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Statistical Properties of Bistatic Clutter Echoes 

1.  INTRODUCTION 

Investigating the electromagnetic scattering properties of terrain in bistatic geometries 
through measurement and modeling is necessary to assess the potential of bistatic radars. 
Clutter models predict that the average power scattered by a rough surface in a given 
direction other than backscatter differs from the backscatter power level by tens of 
decibels.1  Other simulations indicate that the variance of the scattered power also changes 
for different bistatic configurations.2  These findings hold for both vertical and horizontal 
linear incident polarization orientations. These apparent changes in statistical properties 
lead to questions of underlying statistical distributions of scattered signals for bistatic 
geometries. In this report we present measurement results of temporal fluctuations in 
scattered signals for a bistatic scenario. In particular, a new algorithm that provides 
approximations to underlying statistical distributions of a set of random data is applied to 

Received for Publication 11 March 1994 
1 Papa. Robert J., Lennon, John F., and Taylor, Richard L. (1986) The Variation of 
Bistatic Rough Surface Scattering Cross Section for a Physical Optics Model, IEEE Trans. 
Antennas Propagat, AP-3, (No. 10). 
2 Sharpe, Lisa M. (1991) Analytical Characterization of Bistatic Scattering From Gaussian 
Distributed Surfaces. RL-TR-91-351, AD254253. 



uncorrelated clutter measurements of early-growth deciduous foliage. Results are presented 

for several contiguous resolution cells for the vertical incident - vertical receive 
polarization case. The novel algorithm uses a comparison of standardized order statistics of 

the measurement samples with ordered samples drawn from the test distribution. Linked 

vectors are formed from both measurement and test order statistics and plotted to allow 

visual assessment of agreement of test distribution with measured data. Results show 
excellent agreement of the distribution chosen by the algorithm and the histogram of data. 

The chief advantage of the new algorithm is that it uses very small sample sizes (of order 

100). 

2.  EXPERIMENT DESCRIPTION 

Measurements of the temporal fluctuations of a 3.2 GHz signal scattered by a region of 

early-growth deciduous trees and brush were performed at the Rome Laboratory Ipswich, 
MA. site. These measurements were conducted in a bistatic geometry with incident angle 0i 
of 75 degrees, scattering angle 0S of 84 degrees, and azimuthal scattering angle <(>s of 88.5 

degrees, as shown in Figure 1. The azimuthal scattering angle is measured from the forward 
scatter plane and the origin is the intersection of the boresight of receiving and 

transmitting antennas on the terrain of interest. 

TRANS 

$r REC 

Figure 1.  Bistatic Geometry. 

The transmitter antenna was elevated 30 feet from the ground and separated from the 
clutter cell by approximately 140 feet, while the receiver antenna was 523 feet away and 45 



feet high. The baseline transmitter and receiver separation was 545 feet. Trees in the clutter 
cell had an average height of 12 feet. The incident signal was from a dual-linearly-polarized 
4-foot diameter parabolic reflector antenna that was electronically switchable between 
vertical and horizontal linear polarization. The receive antenna was a 6 foot diameter dual- 
linearly-polarized parabolic reflector. The measured cross-polarization isolation at 
boresight was -25 dB for both the transmit and receive antennas. 

The measurements were conducted with a high resolution instrumentation radar system. 
A 1023 bit Binary Phase Shift Keying code modulated the 3.2 GHz continuous wave signal to 
allow range resolving capability without requiring the higher peak power of a conventional 
pulsed radar. Each bit in the code was 5 nanoseconds long, allowing clutter echoes separated 
by as little as 4.9 feet to be resolved. 

The receiver used a correlation detector to extract the clutter echo amplitude and phase 
information from the pseudonoise waveform. With this technique a waveform with a code 
pattern identical to that which was transmitted is generated in the receiver and cross- 
correlated with the signal reflected from each resolution cell in the clutter. The correlation 
detection process was repeated for each of the 1023 resolution cells, with 200 milliseconds - 
equivalent to the pulse repetition interval - required for demodulating the echoes from all 
of the cells. 

3. ALGORITHM DESCRIPTION 

We briefly outline the algorithm used for the statistical analysis of radar clutter data in 
this section. The reader is referred to Appendix A for mathematical details and to the 
references for a thorough description.34 Statistical characterization of radar clutter is 
important from both analysis and system design standpoints. From an analysis point of 
view, we are interested in determining the physics of the scattering mechanism that gives 
rise to the clutter. From a system design point of view, we are interested in determining the 
optimal radar signal processor that enables target detection in a given clutter environment.5 

Statistical characterization of radar clutter enables us to achieve both of these objectives. 
More precisely, we are interested in determining the underlying probability density 

function (PDF) of a set of radar clutter data. In general, this problem does not have a unique 
solution. Currently available approaches such as the Kolmogorov-Smirnov and chi-square 
tests address the problem of goodness-of-fit to a set of random data. In particular, they 

3 Shah, Rajiv R. (1993) A New Technique for Distribution Approximation of Radar Data, 
M.S. Thesis, Syracuse University. 
4 Slaski, Lisa, and Rangaswamy. Muralidhar. (RL Report in Preparation) An Introduction 
to Dr. Ozturk's Algorithm for PDF Approximation. 
5 Rangaswamy, M., Chakravarthi, P., Weiner, D.D., Cai, L.. Wang, H., and Ozturk, A. (1993) 
Signal Detection in Correlated Gaussian and Non-Gaussian Radar Clutter, RL-TR-93-79, 
AD267453. 



provide an answer to the question "is a set of data statistically consistent with a specified 

PDF?" However, if the answer to the above question is negative, these tests do not provide a 

PDF that approximates the PDF of the set of data. Furthermore, these tests require a large 

number of samples for satisfactory performance. 
The algorithm developed in Appendix A is used to address the problem of statistical 

characterization of radar clutter measurements made using the approach of Section 2. This 

algorithm has two modes of operation. In the first mode, the algorithm performs a 
goodness-of-fit test. Specifically, the test determines, to a desired confidence level, whether a 
set of data is statistically consistent with a specified PDF. In the second mode of operation, 
the algorithm approximates the PDF of a set of data. In particular, by analyzing the data 
and without any a priori knowledge, the algorithm identifies, from a stored library of PDFs, 

the particular density function that best approximates the data. Estimates of the scale, 

location, and shape parameters of the approximating PDF are provided by the algorithm. 
Both modes of operation of the algorithm are graphical and provide a visual representation 

of the goodness-of-fit and distribution approximation techniques. Of particular note is the 

observation that the algorithm works well with as few as 100 samples. 
The algorithm is based on the assumption that we are dealing with independent, 

identically distributed random variables. Currently available tests for statistical 
independence can be applied only to Gaussian random variables. However, it is likely that 
the data encountered in this analysis are non-Gaussian. Therefore, statistical independence 
of the data is not guaranteed. On the other hand, it is possible to determine the correlation 

properties and spectral characteristics (using an FFT) of the set of data by estimating the 
correlation function and the power spectral density. These estimates enable us to determine 
the correlation time of the clutter process and allow us to use uncorrelated data samples for 

the algorithm. The results of the algorithm are independently verified by the use of a 

histogram on the set of uncorrelated data. 

4.  RESULTS 

The new algorithm of Appendix A was applied to 100 uncorrelated data points from each 
of nine range bins to perform the test of goodness-of-fit to the Gaussian distribution and, if 
the data are rejected as Gaussian, to estimate the underlying distribution. The algorithm 

provides 27 different approximating PDFs to the data set. 
Data from range bins 8 through 16 were chosen due to constraints imposed by the 

bistatic geometry and antenna patterns. Results for each range bin are presented in groups 

of six separate figures. The first figure in the group illustrates the time sequence of the 
clutter echoes represented in amplitude-phase, and real-imaginary component forms. These 

are the raw clutter returns for the 1000 consecutive data frames collected over a 200 second 
period, and are not necessarily uncorrelated measurements. The second figure depicts the 

unbiased autocorrelation sequence estimate of the complex clutter echo versus lag number. 
The results of this sequence are used to determine the decorrelation time of the data from a 



given clutter cell. This decorrelatlon time is determined by counting the number of time lags 
that occur for the autocorrelation sequence to decrease from 1.0 to 0.1. 

The third figure presents temporal histograms of the magnitude, phase, in-phase 
component, and quadrature component of the uncorrelated clutter returns. This allows 
visual assessment of characteristics such as the uniformity of the distribution of phases. 

The fourth figure in the group illustrates the graphical technique for determining the 
goodness-of-fit of the data to the null hypothesis distribution, which in this case is the 
Gaussian distribution. The goodness-of-fit chart is constructed by arranging the vectors 
derived from the sample in order of their size, and plotting them to make a trajectory. 
Another set of vectors, also arranged in order of their size, is plotted for the Gaussian 
distribution assumed as the null hypothesis. Confidence contours are plotted around the end 
point of the null hypothesis trajectory. Terminal points of the data trajectory falling into 
the area contained by the outermost ellipse correspond to a probability of 0.01 that the data 
are not represented by the null hypothesis. Terminal data points contained by the middle 
ellipse indicate that with probability 0.05, the data are not described by the null hypothesis. 
Termination of the data trajectory within the innermost ellipse, corresponds to a 
probability of 0.1 that the data is not described by the null hypothesis. If a terminal sample 
point falls inside the appropriate ellipse for the confidence level desired, the data are 
considered consistent with the Gaussian distribution, with a confidence level of [1 minus 
(the probability for that ellipse)]. On these figures, the confidence levels would be 0.99, 0.95, 
and 0.9 for the outer, middle, and inner ellipses, respectively. If the terminal point falls 
outside the ellipse, the null (Gaussian) hypothesis is rejected, with a significance equal to 
probability represented by the ellipse. Although the terminal point of the linked vector is 
plotted in the fifth figure of each group, showing its location on the PDF approximation 
chart, the shape of the trajectory shown in Figure 4 is also used to determine whether the 
data are statistically consistent with the null hypothesis. A trajectory for data that are 
consistent with the null hypothesis should not get farther from the null hypothesis 
trajectory than the distance between the terminal points of the sample and null hypothesis 
trajectories. 

The fifth figure of each group is the PDF approximation chart. Each curve represents the 
linked-vector endpoint trajectory for one probability density function as the shape 
parameter is varied. For PDFs with no shape parameter, the linked vector trajectory 
appears as a single point on the chart. For PDFs with more than one shape parameter, a 
family of curves are generated on the chart. For example, the beta distribution has two 
shape parameters. In this case, the family of curves is obtained by fixing the first shape 
parameter at its minimum value and varying the second. A second value is then assigned to 
the first shape parameter, and the second shape parameter is again varied. As more values 
are assigned to the first shape parameter, a family of curves is generated. The last curve in 
the family is generated by assigning the maximum value to the first shape parameter and 
varying the second shape parameter. Thus, a family of curves corresponding to all possible 
values of the shape parameters of the beta distribution is shown in the chart. The large 'X' 
on the chart is the linked-vector endpoint of the sample data set. The last figure of the group 



overlays the algorithm's first and last choices for best approximating PDF onto a histogram 
of the sample data, based on parameter estimates that are also provided by the algorithm. 

Figures 2 through 7 present results of the echo from delay resolution cell 8. In Figure 2, 
the magnitude is seen to vary by a factor of approximately 6, and the phase varies over the 
entire range. The correlation sequence of Figure 3 shows the time of decorrelation to 0.1 is 
approximately 4.5 lags. The histograms of Figure 4 show that the phase is nearly uniformly 
distributed and the magnitude distribution exhibits a non-Rayleigh trend, as has been 
observed in previous measurements of high resolution clutter. The goodness-of-fit chart in 
Figure 5 shows that the data fall within the confidence contour of 0.1 probability of not 
satisfying the null hypothesis. It can be inferred from this chart that a non-Gaussian 
distribution probability best represents the amplitude statistics. The location of the 'X on 
the PDF approximation chart of Figure 6 shows that the amplitude fluctuations most closely 
follow lognormal statistics, as determined by the algorithm. 
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As a final visual inspection, the best and worst candidate PDFs with algorithm-chosen 
parameters are overlaid onto a histogram of the data in Figure 7. Even with the limited 
number of samples, the best candidate PDF is a very good approximation to the data. 

24.38 

18.49 

Figure 7.   Overlay of Best/Worst PDF Approximations for Bin 8. 

Figures 8 through 13 contain various results of the echoes from resolution cell 9. In 
Figure 8, the magnitudes are seen to vary over the same amplitude range as those of cell 8. 
but the first 400 samples of cell 9 have a consistently lower magnitude. The phase 
characteristics of cell 9 also show slower fluctuations than those of cell 8. The correlation 
time as determined from the correlation sequence of Figure 9 is about 5 lags. This is similar 
to cell 8. The temporal histograms of Figure 10 show characteristics similar to those of cell 
8; namely, near uniformly-distributed phase statistics and non-Gaussian temporal 
fluctuations. As seen in Figure 11, the amplitude fluctuations are not likely to obey 
Gaussian statistics. This is verified by the PDF approximation chart of Figure 12, where the 
candidate PDF recommended by the algorithm is Weibull. A visual check of Figure 13 
reinforces the acceptance of the Weibull distribution as the closest fit to the sample data. 

12 
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9.19 23.73 

Figure 13.   Overlay of Best/Worst PDF Approximations for Bin 9. 

Results from resolution cell 10 are presented in Figures 14 through 19. The raw data of 
Figure 14 show the same range of amplitude fluctuations as cells 8 and 9. but with fewer 
occurrences of the high amplitude echoes. The temporal phase variation more closely 
resembles that of resolution cell 9 - the slow, patterned variation. The correlation sequence 
plot of Figure 15 is similar to that of cell 8. with the same decorrelation time of 4.5 lags. 
The temporal phase histogram of Figure 16 is nearly uniform, as was the previous cases. 
The histogram of amplitudes in this figure shows a trend similar to previous cells for the 

lower amplitude region, but there is less of the larger magnitude tail structure. In the 
goodness-of-fit plot of Figure 17. the null hypothesis PDF was Weibull instead of Gaussian, 
as in the goodness-of-fit tests for previous clutter cells. The figure shows that the terminal 

linked vector of the sample data is very close to that of the approximating PDF and is well 

within the 0.01 confidence contour of the null hypothesis. The location of the sample data 
linked vector terminal point (the X) on the PDF approximation chart in Figure 18 is closest 

to the Weibull trajectory. This corroborates the results of the goodness-of-fit test, where the 
sample data were verified to be statistically consistent with the Weibull distribution. 
Comparison of best and worst candidate PDFs with measured data is shown in Figure 19. 
Again, the PDF with family and shape chosen by the algorithm match well with the limited 

data set. 
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9.75 26.63 

Figure 19.   Overlay of Best/Worst PDF Approximations for Bin 10. 

Figures 20 through 25 illustrate the sequence of analysis results on clutter resolution 
cell 11. The amplitude peaks shown in Figure 20. with a maximum of approximately 39 
volts2, are generally lower than those of the previous clutter cells that have maximum 
values of around 56 volts2. The phase appears to vary more quickly with time than the 
previous few resolution cells. The correlation sequence shown in Figure 21 has a  trend 
similar to that of previous cells, but with a longer tail. This produces a time of decorrelation 
to 0.1 of about 7.5 lags. This is 2.5 lags, or 0.5 seconds, greater than the decorrelation time 
of resolution cell 9. The temporal phase histogram in Figure 22 shows a nearly uniform 
distribution, as was seen in previous clutter cells. The amplitude distribution also appears 
similar to those of previous cells, but with a lower magnitude tail. Visual appearance of a 
histogram can be inaccurately interpreted, as was seen for previous cells where the 
histograms had a similar structure but were determined to be from different classes of 
probability density functions. In the goodness-of-fit test of Figure 23, the sample data are 
clearly inconsistent with the Gaussian null hypothesis. From the PDF approximation chart 
in Figure 24, the sample data are determined to be from the Weibull distribution. The 
sample data linked vector terminal point appears to be nearly equidistant from a beta and 
the Weibull trajectories, but an actual distance calculation between the data point and the 
two curves shows the data to be closer to the Weibull distribution. The overlay onto the data 
histogram of best and worst candidate PDF approximations, shown in Figure 25, again 
illustrates a successful decision by the algorithm. 
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8.73     21.88 

Figure 25.   Overlay of Best/Worst PDF Approximations for Bin 11. 

Clutter cell 12 results are presented in Figures 26 through 31. The time sequence of echo 
amplitudes in Figure 26 shows magnitudes closer to those of cells 8 -10 and higher than that 
of cell 11. The trend in phase is toward slower variations. The correlation sequence shown 
in Figure 27 has a structure similar to that of cell 11. possessing a tail of higher magnitude 
than previous cells. The decorrelation time of this cell is estimated to be 7.5 lags. 
Presentation of the data in histogram form in Figure 28 shows the general magnitude shape 
to be typical of the observed clutter cells, but the phase departs from its characteristic near- 
uniform behavior. This may be due to the clutter cell geometry defined by the high range 
resolution of the radar measurement system. With the small cell sizes, on the order of a few 
feet, the number and shape of scattering elements composing the cell may differ, thereby 
producing differences in temporal echoes. In the goodness-of-fit test of Figure 29. the 
termination of the sample data linked vector on the 0.05 confidence contour and the failure 
of its trajectory to closely follow that of the null hypothesis, leads to the conclusion that the 
sample data are not best described by the Gaussian distribution. This is verified by Figure 
30. where the data termination is closest to the Weibull curve. Also. Figure 31 provides the 
visual comparison of the algorithm-chosen distribution with sample data. 
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Figure 31.   Overlay of Best/Worst PDF Approximations for Bin 12. 

Figures 32 through 37 present analysis results of the clutter echoes from resolution cell 
13. The raw data are shown in Figure 32, where the echo amplitudes are among the highest 
observed from this group of clutter cells. Several high-amplitude peaks are observed, instead 
of just a few occurrences. Also, the phase appears to be less rapidly varying, as was observed 
in some previous cells. The decorrelation time, determined from the correlation sequence 
estimate of Figure 33 is 8.5 lags, or 1.7 seconds; the longest time observed for these clutter 
cells. These differing correlation sequences and varying decorrelation times reinforce the 
hypothesis of different scattering mechanisms among neighboring resolution cells. The 
phase histogram of Figure 34 again appears to depart from the uniform case. Observation of 
the sample data trajectory and end-point in Figure 35 clearly dismisses the null hypothesis 
as a good descriptor of the data set. For this clutter cell, the amplitude statistics are 
determined to be best represented by a beta distribution, as shown in Figure 36. The overlay 
of closest and farthest candidate PDFs onto the data are shown in Figure 37. 
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Figure 37.   Overlay of Best/Worst PDF Approximations for Bin 13. 

In Figure 38 the time history of amplitude echoes of cell 14 shows a single peak close to 
that of the previous cell, but the general trend is toward lower amplitudes. The phase 
behavior is similar with both fast and slower variations. The correlation sequence of Figure 
39 shows that this cell has the greatest decorrelation time - greater than 10 lags. Histograms 
of both amplitude and phase in Figure 40 show trends similar to the previous cell. The 
sample data are determined not to be characterized best by the null hypothesis PDF, since 
similar trajectories and close termination points are required to satisfy the goodness-of-fit 
test. As seen in Figure 41 these conditions are not met. Instead, data from this clutter cell 
are best described by the beta distribution of the previous cell, but with a different shape 
parameter. This is illustrated in Figure 42. Comparison of the estimated PDF with 
experiment data is shown in Figure 43. Note that the approximating PDF for cells 13 and 14 
arise from the same trajectory corresponding to the beta distribution. However, observe the 
minor difference in the values of one of the shape parameters. 
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Figure 43.   Overlay of Best/Worst PDF Approximations for Bin 14. 

Resolution cell 15 possessed the highest magnitude clutter echoes of any of the observed 
cells, as illustrated in Figure 44. The decorrelation time as seen from the correlation 
estimate of Figure 45 was greater than 10 lags. The data in the histogram of Figure 46 had 
structures similar to cells 13 and 14, but as Figures 47 and 48 show, the data are better 
described by the Weibull distribution as in cells 9 through 11. The final visual assessment, 
comparing best and worst estimates of the data is shown in Figure 49. 

The final cell in the set was number 16, which had the amplitude and phase fluctuations 
shown in Figure 50. The echo amplitudes of this cell decreased to the level of cells 9 through 
12. However, the correlation estimate of Figure 51 shows that the decorrelation time is still 
greater than 10 lags, as with the previous two cells. The trends illustrated in Figure 52 are 
not greatly dissimilar to those of the closest neighbor cells, with the exception of the 
broader hump in the magnitude distribution. A look at the goodness-of-fit test in Figure 53 
leads to the immediate rejection of the Gaussian distribution as best describing the 
amplitude statistics. Instead, the Weibull is again chosen as the better fit as seen in the PDF 
approximation chart of Figure 54. This is also verified by the best/worst overlay onto the 

data histogram in Figure 55. 
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Figure 49.   Overlay of Best/Worst PDF Approximations for Bin 15. 

5. SUMMART 

Observations of the polarimetric properties of these same sets of data revealed a 
clustering of polarization state among neighboring range bins. In particular, bins 9-11,12- 
14, and 15-16 had similar polarization states. This result is corroborated by the fact that 
the best approximating amplitude probability density function chosen by the algorithm was 
Weibull for bins 9-11. beta for bins 12-14. and Weibull for bins 15-16. The shape parameters 
of the Weibull approximations exhibited minor variations for bins 9-11 and 15-16. Similar 
trends were observed for the shape parameter estimates of the beta distribution. 

Future research should include the use of this algorithm for determining statistical 
properties of radar clutter data of different terrain types, resolution cell sizes and with 
different polarizations. Further, the algorithm should be used to determine the statistical 
properties pertaining to the spatial variation of bistatic radar clutter. 
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Figure 55.   Overlay of Best/Worst PDF Approximations for Bin 16. 
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Appendix 

A New Method for Univariate Distribution 
Approximation 

Al. INTRODUCTION 

In this appendix we address the problem of approximating the PDF of a set of random 
data. In practice, the clutter PDF encountered in radar signal processing is not known a 
priori. Consequently, a scheme that approximates the clutter PDF based on a set of 
measured data is necessary. Currently, available tests such as the Kolmogorov-Smirnov test 
and the Chi-Square test address the problem of goodness-of-fit for random data. In 
particular, these tests provide information about whether a set of random data is 
statistically consistent with a specified distribution, to within a certain confidence level. 
However, if the specified distribution is rejected, these tests cannot be used for 
approximating the underlying PDF of the random data. Moreover, these tests require large 
sample sizes for reliable results. 

In practice, only a small number of samples may be available. Therefore, the scheme 
used should be efficient for small sample sizes. Ozturk has developed a new algorithm 
based on sample order statistics1 for univariate distribution identification. This algorithm 
has two modes of operation. In the first mode the algorithm performs a goodness-of-fit 
test. Specifically, the test determines, to a desired confidence level, whether random data 

ozturk, A., A new method for univariate and multivariate distribution identification, Submitted for 
publication to J. Amer. Statistical Assn. 
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are statistically consistent with a specified probability distribution. In the second mode of 
operation the algorithm approximates the PDF underlying the random data. By analyzing 
the random data and without any a priori knowledge, the algorithm identifies, from a 
stored library of PDFs, the particular density function that best approximates the data. 
Estimates of the scale, location, and shape parameters of the PDF are provided by the 
algorithm. The algorithm typically works well with small sample sizes of between 50 and 
100 samples. An extension of this algorithm for the multivariate Gaussian PDF has been 
considered in Ozturk,1 and Ozturk and Romeu.2 

In this appendix we describe a new method for univariate distribution approximation. 
In Section A2 we present definitions. Section A3 describes the algorithm developed by 
Ozturk for univariate distribution identification. The proposed distribution identification 
algorithm is discussed in Section A4. Section A5 proposes a method to estimate the shape 
parameter based on the procedure developed in Section A4. Finally, conclusions are 

presented in Section A6. 

A2. DEFINITIONS 

Let fY(y) denote the PDF of Y which has been standardized in a specified manner. 
Introduce the linear transformation defined by 

x = ßy + a (A-X) 

The PDF of X is given by 

frw-i»«^) (A'2) 

where a and ß are defined to be the location and scale parameters of X, respectively. The 
mean \xx and variance ax of the random variable X are given by 

V* = E(X) 
(A.3) 

o-l = E[(X - /x*)2] 

where E denotes the expectation operator. Although the mean and the variance are 
related to the location and scale parameters, note that the location parameter is not the 
mean value and the scale parameter is not the square root of the variance, in general. 
However, for a standardized Gaussian PDF fY(y) for which the mean is zero and the 
variance is unity, the location parameter is the mean of X and the scale parameter is the 
standard deviation (square root of the variance) of X. 

2Ozturk, A. and Romeu, J., A new method for assessing multivariate normality with graphical applica- 
tions, Accepted for Publication in Commun. in Statistics. 
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The coefficient of skewness, a3, and the coefficient of kurtosis, a4, are defined to be 

E[(X - ßx)
3} 

«3 

Q4 

<% 

(A.4) 
E[(X - fxxy] 

o% 

It is readily shown that a3 and a4 are invariant to the values of \ix and ax. For any PDF 
that is symmetric about the mean, a3 = 0. For the Gaussian distribution, a3 — 0 and 
a4 = 3. 

A3. GOODNESS OF FIT TEST 

In this section, we introduce a general graphical method for testing whether a set of 
random data is statistically consistent with a specified univariate distribution. The 
proposed method not only yields a formal goodness-of-fit test but also provides a graphical 
representation that gives insight into how well the random data is represented by the 
specified distribution (null hypothesis). Using the normal distribution as a reference 
distribution, the standardized sample order statistics are represented by a system of linked 
vectors. Both the terminal point of these linked vectors and the shape of their trajectories 
are used in determining whether or not to accept the null hypothesis. 

In this section we first give a brief description of the corresponding test statistic and 
then explain the goodness of fit test procedure. For illustration purposes, we assume that 
the null distribution is Gaussian. However, the proposed procedure works for any null 
hypothesis. 

Let Xk] k = 1,2,... n denote the kth sample from a Gaussian distribution with mean //, 
and variance a2. We define 

Yk = ^J^   k=1>2>->n (A-5) 

where X = T,Xk/n is the sample mean and S = {Z{Xi - X)2/(n - 1)}1/2 is the sample 
standard deviation. The standardized order statistics are denoted by Yi:„ i = 1,2,... n and 
are obtained by putting the Yk; k = 1,2,... n in a monotonic nondecreasing order so that 
Yun < Y2:n < ... < Yn:n. This sequence is called the order statistics of Yi, Y2,... Yn. 
Yi:n is called the ith order statistic. The ith linked vector is characterized by its length and 
orientation with respect to the horizontal axis. Let Xi,n < X2:n < • • • < Xn:n denote the 
ordered samples obtained by ordering Xk; k = 1,2,... n. Let m^, m2:„,..., mn:n denote 
the expected values of the standard normal order statistics, where mi:ri = E[{ ™~   ]■ The 
length of the ith vector a» is obtained from the absolute value of the ith standardized 
sample order statistic Yim, while its orientation 0, is related to mi:n. By definition, 
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n 

(A.6) 

9i = 7r$(mi:„) 

where $(a?) = (V^TT)"
1
 /f«, exp(-f )dt is the distribution function of the standard 

Gaussian distribution. We define the sample points in a two dimensional plane by 

Qk = (Uk,Vk) *=l,2,...n (A-7) 

where U0 = V0 = 0 and 

Vk = i23t.i{Sin(flO}|n»| (A-8) 

k=l,2,...n. 

The sample linked vectors are obtained by joining the points Qk. Note that 
Qo = (0,0). It should also be noted that the statistic Qn given in Eq. (A.7) represents the 
terminal point of the linked vectors defined above. Figure Al shows the linked vectors 
obtained for the Gaussian distribution with n = 6. The null distribution was obtained by 
averaging the results for 50,000 Monte Carlo trials. The solid curve in Figure A.l shows 
the linked vectors for the sample distribution while the dashed curve shows the linked 
vectors for the null distribution. The magnitudes and angles of the linked vectors are 
obtained from Eq. (A.6). Note that the angles are independent of the data and depend 
only on the sample size n. Only the magnitudes of the linked vectors depend on the 
samples drawn and change from one trial to another. 

For a typical set of ordered samples (that is, ordered samples drawn from the null 
distribution) it is reasonable to expect that the sample linked vectors would closely follow 
the null pattern. If the ordered set of samples is not from the null distribution, the sample 
linked vectors are not expected to closely follow the null pattern. Hence, the procedure 
provides visual information about how well the ordered set of samples fit the null 
distribution. 

An important property of the Qn statistic is that it is invariant under linear 
transformation. In particular, we consider the standardization used in Eq. (A.5). Let 
Zi = aXi + b, where a and b are known constants. Let & denote the sample standard 

deviation of the samples Zt. Then, it is readily shown that ^^ = ^. The invariance 
property follows as a consequence. The advantage of this property is that the PDF of 
Qn = (Un, Vn) depends only on the sample size n and is unaffected by the location and 
scale parameters. Since it is difficult to determine the joint PDF of Un and Vn analytically, 
it is necessary to obtain empirical results. 
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Assuming that the conditions of the central limit theorem are satisfied, the marginal 
PDFs of Un and Vn can be approximated as Gaussian, in the limit of large n. In addition, 
it is assumed that the joint PDF of Un and Vn is approximately bivariate Gaussian. 
Consequently, all that is needed to determine the bivariate PDF is the specification of 
E{Un), E(Vn), E(UnVn), Var(Un) and Var(Vn). Drawing samples from the Gaussian 
distribution, it has been shown empirically in Reference [1] that for 3 < n < 100 

E(Un) = 0 

0.412921 
E{Vn) = »v « 0.326601 + 

E(UnVn) = = 0 

Var(Un) = -°l 
0.02123 

w  
n 

0.01765 
+ r~ 

Var{Vn) = --°l 
0.04427 

pa  
0.0951 

n2      - 

n 

(A.9) 

Since Un and Vn are approximately bivariate Gaussian for large or moderate sample 
sizes, their joint PDF can be written as 

fun,vn(un, vn) = {2T,)-\auav)-
1exp{-t-) (A10) 

where 

t_
Un   \    (Vn-Hv)\ (A.ll) 

Let t = to- Then the equation 

to = 4 + ^LZ^L (A.12) 

is that of an ellipse in the M„, vn plane for which 

fun,Vn(Un,  Vn) = W"V^r^-f )• (A-13) 

Points that fall within the ellipse correspond to those points in the Un,vn plane for which 

fc/„,v>n, vn) > (27r)-l(auav)-
1exp(-tj). (AM) 
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Let 

a = P(T > t0) = P(u„, vn both falling outside the ellipse given by Eq. (A12)).   (A.15) 

It is well known that the PDF of the random variable T defined by Eq. (A. 11) has a 
Chi-Square distribution with two degrees of freedom3 and is given by 

fT(t) = OXexpi-*-). (A-16) 

Hence, 

t.2.) (A.17) 

Consequently, t0 = -2/n(l - a). Thus, Eq. (A.12) becomes 

a = 1 - exp(--). 

|     K-/X,)2 (A.18) ^+v,n    ^   =.2ln(l-a). 

a is known as the significance level of the test. It is the probability that Qn falls outside 
the ellipse specified by Eq. (A. 18) given that the data come from a Gaussian distribution. 
1 - a is known as the confidence level and the corresponding ellipse is known as the 
confidence ellipse. 

Equation (A.12) can be written in the standardized form 

1 = JfL+ fc» " ^ (A.19) 
°lto o% 

where the lengths of the major and minor axes are given by max [auVh, ^vy/tö] and 
min [auy/to~, avy/to~\, respectively. From Eq. (A.17), observe that smaller values of a 
correspond to larger values of t0. Consequently, the confidence ellipses become larger as the 
confidence level is increased. 

For a given sample size n (n < 100) approximate values of //„, a2
u and a2

v can be 
obtained from Eq. (A.9). The confidence ellipse of Eq. (A. 18) can then be used to make a 
visual test of the null hypothesis. If the terminal sample point falls inside the ellipse, then 
the data are declared consistent with the Gaussian distribution with confidence level 1 - a. 
Otherwise the null hypothesis is rejected with a significance level a. 

A major difficulty in determining the joint PDF of Un and Vn is that the coefficients of 
skewness and kurtosis of Un and Vn (see Table 1) indicate that the Gaussian approximation 
for the bivariate PDF may not be satisfactory for n < 10. The empirical bivariate PDF of 
Un and Vn were obtained by using 50,000 Monte-Carlo trials for n=3, 10, 20, 30, 50 and 
100. The corresponding probability contours are shown in Figure A2. The same procedure 
is used even when the null distribution is different from the Gaussian distribution. 

3Johnson, N. and Kotz, S. (1976) Distributions in Statistics: Continuous Multivariate Distributions, New 

York: John Wiley and Sons. ^o 



However, note that the standard Gaussian distribution is always used as the reference 
distribution for determining the angles 6i. 

A4. DISTRIBUTION APPROXIMATION 

In this section we present a graphical procedure for approximating the underlying PDF 
of a set of random data based on the goodness-of-fit test procedure discussed in Section A3. 

Following a similar approach to that outlined in Section A3, random samples are 
generated from many different univariate probability distributions. For each specified 
distribution and for a given n, the statistic Qn = (£/„, Vn) given by Eq. (A.8) is obtained 
for various choices of the shape parameter. Thus, each distribution is represented by a 
trajectory in the two dimensional plane whose coordinates are Un and Vn. Figure A3 shows 
an example of such a representation. Twelve distributions, namely Gaussian (1), Uniform 
(2), Exponential (3), Laplace (4), Logistic (5), Cauchy (6), Extreme Value (7), Gumbel 
type-2 (8), Gamma (9), Pareto (10), Weibull (11) and Lognormal (12), are represented in 
this chart. The value of Qn at each point of the trajectories is obtained by Monte-Carlo 
experiments using the standard Gaussian distribution as the reference distribution for 
determining the angles 0,. The results are based on averaging 1000 trials of 50 samples 
from each distribution. The samples from each distribution are obtained by using the 
IMSL subroutines for specified values of the shape parameter. Since the procedure is 
location and scale invariant, the trajectory reduces to a single point for those PDFs which 
do not have shape parameters but are characterized only in terms of their location and 
scale parameters. By way of example, the Gaussian, Laplace, Exponential, Uniform and 
Cauchy PDFs are represented by single points in the Un - Vn plane. However, those PDFs 
having shape parameters are represented by trajectories. For a given value of the shape 
parameter, a single point is obtained in the Un - Vn plane. By varying the shape 
parameter, isolated points are determined along the trajectory. The trajectory for the PDF 
is obtained by joining these points. In a sense the trajectory represents a family of PDFs 
having the same distribution but with different shape parameter values. For example, the 
trajectory corresponding to the Gamma distribution in Figure A3 is obtained by joining 
the points for which the shape parameters are 0.2, 0.3, 0.5, 0.7, 1.0, 2.0, 3.0, 4.0, 6.0, and 
10.0. As the shape parameter increases, note that the Gamma distribution approaches the 
Gaussian distribution. The representation of Figure A3 is called an identification chart. 
Some distributions such as the ß distribution and the SU-Johnson system of distributions, 
have two shape parameters. For these cases, the trajectories are obtained by holding one 
shape parameter fixed while the other is varied. For these distributions, several different 
trajectories are generated in order to cover as much of the Un-Vn plane as possible. For 
certain choices of the shape parameters, two or more PDFs become identical. When this 
occurs, their trajectories intersect on the identification chart. 

69 



The identification chart of Figure A3 provides a one to one graphical representation for 
each PDF for a given n. Therefore, every point in the identification chart corresponds to a 
specific distribution. Thus, if the null hypothesis in the goodness-of-fit test discussed in 
Section A3 is rejected, then the distribution that approximates the underlying PDF of the 
set of random data can be obtained by comparing Qn obtained for the samples with the 
existing trajectories in the chart. The closest point or trajectory to the sample Qn is 
chosen as an approximation to the PDF underlying the random data. The closest point or 
trajectory to the sample point is determined by projecting the sample point Qn to 
neighboring points or trajectories on the chart and choosing that point or trajectory whose 
perpendicular distance from the sample point is the smallest. The complete approximation 

algorithm is summarized as follows. 

1. Compute Yk as specified in Section A3 

2. Obtain the standardized order statistic Yi:n. 

3. Compute Un and Vn from Eq. (A.8). 

4. Obtain an identification chart based on the sample size n as discussed in this 
Section. Plot the sample point Qn on this chart. 

5. Compare the sample point Qn with the existing distributions on the chart. The 
nearest neighboring point (or trajectory) on the chart is used as an approximation 

to the PDF of the samples. 

The accuracy of this procedure can be increased by including as many distributions as 
possible in the identification chart. However, it is emphasized that this procedure does not 
identify the underlying PDF. Rather it identifies a suitable approximation to the 

underlying PDF. 

A5. PARAMETER ESTIMATION 

Once the distribution of the samples is approximated, the next step is to estimate its 
parameters. The method discussed in Section A4 lends itself for estimating the parameters 
of the approximated distribution. We present the estimation procedure for the location, 
scale, and shape parameters in this section. 

A5.1 Estimation of Location and Scale Parameters 

Let f(x; a,ß,) denote the distribution which approximates the PDF of the set of 
random data, where a and ß are the location parameter and scale parameter, respectively 
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of the approximating PDF. Let Xi:n denote the ordered statistics of X from a sample of 
size n. The standardized ordered statistics are defined by 

Xi:n - a 
Wi:n = 

Let 

W.n = ±™Z^. (A.20) 

fi,.n = E[Wi:n]. (A.21) 

Then 

E[XiM] = ßmM + a. (A.22) 

We consider the following statistics 

Tl = ZiCos(6i)Xi..n 

T2 = ZiSin(0i)Xi:n 

where 0i is the angle defined in Eq. (A.6). The expected values of Tx and T2 are 

E[T1} = J2iCos(9i){ßfxi..n + a} 

E[T2] = ZiSin(8i)\ßfjLi:n + a}. 

These can be written as 

E{TX) = aa + bß 

E(T2) = ca + dß 

where 

a = YliCos{ei) 

b = ZiiMMCas(di) 

c = Ei Sin(9i) 

d = Y.il*>i*iSin{di). 
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Because the standardized Gaussian distribution is used as the reference distribution for 0,, 
it can be shown that a = 0. It follows that 

a 

b 

E[T2 - dß\ 

(A.27) 

where the symbol A is used to denote an estimate. For n sufficiently large (that is, n > 50), 
suitable estimates for E[Ti] and E[T2] are 

E[TX] = T, 
(A.28) 

E[T2] = T2. 

Estimates for b and d rely upon an estimate of /ii:n. We obtain ßi:n from a Monte Carlo 
simulation of Wi:n where Wi:n is generated from the known approximating distribution 
f(x; 0,1) having zero location and unity scale parameters, based upon 1000 Monte Carlo 
trials At:n is the sample mean of Wi:n with /ii:„ known, the estimates for b and d are given by 

b = YZk:nCos{ei) 
(A.29) 

d = Y^^Sin{6i). 

The scale and location parameters are then estimated by application of Eq. (A.27). 

A5.2 Shape Parameter Estimation 

In this section we present an approximate method for estimating the shape parameter 
of the approximating PDF. This procedure can be used only when one of the shape 
parameters is unknown. Let 7 denote the shape parameter of the approximating PDF 
being estimated. Since Un and Vn are location and scale invariant, the point Qn depends 
only on the sample size n and the shape parameter 7. The expected value of Un and Vn can 

be expressed as 

E(Un) = <pl(n,'y) 
(A.30) 

E(Vn) = <P2(n,-r) 

where c/?i(.,.) (p2(., •) are some functions of 7 and n. For a given sample size n and shape 
parameter 70 the corresponding expected point </?i(n,7o),</?2(rc,7o) can be determined 
approximately in the Un-Vn plane. 
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The proposed shape parameter estimation method is based on finding a point such that 

(A.31) 

where 7 is the sample estimator of 7. However, in many instances the sample point may 
not correspond exactly to a particular trajectory. In such a case, let E(Qin) - (MI,UI) 

E(Q2n) = (u2,V2) denote the expected points corresponding to two different shape 
parameter values 7 = 71 and 7 = 72- It is assumed that the sample point lies in between 
the points corresponding to 71 and 72. Assuming that linear interpolation provides a 
satisfactory approximation, the estimate of the shape parameter corresponding to the 
sample point is given by 

(T^TiK^o^O (A.32) 
(«2 - «l) 

where 

{A{Vn-vi) + Aaui + Un} 

(A.33) 

Xo ~ (A2 + 1) 

The accuracy of the procedure can be improved by employing a non-linear interpolation 
method. It must be emphasized that the shape parameter estimation procedure presented 
in this section is an approximate procedure. 

A6. CONCLUSIONS 

This appendix has presented a new algorithm for analyzing univariate random data. 
The algorithm provides a graphical goodness-of-fit test that determines whether a set of 
random data is statistically consistent with a specified PDF. Also, a graphical procedure is 
presented for approximating the underlying PDF of a set of random data. Estimation of 
location, scale and shape parameters of the approximating PDF have been discussed. 
Finally, it must be pointed out that the chief advantage of the algorithm presented in this 
appendix is that it works well for small sample sizes (between 50 and 100 samples). 
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Figure A. 1.  Linked Vector Chart:  Dashed Lines are for P0 = Null Hypothesis 
Linked Vectors, for the Solid Lines Px = Linked Vectors for the Distribution 
being Sampled. 
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Figure A.2.   Empirical Distribution of Qn for Several Values of n. 
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Figure A.3.   Identification Chart for Univariate Distributions Based on 1000 
Samples (n=50). 
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