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ABSTRACT 

In a series of papers, Donoho and Johnstone develop a powerful theory based on wavelets for extracting non- 
smooth signals from noisy data. Several nonlinear smoothing algorithms are presented which provide high per- 
formance for removing Gaussian noise from a wide range of spatially inhomogeneous signals. However, like other 
methods based on the linear wavelet transform, these algorithms are very sensitive to certain types of non-Gaussian 
noise, such as outliers. In this paper, we develop outlier resistant wavelet transforms. In these transforms, outliers 
and outlier patches are localized to just a few scales. By using the outlier resistant wavelet transforms, we improve 
upon the Donoho and Johnstone nonlinear signal extraction methods. The outlier resistant wavelet algorithms are 
included with the S-f-WAVELETS object-oriented toolkit for wavelet analysis. 

1   INTRODUCTION 

The introduction of wavelets in the late 1980's has spawned a flurry of research activity, exploring new techniques 
for analysis of data simultaneously in the time and frequency domains. Several new "wavelet-like" transforms have 
been developed, such as wavelet packets, local cosine bases, Wilson bases, and matching pursuits. Wavelets have 
proven valuable for a variety of statistical applications, such as the denoising of signals or estimation of spectral or 
probability densities. 

The presence of outliers in data causes problems in traditional time series analysis techniques. Outliers can 
seriously distort the autocorrelation function, partial autocorrelation function, spectral density function, model iden- 
tification, and parameter estimates for models. Outliers can also cause problems with methods based on the wavelet 
decomposition. Wavelets are a linear transformation of the data, and hence, outliers have unbounded influence on 
the wavelet coefficients. 

In this paper, we review research into new robust wavelet decompositions which are designed for analysis of 
data which contains outliers. Based on these decompositions, we extend wavelet-based statistical algorithms to han- 
dle a broader class of problems. In particular, we focus on the robust "smoother-cleaner" wavelet decomposition. 
Smoother-cleaner wavelets are an adaptation of the pyramid algorithm in which outliers captured into robust resid- 
uals at different multiresolution levels. The algorithm is computationally very fast with 0(n) complexity. 

The paper is organized as follows. Section 2 reviews the wavelet-based denoising procedure of Donoho and John- 
stone. Section 3 motivates the need for new robust wavelet decompositions, and presents decompositions based on 
minimizing norms which are insensitive to outliers. These decompositions have nice theoretical properties but are 
computationally slow. Section 4 presents the robust smoother-cleaner wavelet algorithm. The algorithm is applied 
to simulated data and radar glint noise data. Finally, section 5 gives a discussion of related research. This includes 
research into other robust wavelet decompositions, and the development S+WAVELETS. an object-oriented toolkit 
for wavelet analysis. 

XKaOQ^^:i [E c>-'*-> '-* J-'ii!" 

19950120 Approved for public xelease; 
Distribution Unlimited  



2   DENOISING BY WAVELET SHRINKAGE 

Suppose our data x,- are noisy samples from a function /: 

Xi = f{i/n) + e8- 
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where e,- are iid N(0, <r2). We want to find an estimate / which minimizes the risk R(f, f) — E\\ f' — f \\\. In a series 
of papers 6- 8- 7, Donoho and Johnstone propose a collection of related techniques which solve this problem. Their 
denoising procedure, which we refer to as WAVESHRINK, is based on a theoretically motivated nonlinear shrinkage 
of wavelet coefficients. The principle is that noise contributes to many coefficients but features contribute to only 
a few coefficients. Hence, by setting the smaller coefficients to zero in a statistically guided manner, we can nearly 
optimally eliminate noise while preserving the underlying signal. 

The three steps in the WAVESHRINK algorithm are 

[1] Apply the wavelet transform with J levels to the signal X, obtaining wavelet detail and smooth coefficients 
D(1),D(2), ...,D(J),S(./). 

[2] Shrink the detail coefficients at the j finest scales to obtain new detail coefficients D(l) = «^(D^)), ..., 
D(j) = 6\ (D(j)). A statistically attractive form for the thresholding function is a soft threshold: 

M*) = 
o 
sign(x)(|x| 

if |x| < A; 
A,-)    if jxj > A,- (2) 

Note that the threshold A,- may vary from level to level. 

[3] Apply the inverse wavelet transform to obtain the estimated smooth X. 

Theoretical results show that for certain choices of the A;-, the WAVESHRINK estimate /„,, can achieve nearly the 
minimax risk over a broad class of functions T: 

Ä(/„„/)winfsupÄ(/,/) (3) 

A consequence of this result is that the WAVESHRINK algorithm has a locally adaptive bandwidth. It has been 
shown to perform remarkably well on a broad range of spatially inhomogeneous signals. The smooth is completely 
automatic: no tuning constants are required (other than the choice of the wavelet filter and thresholding rule). The 
WAVESHRINK algorithm can be extended to other orthonormal bases as well, such as wavelet packets and local cosine 
bases5. 

3  ROBUST WAVELET DECOMPOSITIONS 

The theory of Donoho and Johnstone demonstrates that wavelets provide a powerful framework for denoising 
data. However, this theory is based on the assumption that the noise c,- is close to a Gaussian distribution. As a 
result, the WAVESHRINK algorithm is very sensitive to outliers. 

Figure 1 compares WAVESHRINK for an artificial signal contaminated with Gaussian and non-Gaussian noise. 
Figure 1(a) displays the "jumpsine" signal: a sinusoid with a jump in the middle. The adjacent plot is the wave- 
let decomposition of the jumpsine signal. All of the large coefficients at the finer levels correspond to the jump. 
Figure 1(b) gives the signal plus Gaussian noise with the WAVESHRINK smooth. In this example. WAVESHRINK 

performs well and the smooth is very close to the original signal. This smooth is derived by inverting the "shrunken" 
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Figure 1: (a) The jumpsine signal (left plot) and its wavelet decomposition (right plot), (b) the signal contaminated by 
Gaussian noise (points), the WAVESHRINK smooth of the Gaussian contaminated data (solid line), and the wavelet decom- 
position corresponding to the WAVESHRINK smooth (c) The same as "(b)" except that the signal is also contaminated by 
impulsive patchy noise at random locations. While WAVESHRINK performs very well with Gaussian noise, WAVESHRINK is 
highly sensitive to outliers. 

wavelet decomposition, shown in Figure 1(b). By shrinking the coefficients, we are able to remove most of the noise 
while still maintain the underlying signal, including the level shift. The data in figure 1(c) is obtained by further 
corrupting the signal with non-Gaussian impulsive outlier noise. The outliers are patches of fixed magnitude but 
random sign and patch length. The resulting WAVESHRINK smooth is very sensitive to the impulsive noise. The 
problem is that outliers are treated as local features by the WAVESHRINK procedure. Hence, like the level shift, 
outliers are preserved (see the corresponding wavelet decomposition). 

One aim of our research is to broaden the scope of situations for which WAVESHRINK and related procedures 
are useful. To achieve this goal, we are developing a suite of algorithms for producing multiresolution and wavelet 
decompositions designed for signals which have noise distributions Fe of the form 

Ft = (l-j)F + 7H (4) 

F is the "cpre" model, if is a '"long tailed" outlier producing distribution, and 7 is the fraction of contamination. 
We consider a variety of contamination models, emphasizing those which generate outliers occuring in patches l4. 

The classical wavelet transform produces a sequence of approximations ft(t) which are the projections of a signal 
f(t) onto the basis formed by the collection of scaling functions <j>t,k(t) = 2~i/2<i>(2~lt - k). These projections 
minimize the £■> norm 

\\f(t)-fi(t)h (5) 

The Li norm, however, is well known to be very sensitive to outliers.  In this section, we consider decompositions 
obtained by minimizing norms which are robust towards noise generated from models such as (4). 
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Figure 2: (a) Z2 multiresolution analysis using the Haar basis for an artificial signal consisting of outlier bursts, a smooth 
transient, a level shift, and smooth bump, and (b) L\ multiresolution analysis for the same signal. The outlier bursts and 
transient are localized to the fine scales and concentrated in fewer coefficients for the L\ decomposition. 

3.1 Li Fitting and the Haar Basis 
The L\ norm is well known to be resistant towards outliers. As an example, we consider the analysis of an artificial 
signal using the Haar basis. For the Haar basis, the optimal L2 and L\ fits are given by the block mean and median 
respectively. Figure 2 compares the fits obtained by minimizing the Li norm (figure 2(a)) and L\ norm (figure 2(b)). 
The original signal, given in the top plot, consists of three outlier bursts with different patch lengths, a smooth 
transient, a discontinuous level shift, and a smooth Gaussian kernel. The next four plots display the approximations 
S(£) = fi{t) for I - 1,2,3,4. The final four plots display the differences D{£) = fi-i{t)-h{t) for I = 1,2,3.4. These 
differences are closely related to the "detail" coefficients in the classical wavelet transform. To ensure uniqueness of 
the Li fits, we use decimation by 3 in this examples. 

This example illustrates two properties of L2 and In fits (in the decimation by 3 case): 

PI: An outlier spike of length [3£/2J is isolated to levels j = 0,1,... ,£-1 for Lx approximations ft(t). By contrast, 
the outlier spikes are spread throughout the L2 projections. 

P2: The discontinuities and local transients are concentrated in fewer coefficients for the Li fits. 

Hence, we can more easily remove outliers from the Li decomposition. Note also that the edges of the level shift 
are better preserved with the Li decomposition. The concentration of coefficients in the Li decomposition indicates 
that robust decompositions may have applications to data compression problems4. 

3.2 Smooth But Robust Fits 

We can extend L\ fitting to general wavelet bases and hence, obtain smoother projections. As an approximation, 
£1 fits can be used which are easily computed using using standard lx regression techniques. However, It fits are 
intrinsically non-smooth, and the so Li fits for general wavelet bases can still exhibit local roughness. We can obtain 
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Figure 3: (a) The signal (line) contaminated by non-Gaussian noise (points), taken from in figure 1(c), (b) the L2 projection 
at level 4 (decimation of the original signal by 24), (c) the Li fit at level 4, and (d) the hybrid fit at level 4 using the norm 
defined by (6). The hybrid analysis retains the smoothness of L2 projection and the robustness of Li fit. 

smooth but robust fits by using a hybrid loss function, such as 

G(t) = 
t2     for \t\ < C 
\t\     for \t\ > C 

Minimizing the norm defined by G{t) retains the smoothness of L2 projections and the robustness of Li fits. 

(6) 

To illustrate the difference between the different norms when using a smooth wavelet, we return to jumpsine 
example. Figure 3(a) plots the signal contaminated by non-Gaussian impulsive noise. Figure 3(b) gives the L2 
projection at level 4 (decimation of the original signal by 24) using the "least asymmetric'' orthogonal wavelet with a 
filter of length 8 3. For illustrative purposes, a non-decimating shift invariant projection is performed 12. Figures 3(c)- 
(d) give the corresponding fits based on minimizing the Li norm and the hybrid loss function respectively. The Lo 
projection is significantly influenced by the outlier bursts. By contrast, Li and hybrid fits are relatively insensitive 
to the outliers. However, the hybrid fit is smoother and visually more appealing than the LL fit. 

3.3    Computationally Unattractive 
In general, the exact L\ or hybrid approach is computationally too inefficient for practical use. Even in the Haar 
case, we do not retain the recursive filtering pyramid which makes the wavelet approach so attractive. It is our aim 
to mimic the robustness properties of this approach without sacrificing the computation efficiency of the discrete 
wavelet transform. 

4   ROBUST SMOOTHER-CLEANER WAVELETS 

The goal of robust smoother/cleaner wavelets is to produce a fast wavelet decomposition which is robust towards 
outliers. Smoother-cleaner wavelets behave like the classical £,2 wavelet transform for Gaussian signals, but prevent 
outliers and outlier patches from leaking into the wavelet coefficients at coarse levels (like L\ wavelets). However, in 
contrast to the L\ wavelets, algorithm is very fast with computational complexity O(n). 
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Figure 4: The robust smoother algorithm produces a pyramid decomposition with an extra component: the robust residual 
R{1). For each multiresolution level, the low-pass coefficients S(£) are first cleaned using a robust smoother cleaner, denoted 
by sc in the figure. The residuals are saved in the R(£). The usual wavelet filters are then applied to the cleaned S(i) to 
obtain S(i + 1) and D{i + 1). 

4.1    Basic Algorithm 

The basic idea of robust smoother/cleaner wavelets is simple: the smooth coefficients are preprocessed with a fast 
and robust smoother/cleaner. The procedure is illustrated in figure 4. As usual, we start with a set of wavelet 
coefficients 5(0). Then, for each multiresolution level, the signal is decomposed into three components: 

1. A set of robust residuals R{t - 1), given by R(£ - 1) = Sx (s(e - 1) - S(i - 1)) where 5X is the thresholder 

function (2) and S(£ - 1) is a robust smooth of S(£-1) (e.g., running medians of 5). The threshold A is chosen 
so that most of the robust residuals are zero. 

2. The smooth wavelet coefficients S(t) obtained by applying the usual low-pass/decimation wavelet filter H to 
the cleaned smooth coefficients U(t - 1) = S{(. - 1) - R(£ - 1). 

3. The detail wavelet coefficients D(£) obtained by applying the usual high-pass/decimation wavelet filter G to 
U(l-l). 

4.1.1     Choice of Wavelet Filters 

The low-pass decomposition filters should be short in order to avoid leakage of outlier patches to the smooth coef- 
ficients. In general, the longer the low-pass filter, the more an outlier patch tends to get smeared when going from 
fine to coarse levels. The smearing is undesirable since it then is difficult to isolate and identify the outlier patch 
(as in the L2 case). On the other hand, it is desirable to have longer filters to ensure sufficient smoothness with the 
underlying basis functions. 

The "b-spline" biorthogonal wavelets3 is one class of filters which satisfy both requirements: short, filters can be 
used for decomposition while longer filters for reconstruction. 

4.1.2    Choice of Robust Filter 

The robust,.filter should be simple, computationally fast to compute, and have a very high breakdown point. Median 
filters are an attractive choice, and enjoy extensive usage in the engineering community. The width of the robust 
filter L should be as small as possible to provide minimal distortion of the underlying signal. However, L must be 
sufficiently big to prevent outlier patches from getting smeared in coarser scales. 

In theory, for a low-pass wavelet filter of length M, smearing is prevented by using median niters of length 
L > 2A/ + 1. In practice, we find that using median filters of length 5 or 7 is usually sufficient to avoid smearing for 
most types of wavelets. 
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Figure 5: (a) Robust smoother-cleaner decomposition of the outlier contaminated jumpsine signal and (b) zero cones applied 
to the robust smoother decomposition in "(a)". 

4.1.3    Setting the Robust Residual Threshold 

The threshold A determines the number of non-zero robust residuals. Setting A too big will result in leakage of 
outliers into the signal and setting A too small will cause distortion of the signal. We set A so that an average of 
100 x p% non-zero robust residuals remain after thresholding in the Gaussian case. The tuning parameter p is set to 
some small value (e.g., .01). A table for A is obtained by simulation based on the Gaussian model. This value of A 
is quite insensitive to the stochastic characteristics of the underlying signal. 

4.2    Key Properties 
• In the Gaussian noise case, the robust smoother-cleaner wavelet transform produces essentially the same de- 

composition as the classical wavelet transform. By design, only a small number of robust residuals are detected, 
and these will be small in magnitude (by virtue of the soft shrinkage function). 

• If the data contains outliers and outlier patches, then the decomposition retains the dyadic equivalent of 
property PI for the L\ decomposition of section 2: outliers patches of length 2l + 2 are isolated to wavelet 
coefficients at levels j < I. 

• For certain outlier models of the type (4), it can be shown that WAVESHRINK, when applied appropriately to 
the robust smoother-clean wavelet decomposition (see below), can achieve a near optimality property similar 
to (3). 

To illustrate the smoother-cleaner wavelet decomposition, we return to the jumpsine example of section 3. Fig- 
ure 5(a) displays the smoother-cleaner wavelet decomposition for the outlier contaminated signal. In this example, 
we have used the Haar basis and median filter of length 5. The robust residuals correspond to the outlier bursts. 
Generally, the residuals RO correspond to isolated outliers or pairs of outliers and the residuals R1-R3 correspond to 
longer outlier patches. Note that some longer patches are captured by pairs of residuals in Rl while other patches 
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Figure 6: (a) Linear shrinkage applied to successively coarser levels for the discrete wavelet transform of the outlier corrupted 
jumpsine signal, and (b) linear shrinkage applied to robust smoother cleaner wavelet transform of the same data. The robust 
smoother-cleaner wavelet decomposition is superior to the classical wavelet transform for denoising by linear shrinkage. 

are captured by single (large) residuals in R2 or even R3. The difference in the way in which outlier patches are 
represented in the robust residuals is due to decimation. Relative to the classical wavelet transform (see figure 1(c)). 
the robust smoother-cleaner wavelets have less leakage of the outlier patches into the coarse detail coefficients: com- 
pare the D3 and D4 coefficients. 

The differences are even more evident when we look compare the robust and classical multiresolution analyses. 
Figure 6(a) gives a sequence of successively coarser estimates of the signal based on reconstructing from the 51, 52. ... 
classical wavelet coefficients. This is equivalent to annihilating all detail coefficients at scales Dl, (Dl, D2), (Dl, D2. 
D3),  Figure 6(b) gives the analogous sequence based on the robust smoother-cleaner wavelet coefficients. The 
robust reconstructions are much less sensitive to the outlier bursts. The 54 robust fit closely mimics the L\ and 
Huber fits of figure 3. 

4.3    Combining with Waveshrink 

Non-linear shrinkage, such as that used by the WAVESHRINK procedure, can outperform linear shrinkage when the 
signal contains local features which we want to preserve in the finest detail wavelet coefficients. For example, note 
how the jump in the signal becomes blurred at the coarser scales in figure 6. By contrast, the WAVESHRINK estimate 
for the same signal contaminated only by Gaussian data preserves the jump: see figure 1(b). In this section, we dis- 
cuss how the WAVESHRINK algorithm can be applied to data with outliers by using the robust smoother-cleaner basis. 

The simplest procedure is to discard the robust residuals and to use WAVESHRINK on the wavelet coefficients. If 
the data contains only isolated or pairs of outliers, this procedure will generally work. However, if the data contains 
longer bursts of outliers, then this procedure is likely to breakdown. While the robust smoother-cleaner prevents 
outliers from leaking into the coarse scale detail and smooth coefficients, it does not prevent outliers from patches 



leaking into fine scale detail coefficients. In figure 5(a), we see that the largest Dl and D2 coefficients are associated 
with outlier patches. Hence, applying WAVESHRINK to the decomposition of figure 5(a) will result in some leakage 
of the noise into the signal. 

To get around this problem, we provide two solutions: selective annihilation of coefficients using "zero cones" 
and a "clean and repeat" procedure. These are discussed below. 

4.3.1 Zero Cones 

The basic principles behind zero cones are that 

• Every patch of outliers will eventually be detected by some robust residual. 

• An influence cone can be constructed indicating which detail coefficients at levels £, I — 1, ..., 1 are computed 
from the outlier patch associated with a robust residual at level t 

By shrinking all coefficients in the influence cone to zero (or to a suitable threshold), we can ensure that we bound 
the influence of any large detail coefficients associated with an outlier patch. We denote this as the "zero cone" 
procedure, since all coefficients are annihilated in a specified cone. In practice, to avoid artifacts caused by over- 
shrinking, we use zero cones for only moderate or large robust residuals. 

Figure 5(b) displays the result of applying the zero cone procedure to the smoother-cleaner wavelet decomposi- 
tion. The data at top is the result of reconstructing from the zero cone wavelet decomposition (without the robust 
residuals). The influence of the outlier patches has been almost entirely removed. The zero cones are superim- 
posed on the plot of the decomposition. The largest detail coefficients at levels Dl and D2 have been set to zero by 
the zero cones: compare with figure 5(a). The remaining large coefficients at these levels correspond to the level shift. 

The smoother-cleaner wavelets combined with the zero-cone procedure achieves our goal: large detail coefficients 
associated with outlier patches are annihilated but those associated with features are preserved. The result of ap- 
plying the WAVESHRINK procedure to the zero-cone wavelets in this example is given in figure 7(a). The estimated 
signal (solid blocky line) faithfully tracks the true signal (dashed line), preserving the discontinuity. The outlier 
patches result in minimal leakage into the signal. The estimated signal is blocky since the Haar basis is used. 

We remark that the zero cone procedure is especially attractive when combined with the power of an modern 
graphics workstation. Using the mouse, the user can interactively select cones which correspond to suspected outlier 
patches. In this context, zero cones can be applied both to the robust smoother-cleaner transform as well as the 
classical wavelet transform. See section 5 for further discussion of software. 

4.3.2 Clean and Repeat 

While zero cones are intuitive and computationally very fast, they have the drawback that the cones can get very 
wide for general wavelet bases. In addition, zero cones require careful tracking of the indices taking into account the 
various possible configurations which result from decimation. A very simple alternative to the zero cones procedure 
which is almost as fast and empirically produces as good or better results is the "clean and repeat" procedure: 

[0]  Initialize with j = 0 and X0(t) = X(t). 

[1] Apply the robust smoother-cleaner wavelet decomposition to a data sequence A"; (t). If the number and magnitude 
of the robust residuals is sufficiently small, then quit. 

[2] Reconstruct without the robust residuals to obtain a clean data sequence A';+i(f). 
Set j = j + 1 and go to step 1. 

The basic idea is that the repeated applications of the the robust smoother-cleaner will capture any outliers which 
leak into the detail coefficients in previous applications. In practice, only two passes of the robust smoother-cleaner 
operations are necessary to clean the data. The resulting decomposition contains the usual wavelet coefficients plus 
j — I sets of robust residuals. 
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Figure 7: (a) The estimated signal obtained by the WAVESHRINK algorithm applied to the smoother-cleaner wavelet decom- 
position combined with the zero cone procedure and (b) the estimated signal using WAVESffiUNKapplied to decomposition 
obtained from the clean and repeat procedure. 

Figure 7(b) shows the result of applying WAVESHRINK to the "clean and repeat" decomposition of the outlier 
contaminated jumpsine data. The "b-spline" biorthogonal wavelet i/>i,53 is used for this example. The smooth is 
very similar to the estimate obtained by the zero cone procedure. The main difference is that we have used a smooth 
basis function instead of the Haar basis. 

4.4    Application: Denoising Radar Glint Noise Data 

We now apply the robust denoising procedures to radar glint noise data. The original noisy signal, which is the 
angle of the target in degrees, is displayed in Figure 8(a) The true signal is a low-frequency oscillation about 0°. The 
signal contains a number of glint spikes, causing the apparent signal to be different from the true signal by as much 
as 150°. 

Figure 8(b) compares denoising with linear shrinkage of wavelets (dashed line) to denoising with WAVESHRINK 

combined with robust smoother-cleaner wavelets obtained by the clean and repeat procedure (solid line). The linear 
shrinkage is based on annihilating all detail coefficients of the classical wavelet transform at levels £ = 1,2,3,4. 
While linear shrinkage estimate is smooth, it is still somewhat sensitive to the glint spikes. By contrast, the clean 
and repeat procedure is quite resistant to the glint spikes but effectively tracks the sudden changes in the series. 

5   DISCUSSION 

Our research was motivated by a problem central in time series analysis: how to extract non-stationary signals 
which may have abrupt changes, such as level shifts, in the presence of impulsive outlier noise. A variety of tech- 
niques have been employed to deal with the problem, such as robust Kaiman filtering10' 15 and iterative outlier 
identification2. Our research indicates that a wavelet approach is an attractive alternative, offering a very fast algo- 
rithm with good theoretical properties. 

Wavelets are not an appropriate basis for analysis of all types of signals. Researchers have offered various alter- 
native bases, such as wavelet packets and local cosine bases. In this paper, we have presented some variations of 
wavelet analysis for data which contains impulsive outlier noise. See below for a discussion of other related research 
efforts. 

A rich software environment is needed to support the rapid proliferation of wavelet-like techniques for analyzing 
data require. In a complimentary research project, we are developing S+WAVELETS, an object-oriented toolkit for 
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Figure 8: (a) Radar glint noise data in degrees, and (b) denoising by linear shrinkage of wavelets (dashed line) compared 
with denoising by WAVESHRINK combined with robust smoother-cleaner wavelets obtained by the clean and repeat procedure 
(solid line). 

wavelet analysis. The robust algorithms discussed in this paper are embedded in this toolkit. S+WAVELETS is briefly 
discussed below. 

5.1    Related Research 

Robust multiresolution decompositions based on median filtering have been developed elsewhere4, n and applied to 
problems such as analysis of mammograms16. We are developing other new algorithms for robust wavelet analysis. In 
one approach, we develop a nonlinear triadic refinement scheme in which the wavelet coefficients are possibly nonlinear 
combinations of finitely many block medians at a given scale. These wavelets are nonlinear cousins of the Deslaurier- 
Dubuc9 interpolation scheme. In another approach, we combine approximate conditional mean smoothers13 wich 
wavelets implemented using IIR filters. 
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5.2     S+Wavelets Object-Oriented Toolkit 

S+WAVELETS is an extensible object-oriented language for wav'-lot analysis. S+WAVELETS is based on the S language 
for data analysis, graphics, and statistics 1. An overview of S+WAVELETS is given in figure 9. Classes of objects 
are represented by the nodes. The arcs represent conceptual links between objects. The toolkit offers an array of 
basic building blocks, including waveform "atoms" and "crystals", wavelet filters, and time frequency dictionaries. 
These low-level objects are used to construct the higher-level objects, such as a wnwlpt transform or multiresolution 
analysis. The high-level objects are organized into a class hieranliy, utilizing inheritance for sharing behavior. In 
addition to the new robust algorithms. S+WAVELETS includes the .liscrete wavelet transform (one-dimensional and 
two-dimensional), wavelet packets ami local cosine bases, non-decimating wavelets, a variety of graphical displays, 
and careful treatment of boun'bry relai>d issues. 
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