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Introduction 

The U.S. Army Aeromedical Research Laboratory (USAARL) often is tasked with the 
assessment of injury potential from impacts and jolts. This requires the analysis of accelerations 
and forces obtained from transducers mounted in human-like manikins and test forms, and generated 
during impact tests. With the exception of the signal conditioning, the analysis is conducted at 
USAARL almost entirely on personal computers (PC) to perform the analog-to-digital conversion 
of conditioned signals, filter the digital signals, extract injury parameters from the signals, and 
display the results in graphical forms on the PC screen and on an attached printer. 

One of the standards for processing impact signals is the Society of Automotive Engineers 
J211 guidelines for instrumentation for impact testing (SAE, 1994). The J211 requires signals from 
impact tests to be filtered using one of four channel frequency classes (CFC) of low-pass filters and 
specifies acceptable frequency response for each filter class. The four filters are designated as CFC 
60, 180, 600, and 1000. It is clear from the J211 filter specifications that they were derived from 
analog Butterworth filters whose corner frequency is equal to the CFC designation divided by 0.6. 
The corner of a low-pass Butterworth filter is defined as the frequency at which the signal loses one- 
half of its power, i.e., where the signal magnitude attenuation is equal to \fVz, or -3 decibels (dB). 

Thus, the corner of CFC 60 filter is at 100 Hz, CFC 180 at 300 Hz, CFC 600 at 1000 Hz, and 
that of CFC 1000 at 1650 Hz. In previous versions of the J211, acceptable roll-off slopes of filters 
ranged from 12 to 24 dB/octave, i.e., filters with 2, 3, or 4 poles were acceptable. The 1994 draft 
proposes upper and lower slopes which are 24 dB/octave, suggesting that a 4-pole filter is the basis 
for the requirement. The method of filtering is left up to the user and may be done with analog 
filters or, as is the current practice in many testing facilities, with digital filters. 

Filtering is, perhaps, the most critical phase in the processing of impact signals. Its primary 
function is to eliminate undesired high-frequency noise that obscures the underlying signature in the 
signal. The importance of filtering becomes evident when considering that filtering reduces the 
peaks in the signal and peaks often are used for assessment of protective devices. The proliferation 
of personal computers has promoted the conversion of analog signals to digital ones, and increased 
the need for sophisticated digital signal processing algorithms to replace the functions traditionally 
reserved for analog electronic systems. 

Because filter design formulas are well-established in the continuous-time world of electrical 
engineering, they often are adapted for digital filtering. Analog Butterworth filters have the property 
of having a maximally flat frequency response in the pass-band, and an asymptotic roll-off beyond 
the corner frequency. The roll-off slope is a function of the order of the filter; however, regardless 
of the order, the attenuation always is -3 dB at the corner frequency. More detailed description of 
the characteristics of these and other filters may be found in many textbooks, e.g., Oppenheim and 
Schäfer, 1975. 



A digital filtering method which has been used at US AARL is to transform the digital signal 
to the frequency domain, using fast Fourier transforms (FFT), then attenuate each frequency 
component by an amount equal to the Butterworth function at that frequency. Since both the real 
and imaginary portions of the frequency magnitude are attenuated by the same amount, no phase 
distortion is introduced and the resulting filter is phaseless. Appendix A is a listing of a Fortran 
subroutine that implements this filtering method. Although this method has proven effective for 
most applications, it has two main disadvantages. First, because the filtering is performed in the 
frequency domain, there are restrictions placed by the FFT algorithm on the number of samples in 
the signal. Thus, the signal may not exceed a predetermined length and, often, the number of 
samples must be a power of 2. This means that if a longer duration signal is needed for some 
analysis, the sampling rate must be reduced in order to meet the limited size and longer duration 
requirements. Reduction of sampling rate may be tolerated up to a point below which events 
containing high frequencies would not be captured in the digitized signals. An example of this 
situation is the repeated jolts signal where several sharp impacts occur separated by time lapses that 
increase the overall duration of the entire signal. 

Second, and a more serious disadvantage of frequency domain filtering has to do with the 
causality of the filter. In analog filters, the output signal is produced only as a result of an input 
signal. It is clear that output does not "anticipate" the oncoming step, but slowly rises as a result of 
it. The delayed response of this causal filter, shown in Figure 1, distorts the phase relationships 
between different signals and must be removed in order to synchronize the timing of events recorded 
in various channels. Phaseless filtering is achieved in frequency-domain FFT filtering which 
eliminates the time delay between input and output. Another approach to phaseless filtering in the 
time domain is to filter the signal once in the forward direction, then a second time in the reverse 
direction. It may be seen from Figure 1 that such noncausal filter unfortunately produces an output 
that anticipates the event and starts responding to it before it occurs. The disadvantage of this 
behavior is the distortion of preimpact state which is essential in some applications where the pre- 
impact value is used as the "zero state" of the transducer output. 

Time-domain recursive filtering addresses the disadvantages FFT filtering. First, with 
recursive filtering, we do not have to contend with FFT algorithms that restrict the number of 
samples and sampling rate. The only limit is the amount of memory which may be set aside in the 
PC hardware. More important, filtering may be done only in the forward direction to produce causal 
filters. The user continues to have the option to produce a phaseless filter at the cost of losing its 
causality. With this flexibility, time-domain filters offer an attractive alternative to frequency- 
domain ones. This was recognized in the newly proposed J211 instrumentation guidelines which 
now include an appendix that provides the implementation of a phaseless fourth order Butterworth 
filter (SAE, 1994). 



Time:   0 120    (ms) 

—      input step signal 

— causal response of analog filter 

— response of noncausal digital filter 

Figure 1.  Comparison of causal and noncausal time responses to a step input signal. 



Objectives 

(1) To develop a computer program to design a digital Butterworth filter of arbitrary 
order and corner frequency for time-domain implementation. 

(2) To develop a computer program to implement the digital Butterworth filter 
recursively in the time domain. 

(3) To compare the frequency response of the provided design and implementation with 
that of the proposed J211 filters. 

Methods 

The method for designing the desired digital filter is to transform the known analog filter 
equations into the digital domain using the bilinear transformation. Details of the procedure are 
described in many digital signal processing textbooks (e.g., Cappellini, Constantinides, and Emiliani, 
1978) and are summarized here. The squared magnitude function of analog Butterworth filters is 
defined in the complex s-plane by 

H(s)H(-S) 
1 

2\N 1   +   (-,2) 
(1) 

where N is the order of the filter and s is a complex variable. These filters have their poles in the s- 
plane equally spaced on a circle of radius equal to the corner (-3 dB) frequency, G>C. 

The bilinear transformation which defined by 

1 -z-1 
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is a simple algebraic substitution which is applied to the Butterworth filter of equation (1). This 
yields the transfer function 
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which can be expressed in the frequency domain by letting z'1 = ej° to give the squared magnitude 
of the frequency response function 

|/7(Op 1 

1 + Ftan2-^- 
2 

N (4) 

For a Butterworth filter, the squared magnitude is equal to one half at the corner frequency regardless 
of the value of N. In particular, for N = 1, the denominator of equation (4) must be equal to 2 at the 
corner to = ooc , i.e., 

1 +   Ptan2-^ = 2 
2 

(5) 

This defines the constant k of the bilinear transformation for a Butterworth filter: 

k2 = 1 / tan: 2       c (6) 

which may substituted in equation (4) to produce 
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Equation (7) is the squared magnitude of the digital Butterworth filter which was obtained 
by applying the bilinear transformation to the analog function. The real and imaginary parts of the 
poles of Butterworth filter, whose order TV is even, are written as follows (Gold and Rader, 1969): 
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for m = 0,1,2,..., 2N-1.  Time-domain implementation is done simply by cascading these sections 
to achieve the desired overall filter. 

The next problem to address is the method of implementation of the filter in the time domain. 
In a cascade implementation, filtering will be done in stages, where output of one stage is used as 
input to the next one. Let X(n) be the n-th input sample in the sequence of unfiltered digital signal, 
and Y(n) the corresponding sample in the filtered output signal. Then, the output sample is given 
by the difference equation: 

Y(n) = a0X(n) + axX(n-\) + a2X(n-2) - bxY(n-l) - b2Y(n-2) (10) 

where üQ, ah a^ bh b2 are the coefficients of a second-order filter sections, derived from the real 
and imaginary parts of the poles. 

The coefficients of the J211 filters are essentially those of a Butterworth design, except that 
the corner frequency is defined in terms of the J211 channel filter class, and an empirical factor is 
introduced into the equations. As with our Butterworth design, the 4th order filter is achieved by 
cascading two second-order sections which, in the J211 guideline, are identical. Given a signal 
sampled at intervals of T seconds (inverse of sampling rate in Hz), the five coefficients of a J211 

filter, whose channel filter class designation is C, are given by: 
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where 

w/\ , ~   / C 
a ü>„ = tan|-^-J and u>d = 2ic(^](1.25) (12) 

The (C/0.6) is the comer frequency of the Butterworth filter and accommodates the common 
usage of "channel filter class" designation C instead of a corner frequency. The other 1.25 constant 
is an empirical constant which will be discussed later. 

Finally, we will describe briefly the method used for generating the frequency response 
curves for this report. The magnitude response at a given frequency may be generated by passing 
a sine wave of that frequency through the filter and simply recording the amount of attenuation 
caused by the filter. By judicious selection of frequencies, a curve may be generated by connecting 
all the frequency response points of individual sine waves. This procedure was the basis for a 
computer program which was written in Microsoft Fortran to design filters, and to generate and plot 
frequency response curves on a personal computer. The program invokes the two filter design and 
implementation routines listed in Appendixes B, C, and D. Although the program allows the 
selection of the filtering direction (forward or backward), only forward filtering was selected. This 
was done after demonstrating that the direction of filtering only affects the time response of the 
signal, i.e., time delay of events in the signal, but not its frequency response. The curves were 
plotted graphically on the PC monitor display. Then a screen image capture utility was used to save 
the plotted response to a bitmap file. Later, a Microsoft Windows-based utility (Paint) was used to 
retrieve each screen image file and print it on a laser printer. 

Results 

The design formulas given by equation (8) were coded into the Fortran subroutine listed in 
Appendix B. The recursive implementation algorithm given by equation (10) also was coded in the 
Fortran subroutine listed in Appendix C. The J211 filter design formulas given in equations (11) and 
(12) were coded in the subroutine listed in Appendix D. These three subroutines were used in a 
program (not included in this report) which was written to generate frequency response plots for 
user-specified parameters. 

To test the accuracy of the design routines, four filters were designed. These are the four 
SAE J211 filters commonly used in processing anthropomorphic manikin transducer signals (e.g., 
accelerations, forces, moments ...) and obtained during impact and crash testing. The same filters 
were designed twice: first using the bilinear transformation (Appendix B), then using the proposed 
J211 formulas (Appendix D). The resulting frequency response plots are shown in Figures 2 through 
5. These plots were generated under "ideal" sampling rates, i.e., such that the sampling rate of each 
sine wave signal was at least 10 times the frequency of the sine, or at least 10 times the corner 
frequency of the filter, whichever was higher. 



Ordinarily,.however, an analog test signal is sampled at a fixed rate which is supposed to be 
at least twice the highest frequency contained in the signal, but usually is 5-10 times that frequency. 
In order to simulate this realistic condition, a fixed sampling rate of 10,000 samples per second (10 
kHz) was used to generate frequency responses of the four J211 filters using the two methods of 
Appendixes B and D. The 10 kHz is the sampling rate recommended in the J211 for sampling 
impact test signals. Results of this simulation produced the eight frequency responses are shown in 
Figures 6, 7, 8, and 9. 

Discussion 

It is clear from the top graphs in Figures 2, 3, 4, and 5 that the standard design routine 
(Appendix B) and the recursive time-domain implementation algorithm (Appendix C) produce the 
well-known Butterworth response when the sampling rate is allowed to vary to accommodate the 
frequencies of the sine waves being filtered. A standard Butterworth filter has a -3 dB attenuation 
at the corner frequency, and an asymptotic roll-off at the rate of 12 dB/octave for each second-order 
section. In the standard design, the asymptote crosses the frequency axis exactly at the corner 
frequency, as shown in the top graphs of Figures 2, 3, 4, and 5. On the other hand, the bottom 
portions of the same figures demonstrate that the frequency responses produced by the J211 design 
formulas (Appendix D) do not result in the standard Butterworth response, even though they remain 
within the specified J211 response corridor. 

This deviation is attributed to the 1.25 empirical constant of equation (12). Recall that J211 
proposes to cascade two identical second-order sections to produce the desired fourth order filter. 
However, by using identical sections, the attenuation at the design corner frequency is no longer -3 
dB, as expected in a Butterworth design, but doubles to -6 dB at the corner frequency. Since the 
frequency response is a continuously decreasing function, there exists a frequency where the fourth- 
order attenuation response crosses the -3 dB level. It is this frequency that the constant 1.25 tries 
to capture. By designing a second-order filter with a corner frequency 1.25 times higher than the 
desired corner of the fourth-order filter, the overall effect will be to produce an attenuation of-3 dB 
at the corner frequency of the desired filter. This is evident in Figures 2 through 5 (bottom graphs) 
where the J211 design produced the desired attenuation at the corner. Unfortunately, the intersection 
of the roll-off asymptote with the frequency axis does not move to the -3 dB frequency, but remains 
at the original corner of the second-order filter, where the attenuation is now -6 dB. In other words, 
the flat portion of the pass band does not extend as far as the standard design at the new corner, but 
starts rolling much earlier. 

Although an ideal Butterworth response may be achieved when the sampling rate is 
unrestricted, in reality, the sampling rate is limited by hardware and software considerations to a 
fixed rate. For example, the J211 guideline recommends a sampling rate of 10 kHz. Using this 
sampling rate to illustrate its effects on the frequency response, it is clear the frequency response of 
the filters deviate noticeably from the ideal Butterworth response regardless of the filter design 
method (Figures 6, 7, 8, and 9). Since this deviation is unavoidable when the sampling rate is fixed, 
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it is necessary tq set limits for the deviations beyond which the response would be unacceptable. 
The J211 corridors which are superimposed on all the figures in this report provide these limits. Of 
course, these limits are intended for processing force and acceleration signals from manikin crash 
tests, and may be redefined when other applications emerge. In addition, the deviation occurs at 
frequencies two to three times the corner frequency. In general, these frequencies should have been 
reduced already by the use of antialias analog filters prior to the analog-to-digital conversion. 

Finally, the recursive filtering routine provided in Appendix C, which implements the 
difference equation (10), should be discussed briefly. Because two prior samples (n-1 and n-2) are 
required to compute each current (n) sample, it is clear the first filtered sample that can be computed 
is point no. 3. Therefore, a starting method has to be devised to deal with the initial conditions of 
the filter. In the code provided in Appendix C, the method used is to extend the starting segment of 
the signal by reflecting points 2 and 3 symmetrically about point 1. This provides two additional 
starting points which are used to start the algorithm, then discarded. Other methods may have to be 
devised by the user to deal with or take advantage of specific initial conditions. Alternatively, the 
user may start digitizing the analog signal earlier than the event of interest, then discard the startup 
segment of the filtered signal in order to avoid the initial effects of the filtering process. Another 
comment on the method given in Appendix C has to do with memory allocation. Since one of the 
objectives of filtering in the time domain is to increase utilization of computer memory for long 
signals instead of auxiliary storage required by FFT filtering, this was accomplished in the provided 
code at a small cost in the algorithm complexity. 

Conclusions 

A computer program was developed to design a Butterworth low-pass digital filter using the 
bilinear transformation. A companion program was written to implement the filter recursively in 
the time domain. The code for these two programs is highly portable and may be recoded in any 
high-level language. The two programs offer a flexible and memory efficient alternative to FFT 
filtering and have been demonstrated to be stable and accurate. The frequency response of the J211 
filters was compared to those designed by our methods. No advantage was found in one method 
over the other when the sampling rate was fixed to 10 kHz. However, the ideal Butterworth filter 
can be achieved precisely with the bilinear transformation design program offered in this report. 

11 



Notes on frequency response plots 

The frequency response plots included in this report were generated point by point by 
passing sine wave signals of different frequencies through the filter. 

For the first eight responses (Figures 2, 3,4, and 5), the sampling rate was variable, that is 
each sine wave signal was sampled at a rate at least 10 times the corner frequency of the filter 
or at least 10 times the frequency of the sine wave being filtered, whichever was greater. 
For the remaining eight frequency responses (Figures 6, 7, 8, and 9), the sampling rate was 
fixed at 10 kHz which is the rate recommended by the J211 guideline. However, for the 
purpose of generating these plots, the sampling rate was never allowed to be less than 10 
times the corner frequency in order to allow a sufficent number of samples per period. 

To deal with the end effects of the filter, only the middle third portions of the input and 
output time signals were scanned to determine the peak-to-peak span of the sine wave 
signals. 

The erratic behavior in some of the frequency response plots at high frequencies of both 
designs may be explained by the small numerical value of the peak-to-peak range in the 
filtered output which tends to be overcome by numerical rounding and truncation errors 
resulting in the observed behavior. In an actual digital signal, these high frequencies should 
have been attenuated already by antialias filters so that these numerical artifacts should not 
be significant. 

Both second-order filtering stages were done in the forward direction. Filtering direction 
affects the time-response, but not the frequency response of the filter. 

The straight lines above and below the frequency response curve are those defined in the 
J211 as boundaries of the accepted frequency response corridor. The faint straight line in the 
middle of the corridor is the asymptote to standard Butterworth response and has a slope of 
24 dB/octave, i.e, 12 dB/octave for each of the two second-order filter sections. 

The unlabeled horizontal grid line between 0 and -10 dB corresponds to the -3 dB attenuation 
level. 
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Figure 2. Frequency response of 100-Hz filter designed for variable sampling rates by standard 
Butterworth method (top) compared to SAE J211 CFC 60 filter (bottom). 
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Figure 3. Frequency response of 300-Hz filter for variable sampling rates designed by standard 
Butterworth method (top) compared to SAE J211 CFC 180 filter (bottom). 
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Figure 4. Frequency response of 1000-Hz filter for variable sampling rates designed by standard 
Butterworth method (top) compared to SAE J211 CFC 600 filter (bottom). 
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Figure 5. Frequency response of 1650-Hz filter for variable sampling rates designed by standard 
Butterworth method (top) compared to SAE J211 CFC 1000 filter (bottom). 
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Figure 6. Frequency response of 100-Hz filter for 10 kHz fixed sampling rate designed by standard 
Butterworth method (top) compared to SAE J211 CFC 60 filter (bottom) 
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Figure 7. Frequency response of 300-Hz filter for 10 kHz fixed sampling rate designed by standard 
Butterworth method (top) compared to SAE J211 CFC 180 filter (bottom). 
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Appendix A. 

Program to filter in the frequency domain. 

ii ii ii ii ii ii n ii ii ii ii ii ii ii n n ii ii ii ii ii ii ii n ii ii ii ii ii ii H ii n ii ii ii ii ii || n || || || || || || |, ,| „ „ „ ii ii M n n ii ii H ii ii n || || || H || || i, „ „ 

SUBROUTINE       fftfilter (signal, npts, samhz, corner, order) 
II n li li II n n II II II n II II n II II II n li n n n n n n n n n n n n n n n n n 11 11 n n n n ll n n n n n n n n n n n n n n n n n n n n u n n n n 11 11 11 n 

"  This subroutine designs a Butterworth filter and applies it to the 
"  the signal.  It requires a fast Fourier transform (FFTO routine (not 
"  provided here) because filtering is done in the frequency domain, 
n 

"  Parameters: 
II 

" signal ... array containing signal before and after filtering 
" npts ... number of samples in signal 
" samhz ... sampling rate of signal, in Hertz 
" corner ... -3 dB corner of desired Butterworth filter, in Hertz 
"    npoles ...  number of poles of Butterorth filter, must be even 
n 

n n n li ll II II II II n II II II II II II II n ii II II II n II n n II II II II II II II n II II II II H II II II || || „ „ „ „ „ „ n n n n 11 n n n 11 n u 11 11 n n n n 11 u n n n 

REAL*4 signal(*) 

funhz = samhz / npts 
wfund = funhz / corn 
order = nploes / 2 
power = 2 * order 
nfreq = npts / 2 

CALL fft (npts, signal, +1) 1 transform to frequency domain 

DO k = 1, nfreq 
ib = 2 * k 
ia = ib - 1 
wfrq = ( k-1 ) * wfund 
ginv = 1 + wfrq ** power 
gain = 1 / SQRT( ginv ) 
signal( ia ) = gain * signal( ia ) 
signal{ ib ) = gain * signal( ib ) 

END DO 

CALL fft (npts, signal, -1) 1 transform back to time domain 

RETURN 
END 
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Appendix B. 

Program to design Butterworth low-pass filters. 

n ii n ii ii ti ii n ii n n n n n n 11 n n n n 11 11 n n 11 11 11 n n ll n n n 11 11 n n n n n n n n n n n n n n n n 11 n n n 11 11 n n n n n 11 11 n n n n 11 11 11 11 n 11 11 n n 

SUBROUTINE       designbutter (samhz, corner, nsect, acof, bcof) 
II II II li ll li n n II II II n it II II II II II II II II n II II II II II II II II II II II II II II II n n II II n II II II n II II II II II II II II II II II II II II II n n II II II II n II II II II II II II II II 

n 

" Subroutine to design low-pass Butterworth digital filters.  The filter is 
" obtained by using the bilinear transformation to transform analog filter 
" equations to digital domain.  Filtering is accomplished by a cascade of 
" second-order sections which are defined by the order of the filter. 
"  Implementation in the time-domain is recursive.  Arguments are: 
n 

"  Input: 
II 

"     samhz  ...  given sampling rate (Hz) of digital signal. 
II 

"     corner ...  given filter corner frequency (Hz) where the magnitude 
" is -3 dB (half-power point). 
n 

"     nsect  ...  given number of 2nd-order sections (pole-pairs).  The 
" number of poles of the filter will be 2 x nsect. 
ti 

"  Output: 
II 

"     acof      coefficients (A0,A1,A2) of 2nd-order filter sections 
"     bcof ...  coefficients (B0,B1,B2) of 2nd-order filter sections 
n 

"  Implementation: 
II 

"     Recursive filtering through each 2nd-order section is performed by 
"     the difference equation: 
II 

"  Y(n) = AO * X(n) + Al * X(n-l) + A2 * X(n-2) - Bl * Y(n-l) - B2 * Y(n-2) 
n 

II n n II II II II II II II n II II n II II II II n II II II n n n n n n II II II n n n n II n II n n n n n n n n n n n it n n n n n n n n n n 11 it 11 n n n n it n 11 u n n 11 n n 

REAL*4 acof(3,*), bcof(3,*) 

REAL*4 pie /3.1415926535/ 

wc = corner / samhz 
fact = TAN( pie * wc ) 
npoles = 2 * nsect 
sector = pie / npoles 
wedge =  sector / 2. 
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DO m = 1, nsect 

ang  = wedge * ( 2*m - 1 ) 

xm = - fact * COS( ang ) 

ym =   fact * SIN( ang ) 

den = ( 1. - xm )**2 + ym**2 

urn 

TO 
= ( 1. - xm**2 - ym**2 )/ den 
= ( 2. * ym ) / den 

bcof(l,m) = 1. 
bcof(2,m) = -2. * urn 
bcof(3,m) =um*um+vm*vm 

sum = bcof(l,m) + bcof(2,m) + bcof(3,m) 

acof(l,m) = sum / 4. 
acof(2,m) = sum / 2. 
acof(3,m) = sum / 4. 

END DO 

RETURN 
END 
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Examples of filters designed with the designbutter routine listed in this appendix 

Design method:  Standard Butterworth 

Sampling rate:  samhz = 10000 Hz 

Filter corner = 100 Hz 

No. sections  = 2 

Filter coefficients: Section 1 Section JL. 

aO . . .  acof(l) = .932544E- ■03 .963479E- ■03 
al . . acof(2) = .186509E- ■02 .192696E- ■02 
a2 . . .  acof(3) = .932544E- ■03 .963479E- ■03 
bl . . .  bcof(2) = -1.88661 -1.94922 

b2 . . .  bcof(3) = .890340 .953070 

Design method:  Standard Butterworth Filter corner = = 300 Hz 
Sampling rate:  samhz = 10000 Hz No. sections = 2 

Filter coefficients: Section 1 Section 2 

aO ... acof(l)  = .754943E-02 .826380E-02 

al . . . acof(2) .150989E-01 .165276E-01 

a2 . . . acof(3)  = .754943E-02 .826380E-02 

bl . . . bcof(2)  = -1.67466 -1.83313 

b2 . .. bcof(3)  = .704859 .866181 

Design method:  Standard Butterworth Filter corner = = 1000 Hz 

Sampling rate:  samhz = 10000 Hz No. sections = 2 

Filter coefficients: Section 1 Section 2 

k aO ... acof(l)  = .618852E-01 .779563E-01 

al . . . acof(2)  = .123770 .155913 

a2 ... acof(3)  = .618852E-01 .779563E-01 

bl . . . bcof(2)  = -1.04860 -1.32091 

b2 . . . bcof(3)  = .296140 .632739 

Design method: 

Sampling rate: 

Standard Butterworth 

samhz = 16500 Hz 

Filter corner 

No. sections 

1650 Hz 

2 

Filter coefficients: 

aO ...  acof(1)  = 

al 

a2 

bl 

b2 

acof(2) 

acof(3) 

bcof(2) 

bcof(3) 

Section 1 

.618852E-01 

.123770 

.618852E-01 

-1.04860 

.296140 

Section 2 

.779563E-01 

.155913 

.779563E-01 

-1.32091 

.632739 
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Appendix C. 

Program to implement a second-order filter in the time domain. 

■I ii H H H ii ii ii n n M H H ii ti ii ii n ii n ii ii ii n n ii ii n ii n ii ii ii ii n ii n ii n ii ii H it n n ii ii ii ii ii ii ii ii ii ii ii ii i, „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ 

SUBROUTINE       filter_2nd_order (x, npt, a, b) 
ii II II II II II II II II II II II II II n n II n n II H II ii n n M n ii ii n ii ii i, „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ n n n n n n (((| n 

n 

»  Subroutine for recursive application of second-order filter to a time 
"  domain signal. 
II 

"  Inside this routine, filtering is forward.  Backward filtering may be 
"  accomplished by reversing the signal prior to calling this routine, 
"  then restoring the order upon return of the filtered signal. 
II 

" The first two points are reflected about the initial point to produce 
" a reasonable starting method.  Other initial conditions may dictate 
" other starting methods. 
II 

"  By sliding the filter window along the time axis, the need for auxiliary 
"  storage is eliminated, allowing the full utilization of computer memory. 
II 

"  This routine illustrates the correct usage of the filter coeffients 
"  in the difference equation: 
n 

Y(n) = A0*X(n) + Al*X(n-l) + A2*X(n-2) - Bl*Y(n-l) - B2*Y(n-2) 
n 

"  Arguments: 

"     xO ■••   upon entry, an array containing the unfiltered signal, 
" and replaced by the filtered signal upon return, 
n 

"     npt ...   number of samples in the x() signal array. 
II 

"     a<) •■•   array containing AO, Al, and A2 coefficients of filter 
"     fa0 •••   array containing BO, Bl, and B2 coefficinets of filter 
" Note:  BO must be supplied even through not used. 
n 

li n II n II II n II II II n II II II II II II II II II II II II II n n II n II II II II II n „ „ „ „ ,, „ n II II II n II n it n n n n u n n n n 11 n n n n n n n n n n n n n n n n 

REAL*4   x(*),   a(*),   b(*) 

aO = a(l) 
al = a(2) 
a2 = a(3) 
bl = b(2) 
b2 = b(3) 
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xnO = x(l) 
xnl = 2 * xnO - x(2) 
xn2 = 2 * xnO - x(3) 

ynl = xn2 
yn2 = xnl 

ynO = aO * xnO + al * xnl + a2 * xn2 - bl * ynl - b2 * yn2 
x(l) = ynO 

xn2 = xnl 
xnl = xnO 
xnO = x(2) 

yn2 = ynl 
ynl = ynO 

ynO = aO * xnO + al * xnl + a2 * xn2 - bl * ynl - b2 * yn2 
x(2) = ynO 

ynl = x(2) 
yn2 = x(l) 

DO n = 3, npt 

yn = aO * x(n) + al * x(n-l) + a2 * x(n-2) - bl * ynl - b2 * yn2 

x(n- 2) = yn2 
yn2 = ynl 
ynl = yn 

END DO 

RETURN 
END 
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Appendix P. 

Program to design a filter per SAE J211 (draft) guidelines. 

■I n n n n ii ii ii H ii n ii ii H ii ii ii ii ii n n ii ii n n n n ii H ii H ii H ii H ii ii n ii ii ii ii n „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ 

SUBROUTINE       design J211 (samhz, corner, nsect, acof, bcof) 
II n II II II II ii II II II II H H II n n M II H H n II M H n n n n ii n ii n H H ii H ii II II II ii ii H „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ 

II 

" Subroutine to design low-pass digital filter using equations recommended 
" by the SAE J211 guideline(1994, draft).  All J211 channel class filters 
" (CFC 60, 180, 300, and 1000) are derived from a 4-th order Butterworth 
" filter, modified to keep the filter response inside a desired frequency 
" response corridor.  Arguments are: 

Input: 

samhz 

corner 

nsect 

Output: 

acof 
bcof 

given sampling rate (Hz) of digital signal. 

given filter corner frequency (Hz) where the magnitude 
is -3 dB (half-power point).  This is equal to the class 

CFC of the filter, divided by 0.6 factor. 

given number of 2nd-order sections (pole-pairs).  For the 
J211 filters, there are 2 identical sections. 

coefficients (A0,A1,A2) of 2nd-order filter sections 
...  coefficients (B0,B1,B2) of 2nd-order filter sections 

" Implementation: 
n 

" Recursive filtering through each 2nd-order section is performed by 
" the difference equation: 

" Y(n) = A0 * X(n) + Al * X(n-l) + A2 * X(n-2) - Bl * Y(n-l) - B2 * Y(n-2) 
II 

II II II II II II II II II II II II II II |L L| || || || || || || || || || || || || || || || || || || || || || || || || „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ 

REAL*4 acof(3,*), bcof(3,*) 

REAL*4 pie /3.1415926535/ 

class = 0.6 * corner 
IF ( NINT (corner) .EQ. 1650 ) class 1000 
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ts = 1.00 / samhz 
sr2 = SQRT (2.0) 
wd = 2.d0 * pie * class * 2.0775 

arg = wd * ts / 2. 
wa = TAN (arg) 
wa2 = wa * wa 

den = ( 1. + sr2 * wa + wa2 ) 

aO = wa2 / den 
al = 2. * aO 
a2 = aO 

bO = 1.0 
bl = 2. * ( wa2 - 1. ) / den 
b2 = (1. - sr2 * wa + wa2 ) / den 

DO m = 1, nsect 

aco£(l,m) = aO 
acof(2,m) = al 
acof(3,m) = a2 

bcof(1 m) = 1. 
bcof(2 m) = bl 
bcof(3 m) = b2 

END DO 

RETURN 
END 
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Design method:  SAE J211 guideline Filter corner = = 100 Hz 
Sampling rate:  samhz = 10000 Hz No. sections  = = 2 

Filter coefficients: Section 1 Section 2 
aO ...  acof(1)  = .145237E-02 .145237E-02 
al ...  acof(2)  = .290474E-02 .290474E-02 
a2 ...  acof(3)  = .145237E-02 .145237E-02 
bl ...  bcof(2)  = -1.88934 -1.88934 
b2 . . .  bcof(3)  = .895153 .895153 

Design method: 
Sampling rate: 

SAE J211 guideline 
samhz = 10000 Hz 

Filter corner = 300 Hz 
No. sections  = 2 

Filter coefficients: Section 1 Section 2 
aO ...  acof(l) = .117963E- -01 •117963E- ■01 
al ...  acof(2) = .235925E- ■01 .235925E- ■01 
a2 ...  acof(3) = .117963E- •01 .117963E- ■01 
bl ...  bcof(2) = -1.67012 -1.67012 
b2 .. .  bcof(3) = .717303 .717303 

Design method: 
Sampling rate: 

SAE J211 guideline 
samhz = 10000 Hz 

Filter corner 
No. sections 

1000 Hz 
2 

Filter coefficients Section 1 Section 2 
aO ...  acof(l) = .971846E-01 •971846E-01 
al ...  acof(2) = .194369 .194369 
a2 ...  acof(3) = .971846E-01 •971846E-01 
bl ...  bcof(2) = -.945574 -.945574 
b2 ...  bcof(3) = .334312 .334312 

Design method:  SAE J211 guideline 
Sampling rate:  samhz = 16500 Hz 

Filter corner 
No. sections 

1650 Hz 
2 

Filter coefficients: 
aO . . .  acof(l) 
al . . acof(2) 
a2 . . .  acof(3) 
bl . . .  bcof(2) 
b2 . . .  bcof(3) 

Section 1 
.987937E-01 
.197587 
.987937E-01 
,935632 
.330807 

Section 2 
.987937E-01 
.197587 
.987937E-01 
.935632 
.330807 
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Initial distribution 

Commander, U.S. Army Natick Research, 
Development and Engineering Center 

ATTN: SATNC-MIL (Documents 
Librarian) 
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Chairman 
National Transportation Safety Board 
800 Independence Avenue, S.W. 
Washington, DC 20594 

Commander 
10th Medical Laboratory 
ATTN:  Audiologist 
APO New York 09180 

Executive Director, U.S. Army Human 
Research and Engineering Directorate 

ATTN: Technical Library 
Aberdeen Proving Ground, MD 21005 

Commander 
Man-Machine Integration System 
Code 602 
Naval Air Development Center 
Warminster, PA  18974 

Commander 
Naval Air Development Center 
ATTN:  Code602-B 
Warminster, PA  18974 

Naval Air Development Center 
Technical Information Division 
Technical Support Detachment 
Warminster, PA  18974 

Commanding Officer 
Armstrong Laboratory 
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Air Force Base, OH 45433-6573 

Commanding Officer, Naval Medical 
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National Naval Medical Center 
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Deputy Director, Defense Research 
and Engineering 
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Director 
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Washington, DC 20307-5001 

Commander/Director 
U.S. Army Combat Surveillance 
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Commander, U.S. Army Test 
and Evaluation Command 

Directorate for Test and Evaluation 
ATTN: AMSTE-TA-M (Human Factors 

Group) 
Aberdeen Proving Ground, 

MD 21005-5055 

Naval Air Systems Command 
Technical Air Library 950D 
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Department of the Navy 
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Director 
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USAMRMC 
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ATTN: Technical Information Branch 
2800 Powder Mill Road 
Adelphi, MD 20783-1197 
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Analysis Agency 

ATTN: AMXSY-PA (Reports Processing) 
Aberdeen Proving Ground 
MD 21005-5071 

U.S. Army Ordnance Center 
and School Library 

Simpson Hall, Building 3071 
Aberdeen Proving Ground, MD 21005 

U.S. Army Environmental 
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Director, Biological 
Sciences Division 

Office of Naval Research 
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Commandant 
U.S. Army Aviation 

Logistics School ATTN: ATSQ-TDN 
Fort Eustis, VA 23604 

Headquarters (ATMD) 
U.S. Army Training 
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ATTN: ATBO-M 
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of Technology (AFIT/LDEE) 
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Federal Aviation Administration 
Civil Aeromedical Institute 
Library AAM-400A 
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