
Technical Report

CMU/5EI-93-TR-11
ESC-TR-93-188

Integrating 001 Tool Support
Into the Feature-Oriented
Domain Analysis Methodology

Robert W. Krut, Jr.

July 1993

X

DISTRIBUTION STATEMENT Ä™
\ !■><" ^.» —.»» \ r
X Approved for public release;
/ Distribution Unlimited

a'.e in admission, employment or administration
^gnts Ac; of "954. T:üe IX of the Educational
;r sxecut've caers.

its ".'ograms on "ne oasis of religion, creec,
:ve O'aers. Wr^e the tecerai government does
/. ROTC classes on this camous are ava^laoie to

onue, Pittsburgh. Pa
Pa. 15213. telephone

Technical Report
CMU/SEI-93-TR-11

ESC-TR-93-188
July 1993

Integrating 001 Tool Support
into the Feature-Oriented

Domain Analysis Methodology

Robert W. Krut, Jr.
Application of Software Models Project

Accesion For

NTIS CRA&I LB
DTIC TAB U
Unannounced D
Justification

By..._..
Distribution /

Dist

Availability Codes

Avail and I or
Special

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/ENS
Hanscom AFB, MA 01731 -2116

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright © 1993 by Carnegie Mellon University.

This documentis available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U S Government

rfnw ATcnwr C2?,?Ctor»S
1„

T° obtf,1 a "W- Ptease conlact DTIC directly: Defense Technical Information Center, Attn. FDRA, Cameron Station, Alexandria, VA 22304-6145. ■■■««■«■

Copies of Ms document are also available through the National Technical Information Service. For information on orderina
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield? VA 22161

£&?- StiZFSSS^oT^w^Acc8SS'lnc"800 Vin,al street'Pittsburgh'PA15212'Te,ephone:

Use of any trademarks in this report is not intended in any way to infringe on the nghts of the trademark holder

Table of Contents

1 Introduction 1
1.1 Background 1
1.2 Purpose of Report 2
1.3 Audience for Report 3
1.4 Report Overview 3

2 Overview of Feature-Oriented Domain Analysis Method 5
2.1 Foundations of the FODA Methodology 5
2.2 FODA Process and Products 6

2.2.1 Context Analysis 7
2.2.2 Domain Modeling 8
2.2.3 Architectural Modeling 9
2.2.4 Applying the Results of Domain Analysis 9

3 Overview of Hamilton Technologies, Inc. (HTI) 001 13
3.1 The 001 Tool Suite 13
3.2 The 001 Development Process 15

4 Representing the Domain Model 17
4.1 Information Model 18

4.1.1 Baseline Representation of the Entity-Relationship Model 18
4.1.2 001 Representation of the Information Model 20

4.2 Features Model 21
4.2.1 Baseline Representation of the Features Model 21
4.2.2 001 Representation of the Features Model 23

4.3 Functional Model 24
4.3.1 Baseline Representation of the Functional Model 25
4.3.2 001 Representation of the Functional Model 28

5 Application of the Domain Model in System Development 31
5.1 The Domain Model and Prototyper Capability 31
5.2 Prototyping the Domain Model 33
5.3 Validating the Domain Model 34

6 Conclusions 37
6.1 Outcome of 001 Integration 37
6.2 Future Directions for Tool Support 38

References 41

CMU/SEI-93-TR-11

CMU/SEI-93-TR-11

List of Figures

Figure 2-1 FODA Methodology Structure
Figure 2-2 Use of Domain Model in System Development
Figure 4-1 Representations vs. FODA Modeling Phases
Figure 4-2 Example of the Baseline ER Model
Figure 4-3 Example of an 001 Information Model
Figure 4-4 Example of a Baseline Features Model
Figure 4-5 Example Representation of an 001 Features Model
Figure 4-6 Example of a Statemate Activity-Chart
Figure 4-7 Example of a Statemate StateChart
Figure 4-8 Movement Control Domain Model 001 RMap
Figure 4-9 Example of an 001 FMap
Figure 5-1 Domain Modeling Tool Capability

6
10
17
19
20
22
24
26
27
29
30
32

CMU/SEI-93-TR-11

CMU/SEI-93-TR-11

List of Tables

Table 2-1 Summary of the FODA Method

CMU/SEI-93-TR-11

Vl CMU/SEI-93-TR-11

Integrating 001 Tool Support into the Feature-Oriented
Domain Analysis Methodology

Abstract: This report addresses the need for additional tool support for the
Feature-Oriented Domain Analysis (FODA) methodology, developed at the
Software Engineering Institute (SEI). Previous FODA studies relied on multiple
tools to represent the components of a domain model. This report discusses
the ability to represent an analyzed domain within the confines of a single
support tool. This discussion was based on the transformation of a recently
completed domain analysis from a multi-tool, multi-view representation into a
single tool which represents the multiple views of a FODA domain model. This
report also describes the potential for prototyping of systems using the FODA
domain analysis products and the supporting tool.

1 Introduction

1.1 Background
In 1990, the Software Engineering Institute (SEI) introduced a domain analysis methodology
known as Feature-Oriented Domain Analysis (FODA). The feature-oriented concept is based
on the emphasis placed by the methodology on identifying those features a user or customer
commonly expects in applications in a domain. The FODA method supports the discovery,
analysis, and documentation of commonality and differences within a domain.

The application of the FODA method to a window management system was illustrated by the
FODA feasibility study [SEI90a]. The feasibility study identified the need for tools to support
both the process of domain analysis and the process by which the products of the domain
analysis support software development. The initial intention of the feasibility study was to per-
form the analysis using manual techniques. As the amount of information needed to describe
the domain grew, the manual technique became more complex. To handle the volume and
complexity of information gathered during the feasibility study, a set of manual and indepen-
dent semi-automated methods were used.

Representing the results of a domain analysis process is primarily a task of representing a
large volume of information. The domain analyst should provide information so that the user
of the analysis can access that knowledge quickly and easily. The goal of domain analysis tool
support should be to offer an integrated environment for collecting and retrieving the domain
model and architectures. The set of manual and independent semi-automated methods used
during the feasibility study did not meet that goal. Therefore, the FODA feasibility study rec-
ommended that subsequent domain analysis studies investigate integrating tool support into
the domain analysis method.

In 1991, the SEI continued to evolve and validate the FODA method by applying FODA to a
more challenging domain. The Army Movement Control Domain was selected as representa-

CMU/SEI-93-TR-11

tive of a larger, more complex, and less well-documented domain [SEI92a]. As part of this ap-
plication, the recommendation to further integrate tool support into the domain analysis
method was addressed. Domain information, initially captured by the manual and semi-auto-
mated methods from the feasibility study, was recaptured using a single tool to represent the
multiple views of FODA. The support tool employed during the Movement Control Domain
Analysis was 001™, created by Hamilton Technologies, Inc. (HTI) [HAMIL91], [MURPH90].

1.2 Purpose of Report

The purpose of this report is to document the findings of integrating 001 into the FODA method.
The test bed for the integration was the application of the FODA method to the Movement Con-
trol Domain. The primary focus of the integration was the domain modeling phase of FODA.

This report addresses the ability of 001 to support both the process of domain analysis and
the process by which the products of domain analysis support software development. Specif-
ically, the discussion will focus on 001's ability to:

• Represent the domain model.

• Represent entities, features, behavior, and functionality within the
domain.

• Integrate entities, features, behavior, and functionality into a consistent
model.

• Generate code for application prototyping.

• Generate an application prototyper from the domain model.
• Map selected features to an application under development.

While the information contained in the domain model provides enough information to build a
system, automatic prototyping gives the user the ability to validate the domain model, develop
applications, and understand new capabilities created from a selection of features. Therefore,
the ability of 001 to implement a working model of the system under development based on a
selection of features becomes an extension of the previous FODA effort.

This report is the first of three related reports which document the current Domain Analysis
activities at the SEI. The topics of the two remaining documents are "From FODA Models to
Reusable Software: Guidelines for Architecture and Ada Design" and "Guidelines for Imple-
menting Domain Analysis/Domain Engineering in Your Organization."

The intent of this report is not to imply that 001 is the only solution to the integration of a sup-
port tool into the FODA methodology. 001 offered the tools to represent and prototype the do-
main model. The selection of 001 to represent the FODA methodology was not the result of a
long, in-depth study of support tools.

CMU/SEI-93-TR-11

1.3 Audience for Report

The report is directed towards individuals generally interested and knowledgeable in the ap-
plication of the FODA method or similar domain analysis methods. The intended audience
need not be experts in the area of movement control or 001. The primary focus was to dem-
onstrate one tool's ability to support the FODA method.

The information contained in this document provides a brief description of the FODA method
and 001. However, this report was not designed to be a tutorial in either the FODA method
[SEI90a] or 001 [HAMIL91].

1.4 Report Overview

This document contains the following major sections:

Section 2: Overview of Feature-Oriented Domain Analysis Method - This section reiterates
both the foundations and principles of the FODA methodology and briefly outlines the phases
of the methodology. Due to the intent of this report, the primary focus of this section was placed
on the domain modeling phase and applying the results of domain analysis to a system under
development. Detailed information on the FODA methodology is given in the FODA feasibility
study [SEI90a] and the Application of FODA to the Army Movement Control Domain [SEI92a].

Section 3: Overview of Hamilton Technologies, Inc. 001 - This section introduces the compo-
nents of the 001 Tool Suite employed to support the FODA method. The in-depth languages
and syntax of 001 are documented in the 001 Tool Suite System Reference Manual [001SRM].

Section 4: Representing the Domain Model - This section discusses how the products of the
domain modeling phase of the FODA methodology were represented in the feasibility study
and in the 001 Tool Suite. Information which could not be represented within the 001 Tool
Suite were identified.

Section 5: Application of the Domain Model in System Development - This section discusses
how the domain model products are used in the construction, usage, and validation of a pro-
totype for modeling systems in the domain. The discussion extends into the ability of 001 to
generate code from the 001-represented domain model for application prototyping.

Section 6: Conclusions - This section discusses the outcome of integrating the 001 technol-
ogy into the FODA methodology. The discussion covers the advantages and limitations of the
001 Tool Suite in representing the products of FODA as well as recommendations for en-
hancements in future 001 releases. The section concludes with a discussion of expanding the
role of tool support in future FODA projects to enhance the presentation of the products of
FODA.

CMU/SEI-93-TR-11

CMU/SEI-93-TR-11

2 Overview of Feature-Oriented Domain Analysis
Method

The Feature-Oriented Domain Analysis (FODA) methodology resulted from an in-depth study
of other domain analysis approaches [SEI90a]. Successful applications of various methodol-
ogies pointed towards those approaches which focused on the process and products of do-
main analysis. As a result, the FODA feasibility study established methods for performing a
domain analysis, described the products of the domain analysis process, and established the
means to use these products for application development. The feature-oriented concept of
FODA is based on the emphasis placed by the method on identifying prominent or distinctive
features within a class of related software systems. These features lead to the creation of a
set of products that define the domain.

This section reiterates the foundation of the FODA concepts and provides an overview of each
of the phases within the FODA process and the relationships between their products and their
consumers.

2.1 Foundations of the FODA Methodology

The FODA methodology was founded on a set of modeling concepts and primitives. These
concepts and principles are used to develop domain products that are generic and widely ap-
plicable within a domain.

The basic modeling concepts used in the creation of the domain products are abstraction and
refinement. Abstraction is used to create domain products from the specific applications in the
domain. These generic domain products abstract the functionalities and designs of the appli-
cations in a domain. The generic nature of the domain products is created by abstracting away
"factors" that make one application different from other related applications. The FODA meth-
od advocates that applications in the domain should be abstracted to the level where no dif-
ferences exist bßtween the applications.

Refinements are used to both refine the generic domain products and to refine the domain
products into applications. Once the abstraction of the applications in the application domain
is completed, the factors that make each application unique are incorporated into the generic
domain products as refinements of the abstractions. Specific applications in a domain may be
developed as further refinements of the domain products by using the general abstraction as
a baseline and selecting among alternatives and options to develop the application (i.e., those
factors that have been abstracted away must be made specific and reintroduced).

Abstracting the applications in the application domain is accomplished by using the modeling
primitives of: aggregation/decomposition, generalization/specialization, and parameterization.
The FODA method applies the aggregation and generalization primitives to capture the com-
monalities of the applications in the domain in terms of abstractions. Differences between ap-
plications are captured in refinements. An abstraction can usually be refined (i.e.,

CMU/SEI-93-TR-11

decomposed or specialized) in many different ways depending on the context in which the re-
finements are made. Parameters are defined to uniquely specify the context for each specific
refinement. The result of this approach is a domain product consisting of a collection of ab-
stractions and a series of refinements of each abstraction with parameterization. Understand-
ing what differentiates applications in a domain is most critical since it is the basis for
abstractions, refinements, and parameterization.

Domain products are produced through a number of activities. The following subsection dis-
cusses the activities of the FODA process and the models that are produced from the process.

2.2 FODA Process and Products

The FODA feasibility study [SEI90a] defined a process for domain analysis and established
specific products for later use. Three basic phases characterize the FODA process:

1. Context Analysis: defining the extent (or bounds) of a domain for analysis

2. Domain Modeling: providing a description of the problem space in the domain
that is addressed by software

3. Architecture Modeling: creating the software architecture(s) for implementing
solutions to the problems in the domain

Figure 2-1 provides the structure of the FODA methodology and Table 2-1 summarizes the
inputs, activities, and products of each phase in the FODA process and the relationships be-
tween their products. A textual overview of each of the phases is given in the following
subsections.

Domain Analysis

Context Analysis

FODA

Domain Modeling

FODA

Architecture
Modeling

Structure diagram
Context diagram

Information model
Features model
Functional model
Domain terminology
dictionary

Executive
Subsystems

controllers
objects

Figure 2-1 FODA Methodology Structure

CMU/SEI-93-TR-11

Phase Inputs Activities Products

Context
Analysis

Operating environments,
Standards

Context analysis Context model

Domain
Modeling

Features,
Context model

Features analysis Features model

Application domain
knowledge

Information
modeling

Information
model

Domain technology,
Context model,
Features model,
Information model,
Requirements

Functional analysis

Functional
model

Behavioral
model

Architectural
Modeling

Implementation
technology,
Context model,
Features model,
Information model,
Design information

Architectural
modeling

Structured
executive

Subsystems
model(s)

Table 2-1 Summary of the FODA Method

2.2.1 Context Analysis

Context analysis defines the scope of a domain that is likely to yield useful domain products.
During the context analysis of a domain, the relationships between the "domain of interest" and
the elements external to it are established and analyzed for variability. The kinds of variability
to be accounted for are, for example, when applications in the domain have different data re-
quirements and/or operating environments. The results of the context analysis, along with oth-
er factors such as availability of domain expertise, domain data, and project constraints, are
used to limit the scope of the domain.

The product resulting from the context analysis is the context model. This model includes a
structure diagram and a context diagram. The structure diagram for this domain is an informal
block diagram in which the domain is placed relative to higher-, lower-, and peer-level domains.
Higher-level domains are those of which the domain under analysis is a part or to which it ap-
plies. Lower-level domains (or subdomains) are those within the scope of the domain under
analysis, but which are well understood. Any other relevant domains (i.e., peer domains) must
also be included in the diagram.

CMU/SEI-93-TR-11

The context diagram is a data flow diagram showing data flows between a generalized appli-
cation within the domain and the other entities and abstractions with which it communicates.
One thing that differentiates the use of data flow diagrams in domain analysis from other typ-
ical uses is that the variability of the data flows across the domain boundary must be account-
ed for with either a set of diagrams or text describing the differences.

These products provide the domain analysis participants with a common understanding of:

• The scope of the domain

• The relationship to other domains

• The inputs/outputs

• Stored data requirements (at a high level) for the domain

2.2.2 Domain Modeling

Domain modeling identifies the commonalities and differences that characterize the applica-
tions within the domain. The domain modeling phase consists of three major activities. A brief
description of each activity and its results is given below.

1. Information Modeling captures and defines the domain knowledge and data
requirements that are essential for implementing applications in the domain.
Domain knowledge typically is information that is deeply embedded in the
software and is often difficult to trace. Those who maintain or reuse software
need this information in order to understand the problems the domain ad-
dresses.

The information model may take the form of an entity-relationship (ER) model
[SEI90a], a semantic network [SEI92a], or other representations such as
object modeling [RUMB91].

The information model is used primarily by the requirements analyst and the
software designer to ensure that the proper data abstractions and
decompositions are used in the development of the system. The information
model also defines data that is assumed to come from external sources.

2. Features Analysis captures a customer's or end user's understanding of the
general capabilities of applications in a domain1. For a domain, the
commonalities and differences among related systems of interest were
designated as features and are depicted in the features model.
Thesefeatures, which describe the context of domain applications, the
needed operations and their attributes, and representation variations are
important results because the features model generalizes and parameterizes
the other models produced in this domain analysis.

A user may be a human user or another system with which applications in a domain typically interact.

CMU/SEI-93-TR-11

The features model is the chief means of communication between the
customers and the developers of new applications. The features are
meaningful to the end users and can assist the requirements analysts in the
derivation of a system specification that will provide the desired capabilities.
The features model provides them with a complete and consistent view of the
domain.

3. Functional Analysis identifies the control and data flow commonalities and
differences of the applications in a domain. This activity abstracts and then
structures the common functions found in the domain and the sequencing of
those actions into a model. Common features and information model entities
form the basis for the abstract functional model. The control and data flow of
an individual application can be instantiated or derived from the functional
model with appropriate adaptation.

The functional model is the foundation upon which the software designer
begins the process of understanding how to provide the features and make
use of the entities selected.

The domain modeling process also produces an extensive Domain Dictionary of terms and/or
abbreviations that are used in describing the features and entities in the model and a textual
description of the features and entities themselves.

The domain dictionary has been found to be one of the most useful products of a domain anal-
ysis. The dictionary helps to alleviate a great deal of miscommunication by providing the do-
main information users with:

• a central location to look for terms and abbreviations that are completely new
to them

• definitions of terms that are used differently or in a very specific way within
the domain

2.2.3 Architectural Modeling

Architectural modeling provides a software solution for applications in the domain. An archi-
tectural model (also known as a design reference model) is developed in this phase and de-
tailed design and component construction can be done from this model. This architectural
model is a high-level design for applications in a domain. It focuses on identifying concurrent
processes and domain-oriented common modules and on allocating the features, functions,
and data objects defined in the domain models to the processes and modules.

2.2.4 Applying the Results of Domain Analysis

FODA defines a method for performing domain analysis and describes the products of an
analysis.

CMU/SEI-93-TR-11

Figure 2-2 shows the three components of the domain model: the features model, the infor-
mation model, and the functional model. A system developer works with the domain analyst
and these products to define requirements for a system. The three steps in the process are:

1. The developer and domain analyst use the features model as a vehicle for
communicating system needs. The domain analyst will turn these needs into
a selection of features. In addition, composition rules among features will
automatically add specific features to the new system.

2. The domain analyst uses the information model to explain the objects that
comprise a system. This helps the system developer understand the data
requirements as well as other systems and data structures with which the
system must interoperate.

3. The functional model is then used to describe commonality and differences in
data and control flow resulting from differing combinations of features.

The product of feature selection is the definition of capabilities of the system under develop-
ment as shown in Figure 2-2.

User and domain analyst
select features

Objects that support
the system

Supports selection
of features

System Under
Development

Domain analyst
and designer
develop
architecture

Figure 2-2 Use of Domain Model in System Development

The functional model supports feature selection as well as architectural development. Feature
selection will parameterize the functional model, establishing the dynamics of interacting sys-
tem capabilities. A system developer will utilize this information in making choices that will af-
fect both system control and operations. For example, a choice of features may affect the se-
quence of operations or eliminate those operations altogether. Another important aspect of
this model is the definition of data flow resulting from these operations. The system dynamics
necessary to meet the desired system capabilities may depend on specific feature selections.

10 CMU/SEI-93-TR-11

When implementing the desired features, the domain analyst and software designer will work
jointly to establish the software architecture. The functional model defines data exported by
specific activities as well as those required for input by other activities. The model also shows
the control necessary to start an activity to effect the data flow. The detailed realization of all
data flows and the control necessary to accomplish them are key components of software de-
sign. Using the features model, the software designer engineers a general architecture that
supports implementation of common features that can also be parameterized for tailorability
for meeting specific optional and alternative features.

Domain analysis and its products are the model base for understanding user needs and ob-
taining requirements. Where the models are inadequate for understanding the problem space
and producing a solution, the life cycle must include unprecedented development. In addition
to filling the gaps in existing models, unprecedented development will lead to refinement of ex-
isting models or to the realization that the existing models are no longer adequate.

Chapter 5 of this report further discusses the application of the domain model in system de-
velopment.

CMU/SEI-93-TR-11 11

12 CMU/SEI-93-TR-11

3 Overview of Hamilton Technologies, Inc. (HTI) 001

001 is a technology which has been designed, developed, and used for the rapid development
of systems. The 001 technology embodies many aspects of a "Development Before the Fact
Approach" [HAMIL91] which focuses on developing systems with built-in quality and produc-
tivity. The 001 technology is based on a set of axioms [HAMIL91] that verifies consistency and
logical completeness of the resulting system design. All aspects of the system design are ex-
pressed in the same "language," from the highest level concepts to the most detailed imple-
mentation specifics. The following subsections discuss the 001 Tool Suite which ensures the
correct usage of the 001 technology and the 001 systems development process.

3.1 The 001 Tool Suite
The 001 Tool Suite is an integrated family of automated software tools designed to improve
the system development process. The tool suite automates the application of the 001 philos-
ophy to fully integrate data structures, object design, and functional performance.

The 001 Tool Suite [001SRM], summarized in the next paragraphs, consists of the following
components:

• The 001 AXES language

• A textual editor

• A graphics Map Editor (MapE)

• The Analyzer

• A Resource Allocation Tool (RAT)

• a function-oriented RAT

• a type-oriented RAT

• The systems management interface (FACE)

• An Object Map editor (OMap)

The 001 AXES language provides a means of integrating cross-checking and consistency with
reuse of data and features. The language includes an object-type decomposition via a Type
Map (TMap) and functional decomposition via a set of Functional Maps (FMaps). The TMap
defines the possible objects and the states that an object may have. FMaps are used to define
and control the transformation of objects from one state to another state. A Road Map (RMap)
graphically provides the hierarchical 'table of contents" of FMaps and TMap and manages ac-
cess to the FMap and TMap definitions.

Both the graphical and textual editors are used to construct an 001 AXES definition. The
graphical map editor is used to graphically construct and edit FMaps, the TMap, and the

CMU/SEI-93-TR-11 13

RMap. The textual editor is used to create textual definitions of FMaps or TMap, or to access
the textual version of the graphical definitions maintained by MapE.

The graphical TMap consists of a set of trees. Each tree represents the decomposition of an
object. The syntax of a TMap provides four abstract types to represent the decomposition of
an object into its component objects. These are the TupleOf, OneOf, OsetOf, and TreeOf ab-
stract types.

• The TupleOf abstract type identifies an object as consisting of one to a
specified number of component objects.

• The OneOf abstract type identifies an object as being one of its component
objects (i.e.,the object instance may be represented by one and only one of
its component objects).

• The OsetOf abstract type represents an object as being an ordered set of its
component objects. This is similar to the construct of a circular, doubly-linked
list available in some programming languages.

• The TreeOf abstract type is used to represent an arbitrary tree structure with
an object at each node.

In the graphical FMaps, the 001 user specifies a particular functionality as a tree of functions,
with each function specifying its inputs and outputs. In addition, with each function there is an
associated control structure specifying constraints on the way that data (inputs and outputs)
may flow between the functions that make up that function's decomposition.

The Analyzer performs the syntax and semantic analysis on partial or completed definitions
produced by either the textual editor or MapE. The Analyzer checks to ensure that all parts of
the definition are internally consistent and checks all interfaces for correctness and complete-
ness.

The RAT generates operational code. A function-oriented RAT generates a target language
source code program from successfully analyzed definitions. It ensures that the implementa-
tion maintains the integrity of its 001 AXES definition. It eliminates error-prone hand-coding,
permits simulation, and makes rapid prototyping possible. A type-oriented RAT generates ab-
stract type templates used by the functional RAT. These type templates define the allowed
primitive operations on each type.

The systems management interface is designed to allow easy access to all of the capabilities
of 001 and a wide variety of general purpose commands to be executed.

An OMap can be thought of as the runtime instance of data that has been created and orga-
nized according to the constraints provided by a particular TMap. The OMap editor is a tool
that allows the user to readily access such data and manipulate it in a variety of powerful ways.
For example, the Omap editor can be used as a default-form user interface for the system dur-
ing execution.

14 CMU/SEI-93-TR-11

3.2 The 001 Development Process

The 001 systems development process consists of four phases: defining, analyzing, generat-
ing, and executing. First, a model of the system is defined using FMaps and TMap. The FMaps
and TMap combined form an integrated description of the system. Next, the FMap and TMap
definitions are analyzed via the 001 Analyzer to ensure that the model was defined properly.
The RAT is then used to automatically generate a software implementation that is consistent
with the model. The resulting source code can be compiled and executed. This executable
model represents the prototype of the system.

CMU/SEI-93-TR-11 ^

16 CMU/SEI-93-TR-11

4 Representing the Domain Model

In this study, the domain data was initially represented by the semi-automated methods from
the feasibility study. The domain data was then represented by the 001 AXES language using
the TMap to model both the entities and features of the FODA method1. The FMaps were used
to define the functionality and behavior of the system in terms of functional decomposition,
control structures, and the flow of data.

This section presents the highlights of representing the FODA domain model using the 001
AXES. Each subsection briefly describes a modeling activity (i.e., information modeling, fea-
tures modeling, functional modeling) within the domain modeling phase. The automated sup-
port used during the feasibility study and the corresponding 001 representation of the activity
are discussed. The representations employed during the feasibility study are referred to as the
baseline representation. Figure 4-1 lists the representations used for each of the FODA do-
main modeling phases.

Phase

Representation

Baseline

Information
Modeling

Features
Modeling

Functional
Modeling

001

Chen's techniques
Entity-relationship diagrams
Automated drawing tool

TMap

Structure diagrams
Automated drawing tool
Prolog

TMap

Statemate FMap

Figure 4-1 Representations vs. FODA Modeling Phases

The originally developed Movement Control Domain Model (with notation seen in the FODA
feasibility study) and the 001-represented Movement Control Domain Model are not provided
in this discussion due to the amount of information represented by the domain model. Howev-
er, each subsection will provide a sample of each of the representations from the Movement

1- In both representations, the information model was represented by an entity-relationship model.

CMU/SEI-93-TR-11 17

Control Domain Model1. A more complete set of representations of the models and definitions
of the nodes are provided in References [SEI92a].

Information contained within the domain dictionary is discussed within each subsection along
with the ability to integrate this information into the 001 representations.

Validation of the resulting models was performed to determine whether the applications within
the domain were properly represented. In the feasibility study, validation was performed by vi-
sually inspecting the components of the entity-relationship model for completeness whereas
automated support was employed for validating the features and functional models. Validation
of the 001 representations was performed by using the definitions analyzer and the prototyping
capability of 001. This section discusses the automated support used to validate the features
and functional models from the feasibility study. Validation of the TMap and FMaps are briefly
discussed in this section. Additional validation and prototyping of the 001 representation of the
domain model will be addressed in Section 5.

4.1 Information Model

In FODA, information modeling is used to capture and define the domain knowledge that is
essential for implementing applications in the domain. The information model supports analy-
sis and understanding of domain problems and assists in the derivation and structuring of do-
main objects. When the information model is represented by an entity-relationship (ER) model,
entities can be used to identify domain objects, which are then used to define data flows and
data stores in the functional model.

The ER model represents domain knowledge explicitly in terms of domain entities and their
relationships, where an entity is either a physical entity or a concept. The ER model used in
this phase of FODA consists of three parts:

1. Entity-relationship diagram

2. Attributes of the entities

3. Constraints on the entities and relationships

The next two subsections discuss the baseline and 001 representations of the ER model.

4.1.1 Baseline Representation of the Entity-Relationship Model

The ER modeling technique in the feasibility study was an adaptation of Chen's method and
semantic data modeling [SEI90a]. The basic building blocks of the ER models were entity
classes and the generalization and aggregation concepts from semantic data modeling. Ag-

1 These samples are provided to give the reader a sense of what the representations look like although the infor-
mation within the representations may not have a one-to-one correspondence.

18 CMU/SEI-93-TR-11

gregation relationships specify composition structures between entities while generalization
relationships specify commonalities and differences among entities.

During the feasibility study, it was recognized that the high-level representation of an ER mod-
el was sufficient for an overview of the entities in the domain. However, it became apparent
that an automated ER modeling tool would be required in order to manipulate more detailed
ER data and maintain completeness and consistency. No modeling tools that support the
FODA approach to ER modeling, which combines ER modeling with semantic data modeling,
were found at the time of the feasibility study. Therefore, graphical representations of the ER
diagrams were created using a basic drawing tool following Chen's diagrammatic technique
for exhibiting entities and relationships. Entity classes were used to represent abstractions of
objects in the application domain and the relationship types is-a and consists-of represented
generalization and aggregation relations, respectively. In additional, relationship types other
than the is-a and consists-of that are important for the domain were defined and used as part
of the ER model. For example, a has relationship was defined to represent a one-to-many, par-
ent-child, relationship. Figure 4-2 provides an example of the baseline ER model.

Commander

N
commands

uses
Units ——^—► Transporta

n \comesfTom^r
N lH rj Includes

Support /

is for

Schedules ——0—►) Routes ■«—(^
shows use of provides info, on

Figure 4-2 Example of the Baseline ER Model

The attributes of an entity and constraints on the entities and relationships were captured as
part of the domain dictionary. The domain dictionary was created using the Info mode of the

CMU/SEI-93-TR-11 19

GNU Emacs editor. Textual definitions were created in a "forms-like" fashion, which enabled
a user to browse entities, attributes, relationship types, and constraints for all of the elements
within the ER model.

4.1.2 001 Representation of the Information Model
For the 001 implementation, the relationships between entities on the ER diagram were trans-
formed into the relationships between object entities on an 001 TMap. The TMap provides a
tree-like structure with each node corresponding to an object type. The TMap enables the
modeling of the decomposition of objects using sets, arrays, trees, classification, reference,
extension, and primitive types. Concepts of generalization, aggregation, and attributes were
transformed using the TupleOf, OSetOf, and OneOf abstract types within the 001 TMap syn-
tax. The TupleOf abstract type was used to decompose a parent object into different compo-
nent parts (children types). These component parts may be objects of the same type or objects
of different types. The one-to-many, parent-child relationship was represented with the OsetOf
abstract type. The OSetOf abstract type represents an ordered set of objects, containing zero
or more objects of the same type. The OneOf abstract type was used to represent entities (or
objects) in which there are many possible children types yet, when an object instance is cre-
ated, exactly one of the child types exist. This abstract type was beneficial when addressing
the instances of a member of an abstraction class which are a restriction of the class underly-
ing the abstraction. Figure 4-3 provides an example of the 001 information model.

environment(tuploof:6)

order s<tupleof:4) Usk_force(tupleof:4)

air(boolean)

IPB(tupleof:3)

technical_intelligence(tupleof:1)

transportation<tupleof:4) / \ intellioence(tupleof:2)

events(tupleof:2)
TCP(oMtof)

order of march(tupleof:1) t

PDN(tupleof:3)

coord instructlons(tupleof::

rriethod(tupleof:4)
transportationJntelligence(tiipleof:3)

id(»tr)
'road(booleanV \ ""\«~"»», / / VcontroLctaMlfteatlorKoneofS);

.upport(tup.eof:3) / '«'Kboolean) / / J^^
water(boolean) / /

equipment(str) \ networks(osetof)
^ , unitlocationsfosetof) facilities(str) '

supplies(tupleof:3)\ services(str)

designated route*(tupleof:3)

route(osetof)

toe assets(tupleof:3) supplyj>oints(osetof) network »egments(definedas: road information)

Figure 4-3 Example of an 001 Information Model

Validation of the 001-represented information model consisted of a visual inspection of the
components of the model for completeness and a definitions analysis from the 001 Analyzer.

20
CMU/SEI-93-TR-11

The analyzer performed syntax and semantic analysis within the TMap definitions to check all
interfaces for correctness and completeness to ensure internal consistency.

The domain dictionary for the 001 representation was again created by using the Info mode of
the GNU Emacs editor. The TMap notation did not provide a facility to 'lag" a definition to an
entity for documentation (although this ability does exist for the FMap operations).

4.2 Features Model

In the FODA methodology, the purpose of features analysis is to capture in a model a custom-
er's or end user's understanding of the general capabilities of applications in a domain. The
features model represents the set of commonalities and differences of application capabilities
within the domain. These capabilities from the perspective of end users are modeled as fea-

tures.

The key elements within the features model are:

• A structure diagram (i.e., a tree-like diagram) containing a hierarchical
decomposition of features and an indication of whether or not each feature is
common (i.e., mandatory), alternative, or optional

• A definition for each feature in the model and an indication whether the
feature should be "bound" (i.e., fix the value of a feature) at compile time,
activation time, or at runtime

• Composition rules for features

• A record of issues and decisions

Composition rules define the semantics existing between features that are not expressed in
the features diagram. Composition rules have two forms: (1) one feature requires the exist-
ence of another feature, and (2) one feature is mutually exclusive of another.

Issues and decisions are any factors (other than features) that cause functional differences
between the applications. For example, issues and decisions may capture the rationale behind
the selection of options and alternatives.

The next two subsections discuss the baseline and 001 representations of the features model.

4.2.1 Baseline Representation of the Features Model

In the feasibility study, a generic drawing tool was used to create the structure diagrams for
the features model. These features diagrams were represented by an and/or tree of different
features and a particular drawing style to show the relations among the features. The structural
relationship consists of was used to represent a logical grouping of features. A line drawn be-
tween a child feature and a parent feature indicated that the child requires the parent to be
present. If the parent was not marked as valid, then the child feature for the system was in
essence "unreachable." Alternative and optional features of each grouping were indicated in

CMU/SEI-93-TR-11 21

the features diagrams by joining alternative features with arcs and labeling optional features
with circles. Figure 4-4 provides an example of a baseline features model.

Movement

MJMjon

Strangle Nonstrateglc

Dellberat» Crisis

Tactical

Directing Executing

/\
bau« Check Adjust
Orders Feedback

Deep
Alternate

Route

Prioritization

Remote

Imminent

Improbable Common
User Asset

Figure 4-4 Example of a Baseline Features Model

Textual definitions of features, composition rules, and issues and decisions were created and
stored as part of the domain dictionary. The Info mode of the GNU Emacs editor enabled
browsing of features, composition rules, and issues and decisions for all of the features within
the features model.

To validate the features model, a prototype tool was developed using Prolog. This tool enabled
the features model developer to determine if the features model correctly represented the fea-
tures of the domain. In this tool, the features were stored in a Prolog fact base, along with the
composition rules and other related information. The tool enabled a user to define an existing
or proposed system by allowing an arbitrary set of feature values to be specified and checked.
Therefore, given a set of user-specified (i.e., "marked") features, the tool would perform the
following functions:

• Check for all features that are specified, but which may not be reachable.
• Mark the features as "valid" if it is either:

• marked "valid,"
• mandatory,
• not marked "invalid," or
• required by a "valid" feature.

22
CMU/SEI-93-TR-11

• Mark a feature as "invalid" if it is mutually exclusive with a "valid" feature.

• Produce an error if a feature is marked as both "valid" and "invalid."

• Enforce the proper selection of alternatives:

• at least one alternative must be marked "valid."

• more than one alternative cannot be "valid."

By selecting features from an existing application, the tool enabled the developer to determine
if the features model correctly represented the features in that application. By repeating this
procedure for all of the applications in the domain, the features model for the domain could be
verified. Validation of the features model included the selection of features for a non-existent
application(s) to determine the generality and applicability of the model when attempting to de-
velop new applications.

4.2.2 001 Representation of the Features Model

For the 001 implementation, the features diagram was developed as a hierarchical decompo-
sition of object features using the 001 TMap. The features were identified and structured as op-
tional, alternative, or mandatory by modeling the optional features as leaf-node objects of type
boolean or literal, alternative features as a OneOf abstract type, and mandatory features as a
TupleOf abstract type. Since a TMap follows the same tree-like structure as the baseline fea-
tures diagram, the concept of "reachability" defined in the FODA feasibility study was main-
tained within a TMap. Figure 4-5 provides an example representation of a 001 features mod-
el.The composition rules for features were not able to be represented within the TMap. This
link between features was established within the FMap definitions as a set of checks on in-
stantiations of the features which are bound by composition rules. In this manner, a feature
would be instantiated as valid or invalid based on the selection of the user-specified features.

Validation of the features model was based upon the syntax checks within the TMap analyzer
and the selection of features during execution of the prototype created from the domain model.
Section 5 discusses in detail the execution of the prototype and the validation process of fea-
tures. This discussion centers around the concept that the features model was created from
known applications within the domain. Since the features in the features model are used to
generalize and parameterize other models, the features model may be used to predict behav-
ior in a given scenario based on the feature values of a specific application. The results of hav-
ing two (or more) specific applications perform an operation may be compared with the results
predicted by the features model instantiations for those applications. Any variation between
the predicted and actual results should indicate problems with the descriptions of one or both
applications.

As discussed in section 4.1.2, the domain dictionary for the 001 representation was created
by using Info mode of the GNU Emacs editor since the TMap notation did not provide an facility
to "tag" a definition to a feature for documentation.

CMU/SEI-93-TR-11 ~ ^

movement(tupleof:4)

convoy bullding(tupleof:2) highway_regulation(hjpleof:2)

parallel_events(boolean)

hwytraffic reg(boolean)
deconflictk>n(tupleof:3)

defense_pianning(boolean) I \ frv
column_formation(tupleof:4) \ \ / \ >

*. \ \ / \ dependent_events(boolean)

/^er_compo,ition_data(boolearÄ^hH,,:5) \ ' l«««P"*n«-«wnts(boole.n)

// enter_groupings(boolean)
/ / ^^ / I \ primary route(boolean)
/ enterjgap_data(boolean) ^/^ / I \ scheduling(tupleof:4)

/ prioritizatioitfbooleapf J ' Av
I alterna1e_route(boolean) / X

routing opa<tupleof:3) fl »etactual timefboolean)

fixed' \ / /\V >y determine_critical_time(boolean)

governed' selection(oneof:2) / \\ /determine controljx>nts(boolean)
calculate travel time(boolean)

.determine_route(oneoA2) \

satisfice' best' >/>v \ ^
/ \ \ enter_segment(boolean)

automatic' manual' >
change_route(boo lean)

column length(oneof:2)

oroviivi w\v

A*
Figure 4-5 Example Representation of an 001 Features Model

4.3 Functional Model

The functional model of the domain analysis identifies state and operational commonalities of
the applications in a domain. The model also seeks to identify and compare differences be-
tween related applications. The functional model abstracts and represents these common/dif-
fering functions so that a specific application can be viewed as an adaptation or refinement of
the model.

The features model and information model are used as guidelines in developing the functional
model. A high-level, abstract functional model defines the operational characteristics of the
mandatory features that operate on entities/objects. As the abstract functional model is re-
fined, alternative and optional features are embedded into the model. Any issues/decisions
raised during the features analysis are also incorporated into the model as refinements for pa-
rameterization. The resulting functional model represents the functionality of applications from
an abstract level down to the detailed level.

24 CMU/SEI-93-TR-11

Specifications of a functional model can be classified into two major categories: specification
of functions and specification of behaviors. The specification of functions describes the struc-
tural aspect of an application in terms of inputs, outputs, activities, internal data, logical struc-
tures of these, and data-flow relationships between them. The specification of behaviors
describes how an application behaves in terms of events, inputs, states, conditions, and state
transitions.

The next two subsections discuss the baseline and 001 representations of the functional and
behavioral aspects of the functional model.

4.3.1 Baseline Representation of the Functional Model
The feasibility study employed a commercially available automated system, Statemate
[STA1],[STA2],[HAREL89], to represent and simulate the functional model. Statemate Activi-
ty-charts and Statecharts were used to represent the functional and the behavioral aspects,
respectively. Figure 4-6 provides an example of an Activity-Chart and Figure 4-7 provides the
corresponding Statemate StateChart.

CMU/SEI-93-TR-11 " 25

MOVEMENT CONTROL ACTIVITIES

©MOVEMENT SEC

VAUD.ROUTES

z: .J^: X
CMDRS_QUIOANCE

1 j
I j MOVEMENT_DATA

Figure 4-6 Example of a Statemate Activity-Chart

Activity-Charts follow the basic data flow techniques for representing functions (or activities)
and the information that flows between them. Activity-Charts enable the overall functionality to
be represented as a hierarchical decompositions of functions. The high-level functions repre-
sent the core functionality while the lower-level functions represent the differences among the
applications.

Activity-Charts do not attempt to represent dynamic or behavioral issues. StateCharts are
used to represent the behavior of an entire system or of a particular function within a system.
StateCharts define the state and modes that the system might reside in and the transitions be-
tween them.

26
CMU/SEI-93-TR-11

I MOVEMENT SEQ

^wrtMOVEMENT_flEOUESTy«(!(DECONR(ICTINO ROUTE)

wr<APPROVED MOVEMENT)

[TRANS_DATA_

HEVKWtNQFINAL ROUTING

wr(MARCH_CREDIT)

WAITINa_FOR_CLEARANCE

Figure 4-7 Example of a Statemate StateChart

No existing tool could be identified which adequately handled the modeling of common func-
tionality and parameterization through features. Statemate offered a good, general-purpose
specification and documentation tool, though the application of the tool to support domain
analysis required tailoring. Through tailoring, Statemate could:

• Capture commonality

• StateCharts show all states and transitions for specifying a behavioral
view.

• Activity-Charts show common functions and data flows (input and output)
for specifying a functional view.

• Parameterize differences through features

• StateCharts show alternative/optional features as conditions for
modifying behavior.

• Activity-Charts show optional data flow and provide textual descriptions.

The goal of validating the functional model is to verify that the model could be used to repre-
sent the performance of new or existing systems. To perform this verification, the functional
model is refined using features of a specific application. The refinements entail parameteriza-

CMU/SEI-93-TR-11 27

tion through feature selection to account for differences in the behavioral and functional views
of the known applications. The feasibility study employed the simulation capabilities of
Statemate to evaluate the performance of the baseline functional model. Statemate conditions
were used to parameterize the specifications.

The Statemate simulation capabilities enable a user to visually walk through the functional and
behavioral diagrams (i.e., Activity-Charts and StateCharts) of the functional model. Based on
the declaration of the Statemate conditions, the simulation would step through the states and
transitions of the behavioral view as well as the activities and data flows performed in response
to these states and transitions. However, the simulation capabilities did not adequately sup-
port parameterization of the functional model. Statemate conditions for feature parameteriza-
tion could not be distinguished from other conditions used in the specification.

4.3.2 001 Representation of the Functional Model

In the 001 representation, the functional model was represented by an RMap and a series of
FMaps. The Rmap provided a hierarchical view of the functional components (subsystems and
their decomposition derived from features) and the FMaps defined the functionality of each
component of the decomposition.

An important aspect of a functional model is the ability to specify functions and behavior. Basic
data flow and state transition diagrams (e.g., Statemate StateCharts and Activity-Charts) pro-
vide the least complex method for presenting this information. Although the 001 AXES are able
to represent this information, the FMaps are more difficult to comprehend due to the syntax
and semantics of the FMap language and the integration with the TMap. Therefore, the RMap
was used to initially represent the top-most functional view as a hierarchical view of the func-
tional components. The behavioral and functional aspects of these functional components are
embedded in the FMaps.

The initial intention of the RMap is to provide an interface to manage the TMap and FMap def-
initions. However, by carefully developing the RMap, it may be used to represent a hierarchical
view of the functionality from the abstract to the detailed functional component level.
Figure 4-8 represents the RMap from the Movement Control Domain Model. The RMap is a
graphical, tree-like representation of the FMap hierarchies and dependencies. Each node on
the RMap corresponds to an FMap name (or definition). By selecting FMap names which rep-
resent the underlying functionality of each FMap, the functional components of the domain are
defined. The existing FMap hierarchies and dependencies defined the sequence in which the
functions are performed. In combination, the FMap naming conventions, hierarchies, and de-
pendencies enable the RMap to be viewed as the hierarchical decomposition of functionality
in the domain. Higher-level functional components represent the functional commonalities of

28 CMU/SEI-93-TR-11

the applications in the domain. Lower-level functional components represent the functional dif-
ferences between the related applications.

ino_inlonn

box ouery

h~rt.tto»t t»*_qwy.

g»n_*v»nt_»truct
Copy_Org_A«»eu ls_Oo«nic

G«t_Max

geL*egmonlJ»nglti

Figure 4-8 Movement Control Domain Model 001 RMap

CMU/SEI-93-TR-11 29

The FMaps were used to represent the specific functionality of each functional component.
Each FMap is defined by a set of operations used to perform a specific function using 001
AXES as the program design language. Operations define the behavior of the functional com-
ponents in terms of functional decomposition, control structures, and the flow of data. Because
the TMap and FMaps are integrated in 001, FMap definitions are developed to manage and
manipulate the objects defined in the TMap. Therefore, FMaps define the functionality to be
performed on the entities of the domain. In addition, FMaps enable the functionality to be driv-
en by the common or differing aspects of the features model. Figure 4-9 provides an example
of an 001 FMap1.

Validation of the 001-represented functional model is based upon the syntax and semantics
analysis from the FMap analyzer and the execution of the domain model prototype. The FMap
analyzer checks to ensure that all parts of the definitions are internally consistent and checks
the interfaces for correctness and completeness. The domain model prototype enables the
functional model to be executed and validated against known applications by verifying that the
prototype exhibits the common functionality of the applications and, by selecting a specific fea-
ture^), verifying that the functionality associated with that feature(s) performs correctly. Sec-
tion 5 will discuss in further detail the execution of the prototype and the validation process of
the functional model.

mvmt_datal-schedule_convoy(mvmt_dataO)j,cj*7;

mvmt_modelO»moveto:mvTiit_model:mvmt_data(mvmt dataO) ;

envirO-moveto:environment :mvmt_model(mvrat_modelO) ;

featuresO-moveto:features:mvmt_nodel(mvmt mode10);

convoy_length-calc_convoy_length(envirO,featuresO)-op-;

traver3al_time-calc_route_traversal_time(convoy_length,envir0,features0)-op-

route_traversal_time-Nat:Rat (traversal_tiae) ;

envirl-determine_schedule (route_traversal_time, featuresO,envirO) -op-;

mvmt_modell-moveto:mvmt_model:environment(envirl);

mvmt_datal-moveto:mvmt_data:»vat_»odel(mvat_Bodell);

Figure 4-9 Example of an 001 FMap

1 Please refer to References [001SRM] for an in-depth discussion of the syntax and semantics of the 001 FMaps.

30
CMU/SEI-93-TR-11

5 Application of the Domain Model in System
Development

The domain model forms the basis for the software development of a system within the defined
domain. An executable (or enactable) domain model supports model validation and enhances
new systems development within the domain. The executable domain model enables the do-
main analyst to validate the domain model by parameterizing the model, executing it, and com-
paring the results against existing applications. The executable domain model can support the
user/developer interaction in developing a new system. The executable domain model can
serve as a basis for understanding the user's needs and obtaining requirements. Users and
developers can identify requirements which already exist as capabilities in the domain model,
implement a working model of the system by instantiating a set of existing capabilities, com-
prehend the resulting behavior and functionality exhibited by the system as a result of the se-
lected capabilities, and define the unprecedented development needed to complete the re-
quirements for the system. This support can also aid in the identification of areas of reuse.

A prototype is described as "an enactable mock-up or model of a software system that enables
evaluation of features or functions through user and developer interaction with operational
scenarios" [SEI92b]. By automating the domain model, a prototype is essentially being created
for the domain model. The following subsection discusses the integration of an automated
support tool into the products of a domain analysis and the capabilities of prototyping the do-
main model. The final two subsections discuss the prototyping capability of the 001 Tool Suite
and the use of the prototyping capability of 001 to validate the 001 representation of the do-
main model.

5.1 The Domain Model and Prototyper Capability

A domain modeling tool can be used in the early stages of the software development process
to support end users in specifying requirements for a new system. This tool must provide the
three views of the FODA domain model. While the information captured in the model provides
enough information to build a system, automatic prototyping gives the user the ability to ani-
mate the specification built from a selection of features.

To meet this need for integration, the domain modeling tool must support both domain model
creation and model-based prototyping (see Figure 5-1). Using the domain modeling tool, the
domain analyst documents the domain model and implements a prototyping capability (la-
beled Domain Model Prototyper in the figure). The prototyper allows implementation of a work-
ing model of the system under development based on a selection of features. The fidelity of
the prototype is a function of:

• The completeness of the domain model (how many of the features within the
domain have been captured in the model)

CMU/SEI-93-TR-11 31

• The implementation of code generating capability in the prototyper for those
features

As the domain model matures, more features will be captured in the domain model and, as
prototyping verifies parts of the model, the prototyping capability will be increased.

£2±
Domain Modeling Tool

<Oi
Domain Model Domain Model Prototyper

System Under
Development

\j Retest Prototype

\^ J Modify/Create New Prototype

Modify Domain Model/Prototyping Capability

Figure 5-1 Domain Modeling Tool Capability

The loops within the figure show the pattern of development of both the model and the proto-
typer to validate the model. The outermost loop shows the evolution of the model. As the do-
main analyst captures more domain information, the model is expanded or changed to reflect
new domain information. In parallel with domain model development, the domain analyst will
construct a working model of the domain via the prototyper. A selection of features captured
in the domain model will be built into the prototyper to allow both validation of the domain mod-
el (Does the model capture the common features of systems in the domain?) and prototyping
of a system under development.

The loops attached to the prototyper show the ability of the domain modeling tool to test new
system capability.

32 CMU/SEI-93-TR-11

• Given an existing domain model, the prototyper allows the selection of
features to implement a prototype for a system under development. The user
of the prototyper may change the features selected for the system to build a
new or modified version.

• The prototype may be successively tested. Errors may be traced to incorrect
selection of features for the system under development or to incorrect
implementation of the features within the prototyper.

The prototyper supports both the domain model developer and user:

• The developer gets feedback on the correctness and completeness of the
model.

• The user gets a sense of the capabilities of a new system and the effect of
selecting alternative or optional features.

The prototyper directly supports the notion of the binding time of features, as described in the
FODA report:

• Compile time: the features implemented in the prototyper that cannot be
changed without modifying the domain model or the prototype

• Load time: the features that can be changed whenever the prototyper is used
to build a new prototype system or to modify an existing system

• Runtime: the features that can be selected during execution of the system

The next subsection describes the use of 001 for system prototyping.

5.2 Prototyping the Domain Model

By integrating access to the domain model products (the feature, information, and functional
models), the domain modeling tool built using 001 can provide a prototyping capability for sys-
tem development. An 001 executable model is created by linking the source code automati-
cally generated from the 001 RAT, for each of the Tmap and FMap's definitions. Associated
with the linking process, 001 automatically generates separate data and test harnesses
around the executable model. These harnesses provide the utility to test and interface with the
executable model during execution. The resulting executable represents the prototype of the
system (i.e., a convoluted executable of all products of the domain modeling phase).

In the schema of Figure 5-1, the 001 domain model is constructed using the concepts dis-
cussed in Section 4 The 001 executable model created from the 001 domain model repre-
sents the prototype of the system under development. The 001 -generated test harnesses
serve as the domain model prototyper. Retesting of the prototype is performed by re-executing
the 001 executable model with the selection of an alternative set of input parameters (fea-
tures). Modifications to the domain model/prototyping capabilities are made by modifications

CMU/SEI-93-TR-11 33

and/or additions to the TMap and FMap definitions. The modification of the prototype (or cre-
ation of a new prototype) is accomplished by re-linking the modified domain model.

The OMap editor was used as the default-form user interface for the system during prototyp-
ing. The OMap editor is an 001 utility used to create, store, load, modify, and view any complex
object made from the TMap. The OMap editor enables the user to enter data before and during
execution and review the results afterwards.

The use of the 001 prototyping capability and the OMap editor supports the notions of feature
selection and binding time of features when implementing a working model of a system under
development. The OMap represents a runtime instance of the objects defined in the TMap.
Previously instantiated and stored versions of an OMap may represent the input data (entities
and features) for executing the prototype. This stored version of the OMap would represent
the input object database and compile time features selected1. By editing the OMap prior to
execution, entity databases may be altered and load-time features selected. During execution,
the OMap editor provides a user interface to communicate with the executing prototype. This
permits the user to select runtime features and respond to functional issues surrounding the
system being prototyped.

The flexibility permitted in the prototyping process enables any system in the domain to be ex-
amined based on the features selected and the resulting behavior and functionality exhibited
in the prototype. As the domain model matures, the 001 domain model can grow by expanding
the information in the TMap and FMap definitions. The expanded executable model is created
by passing the new definitions through the definitions analyzer and RAT and linking this source
code into the previous source code. The executable model now includes the new system ca-
pabilities for prototyping. Validation of the 001-represented domain model is the topic of the
following subsection.

5.3 Validating the Domain Model

Validation of the 001-represented domain model was performed by using the 001-generated
data and test harnesses and the prototype of the domain model. The data harness and proto-
type were used to apply test cases and observe the results. The test harness was used to iden-
tify errors if the prototype did not accurately represent the system being modeled.

The domain model was created by representing a family of systems in a domain. By parame-
terizing the functional model, each specific application should be able to be recreated. There-
fore, validation of the domain model centers around reproducing known applications through
the selection of specific features and issues/decisions during execution of the prototype. Any
variation between the predicted and actual results should indicate problems with the descrip-
tion of the system in the model. When variations occur, the 001 test harness was used to iden-
tify the discrepancies.

1 ■ Compile time features may also be defined by building the selected features directly into the TMap definition prior
to linking the FMap and TMap definitions into the executable model.

34 CMU/SEI-93-TR-11

When executing a prototype, the 001 test harness automatically calls a local debugger for the
host machine and language of the generated source code. The debugger enables the proto-
type, created from the domain model, to be monitored for errors. If the prototype does not ac-
curately represent the known system being modeled, the debugger can be used to track down
the error. Once the error is located, the definition(s) within the model can be edited, passed to
the 001 Analyzer, turned into source code by the RAT, and linked back into the executable
model. The validation process would continue by executing this new prototype.

CMU/SEI-93-TR-11 35

36 CMU/SEI-93-TR-11

6 Conclusions

This report documents the identified need to integrate additional tool support into the FODA
method. The tool support should offer an integrated environment for collecting and retrieving
the large volume of domain information. The feasibility study stated that [SEI90a, p. 9]:

The use of the FODA method in this feasibility study, while successful in
explicitly setting forth the capabilities of systems in the domain, is not yet a
complete success for the method. The method produces accurate products
which describe the domain, but these products have not been used in the
implementation of new applications. When this has been done, then the
method may be considered a success.

Therefore, both the process of domain analysis and the process by which the products of do-
main analysis support software development should benefit from the additional tool support.

This report examined the integration of 001 into the FODA methodology. The effort focused
on the ability of 001 to represent the components of the FODA domain model, the integration
of the components into a unified representation of the domain model, and the use of the do-
main model in generating applications.

This report documents the outcome of the 001 Tool Suite's ability to enhance the FODA meth-
odology. This report was not intended to imply that 001 is the one and only solution to the iden-
tified need for additional tool support.

6.1 Outcome of 001 Integration

001 provided the ability to represent and integrate all the products in the domain modeling
phase of FODA. The 001 TMap proved to be more than adequate in representing the informa-
tion captured in the features and information models. The 001 FMaps provided all of the ca-
pabilities necessary to represent the functional model. By using 001 to represent the domain
model rather than the set of manual and independent semi-automated methods used during
the feasibility study, the features, information, and functional models can be integrated to form
a consistent representation of the domain. All aspects of the domain model are developed un-
der a formal specification language (the 001 AXES). Each component of the domain model
can be verified separately or in combination with the other products of the domain modeling
phase. The ability to create an executable of the 001 -represented domain model extended the
usefulness of the model by including a prototyping capability of applications in the domain.
Therefore, with 001, both the creation of domain products which model the domain and the
software implementation of systems from the domain products were enhanced.

This study began by representing the domain information already captured via previous mod-
eling techniques into an 001 representation. The process of representing the domain model
with 001 went very smoothly. The structure of the TMap provided a straightforward, under-
standable representation of the features and entities (from the information model) of the do-

CMU/SEI-93-TR-11 ~ 37

main. The TMap enabled the entities to be represented at any level of abstraction and
decomposition with reuse of identified common structures of decomposed entities. The TMap
provides a natural structure for the hierarchical decomposition of features and the facility to
establish features as being mandatory, alternative, or optional.

In 001, the FMaps and TMap are integrated. This integration of FMaps and TMap enhanced
the understanding of the functionality and behavior associated with specific feature(s) and the
entities being affected. FMaps provided the ability to represent the functional and behavioral
aspects of the applications within the domain. 001 provides the model developer with the flex-
ibility to develop functionality and behavior common to all the applications in the domain as
well as the functionality and behavior only associated with a specific feature(s). Because
FMaps and the TMap are integrated together, the FMaps were used to monitor and manipulate
the features and entities on the TMap. For example, FMaps were used to establish the link
associated with the composition rules of a particular feature.

The ability to generate source code from TMap and FMap definitions and create an executable
for the domain model provided the ability to prototype applications in the domain. Prototyping
enabled the domain model to be validated against known applications and to represent new
applications in the domain. Issues such as binding time of features, feature selection (or pa-
rameterization of the functional model), and composition rules could all be examined via the
prototype. The prototype serves as a baseline for communication between a systems devel-
oper and an end user in establishing requirements for a new application and identifying the
areas of reuse or unprecedented development.

There were two areas where the 001 representation did not meet the expectations of a FODA
support tool. Firstly, the 001 representation of the functional model lacks a formal portrayal of
a "classical functional model" (i.e., a data flow diagram and a state transition diagram) for ex-
pressing high-level perspectives of functionality and behavior. This is important for a quick and
basic understanding of what the functional model is representing within the domain. Secondly,
the representation of features and entities in the TMap would be more complete if 001 offered
the ability to "tag" a textual definition to each feature or entity. For example, a form of hypertext-
like definition similar to that found in the FMaps utilities would be useful.

Both of these points are important to the FODA methodology. However, it must be pointed out
that the primary market for 001 is in software development. 001 is not intended to be a FODA
support tool. Therefore, the ability of 001 to represent the domain modeling phase of FODA in
no way reflects 001 's ability to support software development. In addition, both of these points
are currently being addressed by Hamilton Technologies, Inc.

6.2 Future Directions for Tool Support

The future direction for tool support will be twofold. First, the examination of 001 will continue
by examining the kinds of user interfaces that 001 can be used with. Currently, a model is ex-
ecuted by selecting the features desired via the OMap editor during execution. However, prim-

38 CMU/SEI-93-TR-11

itives within the 001 AXES language enable the model developer to access a graphical user
interface (such as Motif) within 001 for the selection of features. This graphical interface would
create an environment around 001 where the user could select features and enter object data
for model execution without an in-depth knowledge of the 001 Tool Suite or the OMap editor.
Secondly, an investigation of integrating the FODA domain products into other life cycle or re-
quirements support tools will be conducted. For example, the Software Engineering Informa-
tion Modeling Project of the SEI is introducing a synthesized technology adapted for applica-
tion to the requirements engineering domain called AMORE (Advanced Multimedia Organizer
for Requirements Elicitation) [SEI93a]. A potential future direction for FODA would be the in-
tegration of FODA and AMORE.

CMU/SEI-93-TR-11 39

40 CMU/SEI-93-TR-11

References
[001SRM] The 001™ Tool Suite. System Reference Manual, Version 3. Cambridge, Ma.:

Hamilton Technologies, Inc., January 1992.

[HAMIL91] Hamilton, Margaret H.; & Hackler, William R. "001: A Rapid Development
Approach for Rapid Prototyping Based on a System that Supports its Own Life
Cycle." pp. 46-62. Proceedings of the First International Workshop on Rapid
System Prototyping. IEEE Computer Society Press, June 1991.

[HAREL89] Harel, David, et al. "Statemate: A Working Environment for the Development of
Complex Reactive Systems." IEEE Transactions on Software Engineering 16,
4 (April 1990): 403-414.

[MURPH90] Murphy, Erin E. "Software R&D: From an Art to a Science." IEEE Spectrum
27,10 (October 1990): 44-46.

[RUMB91] Rumbaugh, James, et al. Object-Oriented Modeling and Design. Englewood
Cliffs, N.J.:, Prentice Hall, 1991.

[SEI90a] Kang, Kyo C; Cohen, Sholom G.; Hess, James A.; Novak, William E.; & Peter-
son, A. Spencer. Feature-Oriented Domain Analysis (FODA) Feasibility Study
(CMU/SEI-90-TR-21, ADA235785). Pittsburgh, Pa.: Software Engineering In-
stitute, Carnegie Mellon University, 1990.

[SEI92a] Cohen, Sholom G.; Stanley Jr., Jay L; Peterson, A. Spencer; & Krut Jr., Robert
W. Application of Feature-Oriented Domain Analysis to the Army Movement
Control Domain (CMU/SEI-91-TR-28, ADA 256590). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1992.

[SEI92b] Wood, David P.; & Kang, Kyo C. A Classification and Bibliography of Software
Prototyping (CMU/SEI-92-TR-13, ADA 258466). Pittsburgh, Pa.: Software En-
gineering Institute, Carnegie Mellon University, 1993.

[SEI93a] Christel, Michael G.; & Wood, David P.; & Stevens, Scott M. AMORE: The Ad-
vanced Multimedia Organizer for Requirements Elicitation (CMU/SEI-93-SR-
12). Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon Universi-
ty, 1993.

[STA1] i-Logix, Inc. Statemate: Support for Large Scale Projects, Version 3.0.
Burlington, Ma.: i-Logix, Inc., January 1990.

[STA2] i-Logix, Inc. The Languages of STATEMATE.
Burlington, Ma.: i-Logix, Inc., July 1990.

CMU/SEI-93-TR-11 41

42 CMU/SEI-93-TR-11

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

I EPORT DOCUMENTATION PAGE
I«. REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

3. DISTRfflUTION/AVAILABrLITY OF REPORT

Approved for Public Release
Distribution Unlimited 2b. DECLASSmCATION/DOWNGRADING SCHEDULE

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-93-TR-11
5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-93-188

6«. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

8«. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/ENS

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A
11. niLü (Include Security Classification)

Integrating 001 Tool Support into the Feature-Oriented Domain Analysis Methodology
12. PERSONAL AUTHOR(S)

Robert W. Krut, Jr.

13«. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

July 1993
15. PAGE COUNT

42 pp.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

001
domain analysis
feature-oriented domain analysis (FODA)

FIELD GROUP SUB. GR.

iy. ABS 1 KACl (continue on reverse if necessary and identify by block number)

This report addresses the need for additional tool support for the Feature-Oriented Domain Analysis
(FODA) methodology, developed at the Software Engineering Institute (SEI). Previous FODA studes
relied on multiple tools to represent the components of a domain model. This report discusses the
ability to represent an analyzed domain within the confines of a single support tool. This discussion
was based on the transformation of a recently completed domain analysis from a multi-tool, multi-
view representation into a single tool which represents the multiple views of a FODA domain model.
This report also describes the potential for prototyping of systems using the FODA domain analysis
products and the supporting tool.

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED | SAME AS RPTTJ DTIC USERS ■
21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (include area code)

(412)268-7631
22c. OFFICE SYMBOL

ESC/ENS (SEI)

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

ABSTRACT — continued from page one, block 19

