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Perturbations on Effective Index of Refraction from Prism 

Coupling 

Stephen L. Kwiatkowski and Alan R. Mickelson 

Department of Electrical and Computer Engineering 

University of Colorado at Boulder 

Boulder, Colorado 80309 

Abstract 

We investigate the accuracy and precision of effective index of refraction mea- 

surements using prism coupling. The coupling gap's geometry is critical to 

predicting the accuracy and resolution of measurements. We provide exper- 

imental evidence that there are advantages to using high coupling pressures 

that yield long coupling lengths. Furthermore, effective index perturbations 

vary with mode number in some cases. We present and evaluate an experi- 

mental technique aimed at reducing the effects of perturbation and find that it 

may not be applicable to all situations. We extend a previous model of prism 

coupling to include a finite coupling length. This allows us to explain some 

of our experimental observations of m-line characteristics. We find disagree- 

ments between previous models when predicting effective index perturbations. 

Also, we introduce an alternative model of prism coupling based upon a local 

normal-mode expansion and present its preliminary numerical results. Finally, 

our results indicate that using prism coupling to measure effective index be- 

yond the fourth decimal place will require additional experimental techniques 

and theoretical models. 

Keywords: prism coupling, optical waveguide metrology, effective index. 



I. PRISM COUPLING 

The prism coupler couples modes of optical waveguides with the radiation modes of 

free space. The prism coupler can, for example, inject light into waveguides from optical 

sources and remove light from waveguides for detection, and is used in waveguide metrology. 

This paper deals with the issues of prism out-coupling as they relate to waveguide metrology, 

more specifically, the measurement of a mode's effective index of refraction (or, just "effective 

index") N. 

According to [1] the first experimental results of prism-coupling light into and out of 

waveguides was reported in 1964 [2]. Since then, prism coupling became an area of ac- 

tive research with many articles describing its theory [3-11], numerical calculations of its 

operation [12-15], and its application to effective index measurements [16-19]. 

However, one aspect of prism coupling has been analyzed only for special cases and is 

lacking experimental investigation. This is the perturbation of the effective index by the 

presence of the prism. The prism locally affects the boundary conditions of the waveguide 

and changes the properties of effective index. This introduces an uncertainty that prevents 

accurate measurement of the mode effective indexes. Understanding the concept of this 

perturbation in prism couphng is aided by the quantum mechanical axiom which states that 

the act of measuring affects the outcome of the measurement. 

The usual way to minimize this perturbation uncertainty is to reduce the coupling 

strength and therefore the coupling efficiency, to the point where m-lines are just visible 

enough for measurement. Theoretical investigations have been made into the conditions 

leading to this weak coupling but not experimental investigations. This is probably because 

weak coupling is often used. In fact, the weak coupling condition, to be obtained by reduc- 

ing coupling pressure, is explicitly cited as part of experimental procedure for measuring N 

[1,17]. What is needed are experimental procedures to obtain and verify weak coupling, or 

better, quantify and compensate for the perturbation regardless of the coupling strength. 

The need for accurate and precise measurements of effective index become especially 



important when these effective indices are used to calibrate optical CAD algorithms or to 

design integrated optical components such as directional couplers and waveguide lenses. 

Calibrating waveguide fabrication parameters is one example where accurate effective index 

measurements are important. Usually, measuring effective indices of all the modes propaga- 

ting in a waveguide is necessary to calibrate the associated fabrication process. Otherwise, 

overlooking some modes will result in obtaining incorrect fabrication parameters. Our ex- 

perimental observations indicate that strong (not weak) coupling is needed to resolve and 

measure modes whose effective indices are closely spaced. 

In contrast to accuracy, precision determines how exactly we measure. Measuring N 

within 0.01% is a typical precision requirement. For example, an uncertainty of 0.015% 

in effective index causes a power-coupling loss of 3 dB when designing waveguide lenses to 

couple light into channel waveguides. 

The accuracy and precision requirements will become more strict with increasing demand 

for high-performance and cost-effective guided wave optical components. This is the motiva- 

tion for our investigation of prism coupling. The goals of this investigation are to determine 

experimental procedures and theoretical models for recovering the unperturbed effective in- 

dex. This includes modeling the prism-waveguide interaction, predicting the dependency of 

m-line characteristics such as profile and propagation direction on coupling geometry, deter- 

mining the optimal set of experimental parameters, and finally, encouraging others to make 

additional contributions regarding perturbation effects on effective index measurements. 

The organization of this paper is the following. The next section presents a first-order 

analysis of prism coupling. Section III follows with a discussion of previous models of prism 

coupling which consider perturbation effects. Section IV describes the experimental setup 

and the experimental procedure used throughout this paper for effective index measurements. 

Section V presents experimental results from investigations into perturbation effects. The 

final section discusses these experimental results and model predictions and compares them 

to other published results. 



II. FIRST-ORDER ANALYSIS OF PRISM COUPLING 

Figure 1 schematically illustrates the relevant features and parameters of output prism 

coupling. This is the prism coupling set-up used to make the effective index measurements 

reported throughout this paper. Pressing a prism onto the surface of a waveguide forms 

the prism-coupler. A requirement for successful prism coupling is that the prism's index of 

refraction must be greater than the waveguide mode's effective index. The coupling between 

the prism and waveguide mode extends over the length Lc. We estimate from experimental 

observations that the coupling length is several hundred micrometers. The height of the 

gap determines the coupling strength between the prism and waveguide. In some cases, 

spacers are used to engineer the gap's geometry [10]. Other times dust particles and surface 

irregularities determine the gap's geometry. The height of the gap should be a fraction of 

a wavelength to efficiently couple light from the waveguide. However, the gap should be as 

large as possible during effective index measurements to minimize perturbation effects. The 

out-coupled radiation forms irradiance patterns called m-lines. Each m-line is associated 

with a particular waveguide mode. Furthermore, the gap geometry and the mode's effective 

index determine the characteristics of each m-line. 

Next, we present a first-order analysis describing the measurement of the effective index 

using m-lines. This analysis is for weak coupling and assumes the prism and waveguide are 

composed of loss-less dielectric materials. In addition, we assume a uniform gap of infinite 

length. Afterwards, in Section IIB we discuss the m-line's irradiance distribution, or profile. 

A. Analysis of the Effective Index Measurement 

The following description of out-coupling a waveguide mode through a prism uses 

coupled-mode theory [1,20,21]. This description applies to weak coupling where the pres- 

ence of the prism does not alter the mode's effective index. The waveguide mode propagates 

along the waveguide until it reaches the region of the prism. Here, the waveguide mode's 



evanescent tail interacts with the prism's higher index of refraction. This interaction causes 

the waveguide modes to couple with a prism radiation mode. The radiation mode propa- 

gates in a particular direction determined by satisfying the phase-matching condition. The 

phase-matching condition is given by 

Nm = npSin0m, (1) 

where rip is the prism's index of refraction, and 6m is the radiation angle internal to the 

prism that is determined by a particular effective index Nm. 

The radiation mode continues to propagate away from the waveguide at the angle 6m 

until exiting the prism. There, it refracts into the radiation angle 6'm according to Snell's law. 

The optical irradiance distribution associated with this radiated mode appears as a distinct 

line at distances greater than about 1 m from the prism. This pattern of light is called a 

bright m-line or just an m-line. Measuring the m-line's radiation angle 0'm determines the 

effective index according to [1] 

Nm = 7ipSin <f)p + arcsin 
fesinC) 

(2) 

where <j>p is the prism's angle, and nc — 1 is the index of air. Furthermore, the m-line 

associated with each mode will radiate at a different angle because every mode has a different 

effective index. 

B. Analysis of the M-Line's Profile 

This section presents an analysis describing the m-line's profile by combining the first- 

order coupled-mode model with an extension of the analysis by Tien [6]. This analysis 

expands Tien's work to include a finite coupling length and extends his analysis to predict 

the m-line's far-field irradiance distribution using the radiation angle of Section II A. First, 

we summarize the analysis by Tien. 

Tien uses the concept of optical tunneling to describe the penetration of optical power 

across the gap's refractive index barrier. Figure 2 shows a diagram of output prism coupling 



illustrating the concepts used in Tien's analysis. A waveguide mode has initial amplitude 

bi(z = 0) at positions z < 0. This mode begins to interact with the prism at z = 0, where 

it couples to the radiation mode of amplitude b3(z). The coupling continues for all z > 0. 

This coupling depletes the field amplitude of the waveguide mode according to 

d&i(z) 

dz 
= -Sb1(z),forO<z<Lc, (3) 

bi(z) = < 

h(z) = - 

where S is the coupling strength.   The coupling strength is constant for all z > 0.  The 

solution to Equation (3) is 

\(0) forz<0 (4) 

bi(0)exp(-Sz) forz>0 

The power lost by the waveguide mode at any position z > 0 is proportional to bi(z) b\{z). 

This power reappears in the prism as the radiation mode b3. Consequently, the z-dependence 

of the radiation mode's field amplitude is 

0 for z < 0, 
(5) 

63(0)exp(-Sz) forz>0. 

Equation (5) is the relevant result of Tien's analysis. This result shows that the initial 

field distribution of radiation mode (or m-line) is a decaying exponential along the z-axis. 

We can extend Tien's result by combining the field distribution in Equation (5) with 

a propagation direction. This will allow us to calculate the m-line's far-field irradiance 

distribution. The m-line's propagation direction was given by the phase-matching condition 

in Equation (1). Furthermore, we can truncate the initial field distribution by introducing 

a finite coupling length Lc. Thus, using the phase-matching angle and the finite coupling 

length, we write the m-line's complete initial field distribution (omitting the harmonic time 

dependence) as 

b3(x, z) = * 

0 for z < 0, 

63(0)exp(-Sz) exp [inpk(:rcos0m + zsmdm)] for 0 < z < Lc, 

0 for z > Lc, 

(6) 



where k = 2-K/X and A is the wavelength of free space. In addition, we express h(z) in a 

rotated coordinate system (xr, Zr) such that the m-line's propagation direction is along xr: 

0 for zr < 0, 

b3{xr,zr) = { 63(o) exp(iripkxr - Szrsec6m) for 0 < zT < Lccos9m, (7) 

0 for z > Lccos6m. 

Equation (7) describes the m-line's initial field distribution, which we will propagate into 

the far field. Figure 3 sketches the form of h{xT)Zr) illustrating the rotated coordinates xr 

and zr. The field distribution in Equation (7) is similar to the result of the analysis based 

on leaky modes found on pages 102-103 of [1]. Those results differ from Equation (7) by 

omitting the effects of a finite coupling length. Next, we calculate the m-line's far-field 

irradiance distribution. 

Consider Equation (7) as describing the field in a coordinate system zr. We define a 

new coordinate system z'r which is a distance xr from zr. We would like to find the field 

distribution 6'3 in the z'r coordinate system. We will ignore prism boundaries and assume 

the m-line propagates in a half-space of refractive index np. If xr satisfies the Fraunhofer, 

or far-field, requirements [22] then 63 is found using 

/oo 
b3(xr,zr)exp(i2Trnpi/zr)dzr, (8) 

-00 

where 

Xxr' 

Substituting Equation (7) into Equation (8) yields 

rLc COBO„ 

0) 

[Lie COWm 

61 (xr, v) oc / exp [(z 27Tnp 1/ - 5 sec0m) Zr] dzr exp(inpkrr). (10) 
Jo 

Evaluating the integral in Equation (10) yields 

exp(inpkav) 
,,         ,      exp[(i27rnpi/-S'sec0m).2r] 
b'3(xr,i/) oc l- — 

i 2-n np v — S sec6m 

a exp[(f27rnp cos^--S)LC) - 1 
i 27T np v — S 



The far-field irradiance distribution I'3 is proportional to (63) (63)* yielding 

N     1 + exp(-SLc) [exp(-S Lc) - 2 cos(2?r rip cos0m v Lc)] m, 
r,(xr,i/)oc 09 , /ri TO —• v   > 3V   '  y S2 + {2-KHpvY 

I3(zr, 1/) depends on 4 by way of i> = z!r/\xr. 

Equation (12) predicts the far-field characteristics of the m-line's irradiance distribution 

within the frame work of the first-order analysis for weak coupling and uniform gap height. 

One other simplifying approximation was the omission of the prism boundary. Thus, Equa- 

tion (12) neglects the refraction of the m-line at the prism-air interface. One straightforward 

way to include refraction that remains within the confines of the first-order model assumes 

that the m-line has a planar phase front when it reaches the index boundary. Then we 

can apply Snell's law and use another appropriately rotated coordinate system in which 

to express the far-field distribution. This planar phase-front assumption is implied in the 

development of Equation (2). 

A higher-order correction for refraction at the prism boundary can be made to Equa- 

tion (12). For example, we could regard the index boundary as being in the near-field 

or Fresnel zone of the initial field distribution. Thus, we would propagate the field 63 in 

Equation (7) to the index boundary using Fresnel approximations [22]. There, we could 

incorporate Snell's law and finish the propagation to the far field. 

Even without making this modification we can still use Equation (12) qualitatively to 

identify certain m-line characteristics that will aid in effective index measurements. Equa- 

tion (12) predicts a maximum value for I'3 at z'r = 0. This means that the irradiance 

maximum propagates at the radiation angle &m. We can use this m-line characteristic to 

measure the radiation angle ffm and thus determine Nm. We can accomplish this by first 

determining the radiation angle from a geometric construction that is formed by tracking the 

position of the irradiance maximum for two different values of XR. Then, we can calculate 

Nm using Equation (2). 

Another m-line characteristic given by Equation (12) is the dependence of the irradiance 

distribution on coupling length Lc. For a given weak coupling strength (small S) the irra- 



diance distribution will be broader for short Lc, and conversely, narrower for long Lc. This 

characteristic will have consequences regarding the resolving power of the prism coupler. 

One consequence of coupled-mode theory is that energy couples from the first mode to 

the second, and then back to the first mode. Even though this back-and-fourth coupling 

results from the mathematics, there is neither the experimental evidence nor any aspect of 

the physical model for prism coupling to support this result. One possible way to resolve 

this point is to consider that the necessary coupling length for the return coupling is longer 

than Lc. 

While this first-order model does not predict perturbations on the effective index, it 

provides a qualitative description of the m-line's far-field irradiance distribution. The next 

Section discusses higher-order models which calculate the effective index perturbation for 

the weak coupling. 

III. PREVIOUS MODELS OF PERTURBATION EFFECTS 

The first-order model of the last does not determine the perturbation to the effective 

index due to the prism. Previous models address effective index perturbations, but they do 

so in the context of input prism coupling. The approaches taken by these previous models 

include transverse resonance [1], ray optics [11], a combination of ray and wave optics [3], 

optical tunneling [6], plane-wave expansion [4,5], and the matrix method [12-15]. 

Ulrich [4] provides numerical results and analytical expressions for the perturbation of 

effective index. For strong coupling, Ulrich plots numerical results (in his Figure 3) showing 

that the effective index of all the waveguide modes decreases as the gap height decreases 

(coupling strength increases). Others [11,12,14] report the same relationship between effec- 

tive index and coupling strength in the strong coupling regime. While another group [15] 

reports the opposite relationship between increasing effective index and coupling strength. 

In [15] numerical calculations show that effective index increases with increasing coupling 

strength over both weak- and strong-coupling regimes. 



Ulrich's analytical results for weak coupling predicts that 5N can vary in magnitude and 

sign for each waveguide mode, and the existence of a particular prism refractive index which 

yields 5N = 0 for a particular effective index. Unfortunately, we must know the unperturbed 

mode indices in addition to the gap height in order to calculate the perturbation when using 

Ulrich's analysis. This requirement prohibits using Ulrich's analysis to recover unperturbed 

effective indices from their measured values unless the perturbation is assumed to be so 

small that the measured effective index'could be used in the calculation. 

Next, we apply Ulrich's analytical expressions to another case reporting numerical results 

for effective index perturbations. This case is from Walpita [14], who reports effective index 

decreasing as coupling strength increases. His plot of effective index versus gap height (his 

Figure 10) clearly shows that the effective index decreases with increasing coupling strength. 

The range of gap heights in his Figure 10 spans from strong couphng to weak coupling. 

However, we find the opposite relationship between gap height and effective index for this 

prism-waveguide structure and range of gap heights using Ulrich's analytical expressions. 

IV. EFFECTIVE INDEX MEASUREMENT 

In this section we show how we measure effective index and why we use this method. 

We base our measurement on the concepts and relationships in the first-order model of 

Section II. Our method includes a procedure to yield relative rather then absolute effective 

index. We resort to measuring the effective index relative to the substrate index in order to 

reduce the influence of the prism perturbation and other residual systematic uncertaintys. 

This procedure uses an m-line which is associated with a substrate radiation mode. The 

advantage of using this procedure is that we do not require a model to predict prism per- 

turbation effects, nor do we need to determine the gap's geometry. However, a disadvantage 

of reporting relative effective index is that the measurement uncertainty increases due to 

adding the uncertainty in measuring the mode's m-line to the uncertainty in measuring the 

substrate's m-line. 

10 



The following section describes our experimental setup for measuring the effective index. 

Section IV B describes the relative measurement procedure and is followed by Section IV C 

describing uncertainty analysis. 

A. Experimental Setup 

Figure 4 illustrates the experimental setup we use to measure effective index. Laser light 

at wavelengths A = 0.6328 //m or A = 0.829 /xm is butt-coupled into the slab waveguide 

using a single-mode polarization-maintaining fiber. The extinction ratio between the two 

orthogonally polarized modes of the fiber was greater than 400:1. A rutile prism with its 

optic axis parallel to the waveguide's optic axis is pressed against the waveguide to couple 

light out from the waveguide. The prism's index of refraction at our operating wavelengths 

can be found in Table I. At the output face of the prism, the m-line is refracted into air 

(index of refraction of air is nc = 1.0003) at the radiation angle 6'm. The relationship between 

a mode's effective index Nm and 9'm is given by Equation (2). 

In order to measure 6'm, we aligned two translation stages, one with travel parallel to the 

prism output face and one with travel perpendicular to the prism output face. A windowless 

charge-coupled device (CCD array) is affixed to these stages at a distance of approximately 

1 m from the prism output face. The m-line illuminates the CCD array, and a profile of 

the m-line is viewed on a digital oscilloscope while a TV monitor displays the entire CCD 

field. We measure the m-line's radiation angle 6'ms in the translation stages' coordinate 

system (xs, ys) using triangulation. A right triangle is formed by translating the CCD array 

a distance Ays and a perpendicular distance Ax,. For a particular translation Ays = 50.00 

mm, the translation Axs is determined by repositioning the m-line at the location on the 

CCD array. Now, we can calculate the mode angle using the equation 

tan<Ci8 = ^. (13) 

Note however, that Equation (2) requires we know the m-line's radiation angle 9'm in 

the prism coordinate system (xp,yp). Thus, we must determine the alignment between the 

11 



prism's coordinate system and the stages coordinates system. We determine this alignment 

using a dial indicator gauge mounted on the translation stage assembly. We position its 

indicator tip to be under pressure contact with the prism's output face (see Figure 5). The 

dial registers the displacement along ya necessary to maintain contact between the tip and 

the prism's output face as the dial indicator translates along xs. Recording the translations 

Axs and Ays allow us to calculate the rotation angle 7 between the two coordinate systems 

using 

Once 7 is known then the radiation angle in the prism's coordinate system can be found 

using 

6' =0'    -7. (15) 

The inset of Figure 5 illustrates these angular relationships (all of the angles for this partic- 

ular case are negative). 

The measurement of 9'm has several sources of systematic uncertainty which affect the 

calculation of Nm. These sources include the uncertainty in both the prism angle and 

the prism index, the uncertainty of both the alignment and travel of the stages, and the 

perturbation due to waveguide-prism coupling. The next section describes our procedure 

which reduces the influence of these sources of uncertainty. 

B. Relative Effective Index Measurements 

The procedure for making relative effective index measurements uses the substrate radi- 

ation mode. The substrate radiation mode propagates with a value of effective index N«^ 

that lies between 0 and the substrate index of refraction n«^: 

0 < INUt < n«*. (16) 

12 



This substrate radiation mode is excited by positioning the input fiber a distance d 

perpendicular to the plane of the waveguide; see Figure 6. As d —► 0, the value of 6'm for 

the radiation mode approaches the value of the substrate angle 0'svh. This follows from the 

phase-matching condition [Equation (1)] illustrated in the inset of Figure 6. The substrate 

m-line distinguishes itself from the m-lines of guided modes as its position moves on the 

CCD array as the input fiber position changes (d changes). In addition to moving with 

d, the maximum irradiance of the substrate m-line decreases as d —► 0. Thus, we equate 

B'm = 6'srt when d is near 0 and the irradiance of the substrate m-line is still far enough 

above the noise to make a confident measurement of the radiation angle. 

The substrate index N«* is calculated from 9'^ using Equation (2). A value of Nsufc is 

obtained for each effective index measurement and is subtracted from the value of Nm for 

the guided mode. This relative value ANm = Nm - N«* yields the increment by which the 

effective index exceeds the substrate index. We reduce the influence of systematic uncer- 

taintys, including the influence of the prism's perturbation effects, by taking this difference 

and assuming that the prism's perturbation is the same for both the guided modes and the 

substrate mode. 

C. Measurement Uncertainty Analysis 

Uncertainty with the measured values of ANm due to the random uncertainty of reposi- 

tioning the m-line on the CCD array remains. The uncertainty bars displayed in the plots 

of AN presented throughout this paper represent this measurement uncertainty. We deter- 

mine this component of the measurement uncertainty as follows. First, we determine the 

uncertainty of measuring the radiation angle 6' using the differential of Equation (13) 

dC = 
dffm .        d8'm . mdxs--^dyt dxs dys 

dx. - % *    vi ±dxs-%dys 
(17) 

13 



Typical values of the parameters in Equation (17) for the waveguide mode under study here 

are ys = 50.00 ± 0.01 mm and xs w ys/2 ±0.01 mm. Our experimental apparatus limits the 

measurement uncertainty dys while m-line characteristics determine the measurement uncer- 

tainty dxs as we reposition the m-line on the CCD array. These experimental measurement 

uncertainties yield a maximum uncertainty in the radiation angle 

d6'm = 2 x 10"4 rad 

= 0.01° (18) 

when using opposite signs for dxs and dys. There are instances when the m-line characteristic 

allows the uncertainty in xs to be as small as ±0.005 mm or as large as ±0.03 mm. Thus, 

each measurement carries along its own uncertainty. 

Next, we determine the uncertainty in ANm to be 

dANm = ^dC + |H<lC,. (19) 
Ö0L     m     d6> 'm sub 

using the differential once again. We use a plus sign in Equation (19) so that we calculate the 

largest uncertainty in dANm. Values of the partial differentials in Equation (19) he between 

0.008 and 0.01 using typical parameters for the our waveguides at both wavelengths. Taking 

the larger value and using Equation (18) yields the measurement uncertainty 

dANm = ±2 x 10"4 (20) 

The next section presents some example m-line irradiance profiles and a case history for a 

particular set of effective index measurements. This case history includes using the effective 

index measurements to determine waveguide fabrication parameters and comparing these 

parameters to analytical measurements. 

D. Example M-Line Profiles and Effective Index Case History 

M-line irradiance profiles at A = 0.6328 /zm for the fundamental mode of a titanium 

in-diffused planar waveguide are shown in Figure 7. These two profiles correspond to the 

14 



two propagation distances forming the right triangle in the geometric construction for deter- 

mining the m-line radiation angle. The far propagation distance is 1.24 m and the difference 

between propagation distances is 50.00 mm. The m-line profile propagating furthest is 

slightly wider, as expected. However, we find different divergence angles for these profiles 

using 

f^SM), (2D $d = arctan ( 1 

where D is the propagation distance. We calculate 6* — 0.522 ± 0.005 mrad for the near 

profile while 6* = 0.549 ±0.005 mrad for the far profile. The divergence angles should be the 

same if these profiles are in the far-field of the m-line's source (the prism-waveguide gap). 

Also notice the slight asymmetry in these irradiance profiles. The profiles from a uniform 

gap should be symmetric according the first-order model in Section IIB (Equation (12)). 

This asymmetry and the unequal divergence angles could indicate that these profiles are not 

in the far-field of the gap. 

We investigate the effects of propagating only into the Presnel zone on our measurement. 

We use coupling length Lc = 1 mm, coupling strength Sc = 0.00035/zm-1 and A = 0.6328 ^m 

to calculate the m-line's irradiance profile using the Fresnel propagating equations. We find 

that the maximum irradiance does not occur at Zr = 0 but is offset along +zr. We plot 

this perpendicular displacement from the far-field propagation direction versus propagation 

distance in Figure 8. We see that the displacement become nearly constant after propagating 

30 cm. Thus, the position of the m-line's maximum irradiance follows a path nearly parallel 

to the xr axis. We calculate an additional uncertainty of ±1 x 10-6 in AN using our method 

after a propagation distance of only 30 cm. We consider this uncertainty negligible since it 

is two orders of magnitude less than the uncertainty already accounted for in the previous 

section. 

Next, we use the methods outlined in the previous section to measure effective index in a 

set of titanium in-diffused, lithium niobate slab waveguides. The waveguides are formed on 

y-cut wafers, and the waveguide modes propagate parallel to the crystal's x-axis. The input 

15 



light is polarized along the crystal's y-axis to excite TM-polarized guided modes. These 

modes will guide because of the increase in lithium niobate's ordinary index of refraction 

due to titanium in-diffusion [23]. The TM-polarization was chosen over TE-polarization to 

avoid confusion arising from other coincident diffusion processes affecting lithium niobate's 

extraordinary index of refraction [24,25]. 

The diffusion time t, the titanium thickness r, the diffusion coefficient D(T), and the 

diffusion temperature T are the parameters for titanium concentration C(y,t; D(T),T) after 

diffusion [26]. Converting titanium concentration to a change of index of refraction An(y, t) 

introduces two more parameters [27]. These are rj and K, where 

An(y,t) = (KC(y,t;D(T),T))r>. (22) 

We would like to determine D(T), 77, and K. We accomplish this by fabricating four 

waveguide specimens using the same parameters except for diffusion time. The common 

parameters are T = 1000°C and r = 25 nm. The diffusion times are t = 1,2,4,8 h. Then 

we measure the effective index AN of the modes in these waveguides. Finally, we compare 

these measured mode effective indices to those calculated using the index profile given by 

Equation (22). This comparison is shown in Figure 9, where we plot effective index versus 

diffusion time. The parameter values used to fit the theoretical curves to the measured data 

are 

K = 0.033, 

?7 = 0.62, 

I> = 0.2/nn7h. (23) 

There is good agreement between the measurements and fitted curves for both effective 

index and number of guided modes. 

We use D in Equation (23) to calculate the titanium concentration profile for diffusion 

time t = 2 h using the Gaussian solution to the diffusion equation [26]. Then we compare 

this calculated profile to that which was measured in specimen 42 (2 h diffusion) using 

16 



secondary ion mass spectroscopy (SIMS). Figure 10 shows this comparison. We find better 

agreement between the calculated and measured titanium concentration profiles using D = 

0.245 /«n2/h. 

V. EFFECTIVE INDEX PERTURBATIONS 

The previous sections illustrate the theoretical impact of the prism-waveguide perturba- 

tion on effective index measurements. In this section we discuss our experimental observa- 

tions regarding measurement perturbations starting with coupling gap geometry. 

A. Coupling Gap Geometry 

We have pointed out the importance of the gap height s and the coupling length Lc on 

effective index measurements. Our experimental observations indicate the gap is nonuniform 

over the contact region, contrary to the illustration in Figure 1. In fact, Newton's rings are 

visible when the gap is viewed through the waveguide's substrate. These nearly concentric 

interference fringes delineate regions of equal gap height. Both the spacing and distribution 

of these fringes change as the pressure changes. To see this, consider the prism as a rigid 

body while the waveguide is an elastic body undergoing pure bending without compression 

or extension. Figure 11 illustrates the initial contact between waveguide and prism for low 

coupling pressure. Here, the planar waveguide contacts the prism at three points determined 

by surface inhomogeneities. At this pressure there is a minimum gap height smin and a 

coupling length Lc (actually the coupling occurs over an area) over which the gap height is 

less than some critical height. The critical gap height sc is defined to be the height at which 

the interaction between prism and waveguide becomes insignificant. Nearly parallel and 

equally spaced interference fringes are seen at this initial contact. Increasing the coupling 

pressure causes the waveguide to bend (Figure 11). For example, this can decrease the 

minimun gap height to ^min and also move its positions and that of sc. Thus, higher 

pressure can result in both a different coupling strength and a different coupling length. 
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The coupling length increases in this case. The interference fringes become more concentric 

and unevenly spaced at higher pressures. Later, we will show how these effects can change 

the characteristics of m-lines and therefore, affect the measurement of N. 

We cannot associate a stronger coupling pressure with a smaller gap height or a longer 

coupling length since we are unable to accurately quantify the gap's geometry. In fact, we 

cannot rule out that s could be unchanged by increasing the coupling pressure. 

Next, we present experimental results regarding the perturbation effects on both the 

m-line's radiation angle and its irradiance profile. 

B. M-Line's Radiation Angle and Profile Perturbations 

We report two data sets (Set 1 and Set 2) measuring the variation of effective index with 

applied coupling pressure on waveguide specimen 56. Waveguide specimen 56 is a titanium 

in-diffused, lithium niobate slab waveguide. The fabrication parameters for specimen 56 are, 

25 nm of titanium evaporated on y-cut lithium niobate, and a 2 h diffusion at 1000°C in 

flowing argon. The waveguide modes propagate parallel to the crystal's x-axis. The input 

light is polarized along the crystal's z-axis (TE-polarized). We cannot compare coupling 

pressures between the data sets because the specimen was removed and then remounted 

for each data set. Furthermore, we do not use the substrate m-line in these measurements 

because we want see the influence of the perturbation. Thus, we report absolute effective 

index here. 

Table II shows Set 1 effective index measurements at A = 0.6328 pm for two different 

coupling pressures P^ and P^, where P^ < P^ (the parenthetic superscript 1 denotes Set 

1). The fundamental mode TE-0 shows an effective index decrease of 0.0022 as the coupling 

pressure increases. However, the effective index of the lowest order mode TE-3 shows an 

increase of 0.0005 with the same increase in coupling pressure. 

Figure 12 compares the m-line irradiance profiles of the TE-0 mode at coupling pressures 

P^, p£1}. We see that the m-line profile's full width at half maximum FWHM decreases as 
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the coupling pressure increases. Likewise, Figure 13 compares the TE-3 mode m-line profiles 

at these two pressures. A similar decrease of FWHM with increasing coupling pressure is 

seen in the TE-3 mode m-line. Also Figure 13, there is poor separation between the TE-2 

and TE-3 modes at pressure P^, while the resolution between these modes improves at the 

higher pressure P^. Furthermore, the m-line profiles at the higher pressure Py' are nearly 

symmetric while the profiles at the lower pressure Pj   are asymmetric. 

We make further comparisons between the m-line profiles in Figures 14 and 15. Figure 14 

compares the TE-0 and TE-3 m-line profiles at low coupling pressure P^ while Figure 15 

makes the same comparison but at high coupling pressure Pj . The m-line profiles of the two 

modes have similar shapes at each coupling pressure. Furthermore, the FWHM of modes 

TE-0 and TE-3 are nearly identical at P^ while the FWHM of TE-0 is larger than the 

FWHM of TE-3 at P^. 

In each of the Figures 12 through 15 we normalized the maximum irradiance to 1 and 

shifted the profiles so that the maximum is at far-field angle 0/ = 0. The far-field angle is 

calculated using 

0/ = ^, (24) 
xr 

where z'r is the position along the CCD array and xr = 1.17 ± 0.02 m is the propagation 

distance. 

Table III shows Set 2 of effective index measurements at A = 0.6328 fxm for three different 

coupling pressures Pi2), P2
2) and p£2) where PS2) < P2

2) < P^2). The changes in effective index 

are smaller here in Set 2 than they are in Set 1. In fact, most of the changes here are within 

the measurement uncertainty. An important observation from Table III is the appearance 

of mode TE-4 at coupling pressures P2
2) and Pf\ This mode was not seen in Set 1 nor at 

coupling pressure P\ . 

The FWHM of various modes at coupling pressures Pi2) through Py2) are shown in 

Figure 16. The coupling pressure increases from P(
x
2) to P^2). The FWHM of mode TE-0 

increases with each increase in coupling pressure. The FWHM of mode TE-4 also increases 
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from pressure P^ to P?\ In contrast, the FWHM's of modes TE-1 and TE-2 decrease with 

increasing coupling pressure. In comparison, the difference in FWHM between modes TE-0 

and TE-3 of Set 1 is 0.5 in the same units asFigure 16. 

In the next section we present results of measuring the substrate effective index in the 

presence of the prism perturbation. 

C. Perturbation of the Substrate's Effective index 

We use the substrate's effective index in our effective index measurements (Section IV) 

to remove the effects of the prism perturbation. In this section we report how the sub- 

strate effective index deviates from the predictions of the phase-matching condition for the 

unperturbed interaction. 

The substrate effective index (Section IV B) should vary sinusoidally with angle of in- 

cidence according to the phase-matching condition, Equation (1) and Figure 6. Two mea- 

surement sets were made of N«„6 versus angle of incidence 0i at A = 0.829 pm. First Set A 

was measured and then Set B. Figure 17 illustrates these data sets. Each plot symbol in 

Figure 17 represents at least 3 repeated measurements. The measurements of Set A yields 

wide variations in Nsufc at angle of incidences between 87.5° and 90°. While the variation in 

Nguj, of Set B are smaller. Comparing the measurements of these two data sets at 0* = 89.5° 

yields the result that the Set B measurement of N^ is greater than the Set A measurement 

of Nartb. However, the opposite relationship is found at 0i = 89.5°. Furthermore, the mea- 

surements of Set B and Set A nearly coincide at 0j = 89.8° and at 0< = 85.5°. We cannot 

explain these inconsistencies. 

We are able to measure the substrate effective index at angles up to 0* = 89.76° where the 

substrate m-line begins to interfere with the m-line from the highest order guided mode. The 

Set B measurement at this angle of incidence yields N«* = 2.1721. The square plot symbol 

in Figure 17 represents the measurement of the highest order guided mode's effective index 

N = 2.1726. We subtract this substrate's effective index from the guided mode's effective 
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index to yield the relative effective index AN described in Section IV B. 

The solid curve in Figure 17 represents calculations of substrate effective index fit to the 

measurements for &i < 87.5° using the phase-matching condition. The substrate index nsufc/ 

is the fitting parameter and has value nSvbj = 2.1712. 

VI. DISCUSSION 

We have attempted to reduce perturbation effects on effective index measurements by 

recording relative rather then absolute measurements. This technique assumes that the 

perturbation is the same for all waveguide modes. However, our observations of effective 

index perturbation include cases where the effective index perturbation varies measurably 

with each waveguide mode (Table II) and cases where it does not (Table III). We attribute 

this variability in effective index perturbations to the geometrical details of the coupling 

gap. Consequently, our relative measurements aimed at reducing the perturbation effects 

on effective index may not be applicable to all cases. Unfortunately, we know of no other 

experimental techniques which can reduce the effective index perturbations without also 

sacrificing resolution. 

In addition to affecting the m-line's radiation angle, the gap geometry also affects the m- 

line's irradiance profile. Figures 12 and 13 illustrate that m-lines can narrow with increasing 

coupling pressure. This narrowing provides better resolution for closely spaced m-lines. 

In fact, we have also seen what at first appears to be one m-line split into two m-lines 

representing two very closely spaced modes as the coupling pressure increases. Thus, we 

see advantages to using high coupling pressures. This is at odds with the recommendations 

that effective index measurements should only be made at low coupling pressures to avoid 

perturbations [1,12]. However, if we use high coupling pressures, then we must be prepared 

to recover the unperturbed effective index. Otherwise, we are not taking full advantage of 

the additional resolution and we are just trading resolution enhancements for a reduction in 

measurement precision. 
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We also present evidence in Figure 16 that m-lines broaden with increasing coupling 

pressure. We can reconcile these observations with those in Figures 12 and 13 if we do not 

always correlate coupling pressure with coupling strength. For example, we can imagine 

in one case that increasing the coupling pressure causes a longer coupling length while the 

coupling strength remains constant (or, equivalently gap height remains constant), whereas 

in another case, increasing the coupling pressure increases the coupling strength while leaving 

the coupling length unchanged. Using the first-order model, we find in the first case that 

the m-line profiles narrow with increasing coupling pressure if the product SCLC « 1 but 

remains unchanged if SCLC » 1. In contrast, the second case will result in the m-line's 

profile broadening as coupling pressure increases. This was probably the situation when 

others observed m-line broadening with increasing coupling strength [16,17]. 

Our measurements of substrate effective index produce more interesting results. For 

example, the measurements of N«* at angle 6{ < 87.5° in Figure 17 can be fitted to the 

unperturbed phase-matching condition using a substrate index of refraction n^,/ = 2.1712. 

We are not surprised to find that nsubj differs from the unperturbed substrate index of 

refraction nstlb = 2.1728 [28]. However, we find it interesting that the measurements of Nsu& 

at angle of incidences 6* > 87.5° yield values that deviate from the fitted curve and approach 

the unperturbed index of refraction. The fiber displacement is d = 10/xm (see Figure 6) at 

the largest angle of incidence (0* = 89.76°) that we can measure N^. This places the fiber's 

input coupling point within the substrate, below the region of titanium in-diffusion. Thus, 

light from the fiber should propagate with the substrate's index of refraction even at this 

extreme angle of incidence. 

Our observations of m-line characteristics show that there are two important parameters 

of the coupling gap. These are the gap height, which determines how significant are the 

effective index perturbations, and the coupling length, which influences inter-modal resolu- 

tion. The coupling pressure does not always correlate with either of these gap characteristics 

in a consistent manner, probably due to the details surrounding the formation of the gap. 

Furthermore, waveguide material properties could be as important to gap geometry as cou- 
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pling pressure in determining m-line characteristics. For example, the waveguide could flow 

instead of bend under the coupling pressure. Thus, m-lines originating from polymer wave- 

guides may well respond differently to the same coupling pressure applied to crystalline or 

glass waveguides. 

Developing an experimental procedure to characterize the coupling gap for each measure- 

ment may not be simple. Even if we completely determine the coupling gap geometry, there 

are situations where we cannot use the previous models to recover the unperturbed effective 

index. For example, the analytical treatment in [4] applies only to cases of weak coupling, 

uniform gap, and infinite coupling length. The numerical techniques remove one of these 

limitations and allow cases of strong coupling. We attempt to address these limitations by 

introducing a numerical model of prism coupling based upon a local normal mode (LNM) 

expansion. Preliminary results from our model agree qualitatively with the first-order model 

of Section II. Figure 18 shows the m-line's irradiance profile with x,. = 450 /um calculated 

using the LNM-model. This calculation uses a gap height S = 0 and infinite coupling length. 

Notice the exponential decay of the m-line's profile in Figure 18, which is also predicted by 

the first-order model. 

We hope the results presented in this paper provide additional insights into effective 

index measurements using the prism coupler. Furthermore, these results indicate that to 

accurately measure effective index beyond the fourth decimal place using prism coupling 

will require additional experimental methods and theoretical models. 
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TABLES 

TABLE I. Index of refraction for congruent lithium niobate [28] and rutile [29] at A = 0.6328/xm 

and A = 0.829/xm. 

Lithium Niobate Rutile 

Wave- Extra- Ordinary Extra- Ordinary 

length ordinary Index of ordinary Index of 

lum] Index of 

Refraction 

Refraction Index of 

Refraction 

Refraction 

X=0.6328 2.2028 2.2865 2.8666 2.5821 

X=0.829 2.1728 2.2517 2.7789 2.5142 
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TABLE II.  Set 1.   Effective index versus coupling pressure for waveguide specimen 56 at 

A = 0.6328 ßm. The relationship between the coupling pressures is Pp < P2 

Mode # Low Coupling 

Pressure Pi 

High Coupling 

Pressure P2 

TE 0 2.2186 ±1.4 xlO-4 2.2164 ± 1.4 x IO-4 

TE 3 2.2039 + 1.8 x IC)"4 2.2044 ± 1.3 x IO-4 
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TABLE III. Set 2.   Effective index versus coupling pressure for waveguide specimen 56 at 

= 0.6328 fim. The relationship between the pressures is p<2)<p<2)<p<2). 

Mode # Low Coupling Intermediate High Coupling 

Pressure Pi Coupling 

Pressure P2 

(Pj < P2 < P6) 

Pressure Pß 

TE 0 2.2168 2.2167 2.2165 

±0.0002 ±0.0002 ±0.0002 

TE 1 2.2063 2.2066 2.2065 

±0.0002 ±0.0002 ±0.0002 

TE 2 2.2045 2.2053 2.2048 

±0.0002 ±0.0002 ±0.0002 

TE 3 2.2034 2.2038 2.2036 

±0.0002 ±0.0002 ±0.0002 

TE 4 2.2034 2.2031 

±0.0002 ±0.0002         1 
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FIGURES 

m-Line 

Prism 

Waveguide 

Substrate 

Mode 

b 7 } 
gap,s 

Coupling 
Pressure 

FIG. 1. Relevant features of the output prism-coupler. Effective index measurements reported 

in this paper were made using this prism-coupling arrangement. 
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Prism 

FIG. 2. Relationship between field amplitudes in Tien's [6] model describing output 

prism-coupling. The waveguide mode's initial field amplitude is fti(O). This field couples with 

the m-line field amplitude 63. 
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FIG. 3. Sketch of 63 in the rotated coordinate system (xr, Zr). Also shown is the field truncation 

resulting from finite coupling length Lc. 
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FIG. 4. Experimental setup for effective index measurements using output prism coupling. 
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FIG. 5. Measuring the misalignment between the translation stages and the prism output 

face. Inset shows the relationship between the stage's coordinate system (xSiys) and the prism's 

coordinate system (xp,yp). The rotation angle between these two coordinate systems is 7. 
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Input 
Fiber 

Waveguide 

Substrate 

FIG. 6. Exciting the substrate radiation mode by positioning the input fiber. Inset illustrates 

the phase-matching condition Equation (1) for the substrate radiation mode. We use the substrate 

effective index for N^ to reduce systematic uncertaintys when measuring mode effective index. 
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0 2 4 6 

Position [mm] 

FIG. 7. Mode TE-0 m-line irradiance profiles of a titanium in-diffused slab waveguide 

(A = 0.6328/xm) versus position along the CCD array. The solid curve corresponds to the far 

propagation distance while the dashed curve corresponds to the near propagation distance. The 

difference between propagation distances is 50.00 mm. These irradiance profiles have been normal- 

ized to 1 and shifted so that their maximum values coincide. 
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FIG. 8. Displacement of m-line maximum irradiance from far-field propagation direction versus 

propagation distance. 
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FIG. 9. Increment above the substrate index of refraction for mode effective index versus 

diffusion time. The fundamental mode's effective index is TM-0 and that of the first higher order 

mode is TM-1. Theoretical curves are fitted to measured data points using the parameters in 

Equation (23). 
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FIG. 10. Titanium concentration versus substrate depth for 2 h diffusion (specimen 42). SIMS 

data are the short-dash curve. The solid curve is a Gaussian fit using D = 0.245/xm2/h. The 

long-dash curve is a Gaussian fit using D = 0.2 fim2/h. 
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FIG. 11. Schematic cross section of prism coupling region. The substrate outlined by the 

dashed line is for the initial low coupling pressure. The substrate outlined by the solid line is for 

high coupling pressure. 
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FIG. 13. Comparing Set 1 TE-3 m-line profiles for low Pj   and high Pj   coupling pressures. 
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FIG. 14. Comparing Set 1 TE-0 m-line profile to the TE-3 m-line profile when the coupling 
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FIG. 17. Measuring the TE substrate mode effective index versus angle of incidence 0j at 

A = 0.829 /um. The open circles represent measurement set A while the filled circles represent 

measurement set B. The continuous line is a fit to the measured data for 0i < 87.5° using the 

first-order model which ignores the prism-waveguide perturbation. This fit yields an effective 

index of 2.1712 at B% = 90°. The filled square represents the highest order TE guided mode 

effective index. We have widened the uncertainty bars of data set B as a graphical visualization 

aid. 
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FIG. 18. M-line irradiance profile calculated using the local normal mode expansion of output 

prismcoupling. 

44 



REFERENCES 

[1] T. Tamir, Integrated Optics. Berlin, New York: Springer-Verlag, second ed., 1985. 

[2] H. Osterberg and L. W. Smith, "Transmission of optical energy along surfaces: Part ii, 

inhomogeneous media," J. Opt. Soc. Am., vol. 54, pp. 1078-1084, 1964. 

[3] P. Tien and R. Ulrich, "Theory of prism-film coupler and thin-film light guides," J. Opt. 

Soc. Amer., vol. 60, pp. 1325-1337, 1970. 

[4] R. Ulrich, "Theory of the prism-film coupler by plane-wave analysis," J. Opt. Soc. 

Amer., vol. 60, pp. 1337-1350, 1970. 

[5] J. E. Midwinter, "Evanescent field coupling into a thin-film waveguide," IEEE J. Quan- 

tum Electron., vol. 6, pp. 123-130, 1970. 

[6] P. K. Tien, "Light waves in thin films and integrated optics," Appl. Opt, vol. 10, pp. 

2395-2413, 1971. 

[7] R. Ulrich, "Optimum excitation of optical surface waves," J. Opt. Soc. Amer., vol. 61, 

pp. 1467-1477, 1971. 

[8] T. Tamir and H. L. Bertoni, "Lateral displacement of optical beams at multilayered and 

periodic structures," J. Opt. Soc. Amer., vol. 61, pp. 1397-1413, 1971. 

[9] R. T. Kersten, "The prism-file coupler as a precision instrument part i. accuracy and 

capabilities of prism couplers as instruments," Optica Acta, vol. 22, pp. 503-513, 1975. 

[10] J. S. Wei and W. D. Westwood, "A new method for determining thin-film refractive 

index and thickness using guided optical waves," Appl. Phys. Lett, vol. 32, pp. 819-821, 

1978. 

[11] H. J. W. M. Hoekstra, J. C. van't Spijker, and H. M. M. K. Koerkamp, "Ray picture 

for prism-film coupling," J. Opt Soc. Am. A., vol. 10, pp. 2226-2230, 1993. 

45 



[12] J. D. Swalen, M. Tacke, R. Santo, K. E. Rieckhoff, and K. Fischer, "Spectra of organic 

molecules in thin films," Helvetica Chimica Acta, vol. 61, pp. 960-977, 1978. 

[13] J. Chilwell and I. Hodgkinson, "Thin-films field-transfer matrix theory of planar mul- 

tilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Am. A, 

vol. 1, pp. 742-753, 1984. 

[14] L. M. Walpita, "Solutions for planar optical waveguide equations by selecting zero 

elements in a characteristic matrix," J. Opt. Soc. Am. A, vol. 2, pp. 595-602, 1985. 

[15] A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, "Numerical analysis of planar optical 

waveguides using matrix approach," J. Lightwave Technol, vol. 5, pp. 660-667, 1987. 

[16] R K. Tien, R. Ulrich, and R. J. Martin, "Modes of propagating light waves in thin 

deposited semiconductor films," Appl. Phys. Lett, vol. 14, pp. 291-294, 1969. 

[17] R. Ulrich and R. Torge, "Measurement of thin film parameters with a prism coupler," 

Appl. Opt, vol. 12, pp. 2901-2908, 1973. 

[18] R. T. Kersten, "The prism-file coupler as a precision instrument part ii. measurements 

of refractive index and thickness of leaky waveguides," Optica Acta, vol. 22, pp. 515-521, 

1975. 

[19] S. Morasca and C. De Bernardi, "High accuracy determination of semiconductor sub- 

state and waveguide refractive index by prism coupling," in Integrated Optical Circuit 

Engineering VI, Vol. 993, SPIE, 1988, pp. 164-166. 

[20] D. Marcuse, Theory of Dielectric Optical Waveguides. New York: Academic Press, first 

ed., 1974. 

[21] A. R. Mickelson, Guided Wave Optics. New York: Van Nostrand Reinhold, first ed., 

1992. 

[22] J. W. Goodman, Introduction to Fourier Optics. San Francisco: McGraw-Hill, first ed., 

46 



1968. 

[23] R. V. Schmidt and I. P. Kaminow, "Metal-diffused optical waveguides in LiNb03 films," 

Appl. Phys. Lett, vol. 25, pp. 458-460, 1974. 

[24] J. R. Carruthers, I. P. Kaminow, and L. W. Stulz, "Diffusion kinetics and optical 

waveguiding properties of out-diffused layers in lithium niobate and lithium tantalate," 

Appl. Opt, vol. 13, pp. 2333-2342, 1974. 

[25] S. L. Kwiatkowski and A. R. Mickelson, "Nearly cut-off modes caused by diffusion in 

lithium niobate," J. Appl. Phys, vol. 76, pp. 5877-5885, 1994. 

[26] J. Crank, The Mathematics of Diffusion. New York: Oxford University Press, second 

ed., 1986. 

[27] J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, "Refractive index profiles of 

LiNb03:Ti waveguides," Appl. Phys. A, vol. 32, pp. 125-127, 1983. 

[28] D. F. Nelson and R. M. Mikulyak, "Refractive indices of congruently melting lithium 

niobate," J. Appl Phys., vol. 45, pp. 3688-3689, 1974. 

[29] W. L. Bond, "Measurement of the refractive indices of several crystals," J. Appl. Phys., 

vol. 36, pp. 1674-1677, 1965. 

List of Tables 

I Index of refraction for congruent lithium niobate [28] and rutile [29] at A = 

0.6328/im and A = 0.829/zm.  . .     24 

II Set 1. Effective index versus coupling pressure for waveguide specimen 56 at 

A = 0.6328 fjua. The relationship between the coupling pressures is Pj    < 

P«      25 

III Set 2. Effective index versus coupling pressure for waveguide specimen 56 at 

A = 0.6328 /im. The relationship between the pressures is P(j2) < P^2) < P^2).     26 

47 



List of Figures 

Relevant features of the output prism-coupler. Effective index measurements 

reported in this paper were made using this prism-coupling arrangement.  . .    27 

Relationship between field amplitudes in Tien's [6]  model describing output 

prism-coupling. The waveguide mode's initial field amplitude is 61 (0). This 

field couples with the m-line field amplitude 63     28 

Sketch of 63 in the rotated coordinate system {xr, zr). Also shown is the field 

truncation resulting from finite coupling length Lc     29 

Experimental setup for effective index measurements using output prism cou- 

pling     30 

Measuring the misalignment between the translation stages and the prism 

output face. Inset shows the relationship between the stage's coordinate sys- 

tem (xs,y8) and the prism's coordinate system {xp,yp). The rotation angle 

between these two coordinate systems is 7     31 

Exciting the substrate radiation mode by positioning the input fiber. Inset 

illustrates the phase-matching condition Equation (1) for the substrate radia- 

tion mode. We use the substrate effective index for N^ to reduce systematic 

uncertaintys when measuring mode effective index     32 

Mode TE-0 m-line irradiance profiles of a titanium in-diffused slab waveguide 

(A = 0.6328 /im) versus position along the CCD array. The solid curve corre- 

sponds to the far propagation distance while the dashed curve corresponds to 

the near propagation distance. The difference between propagation distances 

is 50.00 mm. These irradiance profiles have been normalized to 1 and shifted 

so that their maximum values coincide     33 

Displacement of m-line maximum irradiance from far-field propagation direc- 

tion versus propagation distance     34 
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9 Increment above the substrate index of refraction for mode effective index 

versus diffusion time. The fundamental mode's effective index is TM-0 and 

that of the first higher order mode is TM-1. Theoretical curves are fitted to 

measured data points using the parameters in Equation (23)     35 

10 Titanium concentration versus substrate depth for 2 h diffusion (specimen 42). 

SIMS data are the short-dash curve. The solid curve is a Gaussian fit using   . 

D = 0.245 £tm2/h. The long-dash curve is a Gaussian fit using D = 0.2/um2/h.    36 

11 Schematic cross section of prism coupling region. The substrate outlined by 

the dashed line is for the initial low coupling pressure. The substrate outlined 

by the solid line is for high coupling pressure     37 

12 Comparing Set 1 TE-0 m-line profiles for low P(jX) and high P^1} coupling 

pressures     38 

13 Comparing Set 1 TE-3 m-line profiles for low P(
x
x) and high p£1} coupling 

pressures     39 

14 Comparing Set 1 TE-0 m-line profile to the TE-3 m-line profile when the 

coupling pressure is low P['     40 

15 Comparing Set 1 TE-0 m-line profile to the TE-3 m-line profile when the 

coupling pressure is high p£     41 

16 Measurements of m-line's irradiance profile full-width at half-maximum at 

various coupling pressures of Set 2.   The coupling pressures increases from 

Pi2) to P?>     42 
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17 Measuring the TE substrate mode effective index versus angle of incidence 0, 

at A = 0.829 /xm. The open circles represent measurement set A while the 

filled circles represent measurement set B. The continuous line is a fit to the 

measured data for 6i < 87.5° using the first-order model which ignores the 

prism-waveguide perturbation. This fit yields an effective index of 2.1712 at 

6i = 90°. The filled square represents the highest order TE guided mode 

effective index. We have widened the uncertainty bars of data set B as a 

graphical visualization aid     43 

18 M-line irradiance profile calculated using the local normal mode expansion of 

output prismcoupling     44 

50 


