
Experience with a Course on Architectures for
Software Systems

Part II: Educational Materials

David Garlan, Mary Shaw, Jose Galmes

August 1994
CMU-CS-94-178

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This report also appears as Carnegie Mellon University, Software Engineering Institute Techni-
cal Report CMU/SEI-94-TR-20, ESC-TR-94-020.

Abstract

This report contains the materials used by the instructors to teach the course CS 15-775: Archi-
tectures for Software Systems in Spring 1994 in the School of Computer Science at Carnegie Mellon
University. The materials include the lecture slides, questions (with answers) on readings, and
homework assignments (with sample solutions).

©1994 David Garlan and Mary Shaw

Development of this course was funded in part by the Department of Defense Advanced Research Project
Agency under grant MDA972-92-J-1002, by the Wright Laboratory, Aeronautical Systems Center, Air Force
Materiel Command, USAF, under ARPA grant number F33615-93-1-1330, and by National Science Founda-
tion Grants CCR-9357792 and CCR-9112880. It was also funded in part by the Carnegie Mellon University
School of Computer Science and Software Engineering Institute (which is sponsored by the U.S. Department
of Defense) and Siemens Corporate Research.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the U.S. Government, the
Department of Defense, Carnegie Mellon University, or Siemens. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon.

■',W!*.'.vrt^wr*,l»,.1-fcir ^ u 19950404 152

Keywords: Software Architectures, Software Engineering Education, Software Design.

Computer Science

Experience with a Course on Architectures for
Software Systems.

Part II: Educational Materials

David Garlan, Mary Shaw, Jose Galmes

August 1994
CMU-CS-94-178

$RfE \WRjQ
$1995]

ittSri

Carnegie
Mellon

Table of Contents

Subject
Introduction

Lecture: Architectures for Software Systems

Lecture: What is a Software Architecture Anyhow?

Lecture: Information Hiding, Abstract Data Types, Objects

Lecture: Modular Decomposition Issues: KWIC

Lecture: Formal Models

Lecture: Data Flow Architectures: Batch Sequential and Pipeline Systems

Lecture: A Case Study in Pipe/Filter Systems: The Tektronix Experience

Lecture: Pipe/Filter Systems (A Formal Approach)

Lecture: Communicating Process Architectures

Lecture: Communicating Sequential Processes

Lecture: Models of Event Systems

Lecture: Event Systems: Formal Model and Implementation

Lecture: Repositories: Blackboard Systems

Lecture: Client-Server Architectures

Lecture: Repositories: Information System Evolution Patterns

Lecture: Mixed Use of Idioms in Software Architectures

Lecture: Innovations in Module Interconnection Languages

Lecture: Component Composition and Adaptation

Lecture: Architectural Construction Languages

Lecture: Connection Formalisms

Lecture: Layered Architectures: Network Protocols

Lecture: An Architectural Evaluation of User Interface Tools

Lecture: Design or Default: Decision Strategies for Software System Design

Questions and Answers on Readings

Assignment 1: KWIC Using an Object-Oriented Architecture

Assignment 2: KWIC Using a Pipe-Filter Architecture

Assignment 3: KWIC Using an Implicit Invocation Architecture

Assignment 4: Formal Models: Event Systems

Course Project

Section
l

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

M<si SfcilGii

mis GRA&J
D'JIC TAB
Ifc.annc \ ~n. c c< d
Just Iflealion_

a
D

By.
ßiiftribiMofi/

SO

Avsila&Ility Codes
i [Avail end/or
paßt j Sgsaial

H _JL

Experience with a Course on Architectures for Software Systems

1. Introduction
It has been two years since we wrote the first part of this technical report as Experiences with a Course on
Architectures for Software Systems: Parti: Course Description (CMU-CS-92-176, CMU/SFJ-92-TR-17,
ESC-TR-92-017). Part I contained the rationale behind the coarse, a course description and a course
evaluation. This report contains the educational materials used in nie course CS 1S-77S: Architectures for
Software Systems, taught in the Spring 1994 term at Carnegie Mellon University.

The course has now been taught three times to a large number of students. As we anticipated in Part I, we
have reorganized the course since its first version. First, the lectures have been factored along themes of
architectural idioms. In the first offering of the course die lectures were divided into three major topics:
introduction, notations and tools, and formal models and analysis techniques. The resuU was that each idiom
was touched three times. Now all aspects of an architectural idiom are covered in a series of contiguous
lectures. Second, the course project now consists primarily of an architectural design for a system with
which the students are familiar (preferably one on which they are working), rather than an architectural
analysis of an existing system.

The course is now sufficiently mature that a book covering most of the reading materials will be published
this fall by Prentice Hall under the tide Software Architecture: Perspectives on an Emerging Discipline.

1.1 Organization of the document

This document is divided into 3 parts: slides, questions and answers on readings and homework.

Sections 2 through 24 contain the slides used for teaching most of the lectures in die course. You'll notice
that some lectures are omitted; they correspond to lectures given by guest lecturers.

Section 25 contains the questions (with answers) for each lecture in the course. There were no questions for
a few lectures. Those correspond either to those given by guest lecturers or to class sessions in which there
was no lecture (e.g., we used the session for project or homework discussions and presentations).

Sections 26 through 30 contain the homework assignments of the course. This consists of four homework
assignments and a course project For each homework we include the problem description and a sample
solution chosen among those turned in by the students.

1.1. Acknowledgments

We would like to thank all the students in the Suing '94 CS 15-775: Architectures for Software Systems,
and especially those who contributed with sample solutions to the homework assignments.

We would also like to thank the guest lecturers for the course: Gregory Abowd, Robert Allen, Robert
DeLine, Stuart Feldman, John Ockerbloom, Reid Simmons, Bennett Yee, and Gregory Zelesnik.

Experience with a Course on Architectures for Software Systems 1-1

Experience with a Course on Architectures for Software Systems 1-2

CMU CS 15-775

Garian&Shaw

Architectures for Software Systems

Course Information

Spring 1994

February 9,1994

Class Meetings
Monday and Wednesdays, 10:30-11:50
Wean 3420

Instructors
David Garten
garlan@csxmu.edu
WeH 8020 (x8-5056)
Office Hours: Mon 9:30-10:30
Secretary: Cary Lund, WeH 8106, (x8-3853)

Mary Shaw
mary.shaw@csxmu.edu
WeH 8109 (x8-2589)
Office Hours: Wed 3:00-3:30, Th 10:30-11:00
Secretary: Elizabeth Brown, WeH 8107 (x8-3063)

Teaching Assistant
Jose (Pepe) Galmes
galmes@csxmu.edu
WeH 4615 (#26) (x8-3826)
Office Hours: Thu 4:00-5:00

Objectives
Architectures for Software Systems aims to teach you how to design, understand, and evaluate systems at an
architectural level of abstraction. By the end of the course you should be able to:

• Recognize major architectural styles in existing software systems.

• Describe an architecture accurately.

Generate architectural alternatives for a problem and choose among them.

• Construct a medium-sized software system that satisfies an architectural specification.

• Use existing definitions and development tools to expedite such tasks.

• Understand the formal definition of a number of architectures and be able to reason precisely
about the properties of those architectures.

• Use domain knowledge to specialize an architecture for a particular family of applications.

1.4of2A»/94

Experience with a Course on Architectures for Software Systems 1-3

Organization
Lectures. Class will meet Monday & Wednesday, 10:30-11:50 am, in WeH 3420.

Computing Some of the assignments will make use of tools that are part of the SCS software engineer,
ing environment You will need an account on an SCS SunOS machine to use these tools. If you are
an MSE student you will already have such an account Other students should see the instructor after
the first class to get an application form. There is a document that describes the MSE tool facilities,
available from your instructor.
We will be setting up a class af s directory that will contain various templates and documents that will
be helpful in completing your homework.

Communication. You will need to read the course bulletin board cmu.cs.class.cs775 regularly. We
welcome e-mail about the course at any time.

Readings There is no required textbook for this course. Instead, we will use a collection of readings that
will be distributed over the course of the semester. There will be a charge to cover the cost of duplica-
tions The readings for the first half of the course (lectures 1-13) will be $20. Elizabeth Brown in
WeH 8107 will collect money and distribute the readings. Readings for the second half of the course
will be distributed later, probably in the same fashion.

Grading. The course grade will be determined as a combination of four factors:
• Readings: (25%) Each lecture will be accompanied by one or more readings, which we

expect you to read before you come to class. To help you focus your thoughts on the main
points of the reading we will assign one or two questions to be answered for each of the read-
ing assignments. Each question should be addressed in less than a page, due before the class
for which it is assigned. You can e-mail your solutions to Pepe (galmes@cs.cmu.edu) or torn
in hard copy at the beginning of class. Each of these will be graded on a OK/not-OK basis,
and will count for about 1 % of your grade.

• Homework Assignments: (40%) There will be four homework assignments. Each will
count 10% of your grade. The first three will be system building exercises. Their purpose is
to give you some experience using architectures to design and implement real systems. You
will work in groups of three (assigned by us) to carry out each assignment To help clarify
your designs we will hold a brief, un-graded design review for each assignment during class a
week before it is due. Groups will take turns presenting their preliminary designs and getting
feedback from the class and instructors. The fourth assignment will give you some practice
using formal models of software architectures.

• Project: (25%) There will be a course project designed to give you some experience with
the architecture of a substantial software system. You design and analyze a new software
system from an architectural point of view, document your work, and present the results to the
rest of the class. Your grade will depend both on the quality of your design and analysis, and
also on its presentation.

• Instructors' judgment: (10%)

Important Assignment Dates:

Assigned Discuss Due Tonic

1 1/26 2/2 219 Objects

2 2/9 2/16 2/25 Pipes

3 2/23 3/7 3/14 Events

4 3/14 3/21 4/6 Formal Models

Project 2/21 4/4, 4/6 3/23 progress
4/25 final

Design Task

Experience with a Course on Architectures for Software Systems 1-4

Schedule
f Date Topic
*l T1A1 Introduction

2 Wl/12

3 Ml/17

4 Wl/19 ProcCall

5 Ml/24

6 Wl/26

7 Ml/31 Data Flow

8 W2/2

9 M2/7

10 W2/9

11 M2/14 Processes

12 W2/16

13 M2/21 Events

14 W2/23

*15 W3/2

16 M3/7 Repositories

17 W3/9

18 M3/14

19 W3/16 Interpreters

20 M3/21 Connections

21 W3/23

*22 M4/4

23 W4/6

24 M4/11 Specific
Architectures

Suhtftpic and Reading Assipnmpnt
Overview and Organization

What is Software Architecture?
[GS93 (sec 1-3), Shaw93 (sec 1), PW92]
Classical Module Interconnection Languages
[DK76.PN86]
Information Hiding and Objects
IPCW85,Boo86]
Modular Decomposition Issues: KWIC
IPar72]
Formal Models
[Sha85,Spi89,AAG93]
Batch Sequential and Pipeline Systems
[Shaw93 (sec 2.intro, 2.1,3Jntro, 3.1,3.2)]
Tektronix Case Study
[GS93(sec4.2),GD90]
Implementation Using Unix Pipes
[Bac86]

Formal Models for Data Flow
[AG92]
Communicating Process Architectures
[And91]
Formal Models for Processes
[Hoa85]
Models of Event Systems
[GKN92.GN91]
Architecture for Robotics
[Sim93]
Implementation of Event Systems
[Rei90,NGGS93]
Blackboard Systems
[NÜ86]

Databases and Client-Server Systems
[GR93, Mul93, C-S93a,b,c]
Evolution of Shared Information Systems
[Eco93, Mor93, Shaw93(all)]

Interpreters and Heterogeneous Systems
[GS93 (sec 4.4,4.5,4.6,5), Wie92]
Newer MILs
[Per87,GC92,Mak92]
Interlace Matching
[PA91,Bea92,NHWS91]
Connection Languages
[SG93, Sha94a, Sha+94b]
Connection Formalisms
[AG94]
Telephony Architectures
[TBD3]

Al distributed

Al discussion

A2 distributed

Al due

A2 discussion

Project distributed

A2 due on 2/25
A3 distributed

A3 discussion

A3 due
A4 distributed

A4 discussion

Project progress report

Project discussion

A4 due
Project discussion

Experience with a Course on Architectures for Software Systems 1-5

25 W4/13

26 M4/18

27 W4/20 Design Guidance

28 M4/25 Projects

29 W4/27

Layered Architectures: OSI
[Tan81]
User Interface Architectures
[Abowd94]
Design Assistance
[Laii90,ASBD92]

Final Presentations
Final Presentations

Project Due

* marks classes that follow a holiday

References
[AAG93] Gregory Abowd, Robert Allen, and David Garlan. Using Style to Understand Descriptions of

Software Architecture. In Proc First ACM SIGSOFT Symposium on the Foundations of
Software Engineering, December 1993.

[AKB94] Gregory Abowd, Rick Kazman, and Len Bass. Evaluating the Properties of User Interface
Software through Architecture. Submitted for publication, February 1994.

[AG92] Robert Allen and David Garlan. Towards Formalized Software Architectures. Carnegie Mellon
University Computer Science Technical Report CMU-CS-92-163, July 1992.

[AG94] Robert Allen and David Garlan. Formalizing Architectural Connection. In Proc Sixteenth
International Conference on Software Engineering, 1994.

[And91] Gregory R. Andrews. Paradigms for Process Interaction in Distributed Programs. ACM
Computing Surveys, 23(l):49-90, March 1991.

[ASBD92] Toni Asada, Roy F. Swonger, Nadine Bounds, and Paul Duerig. The Quantified Design Space:
A Tool for the Quantitative Analysis of Designs. Carnegie Mellon University Computer
Science Technical Report CMU-CS-92-213, November 1992.

[Bac86] Maurice J. Bach.77u; Design of the Unix Operating System, Chapter 5.12, pp. 111-119.
Prentice-Hall Software Series, 1986.

[Bea92] Brian Beach. Connecting Software Components with Declarative Glue. Proc. 14th
International Conference on Software Engineering, 1992.

[B0086] Grady Booch. Object-Oriented Development IEEE Trans, on Software Engineering, SE-
12(2):211-221, February 1986.

[C-S93a] Maryfran Johnson. Editor's Note. Client/Server Journal, 1(1), November 1993, p.3.

[C-S93b] Jerrold Grochow. Living with the Legacy. Client/Server Journal, 1(1), November 1993, p.8.

[C-S93c] Hugh Ryan. Sticker Shock! Client/Server Journal, 1(1), November 1993, pp. 35-38.

[DK76] Frank DeRemer and Hans H. Kron. Programming-in-the-Large versus Programming-in-the-
Small. IEEE Trans, on Software Engineering, SE-2(2):80-86, June 1976.

[Eco93] The Computer Industry. The Economist, Feburary 27th, 1993.

[GC92] David Gelernter and Nicholas Carriero. Coordination Languages and Their Significance.
Communications of the ACM, 35(2):97-107, February 1992.

[GD90] David Garlan and Norman Delisle. Formal Specifications as Reusable Frameworks. In
VDM'90: VDM andZ- Formal Methods in Software Development. Springer-Verlag, LNCS
428,1990.

[GKN92] David Garlan, Gail Kaiser, and David Notkin. Using Tool Abstraction to Compose Systems.
IEEE Computer, 25(6), June 1992.

[GN91] David Garlan and David Notkin. Formalizing Design Spaces: Implicit Invocation Mechanisms.
In VDM'91-.Formal Software Development Methods, Springer-Verlag, LNCS 551,1991.

Experience with a Course on Architectures for Software Systems 1-6

[GR93] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[GS93] David Garlan and Mary Shaw. An Introduction to Software Architecture. In V. Ambriola and
G. Tortora (eds), Advances in Software Engineering and Knowledge Engineering, Volume I,
World Scientific Publishing Company, 1993.

[Hoa85] C.A.R.Hoare. Communicating Sequential Processes. Prentice Hall 1985.

[Lan90] Thomas G. Lane. A Design Space and Design Rules for User Interface Software Architecture.
Carnegie Mellon University Software Engineering Institute Technical Report CMU/SEI-90-
TR-23.

[Mak92] Victor M. Mak. Connection: An Intercomponent Communication Paradigm for Configurable
Distributed Systems. In Proc. International Workshop on Configurable Distributed Systems,
March 1992.

[Mor93] Charles R. Morris and Charles H. Ferguson. How Architecture Wins Technology Wars.
Harvard Business Review, 71,2, March-April 1993, pp.86-96.

[Mul93] Sape Mullender. Distributed Systems. Second Edition, Addison-Wesley 1993.

[NHWS91] Gordon. S. Novak, Frederick N. Hill, Man-Lee Wan, and Brian C. Sayrs Negotiated Interfaces
for Software Reuse. IEEE Trans, on Software Engineering, 18(7):646-653,1991.

[NGGS93] David Notltin, David Garlan, William G. Griswold, and Kevin Sullivan. Adding Implicit
Invocation to Languages: Three Approaches. In Proc. JSST International Symposium on
Object Technologies for Advanced Software, Springer-Verlag, LNCS 742, November 1993, pp.
489-510.

INÜ86] H. Penny Nil Blackboard Systems. AI Magazine 7(3):38-53 and 7(4):82-107.

[PA91] James M. Purtilo and Joanne M Atlee. Module Reuse by Interface Adaptation. Software
•Practice and Experience, 21(6):539-556, June 1991.

[Par72] David L. Paraas. On the Criteria To Be Used in Decomposing Systems Into Modules.
Communications of the ACM, 15(12):1053-1058, December 1972.

[PCW85] David L. Paraas, Paul C. Clements, and David M Weiss. The Modular Structure of Complex
Systems. IEEE Trans, on Software Engineering, SE-11(3):259-266.1985.

[Per87] Dewayne £. Perry. Software Interconnection Models. In Proc. Ninth International Conference
on Software Engineering, IEEE Computer Society Press, March 1987.

[PN86] R. Prieto-Diaz and J. M. Neighbors. Module Interconnection Languages. Journal of Systems
and Software, 6(4), November 1986, pp. 307-334.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software Architecture.
ACM SIGSOFT Software Engineering Notes, 17(4):40-52, October 1992.

[Rei90] S. P. Reiss. Connecting Tools Using Message Passing in the Field Environment IEEE
Software, 7(4):57-66, July 1990.

[SG93] Mary Shaw and David Garlan. Characteristics of Higher-level Languages for Software
Architecture. Unpublished manuscript, 1993.

[Sha85] Mary Shaw. What Can We Specify? Questions in the Domains of Software Specifications. In
ProcThird International Workshop on Software Specification and Design, pp. 214-215. TRRR
Computer Society Press, August 1985.

[Sha93] Mary Shaw. Software Architecture for Shared Information Systems. Carnegie Mellon
University Software Engineering Institute Technical Report CMUISEI-93-TR-3, March 1993.

[Sha94a] Mary Shaw. Procedure Calls are the Assembly Language of Software Interconnection:
Connectors Deserve First-Class Status. To appear Proc Workshop on Studies of Software
Design, Springer-Verlag 1994.

Experience with a Course on Architectures for Software Systems 1-7

[Sha+94b] Mary Shaw et al. Abstractions for Software Architectures and Tools to Support Them.
Manuscript

[Sim93] Reid Simmons. Structured Control for Autonomous Robots. IEEE Transactions on Robotics
and Automation, 1993.

[Spi89] J. M. Spivey, An Introduction to Z and Formal Specification, Software Engineering Journal,

Jan 1989.
[Tan81] Andrew S. Tannenbaum. Network Protocols. ACM Computing Surveys, 13(4):453-489,

December 1981.

[Wie92] Gio Wiederhold. Mediators in the Architecture of Future Information Systems. IEEE
Computer, 25(3):38^9, March 1992.

Experience with a Course on Architectures for Software Systems 1-8

Architectures for
Software Systems

David Garlan
Mary Shaw

with assistance from

Pepe Galmes

Software Arddtectures -.

Why Should You Care?

Practical concern with the cost and
utility of software

Esthetic concern with the clarity of
system structure

Some systems with lousy algorithms
work really well

Some systems with great algorithms
are really lousy

Why?

\ Software Architectures:

Experience with a Course on Architectures for Software Systems 2-1

Distribution of Software Development
Costs

Integration
and test

Product
Design

Programming

^^ What's wrong with this picture?
\ Software Architectures ä=^==^=^==^=^=

Distribution of Total Software Costs

Product Design

Maintenance

Programming

Integration
and test

\ Software !Arcfdtectuxes:

Experience with a Course on Architectures for Software Systems 2-2

Allocation of Available Time

update document (6%)
review document (6%)

define/analyze change (18%)

trace logic (23%)

test & debug (28%)

/
implement change (19%)

Up to 50% of a maintenance programmer's time is spent in
analyzing and understanding existing code and documentation

\ Software architectures ;^======^=========^= =

Note on other slides

Here there will be some slides from the Field Guide to
American Houses, illustrating various styles and
geographical distribution, generally-useful techniques, and
design/implementation needed for some specific style.

\ Software Architectures ■.

Experience with a Course on Architectures for Software Systems 2-3

Analogy to Building Architecture

Architectural styles: Colonial, Victorian,
Greek Revival, etc.
> Software system organization paradigms

Building codes: electrical, structural, etc.
> Formal specifications

Special expertise for a given style: balloon
frames, slate roofs, etc.

> Domain-specific architectures

\ Software Arcfutectures ■,

Examples of Architecture Diagrams

Examples from literature:
2 all rectangles, all lines alike
3 several box shapes
4 nesting (some substructure shown)
5 adjacent boxes, no lines

\ Software architectures -.

Experience with a Course on Architectures for Software Systems 2-4

Typical Descriptions of
Software Architectures

"Camelot is based on the client-server model and
uses remote procedure calls both locally and remotely
to provide communication among applications and
servers." [Spector87]
"We have chosen a distributed, object-oriented
approach to managing information." [Linton 87]
"The easiest way to make the canonical sequential
compiler into a concurrent compiler is to pipeline the
execution of the compiler phases over a number of
processors." [Seshadri 88]
"The ARC network [follows] the general network
architecture specified by the ISO in the Open Systems
Interconnection Reference Model." [Paulk 85]

\ Software Architectures:

Observations about Designers

• They freely use informal patterns (idioms).
• They express these in diagrams as well as

prose.
• They behave compositionaliy, building

systems from subsystems.
• They tend to think about system structure

statically.
• They often select overall organization by

default, not by design.

\ Software Architectures:

Experience with a Course on Architectures for Software Systems 2-5

Aren't Programming Languages Good
Enough?

When orders-of-magnitude improvement are
required, new technology may be necessary J\

Km
\ Software.!Ar<Mtectures:

Software Design Levels: Programs

<5ööb"ö
Library Reuse

Soßware Architectures:

Experience with a Course on Architectures for Software Systems 2-6

Software Design Levels: Architecture

öööoo
Architectural Patterns

\ Software Architectures:

Elements of a Complete
Software System

User view of problem User Model

Software view of problem Requirement

Modules and connections Architecture

Algorithms & data structs Code

Data layouts, memory maps Executable

Software Architectures ——

Experience with a Course on Architectures for Software Systems 2-7

Architectural Design Levei of Software

• Deals with the composition of software
systems from module-scale elements

> Gross decomposition of required function
» What are the elements?
» How are they connected?

> Assignment of function to design elements
» What patterns of organization are useful?
» Which organization fits the application best?

> Scaling and performance
» capacities, flows, balance, schedules

> Selection among design alternatives
 ^ ». Which implementations of elements will work best?
\ Software. Architectures ==^=^^==== =

Architectural Design Task

Different issues for architecture & programs
Architecture

interactions among parts
structural properties
declarative
mostly static
system-level performance
outside module boundary

Programs
implementations of parts
computational properties
operational
mostly dynamic
algorithmic performance
Inside module boundary

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 2-8

Elements of a Complete
Software System

Analogy to Building Architecture

User view of problem User Model

Software view of problem Requirement

================

Modules and connections ^^i^^^^^m^^

Algorithms & data structs Code

Data layouts, memory maps Executable

Software !Arcfiitertures =====

• Architectural styles: Colonial, Victorian,
Greek Revival, etc.

> Software system organization paradigms

• Building codes: electrical, structural, etc.
> Formal specifications

• Special expertise for a given style: balloon
frames, slate roofs, etc.

> Domain-specific architectures

\ Software Ärc/Utectures-.

Experience with a Course on Architectures for Software Systems 2-9

Aren't Programming Languages Good
Enough?

Km

nan
□ an
□ □a
□ □a

ODD

ODD

□ □a
□ an to

When orders-of-magnitude improvement are
required, new technology may be necessary J\

Software Arcfiitectures:

Software Design Levels

CD. >3 ™*p*
CD O rfO 01
)OOOöo6oöooooc5ööoo

Library Reuse

\ Software ArcHitectures \

Experience with a Course on Architectures for Software Systems 2-10

Software Design Levels

Architectural Patterns

\ Software Architectures;

Experience with a Course on Architectures for Software Systems 2-11

Lecture 2
What Is A Software Architecture

Anyhow?

Mary Shaw

\ Software ßlrc/iitectures ■.

Distant Past Software Engineering

1960+5 1970±5
Programming-any-which-way Programming-in-the-small
Mnemonics, precise use of prose Simple input-output

specifications
Emphasis on small programs Emphasis on algorithms
Representing structure; symbolic Data structures and types

information as well as numeric
Elementary understanding of Programs execute once and

control flow terminate
State not understood apart from Small state space, symbolic

control or numeric
Program - collection of code Program ~ collection of

^^. functions
\ Software flrcfctectures ===== ===== —

Experience with a Course on Architectures for Software Systems 3-1

Past Software Engineering

1970±5
Programming-in-the-small
Simple input-output

specifications
Emphasis on algorithms

Data structures and types
Programs execute once and

terminate
Small state space, symbolic

or numeric
Program ~ collection of

functions

Software. Architectures -.

1980±5
Programming-in-the-large
Systems with complex

specifications
Emphasis on interfaces,

mgmt., system structure
Long-lived databases
Program assemblies execute

continually
Large structured state space,

symbolic or numeric
"Program" - collection of

components

Historically Useful Strategies

Underlying problem: limited capacity of the human
mind to deal with very much complexity at once.

Ways to cope:
• Abstraction

> Abstraction is forgetting (suppressing) detail

• Separation of concerns
> Find parts of a problem that can be solved separately

• Engineering tools
> Analysis and evaluation models
> Common design templates

• Progressive codification
^^> Identify, organize, and systematize useful patterns

\ Software j<lrcftttectuTes=:^=^==^=^==^=!^====^^=s=^

Experience with a Course on Architectures for Software Systems 3-2

Good Science Feeds Good Engineering

Folklore

Ad hoc solutions

\
New problems

Codification

/

Software Architectures -.
ioisics\

Models & theories

Improved practice

Abstraction Techniques

Abstraction: a simplified description, or
specification, of a system that emphasizes
some details and suppresses others

• A good abstraction emphasizes the right
detail.

• Examples:
> 1950's: mnemonic id's, macros & procedures
> 1960's: higher-level programming languages

algorithms & data structures
> 1970's: abstract data types & inheritance
> 1980's: generic definitions, packages
r^
\ Software Architectures ================================

Experience with a Course on Architectures for Software Systems 3-3

Leverage in Software Development

Requirements

. «^i>• — •'"-■'■■JV-

Herea (Mirade) happens

Code
\ Software ftrcfutectures -.

Leverage in Software Development

Requirements

Rrchitecture

Code
Software. Architectures =^=5^==^=^=^=^=^=^^=^=

Experience with a Course on Architectures for Software Systems 3-4

Elements of Architectural Descriptions

> The architecture of a system includes
> Components: define the locus of computation

» Examples: filters, databases, objects, ADTs

> Connectors: define the interactions between
components

» Examples: procedure call, pipes, event broadcast

» An architectural style defines a family of
architectures constrained by

> Component/connector vocabulary
> Topology
> Semantic constraints

Software Architectures;

Common Architectural Idioms

• Data flow systems
Batch sequential Pipes and filters

• Call-and-return systems
Main program & subroutines Object-oriented systems

Hierarchical layers

• Virtual machines
Interpreters Rule-based systems

• Independent components
Communicating processes Event systems

• Data-centered systems (repositories)
Databases Blackboards

• ... and more ...

\ Software Architectures ================

Experience with a Course on Architectures for Software Systems 3-5

Batch Sequential

Data Transformation

Data Flow

\ Software Sfacfiitectures -.

Classical data processing

Batch Sequential Systems

• Processing steps are independent
programs

• Each step runs to completion before next
step starts

• Data transmitted as a whole between steps
• Typical applications:

> classical data processing
> program development

\ Soßware Architectures -.

Experience with a Course on Architectures for Software Systems 3-6

Pipeline

Data flow.

<

JC
"ASCII stream

^=^>

Computation ^ j|ter

Software SircHitectitres -,

Pipes and Filters

• Filter
> Incrementally transform some amount of the

data at inputs to data at outputs
» Stream-to-stream transformations

> Use little local context in processing stream
> Preserve no state between instantiations

• Pipe
> Move data from a filter output to a filter input
> Pipes form data transmission graphs

• Overall Computation
> Run pipes and filters (non-deterministically)

^-*"\ until no more computations are possible.
\ Software fr<&tectures=s==========:====^=^^=^^===^=

Experience with a Course on Architectures for Software Systems 3-7

Main Program/Subroutine Pattern

broutines
Software Arcfatectures:

Call/return

Main Program and Subroutines

Hierarchical decomposition:
> Based on definition-use relationship

Single thread of control:
> Supported directly by programming languages

Subsystem structure implicit:
> Subroutines typically aggregated into modules

Hierarchical reasoning:
> Correctness of a subroutine depends on the

correctness of the subroutines it calls

\ Software ArcfutechiTes;

Experience with a Course on Architectures for Software Systems 3-8

Data Abstraction or Object-Oriented

Manager ADT

Proc call

obj is a manager

op is an invocation

\ Software ftrcfntectures-.

Object Architectures

• Encapsulation:
> Restrict access to certain information

• Inheritance:
> Share one definition of shared functionality

• Dynamic binding:
> Determine actual operation to call at runtime

• Management of many objects:
> Provide structure on large set of definitions

• Reuse and maintenance:
> Exploit encapsulation and locality

\ Software Architectures =—== ;=^====

Experience with a Course on Architectures for Software Systems 3-9

Layered Pattern

Usually
procedure ^alls/use^, systems

Composites of Users

^^ various elements
\ Software ftrcfatectvres ■=^==^=

Layered Patterns

Each layer provides certain facilities
> hides part of lower layer
> provides well-defined interfaces

Serves various functions
> kernels: provide core capability, often as set of

procedures
> shells, virtual machines: support for portability

Various scoping regimes
> Opaque versus translucent layers

\ Software. Ärcfutectures;

Experience with a Course on Architectures for Software Systems 3-10

Interpreter

Memory

Inputs

Computation
state mach

Program
Being

Interpreted

Outputs

\ Software Arcliitectuivs ■.

Data access
Fetch/store

Interpreters

• Execution engine simulated in software
• Data:

> representation of program being interpreted
>data (program state) of prog, being interpreted
> internal state of interpreter

• Control resides in "execution cycle" of
interpreter

> but simulated control flow in interpreted
program resides in internal interpreter state

• Syntax-driven design

\ Software Architectures =^^^=^=^=^= =^^=

Experience with a Course on Architectures for Software Systems 3-11

Communicating Processes

Composite

Link

proc is a process

msg is a message

\ Software.Architectures:

Communicating Processes

• Components: independent processes
> typically implemented as separate tasks

• Connectors:message passing
> point-to-point
> asynchronous and synchronous
> RPC and other protocols can be layered on top

Software ftrcftitectures -.

Experience with a Course on Architectures for Software Systems 3-12

Repository: Database

C batch .Synch/select

Input sources

query/update

Memory

\ Software Arcfutectures:

Classical Databases

• Central data repository
> Schemas designed specifically for application

• Independent operators
> Operations on database implemented

independently, one per transaction type
> Interact with database by queries and updates

• Control
> Transaction stream drives operation
> Operations selected on basis of transaction

type

Software Architectures:

Experience with a Course on Architectures for Software Systems 3-13

Repository (Blackboard)

Direct access omputation

\ Software Arc/iitectures ■.

The Blackboard Model

• Knowledge Sources
> World and domain knowledge partitioned into

separate, independent computations
> Respond to changes in blackboard

• Blackboard Data Structure
> Entire state of problem solution
> Hierarchical, nonhomogeneous
> Only means by which knowledge sources

interact to yield solution

• Control
> In model, knowledge sources self-activating

r—*
\ Software Architectures :^=sss=^===^=^=^

Experience with a Course on Architectures for Software Systems 3-14

Comparison of System Patterns

System Model Components Connections

Pipeline
stream -> filters (local
stream processing)

Data abstraction (object-oriented)
localized servers procedure
state maint (ADTs, objs) call

Repository
central 1 memory
database N processes

Interpreter
virtual
machine

Control Struct

data flow data flow
ASCII streams

decentralized,
single thread

direct access internal or
or proc call external

state mach, fetch,
two memories store

input-driven

Software Architectures ■.

Common Architectural Idioms

Data flow systems
Batch sequential

Call-and-return systems
Main program & subroutines
Hierarchical layers

Virtual machines
Interpreters

Independent components
Communicating processes Event systems

Data-centered systems (repositories)
Databases Blackboards

... and more ...

Pipes and filters

Object-oriented systems

Rule-based systems

Software Architectures;

Experience with a Course on Architectures for Software Systems 3-15

Important Ideas

• Common patterns for system structure
> pure type forms, allowing variation
> Identifiable types of subsystems and interactions

• Decomposition and heterogeneity:
> patterns also describe subsystem structure
> subsystem pattern * system pattern;

• independence:
> system patterns and subsystem functions don't

depend on application

• Fit to problem:
> problem characteristics guide choice of structure

\ Software Arc/iitectures =^=^^==^=^^=^==

Architectural Design Level of Software

• Deals with the composition of software
systems from module-scale elements

> Gross decomposition of required function
» What are the elements?
» How are they connected?

> Assignment of function to design elements
» What patterns of organization are useful?
» Which organization fits the application best?

> Scaling and performance
» capacities, flows, balance, schedules

> Selection among design alternatives
^^y » Which implementations of elements will work best?
\ Software Sirc/utectures ===^=1^^^=^^=^^==^^==

Experience with a Course on Architectures for Software Systems 3-16

Architectural Design Task

Different issues for architecture & programs
Architecture Programs

interactions among parts implementations of parts
structural properties computational properties
declarative operational
mostly static mostly dynamic
system-level performance algorithmic performance
outside module boundary Inside module boundary

\ Software Sirchitectures:

Leverage in Software Development

Requirements

Herea (Mraefö * .v happens

Code
Software ftrdutectures =5=^=^=^==^^=^=^

Experience with a Course on Architectures for Software Systems 3-17

Leverage in Software Development

Requirements

Architecture

Code
Software ßlrcfutectures -.

Batch Sequential

Data Transformation

Data Flow

\ Software Sfacfutectwres;

Classical data processing

Experience with a Course on Architectures for Software Systems 3-18

Pipes and Filters

Da,a,lowASCII stream

" 1 J ^- ^
> ^

Computation ^
jr

< « /

Software Architectures -.

Main Program/Subroutine Pattern

broutines
Software facfutectures -.

Call/return

Experience with a Course on Architectures for Software Systems 3-19

Data Abstraction or Object-Oriented

Manager ADT

Proc call

obj is a manager

op is an invocation

\ Software Jfrcfiitectures

Layered Pattern

Usually
procedure calls/'''UseflI, ^^^

Composites of
 -\ various elements
\ Software. !Axcfctec£wres ^—

Users

Experience with a Course on Architectures for Software Systems 3-20

Interpreter Pattern

Inputs

Memory

Computation
state mach

Program
Being

Interpreted

Outputs /Simulated
<4 — (Interp-

retation
^ngine

\ Software Ärcfiitectures;

Data access
Fetch/store

Communicating Processes

Composite

Link

proc is a process

msg is a message

\ Software. ÄrcHitectures;

Experience with a Course on Architectures for Software Systems 3-21

Repository: Database

f batch j

f transl J f trans3j

Input sources \T^)7\(^)

Computation

Memory

\ Software Architectures \

Repository Pattern (Blackboard)

Direct access fksi

5: 7JL

omputation

CE>1
Blackboard

(shared
data)

u. ks3

K~J
(fas) C te5 J Memory

09218CS

Software Arcfiitectures:

Experience with a Course on Architectures for Software Systems 3-22

Lecture 4
Information Hiding, Abstract Data

Types, Objects

Mary Shaw

\ Software ftrcfutectures -,

Data Abstraction or Object-Oriented
Pattern

Manager ADT

Proc call

obj is a manager

op is an invocation

\ Software Ärcfotectures =

Experience with a Course on Architectures for Software Systems 4-1

Overview

• Objective: What does an ADT/O-0 approach
buy you as compared to conventional block-
structured programming?

• Outline: tobe
> What problems need A solved?
> Technical difficulties
> Design difficulties
> Encapsulation
> Structure for large definitions
> Inheritance

Software Architectures -.

Problems Facing Software
Developers of 1972

• Vulnerability of global variables
> Classical block structure creates sharing

• Inadvertent disclosure of structure
> Exact location of field, linear vs linked representation

• Rippling design decisions
> One change may affect many modules

• Dispersion of code related to a single decision
> It may be hard to locate everything affected

• Families of related design
> Related definitions de-localize decisions

Software Architectures:

Experience with a Course on Architectures for Software Systems 4-2

Elements of solution

Technical support
> Data access and definitions
> Locality of definition (encapsulation)

Design support
> Separation of concerns (encapsulation)

> Imposition of structure
> Related definitions

\ Software Arcfiitectures-.

Data Access and Definition
Problems

• Access to internal representation:
> Vulnerability: Visible representations can be

manipulated in unexpected, undesired, and dangerous
ways

• Forced distribution of knowledge:
> Non-Uniform Referent: Syntax may reveal structure

• Coupling:
> Instance independence: When multiple instances of a

given struct, are active, they must remain independent

Families of definitions:
> Dynamic binding: If shared definitions involve type

variants, function variants must be chosen at runtime

Software Jbzfotectures =^=^===^^^=

•

Experience with a Course on Architectures for Software Systems 4-3

Uniform Referent Problem

• Non-uniform referents:
Vectorl [index] := Vector2[index]
Record1.field1 := Record2.field2
Set(FieldAdr(A, PseudoVaii), FieldVal(B, PseudoVar2))

• Uniform referents:
Vectorl (index) := Vector2(index)
Recordl (fieldl) := Record2(field2)
PseudoVarl(A) := PseudoVar2(B)

• To avoid propagating knowledge of repres.:
Use uniform syntax for access functions
Allow type-specific overloading of :=

\ Software Architectures ==^==^====s^======^^^===^=^^=^

Iteration Problem

• Non-uniform referents:
for i := 1 step 1 until N do somefunc(V[i])

or
p:=V;
while p-= nil do { p := p.next; somefunc(q.val)}

• For each structured type:
> define how an iteration proceeds uniformly through the

structure
> allow this to be connected to syntax of loops

• Generators (a.k.a. iterators):
> forall x in V do somefunc(x)

\ Software SircftttectuTes=========^=^^^=^====!=

Experience with a Course on Architectures for Software Systems 4-4

Locality Problems

• Access to internal representation:
> Nonlocality: If the way something is used depends on

how it's imp'd., you must find all uses to make a change

• Forced distribution of knowledge:
> Non-localized operations: Some operations may implicitly

reveal representation: iteration, input/output,...

• Coupling:
> Global data: Fnal. decomp. often exposes critical data
> Shared assumptions: create implicit interdependence

• Families of definitions:
> Similar definitions: Shared function should be defined

once only

\ Software ßtrc/utectures -.

Encapsulation

Parnas: Hide secrets (not just representations)
Booch: Object's behavior is characterized by
actions that it suffers and that it requires
Practically speaking:

> Object has state and operations, but also has responsibility
for the integrity of its state

> Object is known by its interface
> Object is probably instantiated from a template
> Object has operations to access and alter stateand perhaps

generator
> There are different kinds of objects (e.g, actor,

agent, server)

Software ftxcftitectuTes;

Experience with a Course on Architectures for Software Systems 4-5

Abstract Data Types

• Late1960's: Good programmers shared an
intuition: if you get the data structures right,
the rest of the program is much simpler.

• Abstract Data Type Research of 1970's:
> Structure (representation bundled with operators)
> Specifications (abstract models, algebraic axioms)
> Language (modules, scope, user-defined types)
> Integrity constraints (invariants of data structures)
> Rules for combining types (declarations)
> Information hiding (protect properties not in specs)

• Routine practice now part of o-o discipline

Objects

Booch intro implies essence of object-ness
is i/f: operations it provides and requires

> But this is too general - it includes subroutines

More generally,
> Allow use in terms of specifications alone
> "Hide" representation; use other objects
> Maintain state
> Provide subroutines for actions
> Sustain conceptual coherence
> Instantiate from template
> Support definitional inheritance

Software Architectures:

Experience with a Course on Architectures for Software Systems 4-6

Remark on Cruise Control Example

• Example assumes that the only choices
are functional and o-o and that the data
flow diagram is "the right" place to begin

> Data flow diagrams aren't the only way to start
> Functional decompositions often have hidden

dependencies
> Object decompositions allow aliasing to be

created

• In fact, this problem can be addressed as a
control loop, which leads to a quite
different structure

\ Software ßtrcfütectures;

Managing Large Object Sets

• Pure o-o design leads to large flat systems
with many objects

> Same old problems can reappear
> Hundreds of modules => hard to find things
> Need a way to impose structure

• Need additional structure and discipline
• Structuring options

> Layers (which are not necessarily objects)
> Supplemental index
> Hierarchical decomposition: big objects and

^^ little objects (not much discussed)
\ Software Arc/iitectures;

Experience with a Course on Architectures for Software Systems 4-7

Management of Many Objects

• Parnas: Build definition hierarchy (independent
of "uses" structure or call tree)

• For A7E, structure is
> Hardware-hiding (hardware/software interfaces)
> Behavior-hiding (implications of changeable

requirements)
> Software decisions (design decisions based on

math, physics, programming considerations)

• Note that many things are hidden besides
representations

\ Software ßtrcfütectwes-.

Inheritance
ass, location

metabolism, reprodi

\ Software Arcfutectures

Experience with a Course on Architectures for Software Systems 4-8

Reuse and Maintenance

• Object organization decreases system coupling
• This should reduce propagation of changes
• It should increase ease of understanding system

and therefore reduce cost of maintenance
• It should make individual objects more

independent of system, therefore more likely to be
reusable

> But this is over-rated
• It should become possible to build and re-use

frameworks (architectures for particular kinds of
systems) by standardizing interfaces

\ Software ßtrcftttectures ■ss=^==^=s^=^=^=.

Elements of Object Architectures

• Encapsulation: Restrict access to certain
information

• Inheritance: Share one definition of
shared functionality

• Management of many objects: Provide
structure on large set of definitions

• Reuse and maintenance: Exploit
encapsulation and locality to increase
productivity

Note that the object architecture closely
resembles the object programming style

Software ßlrc/utectwes ====^===^=^^=

Experience with a Course on Architectures for Software Systems 4-9

Inheritance
mass, location

metabolism, reprodui

chlorophyll.

Vegetable |

\ Software. Arcfutectures

gnawing teeth
Rodent

Experience with a Course on Architectures for Software Systems 4-10

Lecture 5
Modular Decomposition Issues:

KWIC

David Garlan

Software flrcfiitectures:

Purpose of This Lecture

• Discuss "On the Criteria To Be Used in
Decomposing Systems into Modules",
Parnas(1972).

• Detailed example of use of Information
Hiding and Abstract Data Types as an
architectural style.

• Explore advantages and disadvantages of
this style.

• Motivate the implementation assignments
for this course.

\ Software ßlrcfutectuTes =^=^^=^^^==

Experience with a Course on Architectures for Software Systems 5-1

What is a Modularization?

• Common view:
> A module is a piece of code.
> Modularization decomposes the code of a

system into smaller pieces.

• Parnasview:
> A module defines a unit of responsibility.
> Modularization decomposes the overall

responsibility (for satisfying requirements) into
smaller pieces.

• Hence Parnas is concerned with interfaces
- or what must be prescribed before
implementation can begin.

\ Software ßtrc/utecttcres-.

Why Modularize?

Managerial: Partition the overall
development effort (divide and conquer).
Evolution: Decouple parts of a system so
that changes to one part are isolated from
changes to other parts.
Understandability. Permit system to be
understood as composition of mind-sized
chunks.

\ Software ßrc/ütectures:

Experience with a Course on Architectures for Software Systems 5-2

Key Word In Context

Problem Description:
"The KWIC index system accepts and ordered

set of lines, each line is an ordered set of
words, and each word is an ordered set of
characters.

Any line may be 'circularly shifted' by repeatedly
removing the first word and appending it at the
end of the line.

The KWIC index system outputs a listing of all
circular shifts of all lines in alphabetical
order."

On the Criteria for Decomposing Systems into Modules. David Pamas. CACM, 1972

\ Softu/areflrcfiitectures ====== =

KWIC: Key Word In Context

Inputs: Sequence of lines
Pipes and Filters
Architectures for Software Systems

Outputs: Sequence of lines, circularly
shifted and alphabetized

and Filters Pipes
Architectures for Software Systems

Filters Pipes and
for Software Systems Architectures

Pipes and Filters
Software Systems Architectures for

Systems Architectures for Software

Software. Architectures -.

Experience with a Course on Architectures for Software Systems 5-3

Design Considerations

• Change in Algorithm
> Eg., batch vs incremental

• Change in Data Representation
> Eg., line storage, explicit vs implicit shifts

• Change in Function ^
> Eg., eliminate lines starting with trivial words

• Performance
> Eg., space and time

• Reuse <
> Eg., sorting

\ Software Jto/ufcectarßs=^=^==^^==Ä=^=====^^=^^=^ÄS=

Solution 1: Design

• Decompose the overall processing into a
sequence of processing steps.
>Read lines; Make shifts; Alphabetize; Print

results

• Each step transforms the data completely.
• Intermediate data stored in shared

memory.
> Arrays of characters with indexes
> Relies on sequential processing

Software fbtfiitectures ■.

Experience with a Course on Architectures for Software Systems 5-4

Solution 1: Modularization

• Module 1: Input
> Reads data lines and stores them in "core".
> Storage format: 4 chars/machine word; array of

pointers to start of each line.

• Module 2: Circular Shift
> Called after Input is done.
> Reads line storage to produce new array of

pairs:
(index of 1st char of each circular shift,
index of original line)

• Module 3: Alphabetize
> Called after Circular Shift.

^-x > Reads the two arrays and produces new index.
\ Software Jfrdutectures ====== =

Solution 1: Modularization (2)

• Module 4: Output
> Called after alphabetization and prints nicely

formatted output of shifts
> Reads arrays produced by Modules 1 & 3

• Module 5: Master Control
> Handles sequencing of other modules
> Handles errors

\ Software Architectures ■.

Experience with a Course on Architectures for Software Systems 5-5

Architecture of Solution 1

. Direct Memory Access
Subprogram Call

-System I/O

Master Control

TV
Circular Shift Alphabetizer

L^^1^/
Index

Software Sirc/iitectures -,

Properties of Solution 1

• Batch sequential processing.
• Uses shared data to get good

performance.
• Processing phases handled by control

module.
> So has some characteristics of main program -

subroutine organization.

• Shared data structures exposed as inter-
module knowledge.

> Design of these structures must be worked out
before work can begin on those modules.

Software Jirc/utectttres -,

Experience with a Course on Architectures for Software Systems 5-6

Solution 2: Design

Maintain same flow of control, but
Organize solution around set of data
managers (objects):

> for initial lines
> shifted lines
> alphabetized lines

Each manager:
> handles the representation of the data
> provides procedural interface for accessing the

data

Software ßtctatectures -.

Solution 2: Modularization

• Module 1: Line storage
> Manages lines and characters; procedural

interface
> Storage format: not specified at this point

• Module 2: Input
> Reads data lines and stores using "Line

Storage"

• Module 3: Circular Shift
> Provides access functions to characters in

circular shifts
> Requires CSSETUP as initialization after

Input is done r^
\ Software Architectures s=^=====^==^==^====

Experience with a Course on Architectures for Software Systems 5-7

Solution 2: Modularization (2)

• Module 4: Alphabetize
> Provides index of circular shift
> ALPH called to initialize after Circular Shift

• Module 5: Output
> Prints formatted output of shifted lines

• Module 6: Master Control
> Handles sequencing of other modules

Software ßlrcfUtectures:

Architecture of Solution 2

Subprogram Call
System I/O

Master Control

JL Ü
Circular Shift

Software Sfacfiitectuxes

Experience with a Course on Architectures for Software Systems 5-8

Properties of Solution 2

Module interfaces are abstract
> hide data representations

could be array + indices, as before
or lines could be stored explicitly

> hide internal algorithm used to process that data
could be lazy or eager evaluation

> require users to follow a protocol for correct use
initialization
error handling

Allows work to begin on modules before data
representations are designed.
Could result in same executable code as first
solution.

Software Architectures;

Comparisons

Change in Algorithm
> Solution 1: batch algorithm wired into
> Solution 2: permits several alternatives

Change in Data Representation
> Solution 1: Data formats understood by

many modules
> Solution 2: Data representation hidden

Change in Function
> Solution 1: Easy if add a new phase of

processing
> Solution 2: Modularization doesn't give

particular help
Software Arcfutectures =^==^^==^=^^^=

Experience with a Course on Architectures for Software Systems 5-9

Comparisons (2)

• Performance
> Solution 1: Good
> Solution 2: Probably not as good, but might be

• Reuse
> Solution 1: Poor since tied to particular data

formats
> Solution 2: Better

\ Software AnJutectwes -.

Principles of Information Hiding

• Hide the right secrets
> A "right secret" is a design decision that is

likely to change
• Data representations are one such

secret
> A data manager provides a set of data

accessing procedures that allow it to control
» integrity of the data
» actual representation

>Then we get Abstract Data Types (or
Objects)

\ Software J3^tee^tf ===========================^====:^

Experience with a Course on Architectures for Software Systems 5-10

Principles of Information Hiding (cont.)

• Can also hide HW/SW infrastructure
> cf., A7 paper
> A virtual machine provides an abstraction of

the actual hardware/software functionality
>Then get a layered system

• Can hide nature of concurrent access to
facilities provided by a module

>Then get a client-server system

\ Software RrcfctectuTZS-,

Some Distinctions

Hierarchy versus Information Hiding
> Hierarchy: no circular dependencies
> Can have a hierarchical system without info

hiding
> Can have a system that uses info hiding but

is not hierarchical

ADTs versus Information Hiding
> Can hide other things than data

representation

Software SAicfdtectures -.

Experience with a Course on Architectures for Software Systems 5-11

Some Distinctions (2)

• Uses versus Calls
> In a later paper Parnas makes the distinction

between uses and calls
» If A uses B then A's correctness depends on B's

correctness
» If a calls B then A may or may not depend on B's

correctness
> Calls but not uses: Module A calls "Done"

when finished
> Uses but not calls: Alphabetize depends on

Input

\ Software Architectures-.

Experience with a Course on Architectures for Software Systems 5-12

Lecture 6
Formal Models

David Garlan

Software Sircfiitectures;

The Purpose of This Lecture

• Explain why formal models can provide
insight into software architecture

• Provide an introduction to Z
The Mathematical Basis of Z
A Simple Example
The Schema Calculus

• Clarify the use of Z for understanding
architectural style

\ Software Architectures •.

Experience with a Course on Architectures for Software Systems 6-1

Outline

• Why Formal Models?
> What is a formal model of a software

architecture?
> Why are formal models useful?
> What can we formalize?

• The Z Specification Language
>The mathematical basis of Z
> A simple Example
>The schema calculus

\ Software Arcfutectures:

Why Formal Models of
Software Architecture?

• A formal model is a mathematical
abstraction.

• Benefits:
> Abstraction: What is the essence of an architectural

style?
> Precision: How can we make informal use more

scientific?
> Analysis: What can we predict about an architecture?
> Codification: Can we provide standard reference models

for architecture?
> Comparison: How are different architectures related?
> Automation: What kinds of tool support can we develop?

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 6-2

What Can We Formalize?

• Structure: How is a system organized?
• Compatibility: When is a system properly

composed?
• Function: What does the system compute?
• Resource usage :How fast/big is it?
• Invariants: What are the "load-bearing

walls"?
• Specializations: How do specific systems

constrain more general models?

\ Software ArcfctectuTes -.

In This Course

• We will see:
> How to characterize state spaces and

transitions
> An industrial case study of a formal model of a

product family
> A formal reference architecture for pipe/filter

systems
> A formal treatment of event systems and

several common variations
> Techniques for formalizing concurrent systems

\ Software ßlTC&tectures \

Experience with a Course on Architectures for Software Systems 6-3

Why Specify using Z?

Allows you to use simple mathematics to
document software designs as:

> a client/implementor interface
> a technique for reasoning about designs
> a method for establishing correctness of

implementations

\ Software ßircfutectitres:

Formal Underpinnings

• Mathematical types describe system state
in problem-oriented terms.
>Sets
> Relations
> Functions
> Sequences

• First order predicate logic specifies
collections of states and operations by
saying "what" not "how".

\ Software Ikrcfatectmes -.

Experience with a Course on Architectures for Software Systems 6-4

Structure of Z Specifications

• Schemas describe:
> what states a system can occupy
> what operations can happen
> relationships between parts of a complex

system

\ Software Architectures;

Use of Prose

• In good Z specifications Schemas are
presented with informal text which:

• motivates the formal descriptions
• relates the model to reality
• documents requirements

Software Architectures -.

Experience with a Course on Architectures for Software Systems 6-5

The Mathematics of Z: Sets

• In Z sets are typed. That is, the elements
are drawn from a common set.

• Examples:

{red, green, blue, blue, green}
{Joe, Neil, Marco,...}
{ yes, no }

•No:
{red, 1,2,3}

\ Software Arc/utectures:

Sets (2)

• A type is just a set.
• One type is predefined - the set of

integers: Z
• Other sets are introduced as given sets

[Date] [Person] [Book, Author]

• Or defined using various set constructors

\ Software Architectures ■.

Experience with a Course on Architectures for Software Systems 6-6

Set Comprehension

• One way of constructing new sets is to
define a set using propositions and
predicates.

• Examples:
N = {n: ZI n > 0 } (note double =)
small =={x:N IX>3AX<6}

mse-fm == { p: Person I p e 17-712 Ape mse }
squares == { x: N I (3 y: N • x = y) }

• This is called set comprehension.

\ Software ßb-cfütectwes -.

Set Comprehension (2)

• The most general form of a set
comprehension is

{Declarations I Predicate • Expression}

• Examples:
{x:N 1X>3AX<6 -x} = {4 ,5 } = {16,25}
{x: N • 2 x }
{x:NI(3y:N«x = y)*3y}

\ Software ftrcfatectiiTes -.

Experience with a Course on Architectures for Software Systems 6-7

Variables

• All variables are typed
• Examples:

x:N
n: Prime

• Global variables are defined as follows:

max:N

min:N
min>3

\ Software Architectures:

Enumerated Types

• Enumerated types can be described as
follows:

Status ::= Yes I No
Color :: Red I Blue I Green I Yellow

• This is short hand for
[Status]
Yes: Status ; No :Status
Yes * No
x € Status => (x = Yes v x = No)

\ Software !Arcfiitectu,res:

Experience with a Course on Architectures for Software Systems 6-8

Power Sets

• The set of all subsets of S: set of S, or P S
• Usually referred to as the power set of S

> Examples:
P {1, 2, 3 } = { 0, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}

PN = {0,{1},...}

• If x : P N, then x is a set of integers.

\ Software Arctitectures -,

Tuples

A tuple is an ordered pair.
> Examples:

(2,3)* (3, 2)
S = {(2, red), (5, blue), (3, red)}

The set of tuples constructed from two
sets is called a Cartesian Product, or just
Product of those sets.
NxN
S: P (N x Color)

\ Software Architectures ■.

Experience with a Course on Architectures for Software Systems 6-9

Relations

• A relation is a set of tuples.
> Examples:

A =={(1,1), (1,2), (2,2)}
B == {(2, red), (5, blue), (3, red)}
C = { (David, Jun 1}, (Mary, Aug 2), (Bill, Feb 5)}

• The set of all relations over sets S, T is
indicated by S<-»T.
> Examples:

A:N«-»N
B: N <-» Color
C: Person «-> Date

\ Software Arcfiitectures:

Relations (2)

• The domain of a relation is the set of first
elements.

• The range of a relation is the set of second
elements.

> Examples:
A = { (1,1), (1,2), (2,2)}
dom A = {1,2 } and ran A = {1,2}
B == {(2, red), (5, blue), (3, red)}
dorn B = { 2,3,5 } and ran B = {red, blue }
C == {(David, Jun 1}, {Mary, Aug 2}, {Bill, Feb 5)}
dorn C = { David, Mary, Bill} and ran C = { Jun 1, Aug 2,

Feb 5}

\ Software j5nÄ'tEcturej==========s=s==s=====s=============^====^

Experience with a Course on Architectures for Software Systems 6-10

Functions

• A function is a relation such that no two
distinct tuples contain the same first
element.

> Examples:
B = {(2, red), (5, blue), (3, red)}
C == { (David, Jun 1}, {Mary, Aug 2}, {Bill, Feb 5)}

> Not a function;
A =={(1,1), (1,2), (2,2)}

\ Software. Architectures \

Functions (2)

• The set of all functions between sets S and
T is indicated S-»T.

• The set of partial functions is indicated
S->T

• So
> B: N -» Color

• and
> C: Name -•► Date

\ Software Architectures:

Experience with a Course on Architectures for Software Systems 6-11

Summary: Set Constructors

• 1. Given Sets
• 2. Enumerated Types
• 3. Power set constructor: P
• 4. Tuples (Cartesian Product)
• 5. Relations
• 6. Functions and Partial functions

\ Software Arc/iitectures-.

A Simple Example

• A small database for recording people's
names and birthdays.

• The system should allow us to:
> add new people to the database
> lookup the birthday of a person
>find the names of people with birthdays on a

given day

^^^— 1. From: J.M.Spivey, TJieZAfofattan, 1989

\ Software ftrcfutectures:

Experience with a Course on Architectures for Software Systems 6-12

The State Space

• The state of a system is described by a
schema.

-SchemaName

declarations

state invariant

\ Software Architectures:

BirthdayBook

[Name, Date]

,—BirthdayBook

known: P NAME

birthday: NAME -+-»DATE

known = dorn birthday

\ Software Architectures:

Experience with a Course on Architectures for Software Systems 6-13

Example

known = {David, Judy, Robert}

birthday = { David i—> 24-June,
Judy i—> 26-August,

Robert)—> 8-July}

The invariant is satisfied:

known= dorn birthday

\ SoftzvareSlrcfiiteetures;

Observation

• There is:
> No limit on the number of entries
> No implied order of entries
> No restriction on format

• But there is a precise statement that:
> Each person has only one birthday
>Two people may share a birthday
> Some people may not be in the database

\ Software Architectures;

Experience with a Course on Architectures for Software Systems 6-14

Operations

_ AddBirthday
A BirthdayBook

name?: NAME
date?: DATE

Observations:
• state before the operation
• state after the operation
• inputs and outputs

\ Software ftrcfatectures -.

Operations (2)

r- AddBirthday —

A BirthdayBook

name?: NAME

date?: DATE
known, known*
birthday, birthday*
known = dorn birthday
known* = dorn birthday'

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 6-15

Add Birthday

,—AddBirthday —
A BirthdayBook

name?: NAME

date?: DATE f
pre-condition

name? e known y
birthday' = birthday u /
{name?i »date?}

1 post-condition

\ Software fircfntectures;

Derived Components

• The invariant
known = dorn birthday

• allows us to calculate known from
birthday.

• It is a derived component.
• Laws:

dom(fug) = domi u domg
dorn {a"—» b } = {a }

Software Sircfiitectures;

Experience with a Course on Architectures for Software Systems 6-16

Reasoning About Specifications

known' = dorn birthday'

= dorn (birthday u {name? ►—>date?})

= dorn birthday u dorn {name? J—»date?}

= dorn birthday u {name?}

= known u {name?}

\ Software Architectures -,

Find Birthday

-FindBirthday —

E BirthdayBook

name?: NAME

date!: DATE

A BirthdayBook

name? € known
date! = birthday(name?)

known = known'

birthday = birthday1

\ Software Architectures ■.

Experience with a Course on Architectures for Software Systems 6-17

Remind

i—Remind
E BirthdayBook
date?: DATE
names!: P DATE

names! =
{n: known I birthday(n) = date?}

n G names! *->
n e known A birthday(n) = date?

\ Software Arcfctectures;

Summary

• State space
+

• Fragile operations
• That is, if the the pre-condition of any

operation is violated the system may:
> ignore the operation
> crash
> break down later

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 6-18

Error Handling

[Modify each operation to return a resulE

REPORT ::=
ok I already-known I not-known

,—Success

result!: REPORT

result! = ok

\ Software Arcfutectures-.

Successful Operations

i—Success

result!: REPORT

result! = ok

AddBirthday A Success
Add a birthday, if possible,
and report ok

\ Software Architectures \

Experience with a Course on Architectures for Software Systems 6-19

Add Birthday- revised

A BirthdayBook
name?: NAME
date?: DATE
result!: REPORT
name? e known
birthday1 = ...
result! = ok

merge
declarations

conjoin
predicates

\ Software Stocftitectttres-.

Detecting Errors

-AlreadyKnown -
5 BirthdayBook
name?: NAME
result!: REPORT

name? e known
result! = already-known

If name? is already known don't change
anything and report already-known

Software Sirc/utectures:

Experience with a Course on Architectures for Software Systems 6-20

Combining the Parts

RAddBirthday ^
(AddBirthday A Success)

v AlreadyKnown

\ Software fiTcfutectures ■.

The Other Operations

Similarly:

RFindBirthday £.
(FindBirthday A Success)

v NotKnown

RRemind £.
Remind A Success

already robust

\ Software Ärcfotectwes:

Experience with a Course on Architectures for Software Systems 6-21

Advantages of Approach

• Separation of concerns:
> consider each idea separately

• Focus of understanding:
> mind-sized chunks

• Modularity:
> reuse pieces

Software Arcfutectwes;

Observation

It is possible to combine specifications
using A and v using the Schema
Calculus

• —.even though vou can't combine
programs!

\ Software Architectures-.

Experience with a Course on Architectures for Software Systems 6-22

Other Uses

• Separate:
> single entity (e.g., process, file, record)
> and its place in the larger system
> different views of the same system
> system functions
> and access control

\ Software Architectures \

Summary

Z is a simple mathematical framework in
which to:

> describe systems abstractly yet precisely
> compose a system out of small pieces
> use old specifications to build new

specifications
> reason about properties of a system
> relate views of a system

\ Software flTcfiitectures -.

Experience with a Course on Architectures for Software Systems 6-23

Part III
What is an Architectural Style?

Software, flrcftitectwres -.

What is an Architectural Style?

Client 1

Client 2

Client 3

\ Software Arcfutectures-.

Experience with a Course on Architectures for Software Systems 6-24

What is an Architectural Style?

KS1

KS2

KS3

\ Software flicfiitectures;

What is an Architectural Style?

Parser

Typer

Code
gen

\ Software Arcfiitectvres -.

Experience with a Course on Architectures for Software Systems 6-25

Elements of Architectural Style

• A family of interoperable components and
connectors

> Constraints on vocabulary of comp. & conn.
> Example: clients and servers

• Patterns of system composition
> Constraints on topologies of components and

connectors
> Example: pipeline

• Conventions about the meaning of
architectural descriptions

> Constraints on semantics
> Example: lines mean pipes, boxes mean filters

\ Software Architectures =^===^^=^=^=^^=^^

The Specification Enterprise

Syntactic Domain Semantic Domain

Meanings

\ Software ßtrcfütectures -.

Experience with a Course on Architectures for Software Systems 6-26

Making Style Precise

Syntactic domain
> components (the boxes)
> connectors (the lines)
> configurations (the topologies)

Semantic domain
> sets, tuples, etc.

A bridge between the two
> Mcomp: Components +-»...
> Mconn: Connectors +-*...
> Mconf: Configurations +-► ...

\ Software flrcfiitectures ■.

Why Bother?

• By looking at inverse map can detect
implicit syntactic constraints

> syntactic elements without well-defined
semantic meanings should be excluded

> example: "broadcast pipes"

• Allows us to make comparisons between
styles

> Pipe and Filters have hierarchical closure
property

>some Event Systems don't

• Provides basis for formal analysis
\ Software lAxcftitectuxes s^===^===^==^==

Experience with a Course on Architectures for Software Systems 6-27

Lecture 7
Data Flow Architectures: Batch

Sequential and Pipeline
Systems

Mary Shaw

\ Software Architectures -.

Objectives

• Characterize data flow systems
• Show limitations
• Distinguish between batch sequential and

pipeline systems
• Introduce systems integration
• Mention other kinds of data flow systems

\ Software Architectures:

Experience with a Course on Architectures for Software Systems 7-1

Data Flow Systems

• A data flow system is one in which
> availability of data controls computation
>the structure of the design is dominated by

orderly motion of data from process to process

>the pattern of data flow is explicit

• In a pure data flow system, there is no
other interaction between processes

Software. Urcfutectures;

Kinds of Data Flow Systems

In general, data
can flow in arbitrary
patterns

\ Software ftrdntectures:

Here we are primarily
interested in nearly-
linear data flow systems

Experience with a Course on Architectures for Software Systems 7-2

Batch Sequential Pattern

Dataflowmagtape

/ \

'W ■X"

\

Program

\ Software, Architectures ■.

Pipeline Pattern

Data flow.

JL,
ASCII stream

<—" , L—>

Computation fj|ter

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 7-3

Systems Integration

Systems integration is a problem-solving
activity that entails harnessing and
coordinating the power and capabilities of
information technology in ways tailored to
meet a customer's well-defined needs.
> Includes both organizational and technical issues.

It's hard:
> large, untidy problems
> incomplete, imprecise, inconsistent requirements
> saddled with old systems that can't be replaced

Focus here on technical issues.
Software Arcfiitectures =a=^=^==^==

©Tmip System

is

Component

Software. ßLrcfctectures -.

Experience with a Course on Architectures for Software Systems 7-4

Technical Issues in Integration

• Architecture
System organization: kinds of components, kinds of

interactions, patterns of overall organization

• Connectivity
Mechanisms for moving data between systems and

initiating action in other systems

• Semantics
Representations, conceptual consistency, semantic

models, means for handing inconsistencies

• Interaction
Granularity, user interface, interoperability

\ Software Arctateetures ================ =

Database Management

• Business data processing
> Historically dominated by database updates
> Discrete transactions of predetermined type;

periodic reports; special handling of bad requests

• Historical base: batch sequential
> Mainframes and magtapes
> Manual block scheduling

• Technology pressure: on-line access
> Queries are relatively easy
> On-line updates require shift from pure batch to

interactive processing

\ Software Strc/utectures ================== =

Experience with a Course on Architectures for Software Systems 7-5

Yourdon Data Flow Diagrams

(S) Processes

send Flows of data

save Data stores

\ Software SiTc/iitectwes -.

Batch Sequential Data Processing

• Laurence J. Best. Application Architecture:
Modern Large-Scale information Processing.
Wiley 1990.

> Bubble diagram of batch sequential form (fig 4-2
p.29)

> "calls" relation for program/subprogram structure
for update in previous figure (fig 15-2 p.150)

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 7-6

Batch Sequential Architecture

• Processing steps are independent
programs

• Each step runs to completion before next
step starts

tape
Validate

tape^
Sort

tape_
Update

tape_

rz—in I tape -^—'

Report
report.

\ Software Arcfutectures-.

Interactive Data Processing

Laurence J. Best. Application Architecture:
Modern Large-Scale Information Processing.
Wiley 1990.

> interactive view of system (fig 8-1 p.81)
> interactive view; fine structure of update function

(fig 15-5 p.158)

\ Software ßircfiitectures ■.

Experience with a Course on Architectures for Software Systems 7-7

Repository Architecture

Synch/select

Input sources

query/update

Memory

\ Software ftrcfotectwes -.

•

Computer Aided Software Engineering

Initially just translation from source to
object code: compiler, library, linker, make
Grew to include design record,
documentation, analysis, configuration
control, incrementality
Integration demanded for 20 years, but not
here yet

\ Software Arcfctectures;

Experience with a Course on Architectures for Software Systems 7-8

CASE vs DBMS

• As compared to databases, CASE has:
> more types of data
> fewer instances of each type
> slower query rates
> larger, more complex, less discrete information
> but not shorter lifetime

\ Software Architectures-.

Software Tools with Scripts

Earliest tools were independent programs
> Often their output appeared only on paper

Next generation shared only files
> Files in universally readable format, but

effective sharing limited by lack of information
about representation

> Tools sequenced with scripts: JCL, simple
shell scripts

Essentially batch sequential

\ Software fircfotectures •.

Experience with a Course on Architectures for Software Systems 7-9

Example: Canonical Compiler

Text
Lex Syn Sem Opt Code

Code

Vj^J Software lArcfiitectures -.

Canonical Compiler: Troublesome Details

1 SymTab

^k ■ Text
Lex Syn —^ Sem —► Opt —* Code f

Code

Pipeline?
No, Batch Sequential

\ Software Arcfiitectures ■.

Experience with a Course on Architectures for Software Systems 7-10

Example: Modern Canonical Compiler

Text Code

\ Software Aicfatectwres;

Example: Modern Canonical Compiler

Vestigial data flow Memory

Text

Computations
(transducers and

transforms)
Tree

tch/store

\ Software. Sircfutectures -.

Experience with a Course on Architectures for Software Systems 7-11

Batch Sequential

tape..
Validate

tape^
Sort

tape.
Update

tape..

Cz—in I tape -*—■

Report
report.

Pipe-and-Filter (UNIX)

stream. Filter
stream. Filter

<

stream, Filter
stream.

J=^>
\ Software Ärcfutectures -.

Batch Sequential vs Pipe & Filter (UNIX)

Both
Decompose task into fixed sequence of computations
Interact only through data passed from one to another

Batch Sequential Pipe/Filter
Coarse-grained Fine-grained, incremental
High latency (real-time is hard) Results start immediately
Random access to input ok Processing localized in input
No concurrency Feedback loops possible
Non-interactive Often interactive, but awkward

\ Software SArcfoiectures-.

Experience with a Course on Architectures for Software Systems 7-12

Batch Sequential Pattern

Dataflowmagtape

/ \

\

Program

\ Software Architectures:

Pipeline Pattern

Data flow, 'ASCII stream

<=^J=>
Computation XM*

06088CS;

Software ftxcfdtectmes -.

Experience with a Course on Architectures for Software Systems 7-13

Repository Architecture

Synch/select

Input sources

query/update

Memory

\ Software Architectures -.

Computation

Example: Modern Canonical Compiler

Vestigial data flow

Text

f
Computations

(transducers and
transforms)

Memory

Code

vh/store

\ Software Architectures •.

Experience with a Course on Architectures for Software Systems 7-14

Lecture 8
A Case Study in Pipe/Filter Systems:

The Tektronix Experience

David Garlan

\ Software Architectures -.

Outline

• The Problem
• How We Addressed It
• The Role of Formalism
• Lessons Learned

\ Software ftrcfiitectures ■.

Experience with a Course on Architectures for Software Systems 8-1

The Problem

• Increasing complexity of instrumentation
systems.

• Separate development cultures.
• Build-from-scratch methods.
• Inflexible products.
• Excessive time-to-market (~ 4-5 years).
• More serious bugs due to concurrency.

\ Software Architectures:

The Challenge

Allow reuse between product divisions
Build next generation instrumentation
systems
Support better interactive response to user
changes
Multiple hardware platforms for same user
interface
Multiple user interfaces for same platform
(vertical markets)

Software. Architectures -.

m

Experience with a Course on Architectures for Software Systems 8-2

The Arena: Oscilloscopes

signals waveforms traces and
». measurements

Oscilloscope

\ Software flrcfutectures:

Oscilloscope: 0-0 Approach

First attempt was an Object-Oriented Decomposition

waveform

I
max-min wvfm| [x-y wvfm

waveform
w: time- -> voltage
max: -> voltage
min: -> voltage
invert: • • •
add: ..

\ Software Architectures-.

accumulate wvfm

Hundreds of classes,
little structure,
no overall pattern

Experience with a Course on Architectures for Software Systems 8-3

Oscilloscope: Layered Approach

Second attempt was a Layered Architecture

\ Software Architectures ■.

Boundaries of abstraction
not realistic

Oscilloscope: Pipe-Filter Approach

Third attempt was a Pipe-Filter Architecture

Signal

Times

• Couple ITH Acquire-L» To-XY ■- Clip
Wave form Trace

Trigger subsystem Measure I /leasurement

Better, but not clear how to model user input.

\ Software Architectures \

Experience with a Course on Architectures for Software Systems 8-4

Oscilloscope:
Extended Pipe-Filter Approach

Pipe-Filter Architecture with Parameterized Filters.

Coupling Kind.Rate

i i
Trans Size

Signal

Times

i_ \
Couple "jX Acquire -»»{ To-XY -+\ Clip

Wave iOrm Trace

Trigger subsystem Measure Measurement

Elegant model, but not directly useful to implementors.

Oscilloscope: Solution

Pipe-Filter Architecture with
Parameterized Filters and Colored Pipes

Coupling Kind.Rate Trans

i i i
Size

Signal

I
Timesl Trace

Couple ^ Acquire »-| To-XY ►] Clip

I—T: Trigger subsystem Measure Measurement

^^ Elegant model, and implementable.
\ Software Architectures ==^= =

Experience with a Course on Architectures for Software Systems 8-5

Results

• Models used as basis for next generation
of oscilloscope products.

• Led to highly successful framework, in
which time-to-market has been cut to
about 6 months-1 year.

• High reliability of products.
• Flexibility of user interface.
• Led to new frameworks beyond

oscilloscopes.
• Major thrust of research/development

ollaborations.
Software. Ärcfütectures ■.

What is a Waveform?

• Ans 1: a sampled signal.
• Ans 2: a 5K array of 8-bit samples.
• Ans 3: a function from time to volts
• Ans 4: a partial function from time to volts
• Ans 5: a relation between time and volts
• Ans 6: a bag of time-volt pairs

\ Software Sbrcfutectures -.

Experience with a Course on Architectures for Software Systems 8-6

Functional View

Traces = Oscilloscope (Signals)

But
1. How to handle user input?
2. How can you decompose it

into manageable pieces?

\ Software Architectures -.

Signals, Waveforms, Traces

TriggerEvent

volts

volts

time

vert

\ Software Architectures -.

horiz

Signal

time delay duration

Waveform

Trace

Experience with a Course on Architectures for Software Systems 8-7

The Whole System

Couple Acquire
w , T ,

To-XYI—*► Clip

Select
Channel Couple Detect

Trig {Triggerf ivent}

Couple Acquire
w

To-XY Clip

\ Software. Sirc/utectures -.

Oscilloscope

-Oscilloscope
s1,s2: Signal
cp1, cp2: ChannelParameters
tp: TriggerParameters
ts1, ts2: seq Trace
V t: ran ts1 •

3 trig: TriggerConfiguration tp (s1, s2) •
t = ChannelConfiguration cp1 trig s1

V t: ran ts2 • ...

\ Software architectures \

Experience with a Course on Architectures for Software Systems 8-8

Other Architectural Models

Connection framework (colored P/F)
> Shared data
> Triggered filters
> Variable rates
> Flexible use of inputs

User interface architecture
> Flow of control from front panel to internals
> Menu hierarchies
> Limited real-estate

Software Ärcfctectures -.

User Interface Problem

Recall Goals:
• Multiple hardware platforms for same user

interface
• Multiple user interfaces for same platform
• How to separate user interface from

application?

\ Software ßlrc/atectures -.

Experience with a Course on Architectures for Software Systems 8-9

Case Study (continued)

Output: application announces events

Output Handlers

Internal Change Events

internal Oscilloscope Processing

\ Software Skcfaiedures \

Case Study (continued)

Input: user generates events

Input Event Dispatcher

Input Handlers

Reconfiguration Commands

internal Oscilloscope Processing

Software Ärcfütectwes:

Experience with a Course on Architectures for Software Systems 8-10

Some Morals

• Success requires
> Domain experts and system builders
> Expertise in abstraction and formal models
> Willingness to abandon old design patterns
> Willingness to reject inappropriate architectures

• Tools
> Not needed during conceptualization
> Essential during development

• Management
> Must keep hands off the process initially
> Must help enforce standards later

\ Software, ßbtfiitectures -,

Role of Formalism

What was formalized
> User level model (extended P/F)
> Connection framework (colored P/F)
> User interface architecture

Benefits of formalism
> Motivated and constrained architectures
> Conceptual prototyping
> Communication medium

Non-benefits
> Correctness, completeness
> Adoption of formal methods within Tektronix

Software Urc&tectures:

Experience with a Course on Architectures for Software Systems 8-11

Model for Industrial Research

Development
Effort

Individual product
development

Product-line frameworks
(company assets)

Off-the-shelf components
(OS, tools, compiler,...)

\ Software Architectures-,

Experience with a Course on Architectures for Software Systems 8-12

Lecture 10

Pipe/Filter Systems
(A Formal Approach)

Robert Allen

\ Software Architectures-.

Overview

• Architectural Description (Revisited)
• The Need for Formalization
• Example: PF
• PF Formalized
• Using the Formalism

\ Software ArcMtectures ■.

Experience with a Course on Architectures for Software Systems 9-1

What is a Software Architecture?

an abstract model of a system

► —► —► —■»

\T/

\ Software ßrcftitectures ■.

No.

Are pictures enough?

y1

An
•What happens in the boxes?
•Are the boxes similar in behavior?
•What control/data relationships hold?
•What is the overall behavior?
•Does the diagram make sense?

\ Software Architectures ■,

Experience with a Course on Architectures for Software Systems 9-2

Making descriptions precise

use restricted syntax

means abstract data type

■*► means remote procedure call

•unambiguous
•implementable
•limited expressiveness

\ Software Architectures;

Architectural style as description

Diagram Style

>*
«-»• AND

An

•client-server

•blackboard

•event broadcast

•pipe and filter

Conventional interpretations of style answer questions

\ Software ßlrcfütectures =====^^^==^==

Experience with a Course on Architectures for Software Systems 9-3

Problem of Informal Definition

Informal usage presents a number of
difficulties

> Lack of shared understanding
> Difficulty of communication
> Insufficient analytic leverage
> Inability to select among architectures

\ Software Ärcfctectures -.

The Need for Formalization

A formal approach offers a number of
benefits

> Precise definition of paradigm
> Medium of communication
> Improved analysis of systems
> Comparison with other architectures

Software. !Axcfdtectiaes ■.

Experience with a Course on Architectures for Software Systems 9-4

Issues Raised by Formalization

• We need to consider a number of issues
when developing a formal model

> What ambiguity should we resolve, and how?
> What is an appropriate level of abstraction?
> What systems belong in the architectural

family?
> What properties will we want to analyze?

\ Software Arcfatectures -.

Pipes and Filters (informal)

• A Filter transforms streams of data.
> reads data from input ports
> writes data to output ports

* A Pipe controls the flow of data through
the system.

> links an output port to an input port
> indicates the path that data will take
> carries out data transmission

\ Software Arcfatectures -.

Experience with a Course on Architectures for Software Systems 9-5

Formalizing PF (overview)

• Elements:
> Filter
>Pipe
> System

• Aspects:
> Description
> State
> Computation

\ Software SHrcfutectures:

Some Preliminary Definitions

• [FILTER, PORT]
• [DATA, FSTATE]
• Port_State == PORT £ seq DATA
• Partial_Port_State == PORT £ seq DATA

\ Software Arcfiitectures:

Experience with a Course on Architectures for Software Systems 9-6

Schema Filter
. Filter —

filterjd 1? FILTER
in_ports,out_ports: ß PORT
alphabets: Port £ P DATA
States: (? FSTATE
start: FSTATE
transitions: (FSTATE ;(Partial_Port_State))

» (FSTATE ;(Partial_Port_State))

start states
in_ports out_ports= fl.
dorn alphabets = in_ports out_ports
((s1 ,input_obs),(s2,output_gen) transitions

s1 states s2 states
dorn input_obs = in_ports dorn output_gen = out_ports

(p: in_ports (ran(input_obs(p)) t alphabets(p)
(p: out_ports (ran(output_gen(p)) talphabets(p)

Schema Filter-State

-Filter_State
f: FILTER
internal_state: FSTATE
input.state, output-state: Port_State

internal_state f.states
dorn input_state = f.in_ports
dorn output_state = f.out_ports

p: f.in_ports • ran(input_state(p)) t f.alphabets(p)

p: f.out_ports • ran(output_state(p)) t f.alphabets(p)

\ Software Architectures:

Experience with a Course on Architectures for Software Systems 9-7

Schema Filter-Compute

(— Filter_Compute-
A Filter_State

f = f '

« in_consumed,out_gen : Partial_Port_State •
((internal_state,in_consumed), (internal_state /out_gen) f.transitions

(p: f.in_ports •
input_state(p) = in_consumed(p) " input_state (p))

(p: f .out_ports •
output_state(p)Ä out_gen(p) = output_state (p))

Software Architectures;

Schema Pipe

p-Pipe ■ —
source_filter,sink_filter: Filter
source_port,sink_port: PORT

aiphabet: P> DATA

source_port source_filter.out_ports
sink_port sink_filter.in_ports
source_filter.alphabets(source_port) = aiphabet

sink_filter.alphabets(sink_port) = aiphabet

\ Software. ArcMtectttres -.

Experience with a Course on Architectures for Software Systems 9-8

Schema Pipe-State

- Pipe_State
p: Pipe
source_data: seq DATA
sink_data: seq DATA

ran source_data t p.alphabet
ran sink_data t p.alphabet

\ Software Sircfutectures:

Schema Pipe-Compute

■ Pipe-Compute
A Pipe-State

p = p '

« deliver: seq DATA I #deliver > 0 •
source_data = deliver " source_data

sink data - sink_data " deliver

\ Software Ärcfutectures -.

Experience with a Course on Architectures for Software Systems 9-9

Schema System

- System
filtere: P Filter
pipes: IP" Pipe

f 1 ,f2 : filtere • f1 .filterjd = f2.filter_id f1 = f2

p : pipes • p.source_filter filtere p.sink_filter filters

f : filtere; pt: PORT i pt f.in_ports •
#{p:pipes I f = p.sink_filter pt = p.sink_port} < 1

f: filtere; pt: PORT I pt f.out_ports •
#{p:pipes I f = p.source_filter pt = p.source_port> < 1

\ Software ßLrcfütectures:

Schema System-State

■ System-State
sys : System
filter_states: IP Filter_State
pipe_states: [p> Pipe_State

sys.filters = {fs : filters_states • fs.f}

fs1, fs2: filtere_states • fsl.f = fs2.f fs1 = fs2

sys.pipes = {ps: Pipe_State -ps.p}

ps1 ,ps2 : pipe_states • ps1 .p = ps2.p ps1 = ps2

ps : pipe_states • «fs: filter_states •

ps.p.source_filter = fs.f
ps.source_data = fs.output_state(ps.p.source_port)

ps : pipe_states • «&: filter_states •
ps.p.sink_filter = fs.f

ps.sink_data = fs.input_state(ps.p.sink_port)

Experience with a Course on Architectures for Software Systems 9-10

Schema System-Filter-Step

■ System_Filter_Step ■
A System_State

sys = sys'

«Filter_Compute •
filter_states\{6 Filter_State} = filter_states '\ {6 Filter_State}

8 Filter_State filter_states
6Filter_State' filter_states •

\ Software Architectures;

Schema System-Pipe-Step

• System_Pipe_Step
A System_State

sys = sys'

«Pipe_Compute •
6 Pipe_State pipe_states

9 Pipe_State' pipe_states'
fil_state : fHter_states;fil_state': filter_states'l fil_state.f = fil_state;f

• fil_state.internal_state = fil_state'.internal_state)

fil_staterfilter_states;fiLstate :ilter_states ;port:PORT
I fil_state.f = fil_state :i port fil_state.f.in_ports

(p.sink_filter *■ fil_state.f p.sink_port # port)

• fil_state.input_state(port) = fil_state'.input_state(port))

fil_state:filter_states;fil_state tfilter_states ;port:PORT
fil_state.f = fil_state'.f port fil_state.f.out_ports
(p.source_filter # fil_state.f p.source_port * port)

fil_state.output_state(port) = fil_stateoutput_state(port))

(fiU

(

(fiü

Experience with a Course on Architectures for Software Systems 9-11

System Start and Final

System_Compute_Step > System_Filter_Step System_Pipe_Step

■ SystemStart
System_State

fil_state:filter_states;port:PORT I port fil_state.f.out_ports

• fil_state.internal_state.f.start

#(fil_state.output_state(port)) = 0

pipe_state: pipe_states

• #pipe_state.sink_data = #pipe_state.source_data = 0

■ SystemFinal
System_State

(«System_State' • System_Compute_Step)

Complete Computation

(— CompleteComputation —
trace: seq System.State

« sys: System • i:dom trace • (trace(i)).sys = sys

«SystemStart • 9 System_State = trace(1)

«SystemFinal • 6 System_State = trace(#trace)

1..(#trace-1)

• («A System_State

• e System_State = trace(i) fl q System.State '= trace(i+1)

System_Compute_Step)

\ Software Sfrcfctectures -.

Experience with a Course on Architectures for Software Systems 9-12

PF Graph

■PFGraph
System
connect: FILTER « FILTER

connect = {p : pipes • (p.source_filter,p.sink_filter)}

\ Software ßfrcfiüectures:

Restrictions

(— AcycliePF-
PFGraph

f: filters • (f,f) connect*

■ Pipeline -
AcyclicPF

«order: seq Filter I dom order = filters #order = «filters

• connect = {i:1..#filters-1 • (order(i),order(i+1))}

\ Software Ärcfütectures:

Experience with a Course on Architectures for Software Systems 9-13

More than "boxes and lines"

Lex Syn Sem Opt Code

"Choo-Choo" Compiler

Syn
Sem

\T/ Opt

 --\ Modern Compiler
\ Software Architectures =====

Experience with a Course on Architectures for Software Systems 9-14

Lecture 11
Communicating Process Architectures

David Garlan

\ Software.Architectures;

Outline

• Process Architectures
> Processes, message passing
> Special forms: Pipe & filter, Client-server

• Focus on Message Passing
> Design issues
> Processing idioms

» Heartbeat
» Probe/Echo
» Broadcast
» Token Passing
» Replication strategies

\ Software facfctectures ======= —

Experience with a Course on Architectures for Software Systems 10-1

Motivation

• Hardware considerations lead to world of
multiple processors/processes

• Each processor/process operates (largely)
asynchronously

• Uses message passing for communication
• How can we exploit this world to get useful

work done?

Software ßirc/utectures:

Process Architectures

• Components: processes
> Each process can be thought of as a virtual

processor
> Operates in own address space
> Can communicate with the world through ports

• Connectors: message passing over
channels

> Send: sends a message on a channel
> Receive: gets a message on a channel

• Configurations: arbitrary graphs

\ Software Sfrcfatectures ========^=^^=^==

Experience with a Course on Architectures for Software Systems 10-2

Alternatives

• Shared memory machines
> Processes can share global variables
> Communication requires synchronization on

these variables
> Algorithms are often simpler with shared

memory, but may be difficult to implement
efficiently and correctly

• Remote procedure call (RPC)
> Processes interact by subroutine invocation
> Similar to programming languages

• Various hybrids
\ Software Ardutecttcres —

Special Cases

• Pipe and filter
> Processes read inputs and write outputs
> Data flows in one direction through acyclic

graph
> We have already looked at this idiom in detail

• Client-server systems
> Client makes request to server and waits for

reply
> Often implemented as RPC
> Asymmetric relationship
> We'll revisit this important idiom later

\ Software Architectures =====^==^=======

Experience with a Course on Architectures for Software Systems 10-3

Note on "Completeness"

• All of these paradigms (shared memory,
client server, pipe and filter, message
passing) are computationally equivalent

• Can simulate any of them using one of
these paradigms

• But they have different properties
> performance profiles
> logical decomposition of problem
>ease of implementation
> efficiency for a given hardware platform

\ Software ArcHitectures ==^==^=^=^^=^=^^=^=

Design Parameters for
Message Passing

• Protocols of interaction
> synchronous/asynchronous
> reliable/unreliable messages/processes
> blocking/non-blocking
> buffered/non-buffered

• Topology of graph
> trees, rings, pipelines, acyclic/cyclic graphs

• Processing algorithm(s) of processes

Software Architectures -.

Experience with a Course on Architectures for Software Systems 10-4

Design Considerations (1)

Degree of interconnectedness
> Fully connected

» algorithms are easier, since can rely on broadcast as
a primitive

» applies to local area nets (in an ideal world)
> Partially connected

» algorithms more complex, since have to worry about
how to get information spread around

» applies more generally to all nets

\ Software Sirdutectures:

Design Considerations (2)

Fault model
> Reliable nodes and channels

» easier to reason about, but not always realistic
> Unreliable nodes - but can detect when one

crashes
» lot's of work done in this area

> Unreliable channels
» requires ack-based protocols

> "Byzantine" faults
» can't detect which part of system is broken

\ Software. S\rcfdtectuxes \

Experience with a Course on Architectures for Software Systems 10-5

Design Considerations (3)

Simplicity of algorithm/protocol
> Symmetric

» algorithms run same program at each node
» more robust in presence of faults

> Asymmetric
» special nodes - e.g., root/leaves of a tree
» usually easier to design algorithms
» but harder to reason about correctness

\ Software Orcfutectures ■•

Design Considerations (4)

• Issues of correctness
> In general, much harder than seq. reasoning

» but message passing actually simplifies reasoning
since don't have to worry about shared state

> Termination
» how do you know when to stop?
» can be difficult to know when net has reached

quiescence.
> Unused messages

» is it important to flush messages from channels on
termination?

> Deadlock and livelock

\ Software ftrcfatectures =s=^====^==^====

Experience with a Course on Architectures for Software Systems 10-6

•

Design Considerations (5)

Performance
> Number of messages
> Size of each message
> Degree of asynchronicity
> Ability to scale up via replication
> Ability not to degrade as net gets bigger

\ Software ArcfutectureSi

More on Message Passing Connectors

• Channels have global names
> not essential, but simplifies description of

algorithms

• Send
> Usually asynchronous (non-blocking)
> Assume infinite buffer

• Receive
> Blocking - receiver waits until message

appears
> Often augment with a procedure to test

whether a channel is empty

\ Software Architectures ==================^==^ =

Experience with a Course on Architectures for Software Systems 10-7

Idiom 1: Heartbeat

Topology: A graph with processors as
nodes and communication only along
edges of graph.
Protocol: 2 phased rounds

> Send information to all neighbors
> Receive information from all neighbors

Example:
>"Life"
> Network topology discovery

» each node knows neighbors
goal is to know entire structure of graph

\ Software. Architectures

Network Topology (Heartbeat 1)

• Represent network graph using adjacency
matrix

• Each node initially has adjacency vector
• Shared memory is easy
• Distributed memory version

> Send local copy of adjacency matrix
> Receive matrix from neighbors and update

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 10-8

Network Topology (Heartbeat 2)

Properties of algorithm
> After k rounds know topology with distance k
> Know full information after D rounds

» where D is the "diameter" of the net
> Wasteful of messages

» how can you improve it?
> How do you know when you are done?

\ Software Architectures \

Idiom 2: Probe/Echo

• Topology: as before
• Protocol

> An initiator node starts by sending probe
message to neighbors

> When receive a probe, send probe to partial set
of neighbors

> When receive echo, send echo to set of
neighbors

• Examples
> Height of tree in a tree-network
> Broadcast message to all nodes

\ Software ATcfctectures „ ======

Experience with a Course on Architectures for Software Systems 10-9

Broadcast (Probe/echo)

• Special node "I" wants to broadcast a
message

• If "I" has knowledge of network topology
use a (spanning) tree

• If nodes know only who are their
neighbors
>On receiving first message, send messages to

all neighbors
> Wait to receive messages from all neighbors

Software Architectures:

Heartbeat versus Probe/Echo

• Heartbeat
>all nodes perform same algorithm
> implicit synchronization
> all messages to neighbors are same
> lots of messages

• Probe/echo
> special node to start the computation
> no synchronization
>send different messages to neighbors
> usually fewer messages

\ Software Architectures S===^ä===^

Experience with a Course on Architectures for Software Systems 10-10

Idiom 3: Token Passing

• Topology: as before
• Protocol

> Token is a special message
> If a process receives a token it has special

permission
> After using the token to do something it passes

it on
> Usually a fixed number of tokens

• Examples
> Resource contention, eg., readers/writers

^^> Termination detection in a ring
\ Software Sirc/utectures ======

Termination Detection in a Ring

Termination means
>all processes are idle
> no messages in transit

Algorithm
> First time process 0 becomes idle it creates a

token and passes it on.
> If a process receives a token, it finishes up its

computation and passes the token on
> If the process 0 has been idle throughout and

gets the token again, it knows the ring is idle.

Software ßrcHitectures ■.

Experience with a Course on Architectures for Software Systems 10-11

Replication

Replicated computation
> bag of tasks
> multiple servers

Replicated data
> replicated files, for example

\ Software Arcfiitsctures:

Experience with a Course on Architectures for Software Systems 10-12

Lecture 12

Communicating Sequential Processes

Robert Allen

\ Software. Architectures ■.

Overview

• Z: a quick review
• Changing Point of View
• CSP
• Analyzing Processes
• Laws

\ Software Architectures:

Experience with a Course on Architectures for Software Systems 11-1

The Goal of a Formal Method

To describe something precisely
To explore its properties
To communicate

\ Software Arcfutectures:

Z (a quick review)

i— Schema
a: ATTRIBUTE
b: OTHEFLATTRIBUTE

INVARIANT (a)
INVARIANT2(b)
INVARIANT3(a,b)

Z views a thing in terms of its states

\ Software ftrcfctectures -,

Experience with a Course on Architectures for Software Systems 11-2

Changing State

• Change_of_State
A Schema
?input
ioutput

Preconditions^ Schema,?input)
Postconditions(a,a',b,b',?input,output)

All actions are viewed as pairs of states

Software Sircfatectures -,

A larger sequence of computations

•States are transformed from one into another
•They are related by A Schemas

\ Software ftrcfutectures -.

Experience with a Course on Architectures for Software Systems 11-3

But Is that always the best way?

r- Customer

pocket_cash: ffl

chocolates_eaten:

■ Machine —

cash: IM

chocolates:

Software ßbc/iitectures;

Some things can be described

■ Happy.Customer

A Customer

chocolates_eaten' > chocolates_eaten

pocket_cash - pocket_cash' £ 75

- Correct_Dispense ■
A Machine

chocolates' = chocolates -1
cash' - cash > 75

\ Software ArcHitectures -.

Experience with a Course on Architectures for Software Systems 11-4

Others are more difficult to model

• A chocolate will always be dispensed after
a coin is put in?

• More coins may be put in, but will be
returned?

• The machine and the customer
communicate via a coin?

\ Software Jircfiitectures -.

Shifting Point of View

•Actions transform states
•Describe the permitted actions

\ Software Xrcfiitectures;

Experience with a Course on Architectures for Software Systems 11-5

An event represents an action

• coinldenomination
• eat_choc
• dispense_choc
• return coin?denomination

\ Software Architectures-.

A process defines a trace of events

• e—P
• STOP
• RUN
• dispense_choc -> eat_choc -» STOP

f~^ dispense_choc ^~>. eat_choc w-(~)

\ Software Sbcfiitectwres -.

Experience with a Course on Architectures for Software Systems 11-6

Infinite Traces (Recursion)

• HUNGRY =
dispense_choc -> eat_choc —► HUNGRY

dispense_choc ^ eat_choc /-> aispense_cnoc ^-\ eai_wiw

Software ftrcfutectures -.

Alternatives

CUSTOMER =
coin —» EAT
DEAT

EAT =
dispense?*^ eat!x-+ CUSTOMER

Software Arcfutectures -.

Experience with a Course on Architectures for Software Systems 11-7

Alternatives

coin
CUSTOMER

\ Software ßlrcfütectures -.

Machine

MACHINE =
coin — (DISPENSE o MACHINE)

DISPENSE =
dispenseichoc — MACHINE
D dispenseJcandy —► MACHINE

\ Software. Arcfctectures-.

Experience with a Course on Architectures for Software Systems 11-8

Machine

MACHINE coin

dispenselcandy

dispenseichoc

com

\ Software SArcfiitectures:

Communication

Customer and Machine communicate to
achieve a valid transaction

CUSTOMER MACHINE

CUSTOMER || MACHINE

\ Software ftrcfdtectuxes ■.

Experience with a Course on Architectures for Software Systems 11-9

CUSTOMER II MACHINE

CIIM
com

eaticandy S~~\ , dispenselcand' o
eatlchoc o dispenseichoc

\ Software Arcfctectures ■.

Customer and Machine Must Agree

CUSTOMER || MACHINE =
coin —»

(dispenseichoc - eatichoc - (CUSTOMER || MACHINE)
□ dispenselcandy — eaticandy — (CUSTOMER || MACHINE))

• Some events are communications
• Why doesn't MACHINE have to agree

about eat?
alphabets

\ Software flrcfctectivres:

Experience with a Course on Architectures for Software Systems 11-10

Alphabets

• a CUSTOMER =
{coin,dispense,eat}

• a MACHINE =
{coin,dispense}

• a CUSTOMER n a MACHINE =
{coin,dispense}

CUSTOMER and MACHINE only agree on the
r^-\ common events
\ Software Architectures ^=================^================

Decision

Shouldn't CUSTOMER decide what to eat?

PICKY.EATER =
dispense.choc —► eat.choc —*

PICKY_CUST
n dispense.candy —► eat.candy

PICKY CUST

PICKY_CUST = (coin — PICKY_EATER)
□ PICKY_EATER

Software Architectures ===== —

Experience with a Course on Architectures for Software Systems 11-11

Making Claims about Processes

• Traces
> traces(a —► b —► P) =

<>, <a>, <a,b>, <a,b,a>, ...
>S(tr): frla<frlb

• Specifications
> P sat S(tr)
> MACHINE sat (frlcoin > f4dispense)
> CUSTOMER sat (frlcoin < frjdispense)
> CUSTOMER sat (f4eat > f4dispense-1)
> C||M sat -•(<coin,coin> in tr)

\ Software Architectures =^=^==^^^=^=^^^

Laws

• P sat S(tr) => P||Q sat S(trtaP)
• P sat S(tr) A Q sat S(tr) =*

PDQ sat S(tr)

• PDQ = QDP

• PDSTOP = P
• (PDQ)DR = PD(QDR)

• (a-> P) II (a - P) = a - (P||Q)
• P n (Q o R) = (P n Q) □ (P n R)

\ SofiwareSfrcfctectures=======^===:^==^=^=i

Experience with a Course on Architectures for Software Systems 11-12

Lecture 13
Models of Event Systems

David Garlan

\ Software ßLrcfiitectures -.

Outline

• Implicit invocation
• Examples
• Properties
• More examples
• Formal model

\ Software Architectures -,

Experience with a Course on Architectures for Software Systems 12-1

Questions to Address

• System Model
> What is the overall organizational pattern?

• Structure
> What are the basic components and

connectors?
> What topologies are allowed?

• Computation
> What is the underlying computational model?
> How is control and data transferred between

components?

\ Software %xcfdtectuTes^=^==^=^=^=^=^=^=^^

Questions to Address (2)

Properties
> Why is this style useful?
> What kinds of properties are exposed?

Specializations
> What kinds of variants are allowed?

\ Software. Architectures -.

Experience with a Course on Architectures for Software Systems 12-2

Communicating Processes

• Components: independent processes
> typically implemented as separate tasks

• Connectors:message passing
> point-to-point
> asynchronous and synchronous
> RPC and other protocols can be layered on top

\ Software ArcHitectures -.

Communicating Processes

Composite

proc is a process

msg is a message

\ Software Arcfiitectures ■.

Experience with a Course on Architectures for Software Systems 12-3

Event Systems

9 w! 9

Object or Process . |

SaftumtSbttatttum^ ImPÜHt Inyncflfinn

Event Systems:
Implicit versus Explicit Invocation

Explicit Invocation

op1
_^ Objects

op2^** •" "*v^ op3

Implicit Invocation

'<%&&%%&^ Event Manager

r"^ ^^ C* ~« Objects
\ Software Arcfatectures ,„ > ^fc=a&'

Experience with a Course on Architectures for Software Systems 12-4

Event Systems: Model

Components: objects or processes
> Interface defines a set of incoming procedure

calls
> Interface also defines a set of outgoing events

Connections: event-procedure bindings
> procedures are registered with events
> components communicate by announcing

events at "appropriate" times
> when an event is announced the associated

procedures are (implicitly) invoked
> order of invocation is non-deterministic

\ Software Ardutectures;

Event Systems: Example 1

Smalltalk-80 Model-View-Controller (MVC)

Registered
procedures

Event

\ Software ArcHitectures =

Experience with a Course on Architectures for Software Systems 12-5

Event Systems: Example 2

Field Programming Environment

Check-in

Librarian

\ Soptvare. ßrcfutectures:

Event Systems: Example 3

Gandalf Environments

DBChange Events Daemons

\ Software Ärcfctectures \

Experience with a Course on Architectures for Software Systems 12-6

Event Systems: Advantages

• Problem Decomposition
> Objects more independent than with explicit

invocation
> Interaction policy can be separated from

interacting objects

• System Maintenance and Reuse
> Static name dependencies not wired in so

dynamic reconfiguration is easy
> Reuse objects simply by registering them

• Performance
> Possibility of parallel handling of events.

\ Software ßLrcfutectures ____■—

Event Systems: Disadvantages

• Problem Decomposition
> No control over sequencing of invocations
> Function call semantics problematic
> Cycles may be problematic

• System Maintenance and Reuse
> Needs central management to keep track of

events, registrations, and dispatch policies
> Event handling may interact badly with other

run time mechanisms

• Performance
j> Indirection may incur overhead

\ Software Architectures ====== =

Experience with a Course on Architectures for Software Systems 12-7

Event Systems: Specializations

• Tool Abstraction (e.g., Gandalf, blackboards)
> Central database, events trigger daemons

• Event-only Systems
> Events are simply forwarded.

• Dependency List (e.g., Smalltalk-80)
> Each object keeps its own dependency list

• Constraint Systems (e.g., attribute
evaluation, spreadsheets, mediators)

> Methods associated with events reestablish
constraints.

Application: Mediators

Relationship L

Component 2

Example:
Component 1 = nodes of a graph
Component 2 = edges of a graph
Relationship = maintain correspondence

\ Software Arcfutectures ■,

Experience with a Course on Architectures for Software Systems 12-8

Possible Solutions

1 Each of the components knows about the
other

> when update operation is applied, call routine
in other

> result: brittle

2. Write a third component that
encompasses the two

> new component has combined interface
> result: overly specialized

Software Architectures -.

Implicit Invocation Solution

Component 1 Component 2

\ /

Mediator

Software, Rrcfctectures:

Experience with a Course on Architectures for Software Systems 12-9

Case Study in Industrial Arch. Design

Recall Goals
> Multiple hardware platforms for same user

interface
> Multiple user interfaces for same platform

How to separate user interface from
application?

\ Software Arcfutectwes ■.

Case Study
(continued)

Output: application announces events

Output Handlers

Internal Change Events

Internal Oscilloscope Processing

\ Software ßrcfütectures -.

Experience with a Course on Architectures for Software Systems 12-10

Case Study (continued)

Input: user generates events

Input Event Dispatcher

Input Handlers

Reconfiguration Commands

Abstract Interface

Internal Oscilloscope Processing

Software Architectures -.

KWIC

Inputs: Sequence of lines

Pipes and Filters
Architectures for Software Systems

Outputs: Sequence of lines, circularly shifted
and alphabetized

\ Software Ärcfiitectures:

and Filters Pipes
Architectures for Software Systems
Filters Pipes and
for Software Systems Architectures
Pipes and Filters
Software Systems Architectures for
Systems Architectures for Software

Experience with a Course on Architectures for Software Systems 12-11

KWIC: Solution 1 (Shared Memory)

Input

I
Circular shift

I
Alphabetize

J.
Output

Master Control

Z3

\ Software Architectures-.

KWIC: Solution 2 (ADTs)

Advantage:
Information hiding makes
implementation changes easier

\ Software Architectures =======

Experience with a Course on Architectures for Software Systems 12-12

KWIC: Solution 3 (Toolies)

Interactive Version

Inputs (^shiftj alphabetize ^Output^

1 /insert \ /insert \ /|

Line DB | I Shifted Line DBI [Alph Line DB j

Insert

Advantage:
Tool separation makes function
enhancements easier.

Software Sircfiitectures -,

Event System Components

Event-Component —
name: P NAME
methods: P METHOD
events: P EVENT

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 12-13

Event System

l— Eventsystem
components: P Component

EM: Events <-> Method

\ Software ßLrcfütectures;

Specialization of the Style

•— Smalltalk
EventSystem
dependents: Component <-» Component

EM = { d,c2: components i
(c1,c2)e dependents •

((d.name, changed), c2.name, update))}

\ Software. Architectures ■.

Experience with a Course on Architectures for Software Systems 12-14

Lecture 15
Event Systems:

Formal Model and Implementation

David Garlan

\ Software, ßbzfütectures ■.

Outline

• Review of basic properties
• Formal model of event systems
• Implementation categories
• Specific Implementations

>The Ada-Event system
> Smalltalk
> Field
>Softbench
> Gandalf Daemons

• Understanding the Design Space
\ Software SJrcfa.tectu.Tes ==

Experience with a Course on Architectures for Software Systems 13-1

Event Systems: System Model

• Components are objects or processes
• Components communicate by

announcing events.
• Components register for events they are

interested in and associate procedures
with those events.

• When an event is announced, the
registered procedures are automatically
invoked.

\ Software ftrcfatecttires-,

What is Implicit Invocation?

Explicit Invocation

Implicit Invocation

\ Software Sfrcfutectures:

Objects

oP3 Objects

Experience with a Course on Architectures for Software Systems 13-2

Categories of Event System

Systems that support Implicit Invocation
fall into three basic categories:

> Programming language extensions
Smalltalk, Mediators, Ada Events, Toolies

>Tool integration frameworks
Field, Softbench, Forest, DecFuse, ToolTalk

>Special-purpose applications
Gandalf daemons, Active databases, APPUA

\ Software Arcfutectures -.

Event System Components

I— Event-Component —
name: P NAME
methods: P METHOD
events: P EVENT

\ Software Architectures -,

Experience with a Course on Architectures for Software Systems 13-3

Event System

I— Eventsystem
components: P Component
EM: Events <->• Method

\ Software Sbcfütectures:

Specialization of the Style

■— Smalltalk
EventSystem
dependents: Component «-> Component

EM = { d ,c2: components I
(c1,c2) e dependents •

((cl.name, changed), c2.name, update))}

\ Software Stocfatectttres \

Experience with a Course on Architectures for Software Systems 13-4

Informal Analysis

Model allows us to predict problems
> Burden on receiver in Smalltalk-80
> Non-uniformity in Appl/A
> Daemon Complexity in Gandalf

\ Software Architectures;

Formal Analysis

f: Field ; g: Forest \— ... =$> f.EM = g.EM

Gandalf \— -Circular

\ Software Architectures:

Experience with a Course on Architectures for Software Systems 13-5

Adding Implicit Invocation to Ada

• Annotate Ada specifications with event
declarations and bindings.

• Use source-source filter to produce event
manager in Ada.

Software Ärdütectures -.

Event I
Bindings | v^

^FilterV
Event I
Manager! P_n I S

\

--• I

Adding Implicit Invocation To Ada (1)

Event declarations
package Pkg_l

declare Event_l X: Integer; Y:
Pkg_N.sometype;

declare Event_2;

——!

procedure My_Procedure (A: Integer);

function My_Function;

end P 1

\ Software flrcfutectures:

Experience with a Course on Architectures for Software Systems 13-6

Adding Implicit Invocation To Ada (2)

Event-procedure bindings
— —!

for Pkg_l
when Event_3 => MyJProcedure A
when Event_2 => My_Procedure X

end for Pkg_l

for Pkg_2
when Event_l => Proc_l Y

when Event_2 => Proc_2
end for Pkg_2

\ Sojhuare Architectures === ==^== ——

Adding Implicit Invocation To Ada (3)

Event announcements

procedure P is

• • •

Announce_Event
(Argument»(Event_l# X_Arg# Y,Arg));

• • •

end P

Software %Tcfdtectures ■,

Experience with a Course on Architectures for Software Systems 13-7

Event Manager (1)

Events become an enumerated type
package EventJManager is

type Event is

(Event_l, Event_2, ...);

type Argument <The_Event: Event) is

record

case The_Event is

when Event_l =>

Event_l_X: Integer;

Event_l_V: Pkg_N.HyType;

when Event_2 =>

null;

procedure Aanounce_Event(The_Data: Argument);

end Event_Hanager;

\ Software Xrcfutactwes:

Event Manager (2)

Dispatcher is a case statement
with Pkg_l, Pkg_2, •..;

package body Event_Manager is

procedure Announce_Event(The_Data: Argument) is

begin

case The_Data.The_Event is

when Event_l =>

Pkg_2.Proc_l(The_Data.Event_l_Y);

when Event_2 =>

Pkg_l.MyProcedure(The_Data.Event_l_X);

Pkg_2.Proc_2

end Event_Manager;

\ Software Stecfdiectures -.

Experience with a Course on Architectures for Software Systems 13-8

Design Issues

• Event Declarations
> Who should declare events and where?

• Event Structure
> How should events be parameterized?

• Event Bindings
> How/when should events be bound to procedures?

• Event Announcement
> How should events be announced and dispatched?

• Concurrency
> Can components operate concurrently?

Event Declarations

• How should events be declared?
> Predefined Set of Events
> Static Event Declaration
> Dynamic Event Declaration

• Where should events be declared?
> Central Declaration of Events
> Distributed Declaration of Events

\ Software, ßtrc/utectures;

Experience with a Course on Architectures for Software Systems 13-9

Event Structure

How should events be parameterized?
> Simple Names
> Fixed Parameter Lists
> Parameters Determined by Event Type

> Parameters Determined Dynamically

\ Software. Architectures -,

Event Bindings

• When should events be bound to
procedures?

> Static Event-Procedure Binding
> Dynamic Event Registration

• How should data be communicated
between an event and its implicitly-
invoked procedures?

> Single Fixed Parameters (Event_Manager.Arg)
> Multiple Parameters, but all passed
> Selectable Parameters
> Expressions over parameters

r^v
\ Software %Tcfiüectures^=s=^==^=^=^=^^=i:^==^=

Experience with a Course on Architectures for Software Systems 13-10

Event Announcement

• How should events be announced?
> Single Announcement Procedure
> Multiple Announcement Procedures
> Extend language (e.g., announce keyword)

\ Software Jircftitectures ■.

Concurrency

What is an implicitly-invocable
component?

> Independent procedure
> Module/object with procedure calls
> Independent process
> Process defined by Event_Manager

How are events "delivered"?
> Full Delivery
> Selective Delivery
> Pattern-based Selection

- State-based Policy (ala Forest)
Software ArcfiitectuTes =====^================

Experience with a Course on Architectures for Software Systems 13-11

Smalltalk

Smalltalk-80 Changed/Update Protocol

Update

\ Software Architectures \

Smalltalk (continued)

Key Points
> Commercial programing language/environment
> Small vocabulary of events and methods
> Implemented by inheritance + dependency list
> Synchronous dispatch
> Dynamic registration of dependents
> Primary application is user interfaces (MVC)

\ Software Architectures ■,

Experience with a Course on Architectures for Software Systems 13-12

Field

Field Programming Environment

\ Software Ärcfiitectures -.

Field (continued)

Key Points:

>ROTS
> Processes communicating via sockets to

central dispatcher (MSG)
> Synchronous and asynchronous
> Pattern matching as selection mechanism
> Events can be arbitrary strings
> Primary application is tool integration

\ Software Xrcfutectures-.

Experience with a Course on Architectures for Software Systems 13-13

Softbench

Key points:
> Commercial product (HP)
> Like Field, but

» Events have more structure
(tool class, context, file,...)

» Asynchronous only
» Callbacks supported

> Support for "encapsulating" tools
(Ul support, message handling)

\ Software Arc/iitectttres-.

Gandalf

Gandalf Environments

DBChange Events Daemons

\ Software ßtrcfutectures ■.

Experience with a Course on Architectures for Software Systems 13-14

Gandalf (continued)

Key points:
> Events triggered on operations to data
> Fixed set of events for predefined data

operations
> Fixed event structure
> Extensible set of events for other operations
> Organized around transactions
> Synchronous invocation
> "Tools" are written in a special purpose

language, which understands notion of events
and event structure

\ Software flrcfiitectures;

Experience with a Course on Architectures for Software Systems 13-15

Lecture 16
Repositories:

Blackboard Systems

Mary Shaw

\ Software Architectures:

Repository (Blackboard)

Direct access c

c±y
Blackboard

(shared
data)

imputation

Memory

Software ßirc/iitectures:

Experience with a Course on Architectures for Software Systems 14-1

The Blackboard Model

• Knowledge Sources
> World and domain knowledge partitioned into

separate, independent computations
> React to changes in blackboard

• Blackboard Data Structure
> Entire state of problem solution
> Only means by which knowledge sources

interact to yield solution

• Control
> Knowledge sources are self-activating

\ Software architectures \

Blackboard Architecture

• General framework to structure and control
problem-solving behavior involving multiple,
diverse, and error-ful knowledge sources

• Independent processes achieve cooperative
problem-solving
> various levels of abstraction
> limited processing allocated to most promising

actions
> diverse problem-solving components
>focus-of-control mechanism

Diversity ==> search among multilevel partial
solutions

Software ftrcfiitectures ======ss===========^^==^==

Experience with a Course on Architectures for Software Systems 14-2

Blackboard Problem Characteristics

No direct algorithmic solution
> Multiple distinct kinds of expertise
> Many options for what to do next
> Heterogeneous domain vocabulary

Uncertainty
> Error and variability in both input & knowledge
> Moderate to low signal-to-noise ratio in data
> Uncertainty interferes with algorithmic

solutions

\ Software Ardiitectures ■.

Blackboard Problem Characteristics

• "Best-effort" or approximate solution often
good enough

> Find parts of a problem that can be solved
separately

• Large factorable solution spaces
• Common applications involve uncertainty

> signal processing or interpretation
> problem-solving (e.g., planning)
> compiler optimization also a candidate

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 14-3

Problem-Solving Models

Central question: What pieces of knowledge
should be applied, and when, and how?

• Backward reasoning:
> Works from goal back to initial state
> Example: program verification (deterministic)

• Forward reasoning:
> Works from initial state toward goal
> Example: expression simplification by transformation

• Opportunistic reasoning:
> Works whichever direction seems most productive
> Example: trig identities

\ Software Architectures ======^====^^====:^=^^^==

Blackboard Model, Revisited

• Knowledge Sources
> All the world & domain knowledge needed to solve problem
> Partitioned into separate, independent computations
> Respond to changes in blackboard

• Blackboard Data Structure
> Entire state of problem solution
> Hierarchical, non-homogeneous
> Modifications by knowledge sources lead to solution
> Only means by which knowledge sources interact

• Control
> In model, knowledge sources self-activating
> In framework, the magic whereby knowledge sources

f-~\ respond opportunistically to the state of the solution
\ Software Architectures =^===^=^^^==^^=^

Experience with a Course on Architectures for Software Systems 14-4

Notes on other slides

• This lecture relies heavily on the Nii survey,
so many figures from that paper are
included, along with some photographs.

• At this point, extra slides are:
> 1. Figure with diagram of simple blackboard
> 2. Three photographs of koalas in eucalyptus

trees (these are fairly easy to recognize)
> 3. Fig 4: blackboard structure for koala

knowledge
>4. Five more photographs in koalas in eucalyptus

trees (these are much harder to recognize)

\ Software Arcfiitectures -.

Model -> Framework

• Add operating details to abstract model

Purpose of framework:
provide design guidelines for implementation in

conventional computer environment

\ Software Arcftitectures -.

Experience with a Course on Architectures for Software Systems 14-5

Knowledge Sources

• Objective:
> contribute knowledge that leads to solution

• Representation:
> procedures, sets of rules, logic assertions

• Action:
> modify only blackboard (or control data - magic)

• Responsibility:
> know when it's possible to help

• Selection:
> loosely-coupled subtasks, or areas of specialization

\ Software ßbdiitectures ======================== =

Blackboard Data Structure

• Objective:
> hold data for use by knowledge sources

• Representation:
> stores object from solution space, including

» input data, partial solutions, alternatives, final
solutions, control data

» objects and properties define terms of discourse
» relationships denoted by named links

• Organization:
> hierarchical, possibly in multiple hierarchies;

need links between objects on same or different
 ^levels
\ Software. Rxcfiitectures ==========

Experience with a Course on Architectures for Software Systems 14-6

Control

Objective:
> make knowledge sources respond opportunistically

Representation:
> keeps various sorts of information about which

knowledge sources could operate and picks a
sequence that allows the solution process to
proceed a step at a time

Remark:
>the control mechanisms are thoroughly ad hoc; we

will return to this problem in the next lecture with a
better way to think about determining the execution
order

Software S^xcfaiectwres ■.

Notes on other slides

• Figures from Part 2 of Nii survey:
> 1. Fig 2: Hearsay task
> 2. Fig 3: Hearsay knowledge structure
> 3. Fig 4: Hearsay architecture

\ Software ÄTcJutectuTes -.

Experience with a Course on Architectures for Software Systems 14-7

Hearsay Problem-Solving Strategy

• Bottom-up (synthetic):
> interpretations synthesized from data working

up abstraction hierarchy

• Top-down (analytic):
> alternatives for filling out candidate structures

• General hypothesize-and-test:
> one knowledge source generates hypothesis,

another validates (prunes or assigns
credibility)

\ Software Arcfutectiores -.

Notes on other slides

Figures from Part 2 of Nii survey:
> 1. Fig 5: HASP task
> 2. Fig 6: HASP knowledge structure
> 3. Fig 7: HASP architecture

Software ftrcfatectwes -.

Experience with a Course on Architectures for Software Systems 14-8

HASP Problem-Solving Strategy

• Bottom-up (synthetic):
> most of 40-50 knowledge sources worked bottom-

up; breadth-first, pipeline style; lower-level units
combined with change of vocabulary to update
next level up

• Top-down (analytic):
> not most numerous, but most powerful; model-

driven; world view allows you to set expectations
and prune out alternatives

• General hypothesize-and-test:
> one knowledge source generates hypothesis,

another validates (prunes or assigns credibility)

\ Software Ärcfütectures ========

Experience with a Course on Architectures for Software Systems 14-9

Lecture 17
Client-Server Architectures

Databases

Jose Galmes

Software fticfdtectures:

Models of Interaction (1)

• Peer to peer
> Processes are independent, each executing its

computation.
> Processes occasionally communicate.
> Either process can start the communication.
> Processes know each other's existence.
> Example: replicated processes.

\ Software fiicfutectures:

Experience with a Course on Architectures for Software Systems 15-1

Models of Interaction (2)

• Client-server
> Particular case of peer to peer.
> Client always starts communication.
> Client knows server exists, but server needs

not know client exists.
> Examples: X-Windows, NFS, Mosaic, News

Readers/Servers,...

client

request _

server

reply

Software Sircfiitectures -,

Why Client-Server?

• Simplicity.
• Supports client computation.

> and workstations are cheaper everyday.

• In many cases, performance depends
mainly on server.

> Low-end workstations/PCs as clients.

• Separation between client and server.
> Easier to plug clients.

• Redundancy at server to support fault
tolerance.

\ Software Architectures =^==^^===^=^===

Experience with a Course on Architectures for Software Systems 15-2

Client-Server: disadvantages

• Performance
> Client blocks while waiting for reply.
> However, in many cases the client would block

anyway.

• Complexity in infrastructure
> RPC mechanism.

• Possible bottlenecks
> Example: games server on WWW.

\ Software Arcfctectures -.

Client-Server: types

• Stateless
>The server does not keep any state

information.
> All the state information is in the clients.

• State-based
>The server keeps state information.
> Example: file server knows what clients are

accessing what files.

\ Software, ftrefctectures;

Experience with a Course on Architectures for Software Systems 15-3

Client-Server: Stateless

• Example: NFS
• If the server crashes, the client has all the

state information.
• Penalty in performance.

> Each interaction must carry enough
information to reestablish context.

\ Software, ftrcfiitectures -.

Client-Server: State-based

• Server has state information.
> Example: knowledge of open files.

• Server and client operate in the context of
a session.

• Server more complex.
> What if the server crashes?

• Potential better performance.
• Some operations do not fit nicely in a

stateless model (e.g.: lockQ)

Software Architectures -.

Experience with a Course on Architectures for Software Systems 15-4

Client-Server and RPC

• Client-Server vs. RPC
> Client-Server is the model of interaction.
> RPC is the most common implementation.

• What is RPC?
> RPC consists of hiding the communication

protocol inside a procedure.
>To the client an RPC call looks like a local

procedure call.

\ Software Sircfatectunes -.

Architecture of an RPC-based
application

client
processing, client

network

server server
Ul, stubs stubs processing

etc.

\ Software Ärdatectures:

Experience with a Course on Architectures for Software Systems 15-5

Stub Generators

• RPC packages come with a stub generator
tool.

• Given a high-level description of the
protocol, the tool generates:

> Client code
» packs data, sends package to server, waits for reply

and unpacks reply.
> Server code

» unpacks incoming requests, calls service routines,
packs results and sends them to the client.

\ Software Ardiitectures ■.

Stub generation: Example

Separate
handout.

\ Software Sircfutectures ■.

Experience with a Course on Architectures for Software Systems 15-6

Transaction Processing Systems (TPS)

• State change in model of the world
mediated by transactions.

WORLD

Software Architectures =

transaction

MODEL

What is a transaction?

A collection of actions on the application
state, obeying the ACID properties:

> Atomic: all changes happen or none do.
> Consistent: the actions as a whole are a

correct state transformation, obeying all
integrity constraints.

> Isolated: transactions appear to be executed
one at a time.

> Durable: once committed, changes survive
failures.

\ Software Architectures:

Experience with a Course on Architectures for Software Systems 15-7

Why transactions?

• Single failure semantics.
• Easier to write reliable applications.
• Infrastructure that can be used by many

applications.

\ Software Architectures -.

Basic Form of a Transaction Program

begin_transaction();

operational();
operation_2();

• • •

commit transaction();

\ Software.Architectures:

Experience with a Course on Architectures for Software Systems 15-8

TPS Architecture

The ACID properties suggest a need for
the following functionality:
>A, C: need to undo partial computations

» => Log Manager records a log of changes made by
transactions, so that a consistent state can be
reconstructed in case of failure.

> I: need to lock/unlock objects
» => Lock Manager.

> D: need for permanent storage
» => Resource Managers.

\ Software Arcfiitectures ■.

TPS Architecture

Jim Gray, Andreas Reuter, Transaction Processing, Concepts and Techniques," p. 20.

\ Software Arcfiitectures

Experience with a Course on Architectures for Software Systems 15-9

Lecture 18
Repositories:

Information System Evolution Patterns

Mary Shaw

\ Software Architectures ■.

Context

We previously discussed the initial form
for shared information systems, batch
sequential organization.
We also examined two repository
organization, databases and blackboards.

\ Software Architectures ■.

Experience with a Course on Architectures for Software Systems 16-1

Batch Sequential Data Processing

tape.
Validate

tape.
Sort

tape.
Update

tape.

Cz—zn I tape -*—'

Report
report.

•

Processing steps are independent programs
Each step runs to completion before next

step starts

\ Software Architectures -.

Interactive Data Processing

• Laurence J. Best. Application Architecture:
Modern Large-Scale information Processing.
Wiley 1990. (figures on system organization)

\ Software Architectures:

Experience with a Course on Architectures for Software Systems 16-2

Repository Architecture

f batch j

[interact J

\ Software Jfac/iitectures ■.

Integrating Databases

Won Kim and Jungyun Seo. "Classifying
Schematic and Data Heterogeneity in
Multidatabase Systems" IEEE Computer,
December 1991, vol 24 no 12 (table 1 p.13.)
Rafi Ahmed et al, "The Pegasus Heterogeneous
Multidatabase system." IEEE Computer,
December 1991, vol 24 no 12 (fig 1, p.21)

\ Software. Architectures:

Experience with a Course on Architectures for Software Systems 16-3

Unified Schemas for Integrating
Databases

Abstraction:
multiplex the databases;
put filters on the query/
update to match diverse
views ^^

R R R

\ Software Jirc/Utectures ■.

*

Computer Aided Software Engineering

• Software development
> Initially just translation from source to object code:

compiler, library, linker, make
> Grew to include design record, documentation,

analysis, configuration control, incrementality
> Integration demanded for 20 years, but not here yet

• As compared to databases:
> more types of data
> fewer instances of each type
> slower query rates
> larger, more complex, less discrete information

but nor shorter lifetime

\ Software ^rcfiitectures s:^==^^^=^=^=^^=^^==^=^=^

Experience with a Course on Architectures for Software Systems 16-4

Traditional Compiler

Text
Lex Syn Sem Opt Code

Code

\ Software Architectures;

Modern Canonical Compiler

Text
Lex Syn Opt Code

Tree

Code

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 16-5

Canonical Compiler, Revisited

\ Software 5\xcftitectwes \

Software Tools with Shared
Representation

/ \ query/
I to°" /^update

[tooßj

open
rep

f tool3 *^

Proprietary
project

dictionary

f toow j f* no contact

c

^(tool a)

^(toolb)

„ »/ tooix ^

^rtooiYj

conv

conv

loser conversion

\ Software ßtrcfutectures ■,

3

Experience with a Course on Architectures for Software Systems 16-6

Evolution of CASE Environments

• Evolution is much like databases
> Interaction: batch -> interactive
> Granularity: complete processing -> incremental
> Coverage: compilation -> full life cycle
> Like databases, started with batch sequential style;
> integration needs led to repositories with rigid control,

then to open systems in layers

• Integration still weak:
> Passive conversions, rigid ordering
> Knowledge only of system concepts (file, date)
> Must learn to handle complex dependencies and

selection of which tools to use, but doesnt yet

Software ArcHitectures:

Repositories (Review)

Control Thread Example:
Driven By

Designer Compiler
(predetermined)

Input stream Database
transaction system

State of problem Blackboard
solution

\ Software Arcfiitectures -.

Experience with a Course on Architectures for Software Systems 16-7

Building Big Systems from Little Ones

• Independent components vs shared
context

> Consistency before the fact
> Support commonality via development

environment

• Open systems and proprietary
architectures

> Consistency through interface standards
> Current events and market forces

• Distributed, dynamically open systems
> Consistency after the fact

\ Software jfacfotectuxes ==^==^=^==^==

Software Costs Dominate Computing

100%

0%

1960 2000

\ Software Sircfutectures -.

Experience with a Course on Architectures for Software Systems 16-8

The Computer Industry

Historical structure of computer industry
> Independent, vertically integrated competitors
> Support commonality via development environment
> Software developed for single operating

environment
Modern computer industry - driven by PC
revolution

> Recognizable layers
> Massive articulation between layers
> Multiple competitors in each layer
> Imperative for components to interact flexibly

Object lesson: only one or two vacuum-tube
companies made successful transitions to

ansistors and then ICs
Software Architectures -.

Added slides

Vertical Integration in computer industry

Restructuring of computer industry

\ Software flrcftitectwres:

Experience with a Course on Architectures for Software Systems 16-9

Open Systems and Proprietary
Architectures

• New paradigm
For competitive success, get proprietary architectural
control over a broad, fast-moving, competitive space.

• Architectural control
An "architectural controller" controls one or more of the
standards for assembling the entire info, package.

• Open systems
Open systems are externally accessible to many
vendors; critical elements are installed and deleted
independently.

• Architecture
The complex of standards, formats, communication
protocols, and rules that define how programs and
commands work and how data flows around the system.

\ Software Sfrcfjitectures =^=^=^=^=^a=^=

The Owner's Edge for an Architecture

• Advance knowledge
Can start product development early.

• Preferred directions
Can steer standard development to take advantage of

own capabilities - or away from competitor's.
• Competitive edge

Has superior understanding of how to exploit
architecture.

• ... not unlimited ...
Unix world is now (finally!) organizing to break the

Microsoft choke-hold
• The rest of the world benefits too - architecture is

not a prisoner to an international standards
committee.

\ Software ftrcfatectuxes =====^=^=^^=^^=^=^^=

Experience with a Course on Architectures for Software Systems 16-10

Imperatives for Architectural
 Competition

• Good products are not enough
Must retain compatibility with growing product family

• Implementations matter
Performance is a critical factor in establishing

dominance
• Successful architectures are proprietary, but open

Right degree of openness is subtle, critical decision
• General-purpose architectures absorb special-

purpose solutions
Successful products expand to overrun niches

• Low-end systems swallow high-end systems
Hardware gets both cheaper and more powerful; users

expand needs from low end; networks of small
systems are increasingly powerful and flexible.

\ Software AicfatectuTes ===== =

Adobe

• Roots in Xerox PARC
> Interpress: exchange format for printer

flexibility

• Competitive basis: Postscript, fonts
> Postscript open (worked) but fonts closed

(failed)

• Continuing product development
> 15,000 typefaces; Type Manager; Illustrator;

Photoshop; Premiere; PixelBurst coprocessor;
UNIX & PC support

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 16-11

Adobe (2)

Printing industry standard
> Originally low-end printers; now imagesetters

for publishing industry; ISO page-description
standard

Next generation products under
development

> Postscript for Fax: remote printer as well as fax
machine

> Acrobat: storage, compression, transmission
for true document interchange

> Cooperative development program with OEMs

\ Software Architectures ■.

System Incompatibility Problems

Technology fruit salad
> Individually attractive products create

competing guilds

Turnkey virus
> Bundled "business solutions" proliferate

gratuitous diversity

Standard vendors vs platform standards
> 4 architectures from 1 vendor vs 1 architecture

from 4 vendors

\ Software Architectures-.

Experience with a Course on Architectures for Software Systems 16-12

System Incompatibility Problems (2)

• Technology balkanization
> Internal politics creates opportunities for

incompatibility

• Trojan horse consulting
> Beware "free" consulting services from your

vendor

• Outsourcing and entropy
> Outside contractor's interests may not match

yours

\ Software Architectures-,

The "Open Architecture" Edge

• Monopolies are no longer practical
> Need to evolve
> Need to accommodate multiple technologies
> Better to have large share of a big shared

market segment than fragile private slice of
whole market

• The edge is in lead time, not private
access

\ Software RrcfiitectuTes -.

Experience with a Course on Architectures for Software Systems 16-13

Lecture 19
Mixed Use of Idioms in
Software Architectures

Mary Shaw

\ Software Architectures:

Repository Pattern (Blackboard)

Direct access I te1 omputation

Memory

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 17-1

Interpreter Pattern

Memory

0 v**
Inputs

Data
(program

state)

Computation
state mach

Program
Being

Interpreted

Outputs

Software Arcfiitectures -.

Data access
Fetch/store

\ Software Architectures ■,

Experience with a Course on Architectures for Software Systems 17-2

TAG

TAG

TAG

TAG

DATA

OPERATING
TUNING
CONFIGUR-

ATION

Software Architectures -.

ACTION SERVICES

ALGORITHM
NAME(S)

TEMPLATE

COMMUNI-
CATION

TRACE
ALARMS
ETC

Simple Rule-Based System

Knowledge base

Software SZrcfiitectures -.

Experience with a Course on Architectures for Software Systems 17-3

Software Architectures

\ Software ffachitectwres

Experience with a Course on Architectures for Software Systems 17-4

Simple Blackboard

Knowledge
Source

Blackboard
Knowledge
Source

\ Software SZrc/iitectures

(Dataflow)

Knowledge
Source

Experience with a Course on Architectures for Software Systems 17-5

a
2
3
O

CO
e
09
•a
o

i
c

c
o c

o
■a
c o
o <
Ü

i\
\

c
o c
■a o

o o
O <

0)
e

§|

18-
S «a •to or-

\

\
\

\
\

A
I

§ 8»

 eoo—

a
o
.o
o
a

5 (D > a > a? >

3
a> O
o

CO

CO

o

1 <
1 CS >»

ns CS 1 Q 50
CD
CO

°T; U) s X
» 2 a o . .
Üc S h-
o O a o
U.OO *i w

C = o
Ü

o
LL

GO GO OS

3 S
O f

e $
Dl:i

■D i
a i
9l
O :■
C :: * :!

c c
o c _o c _o c
'S c
o
Ü

o <
c
o
Ü

_o
o <

c
o o

o
o <

W%t i\ gki,

/\
I
CO
'S o

i

c o
Ü

W
DC
<
LU
X
o
5 a
>
■s
to o a
o ffl

CD

CO

£
3
TO

awßna uorre$ai«Lra|in
jo qxed osre are suotpy :«M>N

0)

s

O IP

9 0

e<5

S3*

SjS* is»;

c ° c
as o

= ! I O : <

.a
sacs
ssas ■SWA

<D
3

IB
JC
o
CO

4 $S o
1 11 jS

ISSS&SiSfe §& CO
|? Q

— ®
1 £

CO 2.8 S o
ScS
O O (8 S; O £oo ?! *>

IS o

<
CO

<
HI
X
"o
s
.2 >
©

£
e-
£

ci
£
I?
LL

System
is

Component

\ Software Architectures-.

Example: "Meals Ready to Eat" (WIRE)

UNDERSTANDING THE MEANING OF DATA

Summary Data Source Detailed Data Sources

\3L
Warehouse #2
Database

Al Despair 14

Experience with a Course on Architectures for Software Systems 17-7

Future Information Systems

• High-speed networking provides ever-faster access
to ever-more data

• Problems for single databases
> Sheer volume of available data
> Lack of abstraction
> Need to understand representation of data

• Problems for combining multiple databases
> mismatch of information representation and structure

• Knowledge vs data
> Data: specific instances and events; gathered

clerically or mechan.; correctness can be checked
> Knowledge: abstract classes, each covering many

^^^instances; requires expertise

\ Software Jfrc/utectures =:==:^=^=^=^=^=^^^=^=^

Mediation

• Transformation and subsetting of
databases using view definitions and
object templates

> Reorganize base data into new configurations

• Methods to gather an appropriate amount
of data

> Deal with recursively linked data, temporal
granularity, detail/generalization shifts

• Methods to access and merge data from
multiple databases

> Compensate for mismatch of database
r-~-\ structure, representation
\ Software ßlrcfiüectures ===^===^=^=^^^==

Experience with a Course on Architectures for Software Systems 17-8

Mediation

Abstraction and generalization over
underlying data
> Raise level of detail: statistical summarization,

searching

Extraction of information from structured
text
Maintain derived data
> Maintain integrity as originating databases

change

•

\ Software. Architectures -.

You Can't
Your DBMS

As a SyfeomoioT)

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 17-9

Mediator Architecture

• Architectural drivers
> Distributed databases with repres. mismatches
> Maintenance of derived abstractions; data fusion
> Highly dynamic collection of available components:

need flexibility

• Layered architecture
> Separate user applications from data resources

with mediator layer
> Dynamic interfaces between layers are most critical
> Layers segmented internally
> Event triggering for dynamic response

Software Arcfotectures -.

Mediator Architecture

• Architectural considerations for mediators
> Most user tasks will use multiple mediators
> Each mediator will use one or a few databases
> Mediators must be inspectable for validation or

selection
> Mediators must be dynamic, able to create

many views
> Mediator definitions must cascade:

metamediators

\ Software Architectures;

Experience with a Course on Architectures for Software Systems 17-10

Multi-Databases

Users

f iiiiiii

V)

ent-Server j^ <L
Mediators tzf^^^^^

Client-Server

Databases

\ Software ßtrcfiitectures:

G 9 9 9 9i

Layered Pattern

Usually
procecure Mils /^seful Systems"

Composites of Users

 y various elements
\ Software Architectures ======

Experience with a Course on Architectures for Software Systems 17-11

Example: "Meals Ready to Eat" (MRE)
UNDERSTANDING THE MEANING OF DATA

 Summary Data Source
Query: ' ' "
How Many Turkey Meals (MRE) are On-Hand?

Detailed Data Sources

Some Issues:
1. What does the answer mean?

On-hand quantity =
Count-on-shelves - committed (derived data)

_^««2. How to construct the answer in compliance
r""""^ with the user's desired meaning?
\ SojTwuresircnuecna-es ===^==^==

Warehouse #2
Database

Al Despair 23

Environment Integration

• Component independence
> Components should be usable in different

configurations
> Source code should not depend on other

sources
> Relationships should not be exclusive

• Sources of trouble
> Composition via encapsulation hides

components
> Relationships are encoded in the interacting

components

\ Sofiwarefacfiitectu.resz===========^=^==^=^^=^==

Experience with a Course on Architectures for Software Systems 17-12

Environment Integration (2)

• Event-method relations
> Decouple caller & responder from call/

response association

• "Mediator"
> First-class component that maintains

relationships
> Maintain state; call other components with side

effects
> Export abstract interfaces, announce events

\ Software Architectures \

Environment Integration (3)

Sullivan and Notkin event solution
> Achieve integration by enforcing a single

interaction discipline
>This is a common approach; we've seen

several such

Dealing with foreign components
> You often want to reuse components that don't

follow the rules
> Here, you create a mediator for each such

component that uses functionality of the
available interface and exports an interface in
the proper form - "wrappers"

Software Architectures -.

Experience with a Course on Architectures for Software Systems 17-13

Environment Integration (4)

Timing and pacing
> Mediators as separate components add a layer

of calls
> Since mediators can retain state, they can hold

data in buffers and delay computations ("lazy
evaluation")

\ Software Architectures ■.

Evolution of Database Architectures

• Batch processing
> Standalone programs; results were passed from one to

another on magtape; batch sequential model

• Interactive processing
> concurrent operation and faster updates preclude

batching, so updates are out of synch with reports.
Repository model with external control

• Information became distributed among
many different DBs

• Unified Schemas
> create one virtual database by defining (passive)

consistent conversion mappings to multiple DBs

\ Software ßLrcfiitectu.Tes ===========^^=^=^=^

Experience with a Course on Architectures for Software Systems 17-14

Evolution of Database Arch. (2)

• Multi-database
> DBs have many users
> passive mappings don't suffice
> use active agents
> Layered hierarchy

• Progress is limited by volume, complexity
of mappings and need to handle data
discrepancies

\ Software S&cfctectures:

Repository Pattern (Blackboard)

Direct access ksi c

cz>1
Blackboard

(shared
data)

<
4^0»Cor

x5
omputation

KEJ
ks6 Memory

Software Sirc/utectures:

Experience with a Course on Architectures for Software Systems 17-15

Repository Pattern (Blackboard)

General framework to structure and
control problem-solving behavior
involving multiple, diverse, and error-ful
knowledge sources
Independent processes achieve
cooperative problem-solving

> various levels of abstraction
> allocation of limited processing to most promising

actions
> diverse problem-solving components
> focus-of-control mechanism

Software Architectures ■.

Repository Pattern (Blackboard) (2)

Diversity ==> searching among multilevel
partial solutions
For blackboard, control is data-driven
(external); for other repositories, control is
predetermined (internal).

\ Software. Architectures -.

Experience with a Course on Architectures for Software Systems 17-16

Interpreter Pattern

Memor

Inputs
Data

(program
state)

Computation
state mach

Outputs

Program
Being

Interpreted

:ed instruction / Internal
Interpreter

State

\ Software, flrcfatectwes:

ected data

„.- * Data access
Fetch/store

Interpreter Pattern

• Execution engine simulated in software
• Data:

> representation of program being interpreted
> data (program state) of program being interpreted
> internal state of interpreter

• Control resides in "execution cycle" of
interpreter

> but simulated control flow in interpreted program
resides in internal interpreter state

• Syntax-driven design

Software Architectures ■.

Experience with a Course on Architectures for Software Systems 17-17

Layered Pattern

Usually ^/'Useful Systems
procecure calls

^^~ Composites Of Users

Layered Pattern

• Each layer provides certain facilities
> hides part of lower layer
> well-defined interface

• Serves various functions
> kernels: provide core capability, often as set of

procedures
> shells, virtual machines: support for portability
> client/server hierarchy: new (more abstract)

service at each layer

\ Software. Architectures \

Experience with a Course on Architectures for Software Systems 17-18

Building Design

Construction industry
> Well-established decomposition of

responsibilities
> Geographically dispersed solutions to

subproblems
> Different collection of organizations each time
> Tasks interact, and coordination is its own

specialty

\ Software Architectures ■.

Building Design (2)

Computing evolved bottom-up
> Next big step is entire facility development

process
> Algorithmic systems for designs in individual

subindustries

Third of three examples: stages before
standalone interactive systems similar to
other examples --> pick up from early
integration efforts

\ Software Architectures •.

Experience with a Course on Architectures for Software Systems 17-19

Integrated Building Design Systems

• Selection and composition of individual
tool results requires judgment, experience,
and rules of thumb

> Not algorithmic
> Requires planning

• Early efforts: support-supervisory systems
> Add data management, information flow control to tools

• Goal is integration of data, design
decision, knowledge

> Closely-coupled Master Builder, or
> Design environment with cooperating tools

\ Software ßkcfiitectures:

Problem-Solving for Design Control

• Many attempts in '80s
• Data: mostly repositories: shared

common representation with conversions
to private representations of the tools

• Communication: mostly shared data,
some messaging

• Tools: split between closed (tools
specifically built for this system) and open
(external tools can be integrated)

\ Software Arcfd.tectu.res -.

Experience with a Course on Architectures for Software Systems 17-20

Problem-Solving for Design Control (2)

• Control: mostly single-level hierarchy;
tools at bottom; coordination at top

• Planning: mostly fixed partitioning of kind
and processing order; scripts sometimes
permit limited flexibility

\ Software Architectures;

Integrated Building Design
Environment

Archplan

Strypes

User Controller 1 Stanlay 1

Data Manager Core

Spex
r uiooai A
koata^^ Footer

Planex

\ Software Architectures:

Experience with a Course on Architectures for Software Systems 17-21

Intelligent Control of IBDE

Software Xrcfutectures

Intelligent Control of IBDE

N s \ *

SSSSSSSSSS

Agent, W/ ' "

P

V V vV/W/V/V/V// /
«! <■ v ■>. ■>. ■>> ^ ■■■ v v ^ v v ^ •■ ^

Knowledge for using ESSs

Formulate
subtask H Create

input

Simulate
ESS M

I
\ \ \

V ' f S f
\ 'S. N \

Operate]
SWsys)

~\

* * sT Interpret \^ f Convert V Vy'
U^< \ result j I output J W,

N S \ S1—t—T
'* * * f '.'.'.'^'^'S.

\ \ \ \ \ \ \. \ //// ' ' ''\'\'\',/ /////.V^^'.'./^-^-^ ^ ^

_ _ Gl Data

_ - Archplan

_ _ Strypes

_ _ Stanlay

Core

_ _ Spex

_ _ Footer

Planex

\ Software Arcfiitectures:

Experience with a Course on Architectures for Software Systems 17-22

Lecture 20
Innovations in Module

Interconnection Languages

Robert DeLine

\ Software Architectures -,

State of the Course

• Overview [3]
• Architectural Idioms

> Procedure call [3]
> Data flow [4]
> Processes [2]
> Events [3]
> Repositories [3]
> Interpreters and heterogeneous systems [1]

• Describing architectural configurations [4]
• Specific architectures [3]
• Design guidance [1]

\ Software Architectures =================================

Experience with a Course on Architectures for Software Systems 18-1

Describing architectural configurations

• Classical module interconnection languages
[Lecture 3]

• Newer module interconnection languages
• Interface matching
• Connection languages
• Connection formalisms

\ Software Ärcfutectures-.

Newer MILs: Overview

A quick review of MILs
Formalizing and expanding MILs
DeWayne Perry

"Coordination" languages
Victor Mak
David Galernter and Nicholas Carriero

How are coordination languages like
MILs?

Software ßircßitectttres -.

Experience with a Course on Architectures for Software Systems 18-2

A Quick Review of MILs

A system is composed of modules that
import and export resources

> Resources: functions, variables, constants,
> Composition: systems can be sub-systems

Tools ensure system integrity
> Imports match exports?
> Type checking
> Access control

Software ÄTcfütectures ■.

Software Interconnection Models

• Each model can be described as a pair:
({objects}, {relations})

Can be visualized as a graph with labeled arcs

• Perry presents three models:
>Unit
> Syntactic
> Semantic
> Each model is richer than the previous by

allowing more objects and relations

Software Jirc/utectttres ■.

Experience with a Course on Architectures for Software Systems 18-3

Unit I.M.

•

foo.o tfepsrafe-on foo.c

\ Software Arcfiitectures;

Unit Make
C »include

+ Syntactic

Syntactic JJf

\ Software Architectures:

Experience with a Course on Architectures for Software Systems 18-4

+ Semantic

satisfies satisfies

open(f) closed(f) open(f) closed(f) Semantic inscape

post ^Soblig prej postj

\ Software Architectures:

Composing Distributed Systems

• Today's distributed systems are brittle
> One subsystem directly references another
> Very little abstraction

• Mak's solution: Connection

_

Sales >
HIUIIIIUI

► Shipping

Sales) ► Factory |

► Billing
Sales)

■—

\ Software flrcfiitectures ■,

Experience with a Course on Architectures for Software Systems 18-5

Connection: A Few Details

Composite Components: Scalability
Factory ' "■

^ .
' Plant » ► Queue

• Component Manager =» Name Server

\ Software Architectures

<£ü> H£!>
Connection

Manager
Connection

Manager

Component
Manager

Gluing Computations Together

Coordinating computations
> Data and control exchange
> Diversity

Computation A
RPC?

pipe?

synchronous message passing?

asynchronous message passing?

fork?

barrier?

Computation B

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 18-6

Gluing Computations Together

> Complexity

fork

RPC
X connection

v
^ '

Representative
Unix Process

FS fork socket

std input
std output
std error

Software Sfrcfütectwes;

Galernter et al's Solution

Connections deserve to be first class
citizens
Galernter et al's thesis

> Connections should be expressed in a
"coordination" language

> Linda is a good choice

\ Software ftxcftitectuxes ■.

Experience with a Course on Architectures for Software Systems 18-7

But How Are These MILs?

• Both describe SW component and their
connections
>MILs

» Components: Modules, Functions, Variables, ...

» Connections: Is-Compose-Of, Calls, Exports, ...

> Linda and Connection
» Components: Computations, Processes

» Connections: Data and Control communication

HH—M"i1
• So is there something more general?

Stay tuned...

\ Software ftrcfiitectures =a^=ss===^=^^^^==

Experience with a Course on Architectures for Software Systems 18-8

Lecture 21
Component Composition and Adaptation

Jose "Pepe" Galmes

Software Slrcfiitectures ■.

Overview

Combining systems:
> Component interactions
> Current MILs
> Design Languages

Component Reuse
Interface Matching

> Nimble
>Bart
> Negotiated Interfaces

Software Architectures -.

Experience with a Course on Architectures for Software Systems 19-1

Component Interactions Aren't All Alike

\ Software Sirc&tectures -.

Component Interactions Aren't All Alike

Real-time
communication

*

\ Software Arcfctectures

Experience with a Course on Architectures for Software Systems 19-2

Current Module Interconnection
Languages

Assume module structure like Ada,
Modula, Cedar
Support visibility control for names

> provides/requires
> various granularities (entire modules to

subfields)
> reaction to block structure

Mostly support single kind of
interconnection

> usually procedure call
^^> others include data flow (unix shell)

•

Current Module Interconnection
Languages (2)

• Mostly deal only with access rights and
type checking

• Often support a single language
• Have no way to take advantage of special

properties
> (e.g., an abstract data type is specified as

algebra)

\ Software Arcfutectures:

Experience with a Course on Architectures for Software Systems 19-3

Creating Systems

Subsystems may be composite or
primitive

> Composites are like systems
» Large designs require structure
» They can be composed of subsystems
» Different organizations can be used at different times

> Primitives at the architecture level are
programs at a lower level

» Roughly at scale of a module
» Built in conventional programming languages

•

\ Software Architectures;

Structural/Functional Elements

• Computation: simple in/out relations, no
retained state

> math, f unct, filters, transforms, transducers

• Memory: (shared) collection of persistent
structured data
>data base, symbol table, file system, directory,

array, hypertext

• Manager: state and closely related
operations

> abstract data type, resource manager, many
servers

\ Software flrc/iitectures =====^=^=^=^==^=^^=

£

Experience with a Course on Architectures for Software Systems 19-4

Structural/Functional Elements (2)

• Controller: governs time sequences of
others' events
> scheduler, synchronizer

• Link: Transmits information between
entities

> communication link, remote procedure call,
user interface

• Command system: discrete, repeated,
usually local, syntax-intensive
manipulation of an entity

> editors, operating systems, menu systems

\ Software Architectures —

Combining Subsystems

• Mechanisms for connecting subsystems:
> Procedure call
> Data streams
> Instantiation
> Data sharing (direct access)
> Message passing
> Implicit triggering

\ Software SHrcfiitectures:

Experience with a Course on Architectures for Software Systems 19-5

Combining Subsystems (2)

Interface protocols:
> Calling sequences
> Addressing assumptions
> Formal protocols
> Shared representations

\ Software ftrcftitectares:

Critical Elements of Design Language

• Components
> Module-level elements, not necessarily

compilation units
> Function shared by many applications

• Operators
>For combining design elements

• Abstraction
> Ability to give names to elements for further

use

\ Software Sb-cfctectures -.

Experience with a Course on Architectures for Software Systems 19-6

Critical Elements of Design Language
 (2) =

• Closure
> Named element can be used like primitives

• Specification
> More properties than computational

functionality
> Specs of composites derivable from specs of

elements

\ Software lArcftitectuxes ■,

Name Matching and Embedded
Connections

Main
use Foo

...x...

Foo
varx
function f(z)
some specs

Baz
vary
function g(w)
specs=foo's

^UneStruc
components

Main, Foo
procedure

main.f calls Foo.f
var
main.x uses Foo.x

\ Software Architectures -.

/'UtherStruc
components

Main, Baz
procedure

Main.f calls Baz.g
var

Main.x uses Baz.v

Experience with a Course on Architectures for Software Systems 19-7

Make Component interactions First Class

/central
pipe in A... <spec> ...
pipe out B... <spec> ...
data HnkC protocol X... <spec>...
XwindowD typescript
uses ADT{E-\ ,E2,E3} spec Gorp
uses ADT{F1 ,F2} spec Thud
uses y4D7"{G1 ,G2,G3} spec Foo
uses ADT{W ,H2,H3} spec Baz
accesses DB {Q1 ,Q2,Q3,Q4} protocol Y

Comm
Protocol X

ADT ADT \
Spec Spec 1
Foo Baz J

Component Reuse

Assumption behind reuse:
>the components will be (re)used often enough

to justify the expense of packaging,
distributing, finding, and using it.

Most components have quite specific
interfaces, including details such as

> parameter types and orders,
> explicit naming of type substructure in

parameters,
> style of announcing exceptions, and
> general form of interaction.

•

\ Software Architectures:

Experience with a Course on Architectures for Software Systems 19-8

Theory vs Practical Use

The component you're reusing isn't always
packaged in exactly the right form.
Problems may involve:

> Parameter order, parameter names
> Protocol, calling sequence
> Representation: right data, but in wrong order
> Representation: right semantics, but wrong

representation
> Nature of interaction

\ Software Architectures \

"Uniform Referent"

[Geshcke and Mitchell, 1975]
> User of data shouldn't know its representation
> Accessors often reveal this: A[i] vs A.i
> Further, more than one representation is

possible:
> Pointx & Pointy vs Pointp & Point.0

y

> Proposed a mechanism that a lowed definition
of "left-side" functions as well as "right-side"

,—v functions (synthetic field definitions)

Experience with a Course on Architectures for Software Systems 19-9

New York Public Library, revisited

Suppose you want subject, author, and LC
call number

CDB1: 1,4 item.subject

1,3 item.author-name

2,2-4 conca«(lc-num.c-letter, Ic-num.f-digit, lc-num.s-
digit)

CDB2: 2,2 item-subjectsubject

1,3 items.a-name

1,5-7 concatptems.c-letter, items.f-digit, items.s-digit)

CDB3: 1,5 books.subject

1,3 books.name

1,2 books.lc-num

CDB4: <nil>

1,4 item.a-name

1,2 item.lc-number

3ÜTCUIUJC SUUUM1

Interface vs Base Functionality

> Actual utility of a component depends on the
way it's packaged as well as what it computes.

> Example:
» UNIX supplies same functionality packaged both as

filters and system calls
» Filter: incremental processing on a stream

g h i j k incr h i j kl

» System call: one call per item, single thread of
control

\ Software Arcfutectures;

incr(g)
incr(h)
incrfi) incr(x)

Experience with a Course on Architectures for Software Systems 19-10

What to do when interfaces do not
match?

• Rewrite one of the modules
• Adapt the interfaces

^&

\ Software Architectures -.

Why Interface Adaptation?

• Reduce development costs
> Interface adaptation can be done automatically.

• Only object code is available.
> No chance to modify the components.

• Simpler components
> No need for extra interfacing code.

• Less error-prone
> No need to change existing code.

\ Software Ricfdtectwres -.

Experience with a Course on Architectures for Software Systems 19-11

Why Interface Adaptation? (2)

Configuration Management easier.
> No need to keep slightly different versions of

the same component.
> No need for revalidation of components.

Concentrate on the "real" application.

\ Software. Architectures \

Interface Adaptation: disadvantages

• Performance
> Extra code to do the conversions.
> Conversions can be expensive

» Example: slicing an array
» Example: restructuring large data structure.

Software Architectures:

Experience with a Course on Architectures for Software Systems 19-12

Purtillo and Atlee: Nimble

• Declarative language.
• Maps define transformations of actual

parameters to match formal parameters at
runtime.

• Generates implementations of maps
(adaptors).

• Adaptors are integrated into the
application.

Software ßtrcfutectures -.

Creating applications with Nimble

Map
Nimble

translator I Adaptor (source)

I
Compiler

Other
domponent!;

Component 1
(caller) Adaptor (object)

\ Software Architectures:

Application

Component 2
(callee)

Experience with a Course on Architectures for Software Systems 19-13

Nimble - additional features

Interface can be automatically extracted
from source code.
Nimble translator checks that range of
map matches formal pattern.

Software Sircfiitectures:

Nimble (cont.)

Primary expectations:
> Re-order parameters.
> Select and rearrange fields of records.
> Slice arrays.
> Simple type coercion.
> Add constants or simple expressions over

actual parameters.

\ Software ßlrcfutectures ■.

Experience with a Course on Architectures for Software Systems 19-14

Nimble - completeness

• Algebraic notation is complete, but
• Trapdoor: EVAL, general evaluation

function
> EVAL(user-provided-transformer, param-list)
> Used when algebraic notation is not practical

» example: slice array
> Or for efficiency reasons
> "Recursive reuse" of common

transformations.

\ Software flrcfutectures;

Beach: Bart Software Bus

• A software bus is a mechanism for
connecting software components.

• Analogous to a hardware bus.
> Allows communication among components

that follow a standardized protocol.

• Ability to "plug in" new components
easily.

> Component independence.

• Usually implemented as multi-cast
or broadcast communication.

\ Software JZrdiitectures -.

Experience with a Course on Architectures for Software Systems 19-15

Bart software bus

Intuition: object-oriented components with
DB relations for data interchange.
Bart is organized in 3 levels of abstraction:

Mappings between relations (active)

Object reps cast as relations

Multicast message passing

Software ftrcfiitectwres:

Bart: Message Transport

• Multi-cast approach
• Each component indicates the messages

in which it is interested.
• When a messages is sent it is delivered to

all interested parties.
• Callbacks used to service messages.

> When a component registers interest in a
message, it provides a callback function.

>The callback function is invoked whenever the
message is received.

\ Software Arcfutectures ==s==^=^^=^=^=^^^=

Experience with a Course on Architectures for Software Systems 19-16

Beach: Bart software bus (2)

• Each object has publisher and multiple
subscribers

> subscribers have shadow copies that are
automatically updated.

• General database operations support
mappings:

> renaming,
> selection,
> filtering,
> summarization,
> collection

\ Software Architectures

Bart: but how does it really work?

Component 2

Bus Manager

Startup:
- components connect to BM
- each component tells the BM

- what relations it will be
exporting

- what relations it will be
importing

Component 1 Component n

\ Software Architectures-.

Experience with a Course on Architectures for Software Systems 19-17

Bart: but how does it really work? (2)

Component 2
shanged

Bus Manager

Component 1
(not interested

in change)

pdate

\ Software Architectures -,

Component n

Operation:
• when an object changes:

- the object is converted into
a tuple

- the tuple is transmitted
to the BM

- the BM uses the glue to
derive what components
the change affects

Novak et al: Negotiated interfaces

• 2 methods for semi-automatic interface
conversion:

1. LINK: generation of a conversion program
» Examine subroutine's expectations and fields

provided by caller
» Propose possibilities for matches to user; generate

code
» Tuned for case where data is just rearranged
» Works for input parameters only.

\ Software Sbrchitectwres ■.

Experience with a Course on Architectures for Software Systems 19-18

Novak et al: Negotiated interfaces (2)

2. instead of a real subroutine, the caliee is
initially a generic algorithm with abstract data
as arguments;

» the system generates a specialized version of the
algorithm

» the generated subroutine directly operates on the
application data.

Software ßlrc&tectures -.

Novak et al: Negotiated interfaces (2)

In both cases, specification is produced
via a menu-based negotiation with the
user.
Based on GLISP, which has mechanisms
for uniform reference.

Software Arcfctectures -.

Experience with a Course on Architectures for Software Systems 19-19

Analysis

• All three tackle the problem of mild data
mismatch across interfaces.

• Novak et al and Purtilo&Atlee support a
procedure call model.

• Novak et al believe that added components
are inefficient

• Purtilo&Atlee want to work without source
code

\ Software flrcfutectures:

Analysis (2)

Novak et al aspire to richer mappings
Purtilo&Atlee believe that simple
mappings handle most cases and provide
trapdoor.
Beach proposes to interface objects with
relational database mechanisms and to
achieve efficiency by caching copies.

\ Software ftrcfatectures •.

Experience with a Course on Architectures for Software Systems 19-20

Lecture 22
Architectural Construction

Languages

Mary Shaw

\ Software Architectures:

Current Module Interconnection Languages

• Assume module structure like Ada, Modula
• Support visibility control for names

> provides / requires
> various granularities (entire modules to subfields)

• Mostly support single kind of interconnection
> usually procedure call
> others include data flow (UNIX shell)
> often support a single language

• Most handle only access rights, type checks
• Can't take advantage of special properties

[e.g., an abstract data type is specified as algebra)
Software ftrcftitectures ========^^===============

Experience with a Course on Architectures for Software Systems 20-1

Problems with Current Systems

• Inter-module connection by name matching
• Topology embedded in module definitions
• Poor abstractions for many relationships
• Pre-emption by built-in mechanisms
• Elaboration by single-point expansions

\ Software Slrcfütectures -.

Provide Abstraction Capabilities

Pipes:

Cyclic
Foo:

Objects:

\ Software S&diiteetuTes

Experience with a Course on Architectures for Software Systems 20-2

Critical Elements of Design Language

• Components
> Module-level elements, not necessarily

compilation units
• Operators

> For combining design elements
• Abstraction

> Ability to name elements for further use
• Closure

> Named element can be used like primitives
• Specification

> More than just computational functionality
> Specs of composites derivable from specs of

 ^ elements
\ Software Architectures =

Module Interconnection Languages

Like any language:
> Communication between project team

members
> Checkable means of documenting structure

Unlike programming level:
> Project management tool
> Design tool for overall system structure

\ Software Sircfutectwres -.

Experience with a Course on Architectures for Software Systems 20-3

•

Module Interconnection Relations

• Resources
> Atomic
> Nameable: variables, constants, procedures, types

• Components
> Purely grouping node
> Subsystem node with driver
> Actual code

Relations
> System/subsystem parentage
> Upward propagation of provided resources
> Controllable sharing among siblings
>"Uses"

• Very strongly hierarchical in organization
\ Software. Ardntectures;

Structural/Functional Elements

• Computation: simple in/out relations, no retained state
> mathematical functions, filters, transforms, transducers

• Memory: (shared) body of persistent structured data
> data base, symbol table, file system, directory, array, hypertext

• Manager: state and closely related operations
> abstract data type, resource manager, many servers

• Controller: governs time sequences of others'events
> scheduler, synchronizer

• Link: Transmits information between entities
> communication link, remote procedure call, Ul

• Command system: discrete, repeated, usually local,
syntax-intensive manipulation of an entity

> editors, operating systems, menu systems

Software Architectures -.

Experience with a Course on Architectures for Software Systems 20-4

Combining Subsystems

Mechanisms for connecting subsystems:
> Procedure call
> Data streams
> Instantiation
> Data sharing (direct access)
> Message passing
> Implicit triggering
> Intermingled code

Interface protocols:
> Calling sequences
> Addressing assumptions
> Formal protocols

Shared representations
k • Software Architectures —

Creating Systems

Subsystems may be composite or
primitive

> Composites are like systems
» Large designs require structure
» They can be composed of subsystems
» Different organizations can be used at different times

> Primitives at the architecture level are
programs at a lower level

» Roughly at scale of a module
» Built in conventional programming languages

\ Software SircfUtectures -.

Experience with a Course on Architectures for Software Systems 20-5

Primitive Elements

Primitive architectural elements are non-
primitive programs
At this point, programmer may choose
from many paradigms:

> Imperative Backtracking
> Rule-based State machine
> Constraint Table-driven interpreter
> Functional Dataflow

Mixing of programming paradigms may be
restricted by implementation constraints

\ Software, ftrcfutectures:

Requirements for Architectural
 Support

• Decomposability and composability
> of both components and specifications

• Independence of elements
> standalone definitions, structure defined separately

• Exposed legacy of prior design
> codified systematically, with engineering design help

• Generality
> large variety of heterogeneous structures; non-

preemptive

• Capability for analysis
> consistency, performance, choice among alternatives

\ Software Jfrcfiitectures:

Experience with a Course on Architectures for Software Systems 20-6

Expectations for Specifications

• Description
> say what it is

• Construction
> say how to build one

• Verification
> determine whether implement, matches specification

• Selection
> guide selection among alternatives for implementation

• Analysis
> determine implications of specification

• Automation
^^-> construct one from the specification
\ Software Jlrcfctectures =^=

Language Support for Architecture

Base language
> Provide uniform support for rich set of

connections
> Make explicit distinctions among different

kinds of components
> Separate specification of structure from

implementation

Intermediate language
> Add abstraction constructs: support multiple

patterns
> Support multiple languages

Software Arcfti.tectu.Tes -.

Experience with a Course on Architectures for Software Systems 20-7

Language Support for Architecture (2)

Extended language
> Add constructs for defining new abstractions:

» component types
» connection protocols
» configuration patterns

Graphical interface
> Provide CAD-style interface

Software Architectures ■.

Classifying Elements - Hierarchy
Computation Elements

Accesp tolnput

random sequential

Functions Locality of processing
math functions Jr ^v.

optimizer high IOV\^

Filters Retention of information
spell check / >^

I/O rendering partial full
many awk programs ^ ">^

Transformers Transducers
parser lexer

cross-ref gen text formatter

\ Software Architectures ===:^=^^=^^=^=^^^^=

Experience with a Course on Architectures for Software Systems 20-8

Classifying Elements by Property
Memory Elements

Database File Structure Symbol Tab Array

Model various hierarchical associative typed, passive

Duration persistent persistent transient transient

StgMgt recoverable buffer, free list hash in fixed size nil

Access indexed directory hash direct

Atomicity per record per file non-issue per scalar

Naming key paths associative index

Sharing large large no no

Capacity large large small small

\ Software

Interface vs Base Functionality

• Actual utility of a component depends on the way
it's packaged as well as what it computes.

• Example:
> UNIX supplies same functionality packaged both as

filters and system calls
> Filter: incremental processing on a stream

g h i j k
mcr

h i j kl

> System call: one call per item, single thread of control

incr(g)
incr(h)
incr(i) incr(x)

Software ßfrcütectures •.

Experience with a Course on Architectures for Software Systems 20-9

Abstractions for Connectors

Real-time
communication

3*

Pipe

\ Software Sircfütectwes

Gap Between Tools and People

• People describe designs in terms of
abstract connections:

> remote procedure call > pipe
> broadcast > MIF, RFT, SYLK,...
> client-server > event

• Programming languages describe systems
in terms of language constructs:

> procedure call > data export

• When tools are this drastically mismatched,
there are many opportunities for error

\ Software SHrcfutectures ===^=^===^

Experience with a Course on Architectures for Software Systems 20-10

Problems with Current Practice

• Can't localize information about interactions
• Poor abstractions
• Poor structure for interface definitions
• Programming language specifications forced

to do too much
• Poor discrimination of packaging differences

and support for fixing mismatches
• Poor support for multi-language, multi-

paradigm, or legacy systems

\ Software ftrcfiitectwres-.

UniCon: Universal Connection Language

• Support common abstraction idioms
• Specify packaging properties as well as

functional properties (how as well as what)
• Make connectors first-class
• Make abstraction mapping explicit
• Allow use of externally-developed tools

\ Software ßircfutectures:

Experience with a Course on Architectures for Software Systems 20-11

UniCon: Universal Connector Language

Two major symmetrical constructs
> Components: computation and data capabilities
> Connectors: mediate interactions among components

Element

Specification

Type

Unit of association

Implementation

\ Software Architectures ■,

Component

interface

Component Type

Player

Implementation

Connector

Protocol

Connector Type

Role

Implementation

Component Types Supported

Module (intuition: compilation unit)
> Routine def & call, global data def & use, files

Computation (intuition : pure function)
> Routine def & call, global data def & use

SharedData (intuition: Fortran common +)
> Global data def & use

SeqFile (intuition : UNIX file)
> Read next, write next

Filter (intuition : UNIX filter)
> Streams in & out

Process (intuition : UNIX process)
> RPC def & call

SchedProcess (intuition: real-time process)
> RPC def & call, segment, trigger
general (intuition: anything goes)

Software Architectures ====^=^==^=

Experience with a Course on Architectures for Software Systems 20-12

Connector Types Supported

• Pipe (intuition: UNIX pipe)
> Source & sink

• FilelO (intuition: UNIX ops between process & file)
> Reader, readee, writer, writee

• ProcedureCall (intuition: architectural use of proc)
> Definer, caller

• DataAccess (intuition: shared data within process)
> Definer, user

• RemoteProcCall (intuition: RPC)
> Definer, caller

• RTScheduler (intuition: processes compete for time)
> Stimulus, action

\ Software Sfacftitectwres-,

Connector Types Supported (2)

Central
pipe in A... <spec>...
pipe out B... <spec> ...
data link C protocol X ... <speo ...
Xwindow D typescript
uses ADT {E1 ,E2,E3} spec Gorp
uses ADT {F1 ,F2} spec Thud
uses ADT {G1 ,G2,G3} spec Foo
uses ADT {H1 ,H2,H3} spec Baz
accesses DB {Q1 ,Q2,Q3,Q4} protocol Y

User Irrt
Protocol X

\ Software Architectures;

Experience with a Course on Architectures for Software Systems 20-13

"Given" Example

Filters:

\ Software ßbt/utectures:

"Assigned" Example

Filters:

\ Software 5\Tcfdtectures ■.

Experience with a Course on Architectures for Software Systems 20-14

Provide Abstraction Capabilities

Pipes:

Cyclic
Foo:

Objects:

Software Architectures -.

"Given" Example

Filters:

cshift J
Instances: t

sort upcase J
shifter sorter upcaser

\ Software Arcfiiteetures •.

Experience with a Course on Architectures for Software Systems 20-15

"Assigned" Example

Filters:

finger

Insta ices

v

cut I diverge I cshift

shifter

■^gather j- ■^-prune |^. split 1^ ^

\ Software Architectures -.

Sjk

Unicon Architecture

Connection expertise (templates, library
code, rules for each primitive connection)

Primitive Components (.exe, .o, .c,...)

Experience with a Course on Architectures for Software Systems 20-16

Lecture 23
Connection Formalisms

David Garlan

\ Software.Architectures:

Outline

• The nature of architectural description

• The Wright specification language

• Connectors as protocols

• Properties of connectors

• Compatibility checking

• Some related work

\ Software ßrcfiitectures -.

Experience with a Course on Architectures for Software Systems 21-1

Modularization

• Large systems require modularization to be
manageable

> intellectually & methodologically

• Common approach to module description is based
on definition/use relationships

> describes organization of code
> induces a "depends-on" graph
> supported by module interconnection languages and

programming languages
> good for the compiler
> tool support: type checkers
> lots of theory

• But this is not the only useful form of modularization

\ Software Sirc/Utectures =^=^=^ =

Typical Descriptions of
Software Architectures

> " Camelot is based on the client-server model and
uses remote procedure calls both locally and
remotely to provide communication among
applications and servers." [Spector 87]

> "We have chosen a distributed, object-oriented
approach to managing information." [Linton 87]

> "The easiest way to make the canonical sequential
compiler into a concurrent compiler is to pipeline
the execution of the compiler phases over a
number of processors." [Seshadri 88]

> "The ARC network [follows] the general network
architecture specified by the ISO in the Open
Systems Interconnection Reference Model."

r^fPaulk 85]
\ Software ßLrcfiitectures :==^====^=^== =

Experience with a Course on Architectures for Software Systems 21-2

Example: Rule-Based System

\ Software Arcfiitectures:

Definition/Use Description

Produce alternating case of characters in a stream

r"""^ Definition/Use Modularization
\ Software Stecfiitectures ==========

Experience with a Course on Architectures for Software Systems 21-3

Architectural Description

split

. lower k

w ^ upper f

merge

\ Software Arcfutectures;

Definition/Use versus Architectural

Definition/Use Architectural

code modules
"uses" relationships
procedure call &

shared data
hierarchical reasoning
signatures
type checking

\ Software Sirc/utectures -.

components/connectors
"interacts with" relationships
pipes, client-server, event

broadcast, ...
compositional reasoning
protocols

Experience with a Course on Architectures for Software Systems 21-4

The State of Architectural Description

• People do successful architectural design using
> Architectural styles and idioms

Pipes and Filters, Layered Systems, Client-Server Systems,
Object-oriented Organizations

> Application-Specf ic Frameworks
MacApp, Motif, Spreadsheets, Oscilloscopes,

• But these are usually
> Informal: box and line + prose
> Ad hoc: do what we did last time
> Un-analyzable: keep fingers crossed
> Un-maintainable: architectural drift
> Handcrafted: no tools

Formalizing
Architectural Representation

Goal: Provide general formal model for
architecture representation
Approach:

> Formalize notion of boxes, lines, and
configurations

> Describe connectors as first class entities
> Provide theory for reasoning about

architectural descriptions

\ Software Architectures \

Experience with a Course on Architectures for Software Systems 21-5

Example: Wright

System SimpleClientServer
Component Server

Port provide: <provide protocol
Component Client

Port request: <request protocol>
Connector C-S-connector

Role client: <request protocob
Role server: <server protocol>
Glue <glue protocob

Instances
s: Server; c: Client; cs: C-S-connector,

Attachments
s.provide as cs.server

^«-yarequest as cs.client
\ Software Arcfiiiectures ===

Component
types

Connector
types

Instances

Configurations

Model of Connectors

glue

Component 1
>

>

V /

Component 2

ports

\ Software Ärcfiitectures ■,

Experience with a Course on Architectures for Software Systems 21-6

A Formal Basis
for Architectural Connection

Notation (based on CSP):
> Events: e,f, push, pop, request, V
> Processes: P, Q, Stack, Client, Server, S
> Prefix: e-+P, push -* Stack, request -* Server
> Internal Choice: P n Q
> External Choice: P D Q

\ Software.Architectures-,

Example:
Specification of a Pipe Protocol

Connector Pipe
Roles:

Writer = (writelx —*■ Writer) n {close —» /)
Reader = Read n Exit
where Read = (read}x —*■ Reader) Q (read—eof-^ Exit)

Exit = close —+ /
Glue = Writer.writelx —► Glue Q

Reader.readly —*■ Glue Q
Writer.close —» ReadOnly Q
Reader.close —► WriteOnly

where...

\ Software Architectures =^===; ——

Experience with a Course on Architectures for Software Systems 21-7

Specification of a Pipe Protocol (2)

where ReadOnly = Reader.readty —*■ ReadOnly

U
Reader.read-eof—- Reader.close —*■ / Q
Reader.dose —* /

and WriteOnly = Writer.writelx —► WriteOnly

U
Writer.close —► /

\ Software Architectures;

Connector Semantics

Connector C
Roles: Rl = Rl;...; Rn = Rn
Glue = Glue

is the (CSP) process:
Glue || (Rl: Rl || ... || Rn:R«)

where
n:P labels all of the events except V in

process P with name n
and G/we alphabet is sufficiently large:

Sec Glue = R1:I U . . . Rn:i: U {V}
vareßtrefutectures =^=s:^^=s=^=^==i

Experience with a Course on Architectures for Software Systems 21-8

Connector Instantiation

• Attaching a port as a role:
> Informally: port stands in for the role.
> Formally: instantiating roles P1.. Pn gives

Glue || (SI: PI || ... || Rn: Pn)

• Ports need not be identical to the roles
> pipe can be connected to a file
> client can use a subset of a server's facilities

• When is it ok to attach a port to a role?

\ Software Architectures:

Compatibility
(of a Port with a Role)

• Yes:
Port P = (push — P) n •
Role R = (push ^ P) n (pop — R) n /

No:
Port P = (push -* P) n •
Role R = init -* R'

where P' = (push —* R') n (pop —»• P') n S

\ Software Architectures:

Experience with a Course on Architectures for Software Systems 21-9

Port-Role Compatibility

• Informally:
> A port P is compatible with a role R if the behavior

of P does not violate the promises of R

• Formally we can use process refinement:
"R c P"

• Details
> Alphabets may not be the same

Solved by augmenting alphabets of both processes.
> We only care about the behavior of the port in the

context of the connection that it is participating in.

\ Software Architectures =======

Relaxing Assumptions

• To allow for greater opportunities for
reuse

> Do not want to insist on strict subset of
behavior

> But want to make sure that port has required
behavior in the context of use

• So we use the following definition
P is compatible with R if

RHCPUR) C (PHaR\aP)\\det(R))

^~\ restricted to traces of R
\ Software ArcMtectuTes :========

Experience with a Course on Architectures for Software Systems 21-10

Well-Formed Connectors

Property 1: A connector doesn't get 'stuck'.
Formally:
A connector is deadlock-free if whenever it
reaches a state in which it cannot make progress,
the last event to have been executed is i.

Property 2: The glue is truly a constraint on the
behaviors of roles.

Formally:
A connector is conservative if

traces(Glue) c traces (jRl:rl ||... || Rmrn)

\ Soßware ßtcfutectures;

Reasoning about the Specifications

Theory allows us to "compatibility check"
architectural descriptions
Analogous to (but subsumes) type checking
Can be automated for this notation
Guarantees important properties

Theorem: (soundness)
If a connector is deadlock free and
conservative then any compatible
instantiation will also be deadlock free.

\ Software Ärc/Utectures •.

Experience with a Course on Architectures for Software Systems 21-11

Some Related Work

• Other architectural description languages
> Rapide - Luckham & Mitchell
> Unicon - Shaw

• Protocol specification
> Lotos, CCS, SML, etc.

• "Regular types" - Nierstrasz
• Interaction categories - Abramsky

\ Software Sfrcfatectures;

Experience with a Course on Architectures for Software Systems 21-12

Lecture 25
Layered Architectures:

Network Protocols

Gregory Zelesnik

\ Software JircHitectures:

Layered Architecture

• layering
>the principle of collecting functions into related

and manageable sets [PISC93]

• layered architecture
> a subdivision of the architecture of a system

into layers of functionality
>a layer in such an architecture uses

functionality in another layer
> a layer exposes functionality to another layer at

the layer's interface (i.e., API)
> a service is implemented by a vertical slice of

^. function invocations in one or more layers
\ Software fircfiitectures:

Experience with a Course on Architectures for Software Systems 22-1

Example 1: Stoneman

• Stoneman (circa. 1982)
>a DoD specification for Ada programming

support environments (APSE)
> specified facilities:

» toolset that supports life-cycle development
» unified database for software objects
» extensible command language
» encapsulation of operating system services

> prescribes a layered architecture
> reflects philosophy:

» support for entire life cycle
^^. » provide common background for programmers

\ Software ßtrcfiitectures =^==^=^=::^=^^=

The Ada Language System (ALS)

Softech, Inc. (1985)
Stoneman-compliant APSE implementation
layered architecture

> host operating system

> Kernel APSE (KAPSE)

> toolset

\ Scftware Architectures -,

Experience with a Course on Architectures for Software Systems 22-2

The KAPSE

• a layer between the host operating system
and the toolset

• provides toolset with a common interface
to operating system services (e.g., as
servers or library routines)

• provides developers with a machine-
independent development environment
>same command language and access to same

tools, regardless of host computer

• uses services in host operating system to
implement its services

\ Sojhvare Architectures "= =

Example 2: Computer Networks

• the philosophers analogy
>each person (layer) thinks s/he is

communicating with her/his peer, horizontally
> actual communication is vertical between

people (layers), except in layer 1
>the three protocols are completely independent

• networks are designed as layers:
> prevent changes in part of the design (a single

protocol at a layer) from requiring changes of
other parts

> promotes reuse of protocols

\ Software Architectures ===== =

Experience with a Course on Architectures for Software Systems 22-3

The ISO OSI Reference Model

• framework for describing layered networks
• discusses

> layering
> uniform terminology
> seven layers, their purpose, functions, services

• value of model -> it provides:
> uniform terminology for network users and

implementors
> generally agreed upon split of network activities

• it is not a protocol standard

\ Software ^rcfatectures:

The Physical Layer

• functions:
>to allow a host to send a raw bit stream into the

network
> transparent transmission of physical-service-

data-units (bits) between data-link entities
> management of the physical layer services

• lowest layer in the model
• only layer in which:

> inter-machine communication actually occurs
>two or more machines are physically connected

Software ftrcftitectures -.

Experience with a Course on Architectures for Software Systems 22-4

Services Provided

• physical connections
• physical-service-data-units
• physical connection end-points

> physical-connection endpoint identifiers

• data-circuit identification
> identifiers specifying data-circuits between

systems

• sequencing
• fault condition notification
• quality of service parameters

\ Software Architectures ■

Physical Connections

physical media
> twisted pair
> coaxial cable
> fiber optics
> line-of-sight (infrared, microwaves, radio)
> satellites

data-circuit (OSI)
> a communication path in the physical media

between 2 physical entities, together with the
facilities necessary for transmission of bits on it

\ Software ßtrcfctectures -,

Experience with a Course on Architectures for Software Systems 22-5

Network Organization

• a network is an interconnection of two or
more systems to a physical medium

• end-to-end connection
> direct connection between 2 systems

• multipoint connection
> several data-link entities share the same medium

• network types
> local-area networks
> long-haul networks

Software ßbtfütectures;

Local Area Networks (LAN)

three characteristics:
> diameter of not more than a few kilometers
> total data rate of at least several Mbps
> complete ownership by a single corporation

example LAN configurations (IEEE 802)
> Ethernet (802.3)
> Token bus (802.4)
> Token ring (802.5)

\ Software. Architectures -.

Experience with a Course on Architectures for Software Systems 22-6

CSMA/CD (IEEE 802.3)

1-10 Mbps data transfer over various
physical media (e.g., Ethernet)
topology is the standard bus topology, or
tree topology using repeaters
tranceiver taps into the bus; a cable
connects tranceiver and interface board
protocol:

> if host wishes to transmit, it listens to the cable
> if busy, host waits for cable to go idle
> host transmits (if collision, transmission stops;

each host waits random time, retransmits)

Software Sircfutectures =

Token Bus (IEEE 802.4)

•1,5, and 10 Mbps data transfer over 75
ohm broadband coaxial cable (use for TV)

• topology is a bus topology that uses a
logical ring topology

• hosts physically connected to a bus,
logically organized into a ring

• protocol:
> host gets permission to transmit from neighbor

in ring
> a single host at a time has permission to

transmit (no collisions)

\ Software Architectures ===== —-—

Experience with a Course on Architectures for Software Systems 22-7

Token Ring (IEEE 802.5)

• 1,4 Mbps data transfer using shielded {
twisted pair

• topology is ring topology
• protocol:

> special bit sequence (token) placed on ring
during idle by a host finishing a transmission m

>a host removes the token from ring when it wants
to transmit (only 1 host transmits at a time)

> each bit arriving at a host is copied off, then
copied back onto the ring .

> transmitting host removes its own bits from ring

\ Software Arcfatectwes =^^^==^=s=^===^==^

Long Haul Networks

• referred to as Wide Area Networks (WAN)
• typically span entire countries
• have data rates below 1 Mbps

> use the telephone system for data transmission

• owned by multiple organizations
> phone carrier owns the communications subnet
> organizations own the hosts

• LANs are preferable for local communication
> higher transmission rates (more bandwidth)
> lower error rates (>= 1000 times)

r--^\> simpler protocols
\ Software SircfatectuTes====^======^===^=^^=^^=^^=s^=

Experience with a Course on Architectures for Software Systems 22-8

WAN protocols

• RS-232-C
> specifies the meaning of each of the 25 pins on

a terminal connector, and the protocol for
transmitting data in analog form (waveform)

• PCM (pulse code modulation)
> specifies the translation of analog waveform

signals to a digital representation
> samples waveform 8000 times per second
> digitizes amplitude of waveform in 8 bits
> transmits sample of waveform every 125 usecs

• X.21
.—{> standard for emerging digital communication
\ Software Skcfdtectwres -^—

Physical Layer Protocols

• use of particular physical layer protocols
depends on the physical medium and
transmission technology used

• physical layer protocols are usually
implemented in hardware:

> computer interface cards
> modems

• physical and data-link layers usually
combine to implement a protocol
>e.g., in a token ring LAN, the token is a

sequence of bits (a frame)

\ Software Architectures =

Experience with a Course on Architectures for Software Systems 22-9

Physical Layer API

• the interface between the physical and
data-link layers is conceptually simple

> establish connection
> disconnect
> receive bit
> transmit bit
> report collision

• interface between these layers is not
always clearly physically delimited

> at the data-link layer, the transmission
technology gets extremely specialized

Software, fircfetectures =^=^=^=^==^=

The Data Link Layer

• functions:
> organization of physical-service-data-units (bits)

into frames, then data-link-service-data-units
> transparent transmission of frames between

network entities
> error detection and recovery

» bits become garbled or lost during transmission
> sequence control

• layer in which raw bits become organized
into data

• uses services of the physical layer

Software Rrcfdtectures -.

Experience with a Course on Architectures for Software Systems 22-10

Data-Link Layer Services

data-link connections, connection IDs
data-link-service-data-units (frames)
sequencing

> the order of frames is maintained across a
data-link connection, but can be presented out
of order to the network entity

flow control
> network entity controls trans, rate of frames

quality of service parameters (per conn)
> mean time between detected errors, service

availability, transit delay, and throughput
channel allocation

Software Architectures -.

Framing Techniques

• character count
> frame consists of a fixed-format header

containing count of following characters
> problems: lost characters, changed counts

• character stuffing
> end-of-frame character
> problems: need escape character

• bit stuffing
> frames delimited by '01111110' sequence
> after five consecutive '1' bits in data, a '0' added

hecksums (included in frame header)
Software Rrcfotectwes

Experience with a Course on Architectures for Software Systems 22-11

Frame Transmission Protocols

\SopL

a.k.a. "flow control"
stop and wait

> transmitting host waits for receiving host to
acknowledge receipt before sending again

sliding window
> transmitting host allowed to have multiple

unacknowledged frames outstanding

HDLC (high-level data link control)
> uses bit-stuffing
> address field for multipoint lines
> control field (seq nos, acks, line status info)

\ Software Arcfiitectures ==============^====^=!===^

Channel Allocation (broadcast networks)

• slotted ALOHA (satellite networks)
>time slotted into fixed-length units
> similar to CSMA/CD, but no CS, and CD done

differently due to 270 ms delay

• LANs
> CSMA/CD collision repair

» binary exponential backoff
» baton passing (similar to Token Bus)
» highest numbered contender

> ring network token repair
» host-monitoring, regenerating token

_^-"\ » slotted token
\ Software Arcfiitectwes===^^^==^^=^====:^==

Experience with a Course on Architectures for Software Systems 22-12

Data Link Layer API

primitives
>wait
>ToNetworkLayer, FromNetworkLayer
> ToPhysicalLayer, FromPhysicalLayer
> StartTimer, StopTimer
> StartAckTimer, StopAckTimer
> EnableNetworkLayer, DisableNetworkLayer

types
> packet, FrameKind, frame

\ Software. Architectures:

Network Layer

functions:
> transparent transmission of network-service-

data-units between transport entities
> masks the differences in transmission and

subnetwork technologies
> routing and relaying of packets
> segmenting and blocking
> error detection and recovery

may contain IMPs (point-to-point)
empty for broadcast networks

\ Software Architectures-,

Experience with a Course on Architectures for Software Systems 22-13

Network Layer Services

• network addresses
> means for uniquely identifying transport entities

• network connections
> provide transfer of data between transport

entities using network address
>all point-to-point; > 1 allowed between 2 entities

• network-service-data-units (packets)
• error notification
• sequencing
• expedited network-service-data-unit transfer
• quality of service parameters

\ Software Architectures =======^=

Routing

a frame arriving at an IMP is converted into
a packet, then routed
algorithms:

> static directory routing
» IMP has table of outgoing lines, indexed by destination

> hot-potato routing; shortest queue plus bias
» packet assigned to outgoing line with shortest queue
» combination of static directory and hot-potato routing

> delta routing (with routing control center)
> distributed adaptive routing (early ARPANET)

\ Software Architectures:

•

Experience with a Course on Architectures for Software Systems 22-14

Congestion

• permits
> similar notion to tokens, but network wide
> limits number of packets in network, but not

number at a particular IMP
> problem: permit regeneration

• choke packet
> when line utilization > some trigger value,

choke packet sent to all sources of packets for
that line

• discarding packets
> favor those having made greater # of hops

\ Software Sircfutectures ^^

X.25 (A Network Layer Protocol)

• X.25 definitions
>a host is a DTE (data terminal equipment)
> carrier's equipment is a DCE (data circuit-

terminating equipment)
> an IMP is DSE (data switching exchange)

• X.25 describes layers 1,2, and 3
> physical layer -> X.21 or X.21 bis (RS232-C)
> data-link layer -> HDLC variant (LAP or LAPB)
> network layer -> description of managing

connections between pairs of DTEs

• virtual call vs. permanent virtual circuit

\ Software ürcfutectures =

Experience with a Course on Architectures for Software Systems 22-15

X.25 Connections

• DTE A sets up a connection with DTE B:
> DTE A sends a CALL REQUEST packet to DCE
> DCE delivers it to DTE B
> DTE B sends a CALL ACCEPTED packet to DCE,

which is forwarded to DTE A
> DTE A receives packet as CALL CONNECTED

packet, and connection is established

• full duplex communication occurs
• either DTE disconnects:

> DTE A sends a CLEAR REQUEST packet
^^>DTE B sends a CLEAR CONFIRMATION ack
\ Software. Architectures ===================

IP (Internet Protocol)

• network layer in the ARPANET (Internet)
• connectionless
• datagrams are transparently dumped onto

the network, transported to the dest. host,
• decision made as Internet grew; some

networks were unreliable -> reliability
mechanisms moved to transport layer

• transport layer breaks messages up into
datagrams of up to < 64K bytes

• network layer adds an IP header

\ Software flicfutectwres ==============================

Experience with a Course on Architectures for Software Systems 22-16

Network Layer API

• ISO standard 8348: OSI Network Service Primitives
• connection-oriented

> N-CONNECT
» establishing connections

> N-DISCONNECT
» releasing connections

> N-DATA, N-DATA-ACKNOWLEDGE, N-EXPEDITED-DATA
» using connections

> N-RESET
» resetting connections

• connectionless
> N-UNITDATA
> N-FACILITY
> N-REPORT

The Transport Layer

• functions:
> transparent transmission of transport-service-

data-units (messages) between session entities
» shield transport entities from network anomalies

• lost packets
• packets delivered out-of-sequence

» choose cost-effective transmission mechanisms
» provide network-layer-independent primitives

> mapping of transport addrs -> network addrs
> management of transport connections
> end-to-end error detection and recovery
> expedited transport-service-data-unit transfer

\ Software Ärcütectures ===== =

Experience with a Course on Architectures for Software Systems 22-17

Transport Layer Services

transport layer
> highest layer concerned with data transfer over

the network
> reorders out-of-sequence packets
> senses & terminates bad network connections,

reestablishing new ones to continue transfers
> provides services to session entities at TSAPs

services
> transport connection establishment
> data transfer
> transport connection release

Connection Establishment

• transport layer program: transport station
• connection establishment

> obtain a network connection which matches
requirements of session entity

> decide on optimizations for use of network
entities

> establish optimum size of data passed to the
network layer

> select functions to be active during data
transfer

> map transport addresses to network addresses

\ Software flrcfutectures =======^==^^===^=

Experience with a Course on Architectures for Software Systems 22-18

Data Transfer/Connection Release

• data transfer
> sequencing, blocking, concatenation,

segmenting
> multiplexing, splitting, flow control
> error detection and recovery
> expedited data transfer
> transport-service-data-unit delimiting

• connection release
> notification of reason for release
> identification of transport connection released

\ Software 5\rcftitectu.res;

Transport Layer Primitives

connection-oriented
> T-CONNECT

» establishing connections
> T-DISCONNECT

» releasing connections
> T-DATA, T-EXPEDITED-DATA

» using connections

connectionless
> T-UNITDATA

differences between Transport/Network primitives
> N-prim'rtives are intended to model network, warts and all
> T-primitives are intended to provide error-free service

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 22-19

Transport Layer API (Unix)

T-CONNECT
> request
> indication

socketO, bindO, connectO, setsockoptO
return from acceptO, getsockoptO,
following socketQ, bindQ, listenQ

> response
> confirmation

• T-DATA
> request
> indication

• T-EXPEDITED-DATA
> request
> indication

• T-DISCONNECT
> request

r—""V > indication
\ Software Arcfiitectures -.

return from connectO

recvO, sendvO
return from recvO, sendvO, selectO

sendvO with MSG_OOB flag set
SIGURG, getsockoptO with TPFLAG-XPD,
return from selectO

closeO, setsockoptO
SIGURG, error return, getsockoptO

TCP (Transport Control Protocol)

• specifically designed to tolerate unreliability
• accepts messages from session entities
• breaks them up into segments < 64k bytes
• adds header; gives datagram to network layer
• reassembles packets received in wrong order
• well-defined service interface

> primitives for actively, passively initiating conns
>send and receive data
> gracefully and abruptly terminate connections

\ Software Architectures -.

Experience with a Course on Architectures for Software Systems 22-20

The Session Layer

• functions:
> provide for presentation-layer entities to:

» organize/synchronize their dialogue
» manage their data exchange

> session connection to transport connection
mapping

> session connection flow control, recovery, and
release

> expedited data transfer

• presentation-layer entities are generally
thought of as processes

\ Software flrcMtectures \

Session Layer (cont.)

establishes and maintains connections,
sessions, between pairs of processes
hides details of transport protocols, transport
addresses, from user processes
session services maintain state of dialogue
even over data loss by transport
ways of mapping sessions onto transport
connections (e.g., airline reservation system):

session O •

transport O

\ Software. ArcMtectwres:

Experience with a Course on Architectures for Software Systems 22-21

Session Layer Services

data exchange
> same type of connection protocol as transport

» establishment, data exchange, disconnection
» negotiated quality of service parms with peer

> orderly release of connection
» involves handshake protocol
» no loss of data

dialogue management
>in principle, all OSI connections are full duplex
> applications may need half duplex
> session layer keeps track of whose turn it is to

- communicate (data token)
\ Software Architectures:

Session Layer Services (cont.)

synchronization
> used to move a session back to a known state

(transport layer only masks comm. errors)
>e.g., teletex service
> session layer splits text into pages, inserts

synch points - sending session must hold data
> major/minor synch points

activity management
> user splits message stream into activities
>e.g., multiple file transfer
>e.g., phone banking transaction

\ Software architectures;

Experience with a Course on Architectures for Software Systems 22-22

Session Layer Primitives

S-CONNECT
S-RELEASE
S-U-ABORT
S-P-ABORT
S-DATA
S-TOKEN-GIVE
S-TOKEN-PLEASE
S-SYNC-MAJOR
S-SYNC-MINOR
S-RESYNCHRONIZE
S-ACTVITY-START
S-ACTIVITY-END

\ Software Architectures =====

Establish a session
Terminate a session gracefully
User-initiated abrupt release
Provider-initiated abrupt release
Normal data transfer
Give a token to the peer
Request a token from the peer
Insert a major synch point
Insert a minor synch point
Go back to previous synch point
Start an activity
End an activity

Presentation Layer

functions:
> perform generally useful transformations on

the data before they are sent to session layer
» text compression
» data encryption
» virtual terminal protocols
» file transfer protocols

> session connection establishment/release
> data transfer
> negotiation/renegotiation of data syntax
> transformation of data syntax

\ Software Architectures ■.

Experience with a Course on Architectures for Software Systems 22-23

Philosophers Example

• messages from Philosopher 1 are
converted to/from the layer 2 protocol
(English or Dutch) to/from Swahili

• messages from Philosopher 2 are
converted to/from Telugu

• same logical abstraction as converting
data syntax by using compression or
encryption

\ Software ^rcfutectttres \

Presentation Layer Notes

• text compression most often done in
application

• encryption/decryption most often done in
the transport layer or data link layer

• virtual terminal protocols:
> ARPANET Telnet protocol (scroll-mode)
> data structure model (page-mode)

• presentation layer has a set of primitives
for establishing dialogues with peer entities

Software Architectures -.

Experience with a Course on Architectures for Software Systems 22-24

Application Layer

• where "user" applications reside
• functions:

> provide application processes with means for
accessing the OSI open systems environment

> identification of intended comm partners
> determination of availability of comm partners
> establishment of authority to communicate
> agreement on privacy mechanisms
> authentication of intended comm partners
> synchronization of cooperating applications

Software Arc/utectures;

Example Application Layer Apps

• electronic mail
>X.400 Message Handling System (MHS)

protocols
> OSI Message-Oriented Text Interchange

Systems (MOTIS)
>e.g., ARPANET Simple Mail Transfer Protocol

• public information services (telematics)
• file transfer, access, and management

>ftp, network block transfer (NETBLT)

• job transfer and management (CICS)

\ Software Architectures ===== =

Experience with a Course on Architectures for Software Systems 22-25

Carnegie Mellon University
Software Engineering Institute

An Architectural Evaluation of
User Interface Tools

Gregory D. Abowd, Rick Kazman and Len Bass

April 18,1994

Architectures of Software Systems, Lecture 26
Master of Software Engineering Program
Carnegie Mellon University

sponsored in part by the U.S. Department of Defense

Carnegie Mellon University
Software Engineering Institute

Outline

Introduction

Perspectives of Software Architecture

Reference architectures for User Interface (Ul) systems

Modifiability for Ul systems

Architectural evaluation of existing systems

Conclusions

Experience with a Course on Architectures for Software Systems 23-1

Carnegie Mellon University
Software Engineering Institute

Understanding Product Claims
"We have developecL.user interface components that can be
reconfigured with minimal effort."

"This [model] allows the UIMS to be simple and independent
of the graphics software and hardware as well as the data
representation used by the application program."

"Serpent...encourages the separation of software systems
into user interface and "core" application portions, a
separation that will decrease the cost of subsequent
modifications to the system."

"This Nephew UIMS/Application interface is better that [sic]
traditional UIMS/Application interfaces from the modularity
and code reusability point of views."

Carnegie Mellon University
Software Engineering Institute

Software Architectural Analysis

A way to assess a system's architecture with respect to non-
functional quality attributes.

Relies on:
1. a common architectural notation
2. an analysis of quality needs
3. concrete benchmarks

Experience with a Course on Architectures for Software Systems 23-2

Carnegie Mellon University
Software Engineering Institute

Quality Attributes

Software engineering considerations, e.g.,

• maintainability

• portability

• modularity

• reusability

• development efficiency

• performance

Often called "non-functional" qualities

Carnegie Mellon University
Software Engineering Institute

What is Software Architecture?

Reference models?

Idioms?

Connection languages?

Design in a suit?

Design in the large!

Experience with a Course on Architectures for Software Systems 23-3

Carnegie Mellon University
Software Engineering Institute

Obstacles for Architectural Evaluation

No common vocabulary

Tendency to create new terms/descriptions

Difficult to link architectures with development concerns

Emphasis on functionality

Little discussion of life-cycle support

Carnegie Mellon Univefsity
Software Engineering Institute

Disclaimer

Architectures are not intrinsically good or bad!

It's all about context.

Experience with a Course on Architectures for Software Systems 23-4

Carnegie Mellon University
Software Engineering Institute

Perspectives on Software Architectures - 1

"[The software architecture level of design addresses]
structural issues such as gross organization and global
control structure; protocols for communication,
synchronization, and data access; assignment of
functionality to design elements; composition of
components; scaling and performance; and selection
among design alternatives." [Garlan & Shaw]

Carnegie Mellon University
Software Engineering Institute

Perspectives on Software Architectures - 2

"Architectural design is the activity of partitioning the
requirements to software subsystems." [Sommerville]

Experience with a Course on Architectures for Software Systems 23-5

Carnegie Mellon University
Software Engineering Institute

Perspectives on Software Architectures - 3

"Software architecture alludes to two important
characteristics of a computer program: (1) the hierarchical
structure of procedural components and (2) the structure of
data. Software architecture is derived through a partitioning
process that relates elements of a software solution to parts
of a real-world problem implicitly defined during
requirements analysis." [Pressman]

Carnegie Mellon University
Software Engineering Institute

Common Perspectives

• Functional partitioning

• Structure
• Allocation

Experience with a Course on Architectures for Software Systems 23-6

Carnegie Mellon University
Software Engineering Institute

Functionality

What the system does

Partitioned into conceptually simple pieces

Functional partitioning = domain analysis (in mature
domains)

• e.g., compiler: lexical analysis; parsing; code generation;
code optimization

In less mature domains, we use analysis techniques

• object-oriented

• structured

Carnegie Mellon University
Software Engineering Institute

Structure

Components (locus of computation)

- filter, data store, object, process, server, etc.

Connectors (interactions between components)

- procedure call, RPC, pipe, TCP/IP, etc.

Experience with a Course on Architectures for Software Systems 23-7

Carnegie Mellon University
Software Engineering Institute

Allocation

The mapping of functionality onto structure

Many different mappings are, in general, possible

Carnegie Mellon University
Software Engineering Institute

Allocation: Example
. §2U!S^g^^^^p_^imi§-{^ äen

Code

Syntactic
Analyse

Semantic
Analysis Optimize

.exical
analysis

Jpde Sen

Syntax-jdirected Analysis/Debug

Analysis of this mapping reveals the emphasis of the
architecture.

Experience with a Course on Architectures for Software Systems 23-8

Carnegie Mellon University
Software Engineering Institute

User Interface Software Architectures

Reference architectures contain canonical information on all
three perspectives.

• Monolithic

• Seeheim

• Arch/Slinky
• PAC (presentation, abstraction, control)

Carnegie Mellon University
Software Engineering Institute

Monolithic
All functions in one structural component:

Presentation

+

Application

Experience with a Course on Architectures for Software Systems 23-9

Carnegie Mellon University
Software Engineering Institute

Seeheim

Introduced three functional roles

User«-
Presentation
Component

Dialogue
Control

o

Application
Interface -Application

Carnegie Mellon University
Software Engineering Institute

Arch/Slinky
Additional roles for further separation

Dialogue

Functional
Core
Adapter

/

Functional
Core

Logical
Interaction

\

Physical
Interaction

Experience with a Course on Architectures for Software Systems 23-10

Carnegie Mellon University
Software Engineering Institute

PAC

Slicing the pie another way

Presentation

Application

vs.

res 3nta

App

ion

ication E
Separation vs. Rapid development

Camegw MeOon university
Software Engineering Institute

PAC
Hierarchical grouping of "vertical slices"

CS5)

CSS)^_^ (pf^>
Hx?

A_U^P A ^1 (P

Experience with a Course on Architectures for Software Systems 23-11

Carnegie Mellon University
Software Engineering Institute

Modifiability for UI systems

Classes of modifiability:

Extension of capabilities: adding new functionality,
enhancing existing functionality;
Deletion of unwanted capabilities: e.g. to streamline or
simplify the functionality of an existing application;

Adaptation to new operating environments: e.g.
processor hardware, I/O devices, logical devices

Restructuring: e.g. rationalizing system services,
modularizing, optimizing, creating reusable components.

Carnegie Mellon University
Software Engineering Institute

Choosing a Set of Concrete Tasks
In the User Interface domain, the most important types of
modifiability are:
1. adaptation to new operating environments
2. extensions of capabilities

Benchmark tasks:
1. changing the physical interaction component, e.g.

changing the toolkit
2. changing the dialogue, e.g. adding a menu option

Expressed most closely in terms of Arch/Slinky

Experience with a Course on Architectures for Software Systems 23-12

Carnegie Mellon University
Software Engineering Institute

Architectural evaluation of existing systems

Method

1. present developer's architecture
2. translate into a common language
3. compare with Slinky/Arch
4. evaluate for "performance" on benchmark modifications

Carnegie Mellon University
Software Engineering Institute

Structural Notation
We will use the following lexicon in this evaluation

Components

o
Process

Computational
Component

Passive Data
Repository

Active Data
Repository

Connections

(«-)-

<«)!

Uni-/Bi-directional
Data Flow

Uni-/Bi-directional
Control Flow

Experience with a Course on Architectures for Software Systems 23-13

Carnegie Mellon University
Software Engineering Institute

Serpent's Architecture

Dialogue
Dialogue
Manager

Controller

.

Application

Active Database

■ ■

Presentation

Carnegie Mellon University
Software Engineering Institute

Serpent's Architecture (redrawn)

:FCA Dialogue Manager \ gjggg.

Experience with a Course on Architectures for Software Systems 23-14

Carnegie Mellon University
Software Engineering Institute

Evaluation of Serpent

Task 1: separates PI/LI from the rest of the system but not
from each other

• some architectural support

Task 2: Dialogue is a separate component, subdivided into
view controllers
• adequate architectural support for dialogue specification

Carnegie MeUon University
Software Engineering Institute

Chiron's Architecture

< Zhiron Server

4 >

Chiron Cli< ait

E a

O
"O
B

"03
=3

■c

*—►
I/E

Interpretei Artist Dispatcher
•

I Artist ADT

A \ V
Dispatcher Application

Artist - ADT
/
/ / '—' Aosiraci

Depiction Dispatcher /

Artist •— -: ADT

i \DL Library

Experience with a Course on Architectures for Software Systems 23-15

Carnegie Mellon University
Software Engineering Institute

Chiron's Architecture (redrawn)

Chiron Server

ipTl ili D
.Chjron.Client

!FCA

(^ArtisT)«|BO^f>ispatchei

i

i

!

(Artist)^

Carnegie Mellon University
Software Engineering Institute

Evaluation of Chiron

Task 1: separates PI from LI and the rest of the system

• ideal architectural support

Task 2: divides Dialogue between Artists and ADT/
Dispatchers
• no clear guidelines for allocation of functionality

• some architectural support

Experience with a Course on Architectures for Software Systems 23-16

Carnegie Mellon University
Software Engineering Institute

Garnet's Architecture

Gamet Applications

Widget set

Interactors Opal Graphics

Constraint system

KR object system

Xll Common Lisp

Operating System

Carnegie Mellon University
Software Engineering Institute

Garnet's Architecture (redrawn)

iC xii > Pi:

Kjnteractors) K5pal Graphic^

Experience with a Course on Architectures for Software Systems 23-17

Carnegie Mellon University
Software Engineering Institute

Evaluation of Garnet

Task 1: separates PI from LI and the rest of the system

® ideal architectural support

Task 2: dialogue is monolithic; extensive use of language
features
• no architectural support for dialogue specification

Software Engineering Institute

Modifiability Evaluation: Summary

System Taskl
Rating

Task 2
Rating

Serpent medium high

Chiron high medium

Garnet high low

Experience with a Course on Architectures for Software Systems 23-18

Carnegie Mellon University
Software Engineering Institute

Other Factors - 1

Example programs

Quality and volume of documentation

Ability to do rapid prototyping

• compilation speed

• availability of builder

• interpretive

• use of data files

Language issues

Carnegie Mellon University
Software Engineering Institute

Other Factors - 2

Limitations/extensibility

Academic versus industrial

Ability to undo previous work

Completeness versus awkwardness

Learning curve/effects

Abilities of implementor

Experience with a Course on Architectures for Software Systems 23-19

Carnegie Mellon University
Software Engineering Institute

Conclusions

Architectural analysis can only proceed with:

• a common understanding of the various views of
architecture

• a common representation of architectures

This method permits evaluation of an architecture in terms of
an organization's life-cycle requirements

Architectures exist In a context—we must approach
evaluation in terms of benchmarking

Experience with a Course on Architectures for Software Systems 23-20

Lecture 27
Design or Default?

Decision Strategies for Software
System Design

Mary Shaw

\ Software Arcfutectures:

How Do You Choose an Architecture?

• Organize the next system like the last one
• Adhere to company coding guidelines
• Follow the latest fad
• Use a prescriptive methodology or tool
•

H ■ m

• Use the definitive architecture for your
application domain

• Evaluate alternatives on the basis of
> characteristics of the application requirements

 ^> constraints of the operating environment
\ Sr>f^""T" %rrf7'tp'~H'T'":, ,-„,

Experience with a Course on Architectures for Software Systems 24-1

Simple Design Space: Image Compression

100

Space 5
factor

Bit image Application: maps,
engineering drawings'

Group 3
raster

Dispiay
list

Group 4
raster

0.2 2 20
r---\ DispSay time (sec) for engineering drawing
\ Software. S^rcfdtectures ,... - ■

image Compression: Special
Considerations

• Image characteristics
> Regularity improves compression factor

• Structural knowledge
> Display list has speed of Group 3, space of Group 4
> But you need to know where the lines are

• Tractability
> Often impractical to store full image

• Bandwidth interaction
> Bit image dispiay may be limited by delivery bandwidth

• Latency and inerementality concerns
> Group 4 depends on context from previous (possibly

_^ distant) lines
\ Software ßircfutectures -

Experience with a Course on Architectures for Software Systems 24-2

Choosing a User Interface Architecture

Functional
require-
ments

design Structural
design

decisions

• Design spaces for function and structure

• Some functional requirements favor or disfavor certain
structures

> capture these as a set of preference rules
> develop prototype designer's advisor

• Similar problems exist for other architectural decisions

r^
\ Software Arcfatectures =^=^^==^^==^^=^^^^=

The Lane Strategy

Premises
> More than one reasonable structure exists
> System requirements may favor or disfavor choices

Hypothesis
> Design space can organize structural knowledge
> Design rules can (automatically?) guide structural

choices

Experiment
> Devise some rules
> See how they work on real systems

Results
> Design space captures implicit knowledge in useful form
>Jt's worth trying to build a real design assistant

Software. Rrcfatectures =

Experience with a Course on Architectures for Software Systems 24-3

Basic Structural Model

Device
driver(s)

Device drivers
Device-specific

Not specific to
application

Present abstract
dewce modei

Software. Arcfatectwres ■,

General
US

Code

General Ul code
Not specific to
application or
I/O devices
"Ui Framework"

Application-
specific

code

Application code
Underlying
functionality

Application-
specific Ui code,
tables

Functional dimensions

External event handling
none while awaiting input preempt user

User customizability
highmedium low

User interface adaptability across devices
none local behavior global behavior appl
semantics

Computer system organization
uniprocess multiprocess distributed process

Basic interface class
menu forms commands nat'l Sang direct manip

Application portability across user interface styles
Jw^hrnedium low

\ Software ftrcfatectwres;

Experience with a Course on Architectures for Software Systems 24-4

Structural dimensions

Application interface abstraction level
monolithic abstr device toolkit [...managers...]

Abstract device variability
ideal parameterized variable ops ad-hoc

Notation for user interface definition
[...implicit...] [external, internal] x [declarative, procedural]

Basis of communication
events pure state state & hints state & events

Control thread mechanism
none HW proc LW proc non-preempt proc

event handler interrupt svc routine

\ Software Architectures -.

Design Rules

Basic rule format

choice A [favors/disfavors] choice B with weight W

(A, B from different dimensions)

Examples
high device bandwidth +++ hybrid output comm basis

distributed system org ++ fixed or param fast input proc

distributed system org + event output comm basis

hi portability across styles - - hybrid output comm basis

implicit semantic info rep - coarse-grain appl comm

Rule set has about 170 such rules

\ Software. Architectures -.

Experience with a Course on Architectures for Software Systems 24-5

Validation Examples

Andrew Toolkit
Environment for interactive graphical applications

cT (CMU Tutor)
Programming language for computer-based instruction

Flight Simulator
Prototype software for cockpit simulators

Genie
Pascal environment for novice programmers

(Macintosh)
Sage

Automated graphical presentation of database queries
Serpent
r--QeneraS-purpose user interface software substrate
\ Software fArcmtectuxes ~

Notes on other slides

Slides summarizing Lane's validation experiments

\S Software lAxchxtectuTes;

Experience with a Course on Architectures for Software Systems 24-6

Evaluating implementation Choices

Should you use a
database?
file system?
symbol table?
array?
hypertext system?
other?

• What questions should you ask about the application?
• How do the answers help you choose an

implementation strategy?
> how do you then make further design decisions?
> what classifications of the alternatives help?

• Can the memory questions be formalized?

Software. Architectures ^==^=s=ss=^=^==s==ss=^=,

Quality Function Deployment

• Quality assurance technique for
translating customer needs into technical
requirements
> List customer requirements & importance
> Identify implementation possibilities

("realization mechanisms"), with alternatives
> Decide how impl. possibilities relate to needs
> Determine interactions between impl. possib.

> Estimate difficulty
> Commit arithmetic
> Reexamine alternatives

\ Software. Architectures

Experience with a Course on Architectures for Software Systems 24-7

Quality Function Deployment (2)

Makes requirements and rationale for
implementation decisions explicit
ft/Iany assignments of weights are highly
subjective
Arithmetic not well Justified

\ Software. Rxcmtectures;

Notes on other slides

Quality Function Deployment example

Q§ Software ftrcfutectiiTes;

Experience with a Course on Architectures for Software Systems 24-8

Quantified Design Space

• Developed by 1991-92 MSB studio group
as merger of Lane's design spaces with
QFD

• Lane's design spaces
> Decomposition of design into dimensions
> Positive and negative correSations between

dimensions

• QFD
> Relations between customer needs and

realization mechan.

> Correlations between mechanisms

\ Software Arc/iitectwes —

Quantified Design Space (2)

• QFD framework captures design space
knowledge, requirements, and requisite
weights

• Massive arithmetic ensues
• Generates number for each design that

can be compared to numbers for other
alternatives

\ Software Arcfiitectures -.

Experience with a Course on Architectures for Software Systems 24-9

Prospects for Design Guidance

• Engineering design calls for selection based on needs
of application

> Must have choices
> Must know what matters

° Accumulated experience should be accumulated in
operational form

> For example, design rules
> Also need sources of alternatives (handbooks)

• Not very much guidance now exists in organized form
9 Coping while we wait

> Informal guidance
>Rules of thumb

\ Softwore^TcfiitectiiTes , - ■■■•■ ~

How Do You Choose an Architecture?

• Organize the next system like the last one
• Adhere to company coding guidelines
• Follow the latest fad
• Use a prescriptive methodology or tool

\SofK Software ßircfutectuTes:

Experience with a Course on Architectures for Software Systems 24-10

How Do You Choose an Architecture?

• Use the definitive architecture for your
application domain

• Evaluate alternatives on the basis of
> characteristics of the application requirements

^^> constraints of the operating environment

Experience with a Course on Architectures for Software Systems 24-11

CMU CS 15-775 Architectures for Software Systems Spring 1994

What is Software Architecture?

Garlan & Shaw Questions and Answers on Readings for Lecture 2 Due: Wed Jan. 12,1994

The papers:
Garlan and Shaw (1993): Introduction to Software Architecture, Sec 1-3
Perry and Wolf (1992): Foundations for the Study of Software Architectures
Shaw (1993): Software Architectures for Shared Information Systems, Sec 1

Hints:

The first four pages of the version of Garlan and Shaw (1993) in the course
readings packet are out of order. If you number the pages as stapled 14 3 2 and
read them in the order that implies, you will be able to make sense of them. Sorry
'bout that
Pay particular attention to Section 3 of Garlan and Shaw (1993) and to Section 1.3
of Shaw (1993). One of the primary objectives of this course is to sharpen your
awareness of the decisions you make about software architectures and the
assortment of different organizations from which you choose.
We'll read all of the first and third papers in sections in the course of the semester.
There's no harm in reading ahead

Questions:

1) What does "design level" mean for software?
This comes directly from Section 1.3 of Shaw (1993)

2) What are the major abstractions used by Garlan/Shaw and by Perry/Wolf to describe
large systems? That is, what structure does each group impose on answers to a question
such as "what's this architecture?"?

Perry/Wolf:
Elements: processing, data, connecting elements
Form: properties, relationships, constraints on element
Rationale: motivation for the choices

Garlan/Shaw:
System organizations: data abstractions; pipes and filters; layered systems; rule-based
systems; blackboard systems
Components: different kinds of computational elements
Connectors: different ways of mediating the interactions among components
Constraints: restrictions on how a group of components and connectors can be
combined

3) Name and briefly identify six architectural styles.

These come directly from the subsections of Section 3 of Garlan and Shaw (1993).

Experience with a Course on Architectures for Software Systems 25-1

CMU CS 15-775 Architectures for Software Systems Spring 1994

Classical Module Interconnection Languages

Garlan & Shaw Questions and Answers on Readings for Lecture 3 Due: Mon. Jan. 17, 1994

The papers:
DeRemer and Kron (1976): Programming-in-the-Large versus

Programming-in-the-Sniall
R. Prieto-Diaz and J. M. Neighbors (1986): Module Interconnection Languages

Hints:
Read for the big ideas about system organization. Do not get bogged down in the
notation of DeRemer and Kron, Section V, or the specific notations of the systems
surveyed in Prieto-Dias and Neighbors.

Questions:

1) What important advantages of languages for programming-in-the-large versus languages
for prx>gramming-in-the-small do DeRemer and Kron identify in their paper?

MILs give a "concise, precise, and checkable" model of program structure. They provide a way of
communicating design and system documentation, and for managing a prograrnrning project (And
abstraction at multiple levels is generally a Good Thing.)

2) What kinds of analysis and checking do current MILs support?

Static type checking.
Interface matching:

- Access rights.
- Resource accessibility.

3) In Intercol, what is the distinction between a System Family and a System Composition?

A System Family is a set of different versions of the system. A System Composition describes
the organization of the modules making up the System Version.

Experience with a Course on Architectures for Software Systems 25-2

m

$

CMU CS 15-775 Architectures for Software Systems Spring 1994

Information Hiding and Objects

Garlan & Shaw Questions and Answers on Readings for Lecture 4 Due: Wed Jan. 19,1994

The papers:
Pamas, Clements, Weiss (1985): The Modular Structure of Complex Systems
Booch (1986): Object-Oriented Development

Hints:
Read for the ideas about system organization, not for programming details
or prescriptions for the process of creating the systems.

In a paper that you are not reading, Liskov pointed out that there are two
major differences between abstract data types and "object-oriented" objects.
The substantive difference is that objects include inheritance. The other,
non-substantive, difference is terminology: different names for essentially
the same things, such as abstract data typelobject, procedurelmethod,
package!class, and procedure call/message. You'll have to learn to put up
with the terminology differences.

Questions:

1) What does each of the papers recommend as the primary criteria for decomposing
systems into modules?

PCW: hide secrets: details that are likely to change independently should be separated; reduce
likelihood that interfaces will change
Booch: organize around objects in the real world

2) When a system contains large numbers of objects, some means of organizing them is
required. What does each paper propose? Which paper places most emphasis on this
aspect of the problem?

PCW: module guide, strong hierarchy
Booch: since each level is basically flat, create layers of abstraction

3) Contrast the provisions made by the two approaches for dealing with collections of
related definitions.

PCW: nothing explicit, but hidden modules could provide shared information with limited
distribution
Booch: inheritance mechanisms allow new entities to be defined as variants of simpler existing
entities

Experience with a Course on Architectures for Software Systems 25-3

CMU CS 15-775

Garlan & Shaw

Architectures for Software Systems Spring 1994

Modular Decomposition Issues

Questions and Answers on Readings for Lecture 5 Due: Mon. Jan. 24, 1994

The papers:
Pamas (1972): On the Criteria To Be Used in Decomposing Systems Into Modules.

Questions:

1) What does Pamas mean by 'Information hiding"?

Reveal as little as possible about the inner workings related to a design decision.

2) Give an example of information that is hidden in the second decomposition?

storage representations, algorithm for sorting, etc.

IqP

m

Experience with a Course on Architectures for Software Systems 25-4

CMU CS 15-775 Architectures for Software Systems Spring 1994

Formal Models

Garlan & Shaw Questions and Answers on Readings for Lecture 6 Due: Wed Jan. 26,1994

The papers:
Shaw (1985): What Can We Specify?
Spivey (1989): An Introduction to Z and Formal Specification
Abowd, Allen, and Garlan (1993).

Using Style to Understand Descriptions of Software Architecture.

Hints:

In the Spivey reading pay most attention to how Schemas are defined and
combined. The material on refinements can largely be glossed over.
In Abowd, et al. you need not understand the details of the formalism, but you
should try to understand the general form of the specifications, and the arguments at
the end of the paper about why it is worth going to the trouble of producing the
formalisms.

Questions:

1) Write a Z specification of the following system: a teacher wants to keep a register of
students in her class, and to record which of them have completed their homework.
Specify:

(a) The state space for a register.

(b) An operation to enroll a new student

(c) An operation to record that a student (already enrolled in the class) has finished
the homework.

(d) An operation to inquire whether a student (who must be enrolled) has finished
the homework.

Answer: See attached answer.

2) What kinds of analyses and comparisons does a formal representation of style permit?

Specializations of a general style to more specific ones.
Comparison of auxiliary properties, such as hierarchical closure.
Check that syntactic constraints are consistent with the semantic equations: i.e., that all
syntactically correct descriptions have a meaning.

Experience with a Course on Architectures for Software Systems 25-5

CMU CS 15-775 Architectures for Software Systems Spring 1994

Batch Sequential and Pipeline Systems

Garlan & Shaw Questions and Answers on Readings for Lecture 7 Due: Mon. Jan. 31, 1994

The papers:
Shaw (1993): Software Architectures for Shared Information Systems,

Sections 2.introduction, 2.1, 3introduction, 3.1, 3.2

Hints: 4

This lecture begins the discussion of data flow systems. In such systems, the
computation is dominated by the availability of data ~ each component can execute
only as fast as data is supplied to it. We will begin with two of the most common
forms, batch sequential and pipeline systems (orpipe-and-filter architectures). The
reading focuses on batch sequential systems. In addition, review your
understanding of how to compose filters in UNIX; this is the handiest example of i
pipelines.
You have already read Section 1 of this paper, and you'll read the rest for the
lecture of March 14. The assignment for today is short, so you may want to read a
few extra sections to get a little more context. You may also find it helpful to
review sections 1-3 of Garlan and Shaw's Introduction to Software Architecture.

i
Questions:

1) What are the major components in a batch sequential data processing system?

(1) an edit program; (2) a transaction sort; (3) a sequence of update programs; (4) a print program
for periodic reports, [beginning of Section 2.1]

2) What are the major differences between batch sequential architectures and pipe-and-filter
architectures?

In a batch sequential system, each processing step may read all its input and run to completion
before producing output As a result, (1) the batch sequential system can use the input in arbitrary
order, whereas a pipe-and-filter system does incremental processing; (2) batch sequential processing
steps must be carried out in sequential order, whereas steps in a pipe-and-filter system can in I
principle execute concurrently.

3) What supports the assertion that a classical compiler is more like a batch sequential
system than a pipe-and-filter system?

The phases of a traditional compiler walk the parse tree in a complex order (not incrementally) and
generally run to completion before passing control to the following phase, [paragraph 1, Section $
3.2]

Experience with a Course on Architectures for Software Systems 25-6

CMU CS 15-775 Architectures for Software Systems Spring 1994

Tektronix Case Study

Garlan & Shaw Questions and Answers on Readings for Lecture 8 Due: Wed, February, 2 1994

The papers:
Garlan and Shaw (1993): An Introduction to Software Architecture, Section 4.2.
Garlan andDelisle (1990): Formal Specifications as Reusable Frameworks.

Hints:

The purpose of the readings is to illustrate how Pipe & Filter systems can be
applied in an industrial context. The formalism in the second paper is not the
important part, although you should note how the form of the specification mirrors
the form of the oscilloscope architecture.

Questions:

1) Why was a layered system rejected for the architecture of the system?

Overall function of the system could not be naturally segmented into opaque layers of abstraction.
For example, user interface must have access to acquisition setting.

2) The architecture adopted by the oscilloscope designers (as reported in Garlan and Shaw)
departs from the general model of Pipe & Filter ways in at least two important ways. What
were these?

(a) Provided special inputs so user could configure the filter
(b) Richer vocabulary of pipes: colored pipes.

3) Why was it felt necessary to introduce a richer vocabulary of pipes (i.e., "colored
pipes") than is usually associated with a Pipe & Filter system?

To get acceptable performance. For example, colored pipes allowed oscilloscope to avoid copying
data, and avoided the problem of a slow filter holding back its upstream producer from supplying
data to other filters.

4) List two ways in which the oscilloscope formed a "reusable framework" for Tektronix?

(a) can substitute different components to get different oscilloscope functionality
(b) can reuse the run-time code that supports interactions between filters even if completely change
the set of filters used in a product

Experience with a Course on Architectures for Software Systems 25-7

CMU CS 15-775 Architectures for Software Systems Spring 1994

Pipe and Filter Implementation

Garlan & Shaw Questions and Answers on Readings for Lecture 9 Due: Mon. Feb. 7 1994

The papers:
Bach (1986): PIPES andDUP

Hints:

We previously covered the abstractions of pipes and filters. Now we turn to the
classic actual implementation -- UNIX. The second assignment will involve
creation of pipes, both directly and with shell commands. This reading and lecture
are provided to help you learn practical plumbing.

Questions:

1) What abstract data type does a pipe implement? What common implementation of that
abstract data type is used to implement pipes?

(a) Queue of characters (b) Circular queue or circular buffer

2) What is the difference between a named and an unnamed pipe?

Named pipes opened with open system call, unnamed pipes with pipe system call

3) What happens when a process attempts to write an unnamed pipe for which there is no
longer any active reader?

Error signal (EPIPE, though the paper doesn't say so)

4) What must you do to guarantee that dup will assign to a specific file descriptor slot (for
definiteness, say to file descriptor 3)?

Make sure the lower-numbered slots are occupied - dup assigns to the lowest-numbered free slot

&

Experience with a Course on Architectures for Software Systems 25-8

CMU CS 15-775 Architectures for Software Systems Spring 1994

Formal Models for Data Flow

Garlan & Shaw Questions and Answers on Readings for Lecture 10 Due: Wed February 9,1994

The papers:
Allen and Garlan (1992): A Formal Approach to Software Architectures.

Hints:

You need not follow all of the formal details, but you should attempt to see if the
model presented there matches your intuition about what a Pipe & Filter architecture
is. Consider issues such as: How are Schemas used? What is the essence of the
model? You should also consider how this formal model differs from the one that
you read about in the previous lecture.

Questions:

1) Contrasting this paper with the one by Delisle and Garlan that you read for the previous
class, what is the essential difference between the two?

Delisle & Garlan provide a formal model of a specific system that uses a variant on the PF style,
while Allen and Garlan provide a model of the PF architectural style itself.

2) List two ways in which the formal model of Pipes & Filters abstracts from reality.
Abstracts computation of filters as a state transition machine. Abstracts scheduling discipline.
Abstracts notion of type. Abstracts internal state of filters.

3) List two constraints that the model places on the use of data flow?
Each port has at most one pipe connected to it Types of data must match on either side of pipe.
No dangling pipes. Filter must produce only valid internal states. Filter must produce only data of
correct type. System must be started in a valid start state for each filter. Pipe can only be used once
in a system description.

4) What key property relating to encapsulation does the model support? Why is it
important?

Any subgraph of pipes and filters is equivalent to a filter. This allows one to describe a PF system
hierarchically.

Experience with a Course on Architectures for Software Systems 25-9

CMU CS 15-775 Architectures for Software Systems Spring 1994

Communicating Process Architectures

Garlan & Shaw Questions and Answers on Readings for Lecture 11 Due: Mon. Feb. 14, 1994

9

The papers:
Andrews (1991): Paradigms for process interaction in distributed programs.

Hints:
Don't get caught up in the syntax of the programming notation. Read for the way in
which problems are approached and for the qualities found in each problem and
solution.

Questions:

1) What are the general techniques used in developing the solutions presented in the paper?

Client server, pipe filter, message passing (heartbeat, probe/echo) replicated data and computation,
token passing.

2) What features of a problem would indicate that each of the following solutions might be
suitable?

A. A heartbeat solution.
No global topology available, small diameter of net relative to number of processes, need to spread
out local information globally, solution may require many iterations.

B. Replicated workers
Lots of spare processors, many unrelated tasks, no state shared between tasks

C Probe/Echo
Depth-first algorithm is natural way to solve problem, tree structure of graph, solution can be
calculated in single back-forth pass.

D. A network of filters
Computation is transformation on streams, can be calculated in incremental, functional steps.

Experience with a Course on Architectures for Software Systems 25-10

m

CMU CS 15-775

Garlan & Shaw

Architectures for Software Systems Spring 1994

Formal Models of Processes

Questions and Answers on Readings for Lecture 12 Due: Wed Feb. 16,1994

The papers:
Hoare: Excerpts from "Communicating Sequential Processes"

Hints:

Don't worry about any of the parts on "implementation".

Questions:

1) Write a CSP process that represents a student doing assignments for this course. Note
there are four assignments, and each has a presentation associated with it.

ASSIGNMENTS = ASSIGN1
ASSIGN1 = (handinl -> ASSIGN2) i (presentl -> handinl -> ASSIGN2)
ASSIGN2 = (handin2 -> ASSIGN3) I (present2 -> handin2 -> ASSIGN3)
ASSIGN3 = (handin3 -> ASSIGN4) I (presents -> handin3 -> ASSIGN4)
ASSIGN4 = (handin4 -> STOP) I (present4 -> handin4 -> STOP)

Experience with a Course on Architectures for Software Systems 25-11

CMU CS 15-775 Architectures for Software Systems Spring 1994

Models of Event Systems

Garlan & Shaw Questions and Answers on Readings for Lecture 13 Due: Mon. Feb. 21,1994

The papers:
Garlan, Kaiser, Notion (1992): Using Tool Abstraction to Compose Systems.
Garlan and Notkin (1991): Formalizing Design Spaces: Implicit Invocation

Mechanisms.

Hints:
As usual, concentrate on the big ideas. For the first paper pay attention particularly
to the argument about why ADT's have some serious limitations. The specific set of
enhancements to KWIC are less important than the basic paradigm that they
illustrate.
For the second paper notice how Z is being used to provide both a general model
that can be specialized for a particular system Do not spend much time on the part
of the formalism relating to the run time system

Questions:

1) Earlier in the semester we read two articles by Parnas, in which he advocated the use of
information hiding and ADTs. What are the essential differences between that architectural
style and the one advocated by Garlan, Kaiser and Notkin?

Data encapsulated in ADTS versus data exposed to "tools".
System functions invoked by explicit invocation versus triggered implicitly by data change events.

2) What are the tradeoffs in using one over the other?

ADTs good if plan to change implementation.

Toolies good if plan to augment function.
Toolies not incompatible with ADTs, but expose more of structure than typically done with
information hiding alone.

Toolies require additional run time invocation mechanism.

3) According to the second article, in what way is Smalltalk's event mechanism flawed?

There is only one event in the system: "changed". This makes it difficult for the receiver of the
event (via the "update" method) to know what happened.

m

Experience with a Course on Architectures for Software Systems 25-12

CMU CS 15-775 Architectures for Software Systems Spring 1994

Architecture for Robotics

Garlan & Shaw Questions and Answers on Readings for Lecture 14 Due: Wed Feb. 23,1994

The papers:
Simmons (1993): Structured Control For Autonomous Robots.

Hints:

Approach this paper from an architectural perspective, asking yourself how the
basic concepts map into the ideas that we have covered thus far.

Questions:

1) Characterize TCA architecturally:

a. What are the main kinds of components?

Task-specific modules.
The central control module.

b. What are the main kinds of connectors?
The different kinds of messages (command, query, constraint, etc.).

c. What are the main kinds of configurations (or topologies)

A star configuration, where the central control module is at the hub of the star.

2) Would you characterize TCA as an example of an Event System? Explain why or why
not.

Yes and no. Yes because the architecture conveys the notion of implicit invocation. The sender of
a message does specify its recipient No because there can only be one recipient, i.e., no broadcast

3) What is a task tree?

A structure which represents relationships between tasks and subtasks. Each relationship has one
of three flavors: task decomposition, sequential achievement or delay planning.

Experience with a Course on Architectures for Software Systems 25-13

CMU CS 15-775 Architectures for Software Systems Spring 1994

Implementation of Event Systems

Garlan & Shaw Questions and Answers on Readings for Lecture 15 Due: Wed March 2,1994

Thepapers:
Reiss (1990): Connecting Tools Using Message Passing in the Field Environment.
NotMn et a/.(1993): Adding Implicit Invocation to Languages: Three Approaches.

Hints:
Both papers are concerned with techniques for implementing Event Systems, |
although Reiss refers to his system as a message-passing one. Pay attention to the
way that each implementation leverages its operating domain: UNIX, in the one
case, and specific programming languages, in the other.

Questions:
i

1) Pick four dimensions along which Field and one of the language-based implementations
differ, and explain the differences?

Answers will vary, but here are some comparisons for the Ada implementation:

a. Nature of Events: Q

Ada - static event declaration; Field - not clearly stated, but static by convention.

Ada - either central or distributed; Field - not stated.

b. Event Structure;
Ada -Parameters by Event Type; Field - Parameters by Event Type, but also arbitrary strings

allowed. |

c. Nature of Event Bindings:

Ada - static; Field - dynamic

Ada - selectable parameters; Field - same

do Announcement Syntax:
Ada-single procedure; Field not stated (but single procedure) *

e. What's a component?:

Ada - a package; Field - a process

Experience with a Course on Architectures for Software Systems 25-14

©

CMU CS 15-775 Architectures for Software Systems Spring 1994

Repositories: Blackboard Systems

Garlan & Shaw Questions and Answers on Readings for Lecture 16 Due: Mon. Mar 7, 1994

The-papers:
Nii (1986): Blackboard Systems, Parts 1 and 2

Hints:
First and foremost, read the Nii paper to understand the blackboard model and the
kinds of problems for which it is appropriate. Study Hearsay and Hasp to see
how the model is realized in two rather different settings, but don't get embroiled
in fine details. Look at the other examples to see the range of variability available
within the basic framework. Concentrate on the computational relations between
the knowledge sources and the blackboard data structures. Notice the differences
in control strategies, but ~ again - don't get bogged down in the details.

Questions:

1) In a few lines, describe the essential blackboard framework.

Blackboard has three major components: knowledge sources, blackboard data structure, and
control.
Knowledge sources partition domain knowledge; they contribute independently to solving the
problem, can be represented in many ways, interact only via the blackboard, and encode their
conditions of applicability.

Blackboard data 5fri^mrejprovi(temgWy-stracturedMeiarcWcal representation fe objects that
are intermediate and final results

Control provides opportunistic processing by monitoring blackboard changes.

2) What are three major differences between the nature of the processing required by the
Hearsay-n and the nature of the processing required by the HASP system? (Note: this is a
question about the processing requirements, not about the application domains.)

Data: Hearsay-II data given in advance (off-line), HASP data arrives continuously (on-line).
Hearsay had input only at lowest level; HASP also had high-level input.

Computational style: Hearsay-II is motivated by generate-and-test, HASP by model-driven
problem solving (relying on situation-specific knowledge). HASP could revise its
conclusions but Hearsay could not; Hearsay, however, could hold multiple hypotheses.

Time: In Hearsay-II, sequence of sounds in sentence; in HASP, the entire situation to be
analyzed changes as time passes.

Completion: Hearsay-II attempted a correct interpretation of an utterance; HASP tried to
make the best (partial) interpretation possible at the moment and improve it over time.
Internal structure of blackboard. Differ in use of attributes and links. HASP also had off-

blackboard data.

Experience with a Course on Architectures for Software Systems 25-15

CMU CS 15-775 Architectures for Software Systems Spring 1994

Databases and Client-Server Systems

Garlan & Shaw Questions and Answers for Readings for Lecture 17 Due: Wed March 9,1994

Thepapers:
Gray & Reuter (1993): Selections from 'Transaction Processing"
Mullender (1993): Selections from "Distributed Systems"

Hints:
From the readings try to develop your own precise definitions of terms such as
"client-server system".

Questions:

1) To what extent does the UNIX file system satisfy the criteria for an adequate repository?

- Complete: No. The UNIX file system does not describe all aspects of a system, it just
describes the files in it
- Extensible: No. It is not possible to add new kinds of objects to the system. The only objects
the UNIX file system can deal with are files, links, pipes, etc.
- Active: The UNIX file does not system provide mechanisms to automatically update properties
of objects.
- Local autonomy: Yes. The UNIX file system can operate on its local objects (files), even
though the site is disconnected from the others.

- Fast: Yes.
- Secure: Yes, (to some extent) the UNK file system provides security mechanisms.

2) What is the fundamental difference(s) between the architectures portrayed in figures 1.9
and 1.10?

In figure 1.10 the resource managers have private locks and log managers, and the transaction
manager does not provide an undo scan of the transaction log. It also assumes that the resource
managers perform their own rollback.

3) Compare at-least-once versus at-most-once semantics. What property must requests
have to make at-least-once semantics work?

At-least once protocols deliver messages once in the absence of failures, but may deliver messages
more than once when failures occur. Such protocols work when requests are idempotent
At most once protocols also deliver messages once in the absence of failures, but may not deliver
messages at all when failures occur. Both parties in the communication must agree on the current
protocol state, so that failures can be detected.

Experience with a Course on Architectures for Software Systems 25-16

CMU CS 15-775 Architectures for Software Systems Spring 1994

Evolution of Shared Information Systems

Garlan & Shaw Questions and Answers on Readings for Lecture 18 Due: Mon. Mar 14,1994

The papers:
[Shaw93] Shaw: Software Architectures for Shared Information Systems
[Eco93] The Economist The Computer Industry
[Mor93] Morris & Ferguson: How Architecture Wins Technology Wars

Hints:
This completes our coverage of this [Shaw93]. At this point most of the elements of the discussion
should be familiar; review the sections we've already covered to be sure. The new ideas for today are the
evolutionary progression and the appearance of a common pattern in several distinct application areas.

[Shaw93] raises the issue of how heterogeneous systems should be integrated, addresses the market side
of this issue — how companies can position themselves (alone or in coalitions) to maximize their
participation in heterogeneous markets. [Mor93j and [Eco93] examine the structure of the industry. As
professionals you'll probably be interested in the whole papers, but for purposes of this course, focus on
the discussions of standards and open systems and on the comparison of "old" and "new" industry
structure.

Questions:

1) What is the common evolutionary pattern for shared information systems?
(1) Isolated applications; (2) Batch sequential; (3) Repository; (4) Layered hierarchy

2) Compare the operational requirement on shared information in data processing
applications with the requirements for software development environments..

See [Shaw93] section 3.5, paragraph 1

3) What forces drove evolution from one architecture to another?
Isolated applications to batch sequential: need to eliminate manual operations for regularly-used
sequences of steps

Batch sequential to repository: advent of on-line computing and need for interaction; also efficiency

Repository to layered hierarchy: need to merge multiple repositories, especially with repositories
distributed across many machines

4) Compare the "new" and "old" organizations of the computer industry. What is the
significance of the shift?

The old organization was based on vertical monopolies. The new organization reflects the effective
market entry of many new companies, which requires their products to operate together. In the new
organization the market is dominated by horizontal markets, each with several viable competitors

1) Briefly compare the advantages and disadvantages of open vs. proprietary systems.
The question would be better-posed if it asked about open vs. closed systems. Nonetheless,... Open
systems provide a way to keep a market niche alive by encouraging other vendors to help produce
enough products — and enough prospects for future product development — to keep market share. Closed
systems, on the other hand, give the owning company a monopoly. On the down side, in an open
system market your competitors are breathing hard down you neck and may consume you. But a closed
system may not articulate with other systems, and the marketplace may be suspicious of systems with no
second source.

Experience with a Course on Architectures for Software Systems 25-17

CMU CS 15-775 Architectures for Software Systems Spring 1994

Interpreters and Heterogeneous Systems

Garlan & Shaw Questions and Answers on Readings for Lecture 19 Due: Wed Mar 16,1994

Thepapers:
[GS93] Garlan and Shaw: An Introduction to Software Architecture (the rest)
[Wie92] Wiederhold: Mediators in the Architecture of Future Information Systems

Hints:

In
N<
explicit.

ts:
In GS93, concentrate on the ways the different system organizations are combined.
Note that the original designers of these systems did not make the change of idiom
explicit.
[Wie92] addresses the problems of making good use of large volumes of
information from distinct independent sources, especially when it appears in
multiple databases or supports multiple requirements.

Questions:

1) The earlier sections of this paper identify six classes of system organizations built up
from smaller elements (both kinds of components and ways to connect those components).
From your experience, extend these lists. Either add new kinds of organizations,
components, and connectors or give some new substructure for the given classes.

This question asks you to go beyond the readings and connect them to your own experience. There
isn't a fixed set of additions or elaborations, but we'll try to distribute a summary of the
interesting suggestions later.

2) Contrast Wiederhold's view of system construction using mediators with the view
supported by a conventional module interconnection language (or the module connection
mechanism of a conventional language.

A conventional MIL has an essentially static view of system organization; the system designer
enumerates explicitly the modules to use and the ways they are connected. Wiederhold's view,
however, is essentially dynamic — user applications dynamically identify appropriate mediators,
which in turn dynamically select appropriate databases.

3) Section 4.5 of [GS93] examines the Hearsay-II blackboard architecture and shows how
to separate abstract design concerns (the blackboard) from implementation concerns (the
interpreter). Do the same for the HASP architecture (the other major example in the reading
on blackboards).

(See back)

Experience with a Course on Architectures for Software Systems 25-18

CMU CS 15-775 Architectures for Software Systems Spring 1994

Newer MILs

Garlan & Shaw Questions and Answers on Readings for Lecture 20 Due: Mon. Mar 21,1994

Thepapers:
Dewayne E. Perry (1987): Software Interconnection Models
David Gelernter and Nicholas Carriero (1992): Coordination Languages and their

Significance
Victor M. Mak (1992): Connection: An Intercomponent Communication Paradigm

for Configurable Distributed Systems

Hints:
In the Gelernter paper, there is a short description of Linda toward the end of the
paper (page 103, leftmost column, third paragraph). Reading this paragraph first
may be helpful to readers unfamiliar with Linda, though familiarity with Linda is
not crucial to understand the author's main points.

Questions:

1) Explain how a coordination language such as Linda can be thought of as "gluing com-
ponents together." Give a few examples of the "ad hoc" glue that is popular today.

Individual computations (processes, "executables") are often subsystems in a larger system (such as
a distributed, parallel, or operating system). The glue that binds these systems together can be as
rich in complexity and diversity as the systems themselves. The choices are many: is data or
control exchanged? is the communication synchronous or asynchronous? what granularity of data?
what are the guarantees? Because of this diversity, many idioms for data and control
communication have arisen, e.g. RFC, message passing, fork and exec, barriers, file I/O, pipes and
filters. Linda seeks to be a general "coordination language" that would replace all of these separate
idioms with a general mechanism.

2) How does Mak's Connection paradigm allow software to scale?

The primary means of allowing software to scale is by supporting composite components, i.e.
components that are composed of other components. Another way to view this is that today's
component can be a sub-component of tomorrow's larger component. Whether a component is
composite is abstracted away from the component's clients.

3) Briefly describe each of Perry's three models for connecting software components.

All three interconnection models (IMs) describe the relationships between objects (which can be
pictured as a graph with labeled arcs); each model adds to the richness of the previous model by
adding new objects and new relationships. The Unit IM describes relationships (such as "depends-
on" and "includes") between large-grain objects (such as files and modules); Make is a good
example of a system that conforms to this model. The Syntactic IM further describes the small-
grain language constructs that compose the large-grain constructs (procedures, types, constants,
variables) and their relationships ("is-composed-of", "imports", "exports", "calls"); the "classic"
MTLs conform to this model The Semantic IM further describes the constraints for connecting the
language constructs (preconditions, postconditions, obligations) and their relationships ("satisfies",
"depends on", "propagated"); Perry's Inscape system conforms to this model.

Experience with a Course on Architectures for Software Systems 25-19

4) How do the module interconnection languages discussed earlier in the course (DeRemer
and Kron, Prieto-Diaz and Neighbors) differ from the connection mechanisms in these
readings? Would it be possible to combine an MEL with these newer connection mecha-
nisms? (Why or why not?)

Although, at the grossest level, both describe software units and the connections between them,
they differ largely in domain. MCLs describe modules, functions, types, constants, variables, etc.
and the relationships between them, such as "is-composed-of', "imports", "exports", "calls", and
"references." Systems like Linda and Connection, meanwhile, focus on whole computations
(executables, processes) and the communication between them (data exchange, control exchange).
Since these domains are complementary, combining them seems natural. A combined system
would describe both the communication between computations, as well as the program units that
make up a computation.

Experience with a Course on Architectures for Software Systems 25-20

CMU CS 15-775 Architectures for Software Systems Spring 1994

Interface Matching

Garlan & Shaw Questions and Answers on Readings for Lecture 21 Due: Wed Mar 23,1994

The papers:
James M. Purtillo and Joanne M. Atlee (1991): Module Reuse by Interface

Adaptation.
Brian Beach (1992): Connecting Software Components with declarative glue.
Gordon S. Novak, Frederick N. Hill, Man-Lee Wan and Brian C. Sayrs (1991):

Negotiated Interfaces for Software Reuse.

Questions:

1) What model does each of these three papers have about how components interact with
each other?

[Pa91] - Procedure call.
[Bea92] - Software bus.
[NHWS91] - Procedure calL

2) Briefly describe each of the three strategies for reconciling non-matching interfaces.

[PA91] - Run-time transformation of parameters.
[Bea92] - The software bus provides mechanisms for message transport and data sharing. The
Software Glue Language provides data transformation.
[NHWS91] - Code that performs run-time transformation of parameters. This code is generated
using a menu-driven tool to specify the type and structure of dam and subroutine interfaces.

3) In what ways (not restricted to those in today's readings) can component interfaces fail
to match exactly but still be fixable?

Parameters may not match (number, order, type).
The representation of data may not match (ASCII vs. EBCDIC, little endian vs. big endian, units,
etc.).

Experience with a Course on Architectures for Software Systems 25-21

CMU CS 15-775 Architectures for Software Systems Spring 1994

Connection Languages

Garlan & Shaw Questions and Answers on Readings for Lecture 22 Due: Mon. April 4,1994

Tkepapers:
Shaw & Garlan 93: Characteristics of Higher-level Languages for SW Architecture
Shaw 94: Procedure Calls are the Assembly Language of Software Interconnection
Shaw etc. 94: Abstractions for Software Architectures and Tools to Support Them

Hints: 0
All three papers address the same question: how can we provide notations and tools
that are better matches to the ideas and vocabulary that real system designers
actually use? Pay particular attention to the shortcomings of current systems, to
why this can be treated as a language problem, and to the model of what a language
should look like ("Abstractions and Tools" supersedes "Assembly Language" on
this point). Cruise through enough of the Unicon description to answer the I
questions and see what it might do for you, especially the example that closely
resembles one of your earlier assignments.

Questions:

1) The first part of the semester was devoted to describing architectural design idioms. g
When it comes time to implement these designs, real tools must be used What deficiencies
in these tools do today's readings describe? Can you name other deficiencies?

This is the content of section 2 of "Assembly Language":
Inability to localize information about interactions
Poor abstractions
Lack of structure on interface definitions {
Mixed concerns in programming language specification
Poor support for components with incompatible packaging
Poor support for multi-language or multi-paradigm systems

2) What are the essential elements of a computer language, whether it be for conventional
programming or for architectural description?

Components, operators, abstraction, closure, and specification

3) Identify those essential elements in the UniCon language.

Components: Primitive components, primitive connectors, composite components
Operators: Composition instructions, establishing associations between roles and players
Abstraction: Ability to localize definition of a composite and give it a specification and a name
Closure: Rule that allows composite component to be used as if primitive. Note that UniCon
does not have operators that construct connectors or a closure rule for them -- but the model calls
for this to be added.
Specification: Attributes provided in property lists that can be used for checking compatibility
either directly or with an external tool. I

Experience with a Course on Architectures for Software Systems 25-22

CMU CS 15-775 Architectures for Software Systems Spring 1994

Connector Formalisms

Garlan & Shaw Questions and Answers on Readings for Lecture 23 Due: Wed April 6 1994

The papers:
Allen and Garlan 94: Formalizing Architectural Connection

Hints:

You might find it helpful to review your notes on CSP from Lecture 12 ~
particularly insofar as they explain the distinction between CSP's deterministic
(external) and non-deterministic (internal) choice operators. In approaching Wright,
get a feel for the way protocols are decomposed using the notation. Also ask
yourself what kinds of benefits the theory is buying you.

Questions:

1) In Wright, what are the parts of a connector description, and what function does each
perform?

Roles describe the obligations of each participant in the interaction.
The Glue mediates the relationship between the roles and explains how the events of the roles are
coordinated.

2) The paper talks a lot about deadlock freedom. Why is this a significant issue for
understanding connection?

A deadlocked connector is one in which the various roles and glue do not agree on the joint
behavior of the interaction: the communication gets stuck because some party can't make progress.

3) Explain informally what it means for a port to be compatible with a role? Why is this
check important to perform?

The port lives up to the obligations of the role. This is important to check because otherwise we
would have no guarantees that an instantiated connector behaves in a proper way — i.e., it may
deadlock.

4) Both Wright and UniCon have much to say about the nature of architectural connection.
Outline the similarities and differences (if any) in the two approaches?

Answers may vary, but should include
Both view connectors as "first-class" entities that require their own specification.
Both use the idea of "protocol" to capture the notion of connector behavior.
Wright focuses on a particular formalism for specifying that behavior, while UniCon admits

of different kinds of protocol specifications for describing connector behavior.

Experience with a Course on Architectures for Software Systems 25-23

CMU CS 15-775 Architectures for Software Systems Spring 1994

Layered Architectures:
Computer Networks

Garlan & Shaw Questions and Answers on Readings for Lecture 25 Due: April 13,1994

The paper:
Tanenbaum, Andrew S. "Network Protocols," Computing Surveys, Vol. 13,

No. 4, December 1981

m
Hints:

The article is long and full of detail about almost every aspect of the functions
yxitaining to each layer of the OSI Reference Model.

When reading it, focus on:
•the primary purpose of the OSI reference model itself i

• the purpose of each layer
• the functionality/services provided by each layer

It is not necessary to focus on details such as header formats, bit sequences, etc.
(e.g., the sliding-window frame transmission protocol: It is sufficient to know that
this protocol allows a sender to have multiple unacknowledged frames outstanding t
during frame transmission. You do not have to know the exact algorithm)

Questions:

1) What is the primary reason for why networks are designed as a series of layers?
The primary reason for organizing networks into a series of layers is to group related functionality: ®

a) to make the entire function of communicating simpler to implement and maintain
b) to prevent changes in one part of the design from requiring changes in other parts
c) to abstract away differences in technology that affect a small part of the design
d) to reuse implementations of parts of the communication functionality

2) What is the OSI Reference Model? What is it not?
The OSI Reference Model is a framework for describing layered networks. It discusses the concept
of layering in general and defines a uniform set of terms for network implementors and users to be
able to discuss the various entities involved. Additionally, it describes the organization of
functionality of network architectures into seven layers, and for each layer gives its purpose, the
services provided to the next higher layer, and a description of the functions the layer must f
perform.
The value of the model is that it provides a uniform nomenclature and a generally agreed upon way
of splitting the various network activities into layers.
The ISO Reference Model is not a protocol standard. It suggests places where protocols could be
developed, but the standards themselves fall outside the domain of the model. I

Experience with a Course on Architectures for Software Systems 25-24

©

3) You graduate from college and decide to keep in touch with one of your classmates.
You both decide that you will write letters, but that you will only communicate via post
cards. To save space you both decide to leave all English articles (e.g., "a", "the") out of
the letters because their placement in the text is fairly obvious. Letters typically require
more than one post card, so you number them in sequence starting at 1. When you've
finished a letter, you mail all of the post cards at once. Also, you currently live with
another classmate who is a good friend of the person with whom you are corresponding.

Assuming this is an analogy for communicating using a layered set of protocols, identify as
many layers of the OSI reference model as you can that apply to this example. If you can,
try to associate specific protocols for each layer from the reading with this contrived
scenario as well.

This scenario is an analogy for communicating using a layered architecture. The analogy holds for
arguably 5 of the 7 layers described by the OSI Reference Model. Even though the people
communicating may not actually do this, think about them actually performing a series of
translation steps on the ideas they generate. In other words, rather than immediately writing on
post cards, think about them writing a letter first, copying it over without the articles, then
copying it onto post cards, etc. Here is how the analogy holds for each of those 5 layers.

The Application Layer
The application layer in this analogy consists of the three classmates who are communicating.

The two roommates are each communicating with their classmate that does not live with them.
The classmate sometimes writes a single letter to be enjoyed by both roommates, and sometimes
writes them individually. Each roommate writes letters to the classmate individually, and they
may cooperate to jointly write a single letter to the classmate.

Sending: The classmates write their letters down on a piece of paper.

Receiving: The classmates read the letters given to them.

The Presentation Layer
The letters are read /written using a data (de)compression technique.

Sending: The classmates copy their original letter over, removing the articles (i.e., "a" and
("the").

Receiving: The classmates copy the received letter over, inserting appropriate articles where it
makes sense to do so.

The Session Layer

The letters are actually sent and received.

Sending: One person in the house (in the case of the roommates) is given the responsibility
of sending and receiving the letters. As a session layer activity, the letter is handed to this
designated person.

Receiving: The designated person is given a copy of the letter. In the case of the roommates,
a copy of the letter is given to the 2nd roommate by the designated person.

Experience with a Course on Architectures for Software Systems 25-25

The Transport Layer

The letters are translated to and from post cards.
Sending: The designated person copies the letter onto post cards, numbers them, addresses

them, stamps them, and places them in a U.S. Postal Service mailbox.

Receiving: The designated person collects the post cards, waiting until they all come in. This
person organizes them in ascending order (they are often received out of sequence). When all post
cards for a letter have been received, this person copies the post card letter onto a single piece of
paper.

The Network Layer
The U.S. Postal Service delivers the post cards, one at a time, to their destinations. They

may or may not use different routes and delivery mechanisms for each post card Post cards may or
may not be delivered to intermediate post offices when moving from the source post office to the
destination post office.

Experience with a Course on Architectures for Software Systems 25-26

CMU CS 15-775 Architectures for Software Systems Spring 1994

Design Guidance

Garlan & Shaw Questions and Answers on Readings for Lecture 27 Due: Wed Apr. 20,1994

The papers:
Lane (1990): Studying Software Architecture through Design Spaces and Rules
Asada et al (1992): The Quantified Design Space

Hints:
Lane studied user interfaces for the purpose of organizing information about design
decisions. For our purposes, the important parts of his work are the use of a
taxonomy of characteristics to create a design space and the development of rules
that relate characteristics of the problem to the architectural design decisions. Read
the paper with this in mind. In particular, do spend enough time on the details of
user interface structures to see what is going on, but do not spend an inordinate
amount of time on the details. Asada, Swonger, Bounds, and Duerig were MSE
students in the 1991-2 studio. After studying Lane's paper in this course in 1991
and Quality Function Deployment somewhere else, they applied these ideas to their
studio project

Questions:

1) What is a "design space "?

Design involves making choices among alternatives. Often you must make a number of
decisions, each about selection from a set of choices. It is useful to think of having a multi-
dimensional space, with one dimension to each set Then a design can be thought of as a point in
this space. By the way, a design methodology can then be thought of as a search strategy for the
space - and a good design methodology as one that leads you through portions of the space that are
reasonably dense in acceptable solutions to your problem.

2) At various points in this course we have discussed — quite informally -- suggestions
about what circumstances might lead you to choose or avoid certain architectural idioms.
Take the set of idiomatic patterns for system organization (objects, pipelines, events,
blackboards, hierarchies, etc.) as one dimension of a target space (playing the role of
Lane's structural space). Suggest some rules that might go into a design tool to help a
designer make decisions along this dimension. What dimensions of the problem space
(playing the role of Lane's functional space) do your rules suggest? In other words, use
this opportunity to summarize some of the "rules of thumb" for selecting architectures that
we've discussed in the course of the semester.

If you can describe a solution for a computing engine that does not exist, consider an
interpreter to provide a virtual machine.

If a major part of the problem description involves coherent, independent collections of data
structures and operations on those collections, consider encapsulating those data structures as
objects.

If the problem is primarily computational, and if it can be decomposed into a sequence of
functions to perform on a stream of data, consider pipes.

• If the problem involves interpretation of complex data with considerable uncertainty
(especially in a signal-processing domain), consider blackboards.

).
Experience with a Course on Architectures for Software Systems 25-27

These rules deal primarily with the way the computation of the problem is organized.

3) Consider the results delivered by Lane's system and by QDS. In each case you set up
descriptions of the design alternatives. However, there are significant differences in the
information they deliver, and consequently there are significant differences in the way the
designer will interact with the two systems. Describe the major difference(s).

Lane's system evaluates the alternatives all at once and delivers rankings for the most promising
few systems, whereas the user of QDS selects manually the alternatives to be examined - that is,
Lane's system explores the space whereas QDS allows the designer to sample it. On the other
hand, with QDS it is much easier than with Lane to examine specific alternatives and to change
the model. Additionally, Lane's design spaces are intended to serve many applications in one
domain, whereas QDS' ancestry in QFD shows up in the creation of new spaces for each new
application

@

d

Experience with a Course on Architectures for Software Systems 25-28

Software Architecture Spring 94 (Garlan fc Shaw)

Assignment 1
KWIC Using an Object-Oriented Architecture

Due: Wednesday, February 9.

1 Description of the problem

This assignment is to implement an interactive version of the KWIC index system
(described in Parnas's On the Criteria To Be Used in Decomposing Systems into
Modules) in the object-oriented paradigm. You will be provided with a partial Ada
implementation of the system and asked to identify and make the necessary modifi-
cations.

The provided system is simply a line alphabetizer. It interactively inputs a line
at a time and upon demand outputs an alphabetized list of the current collection of
lines. Here is a transcript of a sample session:

Add, Print, Quit: a Add, Print, Quit: a
> 0 my son Absalom > 0 Absalom
Add, Print, Quit: a Add, Print, Quit: p
> my son my son 0 Absalom
Add, Print, Quit: a 0 my son Absalom
> and the king cried and the king cried
Add, Print, Quit: a in a loud voice
> in a loud voice my son my son
Add, Print, Quit: p Add, Print, Quit: q

0 my son Absaloa
and the king cried
in a loud voice
my son my son

Your assignment is to modify the existing code to support the following changes:

• Rather than simply out putting an alphabetic list of all the lines, the Print
command should output an alphabetic list of the circular shifts of all the lines.
However, shifts (including the nullary shift) which result in a line beginning
with a trivial word—a, an, and, the, or the capitalized versions of these words—
should be omitted.

3 different ways of displaying should be supplied. Upon entery of a p at the
command line, the system should print another "menu line":

Experience with a Course on Architectures for Software Systems 26-1

Software Architecture Spring 94 (Garlan fc Shaw)

Add, Print, Quit: p
Simple, Aligned, Concordance:

1. Simple Display: Upon entery of a s at the command line the system
should print the alphabetic list of all line shifts, as described above.

2. Aligned Display: Instead of printing the shifted line, the original sentence
is printed, but the word that is at the begining of the shifted sentence
is aligned, and capitalized. For example, the line "and the king cried" is

printed as follows:

and the king CRIED
and the KING cried

3. Concordance Style Display: For each shifted variant of the sentence the
original sentence is printed, but the word at the beginning of the shifted
variant is abbreviated. The line "and the king cried" is printed as follows:

and the king c.
and the k. cried

® three commands, Original, Delete and Count, should be added.

1. Original: Upon entry of an o at the command line, the system should
output a list of all lines entered by the user (including lines beginning with
trivial words, but not including the circular shifts of lines) in their original

order.

2. Delete: Upon entery of a d at the command line, the system should prompt
for a line (much like the Add command). This line should then be deleted

from the system.

3. Count: on entery of a c at the command line, the system should display
the number of original lines currently in the system.

Here is a sample session of the new system:

Add, Print, Original, Delete, Count, Quit: a

> and the king cried
Add, Print, Original, Delete, Count, Quit: a

> in a loud voice
Add, Print, Original, Delete, Count, Quit: p

Experience with a Course on Architectures for Software Systems 26-2

•

Software Architecture Spring 94 (Garlan k Shaw)

Simple, Aligned, Concordance: s
cried and the king
in a loud voice
king cried and the

loud voice in a

voice in a loud

Add, Print, Original, Delete, Count, Quit: c

2 lines

Add, Print, Original, Delete, Count, Quit: d

> and the king cried

Add, Print, Original, Delete, Count, Quit: c

1 lines

Add, Print, Original, Delete, Count, Quit: p

Simple, Aligned, Concordance: c

i. a loud voice

in a 1. voice

in a loud v.

Add, Print, Original, Delete, Count, Quit: o

in a loud voice

Add, Print, Original, Delete, Count, Quit:q

2 The current system

The current system is decomposed into the following modules:

• words,

• lines,

• line_collections, and

• tree_binary_unbounded_managed.

In addition there is a top-level module (session) which provides the command-
line interface.

The source code for the current system will be made available to you by next class
period. Watch the class bulletin board for instructions on how and where to obtain
the code, along with instructions on accessing an Ada compiler.

Experience with a Course on Architectures for Software Systems 26-3

Software Architecture Spring 94 (Garlan fc Shaw)

3 Discussion

On Wednesday, February 2, two or three teams will briefly present their initial designs
for class critique and discussion. Volunteers for this presentation will be solicited
during the previous class period. Note that each team will be responsible for one
such presentation over the course of the three assignments.

This presentation/discussion will not be graded. It is solely for the benefit of you
and your classmates.

4 Due date and electronic hand-in

The assignment is due by 10:30 am on Wednesday, February 9. You should create a
directory called "sa" in one of the team members home directory, and a subdirectory
called "hwl". In "sa/hwl" prepare a file called "kwic.doc". This file should contain:

® the names of both team members,

® a list of the modules added/modified and for each such module a list of the
resources added/modified.

The directory should also contain the system (source files, especially of all modules
modifies/added, and an executable file, named "session").

You should email a pointer to that directory (machine name, user name) to the
Teaching Assistant by the due date. After that, none of the files in the directory
should be touched. In addition there will be a written commentary (due at the
beginning of class on Wednesday, February 9) answering the following questions:

1. Describe the architecture of your system (both the provided part and the parts
you added), explaining how it is an example of an object-oriented architecture,
and in what ways (if any) it deviates from the basic object-oriented style. For
each of the new functionalities required, descibe how your system implements
it. Justify your design.

2. For each of the changes you made, explain if the change was of the internals of
one of the system components (data structures or algorithms) or of the system
architecure.

3. What changes would you have to make to your system to change the represen-
tation of line storage? What other components would be affected?

4. What changes would you have to make to your system to add the functionality
of only showing lines that start with a particular word?

Experience with a Course on Architectures for Software Systems 26-4

$

e

mm

Software Architecture Spring 94 (Garlan fc Shaw)

5. Does the system lend itself to a distributed implementation? If so what changes
would have to be made to make it function this way?

The commentary should be your own work: i.e., individuals, not teams for com-
mentary.

5 Grading criteria
Your solutions and commentary will be graded by the following criteria:

• Whether or not the resulting system performs as required.

• Use of architectural style in the assignment.

• Your understanding of the kinds of changes easily supported by the architecture.

In particular, the grade will be broken down as follows (100 points maximum):

• the program: 40 points,

• question 1: 20 points,

• questions 2-5: 10 points each.

6 Further questions
If you have any further questions, feel free to contact any of us via e-mail or during
our office hours. Clarifications (if any) will be posted to the class bulletin board.

Experience with a Course on Architectures for Software Systems 26-5

Architectures of Software Systems
Project #1

Commentary
/February 1994

Kent H. Sarff

Code Location: /gs30/usr0/mwang/architectures/assm1/base_1_2

Executable Image: session

Team Members:
• Kent Sarff
® Hung-Ming Wang
« Rob Wojcik
o Rachad Youssef

1. Describe the architecture of your system (both the provided parts and the parts you
added), explaining how it is an example of object-oriented architecture, and in what ways
(if any) it deviates from the basic object-oriented style. For each of the new
functionalities required, describe how your system implements it.

[Note: When Ada package names are used, they are italicized. Example: package words.]

The initial system is an example of an object-oriented architectural style for a number of reasons.
First, information about the implementation of data types and their operations was hidden from
data type users (information hiding). Second, each package is responsible for maintaining the
integrity of the ADT's information. Lines, for instance, know about words, but do not know what
words are made of and cannot directly manipulate the contents of words. All interfaces to words
are through the specifications defined in words package specification. The design of the initial
system does not deviate from this style.

This figure represents the Ada 'withing' structure of the original system. A solid line represents
when one package 'withs' another from its specification. A dotted line represents when one
package 'withs' another from its body. In general, solid lines show package visibility with respect
to external interfaces, and dotted lines show interfaces regarding implementaion details which are
usually hidden from other packages. Solid lines to main programs show normal 'with'
relationships. A package specification and body combination are shown as one box.

Text lo Words

Session

Unchecked
Deallocation

A.'

Tree

Line
Collections

Experience with a Course on Architectures for Software Systems 26-6

The new system maintains the object-oriented architectural style. New functionality was added
by the addition of routines in existing packages and by the addition of new packages which
implement new kinds of data. To retain the object-orientedness of the system, rules regarding
information hiding and data abstraction were used when designing the new and modified
interfaces. To maintain the architectural style, we separated the new desired functionality into two
groups. The first group of functionality could be implemented by modifying existing packages.
An example of this kind of modification is the additional printing modes (capitalized and
abbreviated) for words. This kind of change was localized to the words package.

Session

Trees

—I-

Unchecked
Deallocation

Lists

The second kind of modifications required new code. Circular shifts, for example, require more
and different internal attributes than lines. Since circular shift was a new kind of data, we created
a new package (using the style of the lines package), shifts, to represent that data. Because a
circular shift is partially composed of a line, the shifts package body references the lines
package. Maintaining the architectural style, units that use circular shifts, however, don't know
that shifts uses lines. We created another new package, shift_collections, that hides the
implementation of sorted circular shifts.

Regarding the modifications:
1. Print should output an alphabetical list of all the circular shifts (3 options).

This functionality required the addition of two new packages and modifications to one
package.

Experience with a Course on Architectures for Software Systems 26-7

($

The new shift_collections package implements the shift collection ADT. It is
patterned after the line_collections package and provides a number of procedures
that add and remove all of a line's non-trivial circular shifts to and from a collection, i
and prints (3 options) the contents of shift collection. Shifts implements the circular
shift ADT and is patterned after lines.

A shift determines if it is trivial by using a new procedure in the words package which
returns a boolean stating if a specific word is trivial. This implementation preserves
the object-oriented style by hiding the implementation of is_trivial in words. Only $
words should know if they are trivial.

The three printing options are implemented in the words package as additional print
procedures Print_Abbreviatedand Print_Capitalized. The simple print option uses
the existing print procedure.

4
2. Add command Original

Printing the lines in the order in which they were added required a modification to the
specification and implementation of line collections. The existing package
specification did not require changes for this modification. The internal
implementation, however, was changed to a linked list by the removal of the tree 4
package (Tree_Binary_Unbounded_Managed) and replacing it with the repository
linked-list package Lists. Line_Collection's package body was modified to instantiate
the iterator provided by the linked-list package for printing.

This functionality required modifications in the main routine, session, so that a user
could select to perform it. #

3. Add command Delete

This functionality required new code in shiftjcollections, described earlier and
modifications in the main routine, session, so that a user could select to perform it.
Line_collections was modified to export an exception if the user tried to delete a line 4
that was not in the line collection. If the line was not in the collection, Session
trapped the exception and would not attempt to delete any circular shifts possibly
associated with the line. This functionality is important as many different original
lines could produce identical circular shifts (but not identical sets of circular shifts).

Deleting a shift from a shift collection required a bit of advanced Ada knowledge. If a j
package T exports a private type to another package using (using a 'with'
relationship), and package A instantiates a generic package with type T and the
generic package requires the use of the equals u=" operator for type T, package T
must explicitly export the equals operator and the operator must be specified as a
generic parameter to the generic package.

I
This situation required the modification of LinesXo explicitly export an equals operator
and the modification of the tree package to import the equals operator.

4. Add command Count

This functionality required the addition of a routine to the line_collection package „
which called a routine in the lists package. This functionality required modifications
in the main routine, session, so that a user could select to perform it.

Experience with a Course on Architectures for Software Systems 26-8

2. For each of the changes you made, explain if the change was of one of the internals of
one of the system components (data structure or algorithms) or of the system
architecture.

In general, new kinds of data were implemented by changing the system's architecture by the
introduction of new components. Examples of this are circular shifts and shift collections. When
one of the new requirements regarded the reorganization of data (e.g. it made sense to
implement line collections in a list structure), a component was swapped for another.
Sometimes, additional functionality required a new method for a kind of data. An example of this
change is the addition of the equals operator to the lines package. The representation of lines
did not change, information hiding and integrity was maintained, but the package was expanded
to include a new interface. This could be regarded as an algorithmic change, but it really is only
an interface change.

Specific information about each change is identified in the answer to question 1.

3. What changes would you have to make to your system to change the representation of
line storage? What other components would be affected?

The answer depends on the type of change. If the assumption that a line is comprised of words
is not altered, then changes in line representation would appear in the body of the lines package.
Depending upon the scope of the change, additional packages may be added, but those
decisions are hidden from units that use the lines package.

If the assumption that a line is comprised of words changes, the architecture of the system will
change. Words are used by the lines package, the shifts package, and are 'withed' into the
package body of shift_collections. As a result, if lines are no longer comprised of words, the
architecture of the system will change - in this case, rather dramatically.

4. What changes would you have to make to your system to add the functionality of
showing only lines that start with a particular word?

If the change affects only the printing of original lines, it would require an additional interface into
the line_collections package that would require the 'withing' of the words package. The package
body implementation of the interface would instantiate an iterator that would visit each item in the
collection, and print it using the current routine if its first word matched the one supplied by the
user.

If the change would affect the printing of circular shifts, a similar modification would be made to
the shift_collections package.

5. Does the architecture lend itself to a distributed implementation? If so what changes
would have to be made to make it function this way?

Because the data we call line collections and the data we call shift collections are fundamentally
disjoint, this architecture does lend itself to distribution. One could imagine an implementation
where one machine (or set of machines) provides services regarding line collections and another
(set of) machines provides services regarding shift collections. Client programs, running on any
number of workstations, would access the services provided by the servers.

The system would require extensive modifications to support this kind of change. There may be
may be many clients concurrently reading the system's information, but only one client should be
adding or deleting lines or circular shifts at any given time. There are a number of ways to

Experience with a Course on Architectures for Software Systems 26-9

fi

accomplish this, but the concept of a transaction system that provides ACID properties would do
very nicely.

«
Answering this question brings up many more. The architectural style of the system as we
implemented is called object-oriented because it exhibits those properties we call object-oriented.
If it is modified in the manner suggested in this answer, it could be called client-server. Is this an
architectural style? Is the system now client-server, object-oriented, or both (marketers would
love to sell an object-oriented, client-server, distributed-repository system...). Can we say that a
system has one overall architectural style or do many apply at even the highest level of %
abstraction?

@

m

Experience with a Course on Architectures for Software Systems 26-10

Architectures for Software Systems Spring 94 (Garlan fc Shaw)

Assignment 2
KWIC Using a Pipe-Filter Architecture

Due: Wednesday, February 23.

1 Description of the problem

This assignment is to implement an interactive version of the KWIC index system
(described in Parnas's On the Criteria To Be Used in Decomposing Systems into Mod-
ules) in the Pipe-Filter paradigm. You will be provided with two implementations
of the KWIC system - one in Unix shell commands and one in C. You will be asked
to extend these implementations with new functionality.

Both versions of the current system accept input at the command line and produce
output to the terminal screen. Both versions implement a pipe and filter system that
shifts and sorts the input, and then transforms to upper case letters the first word in
each line (look at the first example below).

You will be provided with the source code for these systems, as well as source code
for two utility programs, diverge and converge - one to split an input stream and one
to join two input streams.

The source code for the current system will be made available to you by next class
period. Watch the class bulletin board for instructions on how and where to obtain
the code.

Your assignment is to modify the existing code to support the following changes:

1. Extend the shell script version of the system to produce a KWIC index of the
login and user names of all users currently logged on a system. Hint: look at
finger and cut and tail.

2. Do the same with the C language implementation.

3. Modify the shell script version of the system to produce a KWIC listing that
contains no duplicate entries. Hint: look at uniq.

4. Modify the C language version of the system to produce a KWIC index in which
the login names of users appear as separate entries from the users' real names.
Define a set of "trivial" login names to contain "John","smith", "david" and
your own login name. In the final output, only nontrivial login names should
appear, and only the first and last name of each real user name should appear,
(i.e remove middle initials or middle names). Hint: Use the diverge and converge
programs provided. You might find the C function "nxtarg" usefull for some of

Experience with a Course on Architectures for Software Systems 27-1

Architectures for Software Systems Spring 94 (Garlan fc Shaw)

the C functions you will have to write, or look into diverge.c to see how parsing
words is easily done.

Here are sample outputs for the solution to each part of the problem:
(The finger part is a real snapshot of some machine, therefore the choice
of names has no deep meaning)

•

m

% solutionl.csh and solution2

BENNETT jcrb John C R

C R Bennett jcrb John 4
CERIA santi Santiago

DAFNA Talmor tdafna
DAFNA Talmor tdafna
EHT Eric Thayer
ERIC Thayer eht ^

GALMES pepe Jose M

JCRB John C R Bennett
JOHN C R Bennett jcrb
JOSE M Galmes pepe
M Galmes pepe Jose ^
PEPE Jose M Galmes
R Bennett jcrb John C
SANTI Santiago Ceria
SANTIAGO Ceria santi
TALMOR tdafna Dafna

TALMOR tdafna Dafna *
TDAFNA Dafna Talmor
TDAFNA Dafna Talmor
THAYER eht Eric

% solution3.csh '

BENNETT jcrb John C R
C R Bennett jcrb John
CERIA santi Santiago

DAFNA Talmor tdafna
EHT Eric Thayer ®
ERIC Thayer eht
GALMES pepe Jose M
JCRB John C R Bennett
JOHN C R Bennett jcrb

Experience with a Course on Architectures for Software Systems 27-2

Architectures for Software Systems Spring 94 (Garlan k Shaw)

JOSE M Galmes pepe
M Galmes pepe Jose
PEPE Jose M Galmes
R Bennett jcrb John C
SANTI Santiago Ceria
SANTIAGO Ceria santi
TALMOR tdafna Dafna
TDAFNA Dafna Talmor
THAYER eht Eric

Remark: TRIVIAL.NAMES = {'tdafna','john','smith','david'}
% solution4
Bennett John
Ceria Santiago
Dafna Talmor
Dafna Talmor
eht
Eric Thayer
Galmes Jose
jcrb
John Bennett
Jose Galmes
pepe
santi
Santiago Ceria

Talmor Dafna
Talmor Dafna

Thayer Eric

2 Discussion

On Wednesday, February 16, one teams will briefly present their initial designs for
class critique and discussion. Volunteers for this presentation will be solicited during
the previous class period. Volunteers will be drawn from those groups that did not
present designs for assignment 1.

This presentation/discussion will not be graded. It is solely for the benefit of you
and your classmates.

Experience with a Course on Architectures for Software Systems 27-3

e
tecture.

In particular, the grade will be broken down as follows (100 points maximum):

• the program: 80 points, and

a question 1: 20 points.

5 Further questions
If you have any further questions, feel free to contact any of us via e-mail or during
our office hours. Clarifications (if any) will be posted to the class bulletin board.

Experience with a Course on Architectures for Software Systems 27-4

m

Architectures for Software Systems Spring 94 (Garlan & Shaw)

3 Due date and electronic hand-in
The assignment is due by 10:30am on Wednesday, February 23. You should e-mail
your solution to the Teaching Assistant by that time. Your solution should consist of

© the names of team members,

® the directory holding the solution.

Your directory should contain 4 text files (besides the c or csh files): "solu-
tionl","solution2", "solution3" and "solution4". Each one should a list of the files
you use for the solution, with an indication which file is changed or new. All your
changes should be well documented within the files.

In addition, there will be a written commentary (due at the beginning of class on
Wednesday, February 23) answering the following question:

1. How can the efficiency of the "no duplicates" implementation be changed by ^
using the sort and uniq filters at different points in the system? (The sorting
algorithm has 0(n log n) complexity).

The commentary should be your own work: i.e., individuals, not teams for com-
mentary.

4 Grading criteria
Your solutions and commentary will be graded by the following criteria:

9 Whether or not the resulting system performs as required. #

© Use of architectural style in the assignment.

Your understanding of the implications of changes made to the system archi-

•

*

1. How can the efficiency of the "no duplicates"
implementation be changed bv using the sort and uniq
filters at different points in the system? (The sorting
algorithm has Ofn log n) complexity).

Before discussing efficiency, we must review the requirements of the
implementation. These are that the program produce a KWIC index
of the login and user names of current users with no duplicates. Any
gain in efficiency that violates the requirements can not be
considered. The other thing to keep in mind is the precondition to
uniq that it operate on a sorted dataset. The combination of these
two considerations is that either uniq be the last element in the
pipeline, or we must guarantee that no filters after uniq produce
multiple entries and that we must guarantee sorted input to uniq.

The architecture that we chose is:

finger -f I cut -cl-31 I cshift I sort -f I upcase I uniq (1)

This solution was chosen because it satisfies the requirements and
efficiency is not a concern in our implementation.

Although there are many pipelines containing these filters that will
satisfy the requirements, we will consider only one other solution:

finger -f I cut -cl-31 I sort -f I uniq I cshift I sort -f I upcase I uniq (2)

Our argument for this selection is that if removing elements from the
dataset will improve efficiency, then we should move uniq as far as
we can toward the front of the pipeline. However, we want to
maximize the possibility of removing duplicate lines, so we cut
before the first call to uniq. If there is a big efficiency win in
changing the order of the filters it will come from removing duplicate
entries before the cshift. For this analysis consider whether or not it
will improve efficiency to remove duplicates before cshift. For large
datasets, we guess that the answers are yes if there are "lots" or
duplicates and no if there are "not many" duplicates. The problem
becomes defining "lots" and "not many" and verifying our
assumption.

Experience with a Course on Architectures for Software Systems 27-5

m

We now must define some variables. Let n be the number of lines
output from finger. Let w be the total number of words output from

finger -f I cut -cl-31

which is also the number of lines after the cshift filter and let m be
the average number of words per line, i.e.

w = n * m.

Finally let u be the number of unique lines. This is the number of
lines that would result from a first call to uniq. We assume that the
average number of words per line is the same whether or not
duplicates are included. We make one further assumption, if the
number of lines is large the total number of original lines and the
total number of unique original lines are both much greater than the
average number of words per line, 0

n»m
u»m.

Now consider the order of the computation time of the filters. We #
are told that the sort is 0(n log n). Because the dataset must be
sorted, we assume that uniq is O(n). We also assume that finger, cut
and upcase are O(n). cshift is 0(n*m) and it also changes the number
of lines for later elements in the pipe. When combining the
computation times of the filters we will treat them as if they are
sequential. For the first solution,

finger -f I cut -cl-31 I cshift I sort -f I upcase I uniq (3)

the computation time is

0(max(n, n, n*m, (n*m)log(n*m), n*m, n*m)) (4)
0((n*m)log(n*m)) (5)

0((n*m)log n + (n*m) log m) (6)
0(n*m log n) (7)

For the second solution,

finger -f I cut -cl-31 I sort -f I uniq I cshift I sort -f I upcase I uniq(8)

the computation time is

Experience with a Course on Architectures for Software Systems 27-6

•

<f

*

0(max(n, n, n(log n), n, m*u, (m*u)log(m*u), m*u, m*u)) (9)
0(max(n(log n), (m*u)log(m*u))) (10)

0(n log n) (11)
This last follows because n >= u and n » m.

It turns out that all that we are doing in either solution is altering
the constant associated with the order of the operation. This analysis
has not been much help in defining "lots" and "not many", so we
retreat to simpler logic. If u is approximately equal to n then
although the order of the operation hasn't changed we are spending
twice as much time sorting for no added benefit. If u « n then we
do one sort on n elements and then shift only u elements and operate
after the shift with u*m elements.

The final summary is that if n is large, the choice of the pipeline
architecture depends on whether we expect a large or small
percentage of duplicates. If n is small, the simplicity of having fewer
filters in the pipeline will outweigh any benefits of removing
duplicates earlier in the process.

Experience with a Course on Architectures for Software Systems 27-7

Software Architecture Spring 94 (Garlan k Shaw)

Assignment 3
KWIC Using an Implicit Invocation Architecture

Due: Monday, March 14.

1 Description of the Problem

This assignment, once again, is to implement an interactive version of the KWIC
index system (described in Parnas's On the Criteria To Be Used in Decomposing
Systems into Modules) in the implicit invocation paradigm. You will be provided
with a partial Ada implementation of the system and asked to identify and make the
necessary modifications.

The provided system, as in Assignment 1, is simply a line alphabetizes It inter-
actively inputs a line at a time and upon demand outputs an alphabetized list of the
current collection of lines. Unlike the first assignment this version also allows a delete
command. Here is a transcript of a sample session:

Add, Delete, Print, Quit:
a
> Star Wars
Add, Delete, Print, Quit:
a
> The Empire Strikes Back
Add, Delete, Print, Quit:
a
> Return of the Jedi
Add, Delete, Print, Quit:

P
Return of the Jedi
Star Wars
The Empire Strikes Back
Add, Delete, Print, Quit:
d
> Star Wars
Add, Delete, Print, Quit:

P
Return of the Jedi
The Empire Strikes Back

Experience with a Course on Architectures for Software Systems 28-1

Software Architecture Spring 94 (Garlan fc Shaw)

\
Your assignment is to modify the existing code to support the following changes:

1. Rather than simply outputting an alphabetic list of all the lines, the Print
command should output an alphabetic list of the circular shifts of all the lines.
However, shifts (including the nullary shift) which result in a line beginning with {

a trivial word—a, an, and, the and the capitalized versions of these words—
should be omitted.

2. On a Print command the system should also print a counter of the number of
original lines added by the system.

4

Here is a sample session of the new system:

Add, Delete, Print, Quit:
a i
> Star Wars
Add, Delete, Print, Quit:
a
> The Empire Strikes Back
Add, Delete, Print, Quit: $
a
> Return Of The Jedi
Add, Delete, Print, Quit:

P
— Number of Original Lines: 3— <
Back The Empire Strikes
Empire Strikes Back The
Jedi Return Of The
Of The Jedi Return
Return Of The Jedi I
Star Wars
Strikes Back The Empire
Wars Star
Add, Delete, Print, Quit:
d <
> Star Wars
Add, Delete, Print, Quit:

P
— Number of Original Lines: 2—
Back The Empire Strikes _

Experience with a Course on Architectures for Software Systems 28-2

Software Architecture Spring 94 (Garlari k Shaw)

Empire Strikes Back The
Jedi Return Of The
Of The Jedi Return
Return Of The Jedi
Strikes Back The Empire

2 The Current System
The current system is decomposed into the following modules:

• Words

• Lines

• Line_Collections

• Alphabet ized_L ist

• KWICLSession

In addition, the following additional modules will be used in the final system (they
have already been written for you):

• Shifter_l

• Shifter_2

• Trivial_Eater

There is also a file, called event-bindings.ada which contains the bindings from
events to methods. To complete your solution, you should modify this file
only, and add one new module.

You will also need to generate the event manager itself. This is automatically
generated from the event description language embedded in the Ada code and in
event-bindings. ada. To generate the event manager, type:

make_events *.ada

This will create two files: event .manager. ada and event-manager. adb. They
should be compiled into your system as well.

The format of the event description language is as follows:

Experience with a Course on Architectures for Software Systems 28-3

Software Architecture Spring 94 (Gaxlan fc Shaw)

9 AH lines in the event description language are preceeded by the —! symbol.
This symbol indicates to Ada that these lines are to be ignored, and to the
event description language processor (which is made primarily of awk scripts)
that these lines are to be processed. Note that event .bindings, ada contains
nothing other than lines in the event description language. g|

9 Each section of the event description language is bracketed by two lines that
indicate what package the enclosed declarations are associated with. These lines
are:

for <package_name>

end for <package_name>

where <package_name> represents the Ada package name of the associated pack-
age. All other declarations go between these two statements (where the ellipsis
is).

9 To create a new event in the system, include a declare statement of the form:

—! declare <event_name> <args>

where

— <event__ame> represents the name of the event, and

— <args> represents the data associated with that event (if any). Each ar-
gument is of the form:

<identifier> : <type>;

where

* <identif ier> is an Ada identifier for the datum, and

* <type> is the Ada type name of the type of the datum.

Experience with a Course on Architectures for Software Systems 28-4

e

Software Architecture Spring 94 (Garlan & Shaw)

All of the event declarations required for this system are included in the speci-
fications of the various packages provided. You should not have to add any on

your own.

• Bindings from an event to a method associated with that event can be found
in eventJbindings. ada. For each binding, the following format is used:

—! when < event _n.ame> => <method_name> <argnames>

where

— <event_name> represents the name of the event upon whose announcement
the method should be called.

— <method_name> represents the name of the procedure (within the package
specified by the for statement) which should be called when the event is
announced.

— <axgnaines> is a list of the identifiers of data associated with the event in a
declare statement which are to be passed to the procedures. You do not
have to pass every argument, nor do you need to pass them in the same
order they are defined. However, every name which appears in <argnames>
must have been part of the event declaration.

When a component wishes to announce an event, it calls Announce_Event, signal-
ing the name of the event and any parameters. (All calls to Announce_Event have
already been provided in the code. It will help you in your solution to know that this
particular implicit invocation system guarantees that whatever activity was caused
by the event announcement is complete when the Announce_Event procedure returns,
so that there are no pending events in the system once the call returns.

3 Discussion

On Monday March 7, a team will briefly present their initial designs for class critique
and discussion. Volunteers for this presentation will be solicited during the previous
class period. Note that each team will be responsible for one such presentation over
the course of the three assignments.

This presentation/discussion will not be graded. It is solely for the benefit of you

and your classmates.

Experience with a Course on Architectures for Software Systems 28-5

Software Architecture Spring 94 (Garlan fc Shaw)

4 Due Date and Electronic Hand-In
The assigment is due by 10:30am on Monday March 14. You should e-mail your
solution to the Teaching Assistant. Your solution should include:

® the names of your team members,

® a pointer to a directory containing a modified source of event-bindings, ada,
the added module, and a running system.

In addition, there will be a written commentary (due at the beginning of class on #
March 14) answering the following questions:

1. Are implicit systems easier or harder to modify than object-oriented architec-
tures? Why? Describe specific modifications (other than the one which you
performed) which would be easier in an implicit invocation system, and other ^
modifications which would be harder.

2. Could the system specified be implemented using a dataflow architecture? If
so, how? If not, why not?

3. Explain how your implementation differs from the one proposed in the paper by $
Garlan, Kaiser, and Notkin for handling trivial line removal. Would that have
been a better approach? If so, why? If not, why not?

4. The implicit invocation system provided by make_events assures that all events
which are caused by a single Announce_Event, whether directly or indirectly, ^
are all complete and all methods called before the Announce_Event call returns.
Identify any differences in your solution which would have been caused if the
system delivered the events in arbitrary order, and did not guarantee their
delivery prior to returning from an announcement.

5. Does your system handle line deletions properly? Defend.

The commentary should be your own work; i.e., individuals, not teams for com-
mentary.

i
5 Grading Criteria
Your solutions and commentary will be graded by the following criteria:

m Whether or not the resulting system performs as required.

Experience with a Course on Architectures for Software Systems 28-6

Software Architecture Spring 94 (Garlan & Shaw)

• Use of architectural style in the assignment.

• Your understanding of the kinds of changes easily supported by the architecture.

In particular, the grade will be broken down as follows (100 points maximum):

• the program: 40 points,

• questions 1-5: 12 points each.

6 Further Questions

If you have any further questions, feel free to contact any of us via e-mail or during
our office hours. Clarifications (if any) will be posted to the class mailing list.

Experience with a Course on Architectures for Software Systems 28-7

Project 3 - Comments

Francois Truchon

FIGURE 1. Our implementation

9

Kwic Session

Print.

Delete\Line

event
Denotes implicit
invocation

Shifter 2 lete_Shifted

&

%

1.0 Implicit systems vs* object-oriented architectures

The implicit invocation mechanism has the advantage that it allows someone to put a sys-
tem together by simply connecting the various components together much like a shell
script does in pipe and filter systems. Since the system can be modified by editing a single
file (the event bindings file), modifications are eased considerably. This is in comparison
to a typical object-oriented architecture where changing the calling structure in the system
usually entails making modifications to many modules. Object-oriented systems can
become difficult to modify because one has to look through the code to find the architec-
tural connections. With this implicit invocation system, you can simply look at the event
bindings.

One of the difficulties with implicit invocation is exemplified by the delete operation.
Here, we want to delete shifts only when we are certain that the line to be deleted had
already been added to the system. In effect, we want to impose a condition on delivery of
event Delete_Line. Although the solution to this particular problem was to simply create a

©

Experience with a Course on Architectures for Software Systems 28-8

chain of events, had we wanted to add multiple conditions this could have become very
difficult. This is a problem that a typical object-oriented could have dealt with fairly easily.

A modification that would be easily done in an implicit invocation system would be to
only add unique lines to the system (i.e. not allow duplicates). This could be accomplished
by binding event NewJLine to method Original_List.add_uniq() which generates event
New_List_X, itself bound to Shifter_l.generate_Shifts. The only file to be modified is the
event bindings file (assuming that the methods and events used are already implemented).

A modification that would be hard to implement using implicit invocation would be not to
allow the user to add lines that only contain trivial words. For instance, adding "The a the"
would be rejected or ignored. We could probably conceive of some sequence of events
involving a Shifter, a Trivial_Eater and OriginalJList but this would be fairly messy. In an
object-oriented system, this would likely be an easy change.

2.0 Dataflow architecture

I believe that a dataflow architecture would be completely inappropriate for this system
given its interactive nature. The purpose of the system is to allow a user to interactively
edit the kwic database and this does not lend itself well to a pipe and filter architecture or a
batch sequential architecture.

Of course if we really wanted to, we could devise batch operations to perform adds,
deletes and prints operating on two tapes: Original and Shifts. A possible dataflow imple-
mentation of add would be:

Add
shifts

lines
Append

K>

Merge Sort

Original
Shifts

The delete and print could be defined in a similar fashion.

3.0 Trivial line removal

In our implementation, a new line shift is first added to Alphabetized_List, then event Lin-
e_Added is generated which triggers Trivial_Eater to examine the shift. If the new shift

Experience with a Course on Architectures for Software Systems 28-9

Starts by a trivial word, it is deleted. The problem is that the trivial shift is inserted only to
be deleted immediately. This differs from the implementation proposed in the paper to
generate an event before the shift is inserted and abort the insert operation if the shift is
found to be trivial. So here we could generated event AddingJLine which would trigger
Trivial_Eater.

The problem resides in aborting the operation. We cannot simply return Abort (for
instance) to inform the Alphabetized_List that it must abort since the current event mech-
anism doesn't support return values. We could, on the other hand, use the Ada exception
handling mechanism to abort the insert operation. This would be a somewhat unorthodox
use of exceptions but would work as long as exceptions are declared and caught properly.
Another alternative would be to abort the operation by setting a flag in AlphabetizedJList
that indicates to the insert operation that it should abort. This last alternative, although not
very elegant would probably be the simplest.

Given that adding and deleting a line from the b-tree can be expensive, aborting the insert
operation would probably have been a better approach and not that difficult to implement.
It would be important to make sure that the abort mechanism (or better some form of event
return value) is implemented neatly and consistently so that the use of abort not be just a
hack for efficiency. Indeed, the reason for introducing implicit invocation in the first place
was to easy system maintenance, not to make it more difficult by introducing hacks for
efficiency.

4.0 Event Delivery

In the current implementation, adding and deleting the same line results in the following
cascade of events (notation is a mix of CSP and regular expressions):

NewJLine -> (New_Shifted_Line -> Line_Added -> Discard.Line0'1)*

Delete_Line -> GoJDeleteJLine -> Delete_Shifted_Line

If the order of delivery was not guaranteed anymore, we could end up with an invalid
interleaving of these sequences of event. For instance:

New_Line -> DeleteJLine -> Delete_Shifted_Line* -> (New_Shifted_Line -> Lin-
e_Added -> DiscardJ^ine0'1)

The problem here is that the system tries to delete the line shifts before they are even
added, the result being that the line shifts remain in the system.

To prevent this, we could implement a locking mechanism that serializes the critical oper-
ations. For this problem, coarse-grained locking on user events would likely be sufficient.
For instance, the Kwic_Session module could interact with an Ada task with entries for
each basic operation: add, delete and print. This task would not rendez-vous on any of the
operations until the previous one has completed.

Experience with a Course on Architectures for Software Systems 28-10

9

»

m

m

5.0 Line deletion

One of the problems posed by line deletion is in deleting only the shirts that were created
from the same line and not other shifts.

For instance, if the system contains only one original line:

the king is dead

and the user tries to delete:

dead the king is

the system must not delete the shift the originated from "the king is dead". We ensure that
this is the case by deleting the line from Original_List, which announces event
Go_Delete_Line only if the line was actually present in the list. In effect, we are using
OriginalJList to check that a line is valid.

Our system would not have worked properly had we bound event DeleteJList directly to
Shifter_2.

Also, a problem could occur if Original_List deleted all line duplicates while Alphabet-
ized_List only deleted one line. We would end up with shifts that could not be deleted. But
this is not the case.

Experience with a Course on Architectures for Software Systems 28-11

Architectures for Software Systems Spring 94 (Garlan fc Shaw)

Assignment 4
Formal Models: Event Systems

Due: April 6

1 Description of the Problem

This assignment is intended to help you develop some experience in manipulating a
formal model of a software architecture. In this case you will be using the formal
model of event systems presented in class. Following the pattern of specialization in
[GN91] you are to formally characterize as event systems the two architectural idioms
described below. You may wish to consult the references [Spi89a, Spi89b, PST91] for
additional help with the Z notation.

2 Blackboard Systems

Drawing on Nii's description [Nii86a, Nii86b] describe a blackboard system as a for-
mal specialization of EventSystem. You may find it helpful to make the following
simplifying assumptions:

• There are two kinds of components in a blackboard system: BBdata and ksources.

• The BBdata in the blackboard system are partitioned into a collection of layers.

• Each ksource is associated with a some set of these layers.

• Each ksource has a method UpdateBB, which allows it to update the blackboard
when it is invoked.

• When the data in a blackboard changes, for each layer that is changed the
system announces the ChangedLayer event to each of the knowledge sources
that are associated with that layer.

You need not say anything about the run time mechanisms involved in carrying
out the updates. In particular, you don't have to say how the knowledge sources
update the blackboard, or how new data is added to the blackboard.

Experience with a Course on Architectures for Software Systems 29-1

Architectures for Software Systems Spring 94 (Garlan & Shaw)

3 Spreadsheet Systems
Formally characterize a spreadsheet system as an event system. For the purposes of
this assignment you can consider a spreadsheet to be an N x M matrix. Some of
the entries in this matrix will have a VALUE. Some of the entries will also have an
associated EQUATION that describes the value of that entry as a function over other
entries in the spreadsheet. When spreadsheet entries are changed the equations that
depend on those entries are implicitly reevaluated. As with the blackboard, you need
not formalize the run time mechanism of a spreadsheet.

You might find the following definitions to be a useful starting point:

[VALUE, EQUATION]

Pos ==fHxiy

Params : EQUATION —> seqPos
Eval: (EQUATION x seq VALUE) -H- VALUE

We : EQUATION; vs : seq VALUE •
(e, vs) € dorn Eval <$ #vs = #(Params e)

In other words, we take VALUE and EQUATION to be primitive types, and a
matrix position, Pos to be a pair of natural numbers. We assume (axiomatically) that
we can determine for each equation what its parameters are and also how to evaluate
it for actual values. (The invariant guarantees that number of formal parameters
must match the number of actual parameters.)

With this as a basis you can then define a spreadsheet along the following lines:

! Spreadsheet
EventSystem
height, width : N
boxes : Pos >■+*• Component
eqns : Pos -+» EQUATION
vals : Pos -H- VALUE

The symbol >-H- indicates that each position is associated with a unique compo-
nent.

You may assume that each Component in a spreadsheet (associated with a box via
boxes) can update its value using the method Update whenever it gets the Reevaluate

Experience with a Course on Architectures for Software Systems 29-2

Architectures for Software Systems Spring 94 (Garlan fc Shaw)

event. Your task is to add any appropriate additional state and the state invariants.
In particular, the state invariant should explain how EM is determined by the other
parts of the spreadsheet.

4 What to Hand In

You should hand in:

• A description of the two formal models outlined above. Ideally this should be
formatted and checked using Fuzz, but it need not be. As with all Z documents,
the formalism should be accompanied by enough prose to explain what is going
on. You may work in groups to produce this document.

• As individuals you should also turn in commentary addressing the following
questions:

1. What important aspects of the modeled architectures are (intentionally)
left out of the model.

2. One might imagine that an interesting property of a blackboard system
would be whether the knowledge sources interfere with each other. For the
blackboard system, do you think it would be possible to model some notion
of "non-interference?" (You need not model it, but you should explain why
or why not you answered the question in the way you did.)

3. For the spreadsheet system, is the Circular property defined in the events
paper a relevant concept? Why or why not?

4. For both the blackboard and spreadsheet models, explain briefly which of
the other formal event models described in the paper is most similar.

We will make a copy of the Z description for the event system described in [GN91]
available to you.

5 Grading Criteria
Your solutions and commentary will be graded by the following criteria:

• Whether or not you are able to model the requested specializations.

• Your ability to understand and explain the formalisms in the accompanying
prose.

Experience with a Course on Architectures for Software Systems 29-3

Architectures for Software Systems Spring 94 (Garlan fc Shaw)

i
6 Further Questions

As usual, if you have any further questions, feel free to contact any of us via e-mail
or during our office hours. Clarifications (if any) will be posted to the class mailing

list. i

References
[GN91] David Garlan and David Notkin. Formalizing design spaces: Implicit invo-

cation mechanisms. In VDM'91: Formal Software Development Methods, i
pages 31^4. Springer-Verlag, LNCS 551, October 1991.

[Nii86a] H. Penny Nii. Blackboard systems part 1: The blackboard model of prob-
lem solving and the evolution of blackboard architectures. AI Magazine,
7(3):38-53, Summer 1986. |

[Nii86b] H. Penny Nii. Blackboard systems part 2: Blackboard application sys-
tems and a knowledge engineering perspective. AI Magazine, 7(4):82-107,
August 1986.

[PST91] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal %
Specification and Z. Prentice Hall, 1991.

[Spi89a] J. M. Spivey. The Z Notation: A Reference Manual, Prentice Hall, 1989.

[Spi89b] J. M. Spivey. An Introduction to Z and Formal Specification. Software
Engineering Journal, 1(4), January 1989.

Experience with a Course on Architectures for Software Systems 29-4

Architectures of Software Systems, 15-775
Assignment 4

Formal Models: Event Systems

Kent Sarff Hung-Ming Wang Rob Wojcik Rachad Youssef

June 11, 1994

1 Introduction

This is a /uzz-checked document, which can be found via the following path,

/gsZO/usrO/mwang/architectures/assm4fassm4.tex.

The second section establishes our basic event model, and was stolen from [GN91] without
any change. The third section describes our specialization of the basic model towards a
blackboard system. The fourth section describes our specialization of the model towards a
spreadsheet system. The final section was motivated by answering the write-up question 3.
We decided to model the anti-circular property explicitly to show our understanding.

In both exercises, the dynamic run-time model is intentionally left out. We only address
the static associations between events and methods in the EM relation. EM relation is just
like a bookkeeper. EM could be used by a run-time model to implement various invocation
policies. We do not, however, say how the system behaves.

2 The Basic Model

We begin by assuming there exist sets of events, methods, and component names, which,
for the time being, we will simply treat as primitive types.

[EVENT, METHOD, CNAME)

A component is modelled as an entity that has a name and an interface consisting of a
set of methods and a set of events.

,_ Component
name : CNAME
methods : P METHOD
events : P EVENT

Experience with a Course on Architectures for Software Systems 29-5

A particular event (or method) is identified by a pair consisting of the name of a com-
ponent and the event (or method) itself. In this way we can talk about the same event
or method appearing in different components. We use the type abbreviations Event and
Method to refer to these pairs (respectively).

Event == CNAME x EVENT
Method == CNAME x METHOD

For convenience we define the functions Events and Methods, which extract the set of
components and methods from a collection of components.

Events : P Component —> P Event
Methods : P Component —> P Method

Events cs = {c : es; e : EVENT \ e £ c.events • (c.name,e)}
Methods cs = {c : cs; m : METHOD | m € c.methods • (c.name, m)}

An event system, EventSystem, consists of a set of components and an event manager.
The event manager, EM, is a binary relation associating events and methods that should
be invoked when that event is announced. Thus, as we will see later, when an event e is
announced, all methods related to it by EM are invoked in the corresponding components.

. EventSystem
components : P Component
EM : Event -s—► Method

Vci,C2 : components » (ci.name = C2-name) <$ (ci = c-i)
dorn EM C Events components
ran EM C Methods components

The state invariant of EventSystem asserts that the components in the system have unique
names, and that the event manager contains only events and methods that actually exist
in the system.

3 Blackboard Systems

Each knowledge source has a method UpdateBB, which allows it to update the blackboard
when it is invoked. A ChangedLayer event can be announced to trigger knowledge sources.

UpdateBB : METHOD
ChangedLayer : EVENT

In our model, there are two kinds of components in a blackboard system, ksources is a
set of knowledge sources, each of which is a component. BBdata is the blackboard structure.

Experience with a Course on Architectures for Software Systems 29-6

In a pure blackboard model, there is only one blackboard structure. We assume, however,
that the blackboard structure is further partitioned into a collection of layers, each of which
is a component. A knoweldge source can show its interest in a particular layer by registering
to layer-mapping. layer-mapping is a function which relates each layer in BBdata to a set
of knowledge sources which are interested in that layer.

, Blackboard.
EventSystem
ksources : P Component
BBdata : P Component
layer-mapping : Component -t-> P Component

BBdata U ksources = components
BBdata D ksources = 0
dorn layer-mapping = BBdata
V ks-assoc-w-layer : ran layer-mapping * ks-assoc-W-layer C ksources
Vk : ksources • UpdateBB € k.methods
V7 : BBdata • ChangedLayer 6 I.events
EM = { / : BBdata; k : ksources

| / £ dorn layer-mapping A k € layer-mapping (I)
• ((l.name, ChangedLayer),(k.name, UpdateBB))}

The first two predicates indicate that BBdata and ksources are a partition of all compo-
nents in the system. The third predicate says that the mapping exists for each layer of the
blackboard. The fourth predicate says that the mapping maps a layer to only knowledge
sources. The next two predicates indicate that each knowledge source has an UpdateBB
method and each layer should be associated with a ChangedLayer event.

With the above definition, the EM relation can be precisely determined. EM simply
pairs a ChangedLayer event of a layer to the UpdateBB methods of those knowledge sources
which already show their interests in that layer in the mapping, lay er-mapping.

4 Spreadsheet Systems

In a spreadsheet system, each cell has a value of type VALUE, or an equation of type
EQUATION. Each cell is identified by its position, of type Pos.

[VALUE, EQUATION]
Pos ==HxN

We assume axiomatically that we can determine for each equation what its parameters
are as a sequence of positions.

I Params : EQ UA TION —> seq Pos

Experience with a Course on Architectures for Software Systems 29-7

Each cell can update its value using the Update method whenever it gets the Reevaluate

event.

Update : METHOD
Reevaluate : EVENT

The spreadsheet is comprised of a height x width matrix of cells. Each cell is modelled
as a component, boxes can be used to identify a cell by giving it a position, eqns is a partial
function relating a position to an equation. Similarly, vals is a partial function relating a

position to a value.

. Spreadsheet
EventSystem
height, width : N
boxes : Pos >-+■> Component
eqns : Pos -H- EQUATION
vals: POS-H> VALUE

components = ran boxes
#boxes = height * width
dorn eqns U dorn vals = dorn boxes
dorn eqns n dorn vals = 0
Vc : ran boxes » Update € c.methods A Reevaluate 6 c.events
V Ci, C2 : components

© ((ci.raame, Reevaluate), (c2.name, Update)) e EM
<S> (3pi : dorn forces; p2 : dorn egns | boxes pi = ca A boxes p2 = c2

« Pi e ran (-Params(e(?nsp2)))
®

The first predicate indicates that 6oa:e5 records all cells in the spreadsheet as components.
The second predicate indicates that the boxes records all height x width cells in the system.
The next two predicates indicate that each cell has either a value or an equation but not
both. The next predicate indicates that each cell has an Update method and is associated
with a Reevaluate event. (Note that, instead of saying each "equation" cell has an Update i
method, we say each cell has an Update method because the Update method could possibly
be used for explicit invocation to a "value" cell. For example, when a user enters a value to
a cell, it would be necessary to invoke the Update method of that cell to update its value.)

With the above definition, the EM relation can be precisely determined. When a cell
is reevaluated, all cells having an equation which needs a parameter of that cell should be ^
updated. EM simply pairs a Reevaluate event of a cell to the Update methods of those cells
which has an equation, and the parameter list of the equation includes that reevaluated

cell.

Experience with a Course on Architectures for Software Systems 29-8

5 Spreadsheet Without Circularity

We do this additional exercise to show we understand the Circular property. This is very-
straightforward. We add a relation, dependents, which records all associations between an
equation cell and all its parameter cells.

. Spreadsheet WithoutCircularity __
Spreadsheet
dependents : Pos <-+ Pos

dependents = { p : dom eqns; q : dom boxes
| q € ran(Params(eqnsp)) • p i-> q}

V p : dom boxes • (p >-> p) ^ dependents'^

In order to guard against circular reference, we just add one more state invariant. The
last predicate says that a cell cannot be in the transitive closure of dependents. This ensures
that a cell cannot eventually make a reference to itself.

Experience with a Course on Architectures for Software Systems 29-9

Architectures of Software Systems, 15-775
Assignment #4: Formal Models: Event Systems
Hung-Ming Wang (Matt)
March 23,1994

1. What important aspects of the modeled architectures are intentionally left out of the
model.

(1) In both exercises, the dynamic run-time model is intentionally left out. We only
address the static associations between events/methods in the EM relation. We do not
say how it behaves. We do not say who will announce an event and how the system
choose an event and then invoke the methods associated with it. liiere are many possible
decisions which can be made for this run-time model: such as the order in which the
methods are invoked, whether methods can be invoked concurrently, whether methods
can change the set of components in the system, how new events are announced as a side
effect of method invocation, etc.

(2) In the blackboard exercise, dataflows are not modelled. We only say that knowledge
sources can respond to data changes in the blackboard structure which they are interested
in. How they actually get the data is left out. In addition, the individual data items within
one layer are not modelled.

(3) In the spreadsheet exercise, how the evaluation of equations is performed is left out.
We only address the related cells necessary to participate in the evaluation. But the
evaluation process can be done in various ways. In addition, probably some mechanism
is needed to guard against circular evaluation (more information in question 3).

2. One might imagine that an interesting property of a blackboard system would be
whether the knowledge sources interfere with each other. For the blackboard system,
do you think it would be possible to model some notion of "non-interference?"

It is likely that various knowledge sources will interfere with each other. For example,
suppose there are 5 knowledge sources interested in a particular layer in the blackboard.
When data in that layer is changed, all 5 knowledge sources will be triggered by the
ChangedLayer event. The problems happen, however, when the 5 knowledge sources want
to access the data in that layer simultaneously. It may have exclusive data access
problems like those often discussed for operating systems.

As mentioned in question 1. We can devise a run-time model to solve this problem.
Alternatively, we can augment our current model by imposing an order on the sequence
of invocations to knowledge sources. One possible way to model it is,

Instead of defining layerjnapping: Component -> P Component,
we may define layer■ jnapping: Component —» seq Component.

This will impose an order. Then we need to model a control component to address the

Experience with a Course on Architectures for Software Systems 29-10

m

invocation policy about selecting one knowledge source for execution one at a time. This
essentially prioritizes the execution of knowledge sources.

Another way to model this is to add some mechanism to control the access of each layer
in the blackboard. Only one knowledge source can access the data at any time. This model
separates the concern of data access from the implicit invocation of an event system. I
prefer modelling in this way.

3. For the spreadsheet system, is the Circular property defined in the events paper a
relevant concept? Why or why not?

Actually this is a very critical property. Our spreadsheet model, however, is very simple
and is not circularity-free. It is likely that a chain of implicit invocations that starts at one
cell and returns to that cell. This causes a recursive evaluation and will never terminate.
In the simplest case, it allows an equation of a cell to refer to itself. For example, a circular
reference occurs when a cell of E7 has an equation which needs a parameter of cell E7
itself. In a more complicated case, an equation will possible refer to another cell which in
turn refers back to the original cell. This will also result in a circular reference. In essence,
an anti-transitive closure property of references should hold in order to assure that there
are no circularities. Our model does not handle this danger but can be modified to remove
this situation. We can define a relation, say, dependents, to record all evaluation
dependencies between pairs of cells, and does not allow a cell to have an evaluation
dependency on itself (some constraint like (c, c) £ dependents', we have also modelled this
as an additional exercise in our document).

4. For both the blackboard and spreadsheet models, explain briefly which of the other
formal event models described in the paper is most similar.

Gandalf is very similar to our blackboard model. Gandalf has two kinds of components:
abstract syntax trees (ASTs) and daemons. The user creates a program by incrementally
building an abstract syntax tree. As nodes are added to the tree, daemons associated with
those nodes are activated to do type checking, provide incremental code generation, etc.
Thus ASTs correspond to the layers, and daemons correspond to the knowledge sources.
Only nodes in an AST can announce events (only layers can announce events). Daemons
handle events from AST nodes (knowledge sources handle events from layers). This
analogy is very strong. However, the number of daemons associated with each node is
limited in Gandalf but not limited in our blackboard model.

ST80 is similar to our spreadsheet model. In ST80, the update method corresponds to our
Update method in spreadsheet. The change event corresponds to our Reevaluate event in
spreadsheet. The dependents relation in ST80 is similar to our Params function in
spreadsheet. The component dependency in ST80 is just like the evaluation dependency
of parameters of cells in spreadsheet. EM relation records each of these dependency
relationships in both models. So we make this conclusion.

Experience with a Course on Architectures for Software Systems 29-11

CMU MSE 15-775 Architectures for Software Systems Spring 1994

Course Project

Garlan & Shaw February 21,1994

Project Information

The course project will give you an opportunity to examine and describe the architecture of a
real system, the Lunar Rover Demonstration System (LRDS). LRDS is one of the development
tasks of the Autonomous Planetary Exploration (APEX) project of the Robotics Institute. The
Rover System is being built by the CMU Robotics Institute with the software development
assistance of students in the Masters of Software Engineering program.

The Rover System will autonomously explore remote environments (e.g., the Moon). The Rover
System will be used for tasks including mapping of an environment, analysis of rocks or soil
specimens and imagery provided for entertainment purposes.

The project will focus on two aspects of the of the Rover System:

1. LRDS: This is the overall system to control the Rover and integrate the various functions
that it will perform.

2. The Navigation System: This is the subsystem of the LRDS that supports the mission of
the Rover in three major operational modes:

a. supervised teleoperation: a user directs the motion of the Rover through the system's
user interface.

b. autonomous motion: a user provides a mission to be accomplished, and the Navigation
System is responsible for planning the motion of the Rover.

c. teleoperation: an special operator directs the motion of the Rover; it differs from
supervised teleoperation in that the operator might have to override some of the safety
constraints that would otherwise be active in supervised teleoperation mode.

Group teams have been arranged so that relevant domain expertise of the MSE students in the
class are spread evenly among the teams. MSE team members have access to the detailed
specifications and design documentation for the LRDS and Navigation System.

The Assignment

Your course project will focus upon the following:

Architectural proposals

1. Examine the software requirement specifications for the Rover System. Based on
what you now know about architectural level design, propose two or more software
architectural designs for the Rover System to meet its requirements. Discuss the
significant features of those proposed architectures and explain how they to address
the system requirements. In your discussion pay special attention to the tradeoffs in
design that are made in a given architecture: for example, some architectural features
may support certain requirements at the expense of others.

2. As above for the Navigation System.

Experience with a Course on Architectures for Software Systems 30-1

Critique/Analysis

1. How do your architectural designs for the Navigation System fit into the overall
architectural design of the LRDS?

2. For both the LRDS and the Navigation System, think of three new requirements not
included in the current specification, but which might be incorporated in a future
version of the system. Analyze which of the new requirements can be easily
accommodated by the architectural designs. Be specific: for example, what components
and connectors would be impacted by the new requirements? 4

3. In view of the above analysis, which (if either) of your architectures is better
regarding their ability to handle the anticipated changes?

Project Guidelines

Teams:

As noted above, the teams are made up of people with familiarity with the studio
project, and people without previous knowledge of the project. The project is a team
effort with no individual write-ups so it is in your interest to find a way to cooperate
with your team members and enable everyone to contribute. As we see it, the people
familiar with the project can help the team to understand the project, while people who |
see the project for the first time are in a better position to be able to suggest new
architectures, and criticize the existing ones. However, we expect you to find your own
way to use skills of project members wisely and organize responsibilities fairly.

Architecture Vocabulary and General Hints:

You should use the vocabulary of the course to characterize the architectures when ^
appropriate. However, you do not need to consider architectural styles that are clearly
irrelevant, nor do you need to force your characterizations to conform to any of the ~pure"
architectural styles introduced in the course.

Tasks, Dates, and Grading Policy

Preliminary presentation:

To help you make progress and to give you early feedback we would like your team to
develop a 15-minute presentation of your preliminary results. The dates for these
presentations are April 4 and 6. Two groups will present in each class. This need not be a
polished analysis, but it should contain enough substance for us to comment on whether
you seem to be on the right track. Be sure to leave time for questions on your presentation. #
This analysis and presentation will not be graded and will not affect your final grade on
the project.

Final write-up:

The final write-up is due at the beginning of class, April 25. The total number of pages
for this write-up should be on the order of 20 pages, but should not exceed 25 pages. ®

Final presentation:

During the classes of April 25 and 27 each group will present its results in a half-hour
presentation.

Grading: Your final grade will be based on the final writeup and the final presentation.

Experience with a Course on Architectures for Software Systems 30-2
&

Architectures for the Lunar Rover Demonstrator and
Navigation Systems

Kent Sarff
Hung-Ming Wang

Rob Wojcik
Rachad Youssef

Final Project
Architectures for Software Systems

April 22, 1994

Abstract: This document describes two candidate software architectures for
the Lunar Rover Demonstrator System, two candidate architectures for the
Navigation subsystem, decision criteria for selecting a combination of the
archtiectures, and the impacts of a number of proposed requirements changes.

Experience with a Course on Architectures for Software Systems 30-3

Experience with a Course on Architectures for Software Systems 30-4

Table of Contents

1 Introduction 1

1.1 Document Overview 1
1.2 Summary of Recommendations 2
1.3 Notes 2

2 Candidate Architectures 3
2.1 Rover System 1 - Repository Architecture 3

2.1.1 Introduction 3
2.1.2 Components 5
2.1.3 Connectors 7

2.1.4 Operational Scenario 8
2.2 Rover System 2 - Event-Based Architecture 9

2.2.1 Introduction 9

2.2.2 Components 12
2.2.3 Connectors 16

2.2.4 Operational Scenario 16
2.3 Navigation Subsystem 1 - Layered Architecture 19

2.3.1 Introduction 19
2.3.2 Components 21
2.3.3 Connectors 22
2.3.4 Operational Scenario 22

2.4 Navigation Subsystem 2 - Blackboard Architecture 23
2.4.1 Introduction - 23
2.4.2 Components • 26
2.4.3 Connectors 29
2.4.4 Operational Scenario • 30

3 Design Rules, Choices, and Justifications..... 33
3.1 Design Rules 33

3.1.1 Design Rules for Rover System 33
3.1.2 Design Rules for Navigation System 35

3.2 Design Choices 37
3.2.1 Design Choice for Rover System 37
3.2.2 Design Choice for Navigation System 37

3.3 Integrating Navigation Subsystem with Rover System -38
4 Adaptation for New Requirements 39

4.1 New Requirements for the Rover System 39
4.2 New Requirements for the Navigation Subsystem 40

5 References.. - • 43

Experience with a Course on Architectures for Software Systems 30-5

®

Experience with a Course on Architectures for Software Systems 30-6

List of Figures

Rover System Repository Architecture 4
Rover System Event-Based Architecture 11
Navigation Subsystem Layered Architecture 20
Navigation Subsystem Blackboard Architecture 25

Experience with a Course on Architectures for Software Systems 30-7

Experience with a Course on Architectures for Software Systems 30-8

List of Tables

Design Rules for Rover System 33
Design Rules for Navigation Subsystem 35
Prioritizing Design Considerations for Rover System 37
Prioritizing Design Considerations for Navigation Subsystem 37

Experience with a Course on Architectures for Software Systems 30-9

Experience with a Course on Architectures for Software Systems 30-10

1 Introduction

This document proposes and evaluates software architectures for the Lunar Rover Demon-
strator System. In particular, software architectures are presented for the main rover system
and the navigation subsystem. All architectures are based on the requirements described in
the Rover System Specification [CMU/MSE-TALUS-ROVER-SS, Version 1.0] and the Naviga-
tion Software Requirements Specification [CMU/MSE-TALUS-NAV-SRS, Version 2.0].

1.1 Document Overview
Section 1 provides a document overview, a summary of which architectures we recommend,
and our assumptions regarding the main rover system and the navigation subsystem.

Section 2 provides a detailed description of the architectures proposed for the main rover sys-
tem and the navigation subsystem. In all, four architectures are presented; two are for the main
rover system: a repository-based architecture and an event-based architecture; two are for the
navigation subsystem: a layered architecture and a blackboard architecture. Each candidate
architecture is presented in its own section as follows:

• Introduction:

provides an textual overview and a diagram for the candidate architecture

• Components:

provides a detailed description of each component in an architecture

• Connectors:

provides a description of how components interact with each other and
external processes

• Operational Scenario:

provides a description of typical situations the system would be expected to
support and how the architecture is constructed to handle them

Section 3 describes the criteria used to choose between the candidate architectures. In par-
ticular, a design space and design rules are presented which provide a mapping between de-
sired system characteristics and features of the candidate architectures. In addition, we
present justifications why one architecture is better than another for handling individual system
requirements. Also the characteristics we felt most important to the main rover system and
navigation subsystem are presented along with our final choice of architectures. Finally, this
section describes how both rover architectures can be combined with the navigation architec-

tures.

Section 4 describes a few possible requirements changes for the main rover system and the
navigation subsystem and how the proposed architectures would support those changes;
three potential changes are described for the main rover system along with descriptions of how

Experience with a Course on Architectures for Software Systems 30-11

those changes would be supported by the event-based architecture and the repository archi-
tecture; four potential changes are described for the navigation subsystem and how those
changes would be supported by the layered architecture and blackboard architecture.

1.2 Summary of Recommendations

This subsection provides an executive overview of our recommendations and conclusions.
Based upon our evaluation of the four architectures presented in this document (please see
section 3 for detailed justifications), we make the following recommendations:

1. An event-based architecture should be used for the main rover system. This
decision was based on the following criteria:

• due to the nature of a robotic application, the architecture must support
asynchronous processing.

• because functional and operational requirements are likely to change
over time, the architecture must support system evolution including
adding new components and reconfiguring existing components.

• the main rover system will be implemented in a distributed processing
environment which may allow multiple processes and CPUs.

2. A blackboard architecture should be used for the navigation subsystem. This
decision was based on the following criteria:

• the planning components will require heuristic knowledge and reasoning
as opposed to precise algorithms and deterministic scheduling to perform
planning tasks.

• because the processing requirements for planning, communication, and
perception are likely to change as the system evolves, the architecture
must support adding new processing approaches.

• because information about the problem domain is incomplete and
necessarily acquired incrementally, the system should support
incremental development and refinement.

1 „3 Notes

1. We assume the Navigation subsystem provides only planning and percep-
tion. The Navigation system may be tasked to obtain detailed maps of terrain
within its sensor range. The Navigation system does not provide reflexive be-
havior. The Navigation system "owns" the black & white camera interface.

2. Different levels of detail are presented for the two rover architectures and for
the two navigation architectures. This was done intentionally as the decision
to choose specific architectures became clear. It become important to
describe our chosen architectures at a finer level of detail.

Experience with a Course on Architectures for Software Systems 30-12
®

2 Candidate Architectures

2.1 Rover System 1 - Repository Architecture

2.1.1 Introduction

Our first architectural proposal of the rover system is originated from a repository view. This
view emphasizes a coherent state of the system. The motivation of this proposal is simple: the
rover can be imagined as a human person, and internally there must be an overall system
state at any time. By grouping all state information together, we can easily ensure that the sys-
tem state is consistent. The architecture is depicted in Figure 2.1.

All information about the current state of the rover is kept in a common repository, for example,
the current pose, the maximum allowable speed, the terrain map database, the tilts, the power
conditions, the various motion commands, etc. The information is centrally kept and likely will
be modified and retrieved by many components.

Each component can be considered a domain expert, which is responsible for performing dif-
ferent tasks. Each component has its special knowledge to handle specific jobs. Each compo-
nent also has its own secrets with respect to implementation. Please see the next subsection
for more explanation.

Each component communicates with each other through the common repository. They do not
communicate directly. Each component may be interested in several data items stored in the
common repository. Each component can make contribution to the overall rover system. For
example, Map Manager can improve the resolution of the environment "seen" by the rover, Re-
flexive Behavior can prevent the rover from getting into catastrophic situations, Navigation
system can suggest the most valuable path to traverse, etc. Each component makes its con-
tribution by retrieving data in the central repository, applying its knowledge to process the data,
and modifying data in the central repository.

In short, all components in the system (except for User Interface) cooperate with each other
implicitly through the common state information, and use the central repository as the media
for communication and coordination purposes.

Please note that we named this architecture as a repository, not a blackboard. A blackboard
architecture is a specialized form of a repository. We adopted this more general view because:

1. We don't need to perform opportunistic reasoning at this level. Actually it is
dangerous to perform opportunistic reasoning in the event of an emergency;
we want to say "stop" immediately.

2. The data in the repository are not organized in any hierarchical way.
3. Each component is not triggered by data updates as in a blackboard. Each

component has its own thread and operates in parallel. Each component is
an active agent.

Experience with a Course on Architectures for Software Systems 30-13

Figure 2-1 Rover System Repository Architecture

Repository Architecture
Internal State

Current Pose

Motion Cmd.

Map Database

Current Speed

Max Speed

Goal, Pattern

Power Cond.

Tilts

Temperature

Mode Ctrl Info.

Experts

Image Transformations'
Evaluation Functions

Navigation ; Stereo Data

Purging Criteria, Merging

Map Manager

Safety Constraints

Reflexive Behavior
(on earth)

Experiments

Dead Reckoning, etc,

Position Estimation

Hardware Drivers yi
-Real-Time'Controller-

/

Wheel Motors

Camera Motors

Inclinometers

Thermometer

Proximity
Sensors

"Coordinator
communication
data access
access request
access control

Experience with a Course on Architectures for Software Systems 30-14

2.1.2 Components

This subsection includes a general description of each component depicted in the above dia-
gram. Note that this is only a general description, and a complete list of design specifications
should be obtained after further analysis.

1. Central Repository:

• It keeps all information about the current state of the rover. The information
is shared by the various components in the system.

• The data items depicted in the diagram are not a complete list.

• It can be considered a cluster of memory, which does not know the identity
of the components in the system and is passive in nature.

• Secret: To ease the changes of various data representations, we can use the
abstract data types to maintain each class of data.

2. Navigation:

• Navigation system provides the Perception and Planning which keeps the
rover in motion and avoids safety hazards such as obstacles.

• Knowledge: Perception produces detailed elevation maps via a series of
image transformations.

• Knowledge: Planning evaluates paths by a collection of evaluation functions.

• Secret: It needs to access the sensor data, goal, maximum allowable
velocity, current pose, terrain data maps, etc.

• Secret: More elaboration can be found in other subsections which particularly
address the Navigation system architectures.

3. Map Manager:

• Map Manager provides a set of terrain maps which may be used in the
planning tasks by the Navigation system or to satisfy the requests from users.

• Knowledge: It knows how to merge multiple maps into a composite one.

• Secret: It handles both local elevation maps and global DTE maps. Global
DTE maps are not changed throughout the rover's mission. We can use
"layering" techniques.

• Secret: Based on some purging criteria, it will purge the map database if
memory is full. To apply the purging criteria, it may need to access the current
pose, the goal, the "odometer" reading, etc.

4. Reflexive Behavior:

• Reflexive Behavior continually checks for exceptional situations and
responds to these situations.

• Knowledge: It knows the safety constraints of the rover.

• Secret: It monitors the power conditions, tilts, temperatures, failures of the
other components, etc.

Experience with a Course < n Architectures for Software Systems 30-15

• Secret: It can have different strategies to handle different exceptions.
Currently it simply says "stop" to the Real-Time Controller (via Central
Repository) and raise warnings to the user (via Central Repository and
Mission Manager).

5. Mission Manager:

• Mission Manager is the only component connected to the ground system on
Earth, where User Interface is physically allocated.

• Mission Manager receives commands issued from User Interface and
responds to requests as needed, such as start/stop experiments, turn on/off
color camera, etc.

• Mission Manager may transfer archived data back to the ground station.

<» Secret: It controls the modes of movements. One critical command is to
change the rover's operational mode (i.e., Autonomous, Teleoperation,
Supervised-Teleoperation). Mission Manager responds by modifying the
"Mode Control Information" stored in the Central Repository. Other
components can consult this information in deciding appropriate behavior
while performing their tasks. This information can also be used to coordinate
components (please see the description about Coordinator).

6. User Interface:

• User Interface provides access for users to control the rover and obtain
status.

• User Interface is the only component which has no access to the Central
Repository because it is physically located in the ground station on Earth.

• Knowledge: It owns the drivers of screens, various pointing devices, etc.

• Secret: Hardware related details are hidden.

7. Experiments:

• This is a reserved ceil that could run "self-contained" experiments.
Presumably an experiment would be commissioned by a scientist.

• Knowledge: It has domain related knowledge as how to conduct an
experiment.

• Secret: The experiments have little interaction with the Rover system itself,
but we need to control the start/stop of the experiments, control parameters
of the experiments, view experiment data, etc.

8. Position Estimation:

• Position Estimation provides the current pose of the rover.

• Knowledge: It owns the knowledge about the rover's kinematic model.

• Secret: We can use the Dead Reckoning algorithm to calculate the current
pose of the rover.

9. Real-Time Controller:

• Real-Time Controller provides sensor and motor controls which interface
directly with the hardware.

Experience with a Course on Architectures for Software Systems 30-16

®

• Knowledge: It owns drivers for each device.

• Secret: It hides all hardware related details,

mothers:

• Other expert components may be identified as needed.

11 .Coordinator:

• Coordinator orchestrates the overall execution of the system. Please see the
following subsections for a more complete description.

• It provides access controls among various components.

• Secret: It coordinates components based on the "Mode Control Information"
stored in the Central Repository. Since the "Mode Control Information" can
be dynamically changed by Mission Manager, the resultant coordination can
also be dynamically reconfigured.

• Secret: It serves as a lock manager. If there are multiple parties which
contend to read or write data in the Central Repository, it may or may not
allow simultaneous data reading, but only allow exclusive data writing.

• Secret: It serves as a prioritizer. When there are multiple pending
components waiting for accessing the data, it may decide an access order by
prioritizing them according to their relative importance based on the mode. A
simple example is given in the Operational Scenario subsection.

• Secret: If one component takes a long time to access data (perhaps because
of death or bulk data), or if a very critical component needs to access data
(e.g., Reflexive Behavior), Coordinator may need to provide a kind of pre-
emption mechanism.

2.1.3 Connectors

In this architecture, there are three kinds of connectors:

1. Data Access:

The connectors between each expert component and Central Repository
denote data access. One direction denotes data retrieval; the other denotes
data modification. (If Central Repository is implemented as abstract data
types, these connectors could be common procedure/method invocations or
remote procedure calls.)

2. Input/Output Communication:

Several components communicate directly with outside world. Navigation
system has stereo data as input from black/white cameras; these stereo data
have high bandwidth. Mission Manager receives user commands from and
produces responses to User Interface; these data may also have high
bandwidth. Real-Time Controller commands actuators and samples sensors;
these interactions involve different hardware devices.

Experience with a Course en Architectures for Software Systems 30-17

3. Access Request/Access Grant:

These connectors are between each expert component and Coordinator.
Each expert component must gain access permission before it can actually
access the repository data. It relays its access request to Coordinator.
Coordinator will grant the access request if the request is permitted. Once
receiving the access grant, the individual component can read and/or write
the data in the repository.

2.1.4 Operational Scenario

When in operation, all expert components execute concurrently and actively. For example,
Navigation system continuously extracts the goals from the repository, consults elevation
maps from Map Database or its own Perception subcomponent, creates waypoints to
achieves the goals, and posts motion commands back to the repository. Real-Time Controller
continuously extracts motion commands for actuating motors, and posts sensor samples to
the repository. Reflexive Behavior continuously examines repository, and posts exception
handling command (so far only "stop") to the repository. Mission Manager continuously re-
ceives user commands, and changes "Mode Control Information" if necessary. Position Esti-
mation continuously reckons the rover's current pose and posts it back to repository for use

by everyone.

In this architectural design, Coordinator plays an important part of the system. It provides ac-
cess controls among various components; otherwise simultaneous access to Central Repos-
itory may result in chaos. It coordinates components based on the "Mode Control Information"
stored in the Central Repository. It serves as a lock manager to prevent simultaneous data
modifications. It serves as a prioritizerto decide an access order when there are multiple pend-
ing requesting agents. It also provides a preemption mechanism.

We can imagine that the design of Coordinator is a big challenge. Some coordination rules can

be easily identified:

1. Reflexive Behavior mostly takes the highest priority to access repository data.

2. When in Teleoperation mode, requests from Reflexive Behavior can be
delayed (because we better trust the operator than a naive user). In other #
cases, Reflexive Behavior always preempts others.

3. When in Teleoperation mode, requests for accessing the goal from
Navigation can be ignored (because Planning does not need to function in
this mode).

However, rules for more sophisticated conditions (such as at least how often the current pose
needs to be updated, the relative importance between Real-Time Controller and Map Manag-

er, etc.) need further extensive analysis.

*

Experience with a Course on Architectures for Software Systems 30-18

2.2 Rover System 2 - Event-Based Architecture

2.2.1 Introduction
Our second architectural proposal of the rover system is based on an implicit-invocation event
system. This view of the system emphasizes encapsulation of domain knowledge into a num-
ber of event-driven experts. An event manager determines how events are bound to implicitly-
invoked routines provided by each of the experts. The architectural style of the system is de-
picted in Figure 2.2. Experts exist in the system as components and the primary connection
mechanism between experts is event delivery.

An event-based architecture is justified by previous robotics work. Simmons [1] describes
event-driven robots that emphasize reaction and do little planning. On the other end of the
spectrum are deliberative robots which emphasize planning at the expense of reacting to
changes in the surrounding environment. Hybrid systems also described by Simmons have an
event-based architectural style where reactive behavior is combined with deliberative planning
components.

The rover's physical construction also supports the notion of a distributed event system. Indi-
vidual hardware components and subsystems abstract away the details of hardware interfac-
es, electronic signalling, interpretation of video data, and the like. In such a system, it makes
sense to have deliberative components in an architecture which, by the style of its design, re-
sponds in a preemptive fashion to important asynchronous events like changes in the outside
world. The choice of an event-system can be based solely on this criterion. Safety is para-
mount; it is far more important for the system to react to dangerous situations.

An event-based system is further justified because it offers a high degree of configuration flex-
ibility. Because the system must support many different mission styles (teleoperation, super-
vised teleoperation, autonomous, patterned), it is desirable to utilize a system architecture
which supports reconfiguration without recompilation. The system's mission manager compo-
nent can configure the event manager's event bindings differently for each mission type.

The mission manager also starts, stops, and configures the system's other components (set-
ting thresholds, parameters, etc.) for each mission type. For example, the navigation compo-
nent need not operate during teleoperation mode or supervised teleoperation mode, and the
teleoperation component need not operate during an autonomous mission. This flexibility may
have side effects like increased performance for "lightweight" missions like teleoperation.

The state of the system is distributed among the domain experts. Each domain expert is spe-
cialized at performing a specific task. Most domain experts are responsible for controlling one
or many hardware item(s). Each domain expert keeps some information hidden (or secret) and
shares other information with other components by generating events.

Experience with a Course on Architectures for Software Systems 30-19

The system's components communicate with each other through events. Events usually con-
tain attached data, but there may be events which do not communicate data. Likewise, there
are different flavors of communication: actual data, references to data in shared memory or i
video memory, etc.

Because event-based systems are asynchronous by definition, the ordering of event delivery
and the subsequent implicit invocation are not guaranteed. There are cases where sequential
event sequences are required. To support this, the system must be implemented with trans- ®
action mechanisms (transaction identifiers, locking, etc.) that provide transaction-like ACID
properties so that sequentiality can be implemented where needed. The mission manager pro-
vides these services to the rover's other components.

The architecture described in this section explicitly excludes the user interface. While the user i

interface is an important component of the system, the overall system's interesting architec-
tural issues regard the design of the system's remote components.

®

m

Experience with a Course en Architectures for Software Systems 30-20
$

Figure 2-2 Rover System Event-Based Architecture

&

Tele-
operation

Reflexive
Behavior

Terrain
Data
Manager

X
Terrain DB

Mission
Manager

Position Estimatio

^
Wheel Counters,
Inclinometers,
Etc.

proximity
sensing'

I
Proximity
Sensors

„, Video
**■ Interface

^Ä~

Navigation

lace

-i^C_

Color
Camera

BAN
Cameras

\ Pan/Tilt

Motion Base

>

Actuators

Connector Legend

-^ £>- Event/Data Stream

-< Misc. External Data

4 &■ Actuator Commands

4" ■■ ■'■ Video Data

—&»-C~~^> Actuator Enable/Disable

Component Legend

Software Component
Navigation

B/W
Cameras Hardware Component

Mission-Essential Component

Experience with a Course c-n Architectures for Software Systems 30-21

m

*

2.2.2 Components
This section describes each of the rover's components. Each description includes a
general overview, identification of information that the component hides from other
components, and a summary of the kinds of events each component reacts to and

generates.

1. Event Manager (EM):

• The EM component binds events to component interfaces. It is configured by
events sent by the Mission Manager. The actual binding to component
interfaces may be procedure call or RPC-based, depending upon the actual
implementation.

® Knowledge: It knows the binding of event types to component interfaces.

• Secret: The current bindings of events to component/routine name.

® EM receives events which configure event/response bindings.

» EM sends periodic events to report its status/health.

2. Mission Manager (MM):

• The MM component configures the system for operation, monitors other
component's progress or health, reacts to their failures, and shuts down other
components at the end of a mission. Key to the MM's configuration process
is establishing the values of other component's control parameters. The MM
dynamically configures the EM's event bindings according to the kind of
mission being performed.

• Knowledge: MM knows the configuration of each mission type and the
corresponding configuration parameters for all other components. MM
provides transaction-like event-identification and locking mechanisms for
components which require sequential ordering of event sequences. As such,
it keeps a log of active and recently-completed event sequences for fault
recovery.

• MM receives events regarding selected mission changes, and other events
regarding the status or health of other components. It handles requests for
transaction IDs, results of transaction commitment, and requests for
transaction status.

® MM sends events which control and configure other components, and events
regarding transaction mechanisms.

3. Earth Communications (EC):

• The EC component provides the rover's link to Earth. As such, and because
it starts the Event Manager and Mission Manager upon initial boot, it is the
component which has the highest reliability requirements. It must be very
fault-tolerant and be able to restart itself in error situations, have contingency
strategies for dealing with loss of Earth communications, and ensure the
efficient operation of the available communications bandwidth.

• Knowledge: EC knows the current state of communications with Earth. %

Experience with a Course on Architectures for Software Systems 30-22

m

• Secret: the hardware and algorithms required to maintain communications
with Earth.

• EC receives events regarding mission status, acks and nacks of commands
sent from Earth, telemetry events, and data events ("data is available at
shared location X" or "here is data Y"). It also receives configuration events.

• EC sends events which correspond to commands from Earth. It generates
periodic status/health events.

4. Teleoperation:

• Teleoperation translates teleoperation directives from Earth into motion
commands which turn the rover's wheels, pan and tilt the rover's color
camera, etc.

• Knowledge: It owns the algorithm which translates teleoperation directives
into motion directives. It is the expert that addresses issues that are created
by communication delays to and from Earth.

• Teleoperation receives teleoperation directive events and configuration
events.

• Teleoperation sends motion request events (turn-wheels) and pan/tilt
requests. It generates periodic status/health events.

5. Reflexive Behavior (RB):

• RB provides motion commands, mission change commands, and safety
commands in response to events generated by other components. It is active
in determining if safety-critical thresholds have been exceeded. If so, it
generates events and event sequences which keep the rover from getting
into a worse situation, or take predetermined action(s) to decrease the
immediate safety risk. It uses the current motion directive to determine if the
rover is going to wedge itself into an undesirable position.

• Knowledge: RB owns a set of reflexive behavior sequences and the rules for
determining when to apply them.

• RB receives events which report dangerous situations and configuration
events. RB also receives motion directives.

• RB generates motion directives, events which request the deactivation and
reactivation of actuator command paths, and periodic status/health events.

6. Terrain Data Manager (TDM):

• The TDM is a safe store for maps used by the navigation component. It is not
a subcomponent of the navigation system because maps need to be
transmitted to and from Earth. This component may use a specialized
connector because of the large amount of data being sent to and from it.

• While the actual database is depicted in the architectural diagram as a disk
drive, logistics considerations will rule out the use of rotating media for non-
Earth mission deployments. In all likelihood, this will be some memory array
which will be inherently size-limited. TDM, therefore, will be an active
participant in choosing exactly which map fragments are to be on-board the
rover at any given time.

Experience with a Course on Architectures for Software Systems 30-23

•

• Knowledge: It owns the rover's maps and optimized methods for accessing
them.

• TDM receives update_map, get_map events, and configuration events.

• TDM sends map_updated (ack of update_map) and map_contents events. It
generates periodic status/health events.

7. Position Estimation:

• Position Estimation uses external signals from wheel counters,
inclinometers, and other sensors to determine the rover's exact position and
pose. It periodically generates an event which notifies other components of
the rover's position and pose.

• Knowledge: It owns the hardware interface to the rover's inclinometers,
wheel counters, etc. It encapsulates algorithms used for dead reckoning the
rover's current location.

• Receives set_rover_pose events (to baseline the current position) and
configuration events.

• Periodically sends rover_pose events. It generates periodic status/health
events.

8. Proximity Sensing (PS):

• The proximity sensing component provides a hardware interface to the
rover's proximity sensors. It notifies other components when an object is
within range of any of the sensors.

• Knowledge: It owns the hardware interface that communicates with proximity
sensors.

• PS receives configuration events.

• PS sends events that signal when an obstacle is within sensor range. It
generates periodic status/health events.

9. Safety:

• The Safety component provides part of the functionality identified by the
customer as the "real-time controller". If a dangerous situation is reported,
and part of the response is to disable motion actuator controls, this
component actively disables the transmission of actuator commands. It must
likewise be able to reactivate such transmissions.

• Knowledge: It owns the hardware which enables and disables actuator
commands. It does not disable/enable data transmission from external
devices which are incapable of affecting the safety characteristics of the
rover's pose, e.g. position estimating sensors, camera data (video), and the g
like.

• Safety receives events which request the deactivation and activation of
actuator command paths and events which request the status of actuator
command paths. It also receives configuration events.

• Safety sends acknowledgment (ack/nack) events and responses to status #
requests. It generates periodic status/health events.

Experience with a Course on Architectures for Software Systems 30-24

10.Motion Interface (MI):

• Motion Interface provides the interface to the rover's motion base. The
component ensures that motion directives are translated into hardware-
specific motion commands which are executed by the motion base hardware.
Some directives may require an acknowledgment (e.g. "stop").

• Knowledge: It owns the hardware interface to the rover's motion base.

• Ml receives motion directive and configuration events.

• Ml sends ack/nack events for those requests which require a response. It
generates periodic status/health events.

11 .Navigation:

• Navigation transforms goals into motion directives. A goal can describe a
desired location, a pattern of motion to accomplish, or an area of locations to
visit. Once a plan has been established and is being enacted, Navigation
ensures that the plan is being enacted within tolerances described by some
threshold. Navigation also responds to requests for maps of a specific areas.
The navigation component is provided with the rover's current pose as
generated by Position Estimation.

• Knowledge: It owns the algorithms used to perceive the outside world
(perception), and algorithms for determining route and path selection.
Navigation controls the rover's hardware that is used to perceive the outside
world, i.e. the pan/tilt mechanism for the black & white stereo cameras. This
set of hardware does not include the rover's color camera.

• Secret: The current plan(s) and thresholds associated with the current
mission.

• Navigation receives goal events, threshold selection events, and
configuration events.

• Navigation sends motion directive events, map request events (satisfied by
TDM), and mission status events (e.g. gotjhere, can't_get_there, etc.). It
generates periodic status/health events.

12.Video Interface (VI):

• Video Interface provides the capability to grab images from the color camera
for transmission back to Earth. Its primary use is for teleoperation missions,
but VI can be configured into any mission. VI places grabbed images into the
Video Buffer. VI then generates an event regarding the location of the
grabbed image.

• Knowledge: It owns the hardware interface that controls the color camera's
pan/tilt mechanism.

• VI receives configuration events (e.g. frame grab rate) and camera pan/tilt
request events.

• VI sends events announcing the availability of images in the Video Buffer. It
generates periodic status/health events.

Experience with a Course on Architectures for Software Systems 30-25

2.2.3 Connectors

Each of the next paragraphs describe a unique connector type. *

1. Event/Data Stream Connectors - These connectors move events to and from
the system's components. There are a number of "colors" of event connec-
tors: The first kind of connector communicates only event notifications. The
second kind of event adds actual data to the notification. The last kind of ^
event connector contains the event notification and a reference to shared
data. An example of the latter connector is the event stream that VI sends to
EC regarding images which have been placed into Video Buffer.

2. Video Data Connectors - This kind of connector is specialized for transmitting ^
video frames from the rover to Earth. The Video Interface component grabs
image, places them into video memory, and notifies Earth Communications
(EC) of the location of the image. EC then uses the event information to
transmit the image (under constraints that EC hold as secret) back to Earth.
VI and EC must coordinate access to the video memory to avoid consistency
problems. This can be done by constructing a coordinated event sequence |
using transaction mechanisms provided by the Mission Manager.

3. Actuator Commands Connectors - These commands and protocols are
device-specific. The architectural design of the system encapsulates each of
the device-specific details in a different module. This will not have been a $
good decision if the devices use very common, homogeneous actuator
interface. Such a homogeneous interface would suggest a common actuator
interface.

4. Miscellaneous External Data Connectors - Likewise, these data streams and <
protocols are device-specific. Some protocols will have a poll-response flavor
while others (e.g. proximity sensors) will be driven by discrete events.

2.2.4 Operational Scenario

Once the rover has been deposited at some location on some terrestrial orb (the
Earth or Moon), the machine is powered on by some external action. The communi-
cations interface component begins its boot process. Once complete, the component
is as a partner in establishing communications with Earth. In the meantime, the Earth
Communications cold-bootstraps the Event Manager and the Mission Manager, it
then waits for its next command from Earth.

The Mission Manger, once started, establishes its link with the Event Manager and
configures the Event Manager to some initial state. In this state, mission change
events invoke methods in the Mission Manager and transmission requests will invoke
methods in Earth Communications.

Experience with a Course on Architectures for Software Systems 30-26

At this point, the rover system is in the "sleep" state as defined in the system specifi-
cation and is ready to begin normal mission operations.

From this point on, the Mission Manager can start, operate, pause, and tear down
mission configurations. The Mission Manager, Event Manager, and Earth Communi-
cations components are the only long-lived components that are operating through-
out this process. All other components are in a sense transient, and are only in
existence to support Earth-directed mission selections.

A mission selection, therefore, has the following life:

• A mission is selected. The Mission Manager starts components, configures
event bindings, and sends configuration events to components.

• The components operate according to the configuration in order to
accomplish the mission. The mission may be paused (sleep mode) and
optionally restarted.

• The mission is stopped. The Mission Manager stops the mission's
components, reconfigures event bindings to accept a new mission selection,
and waits for the next selection from Earth.

The following mission selection descriptions provide an architectural-level identifica-
tion of components that comprise a mission and an incomplete list of component con-
figuration suggestions. These few examples strive to show why the concept of
dynamic event bindings is relevant to the rover's architecture.

Teleoperation:

• Components: All except Navigation, Position Estimation, and Terrain Data
Manager.

• Configuration Examples: Reflexive behavior parameters reduced to
minimums as a well-trained expert is driving the rover.

Supervised Teleoperation:

• Components: All except Navigation and Terrain Data Manager.

• Configuration Examples: Reflexive Behavior parameters adjusted for
maximum rover safety as anyone could be driving the rover.

Autonomous/Patterned Motion (Normal Operation):

• Components: All except Teleoperation and Video Interface.

• Configuration Examples: All status/health reporting at maximums.

Autonomous/Patterned Motion (testing new Navigation Algorithm):

• Components: All except Teleoperation.

• Configuration Examples: All status/health reporting at maximums. Reflexive
Behavior thresholds set for maximum safety.

Experience with a Course on Architectures for Software Systems 30-27

$

•

Experience with a Course on Architectures for Software Systems 30-28

2.3 Navigation Subsystem 1 - Layered Architecture

2.3.1 Introduction
The system depicted below is an architectural proposal of the Navigation subsystem as a lay-
ered system. The planning tasks performed by Navigation system are broken down into differ-
ent stages that process the information until specific commands for the actuators can be

executed.

Tasks are defined as different stages in which a plan can be broken into. This leaves us with
four groups of tasks each of which performs different computations. The three planning com-
ponents consult the map structures in different levels of detail. This is achieved by enquiring

data from Terrain Data Manager.

Data flows horizontally from the tasks to the appropriate map structures and the pose struc-
ture. Control flows vertically form one layer to any of its consecutive counterparts. This essen-
tially defines the layered property of the system. There is no direct control flow between any
two non-adjacent layers.

This organizational approach is motivated by the simplicity of the encapsulation that the sys-
tem lends itself to. The tasks of Navigation system can be naturally divided into a series of lev-
els of refinement, and each of these levels deals with the processing in different levels of
resolution. The detailed maps that the Navigation subsystem creates and utilizes may also be
accessible to other components outside the Navigation subsystem. This is achieved by trans-
mitting maps to the Terrain Data Manager. Outside components can therefore request maps
from the Navigation subsystem where Perception will transform sensor data and produce de-

tailed maps.

Experience with a Course on Architectures for Software Systems 30-29

e

Figure 2-3 Navigation Subsystem Layered Architecture

Nav. Commands Status

Navigation Subsystem

Pattern Planner

Global Planner

Local Planner

A

Perception Movement
Commander

Terrain Data Manager

DTE Maps

Global Maps

Local Maps

Sensor Actuators Motion Actuator Commands
Sensor Data

Pose

%

Experience with a Course on Architectures for Software Systems 30-30

2.3.2 Components

1. Pattern Planner:

• Pattern Planner receives the external navigation commands and processes
them into intermediate goals that describe the pattern specified by the
commands. It will then relay these intermediate goals to the Global Planner.
Global Planner returns the current status of the operation. Pattern Planner
will send the status information back as an Acknowledgment, or in the case
that the operation cannot be accomplished, as a Failure.

• Knowledge: It knows how to generate a sequence of waypoints which
satisfies the designated pattern.

• Secret: It must use the current pose and the DTE maps.

2. Global Planner

• Global Planner creates directives to take the rover from one intermediate
goal to the next.

• Knowledge: It can create a sequence of immediate goals to achieve an
intermediate goal, It can also handle map request.

• Secret: It must use the current pose and the global maps.

3. Local Planner

• Local Planner handles an immediate goal based on the elevation maps
computed by Perception. It will send a selected trajectory to the Movement
Commander.

• Knowledge: Given an immediate goal, it can evaluate a set of potential
trajectories and select the most promising one, to try to attain the immediate
goal.lt is also able to handle map requests.

• Knowledge: It knows the maximum allowable velocity and other safety
violation conditions.

• Secret: It must use the current pose. It must use the detailed elevation maps.
It will evaluate trajectories using a collection of evaluation functions.

4. Perception

• Perception generates commands to the Sensor Actuators, computes the
detailed elevation maps, and relays them to the Local Planner.

• Knowledge: It owns algorithms to generate Sensor Actuator directives and it
knows how to interpret the sensor data.

• Secret: It calculates a detailed elevation map through a series of image
processing transformations.

5. Movement Commander

• It receives directives from the Local Planner. It translates them into
commands that are send to the Motion Actuators (outside Navigation
subsystem).

Experience with a Course en Architectures for Software Systems 30-31

•

2.3.3 Connectors
1. The system is connected to the outside world at all layers. The interaction

might be done in the form of messages. Pattern Planner receives navigation
commands from the rover system and returns acknowledgments. Global
Planner interacts with the global maps of the Terrain Data Manager. Local
Planner interacts with the local maps of the Terrain Data Manager. All the
planning layers need to obtain information about the current pose. Movement
Commander sends motion commands back to the rover system for execution.

2. Perception will send commands to the camera actuators. Perception will read
sensor data for processing. These kinds of interaction involve access to the
hardware devices.

3. Communication between the layers is bi-directional and might be done
through procedure calls. &

2.3.4 Operational Scenario

On a typical scenario, the Pattern Planner receives a navigation command from the rover sys-
tem, and generates a set of intermediate goals that correspond to the pattern specified in the
command if any. For each of these intermediate goals, it will call the Global Planner for each
intermediate goal. The Global Planner will generate immediate goals and pass the immediate
goal to the Local Planner. The Local Planner will evaluate potential trajectories and select one

passable trajectory.

The selected trajectory is passed to the Movement Commander. The Movement Commander
generates a motion command based on the selected trajectory, and sends the motion com-
mand back to the rover system for execution.

The Local Planner will need the elevation maps computed by Perception. Perception calcu-
lates maps from stereo data. Once the Local Planner achieves the immediate goal, it will return
to the Global Planner and wait for the next immediate goal. The Global Planner will request
and maintain its own maps, and return to the Pattern Planner once it has reached its interme-
diate goal. The Pattern Planner will keep passing intermediate goals until the pattern is com-
pleted and it can send an Acknowledgment back to the rover system.

A number of conditions will be checked at each of the layers to know if the navigation com-
mand can be realized. The Navigation system described will not however be able to handle
any emergency situation. The Navigation system therefore should be shut down and its ac-
tions be taken over by a reflexive module when in an emergency.

Experience with a Course on Architectures for Software Systems 30-32

2.4 Navigation Subsystem 2 - Blackboard Architecture

2.4.1 Introduction

The Navigation subsystem provides perception and planning support to the main rover sys-
tem. In general, planning and perception activities require the following inputs from the main
rover system:

• goals

• patterns

• regions

• current pose

• maximum velocity

• map requests

• terrain maps

Upon evaluation of the above inputs, the Navigation subsystem performs the appropriate plan-
ning and perception activities which result in the following outputs:

• motion commands

• map data

• planning status

The Navigation subsystem consists of a blackboard and several knowledge sources.

The blackboard contains the current state of planning, perception, and the pose. This data is
used by knowledge sources to reason about and perform perception and planning tasks. The
blackboard also provides a workspace which knowledge sources can use to post intermediate
and final results. Furthermore, the blackboard provides the medium through which compo-
nents communicate with each other and the main rover system.

The blackboard is partitioned into levels which are distinguished from one another by the spe-
cific types of data they can store. Knowledge sources have read and write access to various
levels depending on the tasks they perform, the data they require, and the data they output.
When a level receives new data or has existing data updated, the knowledge sources that rely
on data from that level are notified. When data on a level has been added or changed, each
knowledge source evaluates the data and decides whether or not to respond.

Knowledge sources have specialized knowledge which depends on the tasks they perform. In
particular, knowledge sources provide the ability of the navigation subsystem to communica-
tion with the main rover system, to perform local, route, and pattern planning, and to perform
perception tasks. There are five knowledge sources which provide Navigation's ability to com-
municate with the main rover system, namely: the goals-and-patterns-ks, map-in-ks, com-
mand-in-ks, command-out-ks, and state-in-ks. In addition, there are three knowledge sources

Experience with a Course on Architectures for Software Systems 30-33

which provide Navigation's ability to reason about and perform planning activities, namely: the
pattem-planner-ks, route-planner-ks, and local-planner-ks. Finally, there is one knowledge

source which provides Navigation's perception capabilities. <

Knowledge sources were selected based on the need to encapsulate the details of planning,
communication, and perception and separate concerns to best support system evolution.

The remaining subsections provide more details about the blackboard and knowledge sourc-
es. Details are also provided regarding the internal connections required for knowledge sourc-
es to communicate with each other and the external connections required for knowledge
sources to communicate with the main rover system and support hardware. The final subsec-
tion provides operational scenarios which describe how knowledge sources work together to

perform planning and perception tasks. $

Experience with a Course on Architectures for Software Systems 30-34

Figure 2-4 Navigation Subsystem Blackboard Architecture

CO

s
f/> In

1) crt
O m

ÜOH

±L

Ocu

I

CO o
0-

t
o
CO

3 u
00
"S3
U
s
CO

U

A

o
•a t- a o

ü

s

A

(S3 «2) <H*c
s ^ / « \ / \ /
CO \ U. > \r>
3

\ v \

tV)
c 3 <U
o ** 3

frt "£ « en 0-0- >
CO \

5£

<55© <s

V ^ \

s-<
<U

CD
C

3 s
o ,52

\

\ \

»-
4)

o o
3
3
cd

JO-
\

Experience with a Course on Architectures for Software Systems 30-35

2.4.2 Components

1. Blackboard

• Level 1:

This level is used to post goals and patterns provided by the main rover
system.

® Level 2:

This level is used to post route, pattern, and local plans. Partial plans and
potential routes are also posted here for evaluation and refinement by
various knowledge sources.

• Level 3:

This level is used to post motion commands and status messages such as
'stuck' for transmission to the main rover system.

• Level 4:

This level is used to post detailed elevation maps and DTE maps.

• Level 5:

This level is used to post requests for maps and terrain data.

• Level 6:

This level is used to post pose and current speed data provided by the main
rover system.

• Level 7:

This level is used to post commands such as 'stop planning' from the main
rover system.

2. Pattern Planner

• The main task of the pattern-planner-ks is to provide coarse-grained plans
which can be used to direct the rover through a region according to a given
pattern.

Pattern planning activities are initiated in response to set-pattern messages
posted to level 1 and plans posted to level 2.

The pattern-planner-ks uses information on levels 6 and 4 while generating
plans. Level 6 provides information about the rover's current state and pose.
Level 4 provides current map and terrain data. If the pattern-planner-ks
requires map data that is not available on level 4 then it will post one or more
map requests on level 5. The pattern-planner-ks will then wait for
corresponding map data to be posted on level 4.

Plans created by the pattern-planner-ks are posted on level 2. The pattern-
planner-ks may also modify plans on level 2 according to newly established
pattern goals.

The pattern-planner-ks also halts planning activities in response to stop
messages posted on level 7.

Experience with a Course on Architectures for Software Systems 30-36

3. Route Planner

• The main task of the route-planner-ks is to provide coarse-grained plans
which can be used to direct the rover from its current position to a given goal
position.

Route planning activities are initiated in response to set-distant-goal
messages posted to level 1 and plans posted to level 2.

The route-planner-ks uses information on levels 6 and 4 while generating
plans. Level 6 provides information about the rover's current state and pose.
Level 4 provides current map and terrain data. If the route-planner-ks
requires map data that is not available on level 4 then it will post one or more
map requests on level 5. The route-planner-ks will then wait for
corresponding map data to be posted on level 4.

Plans created by the route-planner-ks are posted on level 2. The route-
planner-ks may also modify plans on level 2 according to newly established
distant goal messages.

The route-planner-ks also halts planning activities in response to stop
messages posted on level 7.

4. Local Planner

• The main task of the local-planner-ks is to refine coarse-grained plans posted
on level 2 and to carry out those plans by issuing commands to the main
rover system.

Local planning activities are initiated in response to set-goal messages
posted on level 1 or in response to coarse-grained pattern or route plans
posted on level 2.

The local-planner-ks uses information on levels 6 and 4 while generating
plans. Level 6 provides information about the rover's current state and pose.
Level 4 provides current map and terrain data. If the local-planner-ks requires
map data that is not available on level 4 then it will post one or more map
requests on level 5. The local-planner-ks will then wait for corresponding map
data to be posted on level 4.

The local-planner-ks refines a coarse-grained plans by considering its major
waypoints and then generating potential paths between those waypoints.
The local-planner-ks then determines the best potential path and accordingly
refines the coarse-grained plan.

Plans refinements created by the local-planner-ks are posted on level 2. The
local-planner-ks may also modify plans on level 2 according to newly
established goals or current circumstances.

Upon completing the evaluation of a plan, the local-planner-ks computes the
motion commands required to carry out the most promising path and post
those commands to level 3.

The local-planner-ks also halts planning activities in response to stop
messages posted on level 7.

Experience with a Course on Architectures for Software Systems 30-37

5. Perception

• The main task of the perception-ks is to provide map and terrain data.

Perception activities are initiated in response to map requests posted to level
5.

The perception-ks will attempt to post data which satisfies a map request on
level 4. The perception-ks will update requests on level 5 to indicate when
they cannot be satisfied. %

« Secret: Encapsulates how sensor data is input and processed. Also, hides
the details of camera manipulation, camera input, and camera data
translation.

6. Goal and Pattern
m

• The main task of the goal-and-pattem ks is to input goal and pattern requests
from the main rover system.

The goal-and-pattern-ks responds to input goals or patterns by parsing them
and then posting them to level 1.

• Secret: Encapsulates how goals and patterns are input from the main rover &
system. Also translates input goals and patterns into a form which is
recognized by peer components.

7. Map In

• The main task of the map-in-ks is to request map data from the main rover
system.

Requests for map data are initiated in response to unsatisfied map requests
posted to level 5.

The map-in-ks requests map data from the main rover system and waits for
a response. Any data received is posted on level 4. The map-in-ks will update ^
requests on level 5 to indicate when they cannot be satisfied.

® Secret: Encapsulates how map data is acquired from the main rover system.
Also hides any differences between the map representation used by the main
rover system and the navigation subsystem.

8. Command In ®

« The main task of the command-in-ks is to input and perform commands from
the main rover system.

The command-in-ks responds to stop commands by posting stop requests to
level 7.

The command-in-ks responds to map requests by transmitting the requested
map data to the main rover system. The data is acquired from level 4. If the
data is not available on level 4 then the command-in-ks posts a map request
to level 5 and waits for the corresponding data to be posted to level 4. If the
request cannot be satisfied then the command-in-ks informs the main rover
system.

Experience with a Course on Architectures for Software Systems 30-38

•

m

• Secret: Encapsulates how commands are input from the main rover system.
Also translates input commands into a form which is recognized by peer
components.

9. Command Out

• The main task of the command-out-ks is to output motion commands and
status messages to the main rover system.

Output to the main rover system is initiated in response to motion commands
or statuses posted to level 3. Motion commands will include 'Stop Rover'.
Status commands will include 'Stuck'.

• Secret: Encapsulates how motion commands are output to the main rover
system. Also handles translation of logical motion commands into commands
required to manipulate the rover.

10.State In

• The main task of the state-in-ks is to parse state and pose data provided by
the main rover system and to post that data on level 6.

• Secret: Encapsulates how state data is acquired from the main rover system.
Also handles translation of state information into a form which is recognized
by peer components.

2.4.3 Connectors
The Navigation subsystem requires the following three types of connectors:

• Input/Output to the main rover system

Provides the means for communication between Navigation and the main
rover system. Also establishes communication protocols and data
translations.

This could be implemented via implicit or explicit procedure call.

• Knowledge source access to the blackboard

Provides read/write access to individual blackboard levels. Also establishes
the protocols and data translations for the types of data that can be posted
on each level.

This could be implemented via shared memory access, and implicit or explicit
procedure call.

• Perception link to camera and sensors

Provides the means for accessing sensor data, manipulating the camera, and
acquiring camera data. Also establishes the protocols and data translations
which support these tasks.

This could be implemented via shared memory access, interrupts, or explicit
procedure call.

Experience with a Course on Architectures for Software Systems 30-39

2.4.4 Operational Scenario

1. Stop Request

The command-in-ks receives a stop command from the main rover system.
The message is evaluated and posted on level 7.

The local planner, the route planner, and the pattern planner all respond to
the stop command by halting planning activities.

2. Set Goal Message

The goal-and-pattem-ks receives a set-goal message from the main rover
system. The message is evaluated and posted on level 1.

The local-planner-ks evaluates the goal message posted on level 1 along with
state and position information posted on level 6. If the goal has already been
met then the local-planner-ks posts a stop command on level 3. The
command-out-ks responds to the stop command on level 3 by outputting a
stop command to the main rover system.

If the goal has not been met then the local-planner-ks will attempt to develop
potential paths for reaching the goal. Potential paths are posted to level 2
where they are refined or eliminated by the local-planner-ks or other
knowledge sources.

The local-planner-ks continues to refine and eliminate potential paths to the
goal until one path can be selected. Afterwards, the local-planner-ks
computes the required motion commands and posts them to level 5. The
command-out-ks responds to motion commands posted on level 5 by
outputting them to the main rover system.

If the local-planner-ks cannot find an acceptable path to the goal then it posts
a stuck message on level 5. The command-out-ks responds to the stuck
message by outputting the message to the main rover system.

While evaluating a goal and generating potential paths for reaching the goal,
the local-planner-ks may use map data posted on level 4. If local-planner-ks
requires map data but cannot find it on level 4 then it will post one or more
map requests to level 5. Any map requests posted to level 5 are processed
by the perception-ks or the map-in-ks. If possible, the perception-ks will post
the requested map data to level 4. Otherwise, it will update any map requests
to show that they could not be satisfied. The map-in-ks responds to
unsatisfied map requests by requesting map data from the main rover
system. Once it receives the map data, the map-in-ks posts the data on level
4.

3. Set Distant Goal Message

The goal-and-pattern-ks receives a set-distant-goal message from the main
rover system. The message is evaluated and posted on level 1.

The route-planner-ks evaluates the goal message posted on level 1 along
with state and position information on level 6. If the goal has already been met
then the route-planner-ks does not take any action.

Experience with a Course en Architectures for Software Systems 30-40

m

The local-planner-ks also evaluates the goal message posted on level 1. If the
goal has already been met then the local-planner-ks posts a stop command
on level 3. The command-out-ks responds to the stop command on level 3 by
outputting a stop command to the main rover system.

If the goal has not been met then the route-planner-ks will develop a coarse-
grained plan to reach the goal. The plan will be posted on level 2. Afterwards,
the plan will be evaluated and refined by the local-planner.

Once the plan has been adequately refined, the local-planner-ks computes
the required motion commands and posts them to level 5. The command-out-
ks responds to the motion commands posted on level 5 by outputting them to
the main rover system.

If the local-planner-ks cannot adequately refine the plan then it posts a stuck
message on level 5. The command-out-ks responds to the stuck message by
outputting the message to the main rover system.

While developing or refining plans, the local-planner-ks and the route-
planner-ks may use map data posted on level 4. If a knowledge source
requires map data but cannot find it on level 4 then it may post one or more
map requests to level 5. Any map requests posted to level 5 are processed
by the perception-ks or the map-in-ks. If possible, the perception-ks will post
the requested map data to level 4. Otherwise, it will update any map requests
to show that they could not be satisfied. The map-in-ks responds to
unsatisfied map requests by requesting map data from the main rover
system. Once it receives the map data, the map-in-ks posts the data on level
4.

4. Set Pattern Message

The goal-and-pattern-ks receives a set-pattern message from the main rover
system. The message is evaluated and posted on level 1.

The pattern-planner-ks responds to the set-pattern message by developing a
coarse-grained plan to reach the goal via the target pattern. The plan will be
posted on level 2. Afterwards, the plan will be evaluated and refined by the
local-planner.

Once the plan has been adequately refined, the local-planner-ks computes
the required motion commands and posts them to level 5. The command-out-
ks responds to the motion commands posted on level 5 by outputting them to
the main rover system.

If the local-planner-ks cannot adequately refine the plan then it posts a stuck
message on level 5. The command-out-ks responds to the stuck message by
outputting the message to the main rover system.

While developing or refining plans, the local-planner-ks and the pattern-
planner-ks may use map data posted on level 4. If a knowledge source
requires map data but cannot find it on level 4 then it may post one or more
map requests to level 5. Any map requests posted to level 5 are processed
by the perception-ks or the map-in-ks. If possible, the perception-ks will post
the requested map data to level 4. Otherwise, it will update any map requests

Experience with a Course en Architectures for Software Systems 30-41

m

to show that they could not be satisfied. The map-in-ks responds to
unsatisfied map requests by requesting map data from the main rover
system. Once it receives the map data, the map-in-ks posts the data on level
4.

5. Map Request

The command-in-ks receives a map data request from the main rover system.

If the map data is available on level 4 then the command-in-ks outputs the
data to the main rover system.

If the map data is not available on level 4 then the command-in-ks will post
one or more map requests on level 5. Map requests posted on level 5 are
processed by the perception-ks. If possible, the perception-ks will post the
requested map data to level 4. Otherwise, it will update the requests to show
that they could not be satisfied. The command-in-ks will notify the main rover
system if the map request cannot be satisfied.

m

Experience with a Course on Architectures for Software Systems 30-42

3 Design Ruies, Choices, and Justifications

Section 3.1 discusses a collection of design rules applied to a general robotic system, and also
a collection of design rules applied to the planning tasks underneath a robotic system. Based
on these rules and the characteristics of system's functional requirements, section 3.2 dis-
cusses and prioritizes our design choices. Section 3.3 discusses how to integrate our designs.

3.1 Design Rules

The use of design space and design rules for software system design was proposed by Tho-
mas G. Lane. The design space identifies the key functional and structural dimensions used
to create a system design. We treat our two architectural proposals as one dimension, identify
several functional dimensions, and derive some rules relating them.

We discuss two sets of design rules for the general robotic system and the navigation sub-
system, respectively. The lists of rules are not intended to be complete, but they provide a
sound basis upon which we can make sensible design choices.

3.1.1 Design Rules for Rover System

The following rules are associated with a general robotic system. Note that the last column de-
notes issues that are relatively more important for the Rover system, but a blank without an
asterisk symbol does not imply the issue is not applicable to the Rover system.

Table 1: Design Rules for Rover System

Rule ID Name
Suitable

Architecture
Important
for Rover

ROV-1 Distributed processing environment Event *

ROV-2 Centralized processing environment Repository

ROV-3 Support for adding new components Event *

ROV-4 Support for a reconfigurable system Event *

ROV-5 Need to ensure a consistent state Repository

ROV-6 Ease of performance analysis Repository *

ROV-7 Ease of state monitoring Repository *

ROV-8 Synchronous processing required Repository

ROV-9 Asynchronous processing required Event *

ROV-10 Strong need of sequentiality Repository

ROV-11 System overhead minimized Repository

Experience with a Course on Architectures for Software Systems 30-43

• ROV-1: In a physically distributed system organization with multiple CPUs
and non-negligible communication costs such as in a computer network, it is
better to adopt an event-based architecture. A repository requires a shared
memory and a state polling mechanism, which are usually expensive to
implement in a distributed environment.

• ROV-2: A centralized computing environment favors the repository design. A
shared memory and an access mechanism are easier to implement and can
achieve relatively high efficiency.

• ROV-3: In an event-based system, new components can register interests by
associating their handling routines with events. A component raising an event
does not have to know the identity of the other components. However, in our
repository design, adding a new component requires a complete redesign of
the Coordinator.

• ROV-4: An event system is favored than a repository if the system requires
reconfigurable features, especially the dynamic reconfigurations
(changeable at run-time). The event manager can change its event bindings
at run-time without recompilation. In our repository design, we can only
implement static reconfigurations by hard-coating certain configuration types
in Coordinator.

• ROV-5: If the consistency of the whole system state is critical for the
application, a repository is preferable since all state information is centrally
kept in the shared memory. We may simply embed a small routine to perform
checking. The system state, however, is essentially distributed among all
components in an event-based system. Thus collecting system state
information and checking consistency with each other is expensive in an
event-based system.

• ROV-6: We contend that system performance is easier to be analyzed in our
repository design than in the event-based design. Since the Coordinator is
naturally the core agent to implement the preemptive mechanism,
performance analysis techniques such as Rate Monotonie Analysis in real-
time field can readily be applied in the repository design.

ROV-7: If the state information is centrally maintained, the monitoring tasks
like Reflexive Behavior can be simpler and more efficient. A repository is
preferred for the same reason as indicated in ROV-5.

ROV-8: For an application with intensive synchronization features, a
repository is favored. A transaction processing system is a typical example.
Those ACID properties are assured by the Coordinator. The Central
Repository and the Coordinator together essentially provide the TP system
core services such as locking, logging, etc. An event-based system is
relatively difficult to implement these properties due to its non-deterministic
nature.

ROV-9: An event-based design is a concurrent system in nature. All
components are weakly bound through the event bindings, and therefore
individual components are free to asynchronously execute their own tasks at
other times. In a repository design, all components tend to contend for
accessing the shared data, and blocking is an unavoidable feature. Thus a
repository is not appropriate for an asynchronous application.

Experience with a Course on Architectures for Software Systems 30-44

©

m

• ROV-10: In an event-based system, announcers don't know which
components will be affected by the events. Thus components cannot make
assumptions about the order of processing. In our repository design, the
Coordinator explicitly imposes a control discipline and therefore can ensure
the property of sequentiality.

• ROV-11: An event-based system usually introduces inevitable system
overhead such as the run-time checking and implicit invocation mechanisms.
It is even worse if the system cannot ensure circularity free, which might
cause deadlocks. Arguably we claim the repository only implements the
necessary access control mechanisms, which cost less overhead.

3.1.2 Design Rules for Navigation System

The following rules can be applied to the navigation subsystem within a robotic system, which
usually involves both reactive and deliberative planning activities. Note that the last column
denotes issues that are relatively more important for the Navigation component, but a blank
without an asterisk symbol does not imply the issue is not applicable to the Navigation system.

Table 2: Design Rules for Navigation Subsystem

Rule ID Name
Suitable

Architecture
Important
for NAV

NAV-1 Solution to problem is algorithmic Layered

NAV-2 Solution to problem is heuristic Blackboard *

NAV-3 Opportunistic reasoning required Blackboard *

NAV-4 Deterministic task scheduling required Layered

NAV-5 Likely to change processing approaches Layered *

NAV-6 Likely to add processing approaches Blackboard *

NAV-7 Incremental development required Blackboard *

NAV-8 High need for predictable performance Layered

NAV-9 High need for component independence Blackboard

NAV-10 High need for economic solution Layered

NAV-1: If the problem has a precise algorithmic solution, usually a layered
system is a good choice. The processing steps can usually be broken down
into a hierarchical top-down fashion, with each layer solving subproblems in
different details. Processing using the divide-and-conquer strategy is a
typical example. It is difficult to naturally implement such a structure in a
blackboard system.

Experience with a Course on Architectures for Software Systems 30-45

• NAV-2: If the problem has no absolutely correct solution and no direct
algorithmic solution, usually a blackboard is a good choice. "Best effort" or
approximate solution is often good enough. Multiple distinct kinds of heuristic
rules can be embedded in different knowledge sources. Knowledge sources
can achieve cooperative problem-solving through the blackboard.

• NAV-3: This essentially relates to NAV-2. An application involving much
uncertainty favors a blackboard structure. Both input and knowledge have
many errors and variabilities, and therefore what kinds of reasoning are
applicable is really opportunistic. The blackboard framework does not
presuppose nor does it prescribe the knowledge usage or reasoning
methods. It merely provides constructs within which any reasoning methods
can be well applied.

• NAV-4: If the application requires a deterministic task scheduling discipline,
then the layered system is probably a better choice. The thread of execution
in a layered system is more likely to be predecided and conceived.

• NAV-5: Comparing a layered system with a blackboard, the hierarchy of
layers eases the changes of processing approaches. You are more confident
to replace an internal algorithm of a layer without changing the overall
behavior of the system. In a blackboard, however, if you change the rules of
some knowledge source, the effects will propagate in the solution, and
probably the overall behavior of the system is affected.

• NAV-6: Comparing a blackboard with a layered system, the distribution of
knowledge sources eases the addition of new processing approaches. An
additional collection of heuristic rules or algorithmic procedures can be easily
added as a new knowledge source to the blackboard.

• NAV-7: If the nature of the problem prevents from having a full solution all at
once, a blackboard is favored. Since each execution can only result in a
partial solution, the entire solution needs to evolve over time. The blackboard
data structure provides the base for incremental development.

• NAV-8: The time to come up with a solution is usually unpredictable in a
blackboard system. Although the hierarchical structure of a layered system
imposes certain interaction overhead, the processing time is more likely to be
empirically predetermined.

• NAV-9: To achieve high component independence, a blackboard is a better
choice. A layered system is vertically related to each other because each
layer assumes the services and interfaces of adjacent layers. In a
blackboard, however, each knowledge source can operate independently.

• NAV-10: To make a blackboard really work, sophisticated elaboration is
needed. For example, an interpreter implementation strategy is needed to
impose the control mechanism. If economics are a significant concern, a
blackboard architecture is not a good choice.

Experience with a Course on Architectures for Software Systems 30-46

3.2 Design Choices

3.2.1 Design Choice for Rover System

Considering those important concerns of the Rover system, we prioritize them based on the
functional requirements as follows. Their relative importance is shown in order.

Table 3: Prioritizing Design Considerations for Rover System

Name Suitable Architecture

Asynchronous processing required Event

Distributed processing environment Event

Support for a reconfigurable system Event

Ease of state monitoring Repository

Support for adding new components Event

Ease of performance analysis Repository

The Rover system mostly requires concurrent and asynchronous processing. It is implement-
ed in a distributed environment (probably Ethernet). The rover has different missions and each
mission needs a different system configuration. The reflexive behavior requires monitoring the
system state to ensure safety, but this kind of monitoring tasks is not highly complicated. The
system has medium extensibility requirements (adding more experiments components). The
performance is not a very significant issue as is the safety.

Judging from the table (either in terms of numbers or importance), we recommend that the
event-based architecture is a better design choice for the Rover system.

3.2.2 Design Choice for Navigation System

Considering those important concerns of the Navigation system, we prioritize them based on
the functional requirements as follows. Their relative importance is shown in order.

Table 4: Prioritizing Design Considerations for Navigation Subsystem

Name Suitable Architecture

Solution to problem is heuristic Blackboard

Opportunistic reasoning required Blackboard

Incremental development required Blackboard

Likely to change processing approaches Layered

Likely to add processing approaches Blackboard

Experience with a Course on Architectures for Software Systems 30-47

The planning tasks are essentially based on heuristic rules. There are no absolute criteria to
tell which path is better than the other. The whole activity involves a certain degree of uncer-
tainty. Some algorithms do exist, but they are "rules of thumb" in nature. Achieving a good path
plan requires participation of all "rules of thumb." A deterministic task schedule is unnecessary
among those planning agents. Oopportunistic applications of knowledge are more likely need-
ed. In most cases, it is impossible to derive a complete detailed path plan in advance because
the DTE maps cannot provide detailed terrain features and the view of Perception is occasion-
ally obstructed. Only a portion of situations surrounding the rover is actually "seen." Incremen-
tally developing the path plan is required. Processing approaches are likely to be changed or
added since this system is built for a research institution.

Judging from the table (either in terms of numbers or importance), we recommend that the
blackboard architecture is a better design choice for the Navigation subsystem.

3.3 Integrating Navigation Subsystem with Rover System

There are four combinations of our architectural proposals:

1. Repository with Layered

2. Repository with Blackboard

3. Event-based with Layered

4. Event-based with Blackboard (our recommendation)

Because each of the Rover architectures was designed to operate with either of the Navigation
components, there are few problems integrating each of the combinations. Our two candidate
architectures for Navigation subsystem can readily fit into the two overall architectural designs
for the Rover system. The Navigation subsystem is simply treated as a component in the over-
all Rover system. The interface is well defined. The Rover system passes goals and patterns
to the Navigation subsystem. The Navigation subsystem returns the motion commands back
to the Rover system. The Navigation subsystem will also interact with Rover system regarding

information about the rover's current pose and terrain maps.

®

&

Experience with a Course on Architectures for Software Systems 30-48

4 Adaptation for New Requirements

This section proposes three requirements changes for the rover system and four changes for
the navigation system. The section also addresses the impact of those changes upon the de-
sign of both candidate architectures.

4.1 New Requirements for the Rover System
The first change adds the requirement that the rover support an additional kind of sensor, in
this case, a laser rangefinder. The change has minimal effect on either the event-based or re-

pository-based rover architectures.

1. Event - The design changes to implement this modification include the addi-
tion of hardware actuator interfaces for the rangefinder and signal interfaces
coming from the rangefinder. Both interfaces are very similar to those provid-
ed for the black & white cameras. Because the changes only affect the navi-
gation component, which also must be modified to use the new information,
the changes are well encapsulated. There will be a performance price if the
additional information is to be maintained by the Terrain Data Manager or if
the information is to be transmitted to Earth.

2. Repository - Because either navigation component is designed to integrate
within either of the rover architectures, the design changes to support this
modification are similar to those required for the event-based system.

The second change adds a new mission type in which one rover "trails" another rover. Imagine
a scenario where rover A is being teleoperated by a visitor to a science museum. Rover B
would be operating using this new mission-type and be trailing after rover A in order to provide
an external view of rover A's progress.

1. Repository - Because the various mission types are hard-coated into the Co-
ordinator component, adding any new mission type requires a redesign and
reconstruction of the Coordinator.

2. Event - Adapting the rover for this change requires a new component that
would use imagery from the rover's video buffer in order to locate the other
rover. Once the other rover has been located, the new component issues an
autonomous mission goal to travel to a location near the other rover. When
the other rover changes its position, the trailing rover's autonomous goal is
recomputed and announced. This new component issues requests to the
Video Interface in order to move the color camera. The addition of a new
mission type also requires an additional set of event bindings.

The third proposed change adds the requirement that the rover keep a log or diary of the po-
sitions or locations that it visits. The log is eventually transmitted to Earth. The log has a max-
imum size - only the most recently visited points are recorded. The change has minimal effect
on the event-based rover but has a significant effect on the repository-based rover.

Experience with a Course on Architectures for Software Systems 30-49

1. Event - This change affects only the Event Manager component. The first
modification is to add the mechanism which tracks events generated by the
Position Estimation component. Other mechanisms are added to report the
log's contents to Earth when requested.

2. Repository - Similar to the second change, this change requires significant
changes to the Coordinator component because the control access rules
need to be redesigned and reanalyzed. The system's state must be
monitored for updates in the rover's current estimated position. Every update
must be placed in the logfile.

4.2 Mew Requirements for the Navigation Subsystem

The first change adds the requirement that the navigation system support non-deterministic
missions as a command directive in addition to the goal and pattern requirements. A mission
command implementation would require the robot to redesign its intermediate goals on a con-
ditional basis. In order to achieve a mission, the rover would have to navigate by following in-
telligent decisions until certain conditions are met. The conditions will be set according to the
kind of experiment the rover is performing. For example, if the rover receives a mission where
it is supposed to collect N samples of rocks of a given size and then return to its original posi-
tion, the navigation system will probably have to generate random intermediate goals to ex-
plore the area and return to the original position when the condition of gathering N samples

has been met by the experiment's goals.

1. Layered - In order to be able to apply this modifications to the proposed lay-
ered architecture, the system would have to embed new modules in the first
layer parallel to the Pattern Planner which would check on the exit condition
before generating a new intermediate goal. The exit condition would have to
be received as part of the sensor data and be passed from the lowest layer to
the highest layer.

2. Blackboard - The modifications to the Blackboard navigation system would
involve adding new knowledge sources to the existing system and allowing
them to receive input for the conditions set by the experiment running on
board. Once the new mission knowledge sources update the corresponding
structures on the blackboard, the rest of the system will follow execution the
same way it used to.

Since this particular modification breaks the layered structure of the first proposed architecture
by imposing that changes in the highest layer correspond directly to changes in the lowest lay-
er, we can conclude that the blackboard system is better suited to realize this kind of functional
modification. This is due to the flexibility of accommodating new knowledge sources into the
existing system, and the system's property of allowing arbitrary modules to interact with each
other, as opposed to the constraint determined by the layered architecture where a given layer
can only communicate directly with its adjacent layers. This difference is a manifestation of the
NAV-6 rule as explained in the Design Rules section 3.1, which favors the blackboard ap-
proach for the system since it is capable to easily add new processing approaches.

Experience with a Course on Architectures for Software Systems 30-50

The second change adds the requirement that the navigation system support new methods
for route planning. New searching algorithms couid substitute the existing ones to generate
more efficient paths. One such modification would substitute the energy concern with a re-
quirement as a planning concern for traversability. This implies that the rover would be able to
choose between energy and traversabillity of the terrain as a planning parameter

1. Blackboard - The blackboard system's adaptation would imply changing all
the knowledge sources involved, and the difficulty arises in determining which
of the knowledge sources intervene, in each of the planning stages.

2. Layered - The layered system would be capable of allowing such a change
by changing the secrets of the implicated layers. If the energy/traversability
concern is only taken into account in the pattern planning layer, then only the
first layer would have to be modified.

In this case it would be easier to change the layered system since the information pertaining
an algorithm is contained in one of the layers. This is due to the fact that layering can be used
to group functionality hierarchically depending on what level of the problem they are solving.
This is manifested in the NAV-5 rule which favors the layered proposal.

The third change adds the requirement that the navigation system support new data represen-
tations. One such modification would allow the global planner to calculate corridors instead of
intermediate goals. This change would require the modules to process information as corridors
instead of intermediate and immediate goals.

1. Layered - The layered system will require changes to be made to all the layers
that deal with location data structures.

2. Blackboard - The knowledge sources would require redesign in order to
handle the new data structures.

Neither of the two systems are adequately suited for dealing with changes of this nature.

The fourth change adds the requirement that the navigation system handle performance con-
straints. These constraint will not allow the security of the rover to decrease but would impose
real-time deadlines to the navigation goals. In this situation the navigation system should be
able to deliver goals in a deterministic amount of time and should be able to give up on the
accuracy required.

1. Layered -

• One way to look at the problem would be to allow the layered system being
able to time-out in each of the given layers and be able to relay a response
to the next layer. This would produce many implementation problems since
a simple time-out would not ensure reliable data being passed from one layer
to another, and errors (such as unexecutable commands) would propagate.

• On the other hand, a layered system can provide us with a deterministic
bounded computation time which can be tuned and adjusted to meet the
required performance constraints.

Experience with a Course on Architectures for Software Systems 30-51

2. Blackboard -

• The blackboard architecture operates structures on the blackboard layers
that keep an updated version of the next step to be taken. In order to be able
to meet timing constraints, the system would have to produce a heuristic
solution in a bounded time, for example, in the form of a degraded solution.
This is a more achievable goal than timing-out the processes of the layered
system, and takes advantage of the fact that a solution of some level of
feasibility is always available in a blackboard system. g

In a blackboard architecture, on the other hand, it would not be safe to take
intermediate results of such a system since it would be very hard to
determine their level of reliability. Also it is generally impossible to guarantee
when a full solution can be derived.

a

m

m

Experience with a Course on Architectures for Software Systems 30-52

5 References

[1] Simmons, Reid G., Structured Control for Autonomous Robots, IEEE Transactions on Ro-
botics & Automation, 1993.

[2] David Garlan; Mary Shaw. An Introduction to Software Architecture. In V. Ambriola and G.
Tortora (eds), Advances in Software Engineering and Knowledge Engineering, Volume I,
World Scientific Publishing Company, 1993.

[3] H. Penny Nii. Blackboard Systems. Al Maganizes 7(3):38-53 and 7(4):82-107.

[4] Thomas G. Lane. A Design Space and Design Rules for User Interface Software Architec-
ture. Carnegie Mellon University Software Engineering Institute Technical Report CMU/SEI-

90-TR-23.

Experience with a Course on Architectures for Software Systems 30-53

