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1     Introduction 2     The formal model 

Wc address the situation where a learner, to perform 
a task better, must learn a complete map of its envi- 
ronment,. For example, the learner might he a security 
guard robot, a taxi driver, or a trail guide. 

Exploration of unknown environments has been ad- 
dressed by many previous authors, such as Papadim- 
itriou and Yanakakis [1], Blum. Raghavan, and 
Schieber [2], Rivest and Schapirc [4], Deng and Pa- 
padimitriou [5], Betke [6], Deng, Kameda. and Papadim- 
itrion [7], Rao, Kareti, Shi and Iyengar [11], and Bar-Eli. 
Bcrman, Fiat, and Yan [8], 

This paper considers a new constraint: for some rea- 
son learning must be done "piecemeal"- that is, a little 
at a time. For example, a rookie taxi driver might learn 
a city bit by bit while returning to base between trips. 
A planetary exploration robot might need to return to 
base camp periodically to refuel, to return collected sam- 
ples, to avoid nightfall, or to perform some other task. 
A tourist can explore a new section of Rome each day 
before returning to her hotel. 

The "piecemeal constraint" means that each of the 
learner's exploration phases must be of limited duration. 
We assume that each exploration phase starts and ends 
at a fixed start position s. This special location might be 
the airport (for a taxi driver), a refueling station, a base 
camp, or a trailhead. Between exploration phases the 
learner might perform other unspecified tasks (for exam- 
ple, a taxi driver might pick up a passenger). Piecemeal 
learning thus enables "learning on the job", since the 
phases of piecemeal learning can help the learner improve 
its performance on the other tasks it performs. This is 
the "exploration/exploitation tradeoff": spending some 
time exploring (learning) and some time exploiting what 
one has learned. 

The piecemeal constraint can make efficient explo- 
ration surprisingly difficult. This paper presents our pre- 
liminary results on piecemeal learning of arbitrary undi- 
rected graphs and gives two linear-time algorithms for 
the piecemeal search of grid graphs with rectangular ob- 
stacles. The first, algorithm, the "wavefront" algorithm, 
can be viewed as an optimization of breadth-first search 
for our problem. The second algorithm, the "ray" algo- 
rithm, can be viewed as a variation on depth-first search. 
Although the ray algorithm is simpler, the wavefront al- 
gorithm may prove a more fruitful foundation for gener- 
alization to more complicated graphs. 

We now give a brief summary of the rest of the paper. 
Section 2 gives the formal model and introduces city- 
block graphs. Section 3 discusses piecemeal search on 
arbitrary graphs and gives an approximate solution to 
the off-line version of this problem. Section 4 discusses 
shortest paths in city-block graphs. Section 5 introduces 
the notion of a wavefront, gives the wavefront algorithm 
for piecemeal search of city-block graphs, proves it cor- 
rect, and derives its running time. Section 6 introduces 
the ray algorithm as another way to do piecemeal search 
of city-block graphs. Section 7 concludes with some open 
problems. 

We model the learner's environment as a finite connected 
undirected graph G — (WE) with distinguished start 
vertex s. Vertices represent accessible locations. Edges 
represent accessibility: if {x,y} £ E then the learner can 
move from x to ;/, or back, in a single step. 

We assume that the learner can always recognize a 
previously visited vertex: it never confuses distinct loca- 
tions. At any vertex the learner can sense only the edges 
incident to it; it has no vision or long-range sensors. It 
can also distinguish between incident edges at any ver- 
tex. Without loss of generality, we can assume that the 
edges are ordered. At a vertex, the learner knows which 
edges it has traversed already. The learner only incurs a 
cost for traversing edges: thinking (computation) is free. 
We also assume a uniform cost for an edge traversal. 

The learner is given an upper bound B on the number 
of steps it can make (edges it can traverse) in one explo- 
ration phase. In order to assure that the learner can 
reach any vertex in the graph, do some exploration, and 
then get back to the start vertex, we assume B allows for 
at least one round trip between s and any other single 
vertex in G, and also allows for some number of explo- 
ration steps. More precisely, we assume B = (2 + n)r, 
where o > 0 is some constant, and r is the radius of 
the graph (the maximum of all shortest-path distances 
between s and any vertex in G). 

Initially all the learner knows is its starting vertex s 
and the bound B. The learner's goal is to explore the 
entire graph: to visit every vertex and traverse every 
edge, minimizing the total number of edges traversed. 

2.1     City-block graphs 

We model environments such as cities or office build- 
ings in which efficient on-line robot navigation may be 
needed. We focus on grid graphs containing some non- 
touching axis-parallel rectangular '"obstacles". We call 
these graphs city-block graphs. They are rectangular pla- 
nar graphs in which all edges are either vertical (north- 
south) or horizontal (east-west), and in which all faces 
(city blocks) are axis-parallel rectangles whose opposing 
sides have the same number of edges. A 1 x 1 face might 
correspond to a standard city block; larger faces might 
correspond to obstacles (parks or shopping malls). Fig- 
ure 1 gives an example. City-block graphs are also stud- 
ied by Papadimitriou and Yanakakis [1], Blum, Ragha- 
van. and Schieber [2], and Bar-Eli, Bcrman, Fiat and 
Yan [8]. 

An m x /) city-block graph with no obstacles has 
exactly mn vertices (at points (i,j) for 1 < i' < m, 
1 < j < J7) and 2mn — (w + n) edges (between points 
at distance 1 from each other). Obstacles, if present, de- 
crease the number of accessible locations (vertices) and 
edges in the city-block graph. In city-block graphs the 
vertices and edges are deleted such that all remaining 
faces are rectangles. 

We assume that the directions of incident edges are 
apparent to the learner. 
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Figure 1:   A city-block graph with distinguished start 
vertex s. 
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Figure 2: The learner reaches vertex v after B/2 steps 
in a depth-first search. Then it must interrupt its search 
and return to s. It cannot resume exploration at t; to 
get to vertex w, because the known return path is longer 
than B/2, the remaining number of steps allowed in this 
exploration phase. DFS fails. 

3    Piecemeal search on general graphs 

In this section, we discuss piecemeal search on general 
graphs. In particular, we show why "standard" ap- 
proaches to this problem do not work. We also dehne the 
off-line version of this problem, and give an approximate 
solution for it. Finally, we give a general method for con- 
verting certain types of search algorithms into piecemeal 
search algorithms. 

3.1     Initial approaches using DFS and BFS 

A simple approach to piecemeal search on arbitrary undi- 
rected graphs is to use an ordinary search algorithm— 
breadth-first search (BFS) or depth-first search (DFS)— 
and just interrupt the search as needed to return to 
visit s. (Detailed descriptions of BFS and DFS can be 
found in algorithms textbooks [3].) Once the learner has 
returned to s, it goes back to the vertex at which search 
was interrupted and resumes exploration. 

In depth-first search, edges are explored out of the 
most recently discovered vertex v that still has unex- 
plored edges leaving it. When all of v's edges have been 
explored, the search "backtracks" to explore edges leav- 
ing the vertex from which v was discovered. This pro- 
cess continues until all edges are explored. This search 
strategy, without interruptions due to the piecemeal con- 
straint, is efficient since at most 2|i?| edges are traversed. 
Interruptions, or exploration in phases of limited dura- 
tion, complicate matters. For example, suppose in the 
first phase of exploration, at step B/2 of a phase the 
learner reaches a vertex v as illustrated in Figure 2. 
Moreover, suppose that the only path the learner knows 
from s to v has length B/2. At this point, the learner 
must stop exploration and go back to the start location s. 
In the second phase, in order for the learner to resume 
a depth-first search, it should go back to v, the most re- 
cently discovered vertex. However, since the learner only 
knows a path of B/2 to v, it cannot proceed with explo- 
ration from that point. Other variations of DFS that we 
have looked at seem to suffer from the same problem. 

On the other hand, breadth-first search with inter- 
ruptions does guarantee that all vertices in the graph 
are ultimately explored. Whereas a DFS strategy can- 
not resume exploration at vertices to which it only knows 

Figure 3: A simple graph for which the cost of BFS is 
quadratic in the number of edges. 

a long path, a BFS strategy can always resume explo- 
ration. This is because BFS ensures that the learner 
always knows a shortest path from s to any explored 
vertex. However, since a BFS strategy explores all the 
vertices at the same distance from s before exploring any 
vertices that are further away from s, the resulting algo- 
rithm may not be efficient. Note that in the usual BFS 
model, the algorithm uses a queue to keep track of which 
vertex it will search from next. Thus, searching requires 
extracting a vertex from this queue. In our model, how- 
ever, since the learner can only search from its current 
location, extracting a vertex from this queue results in a 
relocation from the learner's current location to the loca- 
tion of the new vertex. In Figure 3 we give an example 
of a graph in which vertices of the same shortest path 
distance from s are far away from each other. For such 
graphs the cost of relocating between vertices can make 
the overall cost of BFS quadratic in the number of edges 
in the graph. 

3.2     Off-line piecemeal search 

We now develop a strategy for the off-line piecemeal 
search problem which we can adapt to get a strategy 
for the on-line piecemeal search problem. 

In the off-line piecemeal search problem, the learner is 
a given a finite connected undirected graph G = (V, E), 
a start location s£ 7, and a bound B on the num-_ 
ber of edges traversed in any exploration phase. The 
learner's goal is to plan an optimal search of the graph" 
that visits every vertex and traverses every edge, and 
also satisfies the piecemeal constraint (i.e., each explo- 
ration phase traverses at most B edges and starts and 
ends at the start location). 

The off-line piecemeal search problem is similar to the 
well-known Chinese Postman Problem [9], but where the 
postman must return to the post-office every so often. 
(We could call the off-line problem the Weak Postman 
Problem, for postmen who cannot carry much mail.) The 
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same problem arises when many postmen must cover the 
same city with their routes. 

The Chinese Postman Problem can be solved by a 
polynomial time algorithm if the graph is either undi- 
rected or directed [9]. The Chinese Postman problem 
for a mixed graph that has undirected and directed edges 
was shown to be NP-complete by Papadimitriou [10]. We 
do not know an optimal off-line algorithm for the Weak 
Postman Problem; this may be an NP-hard problem. 
This is an interesting open problem. 

We now give an approximation algorithm for the 
off-line piecemeal search problem using a simple 
"interruptecl-DFS''" approach. 

Theorem 1 There crisis an approximate soItiHoi) to the 
off-line piecemeal search problem for an arbilrary undi- 
rected graph G= (V,E) tt'hich traverses 0(\E\) edges. 

Proof: Assume that the radius of the graph is ?• and 
that the number of edges the learner is allowed to tra- 
verse in each phase of exploration is B = (2 -f a)r, for 
some constant e\ such that c\r is a positive integer. Before 
the learner starts traversing any edges in the graph, it 
looks at the graph to be explored, and computes a depth- 
first search tree of the graph. A depth first traversal of 
this depth-first search tree defines a path of length 2\E\ 
which starts and ends at s and which goes through ev- 
ery vertex and edge in the graph. The learner breaks 
this path into segments of length a?-. The learner also 
computes (off-line) a shortest path from s to the start of 
each segment.. 

The learner then starts the piecemeal exploration of 
the graph. Each phase of the exploration consists of 
taking a shortest path from s to the start of a segment, 
traversing the edges in the segment, and taking a short- 
est path back to the start vertex. For each segment, the 
learner traverses at, most 2r edges to get to and from 

the segment. Since there are [^^-r] segments, there are 

I" or 1 ~~ 1 interruptions, and the number of edge traver- 
sal due to interruptions is at most: 

2\E\ 
1)2''    < 

< 

•2\E\ 

ar 

4\E\ 

a 

Thus the total number of edge traversal« is at most 
(4/a + 2)\E\ = 0(E). D 

3.3     On-line piecemeal search 

We now show how we can change the strategy outlined 
above to obtain an efficient on-line piecemeal search al- 
gorithm. 

We call an on-line search optimally mterruptibh if it 
always knows a shortest path via explored edges back 
to s. We refer to a search as efficiently interruptible 
if it always knows a path back to s via explored edges 
of length at most the radius of the graph. We say a 
search algorithm is a linear time algorithm if the learner 
traverses 0(E) edges during the search. 

Theorem 2 .4» efficiently interruptibh, linear time al- 
gorithm for searching an undirected graph can be trans- 
formed into a linear-time piecemeal search algorithm. 

Proof: The proof of this theorem is similar to the 
proof of Theorem 1. However, there are a few differ- 
ences. Instead of using an ordinary search algorithm 
(like DFS) and interrupting as needed to return to s, 
we use an efficiently interruptible, linear time search al- 
gorithm. Moreover, the search is on-line and is being 
interrupted during exploration. Finally, the cost of the 
search is not 2|£'| as in DFS, but at most c\E\ for some 
constant c. 

Assume that the radius of the graph is ?• and that, the 
number of edges the learner is allowed to traverse in each 
phase of exploration is B — (2 + o)r, for some constant n 
such that or is a positive integer. Since the search algo- 
rithm is efficient, the length of the path defined by the 
search algorithm is at most c\E\, for some constant c, 
r > 0. In each exploration phase, the learner will exe- 
cute ar steps of the original search algorithm. At, the 
beginning of each phase the learner goes to the appro- 
priate vertex to resume exploration. Then the learner 
traverses or edges as determined by the original search 
algorithm, and finally the learner returns to .s. Since the 
search algorithm is efficiently interruptible, the learner 
knows a path of distance at most r from s to any ver- 
tex in the graph. Thus the learner traverses at most 
2r + ar = B edges during any exploration phase. 

Since there are [-^-^] segments, there are [^-ih — 1 
interruptions, and the number of edge traversals due to 
interruptions is: 

"f|EI1   i)2, <  £l*!2r 
ar 

< 

ar 

•2e\E\ 

a 

D 
Thus, the total number of edge traversals is 
\E\(2c/a + c) = 0(E). 

For arbitrary undirected planar graphs, we can show 
that any optimally interruptible search algorithm re- 
quires S7(|/r|-') edge traversals in the worst case. For 
example, exploring the graph in Figure 3 (known ini- 
tially only to be an arbitrary undirected planar graph) 
would result in \E\2 edge traversals if the search is re- 
quired to be optimally interruptible. 

For city-block graphs, however, we present two effi- 
cient 0(|£"|) optimally interruptibh1 search algorithms. 
Since an optimally interruptible search algorithm is also 
an efficiently interruptible search algorithm, these two 
algorithms give efficient piecemeal search algorithms for 
city-block graphs. The iravefront algorithm is based on 
BFS, but overcomes the problem of relocation cost. The 
ray algorithm is a variant of DFS that always knows a 
shortest path back to s. First, however, we develop some 
properties of shortest paths in city-block graphs, based 
on an analysis of BFS. 

4     Shortest paths in city-block graphs 
An optimally interruptible algorithm maintains at all 
times knowledge of a shortest  path  back  to s.    Since 



Figure 4:  Environment explored by breath-first search, 
showing only "wavefronts" at odd distance to s. 
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Figure 5: The four monotone paths and the four regions. 

BFS is optimally interruptible, we study BFS in some 
detail to understand the characteristics of shortest paths 
in city-block graphs. Also, our wavefront algorithm is a 
modification of BFS. Figure 4 illustrates the operation 
of BFS. Our algorithms depend on the special properties 
that shortest paths have in city-block graphs. 

Let 6(v,v') denote the length of the shortest path be- 
tween v and v', and let d[v] denote S(v,s), the length of 
the shortest path from v back to s. 

4.1     Monotone paths and the four-way 
decomposition 

A city-block graph can be usefully divided into four re- 
gions (north, south, east, and west) by four monotone 
paths: an east-north path, an east-south path, a west- 
north path, and a west-south path. The east-north path 
starts from s, proceeds east until it hits an obstacle, then 
proceeds north until it hits an obstacle, then turns and 
proceeds east again, and so on. The other paths are 
similar (see Figure 5). Note that all monotone paths 
are shortest paths. Furthermore, note that s is included 
in all four regions, and that each of the four monotone 
paths (east-north, east-south, west-north, west-south) is 
part of all regions to which it is adjacent. 

In Lemma 1 we show that for any vertex, there is a 
shortest path to s through only one region. Without loss 

of generality, we therefore only consider optimally in- 
terruptible search algorithms that divide the graph into 
these four regions, and search these regions separately. 
In this paper, we only discuss what happens in the north- 
ern region; the other regions are handled similarly. 

Lemma 1 There exists a shortest path from s to any 
point in a region that only goes through that region. 

Proof: Consider a point v in some region A. Let p 
be any shortest path from s to the point v. If p is not 
entirely contained in region A, we can construct another 
path p' that is entirely contained in region A. We note 
that the vertices and edges which make up the monotone 
paths surrounding a region A are considered to be part 
ofthat region. 

Since path p starts and ends in region A but is not 
entirely contained in region A, there must be a point 
u that is on p and also on one of the monotone paths 
bordering A. Note that u may be the same as v. Without 
loss of generality, let u be the last such point, so that 
the portion of the path from u to v is contained entirely 
within region A. Then the path p' will consist of the 
shortest path from s to u along the monotone path that u 
is on, followed by the portion of p from u to v. This 
path p' is a shortest path from s to v because p was a 
shortest path and p' can be no longer than p. □ 

4.2     Canonical shortest paths of city-block 
graphs 

We now make a fundamental observation on the nature 
of shortest paths from a vertex v back to s. In this sec- 
tion, we consider shortest paths in the northern region; 
properties of shortest paths in other region are similar. 

Lemma 2 For any vertex v in the northern region, 
there is a canonical shortest path from v to the start ver- 
tex s which goes south whenever possible. The canonical 
shortest path goes east or west only when it is prevented 
from going south by an obstacle or by the monotone path 
defining the northern region. 

Proof: We call the length d[v] of the shortest path 
from v to s the depth of vertex v. We show this lemma 
by induction on the depth of a vertex. 

For the base case, it is easy to verify that any vertex v 
such that d[v] = 1 has a canonical shortest path that goes 
south whenever possible. 

For the inductive hypothesis, we assume that the 
lemma is true for all vertices that have depth t—l, and we 
want to show it is true for all vertices that have depth t. 
Consider a vertex p at depth t. If there is an obstacle ob- 
structing the vertex that is south of point p or if p is on a 
horizontal segment of the mononotone path defining the 
northern region, then it is impossible for the canonical 
shortest path to go south, and the claim holds. Thus, 
assume the point south of p is not obstructed by an ob- 
stacle or by the monotone path defining the northern 
region. Then we have the following cases: 

Case 1: Vertex ps directly south of p has depth t—l. 
In this case, there is clearly a canonical shortest path 
from p to s which goes south from p to ps and then 



follows the canonical shortest path of ps, which we know 
exists by the inductive assumption. 

Case 2: Vertex ps directly south of p has depth not 
equal to / — 1. Then one of the remaining adjacent ver- 
tices must, have depth / — 1 (otherwise it is impossible 
for p to have depth 1). Furthermore, none of these ver- 
tices has depth less than 1 — 1, for otherwise vertex p 
would have depth less than /. 

Note that the point directly north of p cannot have 
depth / — 1. If it did, then by the inductive hypothesis, 
it has a canonical shortest path which goes south. But 
then p has depth / — 2, which is a contradiction. 

Thus, either the point west of p or the point east of/) 
has depth / — 1. Without loss of generality, assume that 
the point. />„, west of p has depth 1 — 1. We consider two 
subcases. In case (a), there is a path of length 2 from pw 

to ps that goes south one step from pw, and then goes 
east, to p„. In case (h), there is no such path. 

Case (a): If there is such a path, the vertex directly 
south of pw exists, and by the inductive hypothesis has 
depth 1—2 (since there is a canonical shortest path 
from pw to s of length 7 — 1, the vertex directly to the 
south of pw has depth 1 — 2). Then ps, which is directly 
east of this point, has depth at most 1 — 1 and thus there 
is a canonical path from /) to s which goes south when- 
ever possible. 

Case (b): Note that the only way there does not exist 
a. path of length 2 from pw to ps (other than the obvious 
one through p) is if p is a vertex on the northeast corner 
of an obstacle which is bigger than lxl. Suppose the 
obstacle is k\ x /fc-j, where k\ is the length of the north 
(and south) side of the obstacle, and k-j is the length 
of the east (and west) side of the obstacle. We know 
by the inductive hypothesis that the canonical shortest 
path from pw goes either east or west along the north 
side of this obstacle, and since the vertex p has depth 
1 we know that the canonical shortest path goes west. 
After having reached the corner, the canonical shortest 
path from p,„ to .s proceeds south. Thus, the vertex 
which is on the southwest corner of this obstacle has 
depth I = 1 — \ — (k'i — 1) — ko. If we go from this vertex 
to />., along the south side of the obstacle and then along 
the east side of the obstacle, then the depth of point ps 

is at most I + k\ + (k-j — 1) = / — 1. Thus, in this case 
there is also a canonical path from p to s which goes 
south whenever possible. G 

Lemma 3 Consider adjacent vertices v and w in the 
grid graph where v is north ofw. In ihe northern region, 
without loss of generality. d[v] = d[w] + 1. 

Proof: 
Lemma 2. 

The   proof   follows   immediately   from 
D 

Lemma 4 Consider adjacent vertices v and w in the 
grid graph where v is ivest ofw. In the northern region, 
without loss of generality, d[v] = d[w] ± 1. 

Proof: We prove the lemma by induction on the in- 
coordinate of the vertices in the northern region. If v 
and w have the same «/-coordinate as s, then we know 
that d[v] — (■/[«'] + ] if s is east ofw and d[v] — d[ir] — 1 if s 

Figure 6: Splitting and merging of wavefronts along a 
corner of an obstacle. Illustration of meeting point and 
sibling wavefronts. 

is west of r. Assume that the claim is true for vertices v 
and w with (/-coordinate k. In the following we show that 
it is also true for vertices v and w with «/-coordinate k + \. 
We distinguish the case that there is no obstacle directly 
south of c and w from the case that there is an obstacle 
directly south of c or w. 

If there is no obstacle directly south of v and w the 
claim follows by Lemma 3 and the induction assumption. 

Now we consider the case that there is an obstacle 
directly south of c or w. We assume without loss of 
generality that both v and (/• are on the boundary of 
the north side of the obstacle. (Note that v or w may, 
however, be at a corner of the obstacle.) 

If our claim did not hold it would mean that d[v] — 
d[w] for two adjacent vertices v and w (because, in any 
graph, the d values for adjacent vertices can differ by at 
most one). This would also mean that all shortest paths 
from v to s must go through vertex vw at the north-west 
corner of the obstacle and all shortest paths from tv to .s 
must go through vertex ve at the north-east corner of 
the obstacle. However, we next show that there is a 
grid point w on the boundary of the north side of the 
obstacle that has shortest paths through both ve and vw. 
The claim of Lemma 4 follows directly. 

The distance j- between 77) and vw can be obtained by 
solving the following equation: j' + rf[cu,] = (k — x) + d[i\] 
where k is the length of the north side of the obstacle. 
The distance x is (k + d[i\] — rf[c„,])/2. This distance 
is integral and therefore, 777 exists because by inductive 
assumption the following holds: If A- is even then \d[v,] — 
d[vw]\ is even, and if k is odd then \d[i\] — d[vu.]\ is odd. 

D 

5     The wavefront algorithm 

In this section we first develop some preliminary con- 
cepts and results based on an analysis of breadth-first 
search. We then present the wavefront algorithm, prove 
it to be correct, and show that it runs in linear time. 

5.1     BFS and wavefronts 

In city-block graphs a BFS can be viewed as exploring 
the graph in waves that expand outward from s, much 
as waves expand from a pebble thrown into a pond. Fig- 
ure 4 illustrates the wavefronts that can arise. 



A wavefront w can then be defined as an ordered list 
of explored vertices (vi, v2, ■ ■ ■, vm), m > 1, such that 
d[vi] = d[vi] for all i, and such that 6(vi,vi+i) < 2 for 
all i. (As we shall prove, the distance between adjacent 
points in a wavefront is always exactly equal to 2.) We 
call d[w] = d[vi] the distance of the wavefront. 

There is a natural "successor" relationship between 
BFS wavefronts, as a wavefront at distance t generates 
a successor at distance t + 1. We informally consider a. 
wave to be a sequence of successive wavefronts. Because 
of obstacles, however, a wave may split (if it hits an 
obstacle) or merge (with another wave, on the far side 
of an obstacle). Two wavefronts are sibling wavefronts if 
they each have exactly one endpoint on the same obstacle 
and if the waves to which they belong merge on the far 
side of that obstacle. The point on an obstacle where 
the waves first meet is called the meeting point m of 
the obstacle. In the northern region, meeting points are 
always on the north side of obstacles, and each obstacle 
has exactly one meeting point on its northern side. See 
Figures 6 and 7. 

Lemma 5 A wavefront can only consist of diagonal seg- 
ments. 

Proof: By definition a wavefront is a sequence of 
vertices at the same distance to s for which the distance 
between adjacent vertices is at most 2. It follows from 
Lemma 3 and 4 that neighboring points in the grid can- 
not be in the same wavefront. Therefore, the distance 
between adjacent vertices is exactly 2. Thus, the wave- 
front can only consist of diagonal segments. □ 

We call the points that connect diagonal segments (of 
different orientation) of a wavefront peaks or valleys. A 
peak is a vertex on the wavefront that has a larger y- 
coordinate than the y-coordinates of its adjacent vertices 
in the wavefront, and a valley is a vertex on the wavefront 
that has a smaller ^/-coordinate than the y-coordinates 
of its adjacent vertices as illustrated in Figure 7. 

The initial wavefront is just a list containing the start 
point s. Until a successor of the initial wavefront hits an 
obstacle, the successor wavefronts consist of two diagonal 
segments connected by a peak. This peak is at the same 
x-coordinate for these successive wavefronts. Therefore, 
we say that the shape of the wavefronts does not change. 
In the northern region a wavefront can only have descen- 
dants that have a different shape if a descendant curls 
around the northern corners of an obstacle, or when it 
merges with another wavefront, or splits into other wave- 
fronts. These descendants may have more complicated 
shapes. 

A wavefront w splits whenever its hits an obsta- 
cle. That is, if a vertex v> in the wavefront is on 
the boundary of an obstacle, w splits into wavefronts 
wi = {vi,v2, ...,Vi) and w2 - (vi, vi+i,.. .,vm). Wave- 
front wi propagates around the obstacle in one direc- 
tion, and wavefront w2 propagates around in the other 
direction. Eventually, some descendant wavefront of wi 
and some descendant wavefront of w2 will have a com- 
mon point on the boundary of the obstacle - the meet- 
ing point. The position of the meeting point is deter- 
mined by the shape of the wave approaching the ob- 

peak      valley   peak 

Figure 7: Shapes of wavefronts. Illustration of peaks and 
valleys, and front and back of an obstacle. The meeting 
point is the lowest point in the valley. 

stacle. (In the proof of Lemma 4 vertex m is a meet- 
ing point and we showed how to calculate its postion 
once the length k of the north side of the obstacle and 
the shortest path distances of the vertices ve and vw at 
the north-east and north-west corners of the obstacle are 
known: The distance from vw to the meeting point m is 
(k + d[vw]-d[ve})/2.) 

In the northern region, the front of an obstacle is its 
south side, the back of an obstacle is its north side, and 
the sides of an obstacle are its east and west sides. A 
wave always hits the front of an obstacle first. Con- 
sider the shape of a wave before it hits an obstacle and 
its shape after it passes the obstacle. If a peak of the 
wavefront hits the obstacle (but not at a corner), this 
peak will not be part of the shape of the wave after it 
"passes" the obstacle. Instead, the merged wavefront 
may have one or two new peaks which have the same 
IE-coordinates as the sides of the obstacle (see Figure 7). 
The merged wavefront has a valley at the meeting point 
on the boundary of the obstacle. 

5.2     Description of the wavefront algorithm 

The wavefront algorithm, presented in this section, mim- 
ics BFS in that it computes exactly the same set of wave- 
fronts. However, in order to minimize relocation costs, 
the wavefronts may be computed in a different order. 
Rather than computing all the wavefronts at distance t 
before computing any wavefronts at distance t + 1 (as 
BFS does), the wavefront algorithm will continue to fol- 
low a particular wave persistently, before it relocates and 
pushes another wave along. 

We define expanding a wavefront w = (i>i, v2,. ■ ■, vj) 
as computing a set of zero or more successor wavefronts 
by looking at the set of all unexplored vertices at dis- 
tance one from any vertex in w. Every vertex v in a 
successor wavefront has d[v] - d[w] + 1. The learner 
starts with vertex v\ and moves to all of its unexplored 
adjacent vertices. The learner then moves to the next 
vertex in the wavefront and explores its adjacent unex- 
plored vertices. It proceeds this way down the vertices 
of the wavefront. 

The following lemma shows that a wavefront of / ver- 



Figure 8: Blockage of tcj by tr2. Wavefront tcj has fin- 
ished covering one side of the obstacle and the meeting 
point is not, set yet. 

Figure 9: Blockage of ir{ by w2. Wavefront W[ has 
reached the meeting point on the obstacle, but the sib- 
ling wavefront W; has not. 

ticcs can be expanded in time 0(1). 

Lemma 6 A learner ean expand a warefronl w = 
(vj, ■<>•_>,..., vi) by traversing at mos1 2(/ — 1) -f- 2 [7/2] -f 4 
edges. 

Proof:   To expand a wavefront  w =  (f'i.r-j vi) 
the learner needs to move along each vertex in the wave- 
front and find all of its unexplored neighbors. This can 
be done efficiently by moving along pairs of unexplored 
edges between vertices in v. These unexplored edges 
connect. / of the vertices in the successor wavefront. This 
results in at most 2(1— 1) edge traversals, since neighbor- 
ing vertices are at most 2 apart. The successor wavefront 
might have 1 + 2 vertices, and thus at the beginning and 
the end of the expansion (i.e., at vertices n and c/), 
the learner may have to traverse an edge twice. In ad- 
dition, at any vertex which is a peak, the learner may 
have to traverse an edge twice. Note that a wavefront 
has at. most |7/2] peaks. Thus, the total number of edge 
traversals is at most 2(1 - 1) -f 2[//2"| +4. D 

Since our algorithm computes exactly the same set 
of wavefronts as BFS, but. persistently pushes one wave 
along, it. is important to make sure the wavefronts are 
expanded correctly. There is really only one incorrect 
way to expand a wavefront and get something other than 
what BFS obtained as a successor: to expand a wave- 
front that is touching a meeting point before its sibling 
wavefront has merged with it. Operationally, this means 
that the wavefront algorithm is blocked in the follow- 
ing two situations: (a) it cannot expand a wavefront 
from the side around to the back of an obstacle before 
the meeting point for that obstacle has been set (see 
Figure 8), and (b) it cannot expand a wavefront that 
touches a meeting point until its sibling has arrived there 
as well (see Figure 9). A wavefront iv-j blocks a wave- 
front W\ if W'2 must be expanded before ?/'i can be safely 
expanded. We also say w-> and w\ inferfcre. 

A wavefront iv is an expiring wavefront if its descen- 
dant wavefronts can never interfere with the expansion 
of any other wavefronts that now exist or any of their de- 
scendants. A wavefront iv is an expiring wavefront if its 
end points are both on the front of the same obstacle: iv 
will expand into the region surrounded by the wavefront 
and the obstacle, and then disappear or "expire." We 
say that, a wavefront expires if it consists of just one 
vertex with no unexplored neighbors. 

Figure 10: Triangular areas (shaded) delineated by two 
expiring wavefronts. 

Procedure WAY'EFRONT-ALGORITHM is an efficient 
optimally interruptible search algorithm that can be 
used to create an efficient piecemeal search algorithm. It 
repeatedly expands one wavefront until it splits, merges, 
expires, or is blocked. The WAVEFRONT-AEGORITHM 

takes as an input a start point s and the boundary coor- 
dinates of the environment. It calls procedure OREATE- 

MONOTONE-PATHS to explore four monotone paths (see 
section 4.1) and define the four regions. Then procedure 
EXPLORE-AREA is called for each region. 

WAVEFRONT-AI,GORITHM(S, boundary) 

1 OREATE-MONOTONE-PATHS 

2 for region = north, south, east, and west 

3 initialize current wavefront w — (s) 

4 ExPLORE-AREA((/\ region) 

5 Take a shortest path to .s 

For each region we keep an ordered list L of all the 
wavefronts to be expanded. In the northern region, the 
wavefronts are ordered by the r-coordinate of their west- 
most point. Neighboring wavefronts are wavefronts that 
are adjacent in the ordered list L of wavefronts. Note 
that for each pair of neighboring wavefronts there is an 
obstacle on which both wavefronts have an endpoint. 

Initially, we expand each wavefront in the northern 
region from its west-most endpoint to its east-most end- 
point (i.e.. we are expanding wavefronts in a "clockwise" 
manner). The direction of expansion changes for the 
first time in the northern region when a wavefront is 
blocked by a wavefront to its west (the direction of ex- 



EXPLORE-AREA(W, region) 
1 initialize list of wavefronts L <— (w) 
2 initialize direction dir *— clockwise 
3 repeat  EXPAND current wavefront w to successor wavefront ws 

4 RELOCATE (WS, dir) 
5 current wavefront w := ws 

6 if w is a single vertex with no unexplored neighboring vertices 
7 then remove w from ordered list L of wavefronts 
8 if L is not empty 
9 then w := neighboring wavefront of w in direction dir 

10 RELOCATE (W, dir) 
11 else   replace w by ws in ordered list L of wavefronts 
12 if the second back corner of any obstacle(s) has just been explored 
13 then set meeting points for those obstacle(s) 
14 if w can be merged with adjacent wavefront(s) 
15 then MERGE (ID, L, region, dir) 
16 if w hits obstacle(s) 
17 then SPLIT (W, L, region, dir) 
18 if L not empty 
19 then if w is blocked by neighboring wavefront w' in direction 

D E { clockwise, counter-clockwise } 
20 then dir := D 
21 while w is blocked by neighboring wavefront w' 
22 do w := w' 
23 RELOCATE (W, dir) 
24 until L is empty 

pansion then becomes "counter-clockwise"). In fact, the 
direction of expansion changes each time a wavefront is 
blocked by a wavefront that is in the direction opposite 
of expansion. 

We treat the boundaries as large obstacles. The north 
region has been fully explored when the list L of wave- 
fronts is empty. 

Note that vertices on the monotone paths are con- 
sidered initially to be unexplored, and that expanding a 
wavefront returns a successor that is entirely within the 
same region. 

Each iteration of EXPLORE-AREA expands a wave- 
front. When EXPAND is called on a wavefront w, the 
learner starts expanding w from its current location, 
which is a vertex at one of the end points of wavefront w. 
It is convenient, however, to think of EXPAND as finding 
the unexplored neighbors of the vertices in w in parallel. 

Depending on what happens during the expansion, 
the successor wavefront can be split, merged, blocked, 
or may expire. Note that more than one of these cases 
may apply. 

Procedures MERGE and SPLIT (see the following 
page) handle the (not necessarily disjoint) cases of merg- 
ing and splitting wavefronts. Note that we use call-by- 
reference conventions for the wavefront w and the list L 
of wavefronts (that is, assignments to these variables 
within procedures MERGE and SPLIT affect their val- 

ues in procedure EXPLORE-AREA). Each time procedure 
RELOCATE(W, dir) is called, the learner moves from its 
current location to the appropriate end point of w. in 
the northern region, if the direction is "clockwise" the 
learner moves to the west-most vertex of w, and if the 
direction is "counter-clockwise," the learner moves to the 
east-most vertex of w. 

Procedure RELOCATE(w,d?Y) can be implemented so 
that when it is called, the learner simply moves from 
its current location to the appropriate endpoint of w 
via a shortest path in the explored area of the graph. 
However, for analysis purposes, we assume that when 
RELOCATE(W, dir) is called the learner moves from its 
current location to the appropriate end point of w as 
follows. 

• When procedure RELOCATE(WS, dir) is called in 
line 4 of EXPLORE-ARE A, the learner traverses 
edges between the vertices in wavefront ws to get 
back to the appropriate end point of the newly ex- 
panded wavefront. 

• When procedure RELOCATE(WS , dir) is called in 
line 10 of EXPLORE-AREA, the learner traverses 
edges along the boundary of an obstacle. 

• When procedure RELOCATE(IDS, dir) is called in 
line 8 of MERGE, the learner traverses edges be- 
tween vertices in wavefront w to get to the appro- 
priate end point of the newly merged wavefront. 



• When procedure REI,OCATE( ir,. dir) is called in 
line 23 of EXPLORE-AREA. the learner traverses 
edges as follows. Suppose the learner is in the 
northern region and at the west-most vertex of 
wavefront (r(l, and assume that w is to the east 
of (Co. Note that both u\) and iv are in the current 
ordered list of wavefronts L. Thus there is a path 
between the learner's current location and wave- 
front w which "follows the chain" of wavefronts 
between  it\)  and  w.    That  is,  the learner moves 
from «do  to w as follows.    Let  ivi.w-j U'k  be 
the wavefronts in the ordered list of wavefronts be- 
tween wo and and w, and let bü,bi. .. .bi+i be the 
obstacles separating wavefronts ir0. iv\, . . ., u'j.. ir 
(i.e., obstacle 60 is between u'o and trj, obsta- 
cle 61 is between «>i and iv-j, and so on). Then 
to relocate from wt) to w\ the learner traverses the 
edges between vertices of wavefront WQ to get to 
the east-most vertex of u'o which is on obstacle 6Q. 

Then the learner traverses the edges of the obsta- 
cle hu to get to the west-point vertex of «'1, and 
then the learner traverses the edges between ver- 
tices in wavefront w>i to get to the east-most ver- 
tex of it>i which is on obstacle b\. The learner con- 
tinues traversing edges in this manner (alternating 
between traversing wavefronts and traversing ob- 
stacles) until it is at the appropriate end vertex of 
wavefront w. 

MERC;E(U>, L, region, dir) 

1 remove M> from list L of wavefronts 

2 whilo there is a neighboring wavefront «' with 

which w can merge 

3 do remove iv' from list L of wavefronts 

4 merge w and (/•' into wavefront u" 

5 w <— w" 

6 put w in ordered list L of wavefronts 

7 if w is not blocked 

8 them RELOCATE (IV, dir) 

Wavefronts are merged when exploration continues 
around an obstacle. A wavefront can be merged with 
two wavefronts, one on each end. 

SPLIT(UJ, L, region, dir) 

1 split w into appropriate wavefronts xc0 ivn 

in standard order 

2 remove w from ordered list L of wavefronts 

3 for i = 0 to n 

A put ivj on ordered list L of wavefronts 

5 if dir = clockwise 

6 then w ■>— i/»o 

7 else   «.' r— w„ 

When procedure SPLIT is called on wavefront w, we 
note that the wavefront is either the result of calling pro- 
cedure EXPAND in line A of EXPLORE-AREA or the re- 
sult, of calling procedure MERGE in line 15 of EXPLORE- 

AREA.    Once wavefront, iv is split  into w0 irrl, we 
update the ordered list L of wavefronts, and update the 

current wavefront. 

5.3     Correctness of the piecemeal search 
algorithm 

The following theorems establish the correctness of our 
algorithm. 

Theorem 3   Tin   algorithm   EXPLORE-AREA    expands 
wavefronts so as io maintain optimal intcrruptabilitij. 

Proof: This is shown by induction on the distance 
of the wavefronts. The key observations are (1) there is 
a canonical shortest path from any vertex v to s which 
goes south whenever possible, but east or west around 
obstacles and (2) a wavefront is never expanded beyond 
a meeting point. 

First we claim that at any time our algorithm knows 
the shortest path from s to any explored vertex in the 
north region. We show this by induction on the number 
of stages in the algorithm. Each stage of the algorithm 
is an expansion of a wavefront. 

The shortest path property is trivially true when the 
number of stages k = 1. There is initially only one wave- 
front, the start point. Now we assume all wavefronts that 
exist just after the A*—tli stage satisfy the shortest path 
property, and we want to show that all wavefronts that 
exist just after the k + 1-st stage also satisfy the shortest 
path property. 

Consider a wavefront w in the A'-th stage which the 
algorithm has expanded in the k + 1-st stage to in,. We 
claim that all vertices in u\< have shortest path length 
(/[[/']+ 1. Note that any vertex in u\, which is directly 
north of a vertex in ir definitely has shortest path length 
rf[ir] + l. This is because there is a shortest path from any 
vertex 1 to s which goes south whenever possible, but if 
it is not possible to go south because of an obstacle, it 
goes east or west around the obstacle. 

The only time any vertex r in «',, is not directly north 
of a vertex in w is when w is expanded around the back 
of an obstacle. This can only occur for a vertex that is 
either the west-most or east-most vertex of a wavefront 
in the north region. Without loss of generality we as- 
sume that r is the west-most point on ws and v is on 
the boundary of some obstacle b. Let p be the path that 
leads northwards from the front east corner vc of obsta- 
cle b to the meeting point of b. We know that there 
exists a shortest path from s to any vertex vp on p that 
goes from s to (v and from (7 to vr along path p. (The 
shortest path does not go through the front west corner 
because vp is east of the meeting point.) Because the al- 
gorithm only expands any wavefront until it readies the 
meeting point of an obstacle, vertex v is not to the west 
of the meeting point. It has a shortest path from ,s that 
goes through c,- and along the obstacle to v. Thus, the 
wavefront that includes vertex v is expanded correctly 
so as to maintain shortest path information. D 

Theorem 4   There  is  always  a   wavefront that  is  not 
blocked. 

Proof: We consider exploration in the north region. 
The key observations are that (1) neighboring wavefronts 



cannot simultaneously block each other and (2) the east- 
most wavefront in the north region cannot be blocked 
by anything to its east, and the west-most wavefront in 
the north region cannot be blocked by anything to its 
west. Thus the learner can always "follow a chain" of 
wavefronts to either its east or west to find an unblocked 
wavefront. 

A neighboring wavefront is either a sibling wavefront 
or an expiring wavefront. An expiring wavefront can 
never block neighboring wavefronts. In order to show 
that neighboring wavefronts cannot simultaneously block 
each other, it thus suffices to show next that sibling wave- 
fronts cannot block each other. We use this to show that 
we can always find a wavefront w which is not blocked. 
The unblocked wavefront w nearest in the ordered list 
of wavefronts L can be found by "following the chain" 
of blocked wavefronts from w to w. By following the 
chain of wavefronts between w and w we mean that the 
learner must traverse the edges that connect the vertices 
in each wavefront, between w and w in L and also the 
edges on the boundaries of the obstacles between these 
wavefronts. Note that neighboring wavefronts in list L 
each have at least one endpoint that lies on the boundary 
of the same obstacle. 

Before we show that sibling wavefronts cannot block 
each other we need the following. The first time an ob- 
stacle is discovered by some wavefront, we call the point 
that the wavefront hits the obstacle the discovery point. 
(Note that there may be more than one such point. We 
arbitrarily choose one of these points.) In the north re- 
gion, we split up the wavefronts adjacent to each obsta- 
cle into an east wave and a west wave. We call the set 
of all these wavefronts which are between the discovery 
point and the meeting point of the obstacle in a clock- 
wise manner the west wave. We define the east wave of 
an obstacle in the same way. 

The discovery point of an obstacle b is always at the 
front of b. The wavefront that hits at b is split into two 
wavefronts, one of which is in the east wave and one 
of which is in the west wave of the obstacle. We claim 
that a descendent wavefront w\ in the west wave and a 
descendant wavefront w2 in the east wave cannot simul- 
taneously block each other. Assume that the algorithm 
is trying to expand Wi but that wavefront w2 blocks w\. 
Wavefront w2 can only block w\ if one of the following 
two cases applies. In both cases, we show that Wi cannot 
also block w2. 

In the first case, w\ is about to expand to the back 
of obstacle b, but both of the back corners of obstacle 6 
have not been explored, and thus the meeting point has 
not been determined. Wavefront u>2 can only be blocked 
by wi if w2 is either already at the meeting point of the 
obstacle or about to expand to the back of the obsta- 
cle. Since none of the back corners of obstacle b have 
been explored, neither of these possibilities holds. Thus, 
wavefront w\ does not block w2. 

In the second case, w\ has reached the meeting point 
at the back of b. Therefore, both back corners of the 
obstacle have been explored and w\ is not blocking w2. 

We have just shown that if w2 blocks w\ then w\ can- 
not also block w2. Thus, the algorithm tries to pick w2 
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as the nearest unblocked wavefront to w\. However, w2 

may be blocked by its sibling wavefront w3 on a differ- 
ent obstacle b'. For this case, we have to show that this 
sibling wavefront w3 is not blocked, or that its sibling 
wavefront w^ on yet another obstacle b" is not blocked 
and so forth. Without loss of generality, we assume that 
the wavefronts are blocked by wavefronts towards the 
east. Proceeding towards the east along the chain of 
wavefronts will eventually lead to a wavefront which is 
not blocked - the east-most wavefront in the northern 
region. The east-most wavefront is adjacent to the ini- 
tial monotone east-north path. Therefore, it cannot be 
blocked by a wavefront towards the east. Ü 

Theorem 5 The wavefront algorithm is an optimally 
interruptible piecemeal search algorithm for city-block 
graphs. 

Proof: To show the correctness of a piecemeal algo- 
rithm that uses our wavefront algorithm for exploration 
with interruption, we show that the wavefront algorithm 
maintains the shortest path property and explores the 
entire environment. 

Theorem 3 shows by induction on shortest path 
length that the wavefront algorithm mimics breadth-first 
search. Thus it is optimally interruptible. 

Theorem 4 shows that the algorithm does not termi- 
nate until all vertices have been explored. Completeness 
follows. D 

5.4    Efficiency of the wavefront algorithm 

In this section we show the number of edges traversed 
by the piecemeal algorithm based on the wavefront algo- 
rithm is linear in the number of edges in the city-block 
graph. 

We first analyze the number of edges traversed by 
the wavefront algorithm. Note that the learner traverses 
edges when procedures CREATE-MONOTONE-PATHS, EX- 

PAND, and RELOCATE are called. In addition, it tra- 
verses edges to get back to s between calls to EXPLORE- 

ÄREA. These are the only times the learner traverses 
edges. Thus, we count the number of edges traversed 
for each of these cases. In Lemmas 7 to 10, we ana- 
lyze the number of edges traversed by the learner due 
to calls of RELOCATE. Theorem 6 uses these lemmas 
and calculates the total number of edges traversed by 
the wavefront algorithm. 

Lemma 7 An edge is traversed at most once due to 
relocations after a wavefront has expired (line H of 
EXPLORE-AREA/ 

Proof: Assume that the learner is in the northern re- 
gion and expanding wavefronts in a clockwise direction. 
Suppose wavefront w has just expired onto obstacle b 
(i.e., it is a single vertex with all of its adjacent edges 
explored). The learner now must relocate along obsta- 
cle 6 to its neighboring wavefront w' to the east. Note 
hat w' is also adjacent to obstacle 6, and therefore the 
learner is only traversing edges on the obstacle b. 

Note that at this point of exploration, there is no 
wavefront west of w which will expire onto obstacle b. 



This is because expiring wavefronts are never blocked, 
and thus the direction of expansion cannot bo changed 
due to an expiring wavefront. So, when a wavefront is 
split,, the learner always chooses the west-most wavefront 
to expand first. Thus, the wavefronts which expire onto 
obstacle b are explored in a west to east manner. Thus 
relocations after wavefronts have expired on obstacle b 
continuously move east along the boundary of this ob- 
stacle. * D 

Lemma 8 An edge is traversed a1 mos1 once due to 
relocations after wavefronts have merged (line JO of 
MF.RC.K). 

Proof: Before a call to procedure MERGE, the learner 
is at the appropriate end vertex of wavefront w. Let's 
assume that the learner is in the northern region and 
expanding wavefronts in a clockwise direction. Thus the 
learner is at the west-most vertex of wavefront w. Note 
that wavefront w can be merged with at most two wave- 
fronts, one at each end. but only merges with the wave- 
front to the west of w actually cause the learner to relo- 
cate. Suppose wavefront w is merged with wavefront ic' 
to its west, to form wavefront w". Then, if the result- 
ing wavefront, w" is unblocked, procedure RELOCATE is 
called and the learner must traverse ic" to its west-most 
vertex (i.e., also the west-most vertex of «'). However, 
since wavefront, w" is unblocked, w" can immediately be 
expanded and is not traversed again. □ 

Lemma 9 At most one wavefront from the east ware of 
an obstacle is blocked by one or more wavefronts in the 
west wave. At most one wavefront from the ivest ware is 
blocked by one or more wavefronts in the east wave. 

Proof: Consider the west wave of an obstacle. By 
the definition of blocking, there are only two possible 
wavefronts in the west wave that can be blocked. One 
wavefront, is adjacent to the back corner of the obstacle. 
Call this wavefront t<>i. The other wavefront is adjacent 
to the meeting point of the obstacle. Call this wave- 
front, K>v. 

We first, show that if </'i is blocked then ic2 will not 
be blocked also. Then we also know that if »••_. is blocked 
then «)] must not have been blocked. Thus at most one 
wavefront in the west wave is blocked. 

If »)] is blocked by one or more wavefronts in the east 
wave then these wavefronts can be expanded to the meet- 
ing point of the obstacle without interference from w'i. 
That is, wavefront w\ cannot block any wavefront in the 
east, wave, and thus there will be no traversal* around the 
boundary of the obstacle until the east wave has reached 
the meeting point. At this point, the west wave can be 
expanded to the meeting point without any wavefronts in 
the east, wave blocking any wavefronts in the west wave. 

Similarly, we know that at most one wavefront from 
the west wave is blocked by one or more wavefronts in 
the east wave. O 

Lemma 10 An edge is traversed at most three times due 
to relocation after blockage (line 33 of EXPLORE-AREA/ 
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Proof: Without loss of generality, we assume that 
the wavefronts are blocked by wavefronts towards the 
east. Proceeding towards the east along the chain of 
wavefronts will eventually lead to a wavefront which is 
not blocked, since the east-most wavefront is adjacent to 
the initial monotone east-north path. 

First we show that any wavefront is traversed at most 
once due to blockage. Then we show that the boundary 
of any obstacle is traversed at most twice due to block- 
age. Note that pairs of edges connecting vertices in a 
wavefront may also be edges which are on the bound- 
aries of obstacles. Thus any edge is traversed at most 
three times due to relocation after blockage. 

We know from Theorem 4 that there is always a wave- 
front that is not blocked. Assume that the learner is at a 
wavefront w which is blocked by a vvavefront to its east. 
Following the chain of wavefronts to the east leads to an 
unblocked wavefront «•'. This results in one traversal of 
the wavefronts. Now this wavefront w' is expanded until 
it is blocked by some wavefront «•". Note that vvave- 
front v" cannot be to the west of«'', since we know that 
the wavefront west of w' is blocked by »•'. (We show 
in the proof of Theorem 4 that if irt blocks w-j then w2 

does not block »v) The learner will not move to any 
wavefronts west of wavefront w' until a descendant, of w' 
no longer blocks the wavefront immediately to its west. 
Once this is the case, then the west wavefront can im- 
mediately be expanded. Similarly, we go back through 
the chain of wavefronts, since - as the learner proceeds 
west - it expands each wavefront in the chain. Thus the 
learner never traverses any vvavefront more than once 
due to blockage. 

Now we consider the number of traversal*, clue to 
blockage, of edges on the boundary of obstacles. As 
wavefronts expand, their descendant wavefronts may still 
be adjacent to the same obstacles. Thus, we need to 
make sure that the edges on the boundaries of obstacles 
are not traversed too often due to relocation because of 
blockage. We show that any edge on the boundary of 
an obstacle is not traversed more than twice duo to re- 
locations because of blockage. That is, the learner does 
not move back and forth between wavefronts on different 
sides of an obstacle. Lemma 9 implies that each edge on 
the boundary of the obstacle is traversed at most twice 
due to blockage. 

Thus, since the edges on the boundary of an obstacle 
may be part of the pairs of edges connecting vortices in 
a vvavefront, the total number of times any edge can be 
traversed due to blockage is at most three. O 

Theorem 6   The  wavefront algorithm  is linear in  the 
number of edges in the city-block graph. 

Proof: We show that the total number of edge traver- 
sal is no more than 14\E\. Note that when the proce- 
dures CREATE-MONOTONE-PATIIS, EXPAND, and RELO- 

CATE are called, the learner traverses edges in the envi- 
ronment. In addition, the learner traverses edges in the 
environment to get back to s after exploration of each 
of the four regions. These are the only times the learner 
actually traverses edges in the environment.   Thus, to 



calculate the total number of edge traversals, we count 
the edge traversals for each of these cases. 

The learner traverses the edges on the monotone paths 
once when it explores them, and once to get back to the 
start point. This is clearly at most 2\E\ edge traversals. 
The learner walks back to s four times after exploring 
each of the four regions. Thus the number of edges tra- 
versed here is at most 4|i?|. Lemma 6 implies that the 
total number of edge traversals caused by procedure EX- 
PAND is at most 2\E\. We now only need to consider the 
edge traversals due to calls to procedure RELOCATE. 

Procedure RELOCATE is called four times within 
EXPLORE-AREA and MERGE. The four calls are due to 
expansion (line 6 of EXPLORE-AREA), expiring (line 14 
of EXPLORE-AREA), merging (line 10 of MERGE) and 
blocking (line 33 of EXPLORE-AREA). Relocations af- 
ter expanding a wavefront results in a total of \E\ edge 
traversals. Lemma 7 shows that edges are traversed at 
most twice due to expiring wavefronts. Lemma 8 shows 
that edges are traversed at most once due to relocations 
after merges. Finally, Lemma 10 shows that edges are 
traversed at most three times due to relocations after 
blockage. Thus the total number of edge traversals due 
to calls of procedure RELOCATE is at most 6\E\. 

Thus the total number edges traversed by the wave- 
front algorithm is at most 14\E\. A more careful analysis 
of the wavefront algorithm can improve the constant fac- 
tor. D 

Theorem 7 A piecemeal algorithm based on the wave- 
front algorithm, runs in time linear in the number of 
edges in the city-block graph. 

Proof: This follows immediately from Theorem 5 and 
Theorem 6. n 

6    Ray algorithm 
We now give another efficient optimally interruptible 
search algorithm, called the ray algorithm. This thus 
yields another efficient piecemeal algorithm for searching 
a city-block graph. This algorithm is simpler than the 
wavefront algorithm, but may be less suitable for gener- 
alization, because it appears more specifically oriented 
towards city-block graphs. 

The ray algorithm also starts by finding the four 
monotone paths, and splitting the graph into four regions 
to be searched separately. The algorithm explores in a 
manner similar to depth-first search, with the following 
exceptions. Assume that it is operating in the northern 
region. The basic operation is to explore a northern- 
going "ray" as far as possible, and then to return to the 
start point of the ray. Along the way, side-excursions of 
one-step are made to ensure the traversal of east-west 
edges that touch the ray. Optimal interruptability will 
always be maintained: the ray algorithm will not tra- 
verse a ray until it knows a shortest path to s from the 
base of the ray (and thus a shortest path to s from any 
point on the ray, by Lemma 2). 

The high-level operation of the ray algorithm is as 
follows. (See Figure 11.) From each point on the (hor- 
izontal segments of the) monotone paths bordering the 
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Figure 11: Operation of the ray algorithm. 

northern region, a north-going ray is explored. On each 
such ray, exploration proceeds north until blocked by an 
obstacle or the boundary of the city-block graph. Then 
the learner backtracks to the beginning of the ray and 
starts exploring a neighboring ray. As described so far, 
each obstacle creates a "shadow region" of unexplored 
vertices to its north. These shadow regions are explored 
as follows. Once the two back corners of an obstacle 
are explored, the shortest paths to the vertices at the 
back border of an obstacle are then known; the "meet- 
ing point" is then determined. Once the meeting point 
for an obstacle is known, the shortest path from s to 
each vertex on the back border of the obstacle is known. 
The learner can then explore north-going rays starting 
at each vertex at the back border of the obstacle. There 
may be further obstacles that were all or partially in the 
shadow regions; their shadow regions are handled in the 
same manner. 

We note that not all paths to s in the "search tree" 
defined by the ray algorithm are shortest paths; the tree 
path may go one way around an obstacle while the algo- 
rithm knows that the shortest path goes the other way 
around. However, the ray algorithm is nonetheless an 
optimally interruptible search algorithm. 

Theorem 8 The ray algorithm is a linear-time opti- 
mally interruptible search algorithm that can be trans- 
formed into a linear-time piecemeal search of a city-block 
graph. 

Proof: This follows from the properties of city-block 
graphs proved in Section 4, and the above discussion. In 
the ray algorithm each edge is traversed at most twice, 
with a careful attention to details. The linearity of the 
corresponding piecemeal search algorithm then follows 
from Theorem 2. Q 

7    Conclusions 

We have presented efficient algorithms for the piecemeal 
search of city-block graphs. We leave as open problems 
finding algorithms for the piecemeal search of: 

• grid graphs with non-convex obstacles, 

• other tesselations, such as triangular tesselations 
with triangular obstacles, and 



• more general classes of graphs, such as the class of 
planar graphs. 
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