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Introduction 
This project focused on the development of data analytic and statistical methodology for data sets 

which may be characterized by one or more of the properties that they are large in size, high in dimension and 
nonhomogeneous. A major thrust is in the visualization of both data point clouds and mathematical structures 
in high dimensions. Several techniques were proposed including parallel coordinate density plots, 3- 
dimensional Andrews plots, grand (or guided) tours in 3 or higher dimensions. A combination of 
mathematical analysis and graphics display is our basic approach to these visualization problems. A closely 
related area is the area of structural inference for high dimensional structures. By this is meant the estimation 
of solid structures including k-dimensional flats in n-dimensional space as well as other nonlinear manifolds in 
high dimensional space. Proposed techniques involved 1. the detection and estimation of k-flats, thick k-flats 
and nonlinear manifolds of modest curvature by exploitation of the prqjective duality for parallel coordinates 
and 2. the estimation of more severely curved manifolds by use of ridges on k-dimensional density estimates. 
The parallel coordinate projective duality is that in parallel coordinates lines are represented by points and vice 
versa. Since k linearly independent lines are sufficient to uniquely specify a k-flat, it appeared to be possible to 
identify and arbitrarily oriented k-flat in n-space by appropriately exploiting parallel coordinates. 

We proposed to focus on several aspects of computational statistics. The main focus was the 
development of methods for the visualization of multidimensional structure. The visualization of 
multidimensional structure is a key element in exploratory analysis of high dimensional data, but, of course, 
with much broader spinoff in terms of other scientific areas. We suggested four research topics related to the 
visualization: 1. Three-Dimensional Andrews and Related Plots, 2. The Grand Tour in Three Dimensions, 3. 
Finding Structure in k-Dimensions Using Grand Tour and Parallel Coordinates, and 4. Structural Inference 
using Ridge Estimation in Hyperspace. 

Three-Dimensional Andrews and Related Plots 

An Andrews plot is a multidimensional plotting device that is somewhat related to the parallel 
coordinate methodology. There are several conceptual viewpoints that can be described in connection with 
Andrews plots. First of all think of a data vector (Xu... ,Xn) as represented by pairs of the fonn(l, X^,... , 
(n, Xn). One way of think of the parallel coordinate plot is as a linear interpolation between these points. The 
reason for using a linear interpolation is that the transformation from Cartesian space to parallel coordinate 
space is a projective transformation and, thus, leads to an elegant geometric interpretation of mathematical 
structure. In particular, we can map Cartesian geometric structures into parallel coordinate geometric 
structures. However, other general sets of interpolations may be suggested. The earliest one is essentially a 
Fourier interpolation. That is, plot a multidimensional vector as a trigonometric polynomial expansion with 
coefficients determined by the weights X*   Specifically Andrews suggests plotting 

fx(6) = Xx/\f2+Xi sin(9) +X3cos(9) +X4sin (26) + Xhcos(29) + ■■■ 

Each unique point gets mapped into a unique trigonometric polynomial. These are then plotted in a way similar 
to parallel coordinate plots. Two properties of Andrews plots are interesting. First, because of the Fourier 
series interpretation, the classic Parseval's Theorem holds. Parseval's Theorem basically has to do with U- 
norms and asserts that mean square error in the Fourier domain and mean square error in the untransformed 
domain are the same. Thus while the untransformed domain is n-dimensional Euclidian space, the Fourier 
domain is 2-dimensional space so that by looking at an Andrews plot we can visually get an idea of the mean 
square error structure. The second property relates to the fact that we are talking about orthonormal 
trigonometric series. Because of this (thinking of the x-axis variable as an angle, say 9), for every 9 we get a 
different linear weighting of the Xs. We can think of a slice at 6 as a 1-dimensional projection of the 
multivariate vector onto an axis whose orientation is determined by 9. It has been argued that this in effect 
gives us a one-dimensional grand tour. As with any grand tour this offers us the possibility of looking for 
orientations that show up interesting or unusual properties. 

There is nothing inherently sacred about either the piecewise linear (parallel coordinate plot) or the 
trigonometric (Andrews plot) interpolation. The former is useful because in preserves geometric properties, the 



latter because of the mean square interpretation. The 1-dimensional grand tour would work with any 
orthonormal series so there may be some other interesting orthonormal series to think about. It may be that we 
can invent series which highlight different properties so that we can have a family of plots designed to explore 
different aspects of the structure. That is to say, if we are interested in highlighting clustering or outliers, we 
propose to invent an orthogonal series that would exaggerate those aspects of the data in the plot. Thus, we 
could generalize the parallel coordinate and Andrews plots. 

Our work in this area was published in Wegman and Shen (1993) and also described in Wegman, Carr 
and Luo (1993), and Wegman and Carr (1993). One key result was to do an expansion in two dimensions 
instead of just one. What I have described before is an expansion f(0; X) where X=(Xj,. ,X„) where f is either 
a piecewise linear interpolant or a trigonometric series. I used a bivariate expansion say f (0; X) = (fi(0), 
f2(0)) as a 2-dimensional Fourier transform with irrational phase ratio (or, in fact, any orthonormal series). In 
this situation I was able to preserve the Parseval-type property and create the two-dimensional pseudo-grand 
tour. We can think of a 3-dimensional plot, plotting f (0) against Q. If the 6 axis corresponds to the x axis and 
7 to the y-z axis, we implemented this in our VR lab with rotation around the x-axis to help visualize the three- 
dimensional structure. Having a three-dimensional plot helps uncover more structure in the data than a simple 
twc-<iimensional plot would. Moreover, we are able to rotate the plot so that the y-z axis is the screen axis. 
Then slicing this graph along the x-axis would correspond to doing a two-dimensional grand tour. This 
provided a unified treatment of Andi?eWparaUel-coordinate-type plots with the grand tour idea. 

The Grand Tour in Three and Four Dimensions 

The grand tour is a very interesting idea first and primarily exposited by Asimov, and never really 
given its full due we believe because it is computationally intensive and technically fairly difficult. The intuitive 
idea underlying the grand tour is as its name suggests, if we want to investigate a data set we "look at it from all 
angles" much as if we were doing a grand tour of a geographic place we would try and look at it in all aspects. 
Thus, for example, if we are exploring a ten-dimensional data set, we would like to look at it from as mam' 
different perspectives as we could. The original mathematical implementation was as projections into two- 
dimensional planes (flats). The collection of all two-dimensional flats in an n-dimensional Euclidian space is 
called a Grassmanian manifold. The idea is to create a space filling path (i.e. one that visits all elements of the 
Grassmannian manifold) in some continuous fashion with the additional restriction that the proportion of time 
spent in each region is proportional to the size of that region That is to say we do not linger in a small region 
of the whole space. If we then think of stepping along this path, we get a series of 2-dimensional planes onto 
which we can project the n-dimensional point cloud. If there is no structure in the point cloud, then every two- 
dimensional projection should look like an uncorrelated scatter diagram If there is (two-dimensional) structure, 
then some projections will have interesting non-trivial patterns and these can be modeled. Two problems arise. 
First, if the dimension of the data space is high, then the number of two-flats needed to get a reasonably dense 
collection of two planes is very large. This means that in any real implementation there is a tradeoff between 
density of planes and reasonable viewing time. However, if the density of viewing planes is fairly low, some 
perspectives will be missed and consequently some interesting projections may be lost. Second, the methods for 
choosing the path through the Grassmannian manifold are either computationally very tedious or not 
mathematically elegant and visually unappealing. Moreover, even if these aspects could be dramatically 
improved, it is clear that looking a sequence of two-dimensional projections will allow us to detect unusual two- 
dimensional patterns, but it will not necessarily allow for us to detect unusual patterns in 3 dimensions. 

The fact that we have 3-dimensional display devices suggests that we could and have tried creating a 
grand tour in three dimensions. The idea is in an n-dimensional space there would be a large number number 
of three-drmensional subspaces. Instead of stepping through a sequence of two-flats, we could step through a 
sequence of three-flats. There are, of course, as many two-dimensional flats (coordinate systems) as there are 
three-dimensional flats (coordinate systems) in the sense that both have the same cardinality and are 
uncountabfy infinite. Nonetheless, in a practical implementation, we do not have to step through as many 3-D 
coordinate systems as 2-D coordinate systems in order to densely approximate all possibly systems. In the two- 
dimensional grand tour we are interested in determining two-flats. These will be determined by a pair of unit 
length vectors, say (a, b), which are orthogonal and which span a given plane.   Of course, if each of the 



components of (a, b) contain only Os and Is, these will correspond to planes of the original coordinate axes 
system. Thus the 2-flat of interest is span(a, b). We have achieved two important results: 1) We have 
generalized the grand tour to general k-dimensional representations, i.e. we have created a time-dependent 
series of orthonormal vectors in k-dimensions, (ai(t), a2(t), ■■■•> **(*)) (see description below) and, 2) We have 
found a computationally efficient algorithm for a 2-dimensional pseudo-grand tour (see description above). 
These results were reported in Wegman (1991b), Wegman and Shen (1993), Wegman, Carr and Luo (1993) and 
Wegman and Carr (1993). 

Finding Structure in k-Dimensions using Grand Tour and Parallel Coordinates 

The project here is conceptually closely related to our earlier discussions of the grand tour. As 
indicated earlier, the advantage of doing a 3-dimensional grand tour is two-fold. First, it allows for one to see 
unusual 3-dimensional configurations instead of simply unusual 2-dimensional configurations. Second, it 
allows a more complete search of the k-dimensional space because, for practical purposes, there are fewer 3-flats 
needed than 2-fiats to attain the same density. Because parallel coordinates is a convenient tool for representing 
data in dimensions 4 and higher, a natural suggestion is to combine the parallel coordinate representation with 
the grand tour notion. Generalizing our earlier notion, suppose («i, a2,... , a*) is a vector of k-unit vectors 
which form the mutually orthogonal unit vectors whose span is a k-flat. This is, so to speak, a Grassmannian 
manifold of k-flats instead of 2-flats. The idea is to find a continuous, dense path through this Grassmannian 
manifold and use the k-flats (k-dimensional coordinate system) so generated as a sequence of coordinate systems 
in which we can plot the data. Of course, we would not plot using Cartesian coordinates, but we can plot using 
parallel coordinates. Again we would be searching for unusual structure. One structure that would be of 
interest finding that the data lie on one or more k-flats or other k-manifolds. For example, verifying that the 
data were co-(k-)planar in some orientation of a k-flat would essentially suggest that a multiple linear regression 
with 1 dependent and (k - 1) independent variables is an appropriate model. Other structures would suggest 
other models. 

The trade-off is obvious. As k gets larger, the ability to look for unusual higher dimensional structure 
improves. Also the density of k-flats is much high than the density of 2- or 3-flats and so it appears plausible 
that we could look more closely at the n-dimensional space. The bad news is that the computation of the unit 
vectors (ai, a2,... , at) is likely to become computationally more intensive. How bad this might be is not yet 
clear. 

Let us consider a related observation. We know that lines in parallel coordinates represent points in 
Euclidian space ami similarly, points in parallel coordinates represent lines in Euclidian space. Suppose we 
have a bunch of points in Euclidian space chosen randomly except that they all lie on a plane, say a d-flat. They 
are represented by a collection of line segments joining parallel coordinate axes. Let's let the rth point in 
Euclidian n-space be represented by C and let the line between axis; and/ + 1 be C), j = 1, 2,... , n - 1. The 
intersection of £* and £* is a point in parallel coordinate space representing a line in Euclidian space denote it 
by Vf. Joining this to Vf+i gives us a new line segment in parallel coordinate space, say Cf, which represents 
a point in Euclidian n-space. Since the lines represented by T3-* are coplanar, their intersections represented by 
Cf are also coplanar. This implies that all of the segments Cf should have a common intersections as j ranges 
from 1 to n. Indeed, if there is not one but several intersections for each j, this suggests that there are not one 
but several planes. Generalizing this process to higher dimensions this suggests another diagnostic tool for 
detecting when a point cloud lies on one or more k-flats. Coupled with the k-dimensional grand tour, this may 
be a very powerful geometric diagnostic tool for inferring data structure in higher dimensions. 

A related problem is to diagnose nonlinear structure. If we have data on a nonlinear k-manifold, the 
given technique may not be entirely appropriate. This technique is fairly robust to variability to some scatter off 
of the plane (i.e., when dealing with a thick slab). If so, then a k-manifold which has small to moderate 
curvature may be regarded as a modestly thick slab and although the £f will not have exactly common 
intersections the intersections should cluster tightly. The idea is then to introduce nonlinear transformations of 
the data and look at the plot of the intersections as a graphical tool for diagnosing how well the transformation 
is linearizing the data fit.  Of course, if the k-manifold is highly curved, there may not be any indication of 



planarity.   This work was reported in Wegman (1991b) and has been coded into a software package titled 
ExplorN which is co-authored by Carr, Luo, Wegman and Shen. 

Structural Inference using Ridge Estimation in Hyperspace 

This problem arises from an attempt to abstract the general idea of nonparametric regression. The idea 
of regression, of course, is that there is a response variable, say Y, and one or more predictor variables, say Xx, 
... ,Xd. In regression we attempt to find a function, say f, so that Y is approximated by f(X1;... , Xj) in some 
sense, usually least squares. This gives the random variable Y some sort of preferred status over the variables 
Xt, ... , X<f. This may or may not be appropriate. We can however think of the variables Y, X1; ... , Xi as a 
vector which describe a point in a d+1 dimensional space. These points satisfy some functional relationship, 
that is there exists a function, say F, such that F(Y, X1; ... ,Xd) = 0. Another way of thinking about this is 
geometrically, i.e. m = {(Y, X1?... , XJ): F(Y, X1( ... , Xv) = 0} is some sort of hypersurface of dimension 
k embedded in a d dimensional space. To make this concrete by an example, let d = 2, k = 1 and F(Y, 
X) = Y - sin(X). Then the points (Y, X) in 2« are exactly the points in two dimensions lying on the 
Y = sin(X) curve. 9H is a one-dimensional set in a two-dimensional space. Because we are dealing with 
random variables we cannot expect the points to lie exactly on the hypersurface, 2tt, (technically 9ft should be 
called an algebraic manifold), but to be scattered off of it. Thus we should really think about F(Y, Xi,... , Xj) 
= e so that taking expected values we find that OT = {(Y. X[. ... ,Xd):E F(Y, X1? ... , XJ) = 0} is the 

manifold we would like to estimate. Notice in the regression case if we let F(Y, Xx,... , XJ) = Y - f(Xu ... , 
Xd), then F(Y, Xu... ,Xd) = e corresponds to Y = flX,. . . X^J+e. In general, in this description we have 
left Y in to draw the analogy to usual regression, but Y is not intended to have a preferred status. Thus from 
now on we shall simply consider F(Xi, ... , Xj) and define OT as {(Xi, ... , Xf): E F(XU ... ,Xd) = 0}. 
Thus finding the functional relationship among the X's (I e in my language structural inference) is equivalent to 
estimating the manifold, 9H. Since 9K is a geometric structure in hyperspace, we have the potential of 
visualizing it through some of our graphical techniques. 

We suggest a connection with probability densities. Consider a plot of a two-dimensional normal 
density. In general this will be a surface in three dimensions. If we try to think of the best zero-dimensional 
summary of the density most people would probably suggest the mean. Since the mean and mode of the normal 
are co-located, this would also be the mode. Let me use language which suggests a solution for higher 
dimensions. The best zero-dimensional summary is location of mode which is the projection of the maximal 
zero-dimensional manifold on the surface of the density If we try and think of the best one-dimensional 
summary, think of the fact that slices of the density parallel to the X - Y have elliptical cross section with a 
major axis and a minor axis. Operationally we would probably want to choose our summary as the major axis 
of the density. Notice if the cross section were circular correlation would be 1 and there would be no difference 
between major and minor axes. Basically it would not make sense to talk about a best one-dimensional 
summary. If, however, the correlation were plus or minus I. the minor axis would have zero length and the 
major axis would coincide with the usual regression line (Because of perfect correlation there would be no 
scatter off of this line.) If we think of the ridge on the density surface (ridge in the intuitive sense like on a 
mountain or hill), the major axis will lie beneath this ndge In some sense, the ridge we have just described is 
the maximal one dimensional manifold on the surface of the two-dimensional density. The best 1-dimensional 
manifold estimate is the support of the ridge, i.e. the closure of the set of points for which the ridge is positive. 
The idea in general is to find the rnaxirnal k-dimenskmal manifold on the dimensional surface of the density 
which we will define as the k-ridge. The k-skeleton is k-dimensional manifold which is the support of the k- 
ridge in the d-dimensional space. The research problems was to construct a suitable definition of the k-ridge 
and to construct reasonable estimators. A potentially reasonable estimation procedure for the k-ridge is to 
estimate the probability density function and find the maximal k-ridge on it. Another element of the research 
was to implement a 3-dimensional surface projection of the k-skeleton for k = 2 or 3 either on the Silicon 
Graphics machine using our VR immersive technology The 0-skeleton is the mode. These other estimators are 
multidimensional analogues of the mode. This work has been reported in Wegman, Carr and Luo (1993) and in 
numerous invited presentation. The completed research will form the substance of the dissertation of our Ph.D. 
student, Qiang Luo. Mr. Luo will be awarded his PhD. in May, 1995. The work has also been made available 
in software entitled, MasonRidge, authored by Luo and Wegman. 



Other Work 
The four topic areas described above were the topics outlined in the research proposal upon which the 

award was made. However, there have been an extensive amount of additional work produced under this 
contract. This additional work generally fells into the categories of: 1) nonparametric density and function 
estimation (Le and Wegman, 1991; Miller and Wegman, 1991; Hearne and Wegman, 1991; Hearne and 
Wegman, 1992; Le and Wegman, 1993, Hearne, 1994; Marchette et al. 1994; Solka et al. 1994a; Hearne and 
Wegman, 1994 and Solka et al. 1994b), 2) parallel and high performance computing in statistics (Wegman, 
1991a; Xu, Miller and Wegman, 1991; Sullivan and Wegman, 1994; Posten and Solka, 1994; Wegman and 
Jones, 1994; Takacs, Wegman and Wechsler, 1994; Fauntleroy and Wegman, 1994; Wegman, 1994; Sullivan, 
1994; and Sullivan and Wegman, 1995), 3) stochastic modeling ( Wegman and Habib, 1992; and Chow, 1994) 
and, finally, 4) historical (Wegman, 1992; Wegman, 1993). 
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