
REPORT DOCUMENTATION PAGE Form Approved

OBM No. 0704-0188
Public reporting burden for this collection of informatbn is estimated to average 1 hour per response. Including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect orf this collection of information,
including suggestions for reducing this Burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. and to the Office of Management and Budget Paperwork Reduction Project (0704-0168). Washington. DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
March 1994

3. REPORTTYPE AND DATES COVERED

4. TITLE AND SUBTITLE

Piecemeal Learning of an Unknown Environment

6. AUTHOR(S)

Magrit Betke, Ronald L. Rivest, and Mona Singh

5. FUNDING NUMBERS

ASC-9217041,
CCR-8914428,
CCR-9310888

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Massachusetts Institute of Technology
Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

AIM 1474

CBCL93

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
Information Systems
Arlington, Virginia 22217

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION UNLIMITED

13. ABSTRACT {Maximum 200 words)

We introduce a new learning problem: learning a graph by piecemeal
search, in which the learner must return every so often to its
starting point (for refueling, say). We present two linear-time
piecemeal-search algorithms for learning city-block graphs: grid
graphs with rectangular obstacles.

^■'TST*»'.

WkMbaaeaa UaSteftwjl
-:--t*r r^^<4^*-^«|lÄ*^-..IJ

14. SUBJECT TERMS 15. NUMBER OF PAGES
14

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF
ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

NSN 7540-01-280-5500

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY
and

CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING
DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES

A.I. Memo No. 1474 March, 1994
C.B.C.L. Memo No. 93

Piecemeal Learning of an Unknown Environment

Margrit Betke Ronald L. Rivest Mona Singh

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.
The pathname for this publication is: ai-publications/1994/AIM-1474.ps.Z

Abstract

We introduce a new learning problem: learning a graph by piecemeal search, in which the learner must
return every so often to its starting point (for refueling, say). We present two linear-time piecemeal-search
algorithms for learning city-block graphs: grid graphs with rectangular obstacles.

Copyright © Massachusetts Institute of Technology, 1993

This report describes research done at the Center for Biological and Computational Learning and the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support for the Center is provided in part by a grant from the
National Science Foundation under contract ASC-9217041.
The authors were also supported by NSF grant CCR - 8914428, NSF grant CCR - 9310888 and the Siemens Corporation.

The authors can be reached at margrit@ai.mit.edu, rivest@theory.lcs.mit.edu, and mona@theory.lcs.mit.edu.

19950125 147

1 Introduction 2 The formal model

Wc address the situation where a learner, to perform
a task better, must learn a complete map of its envi-
ronment,. For example, the learner might he a security
guard robot, a taxi driver, or a trail guide.

Exploration of unknown environments has been ad-
dressed by many previous authors, such as Papadim-
itriou and Yanakakis [1], Blum. Raghavan, and
Schieber [2], Rivest and Schapirc [4], Deng and Pa-
padimitriou [5], Betke [6], Deng, Kameda. and Papadim-
itrion [7], Rao, Kareti, Shi and Iyengar [11], and Bar-Eli.
Bcrman, Fiat, and Yan [8],

This paper considers a new constraint: for some rea-
son learning must be done "piecemeal"- that is, a little
at a time. For example, a rookie taxi driver might learn
a city bit by bit while returning to base between trips.
A planetary exploration robot might need to return to
base camp periodically to refuel, to return collected sam-
ples, to avoid nightfall, or to perform some other task.
A tourist can explore a new section of Rome each day
before returning to her hotel.

The "piecemeal constraint" means that each of the
learner's exploration phases must be of limited duration.
We assume that each exploration phase starts and ends
at a fixed start position s. This special location might be
the airport (for a taxi driver), a refueling station, a base
camp, or a trailhead. Between exploration phases the
learner might perform other unspecified tasks (for exam-
ple, a taxi driver might pick up a passenger). Piecemeal
learning thus enables "learning on the job", since the
phases of piecemeal learning can help the learner improve
its performance on the other tasks it performs. This is
the "exploration/exploitation tradeoff": spending some
time exploring (learning) and some time exploiting what
one has learned.

The piecemeal constraint can make efficient explo-
ration surprisingly difficult. This paper presents our pre-
liminary results on piecemeal learning of arbitrary undi-
rected graphs and gives two linear-time algorithms for
the piecemeal search of grid graphs with rectangular ob-
stacles. The first, algorithm, the "wavefront" algorithm,
can be viewed as an optimization of breadth-first search
for our problem. The second algorithm, the "ray" algo-
rithm, can be viewed as a variation on depth-first search.
Although the ray algorithm is simpler, the wavefront al-
gorithm may prove a more fruitful foundation for gener-
alization to more complicated graphs.

We now give a brief summary of the rest of the paper.
Section 2 gives the formal model and introduces city-
block graphs. Section 3 discusses piecemeal search on
arbitrary graphs and gives an approximate solution to
the off-line version of this problem. Section 4 discusses
shortest paths in city-block graphs. Section 5 introduces
the notion of a wavefront, gives the wavefront algorithm
for piecemeal search of city-block graphs, proves it cor-
rect, and derives its running time. Section 6 introduces
the ray algorithm as another way to do piecemeal search
of city-block graphs. Section 7 concludes with some open
problems.

We model the learner's environment as a finite connected
undirected graph G — (WE) with distinguished start
vertex s. Vertices represent accessible locations. Edges
represent accessibility: if {x,y} £ E then the learner can
move from x to ;/, or back, in a single step.

We assume that the learner can always recognize a
previously visited vertex: it never confuses distinct loca-
tions. At any vertex the learner can sense only the edges
incident to it; it has no vision or long-range sensors. It
can also distinguish between incident edges at any ver-
tex. Without loss of generality, we can assume that the
edges are ordered. At a vertex, the learner knows which
edges it has traversed already. The learner only incurs a
cost for traversing edges: thinking (computation) is free.
We also assume a uniform cost for an edge traversal.

The learner is given an upper bound B on the number
of steps it can make (edges it can traverse) in one explo-
ration phase. In order to assure that the learner can
reach any vertex in the graph, do some exploration, and
then get back to the start vertex, we assume B allows for
at least one round trip between s and any other single
vertex in G, and also allows for some number of explo-
ration steps. More precisely, we assume B = (2 + n)r,
where o > 0 is some constant, and r is the radius of
the graph (the maximum of all shortest-path distances
between s and any vertex in G).

Initially all the learner knows is its starting vertex s
and the bound B. The learner's goal is to explore the
entire graph: to visit every vertex and traverse every
edge, minimizing the total number of edges traversed.

2.1 City-block graphs

We model environments such as cities or office build-
ings in which efficient on-line robot navigation may be
needed. We focus on grid graphs containing some non-
touching axis-parallel rectangular '"obstacles". We call
these graphs city-block graphs. They are rectangular pla-
nar graphs in which all edges are either vertical (north-
south) or horizontal (east-west), and in which all faces
(city blocks) are axis-parallel rectangles whose opposing
sides have the same number of edges. A 1 x 1 face might
correspond to a standard city block; larger faces might
correspond to obstacles (parks or shopping malls). Fig-
ure 1 gives an example. City-block graphs are also stud-
ied by Papadimitriou and Yanakakis [1], Blum, Ragha-
van. and Schieber [2], and Bar-Eli, Bcrman, Fiat and
Yan [8].

An m x /) city-block graph with no obstacles has
exactly mn vertices (at points (i,j) for 1 < i' < m,
1 < j < J7) and 2mn — (w + n) edges (between points
at distance 1 from each other). Obstacles, if present, de-
crease the number of accessible locations (vertices) and
edges in the city-block graph. In city-block graphs the
vertices and edges are deleted such that all remaining
faces are rectangles.

We assume that the directions of incident edges are
apparent to the learner.

....:.; J

1 —1....;..
.. . „ L r i

.

■ i

1 1

1 1 1— I

] ."sUrr-
1 1 '— ' '

" x. 1 1

....!—
' ti n n" J l !

n LJ
- 1 1 : '- LJ

1 1
; i i

Figure 1: A city-block graph with distinguished start
vertex s.

„vj.w 1
__ _s i

|ll!

MI; B/2
\ ■■ II

; I | ! i :

Figure 2: The learner reaches vertex v after B/2 steps
in a depth-first search. Then it must interrupt its search
and return to s. It cannot resume exploration at t; to
get to vertex w, because the known return path is longer
than B/2, the remaining number of steps allowed in this
exploration phase. DFS fails.

3 Piecemeal search on general graphs

In this section, we discuss piecemeal search on general
graphs. In particular, we show why "standard" ap-
proaches to this problem do not work. We also dehne the
off-line version of this problem, and give an approximate
solution for it. Finally, we give a general method for con-
verting certain types of search algorithms into piecemeal
search algorithms.

3.1 Initial approaches using DFS and BFS

A simple approach to piecemeal search on arbitrary undi-
rected graphs is to use an ordinary search algorithm—
breadth-first search (BFS) or depth-first search (DFS)—
and just interrupt the search as needed to return to
visit s. (Detailed descriptions of BFS and DFS can be
found in algorithms textbooks [3].) Once the learner has
returned to s, it goes back to the vertex at which search
was interrupted and resumes exploration.

In depth-first search, edges are explored out of the
most recently discovered vertex v that still has unex-
plored edges leaving it. When all of v's edges have been
explored, the search "backtracks" to explore edges leav-
ing the vertex from which v was discovered. This pro-
cess continues until all edges are explored. This search
strategy, without interruptions due to the piecemeal con-
straint, is efficient since at most 2|i?| edges are traversed.
Interruptions, or exploration in phases of limited dura-
tion, complicate matters. For example, suppose in the
first phase of exploration, at step B/2 of a phase the
learner reaches a vertex v as illustrated in Figure 2.
Moreover, suppose that the only path the learner knows
from s to v has length B/2. At this point, the learner
must stop exploration and go back to the start location s.
In the second phase, in order for the learner to resume
a depth-first search, it should go back to v, the most re-
cently discovered vertex. However, since the learner only
knows a path of B/2 to v, it cannot proceed with explo-
ration from that point. Other variations of DFS that we
have looked at seem to suffer from the same problem.

On the other hand, breadth-first search with inter-
ruptions does guarantee that all vertices in the graph
are ultimately explored. Whereas a DFS strategy can-
not resume exploration at vertices to which it only knows

Figure 3: A simple graph for which the cost of BFS is
quadratic in the number of edges.

a long path, a BFS strategy can always resume explo-
ration. This is because BFS ensures that the learner
always knows a shortest path from s to any explored
vertex. However, since a BFS strategy explores all the
vertices at the same distance from s before exploring any
vertices that are further away from s, the resulting algo-
rithm may not be efficient. Note that in the usual BFS
model, the algorithm uses a queue to keep track of which
vertex it will search from next. Thus, searching requires
extracting a vertex from this queue. In our model, how-
ever, since the learner can only search from its current
location, extracting a vertex from this queue results in a
relocation from the learner's current location to the loca-
tion of the new vertex. In Figure 3 we give an example
of a graph in which vertices of the same shortest path
distance from s are far away from each other. For such
graphs the cost of relocating between vertices can make
the overall cost of BFS quadratic in the number of edges
in the graph.

3.2 Off-line piecemeal search

We now develop a strategy for the off-line piecemeal
search problem which we can adapt to get a strategy
for the on-line piecemeal search problem.

In the off-line piecemeal search problem, the learner is
a given a finite connected undirected graph G = (V, E),
a start location s£ 7, and a bound B on the num-_
ber of edges traversed in any exploration phase. The
learner's goal is to plan an optimal search of the graph"
that visits every vertex and traverses every edge, and
also satisfies the piecemeal constraint (i.e., each explo-
ration phase traverses at most B edges and starts and
ends at the start location).

The off-line piecemeal search problem is similar to the
well-known Chinese Postman Problem [9], but where the
postman must return to the post-office every so often.
(We could call the off-line problem the Weak Postman
Problem, for postmen who cannot carry much mail.) The

a
a

eoj|a

|H

same problem arises when many postmen must cover the
same city with their routes.

The Chinese Postman Problem can be solved by a
polynomial time algorithm if the graph is either undi-
rected or directed [9]. The Chinese Postman problem
for a mixed graph that has undirected and directed edges
was shown to be NP-complete by Papadimitriou [10]. We
do not know an optimal off-line algorithm for the Weak
Postman Problem; this may be an NP-hard problem.
This is an interesting open problem.

We now give an approximation algorithm for the
off-line piecemeal search problem using a simple
"interruptecl-DFS''" approach.

Theorem 1 There crisis an approximate soItiHoi) to the
off-line piecemeal search problem for an arbilrary undi-
rected graph G= (V,E) tt'hich traverses 0(\E\) edges.

Proof: Assume that the radius of the graph is ?• and
that the number of edges the learner is allowed to tra-
verse in each phase of exploration is B = (2 -f a)r, for
some constant e\ such that c\r is a positive integer. Before
the learner starts traversing any edges in the graph, it
looks at the graph to be explored, and computes a depth-
first search tree of the graph. A depth first traversal of
this depth-first search tree defines a path of length 2\E\
which starts and ends at s and which goes through ev-
ery vertex and edge in the graph. The learner breaks
this path into segments of length a?-. The learner also
computes (off-line) a shortest path from s to the start of
each segment..

The learner then starts the piecemeal exploration of
the graph. Each phase of the exploration consists of
taking a shortest path from s to the start of a segment,
traversing the edges in the segment, and taking a short-
est path back to the start vertex. For each segment, the
learner traverses at, most 2r edges to get to and from

the segment. Since there are [^^-r] segments, there are

I" or 1 ~~ 1 interruptions, and the number of edge traver-
sal due to interruptions is at most:

2\E\
1)2'' <

<

•2\E\

ar

4\E\

a

Thus the total number of edge traversal« is at most
(4/a + 2)\E\ = 0(E). D

3.3 On-line piecemeal search

We now show how we can change the strategy outlined
above to obtain an efficient on-line piecemeal search al-
gorithm.

We call an on-line search optimally mterruptibh if it
always knows a shortest path via explored edges back
to s. We refer to a search as efficiently interruptible
if it always knows a path back to s via explored edges
of length at most the radius of the graph. We say a
search algorithm is a linear time algorithm if the learner
traverses 0(E) edges during the search.

Theorem 2 .4» efficiently interruptibh, linear time al-
gorithm for searching an undirected graph can be trans-
formed into a linear-time piecemeal search algorithm.

Proof: The proof of this theorem is similar to the
proof of Theorem 1. However, there are a few differ-
ences. Instead of using an ordinary search algorithm
(like DFS) and interrupting as needed to return to s,
we use an efficiently interruptible, linear time search al-
gorithm. Moreover, the search is on-line and is being
interrupted during exploration. Finally, the cost of the
search is not 2|£'| as in DFS, but at most c\E\ for some
constant c.

Assume that the radius of the graph is ?• and that, the
number of edges the learner is allowed to traverse in each
phase of exploration is B — (2 + o)r, for some constant n
such that or is a positive integer. Since the search algo-
rithm is efficient, the length of the path defined by the
search algorithm is at most c\E\, for some constant c,
r > 0. In each exploration phase, the learner will exe-
cute ar steps of the original search algorithm. At, the
beginning of each phase the learner goes to the appro-
priate vertex to resume exploration. Then the learner
traverses or edges as determined by the original search
algorithm, and finally the learner returns to .s. Since the
search algorithm is efficiently interruptible, the learner
knows a path of distance at most r from s to any ver-
tex in the graph. Thus the learner traverses at most
2r + ar = B edges during any exploration phase.

Since there are [-^-^] segments, there are [^-ih — 1
interruptions, and the number of edge traversals due to
interruptions is:

"f|EI1 i)2, < £l*!2r
ar

<

ar

•2e\E\

a

D
Thus, the total number of edge traversals is
\E\(2c/a + c) = 0(E).

For arbitrary undirected planar graphs, we can show
that any optimally interruptible search algorithm re-
quires S7(|/r|-') edge traversals in the worst case. For
example, exploring the graph in Figure 3 (known ini-
tially only to be an arbitrary undirected planar graph)
would result in \E\2 edge traversals if the search is re-
quired to be optimally interruptible.

For city-block graphs, however, we present two effi-
cient 0(|£"|) optimally interruptibh1 search algorithms.
Since an optimally interruptible search algorithm is also
an efficiently interruptible search algorithm, these two
algorithms give efficient piecemeal search algorithms for
city-block graphs. The iravefront algorithm is based on
BFS, but overcomes the problem of relocation cost. The
ray algorithm is a variant of DFS that always knows a
shortest path back to s. First, however, we develop some
properties of shortest paths in city-block graphs, based
on an analysis of BFS.

4 Shortest paths in city-block graphs
An optimally interruptible algorithm maintains at all
times knowledge of a shortest path back to s. Since

Figure 4: Environment explored by breath-first search,
showing only "wavefronts" at odd distance to s.

ill!'
-■ .-- - - -

1 [
i i

H ^

:-:_rr: T^

/,
j : j j

i—1— HÜ-lr
H-

i 1 V H—
! I 1 -- !

I ' 1 1 1 '
t ■*U ■ ■ I : | I 1 1 pis!

1
^ ! Hl i ; i D ''

1 1 . L.
; I & I—1

! i 1 ; : ,r ! i 1 i 1 1! ; i " ! l ! I i 1 i i

Figure 5: The four monotone paths and the four regions.

BFS is optimally interruptible, we study BFS in some
detail to understand the characteristics of shortest paths
in city-block graphs. Also, our wavefront algorithm is a
modification of BFS. Figure 4 illustrates the operation
of BFS. Our algorithms depend on the special properties
that shortest paths have in city-block graphs.

Let 6(v,v') denote the length of the shortest path be-
tween v and v', and let d[v] denote S(v,s), the length of
the shortest path from v back to s.

4.1 Monotone paths and the four-way
decomposition

A city-block graph can be usefully divided into four re-
gions (north, south, east, and west) by four monotone
paths: an east-north path, an east-south path, a west-
north path, and a west-south path. The east-north path
starts from s, proceeds east until it hits an obstacle, then
proceeds north until it hits an obstacle, then turns and
proceeds east again, and so on. The other paths are
similar (see Figure 5). Note that all monotone paths
are shortest paths. Furthermore, note that s is included
in all four regions, and that each of the four monotone
paths (east-north, east-south, west-north, west-south) is
part of all regions to which it is adjacent.

In Lemma 1 we show that for any vertex, there is a
shortest path to s through only one region. Without loss

of generality, we therefore only consider optimally in-
terruptible search algorithms that divide the graph into
these four regions, and search these regions separately.
In this paper, we only discuss what happens in the north-
ern region; the other regions are handled similarly.

Lemma 1 There exists a shortest path from s to any
point in a region that only goes through that region.

Proof: Consider a point v in some region A. Let p
be any shortest path from s to the point v. If p is not
entirely contained in region A, we can construct another
path p' that is entirely contained in region A. We note
that the vertices and edges which make up the monotone
paths surrounding a region A are considered to be part
ofthat region.

Since path p starts and ends in region A but is not
entirely contained in region A, there must be a point
u that is on p and also on one of the monotone paths
bordering A. Note that u may be the same as v. Without
loss of generality, let u be the last such point, so that
the portion of the path from u to v is contained entirely
within region A. Then the path p' will consist of the
shortest path from s to u along the monotone path that u
is on, followed by the portion of p from u to v. This
path p' is a shortest path from s to v because p was a
shortest path and p' can be no longer than p. □

4.2 Canonical shortest paths of city-block
graphs

We now make a fundamental observation on the nature
of shortest paths from a vertex v back to s. In this sec-
tion, we consider shortest paths in the northern region;
properties of shortest paths in other region are similar.

Lemma 2 For any vertex v in the northern region,
there is a canonical shortest path from v to the start ver-
tex s which goes south whenever possible. The canonical
shortest path goes east or west only when it is prevented
from going south by an obstacle or by the monotone path
defining the northern region.

Proof: We call the length d[v] of the shortest path
from v to s the depth of vertex v. We show this lemma
by induction on the depth of a vertex.

For the base case, it is easy to verify that any vertex v
such that d[v] = 1 has a canonical shortest path that goes
south whenever possible.

For the inductive hypothesis, we assume that the
lemma is true for all vertices that have depth t—l, and we
want to show it is true for all vertices that have depth t.
Consider a vertex p at depth t. If there is an obstacle ob-
structing the vertex that is south of point p or if p is on a
horizontal segment of the mononotone path defining the
northern region, then it is impossible for the canonical
shortest path to go south, and the claim holds. Thus,
assume the point south of p is not obstructed by an ob-
stacle or by the monotone path defining the northern
region. Then we have the following cases:

Case 1: Vertex ps directly south of p has depth t—l.
In this case, there is clearly a canonical shortest path
from p to s which goes south from p to ps and then

follows the canonical shortest path of ps, which we know
exists by the inductive assumption.

Case 2: Vertex ps directly south of p has depth not
equal to / — 1. Then one of the remaining adjacent ver-
tices must, have depth / — 1 (otherwise it is impossible
for p to have depth 1). Furthermore, none of these ver-
tices has depth less than 1 — 1, for otherwise vertex p
would have depth less than /.

Note that the point directly north of p cannot have
depth / — 1. If it did, then by the inductive hypothesis,
it has a canonical shortest path which goes south. But
then p has depth / — 2, which is a contradiction.

Thus, either the point west of p or the point east of/)
has depth / — 1. Without loss of generality, assume that
the point. />„, west of p has depth 1 — 1. We consider two
subcases. In case (a), there is a path of length 2 from pw

to ps that goes south one step from pw, and then goes
east, to p„. In case (h), there is no such path.

Case (a): If there is such a path, the vertex directly
south of pw exists, and by the inductive hypothesis has
depth 1—2 (since there is a canonical shortest path
from pw to s of length 7 — 1, the vertex directly to the
south of pw has depth 1 — 2). Then ps, which is directly
east of this point, has depth at most 1 — 1 and thus there
is a canonical path from /) to s which goes south when-
ever possible.

Case (b): Note that the only way there does not exist
a. path of length 2 from pw to ps (other than the obvious
one through p) is if p is a vertex on the northeast corner
of an obstacle which is bigger than lxl. Suppose the
obstacle is k\ x /fc-j, where k\ is the length of the north
(and south) side of the obstacle, and k-j is the length
of the east (and west) side of the obstacle. We know
by the inductive hypothesis that the canonical shortest
path from pw goes either east or west along the north
side of this obstacle, and since the vertex p has depth
1 we know that the canonical shortest path goes west.
After having reached the corner, the canonical shortest
path from p,„ to .s proceeds south. Thus, the vertex
which is on the southwest corner of this obstacle has
depth I = 1 — \ — (k'i — 1) — ko. If we go from this vertex
to />., along the south side of the obstacle and then along
the east side of the obstacle, then the depth of point ps

is at most I + k\ + (k-j — 1) = / — 1. Thus, in this case
there is also a canonical path from p to s which goes
south whenever possible. G

Lemma 3 Consider adjacent vertices v and w in the
grid graph where v is north ofw. In ihe northern region,
without loss of generality. d[v] = d[w] + 1.

Proof:
Lemma 2.

The proof follows immediately from
D

Lemma 4 Consider adjacent vertices v and w in the
grid graph where v is ivest ofw. In the northern region,
without loss of generality, d[v] = d[w] ± 1.

Proof: We prove the lemma by induction on the in-
coordinate of the vertices in the northern region. If v
and w have the same «/-coordinate as s, then we know
that d[v] — (■/[«'] +] if s is east ofw and d[v] — d[ir] — 1 if s

Figure 6: Splitting and merging of wavefronts along a
corner of an obstacle. Illustration of meeting point and
sibling wavefronts.

is west of r. Assume that the claim is true for vertices v
and w with (/-coordinate k. In the following we show that
it is also true for vertices v and w with «/-coordinate k + \.
We distinguish the case that there is no obstacle directly
south of c and w from the case that there is an obstacle
directly south of c or w.

If there is no obstacle directly south of v and w the
claim follows by Lemma 3 and the induction assumption.

Now we consider the case that there is an obstacle
directly south of c or w. We assume without loss of
generality that both v and (/• are on the boundary of
the north side of the obstacle. (Note that v or w may,
however, be at a corner of the obstacle.)

If our claim did not hold it would mean that d[v] —
d[w] for two adjacent vertices v and w (because, in any
graph, the d values for adjacent vertices can differ by at
most one). This would also mean that all shortest paths
from v to s must go through vertex vw at the north-west
corner of the obstacle and all shortest paths from tv to .s
must go through vertex ve at the north-east corner of
the obstacle. However, we next show that there is a
grid point w on the boundary of the north side of the
obstacle that has shortest paths through both ve and vw.
The claim of Lemma 4 follows directly.

The distance j- between 77) and vw can be obtained by
solving the following equation: j' + rf[cu,] = (k — x) + d[i\]
where k is the length of the north side of the obstacle.
The distance x is (k + d[i\] — rf[c„,])/2. This distance
is integral and therefore, 777 exists because by inductive
assumption the following holds: If A- is even then \d[v,] —
d[vw]\ is even, and if k is odd then \d[i\] — d[vu.]\ is odd.

D

5 The wavefront algorithm

In this section we first develop some preliminary con-
cepts and results based on an analysis of breadth-first
search. We then present the wavefront algorithm, prove
it to be correct, and show that it runs in linear time.

5.1 BFS and wavefronts

In city-block graphs a BFS can be viewed as exploring
the graph in waves that expand outward from s, much
as waves expand from a pebble thrown into a pond. Fig-
ure 4 illustrates the wavefronts that can arise.

A wavefront w can then be defined as an ordered list
of explored vertices (vi, v2, ■ ■ ■, vm), m > 1, such that
d[vi] = d[vi] for all i, and such that 6(vi,vi+i) < 2 for
all i. (As we shall prove, the distance between adjacent
points in a wavefront is always exactly equal to 2.) We
call d[w] = d[vi] the distance of the wavefront.

There is a natural "successor" relationship between
BFS wavefronts, as a wavefront at distance t generates
a successor at distance t + 1. We informally consider a.
wave to be a sequence of successive wavefronts. Because
of obstacles, however, a wave may split (if it hits an
obstacle) or merge (with another wave, on the far side
of an obstacle). Two wavefronts are sibling wavefronts if
they each have exactly one endpoint on the same obstacle
and if the waves to which they belong merge on the far
side of that obstacle. The point on an obstacle where
the waves first meet is called the meeting point m of
the obstacle. In the northern region, meeting points are
always on the north side of obstacles, and each obstacle
has exactly one meeting point on its northern side. See
Figures 6 and 7.

Lemma 5 A wavefront can only consist of diagonal seg-
ments.

Proof: By definition a wavefront is a sequence of
vertices at the same distance to s for which the distance
between adjacent vertices is at most 2. It follows from
Lemma 3 and 4 that neighboring points in the grid can-
not be in the same wavefront. Therefore, the distance
between adjacent vertices is exactly 2. Thus, the wave-
front can only consist of diagonal segments. □

We call the points that connect diagonal segments (of
different orientation) of a wavefront peaks or valleys. A
peak is a vertex on the wavefront that has a larger y-
coordinate than the y-coordinates of its adjacent vertices
in the wavefront, and a valley is a vertex on the wavefront
that has a smaller ^/-coordinate than the y-coordinates
of its adjacent vertices as illustrated in Figure 7.

The initial wavefront is just a list containing the start
point s. Until a successor of the initial wavefront hits an
obstacle, the successor wavefronts consist of two diagonal
segments connected by a peak. This peak is at the same
x-coordinate for these successive wavefronts. Therefore,
we say that the shape of the wavefronts does not change.
In the northern region a wavefront can only have descen-
dants that have a different shape if a descendant curls
around the northern corners of an obstacle, or when it
merges with another wavefront, or splits into other wave-
fronts. These descendants may have more complicated
shapes.

A wavefront w splits whenever its hits an obsta-
cle. That is, if a vertex v> in the wavefront is on
the boundary of an obstacle, w splits into wavefronts
wi = {vi,v2, ...,Vi) and w2 - (vi, vi+i,.. .,vm). Wave-
front wi propagates around the obstacle in one direc-
tion, and wavefront w2 propagates around in the other
direction. Eventually, some descendant wavefront of wi
and some descendant wavefront of w2 will have a com-
mon point on the boundary of the obstacle - the meet-
ing point. The position of the meeting point is deter-
mined by the shape of the wave approaching the ob-

peak valley peak

Figure 7: Shapes of wavefronts. Illustration of peaks and
valleys, and front and back of an obstacle. The meeting
point is the lowest point in the valley.

stacle. (In the proof of Lemma 4 vertex m is a meet-
ing point and we showed how to calculate its postion
once the length k of the north side of the obstacle and
the shortest path distances of the vertices ve and vw at
the north-east and north-west corners of the obstacle are
known: The distance from vw to the meeting point m is
(k + d[vw]-d[ve})/2.)

In the northern region, the front of an obstacle is its
south side, the back of an obstacle is its north side, and
the sides of an obstacle are its east and west sides. A
wave always hits the front of an obstacle first. Con-
sider the shape of a wave before it hits an obstacle and
its shape after it passes the obstacle. If a peak of the
wavefront hits the obstacle (but not at a corner), this
peak will not be part of the shape of the wave after it
"passes" the obstacle. Instead, the merged wavefront
may have one or two new peaks which have the same
IE-coordinates as the sides of the obstacle (see Figure 7).
The merged wavefront has a valley at the meeting point
on the boundary of the obstacle.

5.2 Description of the wavefront algorithm

The wavefront algorithm, presented in this section, mim-
ics BFS in that it computes exactly the same set of wave-
fronts. However, in order to minimize relocation costs,
the wavefronts may be computed in a different order.
Rather than computing all the wavefronts at distance t
before computing any wavefronts at distance t + 1 (as
BFS does), the wavefront algorithm will continue to fol-
low a particular wave persistently, before it relocates and
pushes another wave along.

We define expanding a wavefront w = (i>i, v2,. ■ ■, vj)
as computing a set of zero or more successor wavefronts
by looking at the set of all unexplored vertices at dis-
tance one from any vertex in w. Every vertex v in a
successor wavefront has d[v] - d[w] + 1. The learner
starts with vertex v\ and moves to all of its unexplored
adjacent vertices. The learner then moves to the next
vertex in the wavefront and explores its adjacent unex-
plored vertices. It proceeds this way down the vertices
of the wavefront.

The following lemma shows that a wavefront of / ver-

Figure 8: Blockage of tcj by tr2. Wavefront tcj has fin-
ished covering one side of the obstacle and the meeting
point is not, set yet.

Figure 9: Blockage of ir{ by w2. Wavefront W[has
reached the meeting point on the obstacle, but the sib-
ling wavefront W; has not.

ticcs can be expanded in time 0(1).

Lemma 6 A learner ean expand a warefronl w =
(vj, ■<>•_>,..., vi) by traversing at mos1 2(/ — 1) -f- 2 [7/2] -f 4
edges.

Proof: To expand a wavefront w = (f'i.r-j vi)
the learner needs to move along each vertex in the wave-
front and find all of its unexplored neighbors. This can
be done efficiently by moving along pairs of unexplored
edges between vertices in v. These unexplored edges
connect. / of the vertices in the successor wavefront. This
results in at most 2(1— 1) edge traversals, since neighbor-
ing vertices are at most 2 apart. The successor wavefront
might have 1 + 2 vertices, and thus at the beginning and
the end of the expansion (i.e., at vertices n and c/),
the learner may have to traverse an edge twice. In ad-
dition, at any vertex which is a peak, the learner may
have to traverse an edge twice. Note that a wavefront
has at. most |7/2] peaks. Thus, the total number of edge
traversals is at most 2(1 - 1) -f 2[//2"| +4. D

Since our algorithm computes exactly the same set
of wavefronts as BFS, but. persistently pushes one wave
along, it. is important to make sure the wavefronts are
expanded correctly. There is really only one incorrect
way to expand a wavefront and get something other than
what BFS obtained as a successor: to expand a wave-
front that is touching a meeting point before its sibling
wavefront has merged with it. Operationally, this means
that the wavefront algorithm is blocked in the follow-
ing two situations: (a) it cannot expand a wavefront
from the side around to the back of an obstacle before
the meeting point for that obstacle has been set (see
Figure 8), and (b) it cannot expand a wavefront that
touches a meeting point until its sibling has arrived there
as well (see Figure 9). A wavefront iv-j blocks a wave-
front W\ if W'2 must be expanded before ?/'i can be safely
expanded. We also say w-> and w\ inferfcre.

A wavefront iv is an expiring wavefront if its descen-
dant wavefronts can never interfere with the expansion
of any other wavefronts that now exist or any of their de-
scendants. A wavefront iv is an expiring wavefront if its
end points are both on the front of the same obstacle: iv
will expand into the region surrounded by the wavefront
and the obstacle, and then disappear or "expire." We
say that, a wavefront expires if it consists of just one
vertex with no unexplored neighbors.

Figure 10: Triangular areas (shaded) delineated by two
expiring wavefronts.

Procedure WAY'EFRONT-ALGORITHM is an efficient
optimally interruptible search algorithm that can be
used to create an efficient piecemeal search algorithm. It
repeatedly expands one wavefront until it splits, merges,
expires, or is blocked. The WAVEFRONT-AEGORITHM

takes as an input a start point s and the boundary coor-
dinates of the environment. It calls procedure OREATE-

MONOTONE-PATHS to explore four monotone paths (see
section 4.1) and define the four regions. Then procedure
EXPLORE-AREA is called for each region.

WAVEFRONT-AI,GORITHM(S, boundary)

1 OREATE-MONOTONE-PATHS

2 for region = north, south, east, and west

3 initialize current wavefront w — (s)

4 ExPLORE-AREA((/\ region)

5 Take a shortest path to .s

For each region we keep an ordered list L of all the
wavefronts to be expanded. In the northern region, the
wavefronts are ordered by the r-coordinate of their west-
most point. Neighboring wavefronts are wavefronts that
are adjacent in the ordered list L of wavefronts. Note
that for each pair of neighboring wavefronts there is an
obstacle on which both wavefronts have an endpoint.

Initially, we expand each wavefront in the northern
region from its west-most endpoint to its east-most end-
point (i.e.. we are expanding wavefronts in a "clockwise"
manner). The direction of expansion changes for the
first time in the northern region when a wavefront is
blocked by a wavefront to its west (the direction of ex-

EXPLORE-AREA(W, region)
1 initialize list of wavefronts L <— (w)
2 initialize direction dir *— clockwise
3 repeat EXPAND current wavefront w to successor wavefront ws

4 RELOCATE (WS, dir)
5 current wavefront w := ws

6 if w is a single vertex with no unexplored neighboring vertices
7 then remove w from ordered list L of wavefronts
8 if L is not empty
9 then w := neighboring wavefront of w in direction dir

10 RELOCATE (W, dir)
11 else replace w by ws in ordered list L of wavefronts
12 if the second back corner of any obstacle(s) has just been explored
13 then set meeting points for those obstacle(s)
14 if w can be merged with adjacent wavefront(s)
15 then MERGE (ID, L, region, dir)
16 if w hits obstacle(s)
17 then SPLIT (W, L, region, dir)
18 if L not empty
19 then if w is blocked by neighboring wavefront w' in direction

D E { clockwise, counter-clockwise }
20 then dir := D
21 while w is blocked by neighboring wavefront w'
22 do w := w'
23 RELOCATE (W, dir)
24 until L is empty

pansion then becomes "counter-clockwise"). In fact, the
direction of expansion changes each time a wavefront is
blocked by a wavefront that is in the direction opposite
of expansion.

We treat the boundaries as large obstacles. The north
region has been fully explored when the list L of wave-
fronts is empty.

Note that vertices on the monotone paths are con-
sidered initially to be unexplored, and that expanding a
wavefront returns a successor that is entirely within the
same region.

Each iteration of EXPLORE-AREA expands a wave-
front. When EXPAND is called on a wavefront w, the
learner starts expanding w from its current location,
which is a vertex at one of the end points of wavefront w.
It is convenient, however, to think of EXPAND as finding
the unexplored neighbors of the vertices in w in parallel.

Depending on what happens during the expansion,
the successor wavefront can be split, merged, blocked,
or may expire. Note that more than one of these cases
may apply.

Procedures MERGE and SPLIT (see the following
page) handle the (not necessarily disjoint) cases of merg-
ing and splitting wavefronts. Note that we use call-by-
reference conventions for the wavefront w and the list L
of wavefronts (that is, assignments to these variables
within procedures MERGE and SPLIT affect their val-

ues in procedure EXPLORE-AREA). Each time procedure
RELOCATE(W, dir) is called, the learner moves from its
current location to the appropriate end point of w. in
the northern region, if the direction is "clockwise" the
learner moves to the west-most vertex of w, and if the
direction is "counter-clockwise," the learner moves to the
east-most vertex of w.

Procedure RELOCATE(w,d?Y) can be implemented so
that when it is called, the learner simply moves from
its current location to the appropriate endpoint of w
via a shortest path in the explored area of the graph.
However, for analysis purposes, we assume that when
RELOCATE(W, dir) is called the learner moves from its
current location to the appropriate end point of w as
follows.

• When procedure RELOCATE(WS, dir) is called in
line 4 of EXPLORE-ARE A, the learner traverses
edges between the vertices in wavefront ws to get
back to the appropriate end point of the newly ex-
panded wavefront.

• When procedure RELOCATE(WS , dir) is called in
line 10 of EXPLORE-AREA, the learner traverses
edges along the boundary of an obstacle.

• When procedure RELOCATE(IDS, dir) is called in
line 8 of MERGE, the learner traverses edges be-
tween vertices in wavefront w to get to the appro-
priate end point of the newly merged wavefront.

• When procedure REI,OCATE(ir,. dir) is called in
line 23 of EXPLORE-AREA. the learner traverses
edges as follows. Suppose the learner is in the
northern region and at the west-most vertex of
wavefront (r(l, and assume that w is to the east
of (Co. Note that both u\) and iv are in the current
ordered list of wavefronts L. Thus there is a path
between the learner's current location and wave-
front w which "follows the chain" of wavefronts
between it\) and w. That is, the learner moves
from «do to w as follows. Let ivi.w-j U'k be
the wavefronts in the ordered list of wavefronts be-
tween wo and and w, and let bü,bi. .. .bi+i be the
obstacles separating wavefronts ir0. iv\, . . ., u'j.. ir
(i.e., obstacle 60 is between u'o and trj, obsta-
cle 61 is between «>i and iv-j, and so on). Then
to relocate from wt) to w\ the learner traverses the
edges between vertices of wavefront WQ to get to
the east-most vertex of u'o which is on obstacle 6Q.

Then the learner traverses the edges of the obsta-
cle hu to get to the west-point vertex of «'1, and
then the learner traverses the edges between ver-
tices in wavefront w>i to get to the east-most ver-
tex of it>i which is on obstacle b\. The learner con-
tinues traversing edges in this manner (alternating
between traversing wavefronts and traversing ob-
stacles) until it is at the appropriate end vertex of
wavefront w.

MERC;E(U>, L, region, dir)

1 remove M> from list L of wavefronts

2 whilo there is a neighboring wavefront «' with

which w can merge

3 do remove iv' from list L of wavefronts

4 merge w and (/•' into wavefront u"

5 w <— w"

6 put w in ordered list L of wavefronts

7 if w is not blocked

8 them RELOCATE (IV, dir)

Wavefronts are merged when exploration continues
around an obstacle. A wavefront can be merged with
two wavefronts, one on each end.

SPLIT(UJ, L, region, dir)

1 split w into appropriate wavefronts xc0 ivn

in standard order

2 remove w from ordered list L of wavefronts

3 for i = 0 to n

A put ivj on ordered list L of wavefronts

5 if dir = clockwise

6 then w ■>— i/»o

7 else «.' r— w„

When procedure SPLIT is called on wavefront w, we
note that the wavefront is either the result of calling pro-
cedure EXPAND in line A of EXPLORE-AREA or the re-
sult, of calling procedure MERGE in line 15 of EXPLORE-

AREA. Once wavefront, iv is split into w0 irrl, we
update the ordered list L of wavefronts, and update the

current wavefront.

5.3 Correctness of the piecemeal search
algorithm

The following theorems establish the correctness of our
algorithm.

Theorem 3 Tin algorithm EXPLORE-AREA expands
wavefronts so as io maintain optimal intcrruptabilitij.

Proof: This is shown by induction on the distance
of the wavefronts. The key observations are (1) there is
a canonical shortest path from any vertex v to s which
goes south whenever possible, but east or west around
obstacles and (2) a wavefront is never expanded beyond
a meeting point.

First we claim that at any time our algorithm knows
the shortest path from s to any explored vertex in the
north region. We show this by induction on the number
of stages in the algorithm. Each stage of the algorithm
is an expansion of a wavefront.

The shortest path property is trivially true when the
number of stages k = 1. There is initially only one wave-
front, the start point. Now we assume all wavefronts that
exist just after the A*—tli stage satisfy the shortest path
property, and we want to show that all wavefronts that
exist just after the k + 1-st stage also satisfy the shortest
path property.

Consider a wavefront w in the A'-th stage which the
algorithm has expanded in the k + 1-st stage to in,. We
claim that all vertices in u\< have shortest path length
(/[[/']+ 1. Note that any vertex in u\, which is directly
north of a vertex in ir definitely has shortest path length
rf[ir] + l. This is because there is a shortest path from any
vertex 1 to s which goes south whenever possible, but if
it is not possible to go south because of an obstacle, it
goes east or west around the obstacle.

The only time any vertex r in «',, is not directly north
of a vertex in w is when w is expanded around the back
of an obstacle. This can only occur for a vertex that is
either the west-most or east-most vertex of a wavefront
in the north region. Without loss of generality we as-
sume that r is the west-most point on ws and v is on
the boundary of some obstacle b. Let p be the path that
leads northwards from the front east corner vc of obsta-
cle b to the meeting point of b. We know that there
exists a shortest path from s to any vertex vp on p that
goes from s to (v and from (7 to vr along path p. (The
shortest path does not go through the front west corner
because vp is east of the meeting point.) Because the al-
gorithm only expands any wavefront until it readies the
meeting point of an obstacle, vertex v is not to the west
of the meeting point. It has a shortest path from ,s that
goes through c,- and along the obstacle to v. Thus, the
wavefront that includes vertex v is expanded correctly
so as to maintain shortest path information. D

Theorem 4 There is always a wavefront that is not
blocked.

Proof: We consider exploration in the north region.
The key observations are that (1) neighboring wavefronts

cannot simultaneously block each other and (2) the east-
most wavefront in the north region cannot be blocked
by anything to its east, and the west-most wavefront in
the north region cannot be blocked by anything to its
west. Thus the learner can always "follow a chain" of
wavefronts to either its east or west to find an unblocked
wavefront.

A neighboring wavefront is either a sibling wavefront
or an expiring wavefront. An expiring wavefront can
never block neighboring wavefronts. In order to show
that neighboring wavefronts cannot simultaneously block
each other, it thus suffices to show next that sibling wave-
fronts cannot block each other. We use this to show that
we can always find a wavefront w which is not blocked.
The unblocked wavefront w nearest in the ordered list
of wavefronts L can be found by "following the chain"
of blocked wavefronts from w to w. By following the
chain of wavefronts between w and w we mean that the
learner must traverse the edges that connect the vertices
in each wavefront, between w and w in L and also the
edges on the boundaries of the obstacles between these
wavefronts. Note that neighboring wavefronts in list L
each have at least one endpoint that lies on the boundary
of the same obstacle.

Before we show that sibling wavefronts cannot block
each other we need the following. The first time an ob-
stacle is discovered by some wavefront, we call the point
that the wavefront hits the obstacle the discovery point.
(Note that there may be more than one such point. We
arbitrarily choose one of these points.) In the north re-
gion, we split up the wavefronts adjacent to each obsta-
cle into an east wave and a west wave. We call the set
of all these wavefronts which are between the discovery
point and the meeting point of the obstacle in a clock-
wise manner the west wave. We define the east wave of
an obstacle in the same way.

The discovery point of an obstacle b is always at the
front of b. The wavefront that hits at b is split into two
wavefronts, one of which is in the east wave and one
of which is in the west wave of the obstacle. We claim
that a descendent wavefront w\ in the west wave and a
descendant wavefront w2 in the east wave cannot simul-
taneously block each other. Assume that the algorithm
is trying to expand Wi but that wavefront w2 blocks w\.
Wavefront w2 can only block w\ if one of the following
two cases applies. In both cases, we show that Wi cannot
also block w2.

In the first case, w\ is about to expand to the back
of obstacle b, but both of the back corners of obstacle 6
have not been explored, and thus the meeting point has
not been determined. Wavefront u>2 can only be blocked
by wi if w2 is either already at the meeting point of the
obstacle or about to expand to the back of the obsta-
cle. Since none of the back corners of obstacle b have
been explored, neither of these possibilities holds. Thus,
wavefront w\ does not block w2.

In the second case, w\ has reached the meeting point
at the back of b. Therefore, both back corners of the
obstacle have been explored and w\ is not blocking w2.

We have just shown that if w2 blocks w\ then w\ can-
not also block w2. Thus, the algorithm tries to pick w2

10

as the nearest unblocked wavefront to w\. However, w2

may be blocked by its sibling wavefront w3 on a differ-
ent obstacle b'. For this case, we have to show that this
sibling wavefront w3 is not blocked, or that its sibling
wavefront w^ on yet another obstacle b" is not blocked
and so forth. Without loss of generality, we assume that
the wavefronts are blocked by wavefronts towards the
east. Proceeding towards the east along the chain of
wavefronts will eventually lead to a wavefront which is
not blocked - the east-most wavefront in the northern
region. The east-most wavefront is adjacent to the ini-
tial monotone east-north path. Therefore, it cannot be
blocked by a wavefront towards the east. Ü

Theorem 5 The wavefront algorithm is an optimally
interruptible piecemeal search algorithm for city-block
graphs.

Proof: To show the correctness of a piecemeal algo-
rithm that uses our wavefront algorithm for exploration
with interruption, we show that the wavefront algorithm
maintains the shortest path property and explores the
entire environment.

Theorem 3 shows by induction on shortest path
length that the wavefront algorithm mimics breadth-first
search. Thus it is optimally interruptible.

Theorem 4 shows that the algorithm does not termi-
nate until all vertices have been explored. Completeness
follows. D

5.4 Efficiency of the wavefront algorithm

In this section we show the number of edges traversed
by the piecemeal algorithm based on the wavefront algo-
rithm is linear in the number of edges in the city-block
graph.

We first analyze the number of edges traversed by
the wavefront algorithm. Note that the learner traverses
edges when procedures CREATE-MONOTONE-PATHS, EX-

PAND, and RELOCATE are called. In addition, it tra-
verses edges to get back to s between calls to EXPLORE-

ÄREA. These are the only times the learner traverses
edges. Thus, we count the number of edges traversed
for each of these cases. In Lemmas 7 to 10, we ana-
lyze the number of edges traversed by the learner due
to calls of RELOCATE. Theorem 6 uses these lemmas
and calculates the total number of edges traversed by
the wavefront algorithm.

Lemma 7 An edge is traversed at most once due to
relocations after a wavefront has expired (line H of
EXPLORE-AREA/

Proof: Assume that the learner is in the northern re-
gion and expanding wavefronts in a clockwise direction.
Suppose wavefront w has just expired onto obstacle b
(i.e., it is a single vertex with all of its adjacent edges
explored). The learner now must relocate along obsta-
cle 6 to its neighboring wavefront w' to the east. Note
hat w' is also adjacent to obstacle 6, and therefore the
learner is only traversing edges on the obstacle b.

Note that at this point of exploration, there is no
wavefront west of w which will expire onto obstacle b.

This is because expiring wavefronts are never blocked,
and thus the direction of expansion cannot bo changed
due to an expiring wavefront. So, when a wavefront is
split,, the learner always chooses the west-most wavefront
to expand first. Thus, the wavefronts which expire onto
obstacle b are explored in a west to east manner. Thus
relocations after wavefronts have expired on obstacle b
continuously move east along the boundary of this ob-
stacle. * D

Lemma 8 An edge is traversed a1 mos1 once due to
relocations after wavefronts have merged (line JO of
MF.RC.K).

Proof: Before a call to procedure MERGE, the learner
is at the appropriate end vertex of wavefront w. Let's
assume that the learner is in the northern region and
expanding wavefronts in a clockwise direction. Thus the
learner is at the west-most vertex of wavefront w. Note
that wavefront w can be merged with at most two wave-
fronts, one at each end. but only merges with the wave-
front to the west of w actually cause the learner to relo-
cate. Suppose wavefront w is merged with wavefront ic'
to its west, to form wavefront w". Then, if the result-
ing wavefront, w" is unblocked, procedure RELOCATE is
called and the learner must traverse ic" to its west-most
vertex (i.e., also the west-most vertex of «'). However,
since wavefront, w" is unblocked, w" can immediately be
expanded and is not traversed again. □

Lemma 9 At most one wavefront from the east ware of
an obstacle is blocked by one or more wavefronts in the
west wave. At most one wavefront from the ivest ware is
blocked by one or more wavefronts in the east wave.

Proof: Consider the west wave of an obstacle. By
the definition of blocking, there are only two possible
wavefronts in the west wave that can be blocked. One
wavefront, is adjacent to the back corner of the obstacle.
Call this wavefront t<>i. The other wavefront is adjacent
to the meeting point of the obstacle. Call this wave-
front, K>v.

We first, show that if </'i is blocked then ic2 will not
be blocked also. Then we also know that if »••_. is blocked
then «)] must not have been blocked. Thus at most one
wavefront in the west wave is blocked.

If »)] is blocked by one or more wavefronts in the east
wave then these wavefronts can be expanded to the meet-
ing point of the obstacle without interference from w'i.
That is, wavefront w\ cannot block any wavefront in the
east, wave, and thus there will be no traversal* around the
boundary of the obstacle until the east wave has reached
the meeting point. At this point, the west wave can be
expanded to the meeting point without any wavefronts in
the east, wave blocking any wavefronts in the west wave.

Similarly, we know that at most one wavefront from
the west wave is blocked by one or more wavefronts in
the east wave. O

Lemma 10 An edge is traversed at most three times due
to relocation after blockage (line 33 of EXPLORE-AREA/

11

Proof: Without loss of generality, we assume that
the wavefronts are blocked by wavefronts towards the
east. Proceeding towards the east along the chain of
wavefronts will eventually lead to a wavefront which is
not blocked, since the east-most wavefront is adjacent to
the initial monotone east-north path.

First we show that any wavefront is traversed at most
once due to blockage. Then we show that the boundary
of any obstacle is traversed at most twice due to block-
age. Note that pairs of edges connecting vertices in a
wavefront may also be edges which are on the bound-
aries of obstacles. Thus any edge is traversed at most
three times due to relocation after blockage.

We know from Theorem 4 that there is always a wave-
front that is not blocked. Assume that the learner is at a
wavefront w which is blocked by a vvavefront to its east.
Following the chain of wavefronts to the east leads to an
unblocked wavefront «•'. This results in one traversal of
the wavefronts. Now this wavefront w' is expanded until
it is blocked by some wavefront «•". Note that vvave-
front v" cannot be to the west of«'', since we know that
the wavefront west of w' is blocked by »•'. (We show
in the proof of Theorem 4 that if irt blocks w-j then w2

does not block »v) The learner will not move to any
wavefronts west of wavefront w' until a descendant, of w'
no longer blocks the wavefront immediately to its west.
Once this is the case, then the west wavefront can im-
mediately be expanded. Similarly, we go back through
the chain of wavefronts, since - as the learner proceeds
west - it expands each wavefront in the chain. Thus the
learner never traverses any vvavefront more than once
due to blockage.

Now we consider the number of traversal*, clue to
blockage, of edges on the boundary of obstacles. As
wavefronts expand, their descendant wavefronts may still
be adjacent to the same obstacles. Thus, we need to
make sure that the edges on the boundaries of obstacles
are not traversed too often due to relocation because of
blockage. We show that any edge on the boundary of
an obstacle is not traversed more than twice duo to re-
locations because of blockage. That is, the learner does
not move back and forth between wavefronts on different
sides of an obstacle. Lemma 9 implies that each edge on
the boundary of the obstacle is traversed at most twice
due to blockage.

Thus, since the edges on the boundary of an obstacle
may be part of the pairs of edges connecting vortices in
a vvavefront, the total number of times any edge can be
traversed due to blockage is at most three. O

Theorem 6 The wavefront algorithm is linear in the
number of edges in the city-block graph.

Proof: We show that the total number of edge traver-
sal is no more than 14\E\. Note that when the proce-
dures CREATE-MONOTONE-PATIIS, EXPAND, and RELO-

CATE are called, the learner traverses edges in the envi-
ronment. In addition, the learner traverses edges in the
environment to get back to s after exploration of each
of the four regions. These are the only times the learner
actually traverses edges in the environment. Thus, to

calculate the total number of edge traversals, we count
the edge traversals for each of these cases.

The learner traverses the edges on the monotone paths
once when it explores them, and once to get back to the
start point. This is clearly at most 2\E\ edge traversals.
The learner walks back to s four times after exploring
each of the four regions. Thus the number of edges tra-
versed here is at most 4|i?|. Lemma 6 implies that the
total number of edge traversals caused by procedure EX-
PAND is at most 2\E\. We now only need to consider the
edge traversals due to calls to procedure RELOCATE.

Procedure RELOCATE is called four times within
EXPLORE-AREA and MERGE. The four calls are due to
expansion (line 6 of EXPLORE-AREA), expiring (line 14
of EXPLORE-AREA), merging (line 10 of MERGE) and
blocking (line 33 of EXPLORE-AREA). Relocations af-
ter expanding a wavefront results in a total of \E\ edge
traversals. Lemma 7 shows that edges are traversed at
most twice due to expiring wavefronts. Lemma 8 shows
that edges are traversed at most once due to relocations
after merges. Finally, Lemma 10 shows that edges are
traversed at most three times due to relocations after
blockage. Thus the total number of edge traversals due
to calls of procedure RELOCATE is at most 6\E\.

Thus the total number edges traversed by the wave-
front algorithm is at most 14\E\. A more careful analysis
of the wavefront algorithm can improve the constant fac-
tor. D

Theorem 7 A piecemeal algorithm based on the wave-
front algorithm, runs in time linear in the number of
edges in the city-block graph.

Proof: This follows immediately from Theorem 5 and
Theorem 6. n

6 Ray algorithm
We now give another efficient optimally interruptible
search algorithm, called the ray algorithm. This thus
yields another efficient piecemeal algorithm for searching
a city-block graph. This algorithm is simpler than the
wavefront algorithm, but may be less suitable for gener-
alization, because it appears more specifically oriented
towards city-block graphs.

The ray algorithm also starts by finding the four
monotone paths, and splitting the graph into four regions
to be searched separately. The algorithm explores in a
manner similar to depth-first search, with the following
exceptions. Assume that it is operating in the northern
region. The basic operation is to explore a northern-
going "ray" as far as possible, and then to return to the
start point of the ray. Along the way, side-excursions of
one-step are made to ensure the traversal of east-west
edges that touch the ray. Optimal interruptability will
always be maintained: the ray algorithm will not tra-
verse a ray until it knows a shortest path to s from the
base of the ray (and thus a shortest path to s from any
point on the ray, by Lemma 2).

The high-level operation of the ray algorithm is as
follows. (See Figure 11.) From each point on the (hor-
izontal segments of the) monotone paths bordering the

, 1 . > 4 ♦ 1 i i 1 i i 1 ! ■ ! 1

-- H-l-H —- —HI \V
.-

-hi ~ —
1 : ' ! j i : M

• i «—' _

1— n-pTrr .: L

-PrT 1

f J 1 'r

■"* ö

rh'J 1 zp
1—

J i I -□^
; 1 1 1 i 1 "!■:.. 1 1 ! ' i

12

Figure 11: Operation of the ray algorithm.

northern region, a north-going ray is explored. On each
such ray, exploration proceeds north until blocked by an
obstacle or the boundary of the city-block graph. Then
the learner backtracks to the beginning of the ray and
starts exploring a neighboring ray. As described so far,
each obstacle creates a "shadow region" of unexplored
vertices to its north. These shadow regions are explored
as follows. Once the two back corners of an obstacle
are explored, the shortest paths to the vertices at the
back border of an obstacle are then known; the "meet-
ing point" is then determined. Once the meeting point
for an obstacle is known, the shortest path from s to
each vertex on the back border of the obstacle is known.
The learner can then explore north-going rays starting
at each vertex at the back border of the obstacle. There
may be further obstacles that were all or partially in the
shadow regions; their shadow regions are handled in the
same manner.

We note that not all paths to s in the "search tree"
defined by the ray algorithm are shortest paths; the tree
path may go one way around an obstacle while the algo-
rithm knows that the shortest path goes the other way
around. However, the ray algorithm is nonetheless an
optimally interruptible search algorithm.

Theorem 8 The ray algorithm is a linear-time opti-
mally interruptible search algorithm that can be trans-
formed into a linear-time piecemeal search of a city-block
graph.

Proof: This follows from the properties of city-block
graphs proved in Section 4, and the above discussion. In
the ray algorithm each edge is traversed at most twice,
with a careful attention to details. The linearity of the
corresponding piecemeal search algorithm then follows
from Theorem 2. Q

7 Conclusions

We have presented efficient algorithms for the piecemeal
search of city-block graphs. We leave as open problems
finding algorithms for the piecemeal search of:

• grid graphs with non-convex obstacles,

• other tesselations, such as triangular tesselations
with triangular obstacles, and

• more general classes of graphs, such as the class of
planar graphs.

References

[1] Papadimitriou, Christos II. and M. Yanakakis.
"Shortest patlis without a map." Theoretical
Computer Science, volume 84, 1991, pp. 127-
150.

[2] Blum, Avrim, Prabhakar Raghavan and
Baruch Schieber. "Navigating in Unfamiliar
Geometric Terrain.'' Proceedings of Twenty-
Third ACM Symposium on Theory of Com-
puting, ACM, 1991, pp. 494-504.

[3] Cormcn, Thomas II., Charles E. Leiserson
and Ronald L. Rivest. "Introduction to Algo-
rithms," MIT Press/McGraw-Hill. 1990.

[4] Rivest, Ronald L. and Robert E. Schapire.
"Inference of Finite Automata using Homing
Sequences," Proceedings of the Twenty-First
Annual ACM Symposium on Theory of Com-
puting, ACM, Seattle. Washington. Mav 1989,
pp. 411-420.

[5] Deng, Xiaotie and Christos IT. Papadimitriou.
"Exploring an Unknown Graph,"Proceedings
of the 31st Symposium on Foundations of
Computer Science, 1990, pp. 355-361.

[6] Betke, Margrit. "Algorithms for Explor-
ing an Unknown Graph". MIT Labora-
tory for Computer Science, Technical Report
MIT/LCS/TR-536. March. 1992.

[7] Deng, Xiaotie, Tiko Kameda and Christos H.
Papadimitriou. "How to learn an unknown en-
vironment," Proceedings of the 32nd Sympo-
sium on Foundations of Computer Science,
1991, IEEE, pp. 298-303.

[8] Bar-Eli, E., P. Berman, A. Fiat and P. Yan.
"On-line Navigation in a Room,"Symposium
on Discrete Algorithms, 1992. pp. 237-249.

[9] Edmonds, Jack and Ellis L. Johnson. "Match-
ing, Euler Tours and the Chinese Postman",
Mathematical Programming, 1973, volume 5,
pp. 88-124.

[10] Papadimitriou, Christos H. "On the complex-
ity of edge traversing" J. Assoc. Comp. Mach..
1976, volume 23, pp. 544-554.

[11] Rao, Nagewara S. V., Srikumar Kareti.
Wcimin Shi and S. Sitharama Iyengar.
"Robot Navigation in Unknown Terrains: In-
troductory Survey of Non-Heuristic Algo-
rithms" Oak Ridge National Laboratory-, Julv
1993, ORNL/TM-12410.

13

