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Statistical Properties of Bistatic Clutter Echoes

1. INTRODUCTION

Investigating the electromagnetic scattering properties of terrain in bistatic geometries
through measurement and modeling is necessary to assess the potential of bistatic radars.
Clutter models predict that the average power scattered by a rough surface in a given
direction other than backscatter differs from the backscatter power level by tens of
decibels.! Other simulations indicate that the variance of the scattered power also changes
for different bistatic configurations.2 These findings hold for both vertical and horizontal
linear incident polarization orientations. These apparent changes in statistical properties
lead to questions of underlying statistical distributions of scattered signals for bistatic
geometries. In this report we present measurement results of temporal fluctuations in
scattered signals for a bistatic scenario. In particular, a new algorithm that provides
approximations to underlying statistical distributions of a set of random data is applied to

Received for Publication 11 March 1994

1 papa, Robert J., Lennon, John F., and Taylor, Richard L. (1986) The Variation of
Bistatic Rough Surface Scattering Cross Section for a Physical Optics Model, IEEE Trans.
Antennas Propagat., AP-3, (No. 10).

2  Sharpe, Lisa M. (1991) Analytical Characterization of Bistatic Scattering From Gaussian
Distributed Surfaces, RL-TR-91-351, AD254253.




uncorrelated clutter measurements of early-growth deciduous foliage. Results are presented
for several contiguous resolution cells for the vertical incident - vertical receive

polarization case. The novel algorithm uses a comparison of standardized order statistics of
the measurement samples with ordered samples drawn from the test distribution. Linked
vectors are formed from both measurement and test order statistics and plotted to allow
visual assessment of agreement of test distribution with measured data. Results show
excellent agreement of the distribution chosen by the algorithm and the histogram of data.
The chief advantage of the new algorithm is that it uses very small sample sizes (of order

100).

2. EXPERIMENT DESCRIPTION

Measurements of the temporal fluctuations of a 3.2 GHz signal scattered by a region of
early-growth deciduous trees and brush were performed at the Rome Laboratory Ipswich,
MA. site. These measurements were conducted in a bistatic geometry with incident angle 6,
of 75 degrees, scattering angle 6 of 84 degrees, and azimuthal scattering angle ¢, of 88.5
degrees, as shown in Figure 1. The azimuthal scattering angle is measured from the forward
scatter plane and the origin is the intersection of the boresight of receiving and
transmitting antennas on the terrain of interest.

Figure 1. Bistatic Geometry.

The transmitter antenna was elevated 30 feet from the ground and separated from the
clutter cell by approximately 140 feet, while the receiver antenna was 523 feet away and 45




feet high. The baseline transmitter and receiver separation was 545 feet. Trees in the clutter
cell had an average height of 12 feet. The incident signal was from a dual-linearly-polarized
4-foot diameter parabolic reflector antenna that was electronically switchable between
vertical and horizontal linear polarization. The receive antenna was a 6 foot diameter dual-
linearly-polarized parabolic reflector. The measured cross-polarization isolation at
boresight was -25 dB for both the transmit and receive antennas.

The measurements were conducted with a high resolution instrumentation radar system.
A 1023 bit Binary Phase Shift Keying code modulated the 3.2 GHz continuous wave signal to
allow range resolving capability without requiring the higher peak power of a conventional
pulsed radar. Each bit in the code was 5 nanoseconds long, allowing clutter echoes separated
by as little as 4.9 feet to be resolved.

The receiver used a correlation detector to extract the clutter echo amplitude and phase
information from the pseudonoise waveform. With this technique a waveform with a code
pattern identical to that which was transmitted is generated in the receiver and cross-
correlated with the signal reflected from each resolution cell in the clutter. The correlation
detection process was repeated for each of the 1023 resolution cells, with 200 milliseconds -
equivalent to the pulse repetition interval - required for demodulating the echoes from all

of the cells.

3. ALGORITHM DESCRIPTION

We briefly outline the algorithm used for the statistical analysis of radar clutter data in
this section. The reader is referred to Appendix A for mathematical details and to the
references for a thorough description.34 Statistical characterization of radar clutter is
important from both analysis and system design standpoints. From an analysis point of
view, we are interested in determining the physics of the scattering mechanism that gives
rise to the clutter. From a system design point of view, we are interested in determining the
optimal radar signal processor that enables target detection in a given clutter environment.>
Statistical characterization of radar clutter enables us to achieve both of these objectives.

More precisely, we are interested in determining the underlying probability density
function (PDF) of a set of radar clutter data. In general, this problem does not have a unique
solution. Currently available approaches such as the Kolmogorov-Smirnov and chi-square
tests address the problem of goodness-of-fit to a set of random data. In particular, they

3 Shah, Rajiv R. (1993) A New Technique for Distribution Approximation of Radar Data,
M.S. Thesis, Syracuse University.

4  Slaski, Lisa, and Rangaswamy, Muralidhar, (RL Report in Preparation) An Introduction
to Dr. Ozturk’s Algorithm for PDF Approximation.

5 Rangaswamy, M., Chakravarthi, P., Weiner, D.D., Cai, L., Wang, H., and Ozturk, A. (1993)
Signal Detection in Correlated Gaussian and Non-Gaussian Radar Clutter, RL-TR-93-79,

AD267453.




provide an answer to the question "is a set of data statistically consistent with a specified
PDF?" However, if the answer to the above question is negative, these tests do not provide a
PDF that approximates the PDF of the set of data. Furthermore, these tests require a large
number of samples for satisfactory performance.

The algorithm developed in Appendix A is used to address the problem of statistical
characterization of radar clutter measurements made using the approach of Section 2. This
algorithm has two modes of operation. In the first mode, the algorithm performs a
goodness-of-fit test. Specifically, the test determines, to a desired confidence level, whether a
set of data is statistically consistent with a specified PDF. In the second mode of operation,
the algorithm approximates the PDF of a set of data. In particular, by analyzing the data
and without any a priori knowledge, the algorithm identifies, from a stored library of PDFs,
the particular density function that best approximates the data. Estimates of the scale,
location, and shape parameters of the approximating PDF are provided by the algorithm.
Both modes of operation of the algorithm are graphical and provide a visual representation
of the goodness-of-fit and distribution approximation techniques. Of particular note is the
observation that the algorithm works well with as few as 100 samples.

The algorithm is based on the assumption that we are dealing with independent,
identically distributed random variables. Currently available tests for statistical
independence can be applied only to Gaussian random variables. However, it is likely that
the data encountered in this analysis are non-Gaussian. Therefore, statistical independence
of the data is not guaranteed. On the other hand, it is possible to determine the correlation
properties and spectral characteristics (using an FFT) of the set of data by estimating the
correlation function and the power spectral density. These estimates enable us to determine
the correlation time of the clutter process and allow us to use uncorrelated data samples for
the algorithm. The results of the algorithm are independently verified by the use of a

histogram on the set of uncorrelated data.

4. RESULTS

The new algorithm of Appendix A was applied to 100 uncorrelated data points from each
of nine range bins to perform the test of goodness-of-fit to the Gaussian distribution and, if
the data are rejected as Gaussian, to estimate the underlying distribution. The algorithm
provides 27 different approximating PDFs to the data set.

Data from range bins 8 through 16 were chosen due to constraints imposed by the
bistatic geometry and antenna patterns. Results for each range bin are presented in groups
of six separate figures. The first figure in the group illustrates the time sequence of the
clutter echoes represented in amplitude-phase, and real-imaginary component forms. These
are the raw clutter returns for the 1000 consecutive data frames collected over a 200 second
period, and are not necessarily uncorrelated measurements. The second figure depicts the
unbiased autocorrelation sequence estimate of the complex clutter echo versus lag number.
The results of this sequence are used to determine the decorrelation time of the data from a




given clutter cell. This decorrelation time is determined by counting the number of time lags
that occur for the autocorrelation sequence to decrease from 1.0 to 0.1.

The third figure presents temporal histograms of the magnitude, phase, in-phase
component, and quadrature component of the uncorrelated clutter returns. This allows
visual assessment of characteristics such as the uniformity of the distribution of phases.

The fourth figure in the group illustrates the graphical technique for determining the
goodness-of-fit of the data to the null hypothesis distribution, which in this case is the
Gaussian distribution. The goodness-of-fit chart is constructed by arranging the vectors
derived from the sample in order of their size, and plotting them to make a trajectory.
Another set of vectors, also arranged in order of their size, is plotted for the Gaussian
distribution assumed as the null hypothesis. Confidence contours are plotted around the end
point of the null hypothesis trajectory. Terminal points of the data trajectory falling into
the area contained by the outermost ellipse correspond to a probability of 0.01 that the data
are not represented by the null hypothesis. Terminal data points contained by the middle
ellipse indicate that with probability 0.05, the data are not described by the null hypothesis.
Termination of the data trajectory within the innermost ellipse, corresponds to a
probability of 0.1 that the data is not described by the null hypothesis. If a terminal sample
point falls inside the appropriate ellipse for the confidence level desired, the data are
considered consistent with the Gaussian distribution, with a confidence level of [1 minus
(the probability for that ellipse)]. On these figures, the confidence levels would be 0.99, 0.95,
and 0.9 for the outer, middle, and inner ellipses, respectively. If the terminal point falls
outside the ellipse, the null (Gaussian) hypothesis is rejected, with a significance equal to
probability represented by the ellipse. Although the terminal point of the linked vector is
plotted in the fifth figure of each group, showing its location on the PDF approximation
chart, the shape of the trajectory shown in Figure 4 is also used to determine whether the
data are statistically consistent with the null hypothesis. A trajectory for data that are
consistent with the null hypothesis should not get farther from the null hypothesis
trajectory than the distance between the terminal points of the sample and null hypothesis
trajectories.

The fifth figure of each group is the PDF approximation chart. Each curve represents the
linked-vector endpoint trajectory for one probability density function as the shape
parameter is varied. For PDFs with no shape parameter, the linked vector trajectory
appears as a single point on the chart. For PDFs with more than one shape parameter, a
family of curves are generated on the chart. For example, the beta distribution has two
shape parameters. In this case, the family of curves is obtained by fixing the first shape
parameter at its minimum value and varying the second. A second value is then assigned to
the first shape parameter, and the second shape parameter is again varied. As more values
are assigned to the first shape parameter, a family of curves is generated. The last curve in
the family is generated by assigning the maximum value to the first shape parameter and
varying the second shape parameter. Thus, a family of curves corresponding to all possible
values of the shape parameters of the beta distribution is shown in the chart. The large X’
on the chart is the linked-vector endpoint of the sample data set. The last figure of the group




overlays the algorithm's first and last choices for best approximating PDF onto a histogram
of the sample data, based on parameter estimates that are also provided by the algorithm.
Figures 2 through 7 present results of the echo from delay resolution cell 8. In Figure 2,
the magnitude is seen to vary by a factor of approximately 6, and the phase varies over the
entire range. The correlation sequence of Figure 3 shows the time of decorrelation to 0.1 is
approximately 4.5 lags. The histograms of Figure 4 show that the phase is nearly uniformly
distributed and the magnitude distribution exhibits a non-Rayleigh trend, as has been
observed in previous measurements of high resolution clutter. The goodness-of-fit chart in
Figure 5 shows that the data fall within the confidence contour of 0.1 probability of not
satisfying the null hypothesis. It can be inferred from this chart that a non-Gaussian
distribution probability best represents the amplitude statistics. The location of the X' on
the PDF approximation chart of Figure 6 shows that the amplitude fluctuations most closely

follow lognormal statistics, as determined by the algorithm.
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Figure 2. Raw Data of Bin 8.
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As a final visual inspection, the best and worst candidate PDFs with algorithm-chosen
parameters are overlaid onto a histogram of the data in Figure 7. Even with the limited
number of samples, the best candidate PDF is a very good approximation to the data.

1]

.895 —

716 — —

537 — /\\

N

. 358 — L

179 —

.08 | '?
8.83 12.61 24.38

6.72 18.49

Figure 7. Overlay of Best/Worst PDF Approximations for Bin 8.

Figures 8 through 13 contain various results of the echoes from resolution cell 9. In
Figure 8, the magnitudes are seen to vary over the same amplitude range as those of cell 8,
but the first 400 samples of cell 9 have a consistently lower magnitude. The phase
characteristics of cell 9 also show slower fluctuations than those of cell 8. The correlation
time as determined from the correlation sequence of Figure 9 is about 5 lags. This is similar
to cell 8. The temporal histograms of Figure 10 show characteristics similar to those of cell
8: namely, near uniformly-distributed phase statistics and non-Gaussian temporal
fluctuations. As seen in Figure 11, the amplitude fluctuations are not likely to obey
Gaussian statistics. This is verified by the PDF approximation chart of Figurel2, where the
candidate PDF recommended by the algorithm is Weibull. A visual check of Figure 13
reinforces the acceptance of the Weibull distribution as the closest fit to the sample data.
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Figure 13. Overlay of Best/Worst PDF Approximations for Bin 9.

Results from resolution cell 10 are presented in Figures 14 through 19. The raw data of
Figure 14 show the same range of amplitude fluctuations as cells 8 and 9, but with fewer
occurrences of the high amplitude echoes. The temporal phase variation more closely
resembles that of resolution cell 9 - the slow, patterned variation. The correlation sequence
plot of Figure 15 is similar to that of cell 8, with the same decorrelation time of 4.5 lags.
The temporal phase histogram of Figure 16 is nearly uniform, as was the previous cases.
The histogram of amplitudes in this figure shows a trend similar to previous cells for the
lower amplitude region, but there is less of the larger magnitude tail structure. In the
goodness-of-fit plot of Figure 17, the null hypothesis PDF was Weibull instead of Gaussian,
as in the goodness-of-fit tests for previous clutter cells. The figure shows that the terminal
linked vector of the sample data is very close to that of the approximating PDF and is well
within the 0.01 confidence contour of the null hypothesis. The location of the sample data
linked vector terminal point (the 'X') on the PDF approximation chart in Figure 18 is closest
to the Weibull trajectory. This corroborates the results of the goodness-of-fit test, where the
sample data were verified to be statistically consistent with the Weibull distribution.
Comparison of best and worst candidate PDFs with measured data is shown in Figure 19.
Again, the PDF with family and shape chosen by the algorithm match well with the limited

data set.
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Figure 19. Overlay of Best/Worst PDF Approximations for Bin 10.

Figures 20 through 25 illustrate the sequence of analysis results on clutter resolution
cell 11. The amplitude peaks shown in Figure 20, with a maximum of approximately 39
volts2, are generally lower than those of the previous clutter cells that have maximum
values of around 56 volts2. The phase appears to vary more quickly with time than the
previous few resolution cells. The correlation sequence shown in Figure 21 has a trend
similar to that of previous cells, but with a longer tail. This produces a time of decorrelation
to 0.1 of about 7.5 lags. This is 2.5 lags, or 0.5 seconds, greater than the decorrelation time
of resolution cell 9. The temporal phase histogram in Figure 22 shows a nearly uniform
distribution, as was seen in previous clutter cells. The amplitude distribution also appears
similar to those of previous cells, but with a lower magnitude tail. Visual appearance of a
histogram can be inaccurately interpreted, as was seen for previous cells where the
histograms had a similar structure but were determined to be from different classes of
probability density functions. In the goodness-of-fit test of Figure 23, the sample data are
clearly inconsistent with the Gaussian null hypothesis. From the PDF approximation chart
in Figure 24, the sample data are determined to be from the Weibull distribution. The
sample data linked vector terminal point appears to be nearly equidistant from a beta and
the Weibull trajectories, but an actual distance calculation between the data point and the
two curves shows the data to be closer to the Weibull distribution. The overlay onto the data
histogram of best and worst candidate PDF approximations, shown in Figure 25, again
illustrates a successful decision by the algorithm.
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Figure 25. Overlay of Best/Worst PDF Approximations for Bin 11.

Clutter cell 12 results are presented in Figures 26 through 31. The time sequence of echo
amplitudes in Figure 26 shows magnitudes closer to those of cells 8 -10 and higher than that
of cell 11. The trend in phase is toward slower variations. The correlation sequence shown
in Figure 27 has a structure similar to that of cell 11, possessing a tail of higher magnitude
than previous cells. The decorrelation time of this cell is estimated to be 7.5 lags.
Presentation of the data in histogram form in Figure 28 shows the general magnitude shape
to be typical of the observed clutter cells, but the phase departs from its characteristic near-
uniform behavior. This may be due to the clutter cell geometry defined by the high range
resolution of the radar measurement system. With the small cell sizes, on the order of a few
feet, the number and shape of scattering elements composing the cell may differ, thereby
producing differences in temporal echoes. In the goodness-of-fit test of Figure 29, the
termination of the sample data linked vector on the 0.05 confidence contour and the failure
of its trajectory to closely follow that of the null hypothesis, leads to the conclusion that the
sample data are not best described by the Gaussian distribution. This is verified by Figure
30, where the data termination is closest to the Weibull curve. Also, Figure 31 provides the
visual comparison of the algorithm-chosen distribution with sample data.
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Figure 31. Overlay of Best/Worst PDF Approximations for Bin 12.

Figures 32 through 37 present analysis results of the clutter echoes from resolution cell
13. The raw data are shown in Figure 32, where the echo amplitudes are among the highest
observed from this group of clutter cells. Several high-amplitude peaks are observed, instead
of just a few occurrences. Also, the phase appears to be less rapidly varying, as was observed
in some previous cells. The decorrelation time, determined from the correlation sequence
estimate of Figure 33 is 8.5 lags, or 1.7 seconds; the longest time observed for these clutter
cells. These differing correlation sequences and varying decorrelation times reinforce the
hypothesis of different scattering mechanisms among neighboring resolution cells. The
phase histogram of Figure 34 again appears to depart from the uniform case. Observation of
the sample data trajectory and end-point in Figure 35 clearly dismisses the null hypothesis
as a good descriptor of the data set. For this clutter cell, the amplitude statistics are
determined to be best represented by a beta distribution, as shown in Figure 36. The overlay
of closest and farthest candidate PDFs onto the data are shown in Figure 37.
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Figure 37. Overlay of Best/Worst PDF Approximations for Bin 13.

In Figure 38 the time history of amplitude echoes of cell 14 shows a single peak close to
that of the previous cell, but the general trend is toward lower amplitudes. The phase
behavior is similar with both fast and slower variations. The correlation sequence of Figure
39 shows that this cell has the greatest decorrelation time - greater than 10 lags. Histograms
of both amplitude and phase in Figure 40 show trends similar to the previous cell. The
sample data are determined not to be characterized best by the null hypothesis PDF, since
similar trajectories and close termination points are required to satisfy the goodness-of-fit
test. As seen in Figure 41 these conditions are not met. Instead. data from this clutter cell
are best described by the beta distribution of the previous cell, but with a different shape
parameter. This is illustrated in Figure 42. Comparison of the estimated PDF with
experiment data is shown in Figure 43. Note that the approximating PDF for cells 13 and 14
arise from the same trajectory corresponding to the beta distribution. However, observe the
minor difference in the values of one of the shape parameters.
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Figure 43. Overlay of Best/Worst PDF Approximations for Bin 14.

Resolution cell 15 possessed the highest magnitude clutter echoes of any of the observed
cells, as illustrated in Figure 44. The decorrelation time as seen from the correlation
estimate of Figure 45 was greater than 10 lags. The data in the histogram of Figure 46 had
structures similar to cells 13 and 14, but as Figures 47 and 48 show, the data are better
described by the Weibull distribution as in cells 9 through 11. The final visual assessment,
comparing best and worst estimates of the data is shown in Figure 49.

The final cell in the set was number 16, which had the amplitude and phase fluctuations
shown in Figure 50. The echo amplitudes of this cell decreased to the level of cells 9 through
12. However, the correlation estimate of Figure 51 shows that the decorrelation time is still
greater than 10 lags, as with the previous two cells. The trends illustrated in Figure 52 are
not greatly dissimilar to those of the closest neighbor cells, with the exception of the
broader hump in the magnitude distribution. A look at the goodness-of-fit test in Figure 53
leads to the immediate rejection of the Gaussian distribution as best describing the
amplitude statistics. Instead, the Weibull is again chosen as the better fit as seen in the PDF
approximation chart of Figure 54. This is also verified by the best/worst overlay onto the

data histogram in Figure 55.
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Figure 49. Overlay of Best/Worst PDF Approximations for Bin 15.

5. SUMMARY

Observations of the polarimetric properties of these same sets of data revealed a
clustering of polarization state among neighboring range bins. In particular, bins 9-11,12-
14, and 15-16 had similar polarization states. This result is corroborated by the fact that
the best approximating amplitude probability density function chosen by the algorithm was
Weibull for bins 9-11, beta for bins 12-14, and Weibull for bins 15-16. The shape parameters
of the Weibull approximations exhibited minor variations for bins 9-11 and 15-16. Similar
trends were observed for the shape parameter estimates of the beta distribution.

Future research should include the use of this algorithm for determining statistical
properties of radar clutter data of different terrain types, resolution cell sizes and with
different polarizations. Further, the algorithm should be used to determine the statistical
properties pertaining to the spatial variation of bistatic radar clutter.
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Appendix

A New Method for Univariate Distribution
Approximation

Al. INTRODUCTION

In this appendix we address the problem of approximating the PDF of a set of random
data. In practice, the clutter PDF encountered in radar signal processing is not known a
priori. Consequently, a scheme that approximates the clutter PDF based on a set of
measured data is necessary. Currently, available tests such as the Kolmogorov-Smirnov test
and the Chi-Square test address the problem of goodness-of-fit for random data. In
particular, these tests provide information about whether a set of random data is
statistically consistent with a specified distribution, to within a certain confidence level.
However, if the specified distribution is rejected, these tests cannot be used for
approximating the underlying PDF of the random data. Moreover, these tests require large
sample sizes for reliable results.

In practice, only a small number of samples may be available. Therefore, the scheme
used should be efficient for small sample sizes. Ozturk has developed a new algorithm
based on sample order statistics' for univariate distribution identification. This algorithm
has two modes of operation. In the first mode the algorithm performs a goodness-of-fit
test. Specifically, the test determines, to a desired confidence level, whether random data

10zturk, A., A new method for univariate and multivariate distribution identification, Submitted for
publication to J. Amer. Statistical Assn.
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are statistically consistent with a specified probability distribution. In the second mode of
operation the algorithm approximates the PDF underlying the random data. By analyzing
the random data and without any a priori knowledge, the algorithm identifies, from a
stored library of PDF's, the particular density function that best approximates the data.
Estimates of the scale, location, and shape parameters of the PDF are provided by the
algorithm. The algorithm typically works well with small sample sizes of between 50 and
100 samples. An extension of this algorithm for the multivariate Gaussian PDF has been
considered in Ozturk,! and Ozturk and Romeu.?

In this appendix we describe a new method for univariate distribution approximation.
In Section A2 we present definitions. Section A3 describes the algorithm developed by
Ozturk for univariate distribution identification. The proposed distribution identification
algorithm is discussed in Section A4. Section A5 proposes a method to estimate the shape
parameter based on the procedure developed in Section A4. Finally, conclusions are

presented in Section A6.

A2. DEFINITIONS

Let fy(y) denote the PDF of Y which has been standardized in a specified manner.
Introduce the linear transformation defined by

r=Pfy+a (A.1)
The PDF of X is given by
1 Tr—ao
fx(x) = Tﬁ_lfY( 5 ) (A.2)

where o and 8 are defined to be the location and scale parameters of X, respectively. The
mean g, and variance o, of the random variable X are given by

Hx = E(X)
(A.3)

U: = E[(X - pz)?]

where E denotes the expectation operator. Although the mean and the variance are
related to the location and scale parameters, note that the location parameter is not the
mean value and the scale parameter is not the square root of the variance, in general.
However, for a standardized Gaussian PDF fy(y) for which the mean is zero and the
variance is unity, the location parameter is the mean of X and the scale parameter is the
standard deviation (square root of the variance) of X.

20zturk, A. and Romeu, J., A new method for assessing multivariate normality with graphical applica-
tions, Accepted for Publication in Commun. in Statistics.
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The coefficient of skewness, a3, and the coefficient of kurtosis, a4, are defined to be

E[(X - pa)’]

a3 =
3
a(L‘

(A.4)
_ E [(X — .u'x)4]
Q= ———
UZL'
Tt is readily shown that a3 and a4 are invariant to the values of y, and o,. For any PDF
that is symmetric about the mean, a3 = 0. For the Gaussian distribution, as = 0 and

a4:3.

A3. GOODNESS OF FIT TEST

In this section, we introduce a general graphical method for testing whether a set of
random data is statistically consistent with a specified univariate distribution. The
proposed method not only yields a formal goodness-of-fit test but also provides a graphical
representation that gives insight into how well the random data is represented by the
specified distribution (null hypothesis). Using the normal distribution as a reference
distribution, the standardized sample order statistics are represented by a system of linked
vectors. Both the terminal point of these linked vectors and the shape of their trajectories
are used in determining whether or not to accept the null hypothesis.

In this section we first give a brief description of the corresponding test statistic and
then explain the goodness of fit test procedure. For illustration purposes, we assume that
the null distribution is Gaussian. However, the proposed procedure works for any null

hypothesis.
Let Xi; k=1,2,...n denote the k' sample from a Gaussian distribution with mean

and variance o2. We define

Yk:X";X k=1,2,...,n (A.5)

where X = £X,/n is the sample mean and § = {Z(X; ~ X)?/(n — 1)}!/2 is the sample
standard deviation. The standardized order statistics are denoted by Y., 2 = 1,2,...n and
are obtained by putting the Y;; k = 1,2,...n in a monotonic nondecreasing order so that
Yin < Yo < ... < Y,n. This sequence is called the order statistics of Y1,Ya,...Yn.

Y, is called the i** order statistic. The i** linked vector is characterized by its length and
orientation with respect to the horizontal axis. Let X1, < Xo: < ... £ Xp:n denote the
ordered samples obtained by ordering Xi; k = 1,2,...n. Let myn, Man, ..., Mp:n denote
the expected values of the standard normal order statistics, where m;, = £ [(—X—g———“l] The
length of the i*" vector a; is obtained from the absolute value of the it" standardized
sample order statistic Y;.,, while its orientation 6; is related to m;.,. By definition,

65




_ [Ynl
n

a;
(A.6)
0,’ = 7r(I>(m,-m)

where ®(z) = (vV2r)~! [Z, exp(—-%)dt is the distribution function of the standard
Qaussian distribution. We define the sample points in a two dimensional plane by

Qe = (U V) k=1,2,...1n (A.7)

where Uy = Vo = 0 and

1
Ur = Ezf=1{003(0i)} |Yien|

1 )
Vi = Ezf:_—l{szn(oi)}lx':nl

(A.8)

k=1,2,...n.

The sample linked vectors are obtained by joining the points Qk. Note that

Qo = (0,0). It should also be noted that the statistic @ given in Eq. (A.7) represents the
terminal point of the linked vectors defined above. Figure Al shows the linked vectors
obtained for the Gaussian distribution with n = 6. The null distribution was obtained by
averaging the results for 50,000 Monte Carlo trials. The solid curve in Figure A.1 shows
the linked vectors for the sample distribution while the dashed curve shows the linked
vectors for the null distribution. The magnitudes and angles of the linked vectors are
obtained from Eq. (A.6). Note that the angles are independent of the data and depend
only on the sample size n. Only the magnitudes of the linked vectors depend on the
samples drawn and change from one trial to another.

For a typical set of ordered samples (that is, ordered samples drawn from the null
distribution) it is reasonable to expect that the sample linked vectors would closely follow
the null pattern. If the ordered set of samples is not from the null distribution, the sample
linked vectors are not expected to closely follow the null pattern. Hence, the procedure
provides visual information about how well the ordered set of samples fit the null
distribution.

An important property of the Q, statistic is that it is invariant under linear
transformation. In particular, we consider the standardization used in Eq. (A.5). Let
Z:; = aX; + b, where a and b are known constants. Let S denote the sample standard
deviation of the samples Z;. Then, it is readily shown that 'X";ﬁ = 'Z"SZZJ. The invariance
property follows as a consequence. The advantage of this property is that the PDF of
Q. = (Up, V,,) depends only on the sample size n and is unaffected by the location and
scale parameters. Since it is difficult to determine the joint PDF of U, and V, analytically,

it is necessary to obtain empirical results.
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Assuming that the conditions of the central limit theorem are satisfied, the marginal
PDFs of U, and V,, can be approximated as Gaussian, in the limit of large n. In addition,
it is assumed that the joint PDF of U, and V,, is approximately bivariate Gaussian.
Consequently, all that is needed to determine the bivariate PDF is the specification of
E(Uy,), E(V,), E(UnV,), Var(U,) and Var(V,). Drawing samples from the Gaussian
distribution, it has been shown empirically in Reference [1] that for 3 < n < 100

(Vi) = iy ~ 0326601 + St

0.02123 + 0.01765

_ 2
Var(Uy,) = o - —

Q

0.04427 _ 0.0951
n n?

Q

Var(Vy,) = o2

Since U, and V,, are approximately bivariate Gaussian for large or moderate sample
sizes, their joint PDF can be written as

t
fUn, Vi (tn, vn) = (2m) 7 (0u0w) " ezp(—3) (A.10)
where
2 2
t= g-g + (—”’-‘7“—)— (A.11)

Let t = tg. Then the equation

ul (Vn — ﬂv)z

is that of an ellipse in the u,, v, plane for which
t
fv., v (Un, Up) = (271')_1(0'1‘01,)"16.’1,‘])(——29). (A.13)

Points that fall within the ellipse correspond to those points in the u,,v, plane for which

o, v (tmy V) > (27r)‘1(0ua,,)'1ea:p(—%0). (A.14)
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Let
a = P(T > ty) = P(ug,v, both falling outside the ellipse given by Eq. (A.12)). (A.15)

It is well known that the PDF of the random variable T' defined by Eq. (A.11) has a
Chi-Square distribution with two degrees of freedom® and is given by

t
fr(t) = O.5exp(—§). (A.16)
Hence,
a=1- exp(—t—20-). (A.17)
Consequently, to = —2in(1 — a). Thus, Eq. (A.12) becomes
w2 (Un — Ho)?
o2 + (_..?‘_;_f-)— = =2In(l — a). (A.18)

o is known as the significance level of the test. It is the probability that Q,, falls outside
the ellipse specified by Eq. (A.18) given that the data come from a Gaussian distribution.
1 — o is known as the confidence level and the corresponding ellipse is known as the

confidence ellipse.
Equation (A.12) can be written in the standardized form

u’ (Vn — ﬂv)2
1= n A.19
Ugto + 0’31}0 ( )

where the lengths of the major and minor axes are given by maz [0uv/To, ov/T0] and

min [cuv/fo, Tvv/To), Tespectively. From Eq. (A.17), observe that smaller values of a
correspond to larger values of ¢. Consequently, the confidence ellipses become larger as the
confidence level is increased.

For a given sample size n (n < 100) approximate values of fi,, 02 and o2 can be
obtained from Eq. (A.9). The confidence ellipse of Eq. (A.18) can then be used to make a
visual test of the null hypothesis. If the terminal sample point falls inside the ellipse, then
the data are declared consistent with the Gaussian distribution with confidence level 1 —a.
Otherwise the null hypothesis is rejected with a significance level a.

A major difficulty in determining the joint PDF of U, and V,, is that the coefficients of
skewness and kurtosis of U, and V, (see Table 1) indicate that the Gaussian approximation
for the bivariate PDF may not be satisfactory for n < 10. The empirical bivariate PDF of
U,, and V,, were obtained by using 50,000 Monte-Carlo trials for n=3, 10, 20, 30, 50 and
100. The corresponding probability contours are shown in Figure A2. The same procedure
is used even when the null distribution is different from the Gaussian distribution.

3Johnson, N. and Kotz, S. (1976) Distributions in Statistics: Continuous Multivariate Distributions, New
York: John Wiley and Sons. 68




However, note that the standard Gaussian distribution is always used as the reference
distribution for determining the angles 6;.

A4. DISTRIBUTION APPROXIMATION

In this section we present a graphical procedure for approximating the underlying PDF
of a set of random data based on the goodness-of-fit test procedure discussed in Section A3.

Following a similar approach to that outlined in Section A3, random samples are
generated from many different univariate probability distributions. For each specified
distribution and for a given n, the statistic Q, = (Un, V) given by Eq. (A.8) is obtained
for various choices of the shape parameter. Thus, each distribution is represented by a
trajectory in the two dimensional plane whose coordinates are U, and V,.. Figure A3 shows
an example of such a representation. Twelve distributions, namely Gaussian (1), Uniform
(2), Exponential (3), Laplace (4), Logistic (5), Cauchy (6), Extreme Value (7), Gumbel
type-2 (8), Gamma (9), Pareto (10), Weibull (11) and Lognormal (12), are represented in
this chart. The value of Q, at each point of the trajectories is obtained by Monte-Carlo
experiments using the standard Gaussian distribution as the reference distribution for
determining the angles ;. The results are based on averaging 1000 trials of 50 samples
from each distribution. The samples from each distribution are obtained by using the
IMSL subroutines for specified values of the shape parameter. Since the procedure is
location and scale invariant, the trajectory reduces to a single point for those PDFs which
do not have shape parameters but are characterized only in terms of their location and
scale parameters. By way of example, the Gaussian, Laplace, Exponential, Uniform and
Cauchy PDF's are represented by single points in the U, — V,, plane. However, those PDFs
having shape parameters are represented by trajectories. For a given value of the shape
parameter, a single point is obtained in the U, — V;, plane. By varying the shape
parameter, isolated points are determined along the trajectory. The trajectory for the PDF
is obtained by joining these points. In a sense the trajectory represents a family of PDF's
having the same distribution but with different shape parameter values. For example, the
trajectory corresponding to the Gamma distribution in Figure A3 is obtained by joining
the points for which the shape parameters are 0.2, 0.3, 0.5, 0.7, 1.0, 2.0, 3.0, 4.0, 6.0, and
10.0. As the shape parameter increases, note that the Gamma distribution approaches the
Gaussian distribution. The representation of Figure A3 is called an identification chart.
Some distributions such as the 3 distribution and the SU-Johnson system of distributions,
have two shape parameters. For these cases, the trajectories are obtained by holding one
shape parameter fixed while the other is varied. For these distributions, several different
trajectories are generated in order to cover as much of the U, — V;, plane as possible. For
certain choices of the shape parameters, two or more PDFs become identical. When this
occurs, their trajectories intersect on the identification chart.
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The identification chart of Figure A3 provides a one to one graphical representation for
each PDF for a given n. Therefore, every point in the identification chart corresponds to a
specific distribution. Thus, if the null hypothesis in the goodness-of-fit test discussed in
Section A3 is rejected, then the distribution that approximates the underlying PDF of the
set of random data can be obtained by comparing @ obtained for the samples with the
existing trajectories in the chart. The closest point or trajectory to the sample Qy, is
chosen as an approximation to the PDF underlying the random data. The closest point or
trajectory to the sample point is determined by projecting the sample point Q@ to
neighboring points or trajectories on the chart and choosing that point or trajectory whose
perpendicular distance from the sample point is the smallest. The complete approximation
algorithm is summarized as follows.

1. Compute Y as specified in Section A3
2. Obtain the standardized order statistic Yin.

3. Compute U, and V, from Eq. (A.8).

4. Obtain an identification chart based on the sample size n as discussed in this
Section. Plot the sample point @, on this chart.

5. Compare the sample point @, with the existing distributions on the chart. The
nearest neighboring point (or trajectory) on the chart is used as an approximation

to the PDF of the samples.

The accuracy of this procedure can be increased by including as many distributions as
possible in the identification chart. However, it is emphasized that this procedure does not
identify the underlying PDF. Rather it identifies a suitable approximation to the

underlying PDF.

A5. PARAMETER ESTIMATION

Once the distribution of the samples is approximated, the next step is to estimate its
parameters. The method discussed in Section A4 lends itself for estimating the parameters
of the approximated distribution. We present the estimation procedure for the location,
scale, and shape parameters in this section.

A5.1 Estimation of Location and Scale Parameters

Let f(x;,3,) denote the distribution which approximates the PDF of the set of
random data, where o and 3 are the location parameter and scale parameter, respectively
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of the approximating PDF. Let X;,, denote the ordered statistics of X from a sample of
size n. The standardized ordered statistics are defined by

Wi = X"’"ﬂ' iy (A.20)
Let

fin = E[Win]. (A.21)
Then

E[Xin] = Bptin + . (A.22)

We consider the following statistics

Tl = E.‘ COS(oi)Xi:n
(A.23)
To=%; Szn(o‘l)Xtﬂ-

where 6; is the angle defined in Eq. (A.6). The expected values of T1 and T> are

E[Th] = T; Cos(6:)[Bpin +
(A.24)
E[T2] = Ei Sm(@,) LBHi:n + CY].

These can be written as

E(T)) =ac + b8
(A.25)
E(Tz) = ca + dﬁ

where
a=Y;Cos(6;)

b=, pinCos(0;)
(A.26)
c=Y; Sin(6;)

d= 2 llltnszn(at)
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Because the standardized Gaussian distribution is used as the reference distribution for 6;,
it can be shown that a = 0. It follows that

A (A.27)
&= E[T2 - dﬁ]
c

where the symbol A is used to denote an estimate. For n sufficiently large (that is, n > 50),
suitable estimates for E[T}] and E[T] are

EM) =T
(A.28)

E[Ty) =T

Estimates for b and d rely upon an estimate of pin. We obtain i from a Monte Carlo
simulation of W,.,, where W;., is generated from the known approximating distribution
f(z;0,1) having zero location and unity scale parameters. based upon 1000 Monte Carlo
trials fiim is the sample mean of Wi, with i, known, the estimates for b and d are given by

b= 3" flinCos(:)
) (A.29)
d =" f;nSin(6;).

The scale and location parameters are then estimated by application of Eq. (A.27).

A5.2 Shape Parameter Estimation

In this section we present an approximate method for estimating the shape parameter
of the approximating PDF. This procedure can be used only when one of the shape
parameters is unknown. Let vy denote the shape parameter of the approximating PDF
being estimated. Since U, and V;, are location and scale invariant, the point @, depends
only on the sample size n and the shape parameter 7. The expected value of U, and V,, can

be expressed as

E(U,) = ¢1(n,7)
(A.30)

where ¢1(.,.) ¢2(.,.) are some functions of v and n. For a given sample size n and shape
parameter o the corresponding expected point ¢1(n,70), p2(n, ) can be determined
approximately in the U, — V;, plane.
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The proposed shape parameter estimation method is based on finding a point such that

Un = Sol(nv ’?)
(A.31)

Vﬂ = ‘p2(n7 ’?)

where 4 is the sample estimator of y. However, in many instances the sample point may
not correspond exactly to a particular trajectory. In such a case, let E(Q1n) = (u1, V1)
E(Q2n) = (us2,v;) denote the expected points corresponding to two different shape
parameter values ¥ = v; and v = 7. It is assumed that the sample point lies in between
the points corresponding to 7; and .. Assuming that linear interpolation provides a
satisfactory approximation, the estimate of the shape parameter corresponding to the
sample point is given by

R - Zo —

g ey 4 Q2= )0 —w) (A.32)
(u2 — u)

where

{A(V,, — v1) + A% + Uy}
(AT+1)

o =
(A.33)
e (v2 — 1)

T (ue— )

The accuracy of the procedure can be improved by employing a non-linear interpolation
method. It must be emphasized that the shape parameter estimation procedure presented
in this section is an approximate procedure.

A6. CONCLUSIONS

This appendix has presented a new algorithm for analyzing univariate random data.
The algorithm provides a graphical goodness-of-fit test that determines whether a set of
random data is statistically consistent with a specified PDF. Also, a graphical procedure is
presented for approximating the underlying PDF of a set of random data. Estimation of
location, scale and shape parameters of the approximating PDF have been discussed.
Finally, it must be pointed out that the chief advantage of the algorithm presented in this
appendix is that it works well for small sample sizes (between 50 and 100 samples).
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