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I. Summary of Results 

Programmable Structures 

The goal of this project was to examine the feasibility of a programmable structure con- 

cept for vibration suppression and damage detection. A programmable structure is defined 

as a subset of smart materials that consists of a host structure with embedded sensors, ac- 

tuators and surface mounted control module. The specific objectives of this effort were the 

fabrication, modeling, control and experimental verification of a programmable structure 

system. In particular, the issues of modeling that emerged as significant are the importance 

of including internal passive damping mechanisms, the significance of modeling local change 

in elastic modulus of the actuator/sensor system and the failure of standard finite element 

and modal analysis methods to produce experimentally verified results that are capable of 

reproducing transient time responses. It is apparent that internal damping mechanisms for 

layered beam elements must be modeled, (e.g., strain rate damping) as must the modulus 

of the embedded sensors and actuators. If these effects are not included, theoretical predic- 

tions and measured responses do not agree. These results are reported in the papers listed 

in section 2. 

It is also significant to note that the electronic control module is so light and small that 

the equations of motion for vibration are not altered by the addition of a surface mounted 

control module. The control law used in a given application, however, is extremely signficant 

in improving vibration response. For example, in free decay, the damping ratios of the first 

several modes of the closed loop system can vary by as much as a factor of five depending 

on the choice of control law. The improvement over open loop response offers an order of 

magnitude decrease in settling time illustrating very strong vibration suppression. 



Results in diagnostics using a programmable structure concept offer a unique ability for 

self diagnostics of structural systems. Small, local changes in mass and stiffness are known 

to be difficult to determine using frequency measurements. The programmable structure 

however has the ability to determine using frequency measurements. The programmable 

structure however has the ability to measure time difference over different time intervals. 

These time differences have been shown to illustrate the presence of damage. 

Some progress has been made on the issue of optimal location and size of embedded 

piezoactuators in isotropic beam and plate structures using optimization methods. The 

optimal thickness ratio for host versus piezoceramic layer for a given modulus ratio has been 

quantified in design chart form as reported in Ashburn and Garcia and in Minas, Garcia and 

Howard. 

Control Issues 

In addition, it was found that the control law most suited for use with programmable 

structures is an optimized positive position feedback controller.  This control, invented by 

Fanson of JPL was modified by us by applying an optimal control technique to the choice of 

filter gains. Such a design, which is basically a compensator, leads to substantially improved 

performance over HQQ control, LQR control, PID control and standard positive position 

feedback (PPF). The reason PPF and its modifications provide superior control over the 

other methods have to do with its inherent stability. Closed loop stability of a PPF depends 

only on knowledge of the open loop natural frequencies. Open loop control frequencies are 

one of the best known and predicted physical quantities available. Hence the design is fairly 

robust to model error. 
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II. Smart Rotating Machine Shafts 

As an off shoot of the planned research, the feasibility of suppressing critical speeds in 

rotating machinery by using embedded shape memory alloys and a stiffness scheduling open 

loop control algorithm was studied. Preliminary results show that in certain circumstances, 

such a scheme can in fact remove critical speed deflection from rotating machines during 

start up and run down. 

Shape memory alloys have been generally dismissed for use in transient control applica- 

tions because of their long response time. The spinning up of rotating machinery however 

represent a vibration suppression problem occurring over a finite time period. A simplified 

model of dynamic analysis of a flexible shaft disc system is used and combined with a spin 

up profile resulting in a system with time varying coefficients. A stiffness scheduling control 

algorithm, defined as adopting the stiffness of the shaft to reduce disturbance sensitivity 

is developed. An embedded shape memory alloy is used to actuate the rotor shaft system 

between two different elastic moduli. As the rotating shaft starts from zero and ramps up to 

its operating speed the stiffness is switched using the shape memory alloy as the shaft runs 

through the critical speed, effectively reducing the shaft deflection. 

The current model is used to numerical simulate the results of using the embedded shape 

memory alloy to perform the stiffness control task using a 4th order Runge-Kutta method 

for three cases. The three cases illustrate a comparison between low stiffness, high stiffness 

and stiffness switched during ramping, the results, illustrated graphically in the following 

shows that stiffness scheduling substantially reduces the amplitude response during ramp 

up through critical speed. The control of critical speeds in rotating machines by an open 

loop system with embedded shape memory alloys present the possibility to improve the 



performance of rotating machines in a broad class of industrial and military applications 

where start up critical speed problems currently exist. The proposed method also allows for 

on line adjustment over time providing a guard against field problems such as fatigue. 

III. Model Updating and Control Results 

In an attempt to match our finite element models to the experimental response data in 

the form of modal data we came upon several linear algebra results which provided system- 

atic ways for analytical finite element models to be adjusted to agree with measured data. 

Because our model correction matrices are similar to gain matrices of pole placement and 

eigenstructure assignment we also have obtained rather interesting results in control theory. 

Eigenstructure assignment is a popular and well studied method of feedback control. The 

majority of eigenstructure assignment methods are formulated in state space. However, the 

motivation for using eiegnstructure assignment for vibration control comes from a designers 

satement of required performance in terms of modal information - i.e., natural frequencies, 

damping ratios and mode shapes. In particular, mode shape information is stated in a physi- 

cal coordinate system rather than in the state space. Hence a new eigenstructure assignment 

algorithm is developed in a second order physical coordinate system using a theory devel- 

oped for solving second order inverse eigenvalue problems. This approach is developed by 

realizing that the model updating, or model correction, problem associated with adjusting 

finite element models using experimental data is closely related to the eigenstructure as- 

signment problem of control theory. Thus the theoretical development proposed here sets a 

background for developing many new eigenstructure assignment algorithms. 

Several important features result from eigenstructure assignment gains calculated from 

inverse theory. First, the computational algorithm runs in about 1/3 the time of direct eigen- 
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structure assignment yet produces identical gains. Secondly, the inverse approach retains 

those natural frequencies and mode shapes of the original open loop system not assigned 

by the algorithm. This prevents the common difficulty of shifting the desired modes to ac- 

ceptable performance levels, whilst the unassigned open loop eigenstructure shifts to some 

undesirable values (potentially unstable) spoiling the closed loop performance. 

IV. Nonlinear Modal Control Method 

This work extends previous work on nonlinear normal modes to include the case of forced 

response. This allows the nonlinear normal mode method to be applied to the feedback 

control problem providing a new method of controlling nonlinear multiple degree of freedom 

systems. The proposed method uses a transformation proposed earlier for homogeneous 

systems written in state space form. The coordinate transformation for the forcing vector 

is defined here in state space and related to the physical coordinate system. The result is 

a pseudo modal decoupling transformation of a nonlinear inhomogeneous system. Although 

interesting in its own statement, this transformation also provides a nonlinear modal control 

scheme. This result is applied to a known coupled two degree of freedom oscillator with a 

cubic stiffness term. The results illustrate the design of a nonlinear modal control law. 

The invariant manifold method has been extended to the forced response case and now 

includes the output equation as well as the state equation. The appropriate transformations 

have been derived and applied to a two degree of freedom nonlinear oscillator illustrating 

that a successful feedback control law can be designed for a nonlinear system based on 

nonlinear modal control techniques. In addition, several new definitions have been put forth 

to allow nonlinear mode nomenclature to more precisely agree with the non-conservative 

linear nomenclature. 
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