United States Air Force 611th Civil Engineer Squadron

Elmendorf AFB, Alaska



Installation Restoration Program Remedial Investigation/Feasibility Study Galena Airport, Alaska

**Treatability Study Report** 

19950315 120

January 1995

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

|                      | REPORT DO                                                                                                                                                                                                                                                                                    | <b>DCUMENTATION PA</b>                                                                                                                                                                                                                                          | GE                                                                                                                                                                                                      | Form Approved<br>OMB No. 0704-0188                                                                                                                                                                                                               |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ic maintai<br>sugges | eporting burden for this collection of information is<br>ning the data needed, and completing and reviewin<br>tions for reducing this burden, to Washington Head<br>fice of Management and Budget Panerwork Red                                                                              | estimated to average 1 hour per response, includ<br>ing the collection of information. Send comments re<br>lquarters Services, Directorate for Information Op<br>uction Project (0704-0188). Washington, DC 2050                                                | ing the time for reviewing instructions, si<br>egarding this burden estimate or any oth<br>erations and Reports, 1215 Jefferson Da<br>33.                                                               | earching existing data sources, gathering and<br>her aspect of this collection of information, including<br>avis Highway, Suite 1204, Arlington, VA 22202-4302, and                                                                              |
| 1.                   | AGENCY USE ONLY (Leave blank)                                                                                                                                                                                                                                                                | 2. REPORT DATE<br>27. January 1995                                                                                                                                                                                                                              | 3. REPORT TYPE AND DAT                                                                                                                                                                                  | res covered                                                                                                                                                                                                                                      |
| 4.                   | TITLE AND SUBTITLE                                                                                                                                                                                                                                                                           | Li bandary 1000                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                       | 5. FUNDING NUMBERS                                                                                                                                                                                                                               |
|                      | Treatability Study (TS) Report                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         | C-F33615-90-D-4013-0007                                                                                                                                                                                                                          |
| 6.                   | AUTHOR(S)                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  |
|                      | Radian Corporation                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  |
| 7.                   | PERFORMING ORGANIZATION NA                                                                                                                                                                                                                                                                   | ME(S) AND ADDRESS(ES)                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                       | . PERFORMING ORGANIZATION<br>REPORT NUMBER                                                                                                                                                                                                       |
|                      | Radian Corporation<br>P.O. Box 201088                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         | 95-640-305-06                                                                                                                                                                                                                                    |
|                      | 8501 N. Mopac Blvd.<br>Austin, Texas 78759                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  |
| 9.                   | SPONSORING/MONITORING AGEN                                                                                                                                                                                                                                                                   | ICY NAME(S) AND ADDRESS(ES)                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                       | 0. SPONSORING/MONITORING<br>AGENCY REPORT NUMBER                                                                                                                                                                                                 |
|                      | ERD<br>8001 Inner Circle, Ste. 2<br>Brooks AFB, Texas 78235-5328                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  |
| 11.                  | SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 | I                                                                                                                                                                                                       |                                                                                                                                                                                                                                                  |
|                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  |
| 12a                  |                                                                                                                                                                                                                                                                                              | FMENT                                                                                                                                                                                                                                                           | [1                                                                                                                                                                                                      | 2b. DISTRIBUTION CODE                                                                                                                                                                                                                            |
| 120.                 | Approved for Public Belease                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  |
|                      | Distribution is Unlimited                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  |
|                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  |
| 13.                  | ABSTRACT (Maximum 200 words)                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  |
|                      | The USAF contracted Radian Corpora<br>for remediating soils contaminated with<br>technical report describes the experim<br>and pilot-scale SVE tests conducted                                                                                                                               | tion to perform treatability studies to evan<br>n motor and jet fuel at the Petroleum, C<br>ental methods and interprets the analyt<br>between July 1992 and February 1994                                                                                      | aluate soil vacuum extraction (S<br>Dils, and Lubricants (POL) Tanl<br>ical and operational results from                                                                                                | WE) and biodegradation technologies<br>k Farm, Galena Airport, Alaska. This<br>m the bench-scale biotreatment tests                                                                                                                              |
|                      | An initial pilot test conducted at the Ga<br>volatile organic compounds (VOCs). If<br>pilot test design included two study a<br>soil, soil gas, and groundwater moni<br>between 50 to 380 kg/day. In situ bio<br>test. Similar biodegradation rates we<br>oxygen levels induced by SVE opera | lena Airport POL site during July to Se<br>Beginning in August 1993, a second pil<br>reas, each equipped with a central va<br>toring points. Monitoring results show<br>degradation rates up to 8 mg/kg/day w<br>re observed in bench-scale tests. The<br>tion. | ptember 1992 demonstrated the<br>ot SVE test was conducted for<br>our extraction well; a series of<br>that average VOC removal ra-<br>rere also measured in the vado<br>increase in biological activity | he effectiveness of SVE for removing<br>a six-month operational period. This<br>air and/or steam injection points; and<br>ttes by the twin SVE systems ranged<br>se-zone soils during the second pilot<br>is attributed to the higher subsurface |
| 14.                  | SUBJECT TERMS                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                 | <u> </u>                                                                                                                                                                                                | 15. NUMBER OF PAGES                                                                                                                                                                                                                              |
|                      | Draft Treatability Study Report, Instal<br>Remedial Investigation/Feasibility Stu                                                                                                                                                                                                            | lation Restoration Program,<br>Idy, Galena AFS, Alaska                                                                                                                                                                                                          |                                                                                                                                                                                                         | 16. PRICE CODE                                                                                                                                                                                                                                   |
| 17.                  | SECURITY CLASSIFICATION OF<br>REPORT                                                                                                                                                                                                                                                         | 18. SECURITY CLASSIFICATION<br>OF THIS PAGE                                                                                                                                                                                                                     | 19. SECURITY CLASSIFICA<br>OF ABSTRACT                                                                                                                                                                  | ATION 20. LIMITATION OF ABSTRACT                                                                                                                                                                                                                 |
|                      | Unclassified                                                                                                                                                                                                                                                                                 | Unclassified                                                                                                                                                                                                                                                    | Unclassified                                                                                                                                                                                            | UL<br>Standard Form 298 (Rev. 2-89                                                                                                                                                                                                               |

Prescribed by ANSI Std. 239-18 298-102

## TREATABILITY STUDY REPORT DISCLAIMER

#### **NOTICE**

This report has been prepared for the United States Air Force by Radian Corporation for the purpose of aiding implementation of a final remedial action plan under the Air Force Installation Restoration Program (IRP). Since the report relates to preliminary results from a pilot remedial action demonstration project, its release before an Air Force final decision on remedial action may be in the public's interest. The limited objectives of this report and the ongoing nature of the IRP, along with the evolving knowledge of site conditions and the chemical effects on the environment and health, must be considered when evaluating the report, since subsequent facts may become known that may make this report premature or inaccurate. Acceptance of this report in performance of the contract under which it is prepared does not mean that the Air Force adopts the conclusions, recommendations, or other views expressed herein, which are those of the contractor only and do not necessarily reflect the official position of the United States Air Force.

Copies of this report may be purchased from the following:

Government agencies and their contractors registered with the Defense Technical Information Center (DTIC) should direct requests for copies of this report to the Defense Technical Information Center, Cameron Station, Alexandria, VA 22304-6145.

Non-Government agencies may purchase copies of this document from the National Technical Information Services (NTIS), 5285 Port Royal Road, Springfield, VA 22161.

| Accesion For         |                |                  |  |
|----------------------|----------------|------------------|--|
| NTIS CRA&I           |                |                  |  |
| By<br>Distribution / |                |                  |  |
| Availability Codes   |                |                  |  |
| Dist                 | Avail a<br>Spe | and / or<br>cial |  |
| A-1                  |                |                  |  |

| 1 | 1 SUMMARY OF TREATABILITY STUDY |                                                                                                                                                                                                                                                                                               |  |  |  |
|---|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|   | 1.1 E<br>1.2 T<br>1<br>1<br>1   | Background       1-1         Greatability Study Program       1-1         1.2.1       Phase I Pilot-Scale Test       1-1         1.2.2       Phase I Bench-Scale Test       1-2         1.2.3       Phase II Pilot-Scale Test       1-2         1.2.4       I NAPI Recovery Testing       1-2 |  |  |  |
|   | 1.3 F                           | Future Considerations                                                                                                                                                                                                                                                                         |  |  |  |
| 2 | SITE DES                        | SCRIPTION AND PROJECT BACKGROUND                                                                                                                                                                                                                                                              |  |  |  |
|   | 2.1 S<br>2.2 T<br>2             | Site Description2-1Greatability Study Program2-42.2.1Phase I2-42.2.2Phase II2-6                                                                                                                                                                                                               |  |  |  |
| 3 | PHASE I                         | ACTIVITIES AND RESULTS                                                                                                                                                                                                                                                                        |  |  |  |
|   | 3.1 H                           | Pilot-Scale Test       3-1         B.1.1       Monitoring and Testing         B.1.2       Unit Operation         B.1.3       Results of Phase I Pilot-Scale Test         B.1.3       Results of Phase I Pilot-Scale Test                                                                      |  |  |  |
|   | 3.2 I<br>3<br>3                 | Bench-Scale Test       3-10         3.2.1       Soil Characterization       3-10         3.2.2       Respirometry Tests       3-12         3.2.3       Degradation Rate       3-12                                                                                                            |  |  |  |
| 4 | PHASE II                        | I ACTIVITIES AND RESULTS 4-1                                                                                                                                                                                                                                                                  |  |  |  |
|   | 4.1 S<br>4.2 S<br>4             | System Installation4-1System Startup and Operation4-14.2.1West Cell Operation4-44.2Fast Cell Operation4-4                                                                                                                                                                                     |  |  |  |
|   | 4.3 N<br>4                      | Monitoring         4-4           4.3.1         West Cell Monitoring         4-7           4.3.2         East Cell Monitoring         4-14                                                                                                                                                     |  |  |  |
|   | 4.4 H                           | Process Performance Measurements4-204.4.1West Cell Operating Parameters4-234.4.2East Cell Operating Parameters4-234.4.3Air Permeability and SVE Zone of Influence4-234.4.4Air Sparging Zone of Influence4-304.4.5In Situ Respiration Tests4-32                                                |  |  |  |
| 5 | LNAPL F                         | Recovery Testing and Results                                                                                                                                                                                                                                                                  |  |  |  |
|   | 5.1 I                           | Phase I Recovery Testing (September 1992)       5-1         5.1.1       Activities       5-1         5.1.2       Results       5-1                                                                                                                                                            |  |  |  |

# Page

|   | 5.2   | Phase II Recovery Testing (July 1993)    | -3       |
|---|-------|------------------------------------------|----------|
|   |       | 5.2.1 Activities                         | .3       |
|   |       | 5.2.2 Results                            | 2        |
|   | 5.3   | Phase III Recovery Testing (April 1994)  | .3<br>7  |
|   |       | 5.3.1 Activities                         | •7       |
|   |       | 5.3.2 Results                            | -0<br>-8 |
| 6 | EVAL  | UATION OF THE TREATABILITY STUDY         | -1       |
|   | 6.1   | Limitations Imposed by Site Conditions   | 1        |
|   | 6.2   | Feasibility of Winter Operation          | ·1<br>1  |
|   | 6.3   | Soil Vacuum Extraction System            | 1        |
|   | 6.4   | Air Sparging System                      | 3        |
|   | 6.5   | Steam Injection System                   | Δ        |
|   | 6.6   | Hydrocarbon Removal Rate                 | 4        |
|   |       | 6.6.1 Physical Processes                 | 4        |
|   |       | 6.6.2 Biological Processes               | 6        |
|   |       | 6.6.3 Comparison of Removals             | 9        |
|   | 6.7   | LNAPL Recovery System                    | 9        |
|   | 6.8   | Conclusions                              | 0        |
| 7 | RECON | MENDATIONS FOR TECHNOLOGY IMPLEMENTATION | 1        |
|   | 7.1   | Free-Product Recovery                    | 1        |
|   | 7.2   | Residuals Treatment                      | 1        |
|   | 7.3   | Dissolved-Phase Treatment                | 2        |
|   | 7.4   | Design Considerations                    | 2<br>2   |
|   | 7.5   | Summary                                  | 4        |
| 8 | REFER | ENCES                                    | 1        |
|   |       |                                          |          |

Appendix A-Phase I Pilot-Scale SVE Test

Appendix B—Phase I Bench-Scale Test

Appendix C—Phase II Pilot-Scale SVE/Sparging Test

Appendix D-Light Nonaqueous Phase Liquid Recovery Tests

Appendix E—Treatability Study Analysis

#### LIST OF FIGURES

| 2-1  | General Locations of Galena Airport and the Treatability Study Site                                                                            |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-2  | Location of the Treatability Study in the POL Tank Farm at Galena Airport                                                                      |
| 2-3  | Chronology of the Treatability Study at Galena Airport 2-5                                                                                     |
| 3-1  | Layout of the Phase I Pilot-Scale SVE System                                                                                                   |
| 3-2  | Cross Section Along the Berm in the Southeast Part of the POL Tank Farm                                                                        |
| 3-3  | Concentrations of Total Non-Methane Hydrocarbons and BTEX Compounds in Soil Gas Samples<br>Collected During the Phase I Pilot-Scale Test       |
| 3-4  | Concentration of Total Non-Methane Hydrocarbons (TNMHC) and Total BTEX Compounds in the Extracted Soil Gas During the Phase I Pilot-Scale Test |
| 3-5  | Water Level Change for the Yukon River and Monitor Well 05-MW-08 During the Phase I      Pilot-Scale Test      3-5                             |
| 3-6  | Concentrations of Hydrocarbons in Soil Samples from Locations V1 - V3                                                                          |
| 3-7  | Idealized Air Flow Diagram Based on Observations During the Phase I Pilot-Scale Test                                                           |
| 3-8  | Hydrocarbon Removal at the POL Tank Farm During the Phase I Pilot-Scale Test                                                                   |
| 4-1  | Site Layout for the Phase II Pilot-Scale Test 4-2                                                                                              |
| 4-2  | Schematic Diagram of the Process Components for the Phase II Pilot-Scale Test                                                                  |
| 4-3  | Daily Hours of Operation for the Process Components in the West Cell                                                                           |
| 4-4  | Daily Hours of Operation for the Process Components in the East Cell                                                                           |
| 4-5  | Constituent Concentrations in Soils from the West Cell                                                                                         |
| 4-6  | Microbial Plate Counts for Soils Collected in the West Cell 4-10                                                                               |
| 4-7  | Soil Temperatures Measured in the West Cell 4-10                                                                                               |
| 4-8  | Water Level Fluctuations in the POL Tank Farm and for the Yukon River During the Test Period.<br>The Sampling Events are Marked for Reference  |
| 4-9  | Observed Free Product Thicknesses in the Monitor Wells at the West Cell 4-13                                                                   |
| 4-10 | Field Analytical Results for the Groundwater from the West Cell                                                                                |

## LIST OF FIGURES (Continued)

| 4-11 | Total Non-Methane Hydrocarbons and BTEX Concentrations in the Soil Gas at the West CellVapor Probes are Grouped by Soil Contamination Levels and Biological Activity4-15 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-12 | Oxygen and Carbon Dioxide Concentrations Measured in the Soil Gas at the West Cell                                                                                       |
| 4-13 | Soil Gas Temperatures Measured at the West Cell 4-16                                                                                                                     |
| 4-14 | Constituent Concentrations in Soils from the East Cell 4-17                                                                                                              |
| 4-15 | Microbial Plate Counts for Soils Collected in the East Cell 4-18                                                                                                         |
| 4-16 | Soil Temperatures Measured in the East Cell 4-18                                                                                                                         |
| 4-17 | Observed Free Product Thicknesses in the Monitor Wells at the East Cell                                                                                                  |
| 4-18 | Field Analytical Results for the Groundwater from the East Cell                                                                                                          |
| 4-19 | Total Non-Methane Hydrocarbons and BTEX Concentrations in the Soil Gas at the East Cell 4-21                                                                             |
| 4-20 | Oxygen and Carbon Dioxide Concentrations Measured in the Soil Gas at the East Cell                                                                                       |
| 4-21 | Soil Gas Temperatures Measured in the Shallow Vapor Probes at the East Cell                                                                                              |
| 4-22 | SVE Exhaust Gas Flow Rate During the Phase II Test for the West Cell                                                                                                     |
| 4-23 | TNMHC and BTEX Concentrations in the SVE Exhaust Gas at the West Cell                                                                                                    |
| 4-24 | Dissolved Oxygen in Groundwater from the West Cell                                                                                                                       |
| 4-25 | Groundwater Temperatures Measured at the West Cell                                                                                                                       |
| 4-26 | SVE Exhaust Gas Flow Rate During the Phase II Test for the East Cell                                                                                                     |
| 4-27 | TNMHC and BTEX Concentrations in the SVE Exhaust Gas at the East Cell                                                                                                    |
| 4-28 | Dissolved Oxygen in Groundwater from the East Cell                                                                                                                       |
| 4-29 | Groundwater Temperatures Measured at the East Cell 4-27                                                                                                                  |
| 4-30 | Typical SVE Flow Net in the West Cell During Phase II                                                                                                                    |
| 4-31 | Oxygen Utilization, Carbon Dioxide Production, and Estimated Hydrocarbon Degradation Rates<br>During the Day-60 Respiration Test in the West Cell                        |
| 4-32 | Oxygen Utilization, Carbon Dioxide Production, and Estimated Hydrocarbon Degradation<br>During the Day-150 Respiration Test                                              |

## LIST OF FIGURES (Continued)

| 5-1 | Baildown Test Results for 05-RW-01 (September 1992)                                                                                                                         | 5-2 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5-2 | Baildown Test Results for 05-RW-10 (September 1992)                                                                                                                         | 5-2 |
| 5-3 | Schematic of SOS Product-only Recovery System                                                                                                                               | 5-4 |
| 5-4 | Baildown Test Results for 09-MW-08 (July 1993)                                                                                                                              | 5-6 |
| 5-5 | Baildown Testing and Skimming Results for 05-RW-01 (July 1993)                                                                                                              | 5-6 |
| 6-1 | Annual Fluctuation of the Water Table at the POL Tank Farm. Approximate Elevations of the Wells and Injection Points in the Phase II Study Area Are Provided for Reference. | 6-2 |
| 6-2 | Average Free Product Thicknesses Observed in the West Cell Monitor Wells During the Phase II Test                                                                           | 6-2 |
| 6-3 | Cumulative Mass of Hydrocarbons Removed by the East and West SVE Systems                                                                                                    | 5-5 |
| 6-4 | Contour Map of Biological Indicators and Hydrocarbon Concentrations in the Study Area                                                                                       | 5-8 |
| 7-1 | Conceptual Hydrocarbon Migration Pattern at Galena Airport                                                                                                                  | 7-2 |
| 7-2 | Conceptual Design for the First Stage of a Full-Scale Remediation System at the POL Tank Farm                                                                               | 7-5 |

#### LIST OF TABLES

| 3-1 | Sampling Schedule for the Phase I Pilot-Scale Test                                                            |
|-----|---------------------------------------------------------------------------------------------------------------|
| 3-2 | Experimental Design of the Galena Biotreatability Study                                                       |
| 3-3 | Analytical Procedures, Estimated Detection Limits, and Frequency of Soil Analyses for the Bench-Scale Test    |
| 3-4 | Physical and Chemical Characterization Results for the Soil Samples Before and After<br>the Incubation Period |
| 3-5 | Summary of Hydrocarbon Removal Rates from Bench-Scale Test                                                    |
| 4-1 | Monitoring Schedule for the Phase II Pilot-Scale Test                                                         |
| 4-2 | Constituent Concentrations in the Groundwater for the West Cell                                               |
| 4-3 | Constituent Concentrations in the Groundwater from the East Cell                                              |
| 4-4 | Summary of Process Variables Monitored Daily During the Phase II Test                                         |
| 4-5 | Calculated Air Permeability Coefficients from Transient Pressure Distribution Data in<br>August 1993          |
| 4-6 | Calculated Air Permeability Coefficients from Transient Pressure Distribution Data in<br>October 1993         |
| 4-7 | Calculated Air Permeability Coefficients from Transient Pressure Distribution Data in December 1993 4-29      |
| 4-8 | Summary of Steady-State Helium Concentrations During the Air Sparging Tracer Test                             |
| 5-1 | Phase II Hydrocarbon Recovery System (Summer 1993)                                                            |
| 5-2 | Phase III LNAPL Thickness Survey (Winter 1994)                                                                |
| 5-3 | Phase III Hydrocarbon Recovery Summary (Winter 1994)                                                          |
| 6-1 | Hydrocarbon Biodegradation Rates (mg/kg/day) Determined During the Treatability Study                         |
| 6-2 | Summary of Hydrocarbons Removed During the Phase II Pilot Scale Test                                          |

# Section 1 SUMMARY OF TREATABILITY STUDY

#### 1.1 Background

The U.S. Air Force (USAF) is conducting a Stage 3 remedial investigation/feasibility study (RI/FS) as part of the Installation Restoration Program (IRP) at Galena Airport and Campion Air Force Station in Alaska. A treatability study (TS) was conducted as part of the FS, including bench-scale and pilot-scale tests, to evaluate soil remediation technologies for the Petroleum, Oils, and Lubricants (POL) Tank Farm site (ST005) at Galena Airport. The treatment technologies tested include soil vacuum extraction (SVE), free-phase hydrocarbon removal, and enhanced bioremediation. These remedial technologies were previously recommended for cleanup of hydrocarbon-contaminated soils at Galena Airport in the Stage 2 RI/FS Report (USAF, 1991) and the Detailed Analysis of Treatment Alternatives (DATA; USAF, 1992a).

Unique hydrological conditions are present at

the site, causing contaminants to spread both vertically and horizontally. The site features groundwater that fluctuates annually over a 20-ft vertical range, discontinuous permafrost layers, and isolated lenses of floating, light nonaqueous phase liquids (LNAPL), presumably motor and jet fuels.

#### 1.2 **Treatability Study Program**

On the basis of recommendations of the DATA, bench-scale and pilot-scale treatability studies were conducted to evaluate in situ remediation technologies for soils contaminated with gasoline and jet fuel. The TS program consisted of the following activities:

- 1. A Phase I pilot-scale test of an SVE system at the Galena Airport POL Tank Farm (July through September 1992);
- 2. A Phase I bench-scale test to evaluate treatments that could potentially accelerate hydrocarbon biodegradation rates in soils (conducted in Radian Corporation's Austin laboratory from September through December 1992);

- 3. A Phase II pilot-scale test of enhanced SVE systems that incorporated in situ air sparging (IAS) and in situ steam injection (conducted at Galena Airport from July 1993 to February 1994); and
- 4. Free-product (LNAPL) recovery testing (conducted during September 1992, July 1993, and April 1994).

#### 1.2.1 **Phase I Pilot-Scale Test**

The initial (Phase I) pilot-scale test began in July 1992 and ran through the end of September. Conducted in the POL Tank Farm area, the pilot-scale treatment system consisted of a single extraction well in the unsaturated-zone soil connected to a 6-hp electrical The average blower flow rate was blower. approximately 72 standard cubic feet per minute (scfm). A plastic soil cover helped prevent air short circuiting and direct subsurface soil vapors toward the extraction well. The extracted vapor stream was treated with granular activated carbon contained in 55-gal. drums to capture the volatile organic compounds (VOCs).

The SVE system removed approximately 3200 lb of VOCs during the two-month period of operation. Rough mass balance calculations indicated that the mass of hydrocarbons removed probably exceeded the initial mass present within the SVE-influenced zone at the start of the test. It was anomalous, therefore, that no significant reduction in the residual hydrocarbon concentrations in the vadose-zone soils was observed during the test. The reduction of hydrocarbon contaminants was limited by two hydrologic processes: 1) a continual decline in the water table occurred during the operating period, thus exposing deeper portions of the hydrocarbon smear zone; the water table fluctuation increased the mass of VOCs accessible to the gas phase present within the SVE zone of influence; and 2) a layer of floating free-phase hydrocarbons was present over a portion of the test site; this layer provided a continual source of VOCs. Despite these limitations, the initial pilot test demonstrated that a medium-sized SVE system could attain a large radius of influence (at least 60 ft) and high VOC removal rates while increasing the

subsurface oxygen levels. The latter effect should enhance in situ biodegradation.

## 1.2.2 Phase I Bench-Scale Test

Seven different soil amendment/treatment conditions were tested in the bench-scale soil incubation study. The treatment variables included gasphase oxygen content (2% to 21%), nutrient addition, moisture content, and inoculation with a commercial microbial consortium. Respirometry tests and residual hydrocarbon measurements were used to evaluate biotreatment in a simulated cold climate.

The laboratory test results showed that significant biological activity occurred in all treatments. Estimated biodegradation rates ranged from 1.2 to 5.7 mg/kg/day. Total petroleum hydrocarbon concentrations decreased by 47% to 73% during the 97day incubation period. The bioaugmentation treatment (inoculation with commercial bacteria) and the unamended treatment at 14% oxygen showed the best overall reaction rates. The bench-scale test demonstrated the feasibility of using biological processes for the remediation of soils at the POL Tank Farm.

#### 1.2.3 Phase II Pilot-Scale Test

Phase II pilot-scale testing of an enhanced SVE process in the POL Tank Farm began in August 1993 and continued until early February 1994. The objective was to evaluate further in situ techniques for soil and groundwater remediation, including air sparging and steam injection. A remediation system was designed and demonstrated on two adjacent test cells. Each cell was equipped with a central vapor extraction well and a series of air sparging wells (one cell also included steam injection wells). Site conditions were monitored monthly using a network of soil vapor probes, groundwater monitor wells, and soil sampling locations. The pilot-scale systems were designed and weatherized for winter operation. Except for the steam injection system, which experienced several extended outages related to poor feedwater quality, the systems were run continuously throughout the study period other than for brief periods related to power outages, activation of safety switches, and monitoring events.

The East Cell used air sparging points in the groundwater zone upgradient to the direction of groundwater flow of the SVE well; the West Cell was similar but included steam injection points upgradient

of the air sparging points. Hydrocarbon concentrations in the subsurface soils were dissimilar in the two cells, preventing a direct comparison of the technologies.

The test results indicated that VOC removal rates averaged around 380 kg/day in the West Cell and 50 kg/day in the East Cell. The removal rates for VOCs did not decline but remained steady throughout the pilot test, despite the six-month period of SVE operation. This response is attributed to the presence of a freeproduct layer in the subsurface and to the declining water table, which exposed fresh reserves of hydrocarbons throughout the study.

The geology at the POL Tank Farm was very conducive to SVE treatment. The permeability of the subsurface soils to air ranged from 30 to 240 darcys. Flow rates for the Phase II SVE system ranged between 120 and 150 scfm, and the effective radius of influence for both cells was determined to be between 100 and 200 ft.

In situ soil biodegradation rates were estimated at values up to 8 mg/kg/day in the West Cell. The average biodegradation rate was 3.2 mg/kg/day in the West Cell and 0.1 mg/kg/day in the East Cell. Oxygen levels increased to near-atmospheric conditions within five days of system startup in both areas. Biological activity was significantly higher in the far-western portion of the study site where the highest respiration rates, soil temperatures, and initial hydrocarbon concentrations were found. Soil temperatures increased in that area throughout the operating period, despite the falling ambient temperatures. By February, groundwater temperatures were beginning to rise as well. These observations indicated that biological activity in the soil at the POL Tank Farm was enhanced by the increased oxygen levels in the vadose zone, which were induced by the SVE system.

#### 1.2.4 LNAPL Recovery Testing

Phase I—Two 6-in. wells were installed in the POL Tank Farm to test recovery of LNAPL during Phase I of this study.

Baildown testing was performed on one of these wells and a nearby monitoring well (the second recovery well did not contain sufficient floating product to allow testing). Maximum apparent product thicknesses observed following baildown were around 0.4 ft.

The estimated true LNAPL thickness in the formation for recovery well 05-RW-01 was 0.15 ft. For monitor well 05-MW-10, the corresponding product thickness was 0.03 ft. Because the magnitude of the water level change in both wells was so small and occurred so rapidly, there is some uncertainty as to the validity of the true product thickness estimates.

**Phase II**—The second phase of the LNAPL recovery test was to determine the recharge rate of the LNAPL into the well and to determine the true product thickness in the formation. This phase included more baildown testing on three wells as well as skimming tests with the pneumatic skimmer system. All of these Phase II recovery tests were conducted in July 1993 when the groundwater table was present in the silty strata in the upper portion of the hydrocarbon smear zone.

The baildown tests were performed first. Product recharge rates ranged from 0.1 to 2 gal. per day and estimates of true product thickness ranged from 0.03 to 0.4 ft.

For the initial skimming test on 05-RW-01, which was conducted over a three-day period, we were not able to reduce the extraction rate low enough to match the slow recovery rate of LNAPL into the well. Similar results were observed for recovery well 05-RW-2 and monitor well 05-MW-10.

A pneumatic hydrocarbon recovery (skimming) system (manufactured by Clean Environment Engineers) and a portable air compressor were used briefly to evaluate field recovery. Unfortunately, the close of 1993 field activities prevented the testing of the hydrocarbon skimmer system in the recovery wells.

**Phase III**—A third phase of recovery tests was conducted in April 1994 because it was believed that different hydrologic conditions exist before river breakup that should allow more effective LNAPL recovery. Baildown and skimming tests were used to determine the apparent product thicknesses in the monitoring wells, the true product thicknesses in the formation, and the range of expected recharge rates of LNAPL from the formation, as well as to evaluate the skimming ability of the pneumatic LNAPL recovery system further.

Baildown testing was performed on five wells (four in the POL area), and LNAPL skimming was attempted on one well (05-RW-02).

The skimming tests were only conducted for a short time (less than 8 hours) because difficulties caused by icing of the product discharge hose and failure of a pump valve prevented longer operation of the system. However, the product level in the well was reduced by just over 1 gal.

#### **1.3 Future Considerations**

A phased approach to remediating the POL Tank Farm is recommended on the basis of the results and findings of the treatability study. The TS has shown that product recovery is a necessary and practical remedial action. It has also shown that SVE is an effective treatment for vadose-zone soils contaminated with petroleum hydrocarbons. The free product recovery and SVE treatment systems could be run concurrently. Once the free product is sufficiently depleted, treatment of the dissolved-phase contaminants in the groundwater could be addressed by in situ air sparging or intrinsic bioremediation should a significant risk to human health or the environment be found to exist.

# Section 2 SITE DESCRIPTION AND PROJECT BACKGROUND

In 1991, a Detailed Analysis of Treatment Alternatives was prepared as part of the IRP for four sites at Galena Airport: SS006 (Waste Accumulation Area), ST009 (Million Gallon Hill), ST005 (POL Tank Farm), and FT001 (Fire Protection Training Area). The purpose of the DATA was to compare treatment alternatives with respect to specified evaluation criteria and to select appropriate remediation technologies for hydrocarbon-contaminated soils (USAF, 1992a). In the DATA report, in situ treatment using a combination of SVE and bioventing was recommended for the major portion of contaminated soils at SS006, ST005, and those portions of FT001 that contain low levels of organic contaminants. In response to these recommendations, a TS consisting of bench-scale and pilot-scale tests was conducted in two phases to evaluate the effectiveness of SVE and bioremediation for the in situ treatment of contaminated soils at ST005, the POL Tank Farm. The general locations of Galena Airport and the TS site are shown in Figure 2-1.

#### 2.1 Site Description Galena Airport

Galena Airport is located in interior Alaska approximately 350 miles northwest of Anchorage and 280 miles west of Fairbanks. Galena Airport was formerly known as Galena Air Force Station and in this capacity served as the northernmost of the forward operating bases run by the USAF Pacific Air Forces (PACAF). The staff has been reduced significantly from its previous size of 330. Approximately 40 contractor personnel are currently assigned to the 166acre base. The base and adjacent community of Galena (population approximately 550) are not connected by road to any other community; Galena is only accessible year round by airplane and in the navigable summer months by river craft.

The airport is located on a floodplain on the north bank of the Yukon River. Groundwater at the site fluctuates seasonally by approximately 20 ft. In the early summer, groundwater elevations typically reach levels of 5 to 8 ft below ground level (bgl) in response to the rapid seasonal rise of the Yukon River, and drop to 25 to 30 ft bgl by February.

Mean monthly temperatures range from a low of -11°F in January to 60°F in July. The average frostfree period is late May through early September. Detailed descriptions of the climate, geology, demographics, and operating histories for Galena Airport are presented in the *Remedial Investigation Technical Memorandum* (USAF, 1994).

#### **POL Tank Farm**

The POL Tank Farm is located north of the airstrip and east of the base housing complex. Figure 2-2 shows the location of the Phase I and Phase II TS areas at the POL Tank Farm. The topography is generally flat, except for the earthen dikes surrounding the fuel storage tanks. Vegetation on the site is generally low and sparse except for stands of willows along the dike slopes.

The geology of the POL Tank Farm site consists predominantly of recent alluvial deposits from the Yukon River. The site stratigraphy consists of two main units, which are covered by a gravelly sand fill unit in some areas of the POL Tank Farm. The upper unit consists of a silt or silty sand that is 8 to 10 ft thick and contains abundant wood fragments and other organic matter. The lower unit is composed of sand and gravel. Drilling and well installation in the sand unit was complicated by the substantial heave of the sands in the saturated zone. In undisturbed, vegetated terrain, permafrost occurs as isolated lenses or as continuous layers beginning 10 ft bgl. However, its distribution is sporadic and largely absent at the POL Tank Farm.

The POL Tank Farm formerly contained as many as 33 tanks, which were used to manage jet fuel, gasoline, diesel, and other fuels used at Galena Airport. All but five of the jet fuel tanks were removed in the fall of 1993; two aboveground tanks that contain







Figure 2-2. Location of the Treatability Study in the POL Tank Farm at Galena Airport

isopropanol used for runway deicing also remain at the site. Historically, tank trucks or buried transfer lines were used to carry fuels from the barge loading area on the east end of the airport to the POL Tank Farm. Aboveground distribution lines were then used to distribute fuels from the tanks to several fill stands.

The water level at the POL Tank Farm fluctuates by approximately 20 ft on a seasonal cycle in response to changes in the stage of the Yukon River. Groundwater flow is predominantly southwest toward the river at velocities from approximately 1 to 11 ft per day (USAF, 1993a). The gradient is about 1 ft vertical drop in 3500-ft horizontal distance (0.0003 ft/ft). Groundwater flow during the river flood stage is west to north, away from the river, at a rate of 1 to 5 ft per day (USAF, 1993a). The seasonal reverse flow to the north is of relatively short duration (less than one month). Flow reversals also occur briefly in response to river level increases during periods of high rainfall.

Contamination at the POL Tank Farm site is petroleum in nature and is found in both the subsurface soils and groundwater. The source of contamination is unknown but may be caused by leaking pipe fittings on the tanks or underground piping in the POL Tank Farm area, which was in operation for approximately 30 years.

Floating free product (LNAPL) was found in several monitor wells in the southern portion of the POL Tank Farm. The seasonal rise and fall of the water table has produced a "smear zone" of contaminated soil between approximately 8 and 30 ft bgl. Soils in this zone are inundated by a floating LNAPL layer during each seasonal groundwater cycle so that they become resaturated with hydrocarbons each spring. The LNAPL also contributes significantly to the dissolvedphase hydrocarbon levels in the groundwater.

#### 2.2 Treatability Study Program

The TS program for Galena Airport was performed in two phases. Phase I included a pilot-scale test for SVE and a bench-scale biotreatability study. Phase II consisted of a pilot-scale test for enhanced SVE systems using air sparging and steam injection. Figure 2-3 presents a chronology of the TS program for Galena Airport. The Phase I pilot-scale test and bench-scale test were conducted during the summer of 1992 and from late 1992 through early 1993,

respectively. The Phase II pilot-scale test was conducted from the summer of 1993 through February 1994. The major activities associated with each test are presented below.

#### 2.2.1 Phase I

#### **Pilot-Scale Test**

The Phase I pilot-scale test was conducted over a two-month period to evaluate the effectiveness of SVE at the POL Tank Farm. SVE is a proven and effective technique for removing VOCs from soils in the unsaturated (vadose) zone. The SVE system applies a vacuum to the subsurface vadose zone that induces air flow through the soil toward a vapor extraction well. The volatile hydrocarbons are physically removed from the soil into the air stream, and the replacement of soil gas by oxygen from the atmosphere enhances biodegradation of the organic contaminants. The specific objectives of the Phase I pilot-scale test were to:

- Determine whether SVE is a feasible technology for remediation at the POL Tank Farm site;
- Develop preliminary design criteria for expanded pilot-scale or full-scale remediation activities; and
- Identify possible environmental or operating constraints for the application of this technology at Galena Airport.

The SVE system consisted of a single vapor extraction well, a 6-hp Gast regenerative (rotary) vacuum blower, granular activated carbon (GAC) drums to control hydrocarbon emissions, and nested vapor probes. Soil gas and soil samples were collected periodically to determine the hydrocarbon removal rate and the residual soil contaminant levels after treatment. Process parameters were monitored and adjusted to achieve optimal performance of the SVE system.

#### **Bench-Scale Test**

The bench-scale test was performed to evaluate the biotreatability of contaminated vadose-zone soils from the POL Tank Farm under simulated field conditions. The specific objectives of the bench-scale study were to:

- Characterize soils from the POL Tank Farm for contaminant levels, nutrients, and microorganism populations;
- Determine if microorganisms present in the soil could degrade hydrocarbon contaminants under simulated field conditions;
- Determine if chemical or biological enhancements would accelerate biodegradation; and
- Provide recommendations for possible pilotscale biological treatment systems.

The bench-scale test design included several soil treatment conditions, including oxygen content, nutrient addition, moisture content, and inoculation with a commercial microbial consortium. Because of the subarctic conditions in central Alaska, all treatments were incubated around 4°C to simulate subsurface conditions. The study was conducted over a 97-day period with measurements of hydrocarbon contaminants at the beginning and end of the test. Soil respirometry was used to measure oxygen uptake and carbon dioxide evolution over a 65-day period. These data were used to calculate hydrocarbon degradation rates based on the stoichiometric oxidation of heptane.

#### 2.2.2 Phase II

#### **Pilot-Scale Test**

Results of the Phase I studies were used to enhance the treatment design for Phase II. The Phase II pilot-scale test was conducted to evaluate the effectiveness of an enhanced SVE system for the treatment of the unsaturated-zone soils and contaminated groundwater at the POL Tank Farm. The enhanced SVE system included the in situ treatment of groundwater by air sparging and steam injection.

Air sparging involves the injection of air below the water table. As the air travels through the

groundwater, volatile contaminants are stripped from the dissolved phase and from adsorption sites within the aquifer into the gas phase. Through the extraction well, the SVE system captures the contaminants when they

reach the vadose zone. Air sparging and SVE have the added effect of providing oxygen to the subsurface, enhancing biodegradation of the contaminants.

Steam injection involves the addition of steam below the water table to increase the groundwater and vadose-zone temperatures. This effect should enhance both biodegradation and volatilization of the contaminants.

The specific objectives for the Phase II pilotscale test were to:

- Compare the benefits and refine operating parameters for SVE operated with air sparging alone and with both air sparging and steam injection;
- Evaluate the feasibility of year-round operation of a remedial treatment system at Galena;
  - Further refine optimal process design and operating parameters of the SVE system;
- Determine the spatial influence of the SVE, air sparging, and steam injection wells;
- Estimate the hydrocarbon removal rate by both physical and biological processes and to estimate the treatment time for cleanup of the POL Tank Farm; and
- Develop a conceptual design for a full-scale remediation system at the POL Tank Farm site using the data collected during the TS and remedial investigation.

The Phase II test was conducted in two adjacent study areas (test cells), each equipped with a central vapor extraction well and a network of soil vapor monitor probes, groundwater monitor wells, and soil sampling locations. The East Cell incorporated air sparging points upgradient to the direction of groundwater flow of the SVE well; the West Cell was

similar but also contained steam injection points upgradient of the air sparging wells. The test was conducted over a six-month period from August to February. The contaminant concentrations in the soil gas, SVE exhaust, groundwater, and soils were monitored periodically during the test. These data were used to determine hydrocarbon removal rates. Performance tests, such as in situ respiration, air permeability, and zone of influence tests, were conducted to evaluate the effectiveness of the treatment systems further.

# Section 3 PHASE I ACTIVITIES AND RESULTS

Phase I of the TS included both pilot-scale and bench-scale tests. These tests were designed to determine the feasibility of using SVE and in situ bioremediation techniques to remedy the hydrocarbon contamination at the POL Tank Farm as well as other sites at Galena Airport. The following discussion addresses the activities and results of the Phase I tests. These results were previously presented in an informal technical information report (USAF, 1993b).

#### 3.1 Pilot-Scale Test

A Phase I pilot-scale test was conducted at Galena Airport from late July through early October 1992. Additional information on the test is contained in the *Pilot-Scale Treatability Study Work Plan* (USAF, 1992b). The site layout for the Phase I study, including the location of the monitoring network, is presented in Figure 3-1. The original test site was planned for the area northwest of the location shown in this figure. However, contamination was not present at the first location. As a consequence, a suitable power source was not available near the test area, and 150 ft of 2-in. PVC tubing was added to connect the blower from its planned location to the new test site.

Soil gas probes were installed in five locations at three depths (5, 10, and 15 ft below the original ground surface). Figure 3-2 presents a geologic cross section within the study area that shows the installation of those probes. Soil samples were collected at each vapor probe location for analysis of chemical, physical, and microbiological properties. A 6-in. extraction well was installed to 25 ft below original grade (the berm height was 4 to 5 ft). Three 2-in. inlet wells were also installed within the study area. Appendix A.1 contains the well construction diagrams for the Phase I test.

Startup of the SVE system occurred on August 1, and the system was operated almost continuously from August 1 to September 26, except when shut down for periodic maintenance or for sampling and testing of the system.

#### 3.1.1 Monitoring and Testing

Table 3-1 presents the monitoring schedule for the Phase I pilot-scale test. Soil gas, system exhaust gas, and soil samples were collected during the test to measure the remediation effectiveness of the pilot-scale system.

#### **Gas Sampling**

Soil gas samples from the vapor probes were collected on five occasions using stainless steel vacuum canisters. Figure 3-3 presents the total non-methane hydrocarbons (TNMHC) and total BTEX (benzene, toluene, ethylbenzene, and xylenes) concentrations in the soil gas during the pilot-scale test. Appendix A.2 contains a summary of the analytical results. These concentrations generally decreased over time at probe V1, which is the closest monitoring point to the extraction well. The deep probes were only sampled once because the water table remained above the deep probes during the first four sampling events. The levels of VOCs at the deep probes (15 ft below original grade) were higher than concentrations measured at the shallower depths. The VOC concentrations remained relatively constant at the other two probes (V2 and V3) during the test period. Because of the presence of a free-product layer that served as a continuing source of hydrocarbons, the VOC concentrations did not decrease over time as expected for an SVE process. VOC contaminants in the free-product phase may have partitioned into the unsaturated zone under the induced vacuum.

Gas samples were also collected from the extraction well to characterize the SVE exhaust gas. The TNMHC and total BTEX concentrations in the extracted soil vapors decreased nearly two orders of magnitude during the two months of operation, as shown in Figure 3-4. The ratio of TNMHC to total BTEX remained relatively constant at approximately 13:1. The initial increase in exhaust gas concentrations was expected as the SVE system began to pull soil gas towards the extraction well. VOC concentrations dropped substantially between August 4 and August



Figure 3-1. Layout of the Phase I Pilot-Scale SVE System



## DEPTH BELOW ORIGINAL GROUND SURFACE (ft)







Figure 3-4. Concentration of Total Non-Methane Hydrocarbons (TNMHC) and Total BTEX Compounds in the Extracted Soil Gas During the Phase I Piolt-Scale Test





| Event *   | Sampling<br>Date | Matrix | Sampling<br>Locations | Number of<br>Samples | Analytes                                                                  |
|-----------|------------------|--------|-----------------------|----------------------|---------------------------------------------------------------------------|
| G1        | 30 Jul 92        | Gas    | V1-V5, E1             | 7                    | TNMHC, BTEX                                                               |
| G2        | 4 Aug 92         | Gas    | V1, V2, V3, E1        | 4                    | TNMHC, BTEX                                                               |
| G3        | 21 Aug 92        | Gas    | V1-V5, E1, EX         | 13                   | TNMHC, BTEX                                                               |
| G4        | 5 Sep 92         | Gas    | V1-V5, E1             | 12                   | TNMHC                                                                     |
|           |                  |        | E1                    | 2                    | BTEX                                                                      |
| G5        | 29 Sep 92        | Gas    | V1-V5, E1             | 17                   | TNMHC, BTEX                                                               |
| S1        | ` 25 Jul 92      | Soil   | V1-V5                 | 17                   | BTEX, TPH, Moisture, pH, EC, $NO_3^-$ , $NH_4^+$ , $PO_4^{-3}$ , TOC, PSD |
| <u>S2</u> | 31 Aug 92        | Soil   | V1-V5                 | 16                   | BTEX, TPH, pH                                                             |
| S3        | 30 Sep 92        | Soil   | V1-V5                 | 17                   | BTEX, TPH                                                                 |

 Table 3-1

 Sampling Schedule for the Phase I Pilot-Scale Test

\*G denotes gas sampling event; S denotes soil sampling event. EX = Exhaust gas after GAC units.

21, increased again on September 5, and then decreased for the final sampling event.

Variations in the vapor concentrations were probably a response caused by the hydrologic changes. The fluctuations of the water table and the Yukon River levels are shown in Figure 3-5. The groundwater and river levels decreased sharply in early and mid-July and again from August through September. The dewatering of the subsurface sand and gravel caused an increase in the soil porosity available for transmitting vapor flow. Before this dewatering, only the more dense silty soil was unsaturated, which had lower air permeability. Also as the water table declined, the zone of influence of the extraction well increased so that additional hydrocarbons were continually being pulled towards the well. The final decline in TNMHC and BTEX may have been due to a gradual diminishing of the contaminant source as the SVE system removed contaminants.

#### Soil Sampling

Soil samples were collected in the vicinity of the vapor probes on three occasions. The first soil sampling event was conducted before startup of the SVE system; the second and third events were conducted approximately one and two months after startup, respectively. Figure 3-6 presents the hydrocarbon concentrations in the soil samples collected near vapor probes V1, V2, and V3 during the study period. Concentrations of TPH, BTEX, and various fuel fractions in the soils were relatively low, typically below 10 mg/kg. In general, there was a slight decrease in hydrocarbons between the first and second sampling events, followed by an increase in the third sampling event. The analytical results are summarized in Appendix A.2.

Although the SVE system was expected to decrease the hydrocarbon concentrations in the soils during the treatment period, there are several factors that may explain the observed trend:

- Hydrocarbon Smear Zone—Hydrocarbons are adsorbed to soil particles within a broad smear zone that encompasses the entire range of water table fluctuations.
- Hydrologic Effects—The declining water table exposed fresh reserves of VOCs, which could have been drawn upward into the unsaturated zone by the SVE system. This is the most plausible explanation for increases in both the soil and soil gas hydrocarbon levels in September.
- Contaminant Variability—Although the soil samples from all three events were collected in the same hole, local soil heterogeneity in



Figure 3-6. Concentrations of Hydrocarbons in Soil Samples from Locations V1 - V3

the horizontal plane may account for some of the observed differences in sample concentrations.

- LNAPL Lenses—Zones of floating free LNAPL were identified in a groundwater well located near the TS pilot-scale test site. The distribution of LNAPL in the POL area is not completely understood.
- Hydrocarbon Partioning—Volatile components present in the intermittent LNAPL lenses and dissolved in groundwater provided a continuing source for VOCs extracted by the SVE system.

#### Air Permeability and Zone of Influence

An air permeability test was conducted immediately after startup of the SVE system. However, site conditions (e.g., water table lingering in the silty upper strata) prevented an accurate determination of the air permeability at that time. A second air permeability test was performed after the water table had dropped below the depth of the 10-ft vapor probes. This test was conducted by shutting off the system and allowing the study area to return to a natural pressure condition. The SVE was then restarted and the transient pressures were monitored in each vapor probe until they stabilized. This transient pressure data were later evaluated by using a gas flow model by Johnson, Kemblowski, and Colthart (1990) to estimate the air permeability.

Figure 3-7 presents an idealized flow net for the pilot-scale SVE system on the basis of observations and data collected during the second air permeability test. From mathematical modeling, the radius of influence was as much as 110 ft. However, field observations suggest that the "effective" radius of influence was approximately 60 ft. The model does not account for certain site conditions (e.g., the vapor barrier and the high water table), so the air permeability of the soils and therefore the radius of influence were overestimated. Appendix A.3 contains the test data and an example calculation of air permeability.

#### **Infiltration Tests**

In early August, infiltration tests were conducted at three locations in the southern portion of the POL Tank Farm area (refer to Figure 3-1) using a tension infiltrometer. At each location, the top 9 in. of fill soil was removed to expose the underlying native sediments (these tests were not performed on the berm). At each location, the soils consisted of dark grayish brown silty alluvium. The tests were conducted to characterize the hydraulic properties of the unsaturatedzone soils.

Results of these tests were used to calculate unsaturated hydraulic conductivity as a function of matrix potential for the vadose zone soils at each of the test locations. The estimated saturated hydraulic conductivity (i.e., at zero matrix potential) for the soils ranged from  $3.9 \times 10^{-5}$  to  $8.8 \times 10^{-4}$  cm/sec. These data would be useful if it is determined that an irrigation system is needed to deliver moisture and nutrients to subsurface soils. Appendix A.4 contains the infiltration data, hydraulic conductivity curves, and the calculation of irrigation requirements.

#### 3.1.2 Unit Operation

The system was operated almost continuously during the test period, except for scheduled shutdowns for maintenance and sampling events. On September 26, condensation in the vacuum hose from the extraction well froze and caused the SVE blower unit to shut off. During the previous week, ambient temperatures had fallen dramatically to below 5°F at night and remained below freezing nearly continuously during the day. Because the pilot-scale system components were not insulated or otherwise weatherized to allow for winter operation, the system was not restarted. A final set of soil and soil gas samples was collected on September 30 to complete the Phase I test.

A test was conducted to evaluate the effect of the inlet vacuum on exhaust gas flow rate. Flow rates were estimated from the inlet vacuum, backpressure, differential pressure at the inlet manifold, atmospheric pressure, and temperature using the manufacturer's differential pressure guage rating curves. The test results indicated that the maximum air flow (about 82 scfm at the wellhead occurred at vacuums from 65 to 74 in. H<sub>2</sub>O. The flow decreased at higher vacuums, possibly as a result of upwelling of groundwater into the extraction well that decreased the effective screen length of the well.



#### DEPTH BELOW ORIGINAL GROUND SURFACE (11)

DEPTH BELOW GROUND SURFACE (11)

Four 55-gal. drums of GAC were used to capture VOC emissions from the SVE blower unit. Initially, the exhaust from the blower was split and run through two parallel GAC drums. VOC levels were

measured daily using an organic vapor monitor. A gradual breakthrough of VOCs from the drums was observed beginning on August 5, when measured concentrations (total VOCs as benzene) ranged from 20 to 40 ppm. Measured VOC concentrations gradually increased to 130 ppm over the next week. On August 10, a second set of GAC drums was connected in series (downstream) with the original drums. Concentrations fell to < 4 ppm but, again, gradually increased over the following week. By August 19, concentrations had reached 100 to 130 ppm again.

The observed rate of VOC breakthrough was faster than anticipated, based on preliminary estimates provided by Calgon Corporation (the vendor for the GAC drums). On August 28, the existing GAC canisters were replaced by four new drums connected in parallel and in series as before. VOC emissions dropped to < 5 ppm. On September 10, VOC emissions were once again in the range of 150 to 200 ppm and remained in that range until system shutdown on September 26.

#### 3.1.3 Results of Phase I Pilot-Scale Test Hydrocarbon Removal

It is estimated that the SVE system removed 3200 lb of VOCs from the contaminated zone beneath the POL Tank Farm during the two-month operating period, as shown in Figure 3-8. The mass of VOCs removed was estimated using TNMHC concentrations at the extraction well along with measurements of vapor flow through the system. Details on the calculation of estimated cumulative hydrocarbons removed are presented in Appendix A.5.

A mass balance was performed for hydrocarbons present in the unsaturated-zone soils, assuming a 60-ft radius of influence and a 15-ft depth and using the average soil concentration for each 5-ft sampling interval from the initial sampling event (see Appendix A.5). The estimated mass of initial hydrocarbons present was less than the estimated mass of hydrocarbons removed by the SVE system (see Figure 3-8). The most probable source of the additional mass of hydrocarbons removed is the groundwater beneath the POL Tank Farm. Floating free-phase hydrocarbons may have partitioned into the unsaturated zone.

#### Vapor Emission Control

Performance data collected during the Phase I pilot-scale test indicated that GAC is not a costeffective means of emission control. Concentrations in the SVE exhaust did not decline with time as originally anticipated, causing the sorption capacity of the GAC units to be exceeded rather quickly (7 to 10 days). Other emission control techniques, such as internal combustion engines, catalytic or thermal oxidation units, condensers, biofilters, flares, and venting through elevated stacks, should be considered for a full-scale remediation system.

#### 3.2 Bench-Scale Test

Bench-scale testing was conducted from late October 1992 through March 1993. The bench-scale test involved a soil incubation study designed to evaluate the biotreatability of hydrocarbon-contaminated soils at Galena Airport. The seven soil treatment conditions evaluated during the test are presented in Table 3-2. The treatment conditions were selected to evaluate the merits of increased oxygen concentrations, water saturation, nutrient additions, and commercial bacterial inoculum additions for enhancing biodegradation of petroleum hydrocarbons.

Details of the experimental methods and procedures are contained in Appendix B.1. Additional information is also provided in the *Bench-Scale Treatability Study Work Plan* (USAF, 1993c). The benchscale test involved an initial characterization of the soils to be treated, collection of oxygen uptake and carbon dioxide evolution data for the various treatment conditions, and final characterization of the residual contaminant levels in the soils after treatment.

#### 3.2.1 Soil Characterization

Subsurface soil samples were collected from the POL Tank Farm site during the installation of the vapor probes for the Phase I pilot-scale test. The samples were composited for the bench-scale test, and

Figure 3-8. Hydrocarbon Removal at the POL Tank Farm During the Phase I Pilot-Scale Test



Galena Airport

each composite sample was analyzed for target contaminants; nutrients; and selected soil physical, chemical, and microbiological parameters prior to the study and after the 60- and 97-day incubation periods. Table 3-3 presents the analytical methods and frequency of sampling for the study.

Table 3-4 presents the results of the analyses for the soils before and after the bench-scale study for each treatment condition tested. The average total petroleum hydrocarbons (TPH) concentration of the contaminated soil was 1055 mg/kg, which included 133 mg/kg of BTEX compounds. Nutrient levels were very low, with initial C:N and C:P ratios of approximately 2100:1 and 1100:1, respectively. The mildly alkaline (pH 7.7) sandy soil contained low levels of organic carbon (0.7%) and salts (according to the electrical conductivity of 0.49 mmho/cm). The numbers of total heterotrophic bacteria were relatively high, ranging from 10<sup>6</sup> to nearly 10<sup>8</sup> colony-forming units per gram (CFU/g); up to 2.6 x 10<sup>6</sup> CFU/g of the microbial population was hydrocarbon-utilizing bacteria. These analytical results are summarized in Appendix B.2.

#### 3.2.2 Respirometry Tests

Biotreatability kinetics were measured for each treatment condition by determining the microbial respiration rates for the initial 60 days of the incubation period by using closed respirometer flasks. The tests were conducted at temperatures ranging from 2° to 5°C to simulate the subsurface conditions at Galena Airport. Oxygen uptake (consumption) and carbon dioxide evolution were measured over time to evaluate the biodegradability of the hydrocarbon contaminants.

#### 3.2.3 Degradation Rate

Degradation rates of hydrocarbon contaminants for the seven treatment conditions were determined by two methods: 1) calculation of the TPH removed with time, on the basis of the initial and final soil analyses, and 2) estimation of hydrocarbon degradation rates using the oxygen uptake data and assuming the stoichiometric oxidation of heptane.

Table 3-5 summarizes the hydrocarbon degradation rates for each treatment condition. Appendix B.3 contains the procedures and example calculations used to determine the degradation rates.

All treatment conditions supported substantial degradation of TPH and BTEX contaminants. There was also relatively good agreement between the estimated hydrocarbon degradation rates, on the basis of oxygen consumption and the actual TPH removal rates calculated using initial and final TPH concentrations.

Low levels of oxygen or water saturation did not appear to inhibit microbial growth, respiration, or contaminant degradation. Nutrient addition did not increase respiration or contaminant degradation. Bioaugmentation did enhance the treatment of the contaminated soils, compared with the other treatment conditions, but not to a significantly greater degree than the unamended treatment conditions at 2% to 14% oxygen. From these results, bioremediation is feasible for hydrocarbon degradation in the soils at the POL Tank Farm.



| Table 3-2                                               |
|---------------------------------------------------------|
| Experimental Design of the Galena Biotreatability Study |

| Treatment | Description                                                                |
|-----------|----------------------------------------------------------------------------|
| _         | Barometric Control (glass microbeads)                                      |
| 1         | Contaminated Soil, 21% O <sub>2</sub> (atmospheric) (Unamended Control)    |
| 2         | Contaminated Soil, 14% O <sub>2</sub>                                      |
| 3         | Contaminated Soil, 7% O <sub>2</sub>                                       |
| 4         | Contaminated Soil, 2% O <sub>2</sub>                                       |
| 5         | Contaminated Soil + Nutrients, 21% O <sub>2</sub> (atmospheric)            |
| 6         | Contaminated Soil + Water Saturation, 21% O <sub>2</sub> (atmospheric)     |
| 7         | Contaminated Soil + Nutrients + Inoculum, 21% O <sub>2</sub> (atmospheric) |

# Table 3-3Analytical Procedures, Estimated Detection Limits, and<br/>Frequency of Soil Analyses for the Bench-Scale Test

| Parameter                          | Method                               | Detection Limit   | Frequency<br>or Sampling<br>Time (days) |
|------------------------------------|--------------------------------------|-------------------|-----------------------------------------|
| Particle Size Distribution         | ASTM D422-63 <sup>a</sup>            | NA                | 0                                       |
| Percent Moisture                   | ASTM D2216                           | NA                | Biweekly                                |
| рН                                 | EPA SW-846 9045 <sup>b</sup>         | NA                | 0, 60                                   |
| Electrical Conductivity            | EPA 600 120.1 °                      | 0.005<br>mmhos/cm | 0                                       |
| Nitrate-Nitrogen                   | Am. Soc. Agro. 33-8.3 <sup>d</sup>   | 15 mg/kg          | 0                                       |
| Ammonia-Nitrogen                   | Am. Soc. Agro. 33-7.3                | 5 mg/kg           | 0                                       |
| Phosphate-Phosphorus               | TAES STP 4-5 °                       | 5 mg/kg           | 0                                       |
| Total Organic Carbon               | Am. Soc. Agro. Modified 29-<br>2.2.4 | 0.1%              | 0                                       |
| Total Petroleum Hydrocarbons (TPH) | EPA SW-846 8015 ME/MP                | 0.5 mg/kg         | 0                                       |
| Aromatic Volatile Organics         | EPA SW-846 8020                      | 0.05 mg/kg        | 0, 60                                   |
| Heterotrophic Organisms            | Am. Soc. Agro. 37                    | 300 cells/g       | 0, 60                                   |
| Hydrocarbon-Utilizing Organisms    | Am. Soc. Agro. 37                    | 300 cells/g       | 0, 60                                   |
| Carbon Dioxide Evolution           | Acid-base Titration                  | NA                | Weekly                                  |
| Oxygen Uptake                      | Manometric                           | NA                | Daily                                   |
| Temperature                        | Mercury Thermometer                  | NA                | Daily                                   |

Notes: <sup>a</sup>American Society for Testing and Materials. Annual Book of ASTM Standards. November 1987. <sup>b</sup>U.S. Environmental Protection Agency. Test Methods for Evaluating Solid Waste. Third Edition. SW-846, 1986. <sup>c</sup>U.S. Environmental Protection Agency. Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020. March 1983. <sup>d</sup>American Society of Agronomy, Inc. Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, Second Edition, 1982. <sup>c</sup>Soil Testing Procedures. Texas Agriculture Extension Service.



|                                                      |                      |                     |                      |                     | Post-1              | reatment            |                                                     |                          |
|------------------------------------------------------|----------------------|---------------------|----------------------|---------------------|---------------------|---------------------|-----------------------------------------------------|--------------------------|
|                                                      |                      |                     | Contamin:<br>No Amen | ated Soil<br>dments |                     | Cor<br>with         | itaminated Soil, Sp<br>1 21% O <sub>2</sub> + Amend | arged<br>men ts          |
|                                                      | Pre-Treatment        | 21% O <sub>2</sub>  | 14% O <sub>2</sub>   | 7% O <sub>2</sub>   | 2% 02               | Nutrients           | Nutrients +<br>Water Saturation                     | In oculum<br>+ Nutrients |
| TPH <sup>a</sup> , mg/kg                             | 1,055                | 279.9               | 430.6                | 456.2               | 398.7               | 555.5               | 546.5                                               | 346.9                    |
| Benzene, mg/kg                                       | 7.62                 | <0.5                | 1.52                 | 1.45                | <0.5                | <0.5                | <0.5                                                | <0.5                     |
| Toluene, mg/kg                                       | 46.75                | 1.32                | 2.12                 | 2.03                | 2.56                | 14.83               | 7.33                                                | 6.51                     |
| Ethylbenzene, mg/kg                                  | 17.32                | <0.5                | <0.5                 | <0.5                | <0.5                | 4.15                | 1.89                                                | 1.81                     |
| Xylenes, mg/kg                                       | 61.37                | 1.17                | 2.34                 | 2.93                | 2.49                | 24.54               | 12.18                                               | 11.42                    |
| Heterotrophic Organisms, CFU <sup>b</sup> /g         | $10^6$ to $10^8$     | 9.6x10 <sup>7</sup> | 9.4x10 <sup>7</sup>  | 1.2x10 <sup>8</sup> | 1.6x10 <sup>8</sup> | 1.7x10 <sup>6</sup> | 1.5x10 <sup>8</sup>                                 | $4.0 \times 10^{7}$      |
| Hydrocarbon-Utilizing Organisms, CFU <sup>b</sup> /g | <2.6x10 <sup>6</sup> | 5.6×10 <sup>5</sup> | 6.9x10 <sup>3</sup>  | $1.1x10^{3}$        | 3.8x10 <sup>3</sup> | 5.3x10 <sup>5</sup> | 1.5x10 <sup>6</sup>                                 | >107                     |

| Additional Parameters            | Pre-Treatment |
|----------------------------------|---------------|
| NH4-N, mg/kg                     | 3.45          |
| NO <sub>3</sub> -N, mg/kg        | QN            |
| PO4-P, mg/kg                     | 6.46          |
| Hq                               | 7.68          |
| Electrical Conductivity, mmho/cm | 0.49          |
| Moisture, %                      | 26.4          |
| Particle Size Distribution, %    |               |
| Sand                             | 87.5          |
| Silt                             | 9.4           |
| Clay                             | 3.16          |

Notes: <sup>a</sup>TPH data based on 97 days of incubation, all other data reported based on 60 days. <sup>b</sup>CFU = colony forming units.

January 1995

Physical and Chemical Characterization Results for the Soil Samples Before and After the Incubation Period

Table 3-4

3-14

| No. | Treatment                                | Oxygen<br>Uptake Rate<br>(mmol/kg/day) | Estimated<br>Hydrocarbon<br>Biodegradation<br>Rate <sup>a</sup><br>(mg/kg/day) | % TPH<br>Removed <sup>b</sup> | TPH<br>Removal<br>Rate <sup>b</sup><br>(mg/kg/day) |
|-----|------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------|
| 1   | 21% O <sub>2</sub>                       | 0.13                                   | 1.2                                                                            | 73                            | 8.0                                                |
| 2   | 14% O <sub>2</sub>                       | 0.56                                   | 5.1                                                                            | 59                            | 6.4                                                |
| 3   | 7% O <sub>2</sub>                        | 0.51                                   | 4.7                                                                            | 57                            | 6.2                                                |
| 4   | 2% O <sub>2</sub>                        | 0.52                                   | 4.7                                                                            | 62                            | 6.8                                                |
| 5   | 21% $O_2$ + nutrients                    | 0.28                                   | 2.6                                                                            | 47                            | 5.1                                                |
| 6   | $21\% O_2$ + nutrients + satura-<br>tion | 0.32                                   | 2.9                                                                            | 48                            | 5.2                                                |
| 7   | $2\% O_2$ + inoculum + nutrients         | 0.63                                   | 5.7                                                                            | 67                            | 7.3                                                |

 Table 3-5

 Summary of Hydrocarbon Removal Rates from Bench-Scale Test

Notes: <sup>a</sup>Estimates based on stoichiometric relationship between oxygen consumption and degradation of a representative hydrocarbon (heptane). <sup>b</sup>Calculation based on chemical analysis for TPH in soil before and after treatment.

# Section 4 PHASE II ACTIVITIES AND RESULTS

The Phase II pilot-scale test was conducted to further assess the treatment effectiveness of SVE and to evaluate the merits of air sparging and steam injection in combination with SVE at the POL Tank Farm site. The study was conducted from August 1993 through early February 1994.

The following discussion presents the activities associated with the Phase II pilot-scale test. The *Pilot-Scale Treatability Study: Phase II Work Plan* provides more detail on the analytical and test procedures used during the TS (USAF, 1993d). Monthly progress reports were prepared during the test; these reports contain more detail on the daily activities during the study.

Design activities for the TS began in late May 1993 and included the conceptual and detailed design of the process configuration, layout, and operating conditions; identification and sizing of the process components; solicitation of vendor information and quotes; purchase of equipment and materials; and coordination of the field activities. Support was provided by the 11 CEOS/CEVR for the following activities: providing electrical power to the site, moving heavy process equipment, site preparation and earthwork, drilling and installation of the wells, and providing general construction support.

#### 4.1 System Installation

Construction and installation activities for the Phase II pilot-scale test were accomplished during July 1993. The initial site activities included obtaining utility clearances, moving equipment and materials to the site, clearing trees and brush, and moving vehicles parked on site. The locations of the drilling sites and equipment enclosures were then surveyed and staked. The installation of the monitoring network within the study area and construction and installation of the equipment and process components were accomplished during this period. This included the construction of two equipment enclosures and a drain field for the boiler blowdown; the installation of the piping, heat trace, and insulation for the SVE; air sparging; and steam injection systems, plumbing for the boiler water supply system, electrical wiring for the process equipment and enclosure lights, and the installation of vapor barriers around the extraction wells and a caution fence around the perimeter of the study area. The system installation was completed on August 1.

Figure 4-1 presents the site layout for the Phase II pilot-scale test, including vapor probes, monitor wells, soil sampling locations, extraction wells, air sparging points, and steam injection points. The treatment configuration in the West Cell included SVE, IAS, and steam injection systems; the treatment system in the East Cell used SVE and IAS systems (no steam injection). Figure 4-2 presents a schematic diagram of the major process components installed for the Phase II pilot-scale test.

Thirty-eight vapor probes (generally two depths at 20 locations) were installed with an electric rotary hammer to mechanically drive the vapor probes and tubing to the desired depth. The two vapor extraction wells, six monitor wells (two of the eight wells were existing monitor wells), 28 air sparging points (two depths at 14 locations), and 12 steam sparging points (two depths at six locations) were installed with a hollow-stem auger drill rig. Details of these wells are contained in Appendix C.1. Eleven 5-ft pilot holes and one 10-ft pilot hole (B-2 at the POL perimeter dike) were installed at the soil sampling locations with the drill rig so that soil samples could be collected during the winter sampling events without having to penetrate frozen soils. Pilot holes were covered with plywood boxes to prevent snow from accumulating in the holes.

#### 4.2 System Startup and Operation

Each process was checked for proper operation before the startup of the treatment system. This included testing the motors for their direction of rotation, adjusting the controls on the boiler and feedwater system, testing the piping for leaks, and checking the operation of the mechanical equipment. Section 4—Phase II Activities and Results Treatability Study Final Report

Galena Airport




Figure 4-2. Schematic Diagram of the Process Components for the Phase II Pilot-Scale Test

# 4.2.1 West Cell Operation

The SVE, IAS, and steam injection systems were started on August 2. Figure 4-3 presents the daily hours of operation for each process component in the West Cell, as determined from daily monitoring logs and notes in the field logbooks. The figure also identifies disruptions in the system operation caused by intentional and unintentional shutdowns.

Power outages caused several intermittent shutdowns of the process equipment. After each outage, the equipment remained inoperable until the operator manually restarted the system. The SVE and IAS systems were also intentionally shut down during certain gas sampling and performance testing events to ensure the systems did not interfere with the monitoring results. Additionally, the West Cell SVE and IAS systems were shut down twice to perform maintenance on the boiler (October 28 and December 14). On October 9, a thermal sensor shut off the IAS system because of overheating. Overall, the SVE system was operational more than 92% of the test period, and the IAS system was operational for 94% of the test period.

The boiler operated regularly until the system failed at the end of November, when the corrosion of the heating elements caused an electrical short within the boiler. Previously, the steam injection system shut down a few times because of the lack of feedwater for the boiler (August 6 through 10, October 15, and November 13). The boiler feedwater was delivered to the boiler by a feed pump and a 300-gal. tank. The City of Galena delivered water to the site by truck. Initially the delivery service was inconsistent, so that occasionally the tank went dry, causing the boiler to shut down until water was delivered. Overall, the steam injection system was operational 55% of the test period.

On October 27, the boiler shut down because silt and lime sludge had accumulated in the boiler feed and blowdown lines despite the daily blowdown procedures. The sediment was fine enough to pass through the strainer in the feed line. On November 28, the boiler shut down again because of a malfunction of the heating elements. Silt and lime sludge had again built up in the piping and boiler water tank. The second outage emphasized that the quality of the water from the City of Galena was not compatible with the materials used to construct the boiler. New boiler components were ordered, but the problem of poor water quality and the unavailability of a boiler mechanic or electrician in

Galena led to the decision to leave the boiler inoperable through the end of the pilot-scale test. The boiler was restarted a couple of times, and could be made fully operational once new heating elements and a water softener are installed.

# 4.2.2 East Cell Operation

In the East Cell, the SVE system was started on August 3, but the IAS system was not started until August 17 because of the breakage of an IAS system component during installation. The daily operation periods of the East SVE and IAS systems are shown in Figure 4-4. The previous discussion of the equipment shutdowns from power outages and for sampling events in Section 4.2.1 also applies to the process components in the East Cell.

Overall, the operation of the East SVE system was inconsistent during the first four months of the test; the system was operational 82% of the test period. During the first two months, the SVE was shutting down on a regular basis because of water collecting in the knockout tank. The SVE was designed so that when the knockout-tank capacity is reached (about 9 gal.), a float switch shuts off the system. Since the system requires a manual restart, it often remained off until the next day when daily process checks were performed. During October and November, the SVE system also shut down several times because of a thermal overload. In each case, the enclosure temperature had risen to above 100°F, which caused the SVE to shut down. The IAS system in the East Cell operated almost continuously throughout the test, with the exception of power outages and scheduled sampling events-approximately 90% of the test period.

# 4.3 Monitoring

The monitoring program for the Phase II pilotscale test included initial and periodic sampling of soils, soil gas, groundwater, and SVE exhaust gas; daily operational checks on process parameters; and intermittent system performance testing. The daily





Figure 4-3. Daily Hours of Operation for the Process Components in the West Cell

SVE 25 20 Daily Operation (hrs) 01 91 п U S & P U U 5 s U Startup: 8/3/93, 10:00 S 0 8/2 8/18 9/3 9/19 10/5 10/21 11/6 11/22 12/8 12/24 1/9 1/25 2/10 Air Sparging 25 20 Daily Operation (hrs) 01 21 т Ρ 5 Startup: 8/17/93, 10:00 s 0 ..... 8/2 8/18 9/3 10/5 9/19 10/21 11/6 11/22 12/8 12/24 1/9 1/25 2/10

Figure 4-4. Daily Hours of Operation for the Process Components in the East Cell

T = Performance Test

U = Process Upset

S = Sampling

P = Power outage



checks and performance tests, such as air permeability, air sparging (AS) zone of influence, and in situ respiration, are discussed in later subsections.

The monitoring schedule for the Phase II pilotscale test is presented in Table 4-1, including the number of samples collected for laboratory analysis and the number of field measurements taken during each sampling event. Appendix C.2 contains a description of the sampling and analytical methods used during the pilot-scale test.

Samples were collected during the last week in July before system startup. Samples for soils, soil gas, and groundwater were collected monthly over the sixmonth test period to monitor the treatment effectiveness of each system. Additionally, field measurements were taken 5 and 15 days after system startup to measure any early change in concentrations of field-determined analytes, such as oxygen, carbon dioxide, VOCs, and dissolved oxygen. The SVE exhaust gas was analyzed to quantify the hydrocarbons removed by the SVE system.

It was clearly apparent during the installation of the monitoring network and treatment wells that the soil cuttings and groundwater from the West Cell had higher VOC concentrations than those from the East Cell. The difference in contaminant distribution patterns was unfortunate in that the two study areas were not comparable.

The analytical results collected during the study are discussed below for the West and East Cells. The results are presented graphically to show trends for the data collected during the test. Appendix C.2 contains the tables that list the results of the soil, groundwater, soil gas, and SVE exhaust gas analyses for the Phase II pilot-scale test.

### 4.3.1 West Cell Monitoring Soils

Soil samples were collected from a depth of 9 to 10 ft bgl at approximately 30-day intervals from the beginning of the test through 180 days (the test actually ran 192 days but, for clarity, the results will be discussed by monitoring event; for example, the day 180 event occurred 192 days into the study). The soils

were analyzed for TPH, diesel range organics (DRO), gasoline range organics (GRO), and BTEX. Figure 4-5 presents the results for each of these constituents throughout the test. The two sample locations in the southwest part of the West Cell (B-1 and B-6) showed the highest contamination in the study area. The contamination was significantly less in other portions of the study area. These data are presented on a log scale, since the contamination varies by over three orders of magnitude in the West Cell.

Generally, hydrocarbon levels decreased throughout the TS. The TPH and DRO concentrations in B-1 and B-6 decreased by nearly one order of magnitude during the six-month test. The GRO and BTEX also decreased significantly during the study. The initial (Day 0) constituent concentrations at the other soil locations were much lower, ranging from 25 ppm to the detection limit. Samples were not collected at B-5 during the last two sampling events because the soil was frozen and therefore impenetrable by hand augering. This was the only sample location where frozen soil was observed at the sampling depth.

Figure 4-6 shows the microbial plate counts for the soils, including heterotrophic and hydrocarbonutilizing organisms. The counts for the initial soils were approximately 10<sup>6</sup> to 10<sup>7</sup> heterotrophic organisms, and remained in this range throughout the test period. These numbers indicate that indigenous bacteria are numerous in the POL Tank Farm area, as was previously shown in the Phase I bench-scale test. The numbers of hydrocarbon-utilizing organisms were not as consistent as the numbers of heterotrophic organisms.

During the Day-60 sampling event, steam was observed radiating from the pilot hole at soil location B-6, and mushrooms were growing under the plywood cover. The soil temperatures at depth were measured there and for some of the other soil sample locations. During the later monitoring events, additional temperature measurements were collected at these locations. These data are presented in Figure 4-7. The temperatures in the West Cell remained significantly higher than the ambient temperature throughout the test period. The warmest temperature (45°C) was observed at B-1 on Day 150. For comparison purposes,

| Event      | Sampling<br>(Days) | Matrix       | Field<br>Analyses | Field<br>Samples <sup>b</sup> | Field<br>Duplicates by | PA<br>Samples | Analytes                                                                                                |
|------------|--------------------|--------------|-------------------|-------------------------------|------------------------|---------------|---------------------------------------------------------------------------------------------------------|
| <b>G</b> 0 | 0                  | Gas          | 18                | 18                            | 2                      | 1             | VOCs*, O.*, CO., TNMHC BTFX                                                                             |
| G1         | 5                  | Gas          | 18                | 2                             | 2                      | 0             | $VOC_s^*, O_s^*, CO_s$ , TNMHC, BTEX                                                                    |
| G2         | 15                 | Gas          | 36                | 4                             | 1                      | 1             | VOCs*, O <sub>2</sub> *, CO <sub>2</sub> , TNMHC, BTEX                                                  |
| G3         | 30                 | Gas          | 36                | 6                             | 0                      | 0             | VOCs*, O <sub>2</sub> *, CO <sub>2</sub> , TNMHC, BTEX                                                  |
| G4         | 60                 | Gas          | 33                | 29                            | 4                      | 0             | VOCs*, O <sub>2</sub> ,*CO <sub>2</sub> , TNMHC, BTEX                                                   |
| G5         | 90                 | Gas          | 26                | 4                             | 2                      | 0             | VOCs*, O <sub>2</sub> ,*CO <sub>2</sub> , TNMHC, BTEX                                                   |
| G6         | 120                | Gas          | 38                | 3                             | 1                      | 1             | VOCs*, O <sub>2</sub> ,*CO <sub>2</sub> , TNMHC, BTEX                                                   |
| G7         | 150                | Gas          | 27                | 5                             | 0                      | 0             | VOCs*, O <sub>2</sub> *, CO <sub>2</sub> , TNMHC, BTEX                                                  |
| G8         | 180                | Gas          | 31                | 28                            | 3                      | 1             | VOCs*, O <sub>2</sub> *, CO <sub>2</sub> , TNMHC, BTEX                                                  |
| <b>S</b> 0 | 0                  | Soil         | 12                | 24                            | 3                      | 0             | TPH, DRO, GRO, BTEX, TRPH*,<br>Moisture, EC, NO <sub>3</sub> , NH <sub>4</sub> , PO <sub>4</sub> , TOC, |
| S1         | 20                 | Soil         | 0                 | 10                            |                        |               | Microbial counts                                                                                        |
| 51         | 50<br>60           | 5011<br>Soil | 0                 | 12                            | 0                      | 0             | ТРН                                                                                                     |
| 52         | 00                 | 3011         | U                 | 12                            | 1                      | 0             | TPH, DRO, GRO, BTEX,                                                                                    |
| 53         | 00                 | Soil         | 0                 | 12                            | 0                      |               | Moisture, Microbial counts                                                                              |
| S4         | 120                | Soil         | 0                 | 12                            | 0                      | 0             | TPH                                                                                                     |
| , ,        | 120                | 001          | U                 | 12                            | 0                      | 0             | IPH, DRO, GRO, BTEX, Moisture,                                                                          |
| S5         | 150                | Soil         | 0                 | 12                            | 1                      | 0             | TDU                                                                                                     |
| \$6        | 180                | Soil         | Ő                 | 12                            | 1                      | 0             | TPH DPO CRO PTTY Maint FC                                                                               |
|            |                    |              |                   |                               | •                      | 0             | $NO_3$ , $NH_4$ , $PO_4$ , $TKN$ , $pH$ , $TOC$ ,<br>Microbial counts                                   |
| <b>W</b> 0 | 0                  | GW           | 8                 | 8                             | 1                      | 0             | DO*, TPH, DRO, GRO, BTEX, TRPH*,<br>Microbial counts NO, NH, PO                                         |
| W1         | 30                 | GW           | 8                 | 0                             | 0                      | 0             | DO* TRPH*                                                                                               |
| W2         | 60                 | GW           | 8                 | 0                             | 0                      | õ             | DO*. TRPH*                                                                                              |
| W3         | 90                 | GW           | 8                 | 0                             | 0                      | ō             | DO*. TRPH*                                                                                              |
| W4         | 120                | GW           | 8                 | 0                             | 0                      | 0             | DO*, TRPH*, Microbial counts                                                                            |
| W5         | 150                | GW           | 8                 | 0                             | 0                      | 0             | DO*, TRPH                                                                                               |
| W6         | 180                | GW           | 8                 | 0                             | 1                      | 0             | DO*, TPH, DRO, GRO, BTEX,<br>Microbial counts, NO, NH, PO,                                              |

 Table 4-1

 Monitoring Schedule for the Phase II Pilot-Scale Test

Notes: \*Field measurement.  ${}^{a}G = Gas$  sampling event, S = soil sampling event, W = groundwater sampling event.  ${}^{b}Sample$  collected for off-site laboratory analysis. 'Field duplicates are replicate samples for quality assurance analysis. BTEX = Benzene, toluene, ethylbenzene, xylenes. DRO = Diesel range organics. EC = Electrical conductivity. GRO = Gasoline range organics. GW = Groundwater. PA = Performance audit (calibration gases used for quality assurance analysis). TKN = Total Kjeldahl nitrogen. TNMHC = Total non-methane hydrocarbons. TPH = Total petroleum hydrocarbons. TOC = Total organic carbon. TRPH = Total recoverable petroleum hydrocarbons. VOCs = Volatile organic compounds.





Figure 4-6. Microbial Plate Counts for Soils Collected in the West Cell. Lines connecting points indicate temporal trends for each sample location.



Figure 4-7. Soil Temperatures Measured in the West Cell

the average soil gas temperature in the East Cell at that time was 7°C. After considering possible causes for the temperature rise, it was concluded that the heat in the West Cell was not attributable to steam injection but was generated through biological activity. Section 5.6 discusses this hypothesis in greater detail.

#### Groundwater

Groundwater samples were collected for laboratory analysis around Days 0 and 180 and for field analyses around Days 0, 30, 60, 90, 120, and 150. The initial characterization of the groundwater showed nondetectable concentrations of nutrients (nitrogen as ammonia and nitrate and phosphorous as phosphate), low levels of microorganisms ( $10^2$  to  $10^3$  CFU/g), and significant levels of hydrocarbon constituents.

Water levels and free-product thicknesses were measured during each sampling event. Figure 4-8 shows the groundwater fluctuation at the POL Tank Farm in relation to the Phase II test. Figure 4-9 presents the observed free-product thicknesses in the monitor wells. Before startup, no floating free-product layer was observed on the water table. As the water table began declining in September, a free-product layer was observed in all of the monitor wells in the West Cell. The apparent thicknesses in three wells remained at 1 to 2 ft throughout the remainder of the study.

Table 4-2 presents the results of the laboratory analysis of groundwater from the West Cell. Owing to the scarcity of data points (only initial and final), a thorough analysis of the treatment effectiveness is not possible. The evaluation of constituent concentrations in the groundwater is further complicated by the fluctuating water table and the presence of free product. Attempts were made to purge the free product from the monitor well, but the hydrocarbon recovery in the wells was generally rapid. The purging also tended to create an emulsion of free product and groundwater. The GRO and BTEX concentrations in the groundwater increased during the study probably as a result of the free-product layer contributing dissolved-phase contaminants to the groundwater. Free product was not seen in the monitor wells when the initial samples were collected.

| Table 4-2                                            |
|------------------------------------------------------|
| <b>Constituent Concentrations in the Groundwater</b> |
| from the West Cell                                   |

| Monitor |         | Concentration (ppm) |                    |
|---------|---------|---------------------|--------------------|
| Well    | Analyte | Initial*            | Final <sup>b</sup> |
| W-1     | ТРН     | 302                 | 64                 |
|         | DRO     | 195                 | 23                 |
|         | GRO     | 521                 | 511                |
|         | BTEX    | 80                  | 129                |
| W-2     | TPH     | 21                  | 41                 |
|         | DRO     | 11                  | 4.6                |
|         | GRO     | 98                  | 353                |
|         | BTEX    | 50                  | 117                |
| W-3     | ТРН     | 98                  | 10                 |
|         | DRO     | 50                  | 0.4                |
|         | GRO     | 4.4                 | 152                |
|         | BTEX    | 6.2                 | 108                |
| W-4     | TPH     | 97                  | 200                |
|         | DRO     | 57                  | 311                |
|         | GRO     | 37                  | 236                |
|         | BTEX    | 25                  | 400                |

Notes: "Samples collected at Day 0. "Samples collected at Day 189.

Groundwater analyses for total recoverable petroleum hydrocarbons (TRPH) were also performed in the field with an infrared detector. Figure 4-10 presents the field analytical results. The data collected around Day 120 probably contained some free product, as determined by the concentration measured and visual observations. From these data, the TRPH concentrations in the West Cell groundwater appeared to remain constant or increase over time. Most likely, the dissolved-phase concentrations were high because free product was contributing contaminants to the groundwater.

#### Soil Gas

Soil gas samples were collected in stainless steel vacuum canisters for laboratory analyses at various intervals throughout the study. All vapor probes were sampled on Days 0, 60, and 180. Since the deep vapor probes could not be installed until the water table dropped below the depth of installation, samples for the deep probes were not collected until Day 30. Field measurements were taken at the installed probes at 30-day intervals and also on Days 5 and 15.



180 94 Feb 150 Jan 94 Figure 4-8. Water Level Fluctuations in the POL Tank Farm and for the Yukon River During 120 Dec 93 freeze-up the Test Period. The Sampling Events are Marked for Reference. River Nov 93 6 Yukon River ......... Oct 93 60 Date Sep 93 30 05-MW-06 Spring break-up Aug 93 Day: 0 Jul 93 May 93 Jun 93 Water Elevation (ft above MSL) 25 133 135 140 115 Ground Level



Figure 4-9. Observed Free Product Thicknesses in the Monitor Wells at the West Cell





The laboratory analyses for the soil gas included TNMHC and BTEX. Figure 4-11 shows these data, which are grouped as V-1 through V-4 and V-5 through V-10 and by depth. V-1 through V-4 are located in the western half of the West Cell. Generally, the VOC concentrations decreased over time. The data confirmed other observations that the major zone of contamination was the western portion of the study area.

Figure 4-12 presents the oxygen and carbon dioxide concentrations as a function of time. The oxygen and carbon dioxide concentrations were highly variable across the cell. The initial soil gas measurements were taken prior to starting the SVE system—these data indicate  $O_2$  and  $CO_2$  levels in the static (no gas flow) condition. Soon after system startup, most of the vapor probe locations showed soil gas concentrations similar to ambient air (21%  $O_2$  and 0.03% CO<sub>2</sub>). This trend is attributed to ambient air being pulled through the subsurface by the vacuum induced by the SVE system. For the deep vapor probes, the time required to reach steady-state values was somewhat longer than it was for the shallow probes.

During the monitoring period, some of the soil gas showed elevated carbon dioxide and depressed oxygen concentrations. However, sufficient O2 was present to support aerobic microbial metabolism at all locations. For the vapor probes in the western portion of the study area (V-1 through V-4), the established steady-state concentrations were 13% to 15% oxygen and 5% to 7% carbon dioxide. These vapor probes are located in the area containing the highest hydrocarbon concentrations and also experienced elevated soil temperatures (see Figures 4-11 and 4-13). Since a decrease in oxygen and an increase in carbon dioxide is typical of an aerobic biological process, the combination of high soil temperatures, high carbon dioxide levels, and greatest hydrocarbon concentrations substantiates the hypothesis that biodegradation rates were enhanced in the western portion of the West Cell.

#### 4.3.2 East Cell Monitoring Soils

Soils samples in the East Cell were collected from 9 to 10 ft bgl on the same 30-day schedule as in the West Cell. Figure 4-14 presents the results of the soil analyses. Sample location B-7 showed the greatest contamination in the East Cell, which was greatest at Day 60. The contaminant concentrations then decreased steadily to below the method detection limit by Day 180. At the end of the test period, constituent concentrations at all locations were below the detection limit.

During the installation of the IAS wells in the East Cell, little contamination was present on the east side of the study area. Therefore, the soil sampling locations were concentrated on the west side, where the contamination was observed to be highest, on the basis of field VOC measurements.

Figure 4-15 presents the microbial plate count results for the East Cell. As in the West Cell, the heterotrophic microbial population was very healthy  $(10^6 \text{ to } 10^8)$ . The soil temperatures measured in the East Cell are shown in Figure 4-16. The soil temperatures remained near 6°C throughout the test period. The greatest soil temperature in the East Cell  $(18^\circ \text{C})$  was observed at B-8 on Day 150.

#### Groundwater

Groundwater samples were collected for laboratory analysis on Days 0 and 180 and for field analyses around Days 0, 30, 60, 90, 120, and 150. The initial characterization of the groundwater showed nondetectable concentrations of nutrients and low levels of microorganisms ( $10^2$  to  $10^4$  CFU/g); however, the heterotrophic organisms were enumerated initially at  $10^6$  for W-7.

Figure 4-17 presents the observed free-product thicknesses in the monitor wells at the East Cell during the test period. Before startup, free product was found in W-8, which was located south of the study area. The free-product thickness decreased over the study period, disappearing entirely by Day 150. The other wells showed no accumulation of free product during the test.

Table 4-3 presents the laboratory analytical results for the groundwater from the East Cell. For monitor well W-8, the GRO and BTEX concentrations decreased during the test. The free-product thickness in this well also decreased during this period, which could explain the decrease in GRO and BTEX levels. Little



Figure 4-11. Total Non-Methane Hydrocarbons and BTEX Concentrations in the Soil Gas at the West Cell. Vapor Probes are Grouped by Soil Contamination Levels and Biological Activity.



Figure 4-12. Oxygen and Carbon Dioxide Concentrations Measured in the Soil Gas at the West Cell. Connecting lines indicate temporal changes for each vapor probe.



Figure 4-13. Soil Gas Temperatures Measured at the West Cell





Figure 4-15. Microbial Plate Counts for Soils Collected in the East Cell. Lines connecting points indicate temporal trends for each sampling location.



Figure 4-16. Soil Temperatures Measured in the East Cell



Figure 4-17. Observed Free Product Thicknesses in the Monitor Wells at the East Cell





or no change in DRO and TPH concentrations in this well suggests that the free product primarily contains the lighter constituents (more volatile) found in gasoline.

| Table 4-3                                            |
|------------------------------------------------------|
| <b>Constituent Concentrations in the Groundwater</b> |
| from the East Cell                                   |

| Monitor |         | Concentration (ppm)  |                    |  |
|---------|---------|----------------------|--------------------|--|
| Well    | Analyte | Initial <sup>*</sup> | Final <sup>b</sup> |  |
| W-5     | ТРН     | 7.3                  | 37                 |  |
|         | DRO     | 0.3                  | 1.6                |  |
|         | GRO     | 75                   | 137                |  |
|         | BTEX    | 51                   | 98                 |  |
| W-6     | ТРН     | 0.1                  | 30                 |  |
|         | DRO     | 0.1                  | 2.1                |  |
|         | GRO     | 92                   | 106                |  |
|         | BTEX    | 41                   | 65                 |  |
| W-7     | ТРН     | 7.1                  | 24                 |  |
|         | DRO     | 1                    | 0.8                |  |
|         | GRO     | 146                  | 88                 |  |
|         | BTEX    | 67                   | 50                 |  |
| W-8     | TPH     | 19                   | 33                 |  |
|         | DRO     | 12                   | 2.8                |  |
|         | GRO     | 2115                 | 159                |  |
|         | BTEX    | 293                  | 98                 |  |

Notes: \*Samples collected at Day 0. \*Samples collected at Day 188.

Groundwater analyses performed in the field with the infrared detector are presented in Figure 4-18. From these data, it appears that the TRPH concentrations decreased over time. Again, the accumulation of free product on the water table at W-8 probably contributed to the dissolved-phase concentrations in the initial samples of the groundwater.

#### Soil Gas

Samples were collected for soil gas analyses at various intervals throughout the study. Figure 4-19 presents these analytical results. Generally, the concentrations decreased over time. Again, the greatest contamination was seen in the western portion of the study area. Individual vapor probe results are contained in Appendix C.2.

Figure 4-20 presents the oxygen and carbon dioxide concentrations as a function of time. The soil gas showed concentrations that leveled out to near ambient air conditions (21%  $O_2$  and 0.03%  $CO_2$ ) for all sampling locations. This trend was expected, since ambient air was pulled through the subsurface by the SVE system.

Figure 4-21 presents the soil gas temperature data for the test. Generally, the temperatures decreased as the ambient temperature declined and leveled off above 0°C.

# 4.4 Process Performance Measurements

Various process variables were monitored daily to ensure the proper operation of the equipment and to estimate the SVE hydrocarbon removal rates. Table 4-4 lists the system performance parameters that were monitored on a daily basis throughout the test period. Other performance measurements, such as air permeability tests, in situ respiration tests, and air sparging tracer tests, were conducted on one or more occasions. The following subsections describe the daily operational and intermittent performance monitoring results.

 Table 4-4

 Summary of Process Variables Monitored Daily

 During the Phase II Test

| SVE System               | IAS System             |  |
|--------------------------|------------------------|--|
| Running Time             | Running Time           |  |
| System Vacuum            | Outlet Temperature     |  |
| Inlet Diff. Pressure     | Outlet Pressure        |  |
| Inlet Temperature        | Outlet Flow Rate       |  |
| Exhaust Diff. Pressure   | Header Pressure        |  |
| Exhaust Temperature      | Steam Injection System |  |
| Exhaust Back Pressure    | Running Time           |  |
| Exhaust HC Concentration | Flow Totalizer         |  |
| Volume in Knockout Tank  | Steam Flow Rate        |  |
| General                  | Outlet Pressure        |  |
| Barometric Pressure      | Header Pressure        |  |
| Ambient Temperature      | Feedwater Pressure     |  |
| Relative Humidity        | Water Tank Level       |  |
| Enclosure Temperature    |                        |  |



Figure 4-19. Total Non-Methane Hydrocarbons and BTEX Concentrations in the Soil Gas at the East Cell



# Figure 4-20. Oxygen and Carbon Dioxide Concentrations Measured in the Soil Gas at the East Cell





# 4.4.1 West Cell Operating Parameters

The daily flow rate for the SVE system was calculated from the daily monitoring data. A sample calculation is provided in Appendix C.3. Figure 4-22 presents the flow rate as a function of time during the pilot test. The flow rate averaged 132 scfm. The dips in the graph represent times when the system was shut down for sampling.

The exhaust gas from the West SVE unit was sampled periodically, and the results are presented in Figure 4-23. The TNMHC concentration averaged 20,000 ppmV throughout the pilot test. Previous SVE studies have demonstrated that SVE hydrocarbon extraction rates decrease over time, usually within one or two months. The steady rate of hydrocarbons removed in the West Cell indicates that the hydrocarbon source was not depleted during the test. The floating free product in the West Cell is the presumed source of VOCs.

The IAS system was evaluated on the basis of changes in dissolved oxygen (DO) concentration in the groundwater with time. Figure 4-24 presents these data. Generally, the DO did not increase significantly during the test period. DO measurements were not taken at Days 120 and 150 because the subzero temperatures prevented the use of the flow-through cell used to measure DO. The DO did increase in W-1 from 0.5 mg/L initially to 2 mg/L at Day 90. However, since monitor well W-1 was upgradient of the IAS system, the small rise in DO was probably not attributable to the IAS system.

The change in groundwater temperature from ambient was used to evaluate the effect of steam injection on the subsurface temperatures. The temperatures remained relatively constant until Day 180, when the temperature rose to above ambient at W-2 and W-3, as shown in Figure 4-25. The steam boiler was inoperable from Day 120 through Day 180, so the temperature increase is probably not attributable to the steam injection system. This temperature change may have been related to the increased soil temperatures observed in the West Cell. However, the monitor well closest to the steam injection wells (W-2) did show a 2°C increase at Day 60 compared with Day 0.

### 4.4.2 East Cell Operating Parameters

Figure 4-26 presents the East SVE flow rate as a function of time. The flow rate averaged 126 scfm. Again, the dips in the graph represent times when the system was shut down for sampling. Figure 4-27 presents the TNMHC and total BTEX results for the SVE exhaust gas analyses. The TNMHC concentration decreased at the beginning of the test and then increased during the last 120 days. Two explanations are given for this trend. First, the East SVE was shutting off daily from water collecting in the knockout tank during the first 60 days of operation. During that time, the vacuum was manually decreased as an attempt to decrease the amount of water collected by the system. The vacuum decrease was accomplished by bleeding ambient air into the system. This diluted the VOCs in the exhaust gas. Second, the water table declined steadily beginning in late September. As the water table fell, deeper portions of the hydrocarbon smear zone became drained of water, allowing air flow through the soil pores and allowing the stripping of VOCs.

Figure 4-28 presents the DO concentration in the groundwater from the East Cell over time. Generally, the DO remained around 1 mg/L during the pilot-scale test. The DO in W-6 and W-7 was measured at 4 mg/L at Day 180. These data are questionable, since this increase occured 190 days into the test. Figure 4-29 presents the groundwater temperatures in the East Cell. The temperatures remained steady during the study.

# 4.4.3 Air Permeability and SVE Zone of Influence

Three times (August, October, and December, 1993) during the Phase II pilot-scale test, a transient pressure performance test was conducted to measure the subsurface soils' permeability to air and to estimate the zone of influence of the SVE extraction well for both the East and West Cells. These tests were conducted at various stages of subsurface groundwater elevation to measure the change in the apparent air permeability and zone of influence with the declining water table. The data from these tests were fit with a one-dimensional, radial flow, homogeneous, and isotropic mathematical model. Data from these tests and calculations are provided in Appendix C.4.



Figure 4-22. SVE Exhaust Gas Flow Rate During the Phase II Test for the West Cell







Figure 4-24. Dissolved Oxygen in Groundwater from the West Cell







Figure 4-26. SVE Exhaust Gas Flow Rate During the Phase II Test for the East Cell







Figure 4-28. Dissolved Oxygen in Groundwater from the East Cell





Additionally, steady-state pressure distribution data were collected and fit with a two-dimensional, radial flow, homogeneous, but nonisotropic model to provide a second estimate of the air permeability and radius of influence. This model allowed for differences in the vertical and horizontal permeabilities. Since there are two geologic units at the TS site, a sandy-silt zone and then sand and gravel, this model accounts for the site conditions (difference in air permeability with depth) better than the one-dimensional model does.

# **Transient Pressure Air Permeability Tests**

A radial flow, homogeneous, and isotropic media model published by Johnson et al. (1993), was used to analyze the transient pressure test data. This model assumes that the change in pressure at a point is proportional to the log of time and that the plot of this relationship is a straight line. The slope of this line is inversely proportional to the air permeability of the soil, on the basis of the premise that a higher resistance to flow (i.e., low-permeable soils) requires more energy (i.e., more pressure to build up) before flow is induced toward the well.

#### August Test

On August 3, the first air permeability test was conducted on the East and West Cells. The depth to groundwater was approximately 12 ft bgl; therefore, the amount of SVE screen exposed was only 6 ft before a vacuum was induced (approximately 2 to 3 ft of screen was exposed after the SVE unit was turned on because of upwelling of the groundwater). Owing to a larger-than-expected influence by the West SVE system, which remained running during the initial test, the data for the East Cell could not be used for calculating the permeability and radius of influence for that area. However, observations collected on the East Cell provided additional data on performance of the West Cell SVE system. Data were collected from shallow vapor probes only (the deep probes had not yet been installed because of the high water table). Measurements were taken until there was negligible change (< 0.1 in.  $H_2O$ ) in the subsurface pressure at each monitoring point.

Table 4-5 presents the permeabilities that were calculated for the West Cell.

| August 1993         |                                                              |                                   |  |
|---------------------|--------------------------------------------------------------|-----------------------------------|--|
| Monitoring<br>Point | Calculated<br>Permeability<br>Coefficient (cm <sup>2</sup> ) | Distance<br>from SVE<br>Well (ft) |  |
| West Cell           |                                                              |                                   |  |
| V-1S                | 5.01 x 10 <sup>-6</sup>                                      | 14.1                              |  |
| V-2S                | 1.09 x 10 <sup>-6</sup>                                      | 8.6                               |  |
| V-75                | 1.44 x 10 <sup>-6</sup>                                      | 37                                |  |
| V-8S                | 2.67 x 10 <sup>-6</sup>                                      | 43 3                              |  |

Table 4-5 Calculated Air Permeability Coefficients From Transient Pressure Distribution Data in August 1993

The estimated air permeabilities ranged from about 100 to 500 darcys (1 darcy is equivalent to 10<sup>-8</sup> cm<sup>2</sup>). These values are much higher than the expected (typical) value for the sandy-silt soils that comprise the upper soil layer at the TS site. The principal reason for these values being skewed was the directional-flow effect created by the high water table and the vapor barrier. Because the unsaturated zone was thin and the soil surface in a 25-ft radius of the extraction well was covered, the flow and pressure fields established quickly outside the vapor barrier. The pressures at the shallow vapor probes approached steady-state in the first minutes of the test, and much of the early-time data could not be observed. Therefore, the data used to determine the permeability values represented the later stages of pressure field equalization; this caused the permeabilities to be overestimated by the model.

The equation by Johnson et al. (1993) predicted widely variable radii for the different monitoring points—from 33 to 126 ft. Owing to either heterogeneity in the subsurface or site conditions inconsistent with model assumptions, the predicted values were inconsistent with the idealized model. Vacuum measurements on monitor wells and vapor probes across the study area indicated that the radius of influence of the West SVE easily exceeds 100 ft.

#### **October Test**

On October 4, a second transient pressure air permeability test was performed. The depth to groundwater was between 17.3 and 18 ft. The tests were conducted on the two cells separately to prevent interferences between the SVE systems. Measurements were taken at both the shallow and the deep vapor probes.

The data were again reduced using Johnson's model; the calculated air permeabilities are provided in Table 4-6. The permeabilities calculated for the shallow soils were high for both cells, although the deeper permeabilities were in the typical range for sandy soils. The shallow permeabilities ranged from 84 to 120 darcys for the East Cell, and from 57 to 220 darcys for the West Cell. The deep permeabilities ranged from 52 to 117 darcys for the East Cell and from 58 to 71 darcys for the West Cell.

#### Table 4-6 Calculated Air Permeability Coefficients from Transient Pressure Distribution Data in October 1993

| Monitoring<br>Point | Calculated<br>Permeability<br>Coefficient (cm <sup>2</sup> ) | Distance<br>from SVE<br>Well (ft) |  |  |  |
|---------------------|--------------------------------------------------------------|-----------------------------------|--|--|--|
| East Cell           |                                                              |                                   |  |  |  |
| V-12D               | 9.45 x 10 <sup>-7</sup>                                      | 30.3                              |  |  |  |
| V-13D               | 9.62 x 10 <sup>-7</sup>                                      | 32.3                              |  |  |  |
| V-14D               | 9.42 x 10 <sup>-7</sup>                                      | 37.7                              |  |  |  |
| V-15D               | 8.91 x 10 <sup>-7</sup>                                      | 13.5                              |  |  |  |
| V-16D               | 5.29 x 10 <sup>-7</sup>                                      | 8.8                               |  |  |  |
| V-20D               | 1.18 x 10 <sup>-6</sup>                                      | 56.8                              |  |  |  |
| V-13S               | 1.20 x 10 <sup>-6</sup>                                      | 32.3                              |  |  |  |
| V-15S               | 8.46 x 10 <sup>-7</sup>                                      | 13.5                              |  |  |  |
| V-20S               | 1.10 x 10 <sup>-6</sup>                                      | 56.8                              |  |  |  |
| West Cell           |                                                              |                                   |  |  |  |
| V-3D                | 6.26 x 10 <sup>-7</sup>                                      | 13.6                              |  |  |  |
| V-7D                | 7.08 x 10 <sup>-7</sup>                                      | 37                                |  |  |  |
| V-8D                | 5.85 x 10 <sup>-7</sup>                                      | 43.3                              |  |  |  |
| V-1S                | 5.75 x 10 <sup>-7</sup>                                      | 14.1                              |  |  |  |
| V-2S                | 7.66 x 10 <sup>-7</sup>                                      | 8.6                               |  |  |  |
| V-4S                | 2.20 x 10 <sup>-6</sup>                                      | 22.5                              |  |  |  |
| V-8S                | 8.75 x 10 <sup>-7</sup>                                      | 43.3                              |  |  |  |

The data from the East Cell resulted in a calculated radius of influence ranging from 42 to 162 ft. The data from the West Cell indicated radii from 34 to 139 ft. From a review of the data, it is apparent that the model is much more sensitive to the distance a point is from the well than it is to the pressure response at that point. Overall, the maximum values predicted by this model for the radius of influence were confirmed by field observations.

#### **December Test**

On December 10, both SVE systems were shut off, and the test cells were allowed to return to ambient conditions. Separate permeability tests were conducted for the West and East Cells. Like the previous tests, data were collected at both shallow and deep depths for selected vapor probes until the pressure change at individual probes became negligible. Monitoring points were checked prior to starting the second test to ensure that the site had returned to ambient conditions.

Results of the permeability modeling are presented in Table 4-7. The permeabilities ranged from 34 to 63 darcys in the East Cell and from 77 to 96 darcys in the West Cell. The calculated permeability coefficients in the deep probes were in the typical range for medium to coarse sands and were very consistent; these data suggest that the deeper soils are homogeneous in the horizontal plane. The range of radius of influence values predicted from the model were 75 to 116 ft for the East Cell and 39 to 108 ft for the West Cell.

| Table 4-7                                      |
|------------------------------------------------|
| Calculated Air Permeability Coefficients from  |
| <b>Transient Pressure Distribution Data in</b> |
| December 1993                                  |

| Monitoring<br>Point | Calculated<br>Permeability<br>Coefficient (cm <sup>2</sup> ) | Distance<br>from SVE<br>Well (ft) |  |  |  |
|---------------------|--------------------------------------------------------------|-----------------------------------|--|--|--|
| East Cell           |                                                              |                                   |  |  |  |
| V-12D               | 6.26 x 10 <sup>-7</sup>                                      | 30.3                              |  |  |  |
| V-14D               | 6.23 x 10 <sup>-7</sup>                                      | 37.7                              |  |  |  |
| V-15D               | 3.42 x 10 <sup>-7</sup>                                      | 13.5                              |  |  |  |
| V-18D               | 4.90 x 10 <sup>-7</sup>                                      | 23.3                              |  |  |  |
| V-15S               | 6.97x 10 <sup>-7</sup>                                       | 13.5                              |  |  |  |
| West Cell           | West Cell                                                    |                                   |  |  |  |
| V-1D                | 7.70 x 10 <sup>-7</sup>                                      | 14.1                              |  |  |  |
| V-4D                | 9.57 x 10 <sup>-7</sup>                                      | 22.5                              |  |  |  |
| V-7D                | 8.38 x 10 <sup>-7</sup>                                      | 37                                |  |  |  |
| V-1S                | 1.04 x 10 <sup>-6</sup>                                      | 14.1                              |  |  |  |
| V-4S                | 1.43 x 10 <sup>-6</sup>                                      | 22.5                              |  |  |  |
| V-7S                | 1.05 x 10 <sup>-6</sup>                                      | 37                                |  |  |  |

Three of the four shallow vapor probes monitored during the East Cell test showed almost no response during the test and were excluded from the results. The only reasonable explanation for this is that the majority of the air flow was occurring at depth on the East Cell and the pressure field did not develop in the shallow soils.

# **Summary of Transient Pressure Tests**

From a comparison of the air permeability and radius of influence calculations, it is apparent that the West Cell is generally more permeable to air flow than

the East Cell is. Overall, the TS site soil's permeability to air ranged from 50 to 100 darcys (values greater than 500 darcys were calculated but are considered in error because of the inability to capture early time data during the field permeability tests). The estimated permeabilities did not increase with increasing depth as anticipated, on the basis of soil lithology changes. This suggests that the model used to estimate the permeabilities could not account for the site conditions since the lower-zone sandy soils are known to be more permeable than the upper-zone silty soils. The early tests were undoubtedly heavily influenced by the vapor barriers and the shallow groundwater, which resulted in very rapid equalization of the pressure field; this condition caused permeability values to be overestimated. The final test in December represents the conditions that come closest to fitting the model (e.g., homogeneous and isotropic). The permeabilities determined for this test are assumed to be representative of air flow during the fall and winter period after the groundwater level declines.

#### **Two-Dimensional Evaluation**

To measure the anisotropy of the soils in the TS area, a two-dimensional, steady-state, homogeneous and anisotropic model by Shan, Falta, and Javandel (1992) was used. The model allows variability in the soil air permeability in the horizontal and vertical planes. This model is better suited for the TS site than the one-dimensional model because the depth of a lithologic change at the contact between silt gravelly sand was included as a boundary condition.

The model requires steady-state pressures recorded at two probes, whose vertical depths are different and are a sufficient distance from the extraction well. The model was used to compute the radial and vertical permeabilities to air from steadystate data collected in the West Cell during the Day-180 monitoring event.

The calculated radial (horizontal) permeability,  $k_r$ , was determined to be approximately 240 darcys, which is significantly higher than the onedimensional model predicted. Appendix C.4 contains these calculations. However, the vertical permeability,  $k_z$ , was calculated to be only 11 darcys.

To evaluate the effect anisotropy has on the radius of influence, k, and k, estimates were used to predict the subsurface pressure distribution and flow field on the basis of the site conditions during February 1994. The flow net in Figure 4-30 presents the predicted flow lines and pressure contours. The model predicts that 70% of the flow to the extraction well is pulled from within a 50-m (164-ft) radius. These data are consistent with field observations and with the higher estimates obtained by the one-dimensional model. The theoretical radius of influence (not shown), within which 100% of the flow is contained, is predicted to extend 100 m (328 ft) from the well. Because the field data were collected with probes installed in the high-permeability sandy zone at a time when the groundwater level was at its maximum depth, the model prediction is optimistic and represents a bestcase scenario. However, field observations confirm that an effective radius of influence of 130 ft or more is realistic for the POL area. More complex numerical models can be used to account for site-specific boundary conditions (such as the vapor barrier) and to optimize the design configuration of a full-scale SVE system.

# 4.4.4 Air Sparging Zone of Influence

A helium tracer test was performed in late August 1993 to determine the air sparging bubble pattern created by the IAS system. Separate tracer tests were performed for the shallow and deep sparge points. Eight vapor probes were installed at closely spaced intervals (2 to 4 ft) perpendicular and parallel to the groundwater flow direction (see Appendix C.5 for a schematic). A mixture of helium and air (5 to 10% helium) was sparged into the groundwater while the helium concentrations were monitored in the soil gas directly above the water table. The shallow and deep sparge points were submerged about 9 and 24 ft, respectively, during the test.

The steady-state results for the tracer test are presented in Table 4-8. Some of the results are at the instrument detection limit (IDL) of 0.01% so that little confidence is placed on the precision of the values.



4-31

However, a positive reading on the instrument was interpreted as an indication of helium presence at the vapor probe. On the basis of the data collected, the bubble zone created by the shallow sparge point extended a maximum of 2 to 4 ft parallel and 2 ft perpendicular to the direction of groundwater flow. If the midpoint of the range of detected values is used (3 and 1 ft) and the bubble zone is assumed to be symmetrical, the diameter of the bubble zone for the air sparging system was between 0.1 to 0.3 times the depth of submergence (9 ft). The data for the deep sparge point are difficult to interpret because the helium concentrations are within five times the IDL. Detection of helium that is a horizontal distance of 12 ft away from the deep sparge point suggests that the bubble zone may extend greater than 12 ft.

 Table 4-8

 Summary of Steady-State Helium Concentrations

 During the Air Sparging Tracer Test

| Vapor       | Distance      | Helium Concentration (%) |                          |  |
|-------------|---------------|--------------------------|--------------------------|--|
| Probe       | from A-8 (ft) | Shallow Probes*          | Deep Probes <sup>b</sup> |  |
| L-1         | 2             | 5                        | 0.05                     |  |
| L-2         | 4             | 0.01                     | 0                        |  |
| L-3         | 6             | 0                        | 0.01                     |  |
| L-4         | 8             | 0                        | 0.01                     |  |
| L-5°        | 12            |                          | 0.04                     |  |
| <b>T</b> -1 | 2             | 0.23                     | 0.03                     |  |
| T-2         | 4             | 0                        | 0                        |  |
| <b>T-</b> 3 | 6             | 0                        | 0.02 ·                   |  |
| <b>T-</b> 4 | 8             | 0                        | 0.02                     |  |

Notes: <sup>a</sup>9-ft submergence for sparge point. <sup>b</sup>24-ft submergence for sparge point. <sup>c</sup>L-5 was not installed during the shallow test. L = Longitudinal, parallel to groundwater flow. T = Transverse, perpendicular to groundwater flow.

#### 4.4.5 In Situ Respiration Tests

In situ soil respiration tests were conducted during the Day-60 and Day-150 sampling events in the West Cell and during the Day-150 sampling event in the East Cell. The respiration tests provided data used to estimate the biological degradation rate of hydrocarbons in the subsurface soils. To conduct the tests, the process components were shut off and the oxygen and carbon dioxide concentrations were monitored over a period of several days. The calculated oxygen uptake (depletion) rates were used to estimate hydrocarbon biodegradation rates based on the stoichiometric oxidation of a representative hydrocarbon, heptane. Appendix C.6 contains a description of the procedures and calculations used for the respiration tests.

The field results from the soil respiration tests are shown in Figures 4-31 and 4-32. The regression lines show the best-fit oxygen utilization and carbon dioxide evolution rates during each test. The calculated hydrocarbon degradation rate is also shown on each graph.

For the Day-60 respiration test in the West Cell, the highest estimated biodegradation rate was observed for V-1S (7.8 mg/kg/day). The degradation rates in the other probes ranged from 1.9 to 3.4 mg/kg/day. The lowest degradation rate was observed at V-6D. During the Day-150 test, the degradation rates ranged from 0 to 5.0 mg/kg/day. The rates observed at individual vapor probes were comparable between the two tests, except for V-8D, which dropped from 2 at Day 60 to 0 mg/kg/day at Day 150. The soil around this probe was frozen by Day 150, which may explain the decrease in biological activity. The biodegradation rates estimated in the West Cell were consistent with other field measurements (oxygen, carbon dioxide, and temperatures) and thus indicated that biological activity was occurring. The highest estimated biodegradation rates were observed in the vapor probes on the southwest portion of the West Cell.

Oxygen utilization rates, and therefore hydrocarbon degradation rates, at the East Cell were essentially zero during the Day-150 test. These data are consistent with other field measurements that showed little biological activity in the East Cell. The bacterial populations in the East Cell were high (up to 10<sup>8</sup> heterotrophic organisms), which indicates that there are indigenous bacteria at the site; since there is little contamination present, biological activity was limited.



Figure 4-31. Oxygen Utilization, Carbon Dioxide Production, and Estimated Hydrocarbon Degradation Rates During the Day-60 Respiration Test in the West Cell





# Section 5 LNAPL RECOVERY TESTING AND RESULTS

Since little was known of the horizontal extent of free-floating hydrocarbon product or its seasonal distribution in early 1992 when the TS was designed, the pilot-scale tests focused primarily on the remediation of vadose-zone contaminants and, to a lesser degree, on the remediation of groundwater. However, free-product surveys, baildown well tests, and free-product skimming tests have been conducted on three separate occasions in the Galena POL Tank Farm area to evaluate the feasibility of LNAPL recovery using skimming techniques. The first two phases of this test program where conducted during the summer and fall 1992-1993 during the normal highwater table portion of the annual hydrological cycle related to the rise of the Yukon River. A third phase of LNAPL recovery testing was conducted in April 1994 during the winter low-water table period. The following section summarizes the testing activities and results from the LNAPL recovery tests. Refer to Figure 4-1 for locations of the wells tested during this program. Well measurement data and elapsed time plots of floating product and water levels are included in Appendix D.

#### 5.1 Phase I Recovery Testing (September 1992)

#### 5.1.1 Activities

During the 1992 Galena field season, two 6-in. diameter hydrocarbon recovery wells (05-RW-01 and 05-RW-02) and a number of 2-in. monitoring wells were installed in the POL. These wells were located in areas where floating product had been observed during previous investigations (USAF, 1991, 1993e). Longduration (3-day) baildown tests were conducted on recovery well 05-RW-01 and a nearby 2-in. monitoring well (05-MW-10). The baildown test procedure involved rapid removal of the floating product in the well using a standard, bottom-valve Teflon<sup>®</sup> bailer. Elapsed recovery time was recorded beginning at the moment the final bail was removed. During the recovery period, periodic measurements were taken for water level, product level, and elapsed time.

A pneumatic, hydrocarbon recovery system (Clean Environment Engineers, SOS product-only skimming system) and a portable air compressor were purchased and shipped to Galena to conduct field recovery tests. This skimming system was tested briefly at the close of 1992 field activities.

#### 5.1.2 Results

Both wells displayed similar water and product level behavior during the baildown tests. An LNAPL layer, which had an apparent thickness of 1.5 ft in the wells, was nearly completely removed by bailing at the start of the test. Following baildown, the free product recovered slowly throughout the monitoring period. Results for baildown tests on wells 05-MW-01 and 05-MW-10 are shown in Figures 5-1 and 5-2.

Analysis of the data focused on determining the inflection point on the water level versus time recovery curve. According to Gruszczenski (1987), the actual formation thickness corresponds to this inflection point. In other words, after the product level in the well is reduced by pumping or bailing, the water level first rises in response to the removal of the weight of the former floating-product layer, and then falls as the floating-product layer gradually recovers into the well. The point where the water level begins to fall is termed the inflection point; this point is considered to represent an accurate estimate of the LNAPL thickness in the Generally, the apparent hydrocarbon formation. thickness observed in a well is about 70% to 95% greater than the actual formation thickness estimated at the inflection point.

For recovery well 05-RW-01, an inflection point in water levels was observed almost immediately upon cessation of bailing. The product thickness corresponding with this inflection point was 0.15 ft. Monitor well 05-MW-10 showed similar recovery behavior and had an estimated formation product thickness of 0.03 ft. Because the magnitude of the water level change in both wells was so small and



Figure 5-1. Baildown Test Results for 05-RW-01 (September 1992)





occurred so rapidly, there is some uncertainty as to the validity of the formation product thickness estimates.

## 5.2 Phase II Recovery Testing (July 1993)

#### 5.2.1 Activities

In July 1993, additional baildown and skimming tests were conducted in the POL area. The primary objectives were twofold: 1) to determine the recharge rate of LNAPL from the formation into the well, and 2) to determine the true product thickness in the formation. Baildown tests were performed on four wells in the POL area (05-RW-1, 05-RW-2, 05-MW-04, and 05-MW-10) and one well in the Million Gallon Hill area (09-MW-08). Skimming tests were performed at three of these wells (05-RW-01, 05-RW-2, and 05-MW-10).

#### **Baildown Tests**

Baildown testing was performed in a manner similar to the previous tests. In the case of 09-MW-08, 05-MW-10, and 05-MW-04, the baildown test was performed first, which is the conventional method. The water and hydrocarbon levels in the well were then allowed to recover over a 3- to 10-day period; water and product levels were monitored throughout the recovery period. For recovery wells 05-RW-1 and 05-RW-2, skimming tests were performed initially. The skimmer system effectively bailed out all the LNAPL in the well; the pump was then shut off and the recovery of water and hydrocarbon were monitored over time.

#### **Skimming Tests**

The SOS Recovery System used for the skimming tests is shown schematically in Figure 5-3 (the recovery system actually used differs slightly from the schematic in that there is no recovery pump inside the control panel; rather, a downhole pump is placed just above the SOS skimmer assembly). Operation of the SOS skimmer pump reduces the product level in the well below the product level in the formation. The manufacturer claims that the skimmer pump can reduce product levels in a well to 0.3 in. (our experience indicates that the equipment is most efficient with at least 1 in. of standing product in the well). The major

system components are a 2- or 4-in. skimmer assembly, a pneumatic pump, and a pneumatic-actuated control panel. The skimmer assembly is suspended in the well by polypropylene rope. A portable electric generator (23kW) and a 2-hp air compressor were used to power the system.

Prior to installation of the SOS pump assembly into the well, an oil-water interface probe was used to manually measure the floating product thickness. Product removed from the well was collected in a bucket and measured periodically using a 1000-mL graduated cylinder. Skimmer pump cycle times were adjusted at the control panel to maintain a minimum product thickness in the well. The pump was initially set to the low rate and then optimized by adjusting the cycle time to match the skimming rate with the well recharge rate.

### 5.2.2 Results

#### **Baildown Results**

The results of the baildown tests are listed in Table 5-1. The "Time = 0 Thickness" is the product thickness in the well immediately after baildown of the well. Also presented is the product thickness at various elapsed times (1, 6, 24, 36, and 48 hours) following baildown. In parentheses is the percentage of the original apparent product thickness (before the baildown test). Only one well (05-MW-10) showed a high rate of recharge; this well recovered 44% of its original product thickness within 1 hour.

Figures 5-4 and 5-5 present baildown/ skimming results for wells 09-MW-08 and 05-RW-01, respectively. Unfortunately, we were never able to clearly observe the inflection point in any of the baildown/skimming tests that could be used to estimate product thickness in the formation. Possible explanations for the observed trends are as follows:

• For wells 05-RW-01 and 05-RW-02, the SOS skimming system did not recover LNAPL quickly enough to produce a distinctive drop in the product thickness; therefore, the water levels did not rise quickly in response to the product removal step.



Figure 5-3. Schematic of SOS Product-only Recovery System
| Well ID                          | 05-RW-01             | 05-RW-02           | 05-MW-04       | 05-MW-10            | 09-MW-08        |  |  |  |
|----------------------------------|----------------------|--------------------|----------------|---------------------|-----------------|--|--|--|
|                                  | Initial Measurements |                    |                |                     |                 |  |  |  |
| Original Product Level           | 13.73                | 13.48              | 13.42          | 15.63               | 18.68           |  |  |  |
| Original Water Level             | 15.73                | 13.65              | 14.00          | 16.79               | 19.68           |  |  |  |
| Original Product<br>Thickness    | 2.00                 | 0.17               | 0.58           | 1.16                | 1.00            |  |  |  |
| Original Volume                  | 2.94 gal.            | 0.25 gal.          | 0.09 gal.      | 0.19 gal.           | 0.16 gal.       |  |  |  |
|                                  |                      | Recovery Re        | sults          |                     |                 |  |  |  |
| Time = 0 Thickness               | 0.00                 | 0.02               | 0.00           | 0.00                | 0.01            |  |  |  |
| 1-Hour Thickness                 | 0.00 (0.0%)          | 0.02<br>(11.8%)_   | 0.00<br>(0.0%) | 0.50<br>(43.9%)     | 0.07<br>(7.0%)  |  |  |  |
| 6-Hour Thickness                 | 0.02 (1.0%)          | 0.03<br>(17.6%)    | 0.01<br>(1.7%) | 0.80<br>(69.0%)     | 0.15<br>(15.0%) |  |  |  |
| 24-Hour Thickness                | 0.09<br>(4.5%)       | 0.03<br>(17.6%)    | 0.01<br>(1.7%) | 0.85<br>(73.3%)     | 0.30<br>(30.0%) |  |  |  |
| 30-Hour Thickness                | 0.10<br>(5.0%)       | 0.03<br>(17.6%)    | 0.00<br>(0.0%) | 0.92<br>(79.3%)     | 0.30<br>(30.0%) |  |  |  |
| 48-Hour Thickness                | 0.25<br>(12.5%)      | 0.01<br>(5.9%)     | 0.00<br>(0.0%) | 0.91<br>(78.4%)     | 0.32<br>(32.0%) |  |  |  |
| Estimated Formation<br>Thickness | 0.40                 | 0.03               | 0.12           | 0.23                | 0.20            |  |  |  |
|                                  |                      | Skimming Re        | sults          |                     |                 |  |  |  |
| Well Skimmed?                    | Yes                  | Yes                | No             | Yes                 | No              |  |  |  |
| Recovered Volume                 | 5.23 gal.<br>(178%)  | 0.16 gal.<br>(64%) |                | 0.46 gal.<br>(243%) |                 |  |  |  |

# Table 5-1Phase II Hydrocarbon Recovery Summary (Summer 1993)

Note: All results in feet.



Figure 5-4. Baildown Test Results for 09-MW-08 (July 1993)



Figure 5-5. Baildown Testing and Skimming Results for 05-RW-01 (July 1993)

- For the other wells, a rapid recharge of water levels occurred immediately following baildown without the characteristic gradual rise and fall of water levels typically observed; this is explained by the rapid water recharge into the well screens from the deeper portion of the aquifer, which consists of more permeable sand and gravel strata. The free product, on the other hand, recharged from the silty strata at a much lower rate.
  - For all wells, the water levels gradually declined throughout the static and recovery segments of the test; this reflects the normal regional decline of the water table caused by falling Yukon River levels. This decline complicated analysis of the observed baildown results.
    - Finally, the tenacious behavior of silty materials in the upper portion of the unconfined aquifer prevented adequate recharge of LNAPL into the wells; the hydrocarbons were essentially bound within the pore spaces of the silty strata above the capillary fringe zone.

Testa and Paczkowski (1989) presented an alternate, conservative method for determining the formation thickness from monitor well observations. Essentially, this method states that the actual formation thickness is estimated by multiplying the observed thickness by (1 - specific gravity<sub>LNAPL</sub>). The "estimated thickness" values in Table 5-1 were calculated using this method, assuming an LNAPL specific gravity of 0.8 g/cm<sup>3</sup>. Values for estimated true product thickness by this method ranged from 0.03 to 0.4 ft.

To predict the recovery rate of the SOS system, we used the baildown results to predict recovery rates. As shown in Table 5-1, the product thickness in recovery well 05-RW-01 recovered 0.015 ft in 6 hours. For this 6-in. diameter well, this converts to a recharge rate of 0.116 gal./day (42 gal./year), if operated continuously. Monitor well 05-MW-10 (2-in. diameter) had the highest rate of recovery (2 gal./day) and the highest relative recovery volume (2.4 times the amount initially present) of the five wells tested.

However, the recovery estimates should be viewed with caution for the following reasons:

- The recovery rate may decrease over time as the product in the formation is removed;
- The skimmer system cannot be operated continuously because it requires periodic maintenance and downtime; and
- Recovery rates are likely to change in response to seasonal changes in water levels (higher rates are expected when the groundwater table drops).

#### **Skimming Results**

The results of the Phase II skimming test at 05-RW-01 are presented in Figure 5-5. Skimming occurred during three episodes over a three-day period. On each occasion we were not able to reduce the extraction rate low enough to match the recovery rate. Therefore, the product thickness continued to fall until it was essentially zero by the third day. Both the product and water levels in the wells continued to drop during the seven-day recovery period-this was caused by the regional decline in the groundwater level. The recovery system was also tested at recovery well 05-RW-02 and monitor well 05-MW-10 with similar results: the system gradually reduced the product thickness to zero and then continued to recover what little product entered the well from the formation over time.

#### 5.3 Phase III Recovery Testing (April 1994)

The previous tests were unable to define the true LNAPL thickness precisely at these sites because of hydrologic conditions that exist during the summer and fall months. The tests were hindered by groundwater in or near the base of the upper, silty horizon of the unconfined aquifer. Observations of LNAPL apparent thicknesses made in monitor wells during the Phase II SVE pilot-scale test indicated that free product drains from the upper portion of the aquifer and capillary fringe and accumulates above the water table during the winter months (refer to Figure 4-9).

#### 5.3.1 Activities

During April 1994, a product thickness survey, baildown tests, and a skimming/recovery test were conducted to evaluate the following items:

- The apparent product thickness in all monitoring wells present at the Galena Airport POL Tank Farm and Million Gallon Hill areas;
- The true product thickness in the formation according to baildown/recovery tests;
- The recharge rate of LNAPL from the formation into monitoring and recovery wells; and
- The skimming ability of the SOS system during winter operation.

#### Product Thickness Survey

Prior to selection of the wells to be included in the baildown/recovery test program, a product thickness and water level survey was conducted on monitoring and recovery wells in the POL and Million Gallon Hill areas.

#### **Baildown Testing**

Phase III baildown/recovery tests were performed on five wells, including four wells at the POL area (05-MW-04, 05-RW-02, 05-W-2, and 05-MW-07) and one from the Million Gallon Hill site (06-MW-04). Prior to bailing, a pressure transducer was installed about 5 ft below the water level. A data logger monitored normalized water levels in the wells prior to the test, during baildown, and throughout the first day of the recovery period. These measurements used a logarithmic program to record levels during recovery.

#### **Skimming Test**

For Phase III, we originally intended to measure LNAPL extraction/recovery rates for at least two wells, including both a 6-in. recovery well and a 2in. monitor well. However, problems caused by freezing of liquids in the skimmer discharge pipe and failure of a pump component prevented testing of the 2-in. well. For the test on the recovery well, we attempted

to match the extraction rate to the recovery rate observed for the baildown test on that well.

#### 5.3.2 Results

#### **Product Thickness Survey Results**

Product thickness measurements were made on 27 wells in the POL Tank Farm and Million Gallon Hill areas. The results of the product level survey are presented in Table 5-2. Other wells where measurements are not reported contained minimal amounts of product, could not be located because of snow accumulation, or groundwater levels had fallen below the total depth of the well.

#### **Skimming Test Results**

Skimming was performed on recovery well 05-RW-02 because it contained the greatest LNAPL thickness of the two recovery wells. Two serious problems developed during the skimming test. After a few hours of operation, the extraction rate from the well dropped significantly because liquids froze within the pump discharge hose. This problem was corrected by removing and defrosting the pump assembly. Shortly afterwards the pump failed, which prevented any further skimming tests. A bottom bobbit valve within the pump housing had malfunctioned so that product could not be removed from the well. Prior to pump failure, the system removed nearly 5 gal. of floating product from the well, which reduced the product level in the well by just over 1 gal. Unfortunately, the pump failed before the extraction rate could be adequately matched to the product recharge rate. However, the early success in recovering product from the well and the rapid recovery of the well are indicators that product recovery is feasible during winter months. Table 5-3 summarizes the results of the skimming test on recovery well 05-RW-02.

.

.

| Date    | Time | Well ID      | Product<br>Depth<br>(ft) | Water<br>Depth<br>(ft) | Product<br>Thickness<br>(ft) | Comments                                  |
|---------|------|--------------|--------------------------|------------------------|------------------------------|-------------------------------------------|
| 4/13/94 | 1500 | 05-MW-04     | 27.7                     | 30.08                  | 2.38                         |                                           |
| 4/13/94 | 1512 | 05-MW-03     | 30.24                    | 30.85                  | 0.61                         |                                           |
| 4/13/94 | 1530 | 05-MW-02     | No product               | 32.01                  | 0                            |                                           |
| 4/13/94 | 1547 | 05-MW-37     | No product               | No water               | 0                            | Dry well 28.50 depth to bottom            |
| 4/13/94 | 1620 | 05-MW-05     | 27.69                    | 27.69                  | Sheen                        | Sheen                                     |
| 4/13/94 | 1640 | 05-MW-01     | 27.86                    | 30.19                  | 2.33                         |                                           |
| 4/13/94 | 1655 | 05-MW-10     | 28.88                    | No water               | 1.52                         | 30.40 depth to bottom                     |
| 4/13/94 | 1705 | W-5          | No product               | 33.03                  | 0                            | Treatability study well                   |
| 4/13/94 | 1710 | 05-MW-01     | 28.41                    | 29.64                  | 1.23                         | 29.9 depth to bottom                      |
| 4/13/94 | 1730 | 05-MW-08     | No product               | 27.93                  | 0                            |                                           |
| 4/13/94 | 1740 | 05-MW-09     | No product               | No water               | 0                            | 28.3 depth to bottom                      |
| 4/13/94 | 1745 | 05-MW-11     | No product               | No water               | 0                            | 27.6 depth to bottom                      |
| 4/13/94 | 1800 | 05-MW-13     | No product               | No water               | 0                            | 27.6 depth to bottom                      |
| 4/13/94 | 1805 | 05-MW-12     | No product               | No water               | 0                            | 24.9 depth to bottom                      |
| 4/13/94 | 1815 | KV-1         | No product               | No water               | 0                            | 23.4 depth to bottom                      |
| 4/13/94 | 1820 | KV-6         | No product               | 27.95                  | 0                            |                                           |
| 4/13/94 | 1828 | 6" Pump Well | No product               | 26.71                  | 0                            |                                           |
| 4/13/94 | 1830 | KV-2         | No product               | 27.13                  | 0                            |                                           |
| 4/13/94 | 1835 | KV-4         | No product               | 27.84                  | 0                            |                                           |
| 4/13/94 | 1840 | KV-3         | No product               | 22.84                  | 0                            | 23.10 depth to bottom                     |
| 4/13/94 | 1845 | 05-MW-06     | No product               | 27.38                  | 0                            | Has a transducer in it                    |
| 4/13/94 | 1850 | KV-5         | No product               | 28                     | 0                            |                                           |
| 4/14/94 | 1750 | 05-MW-15     |                          |                        |                              | Could not open, well cap damaged          |
| 4/14/94 | 1800 | 05-MW-14     |                          |                        |                              | Could not locate, covered by 2 in. of ice |
| 4/14/94 | 1820 | 05-MW-38     |                          |                        |                              | Could not locate under 2 ft of snow       |
| 4/14/94 | 1820 | 05-MW-39     |                          |                        |                              | Could not locate under 2 ft of snow       |
| 4/16/94 | 845  | 05-MW-07     | 30.33                    | 31.14                  | 0.81                         |                                           |

| Table 5-2                                      |
|------------------------------------------------|
| Phase III LNAPL Thickness Survey (Winter 1994) |

| Well ID                       | 05-MW-04        | 05-RW-2         | 05-W-2          | 05-MW-07        | 06-MW-04        |  |  |  |
|-------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|--|
| Initial Measurements          |                 |                 |                 |                 |                 |  |  |  |
| Original Product Level        | 27.77           | 27.93           | 28.42           | 30.33           | 25.09           |  |  |  |
| Original Water Level          | 30.20           | 30.20           | 31.14           | 30.93           | 26.93           |  |  |  |
| Original Product Thickness    | 2.43            | 2.27            | 2.72            | 0.60            | 1.84            |  |  |  |
| Original Volume (gal.)        | 0.39            | 3.33            | 0.43            | 0.10            | 0.29            |  |  |  |
|                               | Re              | ecovery Results |                 |                 |                 |  |  |  |
| Time = 0 Thickness            | 0.15            | 0.41            | 0.92            | 0.00            | 0.11            |  |  |  |
| 1-Hour Thickness              | 0.66<br>(27.2%) | 1.04<br>(45.8%) | 2.50<br>(91.9%) | 0.02<br>(3.3%)  | 0.97<br>(52.7%) |  |  |  |
| 6-Hour Thickness              | 1.88<br>(77.4%) | 1.68<br>(74.0%) | 2.52<br>(92.6%) | 0.07<br>(11.7%) | 1.14<br>(62.0%) |  |  |  |
| 12-Hour Thickness             | 2.23<br>(91.8%) | 1.92<br>(84.6%) | 2.4<br>(88.2%)  | 0.2<br>(33.3%)  | Not<br>measured |  |  |  |
| 30-Hour Thickness             | Not<br>measured | 2.00<br>(88.1%) | Not<br>measured | Not<br>measured | Not<br>measured |  |  |  |
| 48-Hour Thickness             | Not<br>measured | 2.18<br>(96.0%) | Not<br>measured | Not<br>measured | Not<br>measured |  |  |  |
| Estimated Formation Thickness | 0.49            | 0.45            | 0.54            | 0.16            | 0.37            |  |  |  |
| Skimming Results              |                 |                 |                 |                 |                 |  |  |  |
| Well Skimmed?                 | No              | Yes             | No              | No              | No              |  |  |  |
| Recovered Volume (gal.)       |                 | 4.68<br>(141%)  |                 |                 |                 |  |  |  |

# Table 5-3Phase III Hydrocarbon Recovery Summary (Winter 1994)

Note: All results in feet unless noted otherwise"

# Section 6 EVALUATION OF THE TREATABILITY STUDY

The TS was conducted to determine the effectiveness of soil vacuum extraction, air sparging, and steam injection on the treatment of hydrocarboncontaminated soils and groundwater in the POL Tank Farm. The biotreatability of contaminants in the soils was also evaluated. The following discussion presents an analysis of the TS on the basis of the results presented in Sections 3 and 4.

#### 6.1 Limitations Imposed by Site Conditions

Three features in the POL Tank Farm complicated the design, operation, and interpretation of results from the TS during the pilot-scale tests: 1) the fluctuating groundwater table, 2) the presence of free product, and 3) the lack of uniformity in contaminant levels throughout the site.

The water table at Galena fluctuates over 20 ft annually in response to changes in the Yukon River levels. The design for the Phase II pilot-scale system accounted for the fluctuating water table by including nested sparge points and vapor probes at two depths for the AS and steam injection systems and soil gas monitoring points, respectively. Figure 6-1 presents the water levels observed during the course of the Phase II test. The elevations of the well screens and injection points are presented for reference. The fluctuating groundwater table complicated the evaluation of the treatment system in that the volume of contaminated soil influenced by the SVE system increased throughout the study period because of the declining water table.

The second complicating feature was the presence of floating free-phase product. When the treatment system was designed, the thickness and behavior of free product in the POL Tank Farm had not been fully defined. Observations during the Phase II test indicated that initially no free product was present in the West Cell monitor wells but that large volumes accumulated as the water table dropped (see Figure 6-2). From baildown tests performed in April 1994, when the water table was low, the true free-product thickness is at least 0.6 ft over portions of the site. The presence of free product made an evaluation of the effectiveness of the remedial systems difficult because the floating

product served as a constant source of volatile hydrocarbons. Although a mass balance has not been performed, it is likely that the mass of hydrocarbons removed by SVE during the pilot-scale test was only a small portion of the total contamination in the subsurface.

The third limitation was the variability of the hydrocarbon concentrations across the site. The Phase II test location was chosen on the basis of previous remedial investigations at the POL Tank Farm. Those investigations indicated high levels of BTEX, GRO, and DRO in soils and groundwater in this vicinity. During the installation of the pilot-scale remediation system components, it was obvious that the West Cell was significantly more contaminated than the East Cell. The average initial TPH concentrations in the soils at 9 to 10 ft bgl were 1140 ppm and 12 ppm for the West and East Cells, respectively. Since the contamination was different between the study areas, it is not possible to directly compare the monitoring results for the West and East treatment systems.

#### 6.2 Feasibility of Winter Operation

One of the objectives of the TS was to determine if winter operation was feasible. In full-scale remediation, it is likely that a treatment system would have to operate at temperatures down to -50°F. For the Phase II pilot-scale systems, the process lines were heat traced and insulated to prevent condensation from freezing. The equipment enclosures were also insulated so that the heat of compression associated with the operation of the blowers was able to maintain the temperature in the enclosures well above freezing. The fact that the pilot-scale system had only minor operational problems caused by the cold temperatures indicates that year-round operation is possible.

#### 6.3 Soil Vacuum Extraction System

The Phase I pilot-scale test provided evidence that SVE is a viable technology for treating petroleumhydrocarbon-contaminated soils at the POL Tank Farm. Lessons were learned during Phase I concerning the optimum SVE design for the POL Tank Farm, such as the well construction details and the size of extraction



Figure 6-1. Annual Fluctuation of the Water Table at the POL Tank Farm. Approximate Elevations of the Wells and Injection Points in the Phase II Study Area Are Provided for Reference.



Figure 6-2. Average Free Product Thickness Observed in the West Cell Monitor Wells During the Phase II Test

well. This knowledge was applied to the Phase II design. The Phase II system, using the same SVE blower components as in the Phase I system, demonstrated marked improvement in performance over the Phase I system in terms of higher hydrocarbon removal rates. Flow rates for the Phase II system ranged between 120 and 150 scfm, and the effective radius of influence was estimated to be 100 to 200 ft. The Phase II system produced optimal performance while operating at full flow capacity. The results indicate that the soils could yield higher flow rates if a larger blower were used.

Both the East and West Cells proved to be very effective in removing hydrocarbons from the vadose-zone soils and groundwater. However, freephase product present on the water table served to replenish the contamination in the vadose zone, particularly in the West Cell, so that the exhaust concentrations remained consistently high. The replenishment by the free product prevented any determination of the treatment time required to achieve total removal of hydrocarbon contaminants from the vadose-zone soils in the West Cell by the SVE system. Evidence that biological degradation was enhanced at the West Cell site using SVE was also collected.

Limited operational problems occurred during the duration of the TS. The East Cell SVE experienced a period when the system was automatically shutting itself off because the knockout tank reached capacity. This occurred during late September and early October when heavy rains caused the formation of a shallow perched water table around the extraction well. The knockout water collection system can be easily redesigned to prevent this from occurring in the future.

SVE has proved to be a very effective and reliable in situ treatment technology for petroleumhydrocarbon-contaminated soils. The geology at Galena Airport is well suited for this type of remediation, as evidenced by the large flow rate and radius of influence achieved by the SVE systems. Performance data gathered during the TS indicate that SVE will be the presumptive remedy for the contaminated vadose zone at the POL Tank Farm.

#### 6.4 Air Sparging System

The effectiveness of an IAS system is typically measured by evaluating dissolved contaminant concentrations and dissolved oxygen concentrations upgradient and downgradient of the injection wells, and by staged testing of a SVE system operated alone and in combination with IAS. The first two parameters were monitored in the pilot test; sequential testing of the SVE/AS systems was not conducted. However, a helium tracer test was also conducted at a single injection well to assess the zone of AS influence.

In the West Cell, the hydrocarbon constituents showed no discernable trend over the course of the pilot test. The dissolved contaminant concentrations remained constant because of the free product on the water table. As long as a free-product layer exists, new contaminants will dissolve to replace those removed by biodegradation or stripping. DO concentrations remained below 1 mg/L for the majority of the study period, indicating poor oxygen transfer from the sparged air to the groundwater. Similar results were obtained in the East Cell.

On the basis of the results of the study, air sparging, as currently implemented, does not appear to be particularly effective in removing dissolved-phase contaminants or increasing DO levels. The relatively constant dissolved contaminant concentrations over time and the similarity of the concentrations upgradient and downgradient of the air sparging wells indicate marginal hydrocarbon removal from the aqueous phase. One potential explanation for the observed ineffectiveness of the IAS system relates to the procedure for collecting groundwater samples. Samples were collected by extensively pumping the well with the pump inlet placed at the bottom of the well. The samples were representative of the entire screened interval rather than the top of the water column. The inability to collect point-source water samples from the upper portion of the saturated zone may have masked any differences between upgradient and downgradient water quality. Additionally, biological activity close to the injection points and interferences caused by floating hydrocarbons may have affected the field measurements for DO.

The most significant factor that affected the performance of the AS system was the small-diameter tubing (1/4 in.) used to deliver air from the wellhead to the sparge points. Frictional losses in the tubing caused a significant reduction in the maximum achievable flow rate from a design value of 4 scfm to a measured value of less than 1 scfm per well. The reduced flow rate thus led to a much smaller zone of influence for stripping and oxygen transfer. Recent literature on IAS has shown that higher flow rates (4 to 10 scfm per well) produce a larger and more uniformly distributed bubble pattern (Ji et al., 1993).

#### 6.5 Steam Injection System

The effectiveness of the steam injection system was evaluated by measuring temperatures in the groundwater monitor wells and submerged thermocouples in the West Cell. Although the soil temperatures showed a significant increase over pretest levels, the temperature rise does not appear to be related to the steam injection system. The groundwater temperatures downgradient of the steam injection wells did not show any apparent trend except for an increase around Day 180, which is possibly related to biological activity (discussed in Section 5.6), since the steam injection system was shut off around Day 90 (three months before the Day-180 temperature measurements were taken).

On the basis of these findings, it appears that the steam injection system was not effective for its intended purpose: to generate a temperature rise of at least 10° C in the shallow groundwater. The following reasons may explain the observed ineffectiveness of the steam injection system:

• **Insufficient Steam Injection Rate**—The steam delivery system used small-diameter tubing from the wellhead to the injection screens (similar to the IAS system). This arrangement led to a large pressure drop in the well and low flow rates of injected steam. Thus, less heat was supplied to the subsurface than desired. Also, because water was supplied by a delivery truck rather than through a permanent water supply system, steam injection rates were limited by the storage capacity

of the feedwater tank and the regularity of water deliveries.

### Plugging of the Steam Delivery

Tubes—Some of the steam sparging points became clogged shortly after startup and resisted efforts to unplug them. Since these probes could no longer be used, the injected steam plume presumably was not as uniformly distributed as planned. Unfortunately, the two steam injection points that were plugged were those nearest the line of groundwater monitor wells used to measure groundwater temperatures.

Density Differences Caused by Heating— Groundwater heated by steam would tend to rise to the top of the water column because of density differences between hot and cold water. During purging of the monitor wells prior to measuring groundwater temperatures, the cold and warm water regions may have been mixed so that the measured water temperatures were probably lower than what was actually present in the upper zone of the aquifer.

#### 6.6 Hydrocarbon Removal Rate

The pilot-scale remediation systems removed subsurface hydrocarbons by both physical and biological processes. The SVE system physically removed the hydrocarbons from the soil by inducing a vacuum on the subsurface and pulling the soil gas and VOCs through an extraction well. Hydrocarbons were also removed from the contaminated zone by an aerobic biological oxidation process (i.e., the microorganisms used the hydrocarbon contaminants as a food source).

#### 6.6.1 Physical Processes

The effectiveness of the treatment systems can be measured by the mass of hydrocarbons removed over time. The hydrocarbon mass removal by the SVE system was calculated from the flow rate and hydrocarbon concentration of the SVE exhaust gas and the estimated hours of operation. Appendix D.1 contains an example calculation for the mass removal rate. Figure 6-3 presents the cumulative mass of hydrocarbons removed by each unit during the Phase II test.



January 1995

The mass of hydrocarbons removed from the West Cell was consistently greater than the mass removed from the East Cell. Nearly 160,000 lb (72,000 kg) and close to 21,500 lb (9800 kg) of hydrocarbons (as heptane) were removed from the West and East Cells, respectively, by physical processes. The average daily extraction rates for the West and East Cells were 380 and 50 kg/day, respectively.

The VOC concentration in the extracted soil gas was expected to decrease during the pilot-scale test on the basis of previous performance results for other SVE systems. Typically, sites treated by SVE have a finite mass of VOCs in soil pores within the radius of influence of the extraction well. Therefore, as the hydrocarbons are removed, the VOC concentration in the exhaust gas declines over time. There was no observed decrease in VOC removal rates for either SVE system.

#### West Cell

During the Phase II test, the concentration in the SVE exhaust gas from the West Cell averaged 20,000 ppmV TNMHC over the 192-day test. The consistently high concentrations observed were attributed to the fluctuating water table and the presence of free product in this portion of the site.

At the time of startup, the groundwater level was very high, situated in the silty layer. As the water table dropped into the more permeable sand and gravel layer, the zone of influence of the extraction well increased both vertically and horizontally. This allowed deeper portions of the hydrocarbon smear zone to be influenced by the vacuum on the extraction well.

Secondly, as the water table dropped, residual free-phase hydrocarbons trapped in the soil pores drained downward causing free-phase product to pool in the monitor wells and surrounding strata. The large apparent accumulation of free product in the West Cell (up to 4.0 ft in monitor well W-2) acted as a continual source of VOCs during the test. Therefore, as the hydrocarbons were removed from the vadose zone, the contamination was replenished by the volatilization of constituents from the free product floating on the water table. This could explain why the TPH concentrations in the West Cell soils did not decline significantly during the test, even though nearly 160,000 lb of hydrocarbons was removed.

#### East Cell

The East Cell showed much lower rates of hydrocarbon removal because of the lower levels of contamination in this portion of the study area. The

hydrocarbon concentration in the SVE exhaust gas decreased initially and then rose after Day 60. From Day 15 through Day 60, the East SVE operated inconsistently because of the high rate of water collection in the knockout tank and intended system outages. During this time, the SVE vacuum was manually decreased to reduce the amount of water collected by the system; the vacuum was decreased by bleeding in ambient air, which caused the exhaust gas to be diluted; this resulted in decreased hydrocarbon concentrations in the exhaust gas.

As the water table dropped into the more permeable sand and gravel zone, the VOC concentrations increased and averaged 2900 ppmV TNMHC during the last three months of the test. Like the West Cell, the exhaust gas concentrations in the East Cell did not show a decreasing trend over time.

The hydrocarbon concentrations in the East Cell soils at the end of the study period were below the method detection limit, having decreased from a maximum of 43 ppm to below 1 ppm. The decrease in soil concentrations was attributed to removal by the SVE system. Since there was no free product observed over most of the East Cell, the vadose zone was apparently not being replenished with hydrocarbons. Free product was present initially in the monitor well south of the East Cell, W-8, but the thickness decreased throughout the test until it disappeared entirely by Day 150. It is likely that some of the contaminants removed by the East SVE were pulled from the free product thought to be present on the western and southern portions of the East Cell.

#### 6.6.2 Biological Processes

The biodegradation of hydrocarbons at the POL Tank Farm was also evaluated during the Phase I bench-scale and Phase II pilot-scale tests. When microorganisms degrade organic material aerobically, oxygen is consumed and carbon dioxide is produced. This process is also exothermic, meaning that heat is released during the biochemical breakdown of organic material. Since microorganisms use hydrocarbon contaminants as their food source, if this contamination is not present, the organisms will not thrive.

Several types of data from the Phase II pilot test suggest that significant biodegradation of hydrocarbons was occurring in the West Cell. These data types include in situ respiration rates, the soil gas composition data, and the soil temperature measurements. Measured biodegradation rates, carbon dioxide concentrations, and soil temperatures were highest, and the oxygen concentrations were lowest in the area of highest TPH contamination in the western portion of West Cell. The minimally contaminated areas did not show these trends. Figure 6-4 presents a diagram showing the contours of these biological indicators in the study area. Each factor is discussed below in more detail.

#### **Biodegradation Rate**

Table 6-1 summarizes the biodegradation rates for vadose-zone soils calculated using the most reliable data from the Phase I bench-scale and Phase II pilotscale tests. The biodegradation rate was calculated from the following data: 1) oxygen utilization rates from the Phase I bench-scale test and the Phase II in situ respiration tests, and 2) TPH removal in the soils during the bench-scale test.

# Table 6-1 Hydrocarbon Biodegradation Rates (mg/kg/day) Determined During the Treatability Study

|                                 |                                                      | ×          | X                         |
|---------------------------------|------------------------------------------------------|------------|---------------------------|
| Bench Test Rate<br>(O, Uptake*) | Bench Test<br>Rate<br>(TPH<br>Removal <sup>b</sup> ) | Pilo<br>(O | t Test Rate<br>. Uptake*) |
| 1.2                             | 8.0                                                  | 3.2        | West Cell                 |
|                                 |                                                      | 0.2        | East Cell                 |

Notes: \*Estimated biodegradation rate of model hydrocarbon (heptane) is based on reaction stoichiometry and the rate of oxygen utilization for the unamended 21%  $O_2$  bench-scale treatment condition. \*Degradation rates calculated using initial and final TPH concentrations in soil for the unamended 21%  $O_2$  bench-scale treatment condition. \*Estimated biodegradation rate of model hydrocarbon (heptane) based on reaction stoichiometry and rate of oxygen utilization during the Phase II field respirometry tests.

The estimated biodegradation rates for the bench and pilot tests agree within an order of magnitude. The rates calculated from the Phase II respirometry tests are generally thought to provide the most reasonable estimate, since these results represent in situ field measurements for an actual remediation system. Therefore, the best estimate for the biodegradation rate in the West Cell (within the contaminated zone) is 3.2 mg/kg/day. The best estimate for the biodegradation rate in the East Cell is 0.2 mg/kg/day.

#### **Soil Gas Measurements**

The soil gas measurements during the Phase II test also indicate significant biological activity in the West Cell. The steady-state concentrations of oxygen and carbon dioxide in the most active areas of the West Cell were 14% and 6%, respectively. These levels are significantly different from ambient conditions (21% and 0.03%). Since ambient air is pulled through the subsurface by the SVE system, areas that do not show significant biological activity would have a soil gas composition that is near ambient conditions. Ambient conditions were observed in the less-contaminated portions of the West Cell and throughout the East Cell.

#### Soil Temperatures

Soil temperatures in portions of the West Cell increased substantially during the six-month test period and were much higher than ambient soil temperatures. The temperature distribution in the West Cell soils is shown in Figure 6-4. Soil gas temperatures in V-1 through V-4 increased an average of approximately 18°C between Day 60 and Day 150. The soils remained thawed at the surface whereas ambient soils in other parts of the study area froze to a depth of several feet. The elevated soil temperatures could not be directly correlated with either the operation of the steam injection system or the presence of steam heat lines contained in the utilidor running along the southern margin of the study area. Additional temperature measurements were taken outside the original study area, but the location of additional measurement points was limited by buried utility lines, roadways, and soil and rubble heaps. On the basis of these measurements, the most likely heat source for the West Cell appears to be biological activity associated with the degradation of hydrocarbons in the subsurface. It is hypothesized that biological activity was triggered by the introduction of oxygen to the subsurface by the SVE system.

Heat balance calculations were used to evaluate whether the temperature regime observed in the Well Cell could be attributed to heat from the biological metabolism of the hydrocarbons present in







the soil. On the basis of the biodegradation rates estimated in the West Cell, the maximum expected temperature rise in the West Cell is 34°C over the 180day test (see calculation in Appendix D.2). This temperature rise is idealized, since heat losses to the surrounding soil were not considered. Other heat loss calculations, which do not take into account any insulation effects for the snow cover in the study area, show that the heat generated by the metabolism of heptane is slightly more than one fifth of the heat required to maintain the temperature regimes observed at Day 150. However, the vapor probe locations where oxygen uptake rates were measured were about 15°C cooler than the highest temperatures measured for the soils. Since microbial activity rises exponentially with temperature, the estimated biodegradation rates may be significantly greater in the warmer zone. The variability in soil temperatures and biodegradation rates could fulfill the heat requirements needed to generate the observed temperature profile.

In summary, since the contamination and temperature distribution patterns are not well understood inside the study area and even less so outside the study area (especially west of the West Cell), it is difficult to confirm beyond doubt that biological activity is the cause of the temperature rise seen during the Phase II test. However, since the area of maximum soil temperatures was situated west of the vapor probes used to estimate the biodegradation rates, it is possible that the degradation rates in other areas of the West Cell may be higher than those estimated during the pilot test. On the basis of the field results and the absence of any other heat source, the most reasonable cause for the temperature rise in the West Cell is microbial.

#### Hydrocarbon Removal

The mass of hydrocarbons removed from the West Cell by biological processes was estimated at 23,500 lb during the 180-day test. This calculation is provided in Appendix D.3. Minimal biodegradation occurred in the East Cell, where approximately 590 lb were estimated.

#### 6.6.3 Comparison of Removals

Table 6-2 summarizes the total mass of hydrocarbons (as heptane) removed by physical and biological processes during the Phase II pilot-scale test. Biodegradation accounted for approximately 13% and 3% of the hydrocarbon removal in the West and East Cells, respectively.

| Table 6-2                                  |
|--------------------------------------------|
| Summary of Hydrocarbons Removed During the |
| Phase II Pilot-Scale Test                  |

|            | Mass Ren         | noval (lbs)             |
|------------|------------------|-------------------------|
| Study Area | Physical Process | Biological Pro-<br>cess |
| West Cell  | 160,000          | 23,500                  |
| East Cell  | 21,500           | 590                     |

#### 6.7 LNAPL Recovery System

Free-product surveys, baildown tests, and skimming tests were conducted during three separate occasions as part of the TS. The first two phases of this test program were conducted during the summer and fall 1993 during the normal high-water-table portion of the annual hydrological cycle of the Yukon River. Test results from those periods indicated that a thin, discontinuous, and largely irrecoverable LNAPL layer existed below parts of the POL site. Free-product measurements taken during the course of the Phase II SVE test indicated that LNAPL accumulates on the groundwater table during the winter (refer to Figures 4-9 and 4-17). A third phase of LNAPL recovery testing conducted in April 1994 indicated that a substantially different set of hydrologic conditions exists during the winter lowwater table period. Estimated LNAPL formation thicknesses measured at that time ranged up to 0.6 ft in the POL area. The testing results also indicate that product skimming during the winter should be practical.

The free-product recovery system should be designed for winter operation, since the best recovery rates have been observed during the low-water table period. Since free-product recovery and SVE are complementary remedial actions, they could be implemented concurrently for the remediation of the LNAPL layer and vadose-zone soils.

Although problems related to cold-weather skimming operations were experienced, it is our opinion that these are not insurmountable problems that would rule out further attempts to recover LNAPL using the SOS system or a similar skimmer system design. The

freezing of the discharge hose was not surprising, considering that temperatures were between 0° and 15°F at the time of testing. This problem could be corrected by insulating (and possibly heat tracing) all air hoses, product discharge hoses, and recovery well risers.

#### 6.8 Conclusions

The following list summarizes the most important results and interpretations from the TS at Galena Airport:

- SVE is a viable technology for treating petroleum-contaminated soils at the POL Tank Farm. Over 180,000 lb of VOCs were removed from twin SVE systems during a 6-month period of operation. The site stratigraphy is particularly conducive for this technology, as evidenced by the high gas flow rates and large zone of influence.
- The design of an in situ system must take into consideration three key site features: 1) a water table that annually fluctuates over a 20ft range, 2) the seasonally varying thickness of the free-product layer, and 3) the horizontal and vertical variability of soil contaminant patterns.
- Observations during the Phase II pilot-scale test suggest that VOC removal rates would be higher if a larger blower was used for the SVE system.
- Extraction of VOCs from the free product floating on the groundwater prevented any determination of the treatment time required to remediate the soils using SVE. No significant decline in VOC removal rates was observed over the operational period.
- The pilot-scale in situ air sparging and steam injection systems demonstrated marginal

benefits toward total site remediation. However, the evaluation of the pilot-scale systems was limited by inadequate air and steam delivery systems, boiler operating problems related to poor feedwater quality, and the inability of the monitoring system to detect spatial changes in dissolved oxygen concentrations and temperatures of groundwater.

- LNAPL formation thicknesses up to 0.6 ft were observed during April 1994. Also, a skimmer system recovered more than four times the volume of LNAPL in a recovery well before operation problems caused the skimming activity to stop. The results indicate that product removal during the winter months should be feasible.
- Several lines of evidence indicate that significant biodegradation of hydrocarbons was occurring, especially in the West Cell. These include oxygen uptake rates, soil temperature contours, oxygen and carbon dioxide levels in the soil gas, and correlations of the above with hydrocarbon distribution patterns. The average hydrocarbon degrada-tion rate was estimated to around 3 mg/kg/day in this area, although soil temperature patterns suggest that rates could be significantly higher.
- The quantity of hydrocarbons removed through biological processes is estimated at approximately 22,000 lb. This amounts to approximately 13% and 3% of the total mass of hydrocarbons removed in the West and East Cells, respectively.
  - Year-round operation of an in situ remediation system at Galena Airport is feasible.

# Section 7 RECOMMENDATIONS FOR TECHNOLOGY IMPLEMENTATION

At the Galena Airport POL Tank Farm site, leaking pipes, tanks, and spills over a 30-year operating period served as a source of fuels that have migrated downward to the water table. Site investigations and treatability studies conducted under the USAF IRP now provide an understanding of the contaminant migration behavior. Figure 7-1 presents a conceptualized model of the subsurface conditions at the POL Tank Farm. The contamination that began initially around the saddle tanks has now extended beneath the airport tarmac. Both free phase and dissolved phase have migrated. During the summer months, the water table is high and free product is spread across and entrained in the silty upper strata by capillary forces. During the winter months, when the groundwater table drops, gravitational forces cause the product to drain downward and pool on the groundwater. The freeproduct layer provides a continuous source of contaminants to the soil and groundwater and therefore hinders attempts to remediate the affected zones in a timely manner.

This section discusses recommendations for selecting and implementing a successful remediation program at the POL Tank Farm. It is recommended that the remediation program include the following components:

- Free-product recovery;
- Remediation of residual contamination in the soils using SVE (this could be implemented concurrently with free-product recovery); and
- Following source removal, remediation of dissolved-phase contamination may be considered (the decision whether to remediate groundwater further should be based on a risk assessment).

#### 7.1 Free-Product Recovery

Free-product surveys, baildown tests, and skimming tests were conducted during the fall of 1992 and summer of 1993 on groundwater monitor wells in

the POL Tank Farm area (refer to the *Draft Remedial Investigation Report*, USAF, 1993e). The results of those activities conducted during a high-water table period indicated that a thin, discontinuous, and largely irrecoverable LNAPL layer existed through parts of the POL Tank Farm site. Recent hydrocarbon recovery tests conducted in April 1994 indicate that a substantially different set of hydrologic conditions exist during the winter low-water table period. The test results indicate that product skimming during the winter should be practical (USAF, 1994).

Since little was known of the horizontal extent of free product or its seasonal movements in early 1992 when the TS was begun, the pilot-scale tests focused primarily on the remediation of vadose-zone contaminants and to a lesser degree on the remediation of groundwater contaminants. Although the results of this TS and other studies have shown that SVE is capable of reducing the volume of free-phase product, the estimated thickness of free product in the POL Tank Farm warrants a direct remedial action. It is strongly recommended that an LNAPL recovery (skimming) system be implemented concurrently with SVE during the full-scale remediation of the POL Tank Farm site.

The free-product recovery system should be designed for winter operation, since the best recovery rates have been observed during the low-water table period. In terms of the type of product recovery system to be considered, we recommend that a multiwell recovery system be installed and operated. Figure 7-2 shows a preliminary design for the recovery well placement. The system can use several existing monitor and recovery wells that have been shown to produce extractable volumes of floating product.

#### 7.2 Residuals Treatment

The TS results demonstrate that residual hydrocarbon contamination, which has smeared across the entire vertical range of groundwater fluctuations, can be effectively remediated with SVE once the LNAPL is sufficiently depleted. In addition to the physical removal of VOCs, the TS results also indicate





that significant biodegradation of the residual contaminants in the vadose zone can be achieved through SVE treatment.

SVE is therefore the obvious choice for residuals treatment and is currently the presumptive remedy for soil contamination at the POL Tank Farm. The stratigraphy of the site is particularly conducive for remediation using this technology, as evidenced by the high gas flow rate and large zone of influence of the SVE system. However, SVE is most effective for constituents present in the vadose zone that have high vapor pressures (e.g., BTEX, short-chain aliphatics, other aromatics, etc.); removal of the less-volatile components is less efficient. Also, hydrocarbon residuals present in the continually saturated zone will not be efficiently remediated by SVE alone.

In situ bioremediation of residual components was enhanced by the SVE system. Although the TS results did not show that either air sparging or heat addition was particularly effective in this area, these are still considered potentially viable technologies. Heat could further enhance biodegradation and have the added effect of increasing volatilization. Additionally, other studies (Johnson et al., 1993) have shown that air sparging can be effective for treating residuals below the groundwater table.

The TS results show that the presence of LNAPL hinders remediation efforts using SVE because the free-phase and dissolved-phase constituents replenish soil contaminant levels when the water table rises each spring. It is apparent that free-product skimming is required along with residuals treatment.

#### 7.3 Dissolved-Phase Treatment

Once free product and residual hydrocarbon contamination have been addressed, the remediation of the dissolved-phase groundwater contamination can be considered. It is recommended that dissolved-phase treatment be initiated only after significant source removal (free product and vadose-zone residual contamination) has occurred.

Pump and treat technologies, such as air stripping, are widely accepted for the treatment of groundwater contaminated with petroleum hydrocarbons. However, because of the remoteness of Galena Airport, it is desirable that the chosen technology be as simple as possible and generate minimal wastes requiring treatment or disposal. For these reasons, in situ techniques are favored. Alternatives include air sparging, vacuum-vaporizing wells, groundwater containment, heat treatment, and natural bioattenuation. Air sparging and vacuumvaporizing technologies are reportedly both effective in stripping VOCs from groundwater, but there are few well-documented studies to confirm the claims. It has also been postulated that once source removal is complete, the dissolved-phase concentrations might be reduced sufficiently to allow natural bioattenuation to complete the treatment process.

#### 7.4 Design Considerations

The TS findings have answered most of the questions concerning selection and implementation of remedial actions at Galena Airport. Remedial design can proceed at the POL Tank Farm site on the basis of the information collected during the TS and remedial investigation. However, certain design parameters have not been fully defined, and the benefit-to-cost ratio of not obtaining this information should be considered.

The full extent of the free-product layer and the vertical extent of the dissolved-phase groundwater plume have not been fully defined. Estimates of these distributions have been made and could be used for remedial design purposes. However, some risk exists that the implemented system might not fully encompass the contaminated zone so that the system would have to be expanded later. Also, the potential recovery rate and radius of influence of the recovery wells are unknown. Field tests may therefore be warranted to avoid costly design adjustments during remedial implementation.

Additionally, there is the need to identify which type of vapor control system will be operated in conjunction with SVE. Although the Alaska Department of Environmental Conservation has allowed VOCs from the pilot tests to be vented to the atmosphere, it is probable that VOC emission controls would be required for a full-scale SVE system. On the basis of the high concentrations of VOCs observed during the Phase II pilot-scale test, the best-suited control technologies include thermal incineration and condensation. Carbon adsorption proved to be cost prohibitive during the study. The final choice will depend on the target removal efficiency, available disposal options for petroleum condensate, and cost.

A third concern is the fact that the TS was unable to make a definitive conclusion as to the benefits of using air sparging or steam injection for groundwater remediation. Deficiencies in pilot-scale systems and monitoring program resulted in relatively poor performance of those systems; therefore, the expected benefits of AS and steam injection were not fully observed. However, these deficiencies should not rule out air or steam sparging as potential technologies to be considered for remediating dissolved-phase contaminants at the POL site or other Galena Airport The Air Force and other organizations are sites. currently supporting evaluations of sparging technologies and the results of those investigations should be relied on to make decisions concerning whether these technologies are appropriate for Galena Airport.

#### 7.5 Summary

Multiple technologies will be needed to effectively remediate the contamination at the Galena POL Tank Farm. The IRP USAF TS has shown that product recovery is a necessary and practical first step and that SVE is an effective treatment technology for vadose-zone soils contaminated with petroleum hydrocarbons. The product recovery and SVE systems could be run concurrently as a combined source removal effort. Once free product is sufficiently depleted, the time requirements for remediating the residual hydrocarbons in the vadose zone and the dissolved contaminants in the saturated zone can be more adequately addressed.

A conceptual design for a full-scale remediation system for the POL area is illustrated in Figure 7-2. Although conceptual, this design focuses on the primary remediation concerns at the POL Tank Farm and adjacent areas and could be practically installed and operated at this site. The radius of influence of the SVE well is 130 ft, based on TS findings. The radius of influence of the free-product recovery wells is largely unknown but estimated to be at 40 ft.

Future design work on a full-scale remediation system for the POL Tank Farm site will determine the optimum location of each remedial component and the necessary sequence of activities to complete the remediation. The ongoing feasibility study will address the potential groundwater treatment technologies applicable to Galena Airport and the POL Tank Farm.

7-4



Figure 7-2. Conceptual Design of a Full-Scale Remediation System at the POL Tank Farm

# Section 8 REFERENCES

- Gruszczenski, T.S. "Determination of a Realistic Estimate of the Actual Formation Product Thickness Using Monitor Wells: A Field Bailout Test." *Proceedings of Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection and restoration*, NWWA, Houston, Texas. 1987.
- Ji, W., A. Dahmani, D. Ahlfeld, J. Lin, and E. Hill. "Focus: Laboratory Study of Air Sparging: Air Flow Visualization." Groundwater Monitoring and Remediation. 13(4):115-126, 1993.
- Johnson, P.C., M.W. Kemblowski, and J.D. Colthart. "Quantitative Analysis for the Cleanup of Hydrocarbon-Contaminated Soils by In-situ Soil Venting." *Ground Water*. 28(3):413-429, 1990.
- Johnson, R.L., P.C. Johnson, D.B. McWhorter, R.E. Hinchee, and I. Goodman. "Focus: An Overview of In Situ Air Sparging." *Groundwater Monitoring and Remediation*, 13 (4) :127-135, 1993.
- Shan, C., R.W. Falta, and I. Javandel. "Analytical Solutions for Steady State Gas Flow to a Soil Vapor Extraction Well." Water Resources Research. 28(4):1105-1120, 1992.
- Testa, S.M., and M.T. Paczkowski. "Volume Determination and Recoverability of Free Hydrocarbon." Ground Water Monitoring Review, (pp. 120-128). Winter, 1989.
- United States Air Force. Installation Restoration Program (IRP), Remedial Investigation/Feasibility Study, Stage 2, Galena AFS and Campion AFS, Alaska, Draft. 1991.
- United States Air Force. Installation Restoration Program (IRP), Stage 3, Detailed Analysis of Treatment Alternatives, Galena Air Force Station, Alaska, Second Draft. 1992a.
- United States Air Force. Installation Restoration Program (IRP), Stage 3, Pilot-Scale Treatability Study, Work Plan, Galena Air Force Station, Alaska. 1992b.
- United States Air Force. Aquifer Test Report, Galena Airport, Alaska, Draft. 1993a.
- United States Air Force. Bench-Scale and Pilot-Scale Treatability Studies: Interim Informal Technical Information Report, Galena Air Force Station, Alaska. 1993b.
- United States Air Force. Bench-Scale Treatability Study: Work Plan, Galena and Campion Air Force Stations, Alaska. 1993c.
- United States Air Force. Pilot-Scale Treatability Study: Phase II Work Plan, Galena Air Force Station, Alaska, Draft. 1993d.

United States Air Force. Remedial Investigation (RI) Report, Galena and Campion Air Force Stations, Alaska. 1993e.

United States Air Force. Installation Restoration Program, Remedial Investigation/Feasibility Study, Galena Airport and Campion AFS, Alaska, Remedial Investigation Technical Memorandum, Draft. 1994. APPENDIX A

**Phase I Pilot-Scale SVE Test** 

# **Table of Contents**

|               | Page                           |
|---------------|--------------------------------|
| Appendix A.1. | Well Construction Diagrams A-1 |
| Appendix A.2. | Analytical Results A-7         |
| Appendix A.3. | Air Permeability Tests A-15    |
| Appendix A.4. | Soil Infiltration Tests A-23   |
| Appendix A.5. | Hydrocarbon Removal Rates A-29 |

# **APPENDIX A.1**

# Well Construction Diagrams



Figure A-1. Construction Details for the Vapor Probe Wells



Figure A-2. Construction Details for the Soil Vacuum Extraction Well



Figure A-3. Construction Details for the Passive Inlet Wells

# **APPENDIX A.2**

# Analytical Results

## Table A-1

# Analytical Data for Soil Gas Samples (Values are Parts Per Million Volume)

| Location   | Туре                        | Total VPH | Benzene | Ethyl benzene | Toluene | Xylenes |  |  |
|------------|-----------------------------|-----------|---------|---------------|---------|---------|--|--|
| Sampling E | Sampling Event G1 30 Jul 92 |           |         |               |         |         |  |  |
| V1-05      | N                           | 14600     | 495     | 30.5          | 567     | 115.9   |  |  |
| V2-05      | N                           | 4790      | 123     | 31.5          | 165     | 116.2   |  |  |
| V3-05      | N                           | 38900     | 1200    | 51.1          | 1080    | 189.2   |  |  |
| V4-05      | N                           | 596       | 2.76    | 3.11          | 1.53    | 5.8     |  |  |
| V5-05      | Ν                           | 1130      | 36.5    | 3.31          | 4.32    | 6.43    |  |  |
| E1         | N                           | 1910      | 73      | 27.8          | 134     | 124.8   |  |  |
| E1         | FD                          | 1210      | 43.5    | 22.6          | 91      | 93.9    |  |  |
| Sampling E | vent G2 (                   | 04 Aug 92 |         |               |         |         |  |  |
| V1-05      | N                           | 416       | 13.1    | 36.4          | 66.7    | 122.9   |  |  |
| V2-05      | N                           | 8100      | 190     | 153           | 595     | 791     |  |  |
| V3-05      | N                           | 31900     | 895     | 53.4          | 837     | 216     |  |  |
| E1         | N                           | 4860      | 78.5    | 222           | 425     | 1177    |  |  |
| Sampling E | vent G3 2                   | 21 Aug 92 |         |               |         |         |  |  |
| V1-05      | N                           | 11300     | 229     | 69.6          | 257     | 260.5   |  |  |
| V1-10      | N                           | 18300     | 713     | 113           | 1320    | 436.5   |  |  |
| V2-05      | N                           | 6370      | 150     | 33.6          | 200     | 125.6   |  |  |
| V2-10      | N                           | 604       | 14.2    | 1.84          | 13      | 8.31    |  |  |
| V3-05      | N                           | 31200     | 598     | 47.8          | 664     | 181.6   |  |  |
| V3-10      | N                           | 8900      | 189     | 21.1          | 182     | 82.4    |  |  |
| V4-05      | N                           | 400       | 7.59    | 0.85          | 8.16    | 3.06    |  |  |
| V4-10      | N                           | 963       | 3.02    | 1.39          | 4.82    | 2.91    |  |  |
| V5-05      | N                           | 1030      | 23.6    | 15.2          | 50.5    | 48.2    |  |  |
| V5-10      | N                           | 7150      | 133     | 22            | 147     | 73      |  |  |
| E1         | N                           | 298       | 10.8    | 1.19          | 6.23    | 3.2     |  |  |
| E1         | FD                          | 456       | 17.9    | 1.17          | 9.54    | 3.53    |  |  |
| EX         | N                           | 748       | 43.6    | 1.27          | 1.58    | 3.14    |  |  |
| Sampling E | vent G4 (                   | 05 Sep 92 |         |               |         |         |  |  |
| V1-05      | N                           | 1400      |         |               |         |         |  |  |
| V1-10      | N                           | 6150      |         |               |         |         |  |  |
| V2-05      | N                           | 1870      |         |               |         |         |  |  |
| V2-10      | N                           | 1370      |         | -             |         |         |  |  |
| V3-05      | N                           | 3800      |         |               |         |         |  |  |
| V4-05      | N                           | 45.6      |         |               |         |         |  |  |
| V4-10      | N                           | 940       |         |               |         |         |  |  |





| Table A-1   |
|-------------|
| (Continued) |

| Location    | Туре      | Total VPH | Benzene | Ethyl benzene | Toluene | Xylenes |
|-------------|-----------|-----------|---------|---------------|---------|---------|
| V5-05       | N         | 30.4      |         |               |         |         |
| V5-10       | N         | 41.2      |         |               |         |         |
| V5-10       | FD        | 31        |         |               |         |         |
| E1          | N         | 2460      | 81.8    | 5.57          | 71.9    | 26.87   |
| E1          | FD        | 2650      | 91.5    | 3.22          | 59      | 16.68   |
| Sampling Ev | vent G5 2 | 29 Sep 92 |         |               |         |         |
| V1-05       | N         | 117       | 0.27    | 0.85          | 0.94    | 1.75    |
| V1-10       | N         | 2170      | 99.6    | 9.17          | 116     | 37.62   |
| V1-15       | N         | 18700     | 655     | 103           | 966     | 321     |
| V2-05       | N         | 11400     | 257     | 4.64          | 344     | 48.59   |
| V2-10       | N         | 745       | 23      | 3.33          | 12.8    | 9.45    |
| V2-15       | N         | 56700     | 1780    | 139           | 1830    | 358.3   |
| V3-05       | N         | 18300     | 308     | 76.6          | 523     | 315.6   |
| V3-05       | FD        | 16500     | 311     | 35.1          | 233     | 132.8   |
| V3-10       | N         | 7150      | 98.4    | 53.9          | 305     | 183.4   |
| V3-15       | N         | 25900     | 1000    | 50.4          | 536     | 90.2    |
| V4-10       | N         | 97        | 0.37    | 0.73          | 1.51    | 1.23    |
| V4-15       | N         | 91.5      | 0.5     | 0.88          | 1.94    | 2.13    |
| V5-05       | N         | 1560      | 32.9    | 2.94          | 51.8    | 12.35   |
| V5-10       | N         | 106       | 1.08    | 4.65          | 7.84    | 6.19    |
| V5-10       | FD        | 47.9      | 0.82    | 0.79          | 2.09    | 1.17    |
| V5-15       | N         | 705       | 27.7    | 1.25          | 9.46    | 4.4     |
| E1          | N         | 146       | 5.44    | 2.37          | 7.08    | 2.91    |

NOTES: Type N = normal. Type FD = field duplicate.

| Vapor Probe         | 0 <u>2</u><br>(%) | CO 2<br>(%) | Temperature<br>(°C) |  |
|---------------------|-------------------|-------------|---------------------|--|
| Event 1 - 30 Jul 92 |                   |             |                     |  |
| V1 - 5 ft.          | 0.5               | 12.5        | 0.8                 |  |
| V2 - 5 ft.          | 6.5               | 3.5         | 2.0                 |  |
| V3 - 5 ft.          | 1.5               | 11.0        | 1.6                 |  |
| V4 - 5 ft.          | 3.0               | 15.0        | 1.1                 |  |
| V5 - 5 ft.          | 5.0               | 5.5         | 0.5                 |  |
| Event 2 - 4 Aug 92  |                   |             |                     |  |
| V1 - 5 ft.          | 19.0              | 0.0         | 0.0                 |  |
| V2 - 5 ft.          | 12.5              | 3.1         | 2.0                 |  |
| V3 - 5 ft.          | 5.5               | 10.5        | 1.2                 |  |
| V4 - 5 ft.          | 1.5               | 8.5         | 0.4                 |  |
| V5 - 5 ft.          | 13.5              | 2.5         | 0.2                 |  |
| Extraction Well     | 20.9              | 0.0         |                     |  |
| Event 4 - 13 Sep 92 | · ·               |             |                     |  |
| V1 - 5 ft.          | 13.0              | 9.0         |                     |  |
| V1 - 10 ft.         | 2.5               | 16.0        |                     |  |
| V2 - 5 ft.          | 5.5               | 10.0        | ра та.              |  |
| V2 - 10 ft.         | 19.0              | 1.0         |                     |  |
| V3 - 5 ft.          | 2.0               | 8.0         |                     |  |
| V3 - 10 ft.         | 3.0               | 9.5         |                     |  |
| V4 - 5 ft.          | 21.0              | 0           | <u></u>             |  |
| V4 - 10 ft.         | 1.0               | 18.5        |                     |  |
| V4 - 15 ft.         | 17.0              | 3.0         |                     |  |
| V5 - 5 ft.          | 20.5              | 0.5         |                     |  |
| V5 - 10 ft.         | 18.0              | 5.5         |                     |  |
| V5 - 15 ft.         | 9.5               | 11.5        |                     |  |

# Table A-2Oxygen and Carbon Dioxide Concentrations and Temperatures<br/>Measured in Vapor Wells





| Togetion     | Tune     | три     | Cosoline | Diecol |                         | Bongona | Total<br>BTEX |
|--------------|----------|---------|----------|--------|-------------------------|---------|---------------|
| Sampling Eve | nt S1 25 | .Ini 92 | Gasoime  | Diesei | JCLA                    | Denzene | DIEA          |
| V1-05        | N        | 9.31    | 3,56     | 9.67   | 1.22                    | 0.38    | 1.22          |
| V1-10        | N        | 6.99    | 5.62     | 4.93   | 2.52                    | 0.64    | 1.77          |
| V1-15        | N        | 7.66    | 6.58     | 5.06   | 2.14                    | 0.61    | 2.14          |
| V2-05        | N        | 12.82   | 8.91     | 10.14  | 6.5                     | 0.56    | 0.88          |
| V2-10        | N        | 20.23   | 28.42    | 4.6    | 3.61                    | 0.03    | 13.85         |
| V2-15        | N        | 183.3   | 14.39    | 234.5  | 99.37                   | 7.35    | 38.45         |
| V3-05        | N        | 1396    | 530.7    | 1452   | 1035                    | 13.71   | 90.57         |
| V3-10        | N        | 18.5    | 19.26    | 9.55   | 6.63                    | 6.49    | 24.33         |
| V3-15        | N        | 1827    | 652.7    | 1934   | 1034                    | 34.73   | 288.16        |
| V4-05        | N        | 4.66    | 1.52     | 5.04   | < 1                     | 0.69    | 2.72          |
| V4-10        | N        | 6.11    | 2.89     | 5.91   | 2.31                    | 0.58    | 1.20          |
| V4-10        | FD       | 4.54    | 3.23     | 3.54   | 1.96                    | 0.48    | 1.08          |
| V4-15        | N        | 4.43    | 2.81     | 3.72   | < 1                     | 0.48    | 1.47          |
| V5-05        | N        | 2.93    | 2.13     | 2.25   | < 1                     | 0.29    | 1.65          |
| V5-10        | N        | 4.96    | 3.65     | 3.77   | < 1                     | 0.68    | 1.44          |
| V5-10        | FD       | 4.86    | 4.35     | 3.07   | 1.93                    | 0.60    | 1.24          |
| V5-15        | N        | 2.78    | 1.87     | 2.25   | < 1                     | 0.33    | 1.14          |
| Sampling Eve | nt S2 31 | Aug 92  |          |        | · · · · · · · · · · · · |         |               |
| V1-05        | N        | 2.14    | < 1      | < 1    | < 1                     | < 0.5   | 1.00          |
| V1-10        | N        | 6.61    | 9.34     | < 1    | 2.76                    | 4.1     | 12.7          |
| V1-15        | N        | 3.17    | 4.48     | < 1    | 1.43                    | 0.8     | 4.51          |
| V1-15        | FD       | < 1     | < 1      | < 1    | < 1                     | 1.32    | 8.49          |
| V2-05        | N        | 8.82    | 1.7      | 8.95   | < 1                     | < 0.5   | 1.76          |
| V2-10        | N        | 12.53   | 8.86     | 7.34   | 2.88                    | 3.96    | 16.17         |
| V2-15        | N        | 173.1   | < 1      | 203.3  | 128.1                   | 3.39    | 27.58         |
| V3-05        | N        | 40.9    | 4.27     | 4.45   | 4.54                    | < 0.5   | 1.84          |
| V3-10        | N        | 855.9   | 329.9    | 730.6  | 728.5                   | 1.24    | 14.52         |
| V3-15        | N        | 132.5   | 89.12    | 63.71  | 68.07                   | 6.3     | 31.67         |
| V4-05        | N        | < 1     | < 1      | < 1    | < 1                     | < 0.5   | 1.00          |
| V4-10        | N        | 2.18    | <1       | 2.56   | < 1                     | < 0.5   | 1.00          |
| V4-15        | N        | 3.86    | <1       | < 1    | < 1                     | < 0.5   | 1.00          |
| V5-05        | N        | < 1     | < 1      | < 1    | < 1                     | < 0.5   | 1.00          |
| V5-10        | N        | < 1     | < 1      | < 1    | < 1                     | < 0.5   | 1.00          |
| V5-15        | N        | 8.12    | 11.46    | < 1    | 5.02                    | 0.54    | 3.26          |

Table A-3Analytical Data for Soil Samples



A-13

|              |          |        |          |        |       |         | Total  |
|--------------|----------|--------|----------|--------|-------|---------|--------|
| Location     | Туре     | TPH    | Gasoline | Diesel | Jet A | Benzene | BTEX   |
| Sampling Eve | nt S3 30 | Sep 92 |          |        |       |         |        |
| V1-05        | N        | 119    | 2.88     | 6.87   | 2.52  | < 0.5   | 1.00   |
| V1-10        | N        | 108    | 5.36     | 8.2    | 1.3   | < 0.5   | 2.10   |
| V1-15        | N        | 371    | 142      | 160    | 256   | < 0.5   | 8.07   |
| V2-05        | N        | 677    | 165      | 515    | 707   | < 0.5   | 2.71   |
| V2-10        | N        | 81.9   | 20.8     | 60.9   | 44.2  | 0.62    | 5.56   |
| V2-15        | N        | 217    | 22.3     | 250    | 230   | < 0.5   | 1.63   |
| V3-05        | N        | 1495   | 1241     | 764    | 1453  | 5.17    | 131.97 |
| V3-10        | N        | 39.7   | 51       | 15.2   | 28.5  | 1.41    | 12.26  |
| V3-15        | N        | 695    | 215      | 508    | 740   | .71     | 8.16   |
| V3-15        | FD       | 423    | 81.9     | 324    | 448   | < 0.5   | 5.95   |
| V4-05        | N        | 8.81   | < 1      | 4.64   | < 1   | < 0.5   | 1.00   |
| V4-10        | N        | 6.04   | < 1      | 3.46   | < 1   | < 0.5   | 1.00   |
| V4-15        | N        | 150    | < 1      | 6.03   | 2.82  | < 0.5   | 1.00   |
| V5-05        | N        | 4.13   | < 1      | 2.4    | < 1   | < 0.5   | 1.00   |
| V5-05        | FD       | 5.12   | < 1      | 10.3   | 1.16  | < 0.5   | 3.26   |
| V5-10        | N        | 3.83   | < 1      | 2.4    | < 1   | < 0.5   | 1.00   |
| V5-15        | N        | 2.77   | < 1      | 2.11   | 1.31  | < 0.5   | 2.00   |

# Table A-3 (Continued)

NOTES: Units = mg/kg. Type N = normal. Type FD = field duplicate.

## **APPENDIX A.3**

Air Permeability Tests

Table A-4 Data From Air Permeability Test

|              |      |       |      | Read   | dings by Loo | cation (in of l | H <sub>2</sub> 0) |       |      |       |
|--------------|------|-------|------|--------|--------------|-----------------|-------------------|-------|------|-------|
| Elasped Time | V1-5 | V1-10 | V2-5 | V2-10* | V3-5         | V3-10           | V4-5              | V4-10 | V5-5 | V5-10 |
| 00:00:00     | 0    | 0     | 0    | 0      | 0            | 0               | 0                 | 0     | 0    | 0     |
| 00:02:00     | 1.2  | 1.5   | 0.2  | 0      | 0.2          | 0.1             | 0                 | 0.5   | 0.6  | 1     |
| 00:11:00     | 1.2  | 1.6   | 0.5  | 0      | 0.5          | 0.5             | 0.1               | 0.5   | 1    | 1.2   |
| 00:14:00     | 1.2  | 1.6   | 0.6  | 0      | 0.5          | 0.6             | 0.5               | 0.5   | 1    | 1.5   |
| 00:20:00     | 1.3  | 1.6   | 0.7  | 0      | 0.1          | 0.5             | 0.4               | 0.5   | 1    | 1.7   |
| 00:24:00     | 1.4  | 1.7   | 0.8  | 0      | 0.3          | 0.6             | 0.4               | 0.5   | 1    | 1.7   |
| 00:29:00     | 1.4  | 1.7   | 0.8  | 0      | 0.5          | 0.5             | 0.4               | 0.6   | 1    | 1.8   |
| 00:33:00     | 1.4  | 1.7   | 0.9  | 0      | 0.5          | 0.5             | 0.4               | 0.6   | 1    | 1.8   |
| 00:41:00     | 1.5  | 1.8   | 1    | 0      | 0.5          | 0.6             | 0.4               | 0.6   | 0.9  | 1.9   |
| 00:47:00     | 1.5  | 1.9   | 0.9  | 0      | 0.5          | 0.7             | 0.4               | 0.6   | 0.9  | 2.1   |
| 01:02:00     | 1.7  | 1.9   | 0.8  | 0      | 0.5          | 0.6             | 0.4               | 0.6   | 1    | 2.1   |
| 03:42:00     | 1.8  | 1.9   | 0.8  | 0      | 0.5          | 0.6             | 0.4               | 0.6   | 1    | 2.1   |




A-18



# V1-10

Vacuum (inches of water)



Figure A-5. Linear Regression Between Vacuum Measured and the Natural Logarithm of Elapsed Time (V1-10)



V2-5

Figure A-6. Linear Regression Between Vacuum Measured and the Natural Logarithm of Elapsed Time (V2-5)



re A-7. Linear Regression Between Vacuum Measured Natural Logarithm of Elapsed Time (V5-10)

|                      | v1-5     | <b>v1-10</b> | v2-5     | v5-10    | Average  |
|----------------------|----------|--------------|----------|----------|----------|
| Q (cm3/sec)          | 38166.67 | 38166.67     | 38166.67 | 38166.67 |          |
| A (g/cm-s2)/ln(min)) | 2316.328 | 3408.56      | 557.312  | 1965.52  |          |
| M (cm)               | 427      | 427          | 427      | 427      |          |
| u(g/cm-s)            | 0.00018  | 0.00018      | 0.00018  | 0.00018  |          |
| K (cm2)              | 5.53E-07 | 3.76E-07     | 2.30E-06 | 6.52E-07 | 9.70E-07 |
| K (darcy's)          | 55.30179 | 37.581       | 229.8481 | 65.17211 | 96.97574 |

Table A-5Results of Air Perm Test During the Phase I Pilot-Scale Test

## **APPENDIX A.4**

**Soil Infiltration Tests** 







CALCULATION SHEET

| DECT GALENA T.S.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JOB N                                                                                                                                                                                                                                                                                                | 10                                                                    |                                                                 |               |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------|
| NECT INFILTRATION Cabulation                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SHEET                                                                                                                                                                                                                                                                                                | <u>i</u>                                                              | 0F                                                              | SHE           |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                       |                                                                 |               |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                       |                                                                 |               |
| Problem & Calculate                                 | WATER RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BUITEMENT                                                                                                                                                                                                                                                                                            | OF A                                                                  | NUTRERNT                                                        |               |
| ADDETION                                            | TRIGATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | System.                                                                                                                                                                                                                                                                                              | THE                                                                   | System                                                          |               |
| Will have                                           | A 65' Foo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T RADIUS                                                                                                                                                                                                                                                                                             | (130' d.                                                              | <u>.</u>                                                        |               |
| FOR AN                                              | AREA OF 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,273 F42                                                                                                                                                                                                                                                                                            |                                                                       |                                                                 |               |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      | +                                                                     |                                                                 |               |
| ·····                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                       |                                                                 |               |
| Assumes D THE                                       | Groundis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SATUZATED A                                                                                                                                                                                                                                                                                          | ND MIDTER                                                             | = =N FILFRATION                                                 |               |
| IS /                                                | T Sterry Str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ste Therefore,                                                                                                                                                                                                                                                                                       | THE S                                                                 | TURATED                                                         |               |
| Hydra                                               | -lie Conduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ity is APP                                                                                                                                                                                                                                                                                           | OPILA TR.                                                             |                                                                 |               |
| <b>a</b> -                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                       |                                                                 |               |
| <b>2</b> ) [141                                     | L SATURATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hydranlic                                                                                                                                                                                                                                                                                            | Conduction                                                            | L is                                                            |               |
| Rep                                                 | ersented By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THE AVET                                                                                                                                                                                                                                                                                             | AGE OF                                                                | THE                                                             |               |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · /                                                                                                                                                                                                                                                                                                  |                                                                       |                                                                 |               |
| 5                                                   | TESTS PERFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MED. SEC A                                                                                                                                                                                                                                                                                           | TTACHED                                                               | FIGURE                                                          |               |
| · · · · · · · · · · · · · · · · · · ·               | TESTS PERFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MED. SEE A                                                                                                                                                                                                                                                                                           | TTACHED                                                               | FIGURA                                                          |               |
|                                                     | TESTS PERFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MED. SEC A                                                                                                                                                                                                                                                                                           | TTACHED                                                               | Figure.                                                         |               |
| S. S            | TESTS PERFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MED: SEC A                                                                                                                                                                                                                                                                                           | TTACHED                                                               | Figure.                                                         | 14)/3         |
| S. C.NEAS                                           | TESTS PERFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Med: Ser A<br>Ma<br>Ksa                                                                                                                                                                                                                                                                              | $\frac{1}{7} = (3)$ $= 1.4$                                           | FIGURE<br>$2 \pm 0,35 \pm 0,$<br>cm/kR                          | 14)/3         |
| S. VEAS                                             | TESTS PERFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | med. Sec a<br>Med. Ksa<br>Ksa                                                                                                                                                                                                                                                                        | TTACHED $7 = (3.)= 1.4= 0.0$                                          | FIGURA<br>2+0,33+0,<br>Cm/HR<br>46 FALHR                        | 14)/3         |
| S                                                   | TESTS PERFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | med. Sec a<br>Med. Ksa<br>Ksa                                                                                                                                                                                                                                                                        | 774 CHED<br>7 = (3)<br>= 1.4<br>= 0.10                                | FIGURA<br>2+0,33+0,<br>cm/KR<br>46 FIGHIR                       | 14)/3         |
| GivEA:<br>AltAched Figures 1:                       | TESTS PERFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MED. SEE A<br>A<br>KSA                                                                                                                                                                                                                                                                               | 772 (3.)<br>7 = (3.)<br>= 1.4<br>= 0.10                               | FIGURA<br>2+0,33+0,<br>cm/KR<br>16 Friftla                      | 14)/3         |
| GiviEn:<br>AltAched Figures 1:                      | TESTS PERFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MED. SEE A<br>A<br>KSA                                                                                                                                                                                                                                                                               | TTACHED<br>7 = (3.)<br>= 1.4<br>= 0.10                                | FIGURA<br>2+0,33+0,<br>Cm/KR<br>16 FM/HR                        | 14)/3         |
| GivEn:<br>AltAched Figures IE<br>Volume of Water    | TESTS PERFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MED. SEC A<br>NA<br>KSA<br>046 FT/hr                                                                                                                                                                                                                                                                 | $\frac{1}{7} = (3.)$ $= 1.4$ $= 0.10$ $+ 13.2$                        | FiGURA<br>2+0.33+0,<br>Cm/KR<br>46 Friftla<br>43 F13            | 14)/3         |
| GiviEn:<br>Altitched. Figures I:<br>Volume of Water | TESTS PERFOR<br>Tringstion Dre<br>65'<br>2<br>required = 0:<br>= 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | мер. <b>Sec</b> A<br>Ка<br>Ka<br>096 FT/hr<br>10 FT <sup>3</sup> /hr                                                                                                                                                                                                                                 | $\frac{1}{7} = (3.)$ $= 1.4$ $= 0.10$ $+ 13.2$                        | FiGURA<br>7+0,33+0,<br>Cm/KR<br>46 Friftiz<br>73 F13            | <i>1</i> 4)/3 |
| CivEN:<br>AltAched Figures Is<br>Volume of water    | TESTS PERFOR<br>$T_{irrighting}$ Dre<br>$f_{GS}^{i}$<br>R<br>required = 0<br>= 6<br>= 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MED: SEC A<br>KSA<br>046 FT/hr<br>10 FT <sup>3</sup> /hr<br>56 7_ gallow                                                                                                                                                                                                                             | TTACHED<br>7 = (3.)<br>= 1.4<br>= 0.10<br>+ 13,2<br>s/hc              | Figure<br>7+0,33+0,<br>cm/KR<br>46 Miffiz<br>73 F1 <sup>3</sup> | <i>1</i> 4)/3 |
| Civers:<br>AltAched Figures Is<br>Volume of Water   | TESTS PERFOR<br>$T_{11'GD}$ Dre<br>$f_{GS'}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0}$<br>$r_{0$ | MED: SEC A<br>MED: SEC A<br>KSA<br>VSA<br>VSA<br>VSA<br>NSA<br>SA<br>KSA<br>SA<br>KSA<br>SA<br>KSA<br>SA<br>KSA<br>SA<br>KSA<br>SA<br>KSA<br>SA<br>KSA<br>SA<br>SA<br>KSA<br>SA<br>SA<br>KSA<br>SA<br>SA<br>KSA<br>SA<br>SA<br>SA<br>SA<br>KSA<br>SA<br>SA<br>SA<br>SA<br>SA<br>SA<br>SA<br>SA<br>SA | TTACHED<br>7 = (3)<br>= 1.4<br>= 0.10<br>+ 13,2<br>s/h-<br>16us/de    | FiGURA<br>2+0,33+0,<br>cm/KR<br>46 FIGHR<br>23 FI3              | 14)/3         |
| Given:<br>AltAched. Figures I:<br>Volume of Water   | TESTS PERFOR<br>$T_{11'GOTION}$ Dre<br>465'<br>2<br>1000<br>1000<br>2<br>1000<br>= 4<br>= 1000<br>= 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MED: SEC A<br>NAED: SEC A<br>NAED: SEC A<br>KSA<br>046 FT/hr<br>10 FT/hr<br>10 FT <sup>3</sup> /hr<br>567 gallow<br>99,622 gg                                                                                                                                                                        | TTACHED<br>7 = (3)<br>= 1.4<br>= 0.10<br>+ 13,2<br>s/hc<br>1005/de    | FiGURA<br>2+0,33+0,<br>Cm/KR<br>16 Friftla<br>73 F13<br>73      | 14)/3         |
| GiviEA:<br>AltAched Figures I:<br>Volume of Water   | TESTS PERFOR<br>Trisoprion Dre $65'127^{o}guired = 0= 6= 410$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MED. SEC A<br>NAED. SEC A<br>KSA<br>046 FT/hr<br>10 Ft <sup>3</sup> /hr<br>56 7_gallow<br>99,622 gg                                                                                                                                                                                                  | TTACHED<br>7 = (3.)<br>= 1.4<br>= 0.10<br>¥ 13,2<br>s/hc<br>Hows/de   | FIGURA<br>2+0,33+0,<br>Cm/KR<br>16 FM/HR<br>13 F1 <sup>3</sup>  | 14)/3         |
| Given:<br>AltAched. Figures I:<br>Volume of Water   | TESTS PERFOR<br>Trisoprion Dre $65'2709uired = 0:= 60= 4:= 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MED. SEC A<br>NA<br>046 ET/hr<br>10 ET/hr<br>10 ET <sup>3</sup> /hr<br>567_gallow<br>09,622 gg                                                                                                                                                                                                       | TTACHED<br>7= (3.)<br>= 1.4<br>= 0.10<br>¥ 13,2<br>s/h-<br>11005/de   | FIGURA<br>2+0.33+0,<br>Cm/KR<br>46 FN/HR<br>23 F13<br>23 F13    | 14)/3         |
| Given:<br>Altriched Figures Is<br>Volume of water   | TESTS PERFOR<br>$Tricostion Dre 465^{\circ}27^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}7^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MED. SEC A<br>NA<br>046 FT/hr<br>10 FT <sup>3</sup> /hr<br>567_ga/low<br>09,622 gg                                                                                                                                                                                                                   | TTACHED<br>7 = (3)<br>= 1.4<br>= 0.10<br>¥ 13,2<br>s/h.c.<br>1/ous/de | FIGURA<br>2+0,33+0,<br>cm/K/R<br>46 FIGH/2<br>23 FI3<br>23 FI3  | 14)/3         |
| Civers:<br>AltAched. Figures Is<br>Volume of Water  | TESTS PERFOR<br>Trisortion Dre<br>$465^{\circ}$<br>2<br>$7^{\circ}guired = 0:$<br>= 6<br>= 4:<br>= 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MED. SEC A<br>NA KSA<br>046 FT/hr<br>10 FT<br>56 7_ gallow<br>09,622 gg                                                                                                                                                                                                                              | TTACHED<br>7 = (3)<br>= 1.4<br>= 0.10<br>+ 13,2<br>s/h-<br>10us/dr    | FIGURA<br>2+0,33+0,<br>Cm/KR<br>16 FIGURA<br>13 F1 3<br>13      | 14)/3         |

.

# **APPENDIX A.5**

Hydrocarbon Removal Rates



CALCULATION SHEET

|          |              |                                      |                                              |                       |                    | CALC. NO                      |                                       |
|----------|--------------|--------------------------------------|----------------------------------------------|-----------------------|--------------------|-------------------------------|---------------------------------------|
| SIGNATUR | EMA Robbins  | DATE                                 | 3/19/93                                      |                       | JAR                | DATE                          | 20/93                                 |
| ROJECT   | GALENA Tree  | tability Study                       | •<br>                                        | JOB                   | NO                 |                               |                                       |
| SUBJECT  | HYDTZOCARBON | J RENOVAL RATES                      | <u>5                                    </u> | HEET                  | j                  | OF                            | SHEETS                                |
|          |              |                                      |                                              |                       |                    |                               |                                       |
|          | HOBLEM       | the Operation of                     | e mass of<br>of the sye                      | HYDROCARBO<br>USE     | CONCENTRA          | D Punins                      |                                       |
|          |              | in vapor phase me                    | resured at ext                               | raeton well           | ONO peri           | odically                      | , where the state of the state of the |
|          |              | measured flow R                      | ATES.                                        |                       |                    | <b>U</b><br>                  | ••••••••<br>•                         |
|          | Assumes      | i) The the                           | Concentration                                | in the u              | por phase          | tetwen say                    | dinc                                  |
|          |              | EVENTS ()                            | N BE Represe                                 | ntel by               | He AUERI           | age or the                    |                                       |
|          |              | Juo con ce.                          | ntrations.                                   |                       | 1                  | ,                             |                                       |
|          |              | 2) The flau                          | ) rate bet                                   | terrali-              | csurements         | CON SL                        |                                       |
|          |              | reprosentes                          | by a In                                      | IT ZZ POCA            |                    |                               |                                       |
|          |              | 3) The mass<br>weight of<br>species. | e vocs rei<br>heptane (C                     | moved can<br>7H14) as | the representation | mated the me.<br>Sentative by | lecula-<br>procarbon                  |
|          | EQUATIO      | DNB                                  |                                              |                       |                    |                               |                                       |
|          | NAPOr CON    | centration (ml-vp+)                  | ( <sup>m<sup>3</sup>. A, r</sup> ) × -       | mole<br>22.42 ×       | nole *             | $\frac{1}{1000} ml = ($       | §/m <sup>3</sup> )                    |
|          | * Flow Rate  | $(Fr^{3} min) + \frac{1n^{3}}{35.3}$ | 1440 m                                       | y =                   | 8101Y              |                               |                                       |
|          | DATA:        |                                      |                                              |                       |                    |                               |                                       |
|          | OI Aug       | 1910 FPM > 3                         | 3385                                         |                       |                    |                               |                                       |
|          | 04 Aug       | 4860 ppm > 2                         | 658                                          |                       |                    |                               |                                       |
|          | as Sa        | 2460 DDM                             | 553                                          |                       |                    |                               |                                       |
|          | 27 Sep       | 150 ppm (1                           | Day AFTER                                    | Shut 7                | Sun)               |                               |                                       |
|          | Flow?        |                                      |                                              |                       |                    |                               |                                       |
|          | From Se      | 0.5 Sefm ON 10                       | s Duy to E                                   | B1 02 51              | Sep to             | 79 ow 26                      | Sept                                  |
|          |              |                                      |                                              |                       |                    |                               |                                       |
| 7        |              |                                      |                                              |                       |                    |                               |                                       |



# CALCULATION SHEET

|           |          |            |                  |                      |                    |                   |                 | CAL       | .C. NO     |                  |
|-----------|----------|------------|------------------|----------------------|--------------------|-------------------|-----------------|-----------|------------|------------------|
| SIGNATURI | E MA RO  | obbins     |                  | DATE                 | 3/19/9             | 3 CHE             | CKED            |           | DATE       |                  |
| PROJECT_  | GALIENI  | A Treatab  | lity S           | tudy                 |                    |                   | JOB NO          |           | <u>```</u> |                  |
| SUBJECT_  | HYDROCAR | BON REM    | OUAL TR          | ATE (CON             | (7)                | SHEET             | 2               | OF        | 3          | SHEETS           |
|           |          |            |                  |                      |                    |                   |                 |           |            |                  |
|           | Examp    | de Calcul  | ation's          |                      |                    |                   |                 |           |            |                  |
|           | ON OI    | 1 August:  | raci = 3         | 3385 PP              | m V                | • •               |                 |           | · ···      |                  |
|           | Mass -   | Pemoval, 1 | M <sub>r =</sub> | 3385 !               | $\frac{ml}{m^3}$ ¥ | 1 mole +<br>22.41 | mote            | * 12      | ml =       | 15,11 8/m3       |
|           |          |            | 15.11            | 8/ <sub>im</sub> 3 × | 50.5 F             | 73/mra ¥          | 1x3<br>3531 Fr3 | * 1440 m  | =          | 31, 122 8<br>Day |
|           |          |            |                  |                      |                    |                   |                 | 5 =       | 31,1 \$    | G-VPH            |
|           |          |            |                  |                      |                    |                   |                 | 2 =       | 68.5       | bs - VP14        |
|           |          |            |                  |                      |                    |                   |                 |           | 1          | DA y             |
|           | SEE A    | TACHED     | SPREA            | FA<br>SHEET          | oz<br>Cumali       | ative: REn        | nour Calc       | ulition : |            | -                |
|           |          |            |                  |                      |                    |                   |                 |           |            |                  |
|           |          |            |                  |                      |                    |                   |                 |           |            |                  |
|           |          |            |                  |                      |                    |                   |                 |           |            |                  |
|           |          |            |                  |                      |                    |                   |                 |           |            |                  |
|           |          |            |                  |                      |                    |                   |                 |           |            |                  |
|           |          |            |                  |                      |                    |                   |                 |           |            |                  |
|           |          |            |                  |                      |                    |                   |                 |           |            |                  |
|           |          |            |                  |                      |                    |                   |                 |           |            |                  |
|           |          |            |                  |                      |                    |                   |                 |           |            |                  |
|           |          |            |                  |                      |                    |                   |                 |           |            |                  |
|           |          |            |                  |                      |                    |                   |                 |           |            |                  |
|           |          |            |                  |                      |                    |                   |                 |           |            |                  |
|           |          |            |                  |                      |                    |                   |                 |           |            |                  |

Pg 3 of 3

| r                |           |                          |                           | 1                      |                        |
|------------------|-----------|--------------------------|---------------------------|------------------------|------------------------|
|                  | Date      | Well Concentration (ppm) | Est. Net Well Flow (scfm) | Est. VPH Removed (lbs) | Cumalative VPH Removed |
|                  | 01-Aug-92 | 3385                     | 50.5                      | 68.47                  | 68.47                  |
|                  | 02-Aug-92 | 3385                     | 53                        | 71.86                  | 140.33                 |
|                  | 03-Aug-92 | 3385                     | 54                        | 73.21                  | 213.54                 |
|                  | 04-Aug-92 | 2658                     | 55                        | 58.55                  | 272.09                 |
|                  | 05-Aug-92 | 2658                     | 56                        | 59.62                  | 331.71                 |
| ľ                | 06-Aug-92 | 2658                     | 57                        | 60.68                  | 392.40                 |
| ŀ                | 07-Aug-92 | 2658                     | 58                        | 61.75                  | 454.14                 |
| ł                | 08-Aug-92 | 2658                     | 59                        | 62.81                  | 516.96                 |
| ł                | 09-Aug-92 | 2658                     | 60                        | 63.88                  | 580.83                 |
| ł                | 10-Aug-92 | 2658                     | 61                        | 64.94                  | 645.78                 |
| ł                | 11 Aug 92 | 2658                     | 62                        | 66.01                  | 711 78                 |
| ł                | 12 Aug 02 | 2658                     | 63                        | 67.07                  | 778 85                 |
| ł                | 12-Aug-92 | 2038                     | 64                        | 68.14                  | 846.00                 |
| ┝                | 13-Aug-92 | 2038                     | 65                        | 60.20                  | 016.10                 |
| ŀ                | 14-Aug-92 | 2038                     | 66                        | 70.26                  | 086.45                 |
| ┝                | 15-Aug-92 | 2038                     | 67                        | 71.22                  | 1057.78                |
| ŀ                | 16-Aug-92 | 2658                     | 07                        | 71.33                  | 1120.19                |
| ┝                | 17-Aug-92 | 2058                     | 08                        | 72.39                  | 1130.18                |
| ╞                | 18-Aug-92 | 2658                     | 69                        | /3.40                  | 1203.64                |
| ╞                | 19-Aug-92 | 2658                     | /0                        | /4.52                  | 12/8.16                |
| ╞                | 20-Aug-92 | 2658                     | 71                        | 75.59                  | 1353.75                |
| ╞                | 21-Aug-92 | 2658                     | 72                        | 76.65                  | 1430.40                |
| ╞                | 22-Aug-92 | 1553                     | 72                        | 44.79                  | 14/5.19                |
| ╞                | 23-Aug-92 | 1553                     | 73                        | 45.41                  | 1520.59                |
| ╞                | 24-Aug-92 | 1553                     | 74                        | 46.03                  | 1566.62                |
|                  | 25-Aug-92 | 1553                     | /5                        | 46.65                  | 1613.28                |
| ļ                | 26-Aug-92 | 1553                     | /0                        | 47.27                  | 1709.45                |
| ╞                | 27-Aug-92 | 1553                     |                           | 47.90                  | 1708.43                |
|                  | 28-Aug-92 | 1553                     | /8                        | 48.52                  | 1/30.9/                |
|                  | 29-Aug-92 | 1553                     | /9                        | 49.14                  | 1800.11                |
| 4                | 30-Aug-92 | 1553                     | 80                        | 49.76                  | 1833.87                |
| ┝                | 31-Aug-92 | 1553                     | 81                        | 50.38                  | 1900.23                |
| ┟                | 01-Sep-92 | 1553                     | 81                        | 50.38                  | 2007.02                |
| ╞                | 02-Sep-92 | 1553                     | 81                        | 50.38                  | 2007.02                |
| ┟                | 03-Sep-92 | 1553                     | 81                        | 30.38                  | 2037.41                |
| ╞                | 04-Sep-92 | 1553                     | 80                        | 49.76                  | 2107.17                |
| ╞                | 05-Sep-92 | 1400                     | 80                        | 44.86                  | 2152.03                |
| ┟                | 06-Sep-92 | 1400                     | 80                        | 44.86                  | 2196.89                |
| ┟                | 07-Sep-92 | 1400                     | 80                        | 44.80                  | 2241.73                |
| ┟                | 08-Sep-92 | 1400                     | /9                        | 44.30                  | 2280.05                |
| ┝                | 09-Sep-92 | 1400                     | /9                        | 44.30                  | 2330.33                |
| ╞                | 10-Sep-92 | 1400                     | 79                        | 44.30                  | 25/4.64                |
| ╞                | 11-Sep-92 | 1400                     | 79                        | 44.30                  | 2418.94                |
|                  | 12-Sep-92 | 1400                     | 78                        | 43.74                  | 2462.68                |
|                  | 13-Sep-92 | 1400                     | 78                        | 43.74                  | 2506.42                |
|                  | 14-Sep-92 | 1400                     | 78                        | 43.74                  | 2550.16                |
|                  | 15-Sep-92 | 1400                     | 78                        | 43.74                  | 2593.90                |
|                  | 16-Sep-92 | 1400                     | 78                        | 43.74                  | 2637.64                |
|                  | 17-Sep-92 | 1400                     | 78                        | 43.74                  | 2681.37                |
|                  | 18-Sep-92 | 1400                     | 78                        | 43.74                  | 2725.11                |
| $\left  \right $ | 19-Sep-92 | 1400                     | 78                        | 43.74                  | 2768.85                |
| ŀ                | 20-Sep-92 | 1400                     | 78                        | 43.74                  | 2812.59                |
| -                | 21-Sep-92 | 1400                     | 78                        | 43.74                  | 2856.33                |
| ╞                | 22-Sep-92 | 1400                     | 78                        | 43.74                  | 2900.06                |
|                  | 23-Sep-92 | 1400                     | 78                        | 43.74                  | 2943.80                |
|                  | 24-Sep-92 | 1400                     | 78                        | 43.74                  | 2987.54                |
|                  | 25-Sep-92 | 1400                     | 78                        | 45.74                  | 3031.28                |
|                  | 26-Sep-92 | 1400                     | 78                        | 43./4                  | 30/5.02                |
| - 1              | 27-Sep-92 | 1400                     | 78                        | 45./4                  | 3118.76                |



# CALCULATION SHEET

CALC. NO. SIGNATURE J. A. Rehage DATE 5-20-93 CHECKED MATChe DATE 5/21/53 Galena PROJECT JOB NO. SUBJECT Initial Mass of Hydrocarbons SHEET\_ \_1\_\_\_ OF\_\_\_\_/ SHEETS in POL study Area Calculate the mass of hydrocarbons present at the POL within the zone of influence of the SVE well. Use the soil concentrations determined in the mitial round of samples for location VI-V5. Note: Welle V4 & V3 are outside the observed radius of influence but vere used to calculate the average of H. Concentrations. Additionally. the verticle depth to ground water fluctuated between 5 \$ 15' day to course of the pilot study. Therefore the effective depth to 6 W is 10 feet aug. TPH, 5 - ft. depth = 285 mg/kg aug, TPH, 10 - ft. depth = 9 mg/kg mg/kg aug. TPH, 15- ft. depth = 405 mg/kg grand aug = 233 mg/kg Assuming a radius of influence of 60 ft, and a depth of influence of 10 ft, the estimated mass of TPH is calculated below (assume a soil unit weight of 11016/f+3) Vol. of Influence =  $\pi r^2 h = \pi (60f+)^2 (10f+)$ Vol. = 113,097 ft3 £د  $TPH_{moss} = \frac{0.2339}{kg} \frac{k9}{2.216} \frac{11015}{f+3} \frac{113,097ft^3}{10000}$ 10009 = 1317 Kg of TPH - 2,39,9 165 or TPH

# APPENDIX B

Phase I Bench-Scale Test

# **Table of Contents**

| Page |
|------|
|------|

| Appendix B.1. | Experimental Methods and Procedures for the Phase I Bench-Scale Test B-1 |
|---------------|--------------------------------------------------------------------------|
| Appendix B.2. | Analytical Results for the Phase I Bench-Scale Test                      |
| Appendix B.3. | Calculations for Degradation Rates for the Phase I Bench-Scale Test B-17 |
| References    | B-33                                                                     |

# **APPENDIX B.1**

# Experimental Methods and Procedures for the Phase I Bench-Scale Test

# Description of Laboratory Procedures for the Bench-Scale Test

# Preparation of Composite Sample for Biotreatability Test

A bulk sample of hydrocarbon-contaminated soil was collected from 10 to 17 ft below the original ground surface from the southeastern corner of the POL Tank Farm containment dike. Twenty-three 250-mL samples were collected with hand augers. The samples were stored on ice and shipped via express delivery to Radian's Microbiology Laboratory in Austin, Texas. Upon arrival, the samples were temporarily stored in a refrigerator at approximately 4°C prior to compositing. The composite sample was prepared by placing the 23 samples in a 5-gal. bucket, which was sealed (to minimize losses of volatile organic compounds [VOCs]) and tumbled by hand for 5 minutes. After compositing was completed, subsamples were withdrawn and submitted for the pretest analyses.

## **Pretest Analytical Characterization**

The initial characterization program consisted of the identification and quantification of contaminants, including total petroleum hydrocarbons (TPH) and aromatic hydrocarbons [i.e., benzene, toluene, ethylbenzene, and xylenes (BTEX)]. The initial soils were also analyzed for nutrients (phosphorus and nitrogen), physical and chemical properties, and microbiological parameters (enumeration of total heterotrophic and hydrocarbon-utilizing microorganisms). Total viable bacteria (heterotrophic organisms) were counted using a nonselective culture medium, and hydrocarbon-utilizing organisms were enumerated using a medium that contained diesel fuel as the sole source of carbon.

## **Posttest Analytical Characterization**

When the 97-day incubation period was over, the soils were analyzed to determine the residual levels of nutrients, TPH, BTEX, and microorganisms. These data were compared

**B-3** 

with the initial levels to determine how these parameters were affected by the various treatments tested.

#### General Approach — Respirometery Tests

Biotreatability effectiveness was assessed by measuring microbial respiration for the initial 65 days of the incubation period for each of the treatments tested. With the exception of using radiolabeled compounds, soil respirometry is perhaps the most efficient method to quantitatively determine to what extent hydrocarbons present in soil will biodegrade under conditions suitable for microbiological growth. The procedure consists of adding a known amount of hydrocarbon-contaminated soil to a biometer flask. Oxygen uptake or consumption (i.e., biological oxygen demand) and carbon dioxide evolution in the closed flask are measured with time in order to indirectly assess the biodegradability of the hydrocarbon contaminants.

The respirometry procedure was used to determine the effects of several treatment conditions. Each of the treatments, including the barometric control, was incubated in a refrigerator at 2° to 5°C for the duration of the experiment. The respirometry tests were carried out in biometer flasks; the apparatus is shown in Figure B-1. Each flask was sparged daily with a gas stream composed of a specific  $O_2$  concentration for 2 minutes, which was a sufficient length of time to completely flush the respirometer flasks.

#### **Treatment Conditions**

Several treatment conditions were chosen to evaluate biotreatment performance.

Table B-1 outlines the specifications of each of the treatments tested and includes the amount and frequency of any added amendments. The mass of soil added was adjusted for moisture content to achieve 1000 g of dry soil. The procedures for determining the flask constants and for loading the flasks are described in the work plan.



Figure B-1. Schematic Diagram of the Biometer Flask Used in the Respirometry Study

| Treatment               | <b>O</b> <sub>2</sub> (%) | Soil Mass <sup>1</sup> (g) | Amendments                      | Amendment<br>Addition | Frequency |
|-------------------------|---------------------------|----------------------------|---------------------------------|-----------------------|-----------|
| 1 - Contaminated Soil   | 21                        | 1160.4                     |                                 |                       |           |
| 2 - Contaminated Soil   | 14                        | 1161.5                     |                                 |                       |           |
| 3 - Contaminated Soil   | 7                         | 1167.2                     |                                 |                       |           |
| 4 - Contaminated Soil   | 2                         | 1160.2                     |                                 |                       |           |
| 5 - Contaminated Soil + | 21                        | 1161.4                     | NH₄NO₃                          | 0.655 g               | Initially |
| INULIEIUS               |                           |                            | $KH_2PO_4$                      | 0.378 g               | Initially |
|                         |                           |                            | Hoagland's <sup>2</sup>         |                       | Initially |
| 6 - Contaminated Soil + | 21                        | 1160.2                     | NH <sub>4</sub> NO <sub>3</sub> | 0.655 g               | Initially |
| $H_2O$ saturated        |                           |                            | KH₂PO₄                          | 0.378 g               | Initially |
| conditions              |                           |                            | Hoagland's                      |                       | Initially |
|                         |                           |                            | DI water                        | 48.8 g                | Initially |
| 7 - Contaminated Soil + | 21                        | 1161.5                     | $\rm NH_4 NO_3$                 | 0.655 g               | Initially |
| Inoculum                |                           |                            | KH <sub>2</sub> PO <sub>4</sub> | 0.378 g               | Initially |
|                         |                           |                            | Hoagland's                      |                       | Initially |
|                         |                           |                            | Inoculum <sup>3</sup>           | 6 ml                  | Weekly    |

Table B-1 **Biotreatability Flask Test Specifications** 

<sup>1</sup>Quantity of soil on a wet basis that equals 1000 g of dry weight soil.

<sup>2</sup>Hoagland's solution added to achieve appropriate concentrations of macronutrients on a per kilogram basis.

<sup>3</sup>Twelve grams of commercial inoculum added initially followed by a 6-gram weekly addition.

The contaminated soil with no amendments under normal atmospheric conditions was treated first. This treatment measured indigenous microbial activity at 21%  $O_2$  with no nutrient addition and was used as a basis for comparison for the other unamended treatments at subatmospheric levels of oxygen.

In the second, third, and fourth treatments, the activity of the indigenous microorganisms at reduced oxygen concentrations (14%, 7%, and 2%, respectively) was evaluated. These treatment conditions were used to evaluate the effect of reduced oxygen levels on microbial respiration. Field measurements at Galena Airport and other hydrocarbon-contaminated sites indicate that oxygen decreases with soil depth to levels as low as 2 percent.

Contaminated soil amended with nutrients at 21% O<sub>2</sub> was the fifth treatment condition. This condition was used to measure respiration associated with biodegradation of soil contaminants by indigenous bacteria that have been given additional macronutrients (nitrogen and phosphorus) and a standard micronutrient solution of trace elements. The levels of nitrogen and phosphorus added were based on the initial concentrations of carbon, nitrogen, and phosphorus. Nutrients were added to attain a C:N:P ratio of approximately 60:2:1.

The sixth treatment condition was the same as the fifth treatment, except that the contaminated soil was saturated with water; this condition could lead to reduced oxygen conditions caused by water-logging. This treatment represented subsurface conditions typical of soils below the water table.

The seventh treatment condition evaluated was similar to Treatment 6, but with the addition of hydrocarbon-degrading microorganisms produced by Solmar Corp. (Orange, CA). The purpose of this treatment evaluation was to determine if any benefit might be gained by bioaugmentation using a commercial microorganism consortium, which is reported to be effective in degrading the hydrocarbons of concern. The Solmar product contains a proprietary mixture of bacteria and microfungi (yeast) formulated to degrade petroleum hydrocarbons. The cultures were attached to a bran substrate that was rehydrated before being added to the flask.

B-7

This resulted in soils that were saturated with water. The amendment was added at the beginning of the study and weekly thereafter, as recommended by the manufacturer.

#### **Respirometry Measurements**

Microbial respiration was monitored by measuring both  $O_2$  consumption and  $CO_2$  evolution.

Oxygen Consumption—Oxygen uptake was measured manometrically for each of the treatments and the barometric control on a daily basis. The barometric control was subtracted from each of the treatment readings and total oxygen consumption was calculated as described in the work plan. Data were plotted as cumulative mmol of  $O_2$  consumed per kg of dry soil as a function of incubation time.

**Carbon Dioxide Evolution**—Carbon dioxide evolution was measured for each treatment and for the barometric control (which consisted of sterile ground glass instead of soil) by absorbing respired  $CO_2$  in a standard potassium hydroxide (KOH) solution, precipitating the absorbed  $CO_2$  with BaCl<sub>2</sub>, and titrating the remaining KOH solution with HCl.

The KOH solution was held in the inner well of the air-tight biometer flask.  $CO_2$  is absorbed by the following reaction:

$$CO_{2(g)} + KOH \rightarrow K_2CO_3 + H_2O.$$

The amount of  $CO_2$  evolved was determined indirectly by measuring the unreacted KOH in the respirometer well. The absorbed  $CO_2$ , present as  $CO_3^{2^2}$ , was removed by precipitation as  $BaCO_3$ ; the unreacted KOH was titrated using a standard solution of HCl with phenolphthalein as an endpoint indicator. The amount of KOH used to absorb evolved  $CO_2$  was then determined by the difference of the initial and unreacted KOH in the inner well. The amount of  $CO_2$  evolved was then calculated using the molar relationship between  $CO_2$  absorbed by the KOH. The levels of

.

carbon dioxide evolved from each of the treatment flasks (after subtracting the  $CO_2$  in the barometric control) were plotted as cumulative mmol of  $CO_2$  evolved per kg of dry soil as a function of incubation time.

j

# **APPENDIX B.2**

# Analytical Results for the Phase I Bench-Scale Test

Table B-2Bacterial Enumeration Pre- and Postlaboratory Treatability Study

| Sample                                                        | Heterotrophic<br>Bacteria (CFU/gm) | Hydrocarbon<br>Utilizers (CFU/gm) |
|---------------------------------------------------------------|------------------------------------|-----------------------------------|
| Composite (pre-treatment)                                     | 5.3 x 10 <sup>7</sup>              | 3.8 x 10 <sup>3</sup>             |
| G-unamended soil, 21% O <sub>2</sub>                          | 9.6 x 10 <sup>7</sup>              | 5.6 x 10 <sup>5</sup>             |
| H-unamended soil, $14\% O_2$                                  | 9.4 x 10 <sup>7</sup>              | 6.9 x 10 <sup>3</sup>             |
| I-unamended soil, 7% O <sub>2</sub>                           | 1.2 x 10 <sup>8</sup>              | 1.1 x 10 <sup>3</sup>             |
| J-unamended soil, $2\% O_2$                                   | 1.6 x 10 <sup>8</sup>              | 3.8 x 10 <sup>3</sup>             |
| K-contaminated soil + nutrients $21\% O_2$                    | 1.7 x 10 <sup>6</sup>              | 5.3 x 10 <sup>5</sup>             |
| L-contaminated soil + nutrients, water saturation, $21\% O_2$ | 1.5 x 10 <sup>8</sup>              | 1.5 x 10 <sup>6</sup>             |
| M-contaminated soil + nutrients + Inoculum, 21%               | 4.0 x 10 <sup>7</sup>              | >107                              |



| Analyte          | Sample #1 | Sample #1 Dup | Sample #2 |
|------------------|-----------|---------------|-----------|
| Moisture, %      | 11.6      | 11.6          | 12.7      |
| рН               | 8.3       | 8.3           | 8.1       |
| TOC, %           | 0.5       | 0.6           | 0.7       |
| Sand, %          | 89.8      | 89.7          | 83.1      |
| Silt, %          | 6.5       | 6.9           | 14.7      |
| Clay, %          | 3.7       | 3.5           | 2.3       |
| TPH-GC, ppm      | 978       | 1,015         | 1,172     |
| Benzene, ppm     | 6.98      | 6.15          | 9.73      |
| Toluene, ppm     | 42.60     | 45.16         | 51.96     |
| Ethylbenzene,ppm | 16.93     | 17.50         | 17.52     |
| Xylenes, ppm     | 61.36     | 60.34         | 62.40     |

Table B-3Initial Soil Characterization Results

| Sample                                                          | TPH<br>ppm | Benzene<br>ppm | Toluene<br>ppm | Ethylbenzene<br>ppm | Xylenes<br>ppm |
|-----------------------------------------------------------------|------------|----------------|----------------|---------------------|----------------|
| G-unamended soil, 21% O <sub>2</sub><br>duplicate               | 279.9      | <0.50          | 1.32           | <0.50               | 1.17           |
| G-unamended soil, 21% O <sub>2</sub>                            |            | <0.50          | 1.80           | <0.50               | 2.42           |
| H-unamended soil, 14% O <sub>2</sub>                            | 430.6      | 1.52           | 2.12           | <0.50               | 2.34           |
| I-unamended soil, 7% O <sub>2</sub>                             | 456.2      | 1.45           | 2.03           | <0.50               | 2.93           |
| J-unamended soil, 2% O <sub>2</sub>                             | 398.7      | <0.50          | 2.56           | <0.50               | 2.49           |
| J-unamended soil, 2% O <sub>2</sub><br>duplicate                | 376.8      |                |                |                     |                |
| K-contaminated soil<br>+ nutrients 21% O <sub>2</sub>           | 555.5      | <0.50          | 14.83          | 4.15                | 24.54          |
| L-contaminated soil + nutrients,<br>water saturation, 21% $O_2$ | 546.5      | <0.50          | 7.33           | 1.89                | 12.18          |
| M-contaminated soil + nutrients<br>+ Inoculum, 21%              | 346.9      | <0.50          | 6.51           | 1.81                | 11.42          |

Table B-4BTEX Results Under Varying Test Conditions



# **APPENDIX B.3**

# Calculations for Degradation Rates for the Phase I Bench-Scale Test

#### **Biodegradation Rate Calculation**

Degradation rates of hydrocarbon contaminants for the various bench-scale treatments were determined by two methods: 1) calculation of the TPH removed with time, and 2) estimation of hydrocarbon degradation using a stoichiometric relationship.

In the first method, the levels of TPH determined by chemical analysis of the soil before and after treatment were used to calculate the TPH degration rate ( $K_{CB}$ ) over the incubation period using the following equation:

$$K_{CB} = (TPH_i - TPH_f)/t, \qquad (1)$$

where:

TPH<sub>i</sub> = initial TPH concentration before treatment (1055 mg/kg); TPH<sub>f</sub> = final TPH concentration after treatment; and t = incubation time (97 days).

The second method involved estimating the amount of hydrocarbon degraded as determined by the stoichiometric ratio of  $O_2$  consumption and degradation of a representative hydrocarbon. Although a similar estimation is possible using the ratio of  $CO_2$  produced and hydrocarbon degraded, this approach was not used because of the apparent incomplete degradation of the parent hydrocarbon contaminants as evidenced by the low ratio of  $CO_2$  evolved to  $O_2$  consumed. Heptane was selected as the representative hydrocarbon on the basis of chemical analysis, so the equation relating  $O_2$  consumption to hydrocarbon degradation is as follows:

$$C_7H_{16} + 11O_2 = 7 CO_2 + 8 H_2O.$$
 (2)

On the basis of the oxygen uptake rates and the stoichiometric relationship of  $O_2$  consumed and hydrocarbon degraded from equation 2, the biodegradation rate ( $K_{EB}$ ) was estimated as follows:

$$K_{EB} = K_0 M/R, \qquad (3)$$

where:  $K_0 = oxygen$  uptake rate (mmol/kg/day);

R = molar ratio of  $O_2$  consumed to hydrocarbon oxidized (11/1); and

M = molecular weight of heptane (100.2 mg/mmol).

 $\mathbf{R} \mathbf{A} \mathbf{D} \mathbf{A}$ CALCULATION SHEET CALC. NO. han Schuch DATE 3125/94 CHECKED Jim Kellegedate 5-10-94 JOB NO SUBJECT Example Calculations for Bench-5 \_\_\_\_SHEETS SHEET\_\_\_ Scale Stud. Calculation of % TPH Degraded and TPH Regradation Rokes for Various Bench Scale Treatments using TPH Analytical Rota Treatment # 1: 21% 02 (no amendments) Initial TPH = 1055 m/kg Final TPH = 279.9 mg/kg Treatment Time = 97 days %TPH Degradual = 1055 mg/kg - 279.9 mg/kg 1055 mg/kg -x /00≈ = 73.46% TPH Degradation Rate = 1055 malka - 279.9 mg/kg 97 days = 8.0 mg/kg/day (see attached spreadshed for calculations for remaining treatments)

Calculation of %TPH Degraded and Degradation Rates for Various Bench Scale Treatments using TPH Analytical Data Pg 2.F5

%TPH Degraded = ((Final TPH - Initial TPH)/Initial TPH)\*100% \*TPH Degradation Rate = (Final TPH - Initial TPH)/time \*Degradation rates calculated assuming zero-order kinetics which were displayed by the respirometry data

| Treatment             | Final TPH<br>(mg/Kg) | % TPH<br>Degraded | TPH<br>Degradation<br>Rate<br>(mg/Kg/day) |
|-----------------------|----------------------|-------------------|-------------------------------------------|
| #1 - 218 02           |                      |                   |                                           |
| $\pi 1 = 215 02$      | 279.9                | 13                | 8.0                                       |
| #2 - 148 02           | 430.6                | 59                | 6.4                                       |
| #3 - 78 02            | 456.2                | 57                | 6.2                                       |
| #4 - 2% 02            | 398.7                | 62                | 6.8                                       |
| #5 - 21% O2 + N       | 555.5                | 47                | . 5.1                                     |
| #6 - Sat 21% O2 + N   | 546.5                | 48                | 5.2                                       |
| #7 - Sat 21% 02 + N,I | 346.9                | 67                | 7.3                                       |
| Initial TPH (mg/Kg)   |                      | 1055              |                                           |
| Time (days)           |                      | 97                |                                           |

Time (days)

# APPENDIX C

Phase II Pilot-Scale SVE/Sparging Test

# **Table of Contents**

|               | Page                                                   |
|---------------|--------------------------------------------------------|
| Appendix C.1. | Well Construction Diagrams                             |
| Appendix C.2. | Sampling and Analytical Methods and Analytical Results |
| Appendix C.3. | SVE Flow Rate Calculations                             |
| Appendix C.4. | Air Permeability Calculations and Modeling             |
| Appendix C.5. | Helium Tracer Test                                     |
| Appendix C.6. | In Situ Respiration Procedures and Calculations        |
| References    | C-84                                                   |

# **APPENDIX C.1**

Well Construction Diagrams


Figure C-1. Well Diagrams for the Vapor Extraction and Air Sparging Wells



Figure C-2. Well Diagrams for the Steam Injection and Groundwater Monitor Well

C-4





### **APPENDIX C.2**

Sampling and Analytical Methods and Analytical Results

# Table C-1Analytical Procedures and Estimated Detection Limitsfor Soil, Water, and Air Analyses

|                                                                 |                                             | De                                                                   | tection Limit                             |                                                                        |
|-----------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|
| Parameter                                                       | Method                                      | Soil                                                                 | Air                                       | Groundwater                                                            |
| Percent Moisture                                                | ASTM <sup>a</sup> D2216                     | DNA                                                                  | NA                                        | NA                                                                     |
| pH                                                              | EPA SW-846 <sup>b</sup> 9045                | DNA                                                                  | NA                                        | DNA                                                                    |
| Electrical Conductivity                                         | EPA 600/4-79° 120.1                         | .01 mmhos/cm                                                         | ΨN                                        | 0.01 mmhos/<br>cm                                                      |
| Nitrate-Nitrogen                                                | Am. Soc. Agro. <sup>d</sup> 33-8.3          | 15 mg/kg                                                             | NA                                        | 1 mg/L                                                                 |
| Ammonia-Nitrogen                                                | Am. Soc. Agro. 33-7.3                       | 5 mg/kg                                                              | NA                                        | 1 mg/L                                                                 |
| Phosphate-Phosphorus                                            | TAES STP IV and V <sup>€</sup>              | 5 mg/kg                                                              | NA                                        | 1 mg/L                                                                 |
| Total Petroleum Hydrocarbons                                    | EPA SW-846 Modified<br>8015                 | 1 mg/kg (gasoline range)<br>10 mg/kg (diesel range and hea-<br>vier) | NA                                        | 0.1 mg/L (gasoline<br>range)<br>1.0 mg/L (diesel range<br>and heavier) |
| Total Nonmethane Hydrocarbons and<br>Volatile Organic Compounds | EPA 600/4-87 <sup>f</sup> Modified TO<br>14 | NA                                                                   | 0.3 ppbV<br>(total)<br>Variable<br>(VOCs) | NA                                                                     |
| Total Nonmethane Hydrocarbons                                   | EPA 600/4-87 Modified TO<br>12              | NA                                                                   | 0.3 ppbV                                  | NA                                                                     |
| Total Organic Carbon                                            | Am. Soc. Agro. Modified<br>29-2.2.4         | 0.1%                                                                 | WN                                        | NA                                                                     |
| Heterotrophic Plate Count                                       | Am. Soc. Agro. 37                           | 300 cells/g                                                          | NA                                        | 300 cells/mL                                                           |
| Hydrocarbon Utilizing Bacterial Count                           | Am. Soc. Agro. 37                           | 300 cells/g                                                          | NA                                        | 300 cells/mL                                                           |
| Carbon dioxide (field measurement)                              | GasTech <sup>g</sup> Manual                 | NA                                                                   | 0%0                                       | NA                                                                     |

| Ŀ   | ued) |
|-----|------|
| ble | ntin |
| Ta  | Co   |

|                                                  |                                                                | De      | tection Limit |              |
|--------------------------------------------------|----------------------------------------------------------------|---------|---------------|--------------|
| Parameter                                        | Method                                                         | Soil    | Air           | Groundwater  |
| Oxygen (field measurement)                       | GasTech Manual (air)/YSI<br>Manual <sup>11</sup> (groundwater) | NA      | %0            | 0% or 0 mg/L |
| Temperature (field measurement)                  | DIGI-SENSE® Manual <sup>1</sup>                                | -190°C  | NA            | NA           |
| Volatile Organic Compounds                       | Thermo PID Manual <sup>j</sup>                                 | NA      | 0.2 ppm       | NA           |
| (field measurements)                             | Heath FID Manual <sup>k</sup>                                  | ΨN      | 0 1 mm        | NA           |
| Total Petroleum Hydrocarbons (field measurement) | GAC Portable IR <sup>1</sup>                                   | 1 mg/kg | NA            | 1 mg/L       |
|                                                  |                                                                |         |               |              |

Detection limit not applicable. lł DNA

Not analyzed. 11 Ν

<sup>a</sup> American Society for Testing and Materials. Annual Book of ASTM Standards. November 1987.

<sup>b</sup> U.S. Environmental Protection Agency. Test Methods for Evaluating Solid Waste. Third Edition. SW-846, 1986. <sup>c</sup> U.S. Environmental Protection Agency. Methods for the Chemical Analysis of Water and Wastes. EPA-600/4-79-020. March 1983.

<sup>d</sup> American Society of Agronomy, Inc. Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties. 2nd Edition, 1982. <sup>e</sup> Texas Agriculture Extension Service. Soil Testing Procedures.

<sup>c</sup> U.S. Environmental Protection Agency, Compendium of Methods for the Determination of Trace Organic Compounds, in Ambient Air. EPA-600/4-87/006, May 1988. Gas Tech, Inc. Instruction Manual—GasTechtor Carbon Dioxide/Oxygen Indicators Model 32520X.

YSI Incorporated. YSI Model 50B Dissolved Oxygen Meter Instructions.

Cole-Palmer Instrument Co. Model No. 8528-101(JTEK) Manual A-1299-258, edition 1188.

Heath Tech. Instruction Manual for Heath Detcto-Pak® III, Heath Consultants Incorporated. Thermo Environmental Instruments Inc. OVM/Datalogger Model 580B.

General Analysis Corporation. "Field Procedure using GAC TPH Analyzer."

| Event      | Sampling<br>(Days) | Matrix | Field<br>Analyses | Field<br>Samples <sup>b</sup> | Field<br>Duplicates <sup>b#</sup> | PA<br>Samples | Analytes                                                                                                                    |
|------------|--------------------|--------|-------------------|-------------------------------|-----------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------|
| G0         | 0                  | Gas    | 18                | 18                            | 2                                 | 1             | VOCs*, O <sub>2</sub> *, CO <sub>2</sub> , TNMHC, BTEX                                                                      |
| G1         | 5                  | Gas    | 18                | 2                             | 2                                 | 0             | VOCs*, O,*, CO,, TNMHC, BTEX                                                                                                |
| G2         | 15                 | Gas    | 36                | 4                             | 1                                 | 1             | VOCs*, O <sub>2</sub> *, CO <sub>2</sub> , TNMHC, BTEX                                                                      |
| G3         | 30                 | Gas    | 36                | 6                             | 0                                 | 0             | VOCs*, O <sub>2</sub> *, CO <sub>2</sub> , TNMHC, BTEX                                                                      |
| G4         | 60                 | Gas    | 33                | 29                            | 4                                 | 0             | VOCs*, O <sub>2</sub> ,*CO <sub>2</sub> , TNMHC, BTEX                                                                       |
| G5         | 90                 | Gas    | 26                | 4                             | 2                                 | 0             | VOCs*, O <sub>2</sub> ,*CO <sub>2</sub> , TNMHC, BTEX                                                                       |
| G6         | 120                | Gas    | 38                | 3                             | 1                                 | 1             | VOCs*, O2,*CO2, TNMHC, BTEX                                                                                                 |
| G7         | 150                | Gas    | 27                | 5                             | 0                                 | 0             | VOCs*, O <sub>2</sub> *,CO <sub>2</sub> , TNMHC, BTEX                                                                       |
| G8         | 180                | Gas    | 31                | 28                            | 3                                 | 1             | VOCs*, O <sub>2</sub> *,CO <sub>2</sub> , TNMHC, BTEX                                                                       |
| S0         | 0                  | Soil   | 12                | 24                            | 3                                 | 0             | TPH, DRO, GRO, BTEX, TRPH*,<br>Moisture, EC, NO <sub>3</sub> , NH <sub>4</sub> , PO <sub>4</sub> , TOC,<br>Microbial counts |
| S1         | 30                 | Soil   | 0                 | 12                            | 0                                 | 0             | TDH                                                                                                                         |
| \$2        | 60                 | Soil   | 0                 | 12                            | 1                                 | 0             | TPH DRO GRO BTEX                                                                                                            |
| 52         | 00                 | 501    | v                 | 12                            | 1                                 | Ŭ             | Moisture Microbial counts                                                                                                   |
| <b>S</b> 3 | 90                 | Soil   | 0                 | 12                            | 0                                 | 0             | TPH                                                                                                                         |
| S4         | 120                | Soil   | 0                 | 12                            | 0                                 | 0             | TPH, DRO, GRO, BTEX, Moisture,                                                                                              |
|            |                    |        |                   |                               |                                   |               | Microbial counts                                                                                                            |
| S5         | 150                | Soil   | 0                 | 12                            | 1                                 | 0             | TPH                                                                                                                         |
| S6         | 180                | Soil   | 0                 | 12                            | 1                                 | 0             | TPH, DRO, GRO, BTEX, Moisture, EC,                                                                                          |
|            |                    |        |                   |                               |                                   |               | NO <sub>3</sub> , NH <sub>4</sub> , PO <sub>4</sub> , TKN, pH, TOC,<br>Microbial counts                                     |
| W0         | 0                  | GW     | 8                 | 8                             | 1                                 | 0             | DO*, TPH, DRO, GRO, BTEX, TRPH*,<br>Microbial counts NO, NH, PO,                                                            |
| W1         | 30                 | GW     | 8                 | 0                             | 0                                 | 0             | DO* TRPH*                                                                                                                   |
| W2         | 60                 | GW     | 8                 | ŏ                             | ŏ                                 | õ             | DO*. TRPH*                                                                                                                  |
| W3         | 90                 | GW     | 8                 | Ō                             | Ō                                 | Ō             | DO*, TRPH*                                                                                                                  |
| W4         | 120                | GW     | 8                 | 0                             | 0                                 | 0             | DO*, TRPH*, Microbial counts                                                                                                |
| W5         | 150                | GW     | 8                 | 0                             | 0                                 | 0             | DO*, TRPH                                                                                                                   |
| W6         | 180                | GW     | 8                 | 0                             | 1                                 | 0             | DO*, TPH, DRO, GRO, BTEX,                                                                                                   |
|            |                    |        |                   |                               |                                   |               | Microbial counts, NO <sub>3</sub> , NH <sub>4</sub> , PO <sub>4</sub>                                                       |

Table C-1AMonitoring Schedule for the Phase II Pilot-Scale Test

Notes: \*Field measurement.  ${}^{*}G = Gas$  sampling event, S = soil sampling event, W = groundwater sampling event.  ${}^{b}Sample$  collected for off-site laboratory analysis.  ${}^{c}Field$  duplicates are replicate samples for quality assurance analysis. BTEX = Benzee, toluene, ethylbenzene, xylenes. DRO = Diesel-range organics. EC = Electrical conductivity. GRO = Gasoline-range organics. GW = Groundwater. PA = Performance audit (calibration goals used for quality assurance analysis). TKN = Total Kjeldahl nitrogen. TNMHC = Total non-methane hydrocarbons. TPH = Total petroleum hydrocarbons. TOC = Total organic carbon. TRPH = Total recoverable petroleum hydrocarbons. VOCs = Volatile organic compounds.





### SAMPLING PROCEDURES

### **Gas Sampling**

- Calibrate the TraceTechtor hydrocarbon analyzer with 4400 ppm hexane that came in the calibration kit from GasTech. Record the calibration in the treatability study (TS) logbook #3. The instrument was last calibrated in the "full methane response" mode. Either mode is fine but be consistent. If it is calibrated in the full methane response mode, then the readings should be taken in the full methane response mode. The calibration procedures are discussed in the TraceTechtor manual, which is in the gray file box in the office. Also, there should be some literature with the calibration kit from GasTech.
- Calibrate the O<sub>2</sub>/CO<sub>2</sub> analyzer using ambient air, 99.99% nitrogen, and 5% CO<sub>2</sub>. Record the calibration in the TS logbook #3. The instruction manual for this analyzer should also be in the gray file box. Some of the calibration screws are internal; they are accessible by unscrewing the bolt in the back of the analyzer and lifting the top gently from the bottom. There is a toggle switch on the instrument that sets the analyte, O<sub>2</sub> or CO<sub>2</sub>. The instrument should be set to zero for both O<sub>2</sub> and CO<sub>2</sub> with the nitrogen (Scotty III cylinder). Then, calibrate the instrument to 5% CO<sub>2</sub> with the other Scotty gas cylinder. There is only one regulator for the Scotty cylinders. The instrument should be calibrated to 21% O<sub>2</sub> using ambient air.
- Check the accuracy of the two short thermocouples (labeled east and west) and the downhole thermocouple using an ice bath. Record the readings in the TS logbook #3.
- Take total hydrocarbon (THC) with the TraceTechtor, O<sub>2</sub>, and CO<sub>2</sub> readings for the soil vapor extraction (SVE) exhaust gas lines on the east and west SVE units and record the imnformation on the Field Soil Gas Data and Sample Log Form. Also, record the temperature of the SVE exhaust. The west SVE is sample location E-1, and the east SVE is E-2. The west exhaust gas should be >10,000 ppm. There is a dilution fitting that connects to the TraceTechtor between the filter and the instrument. This attachmnet dilutes the measured concentrations by 50%, so double the reading on the instrument to determine the actual concentration in the gas. The first dilution fitting by measuring the concentration in the exhaust on the east side with and without the fitting.
- Take a canister sample from each SVE exhaust. Sample IDs should start with 05-G4-01. Take duplicate canister samples from the SVE exhausts, as well. Clearly mark on both chain of custodies (COCs) that these samples are duplicates of each other. Also, clearly state "Run nested duplicate" on the COC for these four samples.

- To prepare the canisters for sampling, make sure both valves are closed before removing the plugs. Then connect a filter sent with the canister to one port. Connect the small 30 in. Hg vacuum gauge to the other port. Use the piece of stainless steel 1/4 in. tubing with one swagelok end and one tubing end (found in the east enclosure) to connect the vapor probe to the canister. There is a memo on VOC sampling in the gray file box. Be diligent about filling out the paperwork--both the canister tags and the COCs.
  - To take a canister sample, open the valve to the vacuum gauge. Record the initial vacuum on the canister tag and in the logbook. If the initial vacuum is less than 25 in. Hg, do not use the canister. Mark the COC and the canister tag with "Insufficient vacuum; Do not analyze." Very slowly open the other valve to begin sampling. Caution: only the slightest turn of the valve is required to achieve the desired flow rate. The sample should be taken over several minutes (3 to 5). The sample rate can be adjusted with the valve. Close the sample valve when the vacuum gets around 5 in. Hg and record the final vacuum on the canister tag after the sample is taken. Also, record the elapsed time for sample collection on the log form. Close the valve with the vacuum gauge and remove the gauge. The valves should be closed hand tight. Take the filter off and replace the plugs on the two valves. The plugs help prevent the loss of the sample if the valves were to come open during transport.
  - After the SVE exhaust lines have been sampled, you are ready to begin sampling the vapor wells. Turn off both SVE units. All of the shallow and deep vapor wells should be sampled except for V-17S and V-11S. Wells V-14S, V-12S, and V-10S may be filled with water. During the last sampling event, silty groundwater was pulled up through the tubing while trying to sample these points. If the groundwater table is not below 129 to 130 ft. MSL, then the deep vapor wells are submerged and cannot be sampled. The elevation at the site is around 144 to 149 ft. MSL.
    - The vapor probes need to be purged before sampling. Use the peristaltic pump (which Brian brought) to purge the vapor probes for 2 minutes prior to taking measurements. The sample flow rate should be around 500 mL/min. This corresponded to a 5 to 6.5 setting on the controller during the last sampling event. This pump is different, but the head is the same so this setting may still be right. To check the flow, connect the bubble meter to the outlet of the pump. Be very careful with the bubble meter because it is not ours and is expensive to replace. Turn on the meter (it takes a minute to turn on) and squeeze the bubble to get a bubble to travel up the glass cylinder. The meter will read the flow in L/min. After you have the flow rate set, remove the flow meter form the system and purge the vapor line for approximately 2 minutes. Remember to clamp the vapor probe tubing whenever it is not in use.
    - Using the peristaltic pump to deliver gas to the instruments, take measurements with the TraceTechtor and O  $_2$ /CO  $_2$  analyzer and record on the data form. After these readings are recorded, take a canister sample as described above.



- Take temperature measurements with the digital thermometer for the vapor wells with deep thermocouples. For at least three shallow probes in each test cell, insert the shallow thermocouple into the shallow vapor probe tube and take temperature readings. There is a separate thermocouple for each test cell (east and west) to prevent cross-contamination.
- Take duplicate canister samples from two separate vapor wells. Choose samples from probes which have THC concentrations in the 100 to 1000 and 1000 to 10,000 ppm range. Mark these duplicate samples and the original samples so that the lab realizes they are duplicates of each other.
- Sample from the hexane standard if there is plenty of gas remaining for a performance standard. Mark the samples as "PA."

### Water Sampling

- Calibrate the Hydrolab using the pH buffers, electrical conductivity standards, redox potential standards, and the barometric pressure. Call base weather (x3271) to get the daily reading for uncorrected barometric pressure in mm Hg. Record the calibration in the TS logbook #3. The manual has details on calibrating the Hydrolab. Also, the previous calibrations are recorded in the lab calibration logbook.
- Prior to sampling the groundwater wells, get water level measurements with the oilwater interface meter. This meter will also measure the amount of free product in each well. Historically, wells W-1, W-4, W-3, and W-8 have had free product in them.
- Calibrate the downhole dissolved oxygen (DO) meter according to procedures outlined in the instruction manual. Take DO and temperature (using the DO meter) measurements every 5 ft. in the wells that do not contain free product (oil coats the membrane and is not good for the probe). For wells that contain free product, take downhole temperature measurements with the downhole thermocouple and the digital thermometer at five foot intervals. DO readings for these wells will be taken using the Hydrolab flow cell. Decontaminate the probe and thermocouple between wells.
- Purge each well a maximum of 3 times the wetted volume [8-11 gal. for all wells except W-1 (50 gal.)]. While purging, take measurements with the Hydrolab every 2-3 gal. Once the DO and temperature measurements have stabilized, purging can be discontinued (typically 4 to 6 gal.). Previously, we have used the Waterra tubing and foot valves to pump groundwater from the well through the Hydrolab. You may have to get additional drums from the 11th CEOS for the purge water. For W-1 (the 6 in. monitoring well), you can use the utility pump to help purge the wells. There are hose fittings on the inlet and outlet of the pump. Every 10 gal., you will probably have to disconnect the pump and connect the Hydrolab to the Waterra tubing to get readings. There are some hose fittings in the box with Brian that may allow you to

sample through the Hydrolab and then through the pump so that you won't have to disconnect the pump each time you sample.

• After the well has been purged, place the foot valve 5 ft. below the water table and collect approximately 200-250 mL in a 500-mL clear glass bottle. This sample will be analyzed with the TPH-IR (total petroleum hydrocarbons) field analyzer. Place the samples in the refrigerator until you are ready to analyze them.

### Water Analyses

- The TPH analyzer is fairly easy to use for water samples. Turn on the TPH analyzer in the morning. It should warm up at least a couple of hours before using. The work should be performed near the hood as much as possible to prevent exposure to organic vapors. Also, do not place water in the cuvettes or volumetric flasks. Clean them with freon.
- Prepare the cuvettes for the standards and a zero by rinsing them three times with Freon 113. Dispense approximately 5 mL of freon into the cartridge. Get one of the filters from the Ziploc® bag and place it on the cartridge first, then put the filter with the cartridge on last. Pressurize the cartridge with the syringe. Discard the first mL into a freon waste jar. Any freon waste should ultimately be discarded in the solvent can by the hood. Fill the cuvette with the filtered freon until the cuvette is at least 3/4 full. This becomes your zero blank. Set the instrument with the blank to zero. Record the dial readings before you change them. Then record the dial readings after the instrument is rezeroed. Give the instrument plenty of time before you adjust the zero. I usually gave it 20-25 minutes.
- The standards are already prepared (in freon). There are two concentrations of standards in the refrigerator in VOA vials. Open one vial of each concentration and pipette a few mLs into the remaining cuvettes. The cuvette caps are marked with numbers, to you can record what each cuvette contains. Check the measurement by the analyzer using the standards. The readings should be within 25 percent. There is no adjustment for the span if these are out of specification. If they are really off, I would reset to zero and make sure you give the instrument plenty of time to reach a steady value.
- Since you need to check the calibration every 4-5 samples and at the end of the day, you will need to keep the zero blank cuvette and one of the standards (the higher concentration) during the duration of the analyses. I would get one of the small coolers and fill it with ice and place the cuvettes in there when you are not using them to prevent loss of volatile components.
- Measure the volume of sample collected in a graduated cylinder and return to the sample bottle. Add 20 mL (approximately 1:10 dilution) of Freon 113 from the dispenser to the sample bottle. Shake vigorously for 5 minutes. Let the sample settle

for 1-2 minutes. It is expedient to wash the graduated cylinder while the sample is settling. After washing, rinse with DI water. The water at the hangar is nasty! After the sample has settled, prepare the cartridge for a sample by placing the water filter (from the Ziploc® bag) and then the second filter on the cartridge. Using the 10-mL pipette, transfer approximately 8-9 mL of the freon layer (bottom of the sample bottle) to the cartridge. Rinse the cuvette with freon to prepare it for the sample. I usually placed it in the hood to allow the residual freon to evaporate from the cuvette. Pressurize the cartridge and discard the first 1-2 mL of sample into the waste jar. Then transfer the filtered sample to the cuvette and record the measurement after the reading stabilizes. The concentration in mg/L is calculated from the following equation:

Freon Volume (mL) \* Reading (mg/L) / Sample Volume (mL)

If the reading is greater than 500 on the meter, then a dilution has to be made. Transfer 1 mL from the cuvette to a 10-mL freon-rinsed volumetric flask using a 1mL pipette. Add filtered (using both filters) freon to the mark on the volumetric flask. The actual concentration is 10 times the calculated concentration from above with a 10:1 dilution. Sometimes a 100:1 dilution is required. This requires transferring 1 mL of the 10:1 diluted sample and performing a 10:1 dilution on it. This procedure is also discussed in the GAC manual. Dispose of any solid waste (filters, cartridges, gloves) into a Ziploc bag and transfer these and the empty sample bottles to one of the solid waste drums at the site after you are done with the analyses. Transfer the remaining freon layer in the sample bottle to the freon waste jar. The groundwater can be returned to the purge water drums.

### Soil Sampling

- Sample both boreholes per location (12 locations total) and one duplicate using the Art's system and the Bosch hammer. One set of samples plus the duplicate will go to SASI, and the other set should go to Radian at Mopac. The sleeves and end caps should be in the hangar. The sample labels have been preprinted (Brian has them).
- After the soil samples have been collected, add bentonite pellets and then water to the bore holes.

### Air Permeability Test

- 1, Shut off both SVE units.
- 2. Wait one hour.
- 3. Obtain the Air Permeability Test Log form.
- 4. Find the 2 in., 5 in., and 10 in. H  $_2$ O vacuum gauges.
- 5. Restart the west SVE.
- 6. Immediately start taking vacuum readings at vapor points V-1, V-2, V-6, V-7, V-8, and V-10.
- 7. Take readings as often as possible for the first 30 minutes and every 15 minutes afterwards until 2 hours has elapsed. Then take readings once per hour until all readings have stabilized (it is possible that the readings will be stable after two hours). Also, periodically take readings from V-20 and V-14 on the east side.
- 8. Shut off the west SVE and wait one hour.
- 9. Start the east SVE and proceed as above. Monitor points V-7 on the west side in addition to V-12, V-13, V-14, V-15, V-16, and V-20.
- 10. Restart the west SVE when the test is finished.

Table C-2Analytical Results for the East Unit Soils

| Location | Analyte                           | Units | 80    | IS   | <b>S2</b> | S3    | <b>S4</b> | <b>S5</b> | S6          |
|----------|-----------------------------------|-------|-------|------|-----------|-------|-----------|-----------|-------------|
| B-7      | TPH-GC                            | bpm   | 39.44 | 6.06 | 754.6     | -<br> | <1        | <1        | -<br>-<br>- |
| B-7      | DRO                               | udd   | 18.92 |      | 445       | 1     | ~1        |           | , r         |
| B-7      | GRO                               | mqq   | 4.7   |      | 61.89     |       | 22.9      |           | <           |
| B-7      | Total BTEX                        | bpm   | 0     |      | 2.57      |       | <0.5      |           | <0.5        |
| B-7      | Temperature                       | ů     |       |      | 3.6       |       |           | 3.6       | 2.6         |
| B-7      | NO3-N                             | mqq   | .∼    |      |           |       |           |           | 1           |
| B-7      | NH4-N                             | mqq   | 1.3   |      |           |       |           |           | <1          |
| B-7      | P04-P                             | ppm   | 30    |      |           |       |           |           | 13          |
| B-7      | Heterotrophic Bacteria            | CFU/g |       |      | 3.0E+06   |       | 8.5E+06   |           | 3.0E+07     |
| B-7      | Hydrocarbon Utilizing<br>Bacteria | CFU/g |       |      | <1.0E+02  |       | 7.6E+05   |           | 5.1E+03     |
| B-7      | TOC                               | %     | 0.02  |      |           |       |           |           | 0.6         |
| B-7      | рН                                | рН    |       |      |           |       |           |           | 8.3         |
| B-7      | TKN                               | mqq   |       |      |           |       |           |           | 280         |
| B-7      | TRPH-IR                           | ndq   | 0     |      |           |       |           |           |             |
| B-7 FD   | TPH-GC                            | mqq   | 47.27 |      |           |       |           |           |             |
| B-7 FD   | DRO                               | udd   | 21.95 |      |           |       |           |           |             |
| B-7 FD   | GRO                               | mqq   | 44.06 |      |           |       |           |           |             |
| B-7 FD   | Total BTEX                        | bpm   | 4.39  |      |           |       |           |           |             |
| B-7 LD   | NO3-N                             | bpm   |       |      |           |       |           |           |             |
| B-7 LD   | NH4-N                             | mqq   |       |      |           |       |           |           | <           |
| B-7 LD   | P04-P                             | mdd   |       |      |           |       |           |           | 10 0        |

| C-2  | ned  |
|------|------|
| able | ntin |
| Ë    | Ŭ    |

| Location | Analyte                           | Units | SO      | SI   | <b>S2</b> | <b>S</b> 3 | <b>S4</b> | SS | S6        |
|----------|-----------------------------------|-------|---------|------|-----------|------------|-----------|----|-----------|
| B-7 FD   | Heterotrophic Bacteria            | CFU/g | 2.2E+07 |      |           |            |           |    |           |
| B-7 FD   | Hydrocarbon Utilizing<br>Bacteria | CFU/g | 1.1E+05 |      |           |            | •         |    |           |
| B-7 LD   | TOC                               | %     |         |      |           |            |           |    | 0.5       |
| B-7 LD   | pH                                | рН    |         |      |           |            |           |    | 8.3       |
| B-7 LD   | TKN                               | mqq   |         |      |           |            |           |    | 315       |
| B-8      | TPH-GC                            | mqq   | 19.73   | 5.82 | <1        | 2.03       | <1        | <1 | <1        |
| B-8      | DRO                               | mqq   | 9.2     |      | <1        |            | <1        |    | <1        |
| B-8      | GRO                               | mqq   | 29.53   |      | 4.61      |            | <1        |    | <1        |
| B-8      | Total BTEX                        | bpm   | 2.65    |      | <0.5      |            | <0.5      |    | < 0.5     |
| B-8      | Temperature                       | C     |         |      | 6.7       |            |           | 18 | 3.9       |
| B-8      | NO3-N                             | ppm   | <1      |      |           |            |           |    | 5.5       |
| B-8      | NH4-N                             | mqq   | 2.7     |      |           |            |           |    | 4.0       |
| B-8      | PO4-P                             | bpm   | 9.3     |      |           |            |           |    | 13.7      |
| B-8      | Heterotrophic Bacteria            | CFU/g |         |      |           |            | 7.3E+06   |    | 1.4E + 07 |
| B-8      | Hydrocarbon Utilizing<br>Bacteria | CFU/g |         |      | 5.0E+03   |            | 3.8E+05   |    | 4.7E+05   |
| B-8      | TOC                               | %     | 0.29    |      |           |            |           |    | 0.5       |
| B-8      | рН                                | рН    |         |      |           |            |           |    | 9.4       |
| B-8      | TKN                               | шdd   |         |      |           |            |           |    | 246       |
| B-8      | TRPH-IR                           | mqq   | 0       |      |           |            |           |    |           |
| B-8 FD   | TPH-GC                            | mqq   | 3.59    |      |           |            |           |    |           |
| B-8 FD   | DRO                               | mdd   | 1.58    |      |           |            |           |    |           |

| Table C-2<br>Continued |  |
|------------------------|--|
| ËΫ                     |  |

| Location | Analyte                           | Units | 80      | SI   | <b>S2</b> | S3 | S4      | SS  | S6        |
|----------|-----------------------------------|-------|---------|------|-----------|----|---------|-----|-----------|
| B-8 FD   | GRO                               | ppm   | 130.5   |      |           |    |         |     |           |
| B-8 FD   | Total BTEX                        | nqq   | 4.05    |      |           |    |         |     |           |
| B-8 FD   | Heterotrphic Bacteria             | CFU/g | 8.0E+06 |      |           |    |         |     |           |
| B-8 FD   | Hydrocarbon Utilizing<br>Bacteria | CFU/g | 5.3E+06 |      |           |    |         |     |           |
| B-9      | TPH-GC                            | mqq   | 0.75    | 6.47 | <1        | ~  | <1      | <1  | ~         |
| B-9      | DRO                               | bpm   | <0.5    |      | <1        |    | <1      |     |           |
| B-9      | GRO                               | bpm   | 5.72    |      | <1        |    | 6.28    |     | 1         |
| B-9      | Total BTEX                        | bpm   | 0       |      | 1.09      |    | <0.5    |     | < 0.5     |
| B-9      | Temperature                       | ů     |         |      | 4.3       |    |         | 5.9 | 8.5       |
| B-9      | NO3-N                             | mdd   | ~1      |      |           |    |         |     |           |
| B-9      | NH4-N                             | mqq   | 1.7     |      |           |    |         |     |           |
| B-9      | P04-P                             | bpm   | 11.5    |      |           |    |         |     | 2.59      |
| B-9      | Heterotrophic Bacteria            | CFU/g |         |      | 1.4E+06   |    | 1.8E+06 |     | 1.6E + 07 |
| B-9      | Hydrocarbon Utilizing<br>Bacteria | CFU/g |         |      | 6.4E+03   |    | 3.6E+06 |     | 1.3E+06   |
| B-9      | TOC                               | %     | 0.34    |      |           |    |         |     | 0.2       |
| B-9      | РН                                | Hd    |         |      |           |    |         |     | 8.3       |
| B-9      | TKN                               | uıdd  |         |      |           |    |         |     | 92        |
| B-9      | TRPH-IR                           | bpm   | 0       |      |           |    |         |     |           |
| B-9 FD   | TPH-GC                            | undd  | 0.89    |      |           |    |         |     |           |
| B-9 FD   | DRO                               | mqq   | <0.5    |      |           |    |         |     |           |
| B-9 FD   | GRO                               | undd  | 95.72   |      |           |    |         |     |           |

| - |  |
|---|--|

| Location     | Analyte                           | Units | SO      | S1   | <b>S2</b> | <b>S</b> 3 | S4      | SS      | S6      |
|--------------|-----------------------------------|-------|---------|------|-----------|------------|---------|---------|---------|
| B-9 FD       | Total BTEX                        | ppm   | 1.3     |      |           |            |         |         |         |
| B-9 FD       | Heterotrophic Bacteria            | CFU/g | 8.7E+05 |      |           |            |         |         |         |
| B-9 FD       | Hydrocarbon Utilizing<br>Bacteria | CFU/g | 1.9E+05 |      |           |            |         |         |         |
| B-9 LD       | TPH-GC                            | bpm   |         |      |           |            | <1      |         |         |
| B-9 LD       | DRO                               | ppm   |         |      |           |            | <1      |         |         |
| B-9 LD       | GRO                               | bpm   |         |      |           |            | 4.72    |         |         |
| B-9 LD       | Total BTEX                        | ppm   |         |      |           |            | < 0.5   |         |         |
| B-9 LD       | NO3-N                             | ppm   |         |      |           |            |         |         |         |
| B-9 LD       | NH4-N                             | ppm   | <1      |      |           |            |         |         |         |
| B-9 LD       | P04-P                             | ppm   | 11.9    |      |           |            |         |         |         |
| B-9 LD       | TOC                               | %     | 0.35    |      |           |            |         |         |         |
| <b>B-1</b> 0 | TPH-GC                            | bpm   | 0.89    | 6.53 | 3.95      | 3.41       | <1      | <1      | <1      |
| B-10         | DRO                               | ррт   | <0.5    |      | 1.74      |            | <1      |         | <1      |
| B-10         | GRO                               | bpm   | 7.13    |      | ~1        |            | 3.37    |         | <1      |
| B-10         | Total BTEX                        | bpm   | 0.79    |      | <0.5      |            | <0.5    |         | <0.5    |
| B-10         | Temperature                       | సి    |         |      | 6.1       |            |         | 5.6     | 5.3     |
| B-10         | NO3-N                             | ppm   | <1      |      |           |            |         |         | <1      |
| B-10         | NH4-N                             | bpm   | 1.4     |      |           |            |         |         | <1      |
| B-10         | P04-P                             | ррт   | 25      |      |           |            |         |         | 17.2    |
| B-10         | Heterotrophic Bacteria            | CFU/g |         |      | 7.2E+06   |            | 5.4E+06 |         | 2.1E+07 |
| B-10         | Hydrocarbon Utilizing<br>Bacteria | CFU/g |         |      | 2.1E+05   |            | 6.7E+05 | 4.9E+05 |         |

| C-2  | (pen) |
|------|-------|
| able | ontin |
| Ĥ    | Ũ     |

| Location | Analyte                           | Units | SO      | SI    | S2       | S3  | S4      | SS  | S6              |
|----------|-----------------------------------|-------|---------|-------|----------|-----|---------|-----|-----------------|
| B-10     | TOC                               | %     | 0.2     |       |          |     |         |     | 0.3             |
| B-10     | Hd                                | Hd    |         |       |          |     |         |     | 9.2             |
| B-10     | TKN                               | uudd  |         |       |          |     |         |     | 88              |
| B-10     | TRPH-IR                           | uudd  | 0       |       |          |     |         |     |                 |
| B-10 FD  | TPH-GC                            | mqq   | 0.89    |       |          |     |         |     |                 |
| B-10 FD  | DRO                               | bm    | <0.5    |       |          |     |         |     |                 |
| B-10 FD  | GRO                               | ppm   | 4.51    |       |          |     |         |     |                 |
| B-10 FD  | Total BTEX                        | mqq   | 0       |       |          |     |         |     |                 |
| B-10 FD  | Heterotrophic Bacteria            | CFU/g | 4.5E+06 |       |          |     |         |     |                 |
| B-10 FD  | Hydrocarbon Utilizing<br>Bacteria | CFU/g | 3.9E+03 |       |          |     |         |     |                 |
| B-11     | TPH-GC                            | ppm   | 7.82    | 28.44 | 4.13     | 6.1 | <       | ~   |                 |
| B-11     | DRO                               | bpm   | 3.45    |       | 1.81     |     | <       |     | V               |
| B-11     | GRO                               | ppm   | 3.95    |       | <1       |     | 12.66   |     | V<br>V          |
| B-11     | Total BTEX                        | bpm   | 0       |       | 2.04     |     | <0.5    |     | < 0.5           |
| B-11     | Temperature                       | ů     |         |       | 5.5      |     |         | 6.8 |                 |
| B-11     | NO3-N                             | mdd   | ~       |       |          |     |         |     | V               |
| B-11     | NH4-N                             | bpm   | 1.2     |       |          |     |         |     | 2.7             |
| B-11     | P04-P                             | ppm   | 5.0     |       |          |     |         |     | 15.2            |
| B-11     | Heterotrophic Bacteria            | CFU/g |         |       | 2.4E+06  |     | 1.6E+07 |     | 3.2E+07         |
| B-11     | Hydrocarbon Utilizing<br>Bacteria | CFU/g |         |       | <1.0E+02 |     | 3.4E+05 |     | <b>1.5E</b> +06 |
| B-11     | TOC                               | %     | 0.85    |       |          |     |         |     | c 1             |

C-22



| Location | Analyte                           | Units | SO      | SI   | <b>S2</b> | <b>S3</b> | S4    | SS  | S6   |
|----------|-----------------------------------|-------|---------|------|-----------|-----------|-------|-----|------|
| B-11     | pH                                | μd    |         |      |           |           |       |     | 8.6  |
| B-11     | TKN                               | ppm   |         |      |           |           |       |     | 643  |
| B-11     | TRPH-IR                           | ppm   | 0       |      |           |           |       |     |      |
| B-11 FD  | TPH-GC                            | ppm   | 1.73    |      |           |           |       |     |      |
| B-11 FD  | DRO                               | ppm   | 0.76    |      |           |           |       |     |      |
| B-11 FD  | GRO                               | ppm   | 79.7    |      |           |           |       |     |      |
| B-11 FD  | Total BTEX                        | ppm   | 2.98    |      |           |           |       |     |      |
| B-11 LD  | NO3-N                             | ppm   | <1      |      |           |           |       |     |      |
| B-11 LD  | NH4-N                             | ppm   | 1.1     |      |           |           |       |     |      |
| B-11 LD  | P04-P                             | ppm   | 4.7     |      |           |           |       |     |      |
| B-11 FD  | Heterotrophic Bacteria            | CFU/g | 4.9E+07 |      |           |           |       |     |      |
| B-11 FD  | Hydrocarbon Utilizing<br>Bacteria | CFU/g | 1.1E+07 |      |           |           |       |     |      |
| B-11 LD  | TOC                               | %     | 0.86    |      |           |           |       |     |      |
| B-12     | TPH-GC                            | ppm   | 4.79    | 5.85 | <1        | 2.53      | <1    | <1  | <1   |
| B-12     | DRO                               | ppm   | 2.36    |      | <1        |           | <1    |     | <1   |
| B-12     | GRO                               | ppm   | 34.88   |      | 3.71      |           | 17.28 |     | <1   |
| B-12     | Total BTEX                        | ppm   | 3.04    | -    | <0.5      |           | <0.5  |     | <0.5 |
| B-12     | Temperature                       | ů     |         |      | 5.8       | -         |       | 3.8 |      |
| B-12     | NO3-N                             | ppm   | <1      |      |           |           |       |     | <1   |
| B-12     | NH4-N                             | ppm   | 2.8     |      |           |           |       |     | <1   |
| B-12     | P04-P                             | mqq   | 6.6     |      | -         |           |       |     | 17.7 |

(Continued) Table C-2

| Location    | Analyte                           | Units | <b>S0</b> | S1 | S2      | S3 | S4      | S5 | S6      |
|-------------|-----------------------------------|-------|-----------|----|---------|----|---------|----|---------|
| B-12        | Heterotrophic Bacteria            | CFU/g |           |    | 1.5E+07 |    | 5.6E+07 |    | 1.4E+05 |
| B-12        | Hydrocarbon Utilizing<br>Bacteria | CFU/g |           |    | 3.8E+06 |    | 6.7E+06 |    | 5.8E+03 |
| <b>B-12</b> | TOC                               | %     | 0.75      |    |         |    |         |    | 0.6     |
| B-12        | pH                                | μd    |           |    |         |    |         |    | 6       |
| B-12        | TKN                               | uıdd  |           |    |         |    |         |    | 224     |
| B-12        | TRPH-IR                           | uudd  | 21        |    |         |    |         |    |         |
| B-12 FD     | TPH-GC                            | uudd  | 3.52      |    |         |    |         |    |         |
| B-12 FD     | DRO                               | mqq   | 1.55      |    |         |    |         |    |         |
| B-12 FD     | GRO                               | mqq   | 16.22     |    |         |    |         |    |         |
| B-12 FD     | Total BTEX                        | udd   | 1.12      |    |         |    |         |    |         |
| B-12 FD     | Heterotrophic Bacteria            | CFU/g | 1.0E+07   |    |         |    |         |    |         |
| B-12 FD     | Hydrocarbon Utilizing<br>Bacteria | CFU/g | 2.3E+05   |    |         |    |         |    |         |
| S0 - Sample | s collected 7/20/03               |       |           |    |         |    |         |    |         |

S0 - Samples collected 7/29/93
S1 - Samples collected 9/2/93
S2 - Samples collected 10/3/93 - 10/5/93
S3 - Samples collected 11/1/93 - 11/2/93
S4 - Samples collected 12/6/93 - 12/10/93
S5 - Samples collected 1/6/94 - 1/7/94
S6 - Samples collected 2/5/94 - 2/6/94

Field duplicate
 Lab duplicate

FD = LD = FD/LD

= Lab duplicate of field duplicate

# Table C-3 Analytical Results for the West Unit Soils

| Location | Analyte                           | Units | <b>S0</b> | SI   | <b>S2</b> | S3    | <b>S4</b> | S5    | S6      |
|----------|-----------------------------------|-------|-----------|------|-----------|-------|-----------|-------|---------|
| B-1      | TPH-GC                            | mqq   | 1374      | 1492 | 294.8     | 836.7 | 478.9     | 396.1 | 261.70  |
| B-1      | DRO                               | bpm   | 984.5     |      | 246.3     |       | 563.4     |       | 245.4   |
| B-1      | GRO                               | bpm   | 4642      |      | 123.3     |       | 293.9     |       | 94.1    |
| B-1      | Total BTEX                        | ppm   | 233.42    |      | 2         |       | 7.55      |       | < 0.5   |
| B-1      | Temperature                       | ů     |           |      | 19.2      |       | 25.1      | 45.1  | 21.7    |
| B-1      | NO3-N                             | ppm   | < 1       |      |           |       |           |       | < 1     |
| B-1      | NH4-N                             | bpm   | < 1       |      |           |       |           |       | < 1     |
| B-1      | P04-P                             | ppm   | 10.8      |      |           |       |           |       | 17.5    |
| B-1      | Heterotrophic Bacteria            | CFU/g |           |      | 1.9E+07   |       | 1.4E+08   |       | 1.7E+07 |
| B-1      | Hydrocarbon Utilizing<br>Bacteria | CFU/g |           |      | < 1.0E+02 |       | 6.4E+06   |       | 7.9E+05 |
| B-1      | TOC                               | %     | 0.28      |      |           |       |           |       | 0.4     |
| B-1      | Hd                                | рН    |           |      |           |       |           |       | 8.7     |
| B-1      | TKN                               | ppm   |           |      |           |       |           |       | 212     |
| B-1      | TRPH-IR                           | mdd   | 1186      |      |           |       |           |       |         |
| B-1 FD   | TPH-GC                            | ppm   | 1033      |      |           |       |           |       |         |
| B-1 FD   | DRO                               | ppm   | 940.6     |      |           |       |           |       |         |
| B-1 FD   | GRO                               | ppm   | 1828      |      |           |       |           |       |         |
| B-1 FD   | Total BTEX                        | ppm   | 124.04    |      |           |       |           |       |         |
| B-1 FD   | Heterotrophic Bacteria            | CFU/g | 6.9E+06   |      |           |       |           |       |         |
| B-1 FD   | Hydrocarbon Utilizing<br>Bacteria | CFU/g | 3.3E+06   |      |           |       |           |       |         |
| B-1 LD   | TPH-GC                            | bpm   |           | 1423 |           | 932.9 |           |       | 330.50  |

| ~            |    |
|--------------|----|
| <u> </u>     | ĕ  |
| $\mathbf{C}$ | Ξ  |
| പ            | Ξ. |
| Ē            | H  |
| a            | 5  |
| E            | บ้ |

| Location | Analyte                           | Units | S0     | SI   | S2        | S3 | <b>S4</b> | SS   | S6        |
|----------|-----------------------------------|-------|--------|------|-----------|----|-----------|------|-----------|
| B-1 LD   | DRO                               | uudd  |        |      |           |    |           |      | 315 6     |
| B-1 LD   | GRO                               | mqq   | 2687   |      |           |    |           |      | 1123      |
| B-1 LD   | Total BTEX                        | ppm   | 210.72 |      |           |    |           |      | < 0.5     |
| B-2      | TPH-GC                            | mqq   | 0.89   | 6.41 | 15.49     | <1 | ~         | ~    | 22.97     |
| B-2      | DRO                               | mqq   | < 0.5  |      | 7.43      |    | < 1       |      | 6.25      |
| B-2      | GRO                               | udd   | 6.68   |      | 14.62     |    | 16.21     |      |           |
| B-2      | Total BTEX                        | bpm   | 0      |      | < 0.5     |    | < 0.5     |      | < 0.5     |
| B-2      | Temperature                       | ů     |        |      | 16.4      | -  | 18.3      | 18.6 |           |
| B-2      | NO3-N                             | mqq   | < 1    |      |           |    |           |      | 6.2       |
| B-2      | NH4-N                             | mqq   | 3.2    |      |           |    |           |      |           |
| B-2      | P04-P                             | mqq   | 10.6   |      |           |    |           |      | 13.1      |
| B-2      | Heterotrphic Bacteria             | CFU/g |        |      | 1.1E+07   |    | 6.5E+07   |      | 8 2F+06   |
| B-2      | Hydrocarbon Utilizing<br>Bacteria | CFU/g |        |      | < 1.0E+02 |    | 3.4E+06   |      | < 1.0E+02 |
| B-2      | TOC                               | %     | 0.25   |      |           |    |           |      | 0.6       |
| B-2      | Hq                                | μd    |        |      |           |    |           |      | 8.6       |
| B-2      | TKN                               | mdq   |        |      |           |    |           |      | 648       |
| B-2      | TRPH-IR                           | mdd   | 401    |      |           |    |           |      |           |
| B-2 FD   | TPH-GC                            | mdd   | 3.77   |      |           |    |           |      | 28.73     |
| B-2 FD   | DRO                               | mqq   | 1.73   |      |           |    |           |      | 4 09      |
| B-2 FD   | GRO                               | bpm   | 2.46   |      |           |    |           |      |           |
| B-2 FD   | Total BTEX                        | bpm   | 0      |      |           |    |           |      | < 0.5     |
| B-2 FD   | NO3-N                             | bpm   |        |      |           |    |           |      | 7.1       |

C-26



٠

| Location | Analyte                           | Units | So      | S1   | <b>S2</b> | S3 | S4             | SS    | <b>S6</b> |
|----------|-----------------------------------|-------|---------|------|-----------|----|----------------|-------|-----------|
| B-2 FD   | NH4-N                             | ppm   |         |      |           |    |                |       | < 1       |
| B-2 FD   | P04-P                             | ppm   |         |      |           |    |                |       | 12.7      |
| B-2 FD   | Heterotrophic Bacteria            | CFU/g | 5.6E+07 |      |           |    |                |       |           |
| B-2 FD   | Hydrocarbon Utilizing<br>Bacteria | CFU/g | 1.1E+07 |      |           |    |                |       |           |
| B-2 FD   | TOC                               | %     |         |      |           |    |                |       | 0.5       |
| B-2 FD   | рН                                | μd    |         |      |           |    |                |       | 8.1       |
| B-2 FD   | TKN                               | ppm   |         |      |           |    |                |       | 376       |
| B-3      | TPH-GC                            | ppm   | 11.05   | 6.85 | <1        | <1 | . <b>&lt;1</b> | 23.77 | <1        |
| B-3      | DRO                               | ppm   | 6.71    |      | < 1       |    | < 1            |       | < 1       |
| B-3      | GRO                               | ppm   | 5.23    |      | 1.38      |    | 20.99          |       | < 1       |
| B-3      | Total BTEX                        | ppm   | 0.54    |      | < 0.5     |    | < 0.5          |       | < 0.5     |
| B-3      | Temperature                       | c°    |         |      | 10.8      |    |                | 17.6  | 11.5      |
| B-3      | NO3-N                             | ppm   | < 1     |      |           |    |                |       | 2         |
| B-3      | NH4-N                             | ppm   | 3.6     |      |           |    |                |       | 2.3       |
| B-3      | PO4-P                             | ppm   | 26.9    |      |           |    |                |       | 30.2      |
| B-3      | Heterotrophic Bacteria            | CFU/g |         |      | 2.5E+07   |    | 3.7E+07        |       | 2.9E+07   |
| B-3      | Hydrocarbon Utilizing<br>Bacteria | CFU/g |         |      | 2.1E+06   |    | 3.3E+06        |       | 7.3E+05   |
| B-3      | TOC                               | %     | 0.11    |      |           |    |                |       | 0.2       |
| B-3      | pH                                | μd    |         |      |           |    |                |       | 8.5       |
| B-3      | TKN                               | bm    |         |      |           |    |                |       | 60        |
| B-3      | TRPH-IR                           | ppm   | 8       |      |           |    |                |       |           |



| Location | Analyte                           | Units | SO      | SI   | <b>S2</b> | S3     | S4      | S5   | <b>9</b> 8 |
|----------|-----------------------------------|-------|---------|------|-----------|--------|---------|------|------------|
| B-3 FD   | TPH-GC                            | ppm   | 8.73    |      | 2.39      |        |         |      |            |
| B-3 FD   | DRO                               | mqq   | 4.05    |      | < 1       |        |         |      |            |
| B-3 FD   | GRO                               | ppm   | 4.23    |      | 8.42      |        |         |      |            |
| B-3 FD   | Total BTEX                        | bpm   | 0       |      | < 0.5     |        |         |      |            |
| B-3 FD   | Heterotrophic Bacteria            | CFU/g | 4.8E+07 |      |           |        |         |      |            |
| B-3 FD   | Hydrocarbon Utilizing<br>Bacteria | CFU/g | 1.3E+07 |      |           |        |         |      |            |
| B-4      | TPH-GC                            | mdd   | 3.1     | 5.78 | 2.34      | -<br>V | <1      | 1.00 | <1         |
| B-4      | DRO                               | mdd   | 1.37    |      | < 1       |        | < 1     |      | V          |
| B-4      | GRO                               | mqq   | 32.39   |      | 22.63     |        | 18.85   |      |            |
| B-4      | Total BTEX                        | bpm   | 4.97    |      | 2.88      |        | < 0.5   |      | < 0.5      |
| B-4      | Temperature                       | సి    |         |      |           |        |         | 21.9 | 7.3        |
| B-4      | NO3-N                             | mqq   | <       |      |           |        |         |      | 7.4        |
| B-4      | NH4-N                             | mdd   | 10      |      |           |        |         |      | 2.5        |
| B-4      | PO4-P                             | mqq   | 8.9     |      |           |        |         |      | 21.5       |
| B-4      | Heterotrophic Bacteria            | CFU/g |         |      | 1.0E+07   |        | 2.6E+07 |      | 3.0E+07    |
| B-4      | Hydrocarbon Utilizing<br>Bacteria | CFU/g |         |      | 4.7E+05   |        | 6.8E+05 |      | 1.2E+06    |
| B-4      | TOC                               | %     | 0.73    |      |           |        |         |      | 0.6        |
| B-4      | Н                                 | μd    |         |      |           |        |         |      | 8.3        |
| B-4      | TKN                               | bpm   |         |      |           |        |         |      | 196        |
| B-4      | TRPH-IR                           | ppm   | 10      |      |           |        |         |      |            |
| B-4 FD   | TPH-GC                            | mqq   | 7.15    |      |           |        |         |      |            |



| Location | Analyte                           | Units | SO      | IS   | <b>S2</b> | <b>S3</b> | S4      | SS | <b>S6</b> |
|----------|-----------------------------------|-------|---------|------|-----------|-----------|---------|----|-----------|
| B-4 FD   | DRO                               | bpm   | 3.16    |      |           |           |         |    |           |
| B-4 FD   | GRO                               | ppm   | 51.58   |      |           |           |         |    |           |
| B-4 FD   | Total BTEX                        | ppm   | 6.72    |      |           |           |         |    |           |
| B-4 FD   | Heterotrophic Bacteria            | CFU/g | 4.5E+06 |      |           |           |         |    |           |
| B-4 FD   | Hydrocarbon Utilizing<br>Bacteria | CFU/g | 8.0E+04 |      |           |           |         |    |           |
| B-5      | TPH-GC                            | ppm   | 8.67    | 5.68 | <1        | <1        | <1      |    |           |
| B-5      | DRO                               | ppm   | 4.16    |      | < 1       |           | < 1     |    |           |
| B-5      | GRO                               | ppm   | 7.62    |      | 1.64      |           | 2.55    |    |           |
| B-5      | Total BTEX                        | ppm   | 0       |      | < 0.5     |           | < 0.5   |    |           |
| B-5      | NO3-N                             | ppm   | < 1     |      |           |           |         |    |           |
| B-5      | NH4-N                             | ppm   | 6.5     |      |           |           |         |    |           |
| B-5      | PO4-P                             | ppm   | 6.5     |      |           |           |         |    |           |
| B-5      | Heterotrophic Bacteria            | CFU/g |         |      | 1.7E+06   |           | 7.5E+07 |    |           |
| B-5      | Hydrocarbon Utilizing<br>Bacteria | CFU/g |         |      | 9.8E+03   |           | 5.4E+06 |    |           |
| B-5      | TOC                               | %     | 0.46    |      |           |           |         |    |           |
| B-5      | TRPH-IR                           | ppm   | 14      |      |           |           |         |    |           |
| B-5 FD   | TPH-GC                            | bpm   | 4.49    |      |           | <1        |         |    |           |
| B-5 FD   | DRO                               | ppm   | 1.98    |      |           |           |         |    |           |
| B-5 FD   | GRO                               | ppm   | 11.5    |      |           |           |         |    |           |
| B-5 FD   | Total BTEX                        | ppm   | 2.04    |      |           |           |         |    |           |
| B-5 FD   | Heterotrophic Bacteria            | CFU/g | 3.0E+07 |      |           |           |         |    |           |



| Location | Analyte                           | Units | SO        | S1   | <b>S2</b> | S3   | S4      | SS   | 9S      |
|----------|-----------------------------------|-------|-----------|------|-----------|------|---------|------|---------|
| B-5 FD   | Hydrocarbon Utilizing<br>Bacteria | CFU/g | 7.4E+07   |      |           |      |         |      |         |
| B-6      | TPH-GC                            | ppm   | 5444      | 7360 | 13886     | 3455 | 1254    | 1597 | 1536    |
| B-6      | DRO                               | ppm   | 4556      |      | 6282      |      | 2023    |      | 1490    |
| B-6      | GRO                               | mdd   | 13451     |      | 10812     |      | 119.6   |      | 595     |
| B-6      | Total BTEX                        | mqq   | 1092.68   |      | 305.91    |      | 2.27    |      | < 0.5   |
| B-6      | Temperature                       | ů     |           |      | 36.2      |      | 41.5    | 43.8 | 39.9    |
| B-6      | NO3-N                             | ppm   | < 1       |      |           |      |         |      | < 1     |
| B-6      | NH4-N                             | bpm   | 12.9      |      |           |      |         |      |         |
| B-6      | P04-P                             | mqq   | 7.6       |      |           |      |         |      | 17.6    |
| B-6      | Heterotrophic Bacteria            | CFU/g |           |      | 7.6E+07   |      | 8.7E+07 |      | 3.6E+08 |
| B-6      | Hydrocarbon Utilizing<br>Bacteria | CFU/g |           |      | 4.0E+06   |      | 2.9E+07 |      | 9.9E+07 |
| B-6      | TOC                               | %     | 1.28      |      |           |      |         |      | 8.0     |
| B-6      | рН                                | рН    |           |      |           |      |         |      | 8.2     |
| B-6      | TKN                               | bpm   |           |      |           |      |         |      | 410     |
| B-6      | TRPH-IR                           | bpm   | 19053     |      |           |      |         |      |         |
| B-6 FD   | TPH-GC                            | bpm   | 4373      |      |           |      |         | 2581 |         |
| B-6 FD   | DRO                               | mqq   | 3470      |      |           |      |         |      |         |
| B-6 FD   | GRO                               | ppm   | 21066     |      |           |      |         |      |         |
| B-6 FD   | Total BTEX                        | mqq   | 1683.2    |      |           |      |         |      |         |
| B-6 FD   | Heterotrophic Bacteria            | CFU/g | 6.4E + 07 |      |           |      |         |      |         |

**C-30** 



| Location  | Analyte and a second | Units | SO        | S1   | S2     | S3   | <b>S4</b> | SS   | <u>S6</u> |
|-----------|-----------------------------------------------------------------------------------------------------------------|-------|-----------|------|--------|------|-----------|------|-----------|
| B-6 FD    | Hydrocarbon Utilizing<br>Bacteria                                                                               | CFU/g | < 1.0E+02 |      |        |      |           |      |           |
| B-6 FD    | TOC                                                                                                             | %     |           |      |        |      | •         |      |           |
| B-6 FD    | рН                                                                                                              | рН    |           |      |        |      |           |      |           |
| B-6 FD    | TKN                                                                                                             | ppm   |           |      |        |      |           |      |           |
| B-6 FD    | TRPH-IR                                                                                                         | ppm   |           |      |        |      |           |      |           |
| B-6 LD    | TPH-GC                                                                                                          | ppm   |           | 7898 | 14352  | 3802 | 1358      | 1532 |           |
| B-6 LD    | DRO                                                                                                             | ppm   |           |      | 6450   |      | Ż204      |      |           |
| B-6 LD    | GRO                                                                                                             | ppm   | 9556      |      | 10796  |      | 130.8     |      | 626.5     |
| B-6 LD    | Total BTEX                                                                                                      | ppm   | 664.39    |      | 304.91 |      |           |      | < 0.5     |
| B-6 FD/LD | TPH-GC                                                                                                          | ppm   |           |      |        |      |           | 2566 |           |

S0 - Samples collected 7/29/93
S1 - Samples collected 9/2/93
S2 - Samples collected 10/3/93 - 10/5/93
S3 - Samples collected 11/1/93 - 11/2/93
S4 - Samples collected 12/6/93 - 12/10/93
S5 - Samples collected 2/5/94 - 2/6/94

Field duplicateLab duplicate FD = LD = FD/LD

= Lab duplicate of field duplicate

| Location   | Analyte                        | Units | 0M0     | W1    | W2    | Ъ     | WA      | WK    | XVX                 |
|------------|--------------------------------|-------|---------|-------|-------|-------|---------|-------|---------------------|
| W-5        | Dissolved Oxygen               | mg/L  | 0.52    | 0.66  | 0.56  | 0.62  | 0.62    | 0.62  | 0 32                |
| W-5        | Temperature                    | °C    | 2.72    | 2.00  | 3.28  | 1.91  | 1.56    | 0.12  | 2.12                |
| W-5        | Product Thickness              | ft.   | 0       | 0     | 0     | 0     | 0       | 0 a   | C                   |
| W-5        | TPH-GC                         | mqq   | 7.34    |       |       |       | ,       | ,     | 37 13               |
| W-5        | TRPH-IR                        | mqq   | 60.10   | 46.80 | 54.30 | 20.00 | 13.20   | 20.00 | CT. 1 C             |
| W-5        | NO3-N                          | mqq   | ~       |       |       |       |         |       | ↓<br>               |
| W-5        | NH4-N                          | mqq   | <1      |       |       |       |         |       |                     |
| W-5        | PO4-P                          | mqq   | <1      |       |       |       |         |       | ; [                 |
| W-5        | Heterotrophic Bacteria         | CFU/g | < 100   |       |       |       | 3.9E+03 |       | 3.4E+05             |
| W-5        | Hydrocarbon Utilizing Bacteria | CFU/g | < 100   |       |       |       | <100    |       | < 100               |
| W-6        | Dissolved Oxygen               | mg/L  | 0.30    | 0.89  | 0.26  | 0.93  |         |       | 4.04                |
| W-6        | Temperature                    | °C    | 3.41    | 3.46  | 3.55  | 2.64  | 1.30    | 0.22  | 2.51                |
| W-6        | Product Thickness              | ft.   | 0       | 0     | 0     | 0.01  | 0       | 0ª    | c                   |
| W-6        | TPH-GC                         | mqq   | 0.13    |       |       |       |         |       | 30.46               |
| W-6        | TRPH-IR                        | udd   | 48.50   | 39.40 | 69.60 | 22.20 | 11.50   | 18.60 |                     |
| W-6        | NO3-N                          | mdd   | <1      |       |       |       |         |       | $\overline{\nabla}$ |
| W-6        | NH4-N                          | mqq   | <1      |       |       |       |         |       | ; [                 |
| W-6        | PO4-P                          | mdd   | <1      |       |       |       |         |       | ;   ⊽               |
| W-6        | Heterotrophic Bacteria         | CFU/g | 3.4E+03 |       |       |       | 3.4E+03 |       | 4.4E+06             |
| W-6        | Hydrocarbon Utilizing Bacteria | CFU/g | < 100   |       |       |       | < 100   |       | < 100               |
| W-7        | Dissolved Oxygen               | mg/L  | 0.29    | 0.36  | 0.07  | 0.26  |         |       | 3.8                 |
| <u>М-7</u> | Temperature                    | °C    | 2.79    | 2.45  | 2.83  | 1.81  | 0.87    | 0.12  | 2.02                |
| W-7        | Product Thickness              | ft.   |         | 0     | 0     | 0.01  | 0       | 0 a   | С                   |
| W-7        | TPH-GC                         | ppm   | 7.17    |       |       |       |         | ,     | 23.71               |
| W-7 FD     | TPH-GC                         | bpm   |         |       |       |       |         |       | 21.39               |
| W-7        | TRPH-IR                        | mdd   | 36.90   | 47.90 | 70.20 | 13.80 | 7.90    | 8.5   |                     |
| W-7 LD     | TRPH-IR                        | mdd   |         |       |       | 12.20 |         |       |                     |

 Table C-4

 Analytical Results for the East Unit Groundwater

**C-32** 



# (Continued) **Table C-4**

| Location | Analyte                        | Units | W0        | WI    | <b>W2</b> | W3     | W/4       | WS             | M6        |
|----------|--------------------------------|-------|-----------|-------|-----------|--------|-----------|----------------|-----------|
| W-7      | NO3-N                          | mqq   | <1        |       |           |        |           |                | <1        |
| W-7 FD   | NO3-N                          | mqq   |           |       |           |        |           |                | <1        |
| W-7      | NH4-N                          | mdd   | <1        |       |           |        |           |                | <1        |
| W-7 FD   | NH4-N                          | ppm   |           |       |           |        |           |                | <1        |
| W-7      | P04-P                          | mqq   | <1        |       |           |        |           |                | <1        |
| W-7 FD   | PO4-P                          | ppm   |           |       |           |        |           |                | <1        |
| W-7      | Heterotrophic Bacteria         | CFU/g | 1.5E+06   |       |           |        | 5.0E+04   |                | 3.2E+05   |
| W-7      | Hydrocarbon Utilizing Bacteria | CFU/g | 3.4E+03   |       |           |        | < 100     |                | 2.6E + 03 |
| W-8      | Dissolved Oxygen               | mg/L  | 0.45      | 0.62  | 0.76      | 2.70   |           |                | 0.50      |
| W-8      | Temperature                    | °C    | 1.37      | 1.22  | 1.79      | 0.05   | 1.15      | -0.07          | 0.91      |
| W-8      | Product Thickness              | ft.   | 1.36      | 1.8   | 0.46      | 1.2    | 0.5       | 0 <sup>a</sup> | 0         |
| W-8      | TPH-GC                         | mqq   | 18.97     |       |           |        |           |                | 33.22     |
| W-8      | TRPH-IR                        | mqq   | 1164.00   | 74.50 | 128.40    | 373.60 | 27.00     | 130.00         |           |
| W-8      | NO3-N                          | mqq   |           |       |           |        |           |                | <1        |
| W-8      | NH4-N                          | ppm   |           |       |           |        |           |                | <1        |
| W-8      | PO4-P                          | ppm   |           |       |           |        |           |                | <1        |
| W-8      | Heterotrophic Bacteria         | CFU/g | 1.1E + 03 |       |           |        | 4.9E+04   |                | 4.8E+05   |
| W-8      | Hydrocarbon Utilizing Bacteria | CFU/g | < 100     |       |           |        | 1.9E + 04 |                | < 100     |

W0 - Samples collected 7/31/93
W1 - Samples collected 9/3/93 - 9/4/93
W2 - Samples collected 10/1/93
W3 - Samples collected 11/4/93
W4 - Samples collected 12/9/93 - 12/10/93
W5 - Samples collected 1/9/94
W6 - Samples collected 2/6/94 - 2/7/94

<sup>a</sup> Free product lens observed during sampling.

LD = Lab duplicate

KO-E = Knockout drum in the East Unit

.

| Location | Analyte                        | Units | MU      | W1     | CW7    | E.MX   | VIN                | 21/2 |         |
|----------|--------------------------------|-------|---------|--------|--------|--------|--------------------|------|---------|
| W-1      | Dissolved Oxygen               | mø/l. | 0 53    | 0 77   | 0 88   | 7 13   |                    |      | 0.07    |
| W/ 1     |                                | 1 0   |         |        | 0010   | C1.2   |                    |      | 0.00    |
| 1- M     | ı emperature                   | ູ່    | 4.47    | 3.35   | 3.61   | 3.33   | 0.03               | 1.42 | 3.21    |
| W-1      | Product Thickness              | ft.   | 0       | 1.25   | 0      | 0.29   | 0.6                | 0.04 | 0.04    |
| W-1      | TPH-GC                         | bpm   | 301.50  |        |        |        |                    |      | 64.05   |
| W-1      | TRPH-IR                        | ppm   | 2231.00 | 244.40 | 149.80 | 461.00 | 1820 <sup>a</sup>  | 292  |         |
| W-1      | NO3-N                          | mqq   | <1      |        |        |        |                    |      | <1      |
| W-1      | NH4-N                          | mqq   | <1      |        |        |        |                    |      | 1.4     |
| W-1      | PO4-P                          | mqq   | <1      |        |        |        |                    |      | <1      |
| W-1      | Heterotrophic Bacteria         | CFU/g | 1.9E+06 |        |        |        | 1.2E+06            |      | 3.7E+06 |
| W-1      | Hydrocarbon Utilizing Bacteria | CFU/g | < 100   |        |        |        | < 100              |      | 9.6E+05 |
| W-2      | Dissolved Oxygen               | mg/L  | 0.37    | 09.0   | 0.47   | 0.47   |                    |      | 0.57    |
| W-2      | Temperature                    | °C    | 2.47    | 1.98   | 5.59   | 3.73   | 2.61               | 2.86 | 6.94    |
| W-2      | Product Thickness              | Ĥ.    | 0       | 0      | 0      | 1.85   | 2.41               | 2.07 | 2.12    |
| W-2      | TPH-GC                         | mqq   | 20.67   |        |        |        |                    |      | 40.75   |
| W-2 LD   | TPH-GC                         | bpm   | 18.94   |        |        |        |                    |      |         |
| W-2      | TRPH-IR                        | ppm   | 184.30  | 67.90  | 108.60 | 30.80  | 24600 <sup>a</sup> | 806ª |         |
| W-2      | NO3-N                          | mqq   | <1      |        |        |        |                    |      | <1      |
| W-2      | NH4-N                          | ppm   | <1      |        |        |        |                    |      | <1      |
| W-2      | PO4-P                          | bpm   | <1      |        |        |        |                    |      |         |
| W-2      | Heterotrophic Bacteria         | CFU/g | 800     |        |        |        | 4.4E+05            |      | 6.5E+05 |
| W-2      | Hydrocarbon Utilizing Bacteria | CFU/g | < 100   |        |        |        | 2.7E+03            |      | 1.3E+03 |
| W-3      | Dissolved Oxygen               | mg/L  | 0.39    | 0.25   | 0.34   | 0.37   |                    |      | 0.77    |
| W-3      | Temperature                    | °C    | 1.95    | 2.17   | 4.17   | 3.00   | 2.62               | 3.76 | 10.05   |
| W-3      | Product Thickness              | ft.   | 0       | 1.7    | 0.85   | 2.12   | 2.34               | 1.96 | 2.13    |
| W-3      | TPH-GC                         | uudd  | 4.44    |        |        |        |                    |      | 10 36   |

 Table C-5

 Analytical Results for the West Unit Groundwater.

# (Continued) Table C-5

| Location  | Analyte                        | Units | W0        | W1     | W2     | W3    | W4                 | WS               | 9M6       |
|-----------|--------------------------------|-------|-----------|--------|--------|-------|--------------------|------------------|-----------|
| W-3       | TRPH-IR                        | ppm   | 48.50     | 97.00  | 122.60 | 55.40 | 15200 <sup>a</sup> | 87.70            |           |
| W-3 LD    | TRPH-IR                        | bpm   |           |        |        |       |                    | 86.5             |           |
| W-3       | NO3-N                          | ppm   | <1        |        |        |       |                    |                  | <1        |
| W-3       | NH4-N                          | ppm   | <1        |        |        |       |                    |                  | <1        |
| W-3       | PO4-P                          | ppm   | <1        |        |        |       |                    |                  | <1        |
| W-3       | Heterotrophic Bacteria         | CFU/g | < 100     |        |        |       | < 100              |                  | 1.3E + 04 |
| W-3       | Hydrocarbon Utilizing Bacteria | CFU/g | < 100     |        |        |       | < 100              |                  | < 100     |
| W-4       | Dissolved Oxygen               | mg/L  | 0.30      | 0.41   | 0.34   | 0.41  |                    |                  | 0.56      |
| W-4       | Temperature                    | °C    | 0.84      | 0.75   | 1.33   | 0.79  | 0.19               | 0.20             | 1.20      |
| W-4       | Product Thickness              | ft.   | 0         | 1.45   | 0.87   | 1.98  | 3.96               | 1.65             | 2.19      |
| W-4       | TPH-GC                         | ppm   | 36.72     |        |        |       |                    |                  | 199.60    |
| W-4       | TRPH-IR                        | ppm   | 242.50    | 194.00 | 161.20 | 64.6  | 10000 ª            | 380 <sup>b</sup> |           |
| W-4 FD    | TRPH-IR                        | ppm   |           |        |        |       |                    | 165 <sup>b</sup> |           |
| W-4 FD/LD | TRPH-IR                        | ppm   |           |        |        |       |                    | 169 <sup>b</sup> |           |
| W-4       | NO3-N                          | mqq   | <1        |        |        |       |                    |                  | <1        |
| W-4       | NH4-N                          | ppm   | <1        |        |        |       |                    |                  | 1.1       |
| W-4       | PO4-P                          | ppm   | <1        |        |        |       |                    |                  | <1        |
| W-4       | Heterotrophic Bacteria         | CFU/g | 1.0E + 05 |        |        |       | < 100              |                  | 3.0E+03   |
| W-4       | Hydrocarbon Utilizing Bacteria | CFU/g | <100      |        |        |       | <100               |                  | < 100     |

W0 - Samples collected 7/31/93
W1 - Samples collected 9/3/93 - 9/4/93
W2 - Samples collected 10/1/93
W3 - Samples collected 11/4/93
W4 - Samples collected 12/9/93
W5 - Samples collected 1/9/94
W6 - Samples collected 2/6/94 - 2/7/94

FD = Field duplicate LD = Lab duplicate FD/LD = Lab duplicate of Field duplicate

<sup>a</sup> Free phase hydrocarbons observed in groundwater samples.

<sup>b</sup> Possible free product contamination.

۰,

|                           |            |       |        |        |        | •           |       |        |           |        |        |
|---------------------------|------------|-------|--------|--------|--------|-------------|-------|--------|-----------|--------|--------|
| Sample Type               | Analyte    | Units | GO     | GI     | G2     | <b>G3</b> a | 64    | GS     | <u>G6</u> | G7     | G8     |
|                           |            |       |        | West   | Unit   |             |       |        |           |        |        |
| Primary sample            | TNMHC      | mqq   | 29500  | 20100  | 21500  | 18500       | 13633 | 22900  | 21400     | 20300  | 19400  |
| Lab dup of primary sample | TNMHC      | mdd   | 29400  | 20400  | 21400  |             | 13500 |        | 20200     |        | 19400  |
| Field duplicate           | TNMHC      | mqq   | 28300  | 16800  | 20300  | 19800       | 13833 | 14900  | 19600     |        | 18500  |
| Lab dup of field dup      | TNMHC      | mdd   | 28500  | 17900  | 20400  |             | 13900 |        | 19600     |        | 18600  |
| Primary sample            | Total BTEX | mdd   | 1550.2 | 1314.6 | 1303.6 | 1355.9      | 949.3 | 1580.3 | 1349.0    | 1339.4 | 976.0  |
| Lab dup of primary sample | Total BTEX | uudd  | 1536.2 | 1338.0 | 1289.2 |             | 954.0 |        | 1273.0    |        | 980.0  |
| Field duplicate           | Total BTEX | mqq   | 1517.8 | 1046.7 | 1256.5 | 1439.7      | 975.4 | 1028.9 | 1228.0    |        | 952.0  |
| Lab dup of field dup      | Total BTEX | uudd  | 1546.1 | 1149.2 | 1281.8 |             | 975.3 |        | 1222.0    |        | 956.0  |
|                           |            |       |        | East   | Unit   |             |       |        |           |        |        |
| Primary sample            | TNMHC      | mdd   | 3310.0 | 1090.0 | 620.0  | 1510.0      | 181.7 | 6540.0 | 5430.0    | 1810.0 | 4640.0 |
| Lab dup of primary sample | TNMHC      | mdd   | 4270.0 | 1110.0 |        |             | 181.7 | 6530.0 |           |        |        |
| Field duplicate           | TNMHC      | mdd   | 3760.0 | 1190.0 | 875.0  | 2240.0      | 173.3 | 6480.0 |           |        |        |
| Lab dup of field dup      | TNMHC      | bm    | 4850.0 | 1090.0 |        | 2240.0      | 173.3 | 6350.0 |           |        |        |
| Primary sample            | Total BTEX | mdd   | 59.7   | 92.6   | 48.2   | 105.9       | 12.4  | 492.1  | 433.0     | 138.2  | 330.0  |
| Lab dup of primary sample | Total BTEX | mqq   | 51.2   | 94.0   |        |             | 12.3  | 491.0  |           |        |        |
| Field duplicate           | Total BTEX | mdd   | 67.3   | 94.0   | 68.7   | 126.1       | 11.4  | 485.0  |           |        |        |
| Lab dup of field dup      | Total BTEX | mdd   | 60.8   | 85.4   |        | 125.9       | 11.4  | 475.4  |           |        |        |

Total Non-Methane Hydrocarbon and Total BTEX Laboratory Results for the SVE Exhaust Gas Table C-6

- G0 Samples collected 7/30/93 8/3/93
  G1 Samples collected 8/6/93 8/9/93
  G2 Samples collected 8/19/93 8/23/93
  G3 Samples collected 9/1/93 9/3/93
  G4 Samples collected 10/2/93 10/3/93
  G5 Samples collected 11/3/93
  G6 Samples collected 11/3/93
  G8 Samples collected 1/9/94
  G8 Samples collected 2/6/94 (East) and 2/10/94 (West)

<sup>a</sup> Field duplicates not taken on same day as primary samples.

 Table C-7

 Analytical Results for the Soil Gas Collected in the East Unit

| Location       | Analyte     | Units | G0    | <b>G</b> 1 | G2     | G3                                    | <b>G4</b> | <b>G5</b> | G6   | G7   | <b>G8</b> |
|----------------|-------------|-------|-------|------------|--------|---------------------------------------|-----------|-----------|------|------|-----------|
| V-11D          | CO2         | %     |       |            | 2.1    | 1.3                                   | 1.8       |           | 0.2  | 0.5  | 0.7       |
| V-11D          | 02          | %     |       |            | 19.5   | 20.5                                  | 20.1      |           | 21.0 | 20.9 | 20.2      |
| V-11D          | TNMHC       | ppm   |       |            |        |                                       | 350       |           |      |      | 53.3      |
| V-11D          | Total BTEX  | ppm   |       |            |        |                                       | 71.5      |           |      |      | 1.02      |
| V-11S          | Temperature | °C    |       |            |        | 10.6                                  |           |           |      |      | -0.1      |
| V-12D          | CO2         | %     |       |            | 6.3    | 5                                     | 2.7       | 0.9       | 0.2  | 0.8  | 0.7       |
| V-12D          | 02          | %     |       |            | 14.1   | 16.5                                  | 19.5      | 20.7      | 20.5 | 20.5 | 20.4      |
| V-12D          | TNMHC       | ppm   |       |            |        |                                       | 617       |           |      |      | 132       |
| V-12D          | Total BTEX  | ppm   |       |            |        | · · · · · · · · · · · · · · · · · · · | 125       |           |      |      | 3.40      |
| V-12D LD       | TNMHC       | ppm   |       |            |        |                                       | 613       |           |      |      | 146       |
| V-12D LD       | Total BTEX  | ppm   |       |            |        |                                       | 124       |           |      |      | 3.77      |
| V-12D FD       | TNMHC       | ppm   |       | ľ          |        |                                       | 480       |           | _    |      |           |
| V-12D FD       | Total BTEX  | ppm   |       |            |        |                                       | 93.8      |           |      |      |           |
| V-12D          | TNMHC       | ppm   |       |            |        |                                       | 475       |           | :    |      |           |
| FD/LD          |             |       |       |            |        |                                       |           |           |      |      |           |
| V-12D          | Total BTEX  | ppm   |       |            |        |                                       | 92.8      |           |      |      |           |
| FD/LD          |             | ~     |       |            |        |                                       |           | 0.6       |      |      |           |
| V-12S          | CO2         | %     | 15.5  | 0.7        |        |                                       |           | 0.6       | 0    |      |           |
| V-12S          | O2          | %     | 4     | 20.5       |        |                                       | · · · ·   | 20.8      | 21.0 |      |           |
| V-12S          | TNMHC       | ppm   | 13.7  |            |        |                                       |           |           |      |      |           |
| V-12S          | Total BTEX  | ppm   | 0.132 |            |        |                                       |           |           |      |      |           |
| V-12S          | Temperature | °C    |       |            |        |                                       |           | 0.9       |      |      | -0.1      |
| V-13D          | CO2         | %     |       |            | 4.1    | 5.5                                   | 2.6       | 2         | 0.9  | 0.4  | 0.8       |
| V-13D          | O2          | %     |       |            | 16.2   | 16.5                                  | 19.2      | 20        | 20.5 | 20.9 | 19.8      |
| V-13D          | TNMHC       | ppm   |       | ļ          |        |                                       | 13400     |           |      |      | 1750      |
| V-13D          | Total BTEX  | ppm   |       |            |        |                                       | 796       |           |      |      | 143       |
| V-13S          | CO2         | %     | 16    | .05        | 2      | 1.3                                   | 1.2       | 0.6       | 0.1  | 0.6  | 0.6       |
| V-13S          | 02          | %     | 7     | 21         | 18.9   | 19                                    | 20.8      | 20.9      | 21.0 | 20.8 | 20.5      |
| V-13S          | TNMHC       | ppm   | 167   |            | 0.294  |                                       | 29.2      |           |      |      | 0.27      |
| V-13S          | Total BTEX  | ppm   | 4.802 |            | 0.0292 |                                       | 5.66      |           |      |      | 0.02      |
| V-13S          | Temperature | °С    |       |            |        | 13                                    |           |           |      | 0.2  | 0.1       |
| V-14D          | CO2         | %     |       |            | 2.5    | 3.8                                   | 3         | 2.2       | 1.2  | 0.6  | 1.4       |
| V-14D          | 02          | %     |       |            | 18.9   | 17.5                                  | 19        | 19.5      | 20.0 | 19.5 | 18.5      |
| V-14D          | TNMHC       | ppm   |       |            |        |                                       | 8470      |           |      |      | 1480      |
| V-14D          | Total BTEX  | ppm   |       |            |        |                                       | 501       |           |      |      | 44.9      |
| V-14D LD       | TNMHC       | ppm   |       |            |        |                                       | 8470      |           |      | _    | 1550      |
| V-14D LD       | Total BTEX  | ppm   |       |            |        |                                       | 503       |           |      |      | 44.2      |
| V-14D FD       | TNMHC       | ppm   |       |            |        |                                       | 8220      |           |      |      | 1490      |
| V-14D FD       | Total BTEX  | ppm   |       |            |        |                                       | 485       |           |      |      | 42.9      |
| V-14D<br>FD/LD | TNMHC       | ppm   |       |            |        |                                       | 8180      |           |      |      | 1500      |

F

| Location     | Analyte     | Units    | GO     | <b>G1</b> | G2     | G3       | G4   | G5   | G6   | G7   | G8    |
|--------------|-------------|----------|--------|-----------|--------|----------|------|------|------|------|-------|
| V-14D        | Total BTEX  | ppm      |        |           |        |          | 485  |      |      |      | 43.20 |
| V-14S        | <u> </u>    | 07.      | 2      |           | 1.0    |          |      |      |      |      |       |
| V-145        | 02          | /0<br>07 | 2      | 3         | 1.2    | 0.8      | 0.8  | 0.6  | 0.2  | 0.5  |       |
| V-145        |             | 70       | 20     | 20        | 20.5   | 20.5     | 20.9 | 20.9 | 21.0 | 20.0 |       |
| V-145        | Total PTEV  | ppm      | 14.3   |           | 0.673  |          | 113  |      |      | 192  |       |
| V-145        | Temperature |          | 0.2/12 |           | 0.0159 |          | 26.0 |      |      | 22.8 |       |
| V-145        | CO2         | -C       |        |           |        |          | 1.0  | 0.0  |      | 0.4  | -0.1  |
| V-15D        | 02          | 70<br>07 |        |           | 2.1    |          | 0.8  | 0.35 | 0.2  | 0.4  | 0.7   |
| V-15D        |             | 70       |        |           | 19.9   | 21       | 20.6 | 20.9 | 21.0 | 20.2 | 20.5  |
| V-15D        | Total BTEV  | ppm      |        |           |        | <u> </u> | 118  |      |      |      | 0.7   |
| V-150        | CO2         | ppm<br>ø | 0      |           |        |          | 27.5 |      |      |      | 0.03  |
| V 159        | 02          | %<br>11  | 9      |           | 0.4    | 0.5      | 0.3  | 0.35 | 0.0  | 0.4  | 0.2   |
| V 159        |             | %        | 13.5   |           | 21     | 21       | 20.9 | 20.9 | 21.0 | 20.4 | 20.8  |
| V-155        | Tatal DTEV  | ppm      |        |           |        | ļ        | 230  |      |      |      | 0.08  |
| V-155        | Tomporateur | ppm      |        |           | ļ      |          | 51.4 |      |      |      | 0.0   |
| V 16D        | Temperature | °C       |        |           |        | 13.6     | 4.2  | 0.6  | 1.0  | 1.3  | -0.1  |
| V-10D        | 02          | %        |        |           | 6.1    | 5.5      | 4    | 1.5  | 0.8  | 0.6  | 0.9   |
| V-10D        |             | %        |        |           | 17     | 18       | 18.5 | 20.5 | 21.0 | 20.5 | 20.1  |
| V-10D        | INMHC       | ppm      |        |           |        |          | 184  |      |      |      | 1.0   |
| V-10D        | Total BTEX  | ppm<br>~ | 10     |           |        |          | 17.8 |      |      |      | 0.03  |
| V-105        | 02          | %        | 13     | 1         | 0.4    | 0.6      | 0.5  |      | 0.1  |      |       |
| V-105        |             | %        | 6      | 20.5      | 21     | 21       | 20.9 |      | 21.0 |      |       |
| V-165        | INMHC       | ppm      |        |           | ·      |          | 99.8 |      |      |      |       |
| V-105        | Total BIEX  | ppm      |        |           |        |          | 22.7 |      |      |      |       |
| V-105        | Temperature | °C       |        |           |        |          |      |      |      | 1.3  | -0.3  |
| V-1/D        | CO2         | %        |        |           | 3.5    | 1.5      | 1.0  | 0.4  | 0.1  | 0.4  | 0.6   |
| <u>V-1/D</u> | 02          | _%       |        |           | 18.5   | 20.5     | 20.5 | 20.9 | 21.0 | 20.5 | 20.7  |
| V-1/D        | TNMHC       | ppm      |        |           |        |          | 77.3 |      |      |      | 12.7  |
| V-17D        | Total BTEX  | ppm      |        |           |        |          | 16.1 | _    |      |      | 0.53  |
| V-17S        | Temperature | °C       |        | ·         |        |          |      |      |      |      | -0.3  |
| V-18D        | CO2         | %        |        |           |        | 9.5      | 0.3  | 0.8  | 0.3  | 1.4  | 0.8   |
| V-18D        | O2          | %        |        |           |        | 11.5     | 20.9 | 20.7 | 21.0 | 20.0 | 20.0  |
| V-18D        | TNMHC       | ppm      |        |           |        |          |      |      |      |      | 405   |
| V-18D        | Total BTEX  | ppm      |        |           |        |          |      |      |      |      | 34.7  |
| V-18S        | CO2         | %        |        |           |        | 0.3      |      | 0.3  |      |      |       |
| V-18S        | 02          | %        |        |           |        | 21       |      | 20.9 |      |      |       |
| V-18S        | Temperature | °C       |        |           |        | 13.4     | 4.0  |      | 0.4  | 1.5  | -0.3  |
| V-19D        | CO2         | %        |        |           | 1.1    | 1.5      | 3.2  | 0.8  | 0.5  | 0.6  |       |
| V-19D        | 02          | %        |        |           | 19.9   | 19       | 18.5 | 20.9 | 20.5 | 20.2 |       |
| V-19D        | TNMHC       | ppm      |        |           |        | 13100    | 2270 |      |      |      |       |
| V-19D        | Total BTEX  | ppm      |        |           |        | 19.8     | 94.7 |      |      |      |       |
| V-19S        | CO2         | %        | 13.5   | 0.5       | 2.3    | 3.7      | 2.8  |      | 0.2  |      |       |



| Location | Analyte     | Units | G0    | G1   | G2   | G3   | <b>G4</b> | G5   | G6   | <b>G7</b> | <b>G8</b> |
|----------|-------------|-------|-------|------|------|------|-----------|------|------|-----------|-----------|
| V-19S    | O2          | %     | 4     | 21   | 17   | 17   | 20        |      | 20.0 |           |           |
| V-19S    | TNMHC       | ppm   | 8.25  |      |      |      | 58.2      |      |      |           |           |
| V-19S    | Total BTEX  | ppm   | 0.150 |      |      |      | 8.4       |      |      |           |           |
| V-19S    | Temperature | °C    | 13.1  |      |      | 13   | 1.8       |      |      |           |           |
| V-20D    | CO2         | %     |       |      | 0.5  | 1.5  | 3         | 1.5  | 1.5  | 0.6       | 0.8       |
| V-20D    | O2          | %     | [!    |      | 20.5 | 19.5 | 18.2      | 20.5 | 20.0 | 20.5      | 20.2      |
| V-20D    | TNMHC       | ppm   |       |      |      |      | 156       |      |      |           | 605       |
| V-20D    | Total BTEX  | ppm   |       |      |      |      | 16.5      |      |      |           | 9.1       |
| V-20S    | CO2         | %     | 6     | 0.5  | 1    | 2.5  | 2         |      | 0.0  |           |           |
| V-20S    | O2          | %     | 14    | 20.5 | 18.5 | 19   | 20        |      | 20.0 |           |           |
| V-20S    | TNMHC       | ppm   | 90.8  |      |      |      | 119       |      |      |           |           |
| V-20S    | Total BTEX  | ppm   | 0.823 |      |      |      | 13.7      |      |      |           |           |
| V-20S    | Temperature | °C    |       |      |      |      | 1.0       |      |      | -0.5      | -1.1      |

FD = Field duplicate LD = Lab duplicate FD/LD = Lab duplicate of Field duplicate



| Location      | Analyte     | Units | GO     | G1   | G2   | G3   | G4    | G5   | G6       | G7   | C8    |
|---------------|-------------|-------|--------|------|------|------|-------|------|----------|------|-------|
| V-1D          | CO2         | %     |        |      | 3.2  | 1    |       | 0.8  | 0.2      | 0.5  | 1.6   |
| V-1D          | 02          | %     |        |      | 19   | 20.5 |       | 20.1 | 20.0     | 20.9 | 18.2  |
| V-1D          | Temperature | °C    | 0.0    | 1.3  | 0.5  | 0.2  | 0.5   | 4.6  | 7.5      | 18.6 | 9.5   |
| V-1D          | TNMHC       | ppm   |        |      |      |      | T     |      |          | 705  | 673   |
| V-1D          | Total BTEX  | ppm   |        |      |      |      |       |      | 1        | 16.4 | 5.92  |
| V-1D<br>LD    | TNMHC       | ppm   |        |      |      |      |       |      |          |      | 671   |
| V-1D<br>LD    | Total BTEX  | ppm   |        |      |      |      |       |      |          |      | 5.91  |
| V-1S          | CO2         | %     | 7      | 0.5  | 2.2  | 5    | 2.6   | 1.9  | 0.5      | 0.6  | 20    |
| V-1S          | 02          | %     | 16     | 20.5 | 17.5 | 2    | 17    | 19   | 19.0     | 20.0 | 13.4  |
| V-1S          | TNMHC       | ppm   | 13600  |      | 1    |      | 12600 |      |          | 20.0 | 715   |
| V-1S          | Total BTEX  | ppm   | 435.3  |      |      |      | 497.3 |      | 1        |      | 21.1  |
| V-1S          | Temperature | °C    |        |      |      | 16.2 | 7.4   | 9.1  | 8.3      | 24.6 | 14.8  |
| V-2D          | CO2         | %     | -      |      | 1    | 1    | 0.8   |      | 2.0      |      |       |
| V-2D          | O2          | %     |        |      | 21.2 | 20.5 | 20.9  |      | 18.0     |      |       |
| V-2D          | TNMHC       | ppm   |        |      |      |      | 8370  |      |          |      |       |
| V-2D          | Total BTEX  | ppm   |        |      |      |      | 447   |      | <u> </u> |      |       |
| V-2D          | Temperature | °C    | 0.6    | 1.3  | 1.4  | 0.2  | 0.3   | 5.0  | 6.6      | 16.1 | 10.3  |
| V-2S          | CO2         | %     | 0.5    | 0.5  | 4    | 5    | 5.7   | 4.2  | 6.0      | 7.5  | 5.9   |
| V-2S          | <b>O</b> 2  | %     | 20.9   | 20.5 | 16   | 13.5 | 14.5  | 14   | 12.0     | 12.0 | 12.5  |
| V-2S          | TNMHC       | ppm   | 15600  |      |      |      | 13700 |      |          |      | 6070  |
| V-2S          | Total BTEX  | ppm   | 604.08 |      |      |      | 433   |      |          |      | 120   |
| V-2S LD       | TNMHC       | ppm   |        |      |      |      |       |      |          |      | 6080  |
| V-2S LD       | Total BTEX  | ppm   |        |      |      |      |       |      |          |      | 120   |
| V-2S FD       | TNMHC       | ppm   |        |      |      |      |       |      |          |      | 6210  |
| V-2S FD       | Total BTEX  | ppm   |        |      |      |      |       |      |          |      | 100   |
| V-2S<br>FD/LD | TNMHC       | ppm   | ĺ      |      |      |      |       |      |          |      | 6190  |
| V-2S<br>FD/LĐ | Total BTEX  | ppm   |        |      |      |      |       |      |          |      | 100   |
| V-2S          | Temperature | °C    |        |      |      | 17.2 |       | 14.1 | 10.8     | 33.6 | 24.7  |
| V-3D          | CO2         | %     |        |      | 8    | 4    | 0.5   | 3.9  | 5.0      | 5.5  | 6.2   |
| V-3D          | 02          | %     |        |      | 11   | 18   | 20.9  | 15   | 14.5     | 14.5 | 12.4  |
| V-3D          | TNMHC       | ppm   |        |      |      |      |       |      | 16300    |      | 18400 |
| V-3D          | Total BTEX  | ppm   |        |      |      |      |       |      | 629      |      | 623   |
| V-3D          | Temperature | °C    | 1.2    | 1.1  | 1.4  | 0.5  | 1.4   | 7.1  | 9.5      | 18.9 | 16.8  |
| V-3S          | CO2         | %     | 0.5    | 0.5  | 9.5  | 6.5  | 5.1   |      | 1.0      |      |       |
| V-3S          | <b>O</b> 2  | %     | 20.9   | 20.5 | 15.5 | 6    | 12    |      | 19.0     |      |       |
| V-3S          | TNMHC       | ppm   | 14900  |      |      |      | 6830  |      |          |      |       |

 Table C-8

 Analytical Results for the Soil Gas Collected in the West Unit
## Table C-8 (Continued)

| Location    | Analyte     | Units   | G0    | <b>G</b> 1 | G2   | G3    | G4   | G5    | G6   | <b>G7</b> | <b>G8</b> |
|-------------|-------------|---------|-------|------------|------|-------|------|-------|------|-----------|-----------|
| V-3S        | Total BTEX  | ppm     | 600   |            |      |       | 378  |       |      |           |           |
| V-3S        | Temperature | ۰C      |       |            |      | 24.5  |      | 13.7  | 13.8 | 41.1      | 33.7      |
| V-4D        | CO2         | %       |       |            | 10.5 | 11    |      | 0.4   | 7.0  | 8.9       |           |
| V-4D        | O2          | %       |       |            | 4    | 7.5   |      | 20.9  | 9.5  | 8.5       |           |
| V-4D        | TNMHC       |         |       |            |      |       |      | 17200 |      | 12800     |           |
| V-4D        | TNMHC       | ppm     |       |            |      |       |      |       |      | 12800     |           |
| LD          |             |         |       |            |      |       |      |       |      |           |           |
| V-4D        | Total BTEX  |         |       |            |      |       |      | 1210  |      | 376.9     |           |
| V-4D        | Total BTEX  | ppm     |       |            |      |       |      |       |      | 378.5     |           |
| LD          |             |         |       |            |      |       |      |       |      |           |           |
| V-4S        | CO2         | %       | 13    | 0.5        | 0.8  | 5     | 2    |       | 0.3  |           |           |
| V-4S        | 02          | %       | 6     | 20.5       | 18   | 1.5   | 16   |       | 20.0 |           |           |
| V-4S        | TNMHC       | ppm     | 15400 |            |      |       | 5270 |       |      |           |           |
| V-4S        | Total BTEX  | ppm     | 489   |            |      |       | 453  |       |      |           |           |
| <u>V-4S</u> | Temperature | °C<br>~ |       |            |      | 21.1  | 6.9  | 10.7  | 13.8 | 21.0      | 18.6      |
| V-5D        | <u>CO2</u>  | %       |       |            | 2.2  | 1.8   |      |       | 0.2  |           |           |
| V-5D        | 02          | %       |       |            | 19.5 | 20.5  |      |       | 21.0 |           |           |
| V-5D        | Temperature | °C      | 0.0   | 1.2        | 0.1  | 0.0   | 0.6  | 6.7   | 2.0  | 5.3       | 2.3       |
| V-5S        | CO2         | %       | 2.5   | 8          | 1.5  | 2     | 1.4  | 0.5   | 0.3  | 0.4       | 0.5       |
| V-5S        | 02          | %       | 19    | 19         | 19   | 18.5  | 20   | 20.8  | 20.5 | 20.8      | 20.2      |
| V-5S        | TNMHC       | ppm     | 2290  |            |      |       | 380  |       |      |           | 7.5       |
| V-5S        | Total BTEX  | ppm     | 44.8  |            |      |       | 127  |       |      |           | 1.96      |
| V-5S        | Temperature | °C      |       |            |      |       |      |       | 0.2  |           | 2.1       |
| V-6D        | CO2         | %       |       |            | 2    | 3     | 2.5  | 1.3   | 0.8  | 1.0       | 0.8       |
| V-6D        | 02          | %       |       |            | 19.5 | 19    | 19   | 20.1  | 20.5 | 20.9      | 19.8      |
| V-6D        | TNMHC       | ppm     |       |            |      |       | 9150 | 8570  |      |           | 1810      |
| V-6D        | Total BTEX  | ppm     |       |            |      |       | 720  | 410   |      |           | 130       |
| V-6D        | Temperature | °C      | -0.8  | 1.1        | 0.9  | 0.5   | 0.1  | 6.7   | 0.7  | 2.5       | 0.8       |
| V-6S        | CO2         | %       | 3     | 0.5        | 0.5  | 0.3   | 0.4  | 1.3   | 0.2  |           |           |
| V-6S        | 02          | %       | 17    | 20.5       | 20.5 | 21    | 20.9 | 20.1  | 21.0 |           |           |
| V-6S        | TNMHC       | ppm     | 326   |            |      | 4.78  | 98.7 |       |      |           |           |
| V-6S        | Total BTEX  | ppm     | 12.6  |            |      | 0.210 | 23.0 |       |      |           |           |
| V-6S        | Temperature | °C      |       |            |      |       |      | 6.7   |      | 2.7       | 0.4       |
| V-7D        | CO2         | %       |       |            | 1.8  | 4     | 3.5  | 1.3   | 2.5  | 1.0       | 1.5       |
| V-7D        | O2          | %       |       |            | 18.5 | 19    | 18.2 | 19.9  | 19.0 | 19.5      | 19.0      |
| V-7D        | TNMHC       | ppm     |       |            |      |       | 430  |       |      |           | 3940      |
| V-7D        | Total BTEX  | ppm     |       |            |      |       | 54.7 |       |      |           | 197       |
| V-7D        | Temperature | °C      | -0.2  | 0.5        | 0.9  |       | 0.3  | 4.4   |      | 1.0       | -0.3      |
| V-7S        | CO2         | %       | 10    | 0.5        | 0.7  | 0.8   | 0.5  |       | 0.3  | 0.4       | 0.4       |
| V-7S        | O2          | %       | 2.5   | 20.5       | 20.3 | 18    | 20.9 |       | 21.0 | 20.8      | 20.2      |





## Table C-8 (Continued)

| Location | Analyte     | Units | GO   | G1   | G2   | G3       | G4    | G5   | G6   | G7   | G8    |
|----------|-------------|-------|------|------|------|----------|-------|------|------|------|-------|
| V-7S     | TNMHC       | ppm   | 2040 |      | 1    |          |       |      |      |      | 07.6  |
| V-7S     | Total BTEX  | ppm   | 37.4 |      |      |          |       |      |      |      | 15.0  |
| V-8D     | CO2         | %     |      |      | 3.7  | 4.2      | 4     | 1    | 0.4  | 26   | 4.0   |
| V-8D     | O2          | %     |      |      | 16   | 18.5     | 16.2  | 20   | 16.5 | 17.0 | 15.8  |
| V-8D     | TNMHC       | ppm   |      |      |      | <u> </u> | 11000 |      | 1010 |      | 16200 |
| V-8D     | Total BTEX  | ppm   |      |      |      |          | 774   |      | [    |      | 710   |
| V-8S     | CO2         | %     | 1.5  | 0.5  |      | 2        | 0.7   | 0.6  | 0.5  | 0.6  | 0.7   |
| V-8S     | O2          | %     | 18   | 20.5 |      | 18.5     | 20.5  | 20.9 | 21.0 | 20.7 | 20.0  |
| V-8S     | TNMHC       | ppm   | 1560 |      |      |          | 3.04  |      |      | 2017 | 0.37  |
| V-8S     | Total BTEX  | ppm   | 31.7 |      |      |          | 0.14  |      |      |      | 0.02  |
| V-8S     | Temperature | °C    |      |      |      | 11.5     | 1.6   |      |      | -2.1 | 0.02  |
| V-9D     | CO2         | %     |      |      | 6.1  | 9        |       |      | 0.0  | 0.3  | 0.1   |
| V-9D     | <b>O</b> 2  | %     |      |      | 12.3 | 9.5      |       |      | 20.5 | 20.8 |       |
| V-9S     | CO2         | %     | 16   | 0.5  | 2.8  | 3.8      | 3     | 1    | 0.3  | 0.8  | 07    |
| V-9S     | 02          | %     | 3    | 20.5 | 17   | 9.5      | 18    | 20   | 20.0 | 20.0 | 19.0  |
| V-9S     | TNMHC       | ppm   | 9080 |      |      |          |       |      |      |      | 56.3  |
| V-9S     | Total BTEX  | ppm   | 439  |      |      |          |       |      |      |      | 5.79  |
| V-9S     | Temperature | °C    |      |      |      | 14.6     |       |      | -0.3 |      |       |
| V-10D    | CO2         | %     |      |      | 3    | 8        | 5     | 4.5  | 1.5  | 1.9  | 2.5   |
| V-10D    | O2          | %     |      |      | 17.3 | 11.5     | 12    | 15   | 19.5 | 18.8 | 17.6  |
| V-10D    | TNMHC       | ppm   |      |      |      |          |       |      |      |      | 3970  |
| V-10D    | Total BTEX  | ppm   |      |      |      |          |       |      |      |      | 205   |
| V-10S    | CO2         | %     | 0.8  | 0.5  | 2.5  |          |       |      |      |      |       |
| V-10S    | 02          | %     | 20.9 | 20.5 | 17.5 |          |       |      |      |      |       |
| V-10S    | TNMHC       | ppm   | 6.17 |      |      |          |       |      |      | -    |       |
| V-10S    | Total BTEX  | ppm   | 1.75 |      |      |          |       |      |      |      |       |
| V-10S    | Temperature | °C    | 7.5  |      |      | 16.1     | İ     |      |      |      |       |

FD= Field duplicateLD= Lab duplicateFD/LD= Lab duplicate of Field duplicate

C-42

### **APPENDIX C.3**

**SVE Flow Rate Calculations** 



| CORPORATION                 |                                 | ONLET              | CALC. NO      | <b>i</b> , |
|-----------------------------|---------------------------------|--------------------|---------------|------------|
| IGNATURE MA ROSSINS         | DATE/14/93                      | CHECKED_ <u>CS</u> | H DATE12/     | 13/93      |
| PROJECT GALENA TS           | · · ·                           | JOB NO             |               |            |
| SUBJECT SWE Flow Calca atom |                                 | SHEET              | OF            | SHEETS     |
|                             |                                 |                    |               |            |
|                             |                                 | <i>′</i>           |               |            |
| THE Flow_ through           | h the Solt h                    | April Extraction   | Suster        |            |
| 15 MARSUNEL THIO            | eya the set                     | OT A piror         | n tu tr       |            |
| the discretering the        | et Norens - Are                 |                    | Let           |            |
| pressure to give            | Se vering The                   | TSCOR.             |               |            |
|                             | 1.<br>                          |                    |               |            |
| The Equation - or           | - de la cala                    | u Az               |               |            |
| V= 102,2-5                  | 1/d war                         |                    |               |            |
| V = Velocity                | N ETIMIN)                       |                    |               |            |
| $h_{V} = 0.1$               | o pressiare (                   | $(n o = \mu_2 )$   |               |            |
| 0 : 6205                    | OF AND AT MEA                   | super Contrations  |               |            |
| d Good Yacana cours         |                                 | = ihelf.3 × Pro-   | بیر           |            |
| Pressure From               | == Evacuum in                   | nHg) + Baro Press  | serve (in He) |            |
|                             |                                 | 29.97 in Hay       |               |            |
| The Trees                   | $\left( 10^{2}-1\right)$        |                    |               |            |
| remp taciox                 | $= \frac{100 + 1}{1000 + 1000}$ | $\frac{460}{5}$    |               |            |
|                             |                                 |                    |               |            |
| ~                           |                                 |                    |               |            |
| TINE                        |                                 |                    |               |            |
| Q= AV                       |                                 |                    |               |            |
| A: fires of P.P             | $(\mp r^2) = \frac{\pi P}{4}$   | 2                  |               |            |
|                             |                                 |                    |               |            |
| Because the velocity        | 6 13 mor Equiv                  | valent across the  | section OF    |            |
| Dipe and the resulting      | a was proce                     | 2 In the contra    | plee by       |            |
| 0.9 -0 05-470 -14           | 2027.46 <b>5</b>                |                    | C             |            |
| 6 6 a chul                  |                                 |                    |               |            |
| (00 YAVE = 0.7AY            |                                 |                    |               |            |
|                             | C-45                            |                    |               |            |

| RADIAN                                                                                     | CALCULA                                                                                                                                   | TION SHEET                                                                                                                                                                                                                            |                       |            |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|
| SIGNATURE MARCO                                                                            | DATE                                                                                                                                      | 14 93 CHECKED                                                                                                                                                                                                                         | CALC. NO.             | 12/3/93    |
| PROJECT GALENA TS                                                                          | /                                                                                                                                         | JOB NO                                                                                                                                                                                                                                |                       |            |
| SUBJECT SVE Flow Color                                                                     | 2-131)                                                                                                                                    | SHEETZ                                                                                                                                                                                                                                | OF                    | SHEETS     |
| EXAmple 8<br>DATA<br>Vacuum =<br>DIFF P =<br>Baro P =<br>Temp =<br>Pipe DIA =<br>d = 0.075 | $\frac{70 \times 1120}{750.5 \times 1120}$ $\frac{750.5 \times 1120}{750.5 \times 1120}$ $\frac{490 \times 1120}{120}$ $\frac{1000}{120}$ | $\frac{70iw H_{20}}{13\frac{4}{10}} + 29,7$ $\frac{70iw H_{20}}{13\frac{4}{10}} + 29,7$ $\frac{13\frac{4}{10}}{10\frac{4}{2}} - 29,92^{\prime\prime\prime} + 49$ $\frac{29.92^{\prime\prime\prime}}{29.92^{\prime\prime\prime}} + 49$ | 73 " 43 ) +           | 4          |
| = 0.075                                                                                    | 5/FT3 ( 1.163                                                                                                                             | )(1.037)                                                                                                                                                                                                                              | ·]                    |            |
| d = 0.5933 i                                                                               | bs/FT3                                                                                                                                    |                                                                                                                                                                                                                                       |                       |            |
| V = 109:5.77                                                                               | 7.5 /0.030 <b>8</b>                                                                                                                       | i.                                                                                                                                                                                                                                    |                       |            |
| V= 0,007                                                                                   | FTIMIN                                                                                                                                    |                                                                                                                                                                                                                                       |                       |            |
| $Q = \left( \exists \exists \exists i \in \{i\} \right)$                                   | =/12) * 0                                                                                                                                 | 1967 * 0.9                                                                                                                                                                                                                            |                       |            |
| Q= 178 22                                                                                  | <i>د</i> ر                                                                                                                                |                                                                                                                                                                                                                                       |                       |            |
| Constant Thomas La<br>VP                                                                   | hoù Chison                                                                                                                                | with the Standard                                                                                                                                                                                                                     | USE THE YORAL         | gos barria |
| Segura ACEM                                                                                | ¥ (29.78.)<br>29.92.                                                                                                                      | -) + <u>525</u> °                                                                                                                                                                                                                     | $\frac{R}{R} = 183.4$ | Bscfm      |

| $\infty$ |  |
|----------|--|
| f        |  |
| Per      |  |

03/23/94

SCFM

Outlet Flow Densith Air Velocity ACFM Outlet Flow Densith Air Velocity ACFM

SCFM

Inlet Flow Density Air Velocity ACFM Inlet Flow Density Air Velocity ACFM

156.79

152.12

8494.94

0.09158

29.85

| 5  |
|----|
| -  |
| æ  |
|    |
| ซ  |
| ъ. |
| õ  |
| Ň  |
| ш  |
| ш  |
| >  |
| Ś  |

East Unit

| Time          | 1 Ime        | 17:00    | 17:20    | 17:25    | 17:00    | 17:00    | 18:55    | 18:40    |          | 07:15    | 08:00    | 10:30    | 07:30    | 07:42    | 07:45    | 07:30    | 07-45    | 07:30    | 07:30    | 07:10    | 11:15    | 60:00    | 08:30    | 10:50    | 09:15    | 08:30    | 18:06    | 10:45    | 00.50    | 05:50    | 13:20    | 07:45    | 19:30    | 18:30    | 14:45    | 11:00    | 08:50    | 08:44    | 08:21    | 08:30     | 007-59   | 08:23    | 08:10    | 08:15    | 08:00    | 08:30    | 08:10    | 08:00    | 10:40    | 01:10      | 08:00     | 09:15    | 08:09    | 07:31    | 09:15    | 08:45    | 08:30    | 08:15    | 08:30    | 08:00    | 08:15    | 08:1U<br>08:15 | 08:20    |
|---------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------|----------|
| HC Cond       | HC Cond      |          |          |          |          |          |          |          |          |          |          |          |          | 1200     | 1100     | 1200     | 1000     | 1100     | 1200     | 450      | 950      | 0001     | 1200     | 1000     | 1100     |          |          | 0000     | 1400     |          | 1400     | 1600     | 1100     | 1000     | 028      | 650      | 746      | 620      | 500      | 005       | 160      | 28       | 180      | 290      | 110      | 000      | 180      | 210      | 240      | 300        | 021       | 82       | 260      | 445      | 360      |          | 400      | 450      | 450      | 400      | 800      | 420            | <u> </u> |
| Exhaust Bad   | EXhaust Bad  | 0.3      | 0.23     | 0.3      | 0.0      | 0.2      | 0.35     | 0.25     | 0.25     | 0.25     | 0.3      | 0.3      | 0.2      | 0.2      | 0.2      | 0.25     | 0.3      | 0.25     | 0.4      | 0.3      | 0.4      | 0.35     | 0.3      | 0.3      | 0.25     | 0.32     | 0.4      | 0.41     | 1.09     | 0.5      | 0.4      | 0.4      | 0.4      | 0.3      | 0.2      | 0.25     | 0.2      | 0.3      | 0.3      | 0.2       | 0.0      | 0.1      | 0.2      | 0.2      | 0.8      | 0.7      | 0.7      | 0.7      | 0.6      | 0.6        | G.U       | 0.4      | 0.6      | 0.7      | 0.7      |          | 0.65     | 0.6      | 0.3      | 0.6      | 0.6      | 0.5            | 0.5      |
| Inlet Temp (4 | net lemp (4  | 51       | 52       | 52       | 52       | 58.      | 65       | 53       | 53       | 53       | 47       | 46       | 57       | 54       | 56       | 60       | 50       | 50       | 42       | 45       | 63       | 55       | 61       | 63       | 69       | 60       | 60       | 50       | 12       | 62       | 58       | 50       | 59       | 58       | 56       | 52       | 58       | 53       | 56       | 40        | 57       | 45       | 46       | 40       | 44       | 40       | 38       | 60       | 95       | 44         | 88        | 80       | 80       | 84       | 92       |          | 06       | 96       | 94       | 91       | 96       | 55             | 56       |
| Exhaust Flor  | EXNAUST FION | 0.4      | 0.4      | 0.4      | 0.4      | 4.0      | 0.45     | 0.35     | 0.35     | 0.35     | 0.0      | 0.35     | 0.4      | 0.4      | 0.35     | 4.0      | 0.35     | 0,35     | 0.3      | 0.3      | 0.4      | 4.0      | 0.35     | 0.4      | 0.4      | 0.38     | 0.43     | 0.43     | 60.0     | 0.4      | 0.4      | 0.4      | 0.4      | 0.35     | 0.4      | 0.35     | 0.4      | 0.3      | 0.3      | 20.0      | 0.0      | 0.25     | 0.2      | 0.2      | 0.3      | 0.0      | 0.4      | 0.4      | 0.0      | 9.0<br>1.0 | 0.61      | 0.5      | 0.65     | 0.5      | 0.45     |          | 0.8      | 0.6      | 0.6      | 0.65     | 0.7      | 0.5            | 0.6      |
| Inlet Flow (5 | 19 YOI-1 19U | 5.5      | 5        | 5        | 2 4      | 2        | 6.3      | 5        | 5        | C u      | 0.4      | 5        | 4.9      | 5        | 4.9      | 5.9      | 5.5      | 5.6      | 5.4      | 9        | 5.5      | 0.0<br>1 | 5.5      | 5.5      | 5.3      | 5.5      | 6.1      | 6.9      | 0 4      | 5.8      | 5.8      | 5.8      | 5.5      | 5.3      | 2.0      | 25       | 5        | 4.8      | 4.7      | 4.9       | 44       | 4.9      | 4.8      | 4.6      | 5        | 1.6      | -        | -        | -        | 9.0<br>F   | -         | 1.7      | 1.7      | 1.3      | 1.6      |          | 2.4      | 3.9      | 4        | 3.9      | 3.8      | 4.6            | 4.6      |
| System Vacu   | System Vacu  | 75       | 75       | 76       | 76       | 76       | 72       | 76       | 76       | 76       | 75       | 76       | 74       | 74       | 72       | 17       | 72       | 72       | 75       | 74       | 63       | 20       | 99       | 66       | 71       | 70       | 68       | 68       | 14       | 69       | 70       | 72       | 72       | 73       | 5/       | 75       | 82.5     | 76       | 22       | 8/        | 83       | 81       | 82       | 82       | 40       | 42       | 46       | 42       | 44       | 90         | 90        | 66       | 54       | 45       | 42       |          | 38       | 50       | 50       | 50       | 50       | 61             | 60       |
| Exhaust Ten   | EXhaust len  | 147      | 147      | 142      | 150      | 154      | 140      | 142      | 142      | 142      | 143      | 140      | 154      | 152      | 157      | 148      | 143      | 142      | 140      | 124      | 158      | 191      | 150      | 153      | 159      | 150      | 146      | 138      | 140      | 160      | 146      | 136      | 149      | 148      | 061      | 149      | 150      | 154      | 153      | 142       | 103      | 142      | 82       | 142      | 08       | 108      | 110      | 125      | 164      | 116        | 180       | 150      | 160      | 146      | 156      |          | 148      | 162      | 154      | 164      | 168      | 135            | 134      |
| Running Tin   |              | 18       | 7        | 22       | 24       | 22       | 22       | 13       | 8        | 21       | 24       | 24       | 24       | 24       | 24       | 12       | 21       | 20       | 22       | 12       | 24       |          | 24       | 24       | 24       | 21       | 9        | 16       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 12       | 14       | 12       | 10       | 10        | n d      | 12       | 12       | 12       | 12       | 24       | 12       | 12       | 24       | 24         | 24        | 16       | 12       | 20       | 14       | 2        | 15       | 24       | 24       | 12       | 12       | 24             | 24       |
| Date          | Date Date    | 08/04/93 | 08/02/93 | 08/06/93 | 08/07/93 | 08/09/93 | 08/10/93 | 08/11/93 | 08/12/93 | 08/13/83 | 08/15/93 | 08/16/93 | 08/17/93 | 08/18/93 | 08/19/93 | 08/20/93 | 08/22/00 | 08/23/93 | 08/24/93 | 08/25/93 | 08/26/93 | 08/2//83 | 09/20/93 | 08/30/93 | 08/31/93 | 09/01/83 | 09/02/93 | 66/00/60 | 09/04/93 | 66/90/60 | 09/07/93 | 09/08/93 | 66/60/60 | 08/10/83 | 66/11/80 | 09/13/93 | 09/14/93 | 09/15/93 | 09/16/93 | 66/17/80  | 09/18/93 | 09/20/93 | 09/21/93 | 09/22/93 | 09/23/93 | 09/24/93 | 09/26/93 | 09/27/93 | 09/28/93 | 09/28/93   | 10/01/03  | 10/02/93 | 10/03/93 | 10/04/93 | 10/05/93 | 10/06/93 | 10/08/93 | 10/08/93 | 10/10/93 | 10/11/93 | 10/12/93 | 10/14/93       | 10/15/93 |
| Date          | Date         | 08/04/93 | 08/05/93 | 08/06/83 | 08/07/83 | 08/09/93 | 08/10/93 | 08/11/93 | 08/12/93 | 08/13/93 | 08/15/93 | 08/16/93 | 08/17/93 | 08/18/93 | 08/19/93 | 08/20/93 | 08/22/80 | 08/23/93 | 08/24/93 | 08/25/93 | 08/26/93 | CO100100 | 08/20/93 | 08/30/93 | 08/31/93 | 09/01/93 | 09/02/93 | 68/03/83 | 08/04/83 | 66/90/60 | 09/07/93 | 09/08/93 | 68/60/60 | 08/10/83 | 08/11/83 | 09/13/93 | 09/14/93 | 09/15/93 | 09/16/93 | 00/1/1/00 | 09/10/03 | 09/20/93 | 09/21/93 | 09/22/93 | 09/23/93 | 09/24/93 | 09/26/93 | 09/27/93 | 09/28/93 | 09/29/93   | 10//30/93 | 10/02/93 | 10/03/93 | 10/04/93 | 10/05/93 | 10/06/93 | 10/08/93 | 10/09/93 | 10/10/93 | 10/11/93 | 10/12/93 | 10/10/03       | 10/15/93 |

| 8     | 147 | 75   | 5.5               | 0        | 4    | 51  | 0.3  | 17:00      | 29.85  | 0.09158 | 8494.94          | 152.12  | 156.79 | 0.06405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2740.59  | 129.28 | 112.17 |
|-------|-----|------|-------------------|----------|------|-----|------|------------|--------|---------|------------------|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|--------|
| ~     | 147 | 75   | 5                 | .0       | 4    | 52  | 0.23 | 17:20      | 29.94  | 0.09165 | 8096.66          | 144.99  | 149.62 | 0.06395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2742.81  | 129.39 | 112.62 |
| 22    | 142 | 76   | 5                 | ·'0      | 4    | 52  | 0.3  | 17:25      | 29.96  | 0.09188 | 8086.57          | 144.81  | 149.51 | 0.06451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2730.79  | 128.82 | 113.12 |
| 54    | 150 | 76   | 5                 | .0       | 4    | 52  | 0.3  | 17:00      | 30.01  | 0.09202 | 8080.32          | 144.70  | 149.67 | 0.06379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2746.30  | 129.55 | 112.47 |
| 1     | 146 | 75   | 5 5               | 0.1      | 4 51 | 1.5 | 0.3  | 18:20      | 29.98  | 0.09184 | 8088.15          | 144.84  | 149.81 | 0.06459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2729.24  | 128.75 | 112.40 |
| 22    | 154 | 76   | 3                 | 0.0      | 4    | 58  | 0.2  | 17:00      | 29.97  | 0.09084 | 8132.67          | 145,64  | 148.67 | 0.06306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2762.20  | 130.30 | 112.22 |
| 22    | 140 | 72   | 6,3               | 0.4:     | 9    | 65  | 0.35 | 18:55      | 29.79  | 0.08845 | 9251.62          | 165.67  | 165.90 | 0.06459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2894 75  | 136.65 | 119.65 |
| 13    | 142 | 76   | 3                 | 0.3      | 5    | 53  | 0.25 | 18:40      | 29.71  | 0.09107 | 8122.51          | 145,45  | 148,66 | 0.06420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2560.68  | 120.79 | 105 20 |
| 8     | 142 | 76   | 5 5               | 0.3      | 5    | 53  | 0.25 |            | 29.64  | 0.09089 | 8130.57          | 145.60  | 148.45 | 0.06405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2563.75  | 120.94 | 105.08 |
| 12    | 142 | 71   | 3 5               | 0.3      | 5    | 53  | 0.25 | 00:20      | 29.35  | 0.09013 | 8164.83          | 146.21  | 147.60 | 0.06340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2576.83  | 121.56 | 104.57 |
| 12    | 142 | 76   | 5                 | 0.3      | 5    | 53  | 0.25 | 07:15      | 29.07  | 0.08942 | 8197.16          | 146.79  | 146.79 | 0.06257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2593.84  | 122.36 | 104.27 |
| 24    | 143 | ž    | 4.9               | 0        | e    | 47  | 0.3  | 08:00      | 29.39  | 0.09112 | 8038.65          | 143.95  | 147.26 | 0.06317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2390.02  | 112.74 | 96.97  |
| 1     | 140 | × i  |                   | 0.3      | 2    | 46  | 0.3  | 10:30      | 29.50  | 0.09178 | 8091.01          | 144.89  | 149.07 | 0.06418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2561.17  | 120.82 | 104.83 |
|       | 154 |      | 4 9               |          | 4    | 57  | 0.2  | 1000 07:40 | 29.53  | 0.08951 | 8110.40          | 145.24  | 146.37 | 0.06277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2768.57  | 130.60 | 110.83 |
|       | 157 | 10   |                   | je<br>c  | + 4  | 24  | 0.0  | 1100 07.45 | 29.21  | 0.00055 | 98.078           | CR.041  | 147.37 | 0.06229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2//9.14  | 131.10 | 110.42 |
|       | 148 | 12   | 10 <del>1</del> 1 | 0.0      | 2    | 00  | 0.25 | 600.07.45  | 00 00  | 0.06650 | 0140./1          | 145./8  | 146.30 | 0.06186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2608./4  | 123.06 | 103.29 |
| 1 8   | 153 | 1    | 5                 |          | 1    | 56  | 0 2  | 1300 08-20 | 29.49  | 0.08033 | 12 CR18          | 100.43  | 148 70 | 0.06330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.9C/2  | 130.05 | 111.30 |
|       | 143 | 22   | 5.5               | 0.3      | 2    | 50  | 0.3  | 1000 07:45 | 29.80  | 0.09107 | 8518 68          | 152.55  | 157.30 | 0.06420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2558 BE  | 120.70 | 105.07 |
|       | 142 | 1    | 5.6               | 0.3      | 20   | 50  | 0.25 | 1100 07:30 | 29.96  | 0.09100 | 8588 43          | 153.80  | 158 01 | 0.06429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05.67 60 | 121 12 | 12.001 |
| 2     | 140 | 75   | 5 5.4             | 0        | 3    | 42  | 0.4  | 1200-07:30 | 29.87  | 0.09329 | 8339.96          | 149.35  | 156.82 | 0.06454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2364.43  | 111.54 | 97.99  |
| 12    | 124 | 14   | 9                 | 0        | 3    | 45  | 0.3  | 450 07:10  | 29.90  | 0.09261 | 8823.37          | 158.00  | 165.06 | 0.06591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2339.84  | 110.38 | 99.71  |
| 24    | 158 | ÿ    | 3 5.5             | 0        | 4    | 63  | 0.4  | 950 11:15  | 29.91  | 0.08741 | 8695,19          | 155.71  | 157.15 | 0.06253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2773.79  | 130.85 | 111.75 |
| 2     | 161 | 7:   | 2 5.5             | <u>.</u> | 4    | 69  | 0.35 | 1000 15:05 | 29.92  | 0.08809 | 8661.73          | 155.11  | 154.79 | 0.06224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2780.28  | 131.15 | 111.49 |
| 4     | 155 | 9    | 9 5.5             | 0        | 4    | 65  | 0.35 | 1100 08:00 | 29.88  | 0.08812 | 8660.41          | 155.09  | 155.76 | 0.06299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2763.65  | 130.37 | 111.78 |
| 7     | 150 | Ø Ø  | 5.5               | 0.3      | 12   | 61  | 0.3  | 1200 08:30 | 29.74  | 0.08787 | 8672.83          | 155.31  | 156.42 | 0.06319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2581.03  | 121.75 | 104.74 |
| 4     | 201 | Ø F  | 0.0               | ő        | 4    | 63  | 0.3  | 1000 10:50 | 29.69  | 0.08/42 | 8695.12          | 155.71  | 155.99 | 0.06300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2763.32  | 130.35 | 111.42 |
|       | 801 |      | 2.3               |          | 4    | 69  | 0.20 | G1:60 0011 | 29.00  | 0.08562 | 8624.72          | 154.45  | 149.42 | 0.06061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2817.29  | 132.90 | 109.88 |
| 19    | 101 |      | 0.0               | 100      | 0    | 00  | 0.32 | 18-06      | 201.02 | 0.08/82 | 86/5.28          | 155.35  | 154./6 | 0.06192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2716.73  | 128.16 | 108.83 |
|       | 138 |      |                   |          | 2 0  | 50  | 141  | 10.45      | 20.400 | 0.0018  | 81.00.48         | 103.001 | 100.00 | 0.05257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28/4.94  | 135.62 | 116.45 |
| 2     | 140 | ž    | 9                 | 0.3      | 6    | 52  | 0.39 | 2000 08-00 | 29.94  | 0.090.0 | 8015 RU          | 150.66  | 164 76 | 0.06408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2600 21  | 104.01 | 111.00 |
| 54    | 140 | 1    | 5.8               | 0.4      | 0    | 51  | 0.37 | 1400 09:50 | 29.795 | 0.09069 | 8766.31          | 156.98  | 161.53 | 0.06348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2820 08  | 133.07 | 116.42 |
| 24    | 160 | 65   | 5.8               | ö        | 4    | 62. | 0.5  | 09:20      | 29.14  | 0.08675 | 8963.41          | 160.51  | 158.13 | 0.06047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2820.71  | 133.06 | 110.36 |
| 24    | 146 | 7    | 5.8               | 0        | 4    | 58  | 0.4  | 1400 13:20 | 29.38  | 0.08822 | 8888.37          | 159.17  | 159.31 | 0.06239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2776.94  | 131.00 | 112.08 |
| 4     | 138 | 7    | 5.8               | 0        | 4    | 50  | 0.4  | 1600 07:45 | 30.055 | 0.09174 | 8716.31          | 156.09  | 162.33 | 0.06472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2726.52  | 128.62 | 114 07 |
| 24    | 149 | 7:   | 2 5.5             | .0       | 4    | 59  | 0.4  | 1100 19:30 | 29.8   | 0.08950 | 8583.52          | 153.89  | 155.93 | 0.06344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2753.91  | 129.91 | 112.18 |
| 7     | 148 | 2    | 3 5.3             | 0.3      | 5    | 58  | 0.3  | 1000 18:30 | 30.08  | 0.09057 | 8385.56          | 150.16  | 153.88 | 0.06459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2552.87  | 120.43 | 105.14 |
| 54    | 150 | 7.   | 3 5.2             | 0.       | 4    | 56  | 0.2  | 820 14:45  | 29.75  | 0.09008 | 8328.88          | 149.15  | 151.75 | 0.06322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2758.53  | 130.13 | 112.00 |
| 16    | 142 | 7:   | 2 5.2             | 0.3      | 5    | 52  | 0.3  | 28 08:20   | 29.56  | 0.09010 | 8327.84          | 149.13  | 151.94 | 0.06387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2567.28  | 121.11 | 104.94 |
| 12    | 149 | 74   | 5 5               | 0.3      | 5    | 52  | 0.25 | 650 11:00  | 29.89  | 0.09152 | 8102.38          | 145.09  | 149.48 | 0.06407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2563.18  | 120.91 | 104.73 |
| 4     | 150 | 92.4 | 5                 | 0        | 4    | 58  | 0.2  | 746 08:50  | 29.79  | 0.09162 | 8098.24          | 145.02  | 147.18 | 0.06331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2756.64  | 130.04 | 112.07 |
| 2     | 154 | 76   | 5. 4.8            | 0        | 0    | 53  | 0.3  | 620 08:44  | 29.7   | 0.09104 | 7959.53          | 142.54  | 145.62 | 0.06270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2398.84  | 113.16 | 96.59  |
| -     | 153 | -    | 4.7               | 0        | 9    | 56  | 0.3  | 500 08:21  | 29.35  | 0.08980 | 7930.30          | 142.01  | 142.55 | 0.06249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2402.93  | 113.35 | 95.78  |
| =     | 142 | ŕ    | 9.9               | 0.2      | 20   | 48  | 0.2  | 350 08:30  | 29,875 | 0.09278 | 7966.46          | 142.66  | 148.05 | 0.06479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2154.35  | 101.63 | 89.00  |
| 15    | 133 | 8    | 4.8               | 0.2      | 2    | 50  | 0.2  | 350 13:30  | 29,835 | 0.09307 | 7872.21          | 140.97  | 145.53 | 0.06523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2147.08  | 101.28 | 89.93  |
| -     | 103 | 6    | 3 4.4             | o        | 0    | 57  | 0.3  | 160 007:59 | 29.4   | 0.09089 | 7627.15          | 136.58  | 137.07 | 0.06864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2292.83  | 108.16 | 99.67  |
| 2     | 142 |      | 4.3               | 0.2      | 2    | 45  | 0.1  | 28 08:23   | 29.28  | 0.09235 | 7480.15          | 133.95  | 137.06 | 0.06348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2176.43  | 102.67 | 88.12  |
| 2     | 82  | 8    | 4.8               | 0        | 2    | 46  | 0.2  | 180.08.10  | 29.37  | 0.09259 | 7892.61          | 141.34  | 144.77 | 0.07073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1844.23  | 87.00  | 83.19  |
|       | 142 | 20   | 4.6               |          | 200  | 40  | 0.2  | 290 08:15  | 29.905 | 0.09512 | 7623.10          | 136.51  | 144.08 | 0.06217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1967.09  | 92 79  | 81.35  |
| 10    | 110 | 1    | 4                 |          | 200  | 10  | 0.0  | 240 08-20  | 20.05  | 0.00010 | 30.102C          | 94.30   | 90.91  | 0.06845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27.99.45 | 108.31 | 103.80 |
| 12    | 108 | 78   | 14                | s o      | 9    | 42  | 0.7  | 220 07:20  | 29.63  | 0.08707 | 4395.57          | 78.71   | 82.43  | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000.10  | 110.30 | 101.93 |
| 12    | 110 | 46   | 1                 | o        | 4    | 38  | 0.7  | 180 08:10  | 29.81  | 0.08821 | 3690.78          | 66.09   | 69.82  | 0.06591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2701.76  | 127.45 | 117.62 |
| 2     | 125 | 4.   | -                 | 0        | 4    | 60  | 0.7  | 210 08:00  | 30.155 | 0.08461 | 3768.54          | 67.49   | 69.06  | 0.06546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2711.00  | 127.89 | 116.33 |
| 54    | 164 | 4    | +                 | 0        | 6    | 95  | 0.6  | 240 10:40  | 29.6   | 0.07830 | 3917.41          | 70.15   | 66.02  | 0.06019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3462.55  | 163.34 | 136.73 |
| 54    | 116 | 2    | 0.8               | 0        | 5    | 44  | 0.6  | 300 07:10  | 29.67  | 0.08873 | 3491.25          | 62.52   | 64.95  | 0.06584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3022.32  | 142.57 | 129.60 |
| 7     | 165 |      |                   |          | 90   | 88  | 0.5  | 120 07:10  | 29.02  | 0.08003 | 3874.83          | 69.39   | 64.85  | 0.05973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3475.92  | 163.97 | 134.35 |
| 4 2 4 | 181 | Ć Č  |                   |          | 0    | 60  | 4.0  | 240 08:00  | 52.62  | 0.0/988 | 38/8.66          | 69.46   | 64.55  | 0.05876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3504.36  | 165.31 | 133.24 |
|       | 151 | 2    | 17                |          | 0 4  | 00  | * 4  | 260 08-10  | 20.05  | 0.00449 | 4917.00          | 60.05   | 67.09  | 0.06162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3124.10  | 14/.37 | 126.28 |
|       | 146 | 46   | 1.3               | 10       | 2    | 84  | 0.7  | 445 07:31  | 30     | 0.08104 | 4390.51          | 78.62   | 76.51  | 0.06241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3104 22  | 146.43 | 107 02 |
| 14    | 156 | 45   | 2 1.6             | 0.4      | 5    | 92  | 0.7  | 360 09:15  | 29.62  | 0.07842 | 4951.35          | 88.67   | 83.96  | 0.06364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2916.25  | 137.57 | 116 73 |
| 2     |     |      |                   |          |      |     |      | 08:45      | 29.54  | 0.08499 | 0.00             | 0.00    | 0,00   | 0.08499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00     | 0.00   | 0.00   |
| 0     |     |      |                   |          |      |     |      | 08:30      | 29.5   | 0.08488 | 0.00             | 0.00    | 00.00  | 0.08107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00     | 0.00   | 0.00   |
| 15    | 148 | ě.   | 9 2.4             | 0.       | 8    | 06  | 0.65 | 400 08:30  | 29.4   | 0.07747 | 6101.29          | 109.26  | 103.07 | 0.06134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3960.60  | 186.83 | 159.43 |
| 54    | 162 | 51   | 3.9               | ö        | 9    | 06  | 0.6  | 450 08:15  | 29.5   | 0.07984 | 7661.64          | 137.20  | 129.86 | 0.06147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3426.29  | 161.63 | 135.28 |
| 24    | 154 |      | 4                 | 0        | 6 4  | 94  | 0.3  | 450 08:30  | 29.8   | 0.07998 | 7752.43          | 138.83  | 131.78 | 0.06160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3422.65  | 161.46 | 138.29 |
| NC    | 164 |      | 3.9               | 9.0<br>1 | 0    | 911 | 0.6  | 400 08:00  | 28.5   | 0.0/969 | 7658.60          | 137.33  | 129.75 | 0.05998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3610.30  | 170.31 | 142.08 |
| 1     | 122 | 6 W  | 9.6               | ċċ       | . 4  | 54  | 0.5  | 1300 08-10 | 10 00  | 020/0.0 | 1010.000<br>0007 | 136.79  | 126.// | 0.05939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3/65.00  | 177.61 | 145.73 |
| 17    | 135 | 9    | 4.6               | 0        | 2    | 55  | 0.5  | 420108:15  | 29.39  | 0.08706 | 7968.27          | 141.02  | 143.43 | 0.0630.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3314.13  | 106.34 | 141./8 |
| 54    | 134 | 90   | 1 4.6             | 0        | 9    | 56  | 0.5  | 08:20      | 29.87  | 0.08793 | 7928.58          | 141.98  | 145.04 | 0.06429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3350.45  | 158.05 | 140.25 |
| ł     |     |      |                   |          |      |     |      |            |        |         |                  |         |        | and the second se |          |        | 221261 |

-

C-47

| 03/23/94 | ×                   | 148.09             | 139.63     | 141.01            | 128,95     | 129.18     | 141.65<br>147 60   | 140.52     | 140.90     | 139.70     | 127.47             | 12/21      | 05 66      | 116.66    | 114.50     | 152.44     | 151.08             | 140.36     | 149.42            | 150.78     | 140 44     | 150.45     | 149.44    | 149.14      | 149.14     | 149.63     | 145.42      | 150.78     | 101.00     | 128./0     | 145 AU     | 149.40     | 149.37    | 150.87     | 149.96     | 139.99    | 128.99    | 141.56    | 149.62     | 138.72     | 138.72     | 136.30  | 0.00       | 197 04           | 125.04     | 0.00      | 136.79     | 132.65   | 138.96     | 138.03     | 127.05     | 127.25     | 127.43    | 127.43     | 127.39    | 140.60   | 133.15   | 125.90    | 126.32     | 126.21     | 126.36   | 126.63         | 126.63   | 126.63     | 127.06     | 126.63    |
|----------|---------------------|--------------------|------------|-------------------|------------|------------|--------------------|------------|------------|------------|--------------------|------------|------------|-----------|------------|------------|--------------------|------------|-------------------|------------|------------|------------|-----------|-------------|------------|------------|-------------|------------|------------|------------|------------|------------|-----------|------------|------------|-----------|-----------|-----------|------------|------------|------------|---------|------------|------------------|------------|-----------|------------|----------|------------|------------|------------|------------|-----------|------------|-----------|----------|----------|-----------|------------|------------|----------|----------------|----------|------------|------------|-----------|
|          | I SCFA              | 174.63             | 158,84     | 157.20            | 143.29     | 143.07     | 156.53             | 157.72     | 157.29     | 158.64     | 144.90             | 145.05     | 111 41     | 126.70    | 129.07     | 170.81     | 172.37             | 157.91     | 171 64            | 171 51     | 173.17     | 171.96     | 173.17    | 173.50      | 173.52     | 172.93     | 165.14      | 171.51     | 11.25      | 100.70     | 164 64     | 173.16     | 173.16    | 171.51     | 172.45     | 158.34    | 143.21    | 156.58    | 172.88     | 159.89     | 159.89     | 01.761  | 0.00       | 144.0/           | 142 64     | 0.00      | 162.96     | 153.91   | 160.16     | 146.07     | 160 00     | 145.24     | 145.01    | 145.01     | 145.06    | 157.73   | 102./1   | 146.84    | 146.33     | 146.46     | 146.29   | 145.95         | 145.95   | 145.95     | 145.40     | 145.95    |
|          | city ACFN           | 3701.92<br>3367 27 | 3367.27    | 3332.33<br>255 15 | 3037,49    | 3032.96    | 3318.24<br>3716.35 | 3343.43    | 334.42     | 363.04     | 1071.61            | 004 00     | 361.63     | 685.85    | 736.10     | 1621.01    | 654.05             | 347.47     | 009.22<br>6.35 87 | 635.87     | 671.00     | 645.25     | 671.00    | 678.03      | 678.41     | 665.83     | 500.80      | 635.87     | 12.000     | 204.71     | 490.16     | 670.74     | 670.85    | 635.79     | 655,60     | 356.57    | 035.79    | 319.25    | 664.81     | 389.43     | 109.43     | 00.00   | 0.00       | 000.0/<br>064.10 | 123 7R     | 0.00      | 154.58     | 262.65   | 395.20     | 105.01     | 10.82      | 78.87      | 074.01    | 074.01     | 75.09     | 143.63   | 22 84    | 12.85     | 02.01      | 04.76      | 01.07    | 93.84<br>03 84 | 93,84    | 93.84      | 82.38      | 93.84     |
|          | sityAir Velo        | 44                 | 65         | 66                | 18         | 38         | 54 3<br>96 3       | 56         | 91 3       | 81 3       | 44                 | 000        | 70         | 39        | 26 2       | 21 3       | 96                 |            | 10                | 0.00       | 17         | 36 3       | 17 3      | 3           | 8          | 22         | 50          |            | 500        | 2          | 8          | 8          | 8 3       | 9          | 0 36       | 5 33      | 5 3(      | 3         | 9          | NC         | V V        | 6       | 4          | 50               |            | 1         | 7 34       | 4 32     | 0          | 30         |            | 4          | 4 30      | 4 30       | 30        | 33       | 31       | 31        | 31         | 31         | 31       | 30             | 30       | 30         | 00         | 1 30      |
|          | utiet Flow Den      | 0.061              | 0.063      | 0.064             | 0.065      | 0.065      | 0.065              | 0.064      | 0.064      | 0.0631     | 0.063              | 0.0624     | 0.064      | 0.0666    | 0.0642     | 0.0642     | 0.0630             | 0.0696     | 0.0636            | 0.0636     | 0.0624     | 0.0633     | 0.0624    | 0.0622      | 0.0622     | 0.0626     | 1 6 9 0 . 0 | 0.0635     | 0.0000     | 0.0636     | 0.0641     | 0.0624     | 0.0624    | 0.0636     | 0.0630     | 0.0640    | 0.0652    | 0.0655    | 0.0626     | 0.0628     | 02000      | 00000   | 0.0630     | 0.0640           | 0.0657     | 0.0805    | 0.0604     | 0.0621   | 0.0626     | 0.0635     | 0.0620     | 0.0634     | 0.0636    | 0.0636     | 0.06364   | 0.06455  | 0.0616   | 0.06206   | 0.06250    | 0.06235    | 0.06253  | 0.06285        | 0.06285  | 0.06285    | 0.0633 C   | 0.06283   |
|          | DFM 0               | 144.53             | 147.10     | 149.09            | 149.23     | 146.33     | 152.94             | 158.80     | 157.82     | 159.01     | 154.81             | 184.88     | 185.72     | 180.24    | 187.36     | 183.47     | 182.64             | 181 76     | 184 19            | 185.25     | 179.44     | 181.58     | 181.66    | 187.32      | 187.27     | 184.40     | 100.00      | 103.04     | 188.63     | 190.98     | 189.24     | 186.98     | 187.49    | 189.75     | 189.68     | 196.68    | 197.86    | 196.53    | 190.26     | 102 53     | 102.53     | 000     | 195.38     | 195.01           | 192.37     | 0.00      | 187.72     | 190.97   | 193.98     | 192.84     | 193.58     | 193.76     | 196,84    | 194.48     | 196.34    | 210.17   | 198.44   | 204.60    | 210.52     | 210.32     | 210.60   | 211 13         | 211.13   | 211.13     | 212.18     | 211.13    |
|          | SC SC               | 149.33             | 145.78     | 144.15            | 143.88     | 146.56     | 158.48             | 155.17     | 152.97     | 157.78     | 176.66             | 181.53     | 180.70     | 173.77    | 179.20     | 175.81     | 1/8.00             | 182 24     | 179.49            | 180.87     | 178.83     | 176.89     | 195.08    | 187.62      | 186.76     | 102.201    | 102.31      | 182.45     | 182.64     | 185.19     | 182.46     | 187.69     | 190,90    | 182.07     | 187.28     | 192,27    | 191.49    | 190.57    | 195.17     | 194.00     | 194 08     | 00.0    | 190.53     | 193.25           | 193.33     | 0.00      | 190.99     | 188.75   | 190.41     | 190.27     | 193,88     | 189.14     | 190.80    | 188.52     | 190.45    | 80 981   | 202.27   | 207.26    | 212.17     | 212.33     | 212.06   | 211.70         | 211.70   | 211.70     | 210.89     | 211./0    |
|          | Velocity AC         | 7945.03            | 8140.58    | 8049.53           | 8034.61    | 8184.33    | 8850.08            | 8664.90    | 8542.20    | 8810.57    | 9100 42<br>9864 85 | 10137.19   | 10090.91   | 9703.77   | 10006.93   | 9817.83    | 8882.00<br>8837 AB | 10176.87   | 10022.99          | 10100.29   | 9986.04    | 9877.71    | 10893.66  | 10476.93    | 10429.34   | 10134.30   | 10206 62    | 10182.64   | 10199.32   | 10341.47   | 10188.91   | 10481.19   | 10660.05  | 10167.32   | 10458.08   | 10736.96  | 10693.49  | 10641.95  | 10898.68   | 10837 70   | 10837.70   | 0.00    | 10639.40   | 10791.62         | 10795.92   | 0.00      | 10665.18   | 10540.20 | 10802 42   | 10624.90   | 10826.85   | 10562.11   | 10654.94  | 10527.33   | 111235.08 | 10441 25 | 11295.35 | 11573.76  | 11848.02   | 11856.80   | 11821.33 | 11821.78       | 11821.78 | 11821.78   | 11776.73   | 11821./81 |
|          | Flow Density Air    | 0.08757            | 0.08704    | 0.08502           | 0.08935    | 0.08611    | 0.08285            | 0.08803    | 0.08893    | 0.08669    | 0.08644            | 0.08770    | 0.08851    | 0.08933   | 0.09000    | 0.08976    | 0.08940            | 0.08586    | 0.08852           | 0.08834    | 0.08676    | 0.08867    | 0.07999   | 0.08648     | 0.08/28    | 0.08084    | 0.08997     | 0706070    | 0.09010    | 0.08989    | 0.09029    | 0.08641    | 0.08460   | 0.09067    | 0.08790    | 0.08860   | 0.08932   | 0.08913   | 0.06504    | 0.08584    | 0.08594    | 0.08379 | 0.08917    | 0.08771          | 0.08660    | 0.08344   | 0.08557    | 0.08761  | 0.08753    | 0.08729    | 0.08611    | 0.08833    | 0.08891   | 0.06891    | 0.08924   | 0.09700  | 0.08477  | 0.08522   | 0.08560    | 0.08548    | 0.08598  | 0.08598        | 0.08598  | 0.08598    | 0.08664    | 0.00080   |
|          | inlet               | 29.39              | 29.39      | 29.59             | 29.68      | 29.42      | 29.39              | 30.04      | 30.05      | 30.04      | 29,94              | 29.78      | 29.76      | 29.74     | 29.86      | 30.04      | 29.97              | 29.84      | 29.89             | 29.89      | 29.34      | 29.55      | 29.34     | 29.42       | 28.32      | 29.84      | 29.89       | 29,98      | 29.73      | 29.92      | 30.21      | 29.58      | 29.72     | 29.41      | 29.96      | 19.92     | 29.86     | 28.82     | 29.12      | 29.4       | 29.4       | 29.12   | 29.52      | 29.62            | 29.32      | 29        | 28.35      | 10.62    | 29.5       | 29.75      | 29.42      | 29.49      | 29.58     | 29.58      | 29.55     | 29.3     | 29.02    | 29.2      | 29.35      | 29.32      | 29.5     | 29.5           | 29.5     | 29.5       | 29.76      | 10.23     |
| Chrit    |                     |                    |            |                   |            |            |                    |            |            |            |                    |            |            |           |            |            |                    |            |                   |            |            |            |           |             |            |            |             |            |            |            |            |            | -         |            |            |           |           |           |            |            |            |         |            |                  |            |           |            |          |            |            |            |            |           |            |           |          |          |           |            |            |          |                |          |            | +          |           |
| East     | C Cond Time         | 1600 08:15         | 2200 08:10 | 2600 08:10        | 3500 08:20 | 3200 08:10 | 3400 10:00         | 3600 08:10 | 4000 08:10 | 6000 08:20 | 6000 08:20         | 2800 09:20 | 1800 08:30 | 800 08:10 | 5/00 08:20 | 4800 09:30 | 5000 09:30         | 4600 12:00 | 4800 09:35        | 4600 08:20 | 4600 08:00 | 4400 09:40 | 450 10:35 | 10.00 00.00 | 4500 10.15 | 4600 08:20 | 4400 15:30  | 4600 08:20 | 4600 08:05 | 4400 15:30 | 4200 10:40 | 4300 10:30 | 520 08:20 | 4500 08:20 | 3800 14:25 | 00.01 000 | 400110-30 | 240 11-20 | 2215 08:00 | 2215 08:00 | 2215 08:00 | 08:20   | 4200 08:25 | 4200 09:20       | 4200 10:20 | 08:10     | 3800 11:30 | 4400     | 4400 16:30 | 4800 09:40 | 4800 16:30 | 6100 12:40 | 4800 9:35 | 4600 12:00 | 0         | 3000     | 3000     | 2750      | 2500 09:30 | 3000 10:20 | 3000     | 3000           | 3000     | 3000 10.00 | 3000 14.00 | 12220     |
|          | chaust BadH         | 0.5                | 0.5        | 0.5               | 0.5        | 0.5        | 0.5                | 0.5        | 0.0        | 0.5        | 0.5                | 0.5        | 0.5        | 0.5       | 0.0        | 6.0        | 0.6                | 0.5        | 0.5               | 0.5        | 0.5        | 0.5        | 2.0       |             | 0.5        | 0.5        | 0.5         | 0.5        | 0.5        | 0.5        | 0.5        | 0.5        | 0.0       | 0.0        | 0.0        |           | 0.0       | 0.5       | 0.5        | 0.5        | 0.5        |         | 0.5        | 0.5              | 0.5        | -         | 0.0        | 0.55     | 0.55       | 0.5        | 0.5        | 0.5        | 6.0       |            | 0.5       | 0.5      | 0.5      | 0.5       | 0.0        | 0.5        | 0.5      | 0.5            | 0.5      | 9 C        | 0.5        | 111       |
|          | et Temp (4E)<br>Af  | 52                 | 54         | 52                | 45         | 41         | 80                 | 58         | 4C         | 64         | 66                 | 56         | 51         | 46        | 7 D T      | 58         | 49                 | 68         | 54                | 55         | 56         | 48         | 90        | 56          | 54         | 50         | 50          | 50         | 48         | 52         | 54         | 54         | 14        | 80         | 20         | 202       | 20        | 78        | 63         | 63         | 63         |         | 48         | 58               | 60         | 4         | 48         | 51       | 55         | 58         | 60         | 48         | 46        | 46         | 82        |          | 62       | 62        | 62         | 61         | 62       | 62             | 62       | 20         | 62         |           |
|          | haust Flovin        | 0.6                | 0.6        | 0.6               | 0.5        | 0.6        | 0.7                | 0.61       | 0.6        | 0.5        | 0.5                | 0.5        | 0.0        | 4.0       | + 0        | 0.7        | 0.6                | 0.7        | 0.7               | 0.7        | 0.7        | 1.0        | 0.7       | 07          | 0.7        | 0.65       | 0.7         | 0.7        | 0.6        | 0.65       | 0.65       | 0.7        | 1.0       | 2.0        | 0.6        | 0.5       | 0.6       | 0.7       | 0.6        | 9.6        | 0.6        | _       | 0.5        | 0.5              | 0.5        | 00        | 0.55       | 0.6      | 0.6        | 0.5        | 0.6        | 0.0        | 0.5       | 0.5        | 0.6       | 0.55     | 0.5      | 0.0       | 0.5        | 0.5        | 0.5      | 0.5            | 0.5      | 0.5        | 0.5        |           |
|          | et Flow (5 Ex       | 4.6                | 4.8        | 4.8               | 4.8        | 5          | 5.4                | 5.4        | 5.6        | 9          | 7                  | 7.5        | £.)        | 7 5       | 22         | 7.3        | 7.2                | 7.4        | 7.4               | 0.1        | 1.2        | 2.1        | 7.9       | 7.9         | 7.6        | 7.8        | 7.8         | 7.8        | 7.8        | 8          | 1.0        | 8.1<br>8   | 7.8       | 8          | 8.5        | 8.5       | 8.4       | 8.3       | 8.4        | 8.4        | 8.4        |         | 8.4        | 8.5              | <u>δ.4</u> | ā         | 8.1        | 8.3      | 8.5        | 8.2        | 8.4        | 0.2        | 8.2       | 8.4        | 8.6       | 8.8      | 6        | 0.0       | 10         | 10         | 10       | 10             | 0        | 10         | 10         |           |
|          | stem Vaculnk<br>58  | 61                 | 60         | 60                | 60         | 60         | 60                 | 61         | 60         | 60         | 60                 | 60         | 00         | 09        | 60         | 60         | 60                 | 60         | 61                | 10         | 6          | 58         | 62        | 64          | 64         | 65         | 65          | 99         | 66         | 66         | 00<br>6.3  | 909        | 64        | 64         | 63         | 62        | 62        | 60        | 62         | 62         | 62         | -       | 64         | 64               | 40         | 62        | 61         | 62       | 62         | 60         | 60         | 60         | 60        | 62         | 60        | 60       | 60       | 09        | 60         | 60         | 60       | 60             | 60       | 60         | 60         |           |
|          | aust Ten Sys<br>162 | 130                | 128        | 130               | 115        | 119        | 156                | 132        | 142        | 142        | 144                | 146        | 110        | 134       | 134        | 143        | 135                | 150        | 140               | 140        | 136        | 140        | 144       | 142         | 140        | 138        | 140         | 140        | 136        | 141        | 145        | 148        | 130       | 148        | 137        | 125       | 124       | 146       | 138        | 138        | 138        | 001     | 130        | 130              | 201        | 136       | 134        | 140      | 146        | 138        | 140        | 134        | 134       | 134        | 124       | 133      | 141      | 140       | 140        | 139        | 140      | 140            | 140      | 141        | 140        |           |
|          | ning TimExh<br>24   | 24                 | 24         | 24                | 24         | 24         | 24                 | 24         | 24         | 12         | 12                 | 24         | 16         | 12        | 24         | 21         | 24                 | 24         | 42                | 24         | 24         | 24         | 24        | 24          | 24         | 24         | 24          | 24         | 24         | 10         | 24         | 12         | 24        | 24         | 24         | 8         | 6         | 10        | 21         | 18         | 20         | 000     | 120        | 24               | 13         | 24        | 24         | 20       | 24         | 10         | 24         | 24         | 24        | 24         | 24        | 24       | 24       | 24        | 24         | 24         | 24       | 24             | 24       | 24         | 24         |           |
|          | 10/16/93            | 10/17/93           | 10/19/93   | 10/20/93          | 10/22/93   | 10/23/93   | 10/25/93           | 10/26/93   | 10/27/93   | 10/28/93   | 10/20/03           | 10/31/93   | 11/01/93   | 11/02/93  | 11/03/93   | 11/04/93   | 11/05/93           | 11/00/93   | 11/08/03          | 11/09/93   | 11/10/93   | 11/11/93   | 11/12/93  | 11/13/93    | 11/14/93   | 11/15/93   | 11/16/93    | 66/0111    | 11/19/03   | 11/20/93   | 11/21/93   | 11/22/93   | 11/23/93  | 11/24/93   | 11/25/93   | 11/26/93  | 11/27/93  | 11/28/93  | 11/29/93   | 66/06/11   | CB/10/6    | 2/04/03 | 2/04/93    | 2/05/93          | 2/06/93    | 2/07/93   | 12/08/93   | 2/09/93  | 2/10/93    | 112/03     | 2/13/93    | 2/14/93    | 2/15/93   | 2/16/93    | 2/17/93   | 2/18/93  | 2/20/93  | 2/21/93   | 2/22/93    | 2/23/93    | 2/24/93  | 2/26/93        | 2/27/93  | 2/28/93    | 2/29/93    |           |
| 1        | 10/16/93            | 10/17/93           | 10/19/93   | 10/20/93          | 10/22/93   | 10/23/93   | 10/25/93           | 0/26/93    | 10/27/93   | 10/28/93   | 0/30/03            | 0/31/93    | 1/01/93    | 1/02/93   | 1/03/93    | 1/04/93    | 1/05/93            | 1/07/03    | 1/08/93           | 1/09/93    | 1/10/93    | 1/11/93    | 1/12/93   | 1/13/93     | 1/14/93    | 1/15/00    | 08/01/1     | 1/18/03    | 1/19/93    | 1/20/83    | 1/21/93    | 1/22/93    | 1/23/93   | 1/24/93    | 1/25/93    | 1/26/93   | 1/27/93   | 1/28/93   | 1/29/93    | 1/20/33    | 2/02/43    | 103/93  | 2/04/93    | 2/05/93          | 2/06/93    | 2/07/93 1 | 2/08/93 1  | 2/09/93  | 2/10/93    | 1 2/93     | 7/13/93    | 2/14/93 1  | 2/15/93 1 | 2/16/93 1  | 2/17/93 1 | /10/03   | /20/93   | /21/93 1. | 122/93 1.  | 123/93 1   | V24/93   | 126/93         | /27/93   | /28/93 1:  | /29/93     |           |
|          |                     |                    |            |                   |            |            |                    |            |            |            | ľ                  |            |            |           |            |            | ľ                  | ſ          | [                 |            |            |            |           |             |            |            |             |            |            |            |            |            |           | -          | -          |           |           |           |            | ľ          |            |         |            |                  | Ĺ          |           | Ť          |          |            |            |            | 1,         | -         |            |           |          |          | ,ï        | 1          |            |          |                | 1        | 12         | 1          |           |

East Unit

 $\infty$ 

Pj 4 of

SVE Flow Calculation

C 10

| CFM              | 126.63   | 126.63   | 126.63   | 126.63   | 126.63   | 126.63   | 124 42   | 0.00     | 0000     | 0.00     | 115.17   | 128.21   | 128.43   | 128.20   | 128.56   | 128.42   | 128.56   | 128.58   | 128.43   | 128.63   | 128.42   | 128.29   | 140.70   | 128.54   | 128.37   | 128.42   | 128.10   | 127.52   | 139.74   | 128.10   | 127.67   | 127.71   | 128.74   | 128.63   | 128.70   | 128.95   | 129.40   | 139.96   | 131.38   | 0.00     | 0.00     | 000      |
|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| S S              | 145.95   | 145.95   | 145.95   | 145.95   | 145.95   | 145.95   | 143.40   | 0.00     | 0.00     | 0.00     | 129.22   | 144.58   | 144.33   | 144.08   | 143.66   | 143.84   | 143.66   | 143.64   | 143.81   | 143.59   | 143.84   | 143.89   | 157.54   | 143.69   | 143.88   | 143.84   | 144.21   | 144.92   | 158.69   | 144.21   | 144.70   | 144.64   | 143.47   | 143.59   | 143.52   | 143.23   | 143.73   | 159.47   | 149.39   | 0.00     | 0.00     | 000      |
| ir Velocity AC   | 3093.84  | 3093.84  | 3093.84  | 3093.84  | 3093.84  | 3093.84  | 3039.98  | 0.00     | 0.00     | 0.00     | 2739.27  | 3064.92  | 3059.68  | 3054.29  | 3045.47  | 3049.15  | 3045.47  | 3044.89  | 3048.56  | 3043.99  | 3049.15  | 3052.31  | 3339.60  | 3045.99  | 3050.14  | 3049.15  | 3057.01  | 3072.06  | 3363.99  | 3057.01  | 3067.39  | 3066.24  | 3041.41  | 3043.99  | 3042.42  | 3036.17  | 3046.82  | 3380.50  | 3166.94  | 0.00     | 0.00     | 000      |
| et Flow DensityA | 0.06283  | 0.06283  | 0.06283  | 0.06283  | 0.06283  | 0.06283  | 0.06507  | 0.08488  | 0.08603  | 0.08251  | 0.06412  | 0.06402  | 0.06424  | 0.06447  | 0.06484  | 0.06468  | 0.06484  | 0.06486  | 0.06471  | 0.06490  | 0.06468  | 0.06455  | 0.06471  | 0.06482  | 0.06464  | 0.06468  | 0.06435  | 0.06372  | 0.06377  | 0.06435  | 0.06392  | 0.06396  | 0.06501  | 0.06490  | 0.06497  | 0.06524  | 0.06478  | 0.06315  | 0.06596  | 0.08632  | 0.08632  |          |
| CFM Out          | 211.13   | 211.13   | 211.13   | 211.13   | 211.13   | 211.13   | 211.13   | 0.00     | 0.00     | 0.00     | 198.01   | 197.83   | 198.19   | 198.19   | 198.85   | 199,94   | 200.41   | 200.63   | 199.20   | 201.10   | 200,14   | 199.91   | 201.34   | 199.97   | 200.06   | 199.94   | 198.98   | 198.49   | 199.14   | 201.08   | 199.14   | 198.84   | 193.51   | 196.89   | 197.56   | 198.19   | 197.25   | 200.31   | 200.71   | 0.00     | 0.00     | ~~~~     |
| SFM SC           | 211.70   | 211.70   | 211.70   | 211.70   | 211.70   | 211.70   | 211.70   | 0.00     | 0.00     | 0.00     | 189.13   | 191.96   | 191.24   | 191.24   | 190.68   | 191,80   | 191.42   | 191.25   | 190.33   | 192.91   | 191.61   | 191.78   | 192.69   | 191.82   | 191.72   | 191.80   | 192.65   | 195.08   | 194.50   | 195.06   | 196.92   | 197.28   | 195.88   | 199.30   | 198.66   | 198.08   | 196.81   | 197.24   | 196.39   | 00.00    | 0.00     | 0000     |
| ir Velocity A(   | 11821.78 | 11821.78 | 11821.78 | 11821.78 | 11821.78 | 11821.78 | 11821.78 | 0.00     | 0.00     | 0.00     | 10561.55 | 10719.66 | 10679.54 | 10679.54 | 10647.78 | 10710.53 | 10689.13 | 10679.87 | 10628.34 | 10772.62 | 10699.97 | 10709.28 | 10760.44 | 10711.78 | 10705.88 | 10710.53 | 10757.77 | 10893.70 | 10861.25 | 10892.81 | 10996.31 | 11016.77 | 10938.16 | 11129.51 | 11093.44 | 11061.37 | 10990.40 | 11014.32 | 10966,69 | 0.00     | 0.00     | 0000     |
| ot Flow DensityA | 0.08598  | 0.08598  | 0.08598  | 0.08598  | 0.08598  | 0.08598  | 0.08598  | 0.08488  | 0.08603  | 0.08603  | 0.09049  | 0.08889  | 0.08956  | 0.08956  | 0.09009  | 0.09009  | 0.09045  | 0.09060  | 0.09042  | 0.09009  | 0.09026  | 0.09011  | 0.09029  | 0.09006  | 0.09016  | 0.09009  | 0.08930  | 0.08809  | 0.08862  | 0.08912  | 0.08745  | 0.08713  | 0.08537  | 0.08537  | 0.08593  | 0.08643  | 0.08655  | 0.08717  | 0.08792  | 0.08632  | 0.08632  | 000000   |
| lu               | 29.5     | 29.5     | 29.5     | 29.5     | 29.5     | 29.5     | 29.5     | 29.5     | 29.9     | 29.9     | 29.9     | 29.9     | 29.95    | 29,95    | 30.02    | 29.95    | 30.02    | 30.08    | 30.01    | 29.95    | 29.95    | 29.89    | 29.96    | 30.01    | 29.98    | 29.95    | 29.85    | 29.52    | 29.59    | 29.85    | 29.8     | 29.87    | 29.95    | 29.95    | 29.98    | 30.05    | 30.1     | 30.04    | 30       | 30       | 30       | 00       |
| em               |          |          |          |          |          | ~~       |          |          |          |          | 4:00     | :45      |          |          | :20      | :50      | 40       | :45      | 0:15     | :45      | 0:35     | 0:00     | :40      | 0:20     | 20       | 40       | 1:00     | :45      | :40      | :50      | 0:50     | :20      | :20      | :15      | :40      | 10       | :45      | 6:30     | :45      | -        |          |          |
| HC CONG          | 3000     | 3000     | 3000     | 3000     | 3000     | 3000     | 3000     |          |          |          | 1500 1   | 550 8    | 4200     | 4200     | 4300 9   | 4200 9   | 4200 8   | 4350 8   | 42001    | 4300 8   | 4250 1   | 4250 1   | 4300 9   | 4300 1   | 4250 9   | 4250 8   | 4300 1   | 4250 8   | 4250 8   | 4300 8   | 4300 1   | 4300 9   | 8        | 4350 8   | 4300 8   | 4350 9   | 4350 8   | 3600 1   | 3600 7   |          |          |          |
| naust bad        | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      |          |          |          | 0.6      | 0.6      | 0.55     | 0.55     | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.6      | 0.6      |          |          |          |
| et remp (4EX     | 62       | 62       | 62       | 62       | 62       | 62       | 62       |          |          |          | 44       | 52       | 50       | 50       | 48       | 47       | 46       | 46       | 46       | 47       | 46       | 46       | 46       | 48       | 47       | 47       | 50       | 52       | 50       | 51       | 60       | 63       | 75       | 75       | 72       | 70       | 20       | 62       | 58       |          |          |          |
| INAUST FIOUN     | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      |          |          | _        | 0.4      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.6      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.6      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 9.0      | 0.55     |          |          |          |
| FIOW DE          | 2        | 10       | 10       | 10       | 10       | 10       | 10       |          |          |          | 8.4      | 8.5      | 8.5      | 8.5      | 8.5      | 8.6      | 8.6      | 8.6      | 8.5      | 8.7      | 8.6      | 8.6      | 8.7      | 8.6      | 8.6      | 8.6      | 8.6      | 8.7      | 8.7      | 8.8      | 8,8      | 8.8      | 8.5      | 8.8      | 8.8      | 8.8      | 8.7      | 8.8      | 8.8      |          |          |          |
| am vacumen       | 60       | 60       | 60       | 60       | 60       | 60       | 60       |          |          |          | 62       | 61       | 62       | 62       | 62       | 62       | 62       | 62       | 62       | 62       | 62       | 62       | 62       | 62       | 62       | 62.      | 62       | 62       | 62       | 62       | 62       | 62       | 62       | 62       | 62       | 62       | 62       | 59       | 60       |          |          |          |
|                  | 140      | 140      | 140      | 140      | 140      | 140      | 140      |          |          |          | 132      | 135      | 134      | 134      | 132      | 132      | 132      | 133      | 133      | 130      | 132      | 132      | 132      | 132      | 133      | 132      | 133      | 132      | 133      | 133      | 136      | 137      | 129      | 130      | 130      | 129      | 130      | 144      | 142      | -        |          |          |
| WXJUII BUIU      | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 9        | 0        | 0        | 0        | 12       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 24       | 2        | 24       | 24       | 24       | 24       | 10       | 23       | 5        | 0        | c        |
| INN BI           | 12/30/83 | 12/31/93 | 01/01/94 | 01/02/94 | 01/03/94 | 01/04/94 | 01/05/94 | 01/06/94 | 01/07/94 | 01/08/94 | 01/09/94 | 01/10/94 | 01/11/94 | 01/12/94 | 01/13/94 | 01/14/94 | 01/15/84 | 01/16/94 | 01/17/94 | 01/18/94 | 01/19/94 | 01/20/94 | 01/21/94 | 01/22/94 | 01/23/94 | 01/24/94 | 01/25/94 | 01/26/94 | 01/27/94 | 01/28/94 | 01/29/94 | 01/30/94 | 01/31/94 | 02/01/94 | 02/02/94 | 02/03/94 | 02/04/94 | 02/05/94 | 02/06/94 | 02/07/94 | 02/08/94 | 10/00/00 |
| Da               | 12/30/93 | 12/31/93 | 01/01/94 | 01/02/94 | 01/03/94 | 01/04/94 | 01/05/94 | 01/06/94 | 01/07/94 | 01/08/94 | 01/09/94 | 01/10/94 | 01/11/94 | 01/12/94 | 01/13/94 | 01/14/94 | 01/15/94 | 01/16/94 | 01/17/94 | 01/18/94 | 01/19/94 | 01/20/94 | 01/21/94 | 01/22/94 | 01/23/94 | 01/24/94 | 01/25/94 | 01/26/94 | 01/27/94 | 01/28/94 | 01/29/94 | 01/30/94 | 01/31/94 | 02/01/94 | 02/02/94 | 02/03/94 | 02/04/94 | 02/05/94 | 02/06/94 | 02/07/94 | 02/08/94 | NO/OD/CO |

East Unit

03/23/94

 $\infty$ 

Sof

54

SVE Flow Calculation

C-49

West Unit

| SCFM                 |          | 126.68   | 126.46   | 126 R1   | 126.54   | 126.61   | 126.15   | 126.09   | 126.47   | 119.05   | 119.89   | 126.28   | 126.23      | 125.57           | 125.85              | 132.75      | 127.55      | 128.80      | 134.68      | 133.70      | 133.30                     | 127.11      | 138.91             | 131.84   | 139.15    | 140.27             | 139.03      | 138.13      | 138.67      | 139.02      | 135.03     | 138.79      | 133.64               | 138.89             | 126.28     | 120.64     | 128.02             | 147.13     | 140.28           | 128.53             | 113.51     | 113.00     | 114.84     | 136.20     | 114.61           | 12./2      | 124.50     | 126.91     | 123.55     | 0.00     | 0.00       | 127.08       | 125.18     | 127.08     | 110 007 |
|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|------------------|---------------------|-------------|-------------|-------------|-------------|-------------|----------------------------|-------------|--------------------|----------|-----------|--------------------|-------------|-------------|-------------|-------------|------------|-------------|----------------------|--------------------|------------|------------|--------------------|------------|------------------|--------------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|----------|------------|--------------|------------|------------|---------|
| ЕM                   |          | 144.80   | 145.04   | 144.63   | 144.94   | 144.86   | 145.42   | 145.50   | 145.07   | 138.78   | 137.77   | 145.31   | 145.36      | 146.17<br>146.06 | 146.33              | 152.02      | 150.31      | 143.43      | 150.87      | 151.98      | 152.44                     | 145.35      | 159.61             | 154.61   | 159.38    | 158.17             | 156.80      | 160.63      | 156.33      | 158.35      | 152.12     | 158.62      | 151.51               | 159.05             | 146.68     | 136.84     | 146.37             | 165.72     | 156.99           | 1 42.72            | 129.29     | 128.97     | 153.53     | 161.66     | 128.06           | 149.31     | 148.15     | 145.27     | 144.42     | 0.00     | 162.01     | 146.47       | 147.58     | 146.47     |         |
| r Velocity AC        |          | 3069.57  | 30/4.72  | 3065.96  | 3072.61  | 3070.86  | 3082.67  | 3084.38  | 3075.34  | 2941.89  | 2920.47  | 3080.27  | 3081.49     | 3096.35          | 3101.98             | 3222.65     | 3186.32     | 3040.45     | 3198.31     | 3221.74     | 3231.46                    | 3081.15     | 3383.50<br>3765 87 | 3277,44  | 3378.70   | 3352.97<br>3340 75 | 3323.93     | 3405.06     | 3314.07     | 3356.75     | 3224.69    | 3224.54     | 3211.82              | 3371.66<br>3070.81 | 3109.33    | 2900.86    | 3102.92<br>3662.80 | 3513.10    | 3327.86          | 3025.37<br>2739 76 | 2740.70    | 2733.95    | 3254.62    | 3426.93    | 2714.65          | 3165.08    | 3140.64    | 30/9.51    | 3061.50    | 0.00     | 3434.47    | 3104.95      | 3128.54    | 3104.95    |         |
| tlet Flow Density Ai |          | 0.06383  | 0.06375  | 0.06398  | 0.06370  | 0.06377  | 0.06328  | 0.06321  | 0.06359  | 0.06254  | 0.06346  | 0.06338  | 0.06364     | 0.06273          | 0.06250             | 0.06370     | 0.06516     | 0.06505     | 0.06467     | 0.06373     | 0.06335                    | 0.06335     | 0.06304            | 0.06158  | 0.06322   | 0.06419            | 0.06423     | 0.06224     | 0.06571     | 0.06405     | 0.06477    | 0.06362     | 0.06413              | 0.0634.0           | 0.06220    | 0.06432    | 0.06275            | 0.06334    | 0.06516          | 0.06409            | 0.06405    | 0.06437    | 0.06813    | 0.06145    | 0.06528          | 0.06003    | 0.06097    | 0.06247    | 0.06416    | 0.08499  | 0.0611.8   | 0.0623.8     | 0.06144    | 0.0623-85  |         |
| CFM Ou               | 101      | 184.41   | 184.62   | 184.81   | 184.71   | 181.99   | 182.45   | 182.17   | 180.18   | 178.17   | 179.28   | 181.78   | 180.75      | 181.62           | 181.57              | 187.52      | 193.89      | 192.90      | 192.42      | 190.59      | 190.26                     | 169.72      | 189.11             | 188.73   | 196.06    | 198.68             | 197.94      | 192.60      | 209.22      | 194.08      | 194.74     | 189.48      | 190.08               | 184.04             | 177.74     | 182.56     | 134.55             | 131.75     | 131.80           | 182.37             | 179.45     | 176.71     | 138.79     | 167.58     | 192.40<br>181.65 | 178.10     | 186.98     | 199.68     | 200.55     | 00.00    | 204.28     | 199,15       | 205.29     | £03.64     |         |
| ACFM S               | 178 22   | 178.24   | 178.12   | 177.98   | 178.05   | 175.52   | 177.69   | 177.90   | 177.10   | 176.78   | 175.60   | 178.08   | 178.83      | 178.87           | 178.66              | 182.53      | 186.92      | 184.81      | 185.29      | 185.57      | 185.46                     | 185.47      | 189.20             | 186.90   | 192.92    | 191.78             | 192.37      | 191 83      | 181.45      | 188.96      | 188.57     | 186.34      | 184.87<br>195 67     | 180.84             | 177.08     | 177.29     | 136.67             | 132.85     | 132.24<br>184 81 | 177.83             | 175,10     | 171.54     | 134.32     | 170.03     | 187.40           | 182.30     | 188.88     | 197.26     | 199.89     | 0.00     | 205.53     | 198.54       | 205.34     | 200 10     |         |
| ir Velocity          | 0052 AD  | 9953.55  | 9946.55  | 9938.77  | 9943.01  | 9801.38  | 2/776    | 9934.10  | 9889.71  | 9871.75  | 9805.70  | 9944.68  | 9986.56     | 9988.31          | 9976.91<br>10102 00 | 10252.55    | 10437.97    | 10320.13    | 10347.03    | 10362.39    | 10356.66                   | 10357.22    | 10565.46           | 10436.70 | 107750.29 | 10709.55           | 10742.50    | 10712.45    | 10132.86    | 10551.81    | 10504 95   | 10405.57    | 10323.31<br>10368 20 | 10098.35           | 9888.33    | 9900.28    | 7632.24            | 7418,39    | 7384.52          | 9930.72            | 9777.88    | 9578.95    | 7500.75    | 9495.10    | 10464.9/         | 10180.11   | 11019 97   | 11015.31   | 11162.48   | 0.00     | 11477.25   | 11087.11     | 11404.28   | 11464 40   |         |
| ot Flow DensitiA     | 0.09099  | 0.09097  | 0.09110  | 0.09124  | 0.09116  | 0.09131  | 0.09031  | 0.09010  | 0.08969  | 0.08878  | 0.08998  | 0.08998  | 0.08916     | 0.08913          | 0.08933             | 0.09031     | 0.09044     | 0.09139     | 0.0004      | 0.08953     | 0.08963                    | 0.08857     | 0.08827            | 0.08826  | 0.08800   | 0.09010            | 0.08955     | 0.08796     | 0.10065     | 0.08958     | 0.08929    | 0.08878     | 0.08942              | 0.08956            | 0.08848    | 0.09002    | 0.08252            | 0.08297    | 0.09026          | 0.09017            | 0.09049    | 0.09167    | 0.08543    | 0.08530    | 0.08902          | 0.08580    | 0.08641    | 0.08913    | 0.08776    | 0.08488  | 0.08666    | 0.08798      | 0.08777    | 0.00701    |         |
| Barametric P Inic    | 29.85    | 29.94    | 29.96    | 30.01    | 29.98    | 18.62    | 20.71    | 29.64    | 29.35    | 29.07    | 29.39    | 29.53    | 29.21       | 29.35            | 29.49               | 29.80       | 29.86       | 29.87       | 29.91       | 29.92       | 29.88                      | 29.69       | 29.00              | 29.355   | 29.75     | 29.94              | 29.795      | 29.38       | 30.055      | 30.0A       | 29.75      | 29.56       | 29.79                | 29.7               | 29.35      | 29.835     | 29.4               | 29.28      | 29,905           | 29.87              | 29.85      | 29.81      | 30.155     | 29.62      | 29.02            | 29.23      | 30.05      | 30         | 20.62      | 29.5     | 29.4       | 29.5<br>20.8 | 29.5       | 29.2       |         |
| 08:30                | 17:00    | 17:20    | 17:25    | 17:00    | 10.20    | 18:55    | 18:40    |          | 02:00    | 07:15    | 10:30    | 07:30    | 10000 07:42 | 10000 07:45      | 10000 08:20         | 10000 07:45 | 10000 07:30 | 10000 07:10 | 10000 11:15 | 10000 15:05 | 10000 08:00<br>10000 08:30 | 10000 10:50 | 10000 09:15        | 08:30    | 10:45     | 10000 09:00        | 10000 09:20 | 10000 13:20 | 10000 07:45 | 10000 18:30 | 0000 14:45 | 10000 08:20 | 0000 08:50           | 0000 08:44         | 0000 08:21 | 0000 13:30 | 9200 07:59         | 7000.08-23 | 0000 08:15       | 0000 08:00         | 0000 07:20 | 0000 08:40 | 6800 08:00 | 0000 07:10 | 0000 07:10       | 0000 08:00 | 0000 08:09 | 0000 07:31 | 0000 09:15 | 08:30    | 0000 08:30 | 000 08:15    | 0000 08:00 | 0000 08:15 |         |
| 0.52                 | 0.4      | 0.4      | 0.4      | 0.4      | 104      | 0.4      | 0.4      | 0.4      | 0.4      | 0.4      | 0.4      | 0.4      | 0.4         | 0.4              | 0.45                | 0.4         | 0.4         | 0.5         | 0.5         | 0.5         | 0.5                        | 0.5         | 0.5                | 0.48     | 0.5       | 0.51               | 0.5         | 0.5         | 0.5         | 0.4         | 0.4        | 0.4         | 0.45                 | 0.45               | 0.45       | 0.4        | 0.7                | 0.7        | 0.4              | 0.4                | 0.4        | 0.3        | 0.4        | 0.4        | 0.4              | 0.5        | 0.475      | 0.475      | 0.0        |          | 0.4        | 0.6          | 0.5        | 0.6        |         |
| 60                   | 49       | 50.5     | 50       | 00       | 50       | 52       | 52       | 51       | 49       | 48       | 50       | 50       | 50          | 00               | 50                  | 50          | 48          | 48          | 52          | 54          | 53 .                       | 54          | 52                 | 52       | 51        | 50                 | 54          | 54          | 52          | 54          | 54         | 53          | 56                   | 55                 | 52         | 54         | 67                 | 60         | 54               | 54                 | 52         | 50         | 02         | 50         | 48               | 68         | 62         | 63         | 70         |          | 52         | 56<br>66     | 58         | 58         |         |
| 0.65                 | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.45     | 0.5      | 0.5      | 0.5         | 0.5              | 0.55                | 0.5         | 0.5         | 0.55        | 0.55        | 0.6         | 0.5                        | 0.6         | 1 45 0             | 0.6      | 0.6       | 0.6                | 0.6         | 0.6         | 0.6         | 0.56        | 0.6        | 0.55        | 0.6                  | 0.5                | 0.45       | 0.5        | 0.65               | 0.6        | 0.5              | 0.4                | 0.4        | 0.4        | 0.6        | 0.4        | 0.4              | 0.5        | 0.5        | 0.5        | 2.2        | ú        | 0.5        | 0.5          | 0.5        | 0.0        |         |
| 6.9                  | 7.5      | 7.5      | 10       | 7.5      | 7.3      | 7.4      | 7.4      | 7.4      | 6.1      | 7.2      | 7.4      | 7.4      | 7.4         | 7.4              | 7.8                 | 7.9         | 8.1         | 8.1         | 8           | 8           | 8                          | 8.1         | 0.1                | 8.5      | 8.6       | 0.0<br>8.6         | 8.4         | 8.4         | 8.3         | 8.3         | 8.2        | 0 8         | 8                    | 7.2                | 7.4        | 7.4        | 3.8                | 3.8        | 8                | 7.2                | 2          | 2          | 6.4        | 8.2        | 7.5              | 8          | 8          | 8.1        |            | 0 5      | 6          | 9.5          | 9.5<br>0.5 | 0.0        |         |
| 60                   | 02       | 0/       | 20/      | 70       | 71       | 70       | 2        | 20       | 69       | 70       | 70       | 102      | 68          | 69               | 69                  | 68          | 68          | 68.         | 68          | 67          | 68                         | 64          | 66                 | 62       | 64        | 65                 | 65          | 65          | 66          | 99          | 67<br>66   | 69          | 69                   | 70                 | 71         | 10/        | 46                 | 48         | 70               | 72                 | 74         | 42         | 62         | 68         | 68               | 66         | 69         | 67         |            | 65       | 68         | 64           | 66<br>66   |            |         |
| 134                  | 142      | 145      | 144      | 146      | 145      | 146      | 145      | 140      | 138      | 136      | 138      | 140      | 142         | 145              | 140                 | 130         | 127         | 131         | 140         | 143         | 140                        | 138         | 149                | 136      | 132       | 133                | 138         | 129         | 139         | 138         | 138        | 138         | 142                  | 145                | 138        | 142        | 122                | 120        | 140              | 140                | 140        | 110        | 160        | 125        | 162              | 162        | 147        | 151        |            | 154      | 140        | 160          | 140        | 150        |         |
| 18                   | 376      | 24       | 24       | 24       | 24       | 24       | 24       | 54       | 24       | 24       | 24       | 24       | 24          | 24               | 22                  | 20          | 22          | 24          | 24          | 24          | 24                         | 24          | 21                 | 24       | 24        | 24                 | 24          | 24          | 24          | 24          | 24         | 24          | 24                   | 24                 | 24         | 24         | 24                 | 24         | 24               | 24                 | 24         | 12         | 24         | 20         | 24               | 16         | 20         | 14         | 20         | 15       | 24         | 24           | 24         | 24         |         |
| 08/03/93             | 08/05/93 | 08/06/93 | 08/07/93 | 08/08/93 | 08/09/93 | 08/10/93 | 08/11/93 | 08/13/93 | 08/14/93 | 08/15/93 | 08/15/93 | 08/18/93 | 08/19/93    | 08/20/93         | 08/22/93            | 08/23/93    | 08/24/93    | 08/25/93    | 08/27/93    | 08/28/93    | 08/29/93                   | 08/31/93    | 09/01/93           | 09/02/93 | 09/04/93  | 09/05/93           | 09/06/93    | 09/08/93    | £6/60/60    | 09/10/93    | 09/12/93   | 09/13/93    | 09/15/93             | 09/16/93           | 09/17/93   | 09/19/93   | 09/20/93           | 09/21/93   | 09/23/93         | 09/24/93           | 09/25/93   | 09/27/93   | 09/28/93   | 56/30/30   | 10/01/93         | 10/02/93   | 10/03/93   | 10/05/93   | 10/06/93   | 10/08/93 | 10/09/93   | 10/10/93     | 10/12/93   | 10/13/93   |         |
| 04/93                | 3/05/93  | 8/06/93  | 8/07/93  | 8/08/93  | 8/08/83  | 01110    | 8/12/93  | 9/13/93  | 8/14/93  | 8/15/93  | 8/17/93  | 3/18/93  | 3/19/93     | 3/20/93          | 3/22/93             | 123/93      | 3/24/93     | 5/25/93     | 8/27/93     | 9/28/93     | 8/29/93                    | 8/31/93     | 6/11/63            | 102/93   | 04/83     | (05/93             | /07/93      | (08/93      | 66/60/      | /11/83      | 12/93      | 13/93       | 15/93                | 16/93              | 17/93      | 6/83       | 20/83              | EB/12      | 66/60            | 24/93              | 6/93       | 27/93      | 8/93       | 0/93       | 1/93             | 2/93       | 4/93       | 5/93       | 7/03       | 6/93     | 9/93       | 10/93        | 2/93       | 13/93      |         |

 $\infty$ 6 of Ьd 03/23/94

| 8  |  |
|----|--|
| S. |  |
| 2  |  |
| 2  |  |
|    |  |

03/23/94

| 5  |
|----|
| st |
| \$ |
| 2  |

| E        |
|----------|
| ž        |
| <u>a</u> |
| 3        |
| đ.       |
| o        |
| ≩        |
| <u> </u> |
| u.       |
| ш        |
| 2        |
| 01       |

|                    | 128.29       | 127.47   | 128.51  | 127.89  | 128.18   | 128.75           | 128.28   | 129.39         | 139.87   | 139.94         | 127.00           | 127.55   | 127.80        | 127.96   | 127.60   | 138.56  | 127.65   | 127.86   | 126.10   | 125.88   | 124.41   | 126.47  | 126.89   | 128.51  | 128.26   | 127.53  | 127.92        | 127.01   | 125.63   | 127.73   | 127.37       | 127.16  | 127.28   | 126.04   | 131.61   | 131.61   | 136.94   | 127.52         | 127.11   | 126.03       | 125.30        | 127.63   | 127.91   | 126.93   | 137.39  | 0.00     | 0.00    | 138.62    | 126.85   | 126.48   | 126.53        | 126.53           | 126.47  | 126.63  | 126.63  | 126.63   | 127.17  | 126.63  | 26.63        |
|--------------------|--------------|----------|---------|---------|----------|------------------|----------|----------------|----------|----------------|------------------|----------|---------------|----------|----------|---------|----------|----------|----------|----------|----------|---------|----------|---------|----------|---------|---------------|----------|----------|----------|--------------|---------|----------|----------|----------|----------|----------|----------------|----------|--------------|---------------|----------|----------|----------|---------|----------|---------|-----------|----------|----------|---------------|------------------|---------|---------|---------|----------|---------|---------|--------------|
| SCFM               |              |          |         |         |          |                  | ſ        |                |          |                |                  |          |               |          |          |         |          | ľ        |          |          |          |         |          |         |          |         | [             |          |          |          |              |         |          |          |          |          |          |                |          |              |               |          |          |          |         |          |         |           |          |          |               |                  |         |         |         |          |         |         | -            |
|                    | 143.99       | 145.00   | 143.74  | 144.50  | 144.19   | 143.51           | 143.98   | 142.74         | 158.46   | 158.39         | 145.48<br>145.16 | 144.85   | 144.55        | 144.34   | 143.73   | 159.99  | 144.71   | 144.47   | 146.30   | 146.84   | 148.57   | 146.16  | 145,66   | 143.74  | 144.01   | 144.87  | 144.40        | 145.50   | 147.07   | 144.71   | 145.02       | 145.27  | 145.12   | 146.59   | 154.48   | 154.48   | 162.02   | 144.92         | 145.43   | 147.27       | 148.26        | 145.38   | 144.48   | 145.55   | 161.43  | 0.00     | 0.00    | 159.97    | 145.73   | 146.21   | 146.11        | 146.09<br>146.22 | 146.16  | 145.95  | 145.95  | 145.95   | 145.28  | 145,95  | 145.55       |
| ACFA               | 31           | .89      | .15     | 30      | .60      | .18              | 12       | .84            | 0,19     | .64            | 181              | 60       | .20           | 80       | 62       | 46      | .74      | 191      | 54       | .89      | .40      | 148     | 12       | 12      | 21       | .13     | 02            | 1.35     | .70      | .59      | 02           | 1.59    | 6.39     | .53      | 1.84     | 1.84     | 1.64     | 900            | 87.6     | .83          | 66 0          | 95       | 2.74     | 5.48     | 000     | 0.00     | 00.00   | .20       | 9.19     | 0.37     | 27            | 0.84             | 3.48    | 3.84    | 9.84    | 9.84     | 9.81    | 3.84    | 84           |
| r Velocity         | 3052         | 3073     | 3047    | 3063    | 3056     | 3042             | 3052     | 3025           | 3355     | 3357           | 3083             | 3070     | 3064          | 3050     | 3065     | 3391    | 3067     | 3062     | 3106     | 3112     | 3145     | 3096    | 3060     | 3047    | 3052     | 3071    | 3061          | 3084     | 3117     | 3067     | 3074         | 3075    | 3076     | 3107     | 3274     | 3274     | 3434     | 3072           | 3062     | 3121         | 3142          | 3081     | 3062     | 3085     | 3422    |          |         | 3391      | 3085     | 3096     | 3097          | 30906            | 3006    | 3090    | 3090    | 3090     | 3076    | 3090    | 305          |
| DensityA           | 06455        | 06365    | .06477  | 06409   | 06437    | 06498            | 06456    | 06568          | 06395    | 06401          | 06351            | 06378    | 06405         | 06423    | 06386    | 06274   | 06390    | 06412    | 06231    | 06206    | 06063    | 06264   | 06422    | 06477   | 06453    | 06376   | 0.06418       | 06321    | 06187    | 0.06391  | 06363        | 06341   | 06354    | 0.06228  | 06168    | 06168    | 0.06117  | 0.06372        | 0.06327  | 0.06171      | 06088         | 063310   | 0.06411  | 0.06317  | 0.06162 | 0.08511  | 0.08218 | 0.06275   | 06302    | 06260    | 0.06269       | 06260            | 0.06264 | 0.06283 | 0.06283 | 06283    | 0.06340 | 0.06283 | 0.052831     |
| <b>Jutiet Flow</b> |              |          |         |         |          |                  |          |                |          |                |                  |          |               |          |          |         |          |          |          |          |          |         |          |         |          |         |               |          |          |          |              |         | Ĭ        |          |          |          |          |                |          |              |               |          |          |          |         |          |         |           |          |          |               |                  |         |         |         |          |         |         |              |
| Ū                  | 207.63       | 205.42   | 210.88  | 209.88  | 209.80   | 213.45<br>207.66 | 213.21   | 214.50         | 212.73   | 218.58         | 217.62           | 212.50   | 206.89        | 210.85   | 210.57   | 209.46  | 209.84   | 209.44   | 204 70   | 206.45   | 204.24   | 206.72  | 209.64   | 210.47  | 210.20   | 208.98  | 210.81        | 207.63   | 205.71   | 206.36   | 209.72       | 210.61  | 212.12   | 209.43   | 209.21   | 209.21   | 209.13   | 209.80         | 208.44   | 204.53       | 203.24        | 208.35   | 209.76   | 211.07   | 208.95  | 0.00     | 0.00    | 209.65    | 210.72   | 209.58   | 210.31        | 210.72           | 210.80  | 211.53  | 211.53  | 211.53   | 212.58  | 211.53  | 211.03       |
| SCFM               | - 0          | 7        | 6       | 60      | 0        | ~ 0              | 4        | 00             | 8        | 2              | 4 0              | 2.42     | 8             | 3        | 4        | 4       | 2        |          | - 0      | 4        | 8        | 2       | - 0      | 100     | 0        | 3       |               | 2 0      | 8        | 7        | 9 9          | 4       | 0        | 5        | 20       | 6        | 3        | 0              | 0.00     | 2            | 2 2           | 0 4      | -        | 2        | 8       | 0        | 0       | 8 9       | 2        | 0        | 0.6           | 0                | 6       | 6       | 6       | 6        | 6       | 6       | 6            |
| x                  | 203.1        | 204.3    | 206.2   | 206.9   | 206.9    | 207.7            | 208.3    | 207.1          | 209.6    | 215.1          | 215.8            | 210.5    | 203.3         | 206.0    | 206.2    | 207.6   | 206.8    | 207.02   | 205.6    | 208.9    | 206.9    | 207.7   | 207.0    | 206.6   | 206.6    | 207.1   | 207.6         | 209.2    | 207.8    | 205.1    | 20/.02       | 208.6   | 209.3    | 208.4    | 210.4    | 210.4    | 212.4    | 207.0          | 210.2    | 211.8        | 211.2         | 208.0    | 207.9    | 209.8    | 211.6   | 0.0      | 0.0     | 208.9     | 211.9    | 212.8    | 212.2         | 211.9            | 211.8   | 211.2   | 2112    | 211.2    | 210.4   | 211.2   | 2112         |
| Y ACF              | 5.07         | 2.77     | 9.90    | 8.96    | 3.91     | 2.59             | 4.19     | 4.95           | 8.90     | 2.82           | 5.99             | 7.58     | 7.02          | 5.09     | 6.68     | 5.06    | 2.19     | 4.39     | 6.37     | 7.62     | 5.09     | 1.28    | 0.53     | 2.20    | 7.23     | 6.63    | 13.69<br>E 64 | 3.45     | 8.70     | 10.2     | 27.2         | 0.70    | 8.03     | 0.14     | 4.37     | 4.37     | 2.60     | 9.53<br>0.60   | 12.79    | 8.27         | 16.53<br>0.55 | 3.14     | 0.37     | 9.41     | 06 00   | 0.00     | 0.00    | 0.21      | 14.06    | 3.52     | 51.66<br>c 20 | 0.4.06           | 0.56    | 9.12    | 121.60  | 9.12     | 54.14   | 12      | 9.121        |
| Air Velocit        | 1134         | 1141     | 1151    | 1155    | 1155     | 1160             | 1163     | 1156           | 1170     | 1201           | 1205             | 1175     | 1135          | 1150     | 1151     | 1159    | 1155     | 115/     | 1148     | 1166     | 1155     | 1160    | 1156     | 1154    | 1153     | 1156    | 1155          | 1168     | 1160     | 1145     | 1156         | 1165    | 1168     | 1164     | 1175     | 1175     | 1186     | 1155           | 1174     | 1182         | 1179          | 1167     | 1161     | 1171     | 1182    |          |         | 116/      | 1183     | 1186     | 1185          | 1180             | 1180    | 1179    |         | 1175     | 1175    | 11/1    | 2711         |
| w Densit/          | 0.08874      | 0.08764  | 0.08874 | 0.08814 | 0.08822  | 0.08926          | 0.08878  | 0.08984        | 0.08765  | 0.08743        | 0.08681          | 0.08692  | 0.08851       | 0.08897  | 0.08879  | 0.08759 | 0.08824  | 0.08/90  | 0.08652  | 0.08562  | 0.08550  | 0.08660 | 0.08812  | 0.08840 | 0.08847  | 0.08802 | 0.08851       | 0.08627  | 0.08560  | 0.08788  | 0.08808      | 0.08764 | 0.08796  | 0.08691  | 0.08610  | 0.08610  | 0.08539  | 0.08813        | 0.08627  | 0.08417      | 0.08376       | 0.08642  | 0.08736  | 0.08662  | 0.08612 | 0.08511  | 0.08511 | 0.0864/   | 0.08580  | 0.08509  | 0.08555       | 0.08580          | 0.08586 | 0.08631 | 0.08631 | 0.08631  | 0.08698 | 0.08631 | 0.050311     |
| Inlet Flo          | 50           | 9        | 6       | 8       | 00       | 00               | 4        | 2014           |          | 4              | 0 0              | 4        |               | 44       | 2        | 4       | 6        | 4        | 22       | 4        | 2        | NC      | 4        | 0       | 8        | 0       | N F           | - 00     | 0        | -        | - 4          | 9       | N        | 2        | 1 4      | 4        | 2        | ~ ~            | 50       | 6            | 2             | 2        | 5        | 5        | 7 6     | 8        | 8       | 2         | 90       | 2        | 2             | 0.0              | 2       | 5       | 0 4     | 5        | 9       |         | <u>_</u>     |
| ametric P          | 29.83        | 29.39    | 29.83   | 29.51   | 29.4     | 29.65            | 30.0     | 30.0           | 30.0     | 29.9           | 29.7             | 29.7     | 29.8          | 30.0     | 29.9     | 29.8    | 29.8     | 20.92    | 29.5     | 29.3     | 29.4     | 5.62    | 29.8     | 29.8    | 29.9     | 29.7    | 6.05          | 29.5     | 29.7     | 29.4     | 8.87<br>6.62 | 29.8    | 29.8     | 29.7     | 29.      | 29.      | 29.1     | 29.5           | 29.3     | 8            | 28.3          | 29.      | 29.      | 29.7     | 29.4    | 29.5     | 29.5    | 29.5      | 29.      | 29.0     | 29.           | 29.0             | 29.3    | 29.     | 29.0    | 29.      | 29.7    | 67.00   | τ <u>α</u> , |
| Bar                | +            |          |         | +       |          | +                |          |                | -        | +              | -                |          |               |          |          |         | -        | +        | -        |          |          |         |          | -       |          |         |               |          |          |          | +            |         |          |          | +        |          |          |                |          |              | +             | ╞        |          | +        | +       | -        |         |           |          |          | +             | +-               |         |         | ┼       |          |         | +       |              |
| ime                | 8:30<br>8-15 | 8:10     | 8:20    | 8:20    | 9:10     | 0:00             | 8:10     | 18:10<br>18:20 | 8:15     | 08:20<br>01-20 | 8:30             | 08:10    | 08:20<br>0.00 | 95:30    | 05:30    | 2:00    | 9:35     | 00.50    | 00:00    | 9:35     | 0:30     | 19:20   | 08:20    | 5:30    | 08:20    | 08:05   | 01:0          | 0:30     | 08:20    | 08:20    | 5:30         | 6:38    | 0:30     | 1:20     | 00:00    | 00:00    | 08:20    | )8:25<br>00:00 | 0:20     | <b>38:10</b> | 1:30          | 00.1     | 6:30     | 09:40    | 2.40    | 9:35     | 2:00    | 61:2      |          | 3:50     | 00.00         | 00.80            | 0:20    |         |         |          | 2:00    |         |              |
| ne in Ex 1         | 100001       | 10000    | 10000   | 10000   | 10000    | 10000            | 10000    | 10000          | 10000    | 10000          | 100001           | 10000    | 10000         | 100001   | 10000    | 100001  | 10000    | 100001   | 10000    | 10000    | 100001   | 100001  | 10000    | 100001  | 10000    | 10000   | 100001        | 100001   | 10000    | 10000    | 100001       | 10000   | 10000    | 100001   | 10000    | 10000    | 10000    | 10000          | 10000    | 10000        | 110001        | 10000    | 10000    | 10000    | 100001  |          |         | 10000     | 10000    | 10000    | 10000         | 10000            | 10000   | 10000   | 10000   | 10000    | 10000   | 00001   | 100001       |
| k HC Col           | 0.0          | 5        | 100     | 2 2     | 2 2      | 2 2              | 5        |                | 2        | 201            | 0 50             | 5        | 10,1          | 0,4      | 2.52     | 5       | 5        | 0 4      | 2 2      | 5        | 5        | 0,4     | 2 5      | 5       | 5        | 2       | 0,4           | 22       | 5        | <u> </u> | 0,00         | 5       | 5        | <u></u>  | 0.0      | 5        | S        | 5              | 0.00     | 5            | 22            | 55       | 35       | <u></u>  | 0 40    | 2        |         | 0,4       | 5 5      | 5        | 40,4          | 0.0              | 2       | 5.1     | oj vo   | 52       | 5.1     | 0       | ň            |
| laust Bac          |              | 0        | 0       |         | 0        |                  |          |                |          |                |                  | 0        |               |          | 10       | 0       |          |          |          | 0        |          |         |          |         | 0        |         |               |          | °        |          |              | 0       | 0        |          |          | 0        | 0        |                |          | 0            | 00            | 0.50     | 0.5      |          |         | ,        |         |           |          | °        |               |                  |         | 0       |         | 0        |         |         | 2            |
| p (40-Exh          | 56           | 56       | 56      | 55      | 52       | 50               | 58       | 52.<br>61      | 62       | 90             | 61               | 60       | 28            | 80 3     | 58       | 62      | 60       | 295      | 64       | 64       | 99       | 090     | 60       | 58      | 60       | 60      | 200           | 66       | 70       | 56       | 29           | 62      | 61       | 62       | 62       | 62       | 62       | 54             | 62       | 70           | 60            | 57       | 56       | 62       | 61      | ,        | -       | 60        | 60       | 60       | 60            | 09               | 60      | 60      | 209     | 60       | 60      | 0.00    | 50           |
| Inlet Tem          |              |          |         |         |          |                  |          |                |          |                |                  |          |               |          |          |         |          |          |          |          |          |         |          |         |          |         |               |          |          |          |              |         |          |          |          |          |          |                |          |              |               |          |          |          |         |          |         |           |          |          |               |                  |         |         |         |          |         |         |              |
| ist Flow           | 0.5          | 0.5      | 0.5     | 0.5     | 0.5      | 0.5              | 0.5      | 0.5            | 0.6      | 0.6            | 0.5              | 0.5      | 0.5           | 0.0      | 0.5      | 0.6     | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.0     | 0.5      | 0.5     | 0.5      | 0.5     | 0.0<br>2 0    | 0.5      | 0.5      | 0.5      | 0.0          | 0.5     | 0.5      | 0.5      | 0.55     | 0.55     | 0.6      | 0.5            | 0.5      | 0.5          | 0.5           | 0.5      | 0.5      | 0.5      | 0.50    |          |         | 0.5       | 0.5      | 0.5      | 0.5           | 0.5              | 0.5     | 0.5     | 0.5     | 0.5      | 0.5     |         | 0.0          |
| 5-1(Exhau          | 9.5          | 9.5      | 9.8     | 8.8     | 9.8      | 0 0<br>8 0       | 10       | <u>0</u>       | 10       | 0.5            | 0.5              | 10       | 9.5           | 9.8      | 9.8      | 9.8     | 8.8      | 8 9      | 9.5      | 9.7      | 9.5      | 1.4     | 0.8      | 9.8     | 9.8      | 9.8     | 9.9           | 9.8      | 9.6      | 9.6      | 0.0          | 9.9     | 10       | 9.8      | 9.6      | 9.9      | 10       | 8.8            | 9.9      | 9.8          | 9.7           | 9.8      | 9.8      | 9.9      | 8.8     | 2.2      |         | 9.8<br>10 | 10       | 10       | 10            | 10               | 10      | 10      |         | 10       | 10      |         | 101          |
| et Flow (          |              |          |         |         |          |                  |          |                |          |                | -                |          |               |          |          |         |          |          |          |          |          |         |          |         |          |         |               |          |          |          |              |         |          |          |          |          |          |                |          |              |               |          |          |          |         |          |         |           |          |          |               |                  |         |         |         |          |         |         |              |
| Vacumini           | 64<br>64     | 65       | 64      | 64      | 64       | 64               | 64       | 64             | 62       | 60             | 200              | 60       | 65            | 65       | 65       | 64      | 65       | 69       | 64       | 62       | 62       | 200     | 65       | 64      | 65       | 99      | 99            | 64       | 62       | 99       | 65           | 64      | 64       | 62       | 82       | 62       | 62       | 64             | 64       | 64           | 62            | 62       | 62       | 60       | 09      | 2        | -       | 60        | 60       | 60       | 09            | 809              | 60      | 60      | 909     | 60       | 60      | 090     | ٥٧١          |
| System             |              |          |         |         |          |                  |          |                |          |                |                  |          |               |          |          |         |          |          |          |          |          |         |          |         |          |         |               |          |          |          |              |         |          |          |          |          |          |                |          |              |               |          |          |          |         |          |         |           |          |          |               |                  |         |         |         |          |         |         |              |
| ust Temp           | 132          | 130      | 130     | 130     | 124      | 124              | 135      | 125            | 140      | 138            | 139              | 136      | 136           | 138      | 140      | 148     | 138      | 140      | 146      | 144      | 160      | 138     | 134      | 130     | 134      | 136     | 136           | 138      | 154      | 128      | 142          | 142     | 142      | 150      | 149      | 148      | 148      | 132            | 132      | 138          | 132           | 127      | 128      | 142      | 140     |          |         | 142       | 134      | 132      | 135           | 138              | 138     | 140     | 140     | 140      | 140     | 140     | 3            |
| me Exha            | 24           | 24       | 24      | 24      | 24       | 24               | 24       | 24             | 12       | 12             | 24               | 16       | 24            | 24       | 23       | 24      | 24       | 24       | 24       | 24       | 24       | 24      | 24       | 24      | 24       | 24      | 24            | 24       | 24       | 24       | 24           | 24      | 24       | 24       | 24       | 24       | 24       | 24             | 24       | 24           | 24            | 20       | 24       | 17       | 24      | 24       | 2       | 4         | 24       | 24       | 24            | 24               | 24      | 24      | 24      | 24       | 24      | 24      | 47           |
| unning Ti          |              |          |         |         |          |                  |          |                |          |                |                  |          |               |          |          |         |          | :        |          |          |          |         |          |         |          |         |               |          |          |          |              |         |          |          |          |          |          |                |          |              |               |          |          |          |         |          |         |           |          |          |               |                  |         |         |         |          |         |         |              |
| Œ                  | 0/16/93      | 66/81/   | 0/19/93 | V/21/93 | 1/22/93  | 7/23/93          | V/25/93  | 0/26/93        | 1/28/93  | 0/29/93        | 1/31/93          | /01/93   | 1/02/93       | 1/03/83  | 1/05/93  | /06/93  | 1/07/93  | 1/00/03  | /10/83   | 1/11/93  | 1/12/93  | 1/13/83 | 1/15/93  | 116/93  | 117/93   | 1/18/93 | 66/61/1       | 1/21/93  | 1/22/93  | 1/23/93  | 1/26/93      | 1/26/93 | 1/27/93  | 1/28/93  | 1/30/93  | 2/01/93  | 2/02/93  | 2/03/93        | 2/05/93  | 2/06/93      | 2/07/93       | C6/60/2  | 2/10/93  | 2/11/93  | 113/93  | 2/14/93  | 2/15/93 | 2/16/93   | 2/18/93  | 2/19/93  | 2/20/93       | 2/22/93          | 2/23/93 | 2/24/93 | CR/92/2 | 2/27/93  | 2/28/93 | 2/29/93 | 2/30/331     |
| Date               |              | 3 10     | 3 1(    | 11      | 3 16     | 100              |          | 1              | 3 1(     | 1              |                  | 3        | 3 1           |          | 1        | 3 1     | -        |          |          | 3        | 3        |         |          |         | 3        | 3       |               | -        | 3        | -        | 5            | 100     | -        |          | 200      | 3 12     | 3        |                | 3        | 3            |               | 2 6      | 3        | 0        | 000     | 3 1      | 3       |           | 1        | 3        | ÷.            | 1                | 3       | 1       | 000     | 3        | 3       |         | 100          |
|                    | 10/16/9/     | 10/18/95 | 10/19/9 | 10/20/9 | 10/22/95 | 10/23/9:         | 10/25/93 | 10/26/9:       | 10/28/95 | 10/29/9:       | 10/31/95         | 11/01/95 | 11/02/9:      | 11/03/9. | 11/05/90 | 11/06/9 | 11/07/9: | 11/08/9/ | 11/10/95 | 11/11/9: | 11/12/9. | 11/13/9 | 11/15/92 | 11/16/9 | 11/17/9: | 11/18/9 | 11/19/9/      | 11/21/9: | 11/22/9: | 11/23/9  | 11/24/8      | 11/26/9 | 11/27/9. | 11/28/9. | 11/30/95 | 12/01/9: | 12/02/9. | 12/03/9.       | 12/05/9: | 12/06/9:     | 12/07/9.      | 12/09/92 | 12/10/9: | 12/11/9. | 12/12/9 | 12/14/9: | 12/15/9 | 12/16/9   | 12/18/9: | 12/19/9: | 12/20/9       | 12/22/9:         | 12/23/9 | 12/24/9 | 12/22/9 | 12/27/9. | 12/28/9 | 12/29/9 | 1213013      |
| Date               |              |          |         |         |          |                  |          |                |          |                |                  |          |               |          | 1        |         |          |          |          |          |          |         |          |         |          |         |               |          |          |          |              |         |          |          |          |          | ŀ        |                |          | $\square$    |               |          |          |          |         |          |         |           |          |          |               |                  |         |         |         |          | Ш       |         |              |

C-51

| -EM                    | CLM      | 126.63    | 126.63     | 126.63           | 126.63    | 124.42    | 00.0      | 000       | 0.0          | 100.00     | 120.10     | 14.00     | 20.04    | 145.32      | 1071        | 48.101      | AR ICI      | 152.13      | 162.32      | 162.30      | 151.69      | 162.00      | 162.19     | 140.69     | 151.89     | 151.82      | 140.33     | 139.58     | 139.62     | 140.21     | 150.94      | 150.98     | 150.80     | 150.80     | 151.00     | 140.19     | 140.80     | 140.53      | 136.88     | 00.0      | 000     | 122.2       |
|------------------------|----------|-----------|------------|------------------|-----------|-----------|-----------|-----------|--------------|------------|------------|-----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|------------|------------|-------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|-------------|------------|-----------|---------|-------------|
| CEM                    |          | 145.85    | 145.95     | 145.95           | 145.95    | 143.40    | 0.00      | 0.00      | 00.0         | 00.00      | 120.00     | 100.001   | 100.04   | 42.001      | 100.00      | 170.12      | 10.13       | 169.95      | 182.06      | 182.09      | 170.48      | 182.44      | 182.22     | 157.54     | 170.25     | 170.33      | 157.97     | 158.88     | 158.82     | 158.11     | 171.35      | 171.29     | 171.48     | 171.48     | 171.25     | 158.09     | 158.51     | 158.26      | 156.43     | 0.00      | 000     | 122.2       |
| Valocity 14            | A NUMBER | 0000 01   | 3093.84    | 3093.84          | 3093.84   | 3039.98   | 0.00      | 0000      | 00.0         | 30.56 04   | 3303 51    | 3502 00   | 3502 80  | 100.2000    | 10020       | 36/6 40     | 00000       | 3602./6     | 14.8000     | 3860.16     | 3613.89     | 3867.42     | 3862./4    | 3339.53    | 3608.98    | 3610.85     | 3348.79    | 3368.12    | 3366.82    | 3351.61    | 3632.43     | 3631.06    | 3635.12    | 3635.12    | 3630.21    | 3351.27    | 3360.17    | 3354.93     | 3315.99    | 0.00      | 00.00   | ->>>>       |
| Duttet Flow DensityAir |          | 002000    | - 687 90'D | 0.06283          | 0.06283   | 0.06507   | 0.08603   | 0.08603   | 0.00.061     | 006435     | 0.6267     | 0.06.371  | 0.06.371 | 006484      | 0.06.46.8   | 0.06473     |             | 0.00400     | 0.004000    | 0.06457     | 0.06447     | 0.06433     | 0.06449    | 0.06471    | 0.06464    | 0.06457     | 0.06435    | 0.06361    | 0.06366    | 0.06424    | 0.06381     | 0.06386    | 0.06371    | 0.06371    | 0.06389    | 0.06426    | 0.06392    | 0.06411     | 0.06563    | 0.08632   | 0.08632 |             |
| SCFM                   | 011 60   | 111 100   | 20.112     | 211.53           | 211.53    | 211.53    | 0.00      | 00.00     | 00.0         | 213 75     | 210.68     | 211.27    | 211 27   | 210.89      | 210.61      | 210.69      | 310.03      | 211.33      | 10.112      | 12.112      | 14.112      | 211.03      | 10.12      | 210.65     | 211.39     | 211.4/      | 210.87     | 209.55     | 208.78     | 209.82     | 210.28      | 210.16     | 210.08     | 210.08     | 210.60     | 211.27     | 211.27     | 211,59      | 211.07     | 0.00      | 0.00    |             |
| ACFM                   | 011 00   | 011 20    | 27.117     | 87.117<br>87.117 | 211.29    | 211.29    | 0.00      | 00'0      | 000          | 210.65     | 211.62     | 211 06    | 211.06   | 209.39      | 209.61      | 209.59      | 11 000      | 210.48      | 11000       | 211.00      | 210.00      | 62 112      | 00.112     | 209.62     | 19.012     | 210.86      | 21.3/      | 212.39     | 211.11     | 210.31     | 211.92      | 212.11     | 212.26     | 212.26     | 211.77     | 211.16     | 211.20     | 209.94      | 211.31     | 0.00      | 0.00    |             |
| ir Velocity 1/         | 11799 12 | 11700 12  | 11700.40   | 171.68/11        | 11/99,12  | 11799.12  | 0.00      | 0.00      | 00.0         | 11763.46   | 11817.09   | 11786.23  | 11786.23 | 11693.06    | 11704.92    | 11704.17    | 11694 03    | 11776.00    | 11706 37    | 11775 06    | 01.001.11   | 11784 69    | 10.10111   | 11/02.8/   | 11/01.11   | 00.0//11    | 1 003.34   | 1 860.35   | 11/88.80   | 11744.18   | 11834.28    | 11844.53   | 11853.01   | 11853.01   | 11825.65   | 11791.46   | 11794.06   | 11723.69    | 11799.99   | 0.00      | 0.00    |             |
| et Flow DensitiA       | 0.08631  | 0.08631   | 100000     | 100000           | 15990.0   | 0.08631   | 0.08603   | 0.08603   | 0.08603      | 0.08771    | 0.08605    | 0.08650   | 0.08650  | 0.08701     | 0.08683     | 0.08684     | 0.08699     | 0.08665     | 0.08650     | 0.08667     | 300000      | 0.00033     | 000000     | 0.08682    | 0.00000    | 000000      | 070070     | 0.005042   | 0.08560    | 0.08625    | 0.08580     | 0.08565    | 0.08553    | 0.08553    | 0.08593    | 0.08643    | 0.08639    | 0.08743     | 0.08630    | 0.08632   | 0.08632 |             |
| Barametric P Inle      | 29.5     | 29.5      | 205        | 2.00             | C.67      | 29.5      | 29.9      | 29.9      | 29.9         | 29.9       | 29.9       | 29.95     | 29.95    | 30.02       | 29.95       | 30.02       | 30.08       | 30.01       | 29.95       | 29.95       | 00 00       | 29.96       | 20.01      | 29 08      | 20.05      | 20.85       | 20.62      | 29.96      | AC.87      | C8'82      | 29.82       | 29.87      | 56.62      | 29.95      | 29.98      | 30.05      | 30.1       | 30.04       | 30         | 30        | 30      |             |
| Conc In Ex Time        | 10000    | 10000     | 10000      | 100001           | 00001     | 10001     |           |           |              | 7800 14:00 | 10000 8:45 | 10000     | 10000    | 10000 09:20 | 10000 09:50 | 10000 08:40 | 10000 08:45 | 10000 10:15 | 10000 08:45 | 10000 10:35 | 10000 10-00 | 10000 09:40 | 1000010-20 | 10000 8:20 | 10000 8-40 | 10000 11-00 | 1000018-45 | 10000 8-40 | 10000 0.40 | 10000 9.50 | 00.01 00001 | 10000 9.20 | 10000      | GT 8 00001 | 10000 8:40 | 10000 8:10 | 10000 8:45 | 10000 16:30 | 10000 7:45 |           |         |             |
| Exhaust Back HC        | 0.5      | 0.5       | 5.0        | 0.5              |           | C'N       |           |           | -            | 0.6        | 0.5        | 0.5       | 0.5      | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         | 0.5         | 0.5        | 0.5        | 0.5        | 0.5         | 0.51       | 0.5        | 2.0        | 2 4        |             | 0.0        |            | 0.0        | 0.0        | 0.0        | 0.0        | 0.0         | cc'n       |           |         |             |
| W IIIIBL I BUD (40     | 0.5 60   | .5 60     | .5 60      | .5 60            | E E       | 2         |           |           |              | 5 60       | .6 70      | 55 68     | 55 68    | .7 66       | .7 66       | .7 67       | .7 67       | .8 68       | .8 68       | .7 67       | .8 68       | .8 68       | 6 67       | .7 68      | 7 67       | 68 68       | 6 68       | 6 68       | 68         | 7          | 7 70        | 77         | 14         |            | 2/ 20      | 2          | 00         | 00          | 0/         |           |         |             |
| OL JBOBILITI           | 0        | 10        | 10 0       | 10               | 0         | 2         |           |           |              | 1.0        | 0          | 0.0       | 0.0      | 6           | 8           | 6.          | 6           | 0           | 0           | 0           | 0           | 0 0         | 6          | 0 0        | 0          | 0           | 0          | 9          | 0          | 0          |             |            |            |            |            |            |            |             |            |           |         | -           |
| MOL INITIA             | 00       | 20        | 80         | . 03             | 08        |           |           |           |              |            | N          | 20        | 20       | 20          | 5           | 52          | 52          | 2           | 22          | 22          | 2           | 5           | 2          | 2          | 1          | 1           | 2          | 2 9        | 9          | 2          | 2           | 0          | 0          | -          | 10         |            |            |             |            |           |         | -           |
| NBA IIImolo du         |          | 40        | 40         | 40               | 40        |           |           |           |              | 60         | 00         |           |          |             |             | 100         | 2           | 34          | 33          | 34          | 34          | 34          | 33         | 33         | 33         | 33          | 33 6       | 34 6       | 84         | 2          | 8           |            |            | 0          | 8          | 8          | 2          | 2           |            |           |         | -           |
| P P P                  |          | 4         |            | 1                | 1         | 9         | .0        | , 0       |              | 2          | *          |           |          |             |             |             | *           | +           | 4           | 4           | 4           | 4           | 4          | 4          | 4          | 4           | 4          | 4 1:       | 4 10       | 4 10       | 4           | 4          | 4 14       | 4 14       | 4          | 4          | 0          | 3 14        | 2          | 0         |         |             |
| 104                    | 5        | 40        | 94         | 94               | 94        | 94        | 94        | 94        | 100          | 104        | 10         | 10        |          | 104         | 104         | 104         | 100         | 84          | 500         | 84          | 44          | 94          | 94         | 84         | 94         | 94          | 94         | 94         | 94         | 94 2       | 94 2        | 94         | 94 2       | 94         | 94         | 94 2       | 94         | 94 2        | 94         | 94        |         |             |
| 10/10                  | 100 100  | 120/10 40 | 10110      | 94 01/04/        | 94 01/05/ | 94 01/06/ | 94 01/07/ | 34 01/08/ | 14 A1 100/10 | 10/10/10   | 11/10      | 14 01/12/ | 01/13/1  | 01/13/1     | 14 01/15/1  | 14 01/16/   | 10 11 0 F   | 11 01111    | 10/10/      | 10/18/      | 14 01/20/   | 94 01/21/   | 172110     | 94 01/23/  | 34 01/24/  | 14 01/25/   | 34 01/26/  | 94 01/27/  | 14 01/28/1 | 14 01/29/1 | 14 01/30/1  | 14 01/31/1 | 14 02/01/5 | 14 02/02/5 | 14 02/03/5 | 14 02/04/5 | 4 02/05/5  | 14 02/06/5  | 4 02/07/6  | 4 02/08/5 | 0/00/00 |             |
| 01/01/5                | 01/02/10 | 01.0010   | 100/10     | 01/04/1          | 01/05/1   | 01/06/5   | 01/07/5   | 01/08/5   | 01/00/6      | 01/10/5    | 01/11/10   | 01/12/6   | 01/13/9  | 01/14/9     | 01/15/0     | 01/16/9     | 01/17/0     | 0/0////0/   | 01/10/1     | 1/11/10     |             | 01/21/5     | 11/22/10   | 01/23/6    | 01/24/6    | 01/25/6     | 01/26/9    | 01/27/6    | 01/28/6    | 01/29/9    | 01/30/9     | 01/31/9    | 02/01/9    | 02/02/9    | 02/03/9    | 02/04/9    | 02/05/9    | 02/06/9     | 02/07/9    | 02/08/9   | 02/00/0 | CIER MARKED |

50  $\mathbf{c}$ 

SVE Flow Calculation

West Unit

# Pg 8 of 8

## **APPENDIX C.4**

Air Permeability Calculations and Modeling



| CALC. NO                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SIGNATURE MA Robbins DATE 1/21/93 CHECKED JA Reliage DATE 1/25/95                                                                                                                                                     |
| PROJECT GALENA TS JOB NO.                                                                                                                                                                                             |
| Calculation of air pormoab. 7:4 coef.<br>SUBJECT USING transport pressure distribution deta SHEET OF 5 SHEETS                                                                                                         |
|                                                                                                                                                                                                                       |
| From: "A practical Approach to the Dosign,<br>Operation, and Monitoring OF IN Situ Soil-Venting<br>Systems." P.C. Johnson, C.C. Stanky, M.W. Kemblowski, D.L. Byers,<br>AND J.D. Colthart, <u>GWMR</u> , Spring 1990. |
| Procedure.                                                                                                                                                                                                            |
| Flow rate and transient pressure distribution date are                                                                                                                                                                |
| used to estimate the soil permeability to vapor flow. The                                                                                                                                                             |
| expected change in the subscribe pressure distribution with                                                                                                                                                           |
| time P (1, C) is preside By                                                                                                                                                                                           |
| $\overline{P}' = \frac{\underline{G}}{4\pi m (k/\mu)} \int \frac{e^{-\chi}}{\chi} d\chi  (1)$                                                                                                                         |
| rzek<br>4kPatm<br>E                                                                                                                                                                                                   |
| Forz (* x2 z k/4 k Pate t) <0.1 this eguction can be approximated<br>by:                                                                                                                                              |
| $P' = \frac{G}{4\pi m (k/m)} \left[ -0.5772 - h \left( \frac{r^2 \epsilon M}{4\pi k R_{a} h} \right) + h (t) \right] (z)$                                                                                             |
| FOUNTION 2 PIEDICTS a plot of pirs. M(t) should<br>be a straight line with slope 4 and y-interast Begual<br>to:                                                                                                       |
| $A = \frac{\Theta}{4\pi m (k/\mu)}$                                                                                                                                                                                   |
| $B = \frac{Q}{4\pi m (k/\mu)} \left[ -0.5772 - lm \left( \frac{Rr^2 \leq \mu}{4R} \right) + \frac{Rr^2 \leq \mu}{4R} \right]$                                                                                         |



|                                                                                                  | CALC. NO      |        |
|--------------------------------------------------------------------------------------------------|---------------|--------|
| NATURE MA Robbins DATE 12/31/93 CHECKED                                                          | DATE          |        |
| DIECT GALENA TS JOBNO                                                                            |               |        |
| Calculation of air permeability col Usinc<br>UECT Transient Pressure distribution data suffer 2. | 5             |        |
|                                                                                                  | 0F            | SHEETS |
|                                                                                                  |               |        |
| where                                                                                            |               |        |
|                                                                                                  |               |        |
| -P' = "grass" prossure measure of distant                                                        | ce rond       |        |
| time t                                                                                           |               |        |
| m = stratum thickness                                                                            |               |        |
| r = radial distance from vapor extraction a                                                      | vell          |        |
| Ks soil permeability to air flow                                                                 |               |        |
| M = Viscocity of AIR = 1.8 ×10-4 g/cm-5                                                          |               |        |
| E = air filled solid voir fraction                                                               |               |        |
| t= time                                                                                          |               |        |
| Q= volumetric vapor flow rate from extraction of                                                 | well          |        |
| attin ambient atmospheric pressure = 1.0 atm = 6013 x                                            | 10° 3/cm-32   |        |
| The permachility to air flag and he and                                                          |               |        |
| two ways First if Q al m are known the                                                           | e one of      |        |
| Slope A is used.                                                                                 | Calca la ta l |        |
|                                                                                                  |               |        |
| K= Qu                                                                                            |               |        |
| - ATIM                                                                                           |               |        |
|                                                                                                  |               |        |
| If Qor mis not known the both Agnal B a                                                          | the USOD      |        |
|                                                                                                  |               |        |
| $K = \frac{F^2 E A}{1 D L} \exp\left(\frac{D}{A} + 0.5772\right)$                                |               |        |
| T tatm ()                                                                                        |               |        |
|                                                                                                  |               |        |
| Since toth 6 and m and have been                                                                 |               |        |
| for the GALENA project the first method                                                          | Gri ha        |        |
| UseD.                                                                                            | - 10 july     |        |
|                                                                                                  |               |        |
|                                                                                                  |               |        |
|                                                                                                  |               |        |
|                                                                                                  |               |        |

.



|                                          |                                         |                                            |                   |                | CALC. NO           |                 |
|------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------|----------------|--------------------|-----------------|
| SIGNATURE MA KO                          | toins                                   | _ DATE_ 12/31/9                            | CHE               | CKED           | DATE               |                 |
| PROJECT GALENA                           | TS                                      |                                            |                   | JOB NO         |                    |                 |
| Calculation of<br>SUBJECT_Using -transit | air Permeability Ce<br>ent Prossore dis | tribution de te.                           | SHEET             | 3              | of5                | SHEETS          |
|                                          |                                         |                                            |                   | ······         |                    |                 |
| Exam                                     | ple prodom;                             |                                            |                   |                |                    |                 |
| E                                        | QUATION:                                | K = <u>Gn</u><br>47T mA                    |                   |                |                    |                 |
| Ģ                                        | = 137 sc.                               | fm                                         |                   |                |                    |                 |
| l M<br>M                                 | = 1.8×10-9<br>= 21.5ft                  | g/cm - s                                   |                   |                |                    |                 |
| SI                                       | one A (See                              | attached ch                                | ant) =            | 0.782          | (Doint VIZ)        |                 |
|                                          |                                         |                                            |                   |                |                    |                 |
|                                          |                                         |                                            |                   |                |                    |                 |
| K =                                      | 137 <u>FT</u> <sup>3</sup><br>min       | . (17.264) <sup>3</sup><br>Fr <sup>3</sup> | cu <sup>3</sup> , | lmin<br>60.sec | 1.8×10-4 g/c       | m - S           |
|                                          | 16(31411)                               | 215 57 12.3                                | 2.54 ) (          | 762 10 11 4    | 2107 6             |                 |
|                                          | 4 ( ), ( ( 6 )                          |                                            |                   | , TOC 11-4120  | . 2402.9           | JEm-S<br>In-HiD |
|                                          |                                         |                                            |                   |                |                    | -               |
| Cr-                                      | 11.64                                   |                                            |                   | 728 4          | -7 cm <sup>2</sup> |                 |
|                                          | 8,235(1                                 | 9 41.6)                                    | 2                 | -, 20 x,       | . /                | /               |
|                                          |                                         |                                            | 2                 | 72.8 Da        | rcy's /            |                 |
| See                                      | Attached to                             | Z Spread :                                 | sheet             |                |                    |                 |
| Calcu                                    | ktion to va                             | alidate                                    |                   |                |                    |                 |
|                                          |                                         |                                            |                   |                |                    |                 |
|                                          |                                         |                                            |                   |                |                    |                 |
|                                          |                                         |                                            |                   |                |                    |                 |
|                                          |                                         |                                            |                   |                |                    |                 |
|                                          |                                         |                                            |                   |                |                    |                 |

C-57

l

4 of 5



East Unit

C-58

# 5 of 5

#### Calculation of Air Permeablity Coefficient Data gather on 1 2/1 0/93

#### EAST UNIT

| Q(cfm)    | 137     |
|-----------|---------|
| u(g/cm-s) | 1.8E-04 |
| M(ft)     | 21.5    |

## EQUATION:

4A piM

where,

Q= flow from SVE well= 137 cfm

 $\mu$  = viscocity of air = .00018 poise A = slope of p vs ln(t) curve

M = stratum thickness = 21.5 ft

| Point | Slope, A | K (cm2)  | Darcy's  |
|-------|----------|----------|----------|
|       |          |          |          |
| V14d  | 0.786    | 7.24E-07 | 72.42016 |
| V12d  | 0.782    | 7.28E-07 | 72.7906  |
| V18d  | 1        | 5.69E-07 | 56.92225 |
| V15d  | 1.24     | 4.59E-07 | 45.90504 |
| V14s  | 0.041    | 1.39E-05 | 1388.348 |
| V12s  | 0.057    | 9.99E-06 | 998.636  |
| V18s  | 0.11     | 5.17E-06 | 517.475  |
| V15s  | 0.617    | 9.23E-07 | 92.25648 |
|       |          |          |          |
|       |          |          |          |
|       |          |          |          |

#### CALCULATION OF AIR PERMEABLITY COEFFICIENT DATA GATHER ON 1 2/1 0/93

West Unit

| Q(cfm)    | 127     |
|-----------|---------|
| u(g/cm-s) | 1.8E-04 |
| M(ft)     | 21.5    |

| Point | Slope , A | K (cm2)  | Darcy's  |
|-------|-----------|----------|----------|
|       |           |          |          |
| V9d   | 0.019     | 3.00E-05 | 2995.908 |
| V7d   | 0.49      | 1.16E-06 | 116.1679 |
| V4d   | 0.42      | 1.36E-06 | 135.5292 |
| V1d   | 0.5       | 1.14E-06 | 113.8445 |
| V9s   | 0.283     | 2.01E-06 | 201.1387 |
| V7s   | 0.377     | 1.51E-06 | 150.9874 |
| V4s   | 0.328     | 1.74E-06 | 173.5434 |
| V1s   | 0.371     | 1.53E-06 | 153.4292 |
|       |           |          |          |
|       |           |          |          |
|       |           |          |          |

## EQUATION:

 $K = Q\mu$  4A piMwhere,

Q= flow from SVE well= 137 cfm  $\mu$  = viscocity of air = .00018 poise

A = slope of p vs ln(t) curve M = stratum thickness = 21.5 ft RADIAN

|                           | _                                                       |                                                                            |                                                                                                | CALC. NO.     |             |
|---------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------|-------------|
|                           | Zobbins                                                 | DATE_/2/2/93                                                               | CHECKED J. /                                                                                   | Rehage TATE   | 1/25/95     |
| PROJECT_GALE              | NA TE                                                   |                                                                            | JOB NO                                                                                         | 0             |             |
| SUBJECT 1993              | Redius of                                               | - INFluence Calc.                                                          | Sheet                                                                                          | OF            | 4SHEETS     |
| As                        | Surptiona: 5                                            | teasy state radio                                                          | e flau, & ho                                                                                   | mogeneous Sy  | stem        |
| ĒAs                       | E Equate                                                | W? ( Johnson, et. a)                                                       | [ /990]                                                                                        |               |             |
|                           | $P_{i}^{2} - P_{\omega}^{2} =$                          | $\left(P_{a+m}^{2}-P\omega^{2}\right)$                                     | $\frac{\ln\left(r/\mathcal{R}\omega\right)}{\left(\mathcal{R}_{\pm}/\mathcal{R}\omega\right)}$ |               |             |
| -<br>-<br>-<br>T          | Pr = Press<br>Pr = Press<br>Parm = Atma<br>F = District | ever at a radial<br>our at the well<br>sphie pressure<br>aware to observa- | porus = = =                                                                                    | is more r, fr | on the Well |
|                           | KW = KON<br>RE - Page                                   | hs of Well (cm)<br>us of INFluence                                         | (cm)                                                                                           |               |             |
| Ke BUTTANG                | $radia T_{c}$ so                                        | ive for RI:                                                                |                                                                                                |               | ·           |
| $\frac{(P, 2)}{(P_{at})}$ | $\frac{F-P\omega^2}{m} = -P\omega^2$                    | In (V (RW)<br>In (Ri/RW)                                                   |                                                                                                |               |             |
| exp                       | $\frac{P_{r}^{2} - P_{w}^{2}}{P_{t}^{2} - P_{w}^{2}}$   | r/2,00<br>RI/2,00                                                          |                                                                                                |               |             |
| R <sub>1</sub> =          | С • 2хр                                                 | $\frac{Part_{mr}^{2}}{P_{r}^{2}-P_{\omega}^{2}}$                           | •                                                                                              |               |             |
|                           | 521 A 444<br>993 Air 7                                  | cited For Date<br>Dermeabylity test.                                       | From Fizs                                                                                      | Ī             |             |
|                           |                                                         |                                                                            |                                                                                                |               |             |

| (02-Aug-93) |
|-------------|
| Unit        |
| West        |
| for         |
| Test        |
| neability   |
| Peri        |
| Air         |
| 0           |
| Results     |

|         |     |          |          |          | 2.5      | 2.6      | 2.7      | 2.8      | 2.8      | 2.8      | 2.8      | 2.8      | 2.8      |             |
|---------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|
| V8      |     |          |          |          |          |          |          |          |          |          |          |          |          |             |
|         |     |          |          |          | 2.7      | 3        | 3.2      | 3.25     | 3.3      | 3.3      | 3.3      | 3.3      | 3.3      |             |
| 22      |     |          |          |          |          |          |          | _        |          |          |          |          |          |             |
| V10-P   | 0.1 | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.15     | 0.2      | 0.15     | 0.15     | 0.15     |             |
| V1-P    | Ŧ   | 1.1      | 1.25     | 1.25     | 1.5      | 1.5      | 1.5      | 1.5      | 1.5      | 1.5      | 1.6      | 1.6      | 1.6      |             |
| V2-P    | 8.5 | 10.5     | 10.65    | 10.75    | 11.25    | 11.25    | 11.35    | 11.5     | 11.5     | 11.5     | 11.75    | 11.75    | 11.75    | 333.4       |
| In(Ti). | 0   | 1.386294 | 2.014903 | 2.397895 | 2.772589 | 3.091042 | 3.332205 | 3.496508 | 3.806662 | 4.430817 | 4.976734 | 5.105945 | 5.480639 |             |
| Ti      | -   | 4        | 7.5      |          | 16       | 22       | 28       | 33       | 45       | 84       | 145      | 165      | 240      | REDIVE Prom |

RADIAN

# CALCULATION SHEET

|                                |                                                                              |                                                                   |                                                    | CALC. NO               |        |
|--------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|------------------------|--------|
| SIGNATURE MAR blins            | DATE_                                                                        | 10/4/93 CHE                                                       | ECKED                                              | DATE                   | _      |
| PROJECT GALENA                 | TS                                                                           |                                                                   | JOB NO                                             |                        |        |
| SUBJECT 1993 Ram               | NS OF INFLAME                                                                | CALCS. SHEET_                                                     | 3                                                  | _ OF                   | SHEETS |
| Selective<br>Assumine<br>ty Za | s VZ as J<br>that stroy - s<br>minutes.                                      | Frint of Intrees                                                  | st ANO<br>5 Were Voa                               | ched                   |        |
| The re<br>boses                | itius of influence<br>SN DATA Collec                                         | E FOR THE WES                                                     | T SVE we                                           | II (E)                 |        |
| Rieve                          | $= \Gamma v_{Z_{1}} e_{XP} \left[ \frac{P_{al_{w}}}{P_{r_{1}v_{Z}}} \right]$ | $\frac{1}{r^2 - P_{well}^2}$                                      |                                                    |                        |        |
| t (v:<br>P: C                  | 3 = 308.4  cm                                                                | h h h i o i z z                                                   |                                                    |                        |        |
|                                | 1944 MA + 11, 43                                                             | $n_{-H_2} = 10150$                                                | cm-sec <sup>2</sup>                                | 29 230 <u></u><br>cn-s | e, 2   |
|                                |                                                                              | <b>-</b> 993,                                                     | 766 9                                              |                        |        |
| Pweli                          | = 1013000 g = 3<br>Cm-ŵz <sup>2</sup>                                        | 3.4 in Hg = 10130                                                 | Cm-=rc <sup>2</sup>                                | 115,041                |        |
| Patro -                        | 1013000 6                                                                    | = 997, =                                                          | 957 g<br>CM-Sec <sup>2</sup>                       |                        |        |
|                                | Cm-Se                                                                        | ۲.<br>۲.                                                          |                                                    |                        |        |
| Rz (12) =                      | 308.4 cm * 8                                                                 | $\sum_{i=1}^{\infty} \left[ \frac{(101300)^2}{(96376)^2} \right]$ | (897,959) <sup>2</sup> 7<br>(897,959) <sup>2</sup> |                        |        |
| ť                              | 308.4 cm 🗶 3                                                                 | . 902                                                             |                                                    |                        |        |
| \$                             | 1203.4 cm =                                                                  | 39.5 FT                                                           |                                                    |                        |        |
| SEE AHA                        | aten For Ke                                                                  | st ef Ciliu                                                       | ATIONS                                             |                        |        |
|                                |                                                                              |                                                                   |                                                    |                        |        |
|                                |                                                                              |                                                                   |                                                    |                        |        |

C-62

| <u>Monitoring Point ID:</u>   | V2            | V1       | V10            | ۷7       | V8       | Average  |
|-------------------------------|---------------|----------|----------------|----------|----------|----------|
| <sup>D</sup> atm (g/cm-sec2)= | 1013000       | 1013000  | 1013000        | 1013000  | 1013000  |          |
| ¤well (in_Hg) =               | 3.4           | 3.4      | 3.4            | 3.4      | 3.4      |          |
| ¤r (in_H2O)=                  | 11.75         | 1.6      | 0.15           | 3.3      | 2.8      |          |
| Rwell (cm)=                   | 0.167         | 0.167    | 0.167          | 0.167    | 0.167    |          |
| Rr (cm) =                     | 243.84        | 411.48   | 1828.8         | 1021.08  | 1143     |          |
| Ri (cm)=                      | 951.229       | 1161.821 | 4988.367       | 3011.117 | 3326.658 | 1388.011 |
| Ri (ft) =                     | <b>31.208</b> | 38.117   | <b>163.660</b> | 98.790   | 109.142  | 88.184   |

C-63

P5. 4 of 4



| - (                  | MA Kobbins                   | DATE_ <u>5/2/9</u>                                                                         | CHECKED JA . Re                                                                    | CALC. NO                                        |                |
|----------------------|------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------|----------------|
| NECT 61              | ALONA 12<br>Remantin Antesta | of Colculation                                                                             | JOB NO<br>SHEET/                                                                   | 0F 7                                            |                |
|                      |                              | 1                                                                                          |                                                                                    | 0r/                                             | SHEETS         |
|                      | METHOD FROM                  | m: "Annaly for S<br>GAS Flow to<br>WELL", Shan, C<br>WATER Resource<br>Pgc 1105 - 1120, Ap | olutions for Stead<br>A Soil VAPOR EX<br>, R.W. FALTA, AND =<br>ES RESEARCH, Vol = | 2 State<br>HRACTION<br>E. JANVANDEL<br>28, NO4. | · · ·          |
|                      | Dath Fromg                   | STRADY STATE<br>THE GALENA T                                                               | READINGS Read                                                                      | 26, 1994.                                       |                |
|                      | D+7                          | 1 TABLE                                                                                    |                                                                                    |                                                 |                |
| Pt                   | POWT<br>ID                   | Prossure<br>READING (In_14,0)                                                              | Distinue<br>Extraction                                                             | FRent<br>Well(FT)                               | Feler<br>(msl) |
|                      |                              | Λ                                                                                          |                                                                                    |                                                 |                |
| -1                   | V-ID                         | 406                                                                                        | 14,                                                                                | 12                                              | . 9.           |
| - <b> </b><br>-<br>2 | V-1D<br>N-75                 | 4.6                                                                                        | 37.0                                                                               | 4 13                                            | .9.1           |





| Well Screen<br>Location              | Depth to Bottom<br>of Screen<br>(a <sub>d</sub> )           | Depth to Top<br>of Screen<br>(b <sub>d</sub> )              | Screen<br>Length<br>(L/h)                                   |
|--------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| B<br>C<br>D<br>E<br>F<br>G<br>H<br>I | 0.9<br>0.7<br>0.9<br>0.5<br>0.7<br>0.9<br>0.3<br>0.6<br>0.9 | 0.1<br>0.1<br>0.3<br>0.1<br>0.3<br>0.5<br>0.1<br>0.4<br>0.7 | 0.8<br>0.6<br>0.6<br>0.4<br>0.4<br>0.4<br>0.2<br>0.2<br>0.2 |

CASE A is selected

10-88-30702



| SIGNATURE MARShows                                    | DATE $5/2$                                                      | 194 CHEOKED                                                                                | CALC. NO                                                  |            |
|-------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------|
| PROJECT GALENA TS                                     |                                                                 |                                                                                            | UAIE                                                      |            |
| SUBJECT AN SOLAR Colo                                 | alation                                                         |                                                                                            | OF                                                        | SHEETS     |
| STEP 5.                                               | Calculate                                                       | Dimensionless P                                                                            | eptus, 21, 5                                              | 595        |
| Notes<br>Aug Surface Z<br>Elevation = 14500           | $= \frac{Z_{1}}{h} ;$ $I_{1} = \frac{(145 - 129.1)}{30} = 0.53$ | $Z_{J_2} = \frac{Z_2}{h}$<br>= $j  Z_{J_2} = (145 - 13) = \frac{30}{30}$<br>= $0 \cdot 34$ | <u>14.9</u> )                                             |            |
| STEP 6.<br>DI<br>Vers                                 | Using the of for case $a + 24 = 24$<br>is far of the            | appropriate dimensi<br>selection 4, dr.<br>and record the<br>enersection point             | snowless drawdo<br>aw a horizon<br>value of $5$<br>5, $7$ | unc<br>hac |
| 7                                                     |                                                                 | $\frac{5-0}{2}$ (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3                             | 2                                                         |            |
| 70<br>Fd<br>.1<br>.2<br>.3<br>.35<br>.47<br>.47<br>.1 | 6                                                               | 5<br>3<br>2,25<br>1.15<br>1.25<br>1.0<br>0.5<br>0.25                                       |                                                           |            |



|           |                       |                                     |                                        |                  | CALC. N    | 10       |          |
|-----------|-----------------------|-------------------------------------|----------------------------------------|------------------|------------|----------|----------|
| signature | A Robbins             | DATE 5/2                            | 194 CHEC                               | KED              | DA         | TE       |          |
| BOJECT GA | HOMA TS               | 1                                   | J                                      | OB NO            |            | -        |          |
|           | al soltarea Co        | leathan                             | SHEET                                  | 4                | OF         | 9        | SHEETS   |
|           | 0                     |                                     |                                        |                  | - <u>.</u> |          | <u> </u> |
|           |                       |                                     |                                        |                  | λι.) Δ     |          |          |
|           | >157 +.               | Ompu e                              | the Collest                            | DONDING          | Values of  | 1 -jion  | ?        |
|           |                       | $\mathcal{R}^{2}$ $\mathcal{R}^{0}$ |                                        |                  |            |          |          |
|           |                       | C                                   |                                        |                  |            |          |          |
|           |                       |                                     |                                        |                  |            |          |          |
|           | <u>2</u> <sup>D</sup> | R                                   |                                        |                  |            |          |          |
|           | e                     | 0.26                                |                                        |                  |            |          |          |
|           | · Z<br>3              | 0.52                                |                                        |                  |            |          |          |
|           |                       | 0, 19                               |                                        |                  |            |          |          |
|           | . 47                  | 5 1.25                              |                                        |                  |            |          |          |
|           | , 7-                  | 1.97                                |                                        |                  |            |          |          |
|           | 1 ( <b>*</b> 1        | 2.9                                 |                                        |                  |            |          |          |
|           |                       |                                     |                                        |                  |            |          |          |
|           |                       |                                     |                                        | ž                |            |          |          |
|           | >1EP 8.               | USING the                           | Same Cimen                             | که کا است ک<br>د | Plot as    | in Steps | <b>)</b> |
|           |                       | al Sverses                          |                                        | -+2, 01.4        |            |          |          |
|           |                       |                                     | 2.25                                   |                  |            |          |          |
|           |                       | r 2                                 | 5 1.75                                 |                  |            |          |          |
|           |                       | 1.15                                | . 25 1.25                              |                  |            |          |          |
|           |                       | <u>م</u> ، لو<br>ج                  | · 50 1                                 |                  |            |          |          |
|           |                       | 0.4 <u>9</u> 5                      | ······································ |                  |            |          |          |
|           |                       | , 25                                | 1.5                                    | , <u> </u>       |            |          |          |
|           |                       | · ]                                 | 2.25                                   | 0                | ו<br>rd    | 2        |          |
|           |                       |                                     | L                                      |                  |            |          |          |
|           |                       |                                     |                                        |                  |            |          |          |
|           |                       |                                     |                                        |                  |            |          |          |
|           |                       |                                     |                                        |                  |            |          |          |
|           |                       |                                     |                                        |                  |            |          |          |
|           |                       |                                     |                                        |                  |            |          |          |
|           |                       |                                     |                                        |                  |            |          |          |

C-67



|         |                           |                                                                     |                                                            |                                                   |                                                    | CALC. NO                | D              |        |
|---------|---------------------------|---------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------|----------------|--------|
| NATURE/ | MATZabbin                 | 5                                                                   | DATE5/2/                                                   | <u></u> CHE                                       | CKED                                               | DATE                    |                |        |
| DJECT(  | GALENA TS                 | ,<br>>                                                              | , , , , , , , , , , , , , , , , , , ,                      |                                                   | JOB NO                                             |                         |                |        |
| JECT    | ANISO HORE                | Calco                                                               | lates                                                      | SHEET                                             | 5                                                  | OF                      | 9              | SHEETS |
|         | STEP                      | 9<br>Coni                                                           | FROM GRAD                                                  | to Values                                         | find<br>of R                                       | volues of<br>D. Those a | 1 S<br>5.11 be | S@.    |
|         |                           | RE                                                                  | Ś                                                          |                                                   | 1                                                  |                         |                |        |
|         |                           | • 76                                                                | 1.5                                                        |                                                   |                                                    |                         |                |        |
|         |                           | .52                                                                 | 0,7                                                        |                                                   |                                                    |                         |                |        |
|         |                           | .8                                                                  | 0.4                                                        |                                                   |                                                    |                         |                |        |
|         |                           | .92                                                                 | 0.35                                                       |                                                   |                                                    |                         |                |        |
|         |                           | 1.25                                                                | 0.22                                                       |                                                   |                                                    |                         |                |        |
|         |                           | 2.                                                                  | 0.05                                                       |                                                   |                                                    |                         |                |        |
|         |                           | 29                                                                  | 20                                                         |                                                   |                                                    |                         |                |        |
|         | STEP 11.<br>FIND<br>CENO? | 12<br>-1<br>-2<br>-3<br>-35<br>.475<br>.475<br>.75<br>PO<br>Te th.5 | 3<br>2.25<br>125<br>1.25<br>1<br>0.5<br>Value for<br>as Ro | 1, 5<br>0, 70<br>0, 40<br>0. 35<br>0. 22<br>, 0 5 | 2<br>3.214<br>4.325<br>3.57<br>4.55<br>10<br>50/50 | - 13.<br>               | 1.             |        |
|         |                           | ∼×                                                                  |                                                            |                                                   |                                                    |                         |                |        |



|          |                  |                                                          |                                                                    |                                             | CALC. NO                                               |                         |
|----------|------------------|----------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|-------------------------|
| SIGNATU  | RE MA Tabb       |                                                          | = 5/2/94                                                           | CHECKED                                     | DATE                                                   |                         |
| PROJECT. | GALONA           | TS                                                       | <i>i i</i>                                                         | JOB NO                                      |                                                        |                         |
| SUBJECT  | ANISS 100        | <u>Calculato</u>                                         | х<br><u>т.ж</u> She                                                | et <u>6</u>                                 | 0F9_                                                   | SHEETS                  |
|          | STEP             | 12. Calc<br>From                                         | ulate the                                                          | Permeabl                                    | e anizotropy                                           | 'נבי בז'                |
|          |                  | A= 1                                                     | $\frac{k_2}{K_r} = \left(\frac{1}{r}\right)$                       | $\frac{2 \times 1}{r_1}$                    |                                                        |                         |
|          |                  | $A = \left( \begin{array}{c} C \\ - \end{array} \right)$ | 14,11                                                              |                                             | . 045 z                                                |                         |
|          | STR P            | 13. Computer<br>of the n                                 | e ik rad<br>redin fra                                              | rol GAN                                     | permebilit                                             | Y                       |
|          |                  | Kr = <u>M</u><br>2777                                    | $\frac{\dot{m}}{2}\left(\frac{S}{1-1}\right)$                      | $\left(\frac{1}{2}\right)^{*}$              | value of So                                            | is the .<br>57 rs = ROX |
|          |                  | 11 = 1.<br>(7a = =<br>SO* =                              | .76 x15 <sup>-5</sup> <u>kit</u><br>= 101,325 A<br>1,24 kg/mi<br>3 | (m - 5)<br>Kg / 5 <sup>2</sup> ·            | M                                                      |                         |
|          |                  | $A^{A} = m^{A} + A^{A}$                                  | 137 F[3/mn<br>. P.a. =<br>3.88                                     | $i \neq \frac{1}{(3.28)^3}$                 | = 3.88 m<br>F1 <sup>3</sup><br>4 Kg/m <sup>3</sup> = 4 | , 81 Kg/min             |
| -        | k =              | = 1.76 X10-5<br>ZIT (101,                                | $\frac{K_{G}}{C/m-S} \left( 0.05 \right)$                          | $\frac{52  \text{Kg/s}}{24  \text{Kg/m}^3}$ | = 0.0<br><u>3</u>                                      | 1902 kg/s               |
|          | $k_{\gamma} = 1$ | .788 X10-12 [1-                                          | 33.45]-                                                            | Z,39×10-1                                   | 1-(100000000000000000000000000000000000                | $\gamma_{d_{36.52}}$    |
|          |                  |                                                          |                                                                    | 2.3 (710                                    |                                                        |                         |



|          |                  |                      |                                               | CALC. NO        |          |
|----------|------------------|----------------------|-----------------------------------------------|-----------------|----------|
| SIGNATUR | E MA Kodon S     | DATE                 |                                               | DATE            |          |
| PROJECT_ | GALONA TS        |                      | JOB NO                                        |                 |          |
| SUBJECT_ | ANISSTRATE Calou | 1 ation              | SHEET7                                        | OF              | SHEETS   |
|          |                  |                      |                                               |                 |          |
|          | Step 14. G       | mpule He             | Ventreal gas p                                | simean, life as |          |
|          |                  |                      |                                               |                 |          |
|          | . 12             | - ry (+              |                                               |                 |          |
|          | K2=              | 2.39 X10<br>1.08 X10 | $6 \text{ cm}^2 + 0.045$<br>$57.\text{ cm}^2$ | 52              |          |
|          |                  |                      |                                               |                 |          |
|          |                  |                      |                                               |                 |          |
|          | STEP 15. Ch      | eck the              | result by cale                                | culative        |          |
|          | absec            | yas pre              | - at the s                                    | econs<br>- n    |          |
|          |                  | $\int dx = \int dx$  | Mm < (3) + V2                                 | 5° 15 5         |          |
|          | $P_2 =$          | Pa(1-                | 27 k, R Pa                                    | 5@*=1.5         | -        |
|          |                  | × /                  | (1,76×10-5 kg )                               | 0.0902 Kg/      | 1.5, 1/2 |
|          | $r_2 = 406$      | .92 in 150           | $1 - \frac{m^{2}s}{2rt(2.37)/0-m}$            | 2)(101325 Kg    | .20 Kg   |
|          | = 406.           | 92 in 40 ( O         | .9944)                                        | S · m/          | C .      |
|          |                  |                      |                                               |                 |          |
|          | . = 40           | 4.63 2050/a-         | « or 2,3 in 1                                 | 20 gaze) !      | 2/o evid |
|          | c he.            | ks ok                | The second C                                  |                 |          |
|          |                  |                      |                                               |                 |          |
|          |                  |                      |                                               |                 |          |
|          |                  |                      |                                               |                 |          |
|          |                  |                      |                                               |                 | T        |



1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | CALO                                                                                                                           | C. NO                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reichars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DA                                                                                                                                                                                                                                  | $TE = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54 CHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CKED   |                                                                                                                                | DATE                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROJECT GRAZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                                                                |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SUBJECT Shan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | et al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | moiel                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28     | OF                                                                                                                             | 9                                                                                                                                                                                                          | SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | <del></del>                                                                                                                    | •                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{1}{2} + rd^{2} \frac{1}{2} - \sum_{n} (-1)^{n} \cdot \frac{1}{\left[ \frac{rd - bd - zd - 2 \cdot n + \left[ (bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}}{rd + zd + 2 \cdot n + \left[ (bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd - zd + 2 \cdot n + \left[ (bd + zd - 2 \cdot n)^{2} + rd^{2} \right]^{2}}{rd + bd - zd - 2 \cdot n + \left[ (bd + zd - 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd + bd - zd - 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}}{rd + bd + zd + 2 \cdot n + \left[ (bd + zd - 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd - zd - 2 \cdot n + \left[ (bd + zd - 2 \cdot n)^{2} + rd^{2} \right]^{2}}{rd + bd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2} + rd^{2} \right]^{2}} + \frac{rd - bd}{rd + zd + 2 \cdot n + \left[ (-bd + zd + 2 \cdot n)^{2$ | $\psi(rd,zd) := e \cdot rd \left[ \frac{rd - ad - zd + \left[ (ad + zd)^2 + rd^2 \right]^2}{1} + \frac{rd - ad + zd + \left[ (ad - zd)^2 + rd^2 \right]^2}{1} - \frac{rd - bd - zd + \left[ (bd + zd)^2 + rd^2 \right]^2}{1} - \frac{rd - bd + zd + \left[ (bd - zd)^2 + rd^2 \right]^2}{1} - \frac{rd - bd - zd + \left[ (bd + zd)^2 + rd^2 \right]^2}{1} - \frac{rd - bd + zd + \left[ (bd - zd)^2 + rd^2 \right]^2}{1} + \frac{rd - ad + zd + \left[ (bd - zd)^2 + rd^2 \right]^2}{1} + rd + 2d + \left[ (bd + zd)^2 + rd^2 \right]^2} - \frac{rd - bd + zd + \left[ (bd - zd)^2 + rd^2 \right]^2}{1} + rd + 2d + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 \right]^2 + rd^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 + rd^2 \right]^2 + rd^2 + rd^2 + \left[ (bd - zd)^2 + rd^2 + rd^2 + rd^2 + rd^2 \right]^2 + rd^2 + r$ | $+ \left[ rd^{2} + (bd + zd - 2 \cdot n)^{2} \right]^{2} - bd + zd + 2 \cdot n + \left[ rd^{2} + (-bd + zd + 2 \cdot n)^{2} \right]^{2} - bd + zd - 2 \cdot n + \left[ rd^{2} + (-bd + zd - 2 \cdot n)^{2} \right]^{2} \right]^{2}$ | $\frac{1}{2} + \left[rd^{2} + \left(ad + zd - 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd - 2 \cdot n + \left[rd^{2} + \left(-ad + zd - 2 \cdot n\right)^{2}\right]^{2} - ad + zd - 2 \cdot n + \left[rd^{2} + \left(-ad + zd - 2 \cdot n\right)^{2}\right]^{2} - ad + zd - 2 \cdot n + \left[rd^{2} + \left(-ad + zd - 2 \cdot n\right)^{2}\right]^{2} - ad + zd - 2 \cdot n + \left[rd^{2} + \left(-ad + zd - 2 \cdot n\right)^{2}\right]^{2} - ad + zd - 2 \cdot n + \left[rd^{2} + \left(-ad + zd - 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd - 2 \cdot n + \left[rd^{2} + \left(-ad + zd - 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd - 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd - 2 \cdot n + \left[rd^{2} + \left(-ad + zd - 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd + 2 \cdot n + \left[rd^{2} + \left(-ad + zd + 2 \cdot n\right)^{2}\right]^{2} - ad + zd$ | $S(rd, zd) := \ln \left  \frac{\left(\frac{ad-zd}{2} + \left(\frac{ad-zd}{2}\right)^{2} - \left(\frac{bd+zd}{2}\right)^{2} + \left(\frac{rd^{2}+(bd+zd)^{2}}{2}\right)^{2}}{\frac{1}{2} - \sum_{n} \left(-1\right)^{n} \cdot \ln \left  \frac{ad+zd+2 \cdot n + \left[rd^{2}+(ad+zd+2 \cdot n)^{2}\right]^{2} - \frac{1}{2} + \left(\frac{dd+zd}{2} - 2 \cdot rd^{2}\right)^{2} - \sum_{n} \left(-1\right)^{n} \cdot \ln \left  \frac{ad+zd+2 \cdot n + \left[rd^{2}+(ad+zd+2 \cdot n)^{2}\right]^{2} - \frac{1}{2} + \left(\frac{dd+zd}{2} - 2 \cdot rd^{2}\right)^{2} + \left(\frac{dd+zd}{2} - 2 \cdot rd^{2}\right)^{2} + \left(\frac{dd+zd}{2} + 2 \cdot n + \left[rd^{2}+(dd+zd+2 \cdot n)^{2}\right]^{2} + \left(\frac{dd+zd}{2} - 2 \cdot rd^{2}\right)^{2} + \left(\frac{dd+zd}{2} - 2 \cdot rd^{2}\right)^{2} + \left(\frac{dd+zd}{2} + 2 \cdot n + \left[rd^{2}+(dd+zd+2 \cdot n)^{2}\right]^{2} + \left(\frac{dd+zd}{2} - 2 \cdot rd^{2}\right)^{2} + \left(\frac{dd+zd}{2} - 2 \cdot rd^{2}\right)^{2} + \left(\frac{dd+zd}{2} + 2 \cdot n + \left[rd^{2}+(dd+zd+2 \cdot n)^{2}\right]^{2} + \left(\frac{dd+zd}{2} - 2 \cdot rd^{2}\right)^{2} $ | n:=120 | ad $:=\frac{a}{h}$ bd $:=\frac{b}{h}$ $\varepsilon := \frac{\mu \cdot M}{2 \cdot \pi \cdot k \cdot Pa \cdot \rho \cdot (a-b)}$ | $\mu := 1.76 \cdot 10^{-5} \cdot \frac{kg}{msec} \qquad M := 0.0802 \cdot \frac{kg}{sec} \qquad Pa := 1 \cdot atm \qquad \rho := 1.24 \cdot \frac{kg}{m^3}$ $i := 1 20 \qquad j := 1 10 \qquad k := 1 500$ | $k_{2} = 108 \cdot 10^{-7} \cdot 10^{-6} \cdot 2^{-6} \cdot 2^{-6} \cdot 10^{-6} \cdot 10$ |



|        |                    |                       |                                                                                                                 | 1 -                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                    | CA       | LC. NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|--------|--------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| NATURE | <u>errilaris n</u> | 5                     | DATE                                                                                                            | <u>= 50275-</u>                                                                                                                                                        | CHE                                                                                                                                                          | CKED                                                                                                                                                                                                                                                                                                                                                                                                                               |          | _ DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|        | <u>SP.0754</u>     |                       | MA . J. Š                                                                                                       | ***                                                                                                                                                                    |                                                                                                                                                              | JOB NO                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u> | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| 3JECT  | <u>Phayl</u> et    | <u>-21</u>            | Macer                                                                                                           |                                                                                                                                                                        | SHEET                                                                                                                                                        | /                                                                                                                                                                                                                                                                                                                                                                                                                                  | _ OF_    | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SHEETS |
|        |                    | WRITEPRN(SVEDTAe2) =B | $B_{k,4} := \Psi d \left( \sqrt{\frac{kz}{kr}} \frac{B_{k,1} m}{h}, \frac{B_{k,2} m}{h} \right)$<br>interrupted | $B_{k,1} := \operatorname{ceil}\left(\frac{k}{10}\right) \qquad B_{k,2} := \operatorname{mod}(k, 10) \qquad B_{k,3} := \frac{P(B_{k,1} \cdot m, B_{k,2} \cdot m)}{Pa}$ | $\psi(rd, zd) := \frac{\psi(rd, zd)}{\psi(rd, 1)} \qquad P(r, z) := Pa \sqrt{1 - \varepsilon \cdot S\left(\sqrt{\frac{kz}{kr} \cdot r}, \frac{z}{h}\right)}$ | $\frac{1+2 \cdot n}{1+2 \cdot n} \frac{2}{r + r d^2} \frac{1}{r - r d + a d - z d + 2 \cdot n + \left[\left(-a d + z d - 2 \cdot n\right)^2 + r d^2\right]^2}{\frac{1}{2}}$<br>$\frac{1}{d + 2 \cdot n} \frac{1}{r + r d^2} \frac{1}{r d + - a d + z d - 2 \cdot n + \left[\left(-a d + z d - 2 \cdot n\right)^2 + r d^2\right]^2}}{r d + - a d + z d - 2 \cdot n + \left[\left(-a d + z d - 2 \cdot n\right)^2 + r d^2\right]^2}$ |          | $\frac{-bd-zd+2\cdot n+\left\lfloor \left(-bd+zd-2\cdot n\right)^{2}+rd^{2}\right\rfloor}{\frac{1}{2}} - \frac{rd-ad-zd-2\cdot n+\left\lfloor \left(ad+zd+2\cdot n\right)^{2}+rd^{2}\right\rfloor}{\frac{1}{2}} - \frac{rd-ad-zd+2\cdot n+\left\lfloor \left(ad+zd-2\cdot n\right)^{2}+rd^{2}\right\rfloor^{2}}{rd+ad-zd-2\cdot n+\left\lfloor \left(-ad+zd-2\cdot n+\left\lfloor \left(-ad+2d-2\cdot n+\left\lfloor \left(-ad+zd-2\cdot n+\left\lfloor \left(-ad+2d-2\cdot n+\left(-ad+2d-2\cdot n+\left(-ad+2d-2\lambda n+$ |        |

## **APPENDIX C.5**

Helium Tracer Test

## **APPENDIX C.6**

## In Situ Respiration Procedures and Calculations

#### In Situ Respiration Test Procedure

The soil respiration tests were conducted in accordance with the procedures outlined in the work plan.  $O_2$  and  $CO_2$  concentrations in the soil gas were measured immediately following shutdown of the SVE and AS blowers in four to eight vapor probe locations in each test cell.  $O_2$  and  $CO_2$  concentrations were measured several times during the first day of the test, and approximately every 12 hours for the remainder of the test. Hydrocarbon concentrations at each location were measured at the beginning and end of the test period during the 150 day test.

Measurement locations were selected to cover both shallow and deep probe locations across the entire study area. Because the temperature rise in subsurface soils in the West Cell may be associated with biological activity, assessing the variation in hydrocarbon degradation rates with temperature was one of the major objectives of the soil respiration tests.

Because of time constraints imposed by other sampling requirements, the SVE system was only allowed to operate overnight before it was shut down to begin the day 60 respiration test. In light of the high air permeability observed in an earlier test, it was believed that 12 hrs of operation would be enough for the soil gases to approach equilibrium. The low and erratic initial oxygen measurements at some vapor probes suggest that equilibrium may not have been fully achieved before the day 60 respiration test was started.

At each vapor probe location, the soil gas  $O_2$  and  $CO_2$  concentrations were measured with a TraceTechtor<sup>TM</sup> meter. The meter was calibrated daily with a nitrogen blank gas, ambient air (20.9%  $O_2$  and 0.03%  $CO_2$ ), and a 5%  $CO_2$  standard gas; in addition, the calibration was checked frequently against ambient air to correct for drift as the instrument cooled to ambient temperatures. Soil gas hydrocarbon concentrations were measured with a similar approach, using a TraceTector<sup>TM</sup> hydrocarbon analyzer for quantification. A 40% LEL hexane standard was used to calibrate the instrument. Soil temperatures were determined using bare-lead thermocouples installed in the soil concurrent with vapor probe installation (deep thermocouples) or by pushing a bare-lead thermocouple down the vapor probe tubing (shallow thermocouples). Temperatures were read using a Cole-Parmer Digi-sense digital thermometer calibrated with ice-water at 0°C and a warm water bath at approximately 35°C against a mercury-in-glass thermometer.

The vapor probes were purged using a peristaltic pump for 2 to 3 minutes at a rate of 0.3 to 1.0 L/min. During the day 60 test a filter housing on the  $O_2/CO_2$  meter cracked, allowing ambient air to mix with the soil gas being sampled. These air leaks required that a higher gas flow rate be used to provide a stable, accurate reading. This contamination was worse on the 24-hr interval samples, after which the leak was noticed and corrected. The contamination was more apparent at locations where the gas flow rate drawn from the vapor probe was not significantly larger than the flow required by the meter. Values for the 12- and 24-hr sampling intervals which appeared to be significantly affected by this air leakage were excluded from subsequent calculations.

Oxygen utilization rates were calculated from the field data using a linear regression formula. Outlier data affected by air contamination were excluded from these calculations as described above.

Respiration rates were calculated using the following formula:

 $K = (K_{02}/100) * (R/R_t) * (\theta/\rho_b) * (MW) * (1000/11)$ 

where

K= biodegradation rate (mg/kg/day) $K_{02}$ = oxygen utilization rate (%/day)P= pressure (atm)R= gas constant (82.05 x 10<sup>-6</sup> atm m³/gmol K)T= temperature (K) $\theta$ = effective air porosity $\rho_b$ = bulk density (kg/m³)

C-80

#### MW = molecular weight for heptane (100 g/gmol)

In calculating the hydrocarbon degradation rates only the oxygen utilization data was used. The  $CO_2$  production rates are generally lower and more variable than the oxygen utilization rates, reflecting carbon uptake by microorganism growth and production of intermediate hydrocarbon compounds not measured in this experiment. Heptane ( $C_7H_{16}$ ) was used to represent the average hydrocarbon composition in the POL Tank Farm soils. Both lighter and heavier hydrocarbons are known to be present.

The hydrocarbon degradation rates calculated using this formula ignore the effects of the oxidation of other soil materials and assume the complete utilization of oxygen consumed for hydrocarbon degradation. Oxygen may also be consumed through oxidation of naturally occurring buried organic matter or oxidation of mineral materials such as reduced forms of iron or manganese. The background oxygen consumption through these mechanisms was not specifically measured at this site; however, the near zero soil respiration rates measured in the east unit suggest that the background respiration rate is much smaller than the hydrocarbon respiration observed rate at this site.

Incomplete oxidation of hydrocarbons is also possible. Incomplete oxidation may result in removal of larger amounts of contamination than calculated above. Incomplete oxidation products may be incorporated into microorganisms, dissolved and entrained in groundwater, or lost to the atmosphere. Table C-9 Soil Respiration Test Results

| -           | -                          |           |      | _     |        | _     | 1.2  |      |      |        |      | _    |      | _    |      | _    |      |       |       |       | _     |         |       |       |        |
|-------------|----------------------------|-----------|------|-------|--------|-------|------|------|------|--------|------|------|------|------|------|------|------|-------|-------|-------|-------|---------|-------|-------|--------|
| X           | (mg/kg                     | soil/day) | 7.81 | 2.46  | 3 44   | 2.12  | 20.2 | 2.07 | 0.64 | 1.94   | 1 05 | 1.70 | 4.15 | 510  | ~~~~ | 77.7 | 4.55 | 66 6  |       | CC.1- | 0.33  | -0.09   | 010   | 21.0  | 0.4.0  |
| Hydrocarbon | Concentration              | (Jmdd)    | 3500 | 1500  | 8400   | 10000 | 0000 | 2200 | 4800 | 140    | 0006 | 0000 | 170  | 120  | 1100 | 1100 | 3900 | 4200  | 1600  | 0001  | 140   | 320     | 18    | 00    | - 07   |
|             | Temperature                | (C)       | 7.4  | 0.5   | 14.1   | 1 4   | 4.01 | 10.7 | 0.1  | 1.6    | NA   |      | 24.6 | 18.6 | 33.6 | 0.00 | 18.9 | NA    | NA    |       | 0.4   | NA      | 13    | NA    | * 71.7 |
|             | CU <sub>2</sub> Production | (%)/day)  | 1.34 | 0.82  | 1.48   | 0.29  | 0.06 | 0/:0 | 0.00 | 0.49   | 0.98 | 1 50 | cc.1 | 1.22 | 1 06 | 00.1 | 2.50 | 0.57  | -0.81 | LO 0  | 0.07  | 0.10    | 0.08  | 0.14  |        |
|             | U <sub>2</sub> Utilization | (70/ UAY) | 8.20 | 2.52  | 3.70   | 2.45  | 2 20 |      | C0.U | 1.99   | 1.99 | 1 57 | 4.02 | 2.39 | 2.55 |      | 4.9/ | 2.27  | -1.38 | 0 34  | +C.V  | -0.09   | 0.12  | 0.26  |        |
|             | (%)                        | (or)      | 19.0 | 20.5  | 15.0   | 10.0  | 5.9  |      | 19.0 | 20.9   | 19.2 | 0.00 | 0.02 | 20.9 | 12.0 | 145  | 14.0 | 8.5   | 17.0  | 0.00  | 10.01 | C.41    | 20.4  | 20.2  |        |
|             | Location                   | V_IS      |      | ۲II-۷ | V - 2S | V-3D  | V-4D | V-6D |      | V - 85 | V-8D | V-1S |      | V-1U | V-2S | V_3D |      | V -4D | V-8D  | V-14S |       | V - 14D | V-15S | V-15D |        |
|             | Test Dav                   | 60        | 20   | 00    | 00     | 60    | 60   | 60   | 0.7  | 00     | 00   | 150  | 150  |      | 150  | 150  | 2004 | 0C1   | 150   | 150   | 150   | 0. T    | 150   | 150   |        |


### CALCULATION SHEET

CALC. NO.\_\_ SIGNATURE Ulitary Duliance date 5/10/94 CHECKED, Rehave DATE 5/11/94 PROJECT\_ Calena Arrowt TS\_\_\_\_\_ JOB NO.\_\_\_\_\_ SUBJECT Dic degradation Rate from In Situsheet 1 OF 1 SHEETS Respiration Tests from Phase I Test Reference for Calculation: Hinchee, R.E. and S.K. Ong Assume Oxidation d' Heptane  $C_1 H_{10} + 110_2 \rightarrow 7C0_2 + 8H_20$  $K = \frac{K_{o_2}}{100} \cdot \frac{P}{RT} \cdot \frac{\theta}{\rho_b} \cdot \frac{MW}{heptane} \cdot \frac{1000}{11}$  $\frac{\theta}{\rho_b} = 2.52 \times 10^{-4} \text{ m}^3/\text{kg}$ Assume : Example: Day 60 Test at V-15  $\mathcal{O}$   $K_{0_{L}} = 8.2 \% / day \notin T = 7.4 ^{\circ}C = 280.4 K$ (field measurement, linear regression)  $K = \frac{8.2\%}{100\%} \frac{1}{6} \frac{1}{(82.05\%)} \frac{1}{(280.4)} \frac{1}{100\%} \frac{1}{100\%} \frac{1}{100\%} \frac{1}{(280.4)} \frac{1}{100\%} \frac{1}{10\%} \frac{1}{100\%} \frac{1}{10\%} \frac{1}{100\%} \frac{1}{10\%}  = 8.2 mg/kg/day as heptane

### References

- Hinchee, R.E., and S.K. Ong. "A Rapid In Situ Respiration Test for Measuring Aerobic Biodegradation Rates of Hydrocarbons in Soil." Journal of the Air and Waste Management Association. 42(10):1305-1312, October 1992.
- Johnson, P.C., C.C. Stanley, M.W. Kemblowski, D.L. Byers, and J.D. Colthart. "A Practical Approach to the Design, Operation and Monitoring of In Situ Soil Venting Systems." *Ground Water Monitoring Review*, Spring, 1990.
- Shan, C., R.W. Falta, and I. Javandel. "Analytical Solutions for Steady State Gas Flow to a Soil Vapor Extraction Well." *Water Resources Research*. 28(4):1105-1120, April 1992.

### **APPENDIX D**

**Recovery Tests for Light Nonaqueous Phase Liquids (LNAPL)** 

### **APPENDIX D.1**

Phase I Testing, September 1992

| Date     | Time  | Elapsed Time<br>(min) | Product Level<br>(feet) | Water Level<br>(feet) | Product Thickness<br>(feet) |
|----------|-------|-----------------------|-------------------------|-----------------------|-----------------------------|
| 09/17/92 | 13:00 | 0                     | 17.75                   | 19.3                  | 1.55                        |
| 09/17/92 | 14:15 | 76                    | 18.1                    | 18.25                 | 0.15                        |
| 09/17/92 | 14:19 | 80                    | 18.1                    | 18.25                 |                             |
| 09/17/92 | 14:24 | 85                    | 18.1                    | 18.25                 |                             |
| 09/17/92 | 14:30 | 90                    | 18.1                    | 18.25                 |                             |
| 09/17/92 | 14:44 | 105                   | 18.08                   | 18.27                 | 0.19                        |
| 09/17/92 | 15:00 | 120                   | 18.08                   | 18.27                 |                             |
| 09/17/92 | 15:15 | 135                   | 18.07                   | 18.28                 | 0.21                        |
| 09/17/92 | 15:29 | 150                   | 18.07                   | 18.28                 |                             |
| 09/17/92 | 15:45 | 165                   | 18.07                   | 18.28                 |                             |
| 09/17/92 | 16:00 | 180                   | 18.06                   | 18.28                 | 0.22                        |
| 09/17/92 | 16:14 | 195                   | 18.06                   | 18.28                 |                             |
| 09/17/92 | 16:30 | 210                   | 18.06                   | 18.28                 |                             |
| 09/17/92 | 16:59 | 240                   | 18.06                   | 18.29                 | 0.23                        |
| 09/17/92 | 17:30 | 270                   | 18.05                   | 18.28                 |                             |
| 09/17/92 | 18:30 | 330                   | 18.07                   | 18.31                 | 0.24                        |
| 09/17/92 | 19:30 | 390                   | 18.07                   | 18.32                 |                             |
| 09/18/92 | 07:30 | 1110                  | 18.12                   | 18.44                 | 0.32                        |
|          | 08:30 | 1170                  | 18.12                   | 18.44                 |                             |
| 09/18/92 | 10:30 | 1290                  | 18.12                   | 18.47                 | 0.35                        |
| 09/18/92 | 14:30 | 1530                  | 18.16                   | 18.52                 | 0.36                        |
| 09/18/92 | 16:30 | 1650                  | 18.17                   | 18.53                 |                             |
| 09/19/92 | 08:30 | 2610                  | 18.26                   | 18.66                 | 0.4                         |
| 09/19/92 | 10:30 | 2730                  | 18.26                   | 18.66                 |                             |
| 09/19/92 | 12:29 | 2850                  | 18.29                   | 18.66                 |                             |
| 09/19/92 | 16:30 | 3090                  | 18.29                   | 18.66                 |                             |
| 09/20/92 | 13:30 | 4350                  | 18.39                   | 18.78                 | ,                           |
| 09/20/92 | 17:55 | 4615                  | 18.47                   | 18.87                 |                             |

.

### Table D-1

# Baildown Measurements for Recovery Well 05-RW-01



5000 4000 05-RW-01 (1992) 3000 Water Minutes 山 Product 2000  $\Phi$ 1000 0 fluid Depth (ft) -17.5 -18 -19 -19.5

Figure D-1. Baildown Test Results for Recovery Well 05-RW-01

| Date       | Time    | Elapsed Time<br>(min) | Product Level<br>(feet) | Water Level<br>(feet) | Product Thickness<br>(feet) |
|------------|---------|-----------------------|-------------------------|-----------------------|-----------------------------|
| 09/18/92   | 14:30   | 0                     | 19.04                   | 20.47                 | 1.43                        |
| 09/18/92   | 14:53   | 23                    | 19.34                   | 19.37                 | 0.03                        |
| 09/18/92   | 14:55   | 25                    | 19.34                   | 19.39                 |                             |
| 09/18/92   | 14:57   | 28                    | 19.34                   | 19.39                 |                             |
| 09/18/92   | 15:00   | 30                    | 19.34                   | 19.39                 |                             |
| 09/18/92   | 15:04   | 35                    | 19.33                   | 19.41                 |                             |
| 09/18/92   | 15:09   | 40                    | 19.33                   | 19.43                 | 0.1                         |
| 09/18/92   | 15:15   | 45                    | 19.33                   | 19.43                 |                             |
| 09/18/92   | 15:20   | 50                    | 19.33                   | 19.45                 |                             |
| 09/18/92   | 15:24   | 55                    | 19.33                   | 19.46                 |                             |
| 09/18/92   | 15:29   | 60                    | 19.32                   | 19.46                 |                             |
| 09/18/92   | 15:35   | 65                    | 19.33                   | 19.47                 |                             |
| 09/18/92   | 15:45   | 75                    | 19.33                   | 19.49                 |                             |
| 09/18/92   | 15:54   | 85                    | 19.32                   | 19.49                 |                             |
| 09/18/92   | 16:05   | 95                    | 19.32                   | 19.5                  |                             |
| 09/18/92   | 16:14   | 105                   | 19.32                   | 19.5                  |                             |
| 09/18/92   | 16:30   | 120                   | 19.32                   | 19.51                 |                             |
| 09/18/92   | 16:45   | 135                   | 19.32                   | 19.52                 | 0.2                         |
| 09/18/92   | 16:59   | 150                   | 19.32                   | 19.53                 |                             |
| . 09/18/92 | 17:15   | 165                   | 19.32                   | 19.53                 |                             |
| 09/18/92   | 17:30   | 180                   | 19.32                   | 19.53                 |                             |
| 09/19/92   | 2 08:30 | 1080                  | 19.39                   | 19.7                  | 0.31                        |
| 09/19/92   | 2 09:29 | 1140                  | 19.39                   | 19.73                 |                             |
| 09/19/92   | 2 10:30 | 1200                  | 19.41                   | 19.72                 |                             |
| 09/19/92   | 2 12:29 | 1320                  | 19.41                   | 19.75                 |                             |
| 09/19/9    | 2 14:30 | 1440                  | 19.43                   | 19.72                 |                             |
| 09/19/9    | 2 16:30 | 1560                  | 19.42                   | 19.78                 |                             |
| 09/20/9    | 2 13:30 | 2820                  | 19.52                   | 19.93                 | 0.41                        |
| 09/20/9    | 17:55   | 3085                  | 19.56                   | 19.92                 |                             |

# Table D-2. Baildown Measurements for Monitor Well 05-MW-10







Figure D-2. Baildown Test Results for Monitor Well 05-MW-10

### APPENDIX D.2

Phase II Testing July 1993

|          | Comments          |           |           |                |                 |        | Replaced Batteries in Probe |        |        |        |        |        |         |        |           |                |        |        |        |        |        | Chimmor   outored at 110/ | Compressor Motor Overheating |        |        |        | Compressor Motor Overheating |        |        |        |        |        |        |        |        |        |        |        |
|----------|-------------------|-----------|-----------|----------------|-----------------|--------|-----------------------------|--------|--------|--------|--------|--------|---------|--------|-----------|----------------|--------|--------|--------|--------|--------|---------------------------|------------------------------|--------|--------|--------|------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | C                 |           |           | т<br>Т<br>О    | 5               |        | 20                          |        |        |        |        |        |         |        |           |                | 2 C    | 00     |        |        |        |                           |                              |        |        |        |                              |        |        |        |        |        |        |        |        |        |        |        |
|          | Bum               |           |           | ő              | N               |        | -                           |        |        |        |        |        |         |        |           | Ŧ              | - 4    | _      |        |        |        |                           |                              |        |        |        |                              |        |        |        |        |        |        |        |        |        |        |        |
|          | Product Thickness | 0.89      | 2.00      |                | 2.06            | 1.73   | 1.33                        | 1.16   | 1.00   | 0:00   | 0.74   | 0./5   | 0.59    | 2      | 0.77      | L C            | 0.77   | 0.72   | 0.64   | 10.0   | 0.49   | 0.45                      | 0.44                         | 0.40   | 0.37   | 0.30   | 0.20                         | 0.50   | 0.37   | 0.37   | 0.31   | 0.24   | 0.23   | 0.20   | 0.14   | 0.08   | 0.06   | cn.u   |
|          | Water Height      | -14.5     | -15.73    |                | -15.75<br>15.60 | -15.52 | -15,19                      | -15.05 | -14.91 | -14.85 | -14.71 | -14.73 | -14.6/  |        | -14.8     |                | -14.8  | -14.76 | -14.7  | -14.6  | -14.58 | -14.56                    | -14.55                       | -14.59 | -14.49 | -14.48 | -14.34                       | -14.48 | -14.48 | -14.48 | -14.43 | -14.38 | -14.36 | -14.35 | -14.3  | -14.25 | -14.23 | -14.23 |
|          | Product Height    | -13.61    | -13.73    |                | -13.69          | -13.74 | -13.86                      | -13.89 | -13.91 | -13.95 | -13.97 | -13.98 | -14<br> | -14.02 | -14.03    |                | -14.03 | -14.04 | -14.06 | -14.09 | -14.09 | -14.11                    | -14.11                       | -14.11 | -14.12 | -14.12 | -14.14                       | -14.13 | -14.11 | -14.11 | -14.12 | -14.14 | -14.13 | -14.15 | -14.16 | -14.17 | -14.17 | -14.18 |
|          | Baseline          | 5         | 1005      |                | 1291            | 1324   | /00/F                       | 1395   | 1428   | 1450   | 1472   | 1486   | 1499    | 5101   | 2400      |                | 2405   | 2436   | 2461   | 2479   | 2510   | 2547                      | 2615                         | 2685   | 2711   | 2728   | 2770                         | 2825   | 2835   | 2845   | 2865   | 2887   | 2896   | 2907   | 2928   | 2941   | 2971   | 2983   |
| V Well 1 | Time              | 1620      | 006       | Began Skimming | 1346            | 1419   | 1432                        | 1510   | 1603   | 1625   | 1647   | 1701   | 1714    | 1728   | 815       | Began Skimming | 820    | 851    | 916    | 934    | 1005   | 1042                      | 1150                         | 1300   | 1326   | 1343   | 1425                         | 1520   | 1530   | 1540   | 1600   | 1622   | 1631   | 1642   | 1703   | 1716   | 1746   | 1758   |
|          | Date              | 13-Jul-93 | 14-Jul-93 |                |                 |        |                             |        |        |        |        |        |         |        | 15-Jul-93 |                |        |        | -      |        |        |                           |                              |        |        |        |                              |        |        |        |        |        |        |        |        |        |        |        |

Table D-3. Skimming Test Measurements for Recovery Well 05-RW-01

|                 |        |                  | 180                    |        |                  | 135    | ,      |              |              |        | 00            | 2            |        |                     |        |              |        |        |       |            |              |       |       |           |              |            |         |        |        |        |                  |                                         |           |
|-----------------|--------|------------------|------------------------|--------|------------------|--------|--------|--------------|--------------|--------|---------------|--------------|--------|---------------------|--------|--------------|--------|--------|-------|------------|--------------|-------|-------|-----------|--------------|------------|---------|--------|--------|--------|------------------|-----------------------------------------|-----------|
|                 |        |                  | 1.5                    |        |                  | 1.5    |        |              |              |        | Ľ             | <b>`</b>     |        |                     |        |              |        |        |       |            |              |       |       |           |              |            |         |        |        |        |                  |                                         |           |
| ()              | 0.05   | 0.22<br>0.22     | 0.22                   | 0.10   | 0.16             | 0.07   | 0.07   | 0.09<br>0.08 | 0.07         | 0.03   | 0.03          | 0.03         | 0.00   |                     | 0.00   |              | 0.00   | 0.00   | 0.00  | 0.00       | 00.0         | 0.00  | 0.00  | 0.UU      | 0.09         | 0.16       | 0.18    | 0.15   | 0.23   | 0.22   | 0.24<br>n 25     | ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | 0.30      |
| )-3. (Continued | -14.23 | -14.41<br>-14.4  | -14,4                  | -14.29 | -14.36<br>-14.32 | -14.26 | -14.27 | -14.29       | -14.27       | -14.23 | -14.23        | -14.23       | -14.19 |                     | -14.21 | 14.6         | -14.21 | -14.21 | -14.2 | 7.4L-      | -14.2        | -14.2 | -14.2 | -14 28    | -14.31       | -14.43     | -14.48  | -13.92 | -14.54 | -14.54 | -14.55<br>-14.56 |                                         | -14.67    |
| Table L         | -14.18 | -14.19<br>-14.18 | -14,18                 | -14,19 | -14.2            | -14.19 | -14.2  | -14.2        | - 14:2       | -14.2  | -14.2         | -14.2        | -14.19 |                     | -14.21 | 14.4         | -14.21 | -14.21 | -14.2 | 74L<br>74L | 14.5         | -14.2 | -14.2 | -11.03    | -14.22       | -14.27     | -14.3   | -13.77 | -14.31 | -14.32 | -14.31           |                                         | -14.37    |
|                 | 3020   | 3795<br>3970     | 3983                   | 4025   | 4147<br>4177     | 4208   | 4237   | 4266<br>4206 | 4230<br>4327 | 4370   | 4396<br>4 205 | 4460<br>4460 | 4470   |                     | 4478   | 0144<br>Varr | 4482   | 4483   | 4484  | 4485       | 4400<br>4487 | 4488  | 4568  | 501R      | 5834         | 6795       | C FC    | 6940   | 7058   | 7135   | 7258             | 0001                                    | 8170      |
|                 | 1835   | 730<br>1025      | Began Skimming<br>1038 | 1120   | 1322             | 1423   | 1452   | 1521         | 1001<br>1622 | 1705   | 1731          | 1835         | 1845   | Begin Baildown Test | 1853   | 1004<br>1004 | 1857   | 1858   | 1859  | 1900       | 1901         | 1903  | 2023  | 072       | 1729         | UCR        | 1103    | 1155   | 1353   | 1510   | 1713<br>1005     | 0701                                    | 825       |
|                 |        | 16-Jul-93        |                        |        |                  |        |        |              |              |        |               |              |        |                     |        |              |        |        |       |            |              |       |       | 17 141.00 | יסריטטרי / ו | 18. hil-93 | ייייייי |        |        |        |                  |                                         | 19-Jul-93 |

| ntinued)        | 0.29             | 0.36<br>0.37<br>0.39       | 0.41<br>0.45     | 0.51<br>0.52<br>0.40       | 0.58<br>0.60<br>0.57       |
|-----------------|------------------|----------------------------|------------------|----------------------------|----------------------------|
| Table D. 2 (Col | -14.65<br>-14.65 | -14.72<br>-14.72<br>-14.73 | -14.81<br>-14.83 | -14.96<br>-14.98<br>-14.87 | -15.15<br>-15.21<br>-15.2  |
|                 | -14.37<br>-14.33 | -14.36<br>-14.35<br>-14.34 | -14.4<br>-14.38  | -14.45<br>-14.46<br>-14.47 | -14.57<br>-14.61<br>-14.63 |
|                 | 8490<br>8860     | 9483<br>9783 -<br>10163    | 10927<br>11385   | 12382<br>12762<br>13065    | 13866<br>14245<br>14482    |
|                 | 1345<br>1955     | 618<br>1118<br>1738        | 622<br>1400      | 637<br>1257<br>1800        | 721<br>1340<br>1737        |
|                 |                  | 20-Jul-93                  | 21-Jul-93        | 22-Jul-93                  | 23-Jul-93                  |



Figure D-3. Skimming Test Results for Recovery Well 05-MW-01

| V-02          |                | ents         |           |           |        |        |         |           |         |        |                    |         |        |           |        |        |         |             |           |             |         |        |          |        |        |        |          |              |           |        |         |
|---------------|----------------|--------------|-----------|-----------|--------|--------|---------|-----------|---------|--------|--------------------|---------|--------|-----------|--------|--------|---------|-------------|-----------|-------------|---------|--------|----------|--------|--------|--------|----------|--------------|-----------|--------|---------|
| ry Well 05-RV |                | Comm         |           |           |        |        |         |           |         |        |                    |         |        |           |        |        |         | Off         | 120       |             |         |        | 195      | 06     |        | 75     | 60       |              |           |        |         |
| for Recove    |                | Pump         |           |           |        |        |         |           |         | •      |                    |         |        |           |        |        |         | ő           | <b>.</b>  |             |         |        | <b>~</b> | 0      |        | 0      | <b>~</b> |              |           |        |         |
| Isuren        |                | od. Th.      | 0.17      | 0.16      | 0.15   | 0.17   | 0.15    | 0.16      | 0.15    | 0.17   | 0.17               | 0.16    |        | 0.18      | 0.16   | 0.16   | 0.16    |             | 0.17      | 0.15        | 0.12    | 0.09   | 0.00     | 0.02   | 0.02   | 0.02   | 0.02     |              | 0.04      | 0.00   | 0.03    |
| ing Test Mea  |                | Nater Ht. Pr | -13.65    | -13.76    | -13.75 | -13.75 | -13.73  | -13.8     | -13.77  | -13.8  | -13.79<br>-13.79   | -13.78  |        | -13.84    | -13.82 | -13.83 | -13.82  |             | -13.95    | -13.93      | - 13.91 | -13.89 | -13.8    | 13.83  | -13.83 | -13.83 | -13.83   |              | -13.92    | -13.89 | - 13.88 |
| )-4. Skimmi   |                | Prod. Ht. V  | -13.48    | -13.6     | -13.6  | -13.58 | - 13.58 | - 13.64   | - 13.62 | -13.63 | - 13.62<br>- 13.62 | - 13.62 |        | -13.66    | -13.66 | -13.67 | - 13.66 |             | -13.78    | -13.78      | -13.79  | -13.8  | -13.8    | -13.81 | -13.81 | -13.81 | -13.81   |              | -13.88    | -13.89 | - 13.85 |
| Table I       |                | (Baseline)   | 0         | 1005      | 1312   | 1440   | 1505    | 2400      | 2467    | 2550   | 2750               | 2985    |        | 3795      | 3970   | 4113   | 4230    |             | 7100      | 7115        | 7140    | 7170   | 7205     | 7250   | 7301   | 7325   | 7345     |              | 8166      | 8495   | 8855    |
|               | v Well 2       | Time         | 1615      | 006       | 1407   | 1615   | 1720    | 815       | 922     | 1045   | 1405<br>1625       | 1800    | )<br>) | 730       | 1025   | 1248   | 1445    | ,<br>Cui    | 1435      | 1450        | 1515    | 1545   | 1620     | 1705   | 1756   | 1820   | 1840     | UM           | 821       | 1350   | 1950    |
|               | Site 5 Recover | Date         | 13-Jul-93 | 14-Jul-93 |        |        |         | 15-Jul-93 |         |        |                    |         |        | 16-Jul-93 |        |        |         | Beain Skimm | 18-Jul-93 | )<br>)<br>} |         |        |          |        |        |        |          | Renan Baildo | 19-Jul-93 |        |         |

٠

.

| ite 5 Recover | y Well 2 |            |           |                    |          |                                                                                                             |          |  |
|---------------|----------|------------|-----------|--------------------|----------|-------------------------------------------------------------------------------------------------------------|----------|--|
|               |          |            |           | •                  |          |                                                                                                             |          |  |
| Date          | Time     | (Baseline) | Prod. Ht. | <u>Water Ht.</u> F | rod. Th. | Pump                                                                                                        | Comments |  |
| )-Ju -93      | 615      | 9480       | -13.88    | -13.91             | 0.03     | والمرتبع والمحافظ |          |  |
|               | 1115     | 9780       | -13.88    | -13.92             | 0.04     |                                                                                                             |          |  |
|               | 1735     | 10160      | -13.87    | -13.88             | 0.01     |                                                                                                             |          |  |
|               | 620      | 10925      | -13.91    | -13.94             | 0.03     |                                                                                                             |          |  |
|               | 1357     | 11382      | -13.93    | -13.95             | 0.02     |                                                                                                             |          |  |
|               | 635      | 12380      | -13.99    | -14.03             | 0.04     |                                                                                                             |          |  |
|               | 1255     | 12760      | -14.01    | -14.06             | 0.05     |                                                                                                             |          |  |
|               | 1755     | 13060      | -14.02    | -14.03             | 0.01     |                                                                                                             | 7.4.1    |  |
| 8-Jul-93      | 718      | 13863      | -14.12    | -14.15             | 0.03     |                                                                                                             |          |  |
|               | 1329     | 14234      | -14.17    | -14.18             | 0.01     |                                                                                                             |          |  |
|               | 1734     | 14479      | -14.19    | -14.22             | 0.03     |                                                                                                             |          |  |

Table D-4. (Continued)



Figure D-4. Skimming Test Results for Recovery Well 05-RW-02

|             | 0.00                 | -13.79<br>-13.81<br>-13.81                          | - 13.81                                  | 12390<br>12766<br>13068              | 645<br>1301<br>1803                  | 22-Jul-93         |
|-------------|----------------------|-----------------------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|-------------------|
|             |                      | -14.70<br>-13.71                                    |                                          | 10935<br>11374                       | 630<br>1349                          | 21-Jul-93         |
|             | 0.00                 | - 13.66<br>- 13.67<br>- 13.98                       | -13.98                                   | 9490<br>9788<br>10170                | 625<br>1123<br>1745                  | 20-Jul-93         |
|             | 0.00                 | - 13.66<br>- 13.67<br>- 13.63                       | 13.66<br>13.67                           | 8180<br>8475<br>8875                 | 835<br>1330<br>2010                  | 19-Jul-93         |
|             | 0.02<br>0.00<br>0.01 | - 13.59<br>- 13.58<br>- 13.58<br>- 13.60<br>- 13.60 | - 13.57<br>- 13.58<br>- 13.59<br>- 13.59 | 6839<br>6895<br>7063<br>7265<br>7340 | 1014<br>1110<br>1358<br>1720<br>1835 | 18-Jul-93         |
|             | 0.01                 | -13.5<br>-13.5                                      | -13.49                                   | 5849<br>5926                         | 1744<br>1901                         |                   |
|             | 0.01                 | -13.5<br>-13.51<br>-13.51                           | -13.5<br>-13.5                           | 5816<br>5824<br>5830                 | 1711<br>1719<br>1725                 |                   |
|             | 0.00                 |                                                     | - 13.5<br>- 13.5                         | 5810<br>5810<br>5813                 | 1705                                 |                   |
|             | 0.00                 | - 13.5<br>- 13.5                                    | 1<br>13.5<br>2.5                         | 5806<br>5807                         | 1701<br>1702<br>1702                 |                   |
|             |                      |                                                     |                                          |                                      | L<br>V                               | Begin Baildov     |
| mp Comments | rod. Th. P<br>0.58   | Water Ht. F<br>-14                                  | Prod. Ht.<br>13.42                       | (Baseline)<br>5715                   | Time (<br>1530                       | Date<br>17-Jul-93 |
|             |                      |                                                     |                                          |                                      | ng Well 4                            | Site 5 Monitori   |

Table D-5. Baildown Measurements for Monitoring Well 05-MW-04

|                    | Comments                             |                               |   |   |  |  |  |  |
|--------------------|--------------------------------------|-------------------------------|---|---|--|--|--|--|
| Table D Continued) | er Ht. Prod. Th. Pump                | 13.91<br>13.95<br>13.99       |   | - |  |  |  |  |
|                    | Baseline) Prod. Ht. Wate             | 13869<br>14225<br>14475       | • |   |  |  |  |  |
|                    | Site 5 Monitoring Well 4 Date Time ( | 23-Jul-93 724<br>1320<br>1730 |   |   |  |  |  |  |

٠

.



Figure D-5. Baildown Test Results for Monitor Well 05-MW-04

| -              |               |              |           | <u></u>    |         |         |       |           |        |         |        |         |         |            |         |        |        |           |   |             |         |        |         |        |        |        |        |        |         |        |         |        | רד         |
|----------------|---------------|--------------|-----------|------------|---------|---------|-------|-----------|--------|---------|--------|---------|---------|------------|---------|--------|--------|-----------|---|-------------|---------|--------|---------|--------|--------|--------|--------|--------|---------|--------|---------|--------|------------|
|                |               | Comments     |           |            |         |         |       |           |        |         |        |         |         |            |         |        |        |           |   |             |         |        |         |        |        |        |        |        |         |        |         |        |            |
|                |               | Pump         |           |            |         |         |       | ,,,       |        |         | •      |         |         |            |         |        |        |           |   |             |         |        | ~       |        |        |        |        |        |         |        |         |        | 91         |
| Aleasurer<br>( |               | Prod. Th.    | 1.16      |            |         | 1.10    |       | 1.13      | 1.11   | 1.19    | 1.13   | 1.09    | 10.1    | 1.10       | 1.19    | 1.08   | 1.10   | 0.92      |   | 0.00        | 0.03    | 0.06   | 0.13    | 0.15   | 0.25   | 0.30   | 0.30   | 0.46   | 0.5(    | 0.5    | 0.55    | 0.6(   | <u>.0.</u> |
| Baildown N     |               | Water Ht.    | -16.79    | - 10./0    | - 10.73 | - 10.71 | 1.0   | -16.8     | -16.78 | - 16.86 | -16.75 | -16.74  | -16.72  | - 16.81    | - 16.88 | -16.78 | -16.78 | -16.17    |   | -15.41      | -15.44  | -15.47 | - 15.53 | -15.56 | -15.64 | -15.71 | -15.77 | -15.83 | -15.88  | -15.9  | - 15.91 | -15.95 | -15.94     |
| Table D-6.     |               | Prod. Ht.    | -15.63    | -15.65<br> |         | 10.01   | 10.01 | -15.67    | -15.67 | -15.67  | -15.62 | - 15.65 | - 15.65 | -15.71     | -15.69  | -15.7  | -15.68 | -15.25    |   | - 15.41     | - 15.41 | -15.41 | -15.4   | -15.41 | -15.39 | -15.38 | -15.38 | -15.37 | - 15.38 | -15.37 | -15.36  | -15.35 | -15.35     |
|                | 10            | Saseline)    | 1005      | 1308       | 1400    | 1430    | 0.01  | 2400      | 2467   | 2550    | 2750   | 2890    | 2985    | 3795       | 3970    | 4115   | 4235   | 5750      |   | 5886        | 5887.5  | 5888   | 5889    | 5890   | 5892.5 | 5894.5 | 5896   | 5899   | 5901    | 5905   | 5908.5  | 5911   | 5914       |
|                | ring Well     | Time (F      | 906       | 1403       | 1535    | 1611    | 07/1  | 815       | 922    | 1045    | 1405   | 1625    | 1800    | 730        | 1025    | 1250   | 1450   | 1605      |   | own<br>1821 | 1823    | 1823   | 1824    | 1825   | 1828   | 1830   | 1831   | 1834   | 1836    | 1840   | 1844    | 1846   | 1849       |
|                | Site 5 Monito | Data<br>Data | 14-Jul-93 |            |         |         |       | 15-Jul-93 |        |         |        |         |         | 16- hil-03 |         |        |        | 17-Jul-93 | : | Begin Balld |         |        |         |        |        |        |        |        |         |        |         |        |            |

•

¢

| (pən |  |
|------|--|
| ntin |  |
| Ŭ    |  |
| D-6. |  |
| able |  |
| H    |  |

|               | Comments  |                |           |             |        |         |              |        |        |             |        |         |         |        |        |         |        |        |        |        |        |         |        |        |        |        |        |        |        |        |        |        |  |
|---------------|-----------|----------------|-----------|-------------|--------|---------|--------------|--------|--------|-------------|--------|---------|---------|--------|--------|---------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|               | Pump      |                |           |             |        |         |              | -      |        |             |        |         |         |        |        |         |        |        |        |        |        |         |        |        |        |        |        |        |        |        |        |        |  |
|               | Prod. Th. | 0.61           | 0.90      |             | 0.00   | 0.00    | 0.00         | 0.01   | 0.00   | 0.01        | 0.00   | 0.00    | 0.01    | 0.01   | 0.04   | 0.02    | 0.02   | 0.09   | 0.09   | 0.09   | 0.16   | 0.17    | 0.18   | 0.16   | 0.20   | 0.36   | 0.33   | 0.50   | 0.77   | 0.79   | 0.80   | 0.81   |  |
|               | Water Ht. | -15.9<br>-15.9 | 16.22     | ·           | -15.51 | - 15.51 | -15.51       | -15.52 | -15.51 | -15.52      | -15.51 | - 15.51 | - 15.52 | -15.52 | -15.55 | - 15.53 | -15.53 | -15.6  | -15.6  | -15.61 | -15.67 | -15.69  | -15.7  | -15.68 | -15.69 | -15.85 | -15.79 | -15.94 | -16.14 | -16.15 | -16.16 | -16.18 |  |
|               | Prod. Ht. | - 15.34        | -15.32    |             | -15.51 | - 15.51 | -15.51       | -15.51 | -15.51 | -15.51      | -15.51 | -15.51  | -15.51  | -15.51 | -15.51 | -15.51  | -15.51 | -15.51 | -15.51 | -15.52 | -15.51 | - 15.52 | -15.52 | -15.52 | -15.49 | -15.49 | -15.46 | -15.44 | -15.37 | -15.36 | -15.36 | -15.37 |  |
| 110<br>:      | Baseline) | 5920<br>5920   | 6735      |             | 6780   | 6781    | 6781.5       | 28/9   | 6782.5 | 6783        | 6783.5 | 6784    | 6784.5  | 6785   | 6786   | 6787    | 6788   | 6289   | 6790   | 6792   | 6794   | 6796    | 6798   | 6800   | 6805   | 6810   | 6815   | 6825   | 6883   | 7055   | 7129   | 7185   |  |
| oring Wel     | 1050      | 1855           | 830       | down        | 915    | 916     | 916.5<br>043 | 917    | 917.5  | 918<br>2018 | 918.5  | 919     | 919.5   | 920    | 921    | 922     | 923    | 924    | 925    | 927    | 929    | 931     | 933    | 935    | 940    | 945    | 950    | 1000   | 1058   | 1350   | 1504   | 1600   |  |
| Site 5 Monito | Date      |                | 18-Jul-93 | Repeat Bail |        |         |              |        |        |             |        |         |         |        |        |         |        |        |        |        |        |         |        |        |        |        |        |        |        |        |        |        |  |

| 06-WW-00                |                  | Comment             |               |                |             |             |             |             |             |             |            |             |             |             |             |             |             |             |             |             |             |             |             |            |           |            |             |             |             |             |              |             |            |             |             |                   |
|-------------------------|------------------|---------------------|---------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-----------|------------|-------------|-------------|-------------|-------------|--------------|-------------|------------|-------------|-------------|-------------------|
| ents for Monitor Well ( |                  | h, Pump             | 00            |                | 66          | 02          | 16          | 02          | 03          | 18          | 02         | 01          | 03          | 02          | 17          | 19          | 18          | 20          | 19          | 21          | 20          | 01          | 04          | 18         | 01        | 01         | 17          | 18          | 17          | 18          | 19           | 18          | 19         | 17          | 20          | 19                |
| Baildown Measu          |                  | . Water Ht. Prod. T | 8 – 19.68 1.  |                | 9 -19.68 0. | 1 -18.43 0. | 3 18.59 0.  | 7 –18.49 0. | 5 -18.48 0. | 4           | 5          | 5 -18.46 0. | 4 -18.47 0. | 5 -18.47 0. | 5 -18.62 0. | 5 -18.64 0. | 5 -18.63 0. | 4 -18.64 0. | 4 -18.63 0. | 3 -18.64 0. | 4 -18.64 0. | 5 -18.46 0. | 4 -18.48 0. | 5 18.63 0. | 3         | 4          | 5 -18.62 0. | 4 -18.62 0. | 5 -18.62 0. | 5 -18.63 0. | 5 - 18.64 0. | 5 -18.63 0. | 5 -18.64 0 | 6 -18.63 0. | 4 -18.64 0. | <u>5 –18.64 U</u> |
| Table D-7.              |                  | line) Prod. Ht      | 5370 - 18.6   |                | 5380 -18.6  | 5405 -18.4  | 5412   18.4 | 120.5 -18.4 | 5421 -18.4  | 421.5 -18.4 | 5422 -18.4 | 422.5 -18.4 | 5423 -18.4  | 423.5 -18.4 | 5424 -18.4  | 424.5 -18.4 | 5425 -18.4  | 425.5 -18.4 | 5426 -18.4  | 426.5 -18.4 | 5427 -18.4  | 5428 -18.4  | 5429 -18.4  | 5430 -18.4 | 5431 18.4 | 5432 -18.4 | 5433 - 18.4 | 5435 -18.4  | 5436 -18.4  | 5437 -18.4  | 5438 -18.4   | 5439 18.4   | 5441 -18.4 | 5443 -18.4  | 5445 -18.4  | 5447 -18.4        |
|                         | Well ID: 09 MW08 | Date Time (Base     | 17-Jul-93 945 | Begin Baildown | 955         | 1020        | 1027        | 1035.5 54   | 1036        | 1036.5 54   | 1037       | 1037.5 54   | 1038        | 1038.5 54   | 1039        | 1039.5 54   | 1040        | 1040.5 54   | 1041        | 1041.5 54   | 1042        | 1043        | 1044        | 1045       | 1046      | 1047       | 1048        | 1050        | 1051        | 1052        | 1053         | 1054        | 1056       | 1058        | 1100        | 1102              |

.

.

|               | Comment         |                   |            |              |            |            |            |            |            |            | ſ          |            |            |            |            |            |            |          |            |            |          |            |          |         |        |           |         |          |          |            |        |        |
|---------------|-----------------|-------------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------|------------|------------|----------|------------|----------|---------|--------|-----------|---------|----------|----------|------------|--------|--------|
|               | Th. Pump        | 0.18              | 0.23       |              | 0.01       | 0.01       | 0.01       | 0.01       | 0.01       | 0.01       | 0.01       | 0.01       | 0.01       | 0.01       | 0.07       | 0.06       | 0.01       | 0.08     | ).05       | .07        | .07      | .06        | .07      | .08     | 0.15   | ).26      | ).27    | 0.30     | .29      | .36        | .32    | 4      |
|               | Water Ht. Prod. | <u>5 –18.63 (</u> | 2 –18.65 ( |              | ~ -18.48 ( | 3 -18.47 ( | 3 -18.47 ( | 3 -18.47 ( | 5 –18.46 ( | 3 -18.47 ( | 5 –18.46 ( | 3 -18.47 ( | 5 -18.46 ( | 3 -18.47 ( | 5 -18.52 ( | 3 -18.52 ( | 5 -18.46 ( | -18.55 ( | 3 -18.51 ( | 3 -18.53 ( | -18.54 ( | 3 -18.52 ( | -18.54 ( | 18.54 ( |        | 18.79     | -18.8 ( | -18.82 ( | -18.81 0 | 0 -18.95 0 | -18.89 | -18.84 |
|               | Prod. Ht.       | · -18.45          | - 18.42    |              | -18.47     | -18.46     | -18.46     | -18.46     | - 18.45    | - 18.46    | - 18.45    | - 18.46    | -18.45     | - 18.46    | - 18.45    | - 18.46    | -18.45     | -18.47   | - 18.46    | - 18.46    | -18.47   | - 18.46    | - 18.47  | -18.46  | -18.41 | -18.53    | - 18.53 | - 18.52  | - 18.52  | - 18.50    | -18.57 | - 18.5 |
|               | (Baseline)      | 5449              | 5611       |              | 5618.5     | 5619       | 5619.5     | 5620       | 5621       | 5622       | 5623       | 5624       | 5625       | 5630       | 5639       | 5641.5     | 5644       | 5646     | 5650       | 5653       | 5657     | 5661       | 5665     | 5770    | 5985   | 6678      | 6904    | 7070     | 7280     | 8186       | 8580   | 8845   |
| <u>4W-08</u>  | Time            | 1104              | 1346       | UM           | 1353.5     | 1354       | 1354.5     | 1355       | 1356       | 1357       | 1358       | 1359       | 1400       | 1405       | 1414       | 1416.5     | 1419       | 1421     | 1425       | 1428       | 1432     | 1436       | 1440     | 1625    | 2000   | 733       | 1119    | 1405     | 1735     | R41        | 1515   | 1940   |
| Well ID: 09-N | Date            |                   |            | Retry Baildo |            |            |            |            |            |            |            |            |            |            |            |            |            |          |            |            |          |            |          |         |        | 18-Jul-93 |         | -        |          | 10-11-03   | 222    |        |

# Table D-7. (Continued)

### APPENDIX D.3

Phase III Testing April 1994

**APPENDIX E** 

Treatability Study Analysis

### **Table of Contents**

|                                                           | Page |
|-----------------------------------------------------------|------|
| Appendix E.1. Hydrocarbon Removal by Physical Processes   | E-1  |
| Appendix E.2. Heat Balance Calculations                   | E-15 |
| Appendix E.3. Hydrocarbon Removal by Biological Processes | E-23 |
| References                                                | E-27 |

### **APPENDIX E.1**

.

Hydrocarbon Removal by Physical Processes



| 09/08/93 | F | 1600 | 1600 | 114.0748 | 24  | 68   | 1651 |
|----------|---|------|------|----------|-----|------|------|
| 09/09/93 | F | 1100 | 1100 | 112.1794 | 24  | 46   | 1697 |
| 09/10/93 | F | 1000 | 1000 | 105.1399 | 24  | 39   | 1736 |
| 09/11/93 | F | 820  | 820  | 111.9953 | 24  | 34   | 1771 |
| 09/12/93 | F | 28   | 28   | 104.9413 | 16  | 1    | 1771 |
| 09/13/93 | F | 650  | 650  | 104.7258 | 12  | 13   | 1784 |
| 09/14/93 | F | 746  | 746  | 112.069  | 14  | 18   | 1802 |
| 09/15/93 | F | 620  | 620  | 96.5948  | 12  | - 11 | 1814 |
| 09/16/93 | F | 500  | 500  | 95.77559 | 10  | 7    | 1821 |
| 09/17/93 | F | 350  | 350  | 89.00049 | 10  | 5    | 1826 |
| 09/18/93 | F | 350  | 350  | 89.92576 | 15  | 7    | 1833 |
| 09/19/93 | F | 160  | 160  | 99.67255 | 9   | 2    | 1835 |
| 09/20/93 | F | 28   | 28   | 88.12213 | 12  | 0    | 1836 |
| 09/21/93 | F | 180  | 180  | 83.19278 | 12  | 3    | 1839 |
| 09/22/93 | F | 290  | 290  | 81.34625 | 12  | 4    | 1843 |
| 09/23/93 | F | 110  | 110  | 103.8007 | 12  | 2    | 1845 |
| 09/24/93 | F | 230  | 230  | 101.931  | 24  | 9    | 1854 |
| 09/25/93 | F | 220  | 220  | 144.2678 | 24  | 12   | 1866 |
| 09/26/93 | F | 180  | 180  | 117.6248 | 12  | 4    | 1870 |
| 09/27/93 | F | 210  | 210  | 116.3319 | 12  | 5    | 1874 |
| 09/28/93 | F | 240  | 240  | 136.7314 | 24  | 12   | 1887 |
| 09/29/93 | F | 300  | 300  | 129.5988 | 24  | 15   | 1901 |
| 09/30/93 | F | 120  | 120  | 134.3545 | 24  | 6    | 1907 |
| 10/01/93 | F | 240  | 240  | 133.2364 | 24  | 12   | 1919 |
| 10/02/93 | L | 178  | 178  | 126.2832 | 16  | 6    | 1925 |
| 10/03/93 | F | 260  | 260  | 144.3183 | 12  | 7    | 1932 |
| 10/04/93 | F | 445  | 445  | 127.928  | 20  | 18   | 1950 |
| 10/05/93 | F | 360  | 360  | 116.7333 | 14  | 9    | 1959 |
| 10/06/93 |   |      | 380  | E 116.7  | 2   | 1    | 1960 |
| 10/07/93 |   |      |      | 0        | 0   | 0    | 1960 |
| 10/08/93 | F | 400  | 400  | 159.4298 | 15  | . 15 | 1975 |
| 10/09/93 | F | 450  | 450  | 135.2762 | 24  | 23   | 1998 |
| 10/10/93 | F | 450  | 450  | 138.2853 | 24  | 23   | 2021 |
| 10/11/93 | F | 400  | 400  | 142.0843 | 12  | 11   | 2032 |
| 10/12/93 | F | 800  | 800  | 145.7314 | 12  | 22   | 2053 |
| 10/13/93 | F | 1300 | 1300 | 141.7845 | 24  | 69   | 2122 |
| 10/14/93 | F | 420  | 420  | 126.9311 | 24  | 20   | 2142 |
| 10/15/93 |   | . •  | 1210 | 140.2545 | 24  | 63   | 2206 |
| 10/16/93 | F | 2000 | 2000 | 148.0909 | 24  | 111  | 2316 |
| 10/17/93 | F | 1600 | 1600 | 139.634  | .24 | 83   | 2400 |
| 10/18/93 | F | 2200 | 2200 | 139.634  | 24  | 115  | 2514 |
| 10/19/93 | F | 2400 | 2400 | 141.0138 | 24  | 126  | 2641 |
|          |   |      |      |          |     |      |      |

Pg. 3 of 11

| 10/20/93 | 3 F    | 2600         | 2600         | 140.0914 | 24   | 136 | 2777  |
|----------|--------|--------------|--------------|----------|------|-----|-------|
| 10/21/93 | 8 F    | 3500         | 3500         | 128.95   | 24   | 169 | 2946  |
| 10/22/93 | 3 F    | 2800         | 2800         | 129.1833 | 24   | 135 | 3081  |
| 10/23/93 | 3 F    | 3200         | 3200         | 141.6461 | 24   | 169 | 3250  |
| 10/24/93 | F      | 3400         | 3400         | 147 6048 | 24   | 187 | 2427  |
| 10/25/93 | F      | 3600         | 2600         | 440 0007 | 24   | 107 | 5457  |
| 10/26/93 |        | 4000         | 4000         | 140.5207 | 24   | 189 | 3626  |
| 10/27/93 |        | 4000         | 4000         | 140.899  | 24   | 211 | 3837  |
| 10/28/93 | F      | -000<br>6000 | 4000         | 139.7014 | 24   | 209 | 4046  |
| 10/29/93 | F      | 6000         | 6000         | 127.4679 | 12   | 143 | 4189  |
| 10/30/93 | F      | 2800         | 2800         | 127.1134 | 12   | 142 | 4331  |
| 10/31/93 | F      | 1800         | 1900         | 120.5759 | 24   | 132 | 4464  |
| 11/01/93 | F      | 800          | 900          | 99.50238 | 24   | 67  | 4530  |
| 11/02/93 | F      | 5700         | 5700         | 110.0077 | 16   | 23  | 4554  |
| 11/03/93 |        | 6510         | 6510         | 114.4900 | 12   | 122 | 4676  |
| 11/04/93 | F      | 4800         | 4900         | 152.4432 | 24   | 371 | 5046  |
| 11/05/93 | F      | 5000         | 4000<br>5000 | 151.0841 | 21   | 237 | 5283  |
| 11/06/93 | F      | 4600         | 4600         | 140.3627 | 24   | 262 | 5546  |
| 11/07/93 | F      | 4000         | 4000         | 149.4197 | 24   | 257 | 5802  |
| 11/08/93 | F      | 4600         | 4000         | 150.7815 | 24   | 270 | 6073  |
| 11/09/93 | F      | 4600         | 4000         | 150.7815 | 24   | 259 | 6332  |
| 11/10/03 | י<br>ד | 4000         | 4000         | 149.4372 | 24   | 257 | 6589  |
| 11/11/03 | F      | 4400         | 4400         | 150.4542 | 24   | 247 | 6836  |
| 11/12/93 | F      | 430          | 450          | 149.4372 | 24   | 25  | 6861  |
| 11/12/03 | F      | 4200         | 4200         | 149.1371 | 24   | 234 | 7095  |
| 11/14/03 | F      | 4600         | 4600         | 149.1397 | 24   | 256 | 7352  |
| 11/15/03 | F      | 4500         | 4500         | 149.6334 | 24   | 252 | 7603  |
| 11/16/03 | F      | 4000         | 4600         | 145.4219 | 24   | 250 | 7853  |
| 11/17/03 | Ē      | 4400         | 4400         | 150.7815 | 24   | 248 | 8101  |
| 11/18/03 | F      | 4000         | 4600         | 151.0003 | 24   | 260 | 8360  |
| 11/19/93 | F      | 4000         | 4000         | 139.702  | 24   | 240 | 8600  |
| 11/20/93 | F      | 4400         | 4400         | 145.246  | - 24 | 239 | 8839  |
| 11/21/03 | Ē      | 4200         | 4200         | 145.8023 | 24   | 229 | 9068  |
| 11/22/03 | F      | 4300         | 4300         | 149.404  | 24   | 240 | 9308  |
| 11/22/03 | '<br>F | 520          | 520          | 149.3747 | 12   | 15  | 9323  |
| 11/20/93 | F      | 4500         | 4500         | 150.8/15 | 24   | 254 | 9576  |
| 11/25/03 | -<br>- | 3000         | 3800         | 149.9553 | 24   | 213 | 9789  |
| 11/26/02 | ,<br>F | 2000         | 2050         | 139.992  | 24   | 107 | 9896  |
| 11/27/02 | '<br>F | 300          | 300          | 128.9945 | 8    | 5   | 9901  |
| 11/28/02 | Ē      | 400          | 400          | 141.5643 | 9    | 8   | 9909  |
| 11/20/02 | F      | 230          | 230          | 149.621  | 10   | 5   | 9914  |
| 11/20/02 | F      | 2210         | 2215         | 138./196 | 21   | 100 | 10015 |
| 11/00/90 | I.     | 2213         | 2215         | 138.7196 | 18   | 86  | 10101 |

•

| 12/01/93 | F | 2215       | 2215 | 136.2966 | 0  | 0   | 10101 |
|----------|---|------------|------|----------|----|-----|-------|
| 12/02/93 |   |            | 2215 | E 132    | 8  | 36  | 10137 |
| 12/03/93 | F | 4200       | 4200 | 127.7394 | 20 | 167 | 10304 |
| 12/04/93 | F | 4200       | 4200 | 127.8395 | 24 | 201 | 10505 |
| 12/05/93 | F | 4200       | 4200 | 125.0913 | 24 | 196 | 10701 |
| 12/06/93 |   |            | 4000 | E 130.9  | 13 | 106 | 10807 |
| 12/07/93 | F | 3800       | 3800 | 136.7941 | 24 | 194 | 11001 |
| 12/08/93 | L | 5430       | 5430 | 132.6469 | 24 | 269 | 11271 |
| 12/09/93 | F | 4400       | 4400 | 138.9637 | 20 | 190 | 11461 |
| 12/10/93 | F | 4400       | 4400 | 138.0267 | 24 | 227 | 11688 |
| 12/11/93 | F | 4800       | 4800 | 127.3578 | 17 | 162 | 11850 |
| 12/12/93 | F | 4800       | 4800 | 137.8461 | 24 | 247 | 12097 |
| 12/13/93 | F | 5100       | 5100 | 127.2461 | 24 | 242 | 12339 |
| 12/14/93 | F | 4800       | 4800 | 127.4332 | 24 | 229 | 12568 |
| 12/15/93 | F | 4600       | 4600 | 127.4332 | 24 | 219 | 12787 |
| 12/16/93 | F | 4600       | 4600 | 127.3917 | 24 | 219 | 13006 |
| 12/17/93 |   | 0          | 3800 | 140.6025 | 24 | 200 | 13205 |
| 12/18/93 | F | 3000       | 3000 | 133.1538 | 24 | 149 | 13354 |
| 12/19/93 | F | 3000       | 3000 | 125.5272 | 24 | 141 | 13495 |
| 12/20/93 | F | 2750       | 2750 | 125.9018 | 24 | 129 | 13625 |
| 12/21/93 | F | 2500       | 2500 | 126.3182 | 24 | 118 | 13743 |
| 12/22/93 | F | 2750       | 2750 | 126.2144 | 24 | 130 | 13872 |
| 12/23/93 | F | 3000       | 3000 | 126.3613 | 24 | 142 | 14014 |
| 12/24/93 | F | 3000       | 3000 | 126.629  | 24 | 142 | 14156 |
| 12/25/93 | F | 3000       | 3000 | 126.629  | 24 | 142 | 14298 |
| 12/26/93 | F | 3000       | 3000 | 126.629  | 24 | 142 | 14440 |
| 12/27/93 | F | 3000       | 3000 | 126.629  | 24 | 142 | 14582 |
| 12/28/93 | F | 3000       | 3000 | 127.0601 | 24 | 142 | 14724 |
| 12/29/93 | F | 3000       | 3000 | 126.629  | 24 | 142 | 14866 |
| 12/30/93 | F | 3000       | 3000 | 126.629  | 24 | 142 | 15008 |
| 12/31/93 | F | 3000       | 3000 | 126.629  | 24 | 142 | 15150 |
| 01/01/94 | F | 3000       | 3000 | 126.629  | 24 | 142 | 15292 |
| 01/02/94 | F | 3000       | 3000 | 126.629  | 24 | 142 | 15434 |
| 01/03/94 | F | 3000       | 3000 | 126.629  | 24 | 142 | 15575 |
| 01/04/94 | F | 3000       | 3000 | 126.629  | 24 | 142 | 15717 |
| 01/05/94 | F | 3000       | 3000 | 124.4247 | 24 | 139 | 15857 |
| 01/06/94 |   | 0          | 2410 | E 125    | 6  | 28  | 15885 |
| 01/07/94 |   | 0          | 2410 | 0        | 0  | 0   | 15885 |
| 01/08/94 |   | . <b>O</b> | 2410 | 0        | 0  | 0   | 15885 |
| 01/09/94 | L | 1810       | 1810 | 115.1728 | 0  | 0   | 15885 |
| 01/10/94 | F | 550        | 550  | 128.2147 | 12 | 13  | 15898 |
| 01/11/94 | F | 4200       | 4200 | 128.4257 | 24 | 202 | 16100 |



E-7

| 01/12/04 | F      | 4200 | 4000 | 100 1005 |    |     |       |   |
|----------|--------|------|------|----------|----|-----|-------|---|
| 01/12/04 |        | 4200 | 4200 | 128.1995 | 24 | 201 | 16301 |   |
| 01/13/94 |        | 4300 | 4300 | 128.5606 | 24 | 207 | 16507 |   |
| 01/14/94 |        | 4200 | 4200 | 128.4159 | 24 | 201 | 16709 |   |
| 01/15/94 | г<br>_ | 4200 | 4200 | 128.5606 | 24 | 202 | 16911 |   |
| 01/16/94 | F      | 4350 | 4350 | 128.576  | 24 | 209 | 17120 |   |
| 01/17/94 | F      | 4200 | 4200 | 128.4315 | 24 | 202 | 17321 |   |
| 01/18/94 | F      | 4300 | 4300 | 128.6334 | 24 | 207 | 17528 | , |
| 01/19/94 | F      | 4250 | 4250 | 128.4159 | 24 | 204 | 17732 |   |
| 01/20/94 | F      | 4250 | 4250 | 128.2917 | 24 | 204 | 17935 |   |
| 01/21/94 | F      | 4300 | 4300 | 140.6952 | 24 | 226 | 18161 |   |
| 01/22/94 | F      | 4300 | 4300 | 128.5399 | 24 | 206 | 18368 |   |
| 01/23/94 | F      | 4250 | 4250 | 128.3696 | 24 | 204 | 18572 |   |
| 01/24/94 | F      | 4250 | 4250 | 128.4159 | 24 | 204 | 18776 |   |
| 01/25/94 | F      | 4300 | 4300 | 128.1007 | 24 | 206 | 18981 |   |
| 01/26/94 | F      | 4250 | 4250 | 127.5234 | 24 | 202 | 19184 |   |
| 01/27/94 | F      | 4250 | 4250 | 139.7365 | 24 | 222 | 19406 |   |
| 01/28/94 | F      | 4300 | 4300 | 128.1007 | 24 | 206 | 19611 |   |
| 01/29/94 | F      | 4300 | 4300 | 127.6747 | 24 | 205 | 19817 |   |
| 01/30/94 | F      | 4300 | 4300 | 127.7121 | 24 | 205 | 20022 |   |
| 01/31/94 |        | 0    | 4330 | 128.7425 | 12 | 104 | 20126 |   |
| 02/01/94 | F      | 4350 | 4350 | 128.6334 | 24 | 209 | 20335 |   |
| 02/02/94 | F      | 4300 | 4300 | 128.6955 | 24 | 207 | 20542 | 1 |
| 02/03/94 | F      | 4350 | 4350 | 128.9497 | 24 | 210 | 20751 |   |
| 02/04/94 | F      | 4350 | 4350 | 129.3976 | 24 | 210 | 20962 |   |
| 02/05/94 | F      | 3600 | 3600 | 139.9617 | 10 | 78  | 21040 |   |
| 02/06/94 | L      | 4640 | 4640 | 131.3802 | 23 | 218 | 21258 |   |
| 02/07/94 |        | 0    | 3820 | E 131    | 5  | 39  | 21297 |   |
| 02/08/94 |        | 0    | 3820 | 0        | 0  | 0   | 21297 |   |
| 02/09/94 |        | 0    | 3820 | 0        | 0  | 0   | 21297 |   |
| 02/10/94 | F      | 3000 | 3000 | 125.4747 | 9  | 53  | 21350 |   |
|          |        |      |      |          |    |     |       |   |

Pg. 7 of 11

# HC Removal Rates for the West SVE System

| Date         Concentration<br>ppmv         Concentration<br>ppmv         Flow Rate<br>scfm         Operation<br>hr         Removed<br>lb/day         HC Removed<br>lb           08/03/93         L         28900         E         126.5         18         1024         1024           08/04/93         28900         E         126.6827         23         1074         2098           08/05/93         23675         126.4591         24         1119         3217           08/06/93         23675         126.5943         24         1120         4336           08/07/93         23675         126.511         24         1122         5458           08/08/93         23675         126.6149         24         873         7450           08/09/93         L         18450         18450         126.6149         24         873         7450           08/10/93         L         18450         18450         126.1508         24         927         8377           08/11/93         19675         126.0901         24         927         9304           08/13/93         19675         126.384         24         929         11163           08/14/93         19675         126.384 <td< th=""><th></th><th></th><th>THC</th><th>Assumed</th><th></th><th></th><th>THC</th><th>Cummulative</th></td<> |          |   | THC           | Assumed       |                  |           | THC     | Cummulative |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|---------------|---------------|------------------|-----------|---------|-------------|
| ppmvppmvscfmhrlb/daylb08/03/93L28900E126.5181024102408/04/9328900E126.5181024102408/05/9323675126.6827231074209808/05/9323675126.4591241119321708/06/9323675126.5943241120433608/07/9323675126.5121241122545808/08/9323675126.5411241119657708/09/93L18450126.614924873745008/10/9319675126.090124927837708/11/9319675126.38424929116308/13/9319675126.384249291116308/14/9319675126.3842487512038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date     |   | Concentration | Concentration | Flow Rate        | Operation | Removed | HC Removed  |
| 08/03/93         L         28900         E         126.5         18         1024         1024           08/04/93         23675         126.6827         23         1074         2098           08/05/93         23675         126.4591         24         1119         3217           08/06/93         23675         126.5943         24         1120         4336           08/07/93         23675         126.5943         24         1122         5458           08/08/93         23675         126.5411         24         1119         6577           08/09/93         L         18450         18450         126.6149         24         873         7450           08/10/93         L         18450         18450         126.6149         24         927         8377           08/10/93         L         18450         126.0901         24         927         9304           08/10/93         19675         126.0901         24         927         9304           08/12/93         19675         126.384         24         929         11163           08/13/93         19675         126.384         24         929         11163                                                                                                                                                                      |          |   | ppmv          | ppmv          | scfm             | hr        | lb/day  | lb          |
| 08/03/93L2890028900E126.5181024102408/04/9323675126.6827231074209808/05/9323675126.4591241119321708/06/9323675126.5943241120433608/07/9323675126.8121241122545808/08/9323675126.6141241119657708/09/93L1845018450126.614924873745008/10/9319675126.150824927837708/11/9319675126.4694249301023408/12/9319675126.384249291116308/13/9319675119.05162487512038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |   |               |               |                  |           |         |             |
| 08/04/9323675126.6827231074209808/05/9323675126.4591241119321708/06/9323675126.5943241120433608/07/9323675126.8121241122545808/08/9323675126.5411241119657708/09/93L1845018450126.614924873745008/10/9319675126.150824927837708/11/9319675126.090124927930408/12/9319675126.384249291116308/13/9319675126.3842487512038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 08/03/93 | L | 28900         | 28900         | E 126.5          | 18        | 1024    | 1024        |
| 08/05/9323675126.4591241119321708/06/9323675126.5943241120433608/07/9323675126.8121241122545808/08/9323675126.5411241119657708/09/93L18450126.614924873745008/10/93L18450126.150824927837708/11/9319675126.090124927930408/12/9319675126.384249291116308/13/9319675126.384249291116308/14/9319675119.05162487512038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 08/04/93 |   |               | 23675         | 126.6827         | 23        | 1074    | 2098        |
| 08/06/9323675126.5943241120433608/07/9323675126.8121241122545808/08/9323675126.5411241119657708/09/93L1845018450126.614924873745008/10/9319675126.150824927837708/11/9319675126.090124927930408/12/9319675126.4694249301023408/13/9319675126.384249291116308/14/9319675119.05162487512038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 08/05/93 |   |               | 23675         | 126.459 <b>1</b> | 24        | 1119    | 3217        |
| 08/07/9323675126.8121241122545808/08/9323675126.5411241119657708/09/93L1845018450126.614924873745008/10/9319675126.150824927837708/11/9319675126.090124927930408/12/9319675126.4694249301023408/13/9319675126.384249291116308/14/9319675119.05162487512038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08/06/93 |   |               | 23675         | 126.5943         | 24        | 1120    | 4336        |
| 08/08/9323675126.5411241119657708/09/93 L1845018450126.614924873745008/10/9319675126.150824927837708/11/9319675126.090124927930408/12/9319675126.4694249301023408/13/9319675126.384249291116308/14/9319675119.05162487512038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/07/93 |   |               | 23675         | 126.8121         | 24        | 1122    | 5458        |
| 08/09/93 L1845018450126.614924873745008/10/9319675126.150824927837708/11/9319675126.090124927930408/12/9319675126.4694249301023408/13/9319675126.384249291116308/14/9319675119.05162487512038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 08/08/93 |   |               | 23675         | 126.5411         | 24        | 1119    | 6577        |
| 08/10/9319675126.150824927837708/11/9319675126.090124927930408/12/9319675126.4694249301023408/13/9319675126.384249291116308/14/9319675119.05162487512038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08/09/93 | L | 18450         | 18450         | 126.6149         | 24        | 873     | 7450        |
| 08/11/9319675126.090124927930408/12/9319675126.4694249301023408/13/9319675126.384249291116308/14/9319675119.05162487512038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08/10/93 |   |               | 19675         | 126.1508         | 24        | 927     | 8377        |
| 08/12/9319675126.4694249301023408/13/9319675126.384249291116308/14/9319675119.05162487512038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/11/93 |   |               | 19675         | 126.0901         | 24        | 927     | 9304        |
| 08/13/9319675126.384249291116308/14/9319675119.05162487512038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 08/12/93 |   |               | 19675         | 126.4694         | 24        | 930     | 10234       |
| 08/14/9319675119.05162487512038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 08/13/93 |   |               | 19675         | 126.384          | 24        | 929     | 11163       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 08/14/93 |   |               | 19675         | 119.0516         | 24        | 875     | 12038       |
| 08/15/93 19675 119.887 24 881 12919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 08/15/93 |   |               | 19675         | 119.887          | 24        | 881     | 12919       |
| 08/16/93 19675 126.2841 24 928 13847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08/16/93 |   |               | 19675         | 126.2841         | 24        | 928     | 13847       |
| 08/17/93 19675 126.2307 24 928 14775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08/17/93 |   |               | 19675         | 126.2307         | 24        | 928     | 14775       |
| 08/18/93 F 10000 19675 125.5747 24 923 15698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/18/93 | F | 10000         | 19675         | 125.5747         | 24        | 923     | 15698       |
| 08/19/93 L 20900 20900 125.6471 24 981 16679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/19/93 | L | 20900         | 20900         | 125.6471         | 24        | 981     | 16679       |
| 08/20/93 F 10000 19700 125.8489 24 926 17606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/20/93 | F | 10000         | 19700         | 125.8489         | 24        | 926     | 17606       |
| 08/21/93 F 10000 19700 132.7508 22 896 18501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/21/93 | F | 10000         | 19700         | 132.7508         | 22        | 896     | 18501       |
| 08/22/93 F 10000 19700 127.5468 24 939 19440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/22/93 | F | 10000         | 19700         | 127.5468         | 24        | 939     | 19440       |
| 08/23/93 F 10000 19700 134.2431 20 823 20263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/23/93 | F | 10000         | 19700         | 134.2431         | 20        | 823     | 20263       |
| 08/24/93 F 10000 19700 128.7954 22 869 21132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/24/93 | F | 10000         | 19700         | 128.7954         | 22        | 869     | 21132       |
| 08/25/93 F 10000 19700 134.6782 24 991 22123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/25/93 | F | 10000         | 19700         | 134.6782         | 24        | 991     | 22123       |
| 08/26/93 F 10000 19700 133.6966 24 984 23107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/26/93 | F | 10000         | 19700         | 133.6966         | 24        | 984     | 23107       |
| 08/27/93 F 10000 19700 138.9597 21 895 24002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/27/93 | F | 10000         | 19700         | 138.9597         | 21        | 895     | 24002       |
| 08/28/93 F 10000 19700 133.2991 24 981 24983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/28/93 | F | 10000         | 19700         | 133.2991         | 24        | 981     | 24983       |
| 08/29/93 F 10000 19700 127.1144 24 936 25919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/29/93 | F | 10000         | 19700         | 127.1144         | 24        | 936     | 25919       |
| 08/30/93 F 10000 19700 138.9139 24 1022 26941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 08/30/93 | F | 10000         | 19700         | 138.9139         | 24        | 1022    | 26941       |
| 08/31/93 F 10000 19700 131.8441 24 970 27912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/31/93 | F | 10000         | 19700         | 131.8441         | 24        | 970     | 27912       |
| 09/01/93 L 18500 18500 131.5119 21 795 28707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 09/01/93 | L | 18500         | 18500         | 131.5119         | 21        | 795     | 28707       |
| 09/02/93 19150 139.1457 24 996 29703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 09/02/93 |   |               | 19150         | 139.1457         | 24        | 996     | 29703       |
| 09/03/93 L 19800 19800 140.2684 24 1038 30740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 09/03/93 | L | 19800         | 19800         | 140.2684         | 24        | 1038    | 30740       |
| 09/04/93 F 10000 14500 140.6499 24 762 31502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 09/04/93 | F | 10000         | 14500         | 140.6499         | 24        | 762     | 31502       |
| 09/05/93 F 10000 14500 139.0293 24 753 32255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 09/05/93 | F | 10000         | 14500         | 139.0293         | 24        | 753     | 32255       |
| 09/06/93 14500 138.127 24 748 33003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09/06/93 |   |               | 14500         | 138.127          | 24        | 748     | 33003       |
| 09/07/93 F 10000 14500 138.6741 24 751 33755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 09/07/93 | F | 10000         | 14500         | 138.6741         | 24        | 751     | 33755       |

| 09/08/92 |     | 10000 | 14500 |          | • • |     |       |
|----------|-----|-------|-------|----------|-----|-----|-------|
| 09/09/93 |     | 10000 | 14500 | 140.7759 | 24  | 763 | 34517 |
| 09/10/93 |     | 10000 | 14500 | 139.019  | 24  | 753 | 35270 |
| 00/11/03 |     | 10000 | 14500 | 135.0297 | 24  | 731 | 36002 |
|          |     | 10000 | 14500 | 138.7898 | 24  | 752 | 36754 |
| 09/12/93 | 5 F | 10000 | 14500 | 132.6895 | 24  | 719 | 37473 |
| 09/13/93 | 3 F | 10000 | 14500 | 133.6414 | 24  | 724 | 38196 |
| 09/14/93 | 3 F | 10000 | 14500 | 138.8938 | 24  | 752 | 38949 |
| 09/15/93 | B F | 10000 | 14500 | 126.2784 | 24  | 684 | 39633 |
| 09/16/93 | F   | 10000 | 14500 | 125.5697 | 24  | 680 | 40313 |
| 09/17/93 | F   | 10000 | 14500 | 120.6419 | 24  | 654 | 40967 |
| 09/18/93 | F   | 10000 | 14500 | 128.0165 | 24  | 693 | 41660 |
| 09/19/93 | F   | 9200  | 9200  | 151.9407 | 24  | 522 | 42182 |
| 09/20/93 | F   | 9050  | 9050  | 147.1308 | 24  | 497 | 42680 |
| 09/21/93 | F   | 7000  | 7000  | 140.2836 | 24  | 367 | 43047 |
| 09/22/93 | F   | 10000 | 6900  | 128.5259 | 24  | 331 | 43378 |
| 09/23/93 | F   | 10000 | 6900  | 113.5433 | 24  | 293 | 43671 |
| 09/24/93 | F   | 10000 | 6900  | 113.5064 | 24  | 293 | 43963 |
| 09/25/93 | F   | 10000 | 6900  | 112.9991 | 24  | 291 | 44255 |
| 09/26/93 | F   | 10000 | 6900  | 114.8381 | 24  | 296 | 44551 |
| 09/27/93 | F   | 6800  | 6800  | 143.3342 | 12  | 182 | 44733 |
| 09/28/93 | F   | 10000 | 10250 | 136.198  | 24  | 522 | 45254 |
| 09/29/93 | F   | 10000 | 10250 | 114.615  | 20  | 366 | 45620 |
| 09/30/93 | F   | 10000 | 10250 | 112.7161 | 24  | 432 | 46052 |
| 10/01/93 | F   | 10000 | 10250 | 123.8194 | 24  | 474 | 46526 |
| 10/02/93 | L   | 13700 | 13700 | 124.5024 | 16  | 425 | 46951 |
| 10/03/93 | F   | 10000 | 16300 | 126.9122 | 12  | 386 | 47337 |
| 10/04/93 | F   | 10000 | 16300 | 126.1958 | 20  | 640 | 47978 |
| 10/05/93 | F   | 10000 | 16300 | 123.5501 | 14  | 439 | 48416 |
| 10/06/93 |     |       | 16300 | E 124.3  | 2   | 63  | 48480 |
| 10/07/93 |     |       | 16300 | 0        | 0   | 0   | 48480 |
| 10/08/93 | F   | 10000 | 16300 | 136.9003 | 15  | 521 | 49001 |
| 10/09/93 | F   | 10000 | 16300 | 127.0841 | 24  | 774 | 49774 |
| 10/10/93 | F   | 10000 | 16300 | 125.1791 | 24  | 762 | 50537 |
| 10/11/93 | F   | 10000 | 16300 | 127.0841 | 24  | 774 | 51311 |
| 10/12/93 | F   | 10000 | 16300 | 126.0066 | 24  | 767 | 52078 |
| 10/13/93 | F   | 10000 | 16300 | 138.9828 | 24  | 846 | 52924 |
| 10/14/93 | F   | 10000 | 16300 | 135.9947 | 24  | 828 | 53753 |
| 10/15/93 |     |       | 16300 | 127.1807 | 24  | 774 | 54527 |
| 10/16/93 | F   | 10000 | 16300 | 128.2917 | 24  | 781 | 55308 |
| 10/17/93 | F   | 10000 | 16300 | 127.0379 | 24  | 774 | 56082 |
| 10/18/93 | F   | 10000 | 16300 | 127.4679 | 24  | 776 | 56858 |
| 10/19/93 | F   | 10000 | 16300 | 128.509  | 24  | 783 | 57641 |
|          |     |       |       |          |     |     |       |

,



| 10/20/93 | F | 10000 | 16300 | 127.8853 | 24 | 779          | 58420 |
|----------|---|-------|-------|----------|----|--------------|-------|
| 10/21/93 | F | 10000 | 16300 | 128.0727 | 24 | 780          | 59199 |
| 10/22/93 | F | 10000 | 16300 | 128.184  | 24 | 781          | 59980 |
| 10/23/93 | F | 10000 | 16300 | 128.7499 | 24 | 784          | 60764 |
| 10/24/93 | F | 10000 | 16300 | 137.3259 | 24 | 836          | 61600 |
| 10/25/93 | F | 10000 | 16300 | 128.2773 | 24 | 781          | 62381 |
| 10/26/93 | F | 10000 | 16300 | 129.3898 | 24 | 788          | 63169 |
| 10/27/93 | F | 10000 | 16300 | 139.0104 | 24 | 847          | 64016 |
| 10/28/93 | F | 10000 | 16300 | 139.8666 | 12 | 426          | 64442 |
| 10/29/93 | F | 10000 | 16300 | 139.9425 | 12 | 426          | 64868 |
| 10/30/93 | F | 10000 | 16300 | 126.9957 | 24 | <b>773</b> . | 65641 |
| 10/31/93 | F | 10000 | 16300 | 127.2721 | 24 | 775          | 66416 |
| 11/01/93 | F | 10000 | 16300 | 127.5506 | 16 | 518          | 66934 |
| 11/02/93 | F | 10000 | 16300 | 127.7986 | 24 | 778          | 67712 |
| 11/03/93 | L | 18900 | 18900 | 127.9551 | 24 | 903          | 68616 |
| 11/04/93 | F | 10000 | 19550 | 128.9696 | 19 | 746          | 69362 |
| 11/05/93 | F | 10000 | 19550 | 127.598  | 23 | 893          | 70255 |
| 11/06/93 | F | 10000 | 19550 | 138.5631 | 24 | 1012         | 71267 |
| 11/07/93 | F | 10000 | 19550 | 127.6465 | 24 | 932          | 72199 |
| 11/08/93 | F | 10000 | 19550 | 127.8605 | 24 | 934          | 73133 |
| 11/09/93 | F | 10000 | 19550 | 126.2975 | 24 | 922          | 74055 |
| 11/10/93 | F | 10000 | 19550 | 126.1035 | 24 | 921          | 74977 |
| 11/11/93 | F | 10000 | 19550 | 125.8786 | 24 | 919          | 75896 |
| 11/12/93 | F | 10000 | 19550 | 124.4069 | 24 | 909          | 76805 |
| 11/13/93 | F | 10000 | 19550 | 126.4669 | 24 | 924          | 77728 |
| 11/14/93 | F | 10000 | 19550 | 126.887  | 24 | 927          | 78655 |
| 11/15/93 | F | 10000 | 19550 | 127.9722 | 24 | 935          | 79590 |
| 11/16/93 | F | 10000 | 19550 | 128.509  | 24 | 939          | 80528 |
| 11/17/93 | F | 10000 | 19550 | 128.2615 | 24 | 937          | 81465 |
| 11/18/93 | F | 10000 | 19550 | 127.5299 | 24 | 931          | 82397 |
| 11/19/93 | F | 10000 | 19550 | 127.9224 | 24 | 934          | 83331 |
| 11/20/93 | F | 10000 | 19550 | 128.5191 | 24 | 939          | 84270 |
| 11/21/93 | F | 10000 | 19550 | 127.0063 | 24 | 928          | 85197 |
| 11/22/93 | F | 10000 | 19550 | 125.6263 | 24 | 918          | 86115 |
| 11/23/93 | F | 10000 | 19550 | 127.7263 | 24 | 933          | 87048 |
| 11/24/93 | F | 10000 | 19550 | 127.3654 | 24 | 930          | 87978 |
| 11/25/93 | F | 10000 | 19550 | 127.2628 | 24 | 930          | 88907 |
| 11/26/93 | F | 10000 | 19550 | 127.1601 | 24 | 929          | 89836 |
| 11/27/93 | F | 10000 | 19550 | 127.2833 | 24 | 930          | 90766 |
| 11/28/93 | F | 10000 | 19550 | 126.0375 | 24 | 921          | 91686 |
| 11/29/93 | F | 10000 | 19550 | 131.609  | 24 | 961          | 92648 |
| 11/30/93 | F | 10000 | 19550 | 131.609  | 24 | 961          | 93609 |
|          |   |       |       |          |    |              |       |





| 12/01/93 | 3 F | 10000 | 19550 | 131.609  | 24 | 961     | 94570  |
|----------|-----|-------|-------|----------|----|---------|--------|
| 12/02/93 | 3 F | 10000 | 19550 | 136.9411 | 24 | 1000    | 95570  |
| 12/03/93 |     | 10000 | 19550 | 127.5234 | 24 | 931     | 96502  |
| 12/04/93 |     | 10000 | 19550 | 127.6238 | 24 | 932     | 97434  |
| 12/05/93 | 3 F | 10000 | 19550 | 127.1062 | 24 | 928     | 98362  |
| 12/06/93 | 3 F | 10000 | 19550 | 126.0293 | 24 | 921     | 99283  |
| 12/07/93 | 8 F | 11000 | 19550 | 125.2965 | 24 | 915     | 100198 |
| 12/08/93 | 3 L | 20200 | 20200 | 127.443  | 24 | 962     | 101160 |
| 12/09/93 | F   | 10000 | 20250 | 127.625  | 20 | 805     | 101964 |
| 12/10/93 | F   | 10000 | 20250 | 127.9146 | 24 | 968     | 102932 |
| 12/11/93 | F   | 10000 | 20250 | 126.934  | 17 | 680     | 103612 |
| 12/12/93 | F   | 10000 | 20250 | 137.3934 | 24 | 1039    | 104652 |
| 12/13/93 | F   | 10000 | 20250 | 124.4036 | 24 | 941     | 105593 |
| 12/14/93 |     | 0     | 20250 | E 131.5  | 24 | 995     | 106588 |
| 12/15/93 |     | 0     | 20250 | E 131.5  | 2  | 83      | 106671 |
| 12/16/93 | F   | 11000 | 20250 | 138.6202 | 4  | 175     | 106845 |
| 12/17/93 | F   | 10000 | 20250 | 127.0532 | 24 | 961     | 107807 |
| 12/18/93 | F   | 10000 | 20250 | 126.8503 | 24 | 960     | 108766 |
| 12/19/93 | F   | 10000 | 20250 | 126.4777 | 24 | 957     | 109723 |
| 12/20/93 | F   | 10000 | 20250 | 126.535  | 24 | 957     | 110680 |
| 12/21/93 | F   | 10000 | 20250 | 126.5293 | 24 | 957     | 111638 |
| 12/22/93 | F   | 10000 | 20250 | 126.4253 | 24 | 956     | 112594 |
| 12/23/93 | F   | 10000 | 20250 | 126.4669 | 24 | 957     | 113551 |
| 12/24/93 | F   | 10000 | 20250 | 126.629  | 24 | 958     | 114509 |
| 12/25/93 | F   | 10000 | 20250 | 126.629  | 24 | 958     | 115467 |
| 12/26/93 | F   | 10000 | 20250 | 126.629  | 24 | 958     | 116425 |
| 12/27/93 | F   | 10000 | 20250 | 126.629  | 24 | 958     | 117383 |
| 12/28/93 | F   | 10000 | 20250 | 127.166  | 24 | 962     | 118345 |
| 12/29/93 | F   | 10000 | 20250 | 126.629  | 24 | 958     | 119303 |
| 12/30/93 | F   | 10000 | 20250 | 126.629  | 24 | 958     | 120261 |
| 12/31/93 | F   | 10000 | 20250 | 126.629  | 24 | 958     | 121219 |
| 01/01/94 | F   | 10000 | 20250 | 126.629  | 24 | 958     | 122177 |
| 01/02/94 | F   | 10000 | 20250 | 126.629  | 24 | 958     | 123135 |
| 01/03/94 | F   | 10000 | 20250 | 126.629  | 24 | 958     | 124093 |
| 01/04/94 | F   | 10000 | 20250 | 126.629  | 24 | 958     | 125051 |
| 01/05/94 | F   | 10000 | 20250 | 124.4247 | 24 | 941     | 125992 |
| 01/06/94 |     | 0     | 20250 | 124      | 6  | 235     | 126227 |
| 01/07/94 |     | 0     | 20250 | 0        | 0  | 0       | 126227 |
| 01/08/94 |     | 0     | 20250 | 0        | 0  | 0       | 126227 |
| 01/09/94 | L   | 7800  | 20300 | 128.0962 | 15 | 607     | 126834 |
| 01/10/94 | F   | 10000 | 19500 | 138.4699 | 24 | 1009    | 127843 |
| 01/11/94 | F   | 10000 | 19500 | 145.3162 | 24 | 1059    | 128901 |
|          |     |       |       |          |    | . = = = | 000 1  |

-



| 01/12/94 | F | 10000 | 19500 | 145.3162 | 24 | 1059 | 129960 |
|----------|---|-------|-------|----------|----|------|--------|
| 01/13/94 | F | 10000 | 19500 | 152.115  | 24 | 1108 | 131068 |
| 01/14/94 | F | 10000 | 19500 | 151.9437 | 24 | 1107 | 132175 |
| 01/15/94 | F | 10000 | 19500 | 151.9866 | 24 | 1107 | 133282 |
| 01/16/94 | F | 10000 | 19500 | 152.1331 | 24 | 1108 | 134391 |
| 01/17/94 | F | 10000 | 19500 | 162.3176 | 24 | 1183 | 135573 |
| 01/18/94 | F | 10000 | 19500 | 162.2977 | 24 | 1182 | 136756 |
| 01/19/94 | F | 10000 | 19500 | 151.6877 | 24 | 1105 | 137861 |
| 01/20/94 | F | 10000 | 19500 | 162.0042 | 24 | 1180 | 139041 |
| 01/21/94 | F | 10000 | 19500 | 162.1871 | 24 | 1182 | 140222 |
| 01/22/94 | F | 10000 | 19500 | 140.6897 | 24 | 1025 | 141247 |
| 01/23/94 | F | 10000 | 19500 | 151.8889 | 24 | 1107 | 142354 |
| 01/24/94 | F | 10000 | 19500 | 151.8156 | 24 | 1106 | 143460 |
| 01/25/94 | F | 10000 | 19500 | 140.3273 | 24 | 1022 | 144482 |
| 01/26/94 | F | 10000 | 19500 | 139.5771 | 24 | 1017 | 145499 |
| 01/27/94 | F | 10000 | 19500 | 139.6189 | 24 | 1017 | 146516 |
| 01/28/94 | F | 10000 | 19500 | 140.2092 | 24 | 1021 | 147538 |
| 01/29/94 | F | 10000 | 19500 | 150.9401 | 24 | 1100 | 148637 |
| 01/30/94 | F | 10000 | 19500 | 150.9846 | 24 | 1100 | 149737 |
| 01/31/94 | F | 10000 | 19500 | 150.8018 | 24 | 1099 | 150836 |
| 02/01/94 | F | 10000 | 19500 | 150.8018 | 24 | 1099 | 151935 |
| 02/02/94 | F | 10000 | 19500 | 151.0003 | 24 | 1100 | 153035 |
| 02/03/94 | F | 10000 | 19500 | 140.1903 | 24 | 1021 | 154056 |
| 02/04/94 | F | 10000 | 19500 | 140.7966 | 24 | 1026 | 155082 |
| 02/05/94 | F | 10000 | 19500 | 140.5319 | 10 | 427  | 155508 |
| 02/06/94 | L | 18800 | 18800 | 136.8815 | 23 | 921  | 156430 |
| 02/07/94 | F | 0     | 18890 | E 137    | 5  | 201  | 156631 |
| 02/08/94 | F | 0     | 18890 | 0        | 0  | 0    | 156631 |
| 02/09/94 | F | 0     | 18890 | 0        | 0  | 0    | 156631 |
| 02/10/94 | L | 18975 | 19000 | 137.4507 | 16 | 650  | 157281 |
|          |   |       |       |          |    |      |        |



۰
#### **APPENDIX E.2**

**Heat Balance Calculations** 

CALCULATION SHEET CALC. NO.\_\_\_\_ SIGNATURE LIVE A CULINEY DATE 4/28/94 CHECKED AC DATE 5/12/94 JOB NO., SUBJECT Theoretical Temperature Rise in SHEET 1 Soils from Heptane Oxidation OF\_\_\_\_2 SHEETS Average biodegradation rate in active areas 3.2 mg heptane/kg soil /day from Phose I respiration tests Q = heat generated during oxidation<math>m = mass soil  $C_p = heat capacity of soil$  $<math>\Delta T = temperature Change$  $Q = m C_p \Delta T$ <u>3.2 mg heptane</u>. <u>4854 kJ</u> <u>1 mol heptane</u> kg soil day mol heptane 100,000 mg heptane  $\langle Q \rangle$ (criticate released during combustion) = 0.155 <u>kJ</u> kg soil day 0.345 <u>Cal</u> Can<sup>3</sup> C (Carslaw, 1959) Cpsul =  $C_p = 0.345 \frac{cal}{cm^{3} \cdot c} \cdot \frac{ft^{3}}{50 \text{ kg}} \cdot \frac{1728 \text{ in}^{3}}{ft^{3}} \cdot \frac{16.39 \text{ cm}^{3}}{1000 \text{ cal}} \cdot \frac{kcal}{1000 \text{ cal}}$ 0.195 <u>kcal</u> Kgsi<sup>s</sup>C G m Co  $\rightarrow \Delta T =$  $Q = mC_p \Delta T$ Qmt 0.155 KJ <u>kgsil"C</u>. <u>4.184 KJ kcal</u> kg soil day 0.195 kcal Kcal <u>4.184 KJ</u> AT = 0.19 °C / day *=* 

ADIAN CALCULATION SHEET CALC. NO. alletmenterenter date \_\_\_\_\_ CHECKED \_\_\_\_\_ DATE \_\_\_\_\_ DATE \_\_\_\_\_ PROJECT. JOB NO. SUBJECT Meoretical Temperature Rise SHEET 2 OF 7 \_\_\_\_\_ SHEETS Test period = 180 days  $\Delta T_{\text{test}} = 0.19 \,^{\circ}C \, .180 \, days = 34 \,^{\circ}C$ This assumes not no heat loss to the surroundings or insulation effects of the snow cover. This is strictly the temperature rise from in soil with a specified heat capacity based on the heat generated from the Oxidation (biological in nature) of heptane.

CALCULATION SHEET CALC. NO.\_\_ IGNATURE CALADOLUY DATE 4/18/94 CHECKED AC DATE 5/12/94 PROJECT Gallag TS ( JOB NO.\_ SUBJECT HEAT GENERATION and Transfer SHEET\_ of\_\_\_\_3 SHEETS Source: Carslaw, H.S. and J.C. Jaeger. Conduction of Heat in solids, 2nd ed. Oxford University Press, New York, 1959, pg. 224. For a finite cylinder OLZLL, OSTXA with constant heat generation rate As per unit time per unit volume, the above source gives the following heat conduction equation:  $(1)\frac{\partial v}{\partial r^2} + \frac{1}{r}\frac{\partial v}{\partial r} + \frac{\partial v}{\partial z^2} = -\frac{A_0}{K}$ where V = temperature, °C r = radial distance from axis, m Z = axial distance from base, m  $A_0 = heat generation constant, Kal/m<sup>3</sup>hr$ K = thermal conductivity, Kad/msec<sup>3</sup>CGiven the following boundary conditions.  $\begin{array}{c} (z) & \overline{z} = 0 \\ \overline{z} = l \\ \Gamma = q \end{array} \end{array} \begin{array}{c} V = 0 \\ V = 0 \end{array}$ The solution to (1) given (2) is ! (3)  $\mathcal{V} = \frac{A_0 \mathcal{Z}(l-\mathcal{Z})}{\mathcal{Z}K} - \frac{4l^2 A_0}{KT^3} \sum_{n=0}^{\infty} \frac{\mathbf{I}_0 \left[\frac{(2n+1)mr}{\mathcal{Z}}\right]}{(2n+1)^3 \mathbf{I}_0 \left[\frac{(2n+1)mr}{\mathcal{Z}}\right]}$ Sin (2n+1)TZ where Io(x) = hyperbolic Bessel function



# CALCULATION SHEET

|                |         | CALC. NO |         |  |
|----------------|---------|----------|---------|--|
| SIGNATURE DATE |         | DATE     | 5/12/94 |  |
| PROJECT        | JOB NO  |          |         |  |
| SUBJECT        | SHEET Z | 0F3      | SHEETS  |  |

$$\begin{array}{c|cccc} \Gamma(f_{4}) & =& Z(f_{4}) & \chi(e_{C}) \\ \hline 0 & 10 & 7.8 \\ \hline 30 & 10 & 7.4 \\ 40 & 10 & 6.0 \\ 45 & 10 & 4.0 \\ 47.5 & 10 & 2.3 \\ 50 & D & 0 \end{array}$$



## CALCULATION SHEET

|               |            |                        | CALC. NO. |          |  |
|---------------|------------|------------------------|-----------|----------|--|
| CONATURE DATE | CHECKED 4C | DATE                   | 5/12/94   |          |  |
| PROJECT       |            | JOB NO                 |           |          |  |
| SUBJECT       |            | SHEET                  | OF        | SHEETS   |  |
| Barrow        | neulo -    | al complete a man tron | is AD?    |          |  |
| DREGUSE THE   | Maximum    | BYSERVED TEMPERIVIE    | 15 70     | $\sim$ , |  |

the value for Ao will be increased to find a temperature distribution that better fits the observed data. For a value of As = 0.39 key/43 hr, the following results are tabulated:  $r(f_{+}) = \frac{z(f_{+})}{z(f_{+})} v(C)$ 40.7 10  $\bigcirc$ lD 30 38.5 31,0 10 40 45 10 20.7 47.5 /D 12.1 10 50 Ο Comparing the volumetric heating rate derived from the oxidation of heptone to the one required to give the observed temperature distribution by gives: ratio =  $\frac{0.39^{\text{kcal}/3}\text{hr}}{(2.03 \times 10^{5} \text{ kcal}/3 \text{sec})(1 \text{ hr})} \approx 5$ 

Five times more heat would be required to give the observed temperature distribution , than can be accounted for by the oxidution of heptene.

#### **APPENDIX E.3**

Hydrocarbon Removal by Biological Processes

RADIAN

#### CALCULATION SHEET

CALC. NO.\_ SIGNATURE ( Ultimen Dulancy DATE 5/9/94 CHECKED J. Rehave DATE 5/11/94 PROJECT Galena Airport TS \_\_\_\_\_ OF\_\_\_\_\_SHEETS SUBJECT Mass Biodegraded During SHEET\_ Estimated Aug. Biodegradation Kate Study Area (nty/kg/day) V-1 three V-4-West Cell 3.2 most active area. East Cell 0.2 West Cell Assume 75-ft radius of biological activity centered on the western portion of the West Cell. SVE Known to have 150ft radius of influence So 75ft radius circle is -acrated by SVE system. Assume this area has hydrocarbon concentrations high enough to support biological activity. Mso assume degradation is constant over area. Water table fluctuations during test period: 8/2 130 ft MSL ] average 126 ft MSL 2/10 122 ft MSL ] average 126 ft MSL 147 ft MSL in West Cell Ground level elevation : Average vadose-zone thickness : 147-126= 21 ft Volume of soil within Biologically-Active Area = 

CALCULATION SHEET CALC. NO. SIGNATURE allancy Dutenerfate\_ \_\_\_\_\_ CHECKED ]. Keliege DATE 5/11/94 PROJECT Galcha Apport (IS SUBJECT Mass Biodegraded 2 SHEET OF\_\_\_\_\_SHEETS Mass of Hydrocarbons Biodograded: 3.2 mg heptane. 16 . 50 kg scil. 371,000 ft3. 180 day Kg scil. davý 454000 mg . ft3. 371,000 ft3. 180 day ~ 23,500 lb hydrocarbons as heptane East Cell East Cell is significantly less contaminated than the West Cell activity is at a 50-ft radius centered toward the western portion of the East Cell. Aug. 600 Ground Level elevation: 145 ff MSL in The East Cell Average vadose-zone thickness: 145-126 = 19 th Volume of soil within biologically-active area =  $\pi r^2 x depth = \pi (50)^2 i9 = 149,000 \text{ fr}^3$ Mass of Hydrocarbons Biodegraded ; 0.2 <u>mg heptane</u>. <u>ib</u> Fg soil day 45400 mg \$73 . 149,000 fr 3. 180 day ≈ 590 lb hydrocarbons

### References

Carslaw, H.S. and J.C. Jaeger. *Conduction of Heat in Solids*, 2nd ed. New York: Oxford University Press, 1959.