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SUMMARY 

The Falling Weight Deflectometer (FWD) test is one of the most widely 

used tests for assessing the structural integrity of pavement systems in a 

nondestructive manner. A major limitation of existing techniques for 

backcalculating pavement layer moduli from FWD results is that they are 

computationally inefficient. This not only makes them tedious to use, it also 

constrains them to employ simplified static models of the FWD test that can be 

computed relatively quickly. Studies have shown that significant errors in the 

backcalculated pavement moduli can accrue from using a static model of what 

is inherently a dynamic test. 

The goal of this research was to develop a method for backcalculating 

pavement layer moduli from FWD data in real time. This was accomplished by 

training an artificial neural network to approximate the backcalculation function 

using large volumes of synthetic test data generated by static and dynamic 

pavement response models. One neural network was trained using synthetic 

test data generated by the same static, layered-elastic model used in the 

conventional backcalculation program WESDEF. That neural network was 

shown to be just as accurate but 2500 times faster. The same neural network 



XVII 

was subsequently retrained using data generated by a elastodynamic model of 

the FWD test. The dynamic analysis provides a much better approximation of 

the actual test conditions and avoids problems inherent in the static analysis. 

Based on the amounts of time needed to create the static and dynamic training 

sets, a conventional program would likely run 20 times slower if it employed the 

dynamic model. The processing time of the neural network, on the other hand, 

is unchanged because it was simply retrained using different data. 

These artificial neural networks provide the real-time backcaiculation 

capabilities needed for more thorough, more frequent, and more cost-effective 

pavement evaluations. Furthermore, they permit the use of more-realistic 

models, which can increase the accuracy of the backcalculated moduli. 
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CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS 

Non-SI units of measurement used in this report can be converted to SI units 

as follows: 

Multiply By To Obtain 

feet 0.3048 meters 

inches 2.54 centimeters 

kips 4.448222 kilonewtons 

miles per hour 0.44704 meters per second 

mils 25.4 micrometers 

pounds (force) 4.448222 newtons 

pounds (force) per square inch 6.894757 kilopascals 



CHAPTER 1 

INTRODUCTION 

Background 

The structural integrity of roads and airfields is determined in large part 

by the load-deflection properties of the concrete, asphalt, and soils that make 

up the pavement system. Those properties can be measured in the laboratory; 

however, doing so requires that a portion of the pavement system be destroyed 

in order to obtain material samples. The disturbance that results from the 

sampling process itself calls into question the accuracy of the subsequent 

laboratory tests. Furthermore, the inherent heterogeneity of pavement 

materials (especially in the base and subgrade) means that isolated samples 

are often not representative of the pavement system as a whole. 

As an alternative to laboratory testing, the structural properties of the 

pavement can be measured in situ using techniques that fall under the general 

category of nondestructive testing (NDT). As the name implies, NDT can be 

used to assess pavement fitness without destroying the pavement in the 

process.  Unlike laboratory methods, there are no concerns with sample 



disturbance because samples are not taken. Furthermore, the test results 

reflect the properties of the pavement system over a broad area rather than at 

a single point. In fact, to the extent that the device being used simulates an 

actual vehicle load, the NDT techniques can actually represent full-scale tests 

of the pavement system. 

One of the most widely used NDT techniques is the Falling Weight 

Deflectometer (FWD) test. An FWD test is performed by applying an impulse 

load to the pavement via a circular plate and measuring the resulting pavement 

deflections directly beneath the plate and at several radial offsets from the 

plate. The experimental data is generally summarized as a deflection basin that 

is constructed from the peak deflections recorded at each of the measurement 

locations. The stiffnesses of the various material layers in the pavement system 

are calculated from these deflection basins through a process called 

backcalculation or inversion. 

Objectives 

A major limitation of existing techniques for backcalculating pavement 

layer moduli from FWD results is that they are computationally inefficient—they 

all involve numerous repetitions of mathematically-complex calculations. This 

makes the inversion programs slow and tedious to use. Though the test itself 

takes only a minute or two to run, the data analysis can take considerably 

longer. This can limit the usefulness of FWD testing, especially for performing 



routine, periodic assessments of pavement integrity such as would be needed 

for the FWD to be used as part of a pavement management system. This 

research is aimed at eliminating the inversion bottleneck by using artificial 

neural networks to expeditiously backcalculate pavement layer moduli from 

FWD deflection basins. The real-time backcalculation afforded by artificial 

neural networks will not only provide increased productivity and permit an 

increased frequency of testing, it also opens up the possibility of developing 

NDT techniques that both measure and evaluate pavement properties in real 

time. Real-time NDT would not only allow more pavement to be tested more 

often, it would also reduce the costs of performing each test because it would 

no longer be necessary to close a traffic lane and divert traffic. That alleviates 

both the direct costs of traffic control and the indirect costs of commuting 

delays as well as increasing the productivity of the test crews. 

Artificial neural networks have their origins in research on the behavior 

of the human mind. They were developed to reduce mental processes—such 

as learning, reasoning, and memory—to mathematical abstractions in hopes of 

better understanding them. Artificial neural networks are collections of highly- 

interconnected but mathematically-simple processing elements (usually 

implemented in a digital computer program) that exhibit certain brain-like traits 

such as learning by example and generalizing from imperfect examples. In the 

context of FWD backcalculation, a neural network can be "taught" to map 



deflection basins onto their corresponding pavement layer moduli by 

repeatedly showing it examples of the correct mapping. This training could be 

accomplished using experimentally-determined deflection basins and pavement 

layer moduli. Alternatively, synthetic deflection basins obtained by running a 

computer model of the FWD test can be used. The latter approach, which 

produces a backcalculation neural network functionally identical to existing 

basin-matching backcalculation programs, was taken in this study. 

This research can be logically separated into two parts. The goal of the 

first phase of the research was to show that it is possible to perform real-time 

backcalculation of pavement layer moduli using artificial neural networks. With 

that in mind, an artificial neural network was trained using synthetic deflection 

basins generated by a computer program that implements a static analysis of 

pavement response. That same static analysis is incorporated in several 

conventional backcalculation programs that are widely used. This allowed a 

direct comparison of both speed and accuracy between the artificial neural 

network and conventional approaches. 

The goal of the second phase of the research was to enhance the 

accuracy of the neural network by retraining it with synthetic deflection basins 

developed using an elastodynamic analysis of the pavement response. The 

dynamic analysis provides a much better approximation of the actual FWD test 

conditions. It also avoids certain pathologies, such as an excessive sensitivity 



to the assumed bedrock depth, that are inherent in the static analysis. Because 

the computational efficiency of a trained neural network is completely 

independent of the computational complexity of the program used to generate 

its training set, it is possible to train a network to account for the dynamics of 

the FWD test without increasing its processing time. Undeniably, it will take 

significantly longer to create the training set for the neural network. Once 

trained, however, the network will be able to backcalculate moduli just as 

quickly as one trained using a static solution. Contrast this with a conventional 

gradient search program: the conventional program must repeatedly solve the 

more-complex dynamic problem to obtain a solution, resulting in tremendous 

increases in computation times. 

Organization 

An overview of the devices most commonly used for nondestructive 

testing of pavements is presented in Chapter 2 along with a summary of the 

traditional methods used to backcalculate pavement layer moduli from the 

experimental results. Particular emphasis is placed on the computational 

inefficiencies of existing methods and the problems that may accrue from 

performing a static analysis of dynamic data. The concept of inversion using 

artificial neural networks is introduced there as well. 

Chapter 3 provides an historical and mathematical background for the 

multi-layer, feed-forward artificial neural networks employed in this research. 



The algorithms needed to implement that type of artificial neural network are 

presented, as are the algorithms needed to train the network using the error 

backpropagation technique. 

Chapter 4 describes the generation of the neural network training set 

using a conventional static analysis of pavement response. The underlying 

assumptions and mathematical details of the static model are presented first. 

The pavement profile assumptions used to constrain the training set to a 

reasonable size are discussed next. The chapter concludes with a description 

of the overall design of the training set itself. 

Chapter 5 describes the generation of the neural network training set 

using an elastodynamic analysis of pavement response based on Green 

functions. The mathematical details of the analysis technique are presented 

first. Next, the techniques used to discretize the pavement system are 

discussed. Finally, the development of a mathematical analogue for the FWD 

loading pulse is described. 

The training and testing of the artificial neural networks are described in 

Chapter 6. Considerations of the network architecture are discussed as is a 

method for making the neural networks more robust against the noisy 

deflection basins typical of real-world experimental data. Also included are the 

results of a head-to-head comparison of speed and accuracy between the 

neural network trained using deflection basins generated with a static model of 



the FWD test and a conventional backpropagation program incorporating the 

same static model. Finally, Chapter 6 discusses the retraining of the original 

neural network using the deflection basins generated using a dynamic model of 

the FWD test that is more representative of the test conditions. 

The research program is summarized in Chapter 7. Conclusions drawn 

from this study and recommendations for future research are also presented. 

Suggestions for similar applications of neural network technology to other types 

of experimental data inversion are also given. 

Finally, Appendix A contains the source code listing for the computer 

program used to train and test the artificial neural networks. 
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CHAPTER 2 

NON-DESTRUCTIVE TESTING OF PAVEMENTS 

The majority of the NDT methods currently used for the structural 

evaluation of pavement systems are based on the same general principle: the 

structural integrity of a pavement system is inversely proportional to the amount 

of surface deflection observed under a given load1. The primary differences 

between the various devices being used lies in the nature of the loads they 

apply to the pavement. Accordingly, NDT devices can be categorized 

according to load type as being either static, steady-state dynamic, or transient 

dynamic devices. Examples of the various types are described in the next three 

1 The exception to this rule is the Spectral Analysis of Surface Waves method 

(Nazarian and Stokoe, 1989) and its predecessor, the Surface Wave Method 

(Jones, Thrower, and Gatfield, 1968). These methods use the propagation 

velocity of Rayleigh waves to determine the pavement layer shear moduli. 

Unlike the other NDT methods, which induce stresses and strains in the 

pavement that are of the same order of magnitude as those imposed by actual 

traffic, these methods measure the response of the pavement system to the 

infinitesimal strains produced by the propagation of low-amplitude seismic 

surface waves. 



sections. Additional details can be found in Smith and Lytton (1985), Hoffman 

and Thompson (1982), and Bentsen, Bush and Harrison (1989). 

Static NDT Devices 

Static devices measure the deflection response of the pavement to what 

is essentially a static vertical load. This class of NDT devices includes the 

Benkelman Beam and the La Croix Deflectograph. 

The Benkelman Beam was one of the earliest NDT devices used on 

pavements. In principle, it is nothing more than a 12-ft beam pivoted at its third 

point (Figure 1). The applied load is usually provided by a two-axle truck with 

dual rear wheels. The beam is oriented in the direction of vehicle motion with 

the probe end placed between one pair of the dual rear tires. The opposite end 

of the beam moves a dial gauge that records the deflection of the pavement. 

The deflections are usually measured as the truck moves away from the beam 

at an extremely slow speed. (In that respect, "quasi-static" would be a more 

rigorous description of these devices because the load at the measurement 

point slowly decreases to zero as the truck pulls away.) 

Though relatively inexpensive and easy to use, the Benkelman Beam 

suffers from a number of problems. One problem is that it provides very limited 

information—the pavement deflection is only measured at one point and 

frequently only the maximum deflection is recorded. Another problem is that it 

measures the pavement's response to what is essentially a static load. It is 
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difficult to extrapolate the experimental results to vehicles moving at highway 

speeds. Finally, it is difficult to ensure that the pivot point of the beam lies 

outside the deflection basin (Figure 2). On pavements underlain by relatively 

soft subgrades, the radius of the deflection basin often exceeds the 8-ft 

distance between the probe end and the pivot point. This means the pivot point 

is initially below the undeformed elevation of the pavement surface. As the 

truck pulls away, the pavement rebounds and the elevation of the pivot point 

changes. This lack of a stable zero reference can, at best, render the results 

meaningless. At worst, if the problem is not recognized, it can result in an 

underestimation of the pavement deflection and an overestimation of the 

structural integrity of the pavement system. 

The La Croix Deflectograph is a semi-automated version of the 

Benkelman Beam. The La Croix Deflectograph consists of two beams (one for 

each pair of dual rear wheels) mounted on a moveable frame that is suspended 

beneath the truck supplying the loads. During a test, the frame is positioned on 

the pavement surface with the probe ends of the beams aligned between each 

pair of dual rear wheels. The deflection of the pavement is measured as the 

rear wheels of the truck approach the stationary frame. The frame is then lifted 

from the pavement and repositioned for the next test. Because the La Croix 

Deflectograph is based on the Benkelman Beam, it suffers from exactly the 

same problems. 
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Steady-State Dynamic NDT Devices 

Whereas the static devices described in the preceding section use an 

actual truck to load the pavement, the dynamic NDT devices strive to duplicate 

those same loads without driving an actual vehicle over the pavement. In the 

United States, a common highway design criterion is an 18-kip single axle load 

(Yoder and Witczak, 1975). Assuming two wheels per axle, a 9,000-lb wheel 

load would have to be applied in order to duplicate those design conditions. 

Furthermore, in order to simulate the passage of a vehicle, the load would have 

to start from zero, rise to a peak, and return to zero. The time period within 

which this rise and fall would have to occur depends on the velocity of the 

vehicle. Barksdale (1971) showed that the vertical stresses near the surface of 

the pavement could be approximated by a half sinusoid with a pulse width that 

varies as the inverse of the vehicle speed (Figure 3). At a speed of 45 mph, 

Barksdale calculated a pulse width of approximately 20 msec. This would 

correspond to a load oscillating at a frequency of approximately 25 Hz. 

The NDT devices that fall into the steady-state dynamic category 

measure the deflection response of the pavement to a low-frequency oscillatory 

load. The Dynaflect, Road Rater, and WES 16-kip Vibrator are three such 

steady-state devices. 

The Dynaflect (Photograph 1) was one of the earliest steady-state NDT 

devices. It is a self-contained, trailer-mounted device that can be towed by 
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conventional vehicles. The Dynaflect uses a pair of eccentric counter-rotating 

masses to apply a harmonic load to the pavement. The load oscillates at a 

frequency of 8 Hz. The harmonic load has a peak-to-peak amplitude of 1000 lb 

that is superimposed on a static load of 2000 lb (the weight of the device). The 

actual load therefore varies between 1500 lb and 2500 lb (Figure 4). The load 

is applied to the pavement through a pair of polyurethane-coated steel loading 

wheels spaced 20 in apart. Each loading wheel has a diameter of 16 in a width 

of 4 in. The surface deflections of the pavement are measured with a series of 

five geophones (velocity transducers). The first geophone is positioned directly 

between the loading wheels and the remainder are spaced at one foot 

intervals. The surface velocity records are time integrated by on-board circuitry 

to produce deflection outputs. 

The Road Rater (Photograph 2) is also a self-contained, trailer-mounted 

device. It uses a hydraulic actuator to apply the static load to the pavement 

surface. The trailer itself is used as the reaction mass for the hydraulic 

actuator, which limits the static load to the weight of the trailer. The 

superimposed harmonic load is generated by a lead-filled steel mass that is 

accelerated by a servo-controlled actuator. Unlike the Dynaflect, both the 

amplitude and the frequency of the harmonic load as well as the magnitude of 

the static load can be varied. The load ranges vary from model to model. The 

largest model has an 8000-lb reaction mass and can generate a harmonic load 
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with a peak-to-peak range between 1000 lb and 7000 lb and a frequency 

between 5 Hz and 70 Hz. 

The WES 16-kip Vibrator (Photograph 3) is similar to the Road Rater but 

has a reaction mass of 16,000 lb and can generate a harmonic load with a 

peak-to-peak range of 30,000 lb. Unlike the Road Rater and the Dynaflect, it is 

too heavy to be towed by conventional vehicles. Instead, as the photograph 

shows, it is mounted in a dedicated tractor-trailer rig along with all of the 

necessary electronic equipment. 

All three steady-state devices are a significant improvement over the 

static devices; however, they still fall short of replicating the true dynamics of a 

moving vehicle. The load imposed by a moving vehicle covers a broad range of 

frequencies rather than a single frequency. Also, the vehicle loads of interest 

are much higher than can be generated with all but the heaviest of these 

devices. These drawbacks are addressed by the impulsive (transient dynamic) 

loading devices described next. 

Transient Dynamic NDT Devices 

The transient dynamic NDT devices apply an impulse load to the 

pavement and record the resulting pavement deflection histories at several 

radial distances from the load (Figure 5). This experimental data is usually 

summarized by a "deflection basin" that is constructed from the peak 

deflections at each measurement location (Figure 6). Because the pavement 
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deflections at each sensor peak at different times, this deflection basin is more 

of a presentation tool than a physical entity. The actual deflected shape of the 

pavement at any point in time is generally much different than the recorded 

deflection basin (Figure 7). 

The Dynatest and KUAB falling weight deflectometers (FWD) exemplify 

the transient dynamic devices. Both devices generate impulse loads through 

the rapid deceleration of a falling mass. Each FWD manufacturer uses slightly 

different means of controlling the deceleration in order to produce a load pulse 

with the appropriate shape and duration. The goal, of course, is to generate a 

load pulse similar to that produced by a moving vehicle. A haversine (Figure 8) 

is sometimes used to represent an idealized loading pulse. That practice will be 

discussed in more detail in Chapter 5. 

The Dynatest FWD (Photograph 4) is available in several models that 

differ primarily in the peak loads they can produce. The most common, the 

Model 8000, can produce a load pulse with a peak dynamic force of between 

1,500 and 24,000 lb and a duration of 25-30 ms. This is accomplished by 

dropping a mass (weighing between 110 and 660 lb) from one of four different 

heights ranging up to 16 in. The mass drops onto a set of rubber buffers that 

condition the load to produce the desired pulse shape (Figure 9). The load is 

transmitted from the rubber buffers to the pavement through an 11.8-in- 

diameter steel plate underlain by a rubber pad. The pad helps distribute the 
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load uniformly to the pavement; its size and shape are meant to approximate 

the loaded area of a dual rear wheel. The deflections are measured by a series 

of seven velocity transducers. The first velocity transducer is positioned to 

measure the pavement velocity at the center of the rigid plate. The others are 

usually spaced at 1-ft intervals although some agencies, such as the Federal 

Highway Administration (FHWA), prefer a non-uniform spacing that 

concentrates more deflection sensors close to the load.2 

The KUAB FWD (Photograph 5) is also available in several models; they 

provide operating ranges similar to those of the Dynatest FWD. Unlike the 

Dynatest FWD, however, the KUAB FWD uses a two-mass system in which 

one free-falling mass is dropped onto a stationary mass/buffer combination 

(Figure 10). The two-mass system creates a load pulse with a much longer 

duration than is obtained with the Dynatest FWD. It also produces a smoother 

and more-consistent load pulse. The Dynatest FWD can produce a double- 

peaked load pulse (Figure 11) whose rise time varies depending on the 

pavement stiffness. The KUAB FWD, on the other hand, produces a much 

more symmetric, single-peaked load pulse with a fairly consistent rise time and 

duration of 28 and 56 ms, respectively, on most pavements. 

2 According to the National Highway Institute's "Pavement Deflection Analysis" 

workbook, the sensor locations recommended for use in the Strategic Highway 

Research Program (SHRP) are 0, 8,12,18, 24, 36, and 60 in. 
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One advantage that these devices have over the steady-state devices is 

that they do not need a static preload. Their force levels are achieved by the 

rapid, but controlled, deceleration of a relatively light falling mass. As a result, 

pavement responses to the heavy wheel loads of most interest can be obtained 

with an extremely light, trailer-mounted device that can be towed by most 

conventional vehicles. For example, the Dynatest Model 8000 can produce a 

peak load of 24,000 lb and yet weighs just 2000 lb. Of the steady-state devices, 

only the WES 16-kip Vibrator can produce a peak load that high and it weighs 

eight times as much. 

Another advantage of the transient dynamic devices is that they come 

closer than any of the other device types to replicating the force histories and 

deflections produced by moving vehicles. Bohn, et. al. (1972) showed that the 

load pulses produced by an FWD are virtually identical in shape and duration 

to those produced by a truck moving at 25 mph. They also showed that the 

magnitudes of the resulting deflections were almost identical (Figure 12) 

despite a significant difference in their duration. These results were confirmed 

by Hoffman and Thompson (1982), who showed that the duration of the 

deflection pulse produced by a moving vehicle is a function of both the vehicle 

speed and the pavement stiffness. They pointed out that the duration of the 

deflection pulse should be roughly equal to the time needed to traverse a 

distance equal to the width of the deflection basin. (The pavement surface at a 
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fixed location will start to deflect when the approaching vehicle is one basin 

radius away and will return to its original elevation (assuming there is no 

permanent deformation) once the vehicle is one basin radius removed in the 

opposite direction). Because the width of the deflection basin is inversely 

related to the stiffness of the pavement system, the duration of the deflection 

pulse increases with decreasing pavement stiffness. Interestingly, both Bohn, 

et. al. (1972) and Hoffman and Thompson (1982) found that the magnitude of 

the deflection pulse is independent of the vehicle speed even though the 

duration of the deflection pulse is not. 

Because the FWD comes closest to replicating the force history and 

deflection magnitudes of a moving truck, it has gained very wide acceptance. It 

is currently used by 36 state Departments of Transportation3; it has been used 

by the United States Army since 1980 (Bush, Brown, and Bailey, 1989) and has 

been adopted for use in the Army Airfield Evaluation Program (Beaucham, 

1993); it has been used by the United States Air Force since 1986 (Bush, 

Brown, and Bailey, 1989) and has been adopted for use by their pavement 

evaluation teams (Walrond and Christiansen, 1993); and it has been chosen 

for use in the Strategic Highway Research Program (SHRP) Long Term 

Pavement Performance (LTPP) study (Richter and Rauhut, 1989). 

3 Personal communication with Nick Coetzee of Dynatest, Inc. 
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Traditional Approaches to FWD Backcalculation 

When the FWD (or any other NDT method) is used for the structural 

evaluation of a pavement system, the goal is to backcalculate the elastic 

(Young's) moduli of the individual pavement layers from the experimental 

deflection basins. Unfortunately, there are no closed-form solutions available to 

accomplish this task. Instead, a mathematical model of the pavement system is 

constructed and subjected to the appropriate NDT loads in order to determine 

the surface deflections as a function of the pavement layer properties. This 

pavement model is then run with a variety of different "trial" layer properties 

until a set of properties is found which causes the measured deflection basin to 

be reproduced (Figure 13). 

The sophistication of the techniques used to adjust the trial pavement 

layer properties (ranging from trial-and-error to numerical optimization 

techniques) often determines the speed with which a solution can be found. 

The precision of the model (the degree to which similar inputs produce similar 

answers) is determined in large part by the criteria used to assess 

convergence. A "loose" convergence criterion provides for a faster but less 

precise solution. The accuracy of the final solution (the degree to which the 

answers correspond to reality) is determined in large part by the realism of the 

pavement system model. There is almost always a trade-off between realism 

and convergence speed, as well. 
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The first non-empirical backcalculation program for flexible pavements 

was a convergent trial-and-error solution for two-layered systems developed by 

Scrivner, Michalak, and Moore (1973). Their solution was based on the theory 

of stresses and displacements in layered elastic media developed by Burmister 

(1945a, 1945b, 1945c). It could be used to determine the elastic moduli of the 

pavement and subgrade given two pavement deflections and the pavement 

thickness. According to Lytton (1988), the first non-empirical backcalculation 

procedure for general multi-layer pavement systems was developed by Yih Hou 

(1977). His approach was to use a gradient-search algorithm to find the set of 

moduli that minimized the sum squared error between the theoretical and 

experimental deflection basins. 

Most of the backcalculation programs currently in use employ some type 

of gradient search technique. An alternative approach is to interpolate within a 

database of theoretical basins covering the anticipated range of pavement 

layer moduli. These two approaches are discussed next. 

Gradient Search Methods 

The MODCOMP program developed by Irwin (1991) and the "_DEF" 

series of programs originated by Bush (1980) typify the gradient-search 

approach. Each has, at its core, a layered-elastic computer program used to 

calculate the stresses and strains induced in the pavement system by the 

applied load. MODCOMP is built around the CHEVRON computer program 
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(Michelow, 1963). So, too, is CHEVDEF, which was the original _DEF program. 

As an alternative to using CHEVRON, which assumes that the layer interfaces 

are fully frictional (i.e., the horizontal displacements on either side of the layer 

interface are equal), a second _DEF program, BISDEF, was created using the 

BISAR program (DeJong, Peutz, and Korswagen, 1973). BISAR improves on 

CHEVRON by allowing the layer interface conditions to be varied smoothly 

between the two extremes of fully frictional and completely frictionless. 

The latest program in the _DEF series is WESDEF (Van Cauwelaert, 

et. al., 1988), which is based on the layered elastic analysis program WESLEA 

(Van Cauwelaert, Delaunois, and Beaudoint, 1986). WESLEA improves on 

BISAR by implementing layer interfaces that obey Coulomb's law. The frictional 

properties of the layer interfaces can be varied by adjusting the friction 

coefficient. When the shear stresses at the interface violate Coulomb's law, the 

interface friction becomes small and slip between the layers is allowed. 

WESLEA also improves on BISAR by using a combination of closed-form and 

numerical integration to achieve faster computation speeds without a loss of 

accuracy. Van Cauwelaert, et. al. (1988) showed WESDEF to be nearly five 

times faster than BISDEF. 

All of the _DEF programs use the same iterative approach to finding the 

set of pavement layer moduli that minimizes, in an average sense, the errors 

between the calculated and measured deflections. The _DEF programs begin 



39 

by calculating two deflection basins corresponding to a set of user-supplied 

minimum layer moduli and a set of "seed" moduli. The latter provides a starting 

point for the solution and the former serves to bound the solution from below. 

(A set of maximum layer moduli must also be supplied by the user to bound the 

solution from above.) Using the multi-variate equivalent of linear interpolation 

(Figure 14), a new set of estimated layer moduli is obtained from these first two 

deflection solutions. The process is repeated until the average relative error for 

the seven sensor locations falls within a specified tolerance (e.g., 10 percent). 

According to Bush and Alexander (1985), convergence is generally obtained 

within three iterations. 

Database Methods 

The MODULUS program (Uzan, Lytton, and Germann, 1988) is an 

example of the database approach. A database of calculated basins is first 

generated for a prescribed set of pavement layer thicknesses by parametrically 

varying the pavement layer moduli within specified ranges. The BISAR program 

was originally used to calculate these theoretical deflection basins. Versions 

are currently available that use the static, linear-elastic WESLEA program as 

well as viscoelastic and finite-element programs. 

Once the database of theoretical basins has been constructed, 

MODULUS uses the Hooke-Jeeves pattern searching algorithm (Letto, 1968) to 

determine the deflection basins in the database that most closely match the 
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experimental basin. It then calculates the layer moduli corresponding to the 

experimental basin using three-point Lagrange interpolation. 

MODULUS trades the iterative solution procedure of the gradient-search 

methods for an iterative database generation procedure. As long as the 

pavement layer thicknesses used to generate the database do not change, 

MODULUS can rapidly process FWD test results because each solution is 

simply calculated by interpolating within the database. If there are only one or 

two tests in each pavement section, however, MODULUS may actually be less 

efficient than its gradient-search counterparts (e.g., BISDEF) because new 

databases must continually be generated. 

Drawbacks to Traditional Backcalculation Methods 

Traditional backcalculation methods are inherently slow. Part of their 

inefficiency stems from the iterative nature of the solution process. That alone 

would not be a problem were it not for the mathematical complexity of the 

pavement system models. The calculation of the surface deflections requires 

the numerical integration of transcendental stress functions (Bessel functions) 

and the solution of systems of simultaneous equations representing the 

boundary conditions of the individual pavement layers. This computational 

complexity, when coupled with the need to iterate on the solution, hinders all 

attempts at real-time backcalculation. It also precludes the use of more realistic 

(and even more complex) mathematical models of the FWD test. 
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The FWD test is inherently a dynamic test. With few exceptions, 

however, traditional basin-matching programs employ static deflection basin 

calculations because they are orders of magnitude faster to run4. The response 

of a pavement system to the dynamic loads produced by an FWD can differ 

significantly from its response to static loads due to resonance in the subgrade 

and inertial effects. As a result, pavement layer moduli that are backcalculated 

by matching static theoretical basins to dynamic experimental basins may be 

significantly in error. 

Davies and Mamlouk (1985) were among the first to study this problem. 

Using a numerical solution for the dynamic response of a layered elastic 

system to a steady-state load (such as would be applied by the Road Rater) 

they explored the differences in surface deflections produced by static and 

dynamic loads for a wide variety of pavement layer properties. Typical of their 

results are the curves shown in Figure 15. These indicate that a static analysis 

of pavement response can be in error by 20-30 percent or more. For the 

pavement system with the thick surface layer, the dynamic deflections are only 

three-fourths as large as would be predicted using a static analysis. This 

4 A recent exception is the FWD-DYN program (Foinquinos, Roesset, and 

Stokoe; 1993a) which has an option for backcalculating layer moduli using a 

dynamic analysis. It is, however, very time-consuming to run and requires 

complete deflection histories rather than deflection basins. 
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means that layer moduli backcalculated using a static analysis could be 

ove/predicted by as much as 30 percent. On the other hand, the dynamic 

deflections of the pavement system with the thin surface layer are larger than 

would be predicted using a static analysis. The discrepancy becomes more 

pronounced as distance from the load increases. At a distance of 3 ft, the 

dynamic deflections are almost 40 percent larger than the corresponding static 

deflections. This could result in an i/ncte/prediction on the order of 30 percent. 

Sebaaly, Davies, and Mamlouk (1985) used the principles of Fourier 

superposition to perform a dynamic analysis of pavement response to the 

transient loads produced by the FWD. Their elastodynamic solution provided 

deflections very similar to those produced by both a moving truck and the FWD 

(Figure 16). In a subsequent paper (Sebaaly, Mamlouk, and Davies, 1986), the 

same authors showed that deflection basins provided by their elastodynamic 

solution came much closer to matching experimental FWD deflection basins 

than did deflections obtained from a static analysis (Figure 17). 

Roesset and Shao (1985) performed similar dynamic analyses of the 

steady-state-dynamic Dynaflect and the transient-dynamic FWD in order to 

investigate the effects of bedrock depth on the measured deflections. As part of 

their investigation, they computed FWD deflection basins for a series of four 

pavement systems that varied only in the thickness of their subgrades using an 

elastodynamic model of the FWD test. A basin-matching program employing 
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the gradient-descent technique and a static model of the FWD test was then 

used to backcalculate the moduli. The seed moduli used to initiate the iterative 

solution procedure were the correct moduli, so any errors had to be the result 

of the program's inability to match the dynamic deflection basins using a static 

analysis. Their results showed that the errors that accrue from using a static 

analysis can be quite significant. 

Chang, et. al. (1992) also investigated the effects of subgrade thickness 

on surface deflections. They showed that shallow bedrock invariably produces 

dynamic amplification (i.e., the peak dynamic deflection is greater than the 

static deflection). The use of static analyses for those pavement systems can 

lead to significant underestimation of the subgrade moduli and overestimation 

of the asphalt and base layer moduli. They also showed that, under the proper 

circumstances, deep bedrock can produce the opposite effect (i.e., dynamic 

attenuation). In that case, the subgrade moduli would be overestimated at the 

expense of underestimating the asphalt and base moduli. 

Using an approach similar to that of Roesset and Shao, Chang, et. al. 

used the basin-matching program MODULUS (which exemplifies the database 

approach) to backcalculate moduli from dynamic deflection basins computed 

for three flexible pavement profiles and one rigid pavement profile. Several 

deflection basins, corresponding to different depths to bedrock, were produced 

for each pavement profile. Some of their results are shown in Table 1. 
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Table 1. Ratios of backcalculated moduli to true moduli 
(after Chang, et. al., 1992) 

Site Depth, ft Surface Base Subgrade 

FM 195 5 1.85 2.16 0.50 

80 11.71 0.88 1.06 

FM137 7.5 1.61 1.66 0.63 

80 1.02 1.19 1.13 

Route 1 15 0.97 2.07 0.79 

80 0.99 1.33 0.97 

1-10 10 1.25 - 0.67 

80 1.08 1.44 
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Foinquinos, Roesset, and Stokoe (1993b) also investigated the 

relationship between FWD surface deflections and bedrock depth for both 

flexible and rigid pavements. They showed that depth to bedrock has 

significantly less effect on the peak dynamic deflections than on the static 

deflections (Figure 18). Because depth to bedrock is usually estimated rather 

than measured, any errors in the assumed depth will be magnified by the static 

analysis. A dynamic analysis, on the other hand, would be insensitive to 

bedrock depth for all but the shallowest of depths. 

These studies and others like them show the importance of properly 

modeling the dynamics of the FWD test. Unfortunately, a dynamic analysis of 

pavement response is far more time-consuming than a static analysis. All 

dynamic analysis programs use Fourier synthesis to combine steady-state 

solutions at dozens of different frequencies contained in the transient loading 

pulse. This alone makes them at least an order of magnitude slower than 

comparable static programs. As a result, it is extremely impractical to include a 

dynamic analysis in conventional backcalculation programs. 

A New Approach to FWD Backcalculation 

This  study  presents  a fundamentally different  approach  to   FWD 

backcalculation using artificial neural networks. Artificial neural networks are 

"[computational] systems that are deliberately constructed to make use of some 

of the organizational principles that are felt to be used in the human brain" 
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(Anderson, 1988). More to the point, artificial neural networks of the type used 

in this study are universal functional approximators that can "learn" a functional 

mapping through repeated exposure to examples of that mapping. In fact, 

Hornik, Stinchcomb, and White (1989, 1990) proved that multi-layer, feed- 

forward artificial neural networks can be used to approximate any continuous 

function (and certain discontinuous but piecewise-differentiable functions) to 

any desired degree of accuracy provided that the network is sufficiently large. 

In the context of FWD backcalculation, an artificial neural network can 

be "taught" to map deflection basins back onto their corresponding pavement 

layer moduli. One way to train such a network would be to use experimentally- 

determined deflection basins along with independently-measured pavement 

layer thicknesses and moduli. As mentioned in Chapter 1, it is often difficult to 

obtain representative, undisturbed samples with which to make a laboratory 

determination of the pavement moduli. Furthermore, because laboratory testing 

is expensive, there is an insufficient quantity of experimental data covering a 

broad-enough range of pavement layer moduli and pavement layer thicknesses 

to successfully train a neural network. 

Instead, synthetic deflection basins calculated using programs such as 

WESLEA can be substituted for the experimental deflection basins. This allows 

precise control of the pavement layer properties used to train the network. 

Furthermore, to the extent that mechanistic pavement analysis programs such 
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as WESLEA are used to design pavement systems and determine overlay 

requirements, it has been argued that maintaining consistency between the 

backcalculation program and the analysis program is preferable to having 

laboratory-measured moduli (Houston, Mamlouk, and Perera, 1992). 

The basic neural network training procedure developed for this study 

can be viewed as a closed loop (Figure 19). A mathematical model is used to 

calculate a synthetic deflection basin for a presumed set of pavement layer 

properties. The artificial neural network is then taught to perform the inverse 

operation of mapping the synthetic deflection basin back onto the presumed set 

of properties. At first, the neural network produces a random mapping; 

however, by repeating the training process many times for many different 

pavement profiles, the neural network will eventually learn the appropriate 

inversion function. 

Advantages of Artificial Neural Networks 

One of the most important advantages to using artificial neural networks 

is their speed. The mathematical simplicity of neural networks (which will be 

covered in more detail in the next chapter) makes them computationally 

efficient. Furthermore, since the computational speed of the trained neural 

network is independent of the mathematical complexity of the algorithms used 

to develop the training examples, artificial neural networks can not only perform 

backcalculation in real-time, they can learn a backcalculation function that is 
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based on much more realistic (albeit, more complex) models of pavement 

response than are used in traditional basin-matching programs. This 

significantly improves their accuracy without the usual trade-off of decreased 

computational speed. 

Militarily, this is important because both time and accuracy are critical in 

determining the structural integrity of roads and airfields in a contingency 

operation. Accuracy is greatly improved by using a dynamic analysis instead of 

a static analysis. Prior to this research, however, there was always a trade-off 

between the speed and the accuracy of the analysis. Artificial neural networks 

offer the possibility of both increased accuracy and increased speed when 

compared with traditional approaches to backcalculation. 

This research also has broad applicability in the civilian sector. State 

and Federal departments of transportation have thousands of miles of highway 

that must be periodically evaluated to determine their adequacy and to develop 

remedial measures if they are found to be inadequate. The frequency of testing 

is limited by the time needed to perform the test itself and the time needed to 

evaluate the test results. Real-time backcalculation using artificial neural 

networks eliminates one of those bottlenecks directly. It also opens up the 

possibility of developing nondestructive testing techniques that both measure 

and evaluate pavement properties in real time. Real-time NDT would not only 

allow more pavement to be tested more often, it would also reduce the costs of 
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performing the test. It would no longer be necessary to close a traffic lane and 

divert traffic to perform a test. This would alleviate both the direct costs of traffic 

control and the indirect costs of commuting delays. Furthermore, the work 

crews performing the tests would be at much less risk if they did not have to 

work outside their vehicle in the middle of a traffic lane. The eventual goal of 

real-time NDT would be to perform the entire test at a reasonable travel speed 

from the driver's seat. 

Summary 

This chapter has presented a synopsis of the three primary types of NDT 

device—static, steady-state dynamic, and transient dynamic—and described 

the operating characteristics of several devices from each class. The FWD, 

which is typical of the transient dynamic devices, was chosen for this study 

because it is widely used by both military and civilian Federal agencies as well 

as a majority of state Departments of Transportation. 

This chapter has also presented a brief description of traditional 

methods for backcalculating pavement layer moduli from FWD results. Most of 

those methods entail matching theoretical deflection basins to the experimental 

basins. The primary disadvantage of these methods is that they are 

computationally intensive and thus inherently slow. This has generally 

precluded the use of more-realistic (and more-complex) dynamic response 
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models. This inability to account for the dynamics of the problem seriously 

affects the accuracy of their solutions. 

A fundamentally new approach to backcalculation based on artificial 

neural networks has been introduced. Artificial neural networks are universal 

functional approximators that learn by example. In this study, examples of FWD 

inversion will be developed by using static and dynamic pavement response 

models to create synthetic deflection basins covering a wide range of 

pavement layer properties. Even though it will take considerably longer to 

develop the training examples with the dynamic model than the static model, 

the trained neural networks should be able to provide solutions in real time 

regardless of the pavement response model used to train them. 

Prior to this research, there was always a trade-off between the speed 

and the fidelity of the analysis. Neural networks can circumvent this trade-off 

between computational speed and computational accuracy because all of the 

mathematically-complex computations (i.e., the development of the neural 

network training examples and the training of the network itself) can be 

performed up front on high-speed computers (in this case, the Cray Y-MP 

supercomputer at the U.S. Army Engineer Waterways Experiment Station in 

Vicksburg, MS). Once trained, the neural network represents a simple 

functional mapping that can be implemented in real time on any personal 

computer. 
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CHAPTER 3 

MULTI-LAYER, FEED-FORWARD NEURAL NETWORKS 

This chapter will provide an historical and mathematical background for 

artificial neural networks. An exhaustive discussion of the many different types 

of artificial neural networks and their underlying principles and mathematics is 

beyond the scope of this work. Instead, this chapter will present a concise 

chronology of the developments that have led to the multi-layer, feed-forward, 

artificial neural networks used in this study. In the process, much of the 

mathematics behind these versatile computational tools will be introduced. 

Historical Perspective 

The field of neurocomputing has grown out of the scientific desire to 

understand and explain the workings of the human brain. Initially, 

neurocomputing was entirely the realm of neurobiologists and psychologists. In 

fact, most of the seminal writings in the field appeared in journals such as the 

Bulletin of Mathematical Biophysics and the Psychological Review. As work in 

the field progressed, artificial neural networks began to be studied as much for 

their mathematical, statistical, and computational properties as for the insight 
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they provided into the workings of the human mind. As engineers and 

physicists got involved in the study of artificial neural networks, increasingly 

less emphasis was placed on constructing biologically-plausible neural 

networks and increasingly more emphasis was placed on applying neural 

network technology to the solution of complex or otherwise intractable 

problems. The explosion of artificial neural network applications in the past 

decade would almost certainly not have occurred had the constraint of 

biological feasibility not been relaxed. 

A Biological Neuron 

To understand the early work in artificial neural networks, it is necessary 

to understand the basic operation of biological neurons. The mammalian 

nervous system has many different types of neurons. Because early work in 

neurocomputing was concerned almost exclusively with understanding the 

behavior of neurons in the cerebral cortex, cortical neurons are the biological 

prototype for artificial neurons. 

A biological neuron (Figure 20) consists of four primary components: a 

soma (or cell body) that contains the cell nucleus; a single axon that branches 

out at its end to send signals to other neurons; a tree-like network of dendrites 

that receives signals from other neurons; and the synapses, or synaptic 

junctions, where the communication between neurons takes place. 
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A neuron is continually receiving inputs from other neurons. These 

inputs arrive in the form of chemical transmitters passed across the synaptic 

junctions. The chemical transmitters cause either an increase or a decrease in 

the electrical potential within the cell body. When the electrical potential 

reaches a certain threshold value, the cell "fires" and sends a signal down its 

axon to be transmitted to its neighbors. 

The McCulloch-Pitts Neuron 

McCulloch and Pitts (1943) were the first researchers to define a 

working model of a neuron. Their seminal work attempted to explain neural 

processes purely in terms of propositional logic. To that end, they developed a 

"logical calculus" to explore the behavior of networks of logic elements (i.e., 

neurons). Their calculus was predicated upon a model of the neuron 

(commonly referred to now as the "McCulloch-Pitts neuron") that operates 

according to the following assumptions: 

1. The activity of the neuron is a binary process—either the 

neuron fires or it doesn't fire 

2. A fixed number of synapses must be excited within a specific 

period of time in order for the neuron to become excited 

3. There are no significant processing delays other than at the 

synapses 
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4. An active inhibitory synapse will completely prevent excitation 

of the neuron regardless of the level of activity on the 

excitatory synapses 

5. The structure of the network is invariant over time (i.e., new 

connections do not form and old connections are not broken) 

In short, the McCulloch-Pitts neuron is a binary (true/false) threshold unit that 

fires if the sum of its inputs exceeds a certain threshold (Figure 21). Despite 

the apparent simplicity of this model, McCulloch and Pitts showed that any 

finite logical expression could be encoded by a network of these binary logic 

units. Thus, McCulloch and Pitts were among the first to show the power of 

networks and of parallelism in general. 

The Perceptron 

The original McCulloch-Pitts neuron was based purely on logic. Their 

model assumed an equal weighting among the excitatory synapses (which 

could only be "true" or "false") and allowed a single inhibitory synapse to 

completely suppress activity. A more general model, based in mathematics 

rather than logic, was proposed by Rosenblatt (1958), who developed a theory 

for an intelligent "connectionist system" that he called a "perceptron". 

Rosenblatt's work was influenced greatly by Hebb (1949) who theorized 

an adaptive learning mechanism in which connections between neurons were 

strengthened if those connections participated in exciting the neurons to fire. 
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Hebb also postulated that information itself, and not just the task of information 

processing, was distributed throughout the neural system. This lead Rosenblatt 

to conclude that the information was actually stored in the connections between 

neurons and that new information was assimilated by modifying those 

connections. Accordingly, Rosenblatt developed a neuron (which is also rather 

ambiguously called a "perceptron") that had adjustable weights assigned to 

each of its synapses and that "learned" (i.e., encoded information) through 

modification of those weights. In Rosenblatt's perceptron neurons, the 

magnitude of each weight determines the strength of the connection and its 

sign determines whether it is excitatory or inhibitory. As in the McCulloch-Pitts 

neuron, the perceptron fires when the weighted sum of its inputs exceeds a 

certain threshold (Figure 22). 

Mathematically, the perceptron can be modeled as 

yj=0(s|) (1) 

where sj is an affine combination of the inputs and the weights: 

sj = Ewüxi-ßj (2) 
i 

and ©(•) is the Heaviside (step) function: 
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. x     1    if ^ 0 
®te)=\ (3) vv   10   otherwise v ' 

Here, the output y, of neuron j is either 1 (the neuron fires) or 0 (the neuron 

doesn't fire) depending on the binary inputs Xi received from all of the other 

neurons in the network. The weight wy represents the strength of the synapse 

connecting neuron i to neuron j and the bias ft represents the threshold that 

must be reached for the neuron to fire. 

The Perceptron Learning Law 

Rosenblatt went on to develop a mechanism for training a perceptron in 

which the perceptron modifies its own synaptic weights in order to produce a 

desired output. This so-called "perceptron learning law" (Rosenblatt, 1962) is 

used in conjunction with a process called "supervised learning" to teach a 

perceptron a pattern classification task. Training involves repeatedly showing 

the perceptron examples of the patterns to be classified, along with the correct 

classification of each, and allowing it to adjust its weights so as to produce the 

desired response to each input. For each exemplar shown to the network, the 

weights are modified according to the following formula: 

wr=w°ld+(yj-tj)xi (4) 'y 
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where yj is the realized output and tj is the target output. Here, the Xj are the 

elements of a feature vector x that describes the pattern that is to be classified. 

Note that if the realized output (i.e., classification) is correct, the output error 

(yj -tj) will be zero and the weight will not be changed. If the classification is 

incorrect, the output error will either be +1 or -1 and each connection weight 

will either be increased or decreased by an amount equal to the value of the 

input carried by that connection. 

Block (1962) proved that a simple perceptron can always be taught to 

separate (classify) linearly separable inputs (Figure 23) without error. Most 

importantly, he proved that the learning can be accomplished in a finite number 

of learning trials regardless of the initial values of the weights5. This 

"Perceptron Convergence Theorem" was the first proof that a brain model could 

actually be "taught" a concrete task (i.e., binary classification). 

The Widrow-Hoff Learning Law 

At about the same time that Rosenblatt was developing the perceptron, 

Widrow and Hoff (1960) developed a similar "adaptive pattern classification 

machine" they called an ADALINE (for ADAptive  LINEar classifier).  The 

ADALINE forms an affine combination of the inputs and the weights and passes 

5 The only exception to this is if the initial weights are all zero, in which case 

the network will not train at all. 
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it to a "quantizer" that outputs a +1 if the result is greater than zero and a -1 if 

the result is less than zero (Figure 24). Mathematically, this can be modeled as 

yj = sgn(Sj) (5) 

where Sj is defined as before. 

On the surface, the ADALINE sounds remarkably like a perceptron. The 

crucial distinction lies in the learning law used in its training. Perceptrons are 

essentially trained by adjusting their weights so that the affine combination of 

the inputs and the weights is either greater than or less than zero. In contrast, 

the goal of the Widrow-Hoff Learning Law (also called the Delta Rule for 

reasons which will become apparent later) is to adjust the weights so the affine 

combination of the inputs and the weights is identically equal to either +1 or -1. 

(This essentially eliminates the need for the quantizer when training is 

complete.) Most importantly, the ADALINE weights are changed whenever the 

magnitude of Sj is not identically equal to one, even though the classification 

(the sign of Sj) may be correct. This offers a vast improvement over the 

perceptron, whose weights are only changed when the answer is wrong. As the 

perceptron approaches 100% accuracy, it produces fewer and fewer wrong 

answers, so its weights are updated less and less frequently. Therefore, it 

learns ever more slowly as its accuracy improves. The ADALINE, on the other 
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hand, is continually learning (and improving its accuracy) with every example it 

is shown. 

Mathematically, the training goal of the Widrow-Hoff learning law is to 

find the set of weights w that minimizes the sum squared error of the ADALINE 

over all of the exemplars in the training set: 

(w) = £Ek (6) 

where 

^Eft-tf <7> 2, 

Here, the superscript k denotes the individual exemplars from the training set 

and the subscript j denotes the individual neurons in the network. The constant 

1/2 is introduced purely for mathematical expediency and does not affect the 

final weights in the trained network. Note, too, that Sj is considered the output of 

the ADALINE because the quantizer is ignored during training. 

Equations 6 and 7 describe an "error surface" in some multidimensional 

"weight space". The error surface is clearly a quadratic function of the weights; 

therefore, it has a global minimum value that can be found numerically using, 

for example, the method of steepest descent. 
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The method of steepest descent seeks the global minimum point on a 

multidimensional surface by incrementally "stepping" in the direction in which 

the surface descends most steeply. Specifically, each ADALINE weight wy is 

adjusted by an incremental amount Awy that is proportional to the 

instantaneous slope (gradient) of the error surface with respect to that weight: 

AWiiK"äw:=E awijy 
(8) 

Using the chain rule of differentiation, -9Ek/8wjj can be written as the product 

of two partial derivatives: 

*£.J**L (9) 

The first determines how the error changes as a function of changing the 

output and the second determines how the output changes as a function of 

changing the weights. From Equation 2, it is clear that 

^ = xf (10) 

and, by defining 
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<*~§H*-r) <11> dS) 

(from which the name "Delta Rule" is obtained), Equation 8 can be rewritten as 

AWjjoc£6fx!< (12) 

Introducing the constant of proportionality TJ, Equation 12 can be rewritten as 

Aw, = Ti£6f3f (13) 
k 

The constant r| is called the "learning rate". It controls the size of the step taken 

down the hill. If the step size is too small, a large number of iterations will be 

required to reach the gjobal minimum. Furthermore, there will be a tendency for 

the solution to get stuck at the bottom of small local minima. If, on the other 

hand, TJ is too large, the gradient descent may overshoot the global minimum. 

This can lead to a solution that oscillates about the global minimum without 

ever settling into it. 

Equation 13 provides a method for updating the individual weights at the 

conclusion of each training epoch (i.e., each pass through the entire training 

set). This is the so-called "batch" method of training. There is an alternative 
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training method, called "pattern-by-pattern training" in which the weights are 

adjusted after each exemplar is shown to the network. In that case, the learning 

law is simply 

AWij = Ti5fxT (14) 

Theoretically, the final weights should be identical, regardless of the method 

chosen. In practice, one method generally works better than the other for a 

given training set. For example, if the training set is large, training may be 

slowed by only updating the weights once per training epoch. Conversely, if the 

training set is small, updating the weights after each exemplar can cause the 

gradient descent algorithm to meander all over the error surface. Depending on 

the shape of the error surface, this may prevent it from ever settling into the 

global minimum. 

One very important point about the Widrow-Hoff learning law is that it 

operates entirely within a single neuron. Each neuron in the network adjusts its 

own weights based only on the current values of its inputs and its output. There 

is no need to store any information other than the current value of the weight 

and no need to know anything about the other neurons in the network. This 

idea of localization is very important from the standpoint of biological 

plausibility; however, it is also important if one wishes to implement artificial 
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neural networks on parallel computers. Because data transmission between 

nodes in a parallel computer is always a bottleneck to be overcome, a training 

scheme that does not rely on outside information is extremely desirable. 

The idea of localization is also important because it allows a network of 

ADALINE units (called a MADALINE, which stands for Many ADAUNEs) to be 

assembled in parallel (Figure 25). Since each neuron needs only worry about 

its own inputs and outputs, training is no more difficult than for a single unit. 

Now, however, a pattern of inputs can be taught to produce a pattern of 

outputs. This goes beyond mere pattern recognition—it provides a rudimentary 

ability to perform function mapping. 

The Dark Ages of Neurocomputina 

Unfortunately, the processing capabilities of perceptron networks proved 

to be just that—rudimentary. As more and more research was performed on 

perceptrons and ADALINEs and dozens of their variants, it became 

increasingly clear that they all had some major limitations. 

In the book Perceptrons, Minsky and Papert (1969) developed a logical 

proof that perceptron networks were severely constrained in their computing 

abilities. Among their proofs, they showed that perceptrons could not compute 

even a simple n-bit parity (i.e., whether the number of active inputs out of a 

total of n inputs is odd or even). The simplest n-bit parity problem, the 2-bit 

parity problem, is nothing more than the logical predicate XOR (exclusive OR): 
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if one or the other of the inputs is active, but not both, the parity is odd; 

otherwise it is even. This is the simplest logical predicate that is nor linearly 

separable and has become a standard test for neural network algorithms. 

In addition to proving that single-layer perceptron networks had limited 

abilities, the authors, in the last chapter of their book, conjectured that the 

same limitations would extend to multi-layer perceptron networks as well. This 

conclusion effectively killed artificial neural network research for the next 15 

years: if more complex problems could not be solved, even with multi-layer 

networks (which no one at the time knew how to train anyway), there was no 

sense in funding further neural network development. 

Fortunately, some work in artificial neural networks did continue—mostly 

as tools for understanding memory. Of particular note was work done by 

Kohonen (1972) and Anderson (1972) who developed associative memory 

models6 based on neurons with real-valued inputs and outputs instead of the 

binary values used in the perceptron and the ADALINE. These "analog" 

neurons produced an output proportional to the weighted sum of their inputs 

In an associative memory model, each input vector is associated with a 

certain output vector. When properly implemented, even a partial input is 

sufficient to "recall" the appropriate output. This ability has been used to great 

advantage in "autoassociative" networks which are taught to map vectors onto 

themselves; then, if the network is presented with a portion of an input vector, 

the network "fills in the blanks" to produce the complete vector. 
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(Figure 26). This was actually quite convenient because it meant that the entire 

network could be described using simple matrix multiplications. It also meant 

that the networks could be trained using the Delta Rule, since the analog 

neurons are operationally identical to an ADALINE with the quantizer removed. 

According to Hecht-Nielson (1990), the eventual resurgence of artificial 

neural networks can be linked directly to Ira Skurnick, a program manager at 

the Defense Advanced Research Projects Agency (DARPA). In 1983, he 

provided a small amount of government funding for neurocomputing research— 

the first since Perceptrons was published in 1969. This symbolic step, coupled 

with the publication of two definitive papers by Hopfield (1982,1984), re-ignited 

the field. The second of those papers is especially important in the context of 

multi-layer, feed-forward neural networks because it presents the first model of 

a nonlinear neuron. 

The Hopfield Neuron 

The nonlinear neuron introduced by Hopfield (1984) forms an affine 

combination of the inputs and the weights, then transforms the result using a 

nonlinear function to obtain the desired output (Figure 27). Mathematically, this 

can be expressed as 

Vj = g(sj) (15) 
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where Sj is defined as before. The function g(-), which is called the transfer 

function, is usually taken to be the sigmoidal logistic function 

g(*)=—^7 de) 1 + e 

It should be readily apparent that the mathematical model for the Hopfield 

neuron is identical to that used for the Perceptron (which Hopfield used in the 

earlier of the two papers cited), except the Heaviside function has been 

replaced by a nonlinear, continuously-differentiable function. 

This seemingly minor change expanded the capabilities of neural 

networks by several orders of magnitude. Perceptron networks can only 

implement certain predicate functions (i.e., binary functions of binary inputs) 

and networks built from linear neurons were only capable of linear associations 

in which similar inputs mapped to similar outputs. In contrast, multi-layered 

networks of nonlinear neurons would be capable of much more complex 

mappings. Among other things, they could implement mappings that required 

similar inputs to be mapped onto dissimilar outputs and dissimilar inputs onto 

similar outputs. The n-b\X parity problem is just such a mapping. Two n-bit 

patterns that differ by a single bit (and are therefore very similar) map onto 

outputs that are the exact opposite of one another. Similarly, two patterns that 

differ in every single bit will map onto the exact same output if n is even. 
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Unfortunately, there were no methods available for training multi-layered 

networks. The Delta Rule only works for single-layer networks because it 

requires that the output error for each neuron be known a priori. This is easily 

accomplished in a single-layer network by using supervised learning. In 

contrast, multi-layer networks have one or more "hidden" layers (Figure 28) 

separating the network inputs from the output layer. It is not at all apparent 

what the outputs of the neurons in those hidden layers must be in order to 

obtain a correct value at the output layer. 

Error Backpropagation 

Rumelhart, Hinton, and Williams (1986) finally overcame this stumbling 

block by developing a learning algorithm known today as backpropagation. 

Amazingly, Le Cun (1986) and Parker (1986) simultaneously arrived at the 

same solution and, as it turns out, Werbos (1974) had derived the same 

algorithm as part of his doctoral dissertation. 

The backpropagation algorithm was developed for a fully-connected, 

multi-layer, feed-forward network with nonlinear neurons of the type developed 

by Hopfield. In such a network, each neuron 1) accepts one input from each of 

the neurons in the layer above it, 2) forms an affine combination of those inputs 

and its own weights, 3) applies the nonlinear transfer function to that affine 

combination, and 4) makes the result available to every neuron in the layer 

below it. 
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The backpropagation algorithm (also called the "generalized delta rule") 

is based on the original Widrow-Hoff algorithm. It provides a way to adjust the 

weights of hidden neurons based on the error at the output layer. It does this 

by propagating the output errors backward through the network. (Hence the 

name.) This backpropagation of the errors tells the hidden neurons two things: 

1) how strongly they are connected to each output neuron, and 2) the error at 

each output neuron. If a hidden neuron is weakly connected to an output 

neuron with a large error or strongly connected to an output neuron with a 

small error, it should not have to modify its weights substantially. Conversely, if 

a hidden neuron is strongly connected to an output neuron with a large error, it 

should bear the brunt of the modifications needed to correct that error. 

The derivation of the generalized delta rule begins with the gradient 

descent definition used by Widrow and Hoff: 

owU      k 
(17) 

This time, however, 

-lEW-tfHEM^f <18> 

because each neuron's output is a nonlinear function of ss rather than Sj itself. 
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Using the chain rule of differentiation, -9Ek/dWjj must now be written as 

the product of three partial derivatives: 

_3E^ = _aE^ay[asJ_ 
dwy     ayf as

k awy 

The first determines how the error changes as a function of changing the 

output, the second determines how the output changes as a function of 

changing the affine combination of the weights and the inputs, and the third 

determines how that affine combination changes as a function of changing the 

weights. This last term is, as before, simply 

3sf      k 

äw^ <20> 

and, by defining the "delta" as 

^-m 
dyf as; 

a weight update rule that is identical to the original Delta Rule is obtained: 

Awy = Ti£öfxf (22) 
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It should be immediately obvious that 

ay] 
3sf 

Ug'(sf) (23) 

which is simply the instantaneous slope of the transfer function evaluated at 

the current value of Sj. This applies to all neurons, regardless of whether or not 

they are hidden. Now, all that remains to be determined is the 3Ek/dyk for the 

neurons in the output layer and in the hidden layer(s). 

In the output layer of the network, 3Ek/dyk (the partial derivative of the 

output error with respect to the output) is simply 

3yk = -(tk-yk) (24) 

which follows directly from Equation 18. Thus, in the output layer 

5J=(tk-ykMsj) (25) 

In the hidden layer, the evaluation of 3Ek/dyk is less direct and far less 

obvious. Now, the goal is to determine the change in the output layer outputs 

that results from a change in the hidden layer outputs. Applying the chain rule 

of differentiation: 
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dEk    „ 3Ek 3sk 

where the subscript m denotes a neuron in the output layer and the subscript j 

now denotes a neuron in the hidden layer. Notice that, because the output yj of 

a neuron j in the hidden layer is distributed as an input to every neuron in the 

output layer, the effect of a change in yj on the total output error can only be 

found by summing errors over all of the neurons in the output layer. 

The term as^/ayf can be evaluated by examining Figure 28 and the 

definition of sm (Equation 2). Each input Xj to a neuron m in the output layer is 

the output yj of a neuron j in the preceding (hidden) layer. Furthermore, each 

input Xj increases the value of sm by an amount equal to wjmXj. Therefore, 

3s* = wjm (27) 
ay 

Next, note that, by definition, 

sr* (28) 

which is simply the "delta" used to train the neurons in the output layer. 

Substituting Equations 27 and 28 into Equation 26, 
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,k ay 
£5mWjm (29) 
m 

and, substituting this result into Equation 21, 

Sj^sfJj^Wjm (30) 
m 

Equation 30 defines a recursive relationship for computing the deltas in any 

hidden layer as a function of the deltas in the layer immediately succeeding it. 

The deltas in the output layer are known a priori, so the calculations begin 

there and work backwards toward the input layer. 

Error Backpropaaation with Momentum 

Recall from the discussion of ADALINEs that neural network training is 

essentially a search for the global minimum of a network error surface in some 

multi-dimensional weight space. For a single ADALINE, the error surface is a 

quadratic function of the weights with a clearly-defined minimum. The error 

surface for a multi-layered neural network, on the other hand, is much more 

convoluted; it can have very many local minima whose error levels are greater 

than the global minimum error that is being sought (Figure 29). The standard 

gradient descent technique can produce a search path that settles into a local 

minimum and cannot escape. This is especially true if the learning rate is small. 
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The problem cannot be alleviated by simply using a larger learning rate, 

however, because that can lead to other pathologies such as a search path 

that oscillates about the global minimum rather than settling into it. 

A common technique for ameliorating the problems associated with local 

minima is to add a momentum term onto the learning rule: 

AwJew = Ttffxj1 + ßÄWjfd (31) 

Here ß is a fractional "momentum factor" that causes a portion of the previous 

weight change to be reapplied during the current weight update. This serves to 

keep the weight changes going in the same direction—hence the name. 

The addition of a momentum term actually serves several purposes. By 

itself, the added forward momentum can prevent the search from settling 

backwards into a local depression (Figure 30). The addition of momentum can 

also serve as a damper that prevents the search from oscillating endlessly 

about the global minimum (Figure 31). This allows a higher learning rate to be 

used which, in turn, lessens the possibility of entering the narrower local 

depressions. Finally, because each successive weight change contains a 

portion of its predecessor, the gradient search is imbued with a "memory" of 

sorts. Each weight change becomes a moving average of the past weight 

changes, with the most recent figuring more heavily into the average. In fact, if 
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the momentum factor is identically equal to one, each weight change is an 

arithmetic average of all the past weight changes. Hagiwara (1992) showed 

that this is equivalent to defining the error function as the sum of the output 

errors produced over the entire training set, rather than for the current 

exemplar. The "memory" obtained with a momentum term can minimize some of 

the meandering inherent in pattern-by-pattern training. This is especially true at 

the start of training, when the correlation between the weights and the output 

errors is much less certain. 

Summary 

This chapter has presented a chronology of the ideas that have led to 

the development of multi-layer, feed-forward, artificial neural networks such as 

those used in this research. Along the way, the necessary mathematics have 

also been presented. Most importantly, a method for training artificial neural 

networks—error backpropagation—has been described in detail. A FORTRAN 

computer program (Appendix A) has been written to implement pattern-by- 

pattern backpropagation training with or without momentum. A simple flow- 

chart of the program is shown in Figure 32. 
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CHAPTER 4 

SYNTHESIS OF FWD BASINS USING STATIC PAVEMENT ANALYSIS 

As mentioned in Chapter 1, the goal of the first half of the research was 

to show that it is possible to train an artificial neural network to perform real- 

time backcalculation of pavement layer moduli. In order to accomplish that 

objective, it was important to be able to obtain a direct comparison of speed 

and accuracy between the artificial neural network and a conventional 

backcalculation program. With that in mind, the static, layered-elastic analysis 

program WESLEA was chosen for generating the synthetic deflection basins 

needed to train the network. 

As was discussed in Chapter 2, WESLEA provides the deflection basin 

calculations for the iterative, basin-matching inversion program WESDEF. By 

using WESLEA to generate the neural network training set as well, a direct 

comparison could be made between what is essentially an artificial neural 

network implementation of WESLEA and the conventional gradient-descent 

implementation of WESLEA. If the training of the artificial neural network was 

successful, it would provide backcalculated moduli that were nearly identical to 

those obtained using WESDEF—but in much less time. 
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This chapter will briefly describe the mathematical basis of WESLEA 

and present the details of the training set generation. The details of the neural 

network training will be presented in Chapter 6 along with the comparison 

between the answers obtained with the trained neural network and those 

obtained using WESDEF. Chapter 6 will also illustrate the differences in speed 

between the two techniques. 

Background 

The calculation of the pavement deflections resulting from an FWD test 

is usually accomplished by analyzing the stresses and displacements induced 

in a layered elastic half-space by a uniform circular load applied at the surface. 

This problem was first solved by Burmister (1943) for a two-layered system 

consisting of a reinforcing layer of finite thickness overlying a half-space. 

Refinements to his analysis were presented in a series of follow-up papers 

which gave solutions for the problems of a two-layered system with a 

frictionless interface between the layers (Burmister, 1945a), a two-layered 

system with a fully-frictional interface between the layers (Burmister, 1945b), 

and a three-layered system with fully-frictional interfaces (Burmister, 1945c). 

This last analysis was important in that it allowed the pavement and the base 

course to be modeled as separate layers. 

DeJong, Peutz, and Korswagen (1973) refined the basic multi-layer 

analysis to allow a continuum of interface conditions varying between the limits 



96 

of frictionless and fully-frictional. Van Cauwelaert, Delaunois, and Beaudoint 

(1987) went one step further by developing interface conditions that satisfied 

Coulomb's law. Their work forms the theoretical basis of WESLEA. 

Stresses and Displacements in a Layered Elastic Medium 

The development of the basic theory of stresses and displacements in a 

layered elastic medium proceeded from the three-dimensional equations of 

equilibrium and compatibility. For an axisymmetric problem, force equilibrium in 

the radial direction is given by 

_^ + ^ + _r e=0 (32) 

dr      dz r v    ' 

if inertial forces are neglected. Similarly, force equilibrium in the vertical 

direction is given by 

ir+if+f=0 (33) 

For small strains, strain compatibility in the radial direction is given by 

V2o> --2-(ar -ae)+—-—(CTr +ae +az)= 0 (34) 

and strain compatibility in the circumferential direction is given by 
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V%e+-2-(ar-ae) + —- - — (ar +ae +az)= 0 
r 1 + v\x) ox 

(35) 

where v is Poisson's ratio. 

The equations of equilibrium are satisfied by expressing the normal and 

tangential stresses in terms of a stress function § as follows: 

G2 = 
d_ 
dz (2-v)W^| 

dz 
(36) 

°r=Yz 
vV*(J> 2,  a2* 

9r2 (37) 

Ge = ai 
2,      1 3(J> vV^- 

r3r 
(38) 

^r2 = 9r (i-v)vvff 
az 

(39) 

Applying Hooke's law, the displacements in the vertical and horizontal direction 

can similarly be expressed as 
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w = 1 + v 
dr    r 3r 

(40) 

and 

u = - 
1+ v d2§ 

E   3r3z 
(41) 

respectively, where E is the modulus of elasticity. 

The compatibility equations are satisfied if the stress function $ is a 

solution to the biharmonic differential equation 

V4<}> = 0 (42) 

For a uniform surface load of radius R and intensity p, the appropriate stress 

function (Van Cauwelaert, Delaunois, and Beaudoint, 1987) is: 

* = PRJ 
JoCmrjJ^R) 

m 
[Aje™ - Bje""12 + CjZe"12 - Djze-^jdm (43) 

where J0() is a Bessel function of the first kind and order zero, J^) is a Bessel 

function of the first kind and order one, and the coefficients A, Bj, Ci, and Di are 

found by satisfying the boundary conditions of each layer. 
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The stress function given by Equation 43 can be substituted into the 

equations for the stresses and displacements (Equations 36-41) and evaluated 

at the layer boundaries to determine the coefficients A, Bi, C\, and Di for each 

layer. Among the boundary conditions that must be satisfied are 1) the normal 

and shearing stresses at the surface of the half-space are zero everywhere 

outside of the loaded area; 2) all of the stresses and displacements vanish at 

infinite depth; and 3) continuity of stresses and/or displacements must be 

satisfied at the layer interfaces (depending on their frictional properties). 

The resulting equations are quite complex and must be integrated 

numerically. Much of the work that has gone into computer programs such as 

BISAR and WESLEA involved finding ways to efficiently integrate the resulting 

stress and displacement equations without a loss of accuracy. Because the 

equations are extremely lengthy, they will not be reproduced here. Instead, the 

reader is referred to Van Cauwelaert, Delaunois, and Beaudoint (1986) for the 

details of the stress and displacement equations and to Van Cauwelaert, et. al., 

(1988) for the details of their computer implementation and the numerical 

integration techniques applied to their computation. 

Training Set Requirements 

An   artificial   neural   network  learns   a  multi-dimensional  functional 

mapping through repeated exposure to examples of that mapping. How well it 

learns that mapping depends as much on the contents of the training set as on 
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the network topology and training methods. The training set must be designed 

with the strengths and weaknesses of the network in mind. 

Multi-layer, feed-forward artificial neural networks of the type used here 

(henceforth referred to simply as "backpropagation networks") are very good at 

generalization7 but do not extrapolate well. Therefore, the training set should 

be designed so as to span as much of the expected input space as possible. 

The training set should also be as representative of the complete input space 

as possible—if some inputs are statistically more likely than others, the training 

set should reflect that. (The error being minimized is an average over all of the 

examples in the training set; those examples that occur most frequently will be 

fit most precisely when the average error is minimized.) In addition, even 

though backpropagation neural networks are universal approximators, their 

training times increase rapidly with increasing problem complexity. This places 

some practical limits on the complexity of the mappings that can be learned. 

Finally, care must be taken to present the training examples to the network in a 

random order. If the backpropagation network is shown repeated examples 

from only one portion of the input space, it can actually "forget1' any previously 

7 In the parlance of neural networks, generalization is the ability to perform 

successfully for input patterns that have never been seen before. In the context 

of function mapping, this is the same thing as being able to interpolate between 

the data points that make up the training set. 
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learned portions. Also, if the training examples are presented in the same order 

every time, the network may simply trace a loop around the error surface, 

always returning to the same spot at the conclusion of each epoch. By 

presenting the examples in random order, more of the weight space is explored 

while searching for the global minimum, which increases the chances of its 

being attained. 

Statement of the Problem 

The requirement that the training set completely cover the input space 

means that realistic boundaries must be established for the inversion problem. 

For the initial feasibility study, it was decided that the problem would be 

restricted to conventional flexible pavement systems consisting of an asphaltic 

concrete (AC) surface course and an unbound granular base course overlying 

the subgrade soil. 

In the context of the static, layered-elastic analyses used in this portion 

of the research, the primary variables affecting pavement response are the 

thicknesses and elastic stiffnesses of the pavement layers. Therefore, the 

mapping problem that will be taught to the neural network is to map the layer 

thicknesses and the peak measured deflections onto the backcalculated elastic 

moduli. This is the same "mapping" that is performed by the traditional 

backcalculation programs discussed in Chapter 2. Variables such as mass 

density and Poisson's ratio, which vary over a relatively narrow range in the 
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pavement materials of interest here, will be treated as constants and set equal 

to generally accepted (i.e., typical) values. 

As was shown in Chapter 2, the thickness of the subgrade (that is, the 

depth to bedrock) has a significant effect on the peak displacements calculated 

using a static analysis. On the other hand, it was shown that the thickness of 

the subgrade has little influence on the deflection basins calculated using a 

dynamic pavement response model. As a result, the subgrade thickness will 

not have to be considered in Phase II of the research. To maintain consistency 

between the two research phases, the subgrade thickness had to be eliminated 

from consideration in Phase I as well. In the work of Foinquinos, Roesset and 

Stokoe (1993b), static deflection basins calculated for bedrock depths of 80 ft 

were almost indistinguishable from those calculated with an infinite depth to 

bedrock (Figure 18). Chang, et. al. (1992) similarly showed that calculated 

surface deflections for four completely different pavement systems (ranging 

from Farm-to-Market roads to Interstate highways) asymptotically approached 

limiting values as the bedrock depth approached 80-100 ft (Figure 33). The 

thickness of the subgrade was therefore assigned a value of 100 ft in order to 

eliminate the influence of the bedrock. Therefore, only two thicknesses (one for 

the surface layer and the other for the base layer) and three elastic moduli (one 

each for the surface layer, base layer, and subgrade) are needed to completely 

characterize the pavement system. 
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Having established the general pavement structure, the next step was to 

determine the ranges of layer thicknesses and material properties that could be 

expected for each material layer. SHRP has recently established a 

standardized backcalculation procedure for its LTPP program (Rada, Richter, 

and Jordahl, 1994). Among other things, that procedure specifies ranges of 

layer moduli to be input to the MODULUS backcalculation program in order to 

bracket the solution. These ranges were adopted as the modulus ranges for 

the training set. Where ranges were not provided, engineering judgment was 

used to set the appropriate limits. Table 2 summarizes the ranges of pavement 

layer properties used to generate the training set. 

The final step in defining the mapping problem was to determine the 

radial offsets at which to output the synthetic measured pavement deflections. 

As mentioned in Chapter 2, the Dynatest FWD has seven sensors which are 

usually mounted at 12-in intervals out to a distance of 72 in. The KUAB FWD 

also has 7 sensors, but their offsets are fixed at 0, 8, 12, 18, 24, 36, and 48 in. 

The SHRP LTPP specifications, on the other hand, call for sensors positioned 

at offsets of 0, 8, 12, 18, 24, 36, and 60 in. As shown in Table 3, all three 

sensor arrangements can be accommodated in a single training set with just 

nine offsets (0, 8, 12, 18, 24, 36, 48, 60, and 72 in). In this way, several neural 

networks could be trained, each for use with a different set of sensor spacings, 

by selecting the appropriate deflections from the database. 



105 

Table 2. Ranges of layer properties used in the 1 training set 

Layer Thickness 
(in) 

Young's Modulus 
(ksi) 

Poisson's Ratio 

Surface 2-12 250-3000 0.325 

Base 6-30 5-150 0.350 

Subgrade 00 5-50 0.350 
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Table 3. Sensor locations represented in the training set 

Device/Specification 

Standard Dynatest 

Standard KUAB 

SHRP LTPP Program 

V V v      v      s      v      s 

v      s      s      ■/      v      s      s 

s      v      s      s      v      s s 
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Trainina Set Generation 

A modified version of WESLEA was implemented on the CRAY Y-MP 

supercomputer at the Waterways Experiment Station to generate the synthetic 

deflection basins needed to train the neural network. In order to satisfy the 

requirements that a) the training set have a probability density similar to that of 

the actual input space and b) the training exemplars be randomly presented to 

the network during training, pavement profiles were constructed by randomly 

selecting layer thicknesses and layer moduli from uniform distributions covering 

the ranges shown in Table 2. A total of 10,000 pavement profiles were 

constructed in this manner. With five independent variables (two thicknesses 

and three moduli), this is similar to establishing a test matrix with 10 levels for 

each variable (105 = 10,000) and using every combination available. That 

degree of coverage should minimize the distances over which the neural 

network must interpolate and therefore maximize the accuracy of the 

backcalculated values. The entire training set of 10,000 deflection basins was 

generated in approximately 30 min. 

By randomly selecting the layer properties from uniform distributions, a 

training set was created in which each of the pavement layer properties was 

equally likely. Note that this is nor the same as a training set in which each of 

the deflection basins is equally likely. As the stiffness of the pavement system 

increases, there is much less change in the surface deflections for a given 
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change in stiffness (mathematically, the derivative of deflection with respect to 

layer stiffness is asymptotically approaching zero). The training set is therefore 

skewed toward the shallow deflection basins. Showing the network more 

examples of shallow deflection basins than of deep deflection basins should 

help it learn the inversion function better because more of its training time is 

spent on those examples that are the most difficult to invert accurately. 

In order to ensure that the distributions of the pavement layer properties 

in the training set were suitably uniform, histograms of the layer thicknesses 

and moduli were constructed (Figures 34-38) and summary statistics were 

calculated (Table 4). All of the layer properties were first normalized by 

rescaling them to a range of [0,1]. This was done so the summary statistics 

could be easily compared to those of a uniform (U[0,1J) distribution. The 

theoretical mean of the U[0,1] distribution is simply 1/2 and the theoretical 

variance is 1/12. The standard deviation (i.e., the square root of the variance) 

should therefore be 0.2886. The values shown in Table 4 match those statistics 

very closely and the histograms do not indicate any significant deviations from 

the assumption of uniformity. 

In order to ensure that the pavement layer property distributions were 

uncorrelated (e.g., to ensure that low asphalt moduli were not more likely to 

occur when the base modulus was also low), correlation coefficients were 

computed for each pair of random variables (Table 5). A correlation coefficient 
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Table 4. Statistics on randomly-generated layer properties 

Statistic 

Mean 

Standard 
Deviation 

 nVWMMVWWrtMWWJW 

Surface Base        Subgrade 
Modulus       Modulus       Modulus 

0.5008 

0.2879 

0.5092 

0.2884 

0.4971 

0.2862 

Surface Base 
Thickness    Thickness 

0.5000 0.4944 

0.2903 0.2889 
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Table 5. Correlation coefficients for the layer properties 

Surface 
Modulus 

Base 
Modulus 

Subgrade 
Modulus 

Surface 
Thickness 

Base 
Thickness 

Surface Base Subgrade |    Surface Base 
Modulus Modulus Modulus   j Thickness Thickness 
 *•  

+1.0000 -0.0005 +0.0144 I +0.0040 +0.0174 

-0.0005 +1.0000 +0.0211 | -0.0043 +0.0058 

+0.0144 +0.0211 +1.0000 | +0.0042 +0.0017 

+0.0040 -0.0043 +0.0042 | +1.0000 -0.0134 

+0.0174 +0.0058 +0.0017 I -0.0134 +1.0000 
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close to +1 indicates that the variables are linearly dependent on each other 

(i.e., when one goes up, the other goes up; when one goes down, the other 

goes down). Similarly, a correlation coefficient close to -1 indicates a negative 

linear dependence (i.e., as one goes up, the other goes down). A correlation 

coefficient of zero indicates that the two variables are uncorrelated. All of the 

off-diagonal correlation coefficients shown in Table 5 are close to zero, so 

there is no apparent correlation between the variables. 

Summary 

This chapter has described the creation of a neural network training set 

consisting of 10,000 synthetic deflection basins. The synthetic deflection 

basins were calculated for randomly-selected pavement profiles using the 

static, layered elastic analysis program WESLEA. Because this is the same 

analysis program that is used in the conventional backcalculation program 

WESDEF, a direct comparison of accuracy and speed can be made between 

the trained neural network and WESDEF. This comparison, and the details of 

the network training, are presented in Chapter 6. 
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CHAPTER 5 

SYNTHESIS OF FWD BASINS USING DYNAMIC PAVEMENT ANALYSIS 

The goal of the first phase of the research was to show that it is possible 

to teach an artificial neural network to backcalculate pavement layer moduli 

from FWD deflection basins. If successful, the computational efficiency of the 

neural network would allow it to backcalculate those moduli in real time. As was 

mentioned in Chapter 2, the computational efficiency of the trained neural 

network is independent of the computational complexity of the algorithms used 

to develop its training examples. This feature of neural networks makes it 

possible to perform real-time backcalculation using much more realistic models 

of pavement response than are currently used in conventional basin-matching 

programs. A significant increase in the realism of the pavement response 

model can be realized by replacing the static analysis afforded by WESLEA 

with an elastodynamic analysis of the FWD test. This will simultaneously 

increase the accuracy of the backcalculated moduli and eliminate their 

dependence on the assumed depth to bedrock. 

The goal of the second research phase was therefore to retrain the 

neural  network developed  in   Phase  I  using synthetic deflection  basins 
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generated by an elastodynamic analysis of the pavement response. Because 

the task of mapping deflection basins (and pavement layer thicknesses) onto 

their corresponding elastic moduli remains essentially the same—only the 

magnitudes of the deflections will differ from those used in the first phase of the 

research—there should be no reason to change the network's architecture. By 

preserving the network architecture, the computational speed of the network 

will also be preserved. In other words, the retrained network will still be able to 

backcalculate pavement layer moduli in real time, but will do so based on a 

dynamic analysis of the pavement's response to the FWD loads rather than a 

static analysis. 

This chapter will briefly describe the elastodynamic model of the FWD 

test and its numerical implementation and will present the details of the training 

set generation for the second phase of the research. The retraining of the 

neural networks using that data set will be discussed in Chapter 6. 

Frequency Domain Analysis 

A common method for analyzing the response of a linear system to 

transient loads is by superposition of the system's responses to steady-state 

excitations at many different frequencies. This method, known alternately as 

Fourier superposition analysis or frequency domain analysis, is a very flexible 

tool that can be easily applied to any linear system for which the solution to the 

steady-state problem is known. For the problem of interest, the steady-state 
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solution is provided by elastodynamic Green functions, described in the next 

section, that relate the harmonic response of the pavement surface to a 

harmonic surface load. 

To perform a frequency domain analysis, the transient applied load p(t), 

which is a continuous function of time, is sampled at integer multiples of a 

specified time increment At to obtain a discretized waveform. That waveform 

can be represented by the discrete values 

Pnsp(nAt) , n = 0, 1 N-1 

where N is the number of samples. The discretized waveform is then 

decomposed into N separate frequency components 

Pk = P(kAco) ,  k = ~ 0 |-1 

where 

2TI 
Aco =  (44) 

NAt K    ' 

is  the   corresponding  sampling   interval   in  the  frequency  domain.   This 

decomposition can be accomplished using a discrete Fourier transform: 
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Pk=At£pne-
2*ikn/N (45) 

Note that even though the pn are real numbers, the Pk are complex numbers 

whose real and imaginary parts contain information concerning both the 

magnitude and the phase of the individual frequency components. The 

magnitudes of the components are given by 

|Pk| = VRe2(pk)+lm2(Pk) (46) 

and the phase angles are given by 

8k = tan"1 

Reft) 
(47) 

where Re(Pk) and lm(Pk) are the real and imaginary parts, respectively, of Pk. 

The next step in the analysis is to obtain individual solutions for the 

displacements produced by a unit harmonic load at each of the frequencies 

represented. These solutions are known as the fundamental or Green function 

solutions. They can be represented by the transfer functions: 

Hk = H(kAco) , k = -- 0.....--1 
2 2 



121 

These individual, complex-valued transfer functions are multiplied by the 

individual frequency components of the applied load history to obtain a series 

of steady-state displacements: 

UkSPkHk ,k = ~ 0 £-1 
2 2 

These individual steady-state displacement solutions (which are also complex- 

valued) actually represent the individual frequency components of a discretized 

displacement history 

un = u(nAt) , n = 0, 1,..., N-1 

that can be recovered from the frequency domain using the inverse discrete 

Fourier transform: 

u-=if£u'e2nikrVN (48) 

Because the pn were initially real numbers, the resulting un will also be real 

numbers. They are a discrete representation of a continuous deflection history 

u(t) occurring at a specified depth and at a specified radial distance from the 

center of the applied load. 
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Green Function Solution 

As discussed in the previous section, the general problem of dynamic 

response to transient loads is made tractable by resolving the temporal loads 

into a series of harmonic loads through the use of integral transforms. The 

problem is then reduced to that of determining the steady-state displacements 

that result from a unit harmonic load. That problem falls under the general 

category of wave propagation. 

Though solutions for the propagation of waves in a homogeneous elastic 

halfspace date back to Lamb (1904), and those for homogeneous elastic 

continua date back even further, Thomson (1950) was the first to develop a 

theoretical formulation for the propagation of waves through a layered elastic 

halfspace. His approach was to develop a transfer matrix that linearly related 

the stresses and displacements at the top of a given material layer to the 

stresses and displacements at the bottom of the same layer. By enforcing 

continuity of the particle velocities and stresses at the layer interfaces, the 

stresses and displacements at the bottom of each layer could be equated to the 

stresses and displacements at the top of the next layer. In this way, the 

stresses and displacements at any layer interface could be computed from the 

stresses and displacements at the ground surface (which is just the top of the 

uppermost layer) by successively applying the matrix equation for each 

intervening layer. 
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Thomson's original derivation was for plane body waves. Haskell (1953) 

extended Thomson's matrix approach to the calculation of phase velocity 

dispersion curves for plane Rayleigh waves propagating along the surface of a 

layered medium. In the process, he corrected an error in Thomson's original 

derivation. This matrix approach to the analysis of wave propagation in layered 

elastic media has since come to be known as the Haskell-Thomson transfer 

matrix method. 

Kausel and Roesset (1981) derived a complementary matrix formulation 

based on stiffness matrices rather than transfer matrices. Their stiffness 

matrices, which relate the stresses at the top and bottom of a given layer to the 

displacements at the top and bottom of the same layer, are analogous to the 

stiffness matrices commonly used in matrix structural analysis and finite 

element analysis. For media with multiple material layers, the stresses and 

displacements at the bottom of one layer are equated to the stresses and 

displacements at the top of the next layer and a global stiffness matrix is 

constructed by overlapping the individual layer stiffness matrices. The global 

stiffness matrix relates the stresses applied at all of the layer interfaces to the 

resulting displacements at all of the interfaces. 

Both of the approaches outlined above for plane waves (line loads) can 

be extended to axisymmetric problems such as vertical point and disk loads by 

applying the principles of Fourier superposition to decompose the stresses and 
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displacements in the radial and azimuthal directions8. The resulting Green 

function solutions (e.g., Bouchon, 1981) are expressed in terms of integrals of 

sums of transcendental functions. These can only be evaluated numerically, 

which makes them computationally intensive and extremely inefficient. 

Building on a concept developed by Lysmer and Waas (1972) for the 

finite element analysis of shear wave propagation, Kausel (1981) showed that 

by making the layer thicknesses small (for example, by discretizing the material 

layers), the transcendental functions that describe the displacements in the 

vertical direction (the direction of layering) could be replaced by a piecewise 

linear approximation. The resulting algebraic expressions could then be 

integrated in closed-form. Strictly speaking, the technique is only applicable to 

layered soils over a rigid half-space; however, it can be extended to the case of 

layered soils over an elastic half-space by combining an exact solution for the 

elastic half-space with the discretized solution for the overlying soil layers (Hull 

and Kausel, 1985). 

The mathematical derivation of the elastodynamic Green functions will 

not be presented here. Instead, the reader is referred to Kausel and Peek 

(1982), who derive closed-form Green function solutions for a number of 

Just as temporal functions can be transformed into the frequency domain, 

spatial functions can be transformed into the wavenumber domain. The 

wavenumber, denoted by k, is the spatial equivalent of the circular frequency a>. 
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important loading cases such as disk, ring, and point loads. The solution 

procedure for the vertical displacements resulting from a vertical disk load 

applied on the ground surface is briefly summarized in the paragraphs that 

follow so that the reader has some idea of the computational steps involved. 

The first step in the solution procedure is to subdivide the material 

layers (a task that will be discussed in more detail in the next section) and 

compute the sublayer stiffness matrices. The sublayer stiffness matrices are 

given by the quadratic function 

Km = k2Am + kBm + Gm - co2Mm (49) 

where k is the wave number, co is the circular frequency, and the matrices A™, 

Bm, Gm, and Mm (Table 6) are functions of the mass density (p), shear modulus 

(G), Lame's constant (A), and thickness (h) of the material sublayer. 

For linear elastic materials, the shear modulus is a real-valued constant. 

For viscoelastic materials that exhibit hysteretic damping, the real-valued shear 

modulus can be replaced by the complex modulus G*=G(1+i2D), where D is 

the damping ratio. Even though the damping ratio actually varies with the 

amplitude of the shear strain, it must be assumed constant here in order to 

maintain the linearity of the solution; otherwise, Fourier superposition could not 

be applied. 



Table 6. Terms in the stiffness matrix equation 
(after Kausel and Peek, 1982) 
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~2(A + 2G) 0 0 X + 2G 0 0      " 
0 2G 0 0 G 0 

6 

0 

A + 2G 

0 

0 

2G 

0 

0 

2(X + 2G 

0 

)      o 
G 

0 
0 G 0 0 2G 0 
0 0 G 0 0 2G 

0 0 X-G 0 0 -(X + G)" 
0 0 0 0 0 0 

B = l 
2 

X-G 

0 

0 

0 

0 

X + G 

X + G 

0 

0 

0 

0 

-(X-G) 
0 0 0 0 0 0 

- 
-(X + G) 0 0 -(X-G) 0 0 

G 0 0 -G 0 0 
0 G 0 0 -G 0 

G=l 
0 0 X + 2G 0 0 -(X + 2G) 

h -G 0 0 G 0 0 
0 -G 0 0 G 0 
0 0 -(X + 2G) 0 0 X + 2G 

"2   0 0 1    0 0" P = mass density 

M          h 
M = p— 

6 

0   2 

0 0 

1 0 

0 

2 

0 

0    1 

0   0 

2   0 

0 

1 

0 

G = 

X = 

= shear modulus 

Lame's constant 
0    1 0 0   2 0 

0   0 1 0   0 2 h = layer thickness 
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The global stiffness matrix, K, is assembled next by overlapping the 

individual sublayer stiffness matrices, Km, at their interfaces in much the same 

way as for a finite element solution (Figure 39). The global stiffness matrix 

relates the loads applied at the layer interfaces (P) to the resulting particle 

displacements (U) at the interfaces: 

P = KÜ (50) 

The displacements can therefore be found by inverting the stiffness matrix: 

U = K_1P = FP (51) 

The inverted stiffness matrix is called the flexibility matrix and is denoted by F. 

The stiffness matrix can be inverted using spectral decomposition. This 

necessitates determining the natural modes of wave propagation by solving the 

eigenvalue problem that results from setting the applied loads equal to zero: 

K(|> = 0 (52) 

The solution of this quadratic eigenvalue problem would ordinarily yield 6N 

eigenvalues, where N is the number of material sublayers. However, half of the 

propagation modes represented by those eigenvalues correspond to waves 



128 

CO 
E 
CO 
to 
CD 
c 
it 
"to 

TO 

O 
O) 
CD 

C 

£ 
CD 
to 
to 
< 

CT> 
CO 
CD 



129 

propagating toward the source rather than away from it and can therefore be 

ignored. The remaining 3N eigenvalues can be further separated into those 

corresponding to anti-plane motion (termed Love modes) and those 

corresponding to in-plane motion (termed Rayleigh modes). Being uncoupled, 

they can be obtained by solving two separate linear eigenvalue problems. The 

first involves only those stiffness matrix terms corresponding to tangential 

motion; the second involves only the stiffness matrix terms corresponding to 

vertical and radial motion. For the case of a vertical disk load, only the 

Rayleigh modes are excited; therefore, only the second eigenvalue problem 

needs to be solved. The solution of that reduced eigenvalue problem produces 

2N eigenvalues, kn, with corresponding eigenvectors, <|>n. The eigenvalues 

are the wavenumbers of the natural propagation modes and the eigenvectors 

are the corresponding radial and vertical displacements at the layer interfaces. 

The individual eigenvalues and eigenvectors are combined to construct 

the desired flexibility matrix. The terms of the flexibility matrix pertaining to 

vertical displacements resulting from vertical excitations can be expressed as 

2N   Ti Tj 

n=1 *      *n 

where 4>n denotes the vertical displacement components of eigenvector $n 

and the superscripts j and i are used to designate the matrix and vector 
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elements corresponding to the layer interfaces where the load is applied and 

the displacement is to be calculated, respectively. 

Once the flexibility matrix has been constructed, the final step is to apply 

the appropriate loading conditions and calculate the resulting displacements. 

For the case of a uniform vertical disk load with a radius of R applied at the 

ground surface, the elements of the load vector P are zero for all of the layer 

interfaces except the one corresponding to the ground surface. At the ground 

surface, the horizontal component of the load is zero and the vertical 

component is given by 

P(r,e) = . 
1   for   0 ^ r £ R 

(54) 
0    for    r > R 

Using the principle of Fourier superposition, this can be transformed into the 

wavenumber domain using Fourier transforms in the circumferential direction 

(0) and Hankel transforms in the radial direction (r). Because the uniform disk 

load is independent of the direction angle, 6, the Fourier transform is zero for 

all terms except the first (n=0) and the transformed load reduces to 

p(k,n = 0)= - f J0(kr)rdr = -^(kR) (55) 
0 k 
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Here J0 and J-i denote Bessel functions of the first kind and orders zero and 

one, respectively. 

The transformed load vector p is multiplied by the flexibility matrix to 

determine the displacements in the wavenumber domain. Inverse Fourier and 

Hankel transforms are subsequently applied to transform the displacements 

back into the spatial domain. The transformed solution in the spatial domain is 

given by 

uij(r)   = 

2NTi  Tj 
RL 4>n K 

n=1    kn 

2NTi Tj 
RyV<Pn <Pn 

^J0(knr)Hf)(knr)- 2ik Rk' 

n=1   kn 
ji-j.M^M 

for   0 £ r £ R 

(56) 

for   r ^ R 

where H[,2) and HJ2) denote Hankel functions of the second kind and orders 

zero and one, respectively. Note that j = 1 will be always be used here since 

the desired Green function solutions are for a surface load. Similarly, i = l 

should be used to obtain the surface deflections; however, values other than 

one can also be used to obtain the vertical displacements at different depths. 

The displacements occurring at depths that do not correspond to layer 

interfaces can be found by linear interpolation between the appropriate 

interface values. 
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To summarize, the procedure used to solve for the Green functions 

consists of the following steps: 

1. discretize the pavement system 

2. compute the layer stiffness matrices (Equation 49) 

3. construct the global stiffness matrix (Figure 39) 

4. solve the eigenvalue problem (Equation 52) 

5. compute the displacements (Equation 56) 

Green functions evaluated at the radial offsets of each FWD sensor are 

multiplied by the frequency-domain components of the transformed FWD 

loading pulse (Equation 45) to obtain the frequency-domain components of the 

resulting surface deflections. The deflection histories recorded by each sensor 

can then be recovered by applying the inverse Fourier transform given in 

Equation 48. Finally, the peak values of these displacement pulses are 

combined to form the FWD deflection basin. 

Discretizina the Pavement System 

The Green function solution above is based upon the linearization of the 

transcendental functions describing displacement as a function of depth. This 

is achieved by subdividing each of the material layers into sublayers. 

Obviously, the thinner the sublayers, the closer the discrete solution will come 

to matching the exact solution. Unfortunately, the increased accuracy afforded 

by a finer discretization comes at the expense of increased computation time. 
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The majority of that time is spent in solving the eigenvalue problem—a task 

that varies as 0(N2). As a result, a small increase in the number of sublayers 

can result in a considerable increase in computation time. Because thousands 

of deflection basins had to be generated to train the neural network, it was 

crucial that the computation time for each pavement profile be minimized. This 

meant using the thickest sublayers possible and discretizing to the shallowest 

depth possible without adversely affecting the accuracy of the solution. 

Based on a parametric study involving an anti-plane line load applied at 

the ground surface (chosen because a closed-form solution was available for 

comparison), Sanchez-Salinero (1987) recommended that: 

1. the ratio of the sublayer thickness to the wavelength of the 

shear waves in the material layer being discretized should be 

somewhere between 1:6 and 1:8 

2. the sublayer thickness near the ground surface should be no 

greater than half the radial distance between the source and 

the point where the surface displacements are measured 

3. the depth of the transmitting boundary should be no less than 

half the radial distance between the source and the point 

where the surface displacements are being measured 

4. the depth of the transmitting boundary should be no less than 

four times the wavelength of the shear waves in the fastest 

material layer. 
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The last two of these recommendations reflect the fact that the transmitting 

boundary provides only a gross approximation of a halfspace, so it must be 

placed sufficiently deep so that it does not adversely affect the solution. 

In addition to the heuristics enumerated above, Roesset9 recommends 

that the sublayer thickness close to the ground surface be no greater than half 

the radius of the disk load. Although the definition of "close" is subjective, the 

application of St. Venant's principle suggests that this rule be applied to a 

depth of at least four times the radius (i.e., twice the diameter) of the disk load. 

The combined thickness of the surface and base layers varies from less than 

one to more than seven times the radius of the disk load. For simplicity, and 

making sure to be somewhat conservative, a maximum sublayer thickness of 

0.25 ft was specified everywhere above a depth of 4 ft (eight times the radius of 

the disk). This heuristic therefore applies throughout the depth of the surface 

and base layers and into the subgrade material. 

Extensive experimentation with many different layer thicknesses and 

layer properties revealed that there is also a minimum sublayer thickness of 

approximately 0.125 ft. Whenever thinner sublayers were used, the eigensolver 

became unstable and the stiffness matrix could not be inverted successfully. In 

addition, it was found that the surface layer had to be subdivided into at least 

9 Personal communication. 
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two, and preferably three, sublayers. When fewer layers were used, the surface 

deflections were inexact for several of the pavement profiles with large velocity 

contrasts between the surface and base layers. Similarly, it was found that a 

minimum of two or three sublayers was preferable in the base layer as well 

because the curvature of the deflection function in that area can be very severe 

(e.g., see Figure 40). If the base were to be treated as a single layer, the peak 

deflection could be missed entirely, resulting in a significant underestimation of 

the surface deflections. 

In summary, the surface and base layers had to be subdivided into as 

few sublayers as possible without exceeding the maximum thickness limit of 

0.25 ft while being careful to have at least two, and preferably three, sublayers 

in each material layer. This latter rule was waived for the thinnest surface 

layers so the sublayers would not become too thin and violate the minimum 

thickness limit of 0.15 ft. 

In the subgrade, the heuristics that govern both the sublayer thickness 

and the maximum depth depend on the wavelength of shear waves, and 

therefore on frequency. To simultaneously accommodate both the thin 

sublayers needed at the higher frequencies and the great depths needed at the 

lower frequencies would mean building an extremely large stiffness matrix that 

would require considerable computational resources to invert. Because the 

stiffness matrix is a function of frequency, the eigenvalue problem must be 
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solved all over again for each different frequency. There is therefore no 

advantage to using the same discretization for all frequencies. Instead, it 

makes sense to discretize the subgrade anew to take advantage of the 

changing wavelengths. Because the criteria for the sublayer thickness and the 

maximum depth are both linear functions of wavelength, they can be satisfied 

simultaneously by using the same minimal number of sublayers at each 

different frequency and simply increasing their thickness in proportion to the 

increasing wavelengths. 

The recommendation made by Sanchez-Salinero that the transmitting 

boundary be placed at a depth at least four times the wavelength of the fastest 

material in the profile was developed by studying soil profiles that became 

stiffer with depth. In a pavement system, the profile generally becomes softer 

with depth. If the same heuristic were applied here, the combination of the high 

wave speeds in the asphalt layer and the low frequencies produced by the 

FWD would require that the subgrade be discretized to excessive depths. For 

example, at a frequency of 1 Hz, the wavelength of a shear wave propagating 

through asphalt with a wave speed of 5000 ft/s is nearly a mile! Even if the 

requirement was modified to be four times the wavelength in the deepest 

material, a typical wave speed of 500 ft/s in the subgrade would require a 

discretization depth of close to half a mile. Instead, an alternative criteria for 

discretization depth had to be developed. 
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According to Miller and Pursey (1955), approximately 2/3 of the energy 

imparted by a vertical disk load on the surface of a uniform elastic halfspace is 

dissipated as Rayleigh waves. Furthermore, according to Ewing, Jardetzky, 

and Press (1957), Rayleigh waves attenuate much more slowly with distance 

than the body waves that dissipate the remainder of the energy. The Rayleigh 

waves attenuate as l/r05 whereas the body waves attenuate as 1/r2 at the 

ground surface. A suitable criteria for locating the transmitting boundary can 

therefore be developed by examining the propagation depth of the Rayleigh 

waves, since they predominate. 

For a Rayleigh wave of wavelength A propagating across the surface of 

an uniform elastic halfspace, the vertical particle motions are given by 

u(z) = z|^-exp(-27is^) - qexp(-27tq-^) (57) 
S^+l A A 

where 

,,,1-f 

'-"-$ 
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and vPl vs, and vR are the wave speeds of the compression, shear, and 

Rayleigh waves, respectively. The wave speed ratios are functions of the 

Poisson's ratio of the material: 

4 = K2 
v
s 

and 

4- = «2K2 

where 

2    1-2v a   =  
2-2v 

and 

K6 - 8K4 + (24 -16cc2)K2 +16(cc2 -1) = 0 

This last equation can be solved as a cubic equation in K2. For a Poisson's 

ratio of 0.35, a2 = 0.2308, and the solution of the cubic equation is K2 = 0.8743. 

For that value of K2, the equation for vertical particle motions becomes 



139 

u(z) = 1.3191 exp(-2.2281-) - 0.8934 exp(-5.6137-^) (58) 
A A 

which can be expressed in a dimensionless form by scaling the displacements 

at depth by the displacement at the ground surface: 

U(z) = 4^r = 3.099 exp(-2.2281-) - 2.099 exp(-5.6137^) (59) 

This equation is plotted in Figure 40 to a depth of three wavelengths. Clearly, 

the vast majority of the particle motion occurs in the upper three wavelengths of 

the halfspace. At a depth of three wavelengths, the vertical displacement is 

only 0.4 percent of the displacement at the ground surface. Even at a depth of 

two wavelengths, the vertical displacements is only 3.6 percent of the 

displacement at the ground surface. Therefore, from the standpoint of 

determining the vertical deflections of the ground surface, there is no need to 

place the transmitting boundary at a depth greater than roughly twice the 

Rayleigh wavelength. 

Several parametric studies were conducted to validate this conclusion. 

The first showed that the deflection basins calculated using maximum depths of 

three wavelengths were no different from those calculated using a maximum 

depth equal to two wavelengths. Another showed that the deflection basins 

calculated  with  a reflecting  (rigid)  boundary placed  at a depth  of two 
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wavelengths were no different from those calculated with a transmitting 

boundary placed at the same depth. This, too, suggests that a maximum depth 

of two wavelengths is sufficient. 

It should not be inferred from these results that there were no 

differences in the deflection histories, only that there were no differences in the 

deflection basins because any errant body waves produced by either the 

inexact halfspace approximation or the rigid bedrock arrived back at the 

surface too late to influence the peak deflections. 

Rayleigh waves propagating in a layered medium are dispersive: their 

propagation velocity is a function of the depth to which they propagate. 

Unfortunately, this means that their wavelengths (calculated as propagation 

velocity divided by frequency) are a function of the depths to which they 

propagate, which, in turn, are a function of their wavelengths. This implicit 

relationship between wavelength and material properties suggests an iterative 

solution. The following convergent trial-and-error method was adopted: 

1. using the Rayleigh wave speed in the subgrade, establish a 

wavelength corresponding to the frequency of interest 

2. compute an adjusted wave speed using a weighted average of 

the wave speeds in each material layer 

3. using this adjusted wave speed, establish a new wavelength 

and repeat until convergence is obtained. 
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The weighting factors used to compute the weighted average wave 

speed can be obtained from the relative contributions of each material layer to 

the total energy dissipated by the Rayleigh wave. These contributions can be 

approximated by integrating Equation 59 to obtain the area under the particle 

velocity curve: 

z 

f U(x) dx = 1.017 -1.3909 exp(-2.2281 -) + 0.3739 exp(-5.6137 -)       (60) 
o XX 

By evaluating this integral at each layer interface and subtracting one result 

from the next, the relative contributions of each layer can be determined. 

To illustrate this procedure, assume that the pavement profile has the 

properties shown in Figure 41 and the frequency of interest is 50 Hz. Assume, 

also, that Poisson's ratio is 0.35 in all of the layers so that Equation 59 can be 

used to compute the particle motions as a function of depth. Based on a 

wavespeed of 500 ft/s in the subgrade, the initial estimate for the Rayleigh 

wavelength is 10 ft. Substituting that wavelength and the 0.5-ft thickness of the 

surface layer into Equation 60, the area under the particle motion curve within 

the surface layer is 0.055. Using the 2.0-ft depth to the bottom of the base 

layer, the area under the curve from the ground surface to the bottom of the 

base layer is 0.248, so the area under the curve within the base layer is 0.193. 

Since the areas under the curve must add up to 1.017 (which is found by 
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evaluating Equation 60 at z = o°), the area under the curve within the subgrade 

material is 0.769. The adjusted wavespeed is therefore 

vs =^(2000)Ä(1000)Ä(500) = 676.ps 

and the adjusted wavelength is 

^ = 676fps    1352ft 

50 s"1 

The analysis is now repeated using this new wavelength to normalize 

the particle motion curve. After three more iterations, the solution will have 

converged to an answer of 12.7 ft. By calculating the actual Green function 

solutions for this profile and measuring the radial distances between surface 

points having the same phase angle, this can be shown to be a very good 

approximation of the Rayleigh wavelength in this profile. 

Using the procedure above to determine wavelength, the subgrade was 

discretized for each individual frequency to a maximum depth of two Rayleigh 

wavelengths. The total number of sublayers in the subgrade was allowed to 

vary depending on the frequency. At high frequencies, fewer sublayers were 

needed because the relatively short wavelengths meant that the majority of the 

particle motion occurred in the surface and base layers. As a result, the degree 
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of curvature in the particle motion function was relatively low in the subgrade, 

so it could be adequately linearized with relatively few sublayers. On the other 

hand, at the lowest frequencies, the maximum deflection occurs well within the 

subgrade; therefore, relatively more sublayers were required in the subgrade in 

order to maximize the resolution of the particle motions over depth. 

Modeling the FWD Load History 

The dynamic load imparted to the pavement by the FWD is generated by 

a free-falling mass impacting a steel plate. A rubber pad beneath the plate 

uniformly distributes the load to the pavement, and a series of rubber buffers 

above the plate decelerate the falling mass and condition the loading pulse. A 

typical loading pulse has a duration of 25-30 msec and a magnitude that varies 

as the square root of the drop height. As mentioned in Chapter 2, the loading 

pulse is meant to approximate the deflection pulse created by a moving truck 

wheel. Based on the work by Barksdale (1971), the typical pulse duration of 

25-30 msec would correspond to a vehicle speed of approximately 35 mph. 

For programming convenience and computational flexibility, a functional 

analogue to the FWD loading pulse that could be easily varied in both 

amplitude and duration was desired. Researchers at the University of Texas 

(e.g., Foinquinos, Roesset, and Stokoe, 1993a; Kang, 1990; Chang, et. al., 

1992) use a triangular approximation to the loading pulse. Lukanen (1992) 

suggests that the ideal loading pulse is a haversine: 



P(t)=2 
2nt 

1-cos— 
T 
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(61) 

Here P is the peak amplitude and T is the pulse duration. That shape, shown in 

Figure 8, is qualitatively the same as the theoretical stress pulses produced by 

Barksdale (Figure 42). Both the triangle and the haversine were investigated 

for use in generating the synthetic deflection basins. 

Lukanen (1992) presents a series of measured loading pulses 

corresponding to different drop heights, pavement types, and buffer 

configurations. The results obtained using the standard buffers on a flexible 

pavement are shown in Figure 43. The four loading pulses (indicated by light 

lines) were normalized to a unit load and averaged to arrive at a "typical" FWD 

loading pulse (indicated by the heavy line). That average measured pulse is 

compared to triangle and haversine approximations in both the time and the 

frequency domains in Figures 44 and 45, respectively. Both functional 

analogues were made to have the same duration (26.5 msec) and peak 

amplitude (1.0) as the average measured pulse. 

Figure 45 shows that the frequency-domain components for all three 

pulses are remarkably similar (especially at frequencies below 75 Hz, where all 

three curves essentially drop to zero), despite the fact that neither of the 

functional analogues captures the double peak exhibited by the measured 

pulse in the time domain (Figure 44). Since all of the calculations in the Fourier 
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superposition analysis occur in the frequency domain, both analogues appear 

to be suitable surrogates for the measured pulse. 

Both of the functional analogues have slightly lower DC offsets (zero 

frequency intercepts) because the total impulse—the area under the force-time 

curve—is slightly less. The total impulse for the average measured pulse is 

17.4 msec and the total impulse for the functional analogues is 16.0 msec. The 

peak amplitudes of the analogues would therefore have to be increased by 

approximately nine percent (17.4/16.0=1.09) to obtain the same total impulse 

without changing the pulse durations. 

The haversine was chosen over the triangle for this study because it 

better approximates (at least aesthetically) the shape of an "ideal" load pulse 

and is slightly better behaved in the frequency domain. The perfectly straight 

sides of the triangular pulse and the sharp discontinuity at its peak result in 

spurious higher-frequency components that do not exist in the haversine or the 

measured pulse. Figure 46 compares the measured FWD pulse with an 

impulse-adjusted haversine analogue given by 

p(t) = 0.545M-cos—' v 7 I 26.5 (62) 

Again, despite the apparent differences in the time domain, there is very close 

agreement in the frequency domain over the range 0-75 Hz. At frequencies 
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above 75 Hz, the magnitudes of both pulses remain near zero anyway, so any 

differences at those frequencies are immaterial. 

At a frequency of 0.5T1 = 75.47 Hz, the FFT of the haversine pulse has 

a magnitude identically equal to zero. It would be convenient to use this as a 

frequency cutoff to limit the bandwidth that must be considered in the Fourier 

superposition analysis. Because the computational costs incurred in the 

analysis vary in direct proportion to the number of frequencies that must be 

analyzed, it was important to either minimize the total bandwidth or maximize 

the widths of the frequency intervals. 

In order to show the feasibility of using a bandwidth-limited analysis, a 

512-point FFT was performed on a 32-point haversine analogue calculated 

using Equation 62. Next, all of the components at frequencies higher than 

75.47 Hz were set to zero. A 512-point inverse FFT was then performed to 

recover the time-domain loading pulse. The solid line in Figure 47 represents 

the original haversine and the symbols show the loading pulse recovered from 

the bandwidth-limited frequency components. This clearly shows that almost 

nothing is lost by limiting the bandwidth. 

The 32-point bandwidth-limited haversine shown in Figure 47 was 

therefore accepted as the functional analogue of the FWD loading pulse. The 

Fourier superposition analysis would therefore require that Green function 

solutions be obtained for 31 discrete frequencies spaced at 2.36-Hz intervals. 
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(Because the FFT of the haversine load pulse is zero at the 32nd point, which 

corresponds to the frequency cutoff of 75.47 Hz, there was no need to develop 

a solution at that frequency.) 

Training Set Generation 

Kausel implemented his Green function solutions in a FORTRAN 

computer program called PUNCH. Another FORTRAN implementation was 

developed by Sanchez-Salinero (1987) while studying under Kausel's 

collaborator, Roesset, at the University of Texas at Austin. The latter program 

was chosen to compute the synthetic deflection basins needed in this phase of 

the research. The program was optimized for deflection basin generation by 

removing all coding that did not directly support the calculation of vertical 

deflections resulting from a vertical disk load (e.g., the solution of the 

eigenvalue problem for the Love modes). Simultaneously, coding was added to 

implement the frequency-dependent discretization of the pavement layers and 

to compute the discrete Fourier transforms. The latter was accomplished using 

the Fast Fourier Transform (FFT) algorithm developed by Cooley and Tukey 

(1965). The specific implementation is described in Press, et. al. (1989). 

The modified FORTRAN code was verified using examples from Kang 

(1990) and Foinquinos, Roesset, and Stokoe (1993a). A check was also made 

to ensure that the static solution produced by the program (i.e., for a frequency 

at or very close to zero) coincided with the solutions obtained using WESLEA. 
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The results were, indeed, identical within the finite accuracy of the discrete 

solutions. 

Once verified, the FORTRAN program was used to generate deflection 

basins for all of the 10,000 pavement profiles created in Phase I. Despite all of 

the effort that went into optimizing the Green function code and minimizing the 

number of material layers, the program still used approximately 5 seconds of 

processing time (on the Cray Y-MP) to compute each deflection basin. As a 

result, it took approximately 10 hours to generate the entire training set. That is 

roughly 20 times longer than it took to generate the static training set using 

WESLEA. This disparity clearly illustrates the disadvantages of using dynamic 

pavement analyses in conventional basin-matching programs. Based on the 

fact that WESDEF needed nearly 40 minutes to perform a static 

backcalculation on 250 deflection basins, a similar task using a dynamic 

analysis would take more than 13 hours! 

Summary 

This chapter has described the creation of the neural network training 

set for the second phase of the research. The synthetic deflection basins were 

calculated using an elastodynamic analysis of pavement deflections instead of 

the static analysis used previously. The retraining of the neural network and 

the examination of its backcalculation results are presented in the next chapter. 
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CHAPTER 6 

NEURAL NETWORK TRAINING AND TESTING 

This chapter describes the training of several artificial neural networks 

using deflection basins generated by the static, layered-elastic analysis 

program WESLEA. The first two networks were trained to backcalculate 

pavement layer moduli directly from the "perfect" deflection basins output by 

WESLEA. Those networks differ only in the sensor spacings used to define the 

deflection basins. A third network was trained with "noisy" deflection basins to 

make it more robust in the presence of real-world experimental data. The 

speed and accuracy of that "robust" network are subsequently examined 

relative to the conventional basin-matching programs WESDEF (which uses 

the iterative approach) and MODULUS (which uses a database approach). The 

"robust" network was subsequently retrained during the second phase of the 

research using deflection basins generated by the elastodynamic Green 

function solutions for the pavement's response to FWD loads. The accuracy of 

that network is also examined. All of the neural network training described here 

was accomplished on the Cray Y-MP supercomputer at WES using the 

computer code listed in Appendix A. 
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Neural Network Training with Perfect Basins 

As mentioned in Chapter 4, there is no single standard for positioning 

the geophones in an FWD test. The positioning used most often with the 

Dynatest device is a uniform 1-ft spacing. The specifications for SHRP's LTPP 

project include a non-uniform spacing that concentrates more deflection 

sensors close to the load. This is done in order to better define the moduli in 

the upper layers of the pavement system. Because it would be extremely 

difficult to design one neural network that could accommodate either spacing, 

two separate networks were trained, instead. One network used deflection 

basins defined by a uniform 1 -ft sensor spacing. The other network was based 

on the SHRP offsets of 0, 8, 12,18, 24, 36, and 60 in. Because the database of 

training examples had been built using all of the most commonly used sensor 

offsets, training the two networks was simply a matter of extracting the 

appropriate seven deflections from the database. 

Determining the Network Architecture 

When training conventional backpropagation networks, the network 

architecture must be established before the start of training. The first step in 

establishing the architecture is to determine the number of processing layers in 

the network. At a minimum, the network must have two layers: the input layer 

and the output layer. Multi-layer, feed-forward neural networks generally have 

one or more hidden layers as well. 
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In principle, a network consisting of just one hidden layer can be taught 

to approximate any continuous functional mapping (Cybenko, 1989; Hornik, 

Stinchcombe, and White, 1989). In practice, however, multiple hidden layers 

often allow the same functional mapping to be learned faster (Freeman and 

Skapura, 1991) and with fewer neurons (Hecht-Nielson, 1990). Prior 

experience has shown that mappings of the form 9T->9?n (i.e., from one real 

space to another) are often better learned by networks with two hidden layers. 

Initial experimentation with neural networks having a single hidden layer bore 

this out. Therefore, three-layer networks (i.e., networks with two hidden layers 

and an output layer) were used for all subsequent training10. 

The second step in establishing the network architecture is to determine 

the number of neurons in each layer. The number of neurons in the input and 

output layers is easy to determine—they are simply the number of input and 

output parameters, respectively. Unfortunately, there are no well-established 

procedures for choosing the number of neurons in each of the hidden layers. 

The optimum architecture must strike a balance between insufficient knowledge 

10 Early in the history of neurocomputing, a network with an input layer, an 

output layer, and one hidden layer was termed a "three-layer" neural network. 

The same neural network today is usually called a "two-layer" neural network in 

recognition of the fact that the input layer does nothing more than distribute the 

network inputs to the neurons in the first hidden layer. Because no processing 

is done in the input layer, it is no longer counted. 
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capacity (too few connections) and excessive capacity (too many connections). 

If the network has insufficient capacity, it will be incapable of accurately 

performing the required mapping. On the other hand, if the network has 

excessive capacity, it may simply "memorize" all of the training examples. In 

that case, the network will be incapable of performing mappings for deflection 

basins that were not included in the training sets. In other words, it will not 

generalize well. For the initial phase of this research, simple trial-and-error was 

used to select an appropriate number of neurons in the hidden layers. 

Training the Network 

Network training began by scaling all of the input and output data to a 

range appropriate for the neural network. Because the sigmoidal logistic 

function (Figure 48) has an output range of [0,1], all of the target outputs must 

be scaled to fit within that same range; otherwise, the network outputs will 

never match the target outputs and the network will never learn. Similarly, the 

useful input range for the sigmoidal logistic function is approximately [-6,+6] so 

the weighted sums of the network inputs should fall somewhere within that 

range. If the magnitudes of the weighted sums are too large, they will be 

indistinguishable from one another (they will all map to either 0 or 1) and the 

network will never learn. 

If all of the network inputs are scaled to a range of [0,1] and the network 

weights are initialized to random numbers drawn from a uniform distribution 
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covering the range [-0.1 ,+0.1], then all of the weighted sums calculated in the 

first hidden layer will fall between -0.9 and +0.9 (because there are nine 

inputs). This range covers the steepest, and therefore most sensitive, portion of 

the sigmoidal transfer function; therefore, the individual inputs will be clearly 

distinguishable from one another from the very start of training. In other words, 

valuable training time will not be wasted simply trying to determine the proper 

magnitude for the weights connecting each input to the hidden layer. 

Because the pavement layer moduli and layer thicknesses were already 

uniformly distributed over specified ranges according to the design of the 

training set, it was a simple matter to rescale each of them to a [0,1] range 

using the values provided in Table 2. This was not true, however, for the 

deflection basins. All of the deflections had to be scaled by the same factor so 

as not to lose potential information about the differences between deflections at 

adjacent sensors. In other words, the entire deflection basin had to be scaled 

rather than the individual deflections. 

Figure 49 shows a cumulative frequency distribution of all the 

deflections in the training database. Despite the fact that the maximum 

deflection is nearly 70 mils, the vast majority of the deflections (94 percent) fall 

between 0 and 10 mils. By simply dividing all of the deflections by 10, the 

majority were made to fall in the desired [0,1] range; furthermore, all but the 

largest one or two would fall comfortably within the useful range of [-6,+6]. 
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Once the training set had been appropriately scaled, training proceeded 

by iteratively presenting the training examples to the network. Each pass 

through the set of 10,000 examples constituted a training epoch. During each 

training epoch, the first 9,750 examples in the training database were used to 

train the network. The remaining 250 examples were reserved for use as an 

independent test set. (It is always a good idea to test neural networks with an 

independent data set to make sure they are not simply memorizing the training 

set at the expense of being able to generalize to examples they have never 

seen before.) 

Training progress was monitored by computing a mean squared error 

(MSE) for all of the training examples. The MSE was computed as 

■4       N    m „ 

MSE = ^££M-<?) (63) 

where m is the number of output neurons and N is the number of training 

examples. Figure 50 shows a typical training history. At first, the network's 

output error drops rapidly as training epochs are completed. With further 

training, the error asymptotically approaches some minimum level. At some 

point before that level is reached, the increase in accuracy that may accrue 

from any continued training is usually far outweighed by the cost of the 

additional training. At that point, training is halted. 
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In order to ensure that the network has reached the global minimum on 

the error surface rather than a local minimum, it should be retrained using 

weights initialized to different random values. Because the network retraining 

begins from a completely different location on the error surface, it is unlikely 

that the same local minima will be encountered. If the retrained network attains 

the same error level as before it is usually assumed that the global minimum 

has been reached. Most of the networks discussed here were trained two or 

more times, sometimes with different learning rates as well as different initial 

weights, to ensure they had, indeed, reached the global minimum. 

After experimenting with several different architectures, the network 

architecture shown in Figure 51 was selected for having a low network output 

error relative to the number of hidden-layer neurons. The input layer of the 

network contains nine neurons which simply distribute the surface layer 

thickness (designated hao in the figure), the base layer thickness (designated 

hb), and the seven deflections (designated as d0 through d6), respectively, to 

the first hidden layer. The first hidden layer contains eleven neurons and the 

second contains eight neurons. The output layer contains three neurons—one 

each for the surface, base, and subgrade moduli being backcalculated 

(designated as Eac, Eb, and ESl respectively). Two identical networks with this 

architecture were trained using deflection basins corresponding to both the 

SHRP sensor offsets and a uniform 1 -ft spacing. 
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Comparison Between Uniform and SHRP Sensor Spacinas 

As shown in Figure 52, the neural network trained with the SHRP sensor 

offsets achieved a lower mean squared error than the network trained with the 

uniform sensor spacing. Even more telling is the histogram in Figure 53 which 

compares the mean squared errors of the individual outputs at the conclusion 

of training. It is readily apparent that the network with the SHRP sensor 

spacings learned the mappings for the surface and base layer moduli more 

accurately while achieving the same accuracy in backcalculating the subgrade 

moduli. This shows very conclusively that repositioning sensors closer to the 

load provides better information from which to backcalculate the moduli in the 

upper layers of the pavement. Based on this finding, the SHRP sensor offsets 

were used for the remainder of the research. 

Comparison Between Calculated and Target Moduli 

Figures 54, 55, and 56 are scatter plots comparing the computed and 

target moduli for the asphalt, base, and subgrade layers, respectively. The 

plots show the results for all 250 of the deflection basins in the independent 

testing set. It is evident from these plots that the network successfully learned 

to backcalculate the pavement layer moduli from the synthetic deflection 

basins. In a broader context, these results are significant because they clearly 

show that neural networks can in fact be taught to solve complex, nonlinear 

inverse problems using training data generated by repeatedly solving the 
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forward problem. Together, the neural network and the forward problem 

solution form a closed loop (illustrated in Figure 19) in which half of the loop 

implements the forward problem while the other half (the neural network half) 

implements the inverse problem. This concept is not confined to geophysical 

data inversion; it can be applied to a wide variety of inversion problems in 

many different fields. 

Neural Network Training with Imperfect Basins 

Accurate deflection measurements are essential if the backcalculated 

layer moduli are to be correct. It would be unrealistic, however, to expect 

experimental deflections to exactly match the synthetic deflections used to train 

the neural networks. Even if the pavement system is well represented by the 

mathematical model used to calculate the synthetic deflection basins, real- 

world experimental data are subject to a variety of equipment-related 

measurement errors. 

There are two primary types of equipment-related measurement error: 

systematic errors and random errors. The former are repeatable errors that can 

be minimized by proper calibration of the measurement apparatus; the latter 

are simply random measurement errors (noise) that cannot be reproduced. The 

specifications for the FWD test (ASTM, 1993) require that the systematic error 

for each geophone be no greater than 2% of the measured deflection and the 

repeatability error be no greater than 0.08 mils. 
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In order to determine the neural network's ability to handle deflection 

basins contaminated with noise, the 250 deflection basins in the independent 

test set were modified by adding random noise to each deflection. The random 

noise was drawn from a uniform distribution with limits of ±0.08 mils. These 

"noisy" deflection basins were then input to the neural network. Figures 57, 58, 

and 59 compare the computed and target moduli for the asphalt, base, and 

subgrade layers, respectively. It is obvious from these plots that a neural 

network trained with perfect deflection basins is not robust enough to 

accommodate noise. 

One approach to developing a more robust network is to include random 

noise in the deflection basins used to train the network—a technique known as 

"noise injection" (Matsuoka, 1992). The introduction of random noise during 

training makes the network more robust because it has to learn to produce 

accurate moduli from inaccurate deflection basins. The final step in the first 

phase of the research was therefore to train a more robust version of the neural 

network by adding random noise to each of the seven deflections just before 

presenting them to the network. In order to accommodate both systematic 

errors and repeatability errors, the random noise was drawn from uniform 

distributions whose limits were equal to the larger of ±2% of the ideal deflection 

or ±0.1 mils. The latter was made slightly larger than the test specification to 

permit some room for error. 
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Determining the Network Architecture 

Because the task of learning to map noisy data is more difficult for the 

network, the number of processing elements in the hidden layers had to be 

increased. Rather than use trial-and-error to determine the optimum number of 

neurons, a small parametric study was conducted. Referring back to Figure 52, 

the network's learning curves for this problem are fairly smooth and monotonic 

and the initial slope seems to be a fairly good predictor of the final error level. 

Assuming that this heuristic applies to networks trained with noisy data as well, 

a series of networks were created, each with more hidden-layer neurons than 

the last. These were then trained using just enough epochs to establish their 

initial learning rates and the network with the best initial learning rate was 

singled out for continued training. 

Networks were created with 9, 12, 15, and 18 neurons in each of the two 

hidden layers. (Although the optimal network architecture probably has a 

different number of neurons in each of the hidden layers, the parametric study 

was made much simpler by using the same number of neurons in each layer.) 

Each network was initially trained for 200 epochs and the mean squared output 

errors plotted as a function of the number of hidden layer neurons (Figure 60). 

Each network was subsequently trained for an additional 100 epochs to confirm 

the initial findings. Those results are also plotted in Figure 60 along with the 

required processing time per training epoch. The improvement in accuracy 
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afforded by the 15-neuron network over the 12-neuron network was sufficient to 

justify the 20 percent increase in training time; the very slight additional 

improvement afforded by the 18-neuron network, however, was not. Therefore, 

the network with 15 neurons in each hidden layer was chosen as having the 

optimum combination of training speed and training accuracy. This network will 

henceforth be referred to as the "Robust Network." 

Training the Network 

The Robust Network was trained for a total of 8000 epochs. Its training 

history is shown in Figure 61. Despite the fact that the curve for the testing set 

is not nearly as smooth as for the training set (one is based on an average of 

250 values and the other is based on an average of 9,750 values), the two 

overlay each other. This shows that the network has learned the functional 

mapping rather than simply memorize the training set. 

Notice that the final value of the mean squared error is about 0.005 for 

this network compared to 0.0007 for the network trained with noise-free data. 

This trade-off between accuracy and robustness is to be expected. Notice also 

that the network required twice as many epochs of training (8000 vs. 4000) to 

achieve a nearly constant mean squared error. This is also to be expected 

because the technique used to generate the random noise ensured that the 

network never saw the same basin twice. By comparison, the network trained 

using ideal deflection basins (henceforth referred to as the "Perfect Network") 
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saw each of those deflection basins 4000 times. With much less uncertainty in 

the training data, the Perfect Network converged much more quickly to the 

error surface minimum. 

Comparison Between Calculated and Target Moduli 

The backcalculation abilities of the Robust Network were determined 

using the same 250 "noisy" deflection basins as were used to generate the 

scatter plots in Figures 57-59. Figures 62a, 63a, and 64a show the results. A 

qualitative comparison between these figures and Figures 57-59 shows that the 

noise injection has produced a considerable improvement in the network's 

backcalculation ability. 

Figures 62b, 63b, and 64b are scatter plots showing the results obtained 

using WESDEF on the same noisy deflection basins. The WESDEF moduli 

appear to exhibit as much scatter as, if not more than, the moduli computed 

with the neural network. This suggests that the scatter is mostly due to the 

inaccuracies in the deflections rather than a shortcoming in the neural network 

approach. A quantitative comparison of the predictive abilities of the Perfect 

Network, the Robust Network, and WESDEF is afforded by Figures 65-67, 

which show cumulative frequency distributions of the relative backcalculation 

errors for the surface, base, and subgrade moduli, respectively. These clearly 

illustrate the relative differences in accuracy of the three backcalculation 

programs. 
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Because much of the measurement error is the result of random noise, 

the accuracy of the backcalculated moduli can be improved considerably by 

replicating each test and averaging the results. For example, Irwin, Yang and 

Stubstad (1993) recommend that 3-5 replicates be obtained for each drop 

height. To illustrate this point, the Robust Network was retested with noisy 

deflection basins designed to represent an average of four replicated tests. 

If the noise is truly random, its distribution should be Gaussian rather 

than uniform; therefore, a Gaussian distribution with a standard deviation of 

0.04 mils was used to generate the random noise. The standard deviation of 

the Gaussian distribution was chosen so that approximately 95 percent of the 

noise (corresponding to ±2 standard deviations) would be less than the ASTM 

specification of 0.08 mils. 

For each deflection basin in the independent test set, an amount of 

noise equal to the average of four random variates was added to each 

deflection. Figures 68-70 compare the target and computed moduli for the 

surface, base, and subgrade layers, respectively. These figures show 

considerably less scatter in the backcalculated moduli. Figure 71 shows the 

cumulative frequency distributions for the surface, base, and subgrade moduli. 

From this figure, it can be seen that the 80th-percentile errors for the three 

moduli are approximately 10, 15, and 5 percent, respectively. This is extremely 

good accuracy for moduli backcalculated from realistically noisy data. 
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Backcalculation from Experimental Deflection Basins 

Having shown that neural networks can backcalculate pavement layer 

moduli from synthetic deflection basins with the same degree of accuracy as a 

traditional basin-matching program (WESDEF), the next logical step was to 

compare its accuracy on experimental data. This was accomplished using data 

from a blind test of several traditional basin-matching programs (Rada, Richter, 

and Stephenson, 1992). Sections A and B from that software evaluation 

exercise (shown in Figure 72) were selected because they are most similar to 

the three-layer, flexible pavements assumed in the network training. For 

Section A, the crushed limestone base and soil/aggregate subbase were 

combined to form a single base layer. In both cases, the subgrade was 

assumed to be semi-infinite because it was reported that no bedrock had been 

encountered at either test section within the top 20 ft. 

The measured pavement deflections (Figure 73) were normalized to a 

load of 9000 lbs and propagated, along with the layer thicknesses, through the 

Robust Network. The same deflections and layer thicknesses were provided to 

MODULUS 4.0 (which uses the database approach) and WESDEF (which uses 

the gradient search approach). The backcalculated moduli from the Robust 

Network and the two basin-matching programs are shown in Table 7. For 

Section A, the neural network moduli were virtually identical to those provided 

by  MODULUS  4.0  and  WESDEF.   For  Section   B,  the   neural   network 
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Table 7. Moduli backcalculated from experimental deflection basins 

SHRP 
Section 

Pavement 
Layer 

Backcalculated Moduli (ksi) 

Neural           MODULUS 
Network                4.0               WESDEF 

A Asphalt 

Base* 

Subgrade 

1294                  1250                  1317 

42                      41                       42 

32                      30                      31 

B Asphalt 

Base 

Subgrade 

855                    921                     918 

53                      56                      46 

27                       27                       27 

"Combination of crushed limestone base and soil/aggregate subbase 
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backcalculated a slightly lower asphalt modulus, but virtually identical base and 

subgrade moduli. Since the true moduli at the two test sections are not known, 

success can only be measured in comparison to the predictions produced by 

other programs; these results indicate that the neural network performed well 

on this experimental data. 

Comparison of Resource Requirements 

The primary advantage of using artificial neural networks is the speed 

with which pavement moduli can be backcalculated. To illustrate this point, a 

timing comparison was conducted between the Robust Network and WESDEF. 

In order to make the comparison as fair as possible, the WESDEF program 

was modified so it had the same input and output requirements as the neural 

network—the layer thicknesses and deflection basins were read into the 

program from one file and the backcalculated moduli were written out to 

another file. The modulus ranges required by WESDEF to bound the solution 

space were set to the maximum and minimum moduli from Table 2. (Referring 
» 

back to Figures 62b, 63b, and 64b, this explains why so many of the plotted 

points are lined up along the top of the plot—WESDEF cannot backcalculate 

moduli outside of the established limits, so a normalized modulus of 1.0 is the 

largest possible value.) 

Table 8 shows the processing times required by both WESDEF and the 

Robust Network to backcalculate the moduli for the 250 "perfect" deflection 
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Table 8. Comparison of processing times for 250 deflection basins 

Neural Network 

WESDEF 

Ideal Deflection Basins   Basins with Random Noise 

0.9 sec 

25.0 min 

0.9 sec 

37.5 min 
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basins and the 250 "noisy" deflection basins. The timing comparison was 

conducted on a 33-MHz 80486 personal computer. For the 250 basins with no 

added noise, WESDEF took 25 minutes to backcalculate all of the moduli. With 

the random noise added, WESDEF required 37.5 minutes. The neural network 

backcalculated each set of moduli in just 0.9 seconds. 

The neural network processed the "noisy" data just as quickly as the 

noise-free data because the deflection inputs were propagated through the 

exact same network. (Had the Perfect Network been used on the noise-free 

deflection basins, instead, the processing time would have been slightly lower 

because the Perfect Network is slightly smaller than the Robust Network.) 

WESDEF, on the other hand, must iteratively seek a theoretical basin that 

matches the noisy experimental basin. This is a more difficult task than for 

noise-free basins, so the process took 50 percent longer. 

Network Retraining Using Dynamic Deflection Basins 

In the second phase of the research, the Robust Network was retrained 

using the deflection basins generated by the elastodynamic Green function 

solutions described in Chapter 5. As mentioned previously, there was no need 

to experiment with different network architectures in the second phase of the 

research because the mapping problem—from "noisy" deflection basins and 

pavement layer thicknesses to pavement layer moduli—was exactly the same 

as in the first phase of the study. 
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The exemplars in the dynamic training set were scaled in the same way 

as those in the static training set. The first 9,750 exemplars were used to train 

the network and the remaining 250 exemplars were reserved as the 

independent testing set. As in the first phase, random noise was added to the 

deflection inputs to make the network more robust. The noise was drawn, as 

before, from a uniform distribution with limits equal to the larger of 0.1 mils or 

two percent of the deflection. 

Figure 74 illustrates the training progress of the retrained network 

(henceforth referred to as the Dynamic Network). Comparison with Figure 61 

shows that the Dynamic Network trained to an error level almost identical to 

that of the Robust Network. As was done in Phase I, the Dynamic Network was 

tested using noisy deflection basins designed to simulate an average of four 

replicated tests. Figures 75-77 compare the target and computed moduli for 

the surface, base, and subgrade, respectively, and Figure 78 shows the 

corresponding cumulative frequency distributions of the network errors. 

These results clearly show that the Robust Network was successfully 

retrained with the dynamic deflection basins to produce the Dynamic Network. 

Because the network architecture is the same, the Dynamic Network will be 

able to backcalculate moduli in exactly the same amount of time as the Robust 

Network. This means that the increased realism afforded by the dynamic model 

of the FWD was attained without paying a penalty in backcalculation time. 
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Summary 

This chapter has described the training of neural networks capable of 

backcalculating pavement layer moduli from both ideal and noisy deflection 

basins generated using a static model of the FWD test. It has also described 

the retraining of one of those neural networks using deflection basins 

generated using an elastodynamic model of the FWD test. 

The successful training of the neural network using ideal deflection 

basins (which has been called the Perfect Network) clearly shows that neural 

networks can be taught to solve complex, nonlinear inverse problems using 

training data generated by repeatedly solving the forward problem. This 

capability can easily be extended to a wide variety of inverse problems in the 

field of geophysics and elsewhere. 

The neural network trained using noisy deflection data (which has been 

called the Robust Network) was shown to be significantly more robust against 

the measurement errors common in experimental data. That neural network 

has been shown to backcalculate moduli with an accuracy equal to or better 

than the conventional basin-matching program WESDEF, but at a speed three 

orders of magnitude faster. 

The successful retraining of the Robust Network using synthetic 

deflection basins generated using the elastodynamic Green functions 

described in Chapter 5 has shown that the computational efficiency of the 
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neural network can be preserved while using more realistic, albeit more 

complex, solutions. This retrained network (which has been called the Dynamic 

Network) has two primary advantages over the original version: 1) because it is 

based on a more realistic model of the pavement's response to the FWD loads, 

it should provide a more realistic estimate of the in situ moduli, and 2) because 

the dynamic pavement response model is relatively insensitive to bedrock 

depth, it should be able to better backcalculate moduli when bedrock depth is 

either unknown or had been determined inaccurately. Most importantly, 

because the same network architecture was used for both the Robust Network 

and the Dynamic Network, these advantages can be realized without an 

increase in processing time. 
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CHAPTER 7 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Background 

The structural integrity of roads and airfields is determined in large part 

by the load-deflection properties of the material layers that make up the 

pavement system. Those properties can be measured in situ using 

nondestructive testing (NDT) techniques. The falling-weight deflectometer 

(FWD) test is one of the most widely used NDT tests. The FWD measures the 

dynamic response of a pavement system to a transient load applied at the 

pavement surface. The evaluation of its results generally entails 

backcalculating the in situ pavement layer moduli from the peak measured 

deflections at several radial offsets from the load. 

A major limitation of existing techniques for backcalculating pavement 

layer moduli from FWD results is that they are computationally inefficient—they 

all involve multiple calculations of pavement response for a variety of 

presumed moduli. This not only makes them tedious to use, but also constrains 

them to employ simplified static analyses of pavement response that can be 
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computed relatively quickly. Studies have shown that significant errors in the 

backcalculated pavement moduli can accrue from the static analysis of the 

inherently dynamic FWD test. 

Artificial neural networks represent a fundamentally new approach to the 

backcalculation of pavement layer moduli from FWD test results. An artificial 

neural network is a highly-interconnected collection of relatively simple 

processing elements that can be trained to approximate a complex, nonlinear 

function through repeated exposure to examples of the function. In the context 

of backcalculation, a neural network can be trained to approximate the inverse 

(backcalculation) function by showing it synthetic test results generated by 

repeated application of the forward problem solution. The forward problem 

solution can employ either a static or a dynamic analysis of the pavement 

response. Both were used in this study. 

Summary 

The goal of the first phase of this research was to show that it is possible 

to perform real-time backcalculation of pavement layer moduli using artificial 

neural networks. In order to allow a direct comparison between the neural 

network approach and a conventional basin-matching approach, an artificial 

neural network was trained using synthetic deflection basins generated by the 

same static, layered elastic computer program as is used in the conventional 

backcalculation program WESDEF. That network, called the Perfect Network, 
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was shown to accurately backcalculate layer moduli when presented with 

perfect (i.e., noise-free) deflection basins. When the Perfect Network was 

presented with noisy deflection basins more typical of those measured in the 

field, however, its accuracy was seen to be poor. To remedy this, another 

neural network was trained using deflection basins contaminated with random 

noise. This neural network, called the Robust Network, was shown to have very 

good accuracy when tested with synthetic deflection basins designed to 

simulate replicated field tests. When compared directly to WESDEF, the 

Robust Network was shown to be as accurate, if not more accurate, and 2500 

times faster. This speed gain was more than sufficient to achieve real-time 

backcalculation. 

The goal of the second phase of the research was to improve on the 

accuracy of the Robust Network by retraining it with synthetic deflection basins 

based on a dynamic analysis of the pavement response. The dynamic analysis 

provides a much better approximation of the actual test conditions. It also 

avoids certain problems, such as an excessive sensitivity to the assumed 

bedrock depth, that are inherent in the static analysis. Because the 

computational efficiency of a trained neural network is completely independent 

of the computational complexity of the program used to generate its training 

set, it was possible to retrain the network without increasing its processing 

time. Though it took 20 times longer to create the training set, the retrained 
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neural network could backcalculate moduli as quickly as the one trained using 

a static analysis. Contrast this with a conventional gradient search program: 

the conventional program must repeatedly solve the more-complex dynamic 

problem to obtain a solution. Based on the relative amounts of time needed to 

create the static and dynamic training sets, WESDEF would run 20 times 

slower if its static solution were to be replaced by the elastodynamic Green 

function solution used here. This means that the neural network trained using 

dynamic deflection basins would likely be 50,000 times faster than its 

comparable basin-matching program. There is no other inversion technique 

that can match this performance. 

Conclusions 

In the first phase of the research, it was clearly shown that neural 

networks can be taught to solve complex, nonlinear inverse problems by 

solving the forward problem for a wide variety of inputs and using the neural 

network to map the results back onto the original inputs. Together, the neural 

network and the forward problem solution form a closed loop (Figure 19). Half 

of the loop implements the forward problem while the other half (the neural 

network half) implements the inverse problem. This is an especially important 

conclusion because the same technique can be applied to many geophysical 

inversion problems—not just the backcalculation of pavement moduli. 
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The first phase of the research also showed that neural networks could, 

indeed, backcalculate pavement layer moduli from FWD data in real time. 

Previously, the FWD could generate data faster than it could be analyzed. This 

limited the usefulness of the FWD for routine pavement evaluation. With the 

backcalculation bottleneck eliminated, the test data can be analyzed much 

faster and FWD tests can be performed more frequently without overwhelming 

the data analysts and engineers. 

In the second phase of the research, it was shown that neural networks 

could be trained using synthetic test data generated using more realistic, albeit 

more complex, dynamic models of the FWD test without losing their ability to 

backcalculate in real time. This can increase the accuracy of the 

backcalculated moduli without the usual speed penalty paid with conventional 

backcalculation techniques. 

Finally, real-time backcalculation opens up the possibility of performing 

both the data acquisition and the analysis in real time. It would no longer be 

necessary to close a traffic lane and divert traffic to perform a test. This would 

alleviate both the direct costs of traffic control and the indirect costs of 

commuting delays. Furthermore, the work crews performing the tests would be 

at much less risk if they did not have to work outside their vehicle in the middle 

of a traffic lane. Eventually, it may be possible to perform the entire test at a 

reasonable travel speed from the driver's seat of the test vehicle. 
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Recommendations 

This research was confined to three-layer flexible pavement systems 

with an infinite subgrade thickness. By using a dynamic analysis of pavement 

response, subgrade thickness is eliminated from consideration for depths to 

bedrock in excess of roughly ten feet. For shallower bedrock, however, the 

resonance of the pavement system will be sufficient to affect the peak 

deflections. For those pavement systems, the subgrade thickness must 

somehow be considered in the backcalculation. If the subgrade thickness is 

known a priori, or can be estimated using empirical techniques such as that 

developed by Rohde (1990), it can easily be accommodated as another 

thickness input to the neural network. Thus, for shallow bedrock, another 

network should be trained using subgrade thickness as input. 

Another area where enhancements can be made is in the modeling of 

pavement systems with more than three layers. Additional networks for use 

with four- and five-layer pavement systems would be desirable. It may not be 

feasible, however, to backcalculate even four moduli with any accuracy. 

Though it is theoretically possible to backcalculate seven variables from the 

seven deflection measurements, some redundancy is required to compensate 

for the noise inherent in the data measurements. For this reason, it would be 

difficult to expand the analysis to more than three moduli or to replace the 
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elastic moduli with time- or stress-dependent material properties. Seven peak 

deflections is simply not enough data. 

Yet another area with considerable room for improvement is in the 

constitutive modeling of the pavement layers. It is perhaps too great a 

simplification to treat the pavement layers as linear-elastic continua. The 

response of most pavement and subgrade materials is, in fact, both rate- and 

stress-dependent. Furthermore, the materials have considerably different 

tensile and compressive properties (often characterized by a complete absence 

of tensile strength). Some of these problems can be overcome by using more 

sophisticated models of pavement response. Unfortunately, the same problem 

arises here as with the modeling of additional pavement layers—with just seven 

peak deflections, there is simply not enough information to backcalculate the 

additional parameters needed to describe rate- or stress-dependency. 

Some of the aforementioned limitations can be overcome by using more 

of the available data. The Dynatest FWD actually records the surface 

deflection histories; however, only the peak deflections are commonly used for 

analysis. As shown by Foinquinos, Roesset, and Stokoe (1993a), the depth to 

bedrock can be determined from the resonant frequency of the pavement 

system if the complete deflection histories are available. It may also be 

possible to establish viscoelastic material properties from the time-dependent 

experimental data. Unfortunately, backcalculating pavement layer properties 
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from complete deflection histories would be very time-consuming using 

traditional iterative approaches because of the volume of data and the number 

of independent variables. Because neural networks can process large amounts 

of data very quickly, they provide a realistic means of accomplishing that task. 

A neural network could, for example, be taught to backcalculate pavement 

layer properties from the peak deflections and the time lags between peaks, or 

the peak deflections and the rise times of each deflections pulse. For that 

matter, a neural network could be trained using discretized deflection pulses or 

a discrete FFT of the deflection pulses. Regardless of the data chosen for use 

in the analysis, the same training concepts that were developed here would be 

used to train the networks. 

The Potential for Data Fusion 

Even more promising than the use of complete deflection histories is the 

use of more than one type of NDT device. There are many different types of 

NDT devices currently used in pavement testing. Each is based on a different 

geophysical principle and each has advantages and disadvantages relative to 

the others. Much better estimates of pavement layer properties—or estimates 

of additional pavement layer properties—could be obtained by merging, or 

"fusing", data from two or more platforms. By using complementary geophysical 

techniques, the strengths of each platform could be used to best advantage 

while their weaknesses could be compensated for by the other platforms. 
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For example, the FWD could be combined with ground penetrating radar 

to allow backcalculation of both the pavement layer moduli and the pavement 

layer thicknesses, thus eliminating the need for measured or estimated layer 

thicknesses. Another example would be to combine an FWD Analysis with a 

Spectral Analysis of Surface Waves. This would provide information about both 

the small-strain and large-strain elastic moduli of the pavement layers and help 

to determine the stress-dependency of the material properties. 

Unfortunately, multiple NDT platforms would produce a large volume of 

experimental data. That data would overwhelm conventional backcalculation 

programs. Neural networks, because they can process large amounts of data 

quickly, have the potential to make backcalculation from fused data possible. 

Because artificial neural networks are still a relatively new data analysis 

tool, their capabilities are still being explored and expanded. This research has 

focused on one type of neural network—the multi-layer, feed-forward network— 

because of its capabilities for functional approximation. There are other types 

of artificial neural network that are better suited to tasks such as pattern 

recognition and minimization. These need to be explored for their abilities to 

preprocess some of the accumulated data prior to the backcalculation. This is 

more than just the conclusion of a research project; it is the beginning of an 

entirely new way of performing data reduction and analysis. 
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APPENDIX A 

ARTIFICIAL NEURAL NETWORK TRAINING PROGRAM 
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PROGRAM BACKPROP 
c       
C BACKPROP 
C 
C by 
C 
C Roger W. Meier 
C USAE Waterways Experiment Station 
C 3909 Halls Ferry Road 
C Vicksburg, MS 39180-6199 
C 
C This program trains a standard backpropagation-style artificial 
C neural network using the Generalized Delta Rule with a momemtum 
C term added. 
C 
C The program makes NEpoch passes through the training set, which 
C consists of (NTrain+NTest) input/output pattern pairs read into 
C memory from the ASCII data file 'training.data'. The 1st NTrain 
C input/output pairs are used to train the network. The remaining 
C NTest pairs are used to monitor training progress. Every NPrint 
C passes through the dataset, target and computed results for the 
C NTest testing pairs are output to ASCII file 'training.results' 
C and the mean-squared output errors for the training and testing 
C sets are output to ASCII file 'training.progress'. Additionally 
C the current values of the interconnection weights are output to 
C ASCII file 'training.weights'. The training progress file grows 
C with each successive output while the results and weights files 
C are overwritten each time they are accessed. 
C 
C This program allows networks to be trained incrementally. If an 
C existing training weights save file is located, it will be used 
C as the starting point for additional network training. 
C 
C The maximum number of input/output pairs that can be read in is 
C specified by parameter NPairs, the maximum number of processing 
C elements in any one network layer is specified by the parameter 
C NMax, and the maximum number of hidden layers is set at two. 
C 
c   
C Network Training Inputs 
C 
C     NTrain ... number of input/output pairs used for training 

number of input/output pairs used for testing 
. number of passes through the training/testing data 
. frequency of training progress printouts (to file) 
initial learning rate for the generalized delta rule 

. multiplier used to decrease learning rate each epoch 
initial momentum factor for the generalized delta rule 
multiplier used to decrease momentum factor each epoch 

C NTest 
C NEpoch 
C NPrint 
C Alpha 
C DAlpha 
C Beta . 
C DBeta 
C 
C Network Architecture Inputs 
C 
C NLayer .. . number of layers (hidden and output) in the network 
C NIN ... number of network inputs (neurons in the input layer) 
C Nodes () ... number of neurons in the hidden and output layers 
C FMin ... minimum output of the sigmoidal logistic function 
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c FMax . . . 
c FGain . . . 
c 
c 
c 
c XIN(,) .. 
c XOUT(,) . 
c YOUTO .. 
c ERROR () . 
c MSE() ... 
c 
r. 

maximum output of the sigmoidal logistic function 
gain of the sigmoidal logistic function 

Network Training/Testing Inputs/Outputs 

. array of training/testing input patterns 

.. array of training/testing output patterns 

. array containing a calculated output pattern 

.. array of (calculated-target) output errors 
array with training/testing mean-squared errors 

Parameter (NMax=15,NPairs=1000) 

Real MSE (2) 
Logical Resume,Output 
Integer Epoch,Loop,Pick,Last,Count 
Dimension XIN(NMax,NPairs),XOUT(NMax,NPairs) 
Dimension YOUT(NMax),Error(NMax), SqrErr(2) 
Common /Netwrk/ NLayer,Nodes(0:3) 
Common /Weight/ W(NMax,NMax,3),B(NMax,3),Y(NMax,0:3) 
Common /Trains/ Alpha,DAlpha,Beta,DBeta,DW(NMax,NMax,3) ,DB(NMax,3) 

C ... Read the setup and network information from 'stdin' 

Call INPUT (NTrain,NTest,NEpoch,NPrint,NIN,NOUT) 

C ... Echo the setup and network information to 'stdout' 

Call ECHO (NTrain,NTest,NEpoch,NPrint,NIN,NOUT) 

C ... Read the entire training data input file 

Call GETDATA (XIN,NIN,XOUT,NOUT,Count) 

If (Count.LT.NTrain) STOP'ERROR: Not enough data pairs to train' 

NTest = MIN(NTest,Count-NTrain) 

C ... Check for an existing training weights save file 

Inquire (File='training.weights',Exist=Resume) 

C ... If a training weight file already exists, read in the weight array 
C ... and resume training; otherwise, initialize the weight array. 

If (Resume) Then 
Open (2,File='training.weights',Form='FORMATTED', Status='OLD') 
Read (2,*) Last,Alpha,Beta,B,w 

Else 
Open (2,File='training.weights',Form='FORMATTED', Status='NEW') 
Last = 0 
Call RESET 

End If 
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C . . . Open the training output files and position their file pointers 

Open (3,File='training.progress', Form='FORMATTED') 
If (Resume) Call ADVANCE (3) 
Open (4, File='training.results', Form='FORMATTED') 

C . . . Loop through the training set NEpoch times 

Do 5 Epoch = Last+l,Last+NEpoch 

Output = (Epoch.EQ.Last+NEpoch) .OR. (MOD(Epoch,NPrint) EQ 0) 
If (Output) Rewind (4) 

c   Initialize the error statistics to zero 

SqrErr(l). = 0.0 
SqrErr(2) =0.0 

c   Loop through the NTrain training pairs 

DO 2 Loop = 1,NTrain 

C ....... Select an input pattern at random 

If (.True.) Then 

Pick = MIN(l+INT(NTrain*RANDOM(3)), NTrain) 
Else 

Pick = Loop 
End If 

C   Propagate the input pattern through the network 

CALL ANN (XIN(l,Pick),NIN,YOUT,NOUT) 

c   Compute the resulting output errors 

Do 1 K = l,NOUT 
Error(K) = XOUT(K,Pick) - YOUT(K) 

1 Continue 

c   Accumulate the output error statistics 

CALL STATS (Error,NOUT,SqrErr(1)) 

c   Adjust the weights using backpropagation algorithm 

CALL TRAIN (Error,NOUT) 

2 Continue 

c   Save the network's current weights and biases 

If (Output) Then 
Rewind (2) 
Write (2,*) Epoch,Alpha,Beta,B,W 

End If 
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C   Loop through the NTest testing pairs 

DO 4 Loop = NTrain+l,NTrain+NTest 

C   Propagate an input pattern through the network 

CALL ANN (XIN(l,Loop),NIN,YOUT,NOUT) 

C   Compute the resulting output errors 

Do 3 K = 1,N0UT 
Error(K) = XOUT(K,Loop) - YOUT(K) 

3 Continue 

C   Accumulate the output error statistics 

CALL STATS (Error,NOUT,SqrErr(2)) 

C   Write the expected and realized outputs to file 

If (Output) Write (4,*) (XOUT(K,Loop),YOUT(K) ,K=1,NOUT) 

4 Continue 

C   Compute the average MSE for training and testing 

MSE(l) = SqrErr(1)/NOUT/MAXO(NTrain, 1) 
MSE (2) = SqrErr(2)/NOUT/MAXO(NTest,1) 

C   Report on the training progress 

If (Output) Then 
Write (*,*) Epoch,Alpha,Beta,MSE(1),MSE(2) 
Write (3,*) Epoch,Alpha,Beta,MSE(1),MSE(2) 

End If 

C Adjust the learning rate and momentum for the next pass 

Alpha = Alpha*DAlpha 
Beta = Beta*DBeta 

5 Continue 

C ... Close all input and output files 

Close (2) 
Close (3) 
Close (4) 

STOP 
END 

c      

Subroutine  INPUT   (NTrain,NTest,NEpoch,NPrint,NIN,NOUT) 
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C This FORTRAN routine reads  in the network geometry descriptors and 
C the  coefficients  for the generalized delta rule  from an ASCII  file. 

Parameter   (NMax=15) 

Common /Netwrk/ NLayer,Nodes(0:3) 
Common /XferFn/ FMin,FMax,FGain,FRange 
Common /Trains/ Alpha,DAlpha,Beta,DBeta,DW(NMax,NMax,3),DB(NMax,3) 

C ... Read in training/testing information 

Read (5,*) NTrain 
Read (5,*) NTest 
Read (5,*) NEpoch 
Read (5,*) NPrint 
Read (5,*) Alpha 
Read (5,*) DAlpha 
Read (5,*) Beta 
Read (5,*) DBeta 

C ... Read in network dimensions 

Read (5,*) NLayer 
If (NLayer.GT.3) STOP' Too many layers in this network' 

Read (5,*) NIN 
IF (NIN.GT.NMax) STOP' Too many neurons in the input layer' 

Do 1 I = 1,NLayer 
Read (5,*) Nodes(I) 

1 IF (Nodes (I) .GT.NMax) STOP' Too many neurons in this layer* 

Nodes(0) = NIN 
NOUT = Nodes(NLayer) 

C ... Read in transfer function parameters 

Read (5,*) FMin 
Read (5,*) FMax 
Read (5,*) FGain 

FRange = FMax - FMin 

Return 
End 

Subroutine ECHO (NTrain,NTest,NEpoch,NPrint,NIN,NOUT) 

C    This FORTRAN routine outputs the network geometry descriptors and 
C    coefficients for the generalized delta rule to the STDOUT device. 

Parameter (NMax=15) 
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Common /Netwrk/ NLayer,Nodes(0:3) 
Common /XferFn/ FMin,FMax,FGain,FRange 
Common /Trains/ Alpha,DAlpha,Beta,DBeta,DW(NMax,NMax, 3),DB(NMax,3) 

. . Echo the training/testing information 

Write (*,7) NTrain,' = Number of training iterations' 
Write (*,7) NTest,' = Number of testing iterations' 
Write (*,7) NEpoch,' = Number of training epochs' 
Write (*,7) NPrint,' = Frequency of progress printouts' 
Write (*,8) Alpha,' = Initial delta rule training rate' 
Write (*,8) DAlpha,' = Training rate adjustment factor' 
Write (*,8) Beta,' = Initial delta rule momentum term' 
Write (*,8) DBeta,' = Momentum term adjustment factor' 

.. Echo the network dimensions 

Write (*,7) NLayer,' = Number of layers in network' 
Write (*,7) NIN,' = Number of inputs to network' 

Do 1 I = l,NLayer-l 
1 Write (*,9) Nodes(I),' = Number of neurons in layer ',1 

Write (*,7) NOUT,' = Number of neurons in output layer' 

. . Echo the transfer function parameters 

Write (*,8) FMin,' = Transfer function minimum' 
Write (*,8) FMax,' = Transfer function maximum' 
Write (*,8) FGain,' = Transfer function gain' 

Return 
7 Format(18,A) 
8 Format(F8.5,A) 
9 Format(18,A, II) 
End 

Subroutine GETDATA (XIN,NIN,XOUT,NOUT,Count) 

C This FORTRAN routine reads in the input/output pattern pairs that 
C constitute the training set from an ASCII file. The max number of 
C input/output pattern pairs is given by NPairs and the max size of 
C each input or output pattern is given by NMax. 

Parameter (NMax=15,NPairs=1000) 

Integer Count 
Dimension XIN(NMax,NPairs),XOUT(NMax,NPairs) 

Open (l,File='training.data',Form='FORMATTED') 

Count = 1 

C . . . Read sets of input/output signals 
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1 Read(l,*,End=2) (XOUT(K,Count),K=1,N0UT),(XIN(K,Count),K=1,NIN) 
Count = Count + 1 
If (Count.LE.NPairs) Go To 1 

2 Count = Count - 1 

Close (1) 

If (Count.EQ.O) STOP' No training data found in input file' 

Return 
End 

SUBROUTINE ADVANCE (NUnit) 

C    This FORTRAN routine reads through a sequential file to position 
C    the file pointer at the end of the file. 

1 Read(NUnit,*, End=2) 
Go To 1 

2 Return 
End 

SUBROUTINE RESET 

C This FORTRAN routine initializes the weight and bias arrays with 
C uniformly-distributed random numbers drawn between +5 and -5 and 
C    initializes the weight and bias change arrays to zero. 

Parameter (NMax=15) 

Common /Netwrk/ NLayer,Nodes(0:3) 
Common /Weight/ W(NMax,NMax,3),B(NMax,3), Y(NMax, 0:3) 
Common /Trains/ Alpha,DAlpha,Beta,DBeta,DW(NMax,NMax,3),DB(NMax,3) 

C ... Initialize the weight and bias arrays to small random numbers 

DO 3 K = 1,NLayer 
DO 3 J = 1,Nodes(K) 
B(J,K) = 5.0 - 10.0*RANDOM(1) 

DO 3 I = 1,Nodes(K-l) 
3 W(I,J,K) = 5.0 - 10.0*RANDOM(2) 

C . .. Initialize the weight change and bias change arrays to zero 

DO 4 K = 1,NLayer 
DO 4 J = 1,Nodes(K) 
DB(J,K) =0.0 
DO 4 I = 1,Nodes(K-l) 
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4 DW(I,J,K) =0.0 

Return 
End 

SUBROUTINE ANN (XIN,NIN,YOUT,NOUT) 

C This FORTRAN routine implements a fully-connected neural network 
C with a variable number of layers and a variable number of neurons 
C in each layer. A sigmoidal transfer function with adjustable gain 
C and range is used in every neuron. 

C Subroutine arguments are an array (XIN) of inputs dimensioned by 
C the number of neurons (NIN) in the input layer and an array (YOUT) 
C of outputs dimensioned by the number of neurons (NOUT) in the 
C output layer. 

Parameter (NMax=15) 

Dimension XIN(NIN),YOUT(NOUT) 
Common /Netwrk/ NLayer,Nodes(0:3) 
Common /XferFn/ FMin,FMax,FGain,FRange 
Common /Weight/ W(NMax,NMax,3),B(NMax,3), Y(NMax, 0:3) 

C . . . Copy network input array to 0th column of neuron output array 

Do 10 J = 1,NIN 
10 Y(J, 0) = XIN(J) 

C ... Propagate the input through all NLayer network layers 

Do 30 K = 1,NLayer 
Do 30 J = 1,Nodes(K) 
Sum = B(J,K) 
Do 20 I = 1,Nodes(K-l) 

20 Sum = Sum + Y(I,K-1) *W(I, J,K) 
30 Y(J,K) = FMin + FRange/(1.0+EXP(-FGain*Sum)) 

C . . . Copy last column of neuron output array to network output array 

Do 40 J = l,NOUT 
40 YOUT(J) = Y(J,NLayer) 

RETURN 
END 

SUBROUTINE TRAIN (Error,NOUT) 

C This FORTRAN routine trains a fully-connected neural network with 
C a variable number of layers and a variable number of neurons in 
C each layer using the generalized delta rule with a momentum term. 
C Subroutine arguments are an output error array (Error) dimensioned 
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by the number of neurons (NOUT) in the output layer. 

Parameter (NMax=15) 

Dimension Error(NOUT),Delta(NMax,3) 
Common /Netwrk/ NLayer,Nodes(0:3) 
Common /XferFn/ FMin,FMax,FGain,FRange 
Common /Weight/ W(NMax,NMax,3),B(NMax,3),Y(NMax,0:3) 
Common /Trains/ Alpha,DAlpha,Beta,DBeta,DW(NMax,NMax, 3),DB(NMax,3) 

... Compute the deltas for the output layer 

Do 10 J = l,NOUT 
Base = Y(J,NLayer) - FMin 
Slope = FGain*Base*(1.0 - Base/FRange) 

10 Delta(J,NLayer) = Error(J) * Slope 

... Compute the deltas for the remaining (NLayer-1) layers 

Do 30 K = NLayer-1,1,-1 
Do 30 J = 1,Nodes(K) 
Sum =0.0 
Base = Y(J,K) - FMin 
Slope = FGain*Base*(1.0 - Base/FRange) 
Do 20 I = 1,Nodes(K+l) 

20 Sum = Sum + Delta(I,K+l)*W(J,I,K+l)*Slope 
30 Delta(J,K) = Sum 

... Compute the weight changes for all NLayer layers 

Do 40 K = 1,NLayer 
Do 40 J = 1,Nodes(K) 
DB(J,K) = Alpha*Delta(J,K) + Beta*DB(J,K) 
B(J,K) = B(J,K) + DB(J,K) 
Do 40 I = 1,Nodes(K-l) 
DW(I, J,K) = Alpha*Delta(J,K)*Y(I,K-l) + Beta*DW(I, J,K) 

40 W(I,J,K) = W(I,J,K) + DW(I,J,K) 

RETURN 
END 

SUBROUTINE STATS (Error,NOUT,SqrErr) 

C This FORTRAN routine maintains accumulators for use in calculating 
C    error statistics on the network output. 

C Subroutine arguments are an output error array (Error) dimensioned 
C by the number of neurons (NOUT) in the output layer and an updated 
C    sum of the squared errors. 

Integer NOUT 
Real SqrErr,Error(NOUT) 

Do 1 J = l,NOUT 
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SqrErr = SqrErr + Error(J)*Error(J) 
Continue 

Return 
End 

Real Function Random(Istrm) 

This prime modulus multiplicative linear congruential generator is 
based on Marse & Roberts' portable random-number generator Uniran: 

Z(I) = 630360016 * Z(I-l) * Mod(2**31 - 1) 

Multiple streams are supported (100 in all), with the seeds spaced 
100,000 apart. Each time the function is invoked, the next random 
variate in the specified stream (istrm) is returned. 

Integer B2el5,B2el6,Hil5,Hi31,Istrm,Lowl5, Lowprd 
Integer Modlus,Multl,Mult2,Ovflow,Zi, Zrng(lOO) 

Force saving of zrng between calls. 

Save Zrng 

Define the constants. 

Data Multl,Mult2 /24112,26143/ 
Data B2el5,B2el6,Modlus /32768,65536,2147483647/ 

Set the default seeds for all 100 streams. 

Data Zrng /1973272912, 281629770,  20006270,1280689831,2096730329, 
& 1933576050, 913566091, 246780520,1363774876, 604901985, 
& 1511192140,1259851944, 824064364, 150493284, 242708531, 
& 75253171,1964472944,1202299975, 233217322,1911216000, 
& 726370533, 403498145, 993232223,1103205531, 762430696, 
& 1922803170,1385516923,  76271663, 413682397, 726466604, 
& 336157058,1432650381,1120463904, 595778810, 877722890, 
& 1046574445,  68911991,2088367019, 748545416, 622401386, 
& 2122378830, 640690903,1774806513,2132545692,2079249579, 
& 78130110, 852776735,1187867272,1351423507,1645973084, 
& 1997049139, 922510944,2045512870, 898585771, 243649545, 
& 1004818771, 773686062, 403188473, 372279877,1901633463, 
& 498067494,2087759558, 493157915, 597104727,1530940798, 
& 1814496276, 536444882,1663153658, 855503735,  67784357, 
& 1432404475, 619691088, 119025595, 880802310, 176192644, 
& 1116780070, 277854671,1366580350,1142483975,2026948561, 
& 1053920743, 786262391,1792203830,1494667770,1923011392, 
& 1433700034,1244184613,1147297105, 539712780,1545929719, 
& 190641742,1645390429, 264907697, 620389253,1502074852, 
& 927711160, 364849192,2049576050, 638580085, 547070247/ 

Generate the next random number. 
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Zi    = Zrng(Istrm) 

Hil5  = Zi / B2el6 
Lowprd = (Zi - Hil5 * B2el6) * Multl 
Lowl5 = Lowprd / B2el6 
Hi31  = Hil5 * Multl + Lowl5 
Ovflow = Hi31 / B2el5 
Zi    = (((Lowprd - Lowl5 * B2el6) - Modlus) + 

& (Hi31 - Ovflow * B2el5) * B2el6) + Ovflow 

If (Zi .Lt. 0) Zi = Zi + Modlus 

Hil5  = Zi / B2el6 
Lowprd = (Zi - Hil5 * B2el6) * Mult2 
Lowl5 = Lowprd / B2el6 
Hi31  = Hil5 * Mult2 + Lowl5 
Ovflow = Hi31 / B2el5 
Zi    = (((Lowprd - Lowl5 * B2el6) - Modlus) + 

& (Hi31 - Ovflow * B2el5) * B2el6) + Ovflow 

If (Zi .Lt. 0) Zi = Zi + Modlus 

Zrng(Istrm) = Zi 

Random = (2 * (Zi / 256) + 1) / 16777216.0 

Return 
End 
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