L2(O.T; V') (see e.g. ['1'31)3

The control problem ir_ theu
(P3 ) To m iniiize (ato, J2 ) on X.

IW obtain (see [1]), the same theoretical results as in Section 1.1 and
1.2, namely
- For F E _2 given, for u0 given in H satisfying the first condition in (1.16),

there exists an optimal triplet {..p,,o), where - is an optimal
control (solution of (P3) and fi = uo,p = p0 is the correspnnding
distribution of velocities and presures.)

- We can write the necessary conditions of optimality for (P3 ) but they
are rather involved. As in Section 1.2. they are easier to write if
X is a subbpace of LP(O. T; LL(r-)2); see (1].

- We can think at implementing a gradient type algorithm for the numrer-
ical solution of problem (P3), but we meet two difficulties:

* If X L2(0, T; H:/ 2(I11)'). then the gradient algorithm is not easy
to make explicit (even theoretically)

• If X C LON(, T; L2(r.)'), we can write gradient algorithms similar
to those in Section 1.1, but the amount of computing is beyond
the capacity of the available coniputers at present time as well as
in a fores;ecable future. We refer the reader to Section 3 for more
affordable computations.

Remark I.S. For other control problems for the 'avicr-Strike" equa-
tions see [11.12].

2. The three-dinensional case. (NCO) The question addressed
here is a purely theoretical one. Since the mathematical theory of the
Navier-Stokes equations in dimension three is not complete, we cannot
write the necn,;ry conditions of optimality in a straightforward way as we
did in Section 1. In fact the modeling of the control problem itself raises
sorte difficulties; if we consider the three dimensional analog of thlo problem
in Section 1.1. we are not able, for f given, to define a unique state ul.

Our aim in this section is to consider the three-dirmensional version of
the problem in Section 1.1, and to derive some partial results following [2],

"• Hence v is prmscdibed ut tnme t = 0, equal to uý,,, the second comprnpnt of u•.
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in particular the necessary conditions of optimality when the optimal state
fi is sufficiently regular.

The 3-D Navier-Stokes equations read as in (1.1);

[- -Au+(u-V)u+Vp=f in, Qr,=x(O,T),

V24 -U=O in Qr.

iu--0 on MtC.,

Here 0 is now an open bounded domain in .3 . The functional form of the
equation is similar to (1.2):

(2.2) {t+ A+B ) z
IU(0) = Ut)

We know that for every f in L2(0.7'; V'). and for every tsi in ff4 , there
exists a nonnccessarilg unstqu solution u of (2.2) such that.

u • 1' 40, T; H) t L 2(0, T; V).

For the control problem, the control is f, the steP it -- ut. The cost
function is

J(f) = J A'/2f(A)l2ds + -jT IvX u 1 ds.

where 1. m > 0 and I E L 2(0,T; V"')
The control problem (r4) consists in minimizing J(f) for all f itt

LI(O, T; V'). Furthermore, for each f, if uf is not unique we minimize
as well with respect to all possible u = wi, satisf•ing (22).

The lack of uniqueness of u/ does not prevent us from proving the
existence of an optimal pair 1, 4, as in Theorem I.I. More precisely there
exists an optimal i and a corresponding state & = -- solution of (2.2). I

We want to derive the NGO. This will be done under the assumption

(2.3) ii E LS(O, T: L 4 (CY) i.e..

Jr (4r 16vM4dr) dt < x,

We have

SNotations ae the sane aP in S•"tlfn 1.1
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TIiEoREm 2.1. Let ii be an optimal state such that (2.3) holds. Then
there exists an adjoint state tB solution of{o E L2(O, T; V) n L*(O, T; H)

(2.4) -8 + vAi• + R'(u)' z = -mV x (V x U),

6,(T) = 0,

and we have

(2.5) 1."I "t- i+i = 0.

Sketch of the proof
Consider the modified probkm
(f 4 ) To :ninimize

7(J J fA- l/2f(z,)jI~tl, + 21 fT V xu(s)I-ds

+i1 f _ ( F 114dz d.,
for f ru E C ( 1 0 , 2j' ; H ) n' L I M T. : V ) nl L I(O , T ; L 4 (Q ) 1):

(2.6) u' E Lr(O, T; '). f E L 2 (O,:7'; ,") and

U' + vAu + B(u) = f. u(O) = uo.

The solution of ('P4 ) exists, is unique and it. is obviously the pair {f, u}.
Writing the NCO for (P"4 ), we obtain

( +i,j)v.v,ds = 0,

for all

i = t' + MAi+ + B'(0)ii,

with {f, it as in (2.5). and u(0) = Q. We then prover (2.4) by showing that
all such Ps are dense in L2(0,T; V') (see (2] for the details).

3. Control of the stochastic burgers equation. Some optimal
control problems have been described in Sections 1 and 2. Frorn the point
of view of control theory, they correspond to open loop full information
control problems.

From the practical, computational point of view. we have seen that
they correspond to problems which are not feasible at this time, Wre now
consider a different type of problems, from a more practical viewpoint.
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We are interested in active control and feedback procedures, We are less
demanding and do not look for optimal control anymore; instead we look
for procedures which are feasible and which produce an effective reduction
of the cost function.

The model problem that we consider is the Stochastic Burgers equa-
tion, and we follow -. At this time. in a progreqssing work [3) we try
to develop similar procedures for the control of the channel flow problem
considered in Section 1.3.

We consider the Burgers equations with a white noise forcing. These
equations are an interesting model for the Navier-Stokes equations (NSE):
they are simpler than the NSE but it was shwon that the white noise forcing
produces a behavior close to that of turbulent flows (cf. [f6), Other work
on the control of Burgers equations appear in !',5j; see also the referrnes•
therein and in [17.

After nondimensionalization the Stochastic Burgers equations read

611 t9 t2 1 2

(3.1) u(Z.O)=ud(), O< ,<
%,( ý) ;'0(0), U(l -t) = VL(t)

Here Re is the Reynolds (like) number, .x is after nondimensivialization, a
white noi'e random process in x with zero mean and mean square value 1.

(X),- = 0. ( 2 )r 1.L

The control problem The state of the system is described by the function
u. The control could be f: or- r {=ta,,P,), or the pair {f, 10. Hereafter
we emphasize the boundary control case (control = a'). but we present
numerical results on both tihe boundary control case and the distributed
control case (control = f); further details appear in [7].

We would like to reduce the "turbulene" as measured by

~2
(3.2) it, (au(Z,)I dZ.

Hence we consider the instantaneous crst funclion
(3.3) J,(ý.) = fjIr,0(t)-- I.. mt l da,

which accounts for the cost (3.2) and for the cost of implementing the
control .,I•. in > 0). By boundary layer effect, the main contributiou. to
the integral in (3.2) are produced near the boundary. Hence. instead of
(3.2) we cmuld consider

(0,t) + ((lt))
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however the integral (3.2) leads to simpler computations.
A control problem similar to those of Section 1 could be set as before,

with cost function

J(¢) - E j,,z,),-it

H1owever as indicated before. simplicity is preferred now over optimality
and we will look for suboptimal choice- of the control function ¢: which
produce a substantial reduction of JM(Ol over a period of time.

We use a marching prr-cpdure (one step optimal control) based on a
time descrctization of the equations.

Time discretized Burgers equatiot,
The Burgcrs equations (3.1) are written as an abstract evolution equa-

t ion (a, =Rf-.

(3..1)du
(3.) + v~t, + R(u,, P)=0,It

and using a Cranck Nicholbon time dicretizntion ý,hemw, weo obtain

+3-5 2 + - + -(R" +" ",'Ii
+ 22

For u = , we write (3.5) as

(3.)Au" R"(u" 0)=O.

where

"" (1+ .-A)ttnU

h ~ +
The problem, similar to t|oze- considered in Section 1 is now the following:

Assuming that u'" and , are known. how to best determine u"
and 0" so as to nirn:imi~e

As in Section I we can show, at each stop n, that. this problem has an
optimal solution t,'" with corresponding state u" (solution of (3.6)). U'sing
the adjoint -tate we can describe the optimality oudnitions for this prob
lem: we can also describe gradient. algorithm which has bh.en effectively
implemented. At eawh step n, this algorithit produces 0" as the limit of a
sequence enk i"-- co. For the details see [7].
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In conclusion we emphasize the fact that f,(1 ,,.&) does not necessarily
decrease as k increases. In fact, setting e-' = limk_-. V"5 , we do not even
assert that

(3.7) :(•" "l,,-)

The effective, large scale computations. reported in [7) show that (3.7) may
not be true as t evolves (n increases). However. over a period of time, sorte
significant or substantial decreases of jn(v,") is observed.

Figures 3.1 to 3.7 are borrowed from (7). Figures 3.1. 3.2. 3.3 give
sone charartiriticst of the flows. Figures 3.4 and 3.5 are related to a
control problem, Figures 3.6 to a boundary control problem. The decrease
of the costt function J is always important.

Finally let us emphasize Figures 3.7 %hich are very instructive. WeDv
attempted here to plot t(0, t) = t•b(t) vs !! (0, ) with the hope of finding
some actual feedback law

(3.8) %:o(t) = F (an(0o '))
It appears from Figert 3.7 that there is no single valued feedback law of
type (3.8) in this cawe

SAt not mcnonund Lefore is ths tuni step dikcreatizadion G. :!xh nhitr no•ise \

At, > At for all compuitatirns,
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