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STATEMENT OF THE PROBLEM 

Many important time series arising in engineering and applied 
science are not stationary. Hence, the investigation of non- 
stationary processes is essential. A variety of interesting non- 
stationary classes of stochastic processes including the 
periodically correlated processes and almost periodic processes 
have been already introduced and studied. Another class of non- 
stationary processes, which has been introduced and studied, 
extends the classes we mentioned above [1]. This new class seems to 
have very useful applications. It is clear that helicopter noise, 
being the combination of the noises generated by the main and rear 
rotor, is not always periodically correlated. However, this process 
turns out to be in our newly introduced class of non-stationary 
processes [1,2,3]. 

The study of most classes of non-stationary stochastic 
processes mentioned above is by no means complete. It was the 
purpose of this project to study these important non-stationary 
stochastic processes and to explore their other applications in 
science and engineering. We also proposed to address some 
theoretical problems regarding the new class. 

Let's be more specific and start with some definitions 

Definition.  A stochastic process Xn, with correlation function 
R(m,n) is called 
a) Stationary if 

R(m,n) = R(m+l,n+l), for all m,n in Z, 

b) Periodically Correlated (PC) with period q if 

R(m,n) = R(m+q,n+q), for all m,n in Z. 

c) Correlation Autoregressive (CAR) if there exist finitely many 
scalars a},   j= -p,...-1,0,1,...p; such that 

(*)    R(m,n) = 2 aj. R(m+j,n+j),   for all m,n e Z; 
j 



Examples. Clearly every stationary process is CAR. In fact, we can 
let p=l, a_.,=0, a,,=l to see (*) holds. Any PC process with period 
q also satisfies (*) , this time we may take p=q, a =1 and the rest 
of a,'s being 0. So they are also CAR. As another example consider 
the stochastic process Yn = a

n Xn, where Xn is a stationary process 
and a is any complex number. One can easily see that correlation 
function of Yn satisfies 

l lal2 
R(m,n) =  ^-T—r2  R (m+1, n+1) +  LS-L   R. (mTU n-1) ' 

|a|*+l |a|z+l 

which means Yn is CAR. As a final example one can examine that 

Z=nX„ satisfies n   n 

R(m,n) = 3R(m+l,n+l) - 3R(m+2,n+2) + R(m+3,n+3), 

and hence is Zn is again a CAR process. 

Note. The CAR process of example in last two example are 
stationary or PC. This for example because they are not bounded. In 
fact, because of the same reason CAR processes are in general not 
even harmonizable. 

SUMMARY OF IMPORTANT RESULTS OBTAINED 

We studied some prediction problems of an important class of 
non-stationary processes, namely periodically correlated processes. 

In the paper #1 of the following list we develop a formula 
which gives the predictor explicitly and can be then used easily 
for the purpose of finding the predictor and its corresponding 
prediction error. 

In the manuscript #2 of the following list which has appeared 
of a chapter in the book recent developments of prediction theory 
of Periodically Correlated processes is discussed for more applied 
audience. 

In the paper #3 of the following list we show how our newly 
introduced class of Correlation Autoregressive Processes can be 
applied to model seismic and earthquake waves. 



It is well-known, that spectral domain of stationary stochastic 
processes is a complete function space, a fact which is crucial in 
the prediction theory of these processes. When it comes to non- 
stationary processes this problem is as important but unsolved. So 
the problem of weather the spectral domain of a harmonizable 
process is complete or not has been subject of study in several 
papers [4,5,6,7]. In the paper #4 of the following list we study 
this problem for the case of Periodically Correlated and 
Correlation Autoregressive Processes and obtain some 
characterization for their domain to be complete. 
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