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Introduction 

Photographic coverage is the simplest method of documenting the position and motion of 
objects in a laboratory environment. In many cases, it is the last resort for measuring dimensions, 
positions, and motion during an event when other measurement methods fail to provide needed data. 
Photogrammetry is the use of photographic images for the measurement of lengths and coordinates 
of an object. For many years, three-dimensional (3-D) analytical photogrammetry has been an 
essential tool in surveying and map making used for accurate measurements of land features. The 
technique required the use of expensive metric cameras to record aerial photographs and bulky 
comparators to reconstruct the 3-D coordinates of points on a land surface. The analytical methods 
used for the reconstruction were lengthy, complex, and iterative in nature, requiring the user to 
provide initial guesses of the coordinates being measured. Although highly accurate, these 
traditional methods are not readily applicable to laboratory measurements where stereo-base 
photography is commonly used for recording 3-D shapes. 

In the early 1970s, researchers (Abdel-Aziz and Karara, 1971) simplified the complicated 
analytical procedure required for the reconstruction of 3-D coordinates from planar two-dimensional 
(2-D) images, and introduced the direct linear transformation (DLT) between the image and object 
spaces. The DLT reduced the complicated calibration procedures which were required to obtain 
inner and outer camera parameters, and eliminated the need for expensive metric cameras, thereby 
opening the door for relatively inexpensive nonmetric cameras to be used in 3-D photogrammetry. 
Further, the DLT allowed the use of convergent stereogrammetry which is suited ideally for 
laboratory close-range applications. 

The simplicity of the DLT method in close-range photogrammetry spawned several 
technologies in the fields of biomechanics, sports medicine, orthopedics, automotive safety, robotics 
and other fields where accurate measurements of the 3-D coordinates and motion of an object were 
required. In one application where the mechanical properties of aortic membrane tissue were being 
investigated (Melvin, Mohan, Wineman, 1975), the DLT method was used to accurately measure 
the coordinates on the surface of aortic membrane as it inflated (Alem, Melvin, Holstein, 1978). In 
another application (Schneider et al., 1985), the coordinates of landmarks on the bodies of volunteer 
car drivers were measured in order to describe the size and shape of an "average" driver and to 
develop a crash manikin which is representative of the 50th percentile male driving population. 

In a recent study, researchers at the U.S. Army Aeromedical Research Laboratory 
(USAARL) investigated the effects of rear-surface signature of 50-caliber body armor as it defeated 
a round. At the same time, the viscoelastic injury criterion was being advanced (Viano and Lau, 
1988) and had gained wide acceptance. Briefly, the criterion predicts an injury risk from the product 
V*C of two measured parameters: the rate or velocity (V) of deformation of the chest, and the 
amount of compression (C) of the chest in the direction of impact. Clearly, in order to apply the 
viscoelastic injury criterion or evaluate the effects of the rear-surface on injury production, it would 
be necessary to measure the time-history of the rear surface as it deforms. This measurement then 
may be used to extract the speed of compression (V) of the chest wall, and the amount of 



compression (C) of the chest. Because of the configuration of impact and the speed of deformation, 
noncontact 3-D high speed photogrammetry is the only practical method for accurate determination 

of the V*C product. 

This report describes the method required to implement the DLT procedure for obtaining 
accurate static measurement of three-dimensional coordinates and provides a computer program 
which may be used for the calibration cameras pointed to a 3-D object space, and for the 
reconstruction of 3-D coordinates of point targets once the field has been calibrated. The method 
may be extended to many static and dynamic applications, including the measurement of the motion 
of rear-surface of the .50-caliber body armor as it defeats the penetration of a round. 

Objectives 

The objectives of this study are: (1) describe the direct linear transformation for close range 
photogrammetry; (2) present a procedure for the calibration of a 3-D object space using the DLT 
equations, and provide a computer program to implement the calibration procedure; and (3) present 
a procedure for the reconstruction of coordinates of a point target in the calibrated 3-D space using 
the DLT equations, and provide a computer program which implements the reconstruction 

procedure. 

Methods 

The direct linear transformation treats the entire chain of imaging components as a single 
system that reduces the 3-D object space to a 2-D image plane. Thus, we make no distinction 
between the camera proper and the projector. Instead, the entire camera-projector system is 
calibrated as a single unit. Further, because of the use of a single projector to produce images 
captured with different cameras, we refer to an imaging system as a "camera," with the 
understanding that this "camera" includes the projector as well. 

For any such imaging system or "camera," it may be shown that the object space coordinates 
(pc y, z) of a point target are transformed to the image plane coordinates (u, v) according to the two 

linear equations: 

u + xCj + yC2 + zC3 + C4 + uxC9 + uyCl0 ♦ uzCn = 0 (J) 

v + xC5 + yC6 * zC7 + Cg ♦ vxC9 ♦ vyC10 + vzCn = 0 

where (C, C2 C„) are constant coefficients which depend on the imaging system being used to 
convert the 3-D object (x, y, z) to a 2-D image (u, v) coordinates. The imaging system is said to be 
calibrated when its 11 DLT coefficients are determined. 



In order to calibrate a camera, i.e., compute its 11 DLT coefficients, a sufficient number of 
control points are placed in the field-of-view of the camera to produce at least 11 equations in the 
11 unknowns. A control point is a target whose (x, y, z) coordinates are known precisely in the 3-D 
object space. When its image is captured and projected by a camera system, the (u, v) image 
coordinates of a control point also become known. Therefore, the only unknowns in the 2 linear 
equations are 11 DLT coefficients. Since 2 equations may be written for each control point, a 
minimum of 6 control points are required to produce the system of linear equations in 11 unknowns. 

The only constraint on the placement of the six control points is that they must not be co- 
planar to ensures the existence of a solution to the system of equations. With 6 control targets, 12 
equations in 11 unknowns will be written. Although one equation may be dropped before solving 
for the unknowns, a least square solution is preferred to minimize the error. This implies that more 
control targets should be used to produce an overdetermined system of equations in the 11 unknowns 
which may then be solved by least-squares methods. Such practice reduces potential errors in 
determination of (x, y, z) and the reading of (u, v) coordinates, and produces more accurate results. 

Given n control point targets (n;>6), we may write 2n equations in 11 unknowns, 
resulting system of equations is written in matrix form as: 

The 

X{    yx    z,     1     0     0     0     0     ii,x,    «,>>,     «,«, 

0     0     0    0    x,    yx    zx    1    i*,x,    uxyx    «,*, 

x.,    yt    z,    1     0     0     0    0    utx,    utyt    w,z, 

0     0     0     0    x,    y,    z.     1     u,x.     n,y,     u,z, 

xn   yn    zn    1     0     0     0    0    uxn    unyn    uzn 

0     0     0     0    xn    yn    zn    1     ux2    unyn    uzn 

-«, 

-v. 

(2) 

Equation (2) is an overdetermined system of linear algebraic equations in 11 unknowns 
which may be solved numerically with least squares methods. Figure 1 provides a flowchart of the 
procedure which may be followed for the calibration of two cameras. 

Three-dimensional reconstruction simply means determination of the (x, y, z) position of a 
point in the calibrated 3-D object space, given the calibration constants of each camera, and the (u, 
v) image coordinates in each camera. This is the ultimate product of 3-D close range 
photogrammetry, that is, measures the coordinates of a point target in the laboratory 3-D space. To 
accomplish this, two or more cameras are used to capture the image of the point of interest at an 



instant of time. Once the cameras have been calibrated as described earlier, the image of the same 
point target is digitized for each camera. This generates as many pairs of (uh vk) coordinates of the 
same target as there are cameras. Thus, for the k-th camera, equations (1) are written as: 

uk + xCu + y°2jc + zCi + C4,k + ukxC9,k + u
ky

Cw + ukzCu,k = ° 
V* + xC5,k + yC6,k + zCl,k + C*,k + VkxC9,k + VkyCW + VkzClU = ° 

(3) 

where all terms are known except the three coordinates (x, y, z) of the target point. Therefore, a 
minimum of two cameras are required to produce sufficient number of equations (exactly four) 
which may be solved for the three unknowns. For practical reasons, several cameras are employed 
to cover the same field-of-view. Assuming that n cameras (n^2) are available to observe the same 
point, equations (3) may be written for each camera then combined into the following matrix form: 

(Cu ♦ WlC91)      (C21 + «,C101)      (C31 ♦ MlCni) 

(C5,i ♦ v,C9>1)       (CM + vYCm)       (C7jl ♦ VlCu>1) 

(C1>t * utC9k)       (C2k + ukCwi)       (C3>4 + ukCnk) 

(Chm * umC9m)      (C2M + umCWm)      (C3m + umCuJ 

(Cs„ + v.C9iB)      (C6jM ♦ v.CIOlB)      (C7^ + v.C1Ul) 

x 

y 

z 

{    -    < 
- (C,t ^ > «*) 

- (CM H ►v.) 

(4) 

Equation (4) is an overdetermined system of 2n linear equations with (x, y, z) as the unknowns, to 
be solved using least-squares methods. Figure 2 provides a flowchart of the procedure which may 
be followed for the reconstruction of 3-D coordinates from the images of two cameras. 

Results 

Both calibration and reconstruction phases involve the solution of overdetermined system 
of linear equations using least-squares methods. The subroutine LLSQ listed in Appendix A is an 
implementation of such a method. It is coded for the Microsoft Fortran 5.0 compiler, but easily may 
be converted to other programming languages. The stability of the procedure depends on the 
selection of the control points and its accuracy on the number of points and the precision with which 



their (x, y, z) and (u, v) coordinates were determined. A necessary constraint for the stability of the 
c/-»1n+ir»n io fr>r thp rvwitrnl nnints in hft nnnnlanar solution is for the control points to be nonplanar 

The calibration procedure outlined in Figure 1 is implemented in the subroutine DLTCAL. 
Appendix B provides a listing of the DLTCAL subroutine which sets up the equations and calls the 
LLSQ procedure to compute the 11 DLT coefficients. The subroutine is coded in free-form for the 
Microsoft Fortran 5.0 compiler, but easily may be modified for other languages. Input to the 
DLTCAL routine are the number of control points (at least six), the laboratory (x, y, z) coordinates 
of the control targets, and the (w, v) image coordinates of each target obtained by digitizing the image 
from the camera being calibrated. The subroutine returns the 11 coefficients for that camera. 

The DLTCAL routine must be called for each camera being calibrated. Since all cameras 
must calibrate the same 3-D object space, only one array of control (x, y, z) coordinates must be used 
as input to the calibration routine, whereas the (u, v) array will vary from camera to camera, 
depending on the visibility of the target from that camera perspective. 

Appendix C provides a listing of subroutine DLTREC which implements the 3-D reconstruc- 
tion procedure outlined in Figure 2. The DLTREC subroutine sets up the equations and calls the 
LLSQ procedure to compute the three unknown coordinates. The routine is coded in free-form for 
the Microsoft Fortran 5.0 compiler, but easily may be modified for other languages. The reconstruc- 
tion process, i.e., calls to the DLTREC routine, must be repeated for each target point. Input to 
DLTREC are the number of cameras (at least 2), the 11 DLT coefficients for each camera, and the 
image (u, v) coordinates of the target seen from each camera. The routine returns the reconstructed 
laboratory (x, y, z) coordinates of the target. 

Discussion 

The DLT method described here is a simple and accurate method for measurement of 3-D 
positions. It may be applied to a single point, to several points of a surface, or across several instants 
of time to perform 3-D motion analysis. 

In practice, several cameras are calibrated simultaneously. Each camera produces its own 
set of DLT coefficients which are valid only for the physical setup of the imaging system that 
produced the (u, v) coordinates employed in that calibration. Once the imaging system which 
defines a camera has been disturbed because of repositioning of the camera mount, refocusing of the 
camera or projector, adjustment of projection angle or scale, or change of reference system for the 
image plane, the 11 DLT coefficients become invalid and must be determined anew by following 
the calibration process. To avoid repeated calibrations, cameras usually are locked into position for 
the duration of a study, and are removed only when the study is completed. Alternately, a fixed- 
based stereo system, with two or more cameras attached to a rigid but moveable structure, may be 
calibrated only once and will produce 3-D coordinates relative to the attachment structure. 



To improve the precision of calibration and subsequent 3-D reconstruction, and to reduce the 
effects of lens distortion, the (u, v) coordinates should be measured in an image reference frame 
whose origin is at or near the optical center of the image. Since many digitizing tablets report 
coordinates relative to the lower left corner of the digitizing surface, it is necessary to transform the 
raw digitized data using a simple origin translation. This implies the need for a repeatable procedure 
to ensure precise redetermination of the same image center which was used in the calibration. In the 
absence of fiducial marks available in metric cameras, the procedure must rely on hardware features, 
such as the edges or corners of the imaging gate, which are always produced during the imaging 
process. 

Researchers (Abdel-Aziz and Karara, 1974) have proposed various models to correct imaging 
distortions and to account for second-order terms neglected in the linearization of the object-image 
transformation. However, experience has shown that additional accuracy gained by the introduction 
of second-order corrections is insignificant when compared to potential improvement resulting from 
precision and care taken in the measurements of image coordinates, and does not justify the increase 
in equations and solution complexities. 

Conclusions 

A simple and accurate method has been provided to measure the 3-D coordinates of a point 
target in the laboratory using photographic coverage and the direct linear transformation. The full 
procedure leading to 3-D motion analysis will be presented in a separate report. 
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Appendix A. 

Listing of a subroutine to solve system of linear equations. 

October 1994 Coded for MS Fortran 5.0, free-form,    by N. Alem, USAARL, 

Purpose:       To solve the system of linear equations: 

[A] * {X} = {B} 

by minimizing the eucledian norm of {B}-[A]*{X}, where [A] 
is an M by N matrix with M not less than N. 

Parameters: 

nnnnnnrniHnnnnnnni 

SUBROUTINE 

DIMENSION 

A    ...  M by N coefficient matrix 

B    ...  M by L right hand side matrix 

M    .-..  number of rows in matrices [A] and {B} 

N    ...  number of unknown, i.e., number of columns of [A], 
which is also the number of rows in matrix {x} 

L   ...  number of columns in {x} and {B}, (usually = 1) 

X    ...  N by L solution matrix (usually N by 1 vector) 

IPIV ...  Integer vector supplied by the use to receive 
information on column interchanges in matrix [A] 

EPS  ...  Input parameter which specifies relative tolerance 
for determination of rank of matrix [A] 

IER  ...  Error parameter.  IER=0 means successful solution. 

AUX ... Auxiliary storage array of dimension max(2*N,L) 
On return, first L locations of AUX contain the 
resulting least squares. 

LLSQ (A, B, M, N, L, X, IPIV, EPS, IER, AUX) 

A(*), B(*), X(*), IPIV(*), AUX(*) 

IF (M .LT. N) THEN 
IERR = -2 
RETURN 

END IF 

1 UNDER-DETERMINED SYSTEM 
1 ERROR CODE 

12 



PIV = 0. 
IEND = 0 

1 INITIAL S(K) STORE IN AUX(K) 

DO K = 1, N 
IPIV (K) = K 
H = 0. 
1ST = IEND + 1 
IEND = IEND + M 

DO I = 1ST, IEND 
H = H + A (I) * A (I) 

END DO 

AUX (K) = H 
IF (H .GT. PIV) THEN 

PIV = H 
KPIV = K 

END IF 

END DO 

IF (PIV .LE. 0.) THEN 
IER = -1 
RETURN 

ENDIF 

SIG = SORT (PIV) 
TOL = SIG * ABS (EPS) 

1 ZERO-MATRIX [A] 
1 ERROR CODE 

! TOLERANCE FOR CHECKING RANK OF [A] 

•i ii ii n n •< ii ii ii ii •■ ii ii ■• n ii •■ ii n ii ii ii ii n n n H   DECOMPOSITION LOOP   n " n " " " " " n " " " " " " " " " " " " " " " " " " " 

LM  =   L   *  M 
1ST   =   -M 

DO K = 1, N 
1ST = 1ST + M + 1 
IEND = 1ST + M - K 
I = KPIV - K 

IF (KPIV .GT. K) THEN 
H = AUX (K) 
AUX (K) = AUX (KPIV) 
AUX (KPIV) = H 
ID = I * M 
DO I = 1ST, IEND 

J = I + ID 
H = A (I) 
A (I) = A (J) 
A (J) = H 

END DO 
END IF 

1 EXCHANGE COLUMNS K AND KPIV 

13 



IF (K .GT. 1) THEN 
SIG = 0. 
DO I = IST, IEND 

SIG = SIG + A (I) * A (I) 
END DO 
SIG = SQRT (SIG) 
IF (SIG .LE. TOL) THEN 

IER = K - 1 
RETURN 

END IF 
END IF 

! COMPUTATION OF PARAMETER SIG 

1 TEST FOR SINGULARITY 
I ERROR (K-l):  RANK [A] LESS THAN N 

H = A (1ST) 
IF (H .LT. 0) SIG = -SIG 

IPIV (KPIV) = IPIV (K) 
IPIV (K) = KPIV 
BETA = H + SIG 
A (1ST) = BETA 
BETA =1. / (SIG * BETA) 
J = N + K 
AUX (J) = -SIG 

IF (K .LT. N) THEN 
PIV = 0. 
ID = 0 
JST = K + 1 
KPIV = JST 

1 SAVE INTERCHANGE INFORMATION 

I COMPUTE BETA AND VECTOR UK 

! TRANSFORMATION OF MATRIX [A] 

DO J = JST, N 
ID = ID + M 
H = 0. 
DO I = 1ST, IEND 

II = I + ID 
H = H + A (I) * A (II) 

END DO 
H = BETA * H 
DO I = 1ST, IEND 

II = I + ID 
A(II) = A(II) - A(I) * H 

END DO 
II = 1ST + ID 
H = AUX(J) - A(II) * A(II) 
AUX(J) = H 
IF (H .GT. PIV) THEN 

PIV = H 
KPIV = J 

END IF 
END DO 

ENDIF 

14 



DO J = K, LM, M 
H = 0. 
IEND = J + M - K 
II = 1ST 
DO I = J, IEND 

H = H + A (II) 
II = II + 1 

ENDDO 
H = BETA * H 
II = 1ST 
DO I = J, IEND 

B (I) = B (I) 
II = II + 1 

END DO 
END DO 

END DO 

! TRANSFORM RIGHT HAND SIDE MATRIX B 

* B (I) 

A (II) * H 

! END OF DECOMPOSITION LOOP 

I = N 
LN = L * N 
PIV = 1. / AUX (2 * N) 
DO K = N, LN, N 

X (K) = PIV * B (I) 
I = I + M 

END DO 
IF (N .GT. 1) THEN 

JST = (N - 1) * M + N 
DO J = 2, N 

JST = JST - M - 1 
K = N + N+1-J 
PIV = 1. / AUX (K) 
KST = K - N 
ID = IPIV (KST) - KST 
1ST = 2 - J 
DO K = 1, L 

H = B (KST) 
1ST = 1ST + N 
IEND = 1ST + J - 2 
II = JST 
DO I = 1ST, IEND 

II = II + M 
H = H - A (II) * X (I) 

END DO 
I = 1ST - 1 
II = I + ID 
X (I) = X (II) 
X (II) = PIV * H 
KST = KST + M 

END DO 
END DO 

ENDIF 

J BACK SUBSTITUTION AND INTERCHANGE 
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IST = N + 1 
IEND = 0 

! COMPUTATION OF LEAST SQUARES 

DO J = 1, L 
IEND = IEND + M 
H = 0. 

IF (M .GT. N) THEN 
DO I = IST, IEND 

H = H + B(I) * B(I) 
ENDDO 
IST = IST + M 

ENDIF 

AUX(J) = H 
ENDDO 

IER = 0 

RETURN 
END 
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Appendix B. 

Listing of subroutine to calibrate a camera. 

Coded for MS Fortran 5.0, free-form,   by N. Alem, USAARL, October 1994 

Purpose: 

Input: 

Output: 

Requires; 

Note 1. 

Kote 2. 

Note 3. 

Compute the 11 Direct Linear Transformation constants COF 
for a camera system.  The COF are coefficient of the linear 
transformation which converts the three corrdinates (X,Y,Z) 
of a point to its image coordinates (U,V) in that camera. 

NPT      ... number of control points (minimum 6) 

XYZ(3,*) ... array containing the 3 laboratory coordinates 
of the NPT points, known with precision. 

UV(2,*)  ... array containing the 2 image coordinates of the 
NPT control points, digitized and referred to 
the optical center of the image. 

COF(11)  ... eleven DLT. coefficients for the camera. 

Subroutine LLSQ to solve the overdetermined system of linear 
equations with least squares method. 

An error flag is returned via the * parameter to indicate 
that the linear least squares procedure (LLSQ) failed to 
converge to a solution.  In this  case, the parameter EPS 
which is required inside the LLSQ but defined here should be 
increased. 

An error indication also occurs if the number of points NPT 
is less than 6 or greater than 50.  If more than 50 points 
are used in the calibration, the dimension of AA() array 
should be increased to (22 * NPT), and BB() to (2 * NPT) 

This calibration routine must be called for each camera, 
and must be repeated if any of the cameras used in the 
system has been altered or moved. 

nnnnnnnnnnnnnnnnnnnnnni 

SUBROUTINE 

REAL*4 

DIMENSION 
REAL*4 

DLTCAL (NPT, XYZ, DV, COF, *) 

XYZ(3,*), DV{2,*), COF(*) 

AA(llOO), BB(100), AUX(22), IPIV(ll) 
EPS /l.E-15/ 
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NEQ = 2 * NPT 
12 =  0 

DO N = 1, NPT 
11 = = N 
12 = = 11 + 1 

AA [11 + 0 * NEQ) SS XYZ (1 , N) 

AA [11 + 1 * NEQ) = XYZ (2 , N) 

AA [11 + 2 * NEQ) = XYZ (3 , N) 

AA [11 + 3 * NEQ) = 1.0 

AA 11 + 4 * NEQ) = 0.0 

AA 11 + 5 * NEQ) = 0.0 

AA [11 +   6   * NEQ) = 0.0 

AA 11 +   7   * NEQ) = 0.0 

AA 11 +   8   * NEQ) = UV (1, N) * XYX (1, N) 

AA 11 +   9   * NEQ) = UV (1, N) * XYZ (2, N) 

AA 11 +10   * NEQ) = UV (1, N) * XYZ (3, N) 

BB ID = - UV (1 N) 

AA 12 +   0   * NEQ) = 0.0 

AA 12 + 1 * NEQ) = 0.0 

AA 12 +  2   * NEQ) = 0.0 . 
AA 12 +  3   * NEQ) = 0.0 

AA 12 +  4   * NEQ) = XYZ (1 , N) 

AA 12 +   5   * NEQ) = XYZ (2 r N) 

AA 12 +   6   * NEQ) = XYZ (3 , N) 

AA 12 +  7   * NEQ) = 1.0 

AA 12 +   8   * NEQ) = UV (2, N) * XYZ (1, N) 

AA 12 +   9   * NEQ) = UV (2, N) * XYZ (2, N) 

AA 12 +10   * NEQ) = UV (2, N) * XYZ (3, N) 

BB 12) =   -   1 UV   (2 N) 

END DO 

CALL LLSQ (AA, BB, NEQ, 11, 1, COF, IPIV, EPS, IER, AUX) 

IF (IER .NE. 0) RETURN 1 
RETURN 
END 
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AppendixC. 

Listing of subroutine to reconstruct a point in 3D space. 

■i ii n ii n ti ii ii ii 11 ii ii ii n ■■ n n 111111 n 11 n n n n n n n n 11 « n « H u n 11 n ■■ 11111111 n n n n n n 11 n n ■■ n n ■■ n n n 1111 n n n n H H « n n n n n n n n n 

by N. Alem, USAARL,  October 1994 Coded for MS Fortran 5.0, free-form, 

Purpose: 

Input: 

"  Output: 

Compute the 3 laboratory coordinates (x,y,z) of a target point 
from its image coordinates (u,v) pairs obtained from two or 
more cameras, given 11 DLT coefficients of each of the cameras. 

NCAM 

COFdl,*) 

UV(2,*) 

XYZ(3) 

number of cameras (minimum 2) 

eleven DLT coefficients for each of the cameras. 

array containing the image coordinates (u,v) 
pairs of the same point being reconstructed, 
observed and digitized in each camera image, 
and referred to the optical center of the image. 

3 laboratory coordinates (x,y,z) of the point 
being reconstructed. 

Requires: 
Subroutine LLSQ to solve the overdetermined system of linear 
equations with least squares method. LLSQ routine is listed 
in Appendix A of this report. 

"  Note 1. An error flag is returned via the * parameter to indicate 
II that the linear least squares procedure (LLSQ) failed to 
" converge to a solution.  In this  case, the parameter EPS 
» which is required inside the LLSQ but defined here should be 

" increased. 
II 

"  Note 2. An error indication also occurs if the number of cameras NCAM 
II is less than 2 or greater than 9.  If more than 9 cameras were 
■i used to digitize the same point, then the dimension of AA() 

should be  increased to   (6  * NCAM),   and BB()   to   (2   * NCAM). 
II 

II •• II II ■• II II II ■• ■■ ■■ II II H ■■ ii II ■■ n II ■■ ■■ II II II II II » «■■" « " » " " " " " " " " »»»»»» " " " " " n " " " n " " " " " " " " 

SUBROUTINE RECXYZ (NCAM, COF, UV, XYZ, *) 

REAL*4 COF(*), UV(2,*), XYZ(3,*) 

DIMENSION AA(54), BB(18), AUX(6), IPIV(3) 
REAL*4 EPS /l.E-15/ 
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IF (NCAM .LT. 2) RETURN 1 
IF (NCAM .GT. 9) RETURN 1 

NEQ = 2 * NCAM 
12 =  0 

DO K = 1, NCAM 

11 = K 
12 = II + 1 

AA (II + 0 * NEQ) = COF (1, K) + UV (1, K) * COF ( 9, K) 
AA (II + 1 * NEQ) = COF (2, K) + UV (1, K) * COF (10, K) 
AA (II + 2 * NEQ) = COF (3, K) + UV (1, K) * COF (11, K) 

AA (12 + 0 * NEQ) = COF (5, K) + UV (2, K) * COF ( 9, K) 
AA (12 + 1 * NEQ) = COF (6, K) + UV (2, K) * COF (10, K) 
AA (12 + 2 * NEQ) = COF (7, K) + UV (2, K) * COF (11, K) 

BB (II) = - (COF (4, K) - UV (1, K) ) 
BB (12) = - ( COF (4, K) - UV (2, K) ) 

END DO 

CALL LLSQ (AA, BB, NEQ, 11, 1, XYZ, IPIV, EPS, IER, AUX) 

if (IER .NE. 0) RETURN 1 

RETURN 
END 
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