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Sunday, June 12 
1320-1330 Opening Remarks 

Session 1. Nonstationary and Random Vibrations 

Chairmen:  Gary L. Anderson, Army Research Office, Research Triangle Park, NC and 
P. S. Symonds, Brown University, Providence, RI 

1330-1510 

Nonstationary (NS) Food for Thought 
R. M. Evan-Iwanowski, University of Central Florida, Orlando, FL, C. H. Lu, Memphis State University, Memphis, TN, 
and G. L. Ostiguy, Montreal Polytechnical Institute, Montreal, Quebec, CANADA 

Nonstationary Transition Through Resonance 
M. D. Todd, L. N. Virgin, and J. A. Gottwald, Duke University, Durham, NC 

Nonstationary Response of Rössler's Folded Band 
K. Rangavajhua and H. G. Davies, University of New Brunswick, Fredericton, New Brunswick, CANADA 

Parametric Random Excitation of Nonlinear Coupled Oscillators 
Y. J. Yoon and R. A. Ibrahim, Wayne State University, Detroit, MI 

Finite Element Nonlinear Random Response Analysis of Composite Plates to Normal/Grazing Incidence Wave 
R. R. Chen and C. Mei, Old Dominion University, Norfolk, VA 

1510-1530 Break 

Session 2. Control 

Chairmen:   H. G. Davies, University of New Brunswick, Fredericton, New Brunswick, 
CANADA and F. Golnaraghi, University of Waterloo, Waterloo, Ontario, CANADA 

1530-1710 

Active Vibration Suppression Using a Rotational Translation Actuator 
V. T. Coppola, University of Michigan, Ann Arbor, MI 

Adaptive Dynamics of a Spring Supported Truss Member T,v^r] QtliU^1 •"- 
H. W. Haslach, Jr., University of Maryland, College Park, MD '*"'"'"' 

The Effects of Nonlinearities Upon Fuzzy Structural Control 
F. Casciati, L. Faravelli, and T. H-J. Yao, University of Pavia, Pavia, ITALY 

Robust Control for a Hybrid Nonlinear Partial Differential Equation 
J. A. Burns, Virginia Polytechnic Institute and State University, Blacksburg, VA and B. B. King, Oregon State Univer- 
sity, Corvallis, OR 

Direct Optimal Nonlinear Control of the Duffing Dynamics 
II. Oz and E. Adigiizel, The Ohio State University, Columbus, OH 

1900-2100 Reception 



Monday, June 13 

Session 3. Modal Interactions 

Chairmen: A. K. Bajaj, Purdue University, West Lafayette, IN and M. R. M. Crespo da 
Silva, Rensselaer Polytechnic Institute, Troy, NY 

0830-1010 

Bispectral Ana!;, sis of Nonlinear Interactions 
B. Balachandran and P. F. Cunniff, University of Maryland, College Park, MD 

Experimental Investigation of Random Excitation of Coupled Beams System with Multiple Internal Resonances 
A. A. Afaneh and R. A. Ibrahim, Wayne State University, Detroit, MI 

Nonstationary Oscillations of an Orbiting String in Conditions of Multiple Internal Resonances 
A. Luongo, F. Vestroni, and A. Di Egidio, Universitä LAquila, L'Aquila, ITALY 

On the Hardware Development of an Internal Resonance Controller 
S. Oueini and M. F. Golnaraghi, University of Waterloo, Waterloo, Ontario, CANADA 

Multimodal Resonances of Elastic Structures 
K. Yasuda, Nagoya University, Nagoya, JAPAN 

1010-1030 Break 

Session 4. Parametric Vibrations 

Chairmen:   R. A. Ibrahim,  Wayne State University,  Detroit,  MI and G.  T. Flowers, 
Auburn University, Auburn, AL 

1030-1210 

The Influence of Parametric Vibrations on Nonlinear Oscillators and their Control 
F. Colonius, Universität Augsburg, Augsburg, GERMANY and W. Kliemann, Iowa State University, Ames, IA 

On a Parametrically Excited Extensible Pendulum 
D. J. Shippy and H. Fu, University of Kentucky, Lexington, KY 

Analysis of Nonlinear Time-Periodic Dynamical Systems Under Critical Conditions 
R. Pandiyan and S. C. Sinha, Auburn University, Auburn, AL 

Nonlinear Analysis of Subharmonic Parametric Resonances of a Cantilevered Pipe Conveying Fluid 
M. P. Paidoussis and C. Seniler, McGill University, Montreal, Quebec, CANADA 

Theoretical and Experimental Investigation of the Response of Initially Curved Rectangular Plates 
S. Sassi and G. L. Ostiguy, Ecole Polytechnique, Montreal, Quebec, CANADA 

1210-1330 Lunch 



Session 5. Impact and Friction 

Chairmen:   S. W. Shaw, Michigan State University,  East Lansing,  MI and D. Beale, 
Auburn University, Auburn, AL 

1330-1510 

Dynamic Analysis of Rotary-Augmenter Device and Optimum Design of Rubber Damper of Blast Hole Drills Machine 
R. Liyi, Northeastern University, Liaoning, PRC and J. Youxin, Shenyang Industry University, Shenyang, PRC 

Multiple Impacts with Friction in Rigid Multibody Systems 
Ch. Glocker and F. Pfeiffer, Technische Universität München, München, GERMANY 

Nonlinear Elastic Dynamic Contact Problems in Travelling Wave Ultrasonic Motors 
J. Wallaschek, University of Paderborn, Paderborn, GERMANY 

Dynamics of Flexible Mechanical Systems with Contact-Impact and Plastic Deformations 
J. P. Dias and M. S. Pereira, Instituto Superior Tecnico, Lisboa, PORTUGAL 

Motions of a Mass-Spring System Between Two Rigid Asymmetric Barriers, Stability and Unstability 
J. Angles, EDF-DER, Clamart, FRANCE 

1510-1530 Break 

Session 6. Rotor and Structural Dynamics 

Chairmen:  F. Vestroni, Universita L'Aquila, L'Aquila, ITALY and D. H. van Campen, 
Eindoven University of Technology, Eindoven, THE NETHERLANDS 

1530-1710 

On the Counteraction of Periodic Torques in Rotating Systems by Means of Centrifugally Driven Vibration Absorbers 
S. W. Shaw, Michigan State University, East Lansing, MI and C-T. Lee, University of Michigan, Ann Arbor, MI 

Forced Oscillations of a Vertical Continuous Rotor with Geometrical Nonlinearity 
Y. Ishida, I. Nagasaka, T. Inoue, and S. Lee, Nagoya University, Nagoya, JAPAN 

Nonlinear Response of Rotors Supported on Journal Bearings 
P. Sundararajan and S. T. Noah, Texas A&M University, College Station, TX 

Nonlinear Dynamics of Rotor Systems Experiencing Rubbing 
F. Wu and G. T. Flowers, Auburn University, Auburn, AL 

Invariant Manifolds, Nonlinear Vibrations in a Singularly Perturbed Nonlinear Oscillator with Applications to Structural 
Dynamics 
I. T. Georgiou, M. J. Corless, and A. K. Bajaj, Purdue University, West Lafayette, IN 

D 
D 



Tuesday, June 14 

Session 7.  Computational Methods 

Chairmen: K. Yasuda, Nagoya University, Nagoya, JAPAN and W. Kliemann, Iowa State 
University, Ames, IA 

0830-1010 

A Comparison of the Global Convergence Characteristics of Some Fixed Point Methods 
M. D. Conner, P. Donescu, and L. N. Virgin, Duke University, Durham, NC 

Efficient Simulation of Systems with Discontinuities and Time-Varying Topology 
J. P. Meijaard, Delft University of Technology, Delft, THE NETHERLANDS 

Nonlinear Structural Response Using Adaptive Dynamic Relaxation on a Massively-Parallel-Processing System 
D. R. Oakley, Clemson University, Clemson, SC and N. F. Knight, Jr., Old Dominion University, Norfolk, VA 

An Iterative Scheme of Point Mapping Under Cell Reference for Global Analysis 
J. Jiang and J. Xu, Xi'an Jiaotong University, Xi'an, PRC 

Panel Flutter Studies in Hypersonic Flow Based on the Navier Stokes Equations 
S. R. Sipcic and L. Morino, Boston University, Boston, MA 

1010-1030 Break 

Session 8. Bifurcations 

Chairmen: A. C. Soudack, The University of British Columbia, British Columbia. CANADA 
and M. P. Paidoussis, McGill University, Quebec, CANADA 

1030-1210 

Bifurcations in Planar Piecewise Linear Systems 
S-L. Chen, Michigan State University, East Lansing, MI 

Jumps to Resonance with a Probabilistic Outcome in Systems Subjected to Deterministic Excitation 
M. S. Soliman, University of London, London, UNITED KINGDOM 

Routes to Escape from a Potential Energy Well Including Experiments 
J. A. Gottwald, L. N. Virgin, and E. II. Dowell, Duke University, Durham, NC 

Modeling and Bifurcations in Power System Dynamics 
A. M. A. Hamdan, Jordan University of Science and Technology, Irbid, JORDAN 

Bifurcation and Chaos in the Duffing Oscillator with a PID Controller 
F. Cui, J. Xu, and Y. Cai, Xi'an Jiaotong University, Xi'an, PRC 

1210-1330 Lunch 



Session 9.  Chaos 

Chairmen: F. Casciati, University of Pavia, Pavia, ITALY and A. M. A. Hamdan, Jordan 
University of Science and Technology, Irbid, JORDAN 

1330-1510 

On the Period-Doubling Bifurcations in the Duffing's Oscillator with Negative Linear Stiffness 
K. R. Asfar and K. K. Masoud, Jordan University of Science and Technology, Irbid, JORDAN 

Chaotic Unpredictability of Elastic-Plastic Response to Impact Loading 
P. S. Symonds and Y. Qian, Brown University, Providence, RI 

Global Bifurcations and Chaos in the Resonant Response of a Structure with Cyclic Symmetry 
S. Samaranayake, A. K. Bajaj, and 0. D. I. Nwokah, Purdue University/West Lafayette, IN 

Nonlinear and Chaotic Dynamics of Articulated Cylinders in Confined Axial Flow 
R. M. Botez and M. P. Paidoussis, McGill University, Montreal, Quebec, CANADA 

Chaotic Dynamics of Quadratic Systems with 1:2 Internal Resonances 
B. Banerjee and A. K. Bajaj, Purdue University, West Lafayette, IN 

1510-1530 Break 

Session 10. Multibody Dynamics 

Chairwoman and Chairman: L. Faravelli, University of Pavia, Pavia, ITALY and H  M 
Lankarani, Wichita State University, Wichita, KS 

1530-1710 

Experimental Study of a Complex Nonlinear Mechanical System 

KINGDOM  UniVerS'ty °f Ljubljana> LJubIJ'ana, SLOVENIA and J. K. Hammond, University of Southampton, UNITED 

A Nonlinear Finite Approach for Kineto-Static Analysis of Multibody Systems 
D. Ma and II. M. Lankarani, Wichita State University, Wichita, KS 

A Symbolic-Numerical Approach to Characterize the Stability and Control the Dynamics of a Four-Wheel-Steering 
Vehicle 5 

N. E. Sanchez, University of Texas at San Antonio, San Antonio, TX 

Symbolic Modelling of Flexible Robots and Identification of Dynamic Parameters 
P. Depince and P. Chedmail, Ecole Centrale de Nantes et Universite de Nantes, Nantes, FRANCE 

Experimental and Numerical Investigation of the Pitch and Bounce Response of a Railroad Vehicle 
W. P. O'Donnell, Association of American Railroads, Chicago, IL and A. A. Shabana, University of Illinois, Chicago, 

1900 Banquet 



Wednesday, June 15 

Session 11. Analytical Methods I 

Chairmen: S. C. Sinha, Auburn University, Auburn, AL and D. Gilsinn, National Insti- 
tute of Standards and Technology, Gaithersburg, MD 

0830-1010 

Control of Dynamical Systems Subjected to Periodic Parametric Excitations 
R. Pandiyan, P. Joseph, and S. C. Sinha, Auburn University, Auburn, AL 

Spurious Solutions Predicted by the Harmonic Balance Method 
A. Hassan and T. D. Burton, Washington State University, Pullman, WA 

A Renovated Algorithm for Incremental Harmonic Balance Method 
T. Ge and A. Y. T. Leung, University of Hong Kong, HONG KONG 

On the Accuracy of the "Selected Block" Approach to the Local Stability Analysis of the Approximate Harmonic Balance 
Solutions 
A. Hassan, Washington State University, Pullman, WA 

Lie-Transformation Method for Dynamics and Control of Weakly Nonlinear Autonomous Systems 
L. Morino, Terza Universitä di Roma, Rome, ITALY and F. Mastroddi, Universita di Roma "La Sapienza", Rome, 
ITALY 

1010-1030 Break 

Session 12. Analytical Methods II 

Chairmen: J. Wu, Army Research Office, Research Triangle Park, NC and D. J. Shippy, 
University of Kentucky, Lexington, KY 

1030-1210 

Constructing Galerkin's Approximations of Invariant Tori Using MACSYMA 
D. Gilsinn, National Institute of Standards and Technology, Gaithersburg, MD 

The Dynamics of Resonant Capture 
D. Quinn, R. Rand, Cornell University, Ithaca, NY, and J. Bridge, Georgia Institute of Technology, Atlanta, GA 

Nonlinear Parametric Identification by Balancing Harmonics of Extracted Periodic Orbits 
B. F. Feeny and C. -M. Yuan, Michigan State University, East Lansing, MI 

Using Adjoint Operator Method to Compute Normal Form of Order 4 for Nonlinear Dynamical System 
W. Zhang, Tianjin Institute of Technology, Tianjin, PRC 

Improving the Equivalent Linearization for Stochastic Duffing Oscillator 
J. Lee, Wright-Patterson Air Force Base, Oil 

1210-1330 Lunch 



Session 13. Structural Dynamics I 

Chairmen: P. Meijers, Delft University of Technology, Delft, THE NETHERLANDS and 
S. Noah, Texas A&M University, College Station, TX 

1330-1510 

Appropriate Stress and Strain Measures for Nonlinear Structural Analyses 
P. F. Pai, North Carolina A&T State University, Greensboro, NC 

Secondary System Analysis for Space Pay-Load 
M. Battaini, F. Casciati, and L. Faravelli, University of Pavia, Pavia, ITALY 

Dynamic and Thermal Response of Space Payload Structures 
I. I. Orabi, University of New Haven, West Haven, CT and R. B. Malla, University of Connecticut, Storrs, CT 

Nonlinear Finite Element Behavior of Cooling Towers 
S. J. Serhan, Gilbert/Commonwealth, Inc., Reading, PA 

3D Finite Element Modeling and Analysis of Armored Vehicle Hulls with Multiple Access Openings 
A. D. Gupta, J. M. Santiago, and C. Meyer, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 

1510-1530 Break 

Session 14. Localization and Normal Modes 

Chairmen:  D. Inman, Virginia Polytechnic Institute and State University, Blacksburg, 
VA and R. H. Rand, Cornell University, Ithaca, NY 

1530-1710 

Modal Analysis for Non-Linear Structural Systems 
N. Boivin, C. Pierre, and S. W. Shaw, The University of Michigan, Ann Arbor, MI 

Localized and Non-Localized Nonlinear Normal Modes in a Multi-Span Beam with Geometric Nonlinearities 
J. Aubrecht and A. F. Vakakis, University of Illinois at Urbana-Champaign, Urbana, IL 

A Numerical Method for Determining Nonlinear Normal Modes 
J. C. Slater, Wright State University, Dayton, OH 

On Nonlinear Normal Modes of Systems with Internal Resonance 
A. H. Nayfeh, C. Chin, Virginia Polytechnic Institute and State University, Blacksburg, VA, and S. A. Nayfeh, Mas- 
sachusetts Institute of Technology, Cambridge, MA 

Dynamics of a Mono-Coupled Elastic Periodic System with Material Nonlinearities 
A. F. Vakakis and M. E. King, University of Illinois at Urbana-Champaign, Urbana, IL 



Thursday, June 16 

Session 15.  Structural Dynamics II 

Chairmen:   Y. Ishida,  Nagoya University,  Nagoya,  JAPAN and K.  R.  Asfar,  Jordan 
University of Science and Technology, Irbid, JORDAN 

0830-1010 

Statistical Properties of Nonlinear Vibrations of Elastic Beams 
V. L. Berdichevsky, E. Mueller, A. Özbok, and I. Shektman, Georgia Institute of Technology, Atlanta, GA 

Thermodynamics of Chaotic Structural Dynamic Systems 
S. Hanagud and L. N. B. Gummadi, Georgia Institute of Technology, Atlanta, GA 

Dynamics of an Elastic Rod in a Fluid Pumping System 
D. Beale, Auburn University, Auburn, AL 

On the Quasi-Steady Analysis of One-Degree-of-Freedom Galloping with Combined Translational and Rotational Effects 
B. W. van Oudheusden, Delft University of Technology, Delft, THE NETHERLANDS 

An Experimental Investigation of Energy Transfer from a High-Frequency Mode to a Low-Frequency Mode in a Flexible 
Structure 
P. Popovic, A. H. Nayfeh, K. Oh, Virginia Polytechnic Institute and State University, Blacksburg, VA, and S. A. Nayfeh, 
Massachusetts Institute of Technology, Cambridge, MA 

1010-1030 Break 

Session 16. Structural Dynamics III 

Chairmen: R. M. Evan-Iwanowski, University of Central Florida, Orlando, FL and L. N. 
Virgin, Duke University, Durham, NC 

1030-1210 

Experimental and Analytical Investigations of the Nonlinear Response of a Cantilever Under Transverse Excitation 
M. R. M. Crespo da Silva, Rensselaer Polytechnic Institute, Troy, NY 

Dynamics of a Multi-DOF Beam System with Discontinuous Support 
D. H. van Campen, E. L. B. van der Vorst, A. de Kraker, and R. H. B. Fey, Eindhoven University of Technology, 
Eindhoven, THE NETHERLANDS 

Nonlinear Vibrations in Beams and Frames: The Effect of the Deformed Equilibrium State 
J. C. Andre, Escola Politecnia da Universidade de Säo Paulo, Säo Paulo, BRAZIL 

Nonlinear Dynamics of a Cantilever Beam Carrying a Moving Mass 
S. Rajagopalan, M. F. Golnaraghi, and G. R. Heppler, University of Waterloo, Waterloo, Ontario, CANADA 

Vibrations of a Portal Frame Excited by a Non-Ideal Motor 
R. M. L. R. F. Brasil and D. T. Mook, Virginia Polytechnic Institute and State University, Blacksburg, VA 



Sunday, June 12 

1320-1330 Opening Remarks 

1330-1510 

Session 1. Nonstationary and 
Random Vibrations 



Nonstationary (NS) Food for Thought 

R. M. Evan-Iwanowsid Chu Ho Lu G. L Ostiguy 
University of Central Florida     Memphis State University    Montreal Polytechnical Institute 

A varied menu of nonstationary (NS) dynamical and chaotic behavior is presented in this 
paper: it is revealing, puzzling but always interesting. In NS systems some parameters (P) of the 
governing operators depend on the physical processesx (time, heat, temperature, electrical charge, 
viscosity, etc.): Pus = P0 + tp(x), and they also satisfy codimension relationships 

¥FI>PT> •••■>■?») - 0- The functions ip(x), called the process functions indicate the effects of the 
processes x on the control parameters P, and the functions <j> indicate the paths in the P-space. The 
functions ip and <j> are arbitrary: continuous, discrete, random, imperical, etc. To demonstrate the 
role of the functions ip and <j>, consider stationary (ST) 2r-Iine (codimension one) found by Sanchez 
and Nayfeh in the (forcingfrequency v; forcing amplitude/) - (v,/)-space. We extended the 27 
line to the ST period doubling bifurcation region converging to ST chaos. First we used the line 
IT or L-line (the function <j>), and then the line perpendicular to it or is-Iine (function (f^). We set 

ftts-fo- &, v//5 - v0 ± cü, a - constant, along these lines. New and different NS dynamical and 
chaotic responses have been obtained, Figs. 1, 2: In both cases, the NS responses converged to 
the NS limit motion, appearing to be NS chaos. The NS chaos along the £-line preceded both the 
ST and the NS chaos along the L-line. 

The NS effects on the ST bifurcations can be adequately illustrated using normal, one- 
parameter ST bifurcations. In Fig. 3 are presented the results for the following ap(x) process 
functions: linear ip/x) - ±at, cyclic %(x) -ysinß^; exponential tpe(x) - exp(-mf); and impulse 
ip,(x) - 5ö(r - fj where OLy, ß,A,m and B are constant and "6" is the Kronecker delta. The NS 
inputs strongly affect the ST bifurcations, particularly the NS cyclic input shows its dominance: 
it enforces the cyclic response right at the moment of its application regardless of the ST system. 

Clearly, the NS systems exhibit transient behavior because of the presence of the functions 
ip and <j>, and they are clearly complex for the same reason. Guided by a thought that in every 
complexity a settled down pattern may be found, the authors initatiated a diligent search for such 
unique episodes. In the Duffing (Hayashi form) oscillator x +cx + dxi = /cos 9(r), we let 
6(0 - v(r) - v0 + at, where v0 is the initial perturbation on the ST chaotic amplitude-time plot. 
Fig. 4 presents the NS panoramic view of the transition from NS chaos to a series of NS settled 
down, periodic behavior. It looks as though the NS responses were "slowed down" near the NS 
bifurcations. Of interest is the appearance of the continually changing responses referred to as 
transient or flight curves Fig. 4. A few words on the transiency are in order. Most commonly 
the notion of transient phenomena are related to the existence of viscouse or generally dissipative 
mechanisms, whereby the responses tend to zero. Also, some initial computational responses are 
being discarded as "transient." Often, a transitional state between two different states, e.g. soiid 
and molten, is referred to as a mash. In the NS space, the transiency acquire a definitive meaning 
of NS "flight curves" between the bifurcations or attractors. 

A startling observation has been made in connection with the following: some responses 
obtained for different ODEs, different PS and different a's appear to be identical, Fig. 5. 

A far reaching observation has been made regarding the appearance of the three distinct 
categories (L), LI, L2 and L3 of the linear NS responses, Tp,(x) - ±at, and two distinct categories 

(Q, Cl and C2 of the NS cyclic responses, Tjje(t) - y sin ßt, Fig. 6. What is puzzling that the same 
categories L or C appear in the different systems - beams, columns, plates, shells, rotors - metallic 
or composite, and for different types of resonances - dynamic (forcing), parametric, combination 
additive (sum) and differential (difference).   These categories consistently correlate with the 



constants appearing in the ty and <}> functions and the initial conditions. In some exceptional cases, 
however, the correlation may be violated. For example, the category LI is usually associated with 
the low values of a, and the category L3 with the high a. Fig. 6b shows the contradictory results: 
the category LI appears for higher values of a than for the L3 category. The loci separating the 
categories are difficult to calculate. They are, obviously, very important for the analyst-designer 
to determine beforehand specific modes of operation. 

It has been shown by Mosheby and Evan-Iwanowski that the NS responses for ip(x) - ±ai 
which started at a point of the ST chaos plot, initially coincide with the ST chaos, then they depart 
from it: the larger the values a the sooner is the departure. This observation suggests that the ST 
Lyapunov exponents X need to be replaced by NS values A(/). 

One of the fundamental questions is: does the NS responses converge to the corresponding 
ST response; i.e.,   lim NS -   ST . The results, so far, are contradictory (Virgin & Thompson 

s-oo-o vcn.o} 
vs. A. D. Johnson). 

The results obtained by Szemplinska-Stupnicka presented for discussion at the "Time- 
Varying Symposium, ASME 1993" related to the appearance of the NS components in ST chaos, 
enhances further the applicability of the NS formulations. 

A video presented by Cusumano at the 1990 VPI Conference on the depletion of the domain 
of attraction by the quasi-NS input, opens a fertile ground for further interpretations of the role 
of the functions i|) and <j> in NS dynamics and chaos. 

A problem of small divisor which plagued the world savants before the proof of the KAM 
theorem, did not and does not exist in the NS environment. Is there food for thought? Like this 
one: the universality of the nonstationarity (the functions ip and <{>) in the physical world. Qui 
vivra, vera. Fig. 7 shows NS window in the chaotic (weather) range of the Lorenz System. 
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Nonstationary transition through resonance 

by 

M.D. Todd, L.N. Virgin and J.A. Gottwald 
School of Engineering 

Duke University, Durham, NC 27708-0300, USA. 

Abstract 

This paper considers the resonant behavior of a mechanical oscillator 

during a slow frequency sweep. Both numerical and experimental results are 

presented. The experimental system, consisting of a track in the shape of a 

potential energy surface, has been used to highlight other types of nonlinear 

behavior and is here adapted so that the forcing frequency can be evolved 

continuously. The classic linear oscillator (with a parabolic potential well)    is 

used as an introduction to illustrate basic features of the experiment and its 

response. Then, a track with a double well is used to assess nonstationary 

frequency effects on certain nonlinear resonance characteristics. 

INTRODUCTION 

There are many examples of nonstationary dynamic systems in applied 

mechanics where certain parameters are time-varying. The classic examples 
are a rocket expending fuel and hence losing mass, and the passage of a 
rotating shaft through a critical speed. There are a variety of other problems 

where parameters gradually change. The extent to which this nonstationarity 

is important clearly depends on the rate of changing conditions relative to 

certain fundamental characteristics of the system. The work described in this 

paper considers an intermediate case where the frequency is a linear function 

of time. This gradual evolution is slow, but non-negligible over the time 

scales considered. In this case recourse is made to numerical techniques, since 



although the governing equations may be well-defined, analytical solutions 
are limited, especially for nonlinear systems. 

Previous research in this area began with the study of critical speeds in 
rotating systems (Lewis, 1932) and more recent work on linear dynamical 

systems includes transient testing using frequency sweeping (White, 1971), 
and resonant turbine blade behavior (Irretier and Leul, 1991). The effect of 

non-stationary influences on nonlinear systems includes predicting 

instabilities using transient dynamic effects (Virgin, 1986), nonlinear resonant 
effects in rotating shafts (Ishida et al, 1987), approximate analytical results 

based on the perturbation method (Raman et al, 1993), and chaotic behavior 
(Moslehy and Evan-Ivanowski, 1991). 

The experimental system used to illustrate this type of behavior has 

been used successfully to illustrate a variety of nonlinear behavior (Gottwald 
et al, 1992). Specifically the influence of frequency sweep rate on the resonant 

characteristics (flip bifurcations and jumps) of the peak amplitude response is 
investigated and a comparison is made between experimental results and 
numerical simulation. 

References: 

Gottwald, J.A., Virgin, L.N. and Dowell, E.H., "Experimental mimicry of 
Duffings equation," Journal of Sound and Vibration, 158, 447 (1992). 

Irretier, H. and Leul, F. "Approximate formulas for the transient resonance 
response of mechanical systems with slowly varying natural 
frequency," DE-34, Structural Vibration and Acoustics, ASME, 235 
(1991). 

Ishida, Y., Ikeda, T. and Yamamoto, T., "Transient vibration of a rotating shaft 
with nonlinear spring characteristics during acceleration through a 
major critical speed," JSME International Journal, 30, 458 (1987). 

Lewis, F.M., "Vibration during acceleration through a critical speed," Trans 
ASME, 54, 253 (1933). 

Moslehy, F.A. and Evan-Iwanowski, R.M., "The effects of non-stationary 
processes on chaotic and regular responses of the Duffing oscillator," 
International Journal of Nonlinear Mechanics, 26, 61 (1991). 

Raman, A., Davies, P. and Bajaj, A.K., "Analytical prediction of nonlinear 
system response to non-stationary excitations," 14th ASME Biennial 
Conference on Mechanical Vibration and Noise, 383 (1993). 

Virgin, L.N., "Parametric studies of the dynamic evolution through a fold," 
Journal of Sound and Vibration, 110, 99 (1986). 

White, R.G., "Evaluation of the dynamic characteristics of structures by 
transient testing," Journal of Sound and Vibration, 15, 147 (1971). 



Nonstationary Response of Rössler's Folded Band 

Krishna Rangayajhula and Huw G. Da vies 
University of New Brunswick 

Department of Mechanical Engineering 
Fredericton, N.B.    Canada     E3B 5A3 

Rössler's or the folded band attractor models the folding of trajectories in phase space that is 
exhibited by the Lorenz attractor, but in a simpler form. It is probably the simplest three 
dimensional vector field that generates a folding effect that can lead to chaos. 

We consider the system in the form 
X = -y -z 

y = x + 0.2y 

z = 0.2 + z(x - //.) 

ft is a control parameter. As the value of y is increased, trajectories in (x,y,z) phase space 
demonstrate period doubling and chaotic response, followed as y is increased further by a variety 
of periodic and chaotic responses. The largest Lyapunov exponent first becomes positive at a 
value y ~ 4.2. Typical trajectories are shown in the text by Thompson and Stewart [1]. 
Calculations of the power spectral density of the response by Crutchfield and others [2] show 
very strong periodic components in the response, even in chaotic regions. 

In this paper we consider the nonstationary response of this system caused by varying y either 
linearly or periodically. The rate of variation of y is kept small, much smaller than the typical 
fundamental period of the trajectories, although the rate may not be small relative to the 
relaxation time or rate at which solutions are attracted to a stable periodic orbit. A Poincar6 
map is obtained by sampling y and z for x = 0, y > 0. On this plane the values of z are all 
small.  The response can be characterised as in Figures 1-4 by plotting y as a function of y. 

Figures 1 and 2 show linear variation of y in the form y = y0 + yxt. For yx > 0, t.ie 
bifurcations from period -1 to 2 and from 2 to 4 are delayed, although the first onset of chaos 
occurs close to the stationary value. (The dashed lines show the stationary period -1, 2 and 4 
response.) For yx < 0, the region of chaotic response extends below the stationary value of y 
= 4.2. However, periodic response such as periods -4 and 6 is more pronounced, again 
indicating the superposition of periodic response within the chaotic regions. 

Figures 3 and 4 show periodic variation of y in the form y = y0 + yx cos wt. The form (period 
-1 or -2) of the response depends on y0, and the bifurcation takes place at the static value. 
These periodic solutions show remarkable, apparently global, stability, although they may be 
locally unstable in some regions. 

The thrust of this work is to analyse the stability of these nonstationary responses, and, by 
appropriate reductions to normal forms, to analyse the possible shifts in bifurcation values. 

[1]       Nonlinear Dynamics and Chaos, Wiley, 1986 
[2]       Phys. Letters 76A, 1980 
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PARAMETRIC RANDOM EXCITATION OF 

NONLINEAR COUPLED OSCILLATORS 

Y.J. YoonandR.A. Ibrahim 

Department of mechanical engineering 
Wayne state university 

Detroit, MI 48202, u. S. A. 

ABSTRACT 

The stochastic bifurcation and response statistics of nonlinear modal interaction under parametric 

random excitation are studied analytically, numerically, and experimentally. Two basic 

definitions of stochastic bifurcation are first introduced. These are bifurcation in distribution and 

bifurcation in moments. Bifurcation in moments is examined for the case of a coupled oscillator 

subjected to parametric filtered white noise. The center frequency of the excitation is selected to 

be close to either twice the first mode or second mode natural frequencies or the sum of the two. 

The stochastic bifurcation in moments is predicted using the Fokker-Planck equation together 

with Gaussian and non-Gaussian closures and numerically using the Monte Carlo simulation. 

When one mode is parametrically excited it transfers energy to the other mode due to nonlinear 

modal interaction. The Gaussian closure solution gives close results to those predicted 

numerically only in regions well remote from bifurcation points. However, bifurcation points 

predicted by the non-Gaussian closure are in good agreement with those estimated by numerical 

simulation. Depending on the excitation level, the probability density of the excited mode is 

strongly non-Gaussian and exhibits multi-maxima as predicted by Monte Carlo simulation. 

Experimental tests are carried out at relatively low excitation levels. In the neighborhood of 

stochastic bifurcation in mean square the measured results exhibit different regions of response 

characteristics including zero motion and occasional small random motion regimes. Both 

regimes overlap and thus it is difficult to locate experimentally the bifurcation point. 



Finite Element Nonlinear Random 
Response Analysis of Composite Plates 

to Normal/Grazing Incidence Wave 

Roger R. Chen and Chuh Mei 

Center for Structural Acoustic and Fatigue Research 

Aerospace Engineering Department 

Old Dominion University, Norfolk, VA 23529-0247 

ABSTRACT 

For future high speed civil transportation vehicles, the jet exhaust velocities at take- 
off will be about 400 m/s (1312 fps), it is greater than the sound speed. Obviously 
the structures near by will be subjected to severe acoustic loads. Under these severe 
loads, the structures will go to large-amplitude random vibrations. On the other hand, in 
order to meet increased performance requirements, new complex, lightweight structures 
and advanced materials will be required. The complex structures under consideration 
have significant uncertainties in fatigue behavior due to intense acoustic loads. The 
intense acoustic loads can affect fatigue life by introducing large deflection geometrical 
nonlinearities, modal coupling and multiple-mode participation. Such high sound pressure 
levels may even drive the structures to have damping nonlinearity. Because of high costs 
and difficulties with instrumentation in experiments at high acoustic intensity, reliable 
experimental data is difficult to acquire. Thus, in the design process, greater emphasis will 
be placed on analytical and computational methods. This brings a tremendous challenge 
to the analysts for predicting nonlinear response of complex structures subjected to high 
level acoustic loads. 

From the literature survey, it appears that studies of the nonlinear random response 
of plates subjected to a grazing incidence acoustic wave using the finite element method 
are not available. Therefore, this paper presents a finite element formulation and 
solution procedure which combine the equivalent linearization technique and the normal 
mode method for the analysis of nonlinear random response of composite panels to 
normal/grazing incidence acoustic wave. The grazing wave model used in this study is 
suitable to simulate the acoustic waves in the progressive wave test facility. 

The formulation is based on the von Karman large deflection plate theory and the 
first-order transverse shear deformation theory. The element stiffness matrix used for 
this study is developed and provided by Tessler and Hughes. It is a three-node Mindlin 
(MIN3) plate element with improved transverse shear. In this paper, it is extended and 
is used for this study. The extension includes the development of the mass matrix, the 
nonlinear stiffness matrices and the load vectors.   It is assumed that the grazing wave 



moves in the direction 9 with speed c, but the pressure at any point is random.  The 
pressure distribution on a plate is then given by 

oo 

p(x,y,t) = ± J Piuy^'^du (1) 

where x is the coordinate along the wave travelling direction, and assume that the pressure 
distribution is independent of y. 

The results are very interesting. Because the acoustic wave is travelling along the 
positive direction of x axis with a speed c, the acoustic pressure on the plate is no longer 
uniform, the anti-symmetric modes participates in the response of the plate. Therefore 
the maximum deflection point moves forward slightly as shown in Fig. 1. Figure 2 
shows the maximum deflection spectrum to normal/grazing incidence acoustic loads. 
Both responses use two modes, for grazing incidence utilizes the 1st and 2nd modes; and 
for normal incidence uses the 1st and 3rd modes. Interestingly, the first peak frequency 
shifted up quite differently. It is due to different strain distribution, therefore different 

stiffening effect. 

Ü.0 0.2 0.4       .    0.6 0.8 1.0 

Fig. 1   Distributions of RMS W/h along the center line 
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Active Vibration Suppression 
using a Rotational Translation Actuator 

Vincent T. Coppola 
Aerospace Engineering 
University of Michigan 

Dynamic vibration absorbers are devices which reduce undesirable vibrations in 
machinery experiencing oscillatory forcing. The simplest vibration absorber for 
machines modeled as linear mass-spring systems is another mass-spring system 
connected in series, referred to as a Den Hartog absorber. When properly tuned, the Den 
Hartog absorber reduces the vibration amplitude of the main system for forcing 
excitations near the machine's resonance. Yet, for other forcing frequencies the absorber 
system results in enhancement of of the machine vibration amplitude. Thus, this simple 
absorber is beneficial only for narrow-band excitations. 

Many other absorber strategies have been proposed over the years to improve upon the 
Den Hartog absorber. The designs have been focussed on using a passive device as an 
absorber. This avoids the complexity that an active device would require, i.e., a sensor, an 
actuator, and an external power supply. However, current technology suggests that the 
simplicity advantage of a passive device may be over-rated. In fact, active control 
devices have been explored for use in suppressing vibrations of flexible spacecraft 
because the performance of an active device can outweigh the costs of complexity. 

This has led to the development of the proof-mass actuator, an active control device 
which suppresses translational vibration through the linear motion of a small proof-mass. 
The device requires a linear actuator which tends to be expensive and difficult to build. 
In addition, the device is stroke-limited (i.e., the mass must translate within the confines 
of the device) to avoid impact with the housing. 

In contrast, rotational actuators are readily available in the form of the common motor. 
This led us to ask: 

Can rotational motion generated by a motor 
be used to suppress translational vibrations? 

We have found the answer to be yes, provided that a proper feedback controller be used 
to proscribe the motor torque. 

Thus, we present a preliminary analysis of the Rotational Translation Actuator (RTAC), 
an active control device which acts to suppress translational vibrations through controlled 
rotational motion. The vibration suppression arises from the rotational motion of an 
eccentric mass which is made to rotate and/or swing back and forth by the motor. The 
motor torque is proscribed by a controller board according to a feedback control law. 



Sensors are used to measure the position of the eccentric mass and the linear acceleration 
of the machine to provide the feedback. 

For comparison purposes, the vibrating machine is modeled as a linear mass-spring 
system with the RTAC rigidly mounted to the machine. The equations of motion for the 
device are then very similar to the classic 'rotating unbalance' problem (i.e., the 
unbalanced washing-machine). Rather than a constant rotation rate exciting linear 
vibrations of the machine, however, the RTAC controls the rotation to reduce linear 
vibrations excited externally. 

Although the machine vibration is linear, the eccentric mass motion introduces a 
nonlinearity into the dynamics. Moreover, this nonlinearity cannot be approximated as 
small if rotations and large oscillations of the eccentric mass are to be permitted. Thus, 
standard control strategies based upon classical linear feedback control theory cannot be 
applied.   Our controller is based upon concepts from nonlinear control theory. 

Two obvious advantages of the device are apparent. First, the device is not stroke-limited 
since the eccentric mass can rotate completely. Second, the device uses a widely available 
rotational motor for actuation. 



Adaptive Dynamics of a Spring Supported Truss 
Member 

Henry W. Haslach, Jr. 
Department of Mechanical Engineering 

University of Maryland 
College Park, Maryland 20742 

This paper examines an adaptive dynamical system in which system parameters are used as 
control parameters. The goal is ensure that one particular state is asymptotically stable. The 
effects of imperfections in this system are analyzed, and stabilities of the dynamical system are 
related to those of its associated static system. The particular system examined is isomorphic 
to the classical example of a ball rolling on a spinning hoop when the system parameters are 
held constant. 

The simple adaptive structure is a rigid rod constrained to move in a plane by a pin support 
and torsional spring at its base. The torsional spring is undeformed when the rod is vertical, 
and the rod carries a load at its free end. This might be a member of a deployable truss for 
remote operation, say in space, which is to be launched in a folded state. For example, with 
the release of a catch, the compressed torsional spring drives the pin-free truss member with a 
load at the free end into the vertical position. Alternatively, this axially loaded torsion spring 
member might be part of a robot arm. The equations of this system are 

x\      =     X2 

x2   =   -L(P + mg/2) sm(xi)/M + (k/M)x1 + (c/M)x2, 

where the state variable x\ is the angle between the vertical and the rod, m is the mass of the 
rod, P is the load, c is the damping, L is the length, k is the spring constant, and M = ml? jZ. 

The control objective is to recover from any rotation back to the vertical by modifying the 
system parameters. To control the positioning of the structure, or to act as a return mechanism 
for a deformed structure, the desired position must be made an asymptotically stable state by 
adjusting the control parameters. The possible control parameters are the applied load P, the 
damping c, the length L, and the spring parameters. 

The static system is a cusp catastrophe if the spring is linear. The associated conservative 
dynamical system will then have a pitchfork bifurcation with respect to changes in the load. 
There are two zero eigenvalues at the critical point and these undergo splitting there. The load 
on the rod is assumed larger than the critical load corresponding to the static bifurcation point, 
Pc = k/L. In this case, the desired vertical position is initially statically unstable. To change 
the stability at a fixed load P, either the spring constant could be increased or a telescoping rod 
could be shortened. 



The effect of a non-linear spring is analyzed by adding a quartic term to the spring potential 
energy to make the total potential energy of the system, V, a butterfly catastrophe. The 
butterfly is created if the coefficients of the quadratic and quartic terms in V are both zero 
at the same value of the control parameter, P. In the zero damping case, the stability of the 
steady states at a fixed load can be determined from the signs of the coefficients of the potential 
energy function. Making the spring relax as it deforms, so that the fourth order term in the 
Taylor series expansion of V is negative, destroys the stable steady states of the Hamiltonian 
pitchfork leaving just an unstable state at (0,0), since the coefficient of xf in the expansion of 
V is negative. If the spring stiffens with deformation, then two stable states exist. 

In the static system, it is possible to quasi-statically return a perfect conservative system to 
the vertical equilibrium state by adjusting these parameters, but is not possible if the system is 
imperfect. The imperfect system must have either a forcing function or damping to recover the 
desired position or one must be satisfied with the imperfect equilibrium state. 

In the associated dynamical system, if the damping, c, is varied, a Hopf bifurcation occurs 
at c = 0. In this case, if the load is periodic, P(t) - asin(u;t) + P0, chaotic behavior can result 
if the ratio, a/c, of the amplitude to the damping is large enough. 

As k(t) or L(t) vary continuously over time, no equilibrium state exists. For systems with 
more than one asymptotically stable state, the design strategy might be to vary system param- 
eters to move the rod so that when the parameters are held constant at new values, the state of 

the rod lies in the basin of attraction of the desired asymptotically stable steady state. 
The influence of initial imperfections in the undeformed position of the spring on the system 

behavior is also explored by examining a universal unfolding of the potential energy. Again, in 
this case, the vertical position will not be a steady state and one will have to be satisfied with 
a nearby state unless a forcing function is applied. 



The Effects of Nonlinearities Upon Fuzzy Structural Control 

Fabio Casciati and Lucia Faravelli1 

Timothy H-J. Yao2 

Abstract 

The area of structural control theory has matured considerably since being formalized 
by Yao [Yao, 1972] and applications of the theory exist for real-world problems. Within the 
area of active control strategies, most research has focused upon linear control [Soong, 1993]. 
While this is adequate for general applications, the unpredictability of natural hazards such as 
earthquakes and hurricanes makes it necessary to examine how active control strategies react 
within the nonlinear range of behavior. 

The popular LQ control strategy (linear optimal control with quadratic cost function) has 
been shown to be deficient when systems move significantly into the nonlinear range of behavior. 
The instantaneous optimal control theory based on linear optimal control and developed by Yang 
et al. [Yang et al., 1988] might possess some stability problems [Spencer et al., 1992]. Suhardjo 
et al., apply an indicial formulation of nonlinear optimal control to Duffing oscillators [Suhardjo 
et al., 1992]. Other active control strategies include formulations in the frequency domain and 
application of neural networks. 

Lotfi Zadeh first presented the concept of fuzzy set theory in [Zadeh, 1965]. Fuzzy set 
theory provides a mathematical structure for resolving imprecise or uncertain information that 
can be presented in fuzzy terms (usually by an expert). It is possible to extend fuzzy logic to 
the application of fuzzy control. In fuzzy control, system feedback is processed through stages 
of "fuzzification," resolution of the fuzzy rules, and "de-fuzzification" to yield the input to the 
control actuators. 

Many researchers in the fields of information theory and automatic control have researched 
various aspects of fuzzy control. In a recent work, Jyh-Shing Roger Jang presents an example 
of a fuzzy inference system formulated on a neural network structure that can effectively predict 
nonlinear dynamic behavior [Jang, 1992]. This and other works have demonstrated the potential 
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power of fuzzy control applied to nonlinear systems. 

In this paper, the authors examine how fuzzy control may be applied to structural systems 
exhibiting nonlinear behavior. Nonlinearity is introduced in the form of mild hysteretic 
behavior. Emphasis is upon studying the effectiveness and robustness of the control of the 
nonlinear system. Sensitivity to parameter uncertainty is also explored. 
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Robust Control for a Hybrid Nonlinear Partial Differential Equation 
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ABSTRACT 

The development of feedback controllers for nonlinear partial differential equations 
holds considerable promise as a practical method to modifying continuous systems in 
order to achieve a desired behavior. Several papers have appeared that demonstrate 
(experimentally and numerically) the feasibility of using feedback to control and stabilize 
finite dimensional chaotic systems. It is noteworthy that the lumped parameter systems 
investigated in [WSB] and [YYM] are obtained by using a Ritz discretization procedure 
to reduce the partial differential equation to a system of three ordinary differential 
equations that are similar to the Lorenz equations. This approximate model is then used 
to design a feedback controller that produces a steady non-oscillatory flow. Because of 
the special structure of the original nonlinear partial differential equation, the three mode 
lumped model decouples from the rest of the system and this feature makes it possible to 
use state feedback to control the nonlinear system. In particular, the use of the discretized 
model to design the controller for the continuous system works in this case because the 
important nonlinearity is captured by the three mode approximate model. Although this 
"approximate-then-design" method is a commonly used approach to such problems, it can 
lead to erroneous results and one must exercise care to ensure that the resulting design is 
robust. 

Recently, Nayfeh, Nayfeh and Mook [NNM] gave a simple example of a nonlinear 
distributed parameter (continuous) system with the property that standard discretized 
lumped models fail to capture the essential nonlinear behavior of the dynamical system 
governed by the partial differential equation. This example also illustrates that an 
"approximate-then-design" approach to feedback control of distributed parameter systems 

'This research was supported in part by the Air Force Office of Scientific Research under grants F49620- 
92-J-0078 and F49620-93-1-0280, the National Science Foundation under grant INT-89-22490 and by the National 
Aeronautics and Space Administration under contract No. NASI-19480 while the author was a visiting scientist at the 
Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 
23681-0001. 



can produce non-robust control laws. In addition, any practical feedback controller 
designed for a distributed parameter system must incorporate some type of state estimator 
and, regardless of the approach, one must introduce approximations at some point in the 
analysis. 

In this paper we use distributed parameter control theory to design a robust 
feedback controller for the system given in [NNM]. The feedback law is linear, but the 
observer is based on a low order nonlinear model so that the controller is nonlinear. This 
approach allows us to construct a rigorous approximation of the full infinite dimensional 
feedback gain operator and hence obtain a practical low dimensional robust controller. 
We consider the hybrid system 

(1) p£w(t,x)--t[x-tw(t,x) + y-£;w(t,x)] + pu0(t,x),  0<x<l t>0 

(2) m£w(t,l) = -[x-£w(t,l) + Y äT^KU)]- «MM) - a2KU)f - cc3[Ka)]3 + /(*) + ^(0 

with boundary condition 

(3) w<<,0)-0. 

Here, f(t) is viewed as a disturbance, uo(t,x) and uj(t) are control inputs and we 
have assumed strong internal damping. We use minmax theory for distributed parameter 
control to design a robust state feedback control law and combined this control law with 
an extended nonlinear observer to complete the design. The infinite dimensional Riccati 
operator is approximated by a convergent finite element scheme, yielding a finite 
dimensional controller. We present the results of several numerical experiments and 
illustrate how one can use this approach to address questions regarding optimal placement 
of actuators and sensors for robust control of structures. 
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DIRECT OPTIMAL NONLINEAR CONTROL OF THE DUFFING DYNAMICS 

Hayrani Oz and Emin Adigüzel 
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The Ohio State University 
Columbus, OH 43210 

The study of dynamical systems via differential equations of motion is referred to 
as an "indirect method." On the other hand, the study of dynamics systems without any 
resort to or without any knowledge of differential equations of motion is referred to as the 
"direct method." In the direct method, algebraic equations of motion (AEM) take the place 
of the traditional differential equations of motion. The AEM are obtained by using 
Hamilton's Law of Varying Action (HLVA) in conjunction with the assumed-time-modes 
expansions of the generalized coordinates (Ref. 1). The constant unknown coefficients 
of the assumed-basis functions in time of these expansions become the generalized 
(algebraic) states of the dynamic system. If there are control inputs on the dynamic 
system, they too can be expanded in terms of assumed-basis functions in time multiplied 
by constant unknown coefficients of expansion playing the role of generalized (algebraic) 
control inputs. 

By virtue of the assumed-time-modes expansions of the generalized coordinates 
and the controls, the variational work-energy quantities in HLVA can be integrated apriori 
in time over any time interval. This provides a set of purely algebraic equations describing 
the motion in terms of the constant unknown algebraic states and the algebraic control 
inputs for the time interval considered. The motion over arbitrarily large time intervals can 
be studied by a simple time-marching process invoking continuity conditions for the path 
of the motion. Below are some pertinent formulae of the direct method of control 

The HLVA is 

Jr>r" 6U+6W)dt-—6q 
dq 

= 0 (1) 

where T, U, W are the kinetic energy, potential energy and work functionals and q is an 
n-dimensional generalized coordinates vector. If f denotes an m-dimensional physical 
localized control inputs vector, the assumed-time-modes expansions over (t., L) for q and 
f are: 

q = ÄQ(t)xQ + A(t)a       f=B(t)ß (2) 

where Xg is the set of known total initial states for q, XQ = {qr(tQ) qr(tQ)} and a and ß are 
unknown generalized algebraic states and the algebraic control inputs, respectively. A 
(t) and B(t) are matrices of admissible assumed basis functions in time over (tQ, tA 
introducing the expansions (2) into HLVA, Eq. (1) for the energy functionals and carrying 
out the variations over to a, for any time-variant, time-invariant linear or nonlinear dynamic 
system one obtains the general form of the algebraic equations of motion: 

P{xQ)a + P0{XQ)XQ + N(xQ,a) + Q(xQ,a )ß = 0 (3) 
where the terms associated with N arise because of nonlinearities in the system. 



To control the nonlinear AEM, optimally one can consider the quadratic regulator 
performance function 

2J = 1,..T, (^'Wxx+f'Rf)dt     x *v. ; Wx > 0 , R > 0 (4) 

Introducing the assumed-time modes expansions ((2)) into Eq. ((4)) one obtains the 
associated quadratic algebraic performance measure 

2J= U aT(D+V)a + 2a T(DQ+ V0)x0 + ßTFß + T(x0) (5) 

where D, V and F are known algebraic weighting matrices arising from integrations of 
assumed-time-modes with the weighting matrices Wx and R. The minimization of (5) sub- 
ject to the AEM (3) can now be carried out in a standard fashion, a and ß being the 
unknowns. The general form of the explicit nonlinear control law is obtained in the form 
(Ref. 2) 

ß* = G(a)a + G0(a)x0 

G = F^Q7 
-N 

-1 
P+V); G0 = F-'QT 7  T    PT Po+Vb) 

(6) 

ZN is a Jacobian matrix of nonlinearities. To our knowledge, with Eq. (6), for the first time 
an explicit optimal nonlinear control law has been obtained for nonlinear systems. 

In the paper, we illustrate the direct optimal control methodology outlined above 
for the Duffing dynamics. The explicit procedure for obtaining the AEM (3) for systems 
with quadratic, cubic, quartic etc... energy and work functions in generalized coordinates 
(hence in algebraic states) has been presented in Ref. (1). We specifically address the 
AEM formulation for the general form of the forced, damped Duffing Dynamics. Similarly, 
the explicit control law can readily be adapted to the Duffing dynamics. 

In the paper, we shall also present various cases of the control of the single degree 
of freedom Duffing dynamics with different initial conditions, control weightings and set 
point regulations to illustrate characteristics of control of nonlinear systems. Because we 
are able to derive explicit nonlinear optimal control laws by the direct method, we are not 
hampered by the intricate numerical procedures as encountered by the Two Point bound- 
ary Value Problems of differential equations approaches. This allows us to better focus 
on the qualitative aspects of the nonlinear control problems without such distractions. 
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BISPECTRAL ANALYSIS OF NONLINEAR INTERACTIONS 

B. Balachandran and P. F. Cunniff 
Department of Mechanical Engineering 

University of Maryland 
College Park, MD 20742-3035 

Nonlinear interactions play an important role in the dynamics of many systems (e.g., [1,2]). In 

this study, bispectral characterization of nonlinear interactions in a set of quadratically coupled 

oscillators is considered. These oscillators are governed by 

ÜX + 2fiiÜi -f- U\   Ui -f OL\U\U2 = 0 

ii2 + 2/i2ü2 +cu2
2u2 + a2ui2 = Fcos(ttt) (1) 

where the frequencies ui, a»2, and fi are such that 

U2 = %J\ + V\\       Q. = OJj + a2 (2) 

The quadratic phase coupling between the two modes of oscillation is studied as a function of 

the parameters ai, a2, and a\ by using bispectral analysis (e.g., [3-5]). This analysis allows us to 

characterize the interactions for weak as well as strong nonlinearities. Furthermore, the variation 

of phase coupling with respect to a control parameter (F or Q,) is also examined to ascertain the 

changes that take place near bifurcation points. 
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EXPERIMENTAL INVESTIGATION OF RANDOM EXCITATION 
OF COUPLED BEAMS SYSTEM WITH MULTIPLE INTERNAL 

RESONANCES 

A. A. Afaneh and R. A. Ibrahim 
Wayne State University 

Department of Mechanical Engineering 
Detroit, Michigan 48202 

ABSTRACT 

This paper presents the results of random excitation tests conducted on a nonlinear four-degree- 

of-freedom model. The model is designed such that it possesses multiple internal resonances. 

The system is excited by a band limited random process whose band width exceeds the highest 

natural frequency. The excitation and response signals are processed to evaluate statistical 

parameters such as spectral density functions, mean squares and probability density functions. 

The results are qualitatively compared with those predicted by the Monte Carlo simulation. The 

effects of nonlinear coupling parameters, internal detuning ratios and excitation spectral density 

level are considered in both results. It is found that both studies reveal similar dynamic 

features such as bifurcation points in the mean square response and modal interaction in the 

neighborhood of internal resonance. The experimental observation revealed that above certain 

excitation level, the response of the model becomes very large such that a possible catastrophe 

may take place. The numerical simulation revealed numerical instability at similar excitation 

levels. 



NONSTATIONARY   OSCILLATIONS   OF   AN  ORBITING   STRING 
IN   CONDITIONS   OF   MULTIPLE   INTERNAL   RESONANCES 

A.   Luongo     F.   Vestroni     A.   Di  Egidio 

Dipartimento di  Ingegneria delle  Strutture Acque  e  Terreno 
Universitä dell'Aguila 

The transversal large-amplitude oscillations of an orbiting string 
satellite system can be suitably studied by two coupled partial 
integro-differential equations in the two transversal displacement 
components. The nonlinearities, mostly due to gyroscopic forces, 
are quadratic and quite small. So, the problem is weakly nonlinear 
and the only interesting nonlinear phenomena are those associated 
with internal resonances. 

The string satellite system has a frequency spectrum similar 
to that of a taut string, apart from the first in-plane and out- 
of-plane pendulum type modes. On account of the different boundary 
conditions, in the description of transversal oscillations of this 
system cubic terms practically vanish while quadratic terms 
originating from gyroscopic forces are present. Although the 
nonlinearities are small in comparison with cables or taut 
strings, the presence of quadratic nonlinearities and the sequence 
of natural frequencies produce conditions of multiple internal 
resonances, which make this problem attractive to study, beyond 
its technical interest associated with the use of a satellite 
tethered to the orbiting shuttle in the space research. 

As is well-known, when quadratic nonlinearities are present a 
high number of internal resonance conditions, primary and 
secondary, can occur. For the continuum system under study all 
these conditions are verified. In a general motion a high number 
of modes with amplitudes of the same order can therefore be 
involved. However, depending on the values of system 
characteristics and initial conditions, the motion can be again 
accurately described by a few modes. To this scope it is very 
important to select those modes among them the energy transfer is 
significant. For example, the in-plane and out-of-plane motions 
with a prevailing component are adequately represented by two 
modes, the prevailing one and the companion mode of frequency 
twice, forced by the quadratic terms. The stability analysis of 
the motion requires to add other modes. One mode is sufficient to 
describe the out-of-plane disturbance of the planar motion, while 
at least two new modes are necessary to investigate the stability 
of non-planar oscillations. 

The multiple time scales method is used to obtain the 
equations that govern amplitude and phase modulations. The study 
of the planar resonant motion has already been completed. Fixed 



points of the five first-order differential equations are 
evaluated. For increasing levels of energy, fundamental (two-mode 
solutions) and bifurcated (three-mode solutions) paths are 
determined for the case of the new component in primary or 
secondary resonance with the prevailing ones. 

Nonstationary periodically amplitude modulated oscillations 
are analysed by numerically solving the three first-order 
differential equations. The trajectories are represented in the 
space of the state variables and lie on a torus. 

The stability analysis of the three-mode constant amplitude 
solutions can be straightforwardly performed by means of the 
variational equations by determining the eigenvalues of the 
Jacobian matrix evaluated at each fixed point. The stability of 
the two-mode solutions is not straightforward because in this case 
the amplitude equations cannot be written in normal form. This 
difficulty can be overcome by using Cartesian representation of 
complex amplitudes. Here, however, a more general procedure has 
followed which is able to bring the stability analysis of 
periodically modulated solutions back to' the analysis of 
variational equations with periodic coefficients. That is obtained 
by a suitable transformation of the complex amplitudes. 

For the unstable two-mode planar oscillations the numerical 
solution of the five-dimensional system of the amplitude equations 
furnishes a description of the non-planar nonstationary motions in 
conditions of simultaneous resonances. Steady two-mode planar 
solutions bifurcate in periodic non-planar oscillations where the 
amplitudes of the involved three modes are slowly modulated with 
an energy transfer among in-plane and out-of-plane modes. When 
unstable planar periodic amplitude solutions are perturbed out-of- 
plane, the amplitude modulations of the planar components remain 
practically unchanged, but they occur around a mean value which is 
modulated on a slower time scale, similar to the case of unstable 

steady oscillations. 
The investigation on the evolution of non-planar two-mode 

oscillations which involves four or more modes is now under study. 
The first results put into light a wider class of dynamic 
phenomena and give information on the approximation of discrete 
models for continuum systems obtained by a truncated mode series. 



On the Hardware Development of 
an Internal Resonance Controller 
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CANADA 

This work focuses on the design and the fabrication of the electronic hardware used to implement 

a new control law based on the Internal Resonance (IR) phenomenon. The IR control strategy 

consists of introducing a second order supplementary system, or controller, to the plant, such that 

the plant and the controller are coupled through nonlinearities. The technique has been subjected 

to extensive investigation through simulation, and the research is focused now on implementing 

it. One possible scenario of application is to use a digital computer where the supplementary 

system is modelled by a discretized differential equation which needs to be solved, in real time, 

via software. Due to the complexity of the controller, the success of this method is dependent 

on the processing speed of the computer. Such a scenario can be costly and very difficult to 

implement. 

In this paper, the development of an alternate implementation method is presented. The 

technique is hardware based. The supplementary system is developed by resorting to electronic 

components, and the integration algorithm is executed by analog circuitry. This technique 

possesses several advantages. Firstly, it eliminates any difficulties imposed by the limitations of 

the sampling and processing rates of digital circuitry. Secondly, it enables the application of 

simple real time control, where the feedback and controlling signals are continuous. Finally, it 

allows for the controller to be incorporated into a 'box' where the controller parameters can be 

easily modified to accommodate various plant characteristics and design criteria. The 

effectiveness of the hardware IR controller is investigated by regulating the oscillations of one 

and two DOF plants created with electronic components. The performance of the 'box' is in 

agreement with the results obtained by numerical simulation. 



Multimodal Resonances of Elastic Structures 

Kimihiko Yasuda 
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1. Introduction 
Multimodal resonances occur in elastic structures in various forms. Here arc presented 

some typical multimodal resonances whose occurrence has been shown theoretically and 

experimentally. 

2. Strings 
A string subjected to harmonic excitation for large amplitudes is considered. The linearized 

natural frequencies of a string are in the ratio of 1: 2 : 3 : • • •. Due to this, 

multimodal resonances are expected to occur. It is shown that, near the second primary 

resonance point, the multimodal resonances occur in the form of fractional harmonic pair 

of (1/2, 3/2) type. Similarly it is shown that,  near the third and fourth resonance points, 

the multimodal resonances occur in the form of fractional harmonic pairs of (1/3, 2/3) type 

and (1/4, 2/4, 3/4) type, respectively. In Fig.l is shown an example of a wave obtained 

experimentally of the fractional pair of (1/4, 2/4, 3/4) type. 
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3. Circular membranes 
A circular membrane in axisymmctric problems subjected to harmonic excitation for large 

amplitudes is considered. The linearized natural frequencies of a circular membrane arc in 

an approximate aritrnnr.tir.al progression. Due to this, multimodal resonances arc expected 

to occur. It is shown that, near the second and third primary resonance points, the 3-modal 

and 5-modal resonances occur, respectively. In Fig.2 is shown an example of a wave 

obtained experimentally in the 3-modal resonances. 
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Fig. 2 Thrcc-modal resonances 

4. Square membranes 

A square membrane subjected to harmonic excitation for large amplitudes is considered. In 

a square membrane, two modes exist in pairs with the same natural frequency and with the 

same modal shape. Due to this, multimodal resonances are expected to occur. It is shown 

that, near the primary resonance point having one nodal line, the modes in pairs are excited 

simultaneously with the phase lag of nearly x 12, and thus multimodal resonances occur in 

the form of a traveling wave. In Fig J is shown an example of a wave obtained experi- 

mentally of a traveling wave. 
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THE INFLUENCE  OF  PARAMETRIC 

VIBRATIONS   ON  NONLINEAR 

OSCILLATORS  AND  THEIR  CONTROL 

Fritz Colonius, Institut für Mathematik, Universität Augsburg, Germany 

Wolfgang Kliemann, Department of Mathematics, Iowa State University, Ames, IA, USA 

Nonlinear oscillators can display a variety of different kinds of response behaviors, such 

as (stable) fixed points, periodic solutions (limit cycles), or complex (chaotic) behavior. If 

the oscillator equations depend on a (bifurcation) parameter, the bifurcation behavior can 

include the standard codimension 1 scenarios, as well as global bifurcation schemes. Under 

parametric (deterministic or stochastic) vibrations the response behavior will depend on 

the excitation frequency, the excitation range, and the excitation dynamics. Besides the 

analysis of the system response under the various influences mentioned above, a crucial 

problem is that of controlling the system response under parametric vibrations with the 

goal of e.g. stabilizing the system, or confining the response to a certain set below critical 

thresholds. This paper deals with a set-up, in which at least some of these problems can 

be formulated and analyzed. 

Consider a nonlinear oscillator given by an ordinary differential equation 

(1) i = f0(x;p)     inRd. 

Here p e Rn denotes a vector of system parameters, which can be structure parameters 

(i.e.   fixed for a given system), design parameters (i.e.   they can be chosen within given 



bounds to achieve a desired system performance), perturbed parameters (i.e. subject to 

deterministic or stochastic excitation), or controlled parameters (i.e. they can be affected 

by input signals in an open loop or feedback fashion). Taking into account the different 

kinds of system parameters, we rewrite (1) as 

m L 

(2) x = /o(x; oc) + J2 £.■(<)/••(*; a) + Yl ui(t)9i(x; a), 
i=i j=i 

where a € / C R is a design parameter, {£,-,*' = 1... m} describes the perturbation with 

dynamics ft ■ ■ ■ fm, and {u,-, t = 1... £} describes the control inputs with dynamics g\ ... gt. 

A large body of literature is available on the (bifurcation) analysis of the unperturbed, 

uncontrolled system x = fQ(x;a). Attention in the mechanics literature has focused for 

a while on the perturbed, uncontrolled system, where the perturbation is given by its 

dynamics, its frequency (often under the additional assumption of small perturbations), 

or by white noise, leading in this case to the qualitative analysis of stochastic differential 

equations. 

Recent progress in the mathematical theory of skew product flows (perturbation flows 

and stochastic flows) allows us to analyze the perturbed, uncontrolled system 

m 

(3) x = f0(x;a) + YJUt)fi(x;<x) 

in a unified way for deterministic and stochastic bounded excitations {£,-, i •= 1... m} with 

values in Up C Rm, where Up = p ■ U,p > 0, with U compact convex and 0 £ int U. The 

system (3) has two bifurcation parameters, a 6 / and p > 0, and the interplay between 

the system and the perturbation dynamics as well as the value of a and the perturbation 

range p determine the response behavior of the system. It turns out that, if «o is not 

a bifurcation point of the nominal system x = f0(x;a), then there is a perturbation 

range p G [0,Po) such that the perturbed system (3) has basically the same behavior 

as the nominal system. This statement can be made precise in terms of Morse sets of 

flows and their ordering. If, however, a0 is a bifurcation point of the nominal system, 

then arbitrarily small perturbations can lead to a drastically different behavior of (3). 

Various examples, including the Van der Pol-oscillator, the Takens-Bogdanoff oscillator, 



and dynamics of chemical reactors will be given to illustrate the theory. Furthermore, for 

higher dimensional systems, we will analyze stochastic perturbations of chaotic systems 

and the phenomenon of 'transient chaos'. 

Controlling a nonlinear oscillator with parametric vibrations is one of the major design 

tasks in nonlinear control theory. Robust stabilization under parametric, external, or 

dynamic uncertainties is quite well understood for linear systems, using JJ^-theory, metrics 

in functions spaces, or Lyapunov exponents. For nonlinear systems of the type (2) we 

present a Lyapunov exponent approach to this problem that yields complete results for 

single-degree-of-freedom systems. The idea is to linearize the perturbed and controlled 

nonlinear oscillator about the fixed point and to control the Lyapunov exponents of the 

linearized system via an associated dynamical system on the projective space. This leads to 

precise robust stabilization criteria locally around the fixed point. A combination with the 

methods developed to analyze globally the perturbed system (2) as described above, gives 

information on the stabilizability region of the nonlinear system (3). It should be pointed 

out that the stabilizing feedback laws will, in general, be nonlinear and discontinuous. The 

example of the Van der Pol oscillator will be studied in detail. 

Another goal of controlling a nonlinear oscillator with parametric vibrations is to keep 

the system response within a certain set, below critical thresholds. In addition to the 

theory explained for the response analysis of (3) above, one needs here the characterization 

of multistability regions, from which the response of the perturbed system will approach 

various, distinct limit sets. In many cases the problem then boils down to the control of the 

size of the multistability regions. Results on the bifurcation behavior of these regions are 

given in terms of bifurcation analysis of control sets, and numerical methods to determine 

the corresponding control sets and multistability regions are available. The theory and its 

applications to the control of nonlinear, perturbed oscillators are illustrated with various 

examples of one-degree-of-freedom systems. 
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On a parametrically Excited Extensible Pendulum 

DJ. Shippy and H. Fu 

ABSTRACT 

This study is concerned with the motions of a extensible pendulum whose support is 
displaced sinusoidally along a vertical line. The system is governed by two coupled nonlinear 
ordinary differential equations. The two normalized dependent variables in the equations 
represent the angular motion of the pendulum and the axial motion of the mass particle, which 
is connected to the support through a linear spring. 

The extensible pendulum has been studied by many researchers, especially for the free 
vibration case. The interesting behavior of energy transfer between the two modes at the internal 
resonance and the conditions for instability have been demonstrated and discussed. While the 
chaotic motion of the pendulum also has been investigated, only the conservative, free-vibration 
case has been considered and for just a few selected value of system parameters. 

The present study considers an extensible pendulum with parametric excitation and 
damping. The purpose is to investigate systematically the solution bifurcations and the routes 
to chaos with variation of system parameters. We have fixed some parameter values so that the 
internal resonance always exists and have allowed two other parameters, forcing frequency and 
forcing amplitude, to vary in a significant portion of that parameter plane. The ranges of these 
parameters are such that the forcing frequency range includes two external resonances, namely 
fundamental resonance and principal resonance with respect to the angular motion, and the 
forcing amplitude range covers both small angular oscillations and monotonic rotational motion. 
Then we have varied the value of the damping parameter to examine its effect on the motion in 
the entire parameter plane. For the region of small system response, a perturbation method is 
carried out about the two resonant frequencies to obtain approximate analytical solutions. Then 
the stability boundaries were determined. The analytical results are compared with numerical 
simulations.   For the region of large system response, numerical integration solely is used. 

The main result is an extensive parameter diagram of forcing amplitude versus forcing 
frequency, showing the regions of various types of motions and the boundaries of stability. Since 
the axial oscillation always exists, all motions observed can be characterized according to four 
general categories, based upon the behavior of the corresponding angular motion: 

(a) no angular motion, which occurs for small forcing amplitude but loses stability as 
the forcing amplitude increases; 

(b) oscillatory motion of various periods, in which the direction of rotation changes with 
time and for some parameter values the amplitude of angular motion even exceeds 7t; 

(c) monotonic rotation (always in a single direction) with periodic velocities of various 



periods; 
(d) chaotic motion in both modes. 

The overlapping, bifurcations and transitions of these motions make the parameter diagram 
complicated and interesting. For the principal-resonant forcing frequency and a particular 
damping value, a typical evolution of system response is observed as the following. The system 
has trivial angular motion for small forcing amplitude. When the forcing amplitude increases to 
a critical value, the trivial motion becomes unstable, and a motion with period-1 axial response 
and period-2 angular response takes place. As forcing amplitude becomes larger, the transient 
modulations of both axial and angular amplitudes exist longer before they converge to steady- 
state motion. This converging process can last for thousands of forcing cycles until the forcing 
amplitude reaches a value for which the response becomes chaotic. If the forcing amplitude is 
increased further, at least seven other periodic motions with various periods can be observed in 
addition to chaos. Some of them are large amplitude oscillations with angular amplitude 
exceeding n. Others are monotonic rotations interspersed with intermittent oscillations. On the 
other hand, when the forcing frequency is close to the fundamental resonance, as the forcing 
amplitude increases the trivial angular motion at first bifurcates into either an angular oscillation 
or a monotonic rotation, depending on initial conditions. Then the motion becomes chaotic for 
larger forcing amplitude. With further increase in the forcing amplitude, a large amplitude, 
period-2 axial oscillation and period-4 angular oscillation appear. 

We have found that the routes to chaos of this system include crisis and subharmonics 
and also are related to the existence of the so-called recurrence phenomenon, the energy transfer 
between the two modes. As the forcing amplitude increases, the transient modulations of 
response amplitudes due to the transfer of energy exist longer and longer and lead to chaos for 
some parameter values. This unique route is one of our main interests in the study. Since the 
damping has a great effect on the recurrence, its variation can change the route to chaos 
qualitatively. 

For some particular parameter values, there exist multiple attractors in the phase space. 
The steady-state response of system will depend on the initial conditions. Demonstrating this 
dependence globally for the four-dimensional phase space can be very time-consuming even with 
a powerful computer. Therefore, in our study we employ a numerical scheme based upon the 
concept of cell-mapping to create the charts of basin boundaries in phase space approximately. 



ANALYSIS OF NONLINEAR TIME-PERIODIC DYNAMICAL SYSTEMS 
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Abstract: Development of methods such as center manifold reduction [ 1 ] and normal forms [2] 
in the time-dependent domain for the analysis of nonlinear time-periodic dynamical systems 
under critical conditions are presented. In the past, particularly when the systems are 
autonomous[3] such methods have been found extremely useful in the study of dynamics of 
critical systems. For time-periodic systems a straight forward generalization of such techniques 
is not possible due to the fact that the linear part of the variational equation is time-dependent. 
However, this difficulty can be overcome by the use of the Liapunov-Floquet (L-F) 
transformation matrix. Some recent computational procedures developed in references [4-6] 
indicate that it is possible to obtain a representation of the state transition matrix (STM) of linear 
periodic systems in terms of Chebyshev polynomials which is suitable for algebraic 
manipulations [7]. Application of Floquet theory and the eigen analysis of the STM at the end 
of one principal period provides the L-F transformation matrix in terms of the Chebyshev 
polynomials[8]. Since this is a periodic matrix, a Fourier representation of the elements is found 
to be convenient for the present analysis. It is well-known[9] that such a transformation converts 
a linear periodic system into a linear time-invariant one! When applied to quasilinear equations 
with periodic coefficients, a dynamically similar system is obtained whose linear part is time- 
invariant and the nonlinear part consists of coefficients which are periodic. Due to this property 
of the L-F transformation, a periodic orbit in original coordinates will have a fixed point 
representation in the transformed coordinates. 

In this study, the dynamics of the critical, quasilinear, time-periodic equations, obtained 
after the application of the L-F transformation, is studied by employing time-dependent center 
manifold reduction and normal form theories. Two physical examples, namely, a parametrically 
excited simple pendulum and a double inverted pendulum subjected to non-conservative periodic 
loadings are considered. Stability of these systems under critical conditions are studied using the 
local methods developed here and Poincare maps obtained numerically. The three generic 
codimension one bifurcations namely, Hopf, flip and fold bifurcations are analyzed. It is found 
that the system characters have been captured by the local methods as well as the numerical 
Poincare maps, correctly. It is to be noted that the technique presented herein is applicable even 
to those systems where the linear part does not contain either a small parameter or a time- 
invariant component at all. Furthermore, secondary bifurcations and stability of time-periodic 
systems have also been explored by combining harmonic balance and the L-F Transformation 
methods. Bifurcation diagrams for the example problems have been generated and compared to 
the diagrams shown by Flashner and Hsu[10]. 
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NONLINEAR ANALYSIS OF SUBHARMONIC PARAMETRIC 

RESONANCES OF A CANTILEVERED PIPE CONVEYING FLUID 

by 
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Abstract 

This paper deals with the nonlinear dynamics and stability of cantilevered pipes conveying 

fluid, where the fluid has a harmonic component of flow velocity superposed on a constant 

mean value. The mean flow velocity is near the critical flow velocity for which the pipe 

becomes unstable by flutter through a Hopf bifurcation, and the pulsations in the flow 

are assumed to be small. The forcing frequency is approximately equal to twice that of 

the limit cycle. The eight-dimensional (four-degree-of-freedom) system is reduced to a 

simpler set of equations using the method of averaging, yielding the stability conditions 

for subharmonic parametric resonances. 

Stability maps are then constructed in terms of three main parameters: the frequency 

and the velocity detuning and the amplitude of the perturbation. Using a fourth-order 

Runge-Kutta integration scheme, the complete set of equations are also integrated, for 

a wide range of parameters. The analytical solutions are compared with those obtained 

numerically, and some interesting results are presented. It is shown, both analytically 

and numerically, that periodic and quasiperiodic oscillations can exist, depending on the 

parameters. 

Finally, these results are also compared with some preliminary experiments undertaken in 

our laboratory, utilizing elastomer pipes conveying water. The pulsating component of the 

flow is generated by a plunger pump, and the motions are monitored by a noncontacting 

optical follower system. 



THEORETICAL  AND   EXPERIMENTAL INVESTIGATION   OF 
THE   RESPONSE OF   INITIALLY  CURVED   RECTANGULAR   PLATES 

by 

Sadok  SASSI    and    Germain   L. OSTIGUY 

ABSTRACT 

Extensive efforts have been devoted over the past decades to the investigation of 

static and dynamic behavior of thin walled structures containing initial geometric 

irregularities (imperfections). A survey of the literature reveals that a considerable amount 

of research has been concentrated on the theoretical and experimental prediction of the 

natural frequencies. However, one can notice that less attention has been relatively devoted 

to the investigation of possible effects of imperfections on the interaction between different 

resonances arising from parametric excitation. 

In the frame of the present work, we analyze, theoretically and experimentally, the 

effect of initial curvatures on the response of rectangular plates subjected to parametric 

loading and bring new clarifications about the problem of nonlinear modal interaction in 

plates with initial geometric imperfections and containing more than one kind of resonances. 

The plate analyzed is subjected to the action of periodic in-plane forces uniformly 

distributed along two opposite edges. Four sets of boundary conditions are considered: (1) 

all edges simply supported, (2) loaded edges simply supported and the two others loosely 

clamped, (3) loaded edges loosely clamped and the two others simply supported, (4) all 

edges loosely clamped. 

The nonlinear plate theory used in this analysis is the dynamic analog of the Von karman's 

large-deflection theory modified to take into account the initial imperfections and derived 

in terms of the stress function F, the lateral displacement W and the imperfection VV0. 

The problem consists in determining the right functions F and W which can satisfy 



the differential equations and the boundary conditions. The solutions for these functions are 

represented by a double series consisting of the appropriate beam eigenfunctions that satisfy 

the boundary conditions. Applying the Galerkin method to the governing equations, using 

the orthogonality properties of the assumed functions and performing numerous calculations 

leads to a system of nonlinear ordinary differential equations for the time. 

The temporal response is analyzed by the first-order generalized asymptotic method 

and the proposed solution for the temporal equations of motion takes into account the 

possibility of existence of simultaneous forced and parametric vibrations. 

The results obtained when solving the eigenvalue problem, indicate that the presence 

of imperfections of the order of a fraction of the plate thickness may significantly raise the 

resonance frequencies. Such effect depends strongly on the type of boundary conditions, the 

mode shape of the imperfection and the mode shape of the vibration. Moreover, the results 

show interesting features concerning "avoided crossing" and "coalescence", a characteristic 

of eigenvalue problems where there is coupling between modes. 

The analytical results of the investigation reveals that, contrarily to the case of perfect 

plates, the parametric and combination resonances arising from the excitation of imperfect 

plates are possible for any kind of boundary conditions. 

The theoretical and experimental results confirmed that, if two different types of 

resonances may occur independently for the same excitation frequency, an interaction 

between them is highly probable. Particularly, when a forced resonance region overlaps a 

parametric resonance one, the interaction of the two mechanisms manifests itself in different 

ways. In order to gain further insight into various aspects of this problem and to clarify the 

nature of the interaction mechanism, the Overlapping Factor {OF) and the Positioning Factor 

{PF) have been introduced. Using those two parameters, the following conclusions could be 

driven: The nature and the importance of any interaction depend strongly on the loading 

conditions, the relatif position and the degree of overlap between the relevant instability 

zones and the type of imperfection (mode and amplitude). 
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Abstract 
The Blast Hole Drills cause strong vibration 
during their working process. It is necessary to 
analyze the . danaraic properties of the Blast Hole 
Drills in order to reach high drilling efficiency, 
reduce the machines' vibration and prolong the 
lifetime of the machine and the cones. The paper 
makes some analysis in the longitudinal and rotary 
•vibration of rotary loading system of the Blast 
Hole Drills. A reasonable dynamical model is set 
up.. The main vibration characteristics of the 
system was gotten through the calculation. 



Multiple Impacts with Friction 

in Rigid Multibody Systems 

Ch. Glocker and F. Pfeiffer 

Lehrstuhl B für Mechanik, Technische Universität München, 

80290 München, Germany 

Abstract: In practical applications nonlinear dynamics often arise from impacts and 

stick slip phenomena. Typical examples are walking machines, frictional dampers between 

turbine blades, assembly processes of manipulators and impact dynamics in gear boxes. 

Systems of that type have a time variant structure and show a nonsmooth behaviour due 

to friction and impacts. This requires a special treatment for the analytical and numerical 

solution procedures. In the following an impact model based on the hypothesis-of Poisson 

and Coulomb is described which is completely compatible to unilateral constrained motion 

with Coulomb friction. 

One important property of unilaterally constrained systems is that their number of degrees 

of freedom varies with time, which results from different states of contacts between the 

rigid bodies of the mechanical system. In detail each of the possible contacts may show 

sliding, stiction or separation and these contact situations may occur in any combination. 

The dynamic system reaches its maximal number of degrees of freedom / at the condition 

that all contacts show separation. This state is used to describe the system by a set of 

generalized coordinates q £ IR/. Each of the possible contact constraints is controlled by 

kinematic indicators like relative distance gN and relative velocity in normal and tangential 

direction gjv and gT- A normal or tangential contact constraint is said to be potentially 

active if the necessary conditions for contact, gN = gN — 0, or stiction, g^ = <JN - 9T = 0, 

are fulfilled. A normal or tangential constraint is said to be active if in addition the 

relative acceleration is equal to zero, gN = 0 or gT = 0. Each active constraint reduces 

the number of degrees of freedom by one. Thus the constraints on the acceleration level 

are taken into account as algebraic secondary conditions and are included in the equations 

of motion as additional contact forces XN or AT. If the set of active constraints is known, 

a representation is achieved where an index 1 system can be integrated. Therefore the 

last step is the determination of the active set. 

Under the assumption of certain contact laws, such as a unilateral impenetrability con- 

dition in the normal and a Coulomb friction constraint in the tangential direction, the 

state transitions from stiction to sliding and from contact to separation can be handled 

by solving a Linear Complementarity Problem of the form y = Ax + b; y > 0; x > 0; 

yTx = 0. The terms y and x contain the physically complementary magnitudes of the 

normal and tangential constraints which are in that case the relative accelerations g and 

linear combinations of the contact forces A. This formulation allows a simultaneous treat- 

ment of multiple state transitions occuring by several switching events at the same point 

of time or by induced transitions of coupled contact problems. A unique solution of the 

contact problem with respect to the contact forces A exists if the matrix A of the LCP is 



positive definite. It turns out, however, that the limited tangential forces of the sticking 

contacts and the Coulomb friction forces of the sliding contacts may destroy this structure 

and may lead to existence and uniqueness problems, related to "static" and "dynamic" 

friction. Here the first time impacts with friction occure: The areas of existing unique 

solutions in the dynamic friction problem are separated from those of nonexistence or 

nonuniqueness by an event that can be called "impact without collision". A formula- 

tion of the constraints on the velocity level allows the reduction of the dynamic friction 

problem to the static one by introducing contact impulses A instead of contact forces A. 

For a complete description of all possible state transitions the events "separation to slid- 

ing", "separation to stiction" and "separation to separation" are still missing. They are 

treated by the concept of impacts with friction. Usually the impact in the normal direc- 

tion is modelled by the hypothesises of Newton or Poisson. Both approaches make use of 

a coefficient of restitution e, which is defined as the proportion of the relative velocities 

after and before the impact in the first case, e = —CINE/UNA, and as the ratio of the 

normal impulses during expansion and compression in the second case, e = ^NE/^-NC- 

Even in the frictionless case both concepts are different for multiple impacts. Generally 

Poisson's hypothesis allows an energy transfer between the normal and the tangential 

direction and therefore does not lead to the energy gaps which are observed by Newton's 

law when control parameters are changed. Thus a general purpose impact model based 

on Poisson's hypothesis is developed, where the absolute values of the tangential impulses 

are bounded by the frictional law of Coulomb. It is proven that this model is always 

dissipative or energy preserving and under certain conditions coincides with the results 

given by applying a time scalation method and using the Newton-Euler-equations during 

the impacts. It contains the special effect of the impacts without collisions and is appli- 

cable even if dependent constraints are present. It also includes the case that no impulses 

are transfered at non-zero approaching velocities, and can handle induced separations of 

existing contacts. Combined with the theory of unilaterally constrained motion locking 

effects in the static and dynamic sense can be treated. 

All together the numerical solution procedure of nonsmooth mechanical systems can be 

regarded as a sequence of initial value problems of ordinary differential equation systems 

with varying dimensions, which are selected by the solution of complementarity problems. 

The nonsmooth behaviour of such systems is generated by state transitions from sliding 

to stiction on the acceleration level and by frictional impacts on the velocity level. Both 

types of unsteady events lead to similar complementarity conditions which are linear in 

the planar case and are solved by a complementary pivot algorithm. The theory is applied 

to some basic examples of systems with more than one contact point for illustrating the 
effects described above. 
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Abstract: 

In the travelling wave ultrasonic motor, electrical energy is transformed to high-frequency 
mechanical oscillation by means of piezoelectric elements. The stator of the motor oscillates 
in such a way that material points on the stator surface perform an elliptical motion. The rotor 
is pressed tu ihc slalur and is driven by frictional forces generated in the contact zone. 

In this paper the nonlinear mixed boundary value problem of the slatoi/rotor contact is 
formulated and solved using three basic models for the frictional contact: 

• Area contact and Coulomb friction assuming a stiff stator and a soft contact layer 
neglecting tangential deformation 

• Area contact and Coulomb friction assuming a stiff stator and a soft contact layer 
including tangential deformation 

• Area contact and Coulomb friction including the compliance of stator and rotor. 

'Ihc results allow to estimate the most important motor characteristics like e. g. specd-torque 
curve, overall efficiency and stall torque density as a function of the motor parameters. 
Moreever optimal material parameters and the influence of different operating conditions can 
be determined. The numerical results are compared to experiments and the experimental 
results are used to identify the parameters of the. motors used in the experiments. 

The results described in the paper have been obtained in the framework of a research project 
funded by Deutsche Forschungsgemeinschaft under research grants DFG Wa 564/6-1 and 
DFG Wa564/7-1. 



Dynamics of Flexible Mechanical Systems with 
Contact-Impact and Plastic Deformations 

J. P. DIAS and M. S. PEREIRA 
IDMEC - Institute) de Mecänica, Institute Superior Ticnico, Av. Rovisco Pais, 1096 Lisboa CODEX, 
PORTUGAL 

ABSTRACT 

A computer based formulation for the analysis of rigid-flexible mechanical 

systems has been investigated as a feasible method to predict the impact response of 

complex structural systems. 

A general methodology for the dynamic analysis of rigid flexible multibody 

systems is presented using the augmented lagrangian formulation. Component 

mode synthesis is used to reduce the number of flexible degrees of freedom. An 

algorithm is proposed using a joint coordinate approach. 

In many impact situations, the individual structural members are overloaded 

giving rise to plastic deformations in highly localized regions, called plastic hinges. 

This concept is used by associating revolute non linear actuators with constitutive 

relations corresponding to the collapse behavior of the structural components. 

A continuous force model based on the Hertz contact law with hysteresis 

damping is also included. The choice of model parameters is discussed. 

The effect and importance of structural damping schemes in flexible bodies is 

also addressed. 

The validity of this methodology is assessed by comparing the results of the 

proposed models with those obtained with an experimental test where a beam 

collides transversally with a rigid block. Another example of a torque box model 

impacting a rigid barrier, is presented. 



Motions of a mass-spring system between two rigid asymmetric 
barriers, stability and ^instability 

J. Angles 
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The work presented in this paper starts from the works of P. Holmes, G.X. Li, F.C. Moon, 
R.H. Rand, and S.W. Shaw, on impacting systems. We study the simple asymmetric system 

shown in Figure 1. 

Fe(0 

I 
P 

-Sg      8d 

•* *--* 

m ex 

Figure 1: The physical system. 

A mass m is attached to a linear spring of stiffness k. When the displacement x exceeds -Sg or 
6d the mass m contacts a barrier. The system is externally excited by a harmonic force Fe(t). 
In addition, we assume 
1) that the coefficient of restitution r, which indicates how much energy is lost at impact, is 
constant ; 
2) that the impact is instantaneous, and ; 
3) that there is no damping during the free flight. 

The non-dimensionalized equations of motion are as follows : 

x + x   -    Ae sin(uet)    -l/p < x < I 
x    —*■    — rx x = —l/povl (1) 

where 0 < r < 1 and 0 < p < 1, p - Sd/Sg, 0 < 84 < S3 

The main goal of this work is to determinate the domains where the solution is periodic and 
stable, and those where the solution is unstable, in the parameters space (Ae,ue), r and p being 
fixed. In the first part, we focus on two types of periodic motions as shown in Figure 2. 
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Figure 2: Types of periodic motion searched. 

In each case the period of the orbit is nTe, n G JV*. Then we study the stability of these periodic 
orbits. To start with, we build up the first return Poincare map V, and we establish that V is a 
C°° map from V° C S -*■ S in a neighbourhood of one of the periodic orbits shown in Figure 2. 
S is the cross section of Poincare defined as 

S = l(x,x,t) € / x R x 5such thatx = +1, x > 0 >, 

where J = [-1/p, 1] and S = [*§,<§ + nTe] modulo nTe. 

In addition, when the barriers are non-symmetrical about the central position of the mass, 
we show that the pitchfork bifurcation is impossible. 

In the last part, we discuss the limit as the asymmetric system tends to the symmetric one, 
that is p —»• 1. The main results are the following : 

• when n 6 iV* is even, the saddle-node and the period doubling bifurcations exist ; all 
periodic orbits are asymmetric ; 

• when n G JN~ is odd, the saddle-node bifurcation of the case where the barriers are 
non-symmetrical about the equilibrium position of the mass, is changed into a pitchfork 
bifurcation at the limit p = 1 ; there are at least three types of bifurcation : saddle-node, 
pitchfork and period doubling, and there are two sorts of periodic orbits : symmetrical 
and non-symmetrical. 
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On the Counteraction of Periodic Torques in Rotating Systems 
By Means of Centrifugaily Driven Vibration Absorbers 
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A class of mechanical systems is considered which freely rotate about a fixed axis and are 
subjected to applied periodic torques. In this work we address the counteraction of these torques 
by means of centrifugaily driven masses which move along prescribed paths relative to the rotating 
system. The linear theory for these centrifugal pendulum vibration absorbers has been well 
understood for many years and some work on nonlinear aspects of their dynamics has been carried 
out. However, past studies have focussed on the performance of absorbers with specific 
prescribed paths when the system is subjected to a given torque. Herein we provide a 
classification scheme to identify those torques which can be exactly counteracted by a single 
absorber or by a pair of identical absorbers moving out-of-phase with respect to each other. In 
addition, we provide a technique for generating the attendant absorber path(s) for these torques and 
demonstrate the method with several examples. Also, a design strategy is offered by which one 
can use sets of absorbers to cancel a general periodic torque. These results provide a basis for 
future work in which optimal paths can be designed for torques which cannot be exactly cancelled 
by a desired number of absorbers. 
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1. INTRODUCTION 
Nonlinear forced oscillations of a vertical continuous rotating shaft are discussed. The 

restoring force of the shaft has geometrical nonlinearity.  The possibility of the occurrence of 
various nonlinear oscillations and their characteristics are investigated. 

2. EQUATIONS OF MOTION AND NATURAL FREQUENCIES 
A theoretical model is shown in Fig. 1. Both ends of the shaft are sup- 

ported freely. The coordinate system O-x y s is fixed in space and 0-£ vs 
rotates with the shaft at an angular velocity co. The components of an un- 
balance are represented by e^s) and e^s) .respectively. The symbol c is 
the damping coefficient. Shear deformation is neglected. The deflections in 
Ox- and Oy-directions are denoted by u(s,t) and v(s,t) .and a complex 
value z = u+ i Vis defined by them. The equations of motion are given by 

1 dAz     d2z 
+- 

7C4- ds' dt 
a     d2z 

7C4    ds2. 

dz 

dAz 
— 2 i co 

d3z 

ds2d t J 
+ c- 

dz 

dt ds2dt2 

dz , 
ds=co2 leAs) +ie^s) 1 etut 

o\d s/\d s 

(1) 

Fig. 1 

in dimension less form, where z  is a complex conjugate of 
z.  Free oscillations of a corresponding linear system with 
no damping are expressed approximately by 

z(s,t)=Zsinnxs • elpt (n=1,2.-)    (2) 

The natural frquencies p  are given by 

G(P)=Un4 + 2/cun
2o)p-a+/cun

2)p2=-Q (3) 

The roots are shown in Fig. 2. Symbol pfn  (>0) has a 
forward whirling mode and pbn  (<0) has a backward mode. 

The deflections are represented by summations of 
deflections of each modes as follows. 

U=T,Un(t)<Pn(s)   ,        V=YVn(t)<pn(s) (4) 

By substituting Eq. (4) into Eq. (3), and using the orthogona- 
lity of modes, we get the following equations on un and un 
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Fig. 2.   p — co diagram 
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(5) 



where, n—\,2  ••-.and 
OO 03 

e^s) = Y,an <Pn(s) , ev(s) = Y.bn <Pn(s) (6) 

3. HARMONIC OSCILLATIONS [pfn] 
The oscillations [p fn\  at the major critical 

speed are represented approximately as follows. 
(The symbol[*] means that it appear when the rela- 
tion * = co holds.) 

un =Pcos(<ü t +ß),  un =Psin(oit +ß) 

By the harmonic balance method, we get 

2aPB = Gn (a>)P + Cl/2)avn
4P ] 

-a)2(an COS/9 + bn sin/3) 
2<y.p =-ca>P-ö)2(an sinj3-bn cos/3) J 

Resonance curves are shown in Fig.3. 

4. SUMHED-AND-DIFFERENTI AL HARMONIC 
OSCILLATION [2pm- p6n] 
In the summed-and-differential harmonic oscilla- 

tion 12Pf^- Pt,nl.  two components appear predo- 
minantly in addition to the harmonic component. 
Their frequencies are expressed approximately as 
follows. 

dm=C6fn=(.Prno/a)0)a) 1 

6bn = 0)ön=(Pbno/0>o)cO i 

(7) 

(8) 

(9) 

where pmo and pbn0 are the values of p^ and 
Pbn at co0.  For the case m=n,  the solution 
are expressed by 

Un =RfnCOS(0)fnt + dfn) + RbnCOS(.C0t>n t + 8bn) 
+ Pn COS(6)i + /3„ ) 

Vn =RfnSin(0>fnt + dm) + RönSin(6)ön t +Sbn) 
+ Pn sin(cot +ßn ). 

For the steady-state oscillation, we can get the 
resonance curves shown in Fig.A. 

For the case m^n,  we get only the trivial 
solutions. This means that this type of oscillation 
does not appear. 

5. SUMMARY OF-THE THEORETICAL ANALYSIS 

The results of the theoretical analysis are 
summerized in Table.1. We can know that some specific 
kinds of oscillation appear in such a rotor system. 

6. EXPERIMANTAL RESULTS 

The experiments were performed for two shafts 
with 10mm and 4  mm in diameter. Both shafts have the 
same length of 800mm. In the speed range up to about 
4500rpm, a harmonic oscillation and one kind of summed- 
and-differential harmonic oscillation were observed. 
The latter is shown in Fig.5. 
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Nonlinear Response of Rotors Supported on Journal Bearings 

Sundararajan, P., and Noah, S.T., 
Mechanical Engineering Department 

Texas A&M University, College Station, TX-77843 

Abstract 

Sub-synchronous whirling of journal bearing supported rotors (oil whirl) is known to 

be a potentially damaging mechanism in industrial rotor-bearing systems. Previous analytical 

studies on oil whirl were done on long journal bearings [Myers, 1984, Shaw and Shaw, 

1990]. These studies showed that whirl instability is a result of Hopf bifurcation in a 

balanced rotor and periodically perturbed Hopf bifurcation in the case of rotors with very 

small level of imbalance. In this paper, threshold speeds of instability and imbalance response 

of rotors supported on short journal bearings, which are widely used in industry, is studied 

analytically and numerically. First, analytical criteria for oil whirl (Hopf bifurcation) for a 

balanced rotor is derived following Myers's analysis for long bearings. Both subcritical and 

supercritical regimes of oil whirl are identified. Then, for an unbalanced rotor, bifurcations of 

periodic response are studied numerically over practical speed ranges and levels of imbalance. 

Sub-harmonic, quasi-periodic, and chaotic motions of the rotor are predicted. A shooting 

algorithm with a pseudo arc-length continuation scheme is used for locating periodic 

solutions, calculating their stability, and continuation through bifurcation points. Finally, the 

overall behavior of the rotor-bearing system is presented through global bifurcation diagrams. 
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NONLINEAR DYNAMICS OF ROTOR SYSTEMS EXPERIENCING RUBBING 

Fangsheng Wu 

George T. Flowers 

Department of Mechanical Engineering 
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This study is concerned with investigating the nonlinear dynamics of rotor systems with 

and without a laterally flexible disk while experiencing rub. A rotating, flexible continuous 

disk/shaft model was developed and the dynamical behavior of this system with and without 

rubbing was studied. The model developed in this study is similar to the Jeffcott rotor model 

except that the disk is treated as a laterally flexible continuous circular plate. The motion 

of the disk was transformed from physical coordinates to a set of generalized coordinates 

under which the generalized motion was uncoupled and the responses were calculated. Then 

the inertial moment acting on the shaft was computed and introduced into the governing 

equations of the shaft motion. 

The equation development for this model is based on the following considerations: 

(1) The disk is flexible only in the lateral direction in which the motion is the most significant. 

In other directions it is rigid. 

(2) The rotational motion of the rotor is not coupled with its translational motion. Only 

rotational vibration is considered. This is because only the rotational motion is coupled 

with the disk flexibility. 

(3) The rotor speed is constant during rubbing. 

(4) The disk and the supports of the rotor are symmetrical. 

(5) The mass of seal/casing is neglected. Because the shaft/disk/blade is more flexible than 

the seal/casing, the deformation of seal/casing is usually small or only a small part of 

the mass of seal/casing participates in the motion. The rub force is mainly dependent 

on the elasticity of the system in most cases. 

After some mathematical manipulations, the dimensionless equations of motion for the 



whole system can be obtained as 

zi + rii? + 2jr2;(£3,- + 2i4;)+2£i— zx + -yZi + /ni 

= F cos r (a) 

z2 - riii + ^r2,-(x4i - 2i3l)+2£1 — B2 + -^^2 + /n2 

= Fsinr (&) 

x3i + 2z4i + 2& — ix + (TT~ 
l)x* =-(*i + 2i2) (c) 

Z4i-2x3i + 26tT— Z4, + (Ty--l)24i = -(z2-2zi) (d) 

*= 1,— 

In the above equations, si, z2, x3< and S4i are scaled by e, the imbalance eccentricity. 

Time is scaled by the rotor speed, Q. The fni and /n2 are nonlinear forces caused by rub. 

Direct integration and the harmonic balance method were used to study the steady state 

motion of the system. A number of parameter variation studies were performed for varied 

rub clearances and disk mass influence ratios. By using orbit plot, Poincare map and other 

techniques, The system responses to the rub, its occurrence and development, and the global 

stability of the observed responses were studied. Periodic, quasiperiodic and chaotic motions 

and multi-valued responses were all observed in this study. 

The results show that rub can be classified into two types: light rub and heavy rub, and 

the light rub has the forms of forward, backward, or mixed whirling motion. The results 

also show that the disk flexibility may alter the critical speed to some degree and may also 

significantly affect the amplitude and stability of the rotor vibration. 

An experimental work was performed to verify the behavior of a rotor system expe- 

riencing rubbing, as predicted in previous analytical studies. The rotor rigs used in the 

experiments were designed to have included disk flexibility and a rubbing mechanism. The 

governing equations of motion are similar to those studied in analytical investigations. The 

development of rub responses, rotor orbit trajectories, and multi-valued responses (light rub 

and heavy rub) were experimentally studied. Shaft vertical and horizontal displacements 

and key-phasor signals are sent to the analyzer. Spectrum and orbit plots were recorded and 

plotted. The results show the rubbing response development from light forward bouncing, 

mixed forward bouncing, to high amplitude backward whirling heavy rubbing. These agree 

very well with the results from an earlier analytical study. 



Invariant Manifolds, Nonlinear Vibrations in a Singu- 
larly Perturbed Nonlinear Oscillator with Applications 
to Structural Dynamics 

I. T. Georgiou l, M. J. Corless 2 and A. K. Bajaj 3 

Summary: We are interested in the dynamics of viscoelastic nonlinear structural systems 
comprised of substructures with, diverse stiffnesses. In particular, we seek relations of the 
dynamics of a structural system to the dynamics of a simpler system obtained in the limit 
when some of its stiff substructure become perfectly rigid. We are motivated by the fact 
that simple structures such as rods, beams, plates etc. are supported by other simple struc- 
tures (supports) with sufficiently larger stiffnesses. For instance, consider a structural system 
composed of a rotating shaft and its mounts, a rotating propeller and its shaft, a plate with 
enbedded sensors and actuators for active control etc. All these structural systems are com- 
posed of substructures with stiff substructures (mounts, shaft, and actuating material) and 
soft substructures (rotating shaft, propeller blades, and plate). The fundamental problem 
to be solved is to determine how the dynamics of a structural system is related to the dy- 
namics of a simpler structural system obtained in the limit as the stiff substructures become 
infinitely stiff, that is rigid. Then once this relation has been established, it is again funda- 
mental to delineate how the qualitative dynamics evolve as the magnitude of the stiffness of 
the stiff substructure becomes of the same order of the magnitude of the stiffness of the soft 
substructure. 

In this paper we study the dynamics of a nonlinear oscillator coupled naturally to a linear 
oscillator. The linear stiffness of the nonlinear oscillator is negative and the nonlinearity 
is cubic. This coupled system of oscillators captures the qualitative dynamics of a buckled 
nonlinear beam with its ends hinged on two vertical columns. This geometrically idealized 
structural system is a representative of the collection of all structural systems with the 
property that they contain stiff substructures. 

When the stiffnesses (frequencies) of the two coupled oscillators are sufficiently apart, their 
motion evolves in two distinct time scales: One time scale, called fast time, is related to 
the stiff linear oscillator; the other time scale, called slow time scale, is related to the more 
compliant nonlinear oscillator. As the stiffnesses approach each other, the time scales cannot 
be distinguished so easily. We describe the motions of this coupled system of oscillators in the 
context of invariant manifolds. By viewing the equations of motion as a singular perturbation 
of the nonlinear oscillator ( the singular parameter being the ratio of the linear frequency 
of the nonlinear oscillator to the frequency of the linear oscillator), and using the theory of 
center manifolds, we have shown that there exists an invariant manifold of motion. This is 
called a slow invariant manifold since it carries motions evolving in slow time scale. The slow 

1 Aeronautics & Astronautics, Purdue University, West Lafayette, Indiana; currently NRC-NRL Cooper- 
ative Research Associate, Naval Research Laboratory, Washington DC 

2Aeronautics & Astronautics, Purdue University, West Lafayette, Indiana 
3Mechanical Engineering, Purdue University, West Lafayette, Indiana 



manifold is nonlinear, smooth and 2-dimensional. All motions carried by it are such that the 
nonlinear oscillator slaves the linear oscillator into slow and in-phase motions. Furthermore, 
the slow invariant manifold is an equilibrium for the fast component of the motion. The 
projection of the slow invariant manifold onto the phase space of the nonlinear oscillator 
defines the phase space of a nonlinear oscillator. This nonlinear oscillator, called the slow 
reduced system, is a regular perturbation of the Hamiltonian nonlinear oscillator. And it 
describes the long time motions such as nonlinear oscillations and chaotic oscillations of 
the forced dissipative coupled. We have computed various orders of approximation of the 
slow invariant manifold and the corresponding reduced system. Numerical experiments show 
that the long time motions of the dissipative and forced dissipative coupled oscillators are 
very close to the motions of the approximate reduced system. There exists also a linear 
invariant manifold with the property that all motions carried by it are such that the linear 
oscillator slaves the nonlinear oscillator into out-of-phase fast motion. Viewing the motions 
of the coupled oscillators with respect to the slow invariant manifold reveals the remarkable 
result that the fast components of the motion is described by an unforced, uncoupled linear 
oscillator, although the linear oscillator is forced. All motions enter a neighborhood. of 
the slow invariant manifold since it is attractive. The dynamics in this neighborhood are 

described as follows: The free uncoupled oscillator forces the reduced system until the motion 
is captured by the slow manifold. Once on the slow invariant manifold, the motion evolves 
only in slow time. The slow motion of the nonlinear oscillator is described by the reduced 
system, and that of the linear oscillator by the function satisfying the manifold condition. 



Tuesday, June 14 

0830-1010 

Session 7. Computational Methods 



A COMPARISON OF THE GLOBAL CONVERGENCE 
CHARACTERISTICS OF SOME FIXED POINT METHODS 

Mark D. Conner, Pompiliu Donescu, Lawrence N. Virgin 
School of Engineering 

Duke University, Durham, NC 27708-0300, USA. 

Abstract 

Since locating all the fixed points of a nonlinear oscillator involves the numerical solution of simultaneous 
equations, it is useful to observe some of the global convergence characteristics of these techniques. Specifi- 
cally the popular Newton or quasi-Newton approaches require numerical evaluation of the Jacobian matrix 
of the Poincare map. This study focuses attention on the domains of attraction for a number of fixed point 
techniques applied to a single nonlinear oscillator with a single set of parameters. Clearly, there are many 
issues^ here, including proximity to bifurcations, order of the dynamical system, temporal convergence char- 
actenstics i.e. CPU time, and so on, but it is instructive to observe a snapshot of the basins of attraction 
which underlie path-following routines, when a parameter is changed. 

Introduction 

Locating fixed points of a dynamical system often reduces to the computational solution of sets of nonlinear 
simultaneous equations. This type of problem is ubiquitous in applied mathematics and finds application 
m chemical engineering [Lucia et al. 1990], electric circuits [Aprille and Trick, 1972], and applied mechanics 
[bishop et al. 1988]. A thorough exposition of the various techniques for the numerical solution of nonlinear 
equations can be found in Dennis and Schnabel [1983]. More recent progress within the framework of 
dynamical systems theory is contained in Parker and Chua [1989], and software is available for path-following 
based on continuation [Doedel, 1981]. 

The study outlined in this note compares a number of solution techniques based on Newton's method in 
terms of their global convergence, or transient, characteristics. Specifically, the numerical evaluation of the 
Jacobian matrix of the Poincare map is assessed using a grid of initial conditions. Since these methods are 
discrete dynamical systems themselves, it is not surprising that rather complicated domains of attraction 
result when all the fixed points (both stable and unstable) of a particular differential equation are evaluated. 

We shall focus on the periodic solutions of a single, dissipative, periodically driven, nonlinear oscillator 
oi the form 

* = f(x,t) (1) 

where x is a two-dimensional vector containing position and velocity and /(£,;) = f(£ t + T) ->nd the 
parameters of the equation are held fixed. The forcing phase may be used to trigger a Poincare section 
resulting in a discrete map of the form 

x,-+i = P(£t) (2) 



where the 3-D flow of Equation 1 has now been reduced to the 2-D map of Equation 2. Fixed points of the 
Poincare map correspond to the roots of the residual map defined by 

G(f) = P(£)-f=0. (3) 

This system can be solved using Newton's method: 

xk+i = xk - {J - I)~lG{xk) (4) 

where the (2 x 2) Jacobian matrix, J, is the matrix of partial derivatives of P. It is the numerical evaluation 
of J that is the subject of consideration in this note. 

Specifically, the methods of first-order finite differencing and integration of the variational equation are 
applied to finding the roots of a residual map corresponding to the periodic solutions of a typical ordinary 
differential equation. The effects of incorporating a line search and Broyden updating are included. In 
contrast to most studies on convergence characteristics, spatial, rather than temporal or CPU time, behavior 
is highlighted. Although this is just a "snapshot" of typical behavior, this type of subtle dependence on 
initial guesses may have relevance in path-following routines where the location of a fixed point may be 
changing rapidly under a smooth variation in a system parameter. 
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Summary 

The numerical simulation of the behaviour of dynamical mechanical systems does 

not give rise to difficulties if the forces remain smooth and the number of 

degrees of freedom does not change during the time of simulation. In 

mechanical engineering, however, some kinds of forces are modelled in a way 

that allows some form of non-smoothness, as is the case for dry friction 

forces according to the Amontons-Coulomb law or internal forces in material 

plasticity models, or the velocities may change discontinuously due to 

impulsive forces at impacts. Furthermore, the number of degrees of freedom may 

change, for instance if a gripper of a robotic manipulator seizes an object or 

lift-off of some part occurs. The use of normalization techniques and standard 

integration methods may cause large computation times or inadequate results. 

Tins is especially so if many points of non-smoothness are present in the 

solution or if some important qualitative characteristic of the solution 

depends on the occurrence of a discontinuity. 



The considerations of the preceding paragraph urge the development of 

integration methods that can efficiently deal with points of non-smoothness. 

The methods that are proposed here are based on integrating the equations of 

motion until some point of non-smoothness is reached and restarting with 

possibly adjusted initial values and equations after this point. Generally, 

the points of non-smoothness depend on the solution that is being calculated 

and are not known beforehand. These points of non-smoothness can be 

characterized by the vanishing of some test function or indicator function. If 

a zero is detected within some time step, the solution in this time step is 

approximated by an interpolation formula, which eliminates the need for 

further evaluations of the accelerations. The location of the zero of the test 

function is then obtained by a root finding method. This method is based on 

the same ideas as the method of Brent but is in a form that is more 

appropriate for the present application. The present method can handle the 

case that more than one zero exists in the time step, which ca.n easily be 

overlooked by other methods. 

As an example of application, the crash behaviour of a railway train is 

studied. For the purpose of design and optimization of the crash behaviour, 

simple models with a limited number of degrees of freedom are used for an 

assessment of the overall behaviour. These simple models allow a far more 

efficient simulation than detailed finite element or finite difference models 

that are used in so-called explicit codes, so many cases can be studied. The 

models have nearly all sources of non-smoothness that may occur in mechanical 

systems: contact and impact,  fracture, dry friction and material plasticity. 

With the proposed models and simulation procedures, analytic sensitivity 

analyses with respect to design variables and initial values can be made, 

which offers the possibility to apply existing optimization techniques. 



NONLINEAR STRUCTURAL RESPONSE 

USING ADAPTIVE DYNAMIC RELAXATION 

ON A MASSIVELY-PARALLEL-PROCESSING SYSTEM 

David R. Oakley * Norman F. Knight, Jr. ** 
Clemson University Old Dominion University 
Clemson, SC 29634-0921    Norfolk, VA 23529-0247 

Use of the finite element method to solve structural problems of increasing computational size and 

complexity continues to be the focus of intense research. Yet even on current high-speed vector computers, 

solution costs, especially for transient dynamic analyses, are often prohibitive. Emerging high-performance 

computers offer tremendous speedup potential for these types of applications, provided an optimal solution 

strategy is implemented. Existing sequential solution procedures may be adapted to operate on these com- 

puters. However, these procedures have been developed and customized for sequential operation and may 

not be the best approach for parallel processing. To exploit this potential fully, problem formulations and 

solution strategies need to be re-evaluated in light of their suitability for parallel and vector processing. As 

such, the overall goal of this research is to develop an adaptive algorithm for predicting static and dynamic 

response of nonlinear hyperelastic structures which exploits these emerging high-performance computing 

systems. 

The basic formulation for the adaptive dynamic relaxation (ADR) algorithm for hyperelastic structures 

is given by Oakley and Knight in an earlier work. Dynamic relaxation is a technique by which the static 

solution is obtained by determining the steady-state response to the transient dynamic analysis for an 

autonomous system. In this case, the transient part of the solution is not of interest, only the steady-state 

response is desired. Since the transient solution is not desired, fictitious mass and damping matrices which no 

longer represent the physical system are chosen to accelerate the determination of the steady-state response. 

These matrices are redefined (using existing equations) so as to produce the most rapid convergence. For 

highly nonlinear problems where stiffness changes significantly during the analysis, adaptive techniques exist 

which automatically update the integration parameters when necessary. 

An ADR algorithm represents a unified approach for both static and transient dynamic analyses, and 

is known to be very competitive for certain problems with high nonlinearities and instabilities. Reliability 

is ensured by integration parameters which are adaptively changed throughout an analysis to accommodate 

Although a very small time step is generally required to ensure numerical stability, the computational cost 

per time step is very low and is mostly associated with evaluation of the internal force vector. 

* Dean's Scholar, Department of Mechanical Engineering 

** Associate Professor, Department of Aerospace Engineering 



The present paper builds on a study which was begun to develop efficient single-processor and multi- 

processor implementations of the ADR algorithm and evaluate their performance for the static analysis of 

nonlinear, hyperelastic systems involving frictionless contact. For problems of this nature, the ADR method 

may represent one of the best approaches for parallel processing. Performance evaluations on single-processor 

computers have shown that ADR is reliable and highly vectorizable, and that it is competitive with direct 

solution methods for the highly nonlinear problems considered. In contrast to direct solution methods, it 

has minimal memory requirements, is easily parallelizable, and is scalable to more processors. It also avoids 

the ill-conditioning related convergence problems of other iterative methods for nonlinear problems. The 

objective of the present paper is to evaluate the performance of a massively parallel implementation of ADR. 

A parallel ADR algorithm is developed for nonlinear structural analysis and implemented on the 512- 

processor Intel Touchstone DELTA system. It is designed such that each processor executes the complete 

sequential algorithm on a subset of elements. One-dimensional strip partitioning and two-dimensional block 

partitioning are used to divide the problem domain among the available processors. Load balancing is ensured 

by the use of structured, uni-material meshes. Efficient schemes are developed to accomplish the required 

nearest-neighbor and global communication. The parallel algorithm is used to solve for the nonlinear static 

response of 2-D and 3-D cantilever beam problems and 3-D arch, tunnel, and torus problems. 

Correctness of the parallel algorithm is verified by running all test cases to completion on the DELTA. 

Final results are consistent with those obtained using a single-processor. Completion times for the large 

3-D test cases are minimal and demonstrate both the computing power of the DELTA and the ability of 

the ADR algorithm to fully exploit this power. Moreover, the current multiprocessor implementation is not 

vectorized. A vectorized version should lead to further increases in performance. The minimal memory 

requirements of ADR are again demonstrated as the largest test case runs successfully on a single DELTA 

processor equipped with 16 Mbytes of memory. 

Impressive speedups are achieved using the DELTA, especially for the large 3-D models. This perfor- 

mance may be attributed to the minimal interprocessor communication ADR requires relative to compu- 

tations and the efficient schemes with which this communication is accomplished. These speedup results 

demonstrate the high scalability of the ADR algorithm and show that the algorithm can be implemented on 

at least 512 processors without significant performance degradations. Thus, ADR provides the potential for 

efficiently exploiting large numbers of processors to substantially reduce the solution time of highly nonlinear 

problems. In this context, ADR represents a very promising approach for parallel-vector processing. 



An Iterative Scheme of Point Mapping 

Under Cell Reference for Global Analysis 
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Abstract 

It is well accepted that numerical computation is extreme importance in 

modern nonlinear analysis. In fact the ready availability of extensive 

computational resources that has led to the current resurgence of interest in 

nonlinear system behavior, much of which now centers on global system 

characteristics. Unfortunately, the cost of numerical simulations of systems by 

point mapping method are extremely expensive. 

In analyzing the inefficiency of point mapping method in global analysis, 

authors find that every initial points have to be led to reside on certain steady state 

solutions in point mapping method and, thus a steady state solution is always 

unnecessarily calculated hundreds and thousands of times. Point mapping method 

has been carried out on basis of long term determination of dyamical characters of 

an initial point, thus every trajectories starting from initial points are extended 

until they reside on steady state solutions. Undoubtfully, the method implemented 

in this way is accurate but is uneconomic. In fact, some important things in global 

analysis are neglected: 1) points in a trajectory have same global properties as the 

initial point, that is, all points in a trajectory are in a same basin of attraction, 

thus they could be used to depict the basin of attraction; 2) the density of 

trajectories or processed points, whose global property are known, is nonuniformly 

distributed in a chosen region of the state space even if a uniformly distributed 

initial points are used, for instance, the densities of processed points in the 

subregions around attractors are much higher than other subregions. This implies 

that global characteristics of some subregions may be determined only with small 



number of uniformly distributed initial points being used. After global characters 

of some subregions have been determined, there is no need to set new initial points 

in these subregions. Above all, all these accurately determined subregions can play 

the role of attractors which a trajectory could be led to in finite time rather than " 

infinite time" , computational works could be reduced greatly. 

To take the advartages of these characteristics in numerical global analysis, 

we propose an iterative scheme of point mapping under cell reference (iterative 

PMUCR) in this paper. After establishing a cell coordinate system in state space as 

reference to divid chosen region into subregions, we can define the attracting sets 

composed by the subregions whose global properties could be determined by 

applying point mapping method on small number of initial points, then an iterative 

procedure could be performed repeatly to determine fine resolution of basins of 

attraction of a nonlinear dynamical system. 
In contrast to previous methods which use approximate mapping to reduce the 

the computational work, for instance, cell—to—cell mapping by Hsu [1,2] and 

interpolated cell mapping by Tongue and Gu [3], iterative PMUCR uses accurate 

mapping, that is, point mapping determined by numerical integration. As mapping 

used in present method is accurate and a trajectory is terminated whenever it comes 

into the areas of attracting sets which takes finite time, present method could 

achieve exactly same results as those of point mapping method but reduces the 

computational cost to a great degree. Morever, iterative PMUCR is self — 

examinatable method, that is, one could easily know the correctness of the results 

by checking if any attracting cells in the attracting sets, used as targets of 

trajectories in an iterative procedure, change to boundary cells when the 

computation of this iterative procedure is finished. 
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ABSTRACT 

Addressed in this paper is the problem of a panel fluttering in a hypersonic stream. 

We treat this as an aero/thermoelastic problem in the sense that in addition to aeroelastic 

coupling we also account for thermal coupling between the fluid and structure. 

More specifically we have formulated the panel flutter problem in hypersonic flow based 

on the Navier-Stokes equations, and studied the influence of the surrounding temperature 

field and the heat transfer between the fluid and panel on the panel's aeroelastic behavior. 

The evolution equations are analysed numerically and qualitatively. Attention has been paid 

to bifurcations which occur as control parameters in the system vary. Long-time histories, 

phase-plane plots, power spectra of the responses, and Lyapunov exponents of the responses 

are the tools used in studying the system under consideration. 
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Bifurcations in Planar Piecewise Linear Systems 
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In this study, we consider the following class of nonlinear dynamical systems on 3£2, 

. _ j Ai(x - xel)   for hTx > 0 
x (1) A2(x - xe2)   for hTx < 0   ' 

where x,h 6 !fö2, system matrices AX,A2 € 3?2x2 , and xei,xe2 G 3£2 are such that hTxel > 

0 and hTxe2 < 0. Let L := {x\hTx = 0} denote a hyperplane that partitions 3?2 into two 

half-planes: the half-plane Px :— {x\hTx > 0}, and the half-plane P2 := {x\hTx < 0}. 

Then system (1) can be viewed as a variable-structure linear system with two linear 

systems separated by a hyperplane L and each with an equilibrium point, xel and xe2. 

Systems of the form (1) arise from many fields such as mechanics [2], electrical en- 

gineering [4], and automatic control [1, 3]. Such systems have drawn much attention 

recently due to their easy formulation and implementation. In contrast to seemingly sim- 

ple appearance, the behaviors of piecewise linear systems are quite complicated and need 

further work to understand them. 

In this article, we examine some 2-D examples of three classes of system (1) which 

possess limit cycle solutions and look into the mechanism for producing these limit cy- 

cles. The three classes considered are unstable-focus-to-unstable-focus (i.e., both the linear 

subsystems are of unstable focus type), stable-focus-to-unstable-focus, and unstable-focus- 

to-saddle. In order to achieve the goal, computer simulations are used to investigate some 

interesting bifurcation phenomena of the examples when some parameter in At or xei is 

varied. 

Since system (1) is in general discontinuous, sliding motions are likely to exist. Indeed, 

we found that the sliding mode plays a crucial role in system behaviors. A special kind of 

limit cycle called sliding limit, cycle can be produced due to the sliding mode. This kind 

of limit cycle has a portion on the sliding mode. One interesting property of it is that it 

can be reached in finite time by passing through the sliding mode. 

Consider, for example, an example of unstable-focus-to-unstable-focus class: 

Ai= -°i i -A2= -°i ! 'xe, = (io)'xrf=("ol)'Ä=(o)' 



where fi > 0 is a parameter relating to the expansion rate of the first linear subsystem. As 

(j, is varied from 0.5 to 0.9, the system experiences a homoclinic bifurcation followed by a 

saddle-node bifurcation of limit cycles and another homoclinic bifurcation, as shown in the 

figure. In the figure, "x" is an unatble equilibrium point on the sliding mode, and dashdot 

lines represent its stable manifold. Dashed lines stand for unstable limit cycles. Other 

trajectories are shown by solid lines. From the figure, on can see that before bifurcations, 

the system possesses sliding limit cycles. 

From other examples, we found a gobal bifurcation induced by a local saddle-node 

bifurcation, and a different kind of saddle-node bifurcation between limit cycles which 

results from the touching rather than the coalesce of limit cycles. Detail explanations for 

these bifurcation phenomena will be provided in the full-length paper. 

This work will reveal the complexity of the global behavior of system (1). Furthermore, 

it also provides the basis for further study of the piecewise linear systems in -Uft3, where 

we expect chaotic motions to occur. 
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Jumps to resonance with a probabilistic outcome 
in systems subjected to deterministic excitation 

Mohamed S. Soliman 
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Abstract 

Many nonlinear systems can experience jumps to resonance. Such jumps not only result in a 

qualitative change, but may often induce a substantial quantitative change in the response. In 

many systems jumps to resonance are purely deterministic in that there is always restabilization 

onto the resonance branch of the response curve. In this paper we show that jumps to resonance 

can be indeterminate where the outcome is essentially probabilistic, depending on upon the 

loading process. We show that such indeterminate bifurcations are a common phenomena in 

nonlinear dynamical systems. The basin and manifold organization prior to indeterminate 

bifurcations, as well as an analysis regarding the probabilitistic aspects of restabilzation are 

also presented. We show for example that indeterminate saddle-node bifurcations can arise 
when the unstable manifold of the saddle-node is heteroclinically tangled with the stable 

manifold of a distant saddle which itself is homoclinically tangled so it forms a fractal basin 

boundary between two remote attractors. At the bifurcation, a slowly evolving system will 

find itself sitting on a fractal basin boundary, and in the presence of infinitemesial noise the 

outcome.is unpredictable in the sense that we cannot predict on to which co-existing attractor 

the system will settle upon. For parametrically excited systems, indeterminate bifurcations 

can occur when trivial solution is located on a fractal boundary when it loses its stability, say 

at a sub-critical bifurcation. 
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Routes to escape from a potential energy well 
including experiments 
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Abstract 

Dynamical systems characterized by the possibility of escape from a 

local potential energy well occur in a great many physical problems including 

a rigid-arm pendulum passing over its inverted equilibrium position, snap- 
through buckling in arch and shell structures, and capsizing of ships. This is a 

thoroughly nonlinear problem and has received much recent attention 

especially using techniques based on numerical simulation. The current 

paper confirms many of these earlier findings using a mechanical experiment 

which mimics the behavior of a typical  'escape' nonlinear ordinary 
differential   equation. 

INTRODUCTION 

The escape of trajectories from a local minimum of an underlying 
potential energy function is essentially a transient phenomenon. Given a 

single-degree-of-freedom system at rest in a position of stable equilibrium 

what excitation would cause the subsequent motion to overcome an adjacent 

barrier which defines the limit of the catchment region surrounding the 
minimum? 

Escape occurs as the motion within the well grows 'large enough.' This 

is clearly more likely to occur when the forcing is 'large' in relation to some 



although the governing equations may be well-defined, analytical solutions 

are limited, especially for nonlinear systems. 
Previous research in this area began with the study of critical speeds in 

rotating systems (Lewis, 1932) and more recent work on linear dynamical 

systems includes transient testing using frequency sweeping (White, 1971), 

and resonant turbine blade behavior (Irretier and Leul, 1991). The effect of 

non-stationary influences on nonlinear systems includes predicting 

instabilities using transient dynamic effects (Virgin, 1986), nonlinear resonant 
effects in rotating shafts (Ishida et al, 1987), approximate analytical results 
based on the perturbation method (Raman et al, 1993), and chaotic behavior 

(Moslehy and Evan-Ivanowski, 1991). 
The experimental system used to illustrate this type of behavior has 

been used successfully to illustrate a variety of nonlinear behavior (Gottwald 

et al, 1992). Specifically the influence of frequency sweep rate on the resonant 

characteristics of the peak amplitude response is investigated and a 
comparison is made between experimental results and numerical simulation. 
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Modeling and Bifurcations in Power System Dynamics 

A. M. A. Hamdan 
Jordan University of Science and Technology 

Irbid 22110, Jordan 

In this paper we will demonstrate the importance of modeling in the 
appearance of complicated behaviour in power system dynamics. The 
appearance of the phenomena peculiar to nonlinear models such as 
bifurcations of different types depends critically on the degree of detail 
with which power system components are represented. We start with the 
classical representation of a single machine connected to an infinite busbar. 
The synchronous machine is represented by a constant voltage behind a 
transient reactance. As such the model is a second order differential equation 
with little information on the dynamics of the machine. If the busbar is 
assumed to have a quasi-infinite busbar, where its voltage is modulated in 
magnitude and phase, then.the dynamics is enriched considerably. The 
complicated behaviour o£ the new oyotcm includco period doubling bifurcations, 
chaotic motions, and unbounded motions (loss of synchronism). 

If the machine is still represented by a constant voltage behind 
transient reactance and connected to a load node which is also connected to an 
infinite busbar. If the load is assumed to have a component which is 
proportional to the derivative of the voltage magnitude or phase, then the 
three node system exhibits many local and global bifurcations. These 
bifurcations include saddle-node, Hopf, period-doubling leading to chaotic 
motions. For a region in the parameter space we have shown that a blue sky 
catastrophe ocuurs. The perodic solution disappears after colliding with 
a saddle point. This scenario shows the possibility of explaining the voltage 
collapse phenomenon as being a result of a global rather than a local 
bifurcation. 

If the machine is represented by a dg model with one differential equation in 
addition to the swing equation, then an excitation system can be added. 
Such a model exhibits local bifurcations such as saddle node and Hopf 
bifurcations. Control action can be taken to change the dynamics of the 
system to remove the bifurcations from the region of interest in the 
parameter space. 



Bifurcation   and   Chaos  in   the   Duffing   Oscillator 

with  A  PID  Controller 
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Xfan Jiaotong  University 
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ABSTRACT 

The problem of controlling chaos has attracted the attention of many 
investigators recently . Quite frequently chaos is a benefical feature as in some 
chemical or heat and mass transport problems , but in many other situations 
chaos is an undesirable phenomenon which may lead to vibrations , irregular 
operations etc. When we talk about controlling chaos , we mean to promote or 
eliminate it. There are mainly two methods for controlling chaos : the feedback 
method proposed by Ott , Grebogi , and York and nonfeedback method pro- 
posed by T. Kapitamik and other scholars . Duffing oscillator has been used to 
illustrate these two methods . So it is useful and interesting to investigate the 
dynamical behavior of the oscillator when subject to a PID controller , for PID 
controllers are still widely used in engineering . The Duffing oscillator can be 

described as 
y*4- y 4- fiy+ 5y=u   (t) Ü) 

when u U) =fcoscot, it is a forced vibration problem . A H.Nayfeh once 
used perturbation method to investigate the complicated dynamical behavior 
when the parameters is small in, 6, /<<1). P. Holmes studied the bifurcation 
and chaos of a Duffing oscillator with a first order linear feedback controller . 
he showed that the system does not always has asymptotic stable solutions even 
no u (t) appears , moreover , when subject to periodic position feedback cha- 
otic responses are possible . P. A. Cook once pointed out that integral action 

feedback may lead chaos. 
In our paper , we.study the bifurcation and chaos of Duffing oscillator 



with a PID controller . A PID controller can be written as 

/ *       ,        / -.       ,   de  It)        ,   -' 
u   U)   =k   e  it)   4-A, r— +A-.I   e   it)  ill !2) 

' •■     at "!l 

where e (t) = yr (t) —y (t) , and yr it) represents the reference input 
signal . k , k and k . are the coefficients of proportion .differentiation and in- 
tegration respectively . We further write the equations of system as 

|y + by + ay 4- by   = — kv 4- r  it) 
"v = y (3) 

where b = 1 4- k   ,  a=p + k.,  k=k.,  v = f ydt,  r (t)-=k  y    (t) 

Jrkdyr  it)   4-fc.J8yr  (t) dt,  we first set r (t)   =0 and study the intrinstic 

"free* dynamics of the system . For convenience we rewrite  (3)  as a first order 
system . 

rxl=x2 

3 
x2 = -bxl — ax2-kxz-8x1 (4) 

"■X     =,T 
3 I 

wherex,=y, x2=dy/dt and   x3=v, 
We find that the only fixed point is X 6 (0, 0. 0) , whena6=fc, Hopf 

bifurcation occurs. Using center manifold theorem and other techniques , we 
conclude that : 

( I ) .when the Duffing oscillator has hard spring nonlinearity term (£> 
0), if ab(k and \ab — k\ small enough , the system (4) has a stable limit 
cycle near the fixed point Xh  (0, 0,  0) 

(II ) . when the duffing oscillator has a soft spring nonlinearity term {b 
<0), ti abyk and \ab — k\ small enough, there is a unstable limit cycle near 
the fixed point Xt (0, 0, 0) .The fixed point is local stable but not global 
stable . 

(M) . no chaos occurs in the practical ranges (k  >0,  feJ>0, k;>0)  . 
When r (t) is a T-periodic step function chaotic response can be ob- 

tained . The numerical simulation is done and it supports the theoretical conclu- 
sion . We further use Wavelet Transform to analyze the chaotic response . 
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ON THE PERIOD-DOUBLING BIFURCATIONS IN THE 

DUFFING'S OSCILLATOR WITH NEGATIVE 

LINEAR STIFFNESS 

by 

K. R. Asfar  and  K. K. Masoud 

Department of Mechanical Engineering 

Jordan University of Science and Technology 

Irbid-Jordan 

ABSTRACT 

The phenomenon of period-doubling bifurcations in the Duffing's 

oscillator with negative linear stiffness is investigated with the 

aid of approximate analytical methods and computer simulation. 

Making use of a Hill's type variational equation together with the 

ideas drawn out from Floquet theory, it is found that a particular 

type of subharmonic instability is the one that is responsible for 

the occurrence of period-doublings in this system. 

In this paper, we investigate, using only the first-harmonic 

approximate solution, the steady-state behavior of a double-well 

potential oscillator focusing attention on its local oscillations 

and their stability.The governing equation for the considered 

system is : 

x" + 2/jx - -Cx - 3 
x } = F cosCcot-+Y?:) 

Based on results obtained from Floquet theory, it is shown that 

the stability analysis of the steady-state solutions via a Hill's 

type variational equation, answers to a large extent the question 

of the existence of the period-doubling bifurcations observed 

numerically (in the frequency range 1.0> W  33.95 ). 

The following criterion for the P.D.B's is developed. This 

criterion relates the system parameters necessary for 

period-doubling: 
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There is no guarantee that these P.D.B's will develop into chaos. 

In those cases where chaos is preceded by P.D.B's, this criterion 

could predict a lower threshold for chaos. This is confirmed by 

the striking similar nature of the true (numerical) chaotic 

threshold and the present criterion. Also there is good agreement 

between Moon's criterion for chaos and the present one. Based on 

this, it is suggested that the former criterion predicts 

period-doubling rather than chaos. 
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Chaotic Unpredictability of Elastic-Plastic Response to Impact Loading 

P.S. Symonds 
Brown University, Division of Engineering, Providence, RI 02906 

Abstract 

Computing permanent deflections of a beam or plate due to transverse impact or other type of 
short pulse loading, such that plastic strains occur, ordinarily presents no great difficulty. Robust 
finite element/difference programs are available for nonlinear geometric and material behavior. 
Simple approximation techniques are useful when plastic deformations predominate. The present 
paper shows some recent results in a class of problems for which no meaningful solution exists, 
numerical or analytical, for certain ranges of the parameters: the permanent deflection cannot be 
predicted. No refinement in computational technique will lead to a meaningful result 

The meaning of "unpredictability" is illustrated in Fig. 2 [ 1]. This shows displacements 
computed for the simple two-degree-of-freedom beam model sketched in Fig. 1, for two pulses of 
force at the midpoint, each with duration 0.5 msec. In one case the force during the pulse is 
2500.000001 N, in the other case it is 2500.000002 N. In the first case the final deflection is 
positive. The second pulse, differing from the first in the tenth significant figure, predicts a negative 
outcome. This is not a bifurcation or otherwise "special" load value. The same abnormal sensitivity 
is found at pulse forces in a wide range, say between 1600 N and 3400 N, for this particular model. 
A minute change of the pulse strength parameter may (or may not) cause the predicted final deflection 
to change its sign and magnitude. 

The significance to analysts and designers of an extreme sensitivity to parameters, and the 
implied unpredictability, is obvious. Of course, unpredictability is hardly unknown in mechanical 
systems. We live in an intrinsically nonlinear world. In celestial mechanics, predictions are valid 
only for finite times. The present problem involves a more conventional engineering task: to estimate 
permanent deformations due to transverse impact or short pulse loading on a beam or plate. To find 
that seemingly minor changes in conditions can transform a readily solvable problem into one that is 
inherently unsolvable, is unexpected. Apart from some early Russian work [2], it seems not to have 
been noticed prior to our accidental observation in 1984 [3]. The primary requirement is that the 
supports provide constraint against axial motions, with consequent geometrical nonlinearity. In 
addition, plastic extensional strains must be induced in a certain range of small magnitudes, the pulse 
must be sufficiently short, damping must be sufficiently weak, and the calculation must employ a 
multi-degree of freedom model of the structure [4]. 

The source of the unpredictability is the chaotic nature of the response during a pre- 
transitional phase [5]. The end fixity means that finite transverse displacements require extensional 
strains at the middle surface. For our 2dof model, the equations of motion are two coupled nonlinear 
equations. The plastic strains change during an initial "shakedown" period. After they become 
constant, the equations are of standard Duffing type. The small plastic strains convert the original 
beam to a shallow arch. With two or more degrees of freedom, it can exhibit chaotic vibrations. 
Assuming (light) damping, there is a transition (illustrated in Fig. 2) to a motion that remains either 
positive or negative, becoming more regular as it approaches the final rest state. 

The paper illustrates that unpredictability in our problem corresponds to the independence of 
scale of a diagram that shows the incidence of positive and negative final displacements when the 
pulse force is varied in small steps over an interval. A first scale gives these quantities over a range 
of 200 N from 2500 N to 2700 N, divided into 100 steps of 2 H each. Expansions of the scale of 
1.0E2, 1.0E4, and 1.0E6 are used; thus the fourth scale shows results in the interval from 



2500.0000 to 2500.0001 N at 100 steps of 0.000001 N each. All four figures are remarkably 
similar.   The occurrence of negative outcomes can be expressed numerically by computing 
Mandelbrot's "self-similarity" fractal dimension [6]. This turns out to be close to 0.78 for all scales 
[1J. This may be compared with the dimension of a line composed of "Cantor dust" particles, 
namely log2/log3, or about 0.63, for all scales. The same quantity for a single degree of freedom 
model is unity; there is no scale independence. 

In this problem, the simplest general approach to understanding a wide range of chaotic and 
conditionally periodic behaviors is by energy methods [7]. The paper will briefly review these and 
other aspects of the response behavior both of the damped model, and that in which the damping is 
taken as zero. The latter allows standard tests of chaotic behavior (e.g. Lyapunov exponents) that 
have meaning also for the chaotic stage of the lightly damped structure. It allows construction of 
"surface-of-section" plots for fixed total energies of the Hamiltonian system defined by the equations 
of motion for fixed plastic strains and zero damping [8,9]. For this system sensitive and highly 
complex dependence on initial conditions is exhibited in the patterns derived from intersection points 
of trajectories with particular planes in phase space. Since the model of Figure 1 is somewhat 
artificial, it is of interest to note the similar equations derived by Galerkm's method, which furnish 
qualitatively similar results [10]. 
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Figure 1        Two-degree-of-freedom    beam    model. 
(a) symmetric deflected configuration;   (b) deformable 
cells at quarterpoints   B   and midpoint   C, treated as 
sandwich beam sections. 

Figure 2      Examples of time histories of midpoint 
displacement: two cases. 



GLOBAL BIFURCATIONS AND CHAOS 
IN THE RESONANT RESPONSE OF A STRUCTURE WITH 

CYCLIC SYMMETRY 
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Periodic structures with cyclic symmetry are often used as idealized models of 
physical systems and one such model structure is studied in this work. It consists of n 
identical particles, arranged in a ring, interconnected by extensional springs with 
nonlinear stiffness characteristics, and hinged to the ground individually by nonlinear 
torsional springs. These cyclic structures that, in their linear approximations, are known 
to possess pairwise double degenerate natural frequencies with orthogonal normal modes, 
are studied for their forced response when nonlinearities are taken into account. 

The method of averaging is used to study nonlinear interactions between the pairs of 
modes with identical natural frequencies. The external hrrmonic excitation is spatially 
distributed like one of the two modes and is orthogonal :.o the other mode. A careful 
bifurcation analysis of the amplitude equations is undertaken in the case of resonant 
forcing. The response of the structure is dependent on the amplitude of forcing, the 
excitation frequency, and the damping present. For sufficiently large forcing, the 
response does not remain restricted to the directly excited mode, as both the directly 
excited and the orthogonal modes participate in it. These coupled-mode responses arise 
due to pitchfork bifurcations from the single-mode responses and represent traveling 
wave solutions for the structure. Depending on the amount of damping, the coupled- 
mode responses can undergo Hopf bifurcations leading to complicated amplitude- 
modulated motions of the structure. The amplitude-modulated motions exhibit period- 
doubling bifurcations to chaotic amplitude-modulations, multiple chaotic attractors as 
well as "crisis". The existence of chaotic amplitude dynamics is related :.o the presence 
of Sil'nikov-type conditions for the averaged equations. The effect of weak linear 
mistunings on the structure of solutions is also investigated. 



Global bifurcations in the averaged equations for the weakly cyclic structure are 
studied using a generalization of the Melnikov method. Homoclinic orbits are shown to 
break, generating Smale horseshoes, resulting in chaotic phenomena. We also use a new 
Global perturbation technique developed by Kovacic and Wiggins, that is a combination 
of higher dimensional Melnikov method and geometrical singular perturbations, for 
detecting the parameter values for which a Sil'nikov-type homoclinic orbit exists. With 
appropriate conditions on eigenvalues, this implies Sil'nikov-type chaos for the averaged 
equations. 



NONLINEAR AND CHAOTIC DYNAMICS 

OF ARTICULATED CYLINDERS IN CONFINED AXIAL FLOW 

R. M. Botez and M.P. Pai'doussis 

Flexible or articulated cylindrical components in a flow-cooled cylindrical 

conduit are commonly found in many engineering systems and often experience 

fluidelastic oscillations and failure (PaTdoussis 1980). Impacting with the outer 

conduit is often involved and hence strongly nonlinear forces. It is therefore 

reasonable to suspect the existence of interesting nonlinear behaviour and chacs 

in such systems. 

This study deals with the planar dynamics of a vertical articulated system of two 

or three cylinders interconnected by rotational springs and with a free downstream 

end, centrally located in a pipe conveying fluid downward in the narrow annular 

space in-between. Several analytical models have been developed: (a) a linearized 

model in which the only nonlinearity is due to impacting with the outer pipe; 

(b) a nonlinear model in which geometric and fluid-dynamic nonlinearities are 

approximately accounted for; (c) variants of (a) and (b) accordingly as to whether 

impacting is modelled by a trilinear spring, a cubic spring approximation thereof, 

or a restitution coefficient model. The system was studied by varying mainly the 

dimensionless flow velocity, u, the number of articulations, N, the dimensionless 

annular gap, h, and the free—end shape parameter /. In several ranges of parameters 

there is reasonable qualitative (and in some cases quantitative) similarity in the 

dynamics according to the above-mentioned models. 

Depending on the system parameters and u, periodic, quasi-periodic and chaotic 

oscillations were found to exist (PaTdoussis and Botez 1993), confirmed by phase- 

plane portraits and bifurcation diagrams, time traces and power spectral densities, 

Poincare maps and Lyapunov exponents. Three routes to chaos were found: the 

period-doubling cascade, the quasi-periodic route, and type III intermittency. 

In this paper, three cases associated with different routes to chaos are presented 

as follows: in the first case (N = 2, h = 0.5, / = 0.8) the route to chaos is via a 

cascade of period-doubling bifurcations; in the second case (N = 2, h = 0.2, / = 0, 

which corresponds physically to a smaller annular space and to a blunt end), chaos 

is associated to periodic motions around two symmetric points; and in the third case 

(N = 3, h = 0.5, / = 0.4) chaos is associated with type III intermittency. 

The maximum angular displacement of the first cylinder is presented as a function 

of time in Figure 1 for the intermittency case (case 3).   In this figure one may see 



the "turbulent fluctuations" in the oscillation, represented by the regions with many 

points, interrupted by regions of more regular oscillations or "laminar" phases. These 

laminar phases are in fact associated with slowly growing limit cycles. The statistical 

distribution of the lengths of laminar phases versus time interval as well aj the first 

and second return maps are studied, leading to the conclusion that the intermittency 

in this case is of type III. 

Apart of the use of centre-manifold theory in the case of N = 2, most of the 

foregoing was obtained numerically by Runge-Kutta integration of the equations of 

motion. More recently, some of these systems were also studied by means of the 

AUTO software (Doedel 1986) which, among other things, allows a more systematic 

construction of more complete bifurcation diagrams than our own software. Since in 

some of the systems studied the mechanism leading to chaos is still unclear, further 

studies with AUTO and other software are being pursued to hopefulby obtain a better 

understanding. Q.10 
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Chaotic Dynamics of Quadratic Systems 
with 1:2 Internal Resonances 
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Two degrees-of-freedom dynamical systems often have quadratic terms 
in their equations of motion. The quadratic nonlinearities arise due to in- 
ertial effects of large motions, and due to the phenomena associated with 
centrifugal and coriolis forces [Sethna, 1965]. Interesting response of the sys- 
tems is observed when the two modes of vibration of the system get coupled 
through the nonlinear terms. This situation arises when the linear natural 
frequencies of the system are in the ratios 1:2 or 2:1 (internal resonance). 
In these systems with internal resonances, complicated motions are observed 
when the frequency of external excitation is close to one of the linear natural 
frequencies of the system. 

We study systems with subharmonic 1:2 internal resonance. The fre- 
quency of the first mode of vibration is taken close to 1, the normalized fre- 
quency of excitation, and that of the second mode, close to \. The method 
of averaging [Murdock, 1991; Wiggins, 1990] is used to reduce the nonau- 
tonomous system to an autonomous system. The autonomous system cap- 
tures the essential dynamics of the original system for sufficiently small mo- 
tions near resonance. Fixed points of the averaged system correspond to pe- 
riodic solutions of the original system and periodic solutions of the averaged 
system imply amplitude-modulated motions for the original system. Chaotic 
solutions of the averaged equations imply chaotic amplitude-modulated re- 
sponses for the original system. 

For the undamped averaged system, we use an extension of Melnikov's 
method, developed for autonomous Hamiltonian systems by Holmes and 
Marsden [1982], and presented in considerable detail in Wiggins [1988], to 
analytically predict the parameter range for which chaos exists in the sys- 
tem. The underlying theme of Melnikov's idea is to consider an unperturbed 
Hamiltonian system, having a hyperbolic fixed point connected to itself by 



a homoclinic orbit. On perturbing this system with time periodic pertur- 
bation (not necessarily Hamiltonian), the hyperbolic fixed point becomes a 
hyperbolic periodic orbit, whose stable and unstable manifolds may intersect 
transversely, giving rise to Smale horseshoes and hence complex invariant 
sets. The distance between the stable and the unstable manifolds can be 
calculated using the Melnikov function or Melnikov Integral. The param- 
eter values for which the Melnikov function has simple zeroes, gives the 
desired parameter regions. This analysis follows closely the work of Tien, 
Namachchivaya and Bajaj [1993]. 

It is found that any small external excitation breaks the heteroclinic orbits 
and leads to transverse intersections of the stable and unstable manifolds, 
leading to chaotic dynamics of the averaged system. These results are verified 
by numerical simulations of the averaged equations, and it is seen that the 
chaotic responses persist even in the presence of sufficiently small damping 
(as compared to the amplitude of the external forcing), although the analysis 
is not valid for the damped case. 
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EXPERIMENTAL STUDY OF A COMPLEX NONLINEAR MECHANICAL 
SYSTEM 

M. Boltezar* 
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ABSTRACT 

Classes of nontrivial nonlinear vibratory systems occur frequently in practice. 
Analyses are generally (over)simplifications and hence there is interest in 
substantive experimental analysis. 

An experimental analysis was carried out on the response of a multi-degree- 
of-freedom nonlinear mechanical system. The aim of the analysis was to conduct a 
study of the system's behaviour in the time, frequency and phase space domains. 
The system was designed and built by coupling an array of 6 planar rigid 
pendulums by nonlinear springs. Each pendulum was supported by a thin plane 
spring, which restricted the oscillator to a plane motion and also offered space to 
attach strain gauges. The coupling springs, the characteristics of which could be 
changed by varying their lengths and thicknesses were made of high strength spring 
steel shims arranged to operate in a post buckled state, resulting in their nonlinear 
characteristic. 

Analysis of the data was carried out in both the time and frequency domains. 
The system was studied in free response, and also when subjected to harmonic and 
random excitations. Time domain techniques included reconstructed phase space 
(and measures on it) as well as delay maps. The spectral approach included higher 
order spectra for harmonic as well as for random excitation. 

When studying the free response a progressively more complex system was 
analysed starting with one, followed by two and finally with all 6 oscillators, 
coupled with nonlinear springs. The subharmonic response as well as 
combinational frequencies were resolved. 

Applying deterministic harmonic excitation at twice the first natural 
frequency of the system created a saturation phenomenon which resulted in an 
extremely high response at half of the excitation frequency. These transitions are 
illustrated for different sets of the coupling springs in the time - frequency domain 
using short time spectrograms. This is achieved by varying an input parameter, such 
as the amplitude of the fixed forcing frequency, with time. This allows a clear 
indication to be obtained of the changes that occur when the input is varied. 

* This research was carried out when the author was on leave at ISVR, University of 
Southampton 



When applying harmonic excitation at another single excitation frequency at 
a high forcing level the system responded with a spectrum containing iru\ny 
frequencies. This is shown in the time and frequency domains and especially usino- 
higher order spectra (specifically bispectra and bicoherence). As many 
combinational frequencies were present ordinary power spectra could extract them 
well but the bispectra - bicoherence showed additional information about quadratic 
coupling of two separate frequencies. Bicoherences were also calculated in the case 
of the random excitation, where the rise in the excitation level resulted in stronger 
mode coupling and this also resulted in higher magnitude value of the bicoherence. 

When applying deterministic and random excitation to the built multi- 
degree-of-freedom nonlinear mechanical system measures from chaotic dynamics 
theory including the integral of correlation dimension were applied. Long duration 
time histories were acquired and the abstract multidimensional phase space 
reconstructed using delay-time embedding techniques. Different delay-times were 
taken into account and integrals of correlation dimension calculated for different 
embedding dimensions. 

Convergence was found in correlation dimension estimates with increasing 
embedding dimension in the case of deterministic excitation. No such convergence 
was found when applying random excitation. Increasing the forcing amplitude for 
deterministic excitation resulted in the responses becoming more complex. This 
increasing complexity can be seen from time histories alone, power spectra, 
bicoherences, delay-time plots and increasing slopes in the integrals of correlation 
dimension. 

The increase in the estimates of the correlation dimension were found for two 
different sets of coupling springs with the increase of excitation amplitudes at 
deterministic forcing. Although extracting slopes from the integrals of correlation 
dimension requires (theoretically) an infinite number of reconstructed attractor 
points and noise free data, reliable estimates can be estimated for low dimensional 
dynamics. 

By acquiring more output signals (simultaneously) it was possible to apply 
the delay-time reconstruction technique to many corresponding time histories and 
compare the estimated values of correlation dimensions. Doing so for three signals 
at three different locations in the system confirmed the invariant nature of the 
underlying attractor in the case of random excitation. 
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ABSTRACT 

Methods that treat rigid/flexible multibody systems undergoing large motion as well 

as  deformations   usually  utilize   a  mixed   set  of rigid  body  coordinates    and   flexible 

coordinates.    The numerical solution of the corresponding  governing equations  of motion 

is often accompanied   with inefficiencies and instabilities due to the large number of state 

variables, differences in the magnitudes of the rigid and flexible body coordinates, and the 

time dependencies  of the mass and stiffness matrices.  The kineto-static methodology of this 

paper treats a multibody mechanical  system to consist of two collections of bodies.   One 

collection contains bulky compact solids that can be modelled as rigid bodies, while the 

second collection contains relatively flexible bodies that are deformable.   The equations of 

motion are formulated  for the rigid bodies only, whose solution predicts the gross motion 

of the rigid bodies and also the displacement  of the nodes at the boundaries  between the 

rigid and the flexible bodies.   A nonlinear finite element model of the deformable  bodies 

or the structural part of the system is constructed.    A combined incremental  and iterative 

process is used at each time step of the numerical integration process for calculating out-of- 

balance    forces,   updating    the   tangent    stiffness   matrix,   and   calculating    incremental 

displacements,   stresses, and strains.   A mixed boundary condition finite element problem 

is then formulated  at each time step whose known quantities  are the displacement   of the 

nodes at the boundary and the internal loads acting on the structure, and its unknowns are 

the deformed   shape  of the entire  structure  and the loads (forces and moments)   at the 

bounöry  of the rigid and flexible bodies.    Partitioning  techniques   are used to solve the 

linear systems of equations  for the unknowns.   The loads at the boundary are then treated 

as external loads acting on the rigid multibody system, and the numerical  solution of the 

rigid multibody  system governing equations   of motion  is continued.    A general-purpose 

nonlinear   finite element  analysis code that performs  the kineto-static   analysis has been 
developed. 



The methodology discussed earlier is very much suitable in modelling and predicting 

the crash responses of multibody systems since both nonlinear and large gross motion and 

deformations   are encountered.     Therefore,   it has been  adopted   for the  studies  of the 

dynamic responses  of ground vehicle or aircraft occupants   in different  crash scenarios. 

Occupant   models  are  robust  tools  for gaining  insight into the  gross motions   and  for 

evaluating the loads and deformations  of their critical parts in studies of crashworthiness. 

The knowledge of occupant responses will help in understanding  and determining the type 

and probable  causes of injuries that may be sustained.    An important  issue in occupant 

modeling is how the large motion of rigid segments of occupants such as the limbs and the 

small deformations of flexible bodies such as the spine column are handled. One of the most 

dangerous modes of injury is the amount of compressive loads that is encountered   by the 

spine.  This situation is much more evident in aircraft crashes, compared to the automobile 

accidents, since the aircraft crashes have a dominant component of the vertical impact load. 

The  kineto-static   analysis  methodology   of multibody   systems  with flexible  structures 

undergoing large motion and complicated structural deformations  h:.s then been used for 

this application.   Rigid multibody dynamics is used to predict gross motion of the body parts 

including the pelvis and the thorax.   The displacements  at the boundaries  of the these two 

parts with the spine are then evaluated at each time step. Nonlinear finite element analysis 

with mixed boundary conditions is then performed to determine the corresponding loads and 

deformations  of the spine. 

Based on the developed method, a mathematical model of the occupant with a 

nonlinear finite element model of the lumbar spine is developed for a Hybrid II (Part 572) 

anthropomorphic test dummy. The lumbar spine model is then incorporated into a gross 

motion occupant model. The analytical results are correlated with the experimental results 

from the impact sled tests. Comparison of the results has shown closer match of the 

analyses to the experiments. With the validated occupant model containing the lumbar 

spine, the gross motion of occupant segments, including displacements, velocities and 

accelerations are evaluated. The spinal axial loads, bending moments, shear forces, internal 

forces, nodal forces, and deformation time histories are also determined. The gross motion 

of occupant segments, including displacements, velocities, and accelerations may also be 

evaluated. This detailed information helps in assessing the level of spinal injury, 

determining  mechanisms of spinal injury, and designing better occupant safety devices. 



A SYMBOLIC-NUMERICAL APPROACH TO CHARACTERIZE THE STABILITY AND 

CONTROL THE DYNAMICS OF A FOUR-WHEEL-STEERING VEHICLE 

Nestor E. Sanchez 

Division of Engineering, University of Texas at San Antonio, 
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A symbolic-numerical approach is used to analyze the response of a 

road vehicle equipped with four-wheel-steering system using a 

nonlinear model with a low number of DOF including yaw, sideslip, 

and roll. A nonlinear control law for the rear wheel is derived in 

closed-form, and it shows better characteristics than its linear 

equivalent under steering and braking maneuvers. The st-.bility of 

the straight line motion for four-wheel steering and front-wheel 

steering vehicles is analyzed using symbolic manipulation, to 

characterize the stability in terms of eigenvalues computed in 

closed-form. This approach can have significant applications to 

enhance the design process by providing formulas to asses dynamic 

stability. 

The ever growing demand for road vehicles with better performance 

has brought the traditional front wheel steering system under 

scrutiny. One result of that scrutiny that has gained popularity 

is the four-wheel steering system (4WS). Furukawa et al. (1989) 

presented a complete review of the development of the 4WS for 

automobiles, and a few auto makers have been manufacturing 4WS 

vehicles for a number of years. 

Four-Wheel steering systems thus have the potential to become an 

essential vehicle design technology. However, a number of 

theoretical and practical concerns remain to be resolved before the 

technology becomes widespread. A point of controversy among 

researchers has been the way the rear wheels should be steered in 

order to optimize the handling performance and stability of the 

vehicle. Whitehead (1988), Bernard (1988), Nalecz et al. (1988), 

and Sridhar et al.  (1992) among others have proposed various 



control schemes. Two main characteristics tend to distinguish the 

approaches to the analysis of this problem: the control law to be 

used to steer the rear wheels, and the model used to assess the 

control   law's   impact  on  the  vehicle's  dynamics. 

The present work considers a fully nonlinear model of the response 

of a road vehicle equipped with 4WS. The vehicle is modeled with 

a low number of degrees-of-freedom, including yaw, sideslip, and 

roll. A symbolic approach is used, to allow the implementation of 

analytical and numerical techniques, taking advantage of the 

availability of symbolic manipulation software (MAPLE, Char et al. 

1991). This work expands an initial nonlinear model (Sanchez, 93) 

which was developed for low levels of acceleration and did not 

include the roll mode. Closed-form results can be very valuable 

for design applications, providing designers with formulas that can 

be used to assess dynamic stability. At the same time, it is shown 

that the symbolic model can be used to perform numerical 

simulations to evaluate the impact of the control law. Thus, the 

symbolic-numerical approach provides an environment that can 

significantly  enhance  engineering  analysis  and design. 
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The search for a minimal ratio "Robot weight/Payload weight" in order to improve the 

dynamic performance of the robots has led to take into account the bodies' flexibilities in the 

modelling. The aim of this paper is to present a methodology to obtain, in a formal way, the energy 

and dynamic models of an open loop robot structure with flexible bodies. 

The interest of the use of symbolic computation for the rigid robots structures modelling has 

already been proved. A computer aided approach leads to a gain in time on the calculus of final 

model by eliminating the operations which lead to a null result and by allowing intermediary 

variables 1. The model obtained can be used immediately in control algorithm where the model is 

computed at each step. Moreover formal identification models can be obtained easily. 

The modelling of the structural flexibilities of manipulators has the same purposes. Moreover, 

when the number of flexible bodies is greater than three, the manual development of models is 

tedious and prone to errors. The advantages of a computer aided-approach are that it : minimises 

human burden, avoids errors, allows to manipulate formulas easily, can deal with more terms 

(higher order and elastic modes) and one can keep the number and the type of modes in a symbolic 

form in order to test different modes combinations in simulation.2^ 

In this article, we present in a first part the method used to model flexible robots. The 

formulation is based on Lagrangian co-ordinates. The parameters of the model are the joint 

variables and the elastic degrees of freedom of the bodies. The formulation proposed is independent 

from the choice of discretization type (assumed modes or finite elements methods). The elastic 

bodies are treated as Euler-Bernoulli beams and their motions are referred to the position of the 

undeformed corresponding link 5~6. Finally the dynamic equations of the robot are obtained using 

the Lagrange equations. We show that the models we obtain are linear with respect to a standard set 

of parameters which are the inertial and stiffness parameters of the structure. In reference 7, we 



have developed a formal approach in order to determine the standard parameters' sufficient 

conditions of minimality. The minimality of the standard set of parameters ensures the robustness 

of the identification process. 8 

The generation of formal models of flexible robots in a form suitable for identification or 

control is then treated. A particular attention is given to the development order of the model in 

relation to the elastic degrees of freedom. We focus our study on the development order of the 

intermediary calculations in order to obtain a final model which is coherent in terms of 

development order. Two models are discussed : an energy model used for the standard parameters' 

identification and a dynamic model used either for the identification or for the control of the robot. 

In the case of the dynamic model, we study the effects of a model simplification in terms of 

development order on the properties of the definite positive mass matrix of the structure. 

Next, we present how we manage to implement the calculus of the models in a form suitable 

for symbolic computation. The discretization is based on the finite elements method. Each body is 

modelled by a two nodes beam finite element The models' final expressions are calculated in 

function of elementary matrices coefficients (intermediate terms). 

Lastly, we present an application of our method. We determine the energy and dynamic 

models of a three joint robot (prismatic, revolute, revolute) : the development at order two of the 

energy model leads to 601 operations and the dynamic model written at order one contains 1437 

operations. The small number of operations makes it possible to calculate the dynamic model in 

real time, and allows therefore the implementation of a control law based on non-linear decoupling 

theory as described in reference 6. 
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Abstract. In this paper a model of a freight car is constructed and simulated over a test track, which 
was designed to investigate vehicular pitch and bounce response. The two dimensional model 
consisted of three rigid bodies, representing the car body and the two trucks, and four missless 
bodies, representing the track profile under each axle. The connections or suspensions be .ween 
bodies consisted of non-linear stiffness and damping. A quasi static simulation was erformed, in 
the sense that forward motion was ignored, since the vehicle was assumed to be travelling at a 
constant speed. This simulation attempted to duplicate an actual test track, in which ten sinusoidal 
vertical profile humps, with 39 foot wavelength and 0.75 inches amplitude, were constructed. An 
actual test of a 70-ton freight car over this test track was performed at various speeds. The car was 
instrumented to measure the response to vertical track profile irregularities. The model was 
simulated at the same speeds and a comparison was made between the response of the vehicle and 
the model simulation. The response of the vehicle, as measured with an actual 70-ton freight car 
and the model simulation, compared quit favorably throughout the speed range at which they were 
examined. 
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CONTROL OF DYNAMICAL SYSTEMS SUBJECTED TO 
PERIODIC PARAMETRIC EXCITATIONS 
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Abstract:       Some techniques in the design of controllers for linear as well as nonlinear 
dynamic systems subjected to periodic parametric excitations is presented. The control of linear 
periodic systems is quite challenging due to its time-varying nature.    In the past, several 
methodologies for control system designs of time-varying systems have been reported[l- 5]. 
Invariably, these methods are based on transforming the original system into a suitable canonical 
form so that some of the special properties of the canonical system can be utilized for controller 
designs.    However, such transformations, if they exist, are not unique and are tedious to 
implement, especially for higher dimensional systems.    In this paper, the idea is to utilize the 
well-known Liapunov-Floquet (L-F) transformation such that the original time-varying linear 
control problem can be converted into a form which can be studied via time-invariant methods 
of control theory.   When the L-F transformation is applied to a quasilinear periodic system, a 
dynamically similar system is obtained whc e linear part is time-invariant and the nonlinear part 
consists  of coefficients  which  are  periodic.     First,  a  procedure  for computing  the  L-F 
transformation matrices[6] for general linear periodic systems is outlined. In this procedure the 
state transition matrices are expressed in terms of Chebyshev polynomials[7] which permits the 
computation of L-F transformation matrices as explicit functions of time.  Secondly, it is shown 
that the controllers can be designed via full state or output feedback using principles of pole 
placement and/or optimal control theory in the transformed domain for linear systems.  Once the 
control gains are obtained in the time-invariant form, the time-varying periodic gains of the 
original system is obtained by employing error minimization criteria between the original and 
transformed systems[8-9].  In the presence of structural perturbations, it is found that the above 
control design is robust and a measure of bounds for the structural perturbations can also be 
provided. In the context of performance improvements, linear control design alone may not meet 
the desired specifications of the nonlinear periodic systems due to the time-varying nature of the 
problem.   Therefore, to improve the controlled response of the nonlinear system, a nonlinear 
time-varying controller is also designed and incorporated via the Liapunov's Direct Method. The 
performance of the linear and the dual (linear + nonlinear) controllers are compared.   Noticeably, 
the combination of linear and nonlinear controllers based on L-F transformation approach has 
been found to have better performance and robustness characteristics.    The benefits of this 
technique is demonstrated through two examples.   The first example belongs to the class of 
commutative systems while the second one is a double inverted pendulum subjected to periodic 
loadings.  It is found that the linear and nonlinear control strategies perform well in the presc ice 
of structural perturbations. 
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SPURIOUS SOLUTIONS PREDICTED BY 
THE HARMONIC BALANCE METHOD 

Ameer Hassan and Thomas D. Burton 
Department of Mechanical and Materials Engineering 

Washington State University 
Pullman, Washington 99164-2920 

The harmonic balance (HB) method is commonly used to analyze the steady state periodic 
response of both weakly and strongly nonlinear systems. In this method a periodic solution 
for the independent variable lx' is assumed as a truncated Fourier series plus a residual term 
V, i.e., 

n 

x — x0 + v = r0 + ^ n cos(ifi£ — fa) + v. (1) 
i=i 

This solution, or any one of its alternate forms, is substituted in the equation(s) of motion, 
and the coefficients F0, Fj, Gy, j = 1, ■ ■ • ,n, of the bias and the harmonics cos(jQt), sin(;fii), 
respectively, are equated to zero. The resulting coupled, nonlinear algebraic equations are 
solved simultaneously to obtain the parameters r0, r\, and fa used in the approximate solution 
x0 for the steady state periodic response. Other terms provide the so-called "variational 
equation", which is an exact, transformed equation for the variational displacement v. An 
HB solution in which only a few leading harmonics are used can fail to predict the existing 
periodic solutions (type 1 failure) and/or it may predict periodic solutions which have no 
counterpart in the actual response (type 2 failure). 

It is clear that a possible sub- or superharmonic resonance can not be detected by 
an HB approximation unless at least some of the appropriate harmonics are included in the 
assumed solution. Therefore, examples of type 1 failure are abundant. The case of second 
superharmonic resonance in the Duffings oscillator, x -f Sx + x ■+ x3 = F cos(Qt) (eq 2), 
provides a simple example for which a higher order HB solution exhibits both type 1 and 
type 2 failure. 

The results for eq. 2, with F = 20 and 5 = 0.2, are shown in fig. 1. For clarity, only the 
amplitude of the fundamental harmonic is shown. The results for the third superharmonic 
resonance, shown by a solid line, were determined by using n = 3 in (1). The results 
for the second (A) and the third superharmonic (□) resonance obtained by using n = 
15 in (1) are also shown. These higher order HB results are essentially identical to the 
numerical results. The results for the second superharmonic resonance are shown by a 
dotted line. These HB results, shown in figs. 1(a) and 1(b), were determined by using n = 3 
and n = 4 in (1), respectively. Hatch marks indicate unstable solutions. The stability type 
of the predicted solutions was determined by an approximate analysis of the corresponding 
variational equation. 

Clearly, the HB solution for the second superharmonic resonance based on n = 3 
(fig. 1(a)) a) erroneously predicts that the pitchfork bifurcation at point B is subcritical, b) 



erroneously predicts the existence of a saddle-node bifurcation at point G, c) predicts the 
fictitious branch B-G for the unstable solutions of the second superharmonic resonance, and 
d) fails to predict the stable solutions for the second superharmonic resonance for fi > QG- 

The HB approximation obtained by using n - 4 in (1) provides qualitatively correct 
frequency-response curves for the second superharmonic resonance (fig. 1(b)). Clearly, the 
qualitative failure of the harmonic balance method is restricted neither to a first approxi- 
mation nor to the systems having asymmetric potential well. It has also been checked that 
the residual values for some of the neglected higher harmonics can not detect a qualitative 

failure of the HB method. 

In symmetry breaking and period doubling pitchfork bifurcations, some new harmon- 
ics are brought into the system response. Close to the bifurcation point(s), these harmonics 
have small amplitudes, which are comparable to each other. Some of these harmonics are 
instrumental in deciding the sub- or supercritical nature of the pitchfork bifurcation. The 
importance of their relative role in the bifurcation can not be decided a priori. The harmonic 
balance method'can lead to erroneous results if one or more of these small but instrumental 
harmonics are neglected from the assumed solution. This result does not agree with the 
common belief that the HB method provides qualitatively correct results when "all" domi- 
nant harmonics are included in the assumed solution. In the periodic response of strongly 
nonlinear systems, certain harmonics which are more (respectively, less) significant in a given 
domain of the system parameters may become less (more) significant in a different region 
of the parameter space. This makes the problem of finding the right mix of the few lead- 
ing harmonics, which will provide qualitatively correct response curves, even more difficult. 

Further details are given in [1]. 

[1]. Hassan, A. and T.D. Burton, "Extraneous solutions predicted by the harmonic balance 

method", in review for the Journal of Sound and Vibration. 

3.5 

o2.S 

1.5 

;   F B    ^^ 
A 

• 0 o  \ 
E 

So ■z* 0 
—-k--          I   o 
0 O o •        ■ 0 

V s   ° I?6 

■ C f 

■ ft    0 

7 o 
' o 
0 

0 
1 

J 
> v o 

o 
_ o 

: 

1 

1.5 2.0 
FREQUENCY 

2.5 

A 
B 

^"^       t> E ,« 
Sv "*■* 

< o   '0 
1 u« 

o -f? 
0 ) 

1 

H  * 

1 

1.0 

Figure   1(a) 

1.5 2.0 
FREQUENCY 

Figure   1(b) 

2.5 



A RENOVATED ALGORITHM EOR INCREMENTAL HARMONIC BALANCE METHOD 

T. Ge and A.Y.T.Leung 

Department of Civil and Structural Engineering 

University of Hong Kong 

Abstract 

The main difference between a linear system and a nonlinear system is in 

the non-uniqueness of solutions manifested by the singular Jacobian 

matrix. It is important to be able to express the Jacobian accurately, 

completely and efficiently in an algorithm to analyze a nonlinear 

oscillator.  For periodic response,  the incremental harmonic balance 

(IHB)  method  is  widely used.  The existing  IHB methods,  however, 

requiring double summations of each harmonic components to form the 

Jacobian matrix, are often extremely time-consuming when higher order 

harmonic terms are retained to fulfill the completeness requirement. A 

new algorithm to compute the Jacobian is to be introduced with the 

application of fast Fourier transforms (FFT) and Toeplitz formulation. 

The resulting Jacobian matrix is constructed explicitly by three vectors 

in terms of the current Fourier coefficients of response, depending 

respectively on the synchronizing mass, damping and stiffness functions. 

The part of the Jacobian matrix depending on the nonlinear stiffness is 

actually a Toeplitz matrix. The other parts of the Jacobian matrix 

depending on the nonlinear mass and damping are Toeplitz matrices 

modified by diagonal matrices. If the synchronizing mass is normalized 



in the beginning, we need only two vectors to construct the Toeplitz 

Jacobian matrix (TJM). The present method of TJM is found to be superior 

in both computation time and storage than all existing IHB methods due 

to the simplified explicit analytical form and the use of FFT. 

The aim of the present paper is to introduce a new computational 

algorithm with the application of FFT technique and Toeplitz formation. 

It is capable to substantially reduce the amount of computational work 

involved. Based on the concept of Galerkin averaging theory and 

discrete Fourier transformation, we provide an explicit formula for 

the Jacobian matrix and suggest an efficient solution path. A fast 

Fourier transform algorithm is then applied to compute the Jacobian, 

the (irrational) nonlinearities and the Floquet exponents (for stability 

checking). The procedure provided in present paper can easily be 

extended to subharmonic response of multiple DOF system with general 

forms of nonlinearities. 



Table I  Comparision the Numbers of Multiplication 

Method Number of Multiplications 

Direct IHB 

Present 

11M(2N+1) 

11(2N+1)2+ 2Mlog M 
2 

Table II       Numerical Comparasion of RIHB vs. IHB 

(for step length 0.4 and residual tolerence 1.e-6) 

Number of Iterations I and CPU - times T 
No. of 
Step 

Frequency 
Ratio w 

1st Order 
Amplitude IHB method (a) Present Method (b) 

( 1 /rad) Ja la lb lb Tb/Ta 

0 1.000000 3.935953 12 5.65 5 0.49 8.67% 
1 1.173276 4.343391 12 6.21 4 0.55 8.86% 
2 1.302025 4.676480 16 8.18 5 0.66 8.06% 
3 1.419599 5.000948 18 9.18 5 0.61 6.64% 
4 1.528153 5.315249 22 11.15 5 0.61 5.47% 
5 1.628985 5.617792 29 14.67 5 0.65 4. 43% 
6 1.722977 5.907414 36 18.07 5 0.66 3.65% 
7 1.810760 6.183333 42 21.09 5 0.66 3. 13% 
8 1.892812 6.445093 46 23.01 5 0.61 2.65% 
9 1.969521 6.692505 49 24.49 5 0.61 2.49% 

Tota 1 Running T ime 2:46.48 0: 06.21 3.67% 

Table III. Stability points along solution path (fig.2] 

Stability Property 

0.000000 
0.461353 
0.228323 
2.395560 
3.291727 
3.257349 
5.387085 
6.264048 
6.443806 
6.483227 

lxlT stable 
lxlT unstable 
lxlT stable 
2xlT stable 
2xlT untable 
2xlT stable 
4x2T stable 
8x4T stable 
16x8T stable 
32xl6T stable 

Fold 

Symmetric Breaking 
Fold 

Period 2 Bifurcation 
Period 4 Bifurcation 
Period 8 Bifurcation 
Period 16 Bifurcation 

2.9915 

0.8769 
0.1998 
0.0394 

3.41 

4.39 
4.56 

T]   distance between period double bifurcation points 

A   ratio of distance 



Table IV Comparison of  CPU Times 

TERMS   PRESENT METHOD 
R.K. Method 

Regular P.T   Singular P.T(f) 

1 21 00:00.44 00:18.13 

2 41 00:10.10 00:22.19 

4 81 00:16.75 00:25.98 

8 161 00:50.41 00:48.90 

03:23.44(2.395561) 

21:35.15(5.387086) 

06:53.76(6.264049) 

03:03.83(6.443807) 

Start 

End   <r 

, ,* F F T   ,  ,    ,  (3) I F F T U > ( u  ,u  )   > r<T) — -> R 

IFFT   „  „ (1 1 ) _ r n C(T),S(T)  >   C, S  ) UJ   > 

U  = U  + AU <- 
~c   ~c    ~c 

No 
IAU II^Tol <■  AU ^ 
~c ~ 

Yes 

Fig.1  Flow chart for Newtonian Iteration 
(* represents the unbalanced state) 



ON THE ACCURACY OF THE "SELECTED BLOCK" APPROACH 
TO THE LOCAL STABILITY ANALYSIS OF THE 

APPROXIMATE HARMONIC BALANCE SOLUTIONS 

Ameer Hassan 
Department of Mechanical and Materials Engineering 

Washington State University 
Pullman, Washington 99164-2920 

In the harmonic balance (HB) method, an approximate solution for the periodic 
response is assumed as a truncated Fourier series plus a residual term. The approximate 
solutions for the periodic steady state response are determined from the resulting coupled, 
nonlinear algebraic equations. Other terms, i.e., those involving higher harmonics or the 
residual, provide the so-called variational equation. The stability type of the approximate HB 
solutions is determined by analyzing the linearized variational equation (LVE). This stability 
analysis is usually carried out by using a second harmonic balance step. By using the Floquet 
theory and an infinite Fourier expansion in the harmonic balance method, one obtains an 
infinite set of linear homogeneous equations for the parameters used in the assumed Fourier 
expansion. The matrix of coefficients for these parameters is used to determine the stability 
type of the approximate solutions. 

In most cases, the sign of the determinant of the leading 2nx2n or (2n+l)x(2n+l) 
matrix, n=l,2, •••, is used for this purpose. This is equivalent to using a finite number 
of terms in the Fourier series expansion of the periodic component of the assumed solution 
for the LVE. However, sometimes the determinant of the 2x2 block which corresponds to 
a specific harmonic in the assumed solution for the LVE is used for this purpose. This 
"selected block" approach for the local stability analysis is equivalent to using a single, 
selected harmonic in the assumed solution for the LVE. 

This approach is usually employed when the specific selected harmonic is absent 
from the periodic solution for which an HB approximation is being established, but this 
harmonic is expected to play a dominant role in the periodic solutions which bifurcate from 
the approximate solution. Here, three examples are presented to show that the stability 
information obtained by this selected block approach can contain significant errors. 

The approximate HB solution for the primary resonance in the Duffings oscillator, 

x + 6x + x + x3 = F cos(fii), 

for F = 20 and 8 = 0.2, are shown in fig. 1. These results were determined by using 
the harmonics 1 and 3 in the assumed HB solution. The stability results determined from 
the selected block based on the fundamental component in the assumed solution of the 
corresponding LVE are also shown. The hatched line indicates unstable solutions. Clearly, 
these results contain significant errors. 

The HB results for the third superharmonic resonance in eq. 1 are shown in fig. 2. 
These results were determined by using the harmonics 1  and 3 in the assumed solution. 



The stability type of these solutions determined from the selected block based on the third 
superharmonic component in the assumed solution of the LVE are also shown. Clearly, these 
stability results are qualitatively incorrect. 

The stability information for the possible buildup of even harmonics in the above third 
superharmonic response is shown in fig. 3. This stability information was established by using 
the 2x2 block based on the second superharmonic component in the assumed solution for 
the LVE. These results indicate that the third superharmonic response is unstable, and the 
second superharmonic resonance can excited in (1), in the frequency band 1.86 < Q < 
2.26. The actual numerical results for the steady state response of (1) are also shown. 
These numerical results correspond to the primary, 2nd and 3rd superharmonic, and the 
5/2 subharmonic resonances. These numerical results show that the second superharmonic 
resonance is excited for 1.154 < fl < 2.09. Again, the stability results determined from the 
"selected block" approach contain significant errors. Further details will be presented at the 
conference. 
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Lie-Trasformation Method for Dynamics and Control of Weakly Nonlinear 
Autonomous Systems 

L. Morino 
Terza Uiiivcrsitä di Roma 

Dipartimento di Meccanica c Automatics. 

F. Mastroddi 

Universila di Roma "La Sapienza" 

Dipartimento Aerospaziale 

The paper presents recent developments in a singular perturbation method, known as the 
Lie transformation method for the analysis of weakly nonlinear autonomous dynamical 
systems (specifically, first-order differential equations with algebraic nonlinearities): a 
general theory for obtaining and discussing an analytical response for the solution of a 
system undergoing to a local bifurcation is introduced; moreover, using a very simple 
nonlinear control law, nonlinear-driving terms are suitable evaluated in order to ensure 
that beyond stability boundary (Hopf bifurcation) the system exibits a stable-limit-cycle 
behavior (rather than an unstable one). 
The Lie transformation method was introduced by Deprit [1], further developed by Kamel 
[2] (see also in Nayfeh [3] and Lichtenberg and Lieberman [4]). Morino, Mastroddi, and 
Cutroni [5] and Mastroddi [6] applied the method to the analysis of dynamical systems 
with algebraic nonlinearities (see equation (1)). Within this context the/ demonstrates 
that the method predict correctly non-simple-harmonic limit cycles or chaotic behavior. 
Specifically, in the neighborhood of the Hopf bifurcation, an approximate solution (with 
an error of an order of magnitude of the fourth power of the limit cycle amplitude) 
is obtained for the transient response of the system. The nature of this solution is 
determined by the nature of the non linear terms, which is characterized (stable or 
unstable cycle limite, unstable or unstable fixed point, etc..) by one single real number 

-yR ; therefore, one might use a nonlinear-control law, by adding a suitable nonlinear 

term so as to modify the parameter 7^ in order to obtain stabilizing effects. 
In order to clarify the aim of the present paper, we briefly outline the theory presented 
in Ref. [5]. For simplicity ve limit ourselves to the case of a Hopf bifurcation (the 
formulation for more complex responses, in particular for chaotic behavior, is very similar 
to that presented below). Consider a dynamical system with nonlinearities of polynomial 
nature (suppose cubic for the sake of simplicity) 

f   £ 1 x = (A + £A)x + £  <   2_,   cJpqrxpxqxT\   -f  ... (1) 
\v,<l,r=l J 

(e small parameter) where Ns is the dimension of the space-state vector, A is a diagonal 
matrix with diagonal terms Xj, and A is a full matrix. We assume that all the eigenvalues 
are complex conjugate, all with negative real part except for the first pair which is purely 
imaginary (similar results can be presented also in the presence of real eigenvalues). We 
research for a solution is given in terms of an asymptotic expansion of the type 

x = x(y,£) = y + fx1(y) + 0(e2) (2) 

which is referred to as the Lie transformation. Using this arbitrary transformation (note 
that Xi is an unknown vector), and setting 

E A E       A 
Cjpqr = Cjpqr + CjpqT Cljl = (Iß + a]( (3) 



where either Cjpqr and a^ or Cjpqr and a^j c<iua.Is zero, one obtains (see Ref. [5]) 

A's { 

a$yi+   ^ixp + xq + xr-xJ
c^yM (4) 

?.?.'■= 

+ £ { 11 c%qrVpyqyr) +... (5) 

It is apparent that the essential terms (a-, and Cjp9r) are those that contribute to the 

y-problem, whereas the auxiliary ones (a^ and c^,gr) appear in the Xi-problem. The 
subdivision into essential and auxiliary terms stated in equation (3) is to be performed 
with the objective that (see equation (4)) the terms such that A; - Xj = 0 and Ap + A, + 
Ar - Xj = 0 (zero divisors) must be classified as essential terms (these terms correspond 
to those typically referred to as long-period terms, in the scientific literature, see, e.g., 
Refs. [1] to [3]). Within the above choice, the equation (5) has the solution (see also Ref. 

[6]) 

2/1 
-Ai}/7r1/2 

(6) 

yn=ao t^Lj« llR e«-W+W/M   e- n = 3,5,...,iV.-l   (7) 

(y2 = tf, y4 = y'3, -, y„+, = £) where ^n := (-tf0
+T{

TI)^VT^^ + tT^^^) In(ax) + 

y£ and where /?<») = ^n) + # and 7
(n) = 7ß) + ^ (" = hS,...,Ns- 1) are 

coefficients depending on linear and nonlinear coefficients (a.ji and cjpqr) respectively and 
k, a°, and y?° on the initial conditions. 
Applications to the problem of the flutter of a wing in supersonic flow (with algebraic 
nonlinearities arising from the aerodynamic description Ref. [6]) are included: the results 
indicate that it is possible to achieve stabilization of the unstable limit cycle, which 
means that destructive flutter is replaced with benign flutter. Additional applications, 
in particular control of chaotic response, will be esamined. 
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CONSTRUCTING GALERKIN'S APPROXIMATIONS OF INVARIANT 
TORI USING MACSYMA 

DAVID E. GILSINN 
MANUFACTURING ENGINEERING LABORATORY 

BLDG. 233, B106 
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 

GAITHERSBURG, MD 20899-0001 
U.S.A. 

Invariant tori of solutions for nonlinearly coupled oscillators are generalizations of 
limit cycles in the phase plane. They are surfaces of aperiodic solutions of the coupled 
oscillators with the property that once a solution is on the surface it remains on the 

surface. This paper is a case study of the computational experience involved in applying 
both symbolic and numerical methods to the construction of analytic representations 
of invariant tori for a larger range of the forcing terms. 

The construction of a parametric representation of an invariant torus for a system 
of coupled oscillators of the form 

W ,    ,.,2 
xi +u>lxi = e/i(x,x), 
x2+ojjx2 = e/2(x,x), 

where x = (x1,x2)"r, x = (x1,x2):r, e > 0, can be reduced to the construction of a 

solution of a system of partial differential equations. By introducing polar coordinates 
(1) can be reduced to a system of the form 

(2) 0 = d + e©(0,x), 
1 ' x = eX(0,x), 

where Ö = (9ue2)
T, d = (1, if, 0 = {QX,Q2)

T, x = (xux2)
T, X = {XuX2f. 0(0,x), 

X(#,x) are assumed to be periodic with vector period 2TT/U = (2TT/wi, 2TT/u)2)■ 
A parameterized surface x = S(0), with vector period 27T/CJ, is an invariant torus 

for (2) if given that 6(t) solves 

(3) e = d + eS(e,S(0)), 

for all t e (-co, 00), then (0(t), S(0(t)))T solves (2) for all t G (-00,00). It is not hard 
to show that S(9) must satisfy the system of partial differential equations 

(4) (NS)(0) = DS(0) ■ (d + £0(ö, S)) - eX(0, S) = 0, 

vvliere 

'dSA 

' i,i=i ,2 

For a Galerkin approximation assume a trial solution of the form 

(6) SK = c1M0) + --- + cK<l>K(0), 

(5) Dm=\d9it 



where {<f>i(0)} is a basis set, each (f>i(0) periodic with vector period 2ir/u. The param- 

eters Ci, ■ ■ ■ , CK are selected to satisfy 

(7) ^(X>M*)M;(0)) = 0 

for j = 1, • • • , K, where (■, •) is an appropriately defined inner product. 
Once the trial approximation is substituted into (4) the intermediate series must 

be manipulated efficiently. This is accomplished by using an intermediate series repre- 
sentation called a Poisson series. The symbolic manipulative capabilities of this series 
representation are available in MACSYMA. The Poisson series is a special form of a 
multiple Fourier series that can be compactly represented in a computer's memory using 

linked list representations. In particular only such items as the type of each term (sine 
or cosine), the coefficients of the angular terms, exponents of polynomials and term 
coefficients need be stored. Using linked lists allows rapid addition and multiplication 

of series since there are very efficient algorithms for adding and multiplying linked lists. 

Two applications to Van der Pol systems of the Poisson series subpackage of MAC- 

SYMA as an intermediate tool to computing the Galerkin approximation of invariant 

tori were studied. For the classic Van der Pol oscillator three cases were considered. 

They were for e = 0.5,1.0,1.5. For the case e = 0.5 a constant term and the first 7 even 
harmonic terms were computed. The approximation errors were 3e-4 for the angular 
variable and 5e-4 for the radial variable. For the case e = 1.0 a constant term and the 
first 9 even harmonic terms were computed. The approximation errors were 8e-3 for the 
angular variable and 9e-3 for the radial variable. Finally for the case e = 1.5 a constant 
term and the first 12 even harmonic terms were computed. The approximation errors 
were 0.1 for the angular variable and 0.2 for the radial variable. The errors could have 
been reduced by adding more terms to the Galerkin approximation. 

For the case of coupled Van der Pol oscillators the computational experience was 
similar but much more extensive. Each harmonic added to the Galerkin representation 

added many terms to the basis set representations. Thus only a limited number of 

harmonic terms could be included for computation on a PC. For the three cases con- 

sidered, e = 0.05, 0.5,1.0, only the constant terms and the first 2 even harmonics were 
included. In each of these cases though this required solving for 50 coefficients. For the 
case e = 0.05 the maximum angular error was approximately 5e-3 and maximum radial 
error was 2e-3. For the case e = 0.5 the maximum angular error was approximately 
0.9 and the radial error was 1.5. Finally for the case e = 1.0 the maximum error was 
approximately 10.0 and the radial error was 5.0. 

This computational case study demonstrated that the symbolic manipulation capa- 

bilities of MACSYMA provided sufficient tools to compute invariant tori. The accuracy 
of the approximations was primarily limited by the available useful computer memory. 
Processor speed also made it possible to solve for a large number of coefficients in a 

reasonable amount of time. 



The Dynamics of Resonant Capture 

1 1 2 
D.Quinn   , R.Rand     and J.Bridge 
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Abstract 

Resonant capture describes the behavior of a weakly coupled multi-degree-of-freedom 
system when two or more of its uncoupled frequencies become locked in resonance. Flow on 

the region of phase space near the resonance (the resonance manifold) involves a region 
bounded by a separatrix in the uncoupled (e = 0) system. Capture corresponds to motions 

which appear to cross into the interior of the separated region for e > 0. 

We offer two approximate methods for estimating which initial conditions lead to capture: an 

energy method and a perturbation method based on invariant manifold theory. These 

methods are applied to a model problem involving the spinup of an unbalanced rotor attached 

to an elastic support. 



Nonlinear Parametric Identification by Balancing 
Harmonics of Extracted Periodic Orbits 

B. F. Feeny and C.-M. Yuan 

Department of Mechanical Engineering, Michigan State University, 
East Lansing, Michigan 48824-1226 U.S.A. 

Abstract 

We identify parameters of the differential equations of motion representing a chaotic 
system. Unstable periodic orbits are extracted from a chaotic set. The method of harmonic 
balance is applied to these periodic orbits to identify the system parameters. 

Introduction. Parametric identification of nonlinear systems has been studied, for 
example, in [1-10]. Yasuda et al. [8-10] did this by applying the harmonic-balance method 
to periodic responses. We apply this idea to chaotic responses simply by extracting unstable 
periodic orbits. Other methods (e.g. [4-6]) are also applicable to chaotic data. 

It may be natural to work with chaotic sets. Supposed we are interested in describing 
a distributed, infinite-dimensional system with a low-dimensional model. Chaos provides 
a vehicle for a dimensionality study from a small number of observed quantities [11-13], 
resulting in an estimate on the number of active state variables. Given the number of state 
variables, the low-dimensional modeling might typically involve identifying parameters in 
a set of differential or difference equations. An example of a paper which makes a bridge 

between these levels of the modeling process is that of [14]. 
In this study, we present numerical results on several different types of forced oscilla- 

tors. The idea is also applicable to autonomous systems. 
Harmonic Balance in Parametric Identification. We illustrate the idea [8-10] 

for a single-degree-of-freedom oscillator in the form 

x + aifi(x,x) + --- + apfp(x,x) = acos{u>t). (1) 

If x(t) is a periodic solution, then it can be approximated by a truncated Fourier series, 

i.e. x(t) « x0 + Y^'jZ? ai cos(iiüt) + bism(iuit). Suppose x and x are sampled. Then any 
function of fj{x,x) can be performed for each sample, and is periodic. Thus, f{x,x) can 
be approximated by a truncated Fourier series. The Fourier coefficients are computed for 
each term. The truncated Fourier series of x can be obtained from that of x. All of these 
terms are inserted into equation (1), and the harmonic coefficients are balanced. The 
result is 2m + 1 linear equations in the p unknown coefficients, in the form Aft = b, where 
a is a vector of unknown parameters. If 2m + 1 > p, the coefficients can be estimated 
through a least-squares fit. (This simple linearity is a much better scenario than what the 
harmonic-balance method produces in forward analysis.) Truncation of the Fourier series 

expansions simply limits the redundancy 
Periodic-Orbit Extraction. Since the harmonic-balance method calls for periodic 

data, we extract such data from a chaotic set [15-17].   This is possible since a chaotic 



attractor is the closure of infinitely many unstable periodic orbits; a trajectory is constantly 
visiting periodic orbits. Although these periodic orbits are unstable, they are indeed 
solutions, and should satisfy the equations of motion. For a sufficiently large time series 
xt=i,...,jv, with n0 points per period, the trajectory will visit an unstable orbit of period T 
at some sample time j. If, after K = n0T iterations the trajectory points Xj and ~X.J+K are 
within some small distance e, such that ||XJ —XJ+K\\ < e, then all the samples in between 
are considered to be near a period-T orbit. As a rule of thumb, e = 0.005 works well for 
normalized data [15-17]. 

One trajectory may produce several approximated periodic orbits. If there are n orbits 
extracted, we have (2m + l)n equations in p unknowns, increasing the redundancy of the 
fit. Subharmonics may add more equations. Increased redundancy may be beneficial for 
systems with many unknown parameters. 

Discussion. The idea has been tested on smooth single- and multi-degree-of-freedom 
oscillators, parametncally forced systems, and Coulomb-damped systems. There is some 
trouble with the muhivaluedness of discontinuous damping functions during stick slip. This 
arises because the assumed functions do not incorporate the multivalued characteristic. 

This preliminary study suggests that the harmonic balance method may be a easily 
implemented tool in parametric system identification of chaotic systems. There are further 
steps to be taken both in analysis of the technique, and in experimental implimentation. 
Analyses could be performed on sensitivity to error in conjuction with the approximate 
results of the periodic extraction. An experimental study is underway. Other questions 
regard the choice of assumed nonlinearities, and dealing with a limited number of sampled 
quantities. 
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Abstract: 

Normal form theory is a very strong method when we study degenerate 

bifurcations of nonlinear dynamical systems. In this paper we use adjoint operator 

method to compute normal forms of order 3 and 4 for nonlinear dynamical system 

with nilpotent linear part and 22—asymmetry. According to normal forms that we ob- 

tain, we study universal unfoldings for some degenerate bifurcation cases of codimension 3 

and simple global characterizations. 

In order to study bifurcations of nonlinear dynamical systems in the degenerate cases 

of higher codimension number 03), we must compute higher normal forms of nonlinear 

dynamical systems. In recent twenty years many scientists made very important contribu- 

tions to development of nonmal form theory, for example Arnold [1], Bogdanov [2.3:. 

Bruno [4], Chow and Hale [5], Chow and Wang [6j, Cushman and Sanders [7,8], Cushman 

et al [91, Elphick and Iooss et al [10] Guckenheimer and Holmes [11], Rand and Armbrust- 

er [12], Takens [13,141. At the same time some scientists utilized theory of normal form and 

universal unfolding to study degenerate bifurcations of codimension 2 and global 

bifurcations in nonlinear oscillators, for example Holmes and Rand [15], Holmes [16], 

Bajaj [17,18], Show et al [19], Namachchivaya [20] Zhang et al [21,22,231 

The studies on degenerate bifurcations of codimension 3 and 4 have obtained very 

great developments. Dumortier et al [24] studied the cusp case of codimension 3.In [25] 

Dumortier et al studied degenerate bifurcations of codimension 3 and unfoldings of saddle, 

focus and elliptic singularities. In the literature [26] Dumortier et al used Macsyma and 

Mathematica to compute normal forms of quadratic models and studied degenerate 

bifurcations of codimension 3 and 4 of vector fields on the plane. Later Li et al [27] further 

study the cusp case of codimension 4. Joyal [28] studied the cusp case of order N. In [29] Li 

et al studied degenerate bifurcations of codimension 3 form of 1:2 resonance. Dangelmayr 

and Guckenheimer [30] studied a four parameter family of planar vector fields and 

codimension 3 and 4 bifurcations and used Macsyma to compute normal forms. 

Adjoint operator method presented by Elphick and Iooss ct al [1H"! is one of three ba- 



sic methods of computing normal forms. The other two methods are matrix representation 

method [11,31; and method based on representation theory of Lie algebra sl(2, R) pres- 

ented by Cushman and Sanders [7j. When we compute higher order normal forms, com- 

pared with matrix representation method, adjoint operator method has advantage that we 

do not have to compute repeatedly higher order matrices and larger linear algebraic equa- 

tions. Therefore calculating work by adjoint operator method is less than that by matrix 

representation. In the literature [32] we used matrix representation to compute normal 

form of order 5 of nonlinear dynamical system with Z   —symmetry. 

In this paper we study nonlinear dynamical system with Z—asymmetry 

X   X 
1      2 

2        2 

/2- 
<-l,-l 

(1) 

where    Y  a   x  x' = a   x   +a   x  x   +a   x   , other terms are similar to this representa- 
*->        ii     1     2 20     1 II      1     2 02     2 

tion, and all coefficients are real. 

When n  = 0, j=l, 2, the zero solution of system (1) has double zero eigenvalues, 

that is, linear part of system (1) is nilpotant. Therefore we have 

A = D   X(x)\ (2) 

In the following we use adjoint operator method to compute normal forms of order 3 and 

4 for system (1) and study universal unfoldings in some codiemnsion 3 

degenerate bifurcations and some simple global characterizations. 



Improving the equivalent linearization for stochastic Duffing oscillator 
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In stochastic nonlinear dynamics one is usually content with seeking a statistical 
description of the lowest order moments of mean and covariance. Under such a limited goal, it is 
often possible to replace the original nonlinear system by a surrogate linear system and thereby 
attempt to replicate the statistical dynamics inasmuch as the mean and covariance are concerned. 
This is the intent of the so-called statistical linearization or quasi-linearization. In particular, 
when the nonlinear system under consideration is an oscillator, it is also called statistical 
equivalent linearization, conforming with such a terminology already introduced by Krylov and 
Bogoliubov for the determinstic nonlinear oscillator. The statistical linearization was first 
introduced independently in 1953 by Caughey for nonlinear oscillators and by Booton for 
nonlinear circuits, both subjected to the Gaussian white noise excitation . It is however 
interesting to point out that several years later Bellman and Richardson proposed a self- 
consistent solution of the stochastic nonlinear differential equations, which essentially embodies 
elements of the statistical linearization. Since a randomly driven Duffmg oscillator will be 
discussed in this paper, we shall restrict ourselves here to the term "equivalent linearization". 

The investigation of this paper was initiated by an attempt to assimilate the widely 
different error estimates on the response variance of Duffing oscillator. Lyon was the first to 
show that the equivalent linearization underestimates the response variance and the maximum 
error is less than 10%. Some twelve years later, by repeating the error estimation of Lyon, Iwan 
and Yang concluded that the equivalent-linearization error is less than 7.5%, even in the case of 
arbitrarily large nonlinearity. However, their maximum 7.5% error is only a half the analytical 
upper error bound of 14.6% reported by Atalik and Utku, based on a Duffing oscillator without 
the linear stiffness term. Concurrently, Budgor et al. have presented some typical errors of the 
equivalent linearization in the range of 3.4% - 9.4%, without claiming to have found an upper 
error bound. It is somewhat surprising that these error estimates have been reported without 
making reference to each other's work. Hence, the first objective of this paper is to provide a 
unified framework to compare the various error estimates in statistical equivalent linearization. 

As it turns out, assessing equivalent-linearization errors has led us to the source of this 
error. Hence, we can address rationally to a means for improving the equivalent linearization, 
which is the second objective of this paper. As shown by Budgor et al., the work involved in 
equivalent linearization is almost trivial compared to other perturbative procedures, yet it can 
provides a robust estimate on response variance for all but the very strong nonlinear case. The 
failing in such a case is due to the zero fourth-order cumulant assumption invoked so 
inconspicuously in the course of equivalent linearization. This could have been suspected from 
the stationary Fokker-Planck solution for Duffing oscillator, which is far from being Gaussian. 



By using the fourth-order cumulant of the Fokker-Planck stationary distribution, one can recover 
the exact response variance by the usual equivalent linearization procedure. It therefore suggests 
estimating the fourth-order cumulant along with the response variance, and this has already been 
carried out by Crandall using the Edgeworth series representation for a non-Gaussian 
distribution. For completeness, we shall also discuss other methods for improving the statistical 
equivalent linearization by using certain weighting functions for the error minimization (Izumi et 
al.) and by seeking a higher order equivalent-linearization (Iyengar). 

Because of the analytical moment expressions of Duffing oscillator, we are in a position 
to demonstrate certain mathematical identities, rather than simply offering conjectures based on 
numerics. 
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APPROPRIATE STRESS AND STRAIN MEASURES 

FOR NONLINEAR STRUCTURAL ANALYSES 
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In the modeling and analysis of structures undergoing large deformations and rotations, the 

stress and strain measures need to be work-conjugate, objective, geometric, and directional 

in order to use the experimentally-obtained material constants in the constitutive equation. 

Unfortunately, most strain measures are not objective, and some objective strains (invari- 

ant under rigid-body rotations; e.g., Green-Lagrange strains) are not geometric measures. 

Characteristics and objectivity of displacement gradients, Green-Lagrange strains, infinites- 

imal strains, engineering strains, first and second Piola-Kirchhoff stresses, Cauchy stresses, 

and engineering stresses are studied. Jaumann strains, which are defined by using the right 

stretch tensor from the polar decomposition of the deformation gradient tensor, prove to be 

objective geometric strains measured with respect to the deformed structural configuration. 

Figure 1 shows the undeformed and deformed configurations of an infinitesimal element 

whose undeformed shape is a cube. Here, the frame xyz is an orthogonal curvilinear inertial 

frame, and the base vectors along the axes x,  y, and z are denoted by jl5 j2, and j3. 

respectively.   The frame ^( represents the rigidly translated and rotated configuration of 

the frame xyz, and the base vectors along the axes £, 77, and ( are denoted by iu i2, and i3, 

respectively. Moreover, fk are forces acting on the deformed surfaces. We also use v(= 60) to 

denote the absolute displacement vector of the point o and u(= 0) to denote the displacement 

vector of the point o with respect to the frame £r?(.   Since the elastic energy II is due to 

relative displacements among material points, its variation 6U can be represented in terms 

of relative displacements as 

Xo(fi ■ inb£idx' ■ i« + f2 • i-6§r2
dX2'in + f3 • iJ^-3

dX2 ■ ^ .511 
Jv°" '     '  dxi 

where the repeated subscript indices imply summations, dV°(= dx,dx7dx,>) denotes the 

undeformed system volume, and Jmn and Bmn are Jaumann stresses and Jaumann strains, 

respectively. It is shown that Jaumann strains and stresses can be easily derived by using a 

new concept of local displacements (without using the complex polar decomposition) as 

1Jmn-2{dx~:'^ + dx~n'
lm)=zBnm (2) 



•J mn    — 
2  dx^dx, 

In   + 
<ixrdi 

=   Jn m ¥" v T- Q <   n ¥■ r T- s 

On the other hand, engineering strains cmn and engineering stresses amn have the vector 

forms 

1    dv     . dv _ 

T'dXr dxn 

Omn   — 
2    dXpdXg 

•Jn + 
f„ 

dxrdx,. 
m ¥" P T^ <I ,     n # r ^ „s 

(4) 

(5) 

We note that the vector form of Jaumann strains (Jaumann stresses) is the same as that 

of engineering strains (engineering stresses) except that jm and v are replaced with im 

and u. However, Jaumann strains are objective but engineering strains are non-objective. 

Fortunately, in experiments of measuring material constants by using engineering stress and 

strain measures, rigid-body motions are always prevented on purpose. Consequently, jm = im 

and v = u and therefore engineering strains are objective in experiments. Hence, material 

constants obtained from experiments by using engineering stress and strain measures can 

be directly used in the constitutive equation of Jaumann stresses and strains, but not the 

constitutive equation of second Piola-Kirchhoff stresses and Green-Lagrange strains. 

The use of Jaumann strains and stresses and a new concept of orthogonal virtual rota- 

tions in deriving geometrically-exact structural theories is fully illustrated in the formulation 

of thin shells having arbitrary initial curvatures and undergoing large displacements and ro- 

tations. Moreover, it is shown that energy and Newtonian approaches are fully correlated in 

the formulation and all energy terms can be interpreted in terms of vectors. Applications of 

Jaumann stresses and strains in the large-strain analysis of solids and composite structures 

will be discussed. 
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SECONDARY SYSTEM ANALYSIS FOR 
SPACE PAY-LOAD 
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Abstract 

The aim of this paper is to study the behaviour of a secondary system car- 
ried by a space vehicle. The system is subjected to gravitational and fluid 
dynamical actions. 

The global system (space vehicle and carried load) is modeled by a finite ele- 
ment tecnique. The paper provides suitable models for both the description 
of the fluid dynamical actions on the vehicle and the mechanical behaviour 
of its links (base isolators) with the secondary system. 
The analysis consists of two different phases: the first is the representation 
of the different actions on the surface of the vehicle and their simulation in 
the numerical code. These actions depend on the velocity, the altitude of 
flight, the air density and the flight path of the flying body. 



Introducing the velocity and the air density in given flight conditions, as 
input, the interaction between the space vehicle and the atmosphere is re- 

duced to a vector of nodal forces (three for each node). They represent the 
actual input for the finite element analysis. 

Several analyses representing different flight conditions provide the responses 
(acceleration, velocity and displacement) of the points of the vehicle where 
the base isolators of the pay-load are located. These responses are regarded 
as base motions of the secondary system toward its analysis. 
The carried pay-load is linked with the vehicle by hysteretic elements intro- 
ducing the nonlinearity of the problem. 

The influence of the randomess affecting the base isolation properties is in- 
vestigated by a stochastic finite element approach. The aim is to find an 
optimun mechanichal design of the links in order to minimize undesired ac- 
celerations of the carried system during different flying conditions. 



Dynamic and Thermal Response of Space Payload Structures 
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Dynamic responses of space payload structures subjected to lift-off environment on 
earth and to service environment in orbit are studied. While in a lift-off environment on 
earth, dynamic response of a space payload and its subsystems is analyzed due to high- 
amplitude external dynamic loadings or disturbances, such as lift-off forces and wind loads. 
In space, effects of extreme temperature variation, differential gravitational forces, in-house 
and external vibration causes are investigated on motion as well as deformation of a truss- 
like space structure and its subsystems (payloads attached to it). Throughout the study, 
particular attention is given to the effects of mass, frequency and damping ratios of 
secondary to primary system. The significance of the primary-secondary system interaction 
and mass ratio for near tuned conditions is also studied. 



NONLINEAR FINITE ELEMENT BEHAVIOR OF COOLING TOWERS 

Samir J. Serhan 
Project Engineer, Gilbert/Commonwealth, Inc. 
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ABSTRACT 

A three-dimensional full 360-degree finite-element model that is capable of realistically representing the response of 
two cooling towers at a nuclear power plant subjected to the plant design-basis safe shutdown earthquake, 90 mph 
wind, and 300 mph tornado is used to create a data pool which supports the proposed construction of a new safety- 
related facility in the shadow of these cooling towers. 

The 300-mph tornado is made of a 240 mph tangential component, a 60 mph translational component and a 
negligible radial component. 

During normal operation, power plants produce a substantial amount of heat that requires dissipation. The function 
of a natural draft cooling tower is to discharge the heat rejected from the turbine cycle to the atmosphere. 
Cooling towers are designed as doubly-curved hyperboloids to yield a higher buckling capacity than the more 
popularly used cylinders. 

Each of the two cooling towers under study is 540-foot high with a radius at the base of the shell of 193.1', a radius 
at the throat of 141', and a radius at the top of 150.6'. The minimum thickness of the 4000-psi reinforced concrete 
shell is 8" with two layers of reinforcement. The shell thickness is varying at the base and top of the shell along the 
depth of the lower and upper lintel beams with a maximum value of about 3.1'. The towers are supported by 
unweathered foundation rock with a density of 170 lb/ft3, a shear wave velocity of 6700 ft/sec, and a compressional 
wave velocity of 14000 ft/sec. 

Figure 1 shows the finite element model of the cooling tower. The model consists of 1131 nodes, 80 column 
elements, and 1090 shell elements with membrane and bending capacities. Elements are selected to have the option 
of incorporating geometric nonlinearities and stress stiffening effects. The first three natural frequencies are found 
to be 1.70 and 2.61 Hz in the horizontal direction and 5.74 Hz in the vertical direction. The natural frequencies of 
the cooling tower are low with respect to typical frequencies of Category I structures in nuclear power plants, but 
they agree with the characteristics of hi-rise buildings. 

The circumferential distribution of the wind pressure is approximated by a 8-term Fourier cosine series including an 
internal wind suction of 0.5. The deflected shape of the cooling tower under the critical load combination "0.9Dead 
+ 1.3Wind" is shown in Figure 2. 

Dynamic time history analyses are performed to represent the complex interplay of the dynamic characteristics of 
the cooling tower and the input wind-pressure excitation in terms of gust factors. The gust factors are found to be 
1.32 and 1.20 for the basic wind pressure and tornado, respectively. 

The vertical distribution of the meridional (vertical) stress resultant along the windward meridian is displayed in 
Figure 4. Analysis results indicate that the two cooling towers will not collapse and will not experience any 
significant damage when subjected to the design basis earthquake or a 90-mph wind storm. However, the two 
cooling towers are expected to collapse if subjected in a direct hit to a 300-mph tornado. 

The nonlinear finite element analyses including base uplift performed for this study and the literature research on 
past failures of cooling towers due to severe wind storms confirm that the mode of failure will not be the 
overturning cantilever tree-type and the towers will collapse inwardly with the exception of few isolated debris. The 
nonlinear analysis indicates a continuous increase in the lateral displacement of the shell at the throat location till 
excessive displacements are displayed and shell buckling occurs. 
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3D FINITE ELEMENT MODELING AND ANALYSIS OF ARMORED 
VEHICLE HULLS WITH MULTIPLE ACCESS OPENINGS 
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J.M. Santiago 
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Aberdeen Proving Ground, Maryland 21005-5066. 

ABSTRACT 

Light combat vehicles and armored personnel carriers  are 
being postulated  as  playing  an increasingly important support 
role for both troops and other more heavily armored combat  vehi- 
cles.  As  such,  they  have a much greater risk than in previous 
roles of being subjected to severe battlefield conditions.  Accu- 
racy  of determination  of dynamic response of these vehicles is 
directly dependent on the degree of refinement of the  generated 
model  and how well the model incorporates the essential features 
of the vehicle and correlates to  its  important  characteristics 
without being overburdened by nonessential details. Additional- 
ly, nonlinear  components of vehicles with  local  oscillation 
modes  can  have  significant influence on the global response of 
the vehicle and could be bracketed using a basic model and a tight- 
fitting configuration. As a result, driver and cargo hatch as well 
as engine  access and rear door  openings must be  included in the 
finite  element  model of the basic hull to allow fair comparison 
and validation with  experiments.  The  tight-fitting  components 
such  as  the  hatch covers and doors may have to be modeled with 
appropriate  boundary  conditions  for  the  refined model.  The 
current  effort  is  devoted to the development of finite element 
models of the  armored vehicle  hull  structures  to  facilitate 
simulation of low frequency vibrational response characteristics. 

In this study, a bare hull of the M113 Armored Personnel 
Carrier with driver's, commander's and cargo hatch cutouts as 
well as rear door, engine access openings were carefully incor- 
porated in the basic model which was developed using the PATRAN 3 
model generator and translated into the ADINA input model with 
appropriate material properties and varying thicknesses of the 
front, rear, roof, floor and right and left side walls of the 
vehicle. The aluminum floor braces towards the rear of the crew 
compartment were incorporated as a seperate group. The patch 
model was updated to include two engine exhaust grill openings on 
the top roof towards the inclined front upper glacis. Additional- 
ly, the 3D finite element model was checked to assure continuity 
of element rows on adjacent normal surfaces. 

The finite element model was represented by 1233 quadri- 
lateral shell elements and 1294 nodes subdivided into seven 
groups based on material properties and thicknesses. All midsur- 
face nodes were allowed to move freely along 5 degrees-of-freedom 
with one rotational degree-of- freedom restrained while nodes 
along free edges and corners were left unrestrained along all six 
translational and rotational degrees-of-freedom. No external 
forcing  functions  were necessary in the model to excite the vi- 



brational modes for this phase of the dynamic simulation. 

The updated model was run as a linear dynamic model using 
the ADINA finite element code to generate the first 25 natural 
frequencies of vibration and the corresponding modeshapes using 
the Bathe subspace iteration method. Ignoring the first six app- 
roximately zero eigenfrequencies which correlates to 6 rigid 
body vibrational modes due to removal of restraints at the points 
of support for the bottom floor, the frequencies ranged from a 
lowest frequency of 33.72 cycles/sec for the firat natural to 
141.3 cycles/sec corresponding to the 20th natural frequency. In- 
itial vibrational modes indicated torsional modes followed by 
bending modes of deformation of the top roof and side wall sur- 
faces. A magnification factor of 5.0 was used for postprocessing 
of modeshape plots using the adinaplot subroutine. Isometric 
views depicting deformation of both top and bottom surfaces were 
generated for the first 25 eigenfrequencies. The addition of 
floor braces did not alter the frequency more than .5 cycles/sec. 

The  eigenfrequencies of the bare metallic hull were com- 
pared with those for the continuous  hull to assess the influence 
of cutouts and access openings on vibrational response.  The  in- 
clusion of multiple cutouts resulted in a noticeable reduction in 
weight and corresponding mass of the hull without  significant 
reduction  in stiffness. As a result, the first natural frequency 
which is inversely proportional to the square root  of the mass 
and  directly  related to the square root of the stiffness of the 
vehicle was significantly higher for the refined cutout model in 
comparison with the crude continuous model whose lowest natural 
frequency was only 24.41 cycles/sec. 

The refined cutout model was rerun in ADINA using  ortho- 
tropic  elastic  material  properties  of the S-2 glass polyester 
(GRP) woven lightweight composite laminate properties with 9  ma- 
terial constants and variable thicknesses for each side wall with 
the exception of elastic properties of aluminum included for the 
bottom  floor braces. Excluding the rigid body modes, the natural 
frequencies for the identical composite vehicle hull were  signi- 
ficantly  lower  than  those for the corresponding metallic hull. 
The first natural frequency for the composite hull was only 19.38 
cycles/sec  compared to  33.72 cycles/sec for the metallic hull. 
This may not be totally unexpected since the reduction of 33%  of 
the  total weight of the composite hull has been accompanied by a 
substantial decrease in stiffness as indicated by the significant- 
ly lower orthotropic linear elastic material moduli of GRP result- 
ing in the computed reduction of natural frequencies. 
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ABSTRACT 

In the past decades, a lot of effort has been put into the study of the behavior of non-linear systems, both qualitatively 

and numerically. However, due to the fact that superposition does not hold for these systems, no satisfactory method has 

been developed to determine their response to an arbitrary excitation in a way that would mimic linear modal analysis for 

linear systems. Therefore, when such a response is needed, a linear modal analysis of the non-linear system is typically 

performed, and the resulting set of non-linear equations is truncated to retain a small number of linear modes —typically 

one or two. The resulting reduced-order model may be inaccurate —or even qualitatively incorrect, as in the case of inter- 

nal resonances— due to the loss of the non-linear interactions between the modeled and unmodeled linear modes, but 
increasing its size to include additional linear modes can yield a computationally expensive model. 

Many relevant ideas have been generalized from linear systems to non-linear systems. The recent definition of non-lin- 

ear normal modes of vibration as motions occurring on invariant manifolds allows one to incorporate the effects of several 

linear normal modes into one so-called non-linear normal mode. The invariance property ensures that any motion starting 

exactly in one non-linear normal mode will be comprised only ofthat one for all time and will not generate any motion in 

the other non-linear normal modes. This is very suitable for a restricted class of motions —namely, those lying on the man- 
ifolds characterizing the non-linear normal modes— or if a single-mode model of the system is needed. 

However, just like the primary use of normal modes of motion of linear systems is the modal analysis associated to 

them, the concept of non-linear normal modes suggests the definition of a proper "non-linear modal analysis" in order to be 

able to obtain the response of a system under general excitation in terms of some non-linear modal coordinates. Moreover, 

one ought to be able to perform model reductions using the non-linear modal coordinates —as is done for linear systems— 

, which requires the development of efficient truncation procedures, the ultimate goal being to be able to use fewer non-lin- 
ear modes than linear ones to perform equally accurate modal analyses of non-linear systems. 

Given the definition of the non-linear normal modes in terms of two-dimensional invariant manifolds, it is clear that 

(1) they will not interact during a pure modal motion, and (2) they are bound to interact during more general motions. 

Therefore, in order to extend modal analysis ideas to non-linear systems, it is essential to be able to account for the interac- 

tions between the various non-linear modes involved in the dynamics of the particular system at hand. Unfortunately, not 

only are those not readily available with the current formulation, but it is believed at this point that, even if proper interac- 



tions between the individually invariant non-linear modes could be recovered, the non-modeled non-linear normal modes 
would certainly be contaminated by this process, which might not allow for reliable low-order models. 

Consequently, a new formulation has been developed to ensure the invariance of the set of modeled non-linear modes 

with respect to the non-modeled ones, which essentially generalizes the individually invariant non-linear normal mode 

manifolds to multi-mode invariant manifolds. A multi-mode manifold is of dimension 2M when M non-linear modes are 

modeled, and includes the influence of all of the M individual non-linear manifolds defined previously. Besides, the inter- 

actions between the various modeled non-linear modes are accounted for at the very first stage of the definition process, 

thus eliminating the need for later work to recover them. The generation of a multi-mode invariant manifold follows very 

closely that of an individually invariant manifold, and approximations for weakly non-linear systems can be constructed 

easily using the same method. In the same manner as individually invariant non-linear modes do not interact during pure 

modal motions, the modes constituting a multi-mode manifold do not interact with the non-modeled ones for motions 
occurring on that manifold, hence ensuring non-contamination of the non-modeled modes if all relevant modes are embed- 

ded in the multi-mode manifold to begin with. 

Numerical results obtained by the latter formulation illustrate its benefits compared to classical linear modal analyses 

of non-linear systems {i.e., projections of equations of motion onto the linear modes). In general, the dynamics recovered 

by the multi-mode manifold methodology is more accurate than those obtained by a linear modal analysis using the same 

number of linear modes, since the multi-mode manifold reduces to this linear subspace upon linearization. In the worst 

case (i.e., in the case of linear systems), the results are identical, while they might be much improved when the non-linear- 

ities increase. The computational savings thus obtained will of course be case-dependent, but are expected to be significant. 



LOCALIZED AND NON-LOCALIZED NONLINEAR NORMAL MODES IN A 
MULTI-SPAN BEAM WITH GEOMETRIC NONLINEAROTES 

by 

Johannes Aubrecht (*), and Alexander F. Vakakis (**) 

Department of Mechanical & Industrial Engineering 
University of Illinois at Urbana - Champaign 

Urbana,IL 61801 

(*) Graduate Research Assistant 
(**) Associate Member ASME, Assistant Professor 

ABSTRACT 

The nonlinear normal modes of a geometrically nonlinear multi-span beam consisting of n 
segments, coupled by means of torsional stiffeners are examined. Assuming that the stiffeners 
possess large torsional stiffness, the beam displacements are decomposed into static and 
flexible components. It is shown that the static components are much smaller in magnitude than 
the flexible ones. A Gallerkin approximation is subsequently employed to discretize the 
problem, whereby the computation of the nonlinear normal modes of the multi-span beam is 

reduced to the study of the periodic solutions of a set of weakly coupled, weakly nonlinear 

ordinary differential equations. Numerous stable and unstable, localized and non-localized 

nonlinear normal modes of the multi-span beam are detected. Assemblies consisting of n=2, 3, 

and 4 beam segments are examined, and are found to possess stable, strongly localized 

nonlinear normal modes. These are free synchronous oscillations during which only one 

segment of the assembly vibrates with finite amplitude. As the number of periodic segments 
increases, the structure of the nonlinear normal modes becomes increasingly more complicated. 

In the multi-span beams examined, nonlinear mode localization is generated through two 

distinct mechanisms: through Pitchfork or Saddle-mode mode bifurcations, or as the limit of a 
continuous mode branch when a coupling parameter tends to zero. 



A Numerical Method for Determining 
Nonlinear Normal Modes 

Joseph C. Slater 
Department of Mechanical and Materials Engineering 

Wright State University 
Dayton, OH 45435 

Abstract 

This paper examines a new approach for determining the nonlinear normal modes of multiple 

degree of freedom systems. Unlike algebraic solutions that generally assume a solution in the 

form of a polynomial expansion, this method makes only the assumption of repetitive motion in 

numerically determining the mode shapes. The advantage of this approach is that accuracy 

obtained in the mode shape identification if a function only of the accuracy of the numerical 

integration used and not the number of terms in the power series expansion. The drawback is 

that invariance of the modal manifolds can not be proven. 

The first step of this approach is the determination of the linear modes of the linearized 

system. Each nonlinear normal mode is then identified one mode at a time. The assumption is 

made that the trajectory of the nonlinear normal mode is close to that of the linear mode at small 

amplitudes. The initial states of the system are chosen such that the system is moving in or close 

to only one mode. 

The second step is to integrate the equations of motion forward from the initial states and 

then integrate them backwards. If the system is moving in only one mode, then the difference 

between the forward integration and the backward integration should be zero if the numerical 

integration is accurate. The error between the forwards and backwards integrations is then 

minimized with respect to the initial states. The final difference between the forwards and 



backwards integrations represents the final error in the nonlinear normal mode shape for this 

amplitude. 

The third step is to repeat step two using the initial states found previously multiplied by a 

constant greater than one. This constant is arbitrary, but a small constant will allow a faster 

convergence to the solution at the new amplitude. This step is repeated until the maximum 

amplitude for which the mode shape is desired is obtained. 

Once the mode shapes have been determined numerically for a range of amplitudes, the raw 

data can be used as a look-up table by interpolating the results. Alternatively, polynomials or 

other functions can be curve fit to the data to provide an analytical representation of the mode 

shapes. These functions can then be substituted into the equations of motion to determine the 

modal equations of motion, although at this point the frequencies of oscillation have already been 

determined. 

The final paper will discuss the difficulties involved in this process and compare the accuracy 

of this method to the invariant manifold method for a specific example. Further discussion of the 

benefits of this method will also be made. 



ON NONLINEAR NORMAL MODES OF SYSTEMS 
WITH INTERNAL RESONANCE 

A. H. Nayfeh,   and C. Chin, 
Department of Engineering Science and Mechanics 
Virginia Polytechnic Institute and State University 

Blacksburg, VA 24061-0219 
and 

S. A. Nayfeh 
Department of Mechanical Engineering 
Massachusetts Institute of Technology 

Cambridge, MA 02139 

Abstract 

A complex-variable invariant-manifold approach is used to construct the normal modes of 

weakly nonlinear discrete systems with cubic geometric nonlinearities and either a one-to-one or 

a three-to-one internal resonance. The nonlinear mode shapes are assumed to be slightly curved 

four-dimensional manifolds tangent to the linear eigenspaces of the two modes involved in the in- 

ternal resonance at the equilibrium position. The dynamics on these manifolds is governed by three 

first-order autonomous equations. In contrast with the case of no internal resonance, the number 

of nonlinear normal modes may be more than the number of linear normal modes. Bifurcations of 

the calculated nonlinear normal modes are investigated. 



DYNAMICS OF A MONO-COUPLED ELASTIC PERIODIC SYSTEM 
WITH MATERIAL NONLINEARITIES 

by 
Alexander F. Vakakis (*) and Melvin E. King (**) 

Department of Mechanical & Industrial Engineering 
University of Illinois at Urbana - Champaign 

Urbana, IL 61801 

(*) Assistant Professor, (**) Graduate Research Assistant 

ABSTRACT 

Standing and travelling waves are analyzed in an infinite system consisting of elastic 
layers with material nonlinearities, coupled by means of linear stiffnesses. In direct 
analogy to linear theory, the nonlinear periodic system possesses attenuation and 
propagation zones (AZs and PZs) in the frequency domain. Responses in AZs are 
synchronous motions with spatially attenuating or expanding envelopes, and are 
analyzed by extending an analytic methodology previously developed by the authors 
to study "nonlinear normal modes" in bounded nonlinear elastic structures. Nonlinear 
"propagation constants" are defined, and computer algebra is used to investigate the 
amplitude distributions of the standing waves. Motions in PZs are travelling waves, 
which are non-synchronous oscillations. Travelling waves are analyzed by applying 
the method of multiple-scales in space and time. Numerical computations are carried 
out to complement the analytical findings. The analytical and numerical 
methodologies developed in this work can be applied to the study of waves in a 
general class of nonlinear mono-coupled periodic systems, and can be extended to 
investigate waves in periodic systems with more than one coupling coordinates. 
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Statistical Properties  of Nonlinear 
Vibrations of Elastic Beams 

V. L. Berdichevsky, E. Mueller, A. Özbek 
and I. Shektman 

School of Aerospace Engineering 
Georgia Institute of Technology 

Atlanta, Georgia 30332-0150 

The driving idea of this paper is that there are some general 
relationships among dynamical characteristics of vibrating systems. We 
arrive at this idea when we compare the systems studied in statistical 
mechanics and structural mechanics. One of the favorite systems of 
statistical mechanics is a set of mass particles connected by springs. The 
same kind of systems are obtained if one discretizes the equations of elastic 
structures. 

It seems natural to assume that the laws of statistical mechanics might 
be valid for structural vibrations. We study the validity of this assumption 
for longitudinal vibrations of elastic beams by means of numerical 
simulations. 

The major results are as follows: 

1. There are a number of energy thresholds characterizing some 
changes in dynamical behavior. The number of thresholds is equal 
to the number of energy modes. Low energy threshold Ec is the 
value of the energy below which the temperature distribution 
depends on initial form of the first mode excitation. If the energy E 
is greater than Ec, temperatures of all nodes are equal. Similarly, 
E2 is the energy threshold for the initially excited second mode, and 
so on, where E2 > Ec- Upper energy threshold Ec corresponds to 
reaching of equipartition for the highest mode excitation. 

2. For E > Ec the laws of statistical mechanics hold. 

3. For Ec < E < Ec the spectrum distributions are very reminiscent of 
Planck's spectra, and can be fitted quite well by Planck distribution. 



Thermodynamics  of  Chaotic  Structural  Dynamic  Systems 

by 

S. Hanagud and L.N.B. Gummadi 
School of Aerospace Engineering 

Atlanta, Georgia 30332 

Most of the reported studies in the area of chaotic vibrations 
in structural dynamic systems are mainly concerned with nonlinear 
dissipative systems. Both ordinary differential equations 
approximation and partial differential equations formulation to the 
corresponding distributed parameter systems have been used in 
reported studies. Some of the reported studies have also 
considered the use of fractals ar.d associated fractal dimensions to 
understand the chaotic vibration of beams. 

In the field of theoretical physics, a clearer understanding of 
nonlinear dynamics, was possible by a careful examination of 
Hamiltonian systems. A specific case which opened a path for many 
valuable contributions is the Fermi, Pasta and Ulam paradox and the 
associated Hamiltonian systems. In this study, Fermi wanted to 
examine the effects of small nonlinear terms in a predominantly 
linear system of m particles interconnected by springs. Springs 
provided both linear and nonlinear effects. Fermi's objective was 
to examine if small nonlinear terms in a predominantly linear field 
would provide a proof of Boltzmann's hypothesis. Fermi and his co- 
authors work did not provide this proof. However it stimulated a 
significant amount of research during the following five decades. 

Thus, motivated by developments in the field of theoretical 
physics, the objective of this paper is to report results of our 
studies of Hamiltonian nonlinear structural dynamic systems. As we 
know, we have gained a significant amount of insight in the field 
of structural dynamic systems by studying undamped free vibrations 
even though all structural dynamic systems have inherent damping. 
In particular, modal interaction, equipartition of energy and the 
existence of a quantity analogous to temperature are examined. We 
have considered examples of elastic rods, buckled beams and finite 
deformations of cantilever beams. 



Dynamics of an Elastic Rod in a Fluid Pumping System 

David Beale, Auburn University, Auburn, AL 

A rod pumping system, as used to lift oil to the surface in nonflowing wells is 
analyzed by describing longitudinal rod stretch vibrations as a sum of fixed-free modes 
The rod oscillates vertically, driven at the fixed end by a constant speed motor through 
a four bar mechanism. Equilibrium is used to derive the following partial differential 
equation of rod upstroke and downstroke motion: 

m32u _,    öu    „, d2u 
m^    CTt~EA^2  =mg-my-cy (1) 

Where u(x,t) is rod stretch as a function of distance x from top of the rod string and time 
A is cross sectional area of the rod string, E is Young's Modulus, g is the acceleration of 
gravity, m is mass of rod per unit length, and c is damping coefficient per unit length 
induced by viscous fluid forces, y, the vertical displacement of top of rod string, is a 
prescribed function that is derived from the four bar kinematics. 

Pumping is governed by one set of boundary conditions during the upstroke and 
another set during the downstroke. When the bottom of the rod string is moving 
downward, the fluid load on the downhole pump is released and does not load the bottom 
of the rods, leading to the following set of boundary conditions during downstroke: 

u(0, t) =0 
du 

which are active when 

EA-^(L,t)=0 (2) 
ox 

y + |^(L,t)   >  0 (3) 

During the upstroke, the PDE in equation (i) remains unchanged and the new set of 
boundary conditions are 

u(0, t) =0 

„, du,T (4) 

which are active when 

y +  |^(L,t)  ^  0 (5) 

The latter boundary condition includes the weight of the fluid column, Mg, on the bottom 



of the rod string.    A transform methods is introduced here in order to handle this 
inhomogeneous boundary condition.   We also assume a solution of the form: 

U<*'C>   =E^i(t)<l>;U) (6) 

Further studies concentrated on the following one mode representation for both 
downstroke and upstroke, respectively: 
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(7) 

These equations are nonlinear (piecewise linear) because the presence or absence of 
a nonzero term on the right of equation (7) is nonlinearly dependent on velocity. 

Based on response studies, a one mode representation is found to capture most 
of the rod string stretch at practical operating speeds, and was used to investigate 
response with dimensional and nondimensionalized equations at various crank speeds, 
crank lengths, and damping rates. For example, for speeds below 1/2 the rod first natural 
frequency larger viscous damping induced larger response; however this trend eventually 
reversed at higher crank speeds beyond 1/2 the first natural frequency. Highly damped 
systems appear to exhibit little amplitude change with speed, whereas lightly damped 
systems drastically increase in amplitude as the crank speeds approached the first natural 
frequency. Work on this problem is continuing, and we hope to present some preliminary 
results on a study of a cracked rod string. 



On the quasi-steady analysis of one-degree-of-freedom galloping 
with combined translational and rotational effects 

B.W. van Oudheusden 

Fac. Aerospace Engineering, Delft University of Technology 
P.O.Box 5058, 2600 GB Delft, The Netherlands 

ABSTRACT 

Galloping is the self-excited oscillation of an elastic structure in a wind field. It occurs at the 
structure's natural frequency, which when sufficiently low allows a quasi-steady aerodynamic 
analysis, where the instantaneous wind forces are derived from an equivalent steady flow 
situation. For bluff body shapes normally encountered in practical galloping situations {e.g. 
power transmission cables, bridge decks, buildings) these steady-aerodynamic data are derived 
from static wind tunnel tests. For the two-dimensional galloping of a rigid prismatic beam in 
a steady, homogeneous wind field normal to its axis, the general motion is composed of a 
translation and a rotation of the cross-section. 

The modelling of translation galloping is straightforward. Each point of the cross- 
section has the same translation vector, and an identical steady flow situation can be defined, 
where the effective, homogeneous wind field is defined by the vectorial difference of flow 
and translation velocity. In most practical situations only cross-wind galloping (also referred 
to as vertical or plunge galloping) is relevant, where the oscillation direction is normal to the 
wind vector. This one-degree-of-freedom case was considered by Parkinson [1], who solved 
the problem by the two-time-scale method for a square cross-section. His model provides an 
understanding of the fundamental aspects of this type of galloping, such as the variation of 
galloping amplitude with wind speed, the influence of structural damping, and the possibility 
of multiple limit-cycles. 

For rotational motions the modelling is more problematic. Not only do the 
aerodynamic forces depend on both the rotation angle and the rotation velocity (whereas for 
translation the translation distance is not relevant), it is further not possible to define an 
exactly equivalent static situation, as each point of the cross-section has a different translation 
vector. Attempts have been made to model the rotation by using a "characteristic" relative 
velocity to approximate the averaged flow field [2]. However, this modelling has been used 
in situations where the rotation axis (nearly) coincides with the beam axis, where the 
assumption is highly questionable [3], and also often in a two-degree-of-freedom system in 
combination with translation. An understanding of the fundamental influence of rotation is 
therefore greatly inhibited by the increased complexity of the system and the suspiciousness 
of the quasi-steady modelling. 

In this paper we present an oscillator structure which displays a rotational oscillation 
mode that can be modelled reliably with the quasi-steady theory. This makes it meaningful 
to attempt a comparison between theory and an experimental set-up. The oscillator is 
composed of a prismatic beam hinged around an axis parallel to the beam axis, where the arm 
length is large in comparison to the diameter of the beam (Fig.l). The oscillator provides the 
simplicity of one degree-of-freedom, while displaying a number of features essential to 
rotation. In approximation (for small oscillation angles), it can be understood as an extension 
of Parkinson's model by adding a rotation that is linearly coupled to the translation. We 
regard it as an intermediate step between pure translational galloping and complete two- 
degree-of-freedom galloping with uncoupled translation and rotation. 



The analysis reveals that the aerodynamic damping is completely determined by the 
model's section characteristics and can be expressed in terms of an aerodynamic amplitude 
function. This result can be used to analyse both types of galloping, which differ only by the 
way the structural amplitude (displacement) is related to the aerodynamic amplitude. An 
interesting result is that, in contrast to translation where the limit-cycle amplitude increases 
linearly with the wind speed, the rotational galloping shows an aerodynamic limit for large 
wind speeds. A practical application may perhaps be obtained from this natural self-limiting 

of the galloping amplitude. 
Parallel to the theoretical work an experimental set-up of the type shown in Fig.l (with 

a natural frequency of about 0.5 Hz) is being developed, for validation of the analytical 
modelling with experiments in a wind tunnel. Preliminary measurements seem to confirm the 
aerodynamic limiting effect, as shown in Fig.2, where the limit-cycle amplitude is given as 

a function of wind speed. 

References: 
[1]      G.V. Parkinson and J.D. Smith, The square prism as an aeroelastic oscillator, Quart. 

Journ. Mech. & Appl. Math., Vol. 17, 1964, pp. 225-239 
[2]      R.D. Blevins, Flow-induced vibrations, 2nd. ed., 1991, New York, Van Nostrand 

Rheinhold Company 
[3]      Y. Nakamura and T. Mizota, Torsional flutter of rectangular prisms, J.Eng. Mech. Div. 

ASCE, Vol. 101, EM2, 1975, pp. 125-142 

Fig.l:   Schematic lay-out of the oscillator 
used in the study of one-degree-of-freedom 
galloping with combined translational and 
rotational effects. 
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An Experimental Investigation of Energy Transfer 
from a High-Frequency Mode to a 

Low-Frequency Mode in a Flexible Structure 

P. Popovic, A. H. Nayfeh, K. Oh, and S. A. Nayfeh 
Department of Engineering Science and Mechanics 
Virginia Polytechnic Institute and State University 

Blacksburg, Virginia 24061 

Abstract 

The objective of the present paper is to experimentally observe and 
characterize the transfer of energy from low-amplitude, high-frequency 
modes to high-amplitude, low-frequency modes. The subject of the study is 
a three-beam-frame structure. The excitation amplitude is restricted to 
below 2 g peak. We have focused on observing, characterizing, and 
documenting the excitation of the first mode by high-frequency forcing. 
The energy-transfer processes are identified by power spectra and further 
characterized by frequency and amplitude sweeps. The energy-transfer 
routes observed in the experiment are subharmonic resonance of order one- 
half, combination resonance of the additive type, and interaction between 
widely spaced modes. In the latter route, an excitation at a frequency that is 
more than 100 times the first-mode frequency has been observed to excite 

the first mode. 
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Experimental and Analytical Investigations of the Nonlinear 
Response of a Cantilever under Transverse Excitation 

Marcelo R. M. Crespo da Silva 
Dept. of Mechanical Engrg., Aeronautical Engrg. and Mechanics 

Rensselaer Polytechnic Institute, Troy, N.Y. 12180-3590 

An in-depth experimental investigation of one-to-one nonlinear coupling phenomena in 
the dynamic response of cantilever beams excited by a periodic transverse displacement is 
presented. The results of these experiments are in excellent agreement with the analytical 
predictions presented in other work by this author. The experiments were conducted on 
four aluminum beams having the following dimensions : 

beam 1: 45" x 1/4" x 1/4"    ;     beam 2: 70.5" x 1/4" x 1/4" 

beam 3: 44" x 3/4" x 1/4"    ;     beam 4: 70.5" x 1/2" x 1/4" 

Beams 1 and 2 were chosen to have a nominally square cross section in order to 
illustrate the one-to-one nonlinear modal coupling. Beams 3 and 4 were chosen in order 
to investigate planar responses (ve versus Q,) since they will not exhibit the one-to-one 
nonlinear response exhibited by beams 1 and 2. The layout of the experimental set-up is 
shown in Fig. 1. Signal generation and monitoring were accomplished using an HP 3562A 
Dynamic Signal Analyzer. The signals from the analyzer were amplified and sent to a long 
stroke electrodynamic table shaker whose base was securely clamped to a steel test-bed 
fixed to the floor of the room ii order to eliminate any rocking or translation of the unit. 
A custom designed aluminum clamp assembly was used to provide a fixed support for the 
beams and to act as an interface between the beams and the shaker. Base excitation was 
chosen as a means to provide a transverse excitation to the beams without influencing their 
ability to move freely in three-dimensional space and thus interfere with the observation 
of a coupled response involving planar and nonplanar motion. 

A common method of exciting flexible structures involves the use of a thin wire-like 
stinger attached to a shaker armature on one end and to some point on the structure 
on the other end. This method may be acceptable for investigating planar response of 
beams, but was avoided since it would clearly influence, and most probably restrict, any 
motion which does not coincide with the direction of the stinger stroke. The motion 
of the beam and the base assembly was measured using three very light piezoelectric 
accelerometers. The choice of accelerometers over strain gauges was made because of 
the simple relationship that exists between acceleration and deflection, and because of the 
mounting versatility provided by accelerometers. The damping coefficient of each beam was 
determined experimentally and then used to generate the amplitude-frequency response 
curves obtained from a perturbation analysis of the nonlinear integro-partial differential 
equations of motion for the beam. The actual response amplitude as a function of the 
excitation frequency was measured in the laboratory and the results were then compared 
with those obtained from the analysis. Excellent correlation between the experimental 
and the analytical results was obtained when effects such as "base flexibility" in the shaker 



and nonlinear damping were accounted for in the equations of motion. Figure 2 shows the 
experimental and analytical frequency response of the third mode of beam 2 for a base 
displacement of e* = 0.15 mm and a normalized damping coefficient c = 0.11 that was 
measured for that beam. The experimental and analytical amplitude frequency responses 
of the third mode for beam 4 with e* = 0.1 mm, c = 0.1 and three values of the nonlinear 
damping coefficient (c0 = 0, c0 = 0.2 and c0 = 0.6) are shown in Fig. 3. 

The work presented here discloses the importance of accounting for effects such as 
shaker imperfections and nonlinear damping in the system. 
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DYNAMICS OF A MULTI-DOF BEAM SYSTEM WITH DISCONTINUOUS SUPPORT 

by 

D.H. van Campen, E.L.B. van de Vorst, A. de Kraker, R.H.B. Fey 

Department of Mechanical Engineering, Eindhoven University of Technology, 
P.O. Box 513, 5600 MB Eindhoven, The Netherlands 

Abstract 

This paper deals with the long term behaviour of periodically excited mechanical 

systems consisting of linear components with many degrees of freedom and local 

nonlinearities. The particular system investigated is a 2D pinned-pinned beam, which 

halfway its length is supported by a one-sided linear spring and excited by a periodic 

transversal force. 

The linear part of this system is modelled by means of the finite element method and 

subsequently reduced using a Component Mode Synthesis method. 

Models with 1 and 4 degrees of freedom are investigated. Periodic solutions are 

computed by solving a two-point boundary value problem using finite differences. 

Branches of periodic solutions are followed at a changing design variable by applying 

a path following technique. Floquet multipliers are calculated to determine the local 

stability of these solutions and to identify local bifurcation points. The long term 

behaviour is also investigated by means of standard numerical time integration, in 

particular for determining chaotic motions. 

In add'rton, the Cell Mapping technique is applied to identify period and chaotic 

solutions and their basins of attraction. A dedicated extension of the existing Cell 

Mapping methods enables to investigate systems with many degrees of freedom. 

By means of the above methods very rich, complex dynamic behaviour is 

demonstrated for the beam system with one-sided spring support. This behaviour is 

confirmed by experimental results. 



Nonlinear Vibrations in Beams and Frames: 

The Effect of The Deformed Equilibrium State 

Joäo C. Andre 
LMC - Laboratörio de Mecänica Computational 

Departamento de Engenharia de Estruturas e Fundacoes 
Escola Politecnica da Universidade de Säo Paulo 
05424-970     CP: 61548    Säo Paulo, SP, Brasil 

Abstract 

In the study of the nonlinear vibrations of planar frames and beams with 
infinitesimal displacements and strains, it is common to disregard the influence of the 
static displacements due to the gravity effect and other conservative loads. In this study 
two planar structures with a two-to-one internal resonance to a primary resonance of the 
second mode are analyzed with the purpose of discussing the effect of the deformed 
equilibrium configuration on the nonlinear vibrations. 

The adopted equations of motion were derived accordingly to Mazzilli [1] and 
Andre [2]. They are explicitly defined in function of generalized displacements and their 
first and second time derivatives. The reduction to two degrees of freedom was done as in 
Andre [2], considering a displacement field obtained by superposing the equilibrium 
displacement field (resulting from a nonlinear static analysis) and the displacement field 
resulting from a linear combination of the selected natural modes, about the equilibrium 
configuration. Subsidiary conditions, defined from geometrical nonlinear equations for 
planar beams, are introduced to avoid losing inertial and geometrical nonlinear terms of 
the reduced equations of motion. 

In order to provide some comparisons, two structures that have been extensively 
studied by several researchers are selected for analysis. Initially, the L-beam with 
homogeneous material and two discrete masses is analyzed. This beam was previously 
studied by Haddow, Barr and Mook [3], Nayfeh and Zavodney [4], Nayfeh, 
Balachandran, Colbert and Nayfeh [5], Nayfeh and Balachandran [6] and Andre [2]. It is 
also analyzed a portal frame with three discrete masses, formerly studied by Barr and 
McWhannel [7], Mazzilli [1], Andre and Crespo da Silva [8] and Andre [9]. 

In the two cases analyzed it was verified that the deformed equilibrium 
configuration virtually coincides with the undeformed configuration. The first two lower 
frequencies do not present differences larger than 2%, noting that this difference is big'-er 
in the first mode, and the modes are practically indistinguishable for the deformed and 
undeformed configuration. 



The frequency response curves clearly show that the effect of the deformed 
equilibrium configuration results in a significant translation along the detuning factor 
axis. Moreover, the consequence in the amplitude response curves is, obviously, even 
more important, considering that the phenomenon represented by the curves would be 
distinct for the same value of the detuning factor. 

These results show that the static displacements that define the deformed 
equilibrium configuration may have a strong influence on the nonlinear vibration 
responses of a structure. This fact reveals the importance of considering such effect, or, at 
least, the importance of studying carefully the sensibility of each particular structure to 
geometrical imperfections. Disregarding this effect may lead to obtaining inaccurate 
results, mainly if one considers that certain kinds of answers occur in narrow ranges of 
the detuning factor. 
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Abstract 

In this paper the dynamic behaviour of a flexible beam carrying a moving mass is studied 

using the finite element formulation which incorporates an adaptive mass matrix. The mass 

matrix represents the total mass distribution in the system, and accounts for the nonlinearities 

resulting from the motion of the mass. 

The mathematical model of the system proposed by F.Khalily [1,2] included two coupled 

nonlinear integral/partial differential equations which were impossible to solve analytically and 

difficult to solve numerically in their existing form. In her approach the partial differential 

equations were reduced to a set of ordinary differential equations by assuming a trial solution 

which was separable in space and time and also 'improved shape functions' were developed, 

which took into account the position of the mass. Moreover the Ritz technique used in [1,2] was 

an approximate method which was valid for small amplitude oscillations of the beam, and was 

only applicable to small masses. As a remedy a finite element formulation is employed in such 

a way that an adaptive mass matrix, which transforms as the mass traverses the beam, results. 

This version of a finite element solution eliminates the use of 'improved shape functions' 

developed by F.Khalily, is easier to apply and is more robust. The model is more accurate as the 

formulation includes all possible nonlinearities in the system, and is also valid for large amplitude 

oscillations of the beam. The new method works equally well for load masses of any size, small 

or large. 



Case Studies have been conducted for small and large payloads to affirm the validity of the 

finite element code. Four special test cases have been studied, namely: 1) Mass fixed to the 

middle of the beam, 2) Mass fixed to the end of the beam, 3) a mass with its motion prescribed, 

and finally 4) beam - mass interaction due to nonlinear coupling were compared with the theory 

and results of [1,2] for a small mass. The close agreement of the results from the above methods 

validates the finite element model and illustrates the soundness of the mathematical model 

presented in [1,2]. 

In the latter test case the nonlinear 'Internal Resonance' phenomenon was observed in which 

the nonlinear coupling between the beam and the mass generated an energy link, thereby 

facilitating a transfer of oscillatory energy between the modes of vibration of the beam and the 

mass. A damper was added to the mass and an optimum damping ratio administered to keep the 

beam oscillations minimal. 
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Structures supporting unbalanced machines capable of a limited power output are considered, as in the case of 
real motors. The motion of an oscillating structure under the action of-such an energy source is accompanied by 
interaction between these non-ideal motors and their support. In usual approaches, the excitation is considered as 
ideal; that is, the influence of the motion of the structure on the motor is disregarded. Here, the reciprocal influence 
of the system on the energy source is considered. As consequences, in the regions of resonance unstable conditions 
of motion occur, the form of resonance curve depends on which direction the frequency of the excitation is being 
altered, the form of the osculations is changed, and the character of the transition of the system through resonances 

is ältsrcd 
As an application, the simple portal frame in the Fig.la is analyzed. It has two columns clamped at their 

bases with height h and constant cross section with concentrated weights at their tops of mass m. The horizontal 
beam is pinned to the columns at both ends with length L and constant cross section. Linear elastic material is 
considered. The adopted model of the structure is shown in the Fig.lb. The coordinate qi is related to the horizontal 
displacement of the top of the columns in the sway mode (with natural frequency wi) and q2 to the mid-span vertical 
displacement of the beam in the first symmetrical mode (with natural frequency w2). Coefficients of modal linear 
viscous damping cx and c2 are adopted. An unbalanced non-ideal motor is placed at the mid-span of the beam. The 
angular displacement of its rotor is given by q3. It has total mass M, its rotor has moment of inertia I and carries 
an unbalanced mass m0 at a distance r from the axis. The characteristic driving torque of the motor £(q3) and the 
resisting torque 7i{q3), for each given power level, are assumed to be known. The resulting equations of motion are: 

«i+W?*1    =    {2m + M)h{i'3 S'm g3 + *3' C0S g3) " (2m + M)h 4l (1) 

- mar,    _ ,   . 2 •      \       c2   •       9 /o\ 
92+^92     =     -7jr(-33COS93 + 93   sin ?3) --^r92 - j \*> 

m0hr      ..   . m0Lr      .. C(q3) - ^(93) /o\ 
*3  =   (7T7^9lSin93-(7T7^)92COT93+  (i + r»m0) 

(3) 

A direct numerical treatment of this system is pursued without any previous approximation. A standard Runge- 
Kutta Aih order algorithm is used. To allow for that, the equations are algebraically manipulated and recast as: 

9i    =    /i(?i.9ii 93,93) (4) 

92     =     /2(92,92,93,93) (5) 

93   =   Mq3) W 

The numerical values adopted are: El = 128Nm2, h = 0.36m, L = 0.5m, M = 2.0kg, m = 0.5kg, m0 = 0.1kg, 
I = 0.00017-fcym2, r = 0.01m, a = c2 = 31.36JVs/m. Passage through resonance with the second natural frequency, 
corresponding to the mid-span vertical displacement of the beam in the first symmetrical mode (w2 = I57rad/s),is 
presented. The characteristic net torque of the motor around this region is supposed to be given by a set of straight 

lines of the form: 

C(q3)-Ti{q3) = a-bq3 (7) 

leave from the Dept. of Structural and Foundation Engg., Escola Politecnica, Universidade de Säo Paulo, Brazil 
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The solid line curve in Fig.2 shows the variation of coordinate q2 with the angular speed of the motor 9*3 in the 
ideal case. Plots of stable motions in the non-ideal case for the several adopted characteristic lines are represented 
by small circles. As predicted, no stable solutions are found inside a fairly large band of frequencies to the right side 
of the resonance peak. As an example, for a = 0.2Nm and 6 = Q.Q01Nm/s, a transient analysis started with a initial 
motor speed q3 = 125rad/s is shown in Fig.3. Stable conditions of vibration are only reached at the opposite side of 
the resonance peak for <j3 = 225rad/s. 
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1 x Intrduction 

Scientists have paid much attention to the study of lateral stability of railway vehicles . 

Some of them have tried to use bifurcation theory to solve the problems in vehicle dynam- 

ics[l-3j. Based on the averaging method, this paper investigates a seventeen degree of 

freedom railway vehicle system. The Hopf bifurcation solution and its stability criteria are 

obtained. It is found that the stable regions exist in a saparated form in the parameter 

space and the bifurcation is a supercritical one. The process in this paper is very easy to be 

programed, so it is convenient to use it in the analyses of multiple degree of 

fredorp. nonlinear systems. 

2, A Railway Vehicle System with Hysteretic Nonlinearities. 

Consider  a  railway   vehicle  system  with  hysterestic  nonlinearities  in  its hunging 

systems.The system's differential equation is [4] 

X *= A(V)X+FX{X,V) XeRU (1) 

where, A is a 34x 34 matrix,  V is the velocity. 

Let  V = V   + ^,where ß is a small parameter.Expand A(V) in power series of p,and 

rewrite equation (1) as: 

X = A t(V e)X + F<X,p) XeRU (2) 

Suppose A   (y )has only a pair of pure imaginary eigenvalues ± ia>, and the other 

eigenvalues have strictly negative real parts. Let the solution of equation (2) is 
X= 2a(t)(aco3(p - ßsiny), q>(i) = <oi + 8(t) (3) 

Following the procedure of [5], we can get the standard equation in averaging method 

as following. 

a-l-YTF-R 

e   JLr*V = * 
2a 

(4) 

Averaging equation (4),we can get: 

a = C   a + C 
■ 1 ■ 

e-c.,+c.y", 
(5) 

The amplitudes of the steady state solutions are: 
C .    -L a = 0 a=( —)—' (6) 

The existing and stable condition is    C    > 0      C    < 0 (7) 
el am 



After the equilibrium point loses its stability, a periodic solution  may bifurcat from it. The 

first order approximate of the bifurcating solution is 
X =2a{xcosq> - ßsincp), <p(t) = col + $ (8) 

•* ••> 

3, The Influence of System Parameters on The Bifurcation Solutions 
The study of the influence of the system parameters on the amplitudes of the 

bifurcation solutions shows that 

(I), The bifurcation is a supercritical one. 

(2), There exist stable and unstable regions of the bifurcation solution in the system 

parameter space.These regions are not of the same size and they are saparated. When the 

speed of the vehicle is above its critical speed V, and if the bifurcation solution is stable, 

the running quality of the vehicle will not get worse, as long as the amplitude of the 

bifurcation solution is small enough. Therefore a principle is offered here which suggests 

that the desiging of vehicles consider not only the linear criticle speed but also the stable 

regions,in other words, choose the system parameters in the middle of a larger stable 

region, so as not to make the bofurcation solution unstable by small disturbance. 

(3),   The  amplitude  of the  bifurcation  solution  decreases  with  the  increase of 

hysteretic coefficient ?j. The amplitude and the stable regions will change with the change 

of system parameters. The change of the amplitude is reverse proportion to the change 

of A,   K    , K    ,   and direct proportion to that of W.It is also shown that K     and K 

have little influence on the amplitudes. 
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Asymptotical approach is the natural method for the solving of 

nonlinear dynamical problems. As a rule, quasi linear asympto- 

tics, is based on the assumption of small amplitude, have been 

used in this field. But this choice of small parameter is not 

optimal. In this papers were proposed a new asymptotic method, 

the main idea of it is confined in the introduction of small pa- 

rameter in the power of nonlinear terms, and using" theory of dis- 

2     2 3 
tribution. For example, Duffing equation id x/dt     +  x  + £x - 

0)  may be solved by means of an expansion  in  power  of    >" 

(Nayfeh) or by the  introducing  "small" parameter 6  as  follows 

2    2 i + 6 
(Bender et al.): d  x/dt  +  x  + £x    = 0. The last method is the 

more effective in comparison with tradition quasi linear expan- 

sions. At that time it will be very interesting to obtain asymp- 

totical solution of tli is equations for ö     -* <x>. 

V . N . Pi 1 i pcliuk    proposed  effective  method for   solving 

essential1v nonlinear dvnamics problems. The main idea  of  this 

approach is based on  the  replacing  initial  system  by  simple 



impact -\ j brat i n<4 one. This approach brought u'ood results, but. 

remained open the questions of justification and construction of 

high approximation. Those problems may be solved because of the 

application of the new asymptotic algorithm. In correspondence to 

it we first of all split the term x in the powers of parameter 

1/n. The coefficients of this series contain 6 Dirac function ant 

its derivatives. This procedure are justified in the framework of 

the distribution theory. Then we split initial equation to the 

recurrent infinite system of linear equation with distribution as 

coefficients and right sides, that may be solved on the basis of 

well produced methods. 

Approach proposed above is the natural asymptotic method for 

solving differential equations which contain term x for O > 

co . Similar proposed asymptotical approach for the case of 

small 6 was proposed . Matching solutions for 6 > ij and o * <x> 

by means of two-point Pade approximant one can obtain solution 

for any value of  6. 
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