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Abstract 
In this paper, we explore the use of alternative 
mutation strategies as a means of increasing 
diversity so that the GA can track the optimum of 
a changing environment This paper contrasts 
three different strategies: the Standard GA using 
a constant level of mutation, a mechanism called 
Random Immigrants, that replaces part of the 
population each generation with randomly gener- 
ated values, and an adaptive mechanism called 
Triggered Hypermutation, that increases the 
mutation rate whenever there is a degradation in 
the performance of the time-averaged best perfor- 
mance. The study examines each of these strate- 
gies in the context of several kinds of 
environmental change, including linear transla- 
tion of the optimum, random movement of the 
optimum, and oscillation between two signifi- 
cantly different landscapes. These first results 
should lead to the development of a single mech- 
anism that can work well in both stationary and 
nonstationary environments. 

1      INTRODUCTION 

In nature, diversity helps to ensure a population's survival 
under changing environmental conditions. In a genetic 
algorithm (GA), which is a codification of Holland's adap- 
tive model (Holland, 1975), diversity in the population 
should also be useful in tracking a changing environment, 
since the population members represents potential solu- 
tions that can be applied to different environmental cir- 
cumstances. However, since Holland's seminal work, GAs 
have been successfully fine-tuned to perform function 
optimization on stationary functions (De Jong, 1992). We 
call this optimizing form of the GA the Standard GA. The 
Standard GA, which uses a strong selection policy based 
on scaled environmental feedback and a small mutation 
rate, quickly eliminates diversity from the population as it 

seeks out a global optimum. In typical applications, the 
function representing the environment remains static so 
that the algorithm's "adaptiveness" is limited to finding a 
single solution. Should the environment change, the Stan- 
dard GA is often unable to redirect its search to a different 
part of the space. Thus, the Standard GA, with its typical 
parameter settings, has difficulty in tracking a moving 
optimum over time. An early study by Pettit and Swigger 
(1983), in which the Standard GA searches for a target 
string that randomly changes every generation with some 
small probability, lends some support to this view. 

The problem of optimization in a nonstationary environ- 
ment can be thought of as optimizing a series of time- 
dependent optima. Because the Standard GA works 
quickly to find an optimum, some modified version of the 
Standard GA might be useful in searching for a series of 
optima. There are two basic strategies for modifying the 
GA to accommodate changing environments. The first 
strategy is to expand the memory of the GA in order to 
build up a repertoire of ready responses for environmental 
conditions. The second strategy is to employ some method 
for increasing diversity in the population (e.g., by using 
mutation) in order to compensate for changes encountered 
in the environment. In this paper, we focus on the second 
strategy. We continue an investigation which explores the 
effectiveness of various mutation schemes in enhancing 
the Standard GA's ability to track the optimum of a chang- 
ing environment (Cobb, 1990; Grefenstette, 1992), 

There are several previous studies that address the prob- 
lem of using genetic algorithms in changing environments. 
The study of Goldberg and Smith (1987) explores the first 
strategy of expanding each population member's structure. 
Their experiments show the effectiveness of the Hollstien- 
Holland triallelic representation, which includes a diploid 
chromosome and a third allelic structure for deciding dom- 
inance, in the context of an environmental optimum that 
oscillates periodically between two different states. In a 
more recent study, Dasgupta and McGregor (1992) 
explore a modified GA, called the Structured Genetic 
Algorithm (sGA), that uses tree structured population 
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members. Higher level nodes in the gene structures regu- 
late the activation or de-activation of lower level genes. 
The sGA successfully tracks the environments of the two 
state problem explored by Goldberg and Smith. It is not 
clear how either of these memory modifications scale up 
when there are a larger number of environmental states. 

The micro-GA (pGA) developed by Krishnakumar (1989) 
uses the second strategy of increasing population diversity. 
The (iGA uses a very small population (5 members). A 
small population permits the |J.GA to converge quickly to a 
local optimum (in both space and time); but this conver- 
gence also quickly reduces any diversity in the small pop- 
ulation so that partial or complete replacement of the 
members is necessary almost every generation. The |iGA 
does not take advantage of the diversity of solutions within 
a larger population. 
In a recent study, Grefenstette uses a similar replacement 
strategy, called Random Immigrants, within the context of 
a larger population (Grefenstette, 1992). The Random 
Immigrants mechanism replaces a fraction of a Standard 
GA's population each generation, as determined by the 
replacement rate, with randomly generated values. This 
mechanism views the GA's population as always having a 
small flux of immigrants that wander in and out of the 
population from one generation to the next. Grefenstette's 
study shows that the Random Immigrants mechanism 
works well in environments where there are occasional, 
large changes in the location of the optimum. In another 
study, Cobb investigates an adaptive mutation-based 
mechanism, called Triggered Hypermutation, which tem- 
porarily increases the mutation rate to a high value (called 
the hypermutation rate) whenever the time-averaged best 
performance of the population deteriorates (Cobb, 1990). 
Cobb's study shows the ability of the hypermutation 
mechanism to adjust to changes in continuous, time- 
dependent nonstationary environments. In this paper, we 
continue to investigate the Random Immigrants and Trig- 
gered Hypermutation mechanisms. (The respective GAs 
are called the Random Immigrants GA and the Hypermu- 
tation GA for convenience.) In addition, we explore the 
effect of simply increasing the mutation rate within the 
Standard GA to a constant high level. This study repre- 
sents the first systematic exploration comparing these 
mechanisms. 

The remainder of this paper is organized as follows: In 
Section 2, we present the GA modifications, the types of 
changing environments explored, and the methodology 
used in making comparisons. Section 3 presents a series of 
graphs which illustrate the results; Section 4 gives conclu- 
sions and a brief description of future research plans. 

2      EXPERIMENTAL DESIGN 

The study compares three modifications to the Standard 
GA on tracking in changing environments. The modifica- 
tions include: 

(1) the Random Immigrants mechanism, 

(2) increasing the mutation rate in the Standard GA, and 

(3) the Triggered Hypermutation mechanism. 

In the Random Immigrants GA, the replacement rate spec- 
ifies the fraction of the population that is replaced each 
generation by randomly generated strings. This strategy 
effectively concentrates mutation in a subpopulation while 
maintaining a traditionally low (i.e., 0.001) mutation rate 
in the remainder of the population. 

The use of an overall mutation rate in the Standard GA 
examines the effect of distributing mutation uniformly 
throughout the population. 
The Triggered Hypermutation mechanism also uses uni- 
formly distributed mutation throughout the population at 
any point in time; however, the distribution of mutation 
levels is not uniform from a temporal point of view. When 
the adaptive mechanism is triggered due to a degradation 
of performance, the level of mutation is high (the hyper- 
mutation rate); otherwise, the Hypermutation GA uses a 
low baseline mutation rate of 0.001. In this study, each 
generation's performance is measured as the running aver- 
age of the best performing population members over a 
period of five generations. Table 1 summarizes the types 
of GAs considered here. 
Obviously, there is an infinite variety of changing environ- 
ments, and it is not possible to do an exhaustive study of 
all cases. For this study, we limit our attention to a suite of 
test problems based on two underlying surfaces: Land- 
scape A, shown in Figure 1, consists of 14 sinusoidally 
shaped hills. 

Table 1:  Mutation Mechanisms in GAs 

Type of Mutation 
GA Description Parameter 

Standard Uniformly distributed prob- Mutation 
ability of mutation every rate 
generation 

Random Non-uniformly distributed Replacement 
Immigrants probability of mutation 

every generation 
rate 

Hyper- Temporally non-uniform Hyper- 
mutation distribution of probability of 

mutation; uniform within 
each generation 

mutation rate 

D 
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Figure 1: Landscape A. 

Generated Using 14 Sinusoidally Shaped Hills 

Figure 2: Landscape B. 

A Combination of 20 Gaussian, Triangular, and Sinusoi- 
dally Shaped Hills 

Landscape B, shown in Figure 2, consists of 20 hills that 
are shaped using a sine function, and triangular and Gauss- 
ian probability distributions. For convenience in measur- 
ing the performance of the algorithms, the maximum in 
both of these landscapes is always a height of 60. These 
functions are two-dimensional, each dimension ranging 
from approximately -32.768 to 32.768, with 16 bits used to 
specify values within each dimension. In other words, each 
population member is 32 bits long. 

We consider three main categories of environmental 
change, including: 

(1) linear translation of all of the hills in Landscape A; 

(2) randomly mutating the location of the maximum hill 
in Landscape A every 20 generations while keeping the 
remainder of the landscape fixed; and 

(3) oscillating the environment between Landscape A 
and Landscape B so that the entire landscape changes 
significantly. 

In addition to these changing environments, we also exam- 
ine the three mutation mechanisms in a stationary environ- 
ment using Landscape A. 

We also consider several subcases of the above categories. 
For the first category, there are two subcases: slow transla- 
tion and fast translation. In the slow mode, all hills in 
Landscape A translate at the rate of +0.2 or -0.2. In the fast 
mode, all hills translate at the rate of +0.5 or -0.5. For 
example, a rate of +0.2 means that the hill's location 
increases by one step in both dimensions after 5 genera- 
tions. Each dimension's rate of change is specified inde- 
pendently, so that one dimension can increase while 
another decreases. 

There are also two subcases for the third category of envi- 
ronmental change: a fast mode in which an oscillation 
occurs every 2 generations, and a slow mode in which an 
oscillation occurs every 20 generations. 
Our investigations were performed in two stages. In the 
first stage, we made a set of preliminary runs covering a 
spectrum of different mutation levels for each combination 
of mutation mechanism and category of environmental 
change. Each combination used the same set of seeds for a 
given repetition and generation, in order to factor out the 
effects of variables other than mutation level, mutation 
mechanism, and environmental change. For the Random 
Immigrants mechanism, replacement rate settings of 0.1, 
0.2,0.5,0.55,0.6,0.65,..., 0.95, and 0.99 were examined 
for each of the categories of environmental change. The 
same levels were used to specify the mutation rate within 
the Standard GA and the hypermutation rates in the 
Hypermutation GA. 

In the second stage, we repeated selected combinations 35 
times in order to make statistical comparisons on a genera- 
tion-by-generation basis.2 Based on the results of the first 
stage runs, the repetitions of combinations use the levels 
0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, and 
0.40.These levels were found to be representative of the 

1 All runs use variations of GENESIS, Version 5.0, written by J. Grefen- 
stette (Grefenstette, 1984). 
2 A non-parametric randomization test for dependent samples is used so 
that no distribution assumptions need to be made (Krauth, 1988). 
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best overall performance of the various GAs. In all cases, 
the population size was 100, the crossover rate was 0.6, 
the crossover operator was two-point crossover, and the 
convergence testing mechanisms within the GA were dis- 
abled. 

In the next section, we summarize some of the results of 
the second phase. In all graphs, we use the best parameter 
settings for the given GA for the particular class of envi- 
ronmental change being considered. This approach is 
intended to minimize the possibility that one form of GA 
might appear to outperform another based on unfavorable 
parameter settings. 

COMPARATIVE STUDIES 

3.1 STATIONARY ENVIRONMENT 

We begin by comparing the three GAs on a stationary 
function. Figure 3 shows the characteristic behavior of the 
three mutation strategies for a stationary environment The 
levels selected indicate the best overall performance for 
each of the strategies: a hypermutation rate of 0.01 for 
Triggered Hypermutation; a mutation rate of 0.02 for the 
Standard GA, and a replacement rate of 0.05 for Random 
Immigrants. The line marked with squares shows the best 
performance each generation; the line marked with plus 
signs shows the average population performance. 

The Triggered Hypermutation mechanism shows little 
degradation in the average performance each generation 
because the system does not enter hypermutation very 
often; the mutation level tends to remain at the baseline 
rate. Occasionally, however, the mechanism erroneously 
responds to a perceived degradation when there is not any. 
This result emphasizes the fact that Triggered Hypermuta- 
tion is an adaptive strategy, whereas a constant high muta- 
tion level in the Standard GA and the use of the Random 
Immigrants mechanism always contribute randomness to 
the population. Nevertheless, in all three cases the best 
performance is high. 

3.2 TRANSLATING VERSUS ARBITRARY 
PERIODIC RELOCATION OF THE 
MAXIMUM HILL 

Next we consider the performance of GAs on changing 
environments. Both graphs of Figure 4 show the median 
performance out of 35 repetitions for the average and best 
performance of the GAs. For the first 50 generations, hills 
are linearly translated at a slow rate; for the subsequent 50 
generations, hills are translated at a fast rate, and finally, 
for the last 100 generations, the location of the maximum 
is randomly changed on a periodic basis every 20 genera- 

tions. The top figure compares the performances of the 
Standard GA and the Random Immigrants GA. 

STATIONARY ENVIRONMENT 
USING LANDSCAPE A: 

CURRENT PERFORMANCES 

55- 
50 
45 
40 
35 — 
30 
25 
20- 
15- 
10- 
5 
0 

TRIGGERED HYPERMUTATION 
Hypermutation rate = 0.01 
Best Performance (square) 
Average Performance (plus) 

50 100       150       200 

Generation 

250 300 

60 — 
55 
50- 
45- 
40- 
35 
30 
25 
20- 
15- 
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5 
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HIGH MUTATION IN STANDARD GA 
Mutation rate = 0.02 

Best Performance (square) 
Average Performance (plus) 

50 100        150        200 

Generation 

250 300 

100        150        200 

Generation 

300 

Figure 3: Comparison of Best and Current Aver- 
age Performance for the Three Mechanisms 
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LANDSCAPE A: FOURTEEN SINUSOIDALLY SHAPED HILLS 

Current 
Performance 

(Median 
out of 35 

repetitions) 

STANDARD GENETIC ALGORITHM WITH MUTATION RATE = 0.10 AND 
RANDOM IMMIGRANTS AT REPLACEMENT RATE = 0.40 

(□ and + indicate generations on the Random Immigrants line 
that are significantly different from the Standard GA) 

Best Performance 

Linearly 
Translate 
at 0.5 

Mutate Maximum 
Hill Every 
20 Generations 

50 100 

Generation 

150 200 

Current 
Performance 

(Median 
out of 35 

repetitions) 

STANDARD GENETIC ALGORITHM WITH MUTATION RATE = 0.10 AND 
HYPERMUTATION GENETIC ALGORITHM 

(□ and + indicate generations on the Hypermutation line 
that are significantly different from the Standard GA) 

15 

10—1 

5 

0 

Hypermutation Rate = 0.20 
Linearly Linearly 
Translate Translate 
at 0.2 at 0.5 

Hypermutation Rate = 0.40 
Mutate Maximum 
Hill Every 
20 Generations 

50 100 

Generation 

150 200 

Figure 4: Combination of Translation followed by Mutation of the Maximum Hill's Location 
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The Random Immigrants GA performs its best for all three 
cases of environmental change when the replacement rate 
is 0.40. For the Standard GA, a mutation rate of 0.10 pro- 
vides its overall best performance. The square marks indi- 
cate generations where the best performance of the 
Random Immigrants GA differs statistically from the 
Standard GA's best performance. Similarly, the plus signs 
indicate generations where the average performance of the 
Random Immigrants GA is significantly different than 
Standard GA's. 

The bottom figure shows a similar comparison of the Stan- 
dard GA with the Hypermutation GA (marked by squares 
and pluses). Again, the Standard GA's mutation rate is 
held constant at 0.10. The hypermutation rate needs to be 
at least 0.20 to provide competitive performance during 
translation. When tracking more abrupt changes in the 
environment, a greater hypermutation rate of 0.40 is 
required. 
Both the Hypermutation GA and the Standard GA perform 
better than the Random Immigrants GA for the translation 
cases. Regardless of the rates selected for the Random 
Immigrants GA (out of 0.5 through 0.40 by increments of 
0.05) or the Standard GA, the Standard GA tracks the opti- 
mum better (i.e., the Standard GA has the higher best per- 
formance). The average performance of the Standard GA 
drops substantially when the mutation level is increased as 
one would expect The Hypermutation GA only performs 
as well as the Standard GA if the hypermutation rate is 
sufficiently high. For lower hypermutation rates, the per- 
formance is generally worse than that of the Random 
Immigrants GA. 

For the case where the location of the maximum hill 
changes every 20 generations, the Standard GA performs 
as well as the Random Immigrants GA when the mutation 
is 0.10. (Notice that the squares indicating any statistical 
difference sometimes fall above and sometimes fall below 
the Standard GA's line.) The Standard GA and the Hyper- 
mutation GA also perform comparably, provided the 
hypermutation rate is sufficiently high. However, the 
Hypermutation GA has more variance in its tracking than 
either the Standard GA or the Random Immigrants GA. 

33     OSCILLATING ENVIRONMENTS 

Figure 5 shows the best performance of the three GAs on 
for a case where the environment oscillates between Land- 
scape A and Landscape B. For the first 100 generations, 
the oscillation between the two landscapes occurs every 2 
generations; for the last 100 generations, the oscillation 
occurs every 20 generations. A mutation rate of 0.15 pro- 
vides the best performance for the Standard GA for the 
fast mode oscillation; a mutation of 0.05 does best for the 
slow mode. A replacement rate of 0.10 provides the best 
performance for the Random Immigrants GA when the 

oscillation is rapid; a replacement rate of 0.05 is best when 
the oscillation is slower. 
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Figure 5: Oscillation Between Two Different Landscapes 
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Note that Hypermutation requires a much higher rate to 
track this environment - 0.30 for the rapid oscillation and 
0.15 for the slower case. Overall, the Random Immigrants 
GA tracks the optimum best, especially when considering 
average performances. The oscillation in the tracking per- 
formance is smaller and the recovery time is fastest for the 
Random Immigrants GA. In addition, the replacement rate 
required is generally quite small. The small replacement 
rate allows the Random Immigrants GA to add enough 
diversity to the population so that it can adjust to changes 
in the environment, while at the same time preserving 
enough of the population so that the GA can find the opti- 
mum of a more complicated landscape (Landscape B). 
These results are generally consistent with those reported 
in (Grefenstette, 1992). 

4      CONCLUSIONS 

This paper presents an initial attempt at a systematic com- 
parison of three different mutation strategies for enabling 
the Standard GA to track a changing environment's 
optima. These studies show that diversity represents a nat- 
ural source of power in adapting to changing environ- 
ments. There are advantages and disadvantages to each of 
the approaches, depending on the type of environmental 
change. 
The Standard GA at high mutation levels (i.e., 0.10) pro- 
vides good tracking performance for environments that 
change continuously through translation, but with this 
overall increase in mutation, the average (online) perfor- 
mance deteriorates. It seems important to match the level 
of mutation with the degree of change going on in the 
environment. This may limit the usefulness of this 
approach when the degree of environmental change is 
unknown. 

Triggered Hypermutation has the advantage of being 
adaptive; for certain classes of environmental change, the 
Hypermutation GA adaptively introduces diversity when 
needed. However, as reported in (Grefenstette, 1992), the 
mechanism sometimes does not perform well in abruptly 
changing environments. In other cases, the level of muta- 
tion may exceed the amount required. As a result, the 
Hypermutation GA exhibits more variance in tracking 
continuously changing environments. 

The Random Immigrants GA introduces randomness into 
a percentage of its population, and seems to prepare the 
GA well for a possible catastrophic change in the environ- 
ment However, this mechanism incurs a constant cost in a 
stationary environment. In addition, this approach 
increases the probability of losing information that may 
match small incremental changes in the environment, as 
shown by the relatively poor performance on the translat- 
ing environments case. 

For oscillating environments where the changes are signif- 
icant, the Random Immigrants mechanism is more conser- 
vative in its use of mutation than Triggered 
Hypermutation. This mutation mechanism permits some 
preservation of information in part of its population so that 
when the environment returns to a prior state it can find 
the optimum fairly quickly. At the same time, the random 
immigrants entering the population permit additional 
diversity so that the GA can potentially track more than 
one optimum. 

In addition to the landscapes described here, we have 
designed an extensive suite of other test cases. Future 
studies will attempt to verify the initial observations 
reported here on a larger variety of changing environ- 
ments. 
In practice, one may not know whether or how an environ- 
ment changes over time. Our eventual goal is to find a GA 
that works well on a variety of nonstationary environments 
as well as with stationary ones. Hybrid mechanisms will 
be examined in future studies. For example, adding an 
adaptive mechanism to the Random Immigrants GA and 
expanding its memory in some way might be fruitful. One 
method for expanding the GA's memory would be to save 
the subpopulation removed by the random immigrants so 
that they could be reintroduced during future generations. 
Also, it might be beneficial to apply different mutation 
levels to more than one subpopulation within the GA. 
Finally, the Hypermutation mechanism might be improved 
by using a different kind of hypermutation "trigger." We 
will report on the effectiveness of these approaches in 
future articles. 
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