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Chua's Circuit: Ten Years Later 

1. 0. Chua 

University of California, Berkeley 

Department of Electrical Engineering and Computer Sciences, Berkeley, CA 94720 

Abstract 

More than 150 papers, two special issues (Journal of Circuits, Systems, and Computers, March, June, 
1993), and a book (Edited by R. N. Madan, World Scientific, 1993) on Chua's circuit have been ptibushed' 
since its inception a decade ago. This review paper attempts to present an overview of these publications 
and to identify some milestones of this very active research area. 

An important milestone is the recent fabrication of a monolithic Chua's circuit. The robustness 
of this IC chip demonstrates that an array of Chua's circuits can also be fabricated into a monolithic 
chip, thereby opening the floodgate to many unconventional applications in information technology, 
synergetics, and even music. 

The second milestone is the recent global unfolding of Chua's circuit by adding a linear resistor 
in series with the inductor to obtain a canonical Chua's circuit - now generally referred to as Chua's 
oscillator. This circuit is most significant because it is structurally the simplest (it contain only 6 circuit 
elements) but dynamically the most complex among all nonlinear circuits and systems described by a 
21-parameter family of continuous odd-symmetric piecewise-linear vector fields. 

The third milestone is the recent discovery of stochastic resonance, chaos-chaos type intermittency, 
and ± noise spectrum in Chua's circuit. These new phenomena could have far-reaching theoretical and 
practical significance. 

The fourth milestone is the theoretical and experimental demonstration that Chua's circuit can be 
easily controlled horn a chaotic regime to a prescribed periodic or constant orbit, or it can be synchronized 
with 2 or more identical Chua's circuits, operating in a chaotic regime. These recent breakthroughs have 
ushered in a new era where chaos is deliberately created and exploited for unconventional applications, 
e.g., secure communication. 

1    BRIEF HISTORY OF EVOLUTION 

Prior to 1983, no autonomous electronic circuit was known to be chaotic, in spite of numerous attempts by 

researchers to uncover such examples. In particular, Matsumoto and his students had struggled for years to 
build an electronic circuit analog of the Lorenz Equation. The history of how Matsurnoto's heart-breaking 

failure had spurred the author to design a chaotic, circuit from first principles was described vividly in[l]. 
Here, we only outline the chronological events, which began in the fall of 1983, where this chaotic circuit was 

designed by the. author, using a systematic nonlinear circuit synthesis technique. After describing his design 
to Matsumoto and instructing him on how to choose the circuit parameters for a possible chaotic regime, 
the author's involvement in this circuit was abruptly interrupted for over a year due to illness. 

Having no prior experimental background, Matsumoto uses computer simulation to verify that the au- 
thor's circuit, which he had named Chua's Circuit, is indeed chaotic[2]. Meanwhile, Matsumoto and his 

students had followed the author's suggestion to modify Rosenthal's circuit [3] in order to obtain an active 
2-terminal nonlinear resistorwith the desired piecewise-linear characteristic. ! Handicapped by Matsurnoto's 

lack of experience in nonlinear electronic circuits, it took two years before his student Tokumasu finally suc- 
ceeded in 1986 to adapt Rosenthal's circuit to obtain the desired nonlinearity [4]. 2 

From his hospital bed in Tokyo, the author had communicated to Matsumoto on the possibility of using Rosenthal's circuit 
as the basis for designing the desired nonlinearity. 

Although neither acknowledged nor referenced in [4], the core of the resulting 2-transistor circuit is essentially Rosenthal's 
circuit. 
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Meanwhile, using the op-amp circuit synthesis technique proposed by the author, Zhong and Ayrom[5] 
had succeeded to build a 2 op-amp Chua's circuit where chaos was first observed experimentally during the 
winter of 1984. Their experimental confirmation of chaos was published in January 1985, one month after 
Matsurnoto's publication in December 1984 of his computer observation of chaos in Chua's Circuit [2]. 

The most robust and economical method to hook up an experimental Chua's circuit is given in [6, 7]. 
In this setup, the nonlinear resistor, called Chua's diode by Kennedy[7], is realized by a single IC package 
(containing two op amps) and 6 linear resistors. The entire setup can be easily hooked up in 30 minutes for 
less than $ 10. Because of its low cost and robustness, Chua's circuit has become the circuit of choice in 
applications where an inexpensive and robust source of chaotic signals is required. 

For mass applications, it would be desirable to have the Chua's diode integrated into an IC chip. This 
has been achieved using a 2-/*m CMOS process, with 39 CMOS transistors occupying a chip area of 0.5 
mm2 [8]. More recently, the entire Chua's circuit has been successfully integrated into a monolithic, chip 
via two different designs [9, 10], the photomicrograph of one of which is shown in Fig. 1. This latest 
evolution represents a milestone in the ever-widening studies and exploitation of Chua's circuits because it 
demonstrates that an entire array of closely matched Chua's circuits can be fabricated in monolithic form. 

—■■•  •■ ■ -»■ 

Figure 1: Photomicrograph of the monolithic Chua's circuit described in [8]. 
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2 GENERALIZATIONS OF CHUA'S DIODE 

The original piecewise-linear characteristic of Chua's diode has been generalized by many researchers to 
assume various different forms. For example, the original piecewise-linear function is replaced by a discon- 
tinuous function in [11], a C°° "sigmoid function" in [12], and a cubic polynomial f(x) = cox+c^x3 in [13], 
[14], and [15]. The main motivation for choosing a "smooth" rather than "piecewise-linear" function for 
Chua's diode is to obtain a smooth state equation so that analytical tools from nonlinear dynamics can be 
brought to bear. 

In some applications, the symmetry in the Chua's diode v-i characteristic is deliberately broken in order 
to allow nonlinear wave propagations in a chain of Chua's circuits [16], or in a Chua's circuit terminated by 
a transmission line [17]. The symmetry can be broken either by shifting the origin, or changing the shape, 
of the characteristic. 

In yet another application, the number of segments of the original piecewise-linear characteristic of Chua's 
diode is increased in order to synthesize strange attractors with multiple scrolls [18]. 

3 GENERALIZATIONS TO HIGHER-DIMENSIONS 

In order to investigate chaotic dynamics and new phenomena in higher-dimensional spaces, Chua's circuit has 
been generalized by replacing the resonant tank circuit by an RLC ladder circuit in [19], by a coaxial cable 
in [20]. and by a lossless transmission line terminated in a short circuit in [17]. The dynamics in the latter 
case is described by 2 linear partial differential equations with a nonlinear boundary condition. However, 
in the limiting case where the capacitance C\ across Chua's diode tends to zero, the partial differential 
equations reduces to a 1-dimensional map with a time delay, which makes it analytically tractable. A 
further generalization of Chua's circuit to a Banach Space is given in [21]. 

• Another direction of generalization consists of a chain [16], [22], or an array [23], [24] of Chua's circuits. 
This generalization leads to a system of nonlinear ordinary differential equations which has the same form 
on the right hand side as that of a system of nonlinear reaction-diffusion partial differential equations. 
Consequently, the currently very active research areas of "spiral wave", "Turing patterns", and "spatio- 
temporal chaos" can all be studied by an array of Chua's circuits. Moreover, the signals extracted from such 
an array have many potential applications. 

4 GENERALIZATIONS TO CHUA'S CIRCUIT FAMILY 

The theory3 developed in [25] for investigating the dynamics of Chua's circuit is actually applicable to 
any family C of continuous, odd-symmetric piecewise-linear vector fields in 7£3. partitioned by two parallel 
planes U\ and U-\ (of arbitrary orientation) into an inner region Do and two outer regions D\ and D-\, 
respectively. Any member of C is described by4 

x   =   A x + b, x\ > 1 

=   Ao x, -1 < x\ < 1 

=   A x -b, ii < -1 

3 As a compromise for departing from Matsumoto's previous tradition of placing his name first in all publications involving 
Chua's circuit, the authors in this paper have been reordered alpkabelicalty. Indeed, most of the results in this paper is developed 
by Komuro. 

4 We would like to take this opportunity to correct the following equations in [26]. 
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where 

A   = 

an «12 013 " 

«21 «22 Ö23 

«31 «32 «33 

b = 62 

*3 

defines an affine vector field in the outer regions Di and D-U and 

An     = 

«11 «12 "13 

«21 «22 «23 

«31     «32     «33 

defines a linear vector field in the inner region Do- 
Using the nonlinear state equation synthesis technique developed in [27, 28], any member of this 21- 

parameter family of vector fields can be synthesized by a circuit using one Chua's diode and linear resistive 
elements, including controlled sources. The basic structure of this circuit family is summarized in Fie 14 
page 10.31, of Wu'paper [29]. In Wu's Fig.14, the Chua's diode is fixed to be a passive element, made of two 
ideal back-to-back Zener diodes connected in parallel across a linear passive resistor. In this ca.se the linear 
resistive 4-port N must contain at least one negative resistor or controlled source. By using standard circuit 
transformation techniques, one can choose N to be passive and transfer the activity requirement into Chua's 
d.ode.  Indeed, once the 21 parameters defining A, A„, and b are given, much simpler circuits equivalent 
to that of Fig.14 can be synthesized.   In the simplest case, only 4 circuit elements are needed' namely 
2 capacitors, 1 inductor, and a Chua's diode with an appropriate v - i characteristic. One. such 'circuit 5' 
synthesized, bu.lt, and analyzed by Tokunaga [30], has astrange attractor which is spawned by the breakdown 
0 a torus. A detailed analysis of this member of Chua's circuit family shows that the complicated bifurcation 
phenomena follows the scenarios predicted by the Afraimovich-Shil'nikov torus breakdown theorem [31] 

Many other members of Chua's circuit family have been synthesized and built [32, 33 34 35] Except for 
the circuit reported in [35], the dynamics of the above cited circuits, including the original Chua's circuit 
are not sufficiently general in the sense that certain phenomenon observed from one such member of Chua's 
circuit family can not be observed from another member, regardless of the choice of circuit parameters 
twin the nonlinear circuit foundation point of view, it is highly desirable to synthesize the simplest circuit 
topology which is capable of reproducing the qualitative phenomena exhibited by every member of Chua's 
circuit family The circuit structure provided by Fig.14 of Wu [29] has this property but it is not the 5«/»»/«* 
in the sense that there exist circuits with fewer number of circuit elements that are also endowed with this 
property. In fact, the circuit reported in [35] is one (among several others) such circuit and is therefore said 
to be canonical because no circuit having fewer number of elements has this property 

Among several equivalent canonical Chua's circuits, Dr. Madan, guest editor of 2 recent special issues 
on Chua s circuit [36, 37], has chosen the globally unfolded Chua's circuit [26] - obtained by adding a linear 
reststorR0 in series with the inductor - as the standard bearer of the name canonical, and had named it 
Chua s Oscillator to distinguish it from the original Chua's circuit. Dr. Madan chose this augmented circuit 
as canonical not only because Chua's oscillator reduces to Chua's Circuit upon setting the linear resistor 
Äo to zero but also because all recent publications on canonical Chua's circuit are already based on the 
Chuaj8 oscillator [24, 26, 38, 39, 40, 41, 42, 43, 44, 45]. From the. theoretical point-of-view, the significance of 
Chua s oscillator is fully analyzed in [26, 44]. Here, we simply paraphrase the main result succintly as follows- 

The content of this paper is due almost exclusively to Tokunaga. 
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Significance of Chua's Oscillator 
Chua's oscillator is siruciurely the simplest and dynamically the most complex mem- 

ber of the Chua's circuit family. 

It is the simplest circuit because no circuit with fewer number of circuit elements is as general. It is the 
most complex because no circuit belonging to the Chua's circuit family exhibits more complex dynamics. 

The significance of the Chua's oscillator transcends beyond nonlinear circuit theory. Indeed, there are 
many publications involving systems which are not circuits but which are also described by Equations (l)-(4) 
e.g., [46, 47, 48, 49, 50] 

No longer is it necessary for beginners in nonlinear dynamics to study all of these seemingly unrelated 
papers, along with their diverse notations and jargons. Instead, since nothing new can be learned that is 
not already included as special cases of the dynamics endowed upon Chua's oscillator, the researchers need 
only obtain an in-depth understanding of the nonlinear dynamics and bifurcation phenomena of this single 
circuit. In short, Chua's oscillator has unified the nonlinear dynamics of the entire 21-parameter family 
of piecewise-linear vector fields into a single system defined by (l)-(4). Moreover, the dynamics of many 
non-piecewise-linear systems can also be understood and explained by the dynamics of Chua's oscillator, as 
illustrated in [51, 52, 53]. 

5    SOME RECENT PHENOMENA OBSERVED FROM 
CHUA'S CIRCUIT 

In addition to the various standard routes to chaos (e.g., period doubling, torus breakdown) that are now 
well known for Chua's circuit, several interesting new phenomena have been discovered recently which we 
now briefly summarized. 

5.1 Stochastic Resonance 

It is well known that when two spiral Chua's attractors (similar in structure to the Rossler attractor) collide 
in a crisis biburcation, they merge into a single attractor; namely, the double-scroll Chua's attractor. For 
a narrow "band" along this bifurcation boundary in the a - ß parameter space, a chaos-chaos type of 
intermittency phenomena is observed. If a small sinusoidal signal with the appropriate frequency close to 
some "natural frequency" of the circuit is applied, a significantly amplified version of this signal is observed. 
The power gain seems to come at the expense of the energy previously distributed over the entire chaotic 
power spectrum. Moreover, under certain conditions, the signal-to-noise ratio of the amplified output signal 
is observed to be greater than the signal-to-noise ratio of the input signal - a novel phenomenon which can 
not be achieved with a linear amplifier. This phenomenon is called stochastic resonance [54], and is currently 
an active research area being pursued by many scientists, specially physicists and biologists. 

5.2 Signal Amplification via Chaos 

Apart from the stochastic resonance phenomenon described above, another mechanism for achieving voltage 
gain (up to 50 dB has been demonstrated experimentally) from Chua's circuit has been discovered recently 
[55]. The mechanism of this voltage gain is different from that of stochastic, resonance because the effect is 
observed even when Chua's circuit is operating in a spiral attractor regime far from the bifurcation boundary 
where stochastic resonance takes place. 
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5.3 1// Noise Phenomenon 

In addition to the chaos-chaos type intermittency one observes near the bifurcation boundary from a spiral 
Chua's attractor regime to a double-scroll Chua's attractor regime, extensive numerical simulations of Chua's 
circuit have shown that the associated power spectrum is characterized by a j divergence in the low-frequency 

region. This phenomenon can be used as a j noise generator, and can lead to a better understanding of the 
ubiquitous yet still poorly understood j phenomenon. 

5.4 Antimonotonicity phenomenon 

Yorke and his co-workers have predicted that antimonotonicity- i.e., inevitable reversal of period - doubling 
cascades, is a fundmental phenomenon for a large class of nonlinear systems [56]. Recent experiments on 
Chua's circuit have provided the first experimental confirmation of this phenomenon [57]. 

5.5 Period-Adding Phenomenon 

Most readers of chaos are familiar with the period-doubling phenomenon, where the oscillation period doubles 
at a geometric rate in accordance with the Feigenbaum number. Another phenomenon rarely observed in 
autonomous system is that of period adding, where the oscillation period increases by consecutive integers, 
while interspersed between chaotic regimes. Such a phenomenon has been observed in Chua's oscillator [58] 
and is in fact the basis for designing a bassoon-like musical instrument [45]. The same phenomenon has been 
observed and rigorously proved by Sharkovsky et al for the Chua's circuit characterized by a 1-D ma]) with 
a time delay [17]. 

5.6 Autowave Phenomenon 

A 1-dimensional chain or 2-dimensional array of identical Chua's circuits with resistive couplings has been 
shown to support stable autowave solutions for a wide range of coupling resistances [16, 22, 23, 59]. Below a 
certain diffusion coefficient, however, the autowave suddenly ceases to propagate. This propagation failure 
mechanism is similar to that observed in diseased nerve fibers, such as multiple sclerosis. Such a phenomenon 
has baffled biologist for many years because no such phenomenon has been observed from simulations of the 
various associated nonlinear partial differential equation models. Indeed, it can be proved mathematically 
that no such propagation phenomenon can occur in any ]-dimensional active medium modeled by a partial 
differential equation. Consequently, our observation of this phenomenon from a chain of Chua's circuits 
implies that a "discrete" chain of Chua's circuits(described by ordinary differential equations) is richer in 
dynamics, and that it can predict certain phenomenon which its limiting partial differential equation model 
can not [23]. 

5.7 Spiral Wave Phenomenon 

Spiral waves are special cases of autowaves that are widely observed in active chemical media - e.g., the 
classic Belousov-Zhabotinski reaction. Such media are modeled by nonlinear reaction - diffusion partial 
differential equations. It has been shown recently that an array of Chua's oscillators can also support a 
stable spiral wave solution [24], an example of which is shown in Fig. 2 . This is the first spiral wave 
phenomenon that has been observed in Electrical Engineering, and could lead to novel applications. 

5.8 Universality and Self-Similarity 

The observation that the a - ß plane bifurcation patterns contain self-similar features resembling that of 
"swallow tails" has been pointed out in [25] and [60] . A recent in-depth analysis of this phenomenon using 
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Figure 2: Example of a spiral wave generated from a 100 x 100 array of identical Chua's oscillator. 
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renormalization group analysis [61] has resulted in a definitive characterization of the geometry of this self- 
similarity phenomenon. In particular, the complex fine structure in the topography of regions of different 
dynamical behavior near the onset of chaos has been investigated in a 2-parameter 1-D map which describes 
approximately the dynamics of Chua's circuit. Besides the typical piecewise-smooth Feigenbaum critical 
lines, the boundary of chaos contains an infinite set of codimension-two critical points, which may be coded 
by itineraries on a binary tree. In regions nearby critical points having periodic codes, the infinite topography 
of the parameter plane reveals a property of self-similarity. Moreover, the well-known "Feigenbaum number" 
for 1-parameter 1-D maps has been generalized to two universal numbers for 2-parameter 1-D maps [61] . 

6    RECENT ANALYTICAL INVESTIGATIONS OF CHUA'S 
CIRCUIT 

Many deep mathematical analysis, and their generalizations, of Chua's circuit have been published during 
the past two years. We now summarized some of these analytical results: 

6.1 The double-hook attractor 

For certain parameters in the a - ß plane, all eigenvalues associated with the origin of Chua's equation are 
real numbers. The strange attractor associated with this chaotic, regime is called a double-hook attractor in 
[62]. An in-depth analytical study of this regime has been made by Silva [62, 63, 64]. 

6.2 One-dimensional Chua's map 

The original Chua's 1-D map presented in [25] has been extensively investigated numerically [65, 66] and 
analytically [17, 12, 67. 68]. Using the generalized framework developed by Brown [12], Misiurewicz investi- 
gated maps of the real line into itself obtained from the modified Chua's equation [67]. For a large range of 
parameters, Misiurewicz found the existence of invariant intervals as well as invariant sub-intervals on which 
the associated Chua's circuit is ummodal and resembles the well-known logistic map. Moreover, this map 
is found to have a negative Schwarzian derivative, implying the existence of at most one attracting period 
orbit. Moreover, Misiurewicz proved that there is a set of parameters of positive measure for which chaos 
occurs. 

6.3 Universality in cycles of chaotic intervals 

The order of the bifurcation sequence in piecewise-linear maps is different from that of smooth maps. In 
the case of the piecewise-linear map associated with the Chua's circuit with time - delay [17], Maistrenko 
et al have found that when a period-n point cycle loses its stability, a "rigid" period-doubling bifurcation 
occurs which leads to the emergence of not point cycles but interval cycles of double period having chaotic 
trajectories [69]. This is followed by an inverse period-doubling bifurcation, i.e., interval cycles of period 2n 
are merged pairwise, giving birth to a period - n interval cycle. Finally, in the next bifurcation all intervals 
of interval cycles will merge into the. full interval cycle / = [0,1]. In this case, there are no subintervals of 
I which recur periodically under the map of f. Among many elegant mathematical properties concerning 
interval cycles, Maistrenko et al derived two universal constants analytically, and in explicit form [69]. 

6.4 Global Stability and Instability of Chua's Oscillator 

Recently, Leonov et al investigated Chua's oscillators as a feedback control system and derived frequency- 
domain criterion for global stability and instability [70]. This analytical study has led to a new version of 
the generalized Kalman's conjecture. 
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6.5 The Double-Horseshoe Theorem 

Using a new geometric model of Chua's circuit, Belykh and Chua have presented an analytical study of a new 
type of strange attractors generated by an odd-symmetric three-dimensional orbit at the origin This type 
of attract« is intimately related to the double-scroll Chua's attractor. They have proved rigorously that 
the chaotic nature of this attractor is different from that of a Lorenz-type attractor, or a quasi-attractor 
In particular, this attractor has the geometry of a double horseshoe. For certain nonempty intervals of 
parameters, this strange attractor has no stable orbits. Unlike other known attractors, the double horseshoe 
attractor contains not only a Cantor set structure of hyperbolic, points typical of horseshoe maps, but unstable 
points (i.e., stable in reverse time) as well. This inplies that the points from the stable manifolds of the 
hyperbolic points must necessarily attract the unstable, points. 

6.6 Synchronization, Trigger Wave, and Spatial Chaos 

Several criteria for synchronizing two mutually-coupled Chua's circuits operating under chaotic regimes are 
derived in [71]. For a chain of Chua's oscillators, analytical results couched in terms of a moving coordinate 
system have been derived which guarantee the existence of hetcroclinic orbits [72]. This analytical study is 
highly significant because it proves, among other things, the presence of a trigger wave along the chain. The 
proof of the existence of heteroclinic orbits represents a major breakthrough since it is generally extremely 
difficult if not impossible to derive such analytical results. In addition to trigger waves, this investigation 
also proves the existence of Spatial Chaos along a finite chain of Chua's oscillators. 

6.7 Fine Structure of the Double-scroll Chua's Attractors 

Using the theory of confinors [73, 74, 75], Lozi and Ushiki have developed an analytical approach, in sharp 
contrast to numerical integration methods, for examing the fine features of Chua's attractors. The'keystone 
of the original definition of confinors is that very often, changes in the shape of experimentally observed 
signals are more significant in characterizing the phase portrait, than any topological change between chaotic 
attractors. The theory of confinor takes into account the "shape" of the signals, and is capable of modeling 
both transient and asymptotic regimes. Applying this unique approach to Chua's equation, Lozi and Ushiki 
had discovered the co-existence of 3 distinct double-scroll Chua's attractors in close proximity of each other 
for the same, value of parameters [75]. Without a precise knowledge of initial conditions, which only the 
confinor theory can supply, it would be virtually impossible to pick these 3 attractors apart. This explains 
why in spite of the rather extensive numerical and experimental works of many researchers on Chua's circuit 
over the last 10 years, no one has ever observed the simultaneous existence of 3 chaotic attractors. 

In addition to ths discovery, Lozi and Ushiki have also provided the most precise characterizations of 
the structure of the double-scroll Chua's attractors via an exact 2-dimensional Poincare map. Moreover, 
they have discovered some very unusual bifurcation phenomena which are distinct from the usual period- 
doubling cascades [74]. Since these results are all highly original and robust, they can be used as a guide for 
characterizing strange attractors of other chaotic, systems, thereby demonstrating yet another application of 
Chua's Circuit as a universal paradigm for chaos. 

7    SOME RECENT APPLICATIONS OF CHAOS FROM 
CHUA'S CIRCUIT 

During the last 20 years, many researches have begun to control and exploit chaos from various dynamical 
systems for novel applications. In this final section, we summarize some recent results in this area which 
have been applied to Chua's circuit. 
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7.1 Controlling chaos in Chua's circuit 

To control chaos in Chua's circuit means to influence its normal chaotic, regime and transform it into some 
"desired" dynamic operation, such as a fixed point, or a periodic orbit. Many different techniques have been 
developed successfully to control chaos in Chua's circuit [76, 77, 78, 79, 80, 14, 81, 82, 83, 84, 85]. Some of 
the control techniques involve varying the circuit parameters, stabilizing some unstable orbits embedded in 
a strange attractor, absorbing the chaotic, dynamics by a controlling circuit, etc. Since different controlling 
techniques have their advantages and drawbacks, the best approach will depend on specific applications. 

7.2 Secure Communication via Chua's circuit 

One of the most intriguing applications of chaos is to "hide" the small information - bearing signal within 
a much larger chaotic signal. Such a signal cannot be recovered unless the receiver is tuned to the exact 
circuit parameters - the decoding key - of the transmitter (Chua's circuit). Several secure communication 
systems based on Chua's circuit have been proposed [86, 87, 88, 89, 90]. So far, the approaches proposed in 
[89, 90] appear to be the most secure and accurate. 

7.3 Trajectory Recognition via Array of Chua's Circuits 

Recently, Altman uses the center manifold and normal form theory to relate the local behavior of Chua's 
circuit, to some input trajectory to be recognized [91]. This mathematical problem arises in the recognition 
of hand gestures where, the hand position as a function of time is used to drive Chua's circuit to an attracting 
surface. Since Chua's circuit is known to undergo a series of bifurcations from fixed points, to limit cycles, to 
a cascade of period-doubling oscillations leading to chaotic oscillations in the vicinity of the center manifold 
surface, the rapid entrainment of the chaotic system to an external signal having a trajectory near the 
center manifold surface provides the basic mechanism for trajectory recognition. The recognition of many 
trajectories can be achieved by using a 2-dimensional array of Chua's circuits. In this case, the variation of 
responses to the common input trajectory creates a spatial pattern which can be used to recognize the input 
trajectory. The above approach to trajectory recognition is both novel and fascinating. 

7.4 Handwritten Character Recognition Using Chua's Oscillator 

A neural network architecture and learning algorithm for associative memory storage of analog patterns, 
continuous sequences, and chaotic attractors via a network of Chua's oscillators has recently been designed 
by Baird and Hirsch [92]. Their design is used in the. application to the problem of real-time handwritten digit 
recognition. They have demonstrated that several of the attractors from Chua's oscillator have out-performed 
the previously studied Lorenz attractor system in terms of both accuracy and speed of convergence. 

7.5 Applications of Chua's Circuit to Music 

Perhaps the most fascinating application to date of Chua's circuit and its generalizations is in music. Re- 
cently, Mayer-Kress et al [45] have discovered that in the a - ß - 7 parameter space of Chua's Oscillator, 
there is a manifold which gives rise to novel musical sounds. For example, a point on this manifold gives rise 
to a consecutive sequence of bassoon-like musical tones. This research project is presently conducted by a 
multidisciplinary team at the university of Illinois, Urbana, and consists of Professors G. Mayer-Kress and A. 
Hubler from the Physics department, Robin Bargar, project leader of sonification research and development 
at the National Center for supercomputing Applications, and Insook Choi, a doctoral candidate in musical 
arts. Their music-making method may herald an attractive alternative to the time-consuming pre-mixing of 
the audio frequencies, an essential step for electronic synthesizers of musical sounds. By varying the circuit 
element values from Chua's Oscillator, frequencies and overtones characteristic of musical instruments can be 
easily generated without the necessity of separately programming each frequency. Already these researchers 
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have generated unharmonious sound and created music in overtones never heard before because no instru- 
ment exists that can make them. In fact by exploiting these unusual musical tones, choi has composed some 
truly avant-garde music via Chua's oscillator for a recent concert at Expo'93 in Seoul and Taeieoun Korea 
in October 1993. '     ' 

Independent of the research group from the university of Illinois, Professor Xavier Rodet from the Institute 
de Recherche et de coordination Acoustique/Musique (IRCAM) in Paris, and the university of Paris has used 
a time-delay version of Chua's circuit, not only to generate musical sounds, but also as a unified model of an 
interesting class of musical instruments, including those (e.g., clarinet) consisting of a massless reed coupled 
to a passive linear system. The surprisingly rich and novel family of periodic and chaotic musical sounds 
generated by Rodet has already enriched the sound synthesis repertoire of tools for researchers in computer 
music [93]. 

8    CONCLUDING REMARKS 

Although first conceived only 10 years ago, more than 150 papers, two special issues (Journal of Circuits, 
Systems, and Computers, vol.3, no.l and no.2, 1993), and a book (Edited by R. N. Madan, World Scientific! 
1042 pages, 1993) have been published on all aspects of bifurcation and chaos of Chua's Circuit and its recent 
global unfolding, the Chua's oscillator. Yet, our understanding of this simplest among all chaotic circuits 
is still far from complete. Indeed, what has been published on Chua's circuit represents only the tip of an 
iceberg [94], specially when viewed from the broader perspective of an array of driven Chua's oscillators, 
as well as other higher-dimensional generalizations of Chua's circuit. This yet uncharted territory will no 
doubt be systematically explored and exploited for novel applications in the next decade. 
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ear Abstract 
By replacing the parallel LC "resonator" in Chua's circuit by a lossless transmission line 

terminated by a short circuit, we obtain a "time-delayed Chua's circuit" whose time evolution is 
described hy a Pair °f /"*«r P^iial differential equations with a nonlinear boundary condition 

far If we neglect the capacitance across the Chua's diode, described by a non-symmetric piecewise- 
hnear vR - iR characteristic, the resulting idealized 'time-delayed Chua's circuit is described 
exactly by a scalar nonlinear difference equation with continuous time, which makes it possible 

',le to characterize its associated nonlinear dynamics and spatial chaotic phenomena. 
'15, From a mathematical view point, circuits described by ordinary differential equations can 

generate only temporal chaos, while the time-delayed Chua's circuit can generate spatial-temporal 
chaos.   Except for stepwise periodic oscillations, the typical solutions of the idealized time- 

Is. delayed Chua's circuit consist of either weak turbulence, or strong turbulence, which are examples 
of "ideal" (or "dry") turbulence.   In both cases, we can observe infinite processes of spatial- 
temporal coherent formations, 

of Under weak turbulence, the graphs of the solution tend to limit sets which are fractals with a 
is, Hausdorff dimension between 1 and 2, and is therefore larger than the topological diiriension(of 

sets). 
Under strong turbulence, the "limit" oscillations are oscillations whose amplitudes are random 

functions. This means that the attrartor of the idealized time-delayed Chua's circuit already 
contains random functions, and spatial self-stochasticity phenomenon can be observed. 

1     GENERALIZING CHUA'S CIRCUIT TO INFINITE DIMEN- 
SIONS 

The original Chua's circuit [lj consists of a linear passive resonator (parallel  LC tune circuit) 
ir connected across a nonlinear active circuit composed of a Chua's diode [2], a linear capacitor Cu 

and a linear resistor R, as shown in Fig. 1. 
In most publications, [3] Chua's diode is characterized by a continuous odd-symmetric 3-segment 

"e piecewise-linear function.   In this paper, we consider an "infinite-dimensional" generalization of 
Chua's circuit, obtained by replacing the LC resonant circuit by a lossless transmission line of 

£ length /, terminated on its left (i = 0) by a short circuit, as shown in Fig. 2(a). 
j Since the effect of the transmission line is to provide a "time delay" in the dynamics of Chua's 

circuit, we will henceforth call this circuit the "time-delayed Chua's circuit". Our main objective 
in this paper is to investigate the asymptotic behaviors of v(x,t) and i{x,t) at all points along the 

r transmission line (0 < x < I). Since the most interesting and complex "turbulent-like" dynamical 
,g behaviors occurs when the vR - iR characteristic of Chua's diode is not symmetric with respect 
c t0 tne origin, we have chosen the 3-segment piecewise-linear function shown in Fig.  2(b), where 

iR = G(vR - E). 

2    TIME EVOLUTION EQUATIONS 

The lossless transmission line in Fig.2(a) is defined by the following linear partial differentia] equa- 
tions: 
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Figure 1: Decomposition of Chua's circuit into a passive linear sub-circuit on the left and an active 
nonlinear subcircuit on the right. 

i(0,t)       i(x,t) i(U) 

(b) 

Si6 to U a
Th3eqp

thne-fayed ^ *"*•  (b) The VR - iR characteristic of Chua's diode is 
chosen to be a 3-segment P1ecewISe-hnear function, symmetric (m., = mi) with respect to ^ 
point vR = E > 0. 
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dv(x,t)   _       rdi(x,t) 
~~dx~ ~ ~L~dT (1) 

___  _  _c___ (2) 

where L and C denote the inductance and capacitance per unit length of the transmission line. 
The boundary conditions are given respectively at x = 0, and x = I by: 

«(0,0   =   0 (3) 

i(/,t)  =  GK/,0-^-^(M)) + CIW/'°;^'(M)) (4) 

where G(-) is defined by 

<?(«)   =    { moU'   , , |1 i ! (5) v  y [ j?i]U — (77ii - mojsgii u,     \u\ > 1 ; 

and u = VR — E. 

The general solution of Eqs.(l)-(2) has the form 

v(x,t)   =    Q(<-i)-a(i + ^) (6) 

*'(*,*)    =    4Kt-^) + a(i + ^)] (7) 

where // = vTC is the velocity of the incident and reflected waves, and Z = \ljx is the characteristic 
impedance of the transmission hne. 

Note that Eqs.(l)-(4) constitute a system of linear partial differential equations with a nonlinear 
boundary condition (at x = I). Since this problem is presently analytically intractable, we will 
investigate here only the limiting case where the capacitance C\ in Fig. 2(a) is replaced by an open 
circuit, i.e., C\ —* 0. Under this assumption, we can substitute Eqs.(6)-(7) into Eq.(4) with C\ = 
0,.and introduce the new variables 

to obtain the following difference equation 

ß(r+l)   =   /(/3(r)) (9) 

The symbol /(•) denotes a piecewise-linear (single-valued or multivalued) function defined by 

f(ß)   =   Akß-Bk, where ße Ik,       k = 0,±l (10) 
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Ak =     -1 + ?* 

Bk ■ ?h*0-3] 
Qk 

2Z 
r 

lt + R + Z 

77l_i =   "*+i 

/o =    {ß: 
'-! <*} 

on 

4i    =    {/J:±(/i-|)>(5} 

It follows from the above derivations that the time evolution of the "time-delayed Chua's circuit 

2 IK P ?«? g°Verned,by a sc^r nonlinear difference equation with a continuous argument- 
name y, Eq.(9)   The quahtat>ve behavior of this equation is determined by the properties of the 
one-chmcnsional(l-T)) map ' ' u'e 

(12) 0 f(ß) 
where /(•) is defined in Eq.(lO). 

3    ASYMPTOTIC BEHAVIORS 

To describe the behaviors of the solutions of the "time-delayed Chua's circuit with C\ = 0 it will 
be convenient for us to use the language of dynamical systems theory. Let X = [0 I) and let C(X) 
denote the space of all smooth or continuous functions '     J (    ' 

{(v(x),i(x))   :   0<x</} 
(13) 

with some appropriate topology, e.g., uniform metric. The solution vt(x) = v(x /) and i,(x) - 
ixl) of Eqs^(lH4)(assuming <7, = 0) with initial condition vo{x) = ,(J,0) a d' (r =fj Ö) 
defines an infimtc-dimensional dynamical system W        [,) 

^W1).^))    ~    (vt(x),it(x)) (14) 

For the class of problems defined above, it is the usual situation that the trajectories T'Uv   i 1 

tv;::sr;;::: a^rauph?f sprC(n rthe dynamicai ■"*»<"> st^Ää tie phase space C(*)(at least for the reason that the Lipschitz constants can grow to oo)    In 
oi  e   to describe the asymptotic (as t -. oo) behavior of the infinite-dimensional system (H) it 

ces ary for us to complete the phase space C(*)with the help of a suitable metric Fo «weak» 
turbulent oscillations to be described below, it is sufficient to use the HausdorffVtZ iorte 
unc >on graphs. For "strong" turbulent escalations, however, we need to introduce some spedalfv 

TcoX: r wUhSth    " th:-°ne f ^ in-[4] T1Vbg * «^-dimensional JoÜtTtSSS 
naZer.TToZlZX        ^^ -fl°n      aVe-agmg- We WU1 henCef0rth aSSume that ™r Phase space 
to consider Whth   " C°7        ^T ™ S°™ ^^ "^ h the f°llowinS> it will be u eful consider both the one-dimenstonal system (12) and the infinite-dimensional system (14) simul- 
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taneously. 

Case 1. R> --f- - Z. 

In this case, the behavior of both dynamical systems are simple: In the one-dimensional system 
there exists an attracting fixed point, or attracting cycle, which attracts all, or almost all trajecto- 
ries. Correspondingly, in the infinite-dimensional system, the. oscillations either vanish as t —► oo, 
or tend to a periodic solution, as in Witt [5] and Nagumo and Shimura [6]. 

Case 2. R<--±--Z. 

In this case, it is possible to observe chaotic oscillations in the infinite-dimensional system. 
The system can also have oscillations which vanish as t —> oo, as well as stable stepwisc periodic 
oscillations but only with period 2 (for example, when R — 0, or R. = 0). In addition, the infinite- 
dimensional system can also have a more complicated asymptotically-stable periodic solution of 
period 4. The corresponding solutions for the one-dimensional system are as follows: the 1-D map 
f has an attracting fixed point, an attracting cycle of period 2, or an attracting cycle of period 4, 
which occurs after a period-doubling bifurcation. 

If we exclude the above classes of solutions, where it is possible to derive exact estimates, then 
only two other types of asymptotic behaviors can exist for the infinite-dimensional system (14); 
namely, weak turbulent oscillations, or strong turbulent oscillations [7, 8]. 

The simpler case of weak turbulence corresponds to the case where the 1-D map /(•) has an 
attracting cycle which attracts all trajectories except those which belong to the repeller, which is 
a Cantor set K consisting of unstable trajectories. It has a zero Lebesque measure (mes K = 0) 
but a positive Hausdorff dimension (dimu > 0). If "p" is the period of a stable cycle of the onc- 
dimcnsional system, then almost every trajectory of the infinite-dimensional system(i.e., almost all 
solutions of Eqs.(l)-(4) with C\ = 0) will be asymptotically periodic with period p, and its w-limit 
set is a periodic trajectory in the completed phase space. Each point of the limit trajectory is a 
multivalued (on some Cantor set) function graph which is a fractal set with a Hausdorff dimension 
diniH > 1. The attractor of the infinite-dimensional system in this case consists of such periodic 
orbits of the same period. 

The most complicated case of strong turbulence corresponds to the situation where the one- 
dimensional map f(-) has no attracting cycles and its attractor consists of one or several intervals 
where there is a smooth invariant measure p.. In this case, if we use the special metric defined in 
[4], then the following asymptotic behavior applies: 

The w-limit set of almost every trajectory of the infinite-dimensional systeni(14) is a periodic 
trajectory where each point on the trajectory is a random function. The distribution of the values of 
such a random function for each x is determined by the measure p. Hence, in this case, the attractor 
of the infinite-dimensional system consists of random functions, which form periodic orbits. This 
phenomenon corresponds to a very strong "spatial chaos". 
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Abstract 

In this paper we summarize the results of [1] where we demonstrated how to dynamically 
synthesize Chua circuit phenomena using a two-dimensional autonomous flow as a component in 
a three-dimensional autonomous flow in such a way that the resulting equations will have double 
scroll attractors similar to those observed experimentally in Chua's circuit. The value of this 
generalization is that: (1) it provides a building block approach to the construction of chaotic 
circuits from simpler two-dimensional components which are not chaotic by themselves. In so 
doing, it provides an insight into how chaotic systems can be built up from simple non-chaotic 
parts; (2) it illustrates a precise relationship between three-dimensional flows and one-dimensional 
maps. 

Our constructions also show how to dynamically synthesize attractors similar to the Lorenz 
and Rössler attractors using only piecewise linear vector fields. As a result we have a method of 
producing the Lorenz and Rössler dynamics in a circuit without the use of multipliers. These results 
suggests that the generalized Chua equations are in some sense fundamental in that the dynamics 
of the three most important autonomous three-dimensional differential equations producing chaos 
are seen as variations of a single class of equations whose nonlinearities are generalizations of the 
Chua diode. 

Introduction 

In [1] we presented two generalizations of Chua's equations, referred to as type-I and 
type-II. Refer to that paper for details, derivations, and definitions. From type-I we derive 
the single scroll and one-dimensional maps and from type-II we derive Lorenz, Rössler, and 
vortex equations [3]. 

Type-I Equations 

The dimensionless Chua equations can be recast into the form: 

m 
—a a     0.0 ( x \ ( /(*) \ 

1.0 -1.0   1.0 y —   a 0.0 

0.0 -ß    0.0 _ \ z ) ^ o.o ) 

(1) 

A more compact expression for f(x) is given by bx + 0.5(a - b)(\x + 1.0| - \x - 1.0|). 
Using this expression Eq. (1) simplifies to: 
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x    =    < 
' A(a,/?,6)(x-k)   forx>l 

A(a,ß,a)x for|x|  < 1 
. A(a,/3,fe)(x + k)   forx<-l 

(2) 

(3) 

where, 

By deleting the middle region and changing coordinates Eq.(2) is transformed to: 

/ x(t) \ T 0.0   -9.876       0.0     1 / x - asgn(u) \ 

y{t)       =       1.0    0.334        0.0 y-bsgn(u) 

, z(t) } L 0-0      0.0      -3.9055 \\z- csgn(u) , 

where a = 0.4455, b = -0.05445, c = 0.984, and u = x - 1.287y + z. 

The single scroll 

fi J!eJ°W "Se 'hefaCt J",at.th!,VeCl0r fidd defined by ^ <3) is *" °dd *>™™tric vector 
in Eo m 'L,nVamf U    nr ', C ftP m? * - -*■ This all0WS us t0 ™w "* d°-Me scroll 

0.0   -9.876 

1.0    0.334 

0.0 

0.0 

0.0       0.0       -3.9055 J { z-c j 

( x — a \ 

y-b (") 

to continue the orbit. Note that the value of a, 5, and c are the same as in Eq (3) 

bv fr1,8        amT',S '° /r°"'"!'Eq(3) int° the f0rm FT where the ™P T is determined 
by selecting an initial condition x„, integrating the above linear ODE until the sohtion 
rt.rt.ng at   his initial condition reaches the boundary determined by the function tn^ and usmg th,   fi    ,       d as the value of We contjnM      » ■VW 

or ttpa™:; O'DE 
th

TL ff T^on an„d using this flipped ™*» -th* WM «JE or the above ODE. The effect of doing this is exactly the same as the process used in the 
tv,,st and^flip maps of [2h In this way we are able to plot the entire double scroll of E„ 3) 

one of the fix dn ? t"      "f^ * ^ fU"Cti°n " — 13S* + 2 = »•» «™»>' «S one of the fixed points, just as happens in using the twist-and-flip map 

cant^rrsr'rout thest.fe manif°,d direction in ih* ^^^ «*»««. »e 
e":al™ tead   "tt"""       ^^ '^^ * "**** "* """^ 

0.0   -9.876   0.0 

1.0    0.334    0.0 

0.0      0.0 

f x — asgn(u) ^ 

y-bsgn(u) 

\ 2-csgn(u) ) 

(5) 
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In this equation the entry 3.9055 in Eq.(3) has been replaced by 7. 
The effect of increasing 7 is to flatten the scroll onto a pair of parallel planes. If we 

combine this with the folding operation, we get the single scroll obtained from using Eq.(5) 
with u > 0 combined with the flip. By letting 7 -♦ 00, the three-dimensional single scroll 
becomes a two-dimensional single scroll and can be studied in the plane. 

The linear part of the two-dimensional single scroll is given by: 

0.0   -9.876 

1.0    0.334 

x - 0.4455 

y + 0.054 
(6) 

The nonlinear part is supplied by the condition that we apply the flip map when sgn(x — 
1.287y + 0.984) < 0.0. 

Equation (6) is solved by 

x(t)   =   exp(at/2) [(x0 - a) cos(ut) -f C\ sSn(w<)] + a     . . 
y(l)   =   exp(at/2)[(yo-b)cos(üjt) + C2sin(ut)] + b      "' 

where 
Cx = -(0.5a(xo - a) + ß(y0 - b))/u 
C2 = -((xo - a) + 0.5(t/o - b))/u 

and a = 0.334, ß = 9.876, u = yjß - (0.5a)2, a, b are as in Eq.(3). 

One-dimensional maps 

The two-dimensional single scroll maps the line y = (x - 0.984)/1.287 to its image under 
the flip map. For initial conditions of the form 0.3 < x < 0.85 and y = (x - 0.984)/1.287, a 
segment of this line is mapped into itself. There are two fixed points on this line segment: 
(0.54, -0.347) and (0.6876, -0.2293). We have now associated Eq.(2) with a one-dimensional 
map of a segment of the line y = (x — 0.984)/1.287 onto itself. 

/ i(i) \ 

m 
s    -1.0   0.0 

1.0 

0.0    0.0 

0.0 

-7 

f x — asgn(u) ^ 

y-6sgn(u) 

\,   z-sgn(u)   ) 

(8) 

where u = z — x, and a, b are any real constants, and 5 is a positive constant. 
This form of the type-I generalized Chua equations based on the analysis of [6] reveals 

the role of the two-dimensional flow that defines the local unstable manifold located at the 
fixed point (a,b,l). This two-dimensional flow is given by the equation: 

/ x(t) \ 

K y(0 / 

s     -1.0 

1.0      s 

x — a 

y-b 
(9) 

which defines a source which spirals outward from the critical point (a,b). If, as in [6], we use 
Eq.(9) as the two-dimensional single scroll, and in place of the line y = (x — 0.984)/1.287 we 
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use the line i = -las the line at which we apply the flip map, then we obtain a mapping of 
the line x = -1 onto itself and the entire analysis of Misiurewicz [6] is available for analyzing 
these equations. 5 

The single scroll construction can be carried out with any two-dimensional flow which 
always crosses the line x = 1 given an initial condition on the line x = -1. Such flows are 
easy to construct: 

EXAMPLE 

We use the following variation on Duffing's equation: 

x — sx + x3 = 0 

where s > 0 rather than s < 0 which usually defines Duffing's equation.   The result of 
choosing 3 positive is to make the critical point of the equation a source rather than a sink 

We rewrite Duffing's equation in a matrix form with the critical point translated to the 
point (a,6): 

0.0       -1.0 

_ (x - a)2      s 

x — a 

y -b 
(10) 

The type-I generalized Chua equation from which we may obtain a double scroll based 
on this variation on Duffing's equation is given by: 

m 
0    -1.0   0.0 

U      s      0.0 

0.0    0.0    -7 

^ x — asgn(u) ^ 

y - 6sgn(u) 

V   2-sgn(u)   j 

(11) 

where U = (x - asgn(u))2, and where a, 6,5, and u are the same as for Eq.(8). 
Figure 1 is the double scroll produced by Eq.(ll). In this figure a = -0.5, b = 0.5, s = 

0.17, 7 = 100.0. The initial conditions are (-1.0, 0.1, 1.0). I 

Type-H Equations 

In the previous section we have seen one method for extending the Chua equations 
based on using two-dimensional flows as building blocks of double scrolls. In this section we 
illustrate a generalization in an entirely different direction. 

The Rössler dynamics 

.   r^^035161 dynamics can be obtained from a type-II generalized Chua equation as shown 
m [lj. Following that analysis we obtain an equation of the form 

X = A(u)(X - F(u)) 
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Figure 1: Double scroll for the type-I generalized Chua equation using a Duffing oscillator 
as the two-dimensional vector field for the two-dimensional single scroll. 

where 

A   = 

0.0 

1.0 

-1.0 

0.398 

-1.0 

0.0 

(2 + A<7(u))/0.398     0.0     -2.0+ Xg(u)_ 

and u = x — y2. 
Using F(u) and A gives the desired type-II generalized Chua equation. 

The Lorenz dynamics 

We now illustrate that the Lorenz-like dynamics can be obtained from a type-II gener- 
alized Chua equation. The Lorenz equations are in [1]. 

We choose F as: 
x0 g(x) 

F(x)   = xQ g(x) 

27.0 

We now generate the nonlinear matrix A from the linear part of the vector field: 

-10.0 10.0 0.0 

A   = 1.0 -1.0      x0g(x) 

-x0g(x)   -x0g(x)     -2.7 

where, as in the Rössler map, g(x) is given by Eq.(7), and 7 = 3.0. Figure 2 is the attractor 
for this map. 
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Figure 2: An attractor with Lorenz-like dynamics from a type-II generalized Chua equation. 

In this case we were able to take u = x since the transition from one linear region to 
the other takes place when i = 0, that is the surface of transition is the y - z plane, and 
provides the natural surface for defining the Poincare map. 
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In addition to the double-scroll attractor originally found in the dynamics of Chua's circuit, 
we have discovered a double-hook attractor whose structure can be compared to that of 
the familiar Lorenz attractor. We have generalized the study of this attractor in Chua's 
circuit to a complete qualitative investigation of the double-hook family Ts of three-region, 
piecewise-linear, continuous vector fields on R3. Selected formal results and descriptions will 
be given concerning (1) the relationship between Ts, the corresponding double-scroll family 
already reported in [1], and Chua's circuit; (2) the simplification techniques used, which are 
generic to a piecewise-linear analysis; (3) the qualitative properties of the Poincare map that 
characterizes the dynamics of Fs; (4) the existence of "horseshoe chaos" for a member of JFS, 
proved using an extended heteroclinic version of Shil'nikov theory; and (5) the extension of 
our findings to the complementary dual double-hook family. 

1.  INTRODUCTION 

1.1. Chua's circuit and the double-scroll family 
Chua's circuit has become a paradigm for chaos in the field of nonlinear circuits because 

of its simplicity, its rich panorama of dynamical behavior, and the fact that it is amenable 
to a formal piecewise-linear analysis. The circuit, shown in Figure 1(a), is seen to be entirely 
linear except for the piecewise-linear resistor 71, whose typical odd-symmetric and locally 
active I-V characteristic is as in Figure 1(b).a The behavior of this circuit has been studied 
extensively on all fronts: numerically, experimentally, and analytically. The former two 
types of investigations, first done in [2], revealed the existence of a new double-scroll strange 
attractor, so-called because cross-sectional views displayed two rolled-up scrolls formed by 
the chaotic orbits. The investigators in [2] proceeded in [1] to perform a formal, qualitative 
piecewise-linear analysis of the general double-scroll vector field family, which includes the 
governing dynamical vector field for Chua's circuit (with appropriate circuit parameters) as 
a special case. This work included one of the few formal proofs of chaos that applied a 
piecewise-linear extension of Shil'nikov's basic theory [3]. 

1.2. The double-hook attractor and family 
Complementing the efforts outlined above, a numerical study conducted by this author 

discovered a double-hook strange attractor [see Figure 1(c)] in Chua's circuit as well, with 

"For practical implementations, 71 will have to be eventually passive—but for simulations of bounded chaotic 
£ behavior, this requirement can be avoided. 

» 

j 
f 
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V, 
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'«R. = 9( V 

Figure 1. Chua's circuit and its behavior, (a) Circuit topology with iL reversed to conform to 
the standard associated reference convention, (b) Piecewise-linear I-V characteristic for the 
nonlinear resistor H. (c) Computer simulation of the double-hook attractor in the vc1-vc2-

iL 
phase space. 

a characteristic cross-sectional structure made up of two "fishhooks" in tandem. Further 
numerical study and experimental verification can be found in [4], where the experimental 
work was conducted on an equivalent, but more easily realized circuit. In parallel with [1], an 
exhaustive qualitative treatise on the corresponding general double-hook vector field family 
Ts has been completed and published in [5]. An abridged form of these results is given in [6], 
from which the mainly descriptive discussion here is a further abstraction. Among the many 
findings formally demonstrated, a unique existence proof for the observed chaotic behavior 
was achieved using another piecewise-linear extension of Shil'nikov's basic work. 

The following formal definitions establish the foundation for our presentation: 

Definition 1.1 (Piecewise-linear vector field family Ts) Denote by T the family of 
continuous vector fields £ : R3 -> R3 such that: 

(1) £ is odd-symmetric about the origin, that is, £(-x) = -£(x) for all x e R3. 

(2) There are two distinct parallel planes U\ and U-\ that are reflection-symmetric about 
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the origin; these partition R3 into three regions 7^ (t = -1,0,1) that include their 
boundary planes. 

(3) In each region ftt- (i = -1,0,1), £ is affine, that is, 

D£(x) = Mi Vx € Hi, (1) 

where D£(x) is the derivative of £ atx, and M{ is a real constant 3x3 matrix. 

(4) The dynamical system 

x = £(x), x € R3 (2) 

possesses three distinct equilibrium points: one at the origin in int(7l0); one at P+ e 
int(7li); and one at P~ e mt(Tl-i), which is the reflection of P+ through the origin. 

(5) The matrix M0 has three real eigenvalues: r)0, /x0, and u0, with Tj0fi0 > 0 and T]0I/0 < 0. 
The matrices M±1 each have two complex conjugate eigenvalues aY ± jui (u>i > 0) and 
a real eigenvalue 71 ^ 0. 

(6) The eigenspaces associated with either the real or complex eigenvalues (the latter are 
spanned by the real and imaginary parts of the complex eigenvectors) at each equilibrium 
point are not parallel to U±\. 

Definition 1.2 (Double-hook family JFS) Let T be as in Definition 1.1.   The double- 
hook family Ts is the subfamily of T such that 

% < 0, no < 0, VQ > 0, a-i > 0, and 7! < 0. (3) 

Figure 2 illustrates the geometry of a typical vector field in T, where Er(P±) denotes 
the eigenlines passing through P± associated with the eigenvalue 71; E{(0) [E%(0)] is the 
eigenline (eigenplane) passing through 0 associated with the eigenvalues i/0 (770 and /x0), 
respectively; and EC(P±) denotes the eigenplane passing through P± associated with the 
eigenvalues ^ ± JWJ. In the case of TS} we see from (3) that Er(P±) and £J(0) will denote 
stable eigenspaces, while £C(P±) and E{(0) will constitute unstable ones. Recall that these 
eigenspaces are invariant to the flow of (2), thereby making the eigenplanes an impenetra- 
ble dynamical barrier that separates the phase space into orbit cells. (The other features 
presented in the figure will be discussed below.) In contrast to the double-scroll family, the 
equilibrium point for Ts at the origin is a saddle-stable node instead of a saddle-stable focus. 
This gives Ts an eigenvalue distribution (and stability) that matches the one for the Lorenz 
system in its chaotic regime of operation (see [7]); however, the symmetry of the outer two 
equilibria here is slightly different, in that their third coordinate switches sign—instead of 
remaining constant as it does in the Lorenz system. 

The first important result of this study was the formal demonstration that the governing 
dynamical vector field for Chua's circuit can be a member of T8 for the appropriate circuit 
parameters. Indeed, we have the following result: 

\ 
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Er(P+) 

Figure 2. Piecewise-linear geometry of a typical member £ e Ts. It is the complex dynamical 
interplay between the three regions Hi (i = -1,0,1), and their subdivision by the invariant 
eigenplanes, that leads to the complex behavior exhibited by the vector fields in Fs. 

i (4) 

Proposition 1.1 (Chua's circuit and Ts)   With the following circuit parameters,1 

m0 = -1.34 15, ml = -0.5U, Bp=lV 

Cx = -0.067 F, C2 = 0.302 F, R = i = 1.86 0, and 

LeJL:= (Li,Lu) := (-348.2664 mH,-149.2570286 ... mH) 

the governing vector field £ in (2) for Chua's circuit is a member offs. 

2. PIECEWISE-LINEAR ANALYSIS OF Ts 

In addition to the eigenspaces already identified in Figure 2, and the obvious intersections 
presented in the figure, several other features are worthy of note. The special lines Lf 
indicate the unique set of points where the vector field is parallel to U±i, and is thus an 
important boundary for the qualitative dynamics of Ts. The points F± on L% mark another 
important delineation by representing the unique point where the vector field is parallel 

The negativity of L and C in (4) indicates that they must be active elements. The equivalent double-hook 
circuit in [4] would have no such element values; only one negative linear resistor is needed in addition to 
the usual nonlinear one. 
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to L2. The sample orbits ö\ and Ö2 indicate the two basic types of qualitative behavior 
possible for Ts. Together with the crosshatched wedge-shaped region, these orbits serve as 
the basis for the Poincare map presented below. 

Before a full qualitative study of Ta could be undertaken, several simplifications and 
dynamical devices were used that are generic to any piecewise-linear analysis. The first 
feature to take advantage of here was the symmetry property (1) in Definition 1.1. This 
allowed the focus of our study to be restricted to regions %Q and H\ (which include the 
boundary planes U±i), since what occurs in region 72.—i is simply the reflection through 0 of 
what takes place in region TIQ. 

The next step was to break up Ta into equivalence classes (that is, subfamilies) whose 
members would be related by having qualitatively identical flows. This so-called linear 
equivalence was conveniently shown to be indicated by the equality of the following five 
normalized eigenvalue parameters, which are derived from the eigenvalues in (3): 

f,0:=— > 0, h := — < 0, al := — > 0, 71 := — < 0, and k := - — > 0.      (5) 
Ho Ho Ui Ui 7! 

With these linear equivalence classes defined, it was sufficient to study only one represen- 
tative member of each class to know the qualitative properties of the whole class. Such a 
member, which required a minimum number of parameters, was constructed; that member 
is formally termed the double-hook vector field. To be more specific, the double-hook system 
is given by (2), with (i) £ of the canonical form 

£(x) = Ax + (|z-l| + |z + l|)b, (6) 

where A € R3x3 and b e R3 are functions of the eigenvalue parameters in (5); and (ii) 
canonical regions TZi (i = —1,0,1) given by 

71-j = {x € R3 : z <  -1}, K0 = {x € R3 : \z\  <  1}, Hi = {x € R3 : z >  1}.       (7) 

The final simplification involved a time-scale change plus the linear and affine transfor- 
mations of regions TZQ and IZi, respectively, into new coordinate settings (denoted by TZ'Q 

and %[, respectively), so that the original vector field £ and its associated piecewise-linear 
geometry were further simplified. The details of this process can be found in [6]. In essence, 
the resulting canonical dynamical vector fields ^ (i = 0,1) are of a Jordan-form structure, 
with elements depending on the six parameters in (5) plus the parameter ao := TJQ — Ho 
when 770 = 1- In addition, an interconnection map © is constructed that links "R,'Q and IZ^ 
through their common boundary U\ in the original coordinates. All the transformed ge- 
ometry has been completely specified; the subsequent qualitative analysis focused on the 
following transformed dynamical systems: 

T* = fe) (f = 0,1); ro := -Hot, rx := uxt, (8) 

where x- represents the new coordinate system in region 7£-. 
The qualitative dynamical study of T8 was accomplished through the use of Poincare 

maps. These maps provide a convenient means to reduce the study of the 3-D flow produced 
by (8) to that of a 2-D mapping between appropriate planes. Returning to Figure 2, we can 
define an overall Poincare map whose cross section is the C/i-plane and whose domain V is 

f the closure of the open half-plane Uf, which is bounded by Li and denotes where £ points 
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down into region 7l0 (containing the crosshatched region shown). Note that both orbits O, 
and 02 denote recurrent behavior, as is needed to define this Poincare map. Indeed, this is 
clear for O,, while the portion of 02 in Tl-, has a symmetrically reflected portion in 71, that 
returns to Z>, as needed for recurrence. In the transformed coordinate setting, we denote the 
overall Poincare map by w, consisting of two half-maps: „0 describes the dynamics in 7l'n 

and Wl characterizes the behavior in 7lfv The half-map „Q further breaks down into two 
component half-maps: wJ (,r0 ) corresponds to the orbits in 7l0 that return (transfer) to U, 

iihllT-a *       °f thG dynamical barrier ^r(0)], as suggested by the first part of the orbit 
U\ (c?2) m Figure 2. 

A whole host of formal properties were discovered and demonstrated for the Poincare 
half-maps TT0 and nu many of which were only simulated for the double-scroll system in 
m.  In particular, the findings identified and described important geometrical features for 
S* identified and described transit-time properties for the flows of (8), and proved several 
qualitative properties for w± and Wl. Because of the limits on our current discussion, the 
nature and complexity of the results obtained, and our primary concern with the proof of 
chaos, we will again have to defer the interested reader to [6] for the details. However we 
will mention the important image properties that were found for the Poincare half-maps 
Both TT0 and TT0 were shown to have a hook image property, that is, images of appropriate 
lines m their domains had the qualitative shape of solution curves to a node-type equilibrium 
point in their ranges. This result rigorously justified the end-to-end fishhook structure found 
for the double-hook attractor in region 7l0.   Similarly, the half-map Wl possessed a spiral 
image property, in that the corresponding images were qualitatively like solution curves to 
a locus-type equilibrium point. 

Before the proof of chaos can be accomplished, the overall Poincare map * needs to be 
denned as follows: 

TT(X') := 0 o Ti-r1 o 0-1 o 7r0(x
/), x' e V := d(VQ

d), (9) 

where F0<Ms the transformation of u( and *? is the inverse of Wl.  Finally, an extension 

tei ,     I-   ,mnSt be defined t0 CaptUre a11 0f the double-hook system's behavior (see 
16] for this definition and [5] for all the qualitative features found for TT and TT

1
 including 

the relationship between their fixed points and the presence of homoclinic, heteroclinic, and 
periodic orbits m the original dynamics of JFS). 

3.  PROOF OF CHAOS USING HETEROCLINIC SHIL'NIKOV METHOD 

The basic theory of Shil'nikov provides one of the few analytical tools available to prove 
the existence of chaos in dynamical systems.* The original system studied by Shil'nikov 
consisted of a third-order autonomous one containing a saddle-focus-type equilibrium point 
xe (with characteristic eigenvalues 7 and ai^, where 7<r < 0 and Ul ± 0) and a trajectory 
* doubly asymptotic to it (that is, as time approaches ±00), called a homoclinic orbit. For 
our purposes here, a piecewise-linear extension of Shil'nikov's basic result is needed (based 
on p\) m this case we have a heteroclinic loop Hx connecting two distinct saddle-foci xei 

\i -1,2) made up of two heteroclinic orbits Hu each of which is time-asymptotic to both 
equilibria. Formally, we have the following result: 

CA tutorial overview of basic Shil'nikov theory and its extensions can be found in [8]. 
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Theorem 3.1 (Heteroclinic Shil'nikov method) Given the third-order autonomous sys- 
tem 

x = £(x), (10) 

where £ is a piecewise-C2 vector fieldd on R3. Let xe\ and xe2 be two distinct saddle-focus- 
type equilibrium points for (10) that do not lie on any boundary surface of any piece. Suppose 
that 

(i) the characteristic eigenvalues ofx^ satisfy the Shil'nikov inequality 

|7<| > N > 0 (i = l,2) (11) 

and the further constraint 
axa2 > 0 or 7x72 > 0; (12) 

and 

(ii) there is a heteroclinic loop Ht joining xei and xe2 that consists of two heteroclinic orbits 
Hi (i = 1,2), which are bounded away from any equilibria other than xei and are not 
tangent to any boundary surface of any piece. 

Then the system (10) will exhibit horseshoe chaos that is structurally stable, that is, it 
remains in existence for any sufficiently small C1 -perturbation £ of £.e 

Applying Theorem 3.1 to Ts, we arrive at the following concluding result: 

Theorem 3.2 (Horseshoe chaos in Ts) Given the governing vector field £ in (2) for 
Chua's circuit with parameters as in (4), except that the set JL is replaced with the subset' 

IL := (Li, lu) := (-348.2664 mH, -290.222 mH). (13) 

Then there exists a small subinterval of L in Ii over which the dynamics of 

x = £(x;L) (14) 

exhibits horseshoe chaos. 

A discussion of the proof of Theorem 3.2 is in order. By Proposition 1.1 and the definition 
of IL in (13), it follows that £ in (14) is a member of Ts for all L € IL- In addition, using the 
monotonicity and continuity properties of the normalized eignevalues in IL, one can show that 
£ in (14) satisfies conditions (11) and (12) for all I € h- To demonstrate the existence of the 
heteroclinic loop Hi, the map %~l mentioned above is shown to have a first-order fixed point 
in an appropriate portion of L[, the transformed version of L\ in K'0. This is accomplished 
through a series of formal lemmas that can be found in [6]. Figure 2 dynamically represents 
the essential proof process: the intersection of the inverse image of the point D with the 
plane U-i is monitored as the inductance L is varied in IL and is shown to cross the portion 
of L[ to the right of the point A~. Under further appropriate conditions on this intersection 
point, which is seen to lie in the stable (with respect to reverse time) eigenplane EC(P ), 
the orbit will spiral in on P~, forming a heteroclinic orbit between P+ and P . By odd 
symmetry, the reflection of this orbit through the origin is the other heteroclinic orbit, which 
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Figure 3. Computer simulation of a heteroclinic loop Hi in the dynamics of Chua's circuit 
(when the latter is also a member of Ts). This loop serves as the seed for the chaos exhib- 
ited in Figure 1(c), for example, and is analytically detected by means of the heteroclinic 
Shil'nikov method. 

completes the loop Hi. Figure 3 gives a simulation of the heteroclinic loop Hi found using a 
value of L near -313 mH, which is just a mere 2mH away from the value -315 mH used to 
obtain the double-hook attractor in Figure 1(c). We conjecture that all strange attractors 
for Ts share the presence of homoclinic orbits or heteroclinic loops in the dynamics of nearby 
systems. With this, Theorem 3.1 is satisfied and Theorem 3.2 is proved. 

4.  CONCLUSIONS 

We have presented a descriptive summary of an extensive qualitative study of the double- 
hook family Ts of three-region, continuous, and piecewise-linear vector fields on R3. Our 
accomplishments included (1) the proof that Chua's circuit can be a member of Ts for the ap- 
propriate circuit parameters, (2) the discovery of the double-hook attractor in the dynamics 
of Chua's circuit, (3) the development and administration of an exhaustive piecewise-linear 
analysis for J~3, and (4) the proof that Ts can exhibit chaos using an extension of Shil'nikov's 
basic results. In addition to all this, [5] shows that most of these results can be extended to 
the complementary dual double-hook family J^*, which is the subfamily of T in Definition 1.1, 
such that [compare with (3)] 

7?o > 0, no > 0, i/o < 0, al < 0, and 71 > 0. (15) 

By a piecewise-C2 vector field, we mean one that is C2 (twice differentiable with a continuous derivative) 
on regions whose union is R3. 
eHorseshoe chaos is a formal term that guarantees certain qualitative properties normally associated with 
chaos, such as the existence of an uncountable number of nonperiodic orbits. By a (^-perturbation, we 
essentially mean that ||£ - £|| and its first derivative are sufficiently small in a neighborhood containing Ht. 
'Equation (13) is a correction of (44) in [6, first printing]. 
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We also note that vector fields in the complement of Fs U r* in T cannot exhibit chaos 
through the Shil'nikov mechanism, since in this case am > 0 and so P± cannot be saddle- 
foci. The study of Ff would be a good future endeavor, since Chua's circuit is known to be 
a member of F* for a large set of parameter values. 
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Using the Chua's circuit, often referred to as a paradigmatic system for studying chaotic 
behavior, we present various techniques developed for controlling chaotic behavior. In par- 
ticular several methods for suppressing chaotic oscillations and influencing the system in 
such a way as to achieve a desired type of goal dynamics (typically a fixed point or peri- 
odic orbit) are considered. We describe parameter variation technique, chaotic oscillation 
absorber, linear feedback control and stabilisation of unstable periodic orbits. Possibilities 
for the realization of chaos controllers are discussed. 

1. INTRODUCTION 

During the last five years we observed a tremendous increase of interest in possible appli- 
cations of chaotic systems. In particular many research groups around the world concentrate 
on possibilities of controlling chaotic behavior i.e. influencing the dynamic behavior of the 
system to produce a desired kind of motion which could be, depending on actual needs, 
fixed, periodic or even another type of chaotic state [1-2], [8-15], [20-22], [24-25]. Due to 
very rich dynamic phenomena encountered in typical chaotic systems, there exists also a 
large variety of approaches to controlling such systems. Chua's circuit [3-4], [18-19] seems to 
be the most appropriate system for studying chaos control techniques. Exhibiting an abun- 
dance of dynamic regimes and chaotic attractors, sufficiently well understood theoretically 
and offering extreme flexibility in performing laboratory experiments this circuit proves to 
be most versatile when compared to other chaotic systems. Below we present a selection of 
methods developed for controlling chaos in various aspects - starting from the most primi- 
tive concepts like parameter variation, through classical controller applications (open- and 
closed-loop control), to quite sophisticated ones like stabilisation of unstable periodic orbits 
embedded within the strange attractor. 

The state equations describing the dynamics of the canonical Chua's circuit read: 

-1 Sf   =   °(VC3 ~Vc^~ GbVCi ~ ^Ga ~ G*)(K + vh\ - \vCl - Vfcpl) -g2-   =   G(vCl- 
L-jfc   =   -vc2 - RotL 

C2
d-f-   =   G(vCl-vc2) + iL    '     "  " ""    ""     """ (1) 

(where: vbp - coordinate of the breakpoint of the piecewise linear characteristic, Ga and Gj 
are its inner and outer slopes respectively), or in normalised form: 

x   =   a[y-x-g(x)] 
y   -   x-y + z (2) 
Z     =     -ßy -f <yz 

*This research has been supported by the University of Mining and Metallurgy, grant 11.120.15 
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Throughout this study we use classical Chua's circuit i.e. RQ = 0 (7 = 0). 

2. PARAMETER VARIATION TECHNIQUES 

The simplest possible but not very efficient method is parameter variation. To understand 
its principle one has to consider typical bifurcation diagrams showing how the circuit behavior 
changes when some parameter is being varied. Having a system (Chua's circuit) operating 
in a chaotic mode, looking at the bifurcation diagrams, it is possible to choose a new set 
of parameter values to cause a different type of behavior. We can do it either choosing 
the new values for the desired steady state from the bifurcation diagrams or by trial-and- 
error. .The most important drawback of such a method is that a large parameter variation 
is usually needed and in fact we have to redesign the system. For Chua's circuit this means 
eg. changing one of the resistors, replacing a capacitor or fixing a different coil. This is not 
acceptable in many applications. 

3. "OSCILLATION ABSORBER" CONCEPT 

The principle of operation of this method is based on such a modification of the original 
chaotic system that a new stable orbit appears in a neighbourhood of the original attractor. 
This modification is introduced via a simple addition of the "absorber" to the existing system 
without major changes in the design or construction of the considered system. Kapitaniak, 
Kocarev and Chua [15] proposed such an "chaotic oscillation absorber" for Chua's circuit. 
The "absorber" could be for example a parallel RLC circuit coupled with original Chua's 
circuit via a resistor. 

4. CONTROL ENGINEERS STRATEGIES 

There exists a variety of control engineering approaches for the stabilisation of chaotic 
dynamical systems. Some of these methods have been tested using Chua's circuit. Hartley 
and Mossayebi [13] applied clasical PI and PID controllers obtaining satisfactory results. 
Genesio and Tesi [12] used a scheme based on the harmonic balance technique for suppression 
of chaos in Chua's circuit. Interesting developments are also due to Chen and Dong [2] who 
applied a static linear feedback controller enabling stabilisation of chaotic motion in Chua's 
circuit. Using the linear feedback method, Chen and Dong [2] were able to stabilise the 
chaotic trajectories directing them towards the saddle-type unstable limit cycle coexisting 
with the chaotic attractor. 

5. CONTROLLING CHAOS VIA IMPULSES 

A very promising method for controlling chaos has been developed recently [8], [9]. The 
principle of this method is based on finding a suitable forcing for a Lur'e type dynamical 
system to force it to follow any desired kind of periodic orbit uncovered from the chaotic 
attractor. The authors observed that such forcing exists and can be applied at discrete 
time moments only (impulse control). Using this method Dedieu and Ogorzalek were able 
to direct chaotic orbits in Chua's circuit towards several chosen periodic orbits of various 
lengths. 
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6. STABILIZATION OF UNSTABLE PERIODIC ORBITS 

This method[ofcontrolling chaos is based on the key property of chaotic attractors namely 
the existence of a dense set of unstable periodic orbits in the attractor. Various aspects of the 
r,t K T elab°^ in a series of papers [24], [25], [11]. Some implementation aspects 
have been discussed m [14] and first successful application have been reported in [5], [26], 

Let us assume that the dynamics of the system is described by a map Ui = f(£ v 

(x € iT, p- some accessible, variable parameter). Let (F - chosen fixed point (unstable) 
off the map / of the system existing for the parameter value p\ In the close vicinity of 
this fixed point with good accuracy we can assume that the dynamics is linear and can be 
expressed approximately by: 

The elements of the matrix M can be calculated using the least squares technique on the 
basis of measured chaotic time series and analysis of its behavior in the vicinity of the fixed 
point. Let A„ Au denote eigenvalues, and e„ eu eigenvectors of this matrix. Denoting by f 
h the contravariant eigenvectors (/,e, = fueu = 1, /,eu = /ue, = 0) we can find the linear 
approximation valid for small \pn —pm\: 

6>+i = Pn9 + [KeJu + A,e,/,][£n - Pn9] ^ 

where: 5=^l|p=p.. 

We would life to force &+1 to fall on the stable manifold of (p. This is achieved with p 
such that /u£n+1 = 0: Fn 

Pn ~ (A. - l)gfu (5) 

Using an application-specific software package [6] we were able to find some of the unstable 
periodic orbjts embedded in the double scroll chaotic attractor. We have also implemented 
and tested the OGY method for controlling chaos in Chua's circuit [6]. 

7. CHAOS CONTROLLERS 

7.1. Implementation of the OGY method 
We have implemented the OGY method for controlling chaos in a laboratory Chua's circuit 

J7J. Fig. 1 shows the structure of the laboratory environment built for controlling chaos in 
Cnua s circuit. The controller in this case consists of an interface circuitry for measuring 
chaotic time series, software package implemented on a personal computer and hardware for 
injecting the control signal back into the circuit. All the calculations needed are implemented 
m the software. The user can interactively choose the goal of control (one of the unstable 
orbits detected). 

Using this kind of computerised feedback control we were able to stabilize low period orbits 
only. When applying the OGY method in a real physical circuit the main problem encoun- 
tered was the noise associated with the inevitable noise of the circuit elements, A/D and 
D/A conversion of signals (quantisation), rounding operations in the computer calculations 
etc. The method was found to be very sensitive to the noise level - very small control signals 
sometimes are hiden within the noise and control is impossible. For successful implemen- 
tation of this method some hardware developments specific for the purpose are needed and 
are currently being constructed. This includes a hardware Poincare section identifier which 
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Figure 1.   Diagram of the laboratory system for controlling Chua's circuit using 
OGY method (stabilisation of unstable periodic orbits). 

will calculate the coordinates of the successive points in real time and an e-comparator as 
the signal injection block. These hardware blocks will increase the accuracy and limit the 
time delays in the feedback loop. 

7.2. Occasional Proportional Feedback method 
Johnson and Hunt have built a simplified circuitry for controlling chaos in Chua's circuit 

[14]. Their method can be considered as a "one-dimensional" OGY with external synchro- 
nisation. The block diagram of the control system is shown in Fig.2. There are basically 
two main blocks: the Poincare section identifier (window comparator, Sample-and Hold etc.) 
and control signal generator (timing block, gain block, voltage-controlled resistor etc.). The 
external synchronising signal is provided as a reference for the desired type of periodic orbit. 
Using this system it is possible to stabilise many different periodic orbits in Chua's circuit 
[14]. This hardware implementation has however one major drawback compared to the full 
OGY method - it is not possible to specify beforehand the goal of the control. Stabilizable 
orbits are known only on the basis of trial-and-error. It should be mentioned that similar 
implementations were used in stabilizing chaos for example in a chaotic laser [5], [27], which 
enabled the performance of the laser to be raised by a factor of 10. 

8. CONCLUSIONS 

Using Chua's circuit as the object of investigations we have demonstrated a selection of 
available chaos control methods. The simplest ones are attractive because of their extremely 
simple principle of operation and the fact that any of the stable operating modes can be 
chosen. Suppression of chaotic oscillations is achieved without feedback and control signals. 
However usually some kind of redesign of the system is required (either in terms of large 
changes of parameters or building additional subsystems). In many practical situations such 
changes in the design are not allowed. In many cases the goal behavior must be chosen by 
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Figure 2. Electronic system for implementation of the occasional pro- 
portional feedback (OPF) for controlling chaos in Chua's circuit 

trial-and-error - the bifurcation behavior in real physical systems is difficult to learn. 
Several methods used by control engineers can be successfully applied to controlling chaos 

in Chua's circuit and other chaotic systems. The controller has typically a very simple 
structure and does not require any access to system parameters. The method might be 
difficult to apply in real systems (interactions of many system variables needed). 

Among the known methods the OGY technique seems to be most attractive. It does not 
require any model of the system, operates on the experimental measurements only and takes 
advantage of the inherent property of chaotic systems - existence of an infinite number of 
unstable periodic orbits. Thus the goal of the control already exists in the system!! We found 
however that in the presence of noise and error inevitable in real applications the method is 
often not functional. In real applications so far the OPF method has been confirmed to be 
most reliable and operational despite the fact that the stabilized orbit can be chosen in an 
experimental way only. 

Interested reader is referred to survey papers [1] and [21] for further details and extensive 
list of references. 
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1      CHUA'S CIRCUIT : A PARADOXICAL SIMPLICITY 

The purpose of this joint work with S.Ushiki from the Kyoto University, is to apply the new 
concept of confinors and anti-confinors, initially defined for ordinary differential equations 
constrained on a cusp manifold [1] to the equations governing the circuit dynamics of Chua's 
circuit. 

Chua's circuit is a physical electronic circuit made up of four linear circuit elements (one 
resistor, one inductor and two capacitors) and a two-terminal nonlinear resistor (also called 
Chua's diode) characterized by a five-segment v-i curve [2] or just a three-segment v-i curve 
[3]. Depending on the choice of the v-i characteristic for Chua's diode, Chua's circuit can 
exhibit many distinct forms of strange attractors. 

For researchers working in the field of dynamical systems it is astonishing that Chua's 
circuit affords a paradoxical simplicity in different ways. 

First in spite of its intrinsic simplicity it exhibits an immensely rich variety of behaviors 
among the regular and strange behaviors of the dynamical systems. In fact, by adding a 
resistor in series with the inductor in Chua's circuit , one obtains a globally unfolded 
circuit with an even richer bifurcation landscape [3]-[4]. 

Secondly, although the solution of Chua's equation (the differential equation describing 
Chua's circuit) is explicitly known in every subspace Du D0 and £>_! of the (X,Y,Z) vari- 
ables space [5], the global solution remains unkown and can only be approached through 
numerical computations. Moreover, Chua's equation is dissipative. Depending on the value 
of the parameters, the volume contraction ratio could be very small. This explains why on 
most of the pictures showing one solution of Chua's equation, either obtained by numerical 
integration or by the display of the values of the physical variables on the oscilloscope, it is 
almost impossible to infer its actual structure. 

Thirdly the accurate computation of the Poincare map 7r = 7^ o 7r0 using the brute 
force method is so difficult that most of the time only one-dimensional approximations of 
this map are analysed [5]-[6], thereby occulting important bifurcation phenomena and the 
precise structures of its strange attractors. 

As an endeavour to go beyond this paradoxical simplicity and to understand the inner- 
most features of Chua's equation, we apply our theory of confinors to the numerical analysis 
of the dynamics of this circuit. We find several interesting new results on Chua's equation: 

• The coexistence of 3 distinct chaotic attractors for the same value of the parameters. 
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• The precise structure of 2D strange attractors (of the Poincare map TT). 

• The unusual bifurcation phenomena which are not period-doubling as they could in- 
correctly appear m diagrams plotted with standard and hence inaccurate meSods 

2     THE THEORY OF CONFINORS 

The keystone of the initial definition of confinors is that very often , changes in the shaoe 
o expenmentally observed signals are more significant in charactering the phas portrTit 
of dynamica systems defined by systems of ordinary differential equations inSaC on 

reS^n     ^ "* t0P°,0SiCal *"** brt~ *'"> -peciallyTh^luc 
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3      CO-EXISTING CHAOTIC CHUA'S ATTRACTORS 

Thereafter we consider the following Chua's equation [7]: 

X   =   a(K-mi* + i(7no-m,)[|* + l|-|jr-i|]) 
:   ~   X-Y+Z 
Z   =   -ßY W 

Patterns in the time waveforms are very easily obtained for a large range of parameter values 
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If we have an estimate for this real number of "turns" for example, if we can have tmin 
and trnax such that 

''min S * S *max 

holds for all t needed in going from one set (e.g some part of the separating planes) into 
another set, it would describe some aspect of a pattern. 

Actually the Poincare map is divided into two half map it0 and ni and the consequence 
of the existence of their main confinor for Chua's equation based on isochronic lines is the 
existence of rmin, r,^, 8min, 0^^ which allows a very accurate and novel numerical method 
for the computation of both Tr0 and nt. 

Using this accurate numerical method, we find that for the values a = 15.60, ß = 28.58, 
mo = ^r, mi = f, three different chaotic attractors coexist. The initial values used to define 
the global solutions of Eq.(l) attracted by one of these three attractors are: 

For the "red" attractor [8] of Fig.l (X0)Y0,Z0) = (-0.005,0.017,0.019); for the "blue" 
attractor of Fig.2 (X0,Y0>ZQ) = (-0.002,0.014,0.010); for the "cyan" attractor of Fig.3 
(Xo,Yo,Z0) = (-0.008,0.020,0.028). 

Figure l.The "red" strange attractor.    Figure 2.The "blue" strange attractor. 

Figure 3.The "cyan" strange attractor.   Figure 4.Poincare map of the three attractors. 

Though no mathematical proof of the existence is given, there is a strong evidence that 
the attractors remain distinct. This evidence is based on the computation of 60,000 iterations 
of the Poincare map. We do not use integration methods which are not relevant due to their 
rounding errors in this case, because 60,000 iterates of it correspond to 60,000,000 steps of 
numerical integration. 
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4      PRECISE STRUCTURE OF 2-D STRANGE ATTRACTORS OF CHUA'S 
EQUATION 

Using both the accurate numerical method for the computation of Chua's Poincare map and 
a special method of a sequence of coordinate transforms based on the "Taylor expansion" of 
the Chua's strange attractors [9] we are able to identify the precise structures of the strange 
attractors of Chua's equation. In this short presentation paper it is not possible to develop 
the Taylor's coordinate system. Therefore we only present some results. 

Figure 5 shows the projection in the (X, Y) plane of the strange attractor found for the 
parameter values of the normal form equation [7]: cr0 = -0.3176, 70 = 0.1289, ax = 0 4122 
7i = -0.9287, fc = 0.0960. 

Figure ö.Projection in the (X, V)-plane 
of the strange attractor. 

Figure 6. Magnification of the Pto. 
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Figure 7.Enlargement of the lower left Figure 8.The same enlargement with 
end point. an extended precision of order 10-16. 

Figure 6 shows the magnification of the Poincare map of the piece Pto.The dissipative 
nature of Chua's equation gives rise to a very strong contraction such that the width of this 
strange attractor is about 10~12. Figure 7 is an enlargement of part G of Figure 6 using our 
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method with a computation error of order 10_14.The width of the ribbon does not reveal 
any particular mathematical structure but corresponds to the size of computation errors.We 
show in Fig.8 the same enlargement computed with a precision of order 10_16.In both cases 
the computations are performed with extended real numbers in PASCAL for which nineteen 
figures are available. 

These figures point out the power of our method with which it is possible to reveal for 
the first time the precise structure of the strange attractors of Chua's equation. 

5      EXACT BIFURCATION DIAGRAMS FOR CHUA'S EQUATION 

Finally, we point out unusual bifurcation phenomena for Chua's equation which are not 
period-doubling as they could incorrectly appear in diagrams plotted with standard and 
hence inaccurate methods , or using approximate one-dimensional Poincare maps. 

We show in Fig.9 the bifurcation diagram of Eq.(l).Chua's parameter values a0, 70, <7i, 
k, are fixed as follows:«70 = -0.325, 70 = 0.135, <n = -0.3921, k = 0.1034. 

The abscissa of this figure represents the parameter 71 which varies between -0.86 and 
-0.83.The ordinate corresponds to f of the standard coordinate in the triangular region 
T [9].For each value of 7! we take an initial point in the triangular region and iterate the 
exact Poincare map, obtained in the scope of the confinor theory, for this point to plot the 
f coordinate of the points on the orbit. In order to suppress the transient behavior, many 
iterations were executed before starting the plot. 

m 
mm-. 

- 0.86 0.83 

y.14' 

Figure 9.Exact Bifurcation Diagram of Chua's equation 
In Fig.9, we observe the cascade of period-doubling sequence of bifurcations and the 

inverse cascade of bands of chaotic attractors which reminds us of the bifurcation of the 
family of unimodal maps.However the sequence of bifurcations shows some anomalies. 

It is obvious that at least two attractors can coexist.The top-left corner shows a series 
of period-doubling cascade, while another attractor exist for the same values of parameters 
(the coexistence phenomenon with three attractors is explored in Sec.3). 

4.4-6 57 



Theory of Conßnors in Chua's Circuit 

Because the standard family of unimodal maps can have at most one attractor, it is not 
adequate to interpret this diagram.We need at least multimodal maps, or two-dimensional 
maps. 

Another anomaly we observe in these figures is that the bifurcation and inverse bifurcation 
process is found not only in the relatively wide range interval of the parameters, but also 
in the small scale range.lt is observed repeatedly, as we try enlargements of the bifurcation 
diagram, as this occurs in a self-similar manner. 

6      CONCLUSION 

Chua's equation seems surprinsingly rich in very new behaviors not yet reported even in other 
dynamical systems.The application of the theory of confinors to Chua's equation and the use 
of sequences of Taylor's coordinates could give new perspectives to the study of dynamical 
systems by uncovering very unusual behaviors not yet reported in the literature.The main 
paradox here is that the theory of confinors, which could appear as a theory of rough analysis 
of the phase portrait of Chua's equation, leads instead to a very accurate analysis of this 
phase portrait. 
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Abstract 

Statistical and dynamical properties of the "chaos-chaos" type intermittency in Chua's circuit 
are studied by numerical simulation methods. It is shown that at the onset of this intermittency 
phenomenon, the power spectrum of the associated time series has the form of 1// noise. The 
influence of external noise and computer calculation errors on the form of the spectrum and 
process characteristics are analyzed. 

1    INTRODUCTION 

Regular and chaotic limit set bifurcations of different types are realized in nonlinear quasihyperbolic 
systems when their parameters are varied. Among them, various phenomena arising from the 
interaction between attractors have been observed, including intermittency. Three typical and 
relatively simple intermittency mechanisms have been distinguished and classified in the theory of 
chaos. However, more complicated intermittency mechanisms can take place in the general case, 
such as the "chaos-chaos" type of intermittency [2, 1]. The intermittency is characterized by a 
strong sensitivity to perturbations. In addition to a purely dynamic origin, the intermittency can 
also occur via a mechanism similar to that of a phase transition induced by noise [3, 4]. 

One of the remarkable statistical properties of the chaos-chaos intermittency is the slope of its 
power spectrum in the low-frequency region. The power spectrum in the region near the onset 
of intermittency is described by the universal law l/us (0.8 < 6 < 1.4) [5]. Such a spectrum 
shape is due to a finite probability in the existence of arbitrarily long "laminar" flow near the 
onset of intermittency. The 1// spectrum is present in many processes having different origins: 
e.g. fluctuations of current in electron devices, fluctuations of the Earth's rotation frequency, 
fluctuations of the intensity in sound and speech sources, fluctuations of the muscle rhythms in the 
human heart, etc. 

This paper deals with the study of chaos-chaos intermittency in the Chua's circuit [6] modeled 
by the following autonomous system of ordinary differential equations: 

x = a[y - h(x)], y = x-y + z,        z = -ßy, (1) 

where h(x) = bx + 0.5(a - b)(\x + 1| - \x - 1|). 

The system (1) has a number of important properties which makes it an ideal model for studying 
the chaos-chaos intermittency. The dynamical properties of this system and bifurcation structure of 

4.4-7 59 



its parameter space are well known. On the a — ß parameter plane, there is a bifurcation curve cor- 
responding to the birth of the double-scroll Chua's attractor from two symmetrical spiral Chna's at- 
tractors. On the left side of this curve two symmetrical chaotic attractors separated by unstable in- 
variant manifold exist (Fig.l). The system can be considered as a nonlinear bistable oscillator here. 
Along the bifurcation curve the separatrix surface is destroyed and these two attractors merge with 
each other. A new chaotic double-scroll Chua's attractor exists on the right of the bifurcation curve 
(Fig.2). The chaos-chaos intermittency phenomenon is observed at this moment of bifurcation tran- 
sition: phase trajectories evolve for a long time around each symmetrical spiral Chua's attractor, 
followed by relatively rare transitions between them. During a full-scale experiment, this effect is 
recorded as flickers in the two symmetrical double scroll components on the screen of the oscilloscope 
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Figure 1: spiral Chua's attractor 
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Figure 2: Double-scroll Chua's attractor 

2    INTERMITTENCY PHENOMENON 

In this paper, we study thoroughly the above intermittency phenomenon in Chua's circuit and 
investigate the influence of external noise and numerical accuracy on its statistical properties. 

To analyze this intermittency phenomenon, we make use of not only such standard characteri- 
zations as Lyapunov exponents, power spectrum, and stationary probability density, but also other 
characteristics associated with the statistics of the "laminar" phases. Here, we mean by "laminar 
phase" the time period where a phase trajectory remains on one of the two symmetrical double- 
scroll components. In this paper, we shall dwell only on the calculation of the power spectrum and 
the statistics of the "laminar" phase. 

In a recent paper [8], a technique for determining the main intermittency characteristics has 
been proposed which is based on the mean-first-passage-time theory of Markovian processes. We see 
that such stochastic process appears naturally in the statistics of the laminar phase associated with 
the chaos-chaos intermittency in Chua's circuit. A separatrix surface, in the three-dimensional phase 
space of system (1) forms a boundary which separates the basins of attraction of the symmetric 
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components of the double-scroll attractor. Unfortunately, it is impossible in our case to obtain 
analytical results due to the difficulty of explicitly specifying the boundary separating the two basins 
of attraction.   Therefore, all process characteristics in our study were determined by numerical 
simulation. 

Equation (1) is integrated by a 4-th order Runge-Kutta method. As the numerical integration 
is being calculated the probability density P(T) of the residence times on the two symmetrical 
double-scroll components and the moments of this distribution < Tq > (q = 1,2...) were also 
calculated under the assumption that the calculated motion is ergodic. Then, the power spectrum 
is calculated and its shape examined. 

All calculations were carried out with the fixed parameter values (ß,a,b) = (14.3,-1/7,2/7). 
Only the parameter a was varied. The bifurcation value of the parameter a = a* = 8.813232... ± 
10~7 was calculated numerically to 8 digit precision by detecting the point in the. a-parameter 
interval when the two spiral Chua's attractors suddenly merged into the double scroll Chua's 
attractor. By varying the parameter a, the averaged characteristics were determined as a function 
of the overcriticality defined by 

( = a-a*. (2) 

To investigate the effect of external noise, a «^-correlated noise source of intensity D was added 
to the right-hand part of the third equation of (1). The inclusion of this external noise is also 
particularly convenient in our full-scale experiments. The resulting system of stochastic differential 
equations has the form: 

x = a[y-h(x)],        y = x - y + z, z = -ßy + f(i), (3) 

where < f(z)<f(r + a)  >= 2D6(s).   The extent of the noise influence on the different process 
characteristics was determined by varying the parameter D with fixed system parameters. 

3    POWER SPECTRUM 

Let us investigate the power spectrum and other statistical intermittency characteristics. When 
integrating Eq.(l) and Eq.(3), the integrating step was chosen automatically according to the 
accuracy specified. The number TV of the calculated solution points in the time series x(t) was fixed 
and can be as high as N = 4 * 104 . The maximum integration time Tmax and the discretization 
time AT were determined from the maximum frequency component ug in calculating the power 
spectrum; namely, 

Tmax = —,        A = Tmax/N. (4) 

Since the maximum frequency component ug in Chua's circuit is relatively small, it is possible to 
analyze the low-frequency region of the power spectrum Sx(u). The power spectrum was calculated 
under the assumption that the motion is ergodic. 
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Consider the power spectrum Sx(u) at the critical parameter point a* = 8.813232.... The low- 
frequency spectrum region is shown in Fig.3, plotted on a double logarithmic, scale. Observe that 
on the left closer to the zero frequency there is an almost constant interval Au> ss 10~3, henceforth 
referred to as the "spectral plateau". We will show later that the plateau is an artifact of numerical 
errors and external noise and is not a part of the actual spectrum. Beyond the plateau, however, 
lies the correct spectrum which follows the follow law: 

SX(U)KU-S,        *= 1.1 ±0.1. (5) 

Observe that the points cluster and cling to each side of the ideal 1// line, which corresponds to 
points with 6 = 1.1. 

Let us examine the dependence of those quantities which characterize the power spectrum in 
the low-frequency region as a function of the overcriticality e << 1. The plateau width Aw is shown 
in Fig.4 as a function of e on the double logarithmic scale. Observe that the Au(e) dependence can 
be approximated by the following degree function: 

AW(0KC7,        7 = 0.62 ±0.02 (6) 

As we increase the parameter a from a* to higher values, the plateau is seen to extend closer to the 
zero frequency. This observation can be explained by the fact that the mean length of the laminar 
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This relationship is shown in Fig.5 for a=8.84. 
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Figure 5: Power spectrum at a = 8.84 (asterisks) 
and its approximation by the Lorentzian law (7) 
(solid line). 

Figure 6: Width of the spectral plateau 
as a function of integration accuracy 
and its approximation by the function 
o-", /i = 0.32. 

Our numerical experiments have shown that the power spectrum near the zero frequency always 
has a plateau whose width Au increases with e. In other words, the experimental 1// noise char- 
acter^^ «obtained only to the right of the plateau. This low-frequency experimental limitation 
is due to the unavoidable perturbations in all physical systems. These perturbations are caused 
by the numerical integration and round-off errors. To illustrate this problem, our calculations of 
the statistical characteristics as a function of the integration accuracy a are presented below In 
F>g.6, the width of plateau (flat portion) Au is shown as a function of calculation accuracy a in 
the double logarithmic scales. Observe that this relationship follows approximately a degree law 

Awoctr",       n = 0.32 ±0.02. 
(8) 

Again, the index S in the spectral dependence in Eq.(5) is found to be independent of the integration 
accuracy, relative to the accuracy of our numerical methods. 
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Observe that as we increase our calculation accuracy (decreasing a), the width Au of the plateau 
decreases in accordance with that given by Eq.(8). Since rounding errors are inevitable, so too is 
the plateau which limits the range of our measurable 1// power spectrum in the low-frequency 
region. In fact, the formula given by Eq.(8) can be considered as a fluctuation-dissipation relation 
[9] for the dynamical system defined by Eq.(l) which takes into account the calculation errors. 

The results of our investigation of the effect of the external noise (stochastic equations (3)) 
shows approximately the same dependency as Eq.(8); namely, as we increase the noise intensity D, 
the plateau width in the power spectrum also increases. 

As a result of our numerical investigations, we have confirmed that near the bifurcation point 
a = a* which gives birth to the double scroll Chua's attractor, a chaos-chaos type intermit ten cy is 
realized in Chua's circuit. This intermittency phenomenon is caused by two dynamically interacting 
symmetrical spiral Chua's attractors. The power spectrum associated with this chaos-chaos type 
intermittency is characterized by a 1// divergence in the low- frequency region. Nearer to the 
zero frequency, however, there is aflat plateau in the power spectrum whose width depends on the 
overcriticality measure f via Eq.(6), on the calculation accuracy a via Eq.(8), and on the external 
noise intensity D which also follows from Eq.(8). 

References 

[1]    F.T.Arec.ci, R.Badii, A.Politi. "Low-frequency phenomena in dynamical systems with many 

■ attractors"', Phys.Rev. A29, (1984) 1006-1009. 

[2]    V.S.Anishchenko. "Interaction of strange attractors and chaos-chaos intermittency", Sov. Tech. 
Phys. Lett. 10, (1984)226-270. 

[3]    A.B.Neiman. "Bifurcation, chaos and noise in nonlinear dissipative systems" in Proc. Intern. 
Seminar "Nonlinear circuitsand systems", Moscow, 2 (1992) 155-164. 

[4]    R.Ecke, H.Haucke. "Noise-induced intermittency in the quasiperiodic regime of Rayleigh- 
Benanl convection", J.Stat.Phys. 54 (1989) 1153-1172. 

[5]    H.G.Schuster, Deterministic chaos, Physik-Verlag, Weinheim, 1984. 

[6]    L.O.Chua, M.Komuro, T.Matsumoto. "The double scroll family", IEEE Trans. Circuits and 
Systems 33 (1986) 1073-1118. 

[7]    V.S.Anishchenko, M.A.Safonova, L.O.Chua. "Stochastic resonance in Chua's circuit", Int.J. 
Bij. and Chaos 2 (1992) 397-401. 

[8]    V.S.Anishchenko, A.B.Neiman. "Statistical properties of intermittency in quasihyperbolic sys- 
tems", J. Tech. Phys. 17 (1990) 3-14. 

[9]    Yu.L.Klimontovich, Statistical Physics, HaTdwood Academic Publishers, 1986. 

64 4.4-7 



1993 International Symposium on Nonlinear, 
Theory and Its Applications (NOLTA '93) 

Hawaii, U.S.A., December 5-10,1993 

Sound Synthesis and Music Composition using Chua's Oscillator 

G. Mayer-Kress*, I. Choit, and R. Bargar§ 

*Center for Complex Systems Research, Beckman Institute, Department of Physics, University 
of Illinois at Urbana-Champaign, 405 N. Mathews, Urbana, II 61801, gmk@pegasos.ccsr.uiuc.edu 
T School of Music, University of Illinois at Urbana-Champaign and 
Center for New Music and Audio Technologies, University of California at Berkeley 

3 National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign 

We describe simulations of Chua's oscillator and its implementation in a circuit with seven 
computer-controlled parameters. We discuss its properties with regard to sound synthesis 
and composition. 

1    Introduction 

In recent years a number of composers have recognized that chaotic systems with their 
richness of dynamic behavior (see e.g., [1] for an introduction) can be used as tools for 
the generation of complex sounds and for the composition of music (see e.g., [2] - [10]). 
We investigate the properties of a non-linear system with an extremely rich repertoire of 
dynamical properties, the Chua oscillator [11]- [13]. Our investigation incorporates both 
numerical simulation as well as experiments with an analog Chua circuit with fast computer 
control of the relevant systems parameters. For the exploration of the parameter space both 
in simulation and in the analog circuit we have developed appropriate graphical interfaces. 

We discuss the properties of the Chua circuit both as (self-excited) sound-generator as well 
as its properties as complex reverberator. In the latter case we study the transformations 
that a sound undergoes when it is used to modulate some of the systems parameters of 
the Chua circuit. Finally we discuss aspects of the Chua circuit as an electronic musical 
instrument that contains broadband generators as well as resonators that selectively amplify 
specific harmonic sounds that are requested by the musical applications. The resonator 
part of the circuit is implemented by a delayed feedback control method recently introduced 
[14]. A challenging task consists in an efficient mapping between the space of physical 
parameters of the circuit (values for resistances, capacitances, inductances etc.) to the space 
of musical perception (timbre, pitch, etc.). Preliminary efforts to have a neural network 
learn this mapping show that the complex structure of the physical parameter space of the 
Chua circuit, together with the coexistence of several attractors for the same value of the 
parameter make this a difficult problem [15]. Therefore a special emphasis in our work has 
been devoted to the development of computational tools that facilitate the exploration of 
the multi-dimensional space of control parameters of the Chua oscillator. 
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2    Chua's Oscillator and Sound Synthesis 

The Chua oscillator exhibits a very large variety of attractors of different sonic proper- 
ties ranging from almost sinusoidal to stochastic. A number of them have been catego- 
rized and described in [8]. Each of those sounds is generated as a solution to a nonlin- 
ear differential equation at a given parameter configuration. The dynamical equations for 
the Chua oscillator that we used for all simulations are in their dimensionless form giv- 
en by [11]: £ = a(y - x - g(x)), ft = x - y + z , % = -ßy - 7* , where 
the variables x,y,z correspond to v1,v2,i3 in fig. 1. The dimensionless bifurcation pa- 
rameters a,/?,7 are connected to the physical parameters of the circuit via the relations: 
a = S ' ß = ¥ » 7 = e2pL- Here g(x) defines the nonlinear resistor func- 
tion (see fig.l) for which we have computer control over the location of the break points 
VBP+, VBP- as well as over the slope m0. Typical numerical values for the circuit parameters 
are: (CuC2,R,R0iL) = (4.9 nF, 103 nF, 1605ft, 11-2 H, 5.74 mH). 

j- *rui — To Computer } J       T   ' ^ 

tfVj) [mA] 

Figure 1: Schematic diagram of the unfolded Chua circuit (left). Six of the parameters of the Chua 
circuit (indicated by boxes with arrows) are computer-controlled via MIDI protocol and serial line. 
The i-^-characteristic of the non-linear resistor NR is shown on the right (solid line). We obtained 
significant variations in the timbre if we use smooth perturbations of the piecewise linear function 
such as a hyperbolic tangent (short-dashed line) or quadratic smoothing curves (long-dashed line). 
The asymmetric form of g is essential for the generation of bassoon-like sounds [8], whereas in a 
simplified, discrete model, a symmetric response function produced clarinet-like sounds [16]. 

We consider several numerical quantifiers that should describe specific audible properties. 
Among those properties are the variance of the signal,1 its maximal amplitude, and the 
ratio r between maximal amplitude and variance (see fig.2). The first two characteristics 
are related to the loudness of the sounds and can also be used to mark regions in parameter 
space for which the system has a fixed point attractor (silence) or undergoes transitions to 
the large limit cycle "LLC", an (acoustically) especially unpleasant, ubiquitous solution. 

!We typically record the signal from the voltage vi(t) across the capacitor Ci as indicated in fig. 1. 
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variance maximum ratio 

0.042831 
0.422025 

Fi-^ 2:/^nfOUI S .0f
t7

riance As2 <left)' maximal ^Plitude W (center), and ratio 
r ~ Smax/{U.U1 + As ) (right) as a function of the bifurcation parameters ß and 7 for a = 21 02 
(see text). Larger values of the variables are displayed in brighter shades. 

We also compute the ratio between maxima and variance which characterizes the content of 
intermittent excursions in the signal. An example of a time series where transitions between 
chaotic attractors of different size and intermittency characteristics occur is shown in fig 3 
Note that the transitions in the left part of the figure are mainly reflected in the ratio r of 
fig.2. We also investigate characteristics like the dominant frequency content of the signal 
(pitch) and degree of chaos in the signal (Lyapunov exponents) which is perceived as degree 
of noisiness. 

Figure 3: Time-series of the x-component of the Chua oscillator during a change of 7 (7 is kept 
constant for 5000 time-steps). This sequence corresponds to a horizontal cut through the graphs 
in the previous figure at ß = 46.704 (see arrows). 

If the system is close to a Hopf bifurcation, external perturbations, for example from a sound 
source, will create damped oscillations of a shape determined by the global properties of the 
circuit. Especially in combination with delayed feedback can we generate a large variety of 
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acoustical effects depending on the real and imaginary parts of the eigenvalues of the fixed 
point. The external modulation can be applied to each of the parameters of the system or 
directly to one of its state variables2. In fig.4 we have applied the sound of a piano to the 
parameter R of the nonlinear resistor (see fig.l), which is directly related to the stability 
of the fixed point. Note that the pure piano sound appears much more chaotic than the 
distorted sound that is generally perceived as noisy. This is especially the case when clipping 
occurs in regions of strong, positive slopes of g(vi). 

Figure 4: Time-delay reconstruction (see 
[1] for definitions) of attractors from the 
sound of a piano (left) that is used to mod- 
ulate the parameter R of the circuit (see 
fig.l). The response from the analog Chua 
circuit close to a Hopf-bifurcation is shown 
on the right. The rate of distortions de- 
pends on the amplitude of the input as 
well as on the distance to the bifurcation 
point in parameter space. The time-series 
are displayed at the bottom; the sound is 
sampled at 22.05 kHz. 

1« 1/2205 KC 

*(t-T) 

^WA^y x(t) 

0.0 t[sec] 0.1 0.0 Kiec] 0.1 

3    Transitions Between Musical Notes and External 
Control 

A major problem in musical applications of the Chua oscillator is the predictable and repro- 
ducible transition between attractors corresponding to different parameters. Because of the 
complex nature of the parameter and state space, one cannot assume that a simple change to 
a new parameter configuration will induce a transition to the desired new attractor. In many 
cases the attractor to which the system will evolve will depend on its history. Thus it would 
be necessary to prescribe a specific path in parameter space leading from one attractor to 
the next. In doing so, it is also essential that the rate at which the parameters are changed 
are sufficiently quasi-adiabatic such that during the transition no accidental excursion occurs 
into basins of attractions of unwanted attractors like the notorious LLC. 

Preliminary tests indicate that transitions between attractors can be induced within a 
time interval as short as At = 10ms. Close to bifurcations this time can be significantly larger 
(known as critical slowing down). In our experimental set-up the parameters are controlled 
via the MIDI protocol and a serial line (see fig. 1). It appears that these transition rates are 
still an order of magnitude below the limits that would be imposed by our configuration. One 
effect that one can notice during these transitions is the appearance of transient frequency 

The first case would be referred to as parametric perturbation, the second case as additive perturbation. 
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shifts, reminiscent of glissando effects of string instruments TW       ■   ♦, 
be m principle controlled by simultaneous compensaTntotl 1 fr«*encies could 
of an optimal transition path between different a^acto s TlTT       ' **the ^ 
vector-fields has been introduced in [17] axiractors> * method using convex sums of 

For musical applications it is desirable to be able to prescribe R.   •«        tJ ' 
the system will approach or approximate. Several methTh^ Cn H *7  ^T™ ** 
different types of goal dynamics. With an open loop cZrlmltZr      ?     r° fhieve 

one can entrain the dynamics of the system to g^Z^TS^ (8?/g'' [18]« I19]) 
intrinsic dynamics of the svstem a* lmJ »c ,  

l° Boals tnat can be very different from the 

the Chua osciUator this ZTC tl Z^M^^ZT ".T"1 ^ 

c>o^!T:r:t^ 
the time-delayed signal x(t - r)1 2d 1 r    <■  A?"* betWeen a signal *M ^d 
for periodic solutions „period VhtheT„tTTe     ^ C°m°l f°rCe M- It vanishes 
effeet as coupling a nosysound So" ce to a T"*' S°WdS tU" meth°d ha* a simi'^ 
and others »S, oe suppre^S™^. "5"^:* 

riÄ«*simu,ations and couid sign« ^-ÄS 
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One of the most remarkable achievements of science in the 20th centiirv i< tfc« A- 

.arnica, chaos. Using this paradigm, many of the problems i^ modtTi Z and^X w ^ 
can be modelled v,a the language of nonlinear dynamics, have attained an adeoulte ™i 
description. However, the explanation of a number of phenomena rfSyn^^Sl h '^ 
the creation of new mathematical techniques. The reason or thif iftha the 1 h" requ,red, 
»onlinear oscillations developed by Van I Pol, Andronov, Iw^a n K y Sbo^ 
was based on Pomcare's theory of periodic orbits and Lyapunov'sItaWl'ity U^ry, e on metl ot 
for studying mainly quasi-linear systems. '      me",od& 

Problems associated with systems involving high energies, powers, velocities   etc    must be 
mode ed by multi-dimensional and strongly nonlinear differential equations (ordinay, par'til      c T 
The study of such systems has generated numerous new concepts and terminology    hyperbolic 
et , symbolic dynamics, homo- and heterodinic orbits, global bifurcations, entropy (topo ögi/l 

and metric)   Lyapunov exponents, fractal dimension, etc..  We note the possibility of d£riMa« 

™ s? 7viastatistiial tofasweu; ■*•corre]ati°n {™^> ^*«*„£  ? aie widely used in numerical simulations and in experiments 

~J?v an 1
i,ap°r!an

1
t r,0le Sh0uld be noted on whid> concrete phenomena and models play in 

tabling dynamical chaos in different fields of knowledge.  It is Loren, model in hydro ynam 

;ada;l;:icret"e0I'y       ""^ the ^^^"^ "»<*>™ chemistry, ClJs ^ in 

Chua's circuit has become very popular since the middle of the 80's [1, 21. Being in its physical 
nature, a rather simple electronic generator of chaos (it consists of four' linear elem n^ " 
nonlinear circuit element, as shown in Fig.l). 

Chua's circuit is an ideal paradigm for research on chaos by means of both laboratory ex- 
pedients and computer simulations, because it admits an adequate modelling via the language 
of differential equations. In the simplest case these equations are written in the dimensionless form- 

i   =   a(y-h(x)) 
y   =    x-y+z 
i     =     -ßy 

where the nonlinear function h(x) has the form 

(1) 

The 

*(*) = mix + (mo - m,)1** 1[ 7'* ~ *' 

main reason why Chua's circuit is a subject of not only engineering interest is the following: 

Supported by the Russian Foundation of Fundamental Researchers 93-011-1787. 
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Chua's diode 

c2-rvc2vCi: 

(a) 

► v 
R 

(b) 

Figure 1: (a) Chua's circuit (b) The voltage versus current characteristic of the Chua's diode may 
be any nonlinear function; e.g., a polynomial, a "cubic" f(x) = c0x + ciz3, a "sigmoid" f(x) = 

!rp(^i)+ilo' etc-[2J- Here, we Sn0W the most commonly chosen piecewise-linear characteristic. 

1. Chua's circuit exhibits a number of different scenarios of appearance of chaos, namely, tran- 
sition to chaos through the period-doubling cascade, through the breakdown of an invariant 
torus, etc., which makes the study of Chua's circuits a rather universal problem. 

2. Chua's circuit exhibits a chaotic attractor called the "double scroll Chua's attractor". It 
appears at a conjunction of a pair of non-symmetric spiral attractors. Three equilibrium 
states of a saddle-focus type are visible in this attractor, which indicates that the double- 
scroll Chua's attractor is multi-structural, in distinction with other known attractors of three- 
dimensional systems. 

3. Chua's equations (1) are rather "close" (in the sense that the bifurcation portraits are "close") 
to the equations defining a three-dimensional normal form for bifurcations of an equilibrium 
state with three zero characteristic exponents (in the case of additional symmetry), and that 
of a periodic orbit with three multipliers equal to -1. 

4. In their mathematical nature, the attractors which occur in Chua's circuit are new and 
essentially more complicated objects than it seemed before. This is based on new subtle 
results on systems with homoclinic tangencies and homoclinic loops of a saddle-focus [3, 4]. 

The chaotic nature of the double-scroll Chua's attractor was proved in Ref. [5] by establishing 
the existence of homoclinic loop of the saddle-focus in the origin, and by applying the ShiPnikov 
theorem. Another proof of the chaotic nature of Chua's circuit, which also makes use of the 
Shil'nikov theorem is given by Silva [6]. This theorem asserts that if the. three-dimensional system 

x    =    px-uy + P(x,y,z) 
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y   =   vx + py + Q(x,y,z) 
z   =   Xz + R(x,y,z) 

(where PQ,R are smooth functions vanishing in the origin along with their derivatives, p < 0 A > 
0, u ± 0) has a homochnic loop, then provided that ' 

P + A   >   0 (2) 

the Poincare map on a cross-section transverse to the loop has an infinite number of Smale's 
horseshoes. It is also important that under small variations of the system a large number of the 
horseshoes are preserved. 

The nonwandering sets lying near the homoclinic loop of a saddle-focus are locally unstable So 
these structures must belong to the attractor in order for the system to exhibit chaotic behaviors' 
In Ref. [5, 6] regions in the parameter space of equations were found where this indeed takes place 
Actually, the presence of a saddle-focus homoclinic loop in Chua's circuit does not guarantee that 
the double-scroll Chua's attractor is a classical strange attractor having well-understood properties 
e.g., sensitive dependence on initial conditions, transitivity, and so on. In fact, the above homoclinic 
loop can not take place for such typical strange attractors: It was shown in Ref. [3], that if condition 
(2) and the following condition 

2p + A   <   0 

are satisfied, then there exist an infinite number of stable periodic orbits which are dense on the 
bifurcation surfaces of three-dimensional systems with saddle-focus homoclinic loops. Furthermore' 
in any neighborhood of such a surface the so-called Newhouse regions exist where systems with' 
infinitely many stable periodic orbits are dense. 

For the Chua's equations (1), this corresponds to the possibility of parameter values for which 
infinitely many stability windows exist, which implies a sensitive dependence of the structure of 
the attractor on small variations of parameters. Besides, as it was shown in Ref [4], systems with 
infinitely many structurally unstable periodic orbits of any degree of degeneracy are dense in the 
Newhouse regions. Therefore a "complete description" of the dynamics and bifurcations in the 
Chua's equations is impossible as it is for many other models. 

The main reason for such a complicated behavior of orbits in the attractors observed in Chua's 
circuits is connected with the fact that either the attractor itself, or an attractor of a nearby system, 
contains structurally unstable Poincare homoclinic orbits, i.e., orbits which arise from the tangency 
of the stable and the unstable manifolds of some saddle periodic orbit(cycle). If the inequality |A7| 
<  1 is fulfilled where A and 7 are multipliers of the cycle, then the attractor contains stable 
periodic orbits , as a rule. Such an attractor differs essentially from the hyperbolic and the Lorenz 
attractors. The latter admits the introduction of reasonable ("physical") invariant measures. This 
makes it possible to study its chaotic behavior by means of statistical methods.   In particular, 
it provides a rigorous foundation for studying such characteristic of the attractors as Lyapunov 
exponents. Therefore, hyperbolic and Lorenz attractors are called stochastic. On the other hand, 
the attractors we discuss here hardly admits the introduction of an invariant measure. We called 
such attractors quasistochastic or quasiattractor [7, 8]. In our opinion, the reasons formulated above 
make it natural for us to add the hypothesis of small noise in studying quasiattractors. It is well 
known that noise is unavoidable both in physical experiments and in computer simulations (due to 
round-off errors). An explicit introduction of noise could spread stable periodic orbits with long 
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periods and thin basins, as well as structurally unstable periodic orbits. 
Being closely related to the study of hoiuoclinic tangencies, an extension of the results pointed 

out above for the multi-dimensional case appears to be rather non-trivial and provides us with op- 
portunities for discovering many essentially new effects. Concerning those, generalizations of Chua's 
circuits which are described by equations of dimension greater than three, the. multi-dimensional 
theory predicts the following phenomenon: together with a "large" attractor, stability windows 
can exist which exhibit not only periodic and quasiperiodic orbits but also "small" strange, attrac- 
tors [9, 10]. These can be attractors of a very different nature, for instance, attractors similar 
to the Lorenz attractor and to the double-scroll Chua's attractor. Finally, we remark that there 
are still many unsolved mathematical problems associated not only with Chua's circuit but also 
with its globally unfolded canonical circuit [11] and its higher-dimensional generalizations; e.g., 
one-dimensional chains and two or three-dimensional arrays of such circuits. 
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This paper presents design considerations for monolithic implementation of a mono- 
lithic Chua's circuit array. The paper proposes a new design for a CMOS integrated Chua's 
circuit, that instead of based on the original mathematical model, it follows that of a canon- 
ical system in the Chua's family. The purpose is to reduce the number of biasing lines driven 
each circuit in the array, and to minimize the spread of the parameters. The GmC approach 
combining quasi-linear VCCSs, PWL VCCSs, and capacitors is then explored regarding the' 
implementation of this model. CMOS basic building blocks for the realization of the quasi- 
linear VCCSs and PWL VCCSs are presented and applied to design an isolated Chua's cir- 
cuit IC. The HSPICE electrical simulation results from the design show bifurcation towards 
a double-scroll Chua's attractor by changing a bias current. The manufacturability of die pro- 
totype has been confirmed by Monte Carlo analysis. 

1. INTRODUCTION 

Since its appearance in 1988 [1], cellular neural networks (CNN) have deserved con- 
siderable interest, experimenting continuous generalizations that have broaden their applica- 
tion fields. The CNN universal machine constitutes the last and most sophisticated 
expression of the CNN paradigm, which represents the first algorithmically programmable 
analog array computer [2]. An interesting property of such machine is its ability to solve 
many types of partial differential equations by using processing cells slightly more complex 
than the traditional sigmoidal neurons. In particular, it has been demonstrated that when the 
Chua's circuit [3] is used as the basic cell in a two-dimensional CNN array with resistive 
coupling, the whole system is able to reproduce the autowave phenomenon in the same way 
as accounts in many physical, chemical and biological systems [4]. From an engineering 
point of view, this phenomenon is of interest since it can be exploited for image processing 
in operations such as contrast regulation, restoration of a broken contour, and edge detection 
[5]. 
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The purpose of this paper is to present a new monolithic design of the Chua's circuit 

that is well-suited for the implementation of a VLSI array such as that reported in [4]. The 

circuit has been designed in a 2.4jim CMOS technology for a time constant of l|xs, and dis- 

plays different chaotic attractors, including the double scroll, by simply changing a bias cur- 

rent. Manufacturability of the prototype has been assessed by Monte Carlo analysis. 

2. VLSI DESIGN OF A CHUA'S CIRCUIT 

The monolithic implementation of a Chua's circuit array forces a series of conditions 

concerning the physical realization of each basic cell, summarized in the following: 

a) Robustness. Adequate operation of all the Chua's circuits in the array should be 

guaranteed, in spite of the inevitable deviations with respect to the nominal design 

point, principally caused by variations in the technological parameters and mis- 

matching. 

b) Reduced number of input/output pins. This implies that each cell should be as self- 

contained as possible, in such a way that involves a minimum number of bias 

sources. In sum, an attempt must be made to reduce the area consumed due to rout- 

ing lines. 

c) Modularity. Interconnection with the adjacent cells must be simple, with no affect 

on the compactness of the whole array. In addition, the degree of coupling must be 

programmable and easily controlled from the outside. 

d) Low area and power consumption. This infers that the different components of the 

monolithic Chua's circuit have low spread, and that current levels are of a few JIA'S. 

Authors have reported of the monolithic realization of an isolated Chua's circuit, based 

on the state-variable methods [6J. This implementation uses Gmc techniques, amply 

accepted by the scientific community in analog filter design. The designed circuit meets all 

the above cited conditions to serve as a base cell within an array, with the exception of b): it 

requires a large number of biasing lines. 

We have developed a new integrated design of the Chua's circuit to solve this problem 

and improve the system performance under the remaining conditions. This design presents 

an important modification with respect to that presented in [6], in that its mathematical 

model is obtained after an exhaustive search among the Chua's family canonical systems, to 

determine which configuration has the same qualitative behavior as the original system, and 

presents a minimum spread in the parameter values. The resulting model is described by the 

following set of equations: 
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dx-—~;\- 

i=.«(-r-!*) 0) 

where 

y(r) = *,+ £T*{|x + irj_|x_B|,|} (2) 

and the parameter values that give rise to the well-known double scroll Chua's attractor are: 

(a,M,fc) = (3,^,-|J) (3) 

whose spread is three times less than the model used in [6]. Regarding the robustness of the 

model, Monte Carlo analysis with uncorrclated relative variations of up to 7% from the nom- 

inal values in (3), show that 100% of the obtained trajectories evolve towards a double scroll. 

Fig.l shows a schematic of the circuit associated to system (1), consisting of only 

capacitors, transconductance amplifiers, and a nonlinear resistor. To ensure that real 

transconductors share the same biasing line and to reduce relative errors between the gains 

of the VCCSs, we have made a preliminary scaling of the model in (1), so that all the param- 

eter values are integers. The new values of the parameters used in Fig. 1 are: 

(a,%a,b) = (3,2,-2,2) (4) 

and the following relation between capacitors must be verified: 

C .V 

2   =2C, = C2*C (5) 

The design of Fig. 1 is completed by the choice of the time constant, x, defined as: 

T = 2K-£- (6) 
*WJH 

where #„„, is the transconductance unit on which all the gains of the VCCSs shown in Fig.l 

are scaled. If we make x = l|is and assume that C = 5 pF (usual value in analog integrated 
circuit design), we obtain gmil = 31.416 u.A/v. 
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Figure 1. Conceptual transconductance-mode Chua's circuit. 

Thus, the design of the monolithic Chua's circuit is reduced to the implementation at 

a transistor level of one single transconductance amplifier of gmu gain (the remaining 

transconductors are realized by the parallel connection of as many amplifiers ofgmu gain as 

necessary) and a nonlinear resistor. Fig. 2(a) shows the schematic used for the transconduc- 

tor unit. It is a folded-cascode structure, whose input stage presents a linearization scheme 

through source degeneration [7] characterized by an ample range of linearity in the voltage- 

current conversion, low systematic offset, and very high output resistance. The design was 

developed in a 2.4 (im double-poly double-metal CMOS technology. Fig. 2(b) shows the 

corresponding driving-point characteristic, with less than 2% error in the input voltage rang- 

ing from -1.25v to 1.25v, assuming symmetrical biasing of ± 2.5v. Obviously, proper oper- 

ation of the circuit implies that the chaotic attractor be comprised inside this range. 

The nonlinear resistor can be implemented as the parallel connection of two circuits 

like that shown in Fig.3(a) (bear in mind the values of a and b in (4)). The only difference 

with respect to Fig.2(a) is the inclusion of a differential pair (M3A, M^B) with their corre- 

sponding current source, 1B\ and the feedback between the transconductor's input and output 

nodes. Fig. 3(b) presents the resistor's characteristics for B., - 0.3 V. Note that said charac- 

teristic is not exactly piecewise linear; however, this is not a major problem since other 

'•©   '■© 
± Unit Transconductance Amplifier 

Driving-Point Characteristic 

(b) 

-2.5     -1.5     -0.5      0.5       1.5      2.5 
Input Voltage 

Figure 2. Unit transconductance amplifier: (a) Schematic; (b) Driving-point characteristic. 
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Figure 3. Nonlinear resistor: (a) Schematic; (b) Driving-point characteristic. 

smoother nonlinearities also qualify for the resistor. 

Fig. 4 presents the results of the electrical simulation of the whole circuit, where the 

double scroll is clearly apparent. Monte Carlo analysis has been also performed to assess the 

manufacturability of the circuit. Random global variations of up to 20% and simultaneous 

H, 
Figure 4. Chaotic attractor form the monolithic Chua's circuit. 
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statistically independent local variations of up to 2% are considered. Under these rather pes- 
simistic conditions, the circuit performed correctly (despite changes in the time scale) for all 
the Monte Carlo instances. 

Once the design of an isolated Chua's circuit is accomplished, the implementation of 

an analog array is straightforward: it is about to design a simple resistive grid template that 
interconnect the corresponding nodes of each Chua's circuit cell. In [4], these interconnec- 
tions reduce to the four nearest cells in the two-dimensional array, and so, easily feasible for 
VLSI realizations. A 10x10 Chua's circuit array is now being designed by the authors to 

explore the capabilities of the Chua's circuit in an image processing context. Details will be 
reported in a separate paper. 
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Abstract 

The phenomena of chaos synchronization are investigated in the nonautonomous and in two 
coupled Chua's circuits. The occurence of stochastic resonance (SR) effect in cases of amplitude 
and frequency modulation is shown. 

1    INTRODUCTION 

The phenomena of periodic oscillation synchronization and resonance are well known in the classical 
theory of oscillations. It is natural to attempt to generalize these phenomena to more complicated 
oscillations which arise in dynamical system with chaotic behavior. 

Two well-known dynamical systems possessing the above mentioned property were chosen for 
our investigation of the phenomenon of chaotic oscillation synchronization. A basic model in our 
consideration is a Chua's circuit [1], For comparison we use an Anishchenko-Astachov oscillator 
(modified oscillator with inertia! nonlinearity (OIN)) [2]. 

The classical phenomenon of stochastic resonance (SR) is observed in bistable nonlinear systems 
driven simultaneously by external noise and a sinusoidal force [3]. In the presence of an external 
modulation a coherence between the modulation frequency LJ0 and the mean switching frequency 
u>s emerges. As a result, a part of the noise energy is transformed into energy of the periodic 
modulation signal so that the signal-to-noise ratio (SNR) increases. 

We generalize this classical SR-phenomenon to the class of quasi- hyperbolic systems [4, 5]. 
Many regular and chaotic attractors can coexist and interact in the state space of such systems. 
The most general example of such interaction is a "chaos-chaos" type intermittency. Two chaotic 
attractors separated in state space by a hypersurface separatrix can merge into one chaotic, attractor. 
The phenomenon of this "chaos-chaos"type intermittency is observed in a small range of some 
control parameters greater than some critical parameter value where the merging of the attractors 
takes place. Since the statistical properties of this kind of intermittency is identical to that observed 
from classical bistable systems, it can be considered as a generalized form of bistable behavior. If 
the control parameter value is less than critical, the transition can be induced by a noise source. 

The second generalization which we make in this work is to extend the class of signals for 
inducing the SR- phenomenon. In most studies that deal with the SR the signal is considered 
as monochromatic: /(*) = ,4cos(wo*). However it is more important to investigate the SR with 
information-like (multi-frequency) signals. As a first step, we consider amplitude modulated: /(*) = 
A[\ + mcos(umt)]cos(uot) and frequency modulated: f(i) = A cos[(l + m cos(umt))(u0t)] signals. 
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2    FORCED SYNCHRONIZATION OF CHAOS 

Chua's circuit with external forcing is described by the following equations: 

x = a[y - h(x)]t       y = x - (1 + 7)1/+ z + iEsm(pt),       z = -ßy, (1) 

where h(x) = bx + 0.5(a- b)(\x + 1| - \x - 1|), 7 is the coefficient of coupling between autonomous 
Chua's circuit and external sinusoidal voltage source, E is the forcing amplitude and p = 2irfi is 
the forcing frequency. Parameters of the three-segment piecewise-linear function h(x) were fixed: 
a = -0.143, b = 0.286. We denote the frequency of the initial limit cycle of the autonomous Chua's 
circuit by /o. 

The neighborhood of the main resonance region (/o : f\ = 1 :1) was investigated. 
1.0 2.0 

l.S 

SA, 

3.65 

Figure 1: Main synchronization region for 
system (1). 

Figure 2: Main synchronization region for 
system (2). 

Fig.l illustrates the main synchronization region in the case of the weak spiral chaos (a = 
11.98,/? = 22.0,7 = 0-1)- This region arises due to locking of the basic frequency. The left 
boundary If corresponds to the transition "chaotic torus-attractor SAj => chaotic spiral Chua's 
attractor SA{\ In the right side of the region, narrow zones of regular oscillation kC\ with periods 
kTi,Ti = l/fi exist (k = 2,4,8,...) The boundary is formed by the lines of tangent bifurcations 
/jfc here. The line /f has a very complicated structure and we conjecture that the accumulation 
of the lines /* for the saddle cycles kC\ corresponds to the transition "nonsynchronous chaos =*■ 
synchronous chaos" through frequency locking [2]. 

Numerical investigation of forced synchronization in Chua's circuit was supplemented by exper- 
iments with real Chua's circuits. Our experimental results agree qualitatively with the computer 
generated ones. 
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(1) 

Let us consider next the forced synchronization of OIN, described by the following equations: 

i = mz + y-xz + 2l(sm(ut) - eos(ttf)),        y = _*,        i = g(z _ F(x))> (2) 

where /•(«) = z if x > 0 and F(x) = 0 if , < 0, E and u are forcing amplitude and frequency 
respectively and 7 ,s the coupbng coefficient. Fig.2 shows the main synchronization reg o ^ 
the regime of weak spiral-type chaos in the autonomous system (2) (m = 1.52 a = 0 2 7 = 0 n 
The fundamental difference between the behavior of the forced Chua's circuit and 'the OIN is 
that upon increasing the synchronous forcing amplitude, the weak chaos in the Chua's circuit is 
transformed mto the "stronger" chaotic double-scroll DS regime. It does not allow us to realize a 
synchronous suppression of chaos, which can be simply observed in the OIN, where, the synchronous 
chaotic region ,s bounded from above by the sequence of lines of period-doubling bifurcations /* 
k - 2,4,.... For the forced OIN we have succeeded in verifying with high precision our above' 
hypothesis concerning the complicated structure of the line If. 

I.IB 
U 

3    MUTUAL SYNCHRONIZATION OF CHAOS 

Consider next two resistively-coupled Chua's circuits with detuning between basic frequencies: 

i2/p=a[y2-h(x2)], 

Vi=x1-y1+zl+ 7(t/2 - pj), i, = -ßyi; 

Vilv = T.2 - y2 + z2 + 7(j/i - 3/2), i2/p - _ßy2_ (a) 
Here 7 characterizes the degree of coupling and p = ft/fr determines the detuning.   If p =  } 
equations (3) describe the dynamics of two coupled completely identical Chua's circuits 

Let us fix the parameter values: ft = 22.0, a = -0.143,6 = 0.286. When p = 1 and 0 < a < 8 78 
there are four stable equilibrium states /'„ i = 1,2,3,4. When o = 8.78, limit cycles Ct are born 
from the point /»■ via Hopf bifurcations. As the parameter a increases, each of these cycles undergoes 
some sequence of bifurcations, and resulting in the increase of a number of multistable states As 
detuning .s introduced (p ^ 1), all oscillatory regimes observed at p = 1 continue to exist in some 
interval of values of the parameter p. These regimes evolve in some manner with the variation of 
p and undergo various bifurcations. 

The main synchronization region and its neighborhood (p « 1) were investigated. Fig 3 shows 
the mam synchronization region on the (p-7) plane for attractors placed in the neighborhood of the 
point />, at a = 11.6, when the regime of spiral chaos SA, is realized in partial subsystems without 
coupling. Here kC] is the limit cycle with k loops around Pu 7? is the two-dimensional torus, 
A A, is the spiral chaos, SAT} is the torus-chaos, l2CT is the line of torus collapse and torus-attractor 
emerging. In Fig.3, the synchronization region is determined by the lines of tangent bifurcation /' 
and the lines of torus birth /£. 

The investigation of the structure of the main synchronization region in the two coupled OIN's 
in the regime of weak spiral chaos was conducted in [2].  In contrast to Chua's circuit, the OIN  ' 
circuit does not possess the symmetry property and its multistability is connected with the existence 
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of several fixed points in the phase space. A comparison of the bifurcation structure of the main 
synchronization region for the coupled Chua's circuit and the coupled OIN circuit reveals both 
similarities and essential differences, which can be explained both by individual peculiarities of the. 
partial systems, and by the different character of coupling. 

Y 
0.4 

0.3    - 

0.2 

0.1 

0.0 
1.0 1.0& 

Figure 3: Main synchronization region 
• in system (3). 

0.000 0.005 0.013 
D 

0.015 

Figure 4: SNR versus D in the Chua's circuit 
driven by periodic signal and noise. 

4    STOCHASTIC RESONANCE 

We now turn our attention to the investigation of multi-frequency SR-phenomenon in the nonau- 
tonomous Chua's circuit: 

x = a[y - h{x)),        y = x-y + z,        z = -ßy + f(t) + £(*). (4) 

Let us fix the parameter values a = -1/7, b = 2/1. There is a bifurcation line lds separating regions 
of existence of two different types of chaotic attractors on the (a - ß) parameter plane of the 
autonomous Chua's circuit. A pair of symmetrical spiral Chua's attractors take place to the right 
of the lds. Hence, Chua's circuit can be interpreted as a bistable nonlinear chaotic oscillator in this 
region. Any interactions between the two attractors can be induced only by external perturbations. 
These two attractors merge on the curve lds thereby giving rise to the birth of the double-scroll 
Chua's attractor, which exists to the left of this curve. In the vicinity of the bifurcation curve, the 
phase trajectory resides in each of the merged attractors for a long time and makes relatively few 
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transition between them. The mean switching frequency u, is very small here and we can identify 
a dynamical "chaos-chaos" intermittency phenomenon. 

Let us fix ß = 14.286 and consider the monochromatic signal /(*) with u0 = 0.5652, A = 0.1. 
Fig. 4 illustrates the case of noise induced intermittency and demonstrates the SR-phenomenon at 
a ?= 8.55. Similar results were obtained for dynamical "chaos-chaos" intermittency at a = 8.85, 
but a stronger SR-phenomenon take place in this case. 

Consider now the amplitude modulated signal f(t) with m = 0.5,w», = 0.1256. In Figs. 5 and 
6, we can observe an obvious SR-phenomenon both for a noise-induced and for a dynamical type 
of intermittency for all three basic, frequencies of the signal. However, these results show rather 
strong nonlinear distortions of this signal, especially in the presence of noise. Probability density 
of the residence times for amplitude modulated signal was computed as well. Its structure reflects 
the presence of all three mentioned characteristic time constants and must contain the information 
about the fourth time constant Tm = 27r/w,n. However, more detailed calculation have to be 
conducted to reveal it. 

go-. 

0.000 0.005 0.010        0.015 
D 

Figure 5: SNR as function on D in Chua's 
circuit with amplitude modulated signal. 

Figure 6: SNR as function on a in Chua's 
circuit with amplitude modulated signal. 

Our examination of the SR-phenomenon induced by the frequency modulated signal f(t) al- 
lows us to obtain qualitatively similar results. The SR-phenomenon takes place for all three basic 
frequencies in this case too and nonlinear distortions are a little less in this case. 

5.4-3 85 



5    CONCLUSIONS 

Both non-autonomous Chua's circuit and system of two coupled Chua's circuits possess a rich set 
of all possible distinct dynamical regimes and their bifurcations. All currently known types of 
quasihyperbolic chaotic sets, scenarios of their birth, and bifurcations into chaos are present in 
these systems. These properties make Chua's circuit an ideal model for the investigation of the 
phenomenon of synchronization of chaos. 

Investigations of forced synchronization in Chua's circuit in the spiral chaotic regime confirmed 
that both classical mechanisms of synchronization (frequency locking and frequency suppression) 
are realized in the case of chaotic behavior. Two resistively coupled identical Chua's circuits demon- 
strate the phenomenon of nmltistability of the regimes, which is connected with the existence of 
four potential wells in the neighborhood of four saddle equilibrium points. Our computer simula- 
tion gives evidence that the bifurcation scenario of multistability development has some universal 
character determined by the type of coupling between partial systems. 

In the system of coupled Chua's circuits with detuning between basic frequencies, the frequency 
synchronization of the spiral chaos can be observed, as a Tesult of mutual locking of basic frequencies 
of partial systems. 

Our numerical data confirms that the SR-phenomenon in quasi-hyperbolic systems with chaotic 
dynamics can be realized. The interaction between chaotic attractors having a "chaos-chaos" type 
intermittency includes more possibilities. In partiailar, an increase in the SNR can take place by 
tuning the system parameters without external noise. In this case, the intrinsic chaotic dynamics 
plays the role of "deterministic" noise. 

It is shown that the SR-phenomenon takes place in the case of amplitude and frequency mod- 
ulated signals. The numerical simulation demonstrates that for the case of weak signals, some 
nonlinear distortions in the output take place. In this connection it is interesting to look for 
conditions where nonlinear distortion is minimized. 
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ABSTRACT 
The various methods of synchronizing chaotic circuits and transmitting information hidden 
in a chaotic signal are presented in a systematic manner. Different realizations of such 
systems using Chua's circuit, and a limiting version proposed by Saito, are discussed. 

1. INTRODUCTION 

Since Pecora and Caroll [1, 2] have shown that it is possible to synchronize chaotic systems, 
various authors [3-6, 8-10, 13] have proposed schemes for using a chaotic signal for secure 
communications. The various approaches differ in the way synchronization is obtained, and 
in the way the information carrying signal is hidden in the chaotic signal. We shall give a 
short overview over these two subjects that is inspired by [7]. 

Chua's circuit has been a good vehicle for laboratory implementations of such communica- 
tion systems [4-6, 8-10] but other circuits have also been used [3, 13]. In this paper we report 
on various realizations we have accomplished by simulation and hardware implementations 
using Chua's circuit and a limiting case of Chua's circuit family proposed by Saito. 

It should be stressed that by far not all aspects of a secure communication system are 
addressed in this work nor have they been addressed in the other papers that are referenced 
here. At this stage we simply show that it is possible to hide useful information in a chaotic 
signal and retrieve it subsequently. Problems like finite channel bandwidth have not been 
studied. 

2. SYNCHRONIZATION PRINCIPLES 

Basically, three different methods have been proposed for the synchronization of chaotic 
systems, synchronization by decomposition into subsystems [1, 2], synchronization by error 
feedback [5, 11] and synchronization using the inverse system [8, 9]. The first method 
amounts to representing a chaotic system as a connection of two subsystems (Fig. 1). Under 
certain circumstances, opening the loop in Figure 1 leads to a system whose asymptotic 
input-output function is the identity (Fig. 2). In this case, a 'master' system can drive 
a 'slave' system such that asymptotically all variables in the slave system are identical to 
those at the master system, even if the waveforms have a chaotic aspect. This method is 
studied systematically in [12]. The second method is a classical control approach by error 
feedback shown in Fig. 4. Finally the last method uses as the 'slave' system an inverse of 
the 'master' system. A system is called an inverse here, if it produces the input signal of the 
original system when it is excited by the output of the original system and when the initial 
conditions of the two systems are identical. Of course, we have in general no control over 
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Figure 1. Decomposition of a chaotic system as a loop made of two subsyst. ems 
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Figure 2. Breaking the loop and forcing one subsystem may result in a system asymptotically 
equivalent to the system of Fig. 1 
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Figure 3. Basic configuration scheme for the synchronization by decomposition into subsys- 
tems 
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Figure 4. Synchronization using an error feedback scheme 
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Figure 5. Syncronization using a slave system that is the 'inverse' of the master system 

the initial conditions and therefore for synchronization we need the asymptotic convergence 
to the input of the original system when the inverse system starts from an arbitrary initial 
condition. Note that in the first two methods the master system is autonomous, whereas 
in the third method it is driven by an external signal. This difference is important in the 
context of secure communications. It might appear hopeless to find a chaotic system with 
a globally asymptotically stable inverse. However in the context of circuits, this is not so 
strange. In fact, the voltage of a one-port can be interpreted as the input variable and the 
current as the output variable or vice versa (Fig. 6). Usually, the two corresponding systems 
are the inverse of each other. 

3. TRANSMISSION PRINCIPLES 

Again, three different methods for transmitting an information signal S(t) via a chaotic 
carrier X(t) can be distinguished. 

+ 

l 

1-port 
) 

+ 
V 

Figure 6. Master system and inverse system circuit design 
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Figure 7. Basic scheme for chaotic switching 

The first, chaotic masking consists simply of adding 5(0 to the chaotic signal X(t) [3]. 
In the second, chaotic switching [4-6, 10, 13], a binary signal drives a switch between two 
parameters values of the master system, which is the emitter. On the receiver side, two slave 
systems, one for each parameter value, try to synchronize to the transmitted (chaotic) signal 
X(t). The one who succeeds determines the received bit (Fig. 7) Finally, chaotic modulation 
[8, 9] uses directly the synchronization method of Fig. 5. In this case, the information signal 
5(0 is usually analog, but a digitally modulated signal 5(0 can also be used, as will be 
shown in the last example of this paper. 

4. EXAMPLES 

As a first approach we have divided Chua's circuit into two subcircuits for synchronization 
according to the Pecora-Caroll method. The binary input signal switches a linear resistor in 
parallel to the nonlinear resistor in Chua's circuit. The experimental and simulation results 
are reported in [4], together with a proof of synchronization under a certain hypothesis on 
the transmitted (chaotic) signal. 

A second approach uses feedback and chaotic switching. Simulations and laboratory ex- 
periments have shown the viability of the approach [5] and for certain sets of parameters 
synchronization has been shown by a Lyapunov function. 

The last approach we have tried uses the circuit proposed by Saito with chaotic modulation 
(Fig.  8).  The nonlinear element is a voltage controlled voltage source with the nonlinear 
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Figure 9. Nonlinear characteristic of the voltage controlled source of the Saito's circuit 

that instead of the current source with signal i,(t) a voltage source imposes v,(t) transmitted 
by the emitter. The current in this source is i3(t) that asymptotically equals is(t), the 
information carrying signal. We have used 180° phase-shift keying for transmitting binary 
information on the analog signal is(t). In Fig. 10 both is(t) (in bold) and i,(t) are shown. 
Clearly the circuit is able to follow perfectly the sign inversions of the sinusoid. Finally, in 
Fig. 11 the transmitted and the detected baseband signal are shown when 0 and l's alternate 
regurlarly. It can be seen that there is no obvious way to detect the transmitted bit from 
the transmitted signal without any additional knowledge. 

0.6 
"i    ■" 

 PSK Wave 
  Detected PSK Wave 

0 2 4Time(ms)6 

Figure 10. Recovery of the phase-shift keyed sinusoid 

10 
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Figure 11. Detected signal versus transmitted (chaotic) signal 

5.  CONCLUSION 

We have given a classification of synchronization methods and of transmission methods 
using a chaotic carrier signal. Three prototype circuits have been shown to work in principle, 
each one using a different synchronization method. 
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ABSTRACT 

This paper presents a formulation of the problem of human hand gesture 
recognition in terms spatial pattern formation induced within an array of dy- 
namical systems. The primary problem of gesture recognition for real-time 
human-computer interaction is the rapid acquisition and classification of mo- 
tion trajectories. The design of a multi-attractor array is presented which uses 
Chua's circuit as a simplified abstraction of the model dynamics. Temporal 
trajectories are used to drive the array of modified Chua's circuits into spatial 
patterns of synchronous behavior. 

1     Introduction 

The system of hand gestures developed in American Sign Language constitutes a richly 
expressive visual language. The real-time recognition of temporal trajectories arising from 
hand gestures is an inherently parallel task for which it is argued that nonlinear dynamical 
systems are particularly well matched. A simple subset of these signed expressions has 
important applications for human-computer interaction in virtual reality applications^]. 

The parallel recognition of a large repertoire of trajectories is a nonlinear phenomena for 
which chaotic systems provide the potential for considerable simplification. Synchronization 
to the input signal optimizes the correspondence with the input signal. Rapid convergence 
onto an attractor on a center manifold surface enables real-time recognition. The formation of 
spatial patterns of synchronized activity in the array enables recognition of multiple gestures. 
Rapid transitions between attracting surfaces enable the tracking of smooth transitions of 
hand motion between sign language expressions. The full utilization of these interdependent 
phenomena for the recognition of complex motion trajectories requires new methods for the 
design of nonlinear dynamical systems. 

A paradigm for the study of nonlinear systems has recently emerged with the introduction 
of Chua's circuit[2] and its associated canonical circuit family[3]. The relative simplicity of 
Chua's circuit provides a convenient model of the dynamics and bifurcation phenomena for 
the design of more complex systems. A coupled array of Chua's circuits is an example 
of a complex, massively parallel system synthesized from simpler elements. In order to 
simplify the design of the gesture recognition system, each dynamical system in the array is 
constrained to have the same normal form as Chua's circuit, therefore the detailed knowledge 
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Figure 1: Hand trajectory for a simple gesture, (a) Hand motion, (b) Position, (c) Velocity 
in the x direction, (d) Acceleration in the x direction. 

of a single system suffices for all elements in the array. The introduction of local coupling 
and external driving signals creates new phenomena, not present in the original circuit, 
which are particularly useful for temporal pattern recognition. In particular, the problem 
of trajectory recognition is transformed into the simpler task of pattern formation through 
the design of multiple, simple systems, each of which is broadly responsive to many inputs, 
while exhibiting a collective behavior which is quite selective. 

2    Formulation of the Recognition Problem 
A simplified hand gesture is characterized by the following attributes. (1) A space curve 

followed by the moving hand. (2) The position of the hand along this space curve as a 
function of time. (3) The configuration of the hand as a function of position along the curve. 
Additionally, the recognition of gestures is strongly influenced by velocity and acceleration 
profiles[4] which are illustrated in Fig. 1. In this paper, the recognition of trajectories formed 
by the moving hand with a fixed hand configuration is formulated using chaotic systems. 
The role of chaos is to facilitate the transition between attractors for motion trajectories 
from two successive gestures. 

One possible formulation of the gesture recognition problem is to assume a direct mapping 
between the hand motion trajectory and a trajectory on a center manifold surface of a 
dynamical system. Such a one-to-one correspondence leads to severe demands on the detailed 
design of nonlinear dynamics and unnecessary specialization. A more general recognition 
problem can be solved by making a weaker assumption concerning the mapping between 
input trajectories and dynamics. The design of the more general system is based upon 
global synchronization to the input signal and the formation of spatial patterns. 

The design of the recognition system begins with a large array of identical dynamical 
systems. A core set of dynamical systems within the array can be modified to recognize 
specific input signals. This corresponds to a traditional winner-take-all network in which 
the response of the dominant system is used to identify the input signal. However, the 
ability of simple nonlinear circuits to synchronize to a broad class of inputs means that 
many systems in the array will respond to a large class of signals. This gives rise to the 
emergence of spatial patterns of synchronized activity reflecting the global behavior of the 
array similar to a Freeman type network[5]. 
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(a) (b) 

Figure 2: Nonlinear dynamics, (a) Cubic nonlinearity of Chua's circuit equations, (b) Center 
manifolds at the equilibria with limit cycle oscillations on the manifold surface. 

3    Normal Form of Chua's Circuit 

The hand motion associated with a particular gesture may be partially described by a 
trajectory on a 3D surface and modeled by a dynamical system. The model dynamics is 
based upon the dimensionless form of Chua's circuit equations[2], 

x   =   a[y-f(x)] 

y   =   x-y + z 

z   =   -ßy 
(1) 

where the piece-wise linear function is replaced with the cubic nonlinearity /(x) = cox + cix3 

with c0 = — g and Cj  = —.   The shape of f(x) and the corresponding piece-wise linear 
function are illustrated in Fig. 2(a).   

Chua's circuit has three equilibria at P0 = (0,0,0) and P± = (±y/~1^LiO,T}/-k^L)- 
Near the equilibrium P+, we have the linearization 

M = Df\P+ = 
aco-3(co+l)      a   0 

1 -1    1 
0 -ß   0 

(2) 

it r o —u>o 0   0 1 u au " f(u,v,w) 
V 

a = 
U>o 

0 

0 

0 

0   0 

0   0 

V 

a + av 
0 + g{u,v,w) 

0 
w 0 0 0   7 . w L o J h(u,v,w) 

If a and ß are chosen such that (2) has a pair of complex conjugate eigenvalues a ± iu0 and 
a real eigenvalue 7, then the augmented Jordan form[6] 

(3) 

has the linear part in block diagonal form and the higher order nonlinear terms are expressed 
by the functions /(•), g(-), and h(-). This system is augmented by treating a as an additional 
variable with the condition ö = 0. The term a will later serve as a bifurcation parameter 
which determines the amplitude of limit cycle oscillations in the normal form. 

In the study of the local behavior of solutions of nonlinear differential equations, the 
choice of coordinate systems plays a major role in identifying the qualitative properties of 
the flows. The normal form is considered as the simplest member of an equivalence class of 
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Figure 3: Limit cycle oscillations of Chua's circuit on the center manifold, (a) Temporal 
profiles of the center manifold variables u (solid) and v (dashed), (b) Phase plot in the 
uu-space. 

vector fields, all exhibiting the same qualitative behavior near the equilibria of the system. 
The basic approach to constructing the normal form equations for a dynamical system is 
based upon the computation of nonlinear transformations which systematically reduce the 
coupling among low order terms in the original system. The normal form computations of 
Takens[6] and Ushiki[7] systematically simplify the form of the dynamical system using Lie 
bracket operators to make coordinate transformations in the complementary space. Takens' 
method assumes that the coefficients in the transformation are fixed, then uses rescaling to 
simplify the normal form coefficients. In Ushiki's method, the coefficients are parameterized 
so that a particularly simple form can be obtained for certain parameter values. 

The normal form transformations are based upon diffeomorphisms, therefore the local 
dynamics near the equilibria of the original system is topologically equivalent to the dynamics 
on the center manifold. The center manifold provides a geometric method for modifying the 
vector field to optimize the response of the system to the input trajectory to be recognized. 

The normal form computation requires that the dynamics be projected onto a reduced 
dimensional space called the center manifold which is an invariant manifold tangent to the 
center eigenspace at the equilibrium of the system[6]. The surface of the center manifold is 
described locally by the nonlinear graph w = S{u,v,a). A view of the two center manifolds 
associated with P+ and P_ projected back into the .Tyz-coordinates of Chua's circuit is 
illustrated in Fig. 2(b). The limit cycle oscillations of Chua's circuit in the uu-coordinates of 
the center manifold in Fig. 3, show that the complex limit cycle trajectories in the xyz-space 
have a simple form in the uv-coordinate space of the center manifold. 

The third order normal form of Chua's circuit on the center manifold is given by[8] 

" v! ' ' 0 —u>o 0 ' " u' ' S\v! o'— a2v'a' 
v' = a>Q 0 0 v' + a2u'o' + Siv'a' 

[ a' \ 0 0 0 a' [ s2(u'2 + v'2) + b2u'2 . 
+ 

a3(u'2 + v'2)u' - a4(u'2 + v'2)v' 
a4{u'2 + v'2)u'+ a3{u'2 + v'2)v' 

b4a'3 
(4) 

This normal form has a particularly simple form when expressed in cylindrical coordinates 

p   =   slPcr' + a3p3 + O(\p,0,cr'\4) 

6   =   uj0 + a2a' + a4p
2 + O(\p,6,a'\4) (5) 
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o>   =   s2p
2 + b2cj'2 + b4a'3 + 0(\p,e,a'\'i) 

evaluated up to order three. The value of p corresponds to the radius of the limit cycle 
on the uu-surface of the center manifold, 6 is the phase angle, and er' corresponds to the 
bifurcation parameter a in the augmented system in (3). The design of new dynamics based 
upon the normal form is facilitated by the use of closed form expressions relating the normal 
form coefficients to the dynamics on the center manifold surface[6, 8]. 

4 Pattern Formation and Global Synchrony 
A restricted set of trajectories consisting of circular motions in various regions in the 

physical space are initially used. This initial set of trajectories is chosen to allow the direct 
mapping between the core set of modified Chua's circuits and the space coordinates of the 
input trajectory. This forms a base set of dynamical systems having the same normal form, 
thus the qualitative behavior of each autonomous system is known. The general form of the 
nonautonomous dynamics for the diffusively coupled array is 

iij = <Axij: va, zu) + i(yij -1]yim) (6) 
w 

where 7 is the diffusive coupling among systems within the window of size W. Considerable 
simplification is achieved when (6) is divided into an x-subsystem (called the drive system) 
and a yr-subsystem (called the response system) following the formulation of Pecora and 
Carroll[9,10]. Each xtJ term in the yz-system is subsequently replaced by the input trajectory 
x'{t) to be recognized to form a drive-response system. 

The interpretation of the state of each dynamical system in the array may be as difficult 
to achieve as the original recognition task. This problem is greatly simplified by the partial 
entrainment of each dynamical system to the input trajectory. The perturbation to the 
dynamics in the yc-subsystem is minimized when x'(t), corresponds to a trajectory on the 
center manifold surface, thus leading to the synchronization of the y and 2-components to the 
corresponding components of the input. The global entrainment of the array is illustrated 
in Fig. 4(a) with a 3 x 3 subsample of the y component from a 12 x 12 array of modified 
Chua's circuits. The spatial pattern formed by measuring the distance between the y and 
z components of each driven system in the array and the corresponding components of the 
input signal is shown in Fig. 4(b). A small subset of the elements, indicated by the dark 
regions, synchronize in both phase and amplitude to the input. The remaining elements 
synchronize in phase but not amplitude as indicated by the light regions of Fig. 4(b). 

5 Conclusion 
The proposed recognition system begins with the specialized design of a few dynamical 

systems responsive to particular input signals. Subsequent changes to the dynamics are based 
upon the optimization of pattern formation in the array. The global synchrony and formation 
of spatial patterns then constitutes a generalization of the system to the recognition of a 
potentially large number of input signals depending upon the size of the array and the 
capacity for pattern formation by the array. This evolution of dynamics enables the eventual 
decoupling of the specific characteristics of the input signal from the details of the dynamics. 
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Figure 4: An array of Chua's circuits driven by a nonperiodic function, (a) Global coherence 
of the y-component. (b) Spatial pattern of activity in the array. 
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Abstract 

This paper describes a set up for the visualization of Poincare return maps of dynamic 

systems. Previously, this circuit has been successfully applied to a nonautonomous elec- 

trical circuit, which exhibits chaos. It is shown in this paper, that the circuit can be also 

successfully applied to the famous Chua's circuit. 

1 Introduction 

It is well known that horseshoe map can be often found in a chaotic system [1]. However, 

the visualization of a horseshoe map in a real circuit has not been reported. In this paper, 

a method is proposed for this purpose. Let the initial conditions be set subsequently to the 

points of a square on a plane in phase space, and let's trace trials to the points of the first 

Poincare map. If the circuit is fast enough, we are able to show both the initial square and 

the distorted (expanded, stretched and folded in chaotic case) map of this square. Because 
the size and position of this initial square can be easily adjusted, the circuit can be used as 

a fast searching tool for horseshoe map in nonlinear electrical systems. 

2 Circuit Description 

At first, we have chosen the two-cell nonautonomous CNN (Lady's Shoe Attractor) [2] as 

our target circuit under investigation. The circuit for visualization of horseshoe map is 

depicted in the Fig. 1. The sinusoidal signal, needed for the Lady's shoe attractor as the 
periodic forcing signal, is used here to synchronize the timing of the circuit. The Phase- 
shifter forms a pulse signal from the sinusoidal signal at the given phase lag. An adjustable 
counter is connected to the output of the Phase-shifter. It gives a reset signal by the set 
value and switches at the same time in the run or load mode. This reset signal is directly 
connected to the z-input of the oscilloscope in order to sample the state variably in the 

discrete time. To ensure the right timing of the initial points or their Poincare maps, we 

have added a time-delay unit between the adjustable counter and the Run/Load input of the 

CNN circuit. The initial conditions are formed in steps with the 4-bit counter and with the 

D-A converter. Each step corresponds with a point of the initial square in the voltage phase 

plane.  The square consist of 16*16 dots.  The 1/16 divider is used for providing rowwise 
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scanning properly. The initial conditions are inverted for the projection, because the CNN 
inverts the input conditions too. The analog switches finally choose the initial conditions or 
the output of the CNN in the right time. 
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Fig. 1. Circuit in block diagram 

Experimental results with the nonautonomous CNN circuit can be find in [3]. 

3     Showing Horseshoe Map in Chua's Circuit 

The real-time visualization of horseshoe map in an autonomous circuit is a much more 
difficult job. For the purpose of experiments, we have chosen the Chua's circuit as our target 
circuit under investigation. The circuit for visualization of horseshoe map is depicted in the 
Fig. 2. Because the Chua's circuit is autonomous, we have no external periodic exciting 
signal to synchronize the timing of Poincare maps. The signal of the third dimension in the 
system (called x3(t)), be either uci, «C2 or t£, is used here to synchronize the timing of the 
circuit. A level crossing detector forms pulse signal from x3(t) at the given voltage level and 
the positive transition direction. An adjustable counter is connected to the output of the 
level-shifter. It gives a reset signal by the set value and switches at the same time in the run 
or load mode. The reset signal and other signals (e.g. signals for initial condition settings) 
can be generated using the same circuitry above. Note that the pulses of these signals have 
an irregular timing now.   For setting initial conditions conveniently, the inductor used in 
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Chua's circuit is replaced by a capacitor with a gyrator. The circuit with its control switches 
are depicted in great detail in Fig. 5 at the end of this paper. 

 -H -—-— 

Level 
CrofSiVij 
Detector 

Rsset 

Adjustable 

Counter {±HI}-* Run/Load 

Chua's Orcuit, 

1/16 
Devicer 

Fig. 2. Circuit for showing horseshoe map in Chua's circuit 

4    Experimental Results 
The experiments with the Chua's circuit and the circuit in Fig.  2 show that it is easy to 
find horseshoe maps. Fig. 3 shows an initial rectangle within the attractor area. 

Fig. 3. An initial rectangle in the double scroll attactor 

Fig. 4.(a)-(f) display the development of the first, second, • • •, sixth return maps of that 
initial rectangle. In the sixth return map we see a clear horseshoe map. 
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U) (f) 
Fig. 4. Experimental results: Initial square and first (a) to sixth (f) return map 
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5    Conclusion 

With this circuit it is possible to visualize the horseshoe map in nonlinear nonautonomous 
circuits having analog switches in order to load the initial voltages and then start the tran- 
sient. The principle can also be applied to autonomous circuits. Experimental results show 

that visualization of horseshoe maps has been demonstrated with Chua's circuit successfully. 
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Abstract 

Models of the excitation mechanism of sutained musical instruments are studied in terms of 
nonlinear dynamics. We focus on passive linear systems coupled to nonlinear oscillators. A 
clarinet-like model is proposed and recognized as similar to the time delayed Chua's circuit. Results 
are given concerning the role of the memoryless nonlinearity and of the linear element in single 
feedback loop systems. Implementations, real-time simulations and sound results are discussed. 

1. Introduction 
We examine here models of the excitation mechanism of sutained musical instruments, such 

as strings, brass, reeds, flutes and voice [1], [2] in terms of nonlinear dynamics. One of the goals 
of our work is sound synthesis by computers for musical applications. Beyond the strict imitation 
of a specific instrument, the aim is to provide new simulated instruments with extended properties, 
such as a broader range of sounds, improved payability and other properties sought by musicians. 
For a musical use of instrument models, typical problems are stability, periodic trajectories, 
transient behavior, ease of control (according to the relations between control parameter values and 
sound characteristics) and influence of the linear and nonlinear components. Finally we look for a 
rather general model of several instruments with good behavioral and control characteristics. 

2. Passive Linear Systems Coupled to Nonlinear Oscillators 
Seen from the mouthpiece, the bore of a clarinet appears roughly as a delay line with a sign 

inversion reflection at the other extremity, and some low pass filtering with impulse response h. 
The corresponding delay t or some related period is responsible for the pitch played by the 
instrument. The basis of the oscillatory behavior is to be found in the coupling of the passive linear 
part with the nonlinear reed. For string instruments the main delay comes from transverse waves 
travelling back and forth along the string. The bow-string interaction is represented by the nonlinear 
velocity-force function. Let x, y, h:R-»R, T € R, ybe nonlinear and * be the convolution operator. 
These instruments can be described by autonomous retarded functional equations such as: 

x(t) = h*Y(x(t-T)) (1) 

3. Example: the reed of a clarinet-like instrument coupled to the bore 

Following [3], let us call q0 and qi the outgoing and incoming pressure waves in the bore 
respectively, p the pressure in the player's mouth and z the characteristic impedance of the bore. 
The system can be described in a simplified way by the equations: 

qo(t) - qi(t) = zF(qi(t) + q0(t) - p(t)), 
qi(t) = r(t)*qo(t)=h(t)*qo(t-T) 

where h(t-x)=r(t) is the reflection function of the bore. The most important assumption here is that 
the reed has no mass, leading to a memoryless nonlinearity F. In the case where this system has a 
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unique solution, we obtain a very simple model to explain the basic oscillatory behavior of the reed 
in a clarinet-like instrument (Fig. 1): 

qo=Y(h*q0(t-t)). 

m 

YÜ 

delay x *h 

v(x,t) 
R rl 

Fig. 1. The simplest clarinet-like model 

4. Chua's circuits 

0        x 
Fig. 2. Time delayed Chua's circuit 

The time-delayed Chua's circuit [4] is shown in Fig. 2. In a first simplification, the slopes 
mo and m2 of the characteristic of Nr (Fig. 3) are set equal to each other. With Ci=0, the solution 
consists of the sum of an incident wave a(t-x/v) and a reflected wave b(t+x/v) such that: 

a(t-x/v) = -b(t-x/v) = u(t-x/v), 

u(t) = y(u(t-2T)), 

where T is the time delay in the transmission line and y is a piecewise linear 1-D function. This is 
the same delay-equation that we have obtained for the basic clarinet model, except for the filter h 
which we will examine later. 

Chua's diode characteristic 
Re(Q(M} 

Fig. 4: Nyquist plot of G(jco). 

By a proper affine change of variable, for certain parameter values, the function Y is 
composed of two segments only in the invariant interval with slopes s\ and S2. In this case the time- 
delayed Chua's circuit exhibits a remarkable period-adding and chaos phenomenon (see Figure 11 
of [4]). In the (si, S2) space, regions are found where the system has either stable limit cycles with 
period equal respectively to 2, 3, 4, etc.... or chaotic behavior. From the point of view of sound 
synthesis, this is very interesting [5]. Period adding corresponds to successively lowering the 
pitch. In the case of chaos, the signal sounds like noise added to a periodic tone of the instrument 
but with a relation between partials and noise. 
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The existence of several stable solutions, as in natural instruments can be a serious 
inconvenience for an electronic instrument We look for a system which would model the usual 
playing behavior of an instrument but could avoid other solutions if requested to do so. The 
requirement of a low pass filter above the oscillation frequency appears in the describing function 
method [6] and in the Hopf Theorem (see section 5) which gives sufficient conditions for oscillation 
and unicity of the solution. The linear part of Chua's circuit [7], [8], [9], for some parameters 
values at least, can be viewed as a low pass filter above the frequency of a pair of conjuguate poles. 
This frequency is approximately equal to the oscillation frequency. Chua's circuit also appears as a 
model of an acoustic instrument where the feedback loop is limited to the first mode or the dominant 
mode. It is an example of a model of the behavior in the normal playing of an instrument which can 
easily be constrained to have a unique periodic solution. 

5. Single feedback loop systems with a memoryless nonlinearity 

We define the class of single feedback loop systems of which we can easily determine stability 
and some oscillatory properties. Such a system is composed of a unique memoryless nonlinearity 
and a linear feedback loop which can include delays. The only restriction on the linear element G(s) 
is that its impulse response be stable [10], which is natural for physical instruments. Many musical 
models can be redesigned to fall into this class. Assume there is a fixed point at the origin where the 
slope of the nonlinearity Y(.) is si. Since G(s) has no poles in the closed right half plane C+, the 
Graphical Stability Test [10] is simplified: Consider the intersection points of the Nyquist plot of 
G(jco) with the real axis. Let -q+jO denote the point with the smallest value and let Cöq be such that 
G(jcoq) = -q (Fig. 4). Then the system becomes unstable when si < -1/q, indicating that the system 
could oscillate. A proof is provided by the following method. 

The Graphical Hopf Theorem and its algebraic version [11] apply to a nonlinear multiple 
feedback loop system where the nonlinearity Y is C^. It applies to rather sophisticated physical 
models of instruments [2], [12]. Even though it is straightforward, we will not state this theorem in 
detail since it is rather lengthy. We merely emphasize that it provides the existence, uniqueness and 
stability test of the periodic solution required for our application. However, other stable solutions 
may appear under more general playing conditions. For other instruments such as the trumpet, the 
nonlinearity seems to be with memory, and the previous reasoning does not apply. 

Fig. 5: Spectrum showing the simultaneous 
presence of sinusoidal components and noise. 

Fig. 6: Detail of Fig. 2 up to 200 Hz. 
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6. Some results on the role of the memoryless nonlinearity 

Results of the time-delayed circuit with a piecewise-linear function y without the filter h, and 
short-time spectra of signals are given in [5]. We observe the simultaneous presence of sinusoidal 
components and chaotic components (heard as noise) in the signal as displayed on Fig. 5 and 6. 

The slope Isil of the nonlinearity Y(.) at the origin controls the transient onset velocity: the 
greater Isil, the faster the onset If h(t)=8 the signal is a square wave. If h(t) is a low pass kernel, 
the signal may be rounded. The closer Isil and Is2l are from 1, the less high the frequencies are in the 
signal. Therefore, two important characteristics of the sound, transient onset velocity and richness 
are controlled by Isil and Is2l. We have been led to the si-S2 nonlinearity by considering the control 
of the basic instrument It is the same nonlinearity as in the Time Delayed Chua's circuit [4]. But the 
piecewise-linear function has a drawback. At the onset of the signal, i.e. in the transient from zero, 
before a certain amplitude is reached, only a linear part of Yis used. There is no change in the short 
time spectrum of the signal other than amplitude growth. On the contrary, the nonlinearity of a real 
reed can be more realistically approximated by a quadratic function [13]. During the transient there 
is a constant transfer of energy between frequency components. As a consequence, we may as well 
use another one, e.g. a quadratic or cubic nonlinearity such as Y(x)= ax2+six. 

Without the filter h, when the system has a limit cycle with period-2, the limit cycle x(t) has the 
symmetry x(t+x) = -x(t), i.e. has no even harmonics. This result generalizes to any region with 
period k=3,4, etc. In such a region the system has a limit cycle x(t) the harmonics (k, 2k, 3k etc..) 
of which are absent [14]. This is also a rather interesting result from a musical point of view. 
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Fig. 7: Spectrum of signal with complicated structure.  Fig. 8: Detail of Fig. 16 up to 400 Hz 

7. First results in presence of the linear element 

With the linear element h in the loop, the solutions to equation (1) and their stability are known 
only partially and in restricted cases (see for example [15], [16], and [17]). Chow et al. [15] 
consider a particular h and particular odd functions ye C2. They prove that the equation (1) has a 
stable period-2 solution composed of odd harmonics only. This is an interesting result since it 
corresponds to the usual playing periodic solution of a clarinet However we feel the need for a 
more general result since we show in section 8 that the odd nature of y and the odd-harmonicity of 
the solution are in some way non-generic. Ivanov and Sharkovsky [16] consider the solutions to a 
singularly perturbed delay equation which is somehow a special case of equation (1): 

ax'(t) + x(t) = Y(x(t-'C)) (2) 

108 6.2-3 



Ivanov and Sharkovsky give very interesting results for (2), but the term x*(t) is a rather severe 
limitation compared to the filtering by a more general impulse response h. 

8. Role of the linear element in single feedback loop systems 

Let the open-loop transfer function be G(j<ü)=H(jco) e-J0*1. Suppose for the moment that H(jco) 
is real positive. Then the intersection of G(jco) with the negative real axis occurs for cokT=rc+2krc, 
i.e. for the modes of the instrument The frequency fo = 1/2T corresponds to the delay 2x necessary 
for a sound wave to propagate from the reed to the end of the bore and back. Therefore, G(j(üq) and 
coq/27: can be simply interpreted as the amplitude and the frequency of the strongest mode of the 
instrument2. The frequencies fk are the odd harmonic partials of the fundamental fo, but the 
oscillation frequency may be different from fo- Assume now that the argument of G(j2ko)q) is 
different from zero. Then the modes can be moved away from harmonic positions. 

In our experiments we have observed that when simultaneously y is not odd symmetric and 
there is a filter h, then even partials can appear. A very slight breaking of the symmetry of y is 
sufficient. Therefore the results of Chow et al. [15] are of little applicability in our case, since 
natural instruments will not have perfectly odd-symmetric nonlinearities. Finally, it seems also that 
when y is close to odd symmetry, the even harmonic partials are of small amplitude (such as with 
the clarinet) if the argument of G(j2kcoq) is zero, and can be of large amplitude (such as with the 
saxophone) when the argument of G(j2kcuq) is different from zero. Surprising results can occur in 
this latter case: Fig. 7 and 8 display the spectrum of such a signal and show that a very low 
fundamental frequency (17 Hz) has been obtained even though the delay x corresponds to a 
relatively high frequency (200 Hz.). 

9. Some open questions concerning equation (1) 

- How do we explore the behavior of the time-delayed circuit when a filter is introduced? 
- With a finite dimensional dynamical system, we could modify the vector field out of the 

region used for normal playing in order to exclude other stable solutions. How can we 
obtain a similar result with an infinite dimensional system? 

- What are the necessary and/or sufficient conditions for getting sinusoidal components and 
noise simultaneously as presented in section 6, and how do we control the ratio between 
them? The correlation between both components is also of interest. 

- Can we find some caracteristics of the linear and nonlinear parts which would provide 
better control of the spectral content of the solution? 

- Can we extend our result to systems with memory"! 

10. Digital simulation 

For more flexibility, we have simulated the time-delayed Chua's circuit on a SGI workstation 
running in real-time using HTM [18]. Various graphs are displayed in real-time. The possibility of 
looking at the Short Time Fourier Transform in real-time is very useful for a better understanding of 
the system and of the role of the various parameters [5]. The structure of the periodic and chaotic 
regions in the (so, si) space, as displayed in Figure 11 of [4], is interesting from a sonic point of 
view. By listening to the sound of the circuit, one can determine these regions and their frontiers. 
This audification of the local properties of the space allows an easy determination of very complex 
structures which could eventually not be determined analitically. 

2 In the case of the trumpet for instance, the mouthpiece acts as a resonator wich boosts some modes with number 
greater than 1, thereby allowing an easy oscillation at the frequency of one of these modes [13]. 
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11.   Conclusion 

In our study of the excitation of musical instruments from the point of view of a nonlinear 
oscillators, we have found a retarded functional equation (1) as the model of a large class of 
instruments. We have obtained precise conditions of oscillation, good control parameters, period 
stability and values, and the properties of the generated waveforms. We have implemented 
nonlinear oscillators in real time on a workstation with a graphic user interface allowing for an easy 
experimention of their properties and behaviors. However, many open questions remain concerning 
the very interesting solutions of the functional equation (1). This is due to the combination of the 
rich dynamics of the nonlinear map together with the number of states represented by the delay line 
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