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Conversion Factors,
Non-SI to Sl Units of
Measurement

Non-SI units of measurement used in this report can be converted to SI units

as follows:
Multiply By To Obtain
acre 0.404686 hectares
acre-feet 1233.489 cubic metres
cubic feet 0.02831685 cubic metres
cubic yards 0.7645549 cubic metres
feet‘ 0.3048 metres
inches 2.54 centimetres
miles (U.S. statute) 1.609347 kilometres
pounds per cubic foot 16.01846 kilograms per cubic metre
square miles 2.589998 square kilometres
tons {2,000 pounds, mass) 907.1847 . kilograms
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1 Introduction

The city of Albuquerque, located along the Rio Grande in north-central

New Mexico, is the state’s largest city. The city has experienced rapid

Chapter 1

growth since the 1950’s and its 1990 population was about 385,000.
Albuquerque is an industrial, trade, and transportation center for the south-
western United States. The rapid expansion of the city into areas where
unstable arroyos formerly spread their water and sediment loads freely has
introduced flooding problems.

The city of Albuquerque lies on three distinct geomorphic features. These
are, in an easterly direction: (a) the floodplain of the Rio Grande, (b) a pedi-
ment, and (c) the foothills of the Sandia Mountains. The Sandia Mountains
are composed primarily of granite and produce a relatively coarse, predomi-
nantly sand-sized sediment. The mountains are steep, rising to a peak eleva-
tion of 10,678"2. The foothills and mesa consist of relatively thick deposits
of highly erodible sandy material with relatively small amounts of clay and silt
and in some locations coarse gravel and boulders.

The Albuquerque arroyos drain approximately 102 square miles of moun-
tain and mesa in Albuquerque’s northwest quadrant. About one-half of this
drainage basin is urbanized. The arroyos drain into the North Diversion
Channel, which is a concrete-lined channel constructed by the U.S. Army
Corps of Engineers in 1965-67 to divert flow and to provide flood protection
to the urban and suburban areas of the Rio Grande Valley in Albuquerque.
The trapezoidal channel collects runoff from arroyos that have headwaters in
the Sandia Mountains to the east and diverts it to the Rio Grande, north of
Albuquerque. The significant arroyos that drain into the North Diversion
Channel, starting with the southernmost and proceeding northward, are
Campus Wash, Embudo Arroyo and Channel, Hahn Arroyo, Grantline Chan-
nel, Vineyard Arroyo, Bear Canyon Arroyo, South Pino Arroyo, North Pino
Arroyo, Domingo Baca Arroyo, La Cueva Arroyo, and Camino Arroyo.
Major tributaries to Embudo Arroyo include the I-40 Channel, Embudito
Arroyo, and Piedra Lisa Arroyo. These are shown in Figure 1.

I A table of factors for converting non-SI units of measurement to SI units is found on
page viii.
2 Elevations are in feet referenced to National Geodetic Verticalt Datum (NGVD).
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Figure 1. Location and vicinity maps

Four of these arroyos (Campus, Hahn, Grantline, and Vineyard) are almost
entirely concrete-lined and drain fully urbanized watersheds. Reaches of
Embudo, Bear Canyon, South Pino, North Pino, Domingo Baca, and La
Cueva Arroyos are concrete-lined. Sediment traps have been constructed at
the confluences of Bear Canyon, South Pino, North Pino, and Domingo Baca
Arroyos with the North Diversion Channel. Flood detention darhs have been
constructed on several of the arroyos including Embudo and South Pino

Chapter 1
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Arroyos, North and South Domingo Baca Arroyos, and two on Bear Canyon
Arroyo. A detention dam has also been constructed on Piedra Lisa Arroyo.
The drainage area upstream from the detention dams is approximately

30 square miles, most of which is undeveloped and mountainous. Smaller
detention basins have been constructed at the canyon mouths of some of the
smaller arroyos in the Embudo watershed; these are the Hidden Valley Deten-
tion Basin and the Glenwood Detention Basins. A detention basin has been
constructed on South Pino Arroyo at Wyoming Boulevard at the inlet to a
concrete-lined channel.

The climate in Albuquerque is semiarid. There are some perennial flows
in the upper canyons, but generally these flows disappear into the alluvial
deposits at the canyon mouths. Runoff in the arroyos is primarily the result
of intense rainfall of short duration. The average annual rainfall in
Albuquerque is about 8 in. and increases to 22 in. at the peak of the Sandia
Mountains.

Purpose of the Sedimentation Study

The numerous concrete-lined channels and detention dams constructed for
flood control in Albuquerque were designed without accounting for the effects
of sedimentation on flow conveyance or maintenance. Due to the steep slopes
and erodible nature of the material in the unlined portions of the arroyos,
runoff from intense thunderstorms has the potential to entrain and transport
large quantities of sediment. Significant sediment sources include the water-
shed itself, channel beds and banks, and gullies that develop due to flow
concentration or head-cutting.

During July 1988, Albuquerque experienced an extreme rainfall event in
which deposition of sediment in the concrete-lined channels seriously affected
flood-control capability. The July 1988 storm was centered over the Embudo
Arroyo watershed downstream from the detention dam. The runoff frequency
is uncertain, but based on HEC-1 (USAEHEC 1981) simulations, the peak
flow on Embudo Arroyo was greater than the 100-year-frequency event.
Structural failure of some of the concrete lining and extensive sediment
deposition in the downstream reaches of the Embudo Arroyo occurred. Sedi-
ment deposited to within 6 in. of the soffit of the Tramway Boulevard bridge
deck and completely filled the channel at Juan Tabo Boulevard. Numerous
roads and intersections required cleaning due to sediment deposition as a
result of the flood. The effects of sedimentation during this extreme event
raised questions as to the anticipated effects of sedimentation for the 100-year-
frequency flood, which had been designated as the design event.

The sedimentation study for the Albuquerque Arroyos Flood Control
Project reported herein was conducted to evaluate the effect of sediment on
the function of the North Diversion Channel during the 100-year-frequency
flood. The primary design parameters required were the cross-sectional area
remaining in the channel after sediment had deposited and the Manning’s
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roughness coefficient of the channel when sediment was present on the bed.
In order to determine the effect of sedimentation in the concrete-lined chan-
nels, the sediment yield from the unlined arroyos and from the watershed had
to be determined. To accomplish these purposes the study was organized into
four primary tasks: (a) a geomorphic investigation of the arroyos was con-
ducted to determine channel stability, (b) an engineering determination of the
watershed’s sediment yield was conducted, (c) the trap efficiencies of deten-
tion basins were determined, and (d) a numerical model of the North Diver-
sion and Embudo Channels was developed and used to predict future sediment
deposition.

Approach

The geomorphic analysis was conducted on the arroyos that have potential
for supplying sediment to the North Diversion Channel. This analysis
assessed the overall stability of existing channels to determine whether they
are degrading or aggrading and whether they are subject to severe bank ero-
sion-during flood events. Evaluation of existing channel stabilization works
was made relative to their potential for affecting downstream sediment yield.
The effect of increased development on stability was evaluated. Potential for
debris flows or hyper-concentrated flows was assessed. The purpose of the
geomorphic analysis was to determine the primary sources of sediment within

the system.

The sediment yield for each watershed was estimated. These estimates
included an average annual sediment yield and sediment yields for several
specified frequency curves up to the 100-year-frequency flood. Due to the
uncertainty associated with any single method, more than one technique was
used to calculate sediment yield. Sediment yield methods used to calculate
fine sediment load included a simple sediment yield predictor based on soil
type, the Modified Universal Soil Loss Equation (MUSLE), and rainfall
simulator experiments. Sand loads were calculated using a sediment transport
equation. Debris amounts from steep mountainous watersheds were estimated
using the Tatum and Los Angeles District Methods. Calculated sediment
yields were compared with measured data to assess reliability.

Trap efficiency of each detention dam and detention basin was determined.
Reservoir or basin capacity was compared with sediment yield to determine its
effects during flood events. The purpose of these calculations was to deter-
mine sediment delivery by size class to downstream channels.

The TABS-1 numerical sedimentation model was used to model deposition
and scour in the concrete-lined North Diversion Channel and the downstream
portion of Embudo Arroyo. TABS-1 is an enhanced research version of the
well known U.S. Army Corps of Engineers HEC-6 program (USAEHEC
1993) and is described in Appendix B. Version 4.1 of HEC-6, dated October
1993, has incorporated all of the significant TABS-1 enhancements used in

Chapter 1 Introduction




Chapter 1

this study. The effect of sediment deposits on boundary roughness was deter-
mined using analytical techniques. Calculated roughnesses were incorporated
into the numerical model. Sediment inflow to the numerical model was deter-
mined by calculating sediment-transport capacity in the unlined channels,
upstream from the inlets to concrete-lined channels. This assumes that these
unlined arroyos are not supply limited. The reasonableness of this assumption
was evaluated during the adjustment and circumstantiation phase of the
numerical model study. Results from the geomorphic, sediment yield, and
trap efficiency studies were also used to assess the reliability of the calculated
sediment inflow. Considerable uncertainty exists relative to the quantity of
sediment delivered by the 100-year-frequency flood. Sensitivity studies were
conducted to assess the impact of different sediment loadings.
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2 Geomorphic Study

The geomorphic phase for the Albuquerque Arroyos Sedimentation Study
was conducted by Resource Consultants and Engineers Inc. (RCE) under
contract to the U.S. Army Engineer Waterways Experiment Station (WES).
RCE had conducted several geomorphic and sedimentation studies in the
Albuquerque area and was very familiar with the physical processes unique to
this area. Results of that study are summarized herein. Copies of the RCE
report (RCE 1993) are on file at the Albuquerque District of the Corps of
Engineers and at the Hydraulics Laboratory at WES. The purpose of the
geomorphic study was to assess the overall stability of the arroyos that drain
into the North Diversion Channel and to identify primary sources of sediment
within the system.

Data sources for the geomorphic study included orthophoto-based
topographic maps of the watershed and arroyos provided by the Albuquerque
Metropolitan Arroyo and Flood Control Authority (AMAFCA), bed-material
sediment gradations provided by WES and collected by RCE staff during a
field reconnaissance, as-built plans for certain components of the improved
channels within the study area, records of sediment deposits removed from the
arroyo system by AMAFCA, field-surveyed cross sections and longitudinal
profiles, and other general information derived from previous studies of the

area.

Factors Affecting Sediment Yield

The North Diversion Channel system collects the sediment and water dis-
charges from a pediment and Pleistocene-age alluvial fans. This area is
locally referred to as the East Mesa and is located between the Sandia
Mountains and the Rio Grande floodplain. The southern part of the drainage
basin is the most urbanized, with developmeni decreasing progressively in a
northward direction. As a result, runoff is greater in the southern part of the
drainage basin. However, potential for sediment yield is greater in the
northern areas because more natural surface area is exposed and more of the

channels are unlined.
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The drainage basin of the North Diversion Channel can be divided into
four geomorphic components: (a) the Sandia Mountains, (b) the modern
alluvial fans, (c) the incised Pleistocene-age pediment surface and alluvial
fans, and (d) the depositional zone:

a. The Sandia Mountains are composed of porphyritic granite that
produces relatively coarse, predominantly sand-sized sediment.

b. The modern alluvial fans are located at the mountain front and tend to
have relatively small contributing drainage basins. On an annual basis,
these fans produce little sediment, but over a period of decades these
fans may accumulate significant quantities of sediment that could pro-
duce a very significant quantity of sediment during large storm events.

c. The incised pediment surface and older alluvial fans tend to be armored
with coarse sediments varying from gravel to boulders. These are lag
deposits from the original pediment surface. Sedimentological
evidence indicates that a significant portion of the coarser pediment was
delivered by sediment gravity flows, including debris flows. The sur-
faces tend to be more heavily vegetated since they are located at a
higher elevation where precipitation is somewhat greater. Conse-
quently, this region of the mesa has a low sediment yield potential. The
upper and middle reaches of the arroyos that traverse this landscape
component are incised and the bed and banks are armored with boulder
to cobble-sized sediments. The lower reaches of the channels tend to be
confined, but less armored, and exhibit some tendency to migrate
laterally. '

d. The depositional zone, located primarily west of Tramway Boulevard, is
characterized by temporally and spatially alternating reaches of local
erosion and deposition. Sediments eroded from the upper watersheds
and from channel erosion are deposited when sediment-transport
capacity is locally diminished. The long-term effect is an increase in
channel slope by aggradation followed by channel incision into the
deposited sediments when the threshold slope is exceeded. Sediment
transport through the system is, therefore, an episodic phenomenon that
depends to a great extent on local topography and the duration and
magnitude of sediment-transporting flood events. A typical aggrading
condition is shown in Figure 2, and an incised condition is shown in
Figure 3. Confinement of flows and armoring of the arroyos upstream
have led to a westward displacement of the alluvial fans through time.
The confinement of the valley floor fans by the roughly parallel drain-
age divides, that formed in response to base level lowering of the Rio
Grande, prevents the individual fans from coalescing. Caliche accumu-
lation tends to increase the erosion resistance of the divides. The net
effect of the topographic controls is the development of a series of
parallel fans that will be displaced downslope through time whether as a
result of natural processes or by man-induced activity.
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Figure 2. Embudo Arroyo downstream from Embudo Dam—aggrading arroyo without well
defined banks

Figure 3. La Cueva Arroyo upstream from Interstate 25—incised arroyo
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Effect of Urbanization on Sediment Yield

Sediment yield off of the East Mesa alluvial fans has generally decreased
due to urbanization. Sediment yield has been reduced due to the construction
of flood-control structures. Sediment is trapped in detention dams and basins,
sediment traps, and upstream of culverts and road crossings. Channel erosion
has been reduced by the construction of concrete-lined channels and channel
stabilization structures. Watershed erosion is reduced by paving and landscap-
ing. However, urbanization can also result in increases in sediment yield due
to the increased volume of runoff caused by reduction of rainfall infiltration,
and by confining and concentrating flows both on streets and within the chan-
nels. Increased concentration of flow leads to bank erosion and degradation
of unlined channels.

Flood-control detention dams have high bed-material trap efficiencies and,
as a result, where they discharge downstream to an unlined channel, there is
significant scour and channel erosion. Both vertical and lateral channel
erosion occur downstream of both North and South Domingo Baca Dams for a
distance of approximately 1,000 ft (Figure 4). The base level lowering that
accompanies the degradation results in gully development in the surrounding
interfluves. Below this point the sediment-transport capacity has been replen-
ished by gully and channel erosion so that downstream delivery of sediment is
dependent on local hydraulic controls. The most significant effect of the

Figure 4. South Domingo Baca downstream from dam—incision due to
clearwater releases from detention basin
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_ flood-control detention dams is the dramatic change in flood hydrographs

where a rapidly rising and falling peak flow is reduced to a much lower steady
outflow.

Sediment traps are located at the downstream end of four of the arroyos
where they confluence with the North Diversion Channel. These are Bear
Canyon, South Pino, North Pino, and Domingo Baca Arroyos. Trap efficien-
cies of sand are relatively high at these structures for most discharges. Thus,
even if sediment is delivered to the lined-channel segments upstream, where
the sediment-transport capacity is very high, the delivery rate to the North
Diversion Channel is much lower. The sediment trap at North Pino Arroyo is
shown in Figure 5. A sediment trap has also been constructed on South Pino
Arroyo at Wyoming Boulevard, at the upstream end of the concrete-lined
portion of the arroyo. The slope of Bear Canyon Arroyo, upstream from its
sediment trap, has been significantly reduced by a series of drop structures
(Figure 6). This will reduce sediment-transport capacity and sediment
delivery to the North Diversion Channel.

Culverts that create backwater and sediment deposition have a significant
effect on sediment delivery at high flows. Unlined channels downstream from
culverts typically are characterized by channel erosion. La Cueva Arroyo
downstream from San Pedro Avenue is an example.

Paving and landscaping in the watershed decrease the sediment yield off of
the watershed, but increase the volume and peak flow rate of the runoff. The
net result is usually an increase in channel erosion. An example is a housing
development adjacent to the Embudo Arroyo downstream from Embudo Dam
where stormwater drainage has caused 6 to 7 ft of degradation in the arroyo
downstream of the local drainage outlet. If sufficient runoff is generated
upstream of the incision a headcut will migrate upstream and supply a signifi-
cant quantity of sediment to the concrete-lined portion of Embudo Arroyo
downstream. Another example of increased channel erosion is the upper
reaches of Embudito Arroyo, a tributary of Embudo Arroyo, where grade
control structures have been installed in an attempt to stabilize the channel
(Figure 7).

In the natural arroyos that cross the mesa, the overall trend is for deposi-
tion of sediment. However, concentration of flows by urbanization interferes
with the natural processes. Natural arroyos have localized reaches in which
the channel is unconfined and deposition is induced. Arroyos confined by
bank protection tend to degrade. In addition, runoff is frequently concentrated
by roads that are oriented parallel to the natural slope of the mesa. Flow
along the road margins causes roadside erosion and increased sediment
delivery to the channels.

Channel relocation and straightening generally results in steeper slopes and
greater erosion potential.
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Figure 6. Sediment trap at North Pino Arroyo

Figure 6. Bear Canyon Arroyo drop structures upstream from confluence
with North Diversion Channel
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Figure 7. Embudito Arroyo downstream from Montgomery Boulevard
channel stabilization weir

Lining the channels that traverse the East Mesa probably has the greatest
effect on potential sediment delivery to the North Diversion Channel. The
channels are generally lined because the increased runoff related to develop-
ment causes severe erosion of the unlined channels. Progressive lining of the
channel of North Pino Arroyo in the last few years has reduced the delivery
of sediment to the sediment trap.

Table Al in Appendix A is a summary of geomorphological observations
prepared by RCE. This table summarizes the channel stability and sediment
yield potential of each arroyo in the North Diversion Channel drainage basin.
The primary sources of sediment to the Embudo and North Diversion Chan-
nels were identified as bed and bank erosion in the unlined arroyos. Local-
ized sources are created when developments significantly alter the natural
sediment regime and induce the creation or expansion of gully erosion. The
primary sediment sources are:

a. Embudo Arroyo upstream from Monte Largo Drive.
b. North Glenwood Hills Arroyo.

¢. South Glenwood Hills Arroyo Tributary.

d. Embudito Arroyo.

e. Piedra Lisa Outlet Channel.
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f. Bear Canyon Arroyo at the North Diversion Channel.

g. Domingo Baca Arroyo at the North Diversion Channel.

Dominant Discharge

The concept of a dominant discharge is a convenient simplification that
suggests that a single uniform discharge can be the independent variable on
which channel size, shape, and slope of a perennial stream are dependent.
Two common definitions of dominant discharge exist in the literature:

a. The effective discharge is defined as the flow that transports the most
sediment over a long period of time. The effective discharge is com-
puted as the average discharge over a specified increment of flow in the
flow duration curve that has the largest product of discharge and sedi-
ment concentration. If most of the transported sediment is coarse, then
the effective discharge will occur less frequently and be larger than if
the sediments are finer.

b. The bankfull discharge of the channel has been described as the forma-
tive discharge of the channel because it represents a maximum shear
stress condition. The frequency of bankfull discharge typically varies
between the less than the 1-year-frequency event and the greater than
the 10-year-frequency event.

Even though Andrews (1980) showed that there is a good correlation
between bankfull discharge and the effective discharge, other studies (Pickup
and Warner 1975, Benson and Thomas 1966) have shown that the recurrence
interval for the effective and bankfull discharges in perennial flow streams can
vary significantly. In incised channels in the humid southeastern United
States, Watson et al. (1988) determined that the effective channel discharge
was equivalent to the bermfull discharge, that is the bankfull discharge for the
dynamic equilibrium channel located within the incised valley floor. In
Watson’s streams the recurrence interval of the bermfull discharges was about
1.5 years. In contrast, the capacity of the incised channel was in many cases
in excess of the 100-year-frequency event.

Ephemeral stream channels have been characterized hydrologically and
hydraulically by nonuniform, unsteady flow behavior with major transmission
losses. Ephemeral flow stream channels often have two sections. The
upstream section has a concave-up longitudinal profile and a relatively low
width-to-depth ratio, attributes that are similar to perennial flow channels in
upland areas. The downstream section, which begins at the point of channel
alluviation, has an almost linear longitudinal profile and a relatively high
width-to-depth ratio that reflects the noncohesive nature of the alluvium and
the high flow losses to infiltration. The changes in the channel profiles
indicate that the two sections are controlled by different sets of hydraulic
relations.

13
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Unlike humid regions, sediment in semiarid and arid regions tends to be
stored in valley floors rather than on hillslopes. Transport of the stored sedi-
ments is dependent on infrequent hydrological events of sufficient magnitude
and duration to generate surface flow. These hydrologic conditions cause
temporal and spatial episodes of aggradation and degradation and a signifi-
cantly spatial and temporal variable sediment yield. Channel reaches under
such flow conditions can be out of phase, and this episodic behavior of
ephemeral stream channels suggests that they may be inherently unstable.

Due to these factors, RCE concluded that the concept of dominant dis-
charge is not applicable since a fundamental assumption is channel
equilibrium. Therefore, dominant discharge methods were not used in the
Albuquerque Arroyos sediment study.
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'3 Sediment Yield

Introduction

Sediment yields were calculated for each watershed contributing sediment
to the North Diversion Channel. These calculations were made to assess the
adequacy of the sediment storage capacity of the detention reservoirs and to
estimate the concentration of fine sediment load into the North Diversion
Channel. Estimates of both the average annual and 100-year-frequency flood
sediment yields were calculated.

The sediment yield is composed of both wash load and bed-material load.
The wash load is the fine sediment that remains in suspension once it reaches
a channel. Wash-load sources are the surface of the watershed, gullies, and
the channel bed and banks. The bed-material load is the sediment load that
actively exchanges with the channel bed as it is transported downstream. The
bed-material load capacity is determined by the composition of the bed and the
hydraulic properties of the channel.

There is no generally accepted method for calculating sediment yield.
Available techniques require measured sediment deposition or transport data
for adjustments or to establish coefficients. Because there are many factors
that affect the sediment yield, it is generally necessary to have a significant
sediment database to refine a technique to the point where it can be used to
make reliable predictions. This database does not exist in the Albuquerque
Arroyos study area. The approach taken herein, therefore, is to apply several
different techniques, compare calculated results from these techniques with the
limited available data, and then draw some general conclusions about the
magnitude and uncertainty of the sediment yield.

The wash-load sediment yield was estimated using the Modified Universal
Soil Loss Equation (MUSLE) (Williams and Berndt 1977), rainfall simulator
experiments, and a simple sediment yield predictor based on soil type. These
techniques account only for the sediment yield from the watershed surface,
most of which is fine sediment.

Wash-load estimates were compared with measured sediment concentra-
tions. Since the wash-load concentration is a function of watershed conditions
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and not necessarily hydraulic conditions in the channel, there is usually a poor
correlation between discharge and wash-load concentration. Therefore, a
large number of measurements are required to obtain a statistically reliable
comparison.

Sediment yields for bed-material load can be estimated using sediment-
transport equations. Sediment yield is calculated by integrating a sediment-
transport rating curve with a flow duration curve. These calculations depend
on knowing the bed gradation of the channel, the hydraulic properties during
each discharge event, and a reliable sediment-transport equation. It is gener-
ally assumed that bed gradation and geometry remain constant.

Sediment yields from steep mountainous watersheds during a storm event
can be estimated using the Tatum Method (Tatum 1963) and the Los Angeles
District Method (USAED Los Angeles 1992). These empirical methods were
developed using data from watersheds in the Southern California Coastal
Range. Sediment yields predicted by these methods represent sediment
trapped in debris basins and consist primarily of coarser sediment sizes.

Measured Sediment Concentrations

Measured suspended-sediment concentrations for arroyos in the vicinity of
Albuquerque were reported in the original Design Memorandum (DM No.1)
for the North Diversion Channel (USAED Albuquerque 1956). The equip-
ment and technique employed to collect these data were not reported, so the
reported concentrations must be considered approximate.

During flash floods between 1937 and 1947, 26 suspended-sediment
samples were collected from Tijeras Canyon, which is located just south of
the North Diversion Channel drainage area. The average concentration was
58,000 mg/1 and the average discharge was 300 cfs. Sediment concentrations
ranged between 20,000 and 300,000 mg/l. Particle size analysis was con-
ducted on 13 of these samples. The average size class breakdown was 19 per-
cent clay, 69 percent silt, and 12 percent sand.

During flash floods in 1953, four suspended-sediment samples were col-
lected from Embudo Arroyo. Discharges ranged between 8 and 350 cfs;
suspended loads varied between 9,000 and 29,000 mg/l.

Thirteen suspended-sediment samples were taken from an arroyo headed in
the Manzano Mountains, located 40 miles south of Albuquerque. These had
an average sediment concentration of 16,000 mg/l for flows averaging
140 cfs.

Average-annual sediment yields for the North Diversion Channel drainage
area were estimated for DM No. 1. A suspended-sediment-discharge rating
curve was developed from all the available suspended-sediment data. These
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data are summarized in Table A2 in Appendix A. The curve was increased
by 20 percent to account for the unmeasured load. Peak flows and volumes
between 1931 and 1952 were estimated for Embudo Arroyo. These were then
integrated to obtain a total sediment yield for the period. Assuming a sedi-
ment-deposit density of 90 1b/ft’, an average-annual sediment yield of

0.58 acre-ft/square mile was calculated. This sediment-yield rate was
assumed to be applicable to the rest of the drainage basins in the North
Diversion Channel study area.

Between 1957 and 1964, sediment concentrations were measured upstream
from Bernalillo Reservoir, located on Piedra Lisa Arroyo (not the same arroyo
as in the study area), which is about 17 miles north of Albuquerque
(Funderburg 1977). These measurements were made with standard US DH-48
suspended sediment samplers. It was reported that sediment larger than
6.36 mm was not sampled because it exceeded the size of the sampler nozzle
opening. It was also reported that sampling was difficult due to the flashy
nature of the storm runoff. The largest reported discharge was only 30 cfs.
The average of 12 sampled concentrations was 64,000 mg/l; and the average
percentage of sediment finer than 0.0625 mm was 79 percent. Measured
concentrations upstream from Bernalillo Reservoir are listed in Table A3 in
Appendix A.

Between May 1982 and September 1983 and between October 1990 and
July 1991, the U.S. Geological Survey (USGS) collected suspended-sediment
data in the North Diversion Channel. These data were supplied by the
Albuquerque office of the USGS. Data for 1982 and 1983 are also published
in USGS annual water-data reports (USGS 1982,1983). The gage was located
on the channel about 0.5 mile upstream from Edith Boulevard and is called
North Floodway Channel near Alameda. Samples were collected with a
pumping sampler having an intake located on the channel sidewall about 1 ft
above the bottom of the channel. The sampler did not collect samples isokine-
tically, which means the measured concentrations at high flows may be too
low. In addition, the measured samples may not be representative of average
concentrations in the vertical water column, due to the sampler intake
location. Because of these factors, the measured data have a relatively high
degree of uncertainty. The largest discharge at which data were collected was
6,400 cfs. As is typical of measured suspended data, there was a poor corre-
lation between discharge and sediment concentration. At discharges greater
than 100 cfs, total sediment concentrations varied between 300 and
15,000 ppm. About 70 percent of this material was finer than 0.0625 mm.

Measured Sediment Deposition

Sediment yields have been measured in two New Mexico reservoirs with
watersheds similar to those in Albuquerque. The drainage basins have steep
mountainous headwaters and narrow alluvial mesas. Bernalillo Reservoir,
located about 17 miles north of Albuquerque, was monitored between 1957
and 1967 (Funderburg 1977, USDA SCS 1987). Its headwaters are in the
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Sandia Mountains. As a conservation measure, the Soil Conservation Service
treated the alluvial mesa in 1956 to reduce erosion and gullying and to retard
rainfall runoff. Due to these conservation practices a relatively low average-
annual sediment yield of 0.16 acre-ft/square mile/year was determined.
Tortugas Reservoir is located about 225 miles south of Albuquerque near Las
Cruces (Funderburg and Roybal 1977). This watershed drains the Organ
Mountains; its alluvial mesa has not been treated. Based on sediment surveys
taken in 1963 and 1975 the average annual deposition rate in the reservoir was
determined to be 0.28 acre-ft/square mile/year. It was also determined that
both reservoirs had trap efficiencies of about 96 percent. More than

99 percent of the sand sizes were trapped.

Based on measured water and sediment outflow, sampled density of the
deposits, and measured deposition in the reservoirs, an average concentration
of inflowing sediment can be estimated from Bernalillo and Tortugas Reser-
voirs. The average sediment inflow concentration at Tortugas Reservoir was
57,800 mg/1 and at Bernalillo it was 176,700 mg/l. These calculated concen-
trations are expected to be somewhat high because infiltration and evaporation
are unaccounted for. Also, at Bernalillo Reservoir, measurements ceased in
July 1974, and the reservoir survey was not taken until January 1976.

Sediment deposition in the North Diversion Channel, and its inlets, pro-
vides some additional insight into sediment yield. Available data consist of
sediment removal records from various locations within the North Diversion
Channel system maintained by AMAFCA. Records were available for the
years 1976 through 1992 and are based on the number of reported truck loads
hauled. Both sand and silt were removed from the North Diversion Channel
outfall. Sediment removed from other locations was primarily sand.

Annual removal quantities from the North Diversion Channel including the
inlets and outfall are shown in Figure 8. The figure indicates a general
decline in sediment deposition. Factors that are primarily responsible for this
reduction are detention dam construction and channel improvements. The
effects of paving and landscaping are considered to be a minor influence in
terms of reducing sediment yield and deposition. Urbanization may reduce
some surface erosion, but the increased rainfall runoff volume, caused by
increases in surface imperviousness and the resultant increase in flow concen-
tration, leads to more gully and bank erosion. Therefore, unless lined chan-
nels are provided to convey the increased runoff, urbanization generally
results in an increase in sediment yield and deposition. Average-annual runoff
and average-annual rainfall are compared in Figure 9. Allowing for normal
annual fluctuations, this figure indicates that the annual runoff has generally
increased, even though the annual rainfall shows no signs of increasing. This
further demonstrates the effectiveness of AMAFCA'’s flood-control improve-
ments, in that even with an increase in annual runoff, there has been a
decrease in sediment deposition in the North Diversion Channel.

Sediment deposition in the North Diversion Channel and its inlets and
outfall, including Embudo Channel, over the 17-year period can be used to
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estimate sediment yield. Using these data, and the entire 102-square-mile
drainage area, an average-annual sediment deposition of 0.20 acre-ft/square
mile/year was calculated. In considering the total sediment yield, this does
not account for sediment trapped in the upstream detention reservoirs or for
the sediment that passes through the outfall into the Rio Grande. This figure
represents a low estimate for sediment yield and must be considered very
approximate due to the uncertainty related to the haul records and the variable
period of record for different locations in the system.

Summary of Measured Data

The measured suspended sediment and sediment deposition data demon-
strate a high degree of variability in estimated sediment yield. Individual
suspended-sediment measurements from actual arroyos ranged between 4,000
and 300,000 mg/l. An average concentration from 55 reported measurements
was 47,000 mg/l. Limited size class analyses indicated that between 12 and
21 percent of this suspended sediment was sand. These measurements were
made at relatively low discharges. Measured suspended-sediment data from
the North Diversion Channel itself indicated significantly lower sediment
concentrations—between 300 and 15,000 mg/l. This is attributed to the signif-
icant contribution of relatively sediment-free runoff from the urban areas
delivered to the North Diversion Channel by lined channels and to the effec-
tive trapping of sediment in detention reservoirs and inlet sediment traps.
Average-annual sediment yields calculated from measured data ranged
between 0.16 and 0.58 acre-ft/square mile/year. The lowest yield was from
Bernalillo Reservoir where the watershed had received conservation treatment.
The highest, reported in DM No.1, was based on an integration of measured
sediment from natural arroyos and estimated runoff. Data from haul records
in the North Diversion Channel indicate a declining average-annual sediment

yield.

Calculated Estimates Using SCS Soil Erosion Rates

As part of the sediment impact assessment conducted by WES for the
U.S. Army Engineer Division, Albuquerque, average-annual sediment yield
was estimated for the undeveloped portions of the North Diversion Channel
watershed. The Bernalillo County Soil Survey (USDA SCS 1977) was used to
determine soil types in each sub-basin. Approximate sediment yields for each
soil type were provided by the Albuquerque Soil Conservation Service (SCS)
office. These sediment yields, listed in Table A4 in Appendix A, are approxi-
mate and are considered "unofficial" by the SCS.

Several soil classifications in the soil survey did not have a sediment yield

value. For such cases the description of the soil and those of similar soils for
which yields were available were compared and an estimate of the yield was
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obtained. The average calculated yield for watersheds upstream from deten-
tion basins was 0.23 acre-ft/square mile/year.

The sediment yields determined using the SCS soil erosion rates are less
than half those determined in DM No.1. The SCS yield rates account only
for surface erosion, while the integration method, employed in DM No.1,
accounts for surface, gully, and bank erosion.

MUSLE Estimates

The MUSLE (Williams and Berndt 1977) was developed to predict soil
losses from agricultural land for specific precipitation events. Coefficients
were developed from rainfall simulator tests, where soil erosion occurred
primarily in the form of rills. Reliable application of this method requires
considerable data gathering and calibration effort.

The MUSLE method has not been specifically calibrated for the
Albuquerque area, but it includes variables that account for the significant
processes that cause erosion of sediment from overland areas. The MUSLE
calculates sediment yield, Y,, in tons:

Y,=(Q,V,) KL ,CP 1)

Q, = peak discharge for storm event, cfs
V, = runoff volume for storm event, acre-ft
K = soil erodibility factor
L, = topographic factor
C = cover and management factor
P = erosion control practice factor

o, 3 = calibration constants

Sediment yield was calculated by RCE using MUSLE. They calculated
sediment yields for the 2-, 5-, 10-, 25-, 50-, and 100-year-frequency floods.
The flood peaks and volumes were determined using the HEC-1 hydrologic
computer program. Four separate storm centerings were used to maximize
runoff for individual drainage basins. Values for the 10-, 50-, and 100-year
frequency storm events were developed by the U.S. Army Engineer District
Albuquerque (USAED Albuquerque 1992). RCE revised the HEC-1 input
files using rainfall depth ratios from the city of Albuquerque’s hydrology
manual to obtain values for the 2-, 5-, and 25-year storm events.

The soil erodibility factor is a function of the percentage of silt and very-
fine sand, sand, and organic matter in the soil; the soil structure; and the soil
permeability. Nomographs are available (Wischmeier and Smith 1978) to

21
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determine the soil erodibility factor. Soil types for each sub-basin were deter-
mined from SCS soil surveys (USDA SCS 1977). The erodibility factor K
associated with various soil types was taken from studies conducted by the
SCS (USDA SCS 1992). Weighted K values were calculated for each sub-
basin based on the percentage of each soil type in the sub-basin.

The topographic factor is defined as the ratio of soil loss from any slope
and length to the soil loss from a standard 72.6-ft plot with a 9 percent slope.
Slope length is defined as the distance the overland flow travels from its
origin until it enters a channel or forms a depositional delta. Wischmeier and
Smith (1978) provided the following equation for the topographic factor:

S

@

= [T)\’] (0.065 +0.0454 5 +0.00655 52)
0.

3 when § < 3 percent
0.4 when S = 4 percent
0.

n
n
n S when § = 5 percent

where

\ = slope length, ft
S = percent slope
n = an exponent that varies with slope

RCE determined the topographic factors, which ranged from 0.16 on the mesa
to 5.2 in the steeper areas of the watershed, from topographic maps.

The cover and management factor C accounts for vegetative cover in the
watershed. For relatively sparse vegetation, which includes most of the study
area, a C of 0.4 was assigned. C values as low as 0.1 were assigned to
highly urbanized areas where there is essentially no bare soil.

The erosion-control practice factor P accounts for the effect of conservation
practices, such as terracing and strip cropping. This factor is not significant
for the North Diversion Channel drainage area and was assigned a value of

1.0.

Coefficients o and 8 were taken to be 285 and 0.56, respectively. The
beta coefficient is the same as that recommended by Williams and Berndt
(1977) which was developed from data from experimental watersheds in Texas
and Nebraska. Based on previous experience in the Albuquerque area, RCE
used an alpha coefficient three times the value reported by Williams and

Berndt.
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In their determination of sediment yield, RCE reduced the computed total
sediment yield from the MUSLE by the percentage of the watershed that was
impermeable. The percentage of impermeable area was taken from the HEC-
1 input files. The wash-load component of the sediment yield was then deter-
mined assuming it would be equal to the percentage of material finer than
0.074 mm in the watershed’s soil type. RCE’s computation tables for the 2-,
5-, 10-, 25-, 50-, and 100-year storms are provided as Tables A5-Al4, in
Appendix A. A summary of calculated concentrations for wash-load and
total sediment yield concentrations for the 100-year storm are tabulated below.

Calculated Sediment Yield, MUSLE
100-year-frequency Flood

Average
Location Concentration, mg/|

Wash Load‘ Total Load
Camino Arroyo at NDC 11,600 28,700
La Cueva Arroyo at NDC 10,400 26,500
Domingo Baca Arroyo at NDC 11,000 26,400
North Pino Arroyo at NDC 20,400 50,400
Pino Arroyo at NDC . 6,100 15,000
Bear Arroyo at NDC 4,800 11,800
Embudito Arroyo at Montgomery 1,600 4,000
North Glenwood Hills Channel 3,300 8,600
Hidden Valley Basin 6,700 17,800
Glenwood Hills Basins 4,600 12,300
South Glenwood Hills Tributary 2,900 7,500
Piedra Lisa Dam 900 2,300
Embudo Dam 2,900 7,800

Wash-load concentrations in this tabulation were taken from RCE’s Table A14
in Appendix A. Total load was calculated using the average percentage of
soils less than 0.074 mm from the same table.

Average-annual sediment yields were determined using RCE-calculated
yields for various frequency floods and incrementally integrating them with
the frequency curve using the following equation:
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Y = 0.015(Y,,+Y,) + 0.04Y, + 0.08Y, + 0.2Y, + 047, (3

where average-annual sediment yield is Y,,, and Y; represents sediment yield
for specific hyrographs where i is the frequency of the hydrograph. This
equation is derived by incremental integration of the sediment-yield frequency
curve, considering no yields greater than the 100-year-frequency yield and
assuming no yield for flows less than the 2-year-frequency yield.  Calculated
average-annual sediment yields are tabulated below.

| Calculated Average Annual Sediment Yield, MUSLE |

Location Tons Acre-ft/mi®
Camino Arroyo at NDC 1159 0.10
La Cueva Arroyo at NDC 1874 0.12
Domingo Baca Arroyo at NDC 3335 0.15
North Pino Arroyo at NDC 1868 0.34
Pino Arroyo at NDC 1910 0.10
Bear Arroyo at NDC ' 2523 0.08
Embudito Arroyo at Montgomery 94 0.06
North Glenwood Hills Channel 99 0.06
South Glenwood Hills Tributary 44 0.12
Piedra Lisa Dam 13 0.01
Embudo Dam 192 0.03

The average of the tabulated values is 0.11 acre-ft/square mile/year. Results
from the MUSLE calculations produce average-annual yields considerably less
than the measured data, and less than those calculated using the SCS soil-ero-
sion rates. Calculated concentrations also appear to be too low.

Rainfall Simulator Experiments

An experimental rainfall simulator study was conducted to measure the
sediment yield for actual experimental plots in the Albuquerque Arroyos study
area (Ward 1992). Rainfall simulation was used to measure runoff and sedi-
ment yields from three sites. Three 1-m-wide by 3-m-long plots were tested
at each site. Plot slopes varied between 7 and 24 percent. One plot was
scraped bare at each of the three sites to simulate disturbance caused by clear-
ing and construction activities. The other plots had the natural vegetation left
intact. Cover, which included vegetation and rock, varied between 20 and
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65 percent for the natural plots. Simulated rainfall was supplied by sprinklers
and was applied to "dry" and "wet" antecedent soil moisture conditions.

After the simulator was installed, the first test was conducted representing dry
conditions. On the next morning, a second test was run on the same plot
representing the wet condition. The tests were conducted 15-18 September
1992. There had been significant rainfall in the area on the evening of

14 September and the morning of 15 September, so that dry conditions had
higher antecedent moisture content than would be expected for a typical dry
situation. Soil water content at the beginning of the simulation varied between
4.8 and 8.2 percent for the dry runs, and between 8.6 and 12.8 percent for
the wet runs. A total of 18 plot-runs were conducted.

Sediment yields from the experimental plots were collected in two ways.
Suspended material was pumped with the runoff water into a collection tank.
Coarser material that deposited in the water collection device at the end of the
experimental plot was collected at the end of each run.

Rainfall was applied at the rate of 3 in./hr for 30 minutes. Steady-state
infiltration rates ranged between 0.12 and 2.72 in./hr for the dry runs and
between 0.71 and 1.65 in./hr for the wet runs.

Sediment yield per unit area of runoff can be used to estimate loading to a
channel once runoff is modeled. Runoff is characterized as a depth distributed
equally over the surface area. Results from this study indicate that
0.52 tons/acre/in. of runoff is reasonable for undisturbed plots and that
3.12 tons/acre/in. is reasonable for plots which are scraped bare of vegetation.
Finer particles were preferentially eroded from the plots leaving a coarser
surface at the conclusion of each run. On the average, 50 percent of the sedi-
ment yield was finer than 0.075 mm and 50 percent coarser. However, there
were large variations in all the measured values demonstrating the natural
spatial and temporal variability found in southwestern United States upland
watersheds. :

Ward (1992) concluded that more material came off the wet watershed, but
that it was due to the greater runoff. When runoff from the dry and wet soil
samples were normalized by runoff, then the sediment yield rate was about the
same. This fact is demonstrated by the concentrations tabulated below:

) Measured Sediment Yield from Rainfall
Condition Simulator Concentration, ppm
Covered
Dry 611
Wet 769
Uncovered
Dry 7,190
Wet 4,360
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The very low sediment concentrations obtained from the rainfall simulator
demonstrate the small role that surface erosion plays in the total sediment
yield. It can be concluded that gully, bed, and bank erosion are much more
significant contributors. These results help explain the low yield estimates
obtained from MUSLE which used rainfall simulator data in its development.

Sediment-Transport Method

Sediment yield can be estimated by assuming that the natural unlined chan-
nels are transporting bed-material load at maximum capacity and then, using a
reliable sediment-transport equation, integrating a sediment-transport rating
curve with a discharge hydrograph. RCE combined this technique with the
MUSLE method to obtain a total sediment yield for channels entering the
North Diversion Channel. Wash load was calculated for the entire watershed
using MUSLE. This sediment was assumed to pass through the detention
reservoirs without settling out. Bed-material load was calculated for reaches
upstream from the lined-channel inlets.

RCE developed a sediment-transport equation, herein referred to as the
Mussetter equation, especially for streams with high sediment concentrations.
The Mussetter equation computes bed load by size fraction using a form of the
Meyer-Peter Miiller equation (USBR 1960). The suspended load is computed
for the median size of the bed material. The suspended-sediment-
concentration vertical profile is calculated based on a form of the diffusion
equation developed by Woo, Julien, and Richardson (1988) and a power
function velocity profile developed by Karim and Kennedy (1983). RCE has
determined from previous work with southwestern United States arroyos that
reasonable sediment-transport rates can be predicted with this equation.

The hydraulic characteristics of unlined channels were determined at the
critical concentration points. The U.S. Army Corps of Engineers HEC-2
water-surface profile numerical model (USAEHEC 1990) was used to compute
hydraulic parameters. Cross-section geometry for the model was determined
from a combination of field surveys and topographic mapping. Cross sections
developed from topographic mapping were adjusted as necessary to reflect the
observed shape of the arroyos; i.e. a rectangular shape with width-to-depth
ratios of approximately 40. Manning’s roughness coefficients of 0.03 and
0.04 were assigned to the main channel and overbank, respectively.
Calculated hydraulic parameters were averaged for similar computational
reaches. :

The bed-material sediment yield, for each reach, was calculated for the 2-,
5-, 10-, 25-, 50-, and 100-year-frequency flood events by integrating a sedi-
ment-transport rating curve, calculated using the Mussetter equation, over the
respective storm hydrographs. RCE used four separate storm centerings to
maximize runoff for individual drainage basins. Summary tables for the
average annual sediment yields and 100-year frequency flood sediment yields

.Chapter 3 Sediment Yield



are presented in Tables A15 and A16, respectively. The bed gradations for
the sediment transport calculations were based on field samples.

The tota] sediment yield for each storm event was determined by adding
the computed bed-material load to the wash load that had been computed using
the MUSLE. The total sediment yields for each concentration point are
tabulated below.

Calculated Total Sediment Yield Sediment Transport Method

Combined with MUSLE

e e e o —————ee

100-year-flood Average Annual
average acre-ft/square

Location tons mg/l tons mile
La Cueva at NDC 132,000 321,000 6,670 0.53
Domingo Baca at NDC 72,200 94,100 6,210 0.27
North Pino at NDC . 14,000 59,600 960 0.17
Pino at Wyoming Basin 19,100 66,700 1,830 0.16
Pino at NDC 3,010 6,200 533 0.03
Bear at NDC 22,900 102,000 3,300 0.11
Embudito at Montgomery 16,900 174,000 2,400 1.50
North Glenwood Hills 20,800 271,000 1,800 1.02
South Glenwood Hills Trib 2,600 113,000 330 0.88
Piedra Lisa d/s from dam 785 18,100 88 0.07
Embudo at Monte Largo 76,300 310,000 7,160 0.98

The average-annual sediment yield computed using this method was 0.19 acre-
ft/square mile/year. However, yields at mountain canyons and in unlined
channels were much higher. The average-annual yield using this method is
very close to that determined from the North Diversion Channel sediment
removal records. Average concentrations for the 100-year-frequency flood are
significantly higher than the average of the measured suspended-sediment data.
However, they are within the range of individual measurements. Also it must
be remembered that the 100-year-frequency discharges are much greater than
any for which samples were collected.

Tatum Method

The Tatum method (1963) was developed to size debris basins in the San
Gabriel Mountains, which are part of the Southern California Coastal Range.
The method predicts the quantity of debris actually trapped by a debris
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structure from a single hydrologic event. Debris includes silt, sand, clay,
gravel, boulders, and organic material. All of the watersheds in the database
used to develop the method had relatively high soil moisture content due to
antecedent rainfall. The method can be used to account for increased debris
yields from watersheds that have been denuded by wildfire. The method was
developed using reported debris accumulation in existing debris basins. Since
actual deposition in the basins was used to develop the Tatum method, trap
efficiencies are inherently assumed to be equal. Calculations are made from
nomographs using an equation with adjustment factors for size, shape, and
slope of the drainage area, 3-hour precipitation, the portion of the drainage
area burned, and the years occurring between the time of the burn and the
time of the flood. In the Albuquerque Arroyos study, the effects of fire were
not considered.

The parameters developed for application of the Tatum method are listed in
Table A17 in Appendix A. The calculated debris yield from using this
method in Albuquerque is an extrapolation of the method beyond its intended
use. Therefore, results must be considered approximate and must be used in
conjunction with results using other methods in order to make general
conclusions regarding sediment yield.

Los Angeles District Method

The Los Angeles District Method (USAED Los Angeles 1992) is based on
a statistical analysis of measured deposition in debris basins, hydrologic data,
and watershed characteristics. The database for these equations includes that
of Tatum (1963) plus additional data collected from debris basins located in
the Southern California Coastal Range. The method is intended to be used for
estimation of debris yield from coastal-draining, mountainous Southern
California watersheds. Outside of the recommended application area, careful
adjustment of the calculated yields may be required.

The variables determined to be significant for debris production are: relief
ratio, RR, in ft/mile; drainage area, A, in acres; unit peak flow, Q, in
cfs/square mile or maximum 1-hour precipitation P in inches times 100; and a
nondimensional fire factor FF. In the Albuquerque Arroyos study, destruction
of the watershed vegetation by fire was not considered. The parameters
developed for application of the Los Angeles District method are listed in
Table A18 in Appendix A. The following regression equation is used to
calculate unit debris yield D,, in cubic yards/square mile, for drainage areas
up to 3 square miles, using maximum 1-hour precipitation:

logD, = 0.65(log P) + 0.62(log RR) + 0.18(log 4) + 0.36 @)
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A total of 350 observations from 80 watersheds were used to develop this
regression equation. The calculated debris yield from this equation, in statisti-
cal terms, is the "expected" value. Uncertainty associated with the calculated
result can be measured using the standard deviation of the estimate of the
expected value. The standard deviation for Equation 4 is 0.465 (log D). It
can be stated with 67 percent confidence that the "true" value of debris yield
is within one standard deviation of the expected value. It can also be stated
with 95 percent confidence that the true debris yield will fall within two
standard deviations of the expected value. These statistics are based on the
data used to develop the regression equation and assume that any calculated
value comes from a watershed with similar geomorphic and hydrologic
conditions.

For drainage areas between 3 and 10 square miles, the following regression
equation was developed:

logD, = 0.85(log Q) + 0.53(log RR) + 0.04(log 4) + 0.66  (5)

The equation for drainage areas between 10 and 25 square miles is

logD. = 0.88(log Q) + 0.48(log RR) + 0.06(log 4) + 0.60 (6
y

A total of 187 observations from seven watersheds were used in the develop-
ment of Equations 5 and 6. The standard deviation for Equations 5 and 6 was
determined to be 0.242 log D,.

Debris yields into the detention basins and reservoirs and at the upstream
end of improved channels in the Embudo Arroyo watershed were calculated
using the Tatum and Los Angeles District methods. The calculated yields are
tabulated below and are compared with capacity. Capacities are significantly
greater than the sediment yields. Average concentration was calculated as the
total volume of debris divided by the total volume of runoff.

Reported depositions in two detention basins from the July 1988 thunder-
storm were used to evaluate calculated results from the Tatum and Los
Angeles District Methods. Debris yield was calculated for the two basins
using the July 1988 rainfall. Total storm rainfall of 2.37 in. and 3.15 in.
were determined for the Piedra Lisa and Lomas drainage basins, respectively,
from isohyetal maps produced by Wright Water Engineers Inc. (1989).
Reported deposition in the basins was based on estimates made by the city of
Albuquerque to determine excavation costs after the storm event. Deposition
of 2,800 cu yd was estimated for Piedra Lisa Basin and deposition of
45,000 cu yd was estimated for Lomas Basin. Lomas Basin is located just
outside the North Diversion Channel drainage area, adjacent to the Embudo
watershed. There was significant lateral erosion of a levee just upstream from
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Calculated Sediment Yield

100-Year-Frequency Storm

P —————

Average

Sediment Volume Concentration

cu yd mg/l

Detention LA LA

Basin District Tatum District Tatum
Location Capacity Method Method Method Method
Embudo Dam 248,200 70,700 22,700 344,000 121,000
Piedra Lisa Dam 47,400 9,700 7,600 246,000 197,000
Glenwood Basins 5,500 3,400 1,800 273,000 152,000
Hidden Valley Basins 2,600 1,700 1,900 231,000 256,000
J. B. Robert Dam 748,100 116,500 40,400 266,000 99,000
Pino Dam 834,100 87,600 20,000 322,000 81,000
South Domingo Baca 563,500 78,800 12,000 327,000 55,600
North Domingo Baca 218,900 21,600 2,100 191,000 18,500
Downstream from 9,300 5,800 307,000 200,000
Embudo Dam
South Glenwood 2,300 1,400 123,000 76,000
Hills Tributary
North Glenwood Hiils 12,100 11,900 196,000 194,000

Piedra Lisa Basin that contributed to the sediment deposition in 1988.
Upstream from Lomas Basin there was considerable gully erosion through
areas that had recently been graded for residential construction. The calcu-
lated and reported depositions are compared in the following tabulation.
Deposition in Piedra Lisa Basin was overestimated by both methods. Deposi-
tion was underestimated in the Lomas Basin by both methods. Calculated
results with the Los Angeles District method were within one standard devia-
tion at the Lomas Basin, and almost within a standard deviation at the Piedra

Lisa Basin.

The Los Angeles District Method provides several techniques to account
for geomorphic differences between the subject watershed and the San Gabriel
Mountain watersheds. Adjustment is achieved by multiplying calculated
debris yields by an Adjustment-Transposition (AT) factor. Techniques for
determining the AT factor require data from the subject or nearby watersheds.
The required data include measured deposition in debris basins from storms
with known runoff or rainfall, average-annual rainfall and sediment yield, or a
detailed field analysis which identifies geomorphic characteristics of the
watershed.
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| Comparison of Calculated and Reported Storm Yield, July 1988 |
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Sediment Deposition, cu yd

LA District Method
Plus One Minus One
Tatum Expected Standard Standard
Location Reported Method Value Deviation Deviation
Piedra Lisa Dam 2,800 8,600 10,800 31,500 3,700
Lomas Basin 45,000 24,300 26,800 78,200 9,200

Insufficient data are available in the Albuquerque Arroyos watersheds to
establish a reliable AT factor for the application of the Los Angeles District
Method. Estimates ranged between 0.13 and 1.68. But the general indication
is that the AT factors should be less than 1.00 and that the method overpre-
dicts the debris yield in the Albuquerque Arroyos.

Calculated concentrations using the Los Angeles District method without an
AT factor are generally higher than those calculated with the Tatum method.
However, calculated results are similar to RCE’s calculated results, using the
sediment transport method, for the arroyos at canyon mouths. Differences
become more apparent the further the concentration point is away from the
canyon mouth. The Los Angeles District method does not appear to be
appropriate for application to the mesa detention reservoirs.

Sediment Yield Summary

Sediment yield to the North Diversion Channel consists of fine-sediment
wash load and coarser sand bed-material load. The two sediment loads are
supplied by surface, gully, bed, and bank erosion. Surface erosion was found
to be less important than gully, bed, and bank erosion in terms of the quantity
of sediment load supplied. High concentrations of coarser bed-material load
can be supplied by the unlined channels and the steep mountain watersheds.
Average concentrations for the 100-year-frequency flood could be as high as
300,000 mg/l. The detention reservoirs have sufficient capacity to store the
sediment supplied by the 100-year-frequency flood. The construction of
detention dams and lined channels in the Albuquerque Arroyos study area has
effectively decreased the supply of sediment to the North Diversion Channel.

It should be noted that the detention dams were designed without any
specified sediment allowance. Reduced storage capacity in the detention
reservoirs could result in an increase in downstream peak flows. It is recom-
mended that hydrology studies be conducted to determine the effect of reduced
storage due to sediments for design or analysis of the arroyos downstream
from detention dams.
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4 Trap Efficiency

Introduction

Trap efficiency is often defined as the percent of the inflowing sediment
that is trapped. The trap efficiency of a reservoir is a measure of sediment
removal from the inflowing water-sediment mixture. It is the ratio of the total
weight of sediment deposited in a reservoir to the weight of sediment deliv-
ered to the reservoir. It can be given in terms of a long-term average or for a
specific storm. Detention time in the reservoir and the size of the sediment
entering the reservoir are the primary factors that determine trap efficiency.

Data needed to calculate trap efficiency include reservoir surveys to deter-
mine the volume of sediment deposited over a period of time, density of the
sediment deposit, and measurements of sediment inflow or outflow. Total
inflow or outflow can be predicted by integrating a reliable discharge-concen-
tration rating curve, developed from the measured data, with a discharge
hydrograph that covers the period between reservoir surveys. Typically,
available data are insufficient to determine trap efficiency by this method.

Empirical relationships have been developed to estimate trap efficiency in
cases where data are insufficient for direct calculations. Three such methods
are presented in the U.S. Army Corps of Engineers, Engineer Manual,

EM 1110-2-4000, "Sedimentation Investigations of Rivers and Reservoirs"
(USAEHQ 1989). These are the Brown (1950), Brune (1953) - Dendy
(1974), and Churchill (1948) methods. A fourth method is the Hazen (1904)
method. As with all empirical methods, one must assess applicability to
specific cases. The methods presented in EM 1110-2-4000 were all developed
for normally ponded reservoirs and calculate trap efficiency based on average-
annual conditions. They do not account for the variability in inflowing sedi-
ment sizes, nor do they account for the effect of reservoir outlet configuration;
e.g. the elevation and size of the outlet ports above the reservoir bed. Outlet
configuration is probably not as important in normally ponded reservoirs as it
is in dry reservoirs. The Hazen method can be used to calculate trap
efficiency by size class and was developed to design sediment basins in water
and wastewater treatment plants.
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Trap Efficiency Methods

A simple method for estimating trap efficiency is the capacity-watershed
method proposed by Brown (1950). This method is useful if the drainage area
and the reservoir capacity are the only known data. Brown plotted measured
trap efficiency versus the ratio of storage capacity to drainage area and devel-
oped an equation to fit the data:

KC (7

where
E = trap efficiency as a fraction
K = coefficient, ranging between 0.046 and 1.0, median value of 0.1
C = reservoir capacity, acre-ft
W = watershed area, square miles

This equation is not dimensionally homogeneous and requires use of
designated units of measurement. Brown’s curve with the supporting data are
shown in Figure 10. Brown’s method does not consider reservoir outlet size
nor detention time and application of the method requires fore-knowledge of
the K coefficient, or acceptance of the median value.

The capacity-inflow method proposed by Brune (1953) empirically relates
trap efficiency and the ratio of reservoir capacity to mean annual inflow.
Brune’s data were from normally ponded reservoirs. Dendy (1974) collected
more data, including data from dry reservoirs, and displayed them with
Brune’s data as shown in Figure 11. In general, Dendy’s data indicated lower
trap efficiencies than Brune’s data. In addition, Dendy’s data suggested an
even lower trap efficiency for dry reservoirs. Using both his own and
Brune’s data, Dendy developed a dimensionally homogeneous empirical rela-
tionship for normally ponded reservoirs.

E = (O 97)0.19m'7 (8)

where C is reservoir capacity and [ is annual inflow. The Brune-Dendy
method is an improvement over the Brown method because the
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capacity-inflow ratio is a better surrogate for detention time than the capacity-
watershed ratio.

Churchill (1948) presented a relationship between trap efficiency and a
sediment index (SI) where SI is the ratio of retention period to the mean reser-
voir velocity. Retention period can be estimated as the ratio of reservoir
capacity to inflow. Velocity can be estimated as inflow divided by cross-
sectional area. Algebraic manipulation leads to the following equation for
sedimentation index:

®

Qla

SI

H

h ‘

where
C = reservoir capacity, cu ft
O = mean annual discharge through reservoir, cfs
L = reservoir length, ft

Churchill’s curve was developed using data from Tennessee Valley Authority
reservoirs where the sediment load consists entirely of silts and clays.

Churchill’s and Brune’s curves are displayed in Figure 12 with additional
data plotted by the U.S. Bureau of Reclamation (1987). The U.S. Bureau of
Reclamation introduced a dimensionless parameter K which is obtained by
multiplying SI times the acceleration of gravity.

Hazen (1904) derived an equation to determine trap efficiency for unhin-

dered settling of discrete particles in a rectangular basin:

B - w A (10)

Y

where
w, = particle fall velocity
A = surface area of the basin

Q = rate of flow through basin
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Any set of consistent units may be used with this equation. Hazen’s equation
calculates trap efficiency independent of the flow depth or the detention time
although the effects of these variables are inherent to the equation. The equa-
tion assumes that re-entrainment of deposited sediment does not occur. The
reasonableness of this assumption can be determined by comparing calculated
applied shear stress with the critical shear stress for each size class using the
Shield’s equation:

- (11

7, = 0(y,~v)d (12)

where
7 = applied shear stress

critical shear stress

o
i

v = specific weight of water

v, = specific weight of sediment

=
I

hydraulic radius
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S = energy slope
6 = Shield’s parameter
d = grain size.

Settling basin efficiency is reduced by eddy currents set up at the basin
inlet when flow expands, by wind-induced surface currents, by density cur-
rents caused by vertical variations in temperature or concentration, and by re-
entrainment of sediment by turbulence. These conditions cause the flow to
"short-circuit" the sediment basin. Hazen proposed accounting for short-
circuiting using the following equation:

’ 13)

tx
I

wA
1.0 - 110 +n_
0o

where 7 is a coefficient between 0 and 1.0 that qualitatively defines basin
performance between "best" and "very poor." Settling curves for a range of n
are shown in Figure 13. Total trap efficiency for a reservoir cannot be
calculated using the Hazen method unless the gradation of the inflowing
sediment load is known or can be reliably estimated.
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Figure 13. Performance curves for settling basins by Hazen
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Prototype Reservoir Data

The applicability of the four trap efficiency methods to the detention reser-
voirs, detention basins, and sediment traps in the Albuquerque Arroyos study
area was tested using data from two detention reservoirs in New Mexico
where conditions are similar to those in Albuquerque. Bernalillo Reservoir,
near Bernalillo, which is 17 miles north of Albuquerque, and Tortugas Arroyo
Reservoir, near Las Cruces, which is 225 miles south of Albuquerque, were
part of a nationwide investigation of trap efficiencies of detention reservoirs
conducted by the U.S. Geological Survey (Funderburg 1977 and Funderburg
and Roybal 1977). Both detention reservoirs are normally dry and runoff
generally occurs from high intensity summer thunderstorms. Bernalillo and
Tortugas detention reservoirs have drainage areas of 4.1 and 20.7 square
miles, respectively. Both drainage basins have steep mountains in their head-
waters and have alluvial mesa formations similar to those in Albuquerque.
The alluvial mesa area upstream from Bernalillo had been treated in 1958 to
reduce erosion and gullying and to retard the rapid runoff of rainfall. The
land treatment consisted of pits, terraces, seeding, and restricted grazing.
Hydrologic and deposition data covered a 30-year period at Bernalillo and an
11-year period at Tortugas. Average-annual inflow to Bernalillo was 7.4 acre-
ft, and to Tortugas it was 158 acre-ft. Reservoir capacities are 311 and
1,324 acre-ft at Bernalillo and Tortugas, respectively. Trap efficiency at both
detention dams was determined using measured sediment concentrations at the
outlets and reservoir surveys. Reported trap efficiency at both detention dams
was 96 percent; 99 percent of the sand and coarser size classes were trapped.

Evaluation of Trap Efficiency Methods

Four methods were used to predict trap efficiency at Bernalillo and
Tortugas detention dams. The predictions were then compared with the
reported trap efficiencies in order to establish a level of confidence for each
method. Applications of the methods were modified to meet the available data
and special circumstances of dry reservoirs.

The Brown method requires fore-knowledge of the K coefficient to deter-
mine trap efficiency or use of the median value of 0.1. Using a K of 0.1,
trap efficiencies of 87 and 86 percent were calculated for Bernalillo and
Tortugas, respectively. These values are considerably less than the reported
trap efficiencies. Therefore, an appropriate K factor was determined using the
reported trap efficiency of 96 percent. For Bernalillo, a K value of 0.32 was
calculated, and for Tortugas, a value of 0.38 was calculated. Data points for
the two reservoirs are compared with Brown’s data in Figure 14. It can be
seen that these detention reservoirs have high trap efficiencies compared with
most of the reservoirs considered by Brown.

Application of the Brune-Dendy method to dry reservoirs is questionable
because data from dry reservoirs were not included in the development of the
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Figure 14. Trap efficiency for Tortugas and Bernalillo detention basins using Brown’s curve

curve. In fact, Brune and Dendy both suggested that dry reservoirs should
have considerably lower trap efficiencies than normally ponded reservoirs.
The mean pool elevation in the reservoirs considered by Brune and Dendy
was generally close to reservoir capacity. The ephemeral arroyos feeding the
reservoirs in Albuquerque are significantly different from the rivers and
streams considered by Brune and Dendy.

Due to questions related to the appropriate capacity and inflow to use with
the Brune-Dendy method for dry reservoirs, the capacity-inflow ratio was
calculated three different ways for Bernalillo and Tortugas detention dams.
First, the detention reservoir capacity was divided by the average-annual
inflow as suggested originally by Brune. Secondly, the detention reservoir
capacity was divided by the annual inflow for the year with the largest
recorded inflow. At Bernalillo, this was in 1956 when the annual inflow was
63.2 acre-ft. At Tortugas this was in 1967 when the annual inflow was
456 acre-ft. Finally, the largest storm event was evaluated using the actual
maximum reservoir storage during the storm divided by the storm inflow. At
Bernalillo, this occurred in July 1956 when the inflow was 53 acre-ft and the
maximum storage was 47 acre-ft. At Tortugas, this occurred in August 1967
when inflow was 347 acre-ft and the maximum storage was 291 acre-ft.
Different capacity-inflow ratios were calculated depending on how the capacity
and inflow were defined; however, in each case, the result plotted very close
to the Brune-Dendy relationship—assuming that the 96 percent trap efficiency
was applicable for all the cases (Figure 15). The reservoir outlet configura-
tions at Bernalillo and Tortugas, along with the relative coarseness of the
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Figure 15. Trap efficiency for Tortugas and Bernalillo detention basins using
Brune-Dendy’s curve

sediment inflow, probably account for the relatively high trap efficiency of
these dry reservoirs. Detention reservoirs and basins in Albuquerque have
similar outlet configurations and sediment inflowing loads. Thus, this verifi-
cation calculation establishes some confidence in using the Brune-Dendy
method for the normally dry reservoirs in Albuquerque. Because using
specific storm inflow and storage capacity to calculate the capacity-inflow
ratio provides the best surrogate for detention time, these values were used to
calculate trap efficiency with the Brune-Dendy method.

Application of the Churchill method to detention reservoirs in Albuquerque
is questionable due to the dissimilarity between dry reservoirs and the major
reservoirs of the Tennessee Valley Authority. Application of the method was
modified herein to consider actual detention time of a storm event. The trap
efficiency was calculated in a series of time steps where capacity was taken to
be the average capacity of the detention reservoir during the time step, and
average discharge through the detention reservoir was taken to be equal to the
average outflow as suggested by Dendy (1974). Two storm events from the
1956 water year at Bernalillo reservoir were used to test the method. A July
event had an average storage capacity of 53 acre-ft and an average outflow of
27 cfs. An August storm had an average storage capacity of 10.2 acre-ft and
an average outflow of 15.5 cfs. Trap efficiencies of 83 and 70 percent were
calculated for the July and August storms, respectively. These calculated trap
efficiencies were considerably lower than the reported trap efficiency for the
detention reservoir. Based on this result it was decided not to consider the
Churchill method in estimating trap efficiencies for the Albuquerque Arroyos

study.
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The Hazen method will not provide a complete solution for trap efficiency
unless the composition of the inflowing load is known. This method calcu-
lates trap efficiency by size class. There are insufficient data to establish
sediment inflow concentrations by size class at either Bernalillo or Tortugas
detention dams. However, measured concentrations at the outlet of Tortugas
provide insight into the maximum size class that passes through the detention
dam. Measurements at Bernalillo and Tortugas indicated that 99 percent of
the sediment passing through the outlet was finer than 0.016 mm, which is the
lower limit of medium silt.

It was determined that reasonable calculated trap efficiencies could be
obtained with the Hazen method when the performance variable n was set
equal to 0.5. Calculations indicated that 99.7 percent of the medium silt and
100 percent of the coarse silt would be trapped in the detention reservoir.
Although these results are not directly comparable because the percentage of
each size class in the inflow is unknown, it can be inferred that the Hazen
method does an adequate job of predicting the maximum size class that can be
passed through the detention dams.

Data were insufficient to completely verify any of the trap efficiency
methods. However, it was demonstrated that predictions of trap efficiency
could be obtained with a reasonable level of confidence, in Albuquerque
detention dams, using the Brown (with K = 0.32), Brune-Dendy, or Hazen
(with n = 0.5) method. :

Calculated Trap Efficiencies

Trap efficiencies were calculated for each of the flood-control detention
structures and sediment traps upstream from the North Diversion Channel.
The sediment traps have insignificant storage capacity, so only the Hazen
method is appropriate for application. Required data for the calculations are
tabulated below.

The Brown method was used to calculate trap efficiencies for the detention
structures. A K factor of 0.32 was used, based on the analysis of measured
data at Bernalillo Reservoir. This method supplies a rough estimate of long-
term trap efficiency.

The Brune-Dendy method was used to calculate trap efficiency for a storm
event. The maximum storage during the 100-year-frequency flood was used
as the capacity, and the 100-year-frequency inflow volume was used as the
inflow. The 100-year-frequency flood used for this analysis was based on
storm centering No. 1 (USAED Albuquerque 1992), which results in the high-
est peak discharge in the North Diversion Channel. At each of the detention
dams, this flood is considerably less than the design flood, which would be
based on storm centerings above each detention dam.
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100-yr

Drainage 100-yr 100-yr Peak

Area Reservoir Reservoir 100-yr Peak Surface

square Capacity Storage Inflow Outflow Area
Location mile acre-ft acre-ft acre-ft cfs square ft
Detention Structures
Embudo 3.7 152 48 101 230 300,000
Piedra Lisa 0.6 29 13 21 50 174,000
John B. Robert 10.2 458 58 209 660 282,000
Arroyo Del Oso 13.7 323 54 364 820 623,000
Pino 6.2 517 107 136 70 574,000
South Domingo 4.4 345 43 97 140 285,000
North Domingo Baca 1.8 134 23 53 100 151,000
Glenwood 0.20 3.4 3.4 6 77 38,000
Hidden Valley 0.12 1.6 1.58 3 54 12,400
Sediment Traps
Wyoming 1100 75,400
Bear 1800 167,200
South Pino 2300 142,700
North Pino 1800 176,400
Domingo Baca 2600 220,100

Calculated trap efficiencies for each of the detention structures are listed in
the following tabulation. Arroyo Del Oso Detention Dam is downstream from
John B. Robert Detention Dam on Bear Canyon Arroyo; therefore applicabil-
ity of Brown’s watershed-capacity method is questionable. However, the
calculated trap efficiency of 88 percent was identical to that calculated using
the Brune-Dendy method. For the rest of the detention dams, the Brune-
Dendy method predicts an average trap efficiency of about 95 percent. Trap
efficiencies calculated using the Brown method are similar for the detention
reservoirs, but for the Glenwood and Hidden Valley detention basins, calcu-
lated trap efficiencies are about 13 percent lower. Both methods predict that a
very high percentage of the inflowing sediment load will be trapped by the
detention structures. This result effectively eliminates the steep mountain
watersheds from consideration as significant sediment sources to the improved

channels downstream from the detention structures.

The Hazen method was used to assess the trap efficiency of individual size
classes through the detention structures and sediment traps. This information
is important in the analysis of deposition in the North Diversion Channel,
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Calculated Trap Efficiency, percent
Brown Brune-Dendy
Location Method Method
Embudo 93 95
Piedra Lisa 94 96
Glenwood 84 96
Hidden Valley 81 95
John B. Robert 93 93
Arroyo Del Oso 88 88
Pino 96 96
South Domingo Baca 96 95
North Domingo Baca 96 95

where only the sand sizes are expected to deposit. Calculated results are
tabulated on the following page.

These results indicate that most of the inflowing clay, varying percentages
of silt, and almost none of the sand will pass through the detention structures.
This result further supports the conclusions based on results from the Brown
and Brune-Dendy methods which indicated that the steep mountain watersheds
would not be significant sediment sources. ‘

The calculations indicated that the sediment traps were effective in reduc-
ing sand delivery to the North Diversion Channel. During the 100-year-
frequency flood, on the average, about 70 percent of the very fine sand size
class, 90 percent of the fine size class, and almost all of the medium sand and
larger size classes were trapped by the sediment traps. Trap efficiency would
be less at lower discharges when the ponding feature in the sediment traps and
detention time are reduced. The calculated trap efficiencies for the sediment
traps were used to reduce sediment inflow by size class to the numerical
model of the North Diversion Channel.

Sediment traps designed using the Hazen method should have applied shear
stresses that are less than the critical shear stresses. In the sediment traps
upstream from the North Diversion Channel, this was not the case. This
means that some of the sediment that deposits in the traps will be re-entrained,
adding uncertainty to the calculations. The effect of re-entrainment is some-
what accounted for by the choice of the performance variable n; in this case
performance was assumed to be "poor."

A check of the Hazen method was conducted at Domingo Baca sediment
trap. Sediment-transport rating curves were developed by RCE that repre-
sented sediment-transport capacity in the Domingo Baca Arroyo upstream
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from the trap and through the trap. Integrating the rating curve over the
100-year-frequency flood, RCE calculated a trap efficiency of 96 percent.
This result adds circumstantial support to the applicability of the Hazen
method for analyzing the sediment traps.
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5 The Numerical Model

Description

The TABS-1 one-dimensional sedimentation program was used to develop
the numerical model for this study. Development of this computer program
was initiated by Mr. William A. Thomas at the U.S. Army Engineer District,
Little Rock, in 1967. Further development at the U.S. Army Engineer
Hydrologic Engineering Center (USAEHEC) and at the U.S. Army Engineer
Waterways Experiment Station (WES) by Mr. Thomas has produced the
widely used HEC-6 generalized computer program for calculating scour and
deposition in rivers and reservoirs (USAEHEC 1993). Additional modifica-
tions and enhancements to the program by Mr. Thomas at WES led to the
TABS-1 program currently in use. This study was conducted using ver-
sion 2.06, dated August 1992. This version of TABS-1 is fully compatible
with HEC-6 version 4.1, dated October 1993, for the Albuquerque Arroyos
numerical model. The program produces a one-dimensional model that simu-
lates the response of the riverbed profile to sediment inflow, bed-material
gradation, and hydraulic parameters. The model simulates a series of steady-
state discharge events and their effects on the sediment transport capacity at
cross sections and the resulting degradation or aggradation. The program
calculates hydraulic parameters using a standard-step backwater method
assuming subcritical flow. The program assigns critical depth for water-
surface elevation if the backwater calculations indicate transitions to supercri-
tical flow. However, for supercritical flow, hydraulic parameters for sedi-
ment transport are calculated assuming normal depth in the channel. A more
detailed description of the program capabilities is found in Appendix B.

For numerical sedimentation models to completely simulate the behavior of
a stream channel, computations would have to account for all of the basic
processes of sedimentation: erosion, entrainment, transportation, deposition,
and compaction of both bed and the streambanks for the complete range of
particle sizes found in nature. The state of the art has not advanced to such a
complete simulation. The computer program used in this study, TABS-1,is a
state-of-the-art program for use in mobile-bed channels. It incorporates proce-
dures for describing the complex sedimentation processes when these proce-
dures have been established by research and published. Where knowledge
gaps exist, the TABS-1 program contains logic that bridges those gaps. When
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applied by experts using good engineering judgment, the TABS-1 program
will provide good insight into the behavior of mobile-bed channels. Because
the program has given reliable results at similar projects, it is expected to give
reliable answers to the questions being addressed here. In the Albuquerque
Arroyos application, the channels are concrete-lined, so that degradation is
limited to removal of sediment deposited in the channel.

Numerical Model Geometry

The North Diversion Channel was modeled from its outlet at sta 18490 to
sta 476 +25. Embudo Channel was modeled from its confluence with the
North Diversion Channel at sta 412+50 to sta 471400, a distance of about
one mile. In the numerical model, the Embudo Channel was treated as an
extension of the North Diversion Channel; and the North Diversion Channel,
upstream from its confluence with Embudo Channel, was modeled as a
tributary. This was done because flow in the Embudo Channel is normally
much greater than in the North Diversion Channel upstream from the conflu-
ence. Cross-section geometry was developed from data provided in Design
Memorandums No. 4 and 5 (USAED Albuquerque 1964, 1965) and from as-
built plans of the Embudo Channel provided by the Albuquerque Metropolitan
Arroyo Flood Control Authority (AMAFCA). A channel profile of the
modeled reaches of the concrete-lined channels is shown in Figure 16. Each
asterisk in Figure 16 represents a cross-section location in the numerical
model.

Bear and Domingo Baca Arroyos were modeled for about one mile
upstream from their confluences with the North Diversion Channel. These
were modeled primarily to obtain calculated sediment inflow from these
unlined channels. Cross sections for the improved portion of the Bear Arroyo
were based on plans provided by AMAFCA. Cross sections in the unim-
proved sections of Bear Arroyo were developed from 1973 topographic maps,
with 2-ft-contour intervals, which were provided by AMAFCA. Cross
sections for the Domingo Baca Arroyo were developed from the same
topographic maps.

The designated movable beds for the trapezoidal cross sections in the
numerical model were adjusted to account for deposition. This was accom-
plished by adding extra points on each side slope to define the movable-bed
width. The purpose of these adjustments was to obtain, as much as possible,
a horizontal bed across the bottom of the channel without significant deposi-
tion on the side slopes (Figure 17). Initially, the movable-bed width was set
to allow for a deposition depth of 1 ft for all cross sections. Final movable-
bed width designations were determined iteratively; adjustments were based on
calculated deposition from the previous iteration.
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Figure 16. Channel profile for North Diversion and Embudo Channels

Hydrology

Discharge hydrographs are simulated in the numerical model by a series of
steady-state events. The duration of each event is chosen such that changes in
bed elevation due to deposition or scour do not significantly change the
hydraulic parameters during that event. Simulating the rapidly rising 100-
year-frequency flood in the North Diversion Channel required relatively short
computational time-steps. Computational time-steps as short as 1 minute were

used.

The 100-year-frequency flood hydrograph, used in the TABS-1 sedimenta-
tion model, was developed by the Albuquerque District (USAED Albuquerque
1992) using the HEC-1 hydrologic model. The hydrograph calculated using
storm centering No. 1 (Plate 1), which produced the largest discharges in the
North Diversion Channel, was used in the TABS-1 numerical model. Peak
discharges used in the numerical model are listed in Table 1. Storm centering
No. 4 (Plate 2), which produced the largest discharges on the Embudo water-
shed, was used to determine the peak discharges and runoff from the Embudo
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Figure 17. Movable bed widths in numerical model

tributaries. The HEC-1 model was also used by the Albuquerque District to
develop a flood hydrograph for the July 1988 historical flood runoff. Peak
discharges determined using the HEC-1 model with reported rainfall data
produced a peak runoff in the North Diversion Channel downstream from
Embudo Arroyo considerably higher than the peak discharge of 7,250 cfs
reported by the USGS. After a systematic study (USAED Albuquerque
1992), it was concluded that the difference in 1988 flood peak results was
most likely due to errors in the stream gage data. The HEC-1 hydrograph
was used in the TABS-1 sedimentation model to calculate sediment deposition
for the July 1988 storm, which was in turn compared with reported sediment
removal records for the Embudo Channel. The 100-year-frequency hydro-
graphs for storm centering No. 1 and for the July 1988 storm are shown in
Plates 3 and 4, respectively.

Storm centerings No. 2 and No. 3 (Plates 5 and 6) were used to obtain
maximum runoff for some tributaries to the North Diversion Channel.
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Table 1
Peak Discharges, 100-Year-Frequency Flood
Discharge
Location Station cfs
North Diversion Channel 18+90 20,700
68+00 19,900
97 +95 19,300
150+00 18,500
193+50 17,800
215+00 16,700
249+00 15,700
343+00 13,800
412450 2,400
Camino Arroyo 800
La Cueva Arroyo 1,300
Domingo Baca Arroyo 1,400
North Pino Arroyo 1,100
South Pino Arroyo 1,400
Bear Arroyo 1,200
Hahn Arroyo 5,700
{includes Grantline
and Vineyard Arroyos)
Embudo Arroyo 12,100

Maximum volume hydrographs were used to calculate sediment yield with the
MUSLE as reported in Chapter 3 of this report and in Tables A5-A14.

The downstream water-surface elevation for the numerical model was
calculated at sta 18+90 assuming normal depth. Cross-section geometry,
slope, and the roughness coefficient of 0.030 for the normal depth calculation
were taken from Design Memorandum No. 4 (USAED Albuquerque 1964).

Bed Material Gradations

The arroyos that feed into the North Diversion Channel are coarse-sand-
and-gravel-bed streams. Twenty-seven bed samples were collected from
various locations in the watershed by removing the top 1/2 in. of surface
material and then collecting about a 6-in.-deep sample with a shovel.
Nineteen samples were collected by engineers from the Albuquerque District
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and WES in 1990 and 1992. Eight additional samples were collected by RCE
as part of the geomorphic study. Bed-material gradation data are listed in
Table 2; sampling locations are shown in Plate 7.

Analysis of the gradation data showed no obvious longitudinal variation in
bed-material size. Any downstream tendency for streambed fining was
obscured in the normal scatter of gradation data attributed to sampling tech-
nique. The arroyo beds upstream of Tramway Boulevard were just about as
coarse as the arroyo beds at the confluence with the North Diversion Channel.
Samples collected from reservoir fan deposits also showed no significant
variation. All of the bed-material samples were used to develop an average
bed-material gradation, which is shown along with an envelope of all the
samples taken in Figure 18. The average bed-material gradation was used to
calculate sediment-transport capacity in the unlined channels.

Sediment Inflow

The geomorphic and sediment yield studies determined that the primary
sources of sediment to the Embudo and North Diversion Channels are bed and
bank erosion in the unlined arroyos. Localized sources are created when
developments significantly alter the natural sediment regime and induce the
creation or expansion of gully erosion. The primary sediment sources are:

a. Embudo Arroyo upstream from Monte Largo.

b. North Glenwood Hills Arroyo.

¢. South Glenwood Hills Arroyo Tributary.

d. Embudito Arroyo.

e. Piedra Lisa Outlet Channel.

f. Bear Canyon Arroyo at the North Diversion Channel.

g. Domingo Baca Arroyo at the North Diversion Channel.

Measured Sediment Concentrations

Regression equations were developed from the measured data for sand and
fines at the USGS gage on the North Diversion Channel near Alameda.
Separate regression equations were developed from the data with discharges
greater than 600 cfs and combined with the regression curves for the total data
set. This action is necessary to provide reasonable values when sediment con-
centrations are determined from extrapolation of the regression equations.
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Table 2

Bed Material Gradation Data from Three Sources

Grain Size, mm

Sample No. |Location dgs d, d,s
1990 WES Sediment Impact Assessment
E1 Embudo Arroyo d/s Embudo Dam 5.0 2.0 0.37
E2 Embudo Channel at NDC 2.0 0.7 0.46
Albuquerque District and WES (1992)
1 Embudo Arroyo d/s Embudo Dam 7.2 3.2 0.35
2 Pino Arroyo at NDC 5.3 2.3 0.50
3 Pino Arroyo u/s Tramway Blvd.{south trib.} 2.3 1.0 0.35
4 Pino Arroyo at Albuquerque Academy 4.2 1.9 0.41
5 Domingo Baco at NDC - 5.3 1.5 0.27
6 Bear Arroyo d/s San Mateo Blvd. 6.0 2.0 0.47
7 NDC at Edith Blvd. 6.6 2.1 0.51
8 Pino Arroyo at Eubank Basin 4.0 1.5 0.50
9 Bear Arroyo u/s Wyoming Blvd. 4.1 1.6 0.54
10 La Cueva Arroyo u/s San Pedro Rd. 3.6 1.2 0.23
11 Pino Arroyo at Wyoming Blvd. Basin 7.3 2.1 0.40
12 Pino Arroyo u/s Tramway Blvd.(north trib) 6.2 2.2 0.61
13 Bear Arroyo at John B. Robert Reservoir 3.8 1.4 0.30
14 Bear Arroyo at NDC 4.2 1.5 0.17
17 La Cueva Arroyo d/s Eagle Rock Ave. 3.0 1.3 0.23
18 South Domingo Baca u/s Bobcat Rd. 3.8 1.8 0.568
19 Lomas Channel u/s concrete lining 2.7 1.3 0.41
Resource Consultants and Engineers {1993)
CA1 Camino Arroyo at NDC 6.0 1.3 0.40
NLC1 La Cueva Arroyo u/s of Airport 3.7 1.2 0.21
DB1 Domingo Baca u/s of NDC 5.0 1.7 0.30
SDB1 South Domingo Baca at Holbrook St. 3.7 1.3 0.30
NGH1 N. Glenwood Hills d/s Montgomery Blvd. 5.5 2.0 0.25
HV1 u/s Hidden Valley Detention Basin 4.3 2.3 0.40
NOTE: NDC = North Diversion Channel.

u/s = upstream

d/s = downstream

(Continued)
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Figure 19. This curve was used to determine the wash-load sediment inflow

The adopted sediment concentration rating curve for wash

Wash load is defined in this study to be material less

to the numerical model.
than 0.25 mm in diameter

and it was assumed to be supplied from all the

b

tributaries regardless of their stage of improvement. For tributaries with no

calculated bed-material (material greater than 0.25 mm in diameter) inflow,

the medium sand fraction from the measured load was included as sediment

inflow.
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Figure 19. Measured suspended sediment rating curve in North Diversion Channel
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Size class distributions for the wash load were determined from the particle
size analyses of the measured suspended sediment data. A sand-silt break was
established for all the samples, but a complete particle size analysis was con-
ducted for only four samples. The average size class fractions for the four
data sets are tabulated below.

Size Class Range, mm Fraction
Clay < 0.004 0.22
Very-fine and fine silt 0.004 - 0.016 0.1
Medium and coarse silt 0.016 - 0.062 0.36
Very-fine sand 0.062 - 0.125 0.24
Fine sand 0.125 - 0.25 0.06
Medium sand 0.25 -0.50 0.01

These fractions were used to determine the size class breakdown of the wash
load in the numerical model.

Sediment-Transport Functions

Several sediment-transport equations are available in the TABS-1 numerical
model in which transport is calculated by size class for all the sediment-
transport functions. If the original equation was developed as a representa-
tive-grain-size equation, TABS-1 treats each size class separately, ignoring the
hiding effect. This may lead to excessively high transport rates initially.
However, the hydraulic sorting and armoring algorithm in the numerical
model partially accounts for the hiding effect. The sediment-transport equa-
tions tested for the Albuquerque Arroyos sediment study were the Yang
(1973,1984), Ackers-White (1973), a combination of Toffaleti (1968) and
Schoklitsch (Shulits 1935), a combination of Toffaleti and Meyer-Peter and
Muller (1948), Madden’s 1985 modification of the Laursen equation (Madden
1993), and Copeland’s modification of the Laursen equation (Copeland and
Thomas 1989). The equations based on the Toffaleti and Laursen methods
were specifically developed for size-class analysis.

RCE developed a new sediment-transport function to calculate sediment
yield. The new equation, called the Mussetter equation herein, calculates bed
load by size class using the Meyer-Peter Muller equation as modified by the
U.S. Bureau of Reclamation (1960). Suspended load is calculated for the
median size of the bed material only; the gradation of the suspended load is
assumed to be the same as the gradation of the bed. The effect of high sedi-
ment concentration is considered by using the modifications to the Rouse
(1937) equation proposed by Woo, Julien, and Richardson (1988). The thick-
ness of the bed layer for the reference concentration is computed based on the
ratio of the shear velocity to the critical shear velocity for the median particle
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size as proposed by Karim and Kennedy (1983). The Mussetter equation is
not available in the HEC-6 program, but calculated sediment transport using
the equation was compared with that calculated using other sediment transport
equations.

Available data were insufficient to establish an appropriate sediment-
transport function for the Albuquerque Arroyos. Several different transport
functions were tested to determine the variation in calculated transport rates
that could be expected under a range of hydrologic conditions. Two were
eventually chosen for use in the TABS-1 numerical model; the Laursen-
Copeland function was used to represent a high sediment-loading condition,
and the Yang function was used to represent a low sediment-loading condi-
tion. Rationale for choosing these equations is given in Chapter 6 of this

report.
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6 Numerical Model
Circumstantiation

July 1988 Flood

Deposition in the Embudo Channel was calculated with TABS-1, using
several sediment-transport functions and a synthetic flood hydrograph for the
July 1988 flood. The hydrograph was developed using the HEC-1 hydrologic
model. Observations during the July 1988 flood indicated that almost all of
the sediment supplied to the Embudo Channel, at its confluence with the
North Diversion Channel, came from the unlined Embudo Arroyo channel
downstream from Monte Largo Drive. (Since the 1988 flood, this section of
Embudo Arroyo has been concrete-lined.) In the TABS-1 simulation of the
July 1988 flood, sediment inflow of bed-material sizes was assumed to come
only from the unlined portion of the Embudo Arroyo downstream from Monte
Largo Drive. Sediment-transport capacity was calculated for an average cross
section just upstream from the 1988 concrete-lined channel. Geometry for
this cross section was developed from 1:6,000-scale topographic mapping with
2-ft-contour intervals, dated 1980. The base width of the trapezoidal channel
was 20 ft; the channel side slope was assumed to be 1V:2H; and the channel
slope was 0.053. The Manning’s roughness coefficient was assigned a value
of 0.05. The average bed-material gradation shown in Figure 18 was used in
the calculations. The finer sediment sizes that do not appear in significant
quantities in the bed should be considered as wash load and should be
excluded from sediment-transport calculations. Einstein (1950) recommended
that the lowest 10 percent of the bed-material gradation be excluded when
calculating bed-material load. In the Albuquerque Arroyos study only sedi-
ment sizes greater than 0.25 mm were considered as bed-material load.
Further, only 50 percent of the calculated medium sand fraction was included
when the Laursen-Copeland function was employed to determine sediment
inflow. Sediment inflow rating curves developed for several sediment-
transport functions are shown in Figure 20. The TABS-2 model did not
extend to Monte Largo Drive; therefore, the calculated sediment inflow
associated with the hydrograph at Monte Largo was shifted to account for the
routing time to the upstream boundary of the numerical model. Sediment
sizes less than 0.25 mm were assumed to be supplied according to the meas-
ured concentration data from the USGS gage near Alameda.

Chapter 6 Numerical Model! Circumstantiation




i R I A R S AR X A D B R L MO CiTiTTTTOTTIC -
H_ m“_-H-u---m-u-LH“
. SO N DU B
4 T S S IO ©
| v 1 1 1]
} ._H_ .
i TMEN
: B3RS
“ BSERRE T
! WHFMOM
RISEOR
e N R “
AR 13 =0
ey 3
SRS
¥ LVIonR
Il AATMU
3 £ N3
14 &S -1
1 & ST
S i i VS A A N S R R P R N
E M%WWMMM!!}
1+ Qo dae
i b4
11 P . . . sEsTe
i ;
i A VA B N NV \ N S S B A oTT T
1
.......... [N A
1]
t
t
“lllllulz
H
1
1
.......... oL
T v
.u Llllulllllulv
T It e «
R Rk R el bttt b ot ol e R R ah i e LR e bt SRR Rl T -
1 1 1 ]
T | pintials Rkt sl mt ol sl el it i i B S iy Sk Nl Bl [ ahaiaalte o @
1 1 1 ]
i [ T ©
." 1] 1 i
) [t TRt
1 1] 1 1
] ] 1 1
+ fEp— ———b————1
1 1 1 1
1 1 T 1]
1 ] 1] ]
) 1 ] ]
1] ] 1 1
T =T it ettty
1] 1 ] 1
1 ] 1 )
1 1 1 1
1 1 1 1
1 1 ] ]
+ 1 Ll 1]
' . i
t +— “
o
S
Y

AVA/SNOL NI INAWIAIS

100

10

DISCHARGE IN CFS

Figure 20. Sediment inflow rating curves—Embudo Arroyo

The exact quantity of deposition in the Embudo Channel between
sta 412450 and sta 437+40 during the July 1988 flood is uncertain. Channel

sediment removal in the Embudo Channel had last been recorded on 2 January

, after the July 1988 flood,
300 cu yd of sediment was removed.

According to local sources, most of this material was deposited as a result of

1985. The next reported sediment removal

occurred on 31 March 1989, when 8

b

it is uncertain if significant quantities of sedi-

ment were eroded by or deposited by subsequent flows.

2

the July 1988 storm. However

Comparing reported sediment deposition with calculated deposition using

b

Madden

Laursen-
, and Yang equations produced results within 50 percent

2

-1, the Laursen-Copeland

six equations from TABS

Schoklitsch
of the reported quantity of 8

Toffaleti-

300 cu yd. The Laursen-Copeland equation

overestimated deposition while the other equations underestimated deposition.

k4

Calculated sediment depositions in Embudo Channel between sta 412+ 50 and

437440 for the July 1988 flood using these six transport equations are

tabulated below.
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Sediment Deposition

Sediment-Transport Function cu yd

Ackers - White 700
Laursen - Copeland 11,300
Laursen - Madden 6,600
Toffaleti - Meyer-Peter and Muller 3,800
Toffaleti - Schoklitsch 6,300
Yang 4,500

Wyoming Boulevard Basin

Calculated sediment yields into the Wyoming Boulevard Basin were com-
pared with measured deposition. Without any measured runoff data, the meas-
ured and calculated depositions cannot be compared directly; only qualitative
comparisons of results are possible. Sediment yield was calculated by
integrating the 100-year-frequency hydrograph and sediment-transport rating
curves using the SAM (Thomas, Copeland, Raphelt, and McComas, in pre-
paration) computer program. In this test both storm centerings Nos. 1 and 2
were used. Storm centering No. 1 produces the largest discharges in the
North Diversion Channel. Storm centering No. 2 produces the largest dis-
charges on South Pino Arroyo at the Wyoming Basin. The hydrographs were
taken from the HEC-1 hydrologic model. The sediment-transport rating curve
for the Mussetter equation was taken from the RCE report. Sediment-transport
rating curves for the other sediment-transport functions were based on
geometry developed by RCE from 1988 topographic mapping (1 in. = 300 ft
scale). Hydraulic variables were calculated using the SAM computer program
with the Brownlie equations to determine bed roughness, with an assigned
bank roughness coefficient of 0.08. The average bed-material gradation
shown in Figure 18 was employed in the calculations; only sediment sizes
greater than 0.25 mm were considered as bed-material load. Only 50 percent
of the medium sand fraction was used with the Laursen-Copeland function.
The sediment-transport rating curves are shown in Figure 21.

The Wyoming Boulevard Basin was completed in July 1991. Since that
time two sediment surveys have been taken by Bohannan-Huston, Inc. of
Albuquerque. From these surveys RCE computed approximately 3,360 tons
of sediment accumulation in the basin between July 1991 and March 1992,
and an additional 2,140 tons between March 1992 and March 1993. Accord-
ing to AMAFCA personnel' the watershed above Wyoming Boulevard Basins
experienced unusually large storms during both periods.

! Cliff Anderson, personal communication with RCE, 1993.
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The trap efficiency of the Wyoming Boulevard Basin was calculated using
the Hazen method. The basin was assumed to have no sediment deposits for

the calculations. Removal percentages calculated for each size class for the

-year-flood peak discharge (storm centering No. 1) are tabulated below.
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The trap efficiency will be greater at lower discharges, but it will decrease
as the basin fills. Almost all of the bed-material load that enters the basin is
trapped. Bed-material load is material greater than 0.25 mm.

When one considers that nearly all of the inflowing bed-material load will
be trapped in the Wyoming Boulevard Basins, the calculated yields from the
100-year-frequency flood should be considerably higher than the yields meas-
ured between July 1991 and March 1993. Results from the Laursen-Copeland
equation showed the calculated sediment yield for the 100-year-frequency
flood to be more than seven times greater than the average of the annual
deposits when storm centering No. 1 is used and more than 13 times greater
than the average of the annual deposits when storm centering No. 2 is used.
Sediment yields calculated using the Toffaleti combinations were more than
two or three times the average of the annual deposits with storm centerings
No. 1 and 2, respectively. For storm centering No. 1, flood yields calculated
using the Mussetter and Yang equations were less than two times the average
of the annual deposits. For storm centering No. 2, sediment yields calculated
using the Yang equation were greater than two times the average of the annual
deposits, and about six times the average when the Mussetter equation was
used. The 100-year-frequency-flood sediment yields calculated using the
Laursen-Madden and Ackers-White equations for both storm centerings were
about the same as those reported between July 1991 and March 1992. These
two equations can be eliminated from consideration for this application. The
Toffaleti-Meyer-Peter and Muller equation was eliminated from consideration
because it underestimated deposition in Embudo Channel during the July 1988
flood simulation. Results are tabulated below.

Calculated Sediment Yield at Wyoming Boulevard
Basin, 100-year-Frequency Hydrograph, tons
Sediment-Transport Function Storm Centering No. 2 Storm Centering No. 1
Ackers - White 4,340 3,210
Laursen - Copeland 36,710 19,550
Laursen - Madden 4,680 2,080
Mussetter 16,370 4,570
Toffaleti - Meyer-Peter and Muller 9,500 6,300
Toffaleti - Schoklitsch 10,780 6,090
Yang 7.580 4,014

Sediment-Transport Function Evaluation

Data are insufficient to adjust the numerical model or to determine the
appropriate sediment inflow. Different sediment transport equations predict
different sediment loads and different deposition quantities. Circumstantiation
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tests conducted using data from the July 1988 flood in Embudo Channel and
in the Wyoming Boulevard Basin indicate that reasonable results can be
obtained from the Laursen-Copeland, Toffaleti-Schoklitsch, and Yang equa-
tions. The Mussetter equation is not available in the TABS-1 program and
therefore was eliminated from consideration in this study. The Laursen-
Copeland function gave higher results in both tests and the Yang equation
gave lower results. These two equations were used to evaluate the 100-year-
frequency flood.

Sediment inflow rating curves used for the numerical model are shown in
Plates 8 through 18. Separate rating curves were developed for the rising and
falling limbs on Embudo Arroyo. This was necessary because the numerical
model boundary did not extend to the end of the lined channels in the Embudo
system and sediment routing had to be accomplished external to the model.
This was done using output from the HEC-1 hydrology model by routing
sediment transport quantities with the flow from sediment-contributing
tributaries to the upstream boundary of the numerical model.

Chapter 6 Numerical Model Circumstantiation




7 Numerical Model Results

The TABS-1 numerical model was used to evaluate deposition and its
effect on channel roughness in the North Diversion and Embudo Channels.
Sediment inflow was composed of wash load and bed-material load. Wash
load was based on measured sediment concentrations at the USGS gage in the
North Diversion Channel at Alameda. Sediment inflow of bed-material load
was calculated assuming equilibrium conditions at the upstream boundaries.
Bed-material inflow was calculated for Embudo, Bear Canyon, and Domingo
Baca Arroyos.

Due to the lack of calibration data, sediment inflow and deposition quanti-
ties cannot be predicted with certainty. Sensitivity studies were conducted
using a reasonable range of sediment loadings. Sediment loadings were deter-
mined by calculating sediment-transport capacity in the unlined channels just
upstream from the end of concrete-lined sections. These calculations were
made assuming normal depth and equilibrium sediment-transport potential in a
representative cross section. High sediment loading was calculated using the
Laursen-Copeland sediment-transport function, and low sediment loading was
calculated using the Yang sediment transport function. In most cases, sedi-
ment yields calculated using the Laursen-Copeland function were similar to
sediment yields calculated in the geomorphic study using the Mussetter
equation.

Sediment Deposition

Sediment deposition rates in the North Diversion and Embudo Channels
are significantly greater during the recession of the flood hydrograph. The
HEC-1 model indicated that the flood flows, which preceded the peak dis-
charge, occur primarily from local urban runoff. High sediment loads from
the upstream unlined arroyos begin to reach the confluence of the Embudo and
North Diversion Channels coincidental with the peak flow. High sediment
loads continue through the recession of the flood hydrograph.

Results were similar for both loading conditions in the North Diversion
Channel downstream from its confluence with Embudo Channel. At the peak
flow, with both a high and low sediment loading, less than 0.5 ft of sediment

Chapter 7 Numerical Model Resuilts

63




64

had deposited in the North Diversion Channel between the Embudo confluence
and sta 252+00. About 1 ft of sediment had deposited in a short reach just
downstream from the Domingo Baca confluence at sta 150+00. Sediment
deposition should be considered when calculating a roughness coefficient for
these reaches of the channel, but it is not necessary to modify channel
geometry for the hydraulic capacity calculations.

Sediment deposition depths in the Embudo Channel were greater than in
the North Diversion Channel, and the quantity of sediment deposition
depended on the prescribed sediment loading. The results from the high
sediment loading are recommended for design calculations. Most of the
deposition occurred during the recession of the flood hydrograph, but enough
deposition had taken place by the time the peak flow occurred to require
modification of cross-section shape for the hydraulic capacity calculations.
Deposition depths calculated using the TABS-1 numerical model, with the
maximum loading condition, at the peak of the 100-year-frequency flood, are
shown in Table 3. It is recommended that these data be used to develop a
smooth deposition profile line to modify cross-section shape for the hydraulic
capacity calculations.

Sediment deposition increased during the recession of the flood hydro-
graph. Calculated deposition depths at the end of the flood are shown in
Table 4 for both the high and low sediment loadings. Calculated deposition
quantities in the North Diversion and Embudo Channels for the 100-year-
frequency flood were 49,000 cu yd for the high loading condition and
23,000 cu yd for the low loading condition. Calculated deposition quantities
in the North Diversion Channel Outlet were 67,000 cu yd and 34,000 cu yd
for the high and low loading conditions, respectively. These deposits reduce
channel capacity in two ways: by reducing the cross-sectional flow area, and
by increasing the boundary roughness. The variation of stage and bed eleva-
tion during the 100-year-frequency flood at sta 437+40 in the Embudo Chan-
nel is shown in Figure 22. These variations at other stations in the Embudo
and North Diversion Channels are shown in Plates 19-23.

Design Roughness Coefficients

Manning’s roughness coefficients in the numerical model were determined
in a progressive fashion, by considering the increasing effect of boundary
roughness with increasing deposition in the concrete-lined channel during the
course of the 100-year-frequency flood. The model was run several times,
increasing roughness coefficients as sediment deposition increased. This
makes the roughness coefficients in the model unique to the particular hydro-
graph and sediment loading used in the study. The effect of deposition on
channel roughness was most significant in the Embudo Channel due to the
greater quantity of deposition and because the deposited material was coarser
than the material deposited in the North Diversion Channel. Calculated bed-
material gradation at the upstream end of the deposition zone in the Embudo
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Table 3

Deposition in Embudo and North Diversion Channels At Peak of
100-Year-Frequency Flood, High Sediment Loading

Discharge Deposition
Station cfs ft
Embudo Channel
437 +40 12,100 3.7
432+95 2.5
428 + 00 2.0
423+ 00 1.5
418+00 1.0
North Diversion Channel Downstream from Embudo
412+50 13,800 0.8
410+00 0.5
405 +00 0.4
400+ 00 0.3
395+00 0.2
390+00 0.2
385+29 0.2
380+00 0.2
375+00 0.2
370+00 0.2
365 +00 - 0.1
358+13 0.1
350+00 0.1
343+00 0.0
North Diversion Channel Downstream from Domingo Baca
155400 19,300 0.0
150+ 00 0.1
145+ 00 0.1
140+00 1.0
135+ 00 0.1
130+ 00 0.0
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Table 4 N
Deposition in Embudo and North Diversion Channels At End of 100-

Year-Frequency Flood

Deposition, ft, Above Invert

Station High Loading Low Loading
Embudo Channel

437440 20.2 6.3
432495 14.1 4.3
428 +00 11.4 3.6
423+00 10.0 2.8
418+00 7.4 2.0
North Diversion Channel

412+50 6.8 1.8
410400 6.0 1.4
405 +00 4.8 1.0
400+00 3.9 0.6
395 +00 3.2 0.3
390+00 2.6 0.2
385+29 2.4 0.1
380+00 1.8 0.1
375+ 00 1.5 0.1
370+00 1.2 0.1
365+00 1.0 0.1
358+13 0.7 0.0
350+00 0.6 0.1
343+00 0.5 0.2
339+00 0.0 0.0

Channel, for the 100-year-frequency peak, is compared with the calculated
bed-material gradation at sta 412+50 in the North Diversion Channel in
Figure 23. The coarseness of the calculated bed-material gradation decreased
longitudinally down the channel, and the calculated gradations at a given point
became coarser with the progression of the hydrograph. A bed-material
sample obtained from the Embudo Channel after the July 1988 flood is shown

in Figure 23.
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The Manning’s roughness coefficient was calculated external to the
TABS-1 numerical model by compositing the roughness of the concrete side
slopes with the bottom deposits of sand. The Einstein-Horton compositing
equation was used:

where

Subscripts 1 and 3

(14)

n = composite roughness coefficient for the cross section

P = wetted perimeter

associate variables with the side slopes

Subscript 2 = channel bottom

67
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Roughness for concrete was calculated using resistance equations based on
the Keulegan and Colebrook-White equations as recommended in EM 1110-2-
1601 (USAEHQ 1991). The equations have been modified here to calculate
Manning’s roughness coefficient directly:

1
N = -1.486 R?
32.6 log,, (A+B)

1
1.048 R?®

4= 7 R 10074
(15)

k,
B=___
R 10"

_ 4RV
14

R

where
R = hydraulic radius, ft
V = average channel velocity, fps

v = kinematic viscosity, fps

x
1l

roughness height, ft

™
1l

Iwagaki’s coefficient for smooth flow

A, = Iwagaki’s coefficient for rough flow
Iwagaki’s coefficients vary with Froude Number (Chow 1959). A roughness
height of 0.007 ft was assigned for calculating maximum water-surface eleva-

tions, as recommended in EM 1110-2-1601.

When sediment deposits completely covered the concrete bottom, bed
roughness was calculated using the Brownlie resistance equations.

For lower regime flow:
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0.1374
16
n = |1.6940 _.IS. SOz 501605 | () 03443 (16)
d50 &
For upper regime flow:
0.0662 17
n = |1.0213 d£ §0-0395 o,g0.1282 0.034d5%167 17)
50

=
1

hydraulic radius, ft
d;, = median grain size, ft
S = energy slope
o, = geometric standard deviation of the bed sediment

These equations, which account for both grain and form roughnesses, were
developed for alluvial channels.

The sediment bed gradation used in the Brownlie equation was calculated
with the TABS-1 model. The calculated bed gradation varied longitudinally in
the channel, with the coarser gradations at the upstream end of the Embudo
Channel. Bed gradations were finer in the North Diversion Channel, resulting
in lower calculated roughness coefficients. The bottom width of the channel
increases with deposition in the Embudo Channel. This results in an addi-
tional increase in roughness due to the increased fraction of the wetted
perimeter composed of sediment. The calculated variations of Manning’s
roughness coefficient with discharge for the maximum sediment loading condi-
tion for three reaches of the North Diversion Channel and the Embudo Chan-
pel are shown in Figures 24-27. Roughness may decrease with discharge, in
channel sections with sediment deposition, because as depth increases with
discharge, a lessor percentage of the channel wetted perimeter is covered by
sediment in the trapezoidal channel. In order to demonstrate the influence of
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Figure 24. Variation of Manning’s n with depth of sediment deposit, North Diversion
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Table 5
Recommended Design Roughness Coefficients, Maximum Water-
Surface Elevations

Station Discharge Manning Roughness
ft cfs Coefficient

North Diversion Channel

51+50-97+94 19,300-20,700 0.017
97 +94-252+00 15,900 - 19,300 0.017
252+00-412+50 13,800-15,900 0.017

Embudo Channel

412 +50-437+40 12,100 0.019

deposited sediment on the roughness coefficient, a roughness coefficient for a
sediment-free channel is also shown in the figures.

Recommended design roughness coefficients for calculating maximum
water-surface elevations for the 100-year peak discharge, listed in Table 5,
vary between 0.017 for the North Diversion Channel and 0.019 for Embudo
Channel. Recommended design values were rounded up from the calculated
values shown in the figures. Increased roughness due to curvature of the
channel was not considered in the above calculations. The roughness coeffi-
cient in Embudo Channel would increase with increased deposition and with
falling discharge.

A lower design roughness coefficient was calculated to determine maxi-
mum velocities. The channel was considered to be sediment free for maxi-
mum velocity conditions, and a k, of 0.0002 ft was selected for the roughness
height. This k, value is considerably lower than recommended in EM 1110-2-
1601 for maximum velocity calculations. However, recent prototype data
collected by the Los Angeles District (Stonestreet, Mulvihill, and Copeland
1993) suggest that this lower value is possible in concrete-lined channels, such
as the North Diversion Channel. Data from the North Diversion Channel at
Alameda USGS gage also support this lower k, value. The recommended
design Toughness coefficient for maximum velocity is 0.011.

Effect of Additional Sediment Inflow at Camino
Arroyo

Currently (1993), gravel mining operations have left a very large depres-
sion upstream from the Camino Arroyo Inlet. The depression will effectively
trap any sand or larger sediment before it reaches the North Diversion
Channel. Therefore, the numerical model did not include any medium sand
or greater inflow at Camino Arroyo Inlet.
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It is possible that future development could result in concrete channels
through the existing depression that are capable of delivering sediment to the
North Diversion Channel. This scenario was tested with the numerical model.
Camino Arroyo has two branches upstream from Interstate Highway 25.
Channel geometry was estimated from ortho-topo maps for both of these
channels, and sediment transport capacity was calculated using both the Yang
and Laursen-Copeland sediment-transport functions. The calculated transport
rates were combined to establish a rating curve for the Camino inlet. The
numerical model was then run to assess the effect of the increased sediment
loading during the 100-year-frequency flood.

Calculated results indicated an insignificant change in water-surface eleva-
tion at the peak, but there was increased deposition in the North Diversion
Channel at the end of the flood. Differences in calculated water-surface
elevations were less that 0.1 ft for simulations using both transport functions.
There was no sediment deposition in the vicinity of the Camino Inlet during
the peak. Most of the sand load that entered the channel from Camino
Arroyo deposited downstream in the North Diversion Channel or in the outlet.
However, at the end of the 100-year-frequency flood, there was an increase in
deposition for about 1,000 ft upstream from the Camino Inlet. The total
increase in deposition at the end of the flood was about 10,600 cu yd using
the Laursen-Copeland function and about 5,000 cu yd using the Yang func-
tion. The maximum increase in bed elevation occurred using the Laursen-
Copeland function; 600 ft upstream from the inlet, an increase in deposition of
1.2 ft was calculated. Construction of a sediment trap or debris basin at the
inlet to the concrete channel would reduce or eliminate the increased deposi-
tion in the North Diversion Channel. An economic study comparing mainte-
nance costs related to increased deposition in the North Diversion Channel and
in a sediment trap would determine which is more practical.
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8 Conclusions and
Recommendations

Conclusions

A geomorphic analysis was conducted to assess the stability of the arroyos
that drain into the North Diversion Channel and to determine the primary
sources of sediment. The arroyos located on the alluvial mesa are naturally
unstable in that they fluctuate between episodes of aggradation and incision.
Sediment transport through the system depends to a great extent on antecedent
local topography and the duration and magnitude of flood events. Urbaniza-
tion of the watershed has resulted in greater runoff and greater concentration
of flows, and these factors tend to increase erosion potential. However,
flood-control measures that include detention dams, concrete-lined channels,
channel stabilization, and sediment traps have compensated for the hydrologic
effects and the overall trend is reduced erosion from the urbanized area. As,
a result, the primary sources of sediment to the North Diversion Channel are
bed and bank erosion in the unlined arroyos.

Sediment yield was calculated for each watershed that drained into the
North Diversion Channel. Estimates of both wash load and bed-material load
were calculated. Yields were compared with detention reservoir capacity.
There is no generally accepted method for calculating sediment yield, so
several methods were used to calculate yield and compared with limited
measured data.

Limited measured data from natural arroyos in the Albuquerque Arroyo
drainage area, and in similar areas, indicated suspended sediment concentra-
tions as high as 300,000 mg/1, with average concentrations on the order of
47,000 mg/l. Limited data indicated that between 12 and 21 percent of this
suspended load was sand or larger sized sediment. Due to the effects of
urbanization, measured suspended sediment concentrations in the North Diver-
sion Channel itself were considerably lower, ranging between 300 and 15,000
mg/1; about 30 percent of the measured suspended load was sand or larger
sized sediment. The measured data must be considered approximate due to
sampling difficulties in flashy arroyos, the uncertainty associated with the
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equipment used, the lack of bed-load measurements, and the lack of an
adequate range of sampled discharges.

Reservoir surveys and deposition in the North Diversion Channel were
used to determine an estimate of average-annual sediment yield. Two deten-
tion reservoirs in the vicinity of Albuquerque had measured sediment yields of
0.16 and 0.28 acre-ft/square mile/year over 30- and 12-year monitoring
periods, respectively. Based on haul records, sediment is deposited in the
North Diversion Channel at the rate of 0.20 acre-ft/square mile/year. These
rates compare with a calculated sediment yield of 0.58 acre-ft/square mile/
year using measured suspended sediment records on the natural arroyos.

The haul record data indicate a general decline in annual sediment deposi-
tion in the North Diversion Channel. This is attributed to the construction of
detention dams and lined channels in the Albuquerque Arroyos study area.

Calculated sediment yields using methods in which surface erosion is the
primary source produced generally low sediment yields. Using the SCS soil
erosion rates, an average-annual sediment yield of 0.23 acre-ft/square mile/
year was calculated. Sediment yields calculated using MUSLE averaged about
0.11 acre-ft/square mile/year. Rainfall simulator experiments on the natural
watershed produced runoff with concentrations less than 1,000 mg/1.

Sediment yield calculated assuming equilibrium sediment-transport capacity
in the arroyos produced results more in line with measured data. Bed-material
load was calculated using a sediment-transport equation and combined with
wash-load concentrations determined using MUSLE. Average annual yields at
the canyon mouths were high, ranging between 1.02 and 0.88 acre-ft/square
mile/year. Downstream near the confluence with the North Diversion Chan-
nel, sediment yields ranged between 0.53 and 0.03 acre-ft/square mile/year;
the drainage areas with the fewest flood control improvements had the greatest

yields.

Sediment yields from mountainous drainage areas for the 100-year-
frequency storm were calculated using the Tatum and Los Angeles District
methods. Concentrations were high using these methods, but existing deten-
tion structures had sufficient capacity to contain the sediment loads.

Trap efficiencies for the detention structures and sediment traps were
estimated. These results were used to determine inflow into the North Diver-
sion Channel. The detention structures had calculated trap efficiencies between
88 and 96 percent. In the larger reservoirs, almost all of the sediment larger
than 0.0625 mm is trapped. The sediment traps effectively remove between
62 and 74 percent of the sediment larger than 0.0625 and almost all of the
sediment larger than 0.50 mm. :

Deposition and scour in the North Diversion and Embudo Channels were
modeled with a numerical sedimentation model. The effect of deposited sedi-
ment on conveyance and roughness was determined. The model was
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circumstantiated using data from the July 1988 storm where 8,300 cu yd of
sediment deposition was reported in the Embudo Channel. Sediment inflow
into the model was calculated by means of two sediment-transport equations,
one of which produced calculated sediment deposition about 45 percent lower
than the reported, and another which produced calculated sediment deposition
about 35 percent higher than the reported deposition. These amounts were
employed in the numerical model to provide high and low estimates of 100-
year-frequency flood deposition. This type of sensitivity analysis is necessary
due to the high degree of uncertainty associated with the sediment data.

Sediment deposition can be expected in the North Diversion and Embudo
Channels during the 100-year-frequency storm. The high sediment load
assumption is recommended for design purposes. At the flood peak, less than
a foot of deposition would occur in the North Diversion Channel for a
distance of about 7,000 feet downstream from the Embudo confluence.
Deposition in the Embudo Channel at the peak would range from 1.0 ft at the
North Diversion Channel confluence to 3.7 ft at the supercritical chute,
located 1,900 ft upstream. Less than a foot of deposition in the North Diver-
sion Channel downstream from Domingo Baca was calculated at the peak of
the 100-year-frequency flood. At the end of the 100-year-frequency flood,
deposition in Embudo Channel ranged between 7.4 and 20.2 ft. In the North
Diversion Channel, deposition ranged between 6.8 ft at the Embudo Conflu-
ence and 0.5 ft, 7,000 ft downstream.

Because of the limited deposition in the North Diversion Channel at the
flood peak no adjustment to the conveyance is required to compute 100-year-
frequency water-surface profiles. However, in the Embudo Channel, cross-
section geometry should be adjusted for water-surface calculations.

Roughness coefficients at the peak of the flood were calculated analytically
external to the numerical model using compositing techniques. At the peak of
the flood, recommended Manning’s roughness coefficients ranged between
0.017 and 0.019 when the depth of deposition in the channel was less than
1 ft. Roughness coefficients increase with deposition, up to 0.030. These
high roughness values are attributed to bed forms. There is a decline in these
high roughness coefficients with increasing discharge because the percentage
of channel wetted perimeter covered by sediment decreases with water depth
in the trapezoidal channel.

Recommendations

The following recommendations are made for a data collection program
that would be useful for future sedimentation studies.

a. Install a continuous recorder stream gage upstream from the Wyoming
Street Basin on South Pino Arroyo. Monitor deposition in the basin
following major runoff events. This survey should include sediment
density and size class determinations. Data from such a data collection
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effort would be especially useful in determining an appropriate sedi-
ment-transport equation for arroyos in Albuquerque.

. Conduct periodic reservoir surveys in order to monitor storage capacity

and to determine sediment yield. The survey data should include sedi-
ment density determinations.

. Survey and monitor the sediment traps after storm events to assess the

need for removal and to aid in assessing their trap efficiencies. Bed-
material gradations should be determined.

. A cooperative program with the USGS to collect suspended sediment

data at the North Diversion Channel] gaging station would be useful.
Correlations with the pumping sampler samples and samples collected
using a standard US P-61 sampler would prove useful.

. Hydrologic studies should be conducted to determine the effect of

reduced storage due to sediments for design or analysis of the arroyos
downstream from detention dams.

Chapter 8 Conclusions and Recommendations
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Table A2

Measured Sediment Concentrations Composite Samples

Percent
Concentration Finer

Location {Source) Date mg/l 0.0625 mm
Tijeras Canyon ' 1937-1947 58,000 88
Embudo Arroyo 1953 9,000-29,000
Manzano Mtns Arroyo ' 16,000
North Diversion Channel 2 1982-1991 300-15,000 70
Tortugas Reservoir * 1963-1974 57,800°
Bernalillo Reservoir * 1956-1974 176,700°

*Calculated from measured outflow and deposition.

' USAED Albuquerque 1956.

2 USGS 1982, 1983.

3 Funderburg and Roybal 1977.
4 Funderburg (1977)




Table A3

Measured Sediment Concentrations Upstream from Bernalillo

Reservoir’
.Discharge Concentration Percent Finer

Date cfs mg/l 0.0625 mm
1952 20 278,000 53

1957 30 13,400 63

1957 25 4,000 100

1957 _' 21,700 86

1957 - 10,800 89

1959 30 66,400 76

1959 10 24,500 91

1963 - 61,400 79

1963 - 65,400 95

1963 - 48,300 91

1964 20 85,800 65

1964 1 85,300 57

' Funderburg 1977.




Table A4
Unofficial Sediment Yields by Soil Type (SCS)

Soil Sediment Yield Sediment Yield
Classification {acre-ft/acre/yr) {acre-ft/square mile/yr
Badland 0.006250 4.00
Rough Broken Land 0.003125 2.00
Bluepoint 0.001063 0.68
Caliza 0.001220 0.78
Wink 0.000648 0.41
Madurez 0.000648 0.41
Caja 0.001328 0.84
Witt 0.000440 0.28
Monzano 0.000500 0.32
Hap 0.000312 0.20
Embudo 0.000462 0.30
Tijeras 0.000358 0.23
lldefonso 0.000688 0.44
Dean 0.000375 0.24
Laporte 0.000645 0.41
Travessilla 0.000680 0.43
Pajarito 0.000224 0.14
Pino 0.001047 0.67
Wilcoxson 0.000491 0.31
Supervisor 0.000491 0.31
Akela 0.000687 0.44
Alemada 0.000453 0.29
Salas 0.000250 0.16
Scholle 0.000203 0.13
Washoe 0.000203 0.13
Tome 0.000547 0.35
Adelino 0.000547 0.35
Atrisoc 0.000488 0.31
Gila Irrigated Bottom Land

Vinton Irrigated Bottom Land

Agua Irrigated Bottom Land
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Table A6
Summary of K Values Used in MUSLE Computations

Percent Silt/Clay (<0.074 mm)
Soil Type K Minimum Maximum
Bluepoint-Kokan Association, hilly (BKD} 0.12 3 20
Embudo, gravelly fine sandy loam, 0.5% 0.15 25 50
slopes (Emb)
Embudo-Tijeras complex, 0-9% slopes (EtC} 0.21 28 54
Tijeras gravelly fine sandy loam, 1-56% slopes 0.19 35 65
(TgB)
Wink-Embudo complex, 0-5% slopes (WeB) 0.27 28 43
Cut and fill land (Cu) 0.40 26 47
Madurez-Wink Association, gently sloping 0.27 36 52
{(MWA) . ,
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Table A17

Tatum Method Input Parameters

Drainage

Drainage Density Hypso- Maximum

Area Slope mile/square metric 3-hr Rain
Location square mile ft/mile mile Index in.
Embudo Dam 3.39 870 1.84 0.37 1.98
Piedra Lisa Dam 0.56 1255 2.54 0.36 2.28
Glenwood Basins 0.20 1709 4.27 0.32 2.28
Hidden Valley 0.12 1490 3.88 0.48 2.28
Basin
J.B. Robert Dam 10.19 503 1.92 0.48 1.82
Pino Dam 6.02 599 2.43 0.31 1.92
South Domingo 4.49 779 2.73 0.27 1.96
Baca
North Domingo 1.59 654 3.34 0.14 2.17
Baca
Downstream from 0.57 1148 2.56 0.29 2.28
Embudo Dam
South  Glenwood 0.13 1817 4.03 0.32 2.28
Hills Trib.
North Glenwood 0.67 1259 1.65 0.50 2.28

Hills




Table A18

Los Angeles District Method Input Parameters

Drainage Relief One-hour Unit Peak
Area Ratio Rainfall Discharge
Location acres ft/mile 100*in. cfs/square mile
Embudo Dam 2,169 870 206.5
Piedra Lisa Dam 3568 1,255 202
Glenwood Basins 125 1,709 202
Hidden Valley Basin 74 1,490 202
John B. Robert Dam 6,524 503 157.0
Pino Dam 3,852 599 166.2
South Domingo Baca 2,876 779 178.0
North Domingo Baca 1,020 654 313.7
Downstream from 362 1,148 202
Embudo Dam
South Glenwood Hills 85 1,817 202
Trib.
North Glenwood Hills 432 1,259 202




Appendix B
Description of TABS-1
Computer Program

The computer program TABS-1 calculates water-surface profiles and
changes in the streambed profile. Water velocity, water depth, energy slope,
sediment load, gradation of the sediment load, and gradation of the bed sur-
face are also computed. Water-surface profile and sediment movement calcu-
lations are fully coupled using an explicit computation scheme. First, the
conservation of energy equation is solved to determine the water-surface pro-
file and pertinent hydraulic parameters (velocity, depth, width, and slope) at
each cross section along the study reach:

* o (B1)
_ail -+ ___—25._ = S
oX aX

where

H = water-surface elevation

X = direction of flow

o = coefficient for the horizontal distribution of velocity
V = average flow velocity

g = acceleration due to gravity

S = slope of energy line

In addition, the continuity of sediment material is expressed by

G g P, (B2)
X ar
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where

G = rate of sediment movement, cu ft/day
X = distance in direction of flow, ft
B = width of movable bed, ft
y, = change in bed surface elevation, ft
t = time, days
q, = lateral inflow of sediment, cu ft/ft/day

The third equation relates the rate of sediment movement to hydraulic
parameters as follows:

G = AV.y.B.S,Td,»d,.P) (B3)

where

y = effective depth of flow

T = water temperature
d; = effective grain size of sediment mixture
d,; = geometric mean of class interval

P, = percentage of i* size class in the bed

The numerical technique used to solve Equation B1 is commonly called the
Standard Step Method. Equation B2 has both time and space domains. An
explicit form of a six-point finite difference scheme is utilized. Several equa-
tions of the form of Equation B3 are available. These transport capacity equa-
tions are empirical and G is determined analytically.

Equation B2 is the only explicit equation, but it controls the entire analysis
by imposing stability constraints. Several different computation schemes were
tested, and the six-point scheme proved the most stable. No stability criteria
have been developed for this scheme. The rule of thumb is to observe the
amount of bed change during a single computation interval and reduce the
computation time until that bed change is tolerable.

Oscillation in the bed elevation is a key factor in selecting a suitable com-
putation interval. The computation time interval must be made short enough
to eliminate oscillation. On the other hand, computer time increases as the
computation interval decreases. The proper value to use is determined by
successive approximations, running test cases, and observing the amount of
bed change.

Several supporting equations are required in transforming the field data for
the computer analysis. The Manning equation is used to evaluate friction loss.
Average geometric properties are combined, using an average end area
approach, into an average conveyance for the reach. Manning’s roughness
coefficients are entered for the channel and both overbanks and may be
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changed with distance along the channel, discharge, or stage. Contraction and
expansion losses are calculated as "other" losses by multiplying a coefficient
times the change in velocity head. All geometric properties are calculated
from cross-section coordinates.

Only subcritical flow may be analyzed in the computer program; however,
zones of critical or supercritical flow may occur within the study reach. The
program treats supercritical zones as "critical” for determination of water-sur-
face elevation, but calculates hydraulic parameters for sediment transport
based on normal depth. Critical depth in a section with both channel and
overbank is defined as the minimum specific energy for that section assuming
a level water surface. Starting water-surface elevations can be input as a
rating curve with stage and discharge, or stage can be set for each specific
time interval. Steady-state conditions are assumed for each time interval,
although the discharge may be changed to account for tributary inflow. A
hydrograph is simulated by creating a histograph of steady-state discharges,
using small time intervals when discharge variations are great and longer time
intervals when changes in water and sediment discharges are small.

In some cases the temperature of water can be an important parameter in
sediment transport and, consequently, may be prescribed with each water dis-
charge in the hydrograph. Flexibility of input permits a value to be entered as
needed to change from a previous entry.

Geometry is input into the numerical model as a series of cross sections
similar to the widely used HEC-2 backwater program (U.S. Army Engineer
Hydrologic Engineering Center 1990"). A portion of the cross section is
designated as movable and a dredging template may also be specified. Spac-
ing of cross sections is somewhat more critical for TABS-1 than it is for
HEC-2 because of numerical stability problems. Long reach lengths are desir-
able because reach length and computation interval are related. Very short
time intervals may be required if excessive bed changes occur within a specif-
ic reach. No special provisions are available to calculate head losses at
bridges. The contracted opening may be modeled such that scour and deposi-
tion are simulated during the passing of a flood event, but calculated results
must be interpreted with the aid of a great deal of engineering judgment and
sensitivity analysis.

Four different sediment properties are required: (a) the total concentration
of suspended and bed loads, (b) grain-size distribution for the total concentra-
tion, (c) grain-size distribution for sediment in the streambed, and (d) unit
weight of deposits. A wide range of sediment material may be accommodated
in the transport calculations (0.004 mm to 64 mm). '

The usefulness of a calculation technique depends a great deal upon the
coefficients which must be supplied. As in HEC-2, Manning’s n values,

! References cited in this appendix are included in the References at the end of the main text.

B3
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B4

contraction coefficients, and expansion coefficients must be provided to
accomplish the water-surface profile calculations. Several other coefficients
are required for sediment calculations as follows:

a. The specific gravity and shape of sediment particles must be specified.

b. The bed shear stress at which silt or clay particles begin to move and
deposit are required coefficients.

c. The unit weight of silt, clay, and sand deposits is somewhat like a
coefficient because of the difficulty in measuring. Also, the density
changes with time.

All of the sediment-related coefficients have default values because sedi-
ment data seem to be much more scarce than hydraulic data. There are fewer
sources for generalized coefficients. All of the default values should be
replaced by field data where possible, and the input data are structured for
such a process.
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