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ILLUSTRATIONS 

1. Geometry associated with the fields of charge 3 
q at -b/2 and magnetic monopole m at +b/2 on 
the z axis.  The field of e0 E x B is azimuthal 
about the z axis, indicating the presence of 
angular momentum in the +z direction.  The 
angular momentum is Poqm/lir,   directed from 
q to m. 

2. Electric fields and field of the Poynting vector        1 
in an around a long solenoid whose axis is 
perpendicular to the plane of the diagram: (a) 
Electric field of charge q, indicated by light 
solid lines.  The field of the Poynting vector 
within the solenoid is shown by heavy solid 
lines, indicating a flow of energy across the 
solenoid from left to right.  The dashed lines 
show the field of the Poynting vector outside 
the solenoid, indicating a weak flow of energy 
across the solenoid that supplements the much 
stronger flow inside the solenoid; (b) field 
of the charge distribution induced on the 
surface of the solenoid by the presence of 
charge q and the field of the associated Poynting 
vector.  The total flow of energy across the solenoid 
from right to left exactly cancels the total flow 
of energy across the solenoid shown in (a); (c) 
Combined fields of charge q and the induced charges 
on the solenoid.  The Poynting vector field lines 
(the dashed lines) are roughly circular except 
for a detour around the solenoid.  The angular 
momentum of this field corresponds to the linear 
momenta shown in (a) and (b) for charge q and 
the induced charges on the solenoid. 

3. A capacitor configuration to demonstrate the 18 
concept of electromagnetic momentum density.  In 
charging the capacitor, an impulse to the left 
is delivered to the circuit, and in discharging 
an impulse to the right is delivered.  Although 
somewhat coincidental (see text), there is equal 
opposing momentum in the form of electromagnetic 
momentum density in the space between the capacitor 
plates.  If a dielectric of relative permittivity 
er  is placed between the capacitor plates, the 
effect is increased by the factor cr associated with 
an impulse delivered to the dielectric by a 
polarization current. 
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Energy and momentum densities in a dielectric as a 34 
function of phase: (a) Propagating energy densities. 
The mechanical potential energy density, indicated 
by p.e., is potential energy that is added and 
removed each half circle as electrical energy. It 
behaves just as if it were electric field energy, 
and the sum of the propagating mechanical energy 
density and the pure electric field energy density 
eguals the magnetic field energy density; (b) Non 
-propagating energy densities. The sum of the non- 
propagating mechanical potential energy density 
and the kinetic energy density is constant 
and equal to S = (^- 1) erCoE0

2/2- # (c) Propagating 
momentum densities.5 The pure field momentum density is 
e0EB / and the total propagating momentum density is 
ere0EB = (1 + Xe)e0E

2/vp.; (d) Non-propagating 
momentum density.  Tms is momentum that was 
deposited in the dielectric when the wave field was 
established; it is equal to the total non-propagating 
energy density divided by vp, but unlike the energy 
density, it cannot be resolved into oscillating 
components. 

Energy and momentum densities in a plasma as a function      40 
of phase: (a) Propagating energy density.  This includes 
all of the magnetic field energy density B2/2//0 

and an 

equal contribution eT'e0E
2/2    from the electric field 

energy density; (b) Non-propagating energy density.  This 
includes the remainder of the electric field energy 
density and the kinetic energy density, indicated by el 
and k.e., respectively; (c) The total energy density, 
made up of the electric field energy density, and the 
kinetic energy density; (d) Propagating momentum density. 
The contribution due to mechanical momentum that propagates 
with the waves is negative; (e) Non-propagating momentum 
density.  This involves a cyclic interchange between 
mechanical momentum and pure field momentum; (f) The total 
momentum density, made up of pure field and mechanical 
components. 

Stress produced by an electromagnetic wave field in a plasma  42 
as indicated by the Maxwell stress tensor for vacuum.  The 
electric field stress term is partly associated with 
propagating waves and partly with plasma oscillations; the 
latter part is produced from the kinetic energy of the 
plasma oscillations.  The magnetic field stress term is 
equal to that part of the electric field stress not 
produced from the kinetic energy.  The electric field stress 
associated with the plasma oscillations acts to produce 
mechanical momentum in the +z direction. 



INTRODUCTION 

For an electromagnetic wave field in a simple medium with dispersion, 

only part of the energy associated with the wave field propagates with the 

waves; the remainder does not, although it is converted to propagating energy 

when the wave field decays [Johnson, 1991]. By simple media, we mean linear, 

isotropic, homogeneous media exhibiting normal dispersion without absorption 

at the frequencies under consideration. As the flow of momentum is directly 

related to the flow of energy, something similar must be true of the 

momentum associated with the wave field, giving rise to the requirement that 

some of the momentum associated with the wave field not propagate with the 

waves. Still, the accounting for momentum in electromagnetic waves is a 

trickier business than the accounting for energy [Stedman, 1992]. We will 

investigate the propagation of electromagnetic momentum density (emmd) in 

wave fields in simple media, but it will be helpful to consider first the 

properties of momentum density in two static situations, namely a charged 

particle near a solenoid and a charged parallel-plate capacitor with a magnetic 

field oriented parallel to the plates. The former will illustrate the relation- 

ships between emmd and the vector potential of a current distribution [The 

terminology vector potential of a current distribution was suggested by 

Cullwick (1959) as preferable to vector potential of the magnetic field.] and 

the latter will illustrate the relationships between electromagnetic and 

mechanical momentum and between emmd and displacement currents in 

simple media. 



VECTOR POTENTIAL AND ELECTROMAGNETIC MOMENTUM 

Thomson [1904a] identified the angular momentum L associated with a 

configuration consisting of magnetic monopole m and an electric charge q as 

L = r /i0qm/47r, (1) 

where r is the unit vector directed from q to m. Thomson evaluated the 

angular momentum as 

L = [ r x (£oE * B)dr, (2) 

where the integration is over all space. To reproduce Thomson's result, place 

q and m at —b/2 and b/2 on the z axis, as illustrated in Figure 1. Ex Bis 

azimuthal about z, so all volume elements contribute to angular momentum in 

the +z direction, and 

L = | (»„EIS smff dr = t0J p -^^ jfJjSp sin(02 - «,) ir 

p" pz b dp  dz  
o J o v^+(z+b/2)23 V^+(z-b/2)ü3 

= ^- (3) 

The above integral, though not found in integral tables, is easily shown to be 

unity by numerical integration. [Thomson structured the problem as we have 

and states that the result is easily obtained by integration, but he shows no 

details. Jackson, 1975, p 256, provides an analytical solution with a different 

structure for the integral.] 
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FIGURE 1 



Pugh and Pugh [1967] have provided a very clear example in which use 

of the concept of emmd is essential in explaining the angular momentum of a 

system. Their system comprised a pair of concentric spheres, the inner one 

magnetized, with an electric field between them; as the system is charged, it 

develops mechanical angular momentum without the application of any 

external mechanical torques. 

Thomson [1904b] was probably the first to provide a clear statement to 

the effect that the vector potential of a current distribution is equal to the 

electromagnetic momentum of a unit charge placed in the field of that current 

distribution. Nonetheless, the vector potential was long widely regarded as a 

purely mathematical convenience without physical meaning [Moullin, 1932; 

Aharonov and Böhm, 1959; Konopinski 1978, 1981]. Calkin [1966] and 

Konopinski [1978] rediscovered this property of the vector potential. However, 

even before their publications, it was common practice in quantum mechanics 

to regard the product of the vector potential and a charge q as part of the 

generalized momentum of the particle [Landau and Lifshitz, 1951; Aharonov 

and Böhm, 1959; Wangsness, 1963]. 

Identification of e0E x B as the emmd in vacuum helps make clear its 

physical nature because of its obvious relationship with the Poynting vector 

S = E x H, the rate of flow of elecctromagnetic energy per unit area. Owing 

to the equivalence of mass and energy (energy = mc2), e0E * B = S/c2 is the 

rate of flow of mass per unit area, which is just momentum density.    The 



emmd in vacuum is simply the consequence of the flow of the mass equivalent 

of the energy. In a material medium, the nature of emmd is less obvious and 

sometimes complicated; it will be described later. 

LONG SOLENOID AND AN ELECTRIC CHARGE 

A useful example to consider in connection with electromagnetic 

momentum is a long solenoid with a charge q located a distance r from its 

axis, inside or outside the solenoid but otherwise near its midpoint. Let the 

radius of the solenoid be R and the magnetic induction within the solenoid be 

B. The magnetic field outside the solenoid is small and it is considered at first 

to be zero. The charge is the source of the relevant electric field, and the field 

of emmd associated with the charge can be evaluated inside the solenoid 

[Konopinski, 1981 p 160] even when the charge is outside the solenoid. The 

momentum associated with q is 

e0E x B dr = q A, (4) L T 

where the integration is over the volume within the solenoid. A is the vector 

potential of the solenoid current at the point rq where q is located, and 

AW = feITÄ
dT- (5) 

The electric field E is the field of the charge q, disregarding any perturbation 

due to conducting properties of the solenoid. This is illustrated in Figure 2a 

for r > R, along with the associated field of the Poynting vector S.  The field 



of the Poynting vector indicates an energy source on the left-hand side of the 

solenoid and an energy sink on the right-hand side, and the electromagnetic 

momentum describes the rate of flow of equivalent mass across the solenoid. 

Physically, the fields indicated in Figure 2a could be realized by making the 

solenoid from a large array of small current generators, each at the potential 

established by charge q. Then the current generators on the left-hand side 

would be sources of electromagnetic energy, and those on the right-hand side, 

sinks. This flow of energy across the solenoid is canceled by the effects of a 

charge distribution that is induced on the surface of the solenoid if it is a 

conductor. The charge distribution induced on the solenoid cancels the field of 

charge q inside the solenoid and modifies the field outside the solenoid so that 

it is perpendicular to the surface of the solenoid at the surface. The electric 

field of the induced charge distribution is illustrated in Figure 2b, along with 

its associated Poynting vector field; within the solenoid the fields exactly 

cancel those shown in Figure 2a. 

The magnetic field outside the solenoid, though very small, is not zero, 

and it is important. It gives rise to fields of emmd outside the solenoid, and 

these are shown in Figures 2a and 2b by dotted lines. The fields external to 

the solenoid are very small compared to those inside, and they make only very 

small contributions to the flow of energy across the solenoid and to the total 

linear electromagnetic momenta associated with charge q and the induced 

charge distribution on the solenoid. 
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If the magnetic field is allowed to go to zero, q experiences an induced 

electric field to the right, the impulse delivered to it being 

rB=0 ~ 
-Cq/2«x) £r(7rR2B) dt = qBR2/2r. (6) 

Jß=B m 

This is just the product of q and the vector potential BR2/2r at q, where r is 

the distance to q from the axis of the solenoid. It is also equal to 

f 60Eq * B dr, (7) 

where Eq is the field of q and the integration is over the volume within the 

solenoid; the integral is evaluated in Appendix 1. Associated with the impulse 

to the right given to q, there is an equal impulse to the left given to the 

solenoid [Furry, 1969] as a consequence of the action of the induced electric 

field on the charge distribution induced on the solenoid by the charge q . The 

force would be zero if there were no shielding charges; i.e., if the solenoid were 

a non-conductor. If a role is to be attributed to emmd inside the solenoid, it 

is that these impulses delivered to q and to the solenoid are due to the decay 

of their respective fields of emmd inside the solenoid, even though these fields 

totally cancel one another. It is clear that the electromagnetic momentum 

present in this picture is just angular momentum, as equal and opposite 

impulses act along lines separated by distance r. [Konopinski (1978; 1981) did 

not discuss the force on the solenoid, and Calkin (1966) incorrectly stated that 

it was zero. Calkin ignored the shielding charges; see Furry, 1969, footnote 

16]. We will show shortly that the field of emmd that contains this angular 

momentum is external to the solenoid and that the cancelling fields within the 

solenoid simply reflect the properties of the external field. 
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[An alternative approach to the evaluation of the force on the solenoid 

as B is reduced to zero has been provided by Costa de Beauregard (1967), but 

it is not conceptually correct. He states as a new law of electrodynamics that 

the force on a slowly varying current i in an electric potential field V is 

oVdl/c2 and that the force on a varying magnetic dipole is 

(1/c2) E x dM/dt. Furry has shown that the force in question is actually that 

on the shielding charges induced on the solenoid or on the surface of a 

permanent magnet, and it is zero in their absence. However, with this 

reservation, Costa de Beauregard's relations are handy in evaluating the 

forces.] 

Consider the development of the field of electromagnetic momentum as 

q is brought into position near an energized solenoid (rather than its being in 

place while the magnetic field is increased from zero). Bring q from infinity 

along the axis of the solenoid, considering this to be the z axis; in this way, it 

can be brought from infinity to the center of the solenoid without experiencing 

any magnetic force. Then move q along the y axis with velocity v so that it 

experiences a magnetic force q v x B to the left. This requires the application 

of an external force to the right in Figure 2a (where B is in the -z direction) 

that will impart a total impulse qrB to q by the time it reaches position r, 

where r < R, or qRB when q reaches the boundary of the solenoid. An equal 

impulse, also to the right, is delivered to the solenoid due to its interaction 

with q, the magnetic field of the moving charge being the intermediary that 

transfers the impulse from q to the solenoid .   If this force on the solenoid is 



resisted by an external force to prevent the solenoid from moving, the required 

impulse delivered to the solenoid by the external system is equal and opposite 

to that delivered to q. Thus angular momentum qR2B/2 is delivered to the 

system by external forces as q moves from 0 to R. This angular momentum 

resides in electromagnetic form; if it is converted into mechanical form by 

letting the magnetic field go to zero at this point, the charge acquires an 

impulse qRB/2 to the right and the solenoid an impulse qRB/2 to the left. 

[That equal and opposite forces must by applied to the moving charge 

and the solenoid to maintain their specified trajectory and position has been 

shown by Furry [1969] in a more general treatment of the subject. He showed 

that, for a charge q and a solenoid m surrounded by a conducting shield s, the 

sum of the forces on the system is zero; the relevant forces being the v x B 

force Fq on charge q moving in the field of the solenoid, the v * B forces Fs on 

the shielding charges moving in the field of the solenoid, the J x B force Fmq on 

the solenoid due to the magnetic field of the moving charge q, and the J x B 

force Fms on the solenoid due to the magnetic field of the moving shielding 

charges, where J is the magnetization current flowing round the solenoid. 

Although the sum of the forces is zero, there is not-pair wise cancellation. In 

our example with q approaching a long solenoid along the y axis from +00, 

both q and the shield receive small impulses (infinitesimally small as the 

solenoid becomes infinitely long) to the left due to forces Fq and Fs. The 

largest impulses are to the solenoid due to Fms acting to the left and Fmq acting 

to the right, their difference being small but to the right.    The combined 

10 



impulse to the solenoid and the shield is to the right, equal and opposite to the 

impulse delivered to q by the electromagnetic interaction. Due to symmetry, 

the v x B force on q due to the magnetic field of the moving shielding charges 

and the v x B forces on the moving shielding charges due to the magnetic field 

of q do not enter into the current problem. Furry's treatment may be 

regarded as the basis for the reaction concept for the electromagnetic force 

exerted by one system upon another, that the forces are equal and opposite 

even if they are not in line. The reaction concept was also presented by V. H. 

Rumsey in lectures at the University of Illinois in 1956.] 

As q is taken along the y axis beyond R, it experiences no magnetic 

force (in the approximation of negligible field outside the long solenoid) and its 

angular momentum qR2B/2 must be conserved. Accordingly, the linear elec- 

tromagnetic momentum associated with q decreases as 1/r and its value is 

qR2B/2r, just the product of the vector potential R2B/2r and q. The solenoid 

has equal and opposite linear electromagnetic momentum. There is no 

alternative to the concept of emmd in explaining how the angular momentum 

exists in the system consisting of an energized solenoid and a charge q. 

The above discussion has ignored the fact that B outside the solenoid, 

though small, is not zero. Taking the weak external magnetic field into 

account, there is a weak magnetic force on q as it moves along the y axis 

beyond R, and the force decreases very slowly with distance. The magnetic 

induction as a function of distance r along the y axis for a long solenoid of 

11 



length L and radius R (L >> R) is 

Be = 2/z0aR2/LVl + 4rtyL*3, (8) 

where a is the magnetizing current per unit length flowing round the solenoid. 

Near the solenoid Be = 2//0aR2/L2> and it falls to about one-tenth of this 

value at r = 0.95L. The angular momentum conveyed to q in resisting this 

magnetic force as the particle goes to infinity along the y axis just cancels the 

angular momentum conveyed to the particle (and stored as emmd) as the 

particle proceeded from the axis of the solenoid to its surface, so the angular 

momentum at infinity is zero. 

The above makes clear where the field of electromagnetic momentum 

exists for a charged particle q outside a long solenoid, and this is illustrated in 

Figure 2c, which shows schematically the electric field and the field of the 

Poynting vector. The field lines of emmd are roughly circular about q in the 

plane of the figure, with a detour around the solenoid. As there are no energy 

sources or sinks, the integral of the emmd over all space is zero; this can also 

be seen from the continuity of the field lines of the Poynting vector. Thus the 

total linear momentum of the system is zero, but the angular momentum is 

not. Although the fields outside the solenoid are weak, they are extensive, and 

the integrated angular momentum is finite. The volume within the solenoid 

makes no contribution to either the total linear or the total angular 

momentum. The angular momentum could be evaluated by integrating the 

product of the emmd and a radius vector over all space, but it is easier to 

make  use  of the  property  noted  by  Thomson,   evaluating  the  angular 

12 



momentum in terms of the charge q and magnetic monopoles iraR2 and —xaR2 

at the ends of the solenoid. Each pole in its interaction with charge q has 

angular momentum /i0qxaR2/47r = q/j0aR2/4, with axial component 

q/j0aR2/4\/l + 4r2/L2. Therefore the angular momentum of the system is 

q/i0aR2/2/L + 4r2/L2 » q/z0aR2/2 for r << L. If the magnetic field is turned 

off with the charge and the solenoid held fixed, the linear momentum 

communicated to each of them is q//0aR2/2rVl + 4r2/L2, to the right in the 

case of the charge and to the left in the case of the solenoid. This transfer of 

momentum is due to the decay of the field of emmd, all of which is external to 

the solenoid. However, as we showed earlier, these impulses can be calculated 

from the cancelling fields inside the solenoid of the emmd for the charge q and 

for the induced charge distribution on the solenoid; the cancelling fields simply 

serve as proxies for the properties of the external field. 

Much of what has been said in the context of r > R is also applicable 

for r < R. The angular momentum possessed by the system for r < R is 

qBr2/2. The linear momentum associated with q, expressed in terms of the 

electromagnetic momentum within the solenoid, is c0 Eq * B dr, where the 

integration is over the volume within the solenoid. The integration has been 

performed in Appendix 1, and for r < R, its value is qBr/2 in the +x 

direction. The linear momentum associated with the solenoid is equal and 

opposite, i.e., c0 Es » B dr = -e0 Eq x B dr, where Es is the field of the 

charge distribution induced on the solenoid; this has magnitude qBr/2 and is 

in the —x direction.  Even though the fields of q and the charge distribution on 

13 



the solenoid have different topologies, the integrals of the Poynting vector over 

the volume inside the solenoid are equal and opposite. 

INFINITESIMAL DIPOLE AND AN ELECTRIC CHARGE 

The conversion of mechanical angular momentum into electromagnetic 

angular momentum and vice versa cannot be demonstrated with a magnetic 

monopole and a charge, but it can be with a dipole and a charge. The 

mechanical angular momentum that is conveyed to the system in bringing a 

charge from infinity into the proximity of a magnetic dipole exists in the form 

of electromagnetic angular momentum, and it can be released as mechanical 

angular momentum by letting the dipole decay to zero. The angular moment- 

um is easily evaluated using Thomson's result for the angular momentum 

associated with a charge q and a magnetic monopole m. It immediately 

follows that the angular momentum associated with a charge q and a magnetic 

dipole M is 
L= -foffi'ing^ (9) 

where the charge is at r,0 relative to the dipole, 0 being measured from the 

dipole axis. 

To examine how angular momentum is put into the system as a charge 

is brought from infinity into the proximity of a magnetic dipole, any path can 

be selected; the one that we use here serves as an example.   We consider a 

14 



dipole at the origin of our coordinate system with the z axis along the dipole 

axis. Let the coordinates of the charge be (x, 0, b) and let it move from -a in 

the x direction with velocity v. 

The electromagnetic angular momentum from Thomson's relation is 

Lem = _ qfrMnng } = ggM £ sin20 cosg+\ sin6 cos2gy (10) 

The magnetic field in the xz plane has components: 

B^-^Mginöcosö, By =0, and Bz = |aMj (3 cos20- 1), (11) 

where 9 = tan_1(—x/b). The magnetic force on q as it moves parallel to the x 

axis requires the application of an external force in the y direction to keep it 

on its prescribed path, and this external force is 

F. = g^(3cos>*-l)j. (12) 

The force experienced by M is equal and opposite to that experienced by q, so 

another external force —Fe must be applied to M to keep it from moving. The 

two external forces constitute a couple that adds angular momentum to the 

system, the contribution during time interval dt being 

dLef = av^M(3cos2ö-l)idt. (13) 

As v. dt = dx = — r d0/cos6 and r = b/cosö, this is 

dLef = -f£§^ (3cos20- 1) (-k sintf- i costf) dO. 
a 

Then Lef = |£jj^ [      (3cos20 - 1) (k sin0 + i cosÖ) &0 

= J/£oM [cos0 sin20 £ +^sin0 cos2Q _ ^ _ sin0))i] (14) 

There is an additional torque that must be applied to the system as q moves 

along its prescribed path; the magnetic field of the moving charge produces a 
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torque on M, and an equal and opposite torque from an external source must 

be applied to M to stop it from turning. The magnetic field of q at M is Bq = 

3|sl*> j, so the torque exerted on M is - qf[°^M i- The angular momentum 

conveyed to the system in resisting this torque is 

[' a£$M<w; = -af$f  ~»dM-agS(i-.i»*)i.        (is) 
•'-OD 7T/2 

Thus the total angular momentum delivered to the system is 

Le = |£oM [i cosg sin20 + 1 sinö cos20], (16) 

in agreement with the electromagnetic angular momentum of the system. 

To release the electromagnetic angular momentum in mechanical form, 

let the dipole decay to zero. The impulse delivered to q can be evaluated by 

calculating the induced electric field. Consider the charge and the dipole to be 

fixed in position, thus requiring that impulses equal and opposite to those 

resulting from the decay of the dipole field be delivered from an external 

source.   The flux of magnetic induction through a circle through q generated 

by revolution around the z axis is (/i0M/2r) sin20. The electric field at q is 
1       d  fßpM sin2^ 

2KT sin03t^-iF     >> 

and the integrated impulse delivered to q when the dipole is reduced to zero is 

q/XoM sinfl '■ 
4 7rr2      ^* 

The easiest way to calculate the impulse delivered to the dipole is to 

use Costa de Beauregard's [1967] relation for the force on a changing magnetic 

dipole in an electric field.   The force is -^ * g-p and this yields ^4 „a"1   j 
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for the impulse, equal and opposite to the impulse delivered to the charge. 

Alternatively and conceptually better, this result can be asserted on the basis 

of Furry's conclusion that the force on the shielding charges on the magnet is 

equal and opposite to that on charge q. Thus the angular momentum released 

from the electromagnetic field as a consequence of the decay of M is 

^j—^-- 0, in agreement with both the electromagnetic angular momentum 

determined from Thomson's relation and the mechanical angular momentum 

added to the system by external forces as q was brought from infinity to 

position 1,6. 

THE PARALLEL PLATE CAPACITOR 

Further insight into the nature of electromagnetic momentum can be 

obtained by considering the charge and discharge of a parallel-plate capacitor 

in a magnetic field, the magnetic field being parallel to the plates. The 

example that we consider is illustrated in Figure 3. The parallel-plate 

capacitor is arranged so that moving a switch to position "a" charges the 

capacitor, and moving it to position "b" discharges it. A is the area of the 

plates, s is the distance between them, V is the potential difference supplied 

by the battery, and the electric field between the capacitor plates is E = V/s. 

The role of resistor R is to make the charging and discharging processes slow 

enough so that radiation can be ignored. The constant magnetic field B is 

parallel to the plates, directed into the plane of the figure. When the switch is 
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moved to position "a", a current I flows to charge the capacitor and a force to 

the left is exerted on the circuit joining the capacitor plates due to the 

interaction between the charging current and the magnetic field. The impulse 

delivered to the circuit is -Bsfldt = -e0AsEB, neglecting edge effects, where 

the positive direction is to the right. 

Something must have acquired equal and opposite momentum, and this 

is the electromagnetic field within the volume of space between the capacitor 

plates; this volume has acquired emmd g = e0 E x B, which is directed 

towards the right. The total electromagnetic momentum between the plates is 

e0AsEB, equal and opposite to the impulse delivered to the circuit. Thus the 

mechanical system has acquired its momentum in association with the creation 

of an equal but opposite amount of electromagnetic momentum between the 

capacitor plates. 

The example provides additional insight if the volume between the 

plates is filled by a dielectric of relative permittivity cr, in which case the 

charge acquired by the capacitor and the impulse delivered to the circuit are 

correspondingly larger by the factor er. What is the emmd in this case? 

Practice varies as to how it should be defined, e0 E x B or D « B = 

erc0 E x B, the difference between the two being the momentum per unit 

volume delivered to the dielectric, described next. We consider the dielectric 

to be supported separately from the capacitor plates and the connecting circuit 

so that the effects of the forces acting on each can be considered separately. 
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Going back for the moment to the case with no dielectric present, 

consider the displacement current density Jd = c0 dE/dt and its interaction 

with the magnetic field. The displacement current is directed downwards 

between the capacitor plates, and there is a Jd * B force per unit volume 

directed to the right and equal to eQ dE/dt * B; the integral of this force over 

the time required to charge the capacitor is e0 E x B. It is this impulse per 

unit volume directed towards the right that creates the emmd in vacuum in 

the space between the capacitor plates. Stated otherwise, the magnetic force 

on the displacement current creates emmd. 

When the dielectric is in place, the displacement current includes a 

polarization term, and Jd = e0 dE/dt + dP/dt. The first term provides the 

same impulse per unit volume that existed without the dielectric; it creates 

pure field (or vacuum) momentum. The second term involves an impulse per 

unit volume delivered to the dielectric as a consequence of the polarization 

current. It is this momentum delivered to the dielectric that is considered to 

be part of the emmd when it is defined as D * B. Further, the example 

provides an argument that it more appropriate from a physical point of view 

to consider the emmd to be given by D x B rather than by £0 E » B, with the 

mechanical momentum treated separately in the latter case. During the 

discharge of the capacitor, the emmd collapses and the circuit receives an 

impulse to the right ere0EB and the dielectric an impulse to the left 

(cr- l)e0EB, irrespective of the momentum state of the dielectric when the 

discharge commences.  During the charging of the capacitor, the dielectric did 
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receive an impulse to the right. Whether the dielectric retains this momentum 

or delivers it to something else (the dielectric support structure, for example), 

an impulse to the left is delivered to the dielectric when the capacitor is 

discharged. [If the dielectric in the capacitor example is fixed to the capacitor 

plates, then the impulse delivered to the capacitor-dielectric combination is 

just the change in e0E * B, the same impulse that would occcur without the 

dielectric in place. This interesting fact should not divert attention from the 

real nature of the interactions.] This argues that the emmd, including its 

interaction with the dielectric, should be regarded as as a property of the 

electromagnetic field and equal to D « B; it is not simply a matter of 

momentum being stored in the dielectric while the capacitor is charged. It is a 

property of the electromagnetic field that an impulse be delivered to the 

dielectric whenever there is a change in its polarization, the impulse being (er - 

1) times the change in e0 E * B. 

The emmd between the capacitor plates in this example can be produc- 

ed by a different sequence of events. Suppose that the capacitor without the 

dielectric is charged in the absence of any magnetic field, and that the 

magnetic field is then applied slowly with dB/dt constant until it reaches a 

specified value B. While the magnetic field is increasing, there is an induced 

electric field described by V * E = -<9B/dt. This gives rise to a force to the 

left on the charges on the capacitor plates, the total force in the +x direction 

being -Qs öB/öt = -e0AsE dB/dt, where Q = e0AE is the charge on the 

capacitor plates.   The force on the capacitor plates can also be seen as the 
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force of reaction associated with the pressure gradient force in the electric 
8    £nE2 

field. The pressure gradient force in the electric field is - ^ -^j-; this force 

per unit volume to the right is equal to - e 0E ^ = e0E^j- (since VxE = ^- 

in this example). This pressure gradient force produces the emmd. The force 

of reaction must be borne by the capacitor plates. Thus the force on the 

capacitor plates associated with the growth of emmd between the capacitor 

plates is -£0ASES The total impulse delivered to the plates when the 

magnetic field has reached the value B is -e0AsEB; this is associated with the 

generation of emmd between the capacitor plates. Accordingly, the emmd 

between the capacitor plates is e0EB, directed to the right as before, but this 

time resulting from the time rate of change of B rather than of E. Analogous 

to the magnetic force Jd * B on the displacement current Jd, which produces a 

pressure gradient in the magnetic field that in turn creates emmd, the 

changing magnetic field produces a pressure gradient in the electric field that 

creates emmd. 

If this sequence is repeated with the dielectric in place, the impulse 

delivered to the plates is larger by the factor er, and the increase is associated 

with an impulse to the right in the amount (er- l)e0AsEB delivered to the 

dielectric. The impulse to the dielectric is due to the action of the induced 

electric field on the bound charge (er - l)e0AE on the surfaces of the dielectric 

(or on the surfaces of volume elements of the dielectric), the charge being 

negative on the upper surface of the dielectric slab (or of the volume 

elements).  It can also be seen in terms of the negative gradient of the electric 
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field energy density — •£- ^&—, which is larger than the pure-field value by 

the factor er. The force per unit volume on the dielectric is (er — l)e0E dB/dt, 

and the impulse per unit volume that has been delivered to the dielectric when 

the magnetic field reaches the value B is (er - l)e0EB. As this should be 

considered to be part of the emmd, the total emmd is ere0EB = DB. [Lorrain 

(1980) has described forces on the medium which reduce for the simple system 

considered here to ß0(dP/dt) * H and /i0P x (5H/#t), which are equivalent to 

the expressions used here.] 

If B and E increase in proportion, the contributions to emmd from 

5E/dt and öB/dt are equal, but the nature of the forces exerted on the 

medium by the two terms is different. The force associated with the variation 

in E is due to the polarization current interacting with the magnetic field, thus 

conveying momentum to the medium; this is also reflected in the spatial 

distribution of B as perturbed by the polarization current and in the gradient 

of magnetic field energy density. The force associated with the time variation 

of B is due to an electrical force on the polarization surface charges of volume 

elements of the dielectric, and this is reflected in the spatial distribution of E 

and the gradient of the electric field energy density; the force per unit volume 

on the dielectric is the negative gradient of the electric field energy density 

ere0E2/2 less the negative gradient of the pure electric field energy density 

e0E
2/2, or (er - l)e0E2/2. As this force per unit volume due to the time 

variation in B is not easily visualized, it might be overlooked, which would 
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lead to a factor of two error in evaluating the mechanical momentum delivered 

to the medium. 

The above discussion has not considered edge effects and fields outside 

the volume between the capacitor plates. They can be seen to be inconsequen- 

tial by considering the equivalent of a guard ring. Visualize the capacitor as 

being simply an element of a much larger capacitor consisting of closely spaced 

coaxial spheres or coaxial cylinders with the outer surface grounded. [If the 

source of the magnetic field is considered to be a large solenoid with the 

capacitor along its axis, these edge effects and the interactions between the 

charging current and shielding currents induced on the surface of the solenoid 

are important, and it makes an interesting exercise to discuss them.] 

RADIATION PRESSURE 

There are several ways to evaluate the radiation pressure of electro- 

magnetic waves - the photon flux times the momentum of the photon, the 

Maxwell stress tensor, and the flux of electromagnetic momentum. In 

addition, consideration of conservation of energy and momentum provides 

clear and unambiguous constraints that are useful in interpreting the results 

obtained from the Maxwell stress tensor and the emmd. We will consider the 

radiation pressure on idealized non-reflecting surfaces in idealized non- 

absorbing media: linear isotropic non-absorbing dielectrics characterized by a 
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Single oscillator whose natural frequency u0 is greater than the wave frequency 

u, and non-absorbing unmagnetized cold plasmas whose plasma frequency up 

is less than the wave frequency. [Following the practice of Nayfeh and Brüssel 

[1985], we characterize these as simple media.] 

Empty Space 

Consider a beam of irradiance I or photon flux density I/hi/ propagat- 

ing in the +z direction. In vacuum the photon momentum is h/A0 = Wc0, 

where A0 and k0 are the wavelength and radian wave number in vacuum. The 

flux of momentum per unit area carried by photons is (I/h^) h/A0 = I/c, 

where c is the velocity of light, and this is the radiation pressure on a surface 

that absorbs the beam. Regarded as an electromagnetic wave described by 

E = E0cos(wt - k0z) and u = 2irv, the amplitude of the electric field is 

E0 = V21/ce0. The Maxwell stress tensor indicates an average pressure 

e0E0
2/4 + B0

2/4/io = e0Eo2/2 = Vc- The emmd is coEB = e0E2/c, and its 

average value is e0E0
2/2c = I/c2. Its flow velocity is c, so the flux of 

momentum per unit area is e0E0
2/2 = I/c. 

Considering instantaneous values, the electromagnetic stress per unit 

volume indicated by the Maxwell stress tensor is 

- ^ e0E0
2 cos2p = - k0e0Eo2 2 cosip simp = - koe0Eo

2 sin2tp, (17) 

where <p = vt - kz. This produces emmd in the +z direction 

[ - k0c0Eo2 sin2p dt = |j e0E0
2 cos2y> + ci = | e0E0

2 cos2^, (18) 

where ci has been chosen on the basis that the emmd is zero when E and B are 
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zero. As B = E/c for electromagnetic waves in empty space, this is just equal 

to the emmd, making it clear that the electromagnetic stress per unit volume 

produces the emmd that propagates with the waves. 

Dielectrics 

Next consider a beam of the same irradiance and frequency in an 

idealized normally dispersive, non-absorbing dielectric characterized by 

relative permittivity er and index of refraction n = <fc. In the dielectric, the 

photon momentum is h/A = Wc = nh/A0) or n times the momentum in 

vacuum, where A and k are the wavelength and radian wave number in the 

dielectric. That the momentum of a photon in a medium of refractive index n 

is h/A = nh/Ao has been established within about 0.1% by measurements 

made by Jones and Leslie [1978]. The flux density of momentum carried by 

photons is (I/hi/)h/A = I/vp, where vp is the phase velocity in the dielectric. 

The photon momentum increases by the factor n as it enters the dielectric, 

and an outward force must be exerted on the entry surface of the dielectric 

associated with this change. If a beam enters the dielectric from space without 

any reflective loss (so that I is the same in space and in the dielectric), the 

magnitude of the outward force is (n — l)I/c. 

Now consider the beam in terms of an electromagnetic wave of angular 

frequency u propagating in the z direction in a dielectric characterized by a 

single resonant frequency u0, where u < ui0 = V«/™, « t>em6 the force constant 

for the restraining forces on the electrons.   Only a very brief summary of the 
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mathematical properties of these waves will be given here. [For a more 

complete description of these waves using the same notation used here, see 

Johnson, 1990, Appendix B. For a more general discussion of electromagnetic 

waves in simple absorbing dielectrics, see Loudon, 1970.] The electric field is 

E = E0 cos^, where E0 is the amplitude and tp = uA — kz is the phase. The 

magnetic field is B = B0 cosp, where B0 = E0/vp and vp = w/k is the phase 

velocity. The flow of energy per unit area in the direction of propagation, 

given by the Poynting flux, is S = E « H, and its average value is the 

irradiance 
T _ /CrCpEo2   ,   B0

2
N        _ er€oE0

2 /iq>| 

In addition to the energy density r % flowing at the phase velocity, there is 

non—propagating energy in the form of kinetic energy of the electrons and 

potential energy in the force field that determines the equilibrium positions of 

the electrons. [Visscher (1988) very aptly uses the term elastic potential 

energy to identify this potential energy. Brillouin (1960) calls it potential 

energy, and we have followed his usage.] The electrons oscillate in response to 

the electric field with velocities 

=    yeEp sinjp (20) e     m(u0
2 - u2) K   ' 

and kinetic energies 

where wp
2 = Ne2/c0m. 

Consider what happens during two successive quarter-cycles starting at 

a point where the electrons pass through their equilibrium positions.   At the 
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beginning of the first quarter cycle, the electric field energy and the potential 

energy are both zero and the kinetic energy has its maximum value. During 

the first quarter cycle, the kinetic energy falls to zero and in so doing produces 

potential energy. However, over this same time interval electrical energy is 

expended to force the electrons to oscillate at a frequency less than their 

natural frequency, and this causes still more potential energy to be produced, 

the additional amount per unit volume being XeCoE0
2/2» where Xe is the 

electrical susceptibility. During the next quarter cycle, all of the potential 

energy disappears. Part of it reappears as kinetic energy, which has its 

maximum value again at the end of the second quarter cycle. The remaining 

part acts just as if it were part of the propagating electric field energy; it is 

considered to be electric field energy, and it is taken into account through the 

use of a relative permittivity er that is greater than unity. 

The kinetic energy density and that part of the potential energy 

density produced from kinetic energy has a constant sum 

o^p2      £QEQ
2
 -     y2Xe... r jogg! - f XP. - 1) ,^1 (22) 

This constitutes the non-propagating energy density associated with the wave 

field in a simple dielectric, and it is entirely mechanical in nature (potential 

and kinetic); it has no electromagnetic component, and it does not propagate 

with the waves. Nevertheless, it must be present in the right amount and in 

synchronism with the waves in order for the electromagnetic waves to exist in 

the dielectric. If the waves increase in amplitude with time, the non-propa- 

gating energy must increase at the expense of electromagnetic energy, and if 
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they decrease, non-propagating energy must disappear by conversion to 

propagating electromagnetic wave energy. [We do not discuss the transient 

involved in this change; it is discussed in a different context by Summerfeld 

(1914), Brillouin (1914;1960), and Stratton (1941).] 

The non-propagating energy density satisfies the energy conservation 

requirement that the total energy associated with a wave packet must equal 

the energy transported by the waves across a plane perpendicular to the 

direction of propagation as the wave packet passes by. The propagating 

energy in a wave packet at any instant is less by the factor vg/vp than the 

total energy of the wave packet; the non-propagating energy density makes up 

the difference. The energy conservation implied by the statement can be 

expressed vg<Wt> = vp<Wp>, where vg and vp are the group and phase 

velocities, <Wt> is the average total energy density associated with the wave 

field, and <WP> is the average propagating energy density. In dielectrics, 

<WP> = <Wem>, the sum of the average electric and magnetic energy 

densities ere0E0
2/4 and B0

2/4/i0- 

The group velocity is the weighted average velocity of all the energy 

associated with the wave field (propagating and non-propagating), and as 

indicated above it can be determined from the properties of a wave field of 

constant amplitude, although it is more conventional to express it in terms of 

interference between waves of slightly differing frequencies. All of the energy 

propagation occurs by means of electromagnetic waves and at the phase 
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velocity, the instantaneous value being given by the Poynting vector, which is 

equal to the product of the propagating energy density and the phase velocity. 

Instantaneous energy flow at the group velocity is meaningless; instantaneoous 

flow can be expressed only in terms of the phase velocity. The eventual fate of 

the non-propagating energy as the wave field decays is conversion to 

propagating electromagnetic energy; thus it eventually contributes to the 

energy flow and to radiation pressure, but not while it is in the form of kinetic 

and potential energy. As a wave packet moves through a dielectric medium, 

the individual waves propagate at a velocity greater than that of the group, 

and the waves move forward in the group. In the forward half of the group, 

the individual waves diminish in amplitude as they deposit energy in the 

medium, giving up energy to the non-propagating kinetic and potential energy 

of the dielectric. In the rear half of the group, the individual waves grow in 

amplitude at the expense of the non-propagating energy as they move forward 

in the group. 

Something very similar must occur for momentum. In the forward half 

of the group, the decaying waves give up momentum as well as energy to the 

medium. In the rear half of the group where new waves are launched, the 

growing waves deliver recoil momentum to the medium, directed opposite to 

the direction of propagation. It is convenient to regard the momentum as 

being stored in the medium during the passage of the wave packet, although, 

just as in the capacitor example discussed earlier, it is not actually necessary 

for the momentum to be retained by the medium while the wave field is 
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present. The total momentum in a wave packet, including the momentum 

that will be extracted from the medium when the wave field decays, is thus 

equal to the propagating momentum carried past a given point by waves at 

the phase velocity as the wave packet passes by. Thus conservation of 

momentum is satisfied. 

The emmd is ere0EB = ereoE2/vp, and its average value is ere0E0
2/2vp 

= I/vp2. The flow velocity of the emmd is vp, therefore the average flux of 

momentum per unit area is ere0Eo2/2 = I/vp> in agreement with the flux of 

momentum carried by photons. Half of the emmd is produced by dB/dt and 

half by dE/dt. Thus an amount ereoE2/2vp = (1 + Xe)e0E
2/2vp relates to 

öE/dt; of this, e0E2/2vp is pure-field momentum and xee0E
2/2vp is mechanical 

momentum produced by the polarization current. These quantities can be 

related to energy densities, e0E2/2, the pure electric field energy density, and 

XeC0E2/2, that part of the potential energy density that acts as if it were 

electric field energy and propagates with the waves. The other half of the 

emmd, also equal to (1 + Xe)e0E
2/2vp, relates to ÖB/&; it corresponds to the 

magnetic field energy density B2/2/x0 = (1 + Xe)e0E2/2 divided by vp. This 

half of the emmd also consists of e0E
2/2vp pure field momentum and xeE

2/2vp 

mechanical momentum. Thus the magnetic field energy density has associated 

with it the mechanical momentum that is produced by the induced electric 

field force acting on the charges in the polarized dielectric, and this mechanical 

momentum propagates with the waves. 
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The non-propagating momentum associated with the waves is 

/VD    ^ere0Eo2_      u2üJD
2     e0E0

2 _     u2Xe     CQEQ
2
 . /2o\ 

this is the amount of mechanical momentum that was deposited in the 

medium when the wave field was established and that will be extracted from it 

when the wave field decays.   When this momentum density is added to the 

average propagating momentum density (i.e., the emmd), the total average 

momentum density associated with the wave field is 

X2e^Eo! = il^Eo2j (24) 
vE 2vn       __2v g 

which obviously satisfies the requirement for conservation of momentum. 

[Jones (1978) by rather similar reasoning concluded that a fraction of the 

momentum of a photon is tangibly in the medium, and he classified this 

tangible component as mechanical.] 

If the emmd is expressed as e0E * B rather than erc0E « B, then the 

propagating mechanical momentum of the dielectric must be taken into 

account explicitly in order to obtain the total propagating momentum density. 

Use of vacuum or the Abraham stress tensor demands that the photon beam 

be accompanied by a mechanical force density (the Abraham force) transport- 

ed by the medium, just sufficient to result in the observed radiation pressure 

[Ratcliff and Peak, 1972; Jones, 1978; Lorrain, 1980]. [Kranys (1979) states 

that the acceptance of a separate force field makes it impossible to 

discriminate between the macroscopic media or Minkowski and the Abraham 

forms of the stress tensor on the basis of experiment.] However, this 

assumption of a separate propagating mechanical force field is conceptually 
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unacceptable for a collection of uncoupled oscillators, the usual approximation 

for a simple dielectric. The momentum is carried forward by electromagnetic 

wave propagation, not by mechanical means. 

The problem associated with the concept of propagating mechanical 

momentum by other than electromagnetic wave propagation is not 

encountered with the macroscopic media form of the stress tensor, where the 

mechanical momentum that propagates with the waves is included as part of 

the electromagnetic stress. This indicates an average pressure on an idealized 

absorbing surface of ere0E0
2/4 + B0

2/4/^ = MoE0
2/2 = I/vP, in agreement 

with the flux of momentum carried by photons. The stress per unit volume is 

- ■£- cre0Eo2 cos V = - kerc0E0
2 2 costp sinip = - kere0E0

2 sin2<p. (25) 

This produces momentum density in the z direction crCoE0
2 cos2<p/vp; of this, 

e0E0
2 costy/vp is pure field momentum and XeCoE0

2 cos2<p/vp is mechanical 

momentum that acts as if it were part of the emmd. Half of the latter is 

produced by the magnetic force on the polarization current and half by the 

electrical force on the polarization charges. 

The above relationships are set forth in Table 1 and illustrated in 

Figure 4. The fraction of the average total momentum that is mechanical in 

origin can be readily evaluated from Table 1; it is 

(^_1+^)X£=1_1/nng) (26) 

where ng is the group index of refraction.   This was first noted by Arnaud 
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[1976], Player [1975], Rogers [1975], and Jones [1975; 1978]. It has the 

interesting and important property of being zero for nng = 1 or vpvg = c2. 

Plasmas 

Consider electromagnetic waves with frequency u greater than the 

plasma frequency up in an idealized cold plasma. [See Johnson, 1990, 

Appendix C for a more complete mathematical description of these waves 

using the same notation used here. See Booker, 1984, for a much more general 

treatment of electromagnetic waves in cold plasmas, using notation quite 

similar to that used here.] The plasma is characterized by an index of 

refraction n that is less than unity. Use of the relationship p = h/A for the 

photon momentum yields a value that is less than that in free space. This 

indicates a radiation pressure on an absorbing surface in the plasma equal to 

(I/hi/)nh/A0 = nl/c = I/vp, which is less than would exist in the absence of 

the plasma. 

The Poynting flux in the plasma is er' e0E
2 vp, with 

eT' = 1 - u/p2/w2 = 1 + Xe' = n2 < 1. (28) 

In evaluating the Poynting flux, cr' plays a role similar to that of the relative 

permittivity cr in a dielectric, and tT' is sometimes referred to as a relative 

permittivity or dielectric constant. Booker [1984], for example, says that it is 

convenient to call cr' a dielectric constant. However, plasmas are not 

dielectrics, and care must be exercised in attributing dielectric properties to 

them.  They do not share the usual property of simple media that the electric 
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and magnetic field energy densities for electromagnetic waves are equal to one 

another, and the electric field energy density is e0E2/2, not DE/2. 

For electromagnetic waves in plasmas, the pure electric field energy 

density is greater than the magnetic. The electric field energy density is 

e0E2/2 and the magnetic field energy density is B2/2/*0 = DE/2 = er'e0E2/2. 

Of the total electric field energy density £0E
2/2, only the fraction er' is 

associated with the propagating waves, while the remainder, 

l^jfc' £0E2 = -X,' £oEV2 = $ e0E2/2, (27) 

is associated with plasma oscillations and does not propagate; this part of the 

electric field energy density is produced by the expenditure of the kinetic 
1       , /    c E  2 

energy of the oscillating electrons, the kinetic energy being  j""1 23T~ 

sin2^7. The weighted average flow velocity of all the energy density, 

comprising the propagating and non-propagating electric field energy, the 

magnetic field energy, and the kinetic energy of the oscillating electrons, is the 

group velocity. The non-propagating part of the electric field energy density 

exchanges cyclically with the kinetic energy. It involves charge separation in 

the plasma that acts to increase the electric field, and one might expect this to 

contribute to electric field stress in the same way as charge applied to a 

parallel-plate capacitor, the only difference being that the energy source is the 

kinetic energy of the electrons rather than external. This suggests that the 

electric field energy density in excess of cr
/c0E

2/2 would contribute 

accordingly to the radiation pressure. However, the stress due to the non- 

propagating electric field energy density acts on the plasma and it does not 
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propagate with the waves, nor does it contribute to the radiation pressure. 

This will be discussed shortly. 

The total energy density can be expressed either as the sum of the 

propagating   energy   density   er'e0E
2   (all   electromagnetic,   but   with   a 

1 — e ' mechanical component) and the non-propagating energy density —^—E   eoE0
2 

(on average, half electric and half kinetic), or as the sum of the electric field 

energy density e0E2/2, the magnetic field energy density er'e0E
2/2, and the 

kinetic energy density,       X Cr   e0E0
2sin2<p.   The average value of the total 

energy is e0E0
2/2. 

As the flow of energy indicated by the Poynting vector is Vper'e0E2, 

the flow of momentum is er'£oE2, and the propagating momentum density is 

- cr' e0E2. We cannot immediately classify this momentum density as being 
vp 
pure field momentum or partly mechanical.    The non—propagating energy 

density is    Ä 6r e0E0
2, constant with time, but made up of two components — 

1 — e ' the non-propagating electric field energy density —^—l £oE0
2costy and the 

kinetic energy density 1 3 €r' e0Eo2sinty.   This energy flows cyclically back 

and forth between the two forms as the plasma oscillates.  The corresponding 
1   —   6  ' non-propagating momentum density is   *     r £0E0

2.  We anticipate that this 
1  —  t ' 1   —  € ' is also made up of two terms, ^v 

r e0E0
2cos2<p and ^y 

r e0E0
2sin2^. We 

can identify the first of these as non-propagating pure field momentum, as it 

corresponds to the non-propagating electric field energy density divided by vp. 

The second can be identified as the mechanical momentum imparted to the 

37 



oscillating electrons by the -e v * B forces; it is equal to the kinetic energy 

divided by vp. The momentum flows cyclically back and forth between these 

two forms as the plasma oscillates, in unison with the back and forth flow 

between kinetic energy and non-propagating electric field energy. The total 

average momentum density associated with the wave field in the plasma is the 

sum of the non-propagating momentum density plus the average propagating 

momentum density, or 

I^'£oV + ^ = ^. (29) 

As VgVp = c2 and vg/vp = er', the total average momentum density is 

Vg eT' e0E0 rpkjg obviously satisfies the conservation requirement, as it is ^ 

times the propagating momentum density. 

The propagating momentum density is 

I er'e0E2 = I (1 + Xe'/2 + Xe'/2)e0E2. (30) 
p p 1 

We can identify a part of the propagating momentum density, -  ^y- e0E
2 = 

- \r €T
' e0E2, as mechanical in nature, arising from the electrical forces on 

the polarization charges, but negative because the polarization is negative 

(Xe' = -wp
2/a;2).     The remaining portion of the propagating momentum 

density is pure field momentum and equal to 

(l/vp)(l + Xe72)e0E
2 = K£Ji'e0E

2 . (31) 
1 — ( ' The total mechanical momentum density is   ^y   r e0E0

2(-cos2^ + sinfy), the 

-cos2yj term being associated with the propagating wave and the sinfy term 

with  the  non-propagating  plasma oscillations.     The  average mechanical 

momentum density is zero.  The total pure field momentum is the sum of the 
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propagating and non-propagating components, or 

KX^-' f0Eo2 cos V + !*=-£' e0Eo2 cosV = Ä cos V- (32) 
«V p *Vp Vp 

The total momentum density is the sum of the pure field momentum and the 

mechanical momentum, or 

«ala! cos V + T=-^' c0Eo2(- cos2</> + sin2^) 
Vp ZVp 

= ^-i£' CoEo2 cos V + ^2=-^' e0Eo2 sin V ; (32) 

its average value is e0E0
2/2vp. 

The energy and momentum densities are summarized in Table 2 and 

illustrated in Figure 5. 

The Maxwell stress tensor can be used in either vacuum or macroscopic 

media form, with different interpretations. The amplitude of the electric field 

is E0 = <ßI/cT' e0vp. Using the macroscopic media form, the indicated 

instantaneous stress on a surface normal to the direction of propagation is 

er' e0E
2/2 + B2/2/i0 = er' e0E

2; (34) 

this is the radiation pressure, and it has no contribution from the pure field 

momentum associated with that part of the electric field energy density 

produced from kinetic energy. Thus, use of the Maxwell stress tensor in 

macroscopic media form provides no information on the plasma oscillations, 

although the B2/2//0 term does include the stress associated with the electrical 

force on the polarization charges; this produces that part of the mechanical 

momentum that is recognized as emmd through the use of B
2
/2/J0VP = 

er'c0E
2/2vp.    Maxwwell's equations recognize the mechanical contribution 
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Xe'CoE2/2 to the propagating energy density er'e0E
2/2 as being electric field 

I       3D 

energy, and the polarization current acts as effectively as the ^ ^- term in 

determining the value of B). 

In vacuum form, the Maxwell stress tensor indicates a stress across a 

surface   normal   to   the   direction   of  propagation   e0E2/2   +   B2
/2/J0   = 

~*\6r' e0E
2, and the stress per unit volume is 

$% (e0E
2/2 + B2/2/i0) = * +

2
eT' ^O

2
 k sm2ip. (35) 

A fraction 7 ~~ Cr' of this stress, corresponding to the -e v x B forces, acts on 
I   +   Cr 

1   —   € ' the electrons and produces mechanical momentum —^y 
r   e0E0

2sinfy in the 
2 e ' propagation direction, while the remaining fraction 1   ,  ^ , corresponds to 

the flow of momentum with the waves.    The B2/2//0 term is equal to 

cr' c0E2/2, and it implicitly involves the electrical force on the electrons that 
1    —   £  ' produces mechanical momentum ^-^- e0E0

2 cos2p.   Thus the average 

mechanical momentum is zero. 

The association of energy density or stress with the plasma oscillations 

and the propagating waves is indicated in Figure 6. That part of the electric 

field energy density associated with the plasma oscillations interchanges 
1   —   £ ' cyclically with the kinetic energy density —^—~ «oE0

2sinty   and produces 

mechanical momentum    X £r   e0E0
2sin2<p in so doing.  The remainder of the 

*Vp 

mechanical momentum, ^^ e0E
2, propagates with the waves. 
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The concept of emmd in plasmas is somewhat more straightforward to 

apply than is the Maxwell stress tensor. Whatever difficulty exists is related 

to the difficulty encountered in evaluating the electric field energy density and 

categorizing it as propagating or non-propagating. The quantity cr' foEB = 

er' e0E2/vp identifies the momentum density that propagates with the waves; 

this could be considered to be the total emmd; it does not include in its 

definition the non-propagating emmd that is associated with the plasma 

oscillations, and it does include the negative mechanical momentum density 

— I €r' e0E0
2 cos V that propagates with the waves aas part of the emmd. 

Thus   the   pure   field   momentum   that   propagates   with   the   waves   is 

1" Cr   c0E2.     The non-propagating  pure field momentum  amounts to 
Z Vp 

I 6r' e0E0
2cosfy, so the total pure field momentum is — e0E0

2costy.   The 
ZVp Vp 

1 — e ' total   mechanical   momentum   is   the   sum   of  —A   
r     e0E0

2sin2<p   and 
1  — f ' — A   

r   e0E0
2 costy, the latter term being included in the quantity er'eoEB. 

The total momentum density is the sum of the pure field and the mechanical 

momentum densities, 

\- e0E0
2cosV + * I 6r' e0E0

2sinV - 1 7 €r' e0E0
2 cosV 

Vp ^Vp ^Vp 

= l lv
tT   e0E0

2cosV + x 2v
tr   e0Eo2 sin V, (36) 

IP :q Co^o2 _ er>Eo2 _ _I_^_ 
ie 1S -2v7 ~ -2vi vpvg 

momentum density contributes nothing to the average 

-Vp *vp 

CoEof = er'e0E0i = J_ = I      The mechanical and its average value is -£J- = -!^fi-fl- = — = -2 

Alternatively, the emmd could be considered to be given by e0EB = 

e0E
2/vp, in which case it is necessary to take the mechanical momentum 

1 — e ' densities into account explicitly.  Of the total emmd, a portion —7—- e0E2 is 
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associated with the plasma oscillations and exchanges cyclically with the 

mechanical momentum density —^^ e0Eo2 sinty; it does not affect the 
1 + e ' propagation of the waves.     The remainder of the emmd, —j^-1 e0E2, 

propagates with the waves, but it is cancelled in part by the (negative) 

mechanical momentum - 1 X Cr' e0E2  that propagates with the waves.   The 
*Vp 

net transport of momentum by the waves is thus 

L+M&i-l^Jt'<&-!¥&. (37) 
2Vp 4Vp Vp 

However, this suffers conceptually from the ad hoc assumption that some of 

the mechanical momentum propagates with the waves without being a part of 

the electromagnetic propagation. 

DISCUSSION 

The definitions of electric and magnetic field energy densities and 

electromagnetic momentum density in media are rather arbitrary because of 

the conversions that take place between mechanical and electromagnetic 

forms. The potential energy in dielectrics is closely coupled to electric field 

energy and part of it acts as if it were electric field energy. Part of the 

mechanical momentum also acts as if it were electromagnetic momentum. 

These facts are conveniently taken into account in dielectrics by accepting 

DE/2 as the electric field energy density and D x B as the emmd. [Booker 

(1982) has made particularly clear distinctions among the various forms of the 

electromagnetic equations appropriate to charges and currents in vacuum, 
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dielectrics, and partially conducting dielectrics.] The fact that it may be 

difficult, or at least inconvenient, to evaluate the mechanical properties 

provides a strong incentive to avoid the necessity of considering them 

explicitly, but it is difficult to understand the physics involved without at 

least knowing just how the mechanical properties relate to the pure field 

quantities. The relationships are sufficiently different in dielectrics and 

plasmas that they must be considered separately. 

In any static system involving electric and magnetic fields (i.e., no 

sources or sinks of electromagnetic energy), the total linear electromagnetic 

momentum is zero. However, static systems may possess angular electromag- 

netic momentum. Systems in which there is a flow of electromagnetic energy 

from one part of the system to another possess linear electromagnetic 

momentum; in vacuum, this momentum simply corresponds to the flow of the 

mass equivalent of the energy from the source to the sink. In media, there are 

in addition other terms that are best included in the definition of electro- 

magnetic momentum. 

Somewhat analogously to the way in which the movement of a charge 

in an electric field produces additional field energy, the existence of a 

displacement current in the presence of a constant magnetic field produces 

electromagnetic momentum (assuming the appropriate direction of motion or 

current in each case). If a displacement current occurs in a dielectric of 

relative permitivity Xe, the displacement current is enhanced by the factor 
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1 + Xe, and there is a corresponding momentum enhancement. The 

momentum enhancement is due to the interaction between the polarization 

current and the magnetic field, which imparts an impulse to the dielectric; 

although this impulse is mechanical in nature, it is an inseparable part of the 

electomagnetic momentum, analogous to the increased energy density in a 

dielectric relative to vacuum for a given field strength. In the presence of a 

constant electric field in a dielectric, a rate of change in the magnetic field 

produces similar momentum density, but in this case the impulse delivered to 

the dielectric is due to the action of the induced electric field on the 

polarization charges. If the electric and magnetic fields vary proportionally to 

one another in time, the two contribute equally to the emmd, including the 

impulse delivered to the dielectric. 

For electromagnetic waves in simple media, non-propagating energy 

density is the basic cause of the phenomenon of group velocity. A related 

property of group velocity is the existence of non-propagating momentum 

density. The non-propagating momentum density in dielectrics is purely 

mechanical in nature. In plasmas, the non-propagating momentum density is 

partly electromagnetic and partly mechanical (the two forms interchanging 

cyclically with one another). In both dielectrics and plasmas, part of the 

propagating momentum density is mechanical in nature: Xe^oEB in dielectrics 

and (xe'/2)eoEB in plasmas (and Xe' is negative). 
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The macroscopic media (Minkowski) form of the stress tensor is 

conceptually preferable to the vacuum (Abraham) form in dielectrics in that it 

indicates the stress without any need to attribute to the medium an unrealistic 

ability to transport a mechanical force field at the velocity of light sufficient to 

increase the stress exerted by electromagnetic waves from £0E2 to ere0E2. 

Clearly, it is electromagnetic wave propagation, not transmission by mechan- 

ical means, that accounts for the transport of momentum. 

For electromagnetic waves in media, the cyclic interchange between 

electric field energy and kinetic and/or potential energy in the medium causes 

the momentum flux density associated with an energy flux density I to be 

I/vp, rather than I/c as it is in vacuum. The momentum density in vacuum is 

I/c2, but in media it is necessary to define just what density is meant - 

propagating, non-propagating, or total. The average propagating densities for 

the energy and momentum are I/vp and I/vp
2, respectively. The non- 

propagating densities are (& - 1) I/vp and (^ - 1) I/vp
2, and the.average 

o o 

total densities are I/vg and I/vpvg. The instantaneous values for the 

propagating energy and momentum densities in dielectrics are S/vp = ere0E
2 

and S/vp
2 = ere0E2/vp; for plasmas, it is only necessary to add primes to the 

cr factors. That part of the mechanical momentum that propagates with the 

waves acts just as if it were electromagnetic momentum, in the same way that 

mechanical energy density in the amount Xe*oE2/2 in a dielectric acts just as if 

it were part of the electric field energy density. However, the amount of 

propagating mechanical momentum is different in the two cases, XeeoE2/vp for 
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dielectrics and Xe'eoE2/2vp for plasmas. This is associated with the fact 

that, in plasmas, the mechanical momentum produced by the electrical force 

on the polarization chages (i.e., by dB/dt) propagates as part of the 

electromagnetic wave, while the mechanical momentum produced by the 

magnetic force on the polarization current (i.e., by öE/dt) does not. In 

dielectrics, both terms produce mechanical momentum that propagates as part 

of the waves. 

For electromagnetic waves in plasmas, er' e0E2/2 = ED/2 identifies just 

that part of the electric field energy density that propagates with the waves; 

e0E
2/2 is the total electric field energy density, and (1 - cr') is the fraction of 

it that does not propagate with the waves. The magnetic field energy density, 

equal to er'e0E
2/2, all propagates with the waves. Hence the total energy 

density that propagates with the waves is er'eoE2, and the non-propagating 

electric field energy density is 1 ~^T' e0E2. The total energy density is the 

sum of these two, 1 +^T' foE2, plus the kinetic energy density, ~^r 

c0E0
2 sinty, or e0E2. The accounting for momentum is similar. The total 

emmd that propagates with the waves is cr'e0EB = er'e0E2/vp, and it 

includes a negative mechanical component x* £0E2/2vp.   Thus the pure field 
1    +   €  ' momentum that propagates with the waves is —^y 

r e0E2. The non-propa- 

gating momentum density associated with the forced plasma oscillations 
1 — e/ consists of electomagnetic and mechanical components, respectively —^— 

e0E2 and 1 I £r' e0E0
2 sin2<p.   Thus the total pure field momentum density 

ZVp 

(propagating   and   non-propagating)   is   <r0E2/vp.      The   total   mechanical 
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1   —   £  ' 1   —   f  ' momentum is -    *   r   e0E0
2 cosfy -\ ^-^- e0E0

2 sinV; its average value 

is zero; this agrees with Equation (26) since nng = 1 for plasmas. 
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APPENDIX 

Here we will evaluate the volume integral P of the emmd e0E x B 

explicitly for the case of a point charge q located a distance r from the axis of 

an infinitely long, non-conducting solenoid. The solenoid has radius R, and 

the magnetic field within it has the constant value B = Bk; outside the 

solenoid the magnetic field is zero. The electric field inside the solenoid is 

taken to be the undisturbed electric field of q, ignoring any effects of shielding 

charges on the surface of the solenoid, as prescribed by Konopinski [1978]. 

Taking the origin of the coordinate system to coincide with q, we have 

and the solenoid's axis is along the line x = 0, y = r. From symmetry, the 

only non-vanishing component of P integrated over the volume within the 

solenoid is 

rR rymax       roo 

E        = J f*,y,«l (Al) 

Px =     c0EyBz dr = e0B        dx dy      dz Ey, 
Jr J-R    Jymin    

J-a, 
(A2) 

where ymin = r - v^R2 — x2, yraax = r + ^R2 — x2, and Ey is obtained from 

Equation (Al).   Upon the substitution tanfl = z/vx2 + y2, the integration 

over z reduces to elementary form, with the result that 

nR pR        rymax      v 

**-%} z**l. *rh>*- (A3) 
«• jm in 

This in turn is easily integrated to give 
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B 
"» = §? 

rR   1 ln r2 + R2 + 2rVR^ - x^ iy_ 

-R5    r2 + R2 - 2rVR2 - x* 
(A4) 

jB rl 

where 

Integrating Equation (A5) by parts, 

jBR r„ ,_ 1 + aVl - x2 

= §> 
= qB2Rf

1iinL+_^CZl!dX; 
2TT       J02     X _ av/1 _ x2 

, s 2rR 
a = <*(r) = R2 +  rJ • 

2 llnr
2 + R2 + 2rRVl^ 

0 5     r2 + R2 - 2rRyi - x2 
dx 

(A5) 

(A6) 

Px = ^[xln 
iLflBRfxdlni^fiSZI 

Jl 

= 0 + qBR[1 «! [1 + U^LZI 
27r   JO 1 +  av/i - x2 1 - aVT=~T 

QBR   r1 x2 

= V"aJnl - cfi + a» 

1 - ayi - x2 

*     dx 

VI - x2 

"     . (A7) 
l(r    -  , --^/nnEi 

The integrals appearing in Equations (A5) and (A7) are not found in standard 

tables.   However, the integral in Equation (A7) can be evaluated using the 

tabulated results of Gradshteyn and Ryzhik [1980]: 

rir/2 
ln(l + a sin2x) sin2x dx 

J0 

= ?(ln- i + yrr~ä  11 - yi + a 
T 1 + VI + a 

) (A8) 

and 
TT/2 

ln(l 4- asin2x) cos2x dx 
0 

* "-I + VI + a     1 1 - VI + a x 
= 7 (ln 5 + 5 .    .    \r—.— > 

(A9) 
1 + VI + a 

for a > -1. Adding Equations (A8) and (A9) and differentiating both sides of 

the result with respect to the parameter a, we find 



I 
X/2       »n*      dx = x 1  (A10) 
0     1 + a sin* Sj + a + v/rT-i ^ 

The substitution x = snrMi then yields 

I 1        U2 du _T 1 (An) 

IQ
1
 +™2jr^p    ? i + a + ^/TT~a-' 

After a simple rescaling and redefinition of variables, this becomes 

Joa2 + b'x' ~jr=lP~^ a2 + b2+ a^TTTa" 
The integral appearing in Equation (A7) is a special case of this result, 

obtained by setting a2 = 1 — a2(r) and b2 = a2(r). Thus 

Px = aBR a(r) (Al3) 
1    1  +  VI - a2(r) 

_ qBR 2rR  
~ ^T~ R2 + r2 ±  (R2 - r2) 
= qBr/2, or qBR2/2r. (A14) 

For r < R, symmetry demands that Px —> 0 as r —> 0, and the first solution, 

obtained by choosing the positive square root, is applicable. For r > R, it is 

necessary that Px —> 0 as r —> a>, and the second solution applies. 
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Table I 

ENERGY AND MOMENTUM DENSITIES 

FOR ELECTROMAGNETIC WAVES IN DIELECTRICS 

ENERGY MOMENTUM 

AVERAGE TOTAL 

vD eT€0E0
2 

vg    2 
ere0E0

2 

2vg 

INSTANTANEOUS, PROPAGATING 

er£0E0
2cos2 

V* V
P 

= e0E2/vP (pure field) 

+ xeeoE2/vp (mechanical) 

INSTANTANEOUS, NON-PROPAGATING 

(^-l)^2sinV+    (k.e.) (Xj-i)^2 

(^-D^2cosV       (P.e.) = Ä^' 
_     *^Xe     e0Eo2 

"wo2 - w2T" 

(kinetic and the corresponding (momentum deposited in 
amount of potential energy) the medium **) 

* This includes the electric field energy expended to force the oscillation, 
6r'-~ 1 e0E0

2 cos2(/? = XefoE2/2, which is also the potential energy in excess 

of that produced from kinetic energy; it acts like electric field energy and 
propagates with the waves. 

** This momentum is conveyed to the medium during the establishment of the 
wave field; equal and opposite momentum is conveyed to the medium as the 
wave field decays, independent of whether or not the momentum has been 
retained by the medium during the presence of the wave field. 
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Table II 

ENERGY AND MOMENTUM DENSITIES 
FOR ELECTROMAGNETIC WAVES IN PLASMAS 

ENERGY MOMENTUM 

^|a! cos V (electric) + 

cr'-^|°! cosV (magnetic) + 

1 ~/r' e0Eo2 sin2^ (ke) 

= er' CoE0
2 cos V (prop, em) + 

1 ~2
£/ 60Eo2 cos V + 

(non-prop electric) 
1 ~£x' e0Eo2 an*<p 

(non-prop, kinetic) 

INSTANTANEOUS TOTAL 

^s^cosV (em)- 

Z Vp 

1  - £r' fogo! sin2(p  (mech) 
Z Vp 

= cr' -N-T^ cos V (prop) + 
VP 

l_Z_!rl£fl|2!cOSV + Z Vp 
(non-prop em) 

1 Vr' 6°v°2 ^V 4 Vp 
(non-prop mech) 

PURE FIELD QUANTITIES 

cr' c0E0
2 costy (prop) + 

~Vr e0E0
2 cosfy (non-prop) 

= 1 +%T' 60E02 costy 

1   +   £r
/  £pE02 

cosfy (prop) + 

1 - e/6oE_o_ C0S2^ (non_prop) 
4 Vn 

_ C0E02 

cos 2<p 

-—J±- c0Eo2 sinty (kinetic) 

MECHANICAL 
1 ~ 6r' ^^ cos V (prop) + 

P T       vT 
1   - Cr'  6ogo2 gin2y?   (non_prop) 

z Vp 
= i_-6I:eo|o!(_1 + 2sinV) 

e0Eo2 
AVERAGE TOTAL 

fgEo2 

~2vT 
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