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1 Overview of the Project 
Objectives of the Project The CORTES project (contract #F30602-91-C-0016) aims at 

developing constraint-based technologies for coordinated and distributed planning, scheduling 
and control in complex large-scale domains, such as military transportation and manufacturing. 
Sources of difficulty for planning/scheduling in these domains are many: 

• Combinatorics: The planning/scheduling problems of interest are characterized by 
extremely large search spaces in which the number of satisficing solutions 
represents only a tiny fraction of the total number of explorable alternatives. Even 
under highly idealistic conditions, scheduling problems such as job shop scheduling 
are known to be NP-hard [Garey 79]. 

• Ill-Defined Problems: often problems are ill-defined in terms of the specific tasks 
that need to be performed (e.g. specific orders to be scheduled in manufacturing or 
specific move requirements in military transportation scheduling), the objectives and 
preferences to be optimized (which often are not even compatible), etc. 

• Uncertainty: problem constraints tend to change over time (e.g. resources become 
unavailable, new tasks need to be performed, execution of some activities take 
longer or less time than anticipated, etc.) 

• Decentralization: The complexity of large-scale planning and scheduling problems, 
and the distributed nature of the executing environment generally requires 
decomposition and decentralization of decision-making responsibility. Because 
component subproblems are rarely independent and subproblem solution proceeds 
asynchronously, interactions and conflicts in the overall solution must be effectively 
and efficiently managed. 

Accordingly, research in the CORTES project aims at: (1) efficiently generating and 
maintaining high quality solutions to large scale planning/scheduling problems that adequately 
capture the causal dependencies of these domains; (2) flexibly integrating predictive 
planning/scheduling and reactive execution control; (3) interactively acquiring new user 
constraints and preferences and plan/schedule repair experience, and (4) visualizing and 
interactively manipulating large amounts of diverse information. 

The CORTES Approach: In our approach, the combinatorics of the problem is kept in check 
through use of quantitative problem space metrics called textures. Texture measures are regularly 
computed to capture various types of constraint and preference interactions (e.g. resource 
contention). They are used to focus search on critical decisions and efficiently steer it towards 
promising areas of the search space (e.g. variable/value ordering heuristics, backtracking 
heuristics, repair focusing heuristics, etc.). 

This basic approach has been applied and validated in several problem solving contexts: 
1. micro-opportunistic search which focuses on the efficient generation and dynamic 

maintenance  of Just-In-Time  schedules  for large-scale  generalized job  shop 
scheduling problems subject to sequence-dependent setups, resource alternatives 
("parallel resources") and temporal windows; 



2. simulated annealing search where texture measures are used to (1) dynamically 
focus search on critical subproblems by artificially inflating the costs associated 
with major sources of inefficiency in the exisiting solution and (2) learn to 
recognize (un)promising simulating runs and decide when to abandon a run and 
where to restart search; 

3. iterative constraint posting which combines flexible schedule representation and 
dynamic identification of conflict areas where additional arbitration is needed; 

4. integration of predictive planning/scheduling and reactive execution control where 
texture measures and flexible temporal representations are combined to coordinate 
multiple planning/scheduling and control agents; 

5. interactive schedule repair where adaptive similarity metrics direct re-use of 
previous repair histories and help select current repair focus and actions. 

The complex task of visualizing information needed for problem solving activities has been 
addressed by developing comprehensive languages for characterizing domain concepts that must 
be displayed, information analysis tasks which users must perform, and libraries of graphical 
presentation techniques which can be assembled to create displays. These form the 
representational foundation for encoding graphics presentation knowledge for creating an 
automatic design system. 

2 Constraint-Directed Scheduling 
Our work in constraint-directed scheduling has revolved around two search paradigms: 

micro-opportunistic search: this search paradigm emphasizes rapid development 
and revision of high quality schedules, using resource contention metrics to help 
focus solution (re)optimization on critical subproblems [Xiong 92] [Sadeh 
94a] [Sadeh 94b] [Sadeh 92a] [Sadeh 91a] [Li&Sadeh 93] [Sadeh 93a] [Sadeh 
94c] [Sadeh 91b] [Sadeh 91c] [Sadeh 92b] [Sadeh 93b]. 

• adaptive simulated annealing search: this search approach, which remains slower 
than the first one, emphasizes the development of near-optimal solutions, using 
texture-based heuristics to increase the efficiency of simulated annealing search. 
These heuristics include "focus-of-attention" heuristics to identify solution 
inefficiencies on which to dynamically focus the problem solving effort 
[Sadeh&Nakakuki 94] as well as search cutoff and restart criteria based on new 

metrics to identify (un)promising simulated annealing runs [Nakakuki&Sadeh 94]. 

Major accomplishments in each of these areas are summarized below. Further details on our 
work over the past 3 years can be found in [Xiong 92] [Sadeh 92c] [Sadeh 92a] [Sadeh 
91a] [Sadeh 93a] [Sadeh 94c] [Sadeh 94a] [Sadeh 91b] [Sadeh 91c] [Li&Sadeh 93] [Sadeh 
92b] [Chen 93] [Swaminathan 93] [Swaminathan 94] [Sadeh 93b] [Sadeh&Nakakuki 
94] [Nakakuki&Sadeh 94]. 

• 



2.1 Micro-Opportunistic Scheduling 

2.1.1 Background and Overview of Accomplishments 
In contrast to earlier bottleneck-centered scheduling approaches (e.g. [Goldratt 80, Ow 

88, Adams 88]) which rely on the optimization of large resource sub-problems, micro- 
opportunistic scheduling aims at increasing search efficiency and solution quality through use of 
a more flexible/finer grain search procedures. In this approach, resource contention is 
continuously monitored during the construction/repair of the schedule, and the problem solving 
effort can be redirected at any time towards the most critical sub-problem. In our earlier research 
[Sadeh 91c], we showed that because of their extra flexibility ("opportunism"), micro- 

opportunistic search procedures are better equipped than traditional (less flexible) bottleneck- 
centered scheduling approaches to deal with: 

• localized bottlenecks, namely resources that are bottlenecks only over one or several 
portions of the scheduling horizon (e.g. due to changes over time in the mix of 
orders to be scheduled); 

• multiple bottlenecks, which traditional bottleneck scheduling techniques have 
problems dealing with, as they tend to focus on the optimization of one bottleneck 
resource at the expense of others; 

• bottleneck dynamics, namely the fact that the very scheduling decisions that are 
made by the system can increase or decrease the severity of bottlenecks and that, as 
a result, it is crucial to closely monitor resource contention throughout the 
construction of the schedule. 

In early 1991, when the current project started (ARPA contract #F30602-91-C-0016), micro- 
opportunistic scheduling techniques had been developed to solve two classes of job shop 
scheduling problems: (1) job shop scheduling constraint satisfaction problems where a feasible 
job shop schedule has to be built given a set of jobs each with one or several non-relaxable time 
windows (earliest/latest possible start time window) within which it has to be scheduled and (2) 
Just-In-Time job shop scheduling problems where the objective is to build a schedule that 
minimizes the sum of tardiness and inventory costs of all jobs. At the time, these initial micro- 
opportunistic scheduling techniques, which had already been shown to significantly outperform a 
variety of competing techniques proposed both in the Artificial Intelligence and Operations 
Research literature, (1) could only solve relatively small problems, (2) could not solve problems 
with setups or parallel machines, and (3) did not support any reactive or interactive 
functionalities. 

During the course of this three-year project, we have dramatically scaled-up our micro- 
opportunistic scheduling heuristics, moving from prototypical procedures to a set of powerful 
scheduling techniques capable of efficiently generating high quality solutions to large and 
complex problems, as well as providing flexible interactive and reactive solution revision 
capabilities. We have shown that micro-opportunistic scheduling techniques are not only 
capable of producing high quality Just-In-Time solutions (approx. 25% improvement in schedule 



quality against a combination of 39 combinations of dispatch rules and release policies [Sadeh 
94c]) but can also be successfully adapted to solve a wide range of realistic problems. Over the 
past three years, we have speeded up our micro-opportunistic scheduling techniques by two 
orders of magnitude, improved the quality of the solutions they produce by an average of about 

20%, and extended our heuristics to solve problems with sequence dependent setups and parallel 
machines [Sadeh 94c, Sadeh 93b]. At the same time, variations of the Micro-Boss scheduling 
heuristics were also adapted in the context of the Knowledge Based Logistics Planning Shell 
(KBLPS) developed by Carnegie Group, Inc. (CGI) and LB&M Associates to solve U.S. army 
transportation scheduling problems and ammunition distribution planning problems [Saks 92]. 
Other efforts using variations of our micro-opportunistic techniques are described in [Torma 
91, Berry 91, Linden 91, Paolucci 92] and [Winklhofer 92]. 

At the present time, the Micro-Boss scheduling system which is written in C++ and has an 
X/Motif interface, is undergoing customization for the scheduling of a Printed Wire Assembly 
shop at Raytheon's Andover facility. This involves scheduling over 20,000 operations per month 
on a total of about 150 resources subject to a variety of complex constraints, including 
overlapping constraints between successive manufacturing steps. 

The following further outlines technical accomplishments in micro-opportunistic scheduling 
over the past 3 years. Additional details can be found in the papers provided in appendix. 

2.1.2 Improving the Basic Micro-Opportunistic Search Procedure 
Over the past three years, the average speed of our micro-opportunistic scheduling techniques 

has been increased by two orders of magnitude and average schedule quality has improved by 
about 20%. These performance improvements were obtained through modifications of several 
keys aspects of the basic micro-opportunistic search procedure: 

• Hierarchical Demand Profile Construction: A key strength of our micro- 
opportunistic search procedure comes from the detailed demand profiles it 
continuously updates to identify areas of high contention and determine which 
operation(s) to schedule next. We have been able to significantly reduce the time 
required to compute these demand profiles by (1) incrementally updating 
rough/coarse demand profiles for each resource in the problem and (2) using these 
rough demand profiles to dynamically identify critical resource/time intervals over 
which to perform a more detailed contention analysis. 

• Variable Search Granularity: rather than performing a detailed contention analysis 
at each step (i.e. each time an operation is scheduled), we have identified a set of 
conditions under which it is safe to schedule more than one operation at a time. One 
such condition occurs when one or several unscheduled operations have only one 
reservation left, in which case all these operations can be scheduled at once without 
performing any additional contention analysis. The result is a search procedure 
whose granularity (which is determined by the number of operations that are 
scheduled before a new contention analysis is performed) varies over time. 

• Additional Improvements: Additional improvements include (1) the development 



of new heuristics to dynamically update the best remaining reservations of 
unscheduled operations and evaluate incremental tardiness and inventory costs 
incurred by an operation if it is not allocated one of its best remaining reservations, 
and (2) the development of new heuristics to compute demand contention based on 
these results. 

The resulting system can schedule problems with over 1,000 operations in a matter of minutes. 
In comparison against 39 combinations of well-regarded priority dispatch rules and release 
policies (taking the best schedule produced by these 39 techniques on each problem and 
comparing it with the schedule obtained by Micro-Boss), Micro-Boss was shown to reduce 
schedule cost by close to 25%. This includes significant reductions in work-in-process and 
finished goods inventory as well as important improvements in due date satisfaction. In 
comparison against the Weighted Covert dispatch rule taken in isolation, Micro-Boss improves 
due date performance by an even more impressive 28% while reducing average inventory costs 
by 40%. Comparisons against a variety of coarser bottleneck-centered scheduling procedures 
have produced similarly impressive results. 

2.1.3 New Bottleneck Optimization Procedures 
The Micro-Boss scheduling procedures have also been adapted to solve problems with parallel 

machines (i.e. multiple machines with either similar or dissimilar capabilities) and setups. A key 
element in adapting our procedures has been the development of new bottleneck optimization 
heuristics for the one-machine early/tardy problem with setups. Briefly, our heuristic 
opportunistically selects between two simpler techniques: (1) a clustering scheme that identifies 
clusters of early/tardy jobs and resequences them using variations of the Weighted Longest 
(Shortest) Processing Time dispatch rule and (2) a two-parameter technique that generalizes a 
dispatch rule developed by Ow and Morton for the single-machine early/tardy problem without 
setups [Ow 89]. Based on measures of the tightness of the bottleneck optimization problem at 
hand, our technique dynamically selects between these two heuristics and further optimizes the 
resulting solution using a neighborhood search procedure in combination with an optimal idle 
time insertion procedure first proposed by Garey and Tarjan [Garey 88] (additional details are 
provided in the Micro-Boss paper in appendix). Extensive evaluation of this bottleneck 
optimization technique on a total of 1,920 scheduling problems characteristic of a wide range of 
scheduling conditions shows that (1) it can solve large problems in a matter of seconds and (2) it 
produces solutions that are consistently within 5 to 10% of the optimum. 

2.1.4 Intelligent Backtracking Heuristics 
This work has focused on a version of the job shop scheduling problem in which some 

operations have to be scheduled within non-relaxable time windows (i.e. earliest/latest possible 
start time windows). This problem is a well-known NP-complete Constraint Satisfaction 
Problem (CSP). A popular method for solving this type of problems involves using depth-first 
backtrack search. In our earlier work [Sadeh 91c, Sadeh 91b], we focused on the development of 
consistency  enforcing  techniques  and variable/value  ordering  heuristics  that  improve  the 



efficiency of this search procedure. Under the current project, we combined these techniques 
with new look-back schemes that help the search procedure recover from so-called deadend 
search states (i.e. partial solutions that cannot be completed without violating some constraints). 

More specifically, we developed three new "intelligent" backtracking schemes: (1) Dynamic 
Consistency Enforcement, which dynamically identifies critical subproblems and determines 
how far to backtrack by selectively enforcing higher levels of consistency among variables 
participating in these critical subproblems, (2) Learning Ordering From Failure, which 
dynamically modifies the order in which variables are instantiated based on earlier conflicts, and 
(3) Incomplete Backjumping Heuristic, which abandons areas of the search space that appear to 
require excessive computational efforts. These schemes have been shown to (1) further reduce 
the average complexity of the backtrack search procedure, (2) enable our system to efficiently 
solve problems that could not be solved otherwise due to excessive computation cost, and (3) be 
more effective at solving job shop scheduling problems than other look-back schemes advocated 
in the literature. 

The benchmark problems used in this research have been made available to the research 
community at large through an anonymous ftp account set up at CMU and have been widely 
disseminated, providing for the first time a common set of problems in this area. A high point in 
this work was reached in March 1992 at the A A AI Spring Symposium held in Stanford, when 
our group and a group from NASA were the first ones to announce they could efficiently solve all 
60 of the benchmark problems (paper to appear in the Artificial Intelligence Journal [Sadeh 
94b] and provided in appendix). The speed of our procedure has been further improved since 
then, making it possible to solve most problems in 1 to 2 CPU seconds on a DECstation 
5000/200. While similar results have been achieved since then by a couple of other groups, our 
results remain quite competitive on this class of problems and could probably be further 
improved. However, rather than dwelling on this class of problems, we have concentrated our 
efforts on more complex Just-In-Time scheduling problems where the objective is not just to 
build feasible schedules but instead requires minimizing tardiness and inventory costs (both in- 
process costs and earliness costs), a formulation that better captures situations found in many 
manufacturing and transportation domains. The backtracking heuristics we developed work just 
as well on these more complex Just-In-Time scheduling problems. 

2.1.5 Reactive Scheduling 
Earlier approaches to reactive schedule repair have emphasized the use of iterative repair 

heuristics [Smith 90a, Minton 90, Zweben 91]. In the process of resolving schedule conflicts, 
these repair heuristics are allowed to introduce new conflicts, which in turn need to be repaired. 
This iterative behavior may sometimes lead to myopic decisions and can potentially become 
expensive. In contrast to these approaches, schedule repair in Micro-Boss attempts to take a 
more global view of the problem and capitalizes on the strengths of micro-opportunistic search. 
Concretely, we have developed an approach in which schedule repair is performed in two steps: 
(1) a set of operations that need to be rescheduled is identified using a so-called conflict 
propagation procedure and all the operations in this set are unscheduled, (2) the scheduling 



problem consisting of all these unscheduled operations and the constraints imposed on these 
operations by operations that have already been executed or have not been unscheduled is passed 
to the micro-opportunistic scheduling procedure. 

In comparison with a micro-opportunistic technique that rebuilds brand new schedules from 
scratch, our reactive approach has been shown to produce schedules that are almost as good 
while only rescheduling a much smaller number of operations. Our reactive approach has also 
been shown to outperform several iterative repair techniques. 

2.1.6 Supporting Mixed Initiative Functionalities 
Because of their flexibility, micro-opportunistic scheduling heuristics also seem particularly 

well suited to support mixed initiative capabilities. An initial set of such capabilities has been 
developed in the context of the Micro-Boss system, making it possible to interleave both manual 
and automatic (micro-opportunistic) scheduling decisions and enabling the user to incrementally 
manipulate, save, analyze and compare alternative (complete or partial) schedules (e.g., "What- 
if' type of analysis). 

2.2 Adaptive Simulated Annealing Search 
Our work on Adaptive Simulated Annealing Search is complementary to our research on 

micro-opportunistic search procedures and aims at the development of near-optimal (though 
possibly slower) scheduling procedures. 

Simulated Annealing (SA) procedures can potentially yield near-optimal solutions to many 
difficult combinatorial optimization problems (not just scheduling problems), though often at the 
expense of intensive computational efforts. The single most significant source of inefficiency in 
SA search is the inherent stochasticity of the procedure, typically requiring a large number of 
runs before a near-optimal solution is found. Our work in this area aims at developing 
mechanisms that (1) speed up the basic SA procedure while improving average solution quality 
and (2) reduce the number of runs required to obtain near-optimal solutions. Specifically, we 
have developed two sets of techniques: (1) focus of attention mechanisms that dynamically 
identify major inefficiencies in the solution on which to focus the optimization effort 
[Sadeh&Nakakuki 94] and (2) speedup learning mechanisms that learn to recognize 

(un)promising runs and can be used to determine when to abandon a run and where to restart 
search [Nakakuki&Sadeh 94]. 

This work, which is more recent, is described in two papers provided in appendix. 

2.3 Summary of Accomplishments and Plans for the Future 
During the course of this three-year project we have shown that micro-opportunistic 

scheduling techniques are not only capable of producing high quality Just-In-Time solutions 
(approx. 25% improvement in schedule quality against a combination of 39 combinations of 



dispatch rules and release policies [Sadeh 94c]) but can also be successfully adapted to solve a 
wide range of realistic problems. Over the past three years, we have speeded up our micro- 
opportunistic scheduling techniques by two orders of magnitude, improved the quality of the 
solutions they produce by an average of about 20%, extended our heuristics to solve problems 

with sequence dependent setups and parallel machines, and have shown that these techniques can 
support powerful reactive and mixed initiative capabilities [Sadeh 94c, Sadeh 93b]. 

Our micro-opportunistic techniques have been adapted in the context of the Knowledge Based 
Logistics Planning Shell (KBLPS) developed by Carnegie Group, Inc. (CGI) and LB&M 
Associates to solve U.S. army transportation scheduling problems and ammunition distribution 
planning problems [Saks 92], demonstrating the dual-use applicability of this technology. We 
have now embarked on a technology demonstration effort with Raytheon, which involves 
customizing Micro-Boss for the scheduling of the Printed Wire Assembly area at Raytheon's 
Andover manufacturing facility and will continue to work with ARPA to further transition this 
technology into practical environments (manufacturing, transportation or others). 

In the longer term, we see several important areas for future development of this technology: 

• Iterative improvement techniques: with the advent of ever more powerful 
computers, we believe that it is now possible to complement micro-opportunistic 
scheduling techniques with anytime iterative improvement techniques that could be 
applied to post-process schedules. Our work in Simulated Annealing suggests that 
the efficiency of such techniques can greatly be enhanced using simple speedup 
learning mechanisms. 

• Integration with higher-level planning decisions: Traditionally, manufacturing 
scheduling has focused on sequencing and release decisions, ignoring higher level 
(MRP-level) decisions that critically constrain the lower-level scheduling problem. 
Examples of such decisions include batching decisions, overtime decisions, safety 
stock/safety leadtime decisions, subcontracting decisions, order promising, 
procurement and other supply chain management decisions. We believe that 
significant improvements in scheduling practice could be achieved by integrating 
some of these decisions with sequencing and release decisions. Similar integrations 
are also required in other scheduling domains such as transportation scheduling. 

• Integration with Process Planning: Another area in Computer Integrated 
Manufacturing that has received very little attention involves integrating process 
planning decisions with production scheduling and control decisions. Such 
integration is particularly critical to support Agile Manufacturing scenarios in which 
customer orders require the generation of new process plans that need to be 
dynamically integrated into the production schedule. 

• Analysis Tools for Mixed Initiative Decision Support: Micro-Boss has 
demonstrated the usefulness of texture measures to dynamically identify critical 
decisions and guide the scheduling process. Similar texture measures could be 
developed to support mixed initiative scenarios, helping the user identify sources of 
inefficiency in a current solution, evaluate and possibly even propose alternative 
options for solution improvement (e.g. where to add extra capacity, how much 



capacity to add, which deadlines to relax, what is the right mix of transportation 
modes, etc.). 

3 Distributed Scheduling 

3.1 Introcduction 
We have developed a computational framework for collective problem solving by a society of 

reactive agents [Liu.Sycara 93a] [Liu.Sycara 93b] [Liu.Sycara 94a] [Liu.Sycara 94b]. Problem 
solving is viewed as an emergent functionality from the evolving process of the society of 
diverse, interacting, and well-coordinated reactive agents. Agents are situated in their 
environment and act by stimulus and response. Coordinated interactions are based on simple 
flows of information. The collective actions of the reactive agents potentially provide an 
effective tool for complex problem solving. Specifically, the development of the collective 
problem solving framework involves the following issues: 

• Problem decomposition: The transformation from a problem to a society of simple 
agents is defined by a decomposition scheme. Each agent is assigned to a task 
corresponding to a small part of the problem. Situation-action rules specify how 
agents would act to achieve their tasks. The problem is solved when all agents 
achieve their tasks simultaneously. 

• Interaction analysis: When a problem is mapped into a society of agents, intense 
interactions among agents ensue. In order for the society to move toward coherence, 
influences of agents' actions on each other need to be identified. These interactions 
are viewed as rich information sources that can be exploited to guide agents' 
behaviors toward group coherence. 

• Coordination mechanism: Group behavior of agents is characterized by the 
coordination mechanism in the society. For our problem-solving purpose, we require 
the group of agents to reach coherence in order to provide a solution. In addition, we 
seek for rapid convergence to improve problem-solving efficiency. The design of a 
coordination mechanism includes regulation policies and communication among 
agents. 

• Behavior design: An agent's behavior corresponds to various actions it performs to 
achieve its goal. The collective behavior of agents represents problem-solving 
activities that the group performs. In this framework, it is critical to analyze agent 
interactions, investigate useful information exchange between agents, and 
coordinate the highly distributed activities. All of these lead to designing agents' 
behaviors such that (1) they avoid harmful interactions with other agents, (2) they 
react appropriately towards rapid group convergence. 

The problem domains of the collective problem solving framework that we have investigated 
are Constraint Satisfaction Problems (CSPs). Many problems of theoretical and practical interest 
(e.g., parametric design, resource allocation, scheduling) can be formulated as CSPs. A CSP is 
defined by a set of variables, each having a corresponding domain, and a set of constraints.  A 



constraint is a subset of the Cartesian product which specifies which values of the variables are 
compatible with each other. The variable set of a constraint (or a set of constraints), is the set of 
non-duplicating variables restricted by the constraint (or the set of constraints). A solution to a 
CSP is an assignment of values (an instantiation) for all variables, such that all constraints are 

satisfied. Numerical CSPs (NCSPs) are a subset of CSPs, in which constraints are represented by 
numerical relations between quantitative variables usually with fairly large domains of possible 
values. Many CSPs of practical importance, such as scheduling, and parametric design, are 
NCSPs. Constraint satisfaction algorithms typically suffer from feasibility/efficiency problems 
for NCSPs due to their enormous search space. 

We have developed a collective problem-solving framework, called Constraint Partition and 
Coordinated Reaction (CP&CR), for a subset of NCSPs. In CP&CR, a society of specialized and 
well-coordinated reactive agents collectively and asynchronously solve an NCSP. Agents are 
situated in their environment, react to others' actions, and communicate with others by leaving 
and perceiving particular messages on the objects they act on. A solution emerges from the 
evolutionary interaction process of the society of diverse agents. Specifically, CP&CR provides 
a framework to decompose an NCSP into a set of subproblems based on constraint type and 
constraint connectivity, identify their interaction characteristics and, accordingly construct 
effective coordination mechanisms. CP&CR assumes that an NCSP has at least two types of 
constraints. 

3.2 Summary of Experimental Results 
We evaluated the performace of CP&CR on a benchmark suite of job shop scheduling CSPs. 

The experiemntal results show that: 

• exchange of coordination information increases the efficiency of group convergence 

• CP&CR works considerably well as compared to other state-of-the-art scheduling 
techniques both on number of problems successfully solved and efficiency in 
finding a solution 

• the performace of CP&CR is almost independent of its starting point of search, i.e. it 
can start with random assignments of values to variables 

• CP&CR exhibits near-linear scaling-up characteristics 

We are currently extending the methodology to Constraint Optimization Problems. Preliminary 
experimental results are very encouraging. 

4 Interactive Schedule Repair 
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4.1 Introduction 
Practical scheduling problems generally require allocation of resources in the presence of a 

large, diverse and typically conflicting set of constraints and optimization criteria. The ill- 
structuredness of both the solution space and the desired objectives make scheduling problems 
difficult to formalize. The definition/evaluation itself of what is a "high quality" schedule is 
fraught with difficulties because of the need to balance conflicting objectives and tradeoffs 
among them. Such tradeoffs typically reflect the presence of context-dependent user preferences 
and domain constraints not captured in the scheduling model. Therefore, there is the need for a 
human operator to interact with the schedule and impart to it user preferences in terms of what is 
a good schedule. These preferences, then should guide schedule optimization. The value of 
incorporating such user preferences and constraints in operational scheduling environments is 
becoming increasingly recognized (e.g. [McKay 88]) but good techniques are currently lacking. 
Moreover, operational environments for scheduling systems (e.g. factories) are dynamic. 
Unpredictable events, such as machine breakdown or operator absence, often happen during 
schedule execution. Therefore, a schedule that is only predictive (i.e. it is created assuming that 
the world is static and predictable) will be brittle. It is clear that any effective scheduling system 
should be reactive, i.e. perform schedule revision in response to unforeseen events during 
schedule execution. 

Our research [Miyashita.Sycara 94a, Miyashita.Sycara 94b], [Miyashita.Sycara 93, Sycara 
ed, Sycara 94a, Sycara 94b], [Sycara 94c, Zeng.Sycara ng]developed a case-based learning 
method for acquiring context-dependent user optimization preferences and tradeoffs and using 
them to incrementally improve schedule quality in generating a predictive schedule and also in 
reactively managing the schedule in response to unexpected execution events. The approach, 
implemented in the CABINS system, uses acquired user preferences to dynamically modify 
search control to guide schedule improvement. Unlike other systems that utilize iterative repair 
to find a feasible solution (e.g. [Zweben 90, Minton 90]), where executability of the schedule 
was not guaranteed at the end of each repair iteration, CABINS produces an executable schedule 
after each repair that has guaranteed monotonic increase in quality the more time it is allowed for 
repair, thus exhibiting anytime executable behavior [Dean 88]. This is a very desirable quality 
especially in reactive contexts since there could only be a certain limited amount of time for the 
system to react. 

CABINS can operate in different modes that exhibit various levels of autonomy. First, 
user-directed mode, where the user selects a repair tactic and evaluates the results of its 
application. Second, interactive assistance mode, where CABINS suggests repair tactics and 
evaluations of repair tactic application, but the user can override the suggestions and make new 
selections. Both the user-directed and interactive assistance modes are used for acquisition of the 
case base. Third, autonomous mode where, without user intervention, CABINS uses the case 
base that was acquired in the training phase for repair selection and evaluation of repair results. 

Our approach uses integration of Case-based Reasoning (CBR) [Kolodner 85] and fine 
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granularity constraint-directed scheduling mechanisms. Integrating CBR with constraint-based 
scheduling stems from a variety of motivations. Although scheduling is an ill-structured domain, 
we assume that it exhibits domain regularities that could be captured, albeit only approximately, 
in a case.  In CABINS, a case represents application of a revision action to one activity in the 

schedule, thus expressing dependencies among features of the schedule, the repair context and a 
suitable repair action. CBR allows capture and re-use of this dependency knowledge to 
dynamically adapt the search procedure and differentially bias scheduling decisions in future 
similar situations. 

Since it is impossible to judge a priori the effects of a scheduling decision on the optimization 
objectives, a scheduling decision must be applied to a schedule and its outcome must be 
evaluated in terms of the resulting effects on scheduling objectives. Therefore, having a single 
scheduling decision as a case seemed to provide advantages in terms of focus and traceability of 
the problem solving process. Focus and traceability mean that we could capture a user's 
evaluation of the results of a single scheduling decision in a case, and, if the result was 
unacceptable, we could apply another scheduling decision to the same scheduling entity until 
either all available scheduling decisions had been exhausted or an acceptable result had been 
obtained. Therefore, it became clear that it was better to have a single activity/operation of a 
scheduling job as the "scheduling entity" on which a scheduling decision was applied. Hence in 
CABINS, a case describes the application of a schedule revision decision on a single activity of 
a job. Operationalization of a schedule revision decision is done by means of a schedule repair 
action. Currently, CABINS has 11 repair actions. 

Since the result of a scheduling decision needed to be evaluated with regard to the optimization 
preferences for a schedule as a whole, it is clear that constructive methods which incrementally 
augment a partial schedule at every scheduling decision point would be unsuitable for our 
purposes. Moreover, contextual information, which can only be provided by having a complete 
schedule, is very useful in applying CBR. Therefore, revision-based scheduling was chosen as 
the underlying scheduling methodology. 

Because of the tightly coupled nature of scheduling decisions, a revision in one part of the 
schedule may cause constraint violations in other parts. Therefore, constraint propagation 
techniques are necessary to determine the ripple effects that spread conflicts to other parts of the 
schedule as case-based repair actions are applied and specific schedule revisions are made. We 
use constraint propagation to propagate the effects of a schedule repair action to the rest of the 
schedule. 

The evaluation criteria for judging the acceptability of the outcome of a repair action are often 
multiple, conflicting, context dependent and reflect user judgment of tradeoffs. Therefore, it is 
difficult to describe the evaluation criteria and the associated tradeoffs in a simple manner. The 
case base incorporates a distribution of examples that collectively and implicitly capture a user's 
schedule evaluation preferences and tradeoffs under diverse problem solving circumstances and 
enable CABINS to induce these tradeoffs from the case base. Hence, user preferences are 
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reflected in the case base in two ways: as preferences for selecting a repair action depending on 
the features of the repair context, and as evaluation preferences for the repair outcome that 
resulted from selection and application of a specific repair action. 

During iterative repair, cases are exploited for: (1) repair action selection, (2) evaluation of 
intermediate repair results and (3) recovery from revision failures. The method allows the system 
to dynamically switch between repair heuristic actions, each of which operates with respect to a 
particular local view of the problem and offers selective repair advantages. Application of a 
repair action tunes the search procedure to the characteristics of the local repair problem. This is 
achieved by dynamic modification of the search control bias. There is no a priori 
characterization of the amount of modification that may be required by repair actions. However, 
experimental results on job shop scheduling problem show that (1) the approach is potentially 
effective in capturing user preferences and optimization tradeoffs that are difficult to model, (2) 
it improves schedule quality irrespective of method of initial schedule generation, (3) it produces 
high quality schedules at much lower computational cost as compared to simulated annealing, a 
well-known iterative repair method, and (4) it is suitable as a reactive scheduling method 
because it maintains high schedule quality and minimizes disruptions in the face of execution 
time failures. 

4.2 Case Indexing 
Each application of a repair results in a new schedule. The search space of CABINS is the 

space of complete schedules that incorporate acceptable user optimization tradeoffs. Hence the 
predictive case features that are suitable for case indexing should be ones that capture good 
tradeoffs. Although schedule optimization is ill-structured, we make the hypothesis that there 
are regularities of the domain that can be captured, albeit in an approximate manner, in these 
features. 

In CABINS, indices are divided into three categories. The first category consists of the global 
features. Since the results of schedule revision associated with a single activity pertain to the 
whole schedule, global features that express characteristics of a whole schedule are relevant and 
operate as contextual information for selection of a particular repair action. The local features 
comprise the second category. Since it is not possible to predict in general the bounds of repair 
necessitated by application of a repair action (due to constraint ripple effects), and since 
reasoning about the effects of a repair action on the whole schedule a priori would amount to 
unlimited lookahead analysis which is in general intractable, we confine the range of lookahead 
analysis to a limited repair time horizon. Associated with this time horizon, there are local 
features that allow CABINS to estimate the effects of each repair action. 

The schedule resulting from application of a repair action must be evaluated in terms of user- 
defined tradeoffs. The user cannot predict the effects of modification actions on schedule 
correctness or quality since a modification could result in worsening schedule quality or 
introducing constraint violations. Nevertheless, the user can perform consistent evaluation of the 



results of schedule revisions. This evaluation is recorded in the case as part of the case's repair 
history. The repair history constitutes the third category of case features. Therefore, the case 
base incorporates a distribution of examples that collectively capture repair performance 

tradeoffs under diverse scheduling circumstances. 

CABINS searches the space of complete schedules. Control for this search is provided by CBR 
in two ways: First, search control is provided through case-based selection of the next repair 
action to be applied and second through case-based evaluation of the outcome for the schedule 
that resulted from application of a selected repair action. The global and local features are the 
indices that are used to retrieve a case that suggests the next repair action to be applied. The 
features associated with the repair history are used to retrieve cases that suggest evaluations of a 
repair outcome. 

4.3 Case Acquisition 
In CABINS, the session starts with an empty case-base. A set of training problems are 

presented to the user who interacts with CABINS to repair schedules by hand. At first, the user 
selects the repair tactic that is deemed to be appropriate and uses CABINS's tactic application 
procedure to apply the chosen tactic to the current schedule. 

The effects of the repair are calculated. An effect describes the result of the repair with respect 
to one or more repair objectives. Effects pertain to either the schedule as a whole or to a job. 
Possible effects pertaining to a schedule as a whole are: weighted tardiness, average resource 
utilization, deviation of resource utilization, total schedule work in process inventory (WIP). 
Effects that pertain to a job are changes in the tardiness of the job, changes in work-in-process 
inventory, or changes in resource assignment. So, for example, the tradeoff between utilizing a 
less preferred machine to reduce a job's tardiness can be reflected in these effects. Due to tight 
constraint interactions, these effects are ubiquitous in job shop scheduling and make schedule 
optimization extremely hard. When application of a repair tactic produces a feasible result, the 
user must decide whether the resulting schedule is acceptable or not based upon those calculated 
effects. 

An outcome is judged as unacceptable, if the schedule resulting from the application of the 
revision heuristic does not make any improvement with respect to the user's criteria. This could 
happen because harmful effects outweighed, in the user's judgment, the effected improvement. 
For example, if reduction of job tardiness enforces increased utilization of low-quality machine, 
although the total cost of this repair may be low, it may be unacceptable to a user who worries 
that the quality of resulting products might be low. Therefore such a repair might be judged as 
unacceptable. The user's judgment as to balancing favorable and unfavorable effects related to a 
particular optimization objective constitute the explanations of the repair outcome. The user 
supplies an explanation in terms of rating the importance of each effect. At the end of each 
repair iteration, the applied repair tactic, the effects of the repair and user judgment / explanation 
as to the repair outcome are recorded in a case along with the current problem features. If the 
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effects are acceptable to the user, the repair outcome is recorded as "acceptable" and the user 
tries to repair another activity. If the user does not like the tradeoffs that are incorporated in the 
repair effects, then the outcome of the current repair tactic ("unacceptable"), the effects 
calculated by CABINS and the salience assigned by the user are recorded in the repair history of 
the case. Subsequently, the user tries to utilize another repair tactic to repair the same activity. 

The process continues until an acceptable outcome is reached, or failure is declared. Failure is 
declared when all available tactics have been used to repair an activity, but the user finds each 
repair outcome unacceptable. The sequence of application of successive repair actions, the 
effects, user's judgment and explanation in case of failed application are recorded in the repair 
history of the case. Two remarks are in order here with respect to case acquisition. First, a new 
case is acquired only when a new activity is under repair. When an activity is repeatedly repaired 
due to unacceptable repair tactic application results, no new case is acquired, but the repair 
history of the same case is augmented by each successive repair tactic application, its effects and 
outcome. In this way, a number of cases are accumulated in the case-base. 

4.4 Case Re-Use 
Once CABINS has constructed a case-base from training data, it can perform schedule repair 

without any interaction with its user. Cases are retrieved for three purposes: selection of a repair 
tactic to be applied, evaluation of the resulting schedule after application of the selected repair 
tactic, and, in case of failure, retrieval of a tactic that had fixed a previous similar failure. In 
each of these three situations, CABINS utilizes a different set of indices for case retrieval. In 
order to retrieve cases to select a repair tactic, global and local features of the current case (the 
current focal_activity) are used. For each of the three case retrieval situations described above, 
CABINS uses a k-Nearest Neighbor method (k-NN) [Dasarathy 90] for case retrieval. 

After a repair has been applied and, if the result is a feasible schedule, repair evaluation is 
performed through CBR. Using the effect features (type, value, and salience) as new indices, 
CBR is invoked and returns an outcome in the set (acceptable, unacceptable). 

If the outcome of current revision is decided as unacceptable, CABINS performs another CBR 
invocation using as indices the conjunction of the current outcome (unacceptable), the failed 
heuristic and the case global and local features to find another possibly applicable revision 
heuristic. Invoking CBR with these indices retrieves cases that have failed in the past in a similar 
manner as the current revision. This use of CBR in the space of failures is a domain-independent 
method of failure recovery [Sycara 88, Simpson 85], and allows the problem solver to access 
past solutions to the failure. If the result is acceptable, then CABINS proceeds to repair another 
activity. 
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4.5 Evaluation of the Approach 
We conducted a set of experiments to test the following hypotheses: 

1. Our   approach   is   potentially   effective   in   capturing   user   preferences   and 
optimization tradeoffs that are difficult to model. 

2. Our approach improves schedule quality irrespective of method of initial schedule 
generation. 

3. Our approach produces high quality schedules at much lower computational cost as 
compared to simulated annealing, a well-known iterative repair method. 

4. Our approach is suitable as a reactive scheduling method because it maintains high 
schedule quality and minimizes disruptions in the face of execution time failures. 

We evaluated the approach on a benchmark suite of job shop scheduling problems where 
parameters, such as number of bottlenecks, range of due dates and activity durations were varied 
to cover a broad range of parallel machine job shop scheduling problem instances. In particular, 
the benchmark problems have the following structure: each problem has 10 orders of 5 activities 
each. Each order has a linear process routing specifying a sequence where each order must visit 
bottleneck resources after a fixed number of activities, so as to increase resource contention and 
make the problem tighter. Two parameters were used to cover different scheduling conditions: a 
range parameter, RG, controlled the distribution of order due dates and release dates, and a 
bottleneck parameter, BK, controlled the number of bottleneck resources. To ensure that we had 
not unintentionally hardwired knowledge of the problem into the solution strategies, we used a 
problem generator function that embodied the overall problem structure described above to 
generate job shop scheduling instances where the problem parameters were varied in controlled 
ways. In particular, six groups of 10 problems each were randomly generated by considering 
three different values of the range parameter (static, moderate, dynamic), and two values of the 
bottleneck configuration (1 and 2 bottleneck problems). The slack was adjusted as a function of 
the range and bottleneck parameters to keep demand for bottleneck resources close to 100\% 
over the major part of each problem. Durations for activities in each order were also randomly 
generated. 

The benchmark problems are variations of the problems originally reported in [Sadeh 91c] and 
used as a benchmark by a number of researchers (e.g. [Muscettola 92, Liu.Sycara 93a]). Our 
problem sets are, however, different in two respects: (a) we allow substitutable resources for 
non-bottleneck resources, thus solving the parallel machine rather than the simple job shop 
scheduling problem, and (b) the due dates of orders in our problems are tighter by 20 percent 
than in the original problems. 

A cross-validation method was used to evaluate the capabilities of CABINS. Each problem set 
in each class was divided in half. The overall training sample, consisting of 30 problems, each of 
which has 50 activities, was repaired to gather cases. A case is acquired for each activity that is 
repaired. An activity (and consequently a job) may be repaired more than once during an overall 
repair cycle, since it could require repair after being moved as a result of repairing another 
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activity. Allowing each activity to be repaired once for each problem would give a maximum of 
30X50 = 1,500 cases for each training sample. In our experiments, some of the activities did not 
need repair. So, for each training sample, CABINS was trained with approximately 1,100 cases. 
These cases were then used for case-based repair of the validation problems (the other 30 
problems). We repeated the above process by interchanging the training and the test sets. Since 
it is not possible to theoretically predict the bounds of repair or the global optimum, in the 
experiments, CABINS was allowed to run for three overall repair cycles. 

4.6 Summary of Experimental Results 
Extensive experimentation on the benchmark suite of problems showed that: 

1. CABINS is capable of acquiring user and state dependent schedule optimization 
preferences. In addition, CABINS can acquire user preferences that change over 
time. 

2. In predictive schedule generation, the methodology consistently improves the 
quality of schedules generated by a variety of scheduling methods. 

3. In predictive schedule generation, CABINS generates schedules of higher quality 
along a variety of optimization objectives with much lower processing cost (almost 
an order of magnitude better) as compared to simulated annealing. 

4. In recovering from execution time failures, the approach (1) attends to schedule 
quality both in terms of optimization objectives, and disruption, and (2) is 
responsive in that it allows continuation of execution without delays in response to 
execution failures, and (3) it exhibits anytime executable behavior. 

5. Different scheduling objectives implicitly reflected in the case base differentially 
bias the schedule repair procedure. Experiments showed that learning of the 
control model for repair action selection improved schedule quality by 90% as 
compared with random selection of repair actions. 

6. The approach scales up in that knowledge gathered in the form of cases from a 
smaller set of problems (e.g. 10-job problems) produces schedules of high quality 
when used to repair larger problems (e.g. 20-job problems). In addition the pattern 
of schedule quality improvement independent of method of initial schedule 
generation holds for the larger set of problems. 

7. With respect to the question of the case size that will give the "optimal" tradeoff 
with respect to schedule quality vs case acquisition and retrieval cost, our results 
showed that: 

• The larger the number of cases, the better the schedule quality. However, 
the marginal payoff from the increase in case base size decreases. This can 
be explained partially by the fact that some number of cases (say, 1000 
cases) capture well characteristics of the problem space, and additional 1000 
new cases may give much redundant information. When the size of case- 
base is relatively small, every time new cases are acquired, we may get 
information about a different part of the problem space which results in 
higher quality improvement. 
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• In terms of balancing efficiency of finding the solution and solution quality, 
the experiments showed that the case-base with 1000 cases affords the best 
tradeoff. 

4.6.1 Discussion 
We believe the power of the approach stems from the following four reasons. First, as has 

been pointed out by others (e.g. [Minton 92]), revision-based approaches, by making available a 
complete assignment (a complete schedule) provide more information that can guide search as 
compared with constructive methods where only a partial assignment is available. Our CBR- 
based revision method captures such relevant information in global case features and exploits it 
as contextual information during case retrieval. Second, although job shop schedule optimization 
belongs to the category of "hard" NP-complete problems, the case features were able to capture 
some important domain regularities, such as repair flexibility. This was complemented by 
keeping information about failed applications of revisions in the repair case history and also 
keeping failed cases in the case memory. These failures were exploited by CBR to prune 
unpromising paths in the search space in future similar situations. Finally, we believe that some 
of the regularities in the structure of the experimental problems were captured in cases during the 
training phase and this information was transferable to solve the test problems. Moreover, this 
information seems to transfer also across problem size. For example, the cases acquired during 
training with a set of 10-job problems were effective in solving test problems with 20 jobs. 

The effort expended to capture a large number of cases can be amortized by future repeated 
use of the case base to get high quality schedules efficiently. More importantly, CABINS can 
acquire the cases through user interaction during the process of solution improvement without 
imposing undue overhead on the user. 

5 Integration of Predictive Planning/Scheduling and Reactive Control 
A plan/schedule represents a predictive view of how the future should look and expresses 

expectations about future events. For example, a factory schedule expresses an expectation that 
particular operations will be assigned to particular resources at particular start times and will 
execute on these resources for the indicated operation durations. However, since the world is 
unpredictable, the expectations associated with the predictive plan/schedule might not be 
realized (e.g., operations might finish earlier or later than their durations indicate in the schedule, 
capacity might be lost due to machine breakdowns etc). These realities of execution uncertainty 
give rise to the following issues: (1) how execution of a plan/schedule should be controlled, (2) 
how a schedule can be reactively managed and (3) how the behavior of the world could be 
simulated (since our system does not have access to a real factory floor that can be sensed, 
simulation of the world must be employed). 

Our research create a distributed testbed for planning and execution that is suitable to 
experiment with interactions and tradeoffs arising from adopting a variety of control regimes to 
select tasks for execution, the actual execution policies and the physics of the world. 



The distributed testbed cosists of the following agents: a planner/scheduler, a controller (in the 
manufacturing domain this is called the dispatcher) and a simulator that simulates the behavior 
of the world. The overall system behavior is the result of interactions among the three agents. 
The goal of this effort is to make the testbed sufficiently parametrized and general so that it can 
operate using a variety of possible scheduling strategies, a variety Of control execution regimes 
and a variety of assumptions in terms of the physics of the world. In addition, monitoring 
processes will be gathering performance statistics for particular experimental combinations of 
scheduling strategies, control regimes and world models. 

In order to gather statistics on the performance of the distributed planner/scheduler, controller 
and simulator, we implemented an additional monitoring agent. Its role is to monitor the state of 
the different agents and the state of the messages exchanged among the different agents and 
return appropriate statistics. For example, by collecting the messages announcing the start of the 
first operation and the end of the last operation for each job, the monitor can return statistics on 
tardiness; analogously, messages on start and end of resource down-time, type of failure and start 
and end of failure repair activities can be gathered to obtain statistics on the effectiveness of the 
reaction of the dispatching policies to unpredictable events. 

In general, the system performs as follows. The scheduler passes to the dispatcher a DAG of 
operations to be executed. The simulatior simulates the execution of operations based on 
different conditions of uncertian execution (e.g., every third operation has a probability x of 
excheeding its time bounds by y). If an operation executes successfuly (i.e. within its time 
bounds) then, it becomes a finished operation. If its execution causes constraint violation, then, 
the dispatcher tries to "fix" the situation performing local repairs. If the dispatcher repairs do not 
resolve the constraint conflicts, the dispatcher returne the operations to the scheduler for re- 
scheduling. 

The dispatcher has limited time horizon within which to impose repairs. This limited time 
horizon has two effects (1) it limits the search space of the dispatcher thus enabling quick 
repairs, and (2) keeps the repairs local, i.e. without causing inconsistencies in the global 
scheduler's constraints, these two characteristics enable the dispatcher to respond efficiently to 
detected problems and opportunities. 

5.0.1 Simulator 
The simulator allows generation of behaviors of finite state machines equivalent to HSTS 

models used for planning and scheduling. The explicit simulation of the behavior of a system 
under consideration and of the interactions with control and prediction (planning and scheduling) 
agents is the basis for the study of appropriate regimes of coordination. The simulator takes as 
input a model, an initial state, and a start and an end time for the simulation. The model defines 
state transitions, agents and objects that can respond to messages. Both agents and objects 
communicate by sending and receiving messages. For the sake of better exposition, we call the 
messages handled by objects signals and the messages handled by agents stimuli. These 
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messages are contained in temporal order in the simulator's queue. Objects have associated state 
variables and state transition rules; given the current state and a set of received messages, an 
object can change its state according to its transistion rules. Agents consist of arbitrary code that 

can receive messages (stimuli), and can respond with commands.   Only the method of 

communication is described for agents; no visibility is given on the internal state of the agents. 
This capability will allow the incorporation of complex agents (e.g., planner, scheduler) in the 
simulation of complex regimes of coordination. 

The simulator maintains the value of the state variables associated to the model objects. The 
current set of assignments of the state variables within the simulator constitute the current state. 
State transitions can be described as: 

old state + signal => new state + post new signals 

An agent receives stimuli generated by the simulator and sends commands to the simulator. 
Objects have handler functions that select the appropriate state transition rules and apply them to 
generate changes in the value of its state variables. 

State Transition Rules (STR) consist of: 

• signal-test. It is used to determine whether this STR should be considered given the 
current signal. 

• prior-state. It is used to determine whether this STR should be considered given the 
current state and the current signal. 

• post-state. It is used to assign to state variables the values they will have after all 
variable assignments are done. There are two types of value assignment: (1) a 
simple assignment where the value given to the state variable is a function of prior- 
state, signal, and STR, and (2) a functional assignment, where the state variable 
assignment is a function of prior-state, signal, STR and new value of the given 
variable (caused by the assignmenet of some other STR). 

• validity-test. It is a test to check whether the resulting state is a valid one. 

5.0.2 Scheduler and Dispatcher 
The scheduler agent of the predictor/controller/simulator architecture is based on the Conflict 

Partition Scheduling procedure. The scheduler generates an HSTS temporal data base 
representing the network of precedence among activities and their time bounds. The dispatcher 
receives a subnetwork consisting of the first operations that can be executed and the activities 
that follow them on a chain of job precedences (i.e., opi before op- because of a job imposed 
constraint) or on a chain of resource precedences (i.e., opt before opk because they use the same 
resource). At any point in time the dispatcher will contain up to n links on any chain; this is an 
extension of the approach in [Smith 90b] which considers chains of length 2 at most. The 
constraints imposed by the rest of the schedule not visible to the dispatcher are represented as 
absolute temporal constraints (i.e., due date constraints); the constraints are updated every time 
new operations are added to the dispatcher's temporal data base. 
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Unexpected events are represented in the dispatcher's network with the change of activity 
parameters (e.g., change of an activity duration constraint if the simulation determines that its 
duration is shorter or longer than expected) or the introduction of new activities (e.g., a resource 
unavailability requires the introduction of a "resource down" state token and a "resource repair" 
activity token). There are two categories of unexpected events: (1) Small changes, such as 
delays in the execution of activities, that could be "absorbed" in the current time map flexibility 
(because, for ex. there is downstream slack present). In this case the controller does not need to 
execute any adjustment to its portion of the schedule (over which it has visibility). In constrast, a 
controller using "crisp" schedules, such as the one described in [Smith 90b] often deals with 
similar situations with an active modification of the schedule through appropriate reactive 
scheduling rules that could incurr computational cost. (2) Large perturbations to the dispatcher's 
time map, due for example to a machine break down or to large execution delays, might generate 
inconsistencies in the current schedule. In this case it is necessary to determine where the 
inconsistency is and how to repair it. We concentrate on the detemination of inconsistencies that 
are representable as temporal constraint violations in the network. The determinations of these 
inconsistencies requires an extension of the HSTS temporal propagation mechanism. The HSTS 
temporal propagation, in fact, can detect the presence of inconsistencies but cannot localize 
them; this is sufficient for the backtrack-based approaced to planning and scheduling but not in 
repair based approaches where we need to identify the constraints that participate in the conflict 
and, therefore, need to be modified. We started the investigation of propagation procedures that 
localize temporal constraint inconsistencies. 

We implemented and integrated in the HSTS temporal data base an additional temporal 
propagation mechanism which allows detection of the location of conflicting sets of constraints. 
The method applies the Floyd-Warshall (FW) algorithm for the determination of all-pair shortest 
paths. The algorithm has been advocated for the resolution of consistent networks of temporal 
constraints in [Dechter 91]. While in most cases FW computes much more information than it is 
needed (e.g., consistency of a temporal data base), in case of network inconsistency it can detect 
shortest cyclical paths of temporal constraints with negative distance. The elimination of such 
paths from the temporal data base is a necessary condition for the removal of the network's 
inconsistency. As for the ordinary time bound propagator, in HSTS the FW propagator can be 
called on demand, given the computational burden of the algorithm. A typical situation is one in 
which FW is called after the ordinary and cheaper time bound propagation detects an 
inconsistency. The wealth of information returned by FW can be used to guide the design of 
effective repair rules. For example, having detected a number of disjoint negative distance 
cycles, it is necessary to repair all of them before the temporal database can become consistent 
again. The repair rules will use different patterns of repair (e.g., repair one cycle at a time, 
exchange constraints among cycles, etc.) depending on the topology of the temporal data base. 
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5.0.3 Dispatcher Operation 
The dispatcher receives an externally generated DAG of operations with nominal start and end 

times associated with each operation. This DAG constitutes a consistent schedule. 

Execution time failures 

The dispatcher's reactive behavior in response to execution time failure, such as an activity 
finishign late, is as follows: 

• Identification of deviation from nominal plan/schedule behavior: this is done using 
the execution information that the managed system communicates to dispatcher. 

• Localization of violated constraints: this is done via use of Floyd Warshall algorithm 
to identify negative cycles in the temporal network under dispatcher's control. 

• Identification of cause of deviation: activities that are part of a negative cycle are 
potential causes. 

• Local repair: 
1. Next activity of a negative cycle is unlinked from the network. 

2. Constraint propagation is performed. 

3. If propagation shows that the network is now consistent, the unlinked 
activity is relinked at a place where there is enough slack. Repair is 
complete. Otherwise, previous activity is put in its old place. Go to step 1. 

4. If all activities in a negative cycle have been tested but the network is still 
inconsistent, the dispatcher sends to the scheduler all activities that have not 
finished executing for rescheduling. 

Dispatcher execution opportunities 

The dispatcher also responds to execution opportunities (e.g., an activity finishing earlier than 
its expected finish time). The intuition behind a revision to recognize and take advantage of 
opportunities is to try, if possible, to locally re-optimize the part of the schedule under the 
control of the dispatcher, The "opportunity revision" can be initiated under the following 
circumstances: (1) when an activity finishes earlier than its expected finish time, (2) when an 
activity finishes later than its expected finish time (but the dispatcher's constraint network is still 
consistent). In this case, the "opportunity revision" is tried along with the 'repair revision". (3) 
when an activity finishes at its expected finish time, and (4) when the dispatcher gets a new set 
of activities to dispatch. 

The opportunity revision is checked for each idle resource, and each activity, call it "current 
activity", on that resource (except the first activity). The opportunity revision steps are as 
follows: 

1. Break resource links before and after the "current activity" 

2. Add resource link between the old prior-activity to the "current activity", and old 
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next-activity to the "current activity" 

3. Try placing the "current activity" in the first position on the resource 

4. Check if the constraint network is consistent. If it is, then the "current activity" is a 
"candidate" to be moved. Keep track of its minimum legal start time in the 
"candidate-set". If not, place the "current activity" in its old position (taking care of 
maintaining the correct links) and try another activity. 

5. Collect all activities in the "candidate-set" and select the one with the earliest 
minimum start time. 

The algorithm ensures that the activity that can be dispatched at the earliest time is found. 

5.0.4 Coordination protocol scheduler-dispatcher-simulator 
The coordination assumption that underlie this protocol is that the dispatcher is actively asking 

the scheduler for activities to dispatch rather than waiting for the scheduler to send it activities. 
The implication of this coordination regime is that activities will be dispathed expeditiously, i.e., 
the next ply of activities will be dispatched as soon as the previous ply has been sent to the 
factory model. The dispatcher gets alerted that the scheduler has finished scheduling (initial 
scheduling or rescheduling) by receiving a schedule-ready message from the scheduler. The 
message that the dispatcher sends to the scheduler to ask for activities to dispatch is get-next-ply. 
The scheduler responds to this message by sending a series of dispatch-activity messages, one 
for each activity in the first n plies, n is currently equal to 2. When the dispatcher dispatches an 
activity, it checks to see if it needs another ply, and if it does, it sends get-next-ply message to 
scheduler. If, due to delays in activity execution, the dispatcher finds unrepairable 
inconsistencie, it send a series of rescehdule-activity messages to the scheduler. The argument to 
each of these messages is an activity to be rescheduled. 

The dispatcher dispatches activities by sending start-activity messages to the factory. The 
factory responds to the dispatcher by sending activity-started message when it starts executing an 
activity, and activity-finished message at the end of each activity execution. 

5.0.5 Operation of Overall System 
The overall system operates as follows; 

1. At simulation time=-2, a set of self-initialization messages is sent by the simulation 
infrastructure to all agents. The result of recieving these messages is that each 
agent initializes itself (i.e. it local variables and message types it can send and 
receive). 

2. At simulation time=-l, a set of messages is sent to all agents for initialization of 
others. For example, the scheduler initializes its interaction with the dispatcher by 
sending a "schedule-ready" message; the dispatcher initializes its interactin with 
the scheduler by sending a "get-next-ply" message (to get the first 2 plies), to 
which the scheduler responds by the "dispatch-activity" series of messages, seding 
it the requested activities. When the dispatcher gets the activities, it builds a 
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temporal constrant network for the activities. 

3. At simulation time=0, a start message is sent to all agents. At that time the 
dispatcher builds its temporal data base and checks it for consistency. 

4. At simulation time=k, where k is the earliest release date of the activities to be 
dispatched, the dispatcher sends messages to the factory to start execution of each 
activity in the first ply, on the specified resource for each activity. 

In the rest of the simulation, the following significant events occur: 

• The factory sends activity-finished messages to dispatcher, as activities finish 
execution. 

• As the dispatcher dispatches each activity, it checks to see whether it needs an 
additional ply from the scheduler. If it does, it sends a "get-next-ply" message, 
which has a papameter n equal to the number of plies to be sent. The scheduler 
responds by "dispatch-activity" series of messages, thus sending the dispatcher the 
set of activities in the next n plies. 

• If the dispatcher finds that its temporal data base is inconsistent, it tries to locally 
repair the inconsistency. If the inconsistency is locally fixed, the dispatcher 
continues processing. If the inconsistency cannot be fixed locally, the dispatcher 
sends the scheduler a "reschedule-activity" series of messages containing the 
activities to be rescheduled. 
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Abstract 

A major challenge for research in production management is to develop new finite-capacity 

scheduling techniques and tools that (1) can account more precisely for actual production 

management constraints and objectives, (2) are better suited for handling production 

contingencies, and (3) allow the user to interactively manipulate the production schedule to 

reflect idiosyncratic constraints and preferences not easily amenable to representation in the 

computer model. This chapter describes Micro-Boss, a decision-support system for factory 

scheduling currently under development at Carnegie Mellon University. Micro-Boss aims at 

generating and maintaining high-quality realistic production schedules by combining powerful 

predictive, reactive, and interactive scheduling capabilities. Specifically, the system relies on 

new micro-opportunistic search heuristics that enable it to constantly revise its scheduling 

strategy during the construction or repair of a schedule. These search heuristics are shown to be 

more effective than less flexible scheduling techniques proposed in the Operations Research and 

Artificial Intelligence literature. 

This chapter summarizes our work in micro-opportunistic scheduling and describes predictive, 

reactive and interactive capabilities developed in the context of the Micro-Boss scheduling 

system. It is a condensed version of three papers: [Sadeh 94], [Sadeh 93] and [Li&Sadeh 93]. 
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1 Introduction 
In a global market economy, the need for cost-efficient production management techniques is 

becoming more critical every day. In contrast with this need, current production management 
practice is too often characterized by low levels of due date satisfaction, high levels of inventory 

and, more generally, a state of chaos in which the computer systems that are used to provide 
managerial guidance do not accurately reflect the current state of affairs, because they rely on 
oversimplified and rigid models of the production environment. A major challenge for research 
in this area is to develop new production management techniques and tools that (1) can account 
more precisely for actual production management constraints and objectives, (2) are better suited 
for handling production contingencies, and (3) allow the user to interactively manipulate the 
production schedule to reflect idiosyncratic constraints and preferences not easily amenable to 
representation in the computer model. This chapter describes Micro-Boss, a decision-support 
system for factory scheduling currently under development at Carnegie Mellon University. 
Micro-Boss aims at generating and maintaining high-quality realistic production schedules by 
combining powerful predictive, reactive, and interactive scheduling capabilities. Specifically, 
the system relies on new micro-opportunistic search heuristics that enable it to constantly revise 
its scheduling strategy during the construction or repair of a schedule. These search heuristics are 
shown to be more effective than less flexible scheduling techniques proposed in the Operations 
Research and Artificial Intelligence literature. 

1.1 The Production Scheduling Problem 
Production scheduling requires allocating resources (e.g., machines, tools, human operators) 

over time to a set of jobs while attending to a variety of constraints and objectives. 

Typical constraints include 

•functional constraints limiting the types of operations that a specific resource can 
perform 

• capacity constraints restricting the number of jobs a resource can process at any 
given time 

• availability constraints specifying when each resource is available (e.g., number of 
shifts available on a group of machines) 

• precedence constraints existing between operations in a job, as specified in the job's 
process routing 

• processing time constraints specifying how long it usually takes to perform each 
operation 
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• setup constraints requiring that each machine be in the proper configuration before 
performing a particular task (e.g., proper sets of fixtures and tools) 

• time-bound constraints specifying for each job an earliest acceptable release date 
before which the job cannot start (e.g., because its raw materials cannot arrive 
earlier) and a due date by which ideally it should be delivered to a customer 

Some of these constraints must be satisfied for a schedule to be valid (so-called non-relaxable 
or hard constraints). For instance, milling operations can only be performed on milling 
machines. Other groups of constraints are not always satisfiable and might need to be relaxed 
(so-called relaxable or soft constraints). For instance, due date constraints often need to be 
relaxed for a couple of jobs because of the limited capacity of the production facility. 
Availability constraints are another example of constraints that can be relaxed, by either working 
overtime or adding extra shifts. A good schedule is one that satisfies all hard constraints while 
selectively relaxing soft constraints to maximize performance along one or several metrics. 

Two factors that critically influence the quality of a schedule are due date satisfaction and 
inventory levels. Missing a customer due date can result in tardiness penalties, loss of customer 
orders, delayed revenue receipts, etc. Inventory costs include interests on the costs of raw 
materials, direct inventory holding costs, interests on processing costs, etc. One often 
distinguishes between in-process inventory costs (also referred to as work-in-process inventory 
costs) and finished-goods inventory costs. Work-In-Process (WIP) inventory costs account for 
inventory costs resulting from orders that have not yet been completed, and finished-goods 
inventory costs result from completed orders that have not yet been shipped to customers. 

Manufacturing contingencies such as machine breakdowns, late arrivals of raw materials, and 
variations in operation durations and yields further complicate production scheduling. In the face 
of contingencies, schedules need to be updated to reflect the new state of affairs. The sheer size 
of most factory scheduling problems precludes the generation of new schedules from scratch 
each time an unanticipated event occurs. In fact, most contingencies do not warrant such 
extreme actions and are best handled by repairing a portion of the existing schedule [Bean 91]. 

As schedules are optimized at a more detailed level, they can also become more sensitive to 
disruptions and require more frequent repairs. In general, there is a limit to the amount and 
detail of information that one can reasonably expect to represent in a computer model. For 
instance, a worker's preference for performing more demanding tasks in the morning might not 
be worth storing in the computer model and, instead, might be best accounted for by allowing the 
end-user to interactively manipulate the schedule. 

Even under idealized conditions such as simplified objectives (e.g., minimizing total tardiness 
or maximizing throughput) and deterministic assumptions, scheduling has been shown to be an 
NP-hard problem [Garey 79, Graves 81, French 82]. Uncertainty further adds to the difficulty of 

A3 



the problem, and makes it even more impractical to look for optimal solutions. Instead, practical 
approaches to production scheduling are heuristic in nature. The next subsection briefly reviews 
earlier approaches to production scheduling; identifies some of their shortcomings; and 
introduces a new search paradigm, called micro-opportunistic search, that shows promise for 

addressing some of these shortcomings. 

1.2 A Micro-Opportunistic Approach to Production Scheduling 
To this date, the most widely used computer-based approach to production scheduling remains 

by far the Material Requirements Planning (MRP) or Manufacturing Resource Planning (MRP- 
II) approach developed in the 1970s [Orlicky 75, Wight 81, Wight 84]. In this approach, demand 
for end-products as specified in a Master Production Schedule is exploded into time-phased 
requirements for component items (subassemblies, parts, raw materials, etc.) required for the 
production of these end-products1. Because their time-phasing logic relies on standard operation 
leadtimes that do not account for the actual load of the production facility, MRP systems often 
fail to produce realistic schedules. They sometimes overload the facility, thereby causing orders 
to be delivered late. In an attempt to alleviate this problem, MRP systems often pad the schedule 
by inserting generous "safety" leadtimes. These safety leadtimes tend to be rather arbitrary and 
produce unnecessarily large amounts of inventory. In fact, because they are often unrealistic and 
are not meant to be updated in real-time2, MRP schedules are not directly used to schedule 
production but rather to assign priorities to jobs [Panwalkar 77, Vollmann 88]. These priorities 
in turn determine the order in which jobs are actually processed at each work center. 

Shortcomings of the traditional MRP approach reflect limitations of computing technologies 
available in the 1970s. In the 1980s with the advent of more powerful computers, several more 
sophisticated techniques emerged [Goldratt 80, Fox 83, Ow 85, Adams 88, Ow 88a, Morton 88]. 
The first and by far most publicized of these techniques is the one developed by Goldratt and his 
colleagues within the context of the OPT factory scheduling system [Goldratt 80, Jacobs 84, Fox 
87]. OPT demonstrated the benefits of building detailed production schedules that account for 
the actual load of the plant and the finite capacity of its resources ("finite scheduling" 
approaches). This system also underscored the potential benefits of distinguishing between 
bottleneck and non-bottleneck resources [Jacobs 84, Fox 87]. In OPT, bottlenecks are scheduled 
first to optimize the throughput of the plant. Later, the production schedule is completed by 
compactly scheduling non-bottleneck operations to reduce inventory. The distinction between 
bottleneck and non-bottleneck machines was pushed one step further in the OPIS system [Smith 
86, Ow 88a], as it was recognized that new bottlenecks can appear during the construction of the 
schedule. The OPIS scheduler combines two scheduling perspectives:    a resource-centered 

'For instance, if an end-product required by the end of week 2 is obtained by assembling two sub-components and 
the assembly process typically takes a week to be completed, both sub-components will be required by the end of 
week 1. 

-MRP systems are generally run on a weekly, possibly even a monthly basis. 
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perspective for scheduling bottleneck resources, and a job-centered perspective to schedule non- 
bottleneck operations on a job-by-job basis. Rather than relying on its initial bottleneck analysis, 
OPIS typically repeats this analysis each time a resource or a job has been scheduled. This ability 
to detect the emergence of new bottlenecks during the construction of the schedule and revise the 
current scheduling strategy has been termed opportunistic scheduling [Ow 88a]. Nevertheless, 
the opportunism in this approach remains limited in the sense that it typically requires scheduling 
an entire bottleneck (or at least a large chunk of it) before being able to switch to another one. 
For this reason, we actually refer to these techniques as macro-opportunistic. 

In fact, variations in the job mix over time often cause different machines (or groups of 
machines) to be bottlenecks over different time intervals. Bottlenecks are sometimes said to 
"wander over time". Also, as a schedule is constructed for a bottleneck machine, a new machine 
can become more constraining than the original bottleneck. For instance, scheduling decisions 
on a bottleneck machine might require that a large number of jobs be processed on a preceding 
machine over a short period of time. At some point during the construction of the schedule, 
contention for the preceding machine might become higher than that for the original bottleneck. 
A scheduling technique that can only schedule large resource/job subproblems will not be able to 
take such considerations into account. It will overconstrain its set of alternatives before having 
worked on the subproblems that will most critically affect the quality of the entire schedule. 
This, in turn, will often result in poorer solutions. A more flexible approach would stop 
scheduling operations on a resource as soon as another resource is identified as more 
constraining. In the presence of multiple bottlenecks, such a technique would be able to shift 
attention from one bottleneck to another during the construction of the schedule rather than focus 
on the optimization of a single bottleneck at the expense of others. This chapter presents such a 
flexible approach to scheduling. We call it micro-opportunistic scheduling. In this approach, 
resource contention is continuously monitored during the construction of the schedule, and the 
problem solving effort is constantly redirected toward the most serious bottleneck resource. In 
its simplest form, this micro-opportunistic approach results in an operation-centered view of 
scheduling, in which each operation is considered an independent decision point and can be 
scheduled without requiring that other operations using the same resource or belonging to the 
same job be scheduled at the same time3. 

Experimental results presented at the end of this chapter indicate that micro-opportunistic 
scheduling procedures often yield better schedules than less flexible bottleneck-centered 
approaches. Because of their flexibility, micro-opportunistic scheduling heuristics also seem 

3An alternative approach in which resources can be resequenced to adjust for resource schedules built further 
down the road is described in [Adams 88] and [Dauzere-Peres 90]. This approach has been very successful at 
minimizing makespan, namely, the total duration of the schedule. This measure is closely related to the throughput 
of the plant but does not account for individual job due dates, tardiness costs or inventory costs. Attempts to 
generalize the procedure to account for due dates seem to have been less successful so far [Serafini 88]. It should be 
pointed out that the idea of continuously reoptimizing the current partial schedule is compatible with a micro- 
opportunistic approach. 
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particularly well suited to solving problems in which some operations have to be performed 
within non-relaxable time windows [Sadeh 91a, Sadeh 92] as well as repairing schedules in the 
face of contingencies. Finally, we find that they can easily be integrated in interactive systems in 
which manual and automatic scheduling decisions can be interleaved, thereby allowing the user 
to incrementally manipulate and compare alternative schedules (e.g., "What-if" type of analysis). 

1.3 Paper Outline 
The remainder of this chapter successively reviews the predictive, reactive, and interactive 

capabilities of the Micro-Boss scheduling system. 

Section 2 describes the micro-opportunistic search procedure implemented in Micro-Boss, 
focusing on look-ahead techniques used to measure contention, and heuristics to identify and 
schedule critical operations. A small example illustrating the use of these techniques is provided 
in Section 3. Section 4 describes the reactive and interactive components of the system. Section 
5 reports the results of an experimental study comparing Micro-Boss with several popular 
scheduling approaches, including coarser opportunistic schedulers, under a wide range of 
simulated situations. Finally, Section 6 briefly reviews current research efforts and summarizes 
the impact of this work. 
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2 A Micro-opportunistic Search Procedure 
In this section, a deterministic scheduling model is assumed, in which all jobs to be scheduled 

are known in advance. Issues pertaining to reactive scheduling and control in the face of 
manufacturing contingencies such as machine breakdowns are addressed in a later section. 

2.1 A Deterministic Scheduling Model 
For the time being, we consider a deterministic scheduling problem in which a set of jobs 

J=Ul'—Jn} has to be scheduled on a set of physical resources RES={R\,...,Rm}. Each job jt 

consists of a set of operations Ol= {0[,...,Ol
n} to be scheduled according to a process routing that 

specifies a partial ordering among these operations (e.g., 0\ BEFORE O'). We further assume 
scheduling problems with in-tree process routings, namely process routings in which operations 
can have one or several direct predecessors but at most one direct successor (e.g., assembly 
process routings). This is by far the most common type of process routing encountered in 
manufacturing. 

Additionally, each job jt has an earliest acceptable release date, erdt, a due-date, ddb and a 
latest acceptable completion date, Icd^ where lcd{ > ddt > erd[. All jobs need to be scheduled 
between their earliest acceptable release date and latest acceptable completion date4. The earliest 
acceptable release date might correspond to the earliest possible arrival date of raw materials. It 
is assumed that the actual release date (or job start date) will be determined by the schedule that 
is constructed. The latest acceptable completion date might correspond to a date after which the 
customer will refuse delivery. If such a date does not actually exist, it can always be chosen far 
enough in the future so that it is no longer a constraint. 

Each operation 0\ has an expected duration, du\, and a start time, stt (to be determined), whose 
domain of possible values is delimited by an earliest start time, estt, and a latest start time, lst\ 
(initially derived from the job's earliest acceptable release date erdl and latest acceptable 

completion date ledj). We assume that each operation 0\ requires a single resource Rl
{ for which 

there might be several alternatives in RES. The model further allows for resource availability 
constraints that specify the times when each resource is normally available (e.g., what the 
number of shifts is and whether the resource is available over the week-end). Finally, setup 
operations might be required before an operation can start on a machine. Examples of setup 
operations include changing the fixtures holding a part, loading a new part, cleaning a painting 
station when switching from one color to another, etc. 

The objective of the scheduling system, under deterministic assumptions, is to build a schedule 
that satisfies the above constraints and minimizes (as much as possible) the costs incurred for 
missing due dates or carrying overhead inventories. These costs are briefly described below. 

4Notice that this formulation does not exclude infeasible problems. 
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COSTS 

Each job jt has 

• A marginal tardiness cost, tardf This is the cost incurred for each unit of time that the job is 
tardy (i.e., finishes past its due date). Marginal tardiness costs generally include tardiness 

penalties, interest on delayed profits, loss of customer goodwill, etc5. The tardiness cost ofjob^ 
in a given schedule is 

TARDt = tard[ x Max(0, Cz-ddj) (1) 

where Ci=stl
n +du'n is the completion date of joby'; in that schedule, assuming that o'n is the last 

operation in job_/z. 

• Marginal in-process and finished-goods inventory costs: In our model, each operation 0\ 

can incrementally introduce its own non-negative marginal inventory cost, invr Typically, the 
first operation in a job introduces marginal inventory costs that correspond to interest on the 
costs of raw materials, interest on processing costs (for that first operation), and marginal 
holding costs. Downstream operations6 introduce additional marginal inventory costs such as 
interest on processing costs or interest on the costs of additional raw materials required by these 
operations. The total inventory cost for a job jz, in a given schedule, is: 

INVl=Z inv'i x [MaxiC^ddt)-rfj] (2) 
1=1 

This cost accounts for both work-in-process and finished-goods inventory costs7 

The total cost of a schedule is obtained by summing the cost of each job schedule: 

Schedule Cost = Y, (JARD^INVj) (3) 

A SMALL EXAMPLE 

Figure 1 depicts a small scheduling problem with four jobs that will be used in this section to 

5In this model, inventory costs incurred after the due date are not included in the tardiness costs but, rather, in the 
inventory costs described below. 

A k k k "An operation 0- is said to be downstream (upstream) of another operation 0  within its job if 0- is a direct or 

indirect successor (predecessor) of O- in that job, as defined by the job's process routing. 

7Note that, in this deterministic model, minimizing work-in-process inventory costs is equivalent to minimizing 
job leadtimes or flowtimes. 
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illustrate the behavior of the micro-opportunistic scheduling heuristics implemented in Micro- 
Boss. Each square box represents an operation and is labeled by the name of this operation (e.g., 
0\), its (expected) duration (e.g., du\ = 2), and the resource it requires (e.g., R\=R]). In this 
simple example, each operation is assumed to require a single resource, for which there are no 
substitutes.   The arrows represent precedence constraints. For instance, job y'j has 5 operations 

0\, Ol
2,..., 0\. 0\ has to be performed before 0\, 0>\ before 0\, etc. The other arcs in the graph 

represent capacity constraints that require that each resource be allocated to only one operation at 
a time. There is a capacity constraint between each pair of operations that require the same 
resource. Notice that R2 is the only resource required by four operations (one from each job). 
Notice also that in three out of four jobs (namely, y'j , y3 , and y4), the operation requiring 7?2 *s 

one of the job's longest operations. Consequently, resource R2 can be expected to be the main 
bottleneck of the problem. We will see that, to some extent, resource R^ constitutes a secondary 
bottleneck. 

Ji    PI2  Ri 0 6   R2 fo- 
k   4 2 R 1 fo1 

2 R! 
\ / 

i, (^^h^W^} 

3J ^ ^-^— \ 

SIZD 

'. (5; 3   R. o>  R= 

precedence constraint 

capacity constraint 

Figure 1: A simple job shop problem with four jobs. Each node is labeled by the operation 
that it represents, its duration, and the resource that it requires. 
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The earliest acceptable release dates, due dates, and latest acceptable completion dates of the 
jobs are provided in Table 1 along with the marginal tardiness and inventory costs of these jobs. 

Earliest acceptable release dates, due dates, latest acceptable completion dates, and costs 

Jobj; erdl ddi lcdl tardt 
•   / 
IMV, 

•   / 
inv2 inv[ inv\ 

•   / 
inv5 

h 0 12 20 20 2 l 2 0 0 

h 0 14 20 20 5 0 - - - 

h 0 9 20 5 1 0 0 - - 

h 0 18 20 10 1 0 - - - 

Table 1: Earliest acceptable release dates, due dates, latest 
acceptable completion dates and marginal costs. 

2.2 Overview of the Search Procedure 
In Micro-Boss, each operation is considered an independent decision point. Any operation can 

be scheduled at any time, if deemed appropriate by the system. There is no obligation to 
simultaneously schedule other operations upstream or downstream within the same job, nor is 
there any obligation to schedule other operations competing for the same resource. 

Micro-Boss proceeds by iteratively selecting an operation to be scheduled and a reservation 
(i.e., a resource/time interval) to be assigned to that operation. Every time an operation is 
scheduled, a new search state is created, where new constraints are added to account for the 
reservation assigned to that operation. A consistency enforcing procedure then takes care of 
updating the set of remaining possible reservations of each unscheduled operation. If an 
unscheduled operation is found to have no possible reservations left, a deadend state has been 
reached, in which case the system needs to backtrack (i.e., it needs to undo some earlier 
reservation assignments to be able to complete the schedule). If the search state does not appear 
to be a deadend, the system moves on and looks for a new operation to schedule and a 
reservation to assign to that operation. 

To enhance search efficiency8 and produce high quality schedules, Micro-Boss interleaves 
search with the application of consistency enforcing mechanisms and a set of look-ahead 
techniques that help decide which operation to schedule next {operation ordering heuristic) and 
which reservation to assign to that operation (reservation ordering heuristic). 

1. Consistency Enforcing/Checking:   Consistency enforcing techniques prune the 

8We define search efficiency as the ratio of the number of operations to be scheduled over the number of search 
states generated. If the number of search states generated to build the schedule is equal to the number of operations, 
search efficiency is equal to 1. 
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search space by inferring new constraints resulting from earlier reservation 

assignments [Mackworth 85, Sadeh 91b]. By constantly accounting for earlier 

scheduling decisions, these techniques reduce the chances of reaching a deadend 

(i.e., a partial schedule that cannot be completed without backtracking). 

Simultaneously, by allowing for the early detection of deadend states, these 

techniques limit the amount of work wasted in the exploration of fruitless 

alternatives. 

2. Look-Ahead Analysis: A two-step look-ahead procedure is applied in each search 

state, which first optimizes reservation assignments within each job and then, for 

each resource, computes contention between jobs over time. Resource/time 

intervals where contention is the highest help identify the critical operation to be 

scheduled next {operation ordering heuristic). Reservations for that operation are 

then ranked according to their ability to minimize the costs incurred by the jobs 

contending for the critical resource {reservation ordering heuristic). By constantly 

redirecting its effort toward the most serious conflicts, the system is able to build 

schedules that are closer to the global optimum. Simultaneously, because the 

scheduling strategy is aimed at reducing job contention as rapidly as possible, 

chances of reaching deadend states tend to quickly subside too. 

The opportunism in Micro-Boss results from the ability of the system to constantly revise its 
search strategy and redirect its effort toward the scheduling of the operation that appears to be 
the most critical in the current search state. This degree of opportunism differs from the one 
displayed by earlier approaches where scheduling entities were large resource/job subproblems 
[Ow 88a, Collinot 88], i.e., where large resource/job subproblems had to be scheduled before 

the system could revise its scheduling strategy. 

Concretely, given a scheduling problem such as the one described in Figure 1, Micro-Boss 
starts in a search state in which no operation has been scheduled yet9, and proceeds according to 
the following steps: 

1. If all operations have been scheduled, then stop; else go on to 2. 

2. Apply the consistency enforcing procedure. 

alternatively, Micro-Boss can also complete a partial schedule, in which case the initial search state corresponds 
to the initial partial schedule. A description of reactive and interactive capabilities of the system is provided in 
Section 4. 
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3. If a deadend is detected then backtrack; else go on to 4. 

4. If one or more operations were found to have only one possible reservation left, 

then schedule these operations (creating a new search state for each one). If all 

operations have been scheduled, then stop; else go on to 5. 

5. Perform a look-ahead analysis: Rank the possible reservations of each 

unscheduled operation according to how well they minimize the costs of the job to 

which the operation belongs (step 1), and evaluate resource contention over time 

(step 2). 

6. Select the next operation to be scheduled (i.e., operation ordering heuristic). 

7. Select a reservation for that operation (i.e., reservation ordering heuristic). 

8. Create a new search state by adding the new reservation assignment to the current 

partial schedule. Go back to 1. 

As in other constraint-directed scheduling systems [LePape 87], the consistency enforcing 
procedure used in Micro-Boss (1) maintains for each unscheduled operation a pair of 
earliest/latest possible start times and (2) marks as unavailable those resource/time intervals 
allocated to already scheduled operations. Additionally, reservation pruning performed by the 
Micro-Boss consistency procedure also accounts for resource/time intervals that are absolutely 
needed by unscheduled operations. Figure 2 displays an example of an unscheduled operation 
O) whose earliest and latest possible reservations overlap. Whichever reservation this operation 
is ultimately assigned, it will always need time interval [1st), eft)]. Accordingly, the Micro-Boss 
consistency procedure prunes the set of remaining possible reservations of other unscheduled 
operations requiring that resource by removing all those reservations that overlap with time 
interval [faif, eft)]10. 

Results presented in this chapter were obtained using a simple chronological backtracking 
scheme. Experimentation with more sophisticated backtracking schemes is described in [Sadeh 

10This differs from an earlier version of the system [Sadeh 91b], in which resource/time intervals needed by 
unscheduled operations were only used to detect conflicts. In this earlier version, a conflict would be detected when 
two or more unscheduled operations needed overlapping resource/time intervals. Rather than waiting for such 
conflicts to arise, our new consistency procedure efficiently prevents such conflicts from occurring, thereby further 
reducing backtracking. A generalized version of this procedure is used for parallel machines. 
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est 1st eft lft? time 

W////////Ä      earliest possible reservation 

FSS^^S^      latest possible reservation 

absolutely needed interval 

Figure 2: An example of an unscheduled operation that absolutely needs 
a resource/time interval. 

92]. 

The remainder of this section gives a more detailed description of the look-ahead analysis and 
the operation/reservation ordering heuristics used in Micro-Boss. Further details on these 
techniques, as well as other aspects of the system, can be found in [Sadeh 91b]. 

2.3 Look-Ahead Analysis in Micro-Boss 

2.3.1 Optimizing Critical Conflicts First 
If all jobs could be scheduled optimally (i.e., just-in-time), there would be no scheduling 

problem. Generally, this is not the case. Jobs typically have conflicting resource requirements. 
The look-ahead analysis carried out by Micro-Boss in each search state aims at helping the 
scheduling system focus its effort on those conflicts that currently appear most critical. A 
critical conflict is one that will require an important trade-off, i.e., a trade-off that will 
significantly impact the quality of the entire schedule. By first focusing on critical conflicts, 
Micro-Boss ensures that it has as many options as possible to optimize these conflicts. As 
illustrated by a trace provided in the next section, once critical trade-offs have been worked out, 
the remaining unscheduled operations tend to become more decoupled and, hence, easier to 
optimize11. As contention subsides, so does the chance of needing to backtrack. In other words, 
by constantly redirecting search towards those trade-offs that appear most critical, Micro-Boss is 

'This is similar to the way bottleneck schedules drive other scheduling decisions in OPT. 
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expected to produce better schedules and simultaneously keep backtracking at a low level. 

More specifically, a two-step look-ahead procedure is applied to each search state. This 
procedure first optimizes reservation assignments within each job and then, for each resource, 
computes contention between jobs over time. The so-called demand profiles produced by these 

computations help identify operations whose good reservations (as identified in the first step) 

conflict with the good reservations of other operations. These operations define the critical 
conflicts on which Micro-Boss works first. 

This two-step look-ahead analysis is further detailed below. 

2.3.2 Step 1: Reservation Optimization within a Job 
In order to measure contention between the resource requirements of unscheduled operations, 

Micro-Boss keeps track of the best start times that remain available to each unscheduled 
operation within its job. Additionally, the system implicitly maintains, for each remaining 
possible start time x of each unscheduled operation Ot, a function mincost^x) that indicates the 
minimum additional costs that would be incurred by job jk (the job to which O) belongs), if 0\ 

were to start at st*=x rather than at one of its best possible start times. By definition, if s^=x is 

one of the best start times that remain available to 0* within its job, then mincostk
i(x)=0. Rather 

than explicitly maintaining mincost functions, Micro-Boss simply maintains for each 
unscheduled operation 0{ (1) an apparent marginal tardiness cost, app-tara~, that approximates 
the cost incurred by job jk for each unit of time that Ok starts past its latest best start time and (2) 

an apparent marginal inventory cost, app-inv\, that approximates the cost incurred by job jk for 

each unit of time that Ok starts before its earliest best start time. These costs are updated in each 
search state to account for earlier scheduling decisions, using a set of efficient propagation 
procedures described in [Sadeh 91b]. 

2.3.3 Step 2: Building Demand Profiles to Identify Critical Resource/Time Intervals 
In Micro-Boss, critical conflicts are identified as groups of operations whose good reservations 

(within their jobs) conflict with each other. The importance of a conflict depends on the number 
of operations that are competing for the same resource, the amount of temporal overlap between 
the requirements of these operations, the number of alternative reservations still available to each 
of these conflicting operations and their costs, as determined by the mincost functions computed 
in step 1. 

To identify critical conflicts, Micro-Boss uses a probabilistic framework in which each 
remaining possible start time x of an unscheduled operation 0{ is assigned a subjective 

probability oj(x) to be selected for that operation in the final schedule. Possible start times with 
lower mincost values are assigned a larger probability, thereby reflecting our expectation that 
they will yield better schedules. Given these start time probability distributions, the probability 
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that an unscheduled operation 0\ uses its resource12 at time t, which is referred to as the 
individual demand of 0( for Rt, is: 

D\{t)=      £       oi(t) (4) 
<-rfU;   <   T   <   t 

where JM' is the duration of 0\. D\{i) is also a (subjective) measure of the reliance of operation 
0\ on the availability of its resource at time t. By adding the individual demands of all 
unscheduled operations requiring a given resource, say Rk, the system obtains an aggregate 
demand profile, Da

R
88r(t), that indicates contention between (all) unscheduled operations for that 

resource Rk as a function of time: 

£>7'(0 = X D^t) (5) 

where the summation is carried over all unscheduled operations that need resource Rk. 

Start time distribution c^ (x) 
,C"   0.40 

'£ a 
■8 

0.30 

0.20. i 

0.10 

0.00 
10 12 13 14 15 

start time 

Figure 3: Start time distribution c^ (x) for operation 0\ in the initial search state 
for the problem defined in Figure 1. 

12For the sake of simplicity, we assume here that each operation requires a single resource for which there are no 
alternatives. The construction of demand profiles can easily be generalized to deal with parallel machines by 
building profiles for entire groups of machines and normalizing them based on their remaining available capacities 
over time. 
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Figure 3 displays a\ (t), the start time distribution of operation 0\ in the problem defined in 
Figure 1. This start time distribution is depicted in the initial search state, where all operations 
still have to be scheduled. In this search state, start time st\ = 9 is the best possible start time for 

9 

02: it corresponds to a just-in-time schedule of job;2- Later start times have a lower subjective 

probability because they would force the job to finish after its due date. Earlier start times are 
also suboptimal because they would produce additional inventory. In this example, the marginal 
tardiness cost of job j2, tard2 = 20, is four times larger than the marginal inventory cost 

introduced by operation 0\, inv\=5. Accordingly, G^(T) decreases faster for x > 9 than for T < 9. 

Figure 4 displays the individual demand profiles of the four operations requiring resource R2. 
These demand profiles represent the subjective probability that each one of these operations uses 
resource R2 as a function of time. The aggregate demand for resource R2 is obtained by summing 

these four individual demands over time. The individual demands of operations o\ and 0\ are 
quite uniform because these two operations have relatively low apparent marginal costs (see the 
marginal tardiness and inventory costs of joby3 and job j4 in Table 1). In contrast, operations 0\ 

and 02, which have larger apparent marginal costs, have individual demands that are 
concentrated around their best reservations. 

Similar computations can be performed for each of the five resources in the problem. The 
resulting aggregate demands (in the initial search state) are displayed in Figure 5. As expected, 
resource R2 appears to be the most contended for. The aggregate demand for that resource is well 
above 1.0 over a large time interval, with a peak at 1.79. Resource R[ appears to be a potential 
bottleneck at the beginning of the problem, with a demand peaking at 1.52. Whether R\ will 
actually be an auxiliary bottleneck or not cannot be determined directly from the curves 
displayed in Figure 5. Instead, the system needs to update these curves in each search state to 
account for earlier decisions. It could be the case that as operations requiring R2 are scheduled, 
the aggregate demand for /?[ becomes smoother. In this example, this is not the case. On the 
contrary, as operations are scheduled on resource R2, some operations on resource /?, end up 
with only one possible reservation and need to be immediately scheduled, as indicated by the 
trace provided in Section 4. 

2.4 Operation Selection 
Critical operations are identified as operations whose good reservations (as identified in the 

first step of the look-ahead analysis) conflict with the good reservations of other operations. The 
largest peak in the aggregate demand profiles determines the next conflict (or micro-bottleneck) 
to be optimized; the operation with the largest reliance on the availability of the corresponding 
resource/time interval (i.e., the operation with the largest individual contribution to the peak) is 
selected to be scheduled next. Indeed, this operation is the one whose good reservations are the 
most likely to become unavailable if other operations contending for the current micro- 
bottleneck were scheduled first. 
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In the example introduced earlier, the largest demand peak is the one for resource R2 over 
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interval [4,8[. Figure 6 displays the aggregate demand for resource R2 together with the 
individual demands of the four operations requiring this resource. The operation with the largest 
contribution to the demand peak is 0\. Therefore this operation is selected to be scheduled next. 
This is no real surprise: 0\ belongs to one of the two jobs in the problem that have a high 
marginal tardiness cost (tard\ = 20). While any delay in starting job ;'| will result in large 

tardiness costs, job j3 (i.e., the job with the next highest contribution) can tolerate a small delay 
and is subject to lower tardiness penalties. 

The computation of demand profiles, as described in 2.3.3 can be quite expensive when 
performed for each resource in each search state over the entire scheduling horizon. Micro-Boss 
can avoid this problem by incrementally maintaining a set of rough demand profiles for each 
resource (or group of identical resources). These rough demand profiles use a much coarser time 
granularity and are obtained by splitting the demand of each unscheduled operation into two 
components. One component (50% of the operation's total demand in the current implementation 
13) is evenly spread between the start and end times of the latest best reservation of the operation 
while the second component (the remaining 50% of the operation's demand) is evenly spread 
between the earliest start time and latest finish time of the operation. Rough demand profiles can 
be quickly updated as the system moves from one search state to the next and are used in each 
search state to identify a small number of critical resource/time intervals over which the more 
detailed demand profiles described in 2.3.3 are then constructed. 

2.5 Reservation Selection 
To schedule the critical operation identified in 2.4, the system attempts to identify a 

reservation (for the critical operation) that will reduce as much as possible the costs incurred by 
the job to which that operation belongs and the other jobs with which that operation competes. 
This is approximated as a single-machine or parallel-machine early/tardy scheduling problem in 
which operations scheduled past their best start times incur penalties determined by their 
apparent marginal tardiness costs, while operations scheduled before their best start times incur 
earliness penalties, as determined by their apparent marginal inventory costs [Baker 90, Sadeh 
91b]. For problems without setups, several variations of a single-machine early/tardy procedure 
developed by Ow and Morton [Ow 89, Sadeh 91b] are successively run and the single-machine 
schedule with the lowest cost is used to determine the reservation assigned to the critical 
operation. More recently, a new scheduling heuristic has also been developed to solve problems 
with setups [Li&Sadeh 93]. This heuristic is further described below along with experimental 
results comparing it with Ow and Morton's heuristic. 

Briefly, our heuristic for problems with setups opportunistically selects between two simpler 
techniques: 

13' The total demand of an operation is equal to its duration. 
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• A clustering technique that identifies clusters of early(tardy) jobs and resequences 
them using variations of the Weighted Longest (Shortest) Processing Time dispatch 
rule; 

• A two-parameter technique ("ET-2") that generalizes the priority dispatch rule 
developed by Ow&Morton for the problem without setups [Ow 89]. 

Our heuristic opportunistically selects between ET-2 and the clustering heuristic (based on the 
tightness of the problem at hand) to generate an initial schedule, which is then refined using a 
neighbordhood search procedure and an optimal idle time insertion procedure [Li&Sadeh 93]. 

To evaluate the performance of this heuristic, a set of 1920 problems was generated by 
adjusting the following 6 parameters: 

• Two different product mixes (with 3 product families each) 

• Early/tardy cost ratios: 0.05, 0.1, 0.25, 0.5, 1.0 and 5.0 

• Tardiness Factor (tight vs. loose due dates) 

• Due date ranges (wide vs. narrow) 

• Setup severity (average value of setup time divided by processing time): low and 
high 

• Problem sizes: 9-job problems and 50-job problems 

By combining the different values of these 6 parameters, a total of 192 problem sets was 
generated. Ten problems were randomly generated within each set. 

The smaller 9-job problems were used to see how far our heuristic is from the optimum: on 
these smaller problems, it is possible to find an optimal solution, using a simple branch-and- 
bound procedure (this is not possible on larger problems, as the procedure would take for ever). 
Figure 7 and 8 depict the average deviation of the solutions produced by our heuristic from the 
optimum. We see that on low tardy factor problems (loose due dates), our heuristic is within 
11.62% of the optimum. On high tardy factor problems, the results are even better: our heuristic 
is consistently within 10% of the optimum and, on average,it is within 4.77% of the optimum. 
Figure 9 further indicates that, compared to the one-parameter developed by Ow and Morton, our 
heuristic reduces schedule cost by an average of 30.61%. 
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Figure 9: Improvement over one-parameter early/tardy heuristic. 

3 A Small Example 
Micro-Boss is implemented in C++ with an X™/Motif™ interface. The small example used 

throughout this chapter requires less than 0.1 CPU seconds on a DECstation™ 5000/200 
running under UNIX™14. An edited trace of this example is given in Figure 10. 

In this example, the scheduling procedure first focuses on the scheduling of the main 
bottleneck resource, R2- However, as it schedules operations on this resource, the system can 
also jump to other resources and consolidate the schedule by allocating reservations to critical 
operations requiring these other resources. In this small example where operations have a small 
number of possible reservations, this is mainly accomplished through the identification of 
operations that have only one possible reservation left (e.g. the scheduling of 0\ or Ö\). In 

l4X Window System is a registered trademark of the Massachusetts Institute of Technology. Motif is a registered 
trademark of the Open Software Foundation, Inc. UNIX is a registered trademark of UNIX Systems Laboratories, 
Inc. DECstation is a registered trademark of the Digital Equipment Corporation. 
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general, this can be done based on the contention analysis performed by Micro-Boss (e.g., the 
identification of a critical conflict on resource i?4 at depth 6). As a result, the system jumps back 
and forth between several resources, always trying to focus on what appears to be the most 
critical decision. 

The average expected demand displayed in each search state is the average demand for the 
critical demand peak, and the average contribution is the percentage of the total demand for the 
peak that comes from the critical operation. When search starts, contention is relatively high, as 
illustrated by the average expected demand for the critical peak (1.58 at depth 0, 1.73 at depth 2 
and 1.50 at depth 4) and the relatively low contribution of the critical operation to the demand 
for the peak (e.g., 0\ contributes only 63% of the total demand for the peak in the initial search 
state, 02 57% at depth 2, etc.) indicating that the resource requirements of the critical operation 
compete with those of several other operations. During construction of the schedule, the average 
demand for the critical peak progressively decreases15 and the critical operation progressively 
contributes a larger percentage of the demand for the critical peak. This indicates that contention 
between unscheduled operations decreases. After half of the operations have been scheduled 
(depth 7), contention has totally disappeared: the critical operation is the only one to contribute 
to the demand for the peak. The resource requirements of the operations that still need to be 
scheduled no longer compete with each other. This is not particular to this example: the same 
has been observed on all the problems we have run and suggests that the operation ordering 
heuristic implemented in Micro-Boss is indeed very effective at redirecting search towards the 
most serious conflicts. 

Notice also that no backtracking was necessary to schedule this problem. The resulting 
schedule is displayed in Figure 11. 

15Remember that the demand peak corresponds to the interval of highest contention in the current search state. 
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>> Depth: 0, Number of states visited: 0 
Critical demand peak: 
R2  between 4 and 8, Avg. expected demand: 1.58 

Critical Operation: 02,  Avg. contrib.: 63% 

02  is scheduled between 2 and 8 on R2 

»  Depth: 1, Number of states visited: 1 
0, has only one possible reservation left 
and is scheduled between 0 and 2 on /?, 

>> Depth: 2, Number of states visited: 2 
Critical demand peak: 
R2  between 10 and 14, Avg. expected demand: 1.73 

2 
Critical Operation: 02,   Avg. contrib.: 57% 
2 

02  is scheduled between 9 and 14 on R2 

»  Depth: 3, Number of states visited: 3 
2 

O, has only one possible reservation left 
and is scheduled between 2 and 9 on /?( 

>> Depth: 4, Number of states visited: 4 
Critical demand peak: 
R2  between 14 and 18, Avg. expected demand: 1.50 

4 
Critical Operation: 02,   Avg. contrib.: 50% 
4 

02 is scheduled between 14 and 17 on R2 

»  Depth: 5, Number of states visited: 5 
3 

03 has only one possible reservation left 
and is scheduled between 17 and 20 on R2 

>>  Depth: 6, Number of states visited: 6 
Critical demand peak: 
R4  between 10 and 12, Avg. expected demand: 1.12 

Critical Operation: Os,   Avg. contrib.: 73% 

Os  is scheduled between 10 and 12 on R4 

»  Depth: 7, Number of states visited: 7 
04 has only one possible reservation left 
and is scheduled between 8 and 10 on R-, 

Figure 10: An edited trace 
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>> Depth: 8, Number of states visited: 8 
Critical demand peak: 
R~  between 5 and 8, Avg. expected demand: 0.95 

Critical Operation: 03, Avg. contrib. 

03 is scheduled between 5 and 8 on R5 

100% 

>> Depth: 9, Number of states visited: 9 
Critical demand peak: 
R4  between 7 and 9, Avg. expected demand: 0.96 

4 
Critical Operation: 0,, Avg. contrib.: 100% 

Oj is scheduled between 7 and 10 on R4 

»  Depth: 10, Number of states visited: 10 
Critical demand peak: 
R]  between 14 and 17, Avg. expected demand: 0.65 

3 
Critical Operation: O-,,  Avg. contrib 100% 
J 0-,  is scheduled between 15 and 17 on /?, 

>> Depth: 11, Number of states visited: 11 
Critical demand peak: 
R-,  between 13 and 15, Avg. expected demand: 0.52 

Critical Operation: O,, Avg. contrib. 

O, scheduled between 14 and 15 on R 

100% 

3 

>> Depth: 12, Number of states visited: 12 
Schedule Completed 
Total Cost: 180 
Total Tardiness Cost: 55 
Total Inventory Cost: 125 
Avg. Weighted Tardiness: 1.0 
Avg. Weighted Flowtime (WIP): 10.33 
Avg. Weighted Inventory (Flowtime + Earliness) 
CPU time: 0.067 seconds 

10.42 

Figure 10, concluded 
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Figure 11: Gantt chart of the final schedule produced by Micro-Boss. 
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4 Reactive and Interactive Scheduling in Micro-Boss 
Manufacturing is a process often fraught with contingencies and subject to a multitude of 

constraints and preferences that are not always easily amenable to representation in a computer 
model. 

Operation durations tend to vary, machines break down, raw materials fail to arrive on time, 
new customer orders arrive, others get cancelled, etc. Many ad hoc constraints and preferences 
that vary over time, such as the preference of a worker on a specific day to perform more 
demanding tasks in the morning, might be best accounted for via interactive manipulation of the 
schedule. This section briefly outlines reactive and interactive scheduling capabilities currently 
under development in the Micro-Boss decision support system. 

4.1 Reactive Scheduling and Control Issues 
Small disruptions such as minor deviations in operation durations often do not warrant major 

modifications of the schedule. However, as the impact of small disruptions accumulate or as 
more severe disruptions occur, such as long machine breakdowns, it is sometimes desirable to 
reoptimize the schedule from a more global perspective. Accordingly, in Micro-Boss, schedule 
disruptions can be handled at two levels based on their severity and the required response time: 

1. Control level: Small disruptions that require fast responses are handled by simple 
control heuristics such as "process the operation with the earliest scheduled start 
time first", or, "when a machine is down, reroute critical jobs to equivalent 
machines, if any". 

2. Scheduling level: In the face of more severe deviations from the schedule, the 
control level calls upon the Micro-Boss scheduling module to repair/reoptimize the 
schedule from a more global perspective, while possibly continuing to attend to 
immediate decisions. 

Determining when disruptions should be handed over to the scheduling level can be tricky. 
Decisions at the control level tend to be rather fast as they are based on local heuristics with a 
very restricted view of the problem. Decisions at the scheduling level tend to produce better 
repairs but take longer as they are based on more global considerations. There is generally a 
tradeoff between the responsiveness of the overall system and the amount of reoptimization that 
can be performed. In manufacturing environments where disruptions are very frequent, a large 
number of disruptions may need to be handled at the control level, whereas, in less chaotic 
environments, a larger proportion of disruptions may be processed at the scheduling level. A 
similar two-tier approach to handling schedule disruptions was first proposed by Smith et al. 
[Smith 90a]. Within this approach, the scheduling level restricts the set of alternatives to be 

considered at the control level by imposing a legal temporal window of execution on each 
operation. If the controller cannot respect an operation's window of execution, it has to request a 
new schedule (and a new set of execution windows) from the scheduler. One objective of 
ongoing research in reactive scheduling and control within Micro-Boss aims at assessing the 
merits of different coordination regimes between the scheduling and control levels. 
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Schedule repair in Micro-Boss differs from recent approaches that emphasized the use of 
iterative repair heuristics [Smith 90b, Minton 90, Zweben 91]. In the process of resolving 
schedule conflicts, iterative repair heuristics are allowed to introduce new conflicts, which in 
turn need to be repaired. This iterative behavior may sometimes lead to myopic decisions and 

can potentially become expensive. In contrast to these approaches, schedule repair in Micro- 
Boss attempts to take a more global view of the problem and capitalize on the strengths of the 
micro-opportunistic search procedures in the system. Concretely, schedule repair in Micro-Boss 
is performed in two steps: (1) a set of operations that need to be rescheduled is identified using a 
so-called conflict propagation procedure and all the operations in this set are unscheduled, (2) the 
scheduling problem consisting of all these unscheduled operations and the constraints imposed 
on these operations by operations that have already been executed or have not been unscheduled 
is passed to the micro-opportunistic scheduling module described in the previous sections. The 
set of operations unscheduled in the first phase is selected in such a way that the resulting 
scheduling problem (i.e. the one solved in phase (2)) generally admits a solution. In the event 
that a feasible schedule cannot be built in phase (2), the system needs to return to phase (1) and 
undo a larger number of operations. In practice, this situation can generally be avoided, as 
explaine in the next subsection. For particularly severe schedule disruptions such as the 
breakdown of a bottleneck machine over a long time period, we are also considering 
rescheduling techniques that subdivide the scheduling horizon and only reschedule those 
operations that are expected to fall within the near future while overlooking conflicts with 
operations whose execution is expected to take place later. 

4.2 An Initial Set of Conflict Propagation Techniques 
In this subsection, we summarize initial experiments with different conflict propagation 

heuristics used to determine which operations to reschedule in order to recover from constraint 
violations introduced in the schedule by contingencies such as machine breakdowns or variations 
in operation processing times. 

Ideally, a good conflict propagation procedure should (1) minimize the number of operations 
to be rescheduled (to maximize system responsiveness and minimize schedule disruptions) and 
(2) identify a set of operations which, when rescheduled, will (a) be sufficient to restore schedule 
integrity (i.e. eliminate all constraint violations) and (b) maximize schedule quality. Clearly these 
objectives are not always compatible. Procedures that reschedule more operations are likely to 
yield better schedules but may also lead to less responsive and more disruptive behaviors. 

Figure 12 displays a simple reactive heuristic, which, given a conflict, simply bumps 
operations forward in time until schedule integrity is restored. This reactive procedure is 
sometimes refered to as a Right Shifting (RSh) heuristic [Ow 88b] and is always sufficient to 
restore schedule integrity. Clearly, this procedure can be quite inefficient, as it does not 
resequence operations but simply bumps them. Rather than actually bumping operations, a 
simple conflict propagation heuristic involves unscheduling all the operations that would be 
bumped by RSh.    These unscheduled operations can then be rescheduled using the micro- 
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Figure 12: Simple "Right Shifting" Conflict Propagation Procedure 

opportunistic procedures described in Section 3, thereby taking advantage of possible 
resequencing opportunities. Below we refer to this elementary conflict propagation technique as 
a right shifting conflict propagation procedure and denote by React(RSh) the reactive procedure 
that micro-opportunistically reschedules the operations identified by this conflict propagation 
procedure. 
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Figure 13: "Right Shifting and Jumping" Conflict Propagation Procedure 

A slightly more sophisticated reactive heuristic first described in [Ow 88b] involves bumping 
operations forward in time, while jumping over some operations that do not need to be moved, as 
illustrated in Figure 13. We refer to the immediate implementation of this reactive procedure as 
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"Right Shifting and Jumping" (RShJ). Additionally, denote by React(RShJ) the procedure that 
involves (1) using RShJ as a conflict propagation procedure and (2) micro-opportunistically 
rescheduling the operations identified by this conflict propagation procedure. Like RSh, RShJ is 
sufficient to guarantee restoration of schedule integrity and is less disruptive than RSh. Similarly 

React(RShJ) is less disruptive than React(RSh). However, due to the smaller number of 
operations it micro-opportunistically reschedules, React(RShJ) can be expected to sometimes 
produce schedules that are not as good as those obtained with React(RSh) (See also experiments 
reported below).    Several procedures can be devised to improve the quality of schedules 
produced by React(RShJ). Below we report initial experiments with two such procedures: 

1.    React(RShJ+Job)  first  unschedules  the  operations  that  would  normally  be 
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Time 

Right Shifting 
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Operations to be rescheduled based on Right Shifting and 
Jumping propagation 

** Additional job-critical operations to be rescheduled 

Figure 14: Unscheduling additional job-critical operations. 

unscheduled using React(RShJ) then selectively unschedules additional job-critical 
operations using the following two heuristics (See also Figure 14): 

a. Heuristic 1: If the next to last operation in a job has been unscheduled, then 
also unschedule the last operation in that job. The intuition here is that the 
last operation in a job is particularly critical as it determines the completion 
date of the job (and hence its tardiness or earliness). By also unscheduling 
the job's last operation, this heuristic gives more room to the micro- 
opportunistic procedure to find a good schedule. 

b. Heuristic 2: If the second operation in a job has been unscheduled, then 
also unschedule the first operation. Again the idea here is to give more 
room to the micro-opportunistic procedure, in this case by unscheduling the 
operation that determines the job's release date (i.e. an operation that 
critically impacts inventory costs). 
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2. React(RShJ+Job+Int): In addition to rescheduling the operations unscheduled by 
React(RShJ+Job), this procedure selectively unschedules additional operations in 
jobs and on resources. In the experiments reported below, the following two 
heuristics were used: 

a. Heuristic 1: If two operations surrounding an operation O on a resource R 
have both been unscheduled, then also unschedule operation O. 

b. Heuristic 2: If the two operations surrounding an operation O in a job J 
have both been unscheduled, then also unschedule operation O. 

4.3 Interactive Scheduling with Micro-Boss 
Although the combinatorial complexity of factory scheduling problems is best handled by 

automatic scheduling procedures such as the ones described earlier in this chapter, ad hoc 
scheduling constraints and preferences that occur very infrequently or change over time are often 
best accounted for through interactive manipulation of the schedule. Interactive user support 
should also include mechanisms that help the user identify sources of inefficiency in the 
schedule (e.g., tardy orders, overloaded resources, etc.) and ways of correcting these 
inefficiencies (e.g., adding overtime on a set of resources, rerouting some orders, etc.). Through 
interaction with the system, the user should be able to explore "what-if' scenarios and weigh 
different alternatives (e.g., decide whether to complete some jobs past their due dates or work 
overtime). 

The Micro-Boss decision support system enables the end-user to interleave both manual and 
automatic (micro-opportunistic) scheduling decisions, analyze, edit, save, and compare complete 
and partial schedules. 

Interactive schedule manipulation is performed using an interactive Gantt chart that displays 
each resource along with the operations to which that resource has been allocated over time 
(Figure 15). Schedule manipulation is performed under the supervision of the Micro-Boss 
consistency enforcing module, which enforces consistency with earlier scheduling decisions 
(manual and automatic). Partial or complete schedules can be saved and compared against each 
other along different metrics, including total schedule cost, average weighted tardiness, average 
weighted earliness, Work-In-Process and Work-in-System (which accounts for both Work-In- 
Process inventory and finished goods inventory). Optimistic estimates are used for partial 
schedules for which these metrics cannot be computed exactly. By interleaving both manual and 
automatic scheduling decisions and saving/restoring partial and complete schedules, the user can 
compare the impact of alternative scheduling decisions and perform "what-if" analyses. 

Figure 15 shows a typical view of the Micro-Boss user interface. In this example, the user is 
getting ready to modify the working schedule displayed in the Gantt chart, by manually 
unscheduling an operation on which he/she just clicked. Statistics for the working schedule are 
compared with statistics for the "current" schedule, namely, the schedule currently in force in the 
system. These statistics are continuously updated as the user edits the schedule.   In another 
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Figure 15: The Micro-Boss user interface allows for interactive manipulation 
of schedules. By interleaving both manual and automatic scheduling 

decisions, saving and comparing alternative schedules, the user can easily 
assess different trade-offs and locally impose ad hoc constraints or 

preferences that are not easily amenable to representation in the computer 
model. 

window, the user can check information about specific orders {order! in this example). In yet 
another window, he/she has elected to rank orders based on their tardiness in the working 
schedule. Alternative metrics to rank jobs or resources can be selected in the statistics menu 
(e.g., cost, tardiness, flowtime, resource utilization, etc.). By clicking on boxes displayed in the 
Gantt chart, the user can directly obtain information on specific operations (e.g., information on 
operation milling31), manually unschedule and reschedule operations (by moving the 
corresponding box in the Gantt chart), unschedule jobs, or highlight a job by changing its color. 
The Gantt menu also allows for zooming in and out of the Gantt chart, unscheduling specific 
resource/time intervals, displaying contention measures over time for different resources, etc. 
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5 Performance Evaluation 
Experimental studies performed with an initial version of Micro-Boss implemented using 

Knowledge Craft™ were reported in [Sadeh 91b]. These experiments studied the performance 
of the system under a variety of scheduling conditions and different cost assumptions16. They 
included comparisons with combinations of popular priority dispatch rules and release policies 
advocated in the Operations Research literature, comparisons with coarser bottleneck-centered 
approaches to scheduling described in the Artificial Intelligence literature and a comparison with 
a variation of Micro-Boss in which resource contention was measured using unbiased demand 
profiles. 

In this chapter, we first report the results of a similar study performed on the same set of 
scheduling problems with a more recent version of the system written in C++. Additionally, we 
also report experiments evaluating the effectiveness of new bottleneck optimization heuristics 
developed for problems with setups and report experiments in reactive scheduling 

At the present time (January 1994), the new version of Micro-Boss is two orders of magnitude 
faster than the version described in [Sadeh 91b] on this set of problems, mainly because of the 
C++ reimplementation and the use of rough demand profiles to identify small areas of high 
contention over which more detailed profiles are then constructed (see section 2.4). The new 
system also uses a more powerful consistency enforcing procedure (See Subsection 2.2) than the 
original version, which almost eliminates the need for backtracking on the experiments reported 
in this chapter. Finally, the new system also produces schedules that are significantly better than 
those obtained with the earlier version. This improvement in schedule quality is mainly 
attributed to the use of a more accurate set of propagation heuristics to update the best remaining 
start time(s) of unscheduled operations during construction of the schedule and the use of a 
stronger bias in the construction of demand profiles. 

The results reported below were obtained on a suite of 80 scheduling problems. The suite, 
which is described in detail in [Sadeh 91b], consists of eight sets of scheduling problems 
obtained by adjusting three parameters to cover a wide range of scheduling conditions. The 
three parameters are the following: an average due date parameter (tight versus loose average 
due date), a due date range parameter (narrow versus wide range of due dates), and a parameter 
controlling the number of major bottlenecks (in this case one or two). For each parameter 
combination, a set of 10 scheduling problems was randomly generated (see Table 2), thereby 
resulting in a total of 80 scheduling problems (10 problems x 2 average due date values x 2 due 
date ranges x 2 bottleneck configurations). Each problem requires scheduling 20 jobs on 5 
resources for a total of 100 operations. Marginal tardiness costs in these problems were set to be, 
on the average, five times larger than marginal inventory costs to model a situation where 

l6Knowledge Craft is a registered trademark of Carnegie Group. 
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Problem Sets 

Problem 
Set 

Number of 
Bottlenecks 

Avg. 
Due Date 

Due Date 
Range 

1 1 loose wide 

2 1 loose narrow 

3 1 tight wide 

4 1 tight narrow 

5 2 loose wide 

6 2 loose narrow 

7 2 tight wide 

8 2 tight narrow 

Table 2: Characteristics of the eight problem sets, 

tardiness costs dominate but inventory costs are non-negligible17. 

Micro-Boss required between 10 and 15 CPU seconds to schedule each problem on a 
DECstation™ 5000/200. Nearly all problems were solved without any backtracking. 

5.1 Comparison Against Combinations of Priority Dispatch Rules and Release 
Policies. 

In a first set of experiments, Micro-Boss was compared with the best of a set of 39 
combinations of popular priority dispatch rules and release policies. The priority dispatch rules 
used in these experiments were of two types: 

1. a set of five priority dispatch rules that have been reported to be particularly good 

at reducing tardiness under various scheduling conditions [Vepsalainen 87]: the 

Weighted Shortest Processing Time (WSPT) rule; the Earliest Due Date (EDD) 

rule; the Slack per Remaining Processing Time (S/RPT) rule; and two parametric 

rules, the Weighted Cost OVER Time (WCOVERT) rule and the Apparent 

Tardiness Cost (ATC) rule. 

2. an exponential version of the parametric early/tardy dispatch rule recently 

developed by Ow and Morton [Ow 89, Morton 88] and referred to below as EXP- 

ET. This rule differs from the other five in that it can explicitly account for both 

''Experiments under different cost assumptions were also reported in [Sadeh 91b]. 
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Figure 16: Comparison of Micro-Boss and the best of 39 combinations of priority 
dispatch rules and release policies under 8 different scheduling 
conditions (10 problems were generated under each condition). 

tardiness and inventory costs. 

EXP-ET was successively run in combination with an immediate release policy (IM-REL) that 
allows each job to be released immediately and with an intrinsic release policy that only releases 
jobs when their priorities become positive, as suggested in [Morton 88]. The other five dispatch 
rules were successively run in combination with two release policies: an immediate release 
policy (IM-REL) and the Average Queue Time release policy (AQT) described in [Morton 88]. 
AQT is a parametric release policy that estimates queuing time as a multiple of the average job 
duration (the look-ahead parameter serving as the multiple). A job's release date is determined 
by offsetting the job's due date by the sum of its total duration and its estimated queuing time. 
Combinations of release policies and dispatch rules with a look-ahead parameter were 
successively run with four different parameter values that generally appeared to produce the best 
schedules. By combining these different dispatch rules, release policies, and parameter settings a 
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total of 39 heuristics18 was obtained. On each problem, the best of the 39 schedules produced by 
these heuristics was compared with the schedule obtained by Micro-Boss. Among the 39 
scheduling heuristics (i.e., excluding Micro-Boss), each of the 6 dispatch rules (WSPT, EDD, 
S/RPT, WCOVERT, ATC and EXP-ET) and each of the 3 release policies (IM-REL, AQT and 

EXP-ET's intrinsic release policy) performed best on at least one problem out of the 80 and 12 
combinations out of the 39 performed best on at least 1 problem. 

Figure 16 compares the average cost of the schedules produced by Micro-Boss with the 
average cost obtained by the best of the 39 combinations of dispatch rules and release policies on 
each problem set. Schedule cost was computed as the sum of tardiness and inventory costs, as 
specified in Equation (3). The results indicate that Micro-Boss consistently outperformed the 
combination of 39 heuristics under all eight conditions of the study. Overall Micro-Boss yielded 
reductions of 20% in schedule cost over the 39 heuristics. A more detailed analysis indicates that 
this reduction in schedule cost corresponds to a reduction of about 20% in tardiness costs and 
about 23% in inventory costs (combined work-in-process and finished goods inventory costs). 

5.2 Comparison Against Coarser Opportunistic Scheduling Procedures 
Micro-Boss was also compared with several coarser opportunistic schedulers that dynamically 

combine a resource-centered perspective and a job-centered perspective, such as in the OPIS 
scheduling system [Ow 88a]. Although OPIS relies on a set of repair heuristics to recover from 
inconsistencies [Ow 88b], the macro-opportunistic schedulers of this study were built to use the 
same consistency enforcing techniques and the same backtracking scheme as Micro-Boss19. The 
macro-opportunistic schedulers also used the same demand profiles as Micro-Boss. When 
average demand for the most critical resource/time interval was above some threshold level (a 
parameter of the system that was empirically adjusted), the macro-opportunistic scheduler 
focused on scheduling the operations requiring that resource/time interval; otherwise, it used a 
job-centered perspective to identify a critical job and schedule some or all of the operations in 
that job. Each time a resource/time interval or a portion of a job was scheduled, new demand 
profiles were computed to decide which scheduling perspective to use next. 

18The 39 combinations were as follows: EXP-ET and its intrinsic release policy (times four parameter settings), 
EXP-ET/IM-REL (times four parameter settings), EDD/AQT (times four parameter settings), EDD/IM-REL, 
WSPT/AQT (times four parameter settings), WSPT/IM-REL, S/RPT/AQT (times four parameter settings), 
S/RPT/IM-REL, WCOVERT/IM-REL (times four parameter settings), WCOVERT/AQT (times four parameter 
settings), ATC/IM-REL (times four parameter settings), and ATC/AQT (times four parameter settings). 

An alternative would have been to implement a variation of Micro-Boss using the same repair heuristics as 
OPIS. Besides being time-consuming to implement, such a comparison would have been affected by the quality of 
the specific repair heuristics currently implemented in the OPIS scheduler. 
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Figure 17: Comparison of Micro-Boss and two coarser opportunistic schedulers. 

Figure 17 summarizes the results of a comparison between Micro-Boss20 and two macro- 
opportunistic schedulers that differed in the number of operations that they were allowed to 
schedule at once in their resource-centered perspective (referred to below as the granularity of 
the scheduler). The macro-opportunistic scheduler with granularity 4 was allowed to schedule as 
many as 4 operations in its resource-centered perspective, after which it had to compute new 
demand profiles and decide which subproblem (job-centered or resource-centered) to focus on 
next. The macro-opportunistic scheduler with granularity 8 was allowed to schedule at once as 
many as 8 operations in its resource-centered perspective. The results in Figure 17 indicate not 
only that Micro-Boss consistently produced better schedules than the two macro-opportunistic 
schedulers but also that schedule performance degraded as the granularity of the macro- 
opportunistic scheduler was increased, namely, as the search procedure became less flexible. 
More detailed performance measures not presented here indicate that the reductions in schedule 
cost achieved by Micro-Boss correspond to reductions in both tardiness and inventory costs. 

Overall, these results strongly suggest that the additional flexibility of a micro-opportunistic 
scheduling procedure over coarser opportunistic procedures generally yields important 
improvements in schedule quality. 

20These experiments as well as the ones presented in the next subsection were performed in 1993 with an earlier 
version of Micro-Boss than the one used in the comparison with dispatch rules. 
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5.3 Evaluating the Impact of Using Biased Demand Profiles 
A third set of experiments was carried out to test the effect of using biased demand profiles to 

guide the micro-opportunistic scheduler. A variation of Micro-Boss using unbiased demand 
profiles was run on the same set of 80 scheduling problems. 

16000 -/i 

Ö    12000 
O 

3    10000 -S' 

Micro-Boss (biased version) ■ Unbiased version 

Figure 18: Comparison of the cost of the schedules produced by Micro-Boss 
and a variation of the system that used unbiased demand profiles. 

Figure 18 compares the average schedule costs obtained by both variations of Micro-Boss. In 
7 out of the 8 scheduling situations of the study, biasing the demand profiles produced reductions 
in schedule cost ranging from 3 to 22 percent, including an impressive 20 percent in the most 
difficult scheduling situation (Problem Set 8 with two bottlenecks, a tight average due date and a 
narrow range of due dates). In the one case (out of eight) where the unbiased version produced 
better schedules, the biased version was only 5% worse. A more detailed analysis of the results 
indicates that overall, the biased version of Micro-Boss performed 30% better with respect to 
tardiness while incurring a slight increase of 0.6% in inventory costs. Altogether, biasing the 
demand profiles reduced schedule costs by more than 15%. These results validate both the idea 
of building biased demand profiles to guide the micro-opportunistic search procedure and the 
particular technique used in Micro-Boss to operationalize this idea (namely, the use of the 
mincost functions). In general, it should be possible to obtain even better results by varying the 
bias according to specific problem characteristics. One could also consider fine-tuning the bias 
during the construction of the schedule. 
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5.4 Evalutation of the Micro-Boss Bottleneck Optimization Heuristics for Problems 
with Setups 

5.5 Reactive Scheduling Experiments 
Table 3 summarizes the results of experiments conducted with the reactive heuristics described 

earlier in this chapter and a a procedure that systematically reschedules all available operations 
(i.e. all operations that had not yet been started at the time of the contingency considered in each 
problem). 

A total of 40 reactive problems were generated similar to the problems used for the 
experiments reported in Section 4. For each problem, a single machine breakdown was 
randomly generated in such a way that it conflicted with the schedule of at least one operation. 
Breakdowns were generated both on bottleneck and non-bottleneck machines. Performance is 
reported along the following dimensions: 

• Normalized Cost: a normalized measure of the average schedule cost obtained with 
each technique; 

• Tardiness: the average weighted tardiness of the schedules produced by each 
technique; 

• WIS: the average work-in-system inventory of the schedules produced by each 
technique, as defined in [Sadeh 91b]. This is a measure that accounts for both work- 
in-process and finished-goods inventories. 

• Nb. op. resched: the average number of operations rescheduled by each technique. 

Method 
Normalized 

Cost Tardiness WIS 
Nb. op. 
resched. 

Total Rescheduling 1.06 12.4 61.2 52.3 

RSh 1.23 15.3 62.8 34.4 

RShJ 1.20 14.6 63.0 32.5 

React(RSh) 1.13 13.1 63.5 34.4 

React(RShJ) 1.16 13.5 64.3 32.5 

React(RShJ + Job) 1.12 13.0 62.8 34.3 

React(RShJ + Job + Int) 1.09 12.8 62.2 35.7 

Table 3: Comparison of Seven Reactive Scheduling Procedures. 

As expected, the results indicate that the worst schedules (highest cost) were produced by RSh 
and the best ones by the total rescheduling procedure. The total rescheduling procedure was also 
the most disruptive one (over 52 operations rescheduled on the average) and took the most time. 
The right shifting procedure on the other hand was generally the fastest one, requiring an average 
of 3 CPU seconds in these experiments. More interestingly, the results indicate that 
React(RShJ+Job+Int) produced schedules almost as good as those obtained with the the total 
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rescheduling procedure and did so while rescheduling significantly fewer operations. In these 
experiments, React(RShJ+Job+Int) required about 9 CPU seconds on the average, only 3 times 
as much as the simplest procedure, RSh. 
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6 Concluding Remarks 
Current computer solutions to production management such as the one implemented in 

MRP/MRP-II systems are of limited help, because they rely on oversimplified models of the 
plant and only provide weak feedback loops to update the production schedule during execution 
(typically, complete updates of the schedule are only performed on a weekly basis). A major 
challenge for researchers in production scheduling is to come up with new techniques that can 
account more precisely for actual manufacturing objectives and constraints, including execution 
contingencies such as machine breakdowns, new job arrivals, variations in processing times, 
yields, etc. New production scheduling tools should also enable the user to interactively perform 
"what-if' analysis and account for ad hoc constraints and/or preferences that are not easily 
amenable to representation in the computer model. 

In this chapter, we presented Micro-Boss, a decision support system for factory scheduling. 
Micro-Boss aims at combining powerful predictive, reactive, and interactive scheduling 
capabilities. To this end, the system relies on a new micro-opportunistic search procedure that 
enables it to continuously track the evolution of micro-bottlenecks (or conflicts) during the 
construction or repair of the schedule and to refocus its optimization effort on those micro- 
bottlenecks that appear most critical. This approach differs from earlier opportunistic 
approaches [Ow 88a, Collinot 88], because it does not require scheduling large resource 
subproblems or large job subproblems before revising the current scheduling strategy. The 
results of an experimental study comparing Micro-Boss with combinations of popular priority 
dispatch rules and release policies advocated in the Operations Research literature as well as 
coarser opportunistic scheduling approaches proposed in the Artificial Intelligence literature, 
suggest that the flexibility of this new search procedure can often yield important improvements 
in schedule quality. We find that because of their flexibility, micro-opportunistic scheduling 
procedures are also particularly well suited for repairing schedules in the face of execution 
contingencies and can easily be integrated in interactive decision support systems that enable the 
user to incrementally manipulate and compare alternative schedules. 

Although our work on Micro-Boss has focused on generalized versions of the job shop 
scheduling problem, micro-opportunistic scheduling techniques have been applied to other 
manufacturing problems and other classes of problems such as transportation scheduling. 
Rautaruukki Oy, a large Finnish steel manufacturer, and researchers at the Helsinki University of 
Technology have reported adapting an earlier version of our micro-opportunistic scheduling 
heuristics to schedule a steel rolling mill [Torma 91]. Variations of the Micro-Boss scheduling 
heuristics are also used in the Knowledge Based Logistics Planning Shell (KBLPS) developed by 
Carnegie Group, Inc. (CGI) and LB&M Associates to solve U.S. army transportation scheduling 
problems and ammunition distribution planning problems [Dunmire 90, Camden 90, Saks 92]. 
Other efforts using variations of the micro-opportunistic techniques developed in the context of 
Micro-Boss are described in [Berry 91, Linden 91, Paolucci 92] and [Winklhofer 92]. 

Current research efforts within our project aim at applying and extending the existing approach 
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to solve both manufacturing and transportation scheduling problems. 
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Backtracking Techniques for 
Hard Job Shop Scheduling Problems 

Norman Sadeh, Katia Sycara and Yalin Xiong 

The Robotics Institute 
Carnegie Mellon University 

5000 Forbes Avenue 
Pittsburgh, Pennsylvania 15213-3891 

Abstract 

This paper studies a version of the job shop scheduling problem in which some operations have 

to be scheduled within non-relaxable time windows (i.e. earliest/latest possible start time 

windows). This problem is a well-known NP-complete Constraint Satisfaction Problem (CSP). 

A popular method for solving this type of problems involves using depth-first backtrack search. 

In our earlier work, we focused on the development of consistency enforcing techniques and 

variable/value ordering heuristics that improve the efficiency of this search procedure. In this 

paper, we combine these techniques with new look-back schemes that help the search procedure 

recover from so-called deadend search states (i.e. partial solutions that cannot be completed 

without violating some constraints). More specifically, we successively describe three 

"intelligent" backtracking schemes: (1) Dynamic Consistency Enforcement dynamically 

identifies critical subproblems and determines how far to backtrack by selectively enforcing 

higher levels of consistency among variables participating in these critical subproblems, (2) 

Learning Ordering From Failure dynamically modifies the order in which variables are 

instantiated based on earlier conflicts, and (3) Incomplete Backjumping Heuristic abandons areas 

of the search space that appear to require excessive computational efforts. These schemes are 

shown to (1) further reduce the average complexity of the backtrack search procedure, (2) enable 

our system to efficiently solve problems that could not be solved otherwise due to excessive 

computation cost, and (3) be more effective at solving job shop scheduling problems than other 

look-back schemes advocated in the literature. 

This paper is a short version of a paper to appear in the Artificial Intelligence Journal 

[Sadeh94a]. 

This research was supported, in part, by the Defense Advanced Research Projects Agency under 
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1. Introduction 
This paper is concerned with the design of recovery schemes for incremental scheduling 

approaches that sometimes require undoing earlier scheduling decisions in order to complete the 
construction of a feasible schedule. 

Job shop scheduling deals with the allocation of resources over time to perform a collection of 
tasks. The job shop scheduling model studied in this paper further allows for operations that 
have to be scheduled within non-relaxable time windows (e.g. earliest possible start time/latest 
possible finish time windows). This problem is a well-known NP-complete Constraint 
Satisfaction Problem (CSP) [Garey 79]. Instances of this problem include factory scheduling 
problems, in which some operations have to be performed within one or several shifts, spacecraft 
mission scheduling problems, in which time windows are determined by astronomical events 
over which we have no control, factory rescheduling problems, in which a small set of operations 
need to be rescheduled without revising the schedule of other operations, etc. 

One approach to solving CSPs is to use depth-first backtrack search [Walker 60, Golomb 
65, Bitner 75]. Using this approach, scheduling problems can be solved through the iterative 
selection of an operation to be scheduled next (i.e. variable selection) and the tentative 
assignment of a reservation (i.e. value) to that operation. If in the process of constructing a 
schedule, a partial solution is reached that cannot be completed without violating some of the 
problem constraints, one or several earlier assignments need to be undone. This process of 
undoing earlier assignments is referred to as backtracking. It deteriorates the efficiency of the 
search procedure and increases the time required to come up with a solution. While the worst- 
case complexity of backtrack search is exponential, several techniques to reduce its average-case 
complexity have been proposed in the literature [Dechter 88]: 

• Consistency Enforcing Schemes: These techniques prune the search space from 
alternatives that cannot participate in a global solution [Mackworth 85]. There is 
generally a tradeoff between the amount of consistency enforced in each search 
state1 and the savings achieved in search time. 

• Variable/Value Ordering Heuristics: These heuristics help judiciously decide which 
variable to instantiate next and which value to assign to that variable [Bitner 
75, Haralick 80, Purdom 83, Dechter 88, Fox 89, Sadeh 91]. By first instantiating 
difficult variables, the system increases its chances of completing the current partial 
solution without backtracking [Haralick 80, Fox 89, Sadeh 91]. Good value ordering 
heuristics reduce backtracking by selecting values that are expected to participate in 
a large number of solutions [Dechter 88, Sadeh 91]. 

• Look-back Schemes: [Stallman 77, Doyle 79, Gaschnig 79, Dechter 89a] While it is 
possible to design consistency enforcing schemes and variable/value ordering 

'A search state is associated with each partial solution. Each search state defines a new CSP whose variables are 
the variables that have not yet been instantiated and whose constraints are the initial problem constraints along with 
constraints reflecting current assignments. 
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heuristics that are, on average, very effective at reducing backtracking, it is 
generally impossible to efficiently guarantee backtrack-free search. Look-back 
schemes are designed to help the system recover from deadend states and, if 
possible, learn from past mistakes . 

In our earlier work, we focused on the development of efficient consistency enforcing 
techniques and variable/value ordering heuristics for job shop scheduling CSPs [Sadeh 88, Sadeh 
89, Fox 89, Sycara 91, Sadeh 90, Sadeh 91, Sadeh 92]. In this paper, we combine these 
techniques with new look-back schemes. These schemes are shown to further reduce the average 
complexity of the search procedure. They also enable our system to efficiently solve problems 
that could not be efficiently solved otherwise. Finally, experimental results indicate that these 
techniques are more effective at solving job shop scheduling problems than other look-back 
schemes advocated in the literature. 

The simplest deadend recovery strategy goes back to the most recently instantiated variable 
with at least one alternative value left, and assigns ones of the remaining values to the variable. 
This strategy is known as chronological backtracking. Often the source of the current deadend 
is not the most recent assignment but an earlier one. Because it typically modifies assignments 
that have no impact on the conflict at hand, chronological backtracking often returns to similar 
deadend states. When this happens, search is said to be thrashing. Thrashing can be reduced 
using backjumping schemes that attempt to backtrack all the way to one of the variables at the 
source of the conflict [Gaschnig 79]. Search efficiency can be further improved by learning 
from past mistakes. For instance, a system can record earlier conflicts in the form of new 
constraints that will prevent it from repeating earlier mistakes [Stallman 77, Doyle 79]. 
Dependency-directed backtracking is a technique incorporating both backjumping and constraint 
recording [Stallman 77]. Although dependency-directed backtracking can greatly reduce the 
number of search states that need to be explored, this scheme is often impractical due to the 
exponential worst-case complexity of its constraint recording component (both in time and 
space). Simpler techniques have also been developed that approximate dependency-directed 
backtracking. Graph-based backjumping reduces the amount of book-keeping required by full- 
blown backjumping by assuming that any two variables directly connected by a constraint may 
have been assigned conflicting values [Dechter 89a]2. N-th order deep and shallow learning 
reduce the constraint recording complexity of dependency-directed backtracking by only 
recording conflicts involving N or fewer variables [Dechter 89a]. 

Graph-based backjumping works best on CSPs with sparse constraint graphs [Dechter 89a]. 
Instead, job shop scheduling problems have highly interconnected constraint graphs. 
Furthermore graph-based backjumping does not increase search efficiency when used in 
combination with forward checking [Haralick 80] mechanisms or stronger consistency enforcing 
mechanisms  such as those entailed by job shop scheduling problems [Sadeh 91].     Our 

2Two variables are said to be "connected" by a constraint if they both participate in that constraint. 
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experiments suggest that N-th order deep and shallow learning techniques often fail to improve 
search efficiency when applied to job shop scheduling problems. This is because these 
techniques use constraint size as the only criterion to decide whether or not to record earlier 
failures. When they limit themselves to small-size conflicts, they fail to record some important 
constraints. When they do not, their complexities become prohibitive. 

Instead, this paper presents three look-back techniques that have yielded good results on job 
shop scheduling problems: 

1. Dynamic   Consistency   Enforcement   (DCE):   a   selective   dependency-directed 
scheme that dynamically focuses its effort on critical resource subproblems, 

2. Learning Ordering From Failure (LOFF): an adaptive scheme that suggests new 
variable orderings based on earlier conflicts, 

3. Incomplete Backjumping Heuristic (IBH) a scheme that gives up searching areas of 
the search space that require too much work. 

Related work in scheduling includes that of Prosser and Burke who use N-th order shallow 
learning to solve one-machine scheduling problems [Burke 89], and that of Badie et al. whose 
system implements a variation of deep learning in which a minimum set is heuristically selected 
as the source of the conflict [Badie et al 90]. 

The remainder of this paper is organized as follows. Section 2 provides a more formal 
definition of the job shop CSP. Section 3 describes the backtrack search procedure considered in 
this study. Sections 4, 5 and 6 successively describe each of the three backtracking schemes 
developed in this study. Experimental results are presented in section 7. Section 8 summarizes 
the contributions of this paper. 

2. The Job Shop Constraint Satisfaction Problem 
The job shop scheduling problem requires scheduling a set of jobs J= {y'j ,...,j } on a set of 

resources RES ={/?,,..., Rm). Each job;'; consists of a set of operations Ol={ 0\,...,Ol } tobe 
scheduled according to a process routing that specifies a partial ordering among these operations 
(e.g. o\ BEFORE 0J). 

In the job shop CSP studied in this paper, each joby'j has a release date rdl and a due-date ddl 

between which all its operations have to be performed. Each operation o\ has a fixed duration 

dui and a variable start time st'r The domain of possible start times of each operation is initially 
constrained by the release and due dates of the job to which the operation belongs. If necessary, 
the model allows for additional unary constraints that further restrict the set of admissible start 
times of each operation, thereby defining one or several time windows within which an operation 
has to be carried out (e.g. one or several shifts in factory scheduling). In order to be successfully 
executed, each operation o\ requires p\ different resources (e.g. a milling machine and a 
machinist) R- (1 <_/</?.), for each of which there may be a pool of physical resources from 
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which to choose, QJ. c RES (e.g. one or several milling machines). 

More formally, the problem can be defined as follows: 

VARIABLES: 

A vector of variables is associated with each operation, 0\ (1 < / < n, 1 < / < <?;]), which consists 
of: 

1. the start time, st\ of the operation, and 

2. its resource requirements, R{-, (1 <j<p). 

CONSTRAINTS: 

The non-unary constraints of the problem are of two types: 
1. Precedence constraints defined by the process routings translate into linear 

inequalities of the type: st\+du\ < st) (i.e. 0\ BEFORE 0J); 

2. Capacity constraints that restrict the use of each resource to only one operation at a 
time translate into disjunctive constraints of the form: 
(Vp \fq R\ ±Rl) v st'l+du'l < st1- v stj+du'j < st\. These constraints simply express 

that, unless they use different resources, two operations 0\ and Oj cannot overlap3. 
Additionally, our model can accommodate unary constraints that restrict the set of possible 

values of individual variables. These constraints include non-relaxable due dates and release 
dates, between which all operations in a job need to be performed. More generally, the model 
can accommodate any type of unary constraint that further restricts the set of possible start times 
of an operation. 

Time is assumed discrete, i.e. operation start times and end times can only take integer values 
and each resource requirement Ri has to be selected from a set of resource alternatives, 

Qj. c RES. 

OBJECTIVE: 

In the job shop CSP studied in this paper, the objective is to come up with a feasible solution as 
fast as possible. Notice that this objective is different from simply minimizing the number of 
search states visited. It also accounts for the time spent by the system deciding which search state 
to explore next. 

EXAMPLE: 

3These constraints have to be generalized when dealing with resources of capacity larger than one. 
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Figure 1: A simple problem with 4 jobs. Each node is labeled 
by the operation that it represents, its duration and 

the resource it requires. 

Figure 1 depicts a simple job shop scheduling problem with four jobs J= {jx ,j2 J3 j4} and four 
resources RES={Rl,R2,R?l,R4}. In this example, each operation has a single resource 
requirement with a single possible value. It is further assumed that all jobs are released at time 0 
and have to be completed by time 20. Please note that none of these simplifying assumptions is 
required by the techniques to be discussed: jobs can have different release and due dates, 
operations can have several resource requirements, and several alternatives for each of these 
requirements. Note also that the problem we have just defined is infeasible. None of the 
operations on resource R2 can start before time 3 and the sum of durations of these operations is 
18. Hence, it is impossible to complete these operations before time 21. As we will see, this 
observation can easily be operationalized in the form of a simple consistency checking rule. 
However, as the number of operations to schedule grows, the exponential complexity of applying 
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this simple rule to all possible subsets of operations on a given resource quickly becomes 
prohibitive, hence the need to be more selective in applying such checks. Additionally, passing 
such a check is no guarantee that a problem is feasible, hence the need to also rely on more 
complex mechanisms, as described below. 

3. The Search Procedure 
A depth-first backtrack search procedure is considered, in which search is interleaved with the 

application of consistency enforcing mechanisms and variable/value ordering heuristics that 
attempt to steer clear of deadend states4 Specifically, search starts in a state where all operations 
still have to be scheduled. The BASIC-DEPTH-FIRST procedure proceeds by incrementally 
scheduling operations one by one. Each time an operation is scheduled, a new search state is 
created in which a consistency enforcing procedure (or constraint propagation procedure) is first 
applied to update the set of possible reservations of unscheduled operations. Next, an operation 
is selected to be scheduled and a reservation is selected for that operation. The procedure goes 
on, recursively calling itself, until either all operations are successfully scheduled or an 
inconsistency (or conflict) is detected. In the latter case, the procedure needs to undo earlier 
decisions or backtrack. The simplest possible backtracking mechanism for such a procedure is a 
"chronological" procedure that systematically goes back to the most recently scheduled operation 
and tries alternative reservations for that operation. If no alternative reservation is left, the 
procedure goes back to the next most recently scheduled operation and so on. If the procedure 
returns to the initial search state (i.e. the state with an empty schedule), the problem is infeasible. 

The default consistency enforcing mechanisms and variable/value ordering heuristics used in 
our study are the ones described in [Sadeh 91]. These mechanisms, which have been favorably 
compared against a number of other heuristics [Sadeh 91, Sadeh 92], are briefly described below. 

Consistency Enforcing Procedure: The consistency enforcing procedure we use combines 
three consistency mechanisms: 

1. Consistency with respect to precedence constraints: Consistency with respect to 
precedence constraints is maintained using a longest path procedure that 
incrementally updates, in each search state, a pair of earliest/latest possible start 
times for each unscheduled operation. Essentially, as in PERT/CPM [Johnson 74], 
earliest start time constraints are propagated downstream within the job whereas 
latest start time constraints are propagated upstream (Figure 2). The complexity of 
this simple propagation mechanism is linear in the number of precedence 
constraints. In the absence of capacity constraints, the procedure can be shown to 
guarantee decomposability [Dechter 89b], i.e. it is sufficient to guarantee 
backtrack-free search [Sadeh 91]. 

2. Forward consistency checks with respect to capacity constraints: Enforcing 
consistency with respect to capacity constraints is more difficult due to the 

additional details on this procedure, including pseudo-code, can be found in [Sadeh 94a]. 
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Figure 2: Consistency with respect to precedence constraints. 

disjunctive nature of these constraints. Whenever a resource is allocated to an 
operation over some time interval, a "forward checking" mechanism [Haralick 
80]checks the set of remaining possible reservations of other operations requiring 
that same resource, and removes those reservations that would conflict with the 
new assignment, as first proposed in [LePape 87] (See Figure 3). 

3. Additional consistency checks with respect to capacity constraints: Additionally, 
our default consistency enforcing mechanism checks that no two unscheduled 
operations require overlapping resource/time intervals. An example of such a 
situation is illustrated in Figure 4, where two operations requiring the same 
resource, Oi and Ojt rely on the availability of overlapping time intervals, namely 
the intervals between their respective latest start times and earliest finish times 
([lsti,eftj] and [lstj,eftj]). This additional consistency mechanism has been shown to 
often increase search efficiency, while only resulting in minor computational 
overheads [Sadeh 91]. 

Variable/Value Ordering Heuristics:  The default variable/value ordering heuristics used by 
our search procedure are the   Operation Resource Reliance (ORR) variable ordering heuristic 
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Figure 3: Forward consistency checks with respect to capacity constraints. 
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Figure 4: Detecting situations where two unscheduled operations requiring the same 
resource are in conflict. 
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and Filtered Survivable Schedules value ordering heuristic described in [Sadeh 91]. The ORR 
variable ordering heuristic aims at reducing backtracking by first scheduling difficult operations, 
namely operations whose resource requirements are expected to conflict with those of other 
operations. The FSS value ordering heuristic is a least constraining value ordering heuristic. It 

attempts to further reduce backtracking by selecting reservations that are expected to be 
compatible with a large number of schedules. 

These default heuristics have been reported to outperform several other schemes described in 
the literature, both generic CSP heuristics and specialized heuristics designed for similar 
scheduling problems [Sadeh 91, Sadeh 92]. They seem to provide a good compromise between 
the efforts spent enforcing consistency, ordering variables, or ranking assignments for a variable 
and the actual savings obtained in search time. Nevertheless, the job shop CSP is NP-complete 
and, hence, these efficient procedures are not sufficient to guarantee backtrack-free search. 

The remainder of this paper describes new backtracking schemes that help the system recover 
from deadend states. We show that, when the default consistency enforcing mechanisms and/or 
variable ordering heuristics are not sufficient to steer clear of deadends, look-back mechanisms 
can be devised that modify these schemes so as to avoid repeating past mistakes (i.e.so as to 
avoid reaching similar deadend states). 

4. Dynamic Consistency Enforcement (DCE) 
Backtracking is generally an indication that the default consistency enforcing scheme and/or 

variable/value ordering heuristics used by the search procedure are insufficient to deal with the 
subproblems at hand. Consequently, if search keeps on relying on the same default mechanisms 
after reaching a deadend state, it is likely to start thrashing. Experiments reported in [Sadeh 
91, Sadeh 92], in which search always used the same set of consistency enforcing procedures and 
variable/value ordering heuristics, clearly illustrated this phenomenon. Search in these 
experiments exhibited a dual behavior. The vast majority of the problems fell in either of two 
categories: a category of problems that were solved with no backtracking whatsoever (by far the 
largest category) and a category of problems that caused the search procedure to thrash. 

Theoretically, thrashing could be eliminated by enforcing full consistency in each search state. 
Clearly, such an approach is impractical as it would amount to performing a complete search. 
Instead, our approach involves (1) heuristically identifying one or a few small subproblems that 
are likely to be at the source of the conflict, (2) determining how far to backtrack by enforcing 
full consistency among the variables in these small subproblems, and (3) recording conflict 
information for possible reuse in future backtracking episodes. This approach is operationalized 
in the context of a backtracking scheme called Dynamic Consistency Enforcement (DCE). Given 
a deadend state and a history of earlier backtracking episodes within the same search space (i.e. 
while working on the same problem), this technique dynamically identifies small critical 
resource subproblems expected to be at the source of the current deadend. DCE then backtracks, 
undoing assignments in a chronological order, until a search state is reached, within which 
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consistency has been fully restored in each critical resource subproblem (i.e. consistency with 
respect to capacity constraints in these subproblems). Experimental results reported in Section 7 
suggest that often, by selectively checking for consistency in small resource subproblems, DCE 
can quickly recover from deadends. The remainder of this section further describes the 
mechanics of this heuristic. 

4.1. Identifying Critical Resource Subproblems 
The critical resource subproblems used by DCE consist of groups of operations participating in 

the current conflict along with groups of critical operations identified during earlier backtracking 
episodes involving the same resources. Below, we refer to the group of (unscheduled) 
operations identified by the default consistency enforcing mechanism as having no possible 
reservations left as the Partial Conflicting Set of operations (PCS). In order to restore 
consistency, the search procedure needs to at least go back to a search state in which each PCS 
operation has one or more possible reservations5. DCE attempts to identify such additional 
operations by maintaining a group of critical resource subproblems identified during earlier 
backtracking episodes. Below, we refer to this data structure as the Former Dangerous Groups 
of operations (FDG). Details on how this data structure is created and maintained are provided in 
Subsection 4.3. 

For each capacity constraint violation among operations in the PCS, DCE checks the FDG data 
structure and retrieves all related resource subproblems. A resource subproblem in the FDG is 
considered related to a capacity constraint violation in the PCS if, in an earlier backtracking 
episode, operations in that resource subproblem were involved in a capacity constraint violation 
on the same resource and over a "close" time interval. A system parameter is used to determine 
if two resource conflicts are "close". In the experiments reported at the end of this paper, two 
conflicts were considered close if the distance separating them was not greater than twice the 
average operation duration. Related critical subproblems identified by inspecting the FDG data 
structure are then merged with corresponding operations in the PCS to form a new set of one or 
more critical resource subproblems, which we refer to as the as the Dangerous Group of 
operations (DG) for the conflict at hand. Like the FDG, the DG is organized in subgroups of 
resource subproblems consisting of operations contending for the same resource over close or 
overlapping time intervals. While backtracking, operations that are unscheduled are inserted in 
the DG, either by being added to existing resource subproblems or by creating new resource 
subproblems. 

5Clearly, this is not guaranteed to be sufficient, as other operations may also contribute to the conflict: 
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4.2. Backtracking While Selectively Enforcing Consistency 
Once the initial DG has been identified, DCE backtracks, undoing assignments in a 

chronological order, until it reaches a search state in which consistency is restored within each of 
the resource subproblems defined by operations in the DG6. This is done by enforcing full 

consistency with respect to capacity constraints in each of the resource subproblems in the DG. 
As long as conflicts are detected, the procedure continues to backtrack and unscheduled 
operations are inserted into existing or new resource subproblems in the DG. While restoring 
consistency within each of these resource subproblems is a necessary condition to backtrack to a 
consistent search state, it is not always a sufficient one. In other words, the effectiveness of DCE 
critically depends on its ability to heuristically focus on the right resource subproblems7. 

Because full consistency checking can be expensive on large subproblems, if a resource 
subproblem in the DG becomes too large, k-consistency is enforced instead of full-consistency, 
where k is a parameter of the system [Freuder 82]. In the experiments reported at the end of this 
paper, k was set to 4. At the end of a backtracking episode, the DG has maximum size, call it 
DGmax. Assuming that the procedure was able to backtrack to a consistent search state, DGmax 

is expected to contain all the operations at the origin of the deadend8 and often more. DGmax is 
then saved for later use in the FDG data structure. Additional details regarding the management 
of this data structure are provided in the next subsection. If a related backtracking episode is 
later encountered by the system, DGmax can be retrieved and combined with the PCS of this new 
episode. 

4.3. Storing Information About Past Backtracking Episodes 
The purpose of the Former Dangerous Groups of operations (FDG) maintained by the system 

is to help determine more efficiently and more precisely the scope of each deadend by focusing 
on critical resource subproblems. Each group of operations in the FDG consists of operations 
that are in high contention for the allocation of a same resource. Accordingly, whenever, a 
conflict is detected that involves some of the operations in one group, the backtracking procedure 
checks for consistency among all operations in that group. 

The groups of operations in the FDG are built from the Dangerous Groups (DGs) obtained at 
the end of previous backtracking episodes (DGmax). Indeed, whenever a backtracking episode is 
completed, DGmax is expected to contain all the conflicting operations at the origin of this 
episode.   Generally, DGmax may involve one or several resource subproblems (i.e. groups of 

6Additional details on this procedure, including pseud-code can be found in [Sadeh 94a] 

7Note that DCE is not expected to be very effective at recovering from complex conflicts involving interactions 
between multiple resource subproblems. A heuristic which is often more effective for these complex conflicts is 
described in Section 6. 

"Clearly, while this is not guaranteed, experimental results suggest that this is often the case. 
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operations requiring the same resource). Each one of these subproblems is merged with related 
subproblems currently stored in the FDG. If there is no related group in FDG, the new group is 
separately added to the data structure. Finally, as operations are scheduled, they are removed 
from the FDG. 

4.4. An Example 
Figure 5 illustrates the behavior of DCE on the small scheduling problem introduced in Figure 

1. After scheduling operations 02 and 0\ on resource /?2, the procedure detects that operation 0\ 
has no possible reservations left. Given that the FDG data structure is initially empty (no prior 
backtracking episode), we have PCS=DG= [O]}. The procedure unschedules the most recently 
scheduled operation, namely 0\, and inserts it in DG together with operation 0\, as both of these 
operations require the same resource. At this point, DCE enforces full consistency with respect 
to capacity constraints between these two operations9 and finds that, after consistency checking, 
the operations still admit some possible reservations. This marks the end of the first backtracking 
episode. The procedure saves the current DG in FDG, for possible reuse, then schedules 
operation 0\ at its next best available start time10, namely start time 6. In the process, 0\ is 
removed from the FDG. Another conflict is detected in this new search state, which marks the 
beginning of a second backtracking episode. This time the consistency enforcing procedure finds 
that operation Ox has no possible reservations left (i.e. PCS= { 02 }). Using the FDG, the system 
adds operation 03 to the group of dangerous operations, DG= { 02,03}. Accordingly, this time, 
when it unschedules operation 0\, DCE enforces full consistency11 with respect to capacity 

constraints in DG={ 0\,o\,0\). When it finds that the current search state is still inconsistent, 
DCE proceeds and unschedules operation 0A

2, thereby returning to the root search state with 
DG= {Ol

2,o\,0\,0\}. In this search state, full consistency with respect to capacity constraints 
between operations in DG indicates that the problem is infeasible. In total, the system only 
generates three search states to find that the problem is infeasible. In contrast, a total of 50 
search states is required for the same small problem, when relying on a simple chronological 
backtracking procedure. The example also shows how the use of the Formerly Dangerous 
Groups (FDG) of operations helps the system identify critical resource subproblems. If it was not 
for this mechanism, the procedure would not detect an inconsistency when it comes back to 
Depth 1 in the second backtracking episode, as it would only check for consistency between 0\ 
and 0\. More generally, experimental results presented in Section 7 show that DCE often results 
in important increases in search efficiency and important reductions in computation time. 

9This is equivalent to 2-consistency or arc-consistency, given that there are only 2 operations [Freuder 82]. 

10Actually, start time 6 is not the start time picked by our reservation ordering heuristic.    The system was 
manually forced to pick this value to make the example more interesting. 

11 This time the system enforces 3-consistency, given that there are 3 operations in DG. 
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>> Depth: 0, Number of states visited: 0, FDG=0 
4 

02  is scheduled between 14 and 20 on R2 

» Depth: 1, Number of states visited: 1, FDG=<Z 
2 

02  is scheduled between 9 and 14 on R2 

»  Depth: 2,  Number of states visited: 2, FDG = 0 
3 

Conflict detected: 03 has no possible reservations left: 
3 

PCS = DG={[0-i]}        [Beginning of first backtracking episode] 
2 

02  is unscheduled 

>> Depth: 1, Number of states visited: 2, FDG-0 
DG=[[0\,0\}} 
Full consistency checking with respect to capacity constraints in DG: 

Remaining possible start times: 
o\:   {3,4,5,6} 

0\:   {8,9,10,11} 

FDG={[o\,o\]}   [End of  first backtracking episode] 
2 

02  is  scheduled between  6  and 11  on R2 

» Depth:   2,   Number of  states visited:   3,   FDG={[o\]} 

Conflict  detected:   02 has no possible reservations  left: 

PCS=[[02]},   DG=[[02,Oj]}        [Beginning of   second backtracking episode] 
2 

02 is unscheduled 

»  Depth:   1,   Number of  states visited:   3,   FDG={[o\}} 

DG={{02,0
2

2,0\]} 
Full  consistency checking with respect  to capacity constraints  in DG: 
Conflict detected 

4 
02 is unscheduled 

>>  Depth:   0,   Number of  states visited:   3,   FDG={[o\]) 

DG={[02,0
2

2,0l,02]} 
Full  consistency checking with respect  to capacity constraints  in DG: 
Conflict detected 
unfeasible Problem       [End of  second backtracking episode] 

Figure 5: An edited trace illustrating the DCE procedure. 
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4.5. Additional "Watch Dog" Consistency Checks 
Because groups of operations in the FDG are likely deadend candidates, our system further 

performs simple "watch dog" checks on these dynamic groups of operations. 

More specifically, for each group G of operations in FDG, the system performs a rough check 
to see if the resource can still accommodate all the operations in the group. This is done using 
redundant constraints of the form: 

Maxilsti+du'^O1^ G)-Min{est\,0\e G) >  Y   du\ 
0(e G 

where est\ and lst\ are respectively the earliest and latest possible start times of 0\ in the current 
search state. 

Whenever such a constraint is violated, an inconsistency has been detected. Though very 
simple and inexpensive, these checks enable to catch inconsistencies involving large groups of 
operations that would not be immediately detected by the default consistency mechanisms. 
Clearly, some inconsistencies can still escape these rough checks. 

While backtracking, the same "watch dog" checks can be used prior to enforcing full 
consistency with respect to capacity constraints in the critical resource subproblems in DG. This 
can significantly reduce computation time. For instance, in the second backtracking episode in 
Figure 5, these simple checks are sufficient to detect inconsistencies at depth 1 and 0. For 
example, at depth 1, where DG = {[0\,0\,0\]}, 

Max{lst\+du|,Oje DG)-Min(est\,0\z DG)=14-3 = 11, 

while    Y    du\= 12. 
Oi 6 DG 

5. Learning Ordering From Failures (LOFF) 
Often, reaching a deadend state is also an indication that the default variable ordering was not 

adequate for dealing with the subproblem at hand. Typically, the operations participating in the 
deadend turn out to be more difficult to schedule than the ones selected by the default variable 
ordering heuristic. In other words, it is often a good idea to first schedule the operations 
participating in the conflict that was just resolved. Learning Ordering From Failure (LOFF) is 
an adaptive procedure that overrides the default variable ordering in the presence of conflicts. 

After recovering from a deadend, namely after backtracking all the way to an apparently 
consistent search state, LOFF uses the Partial Conflicting Set (PCS) of the deadend to reorganize 
the order in which operations will be rescheduled and make sure that operations in the PCS are 
scheduled first. This is done using a quasi-stack, QS, on which operations in the PCS are pushed 
in descending order of domain size, i.e. PCS operations with a large number of remaining 
reservations are pushed first on the quasi-stack. When the quasi-stack is empty, the procedure 
uses its default variable ordering heuristic, as described in Section 3.   However, when QS 
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contains some operations, the procedure first schedules these operations, starting with the ones 
on top of the quasi-stack, namely those QS operations with the smallest number of remaining 
reservations. 

If a candidate operation is already in QS, i.e. if it is encountered for a second time, it is pushed 
again on QS as if it had a smaller domain. This orders operations based on the recency of the 
conflict in which they were last involved and based on their number of remaining reservations. 

6. An Incomplete Backjumping Heuristic 
Traditional backtrack search procedures only undo decisions that have been proven to be 

inconsistent. Proving that an assignment is inconsistent with others can be very expensive, 
especially when dealing with large conflicts. Graph-based backjumping and N-th order 
shallow/deep learning attempt to reduce the complexity of full-blown dependency-directed 
backtracking by either simplifying the process of identifying inconsistent decisions (e.g. based 
on the topology of the constraint graph) or restricting the size of the conflicts that can be 
detected. The Dynamic Consistency Enforcement (DCE) procedure described in Section 6 also 
aims at reducing the complexity of identifying the source of a conflict by dynamically focusing 
its effort on small critical subproblems. Because these techniques focus on smaller conflicts, they 
all have problems dealing with more complex conflicts involving a large number of variables12. 
It might in fact turn out that the only effective way to deal with more complex conflicts is by 
using heuristics that undo decisions not because they have been proven inconsistent but simply 
because they appear overly restrictive. This is the approach taken in the heuristic described in 
this section. Clearly, the resulting search procedure is no longer complete and may fail to find 
solutions to feasible problems, hence the name of Incomplete Backjumping Heuristic (IBH). 

Texture measures such as the ones described in [Fox 89] could be used to estimate the 
tightness of different search states, for instance, by estimating the number of global solutions 
compatible with each search state. Clearly, a search state whose partial solution is compatible 
with a large number of global solutions is loosely constrained, whereas one compatible with a 
small number of global solutions is tightly constrained. Assignments leading to much tighter 
search states would be prime candidates to be undone when a complex conflict is suspected. The 
Incomplete Backjumping Heuristic (IBH) used in this study is simpler and, yet, often seems to be 
sufficient. Whenever the system starts thrashing, this heuristic backjumps all the way to the first 
search state and simply tries the next best value (i.e. reservation) for the critical operation in that 
state (i.e. the first operation selected by the variable ordering heuristic). EBH considers that the 
search procedure is thrashing, and hence that it is facing a complex conflict, when more than 8 
assignments had to be undone since the last time the system was thrashing or since the procedure 
began, if no thrashing occurred earlier. 6 is a parameter of the procedure. 

Clearly, there are some conflicts involving large numbers of variables that are easy to catch, as illustrated by the 
watch dog checks described in Section 4. 
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7. Empirical Evaluation 
This section reports the results of empirical studies conducted to assess the performance of the 

look-back schemes presented in this paper. The first study reports performance on a suite of 60 
benchmark problems introduced in [Sadeh 91]. This is followed by a more detailed study 
comparing the performance of the first two look-back schemes introduced in this paper 
(DCE&LOFF) against that of second-order deep learning [Dechter 89a] and chronological 
backtracking. Finally, we compare the performance of the complete search procedure relying on 
DCE&LOFF with that of an incomplete procedure combining all three of the look-back schemes 
presented in this paper (DCE&LOFF&IBH). 

7.1. Performance Evaluation On a First Suite of Problems 
A first set of experiments was run on a testsuite of 60 job shop scheduling problems first 

introduced in [Sadeh 91]. In the experiments reported in [Sadeh 91], the default variable and 
value ordering heuristics used in our study (i.e. the ORR and FSS heuristics described in Section 
3) were shown to outperform a variety of other variable/value ordering combinations, though 
they still failed to solve 8 out of the 60 problems. In contrast, the results presented below indicate 
that the combination of our three look-back techniques (DCE&LOFF&IBH) can efficiently solve 
all 60 problems in the testsuite. 

Specifically, the testsuite consists of 6 groups of 10 problems each. Each problem requires 
scheduling 10 jobs on 5 resources and involves a total of 50 operations (5 operations per job). 
Each job has a linear process routing specifying a sequence in which it has to visit each one of 
the five resources. This sequence varies from one job to another, except for a predetermined 
number of bottleneck resources (one or two in these experiments) which are always visited after 
the same number of steps. The six groups of problems were obtained by varying two 
parameters: 

1. the number of apriori bottlenecks (BTNK): one (BTNK=1) or two (BTNK=2), and 

2. the spread (SP) of the release and due dates between which each job has to be 
scheduled: wide (SP=W), narrow (SP=N), or null (SP = 0). 

The SP parameter and the operation durations have been adjusted so that bottleneck utilization 
remains close to 100% over most of the span of each problem. In these problems, each operation 
had slightly over 100 possible start times (i.e. values) after application of the consistency 
enforcing techniques in the initial search state. Additional details on these problems can be 
found in [Sadeh 91]13. 

Table 1 compares the performance of the following two procedures: 
1. a basic depth-first procedure relying on chronological backtracking and on the 

13The problems are also accessible via anonymous ftp to cimds3.cimds.ri.cmu.edu, where they can be found in 
/usr/sadeh/public/csp_test_suite. A README file details the content of the various files in the directory. 
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default consistency enforcing techniques and variable/value ordering heuristics 
described in Section 3.   This is also the procedure reported to perform best in 
[Sadeh91]. 

2. the same procedure enhanced with the DCE, LOFF and IBH look-back schemes 
presented in this paper. 

For each of the 60 problems, search was stopped if it required more than 500 search states. 
Performance in each problem category is reported along three dimensions: 

1. Search efficiency: the average ratio of the number of operations to be scheduled 
over the total number of search states that were explored. In the absence of 
backtracking, only one search state is generated for each operation, and hence 
search efficiency is equal to 1. 

2. Number of experiments solved in less than 500 search states. 

3. CPU seconds: this is the average CPU time required to solve a problem. When a 
solution could not be found, this time was approximated as the CPU time taken to 
explore 500 search states (this approximation was only used for Chronological 
Backtracking, since DCE&LOFF&IBH solved all problems). All CPU times were 
obtained on a DECstation 5000 running Knowledge Craft on top of Allegro 
Common Lisp. Experimentation with a variation of the system written in C 
indicates that the search procedure would run about 30 times faster if 
reimplemented in this language [Sadeh 94b]. 

The results indicate that DCE&LOFF&IBH consistently outperformed the chronological 
backtracking scheme in terms of CPU time, search efficiency and number of problems solved. 
On the easier problems (SP=W), both techniques solved all 20 problems in approximately the 
same amount of time. On the more difficult problems (SP=N and SP=0), DCE&LOFF&IBH 
clearly dominated chronological backtracking. In particular, on problems with SP=0 and BK=1, 
DCE&LOFF&IBH solved 40% more problems than the chronological backtracking scheme and, 
on average, proved to be 3.5 times faster. Overall, while chronological backtracking failed to 
solve 8 problems out of 60, DCE&LOFF&IBH efficiently solved all 60 problems, and, on 
average, was almost twice as fast as the procedure with chronological backtracking. Had we not 
stopped the chronological backtracking procedure after 500 search states, the speedup achieved 
by DCE&LOFF&IBH would be even more significant. In fact, based on a couple of problems 
for which the chronological procedure was allowed to expand a larger number of search states, it 
appears that problems that are not solved in 500 states often require thousands more to be solved 
(with chronological backtracking). 

7.2. Further Evaluation 
To further evaluate our look-back schemes, we picked the most difficult problem category in 

the testsuite, namely the category for which the default consistency enforcing procedure and 
variable/value ordering heuristics are least effective (SP=0) and generated an additional 80 
scheduling problems, 40 with BTNK=1 and 40 with BTNK=2. The SP=0 problem category was 
also the most difficult one for all the other combinations of variable and value ordering heuristics 
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Chronological DCE&LOFF&IBH 

SP=W 
BTNK=1 

Search Efficiency 0.96 0.96 

Nb. exp. solved 
(out of 10) 

10 10 

CPU seconds 88.5 90.5 

SP=W 
BTNK=2 

Search Efficiency 0.99 0.99 

Nb. exp. solved 
(out of 10) 

10 10 

CPU seconds 93 95 

SP=N 
BTNK=1 

Search Efficiency 0.78 0.91 

Nb. exp. solved 
(out of 10) 

8 10 

CPU seconds 331.5 106 

SP=N 
BTNK=2 

Search Efficiency 0.87 0.93 

Nb. exp. solved 
(out of 10) 

9 10 

CPU seconds 184 119.5 

SP=0 
BTNK=1 

Search Efficiency 0.73 0.88 

Nb. exp. solved 
(out of 10) 

7 10 

CPU seconds 475 134.5 

SP=0 
BTNK=2 

Search Efficiency 0.82 0.84 

Nb. exp. solved 
(out of 10) 

8 10 

CPU seconds 300.5 226.5 

Overall 
Performance 

Search Efficiency 0.86 0.92 

Nb. exp. solved 
(out of 60) 

52 60 

CPU seconds 245.5 128.7 

Table 1: Comparison of Chronological Backtracking and DCE&LOFF&IBH on 6 sets 
of 10 job shop problems. 

tested in the study reported in [Sadeh 91]. It corresponds to problems in which all jobs are 
released at a common date and need to be completed by a common due date. Among the 
resulting 80 problems, we only report performance on those problems for which the default 
schemes were not sufficient to guarantee backtrack-free search14. This leaves 16 scheduling 
problems with one bottleneck (SP=0 and BTNK=1), and 15 with two bottlenecks (SP=0 and 

14Clearly, performance on problems that do not require backtracking is of no interest, since our backtracking 
schemes never get invoked, and hence CPU time remains unchanged. 
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BTNK=2). 

Below, we successively report the results of two studies. The first one compares the 
performance of three complete backtracking schemes: chronological backtracking, 2nd-order 

deep learning, and the procedure combining the DCE and LOFF backtracking heuristics15. The 
second study compares the complete search procedure using DCE and LOFF with the incomplete 
search procedure combining DCE, LOFF and IBH. 

Table 2: Results of One-Bottleneck Experiments. 

Exp. 
No. Chronological DCE & LOFF Deep Learning 

No. of CPU Result No. of CPU Result No. of CPU Result 

1 
Nodes (sec) Nodes (sec) Nodes (sec 
500 1427 F 122 1232 S* 500 5756 F 

2 500 1587 F 500 1272 F 500 5834 F 
3 74 148 S 63 117 S 25 36000 F 
4 69 152 S 52 120 S 69 391 S 
5 500 1407 F 65 134 S 500 11762 F 
6 500 1469 F 500 1486 F 500 8789 F 
7 500 1555 F 59 130 S 500 9681 F 
8 500 1705 F 41 145 s* 500 9560 F 
9 53 108 S 53 102 s 53 122 S 

10 500 1529 F 500 1536 F 500 9114 F 
11 500 1460 F 85 1800 F 500 14611 F 
12 500 1694 F 500 1131 F 500 21283 F 
13 51 109 S 51 81 S 51 88 S 
14 500 1762 F 63 138 s 500 18934 F 
15 500 1798 F 69 142 s 500 9600 F 
16 500 1584 F 500 1183 F 65 36000 F 

S: Solved ; F: Failure; S*: Proved infeasible 
Time Limit: 1800 sec (Except Deep Learning) 
Node Limit:  500 

The results of the first study comparing chronological backtracking, 2nd-order deep learning 
[Dechter 89a] and the DCE & LOFF procedures advocated in Section 4 and 5 are summarized in 

Table 2 and 3. The results reported here were obtained using a search limit of 500 nodes and a 
time limit of 1800 seconds (except for deep learning, for which the time limit was increased to 
36,000 seconds16). All CPU times reported below were obtained on a DECstation 5000 running 
Knowledge Craft on top of Allegro Common Lisp. As already indicated above, comparison 
between C and Knowledge Craft implementations of similar variable and value ordering 
heuristics indicates that the code would run about 30 times faster in C [Sadeh 94b]. 

On the one-bottleneck problems, chronological backtracking solved only 4 problems out of 16 
(See Table 2). Interestingly enough, deep learning showed no improvement over chronological 
backtracking either in the number of problems solved or in CPU time. As a matter of fact, deep 

15Besides the experiments reported below, additional experiments were performed to assess the benefits of using 
DCE and LOFF separately. These experiments show that both techniques contribute to the improvements reported in 
this section. 

16This was motivated by the fact that our implementation of deep learning may not be optimal. 
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learning was even too slow to find solutions to some of the problems solved by chronological 
backtracking. This is attributed to the fact that the constraints in job shop scheduling are more 
tightly interacting than those in the zebra problem, where the improvement of deep learning over 
chronological backtracking was originally ascertained [Dechter 89a]. On the other hand, DCE & 
LOFF solved 10 problems out of 16 (2 out of these 10 problems were successfully proven 
infeasible). As expected, by focusing on a small number of critical subproblems, DCE & LOFF 
is able to discover larger more useful conflicts than 2nd-order deep learning, while requiring 
only a fraction of the time. Another observation is that DCE & LOFF expanded fewer search 
states than chronological backtracking for the problems that chronological backtracking solved. 
However, each of the DCE & LOFF expansions took slightly more CPU time, due to the higher 
level of consistency enforcement. 

Table 3: Results of Two-bottleneck Experiments 

Exp. 
No. Chronological DCE & LOFF Deep Learning 

No. of CPU Result No. of CPU Result No. of CPU Result 

1 
Nodes (sec) Nodes (sec) Nodes (sec) 

500 1139 F 113 1800 F 18 36000 F 
2 500 1444 F 425 1800 F 115 36000 F 
3 84 175 S 109 202 S 84 811 S 
4 56 123 S 56 112 S 56 213 S 
5 51 101 S 51 113 S 13 36000 F 
6 500 1531 F 321 1800 F 328 36000 F 
7 500 1775 F 500 1357 F 500 2793 F 
8 52 102 S 52 115 S 33 36000 F 
9 500 1634 F 247 974 S 500 1519 F 
10 500 1676 F 91 1800 F 26 36000 F 
11 66 163 S 59 104 S 66 2240 S 
12 56 139 S 58 104 S 58 281 s 
13 54 129 S 52 91 s 54 28900 s 
14 500 1676 F 346 1800 F 500 9031 F 
15 500 1522 F 324 1800 F 296 36000 F 

S: Solved ; F: Failure; S*:   Proved infeasible 
Time Limit : 1800 sec. (36000 sec. for Deep Learning) 
Node Limit :  500 

Results for the set of two-bottleneck problems are reported in Table 3. Similar results are 
observed here again: deep learning shows no improvement over chronological backtracking and 
seems significantly slower. The difference between chronological backtracking and 
DCE&LOFF is not as impressive as in the first set of experiments. As can be seen in Table 3, 
chronological backtracking solved 7 out of 15 problems, whereas DCE & LOFF solved 8. On the 
problems solved by both chronological backtracking and DCE & LOFF, DCE & LOFF turned 
out to be slightly faster overall. These less impressive results suggest that the presence of 
multiple bottlenecks often introduces more complex conflicts. Results presented in the following 
subsection suggest that in this case incomplete backtracking procedures such as the one entailed 
by the IBH heuristic are often much more effective. 
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7.3. Complete vs. Incomplete Search Procedures 

Table 4: Results of One-bottleneck Experiments. 

Exp. 
No. DCE & LOFF DCE & LOFF & IBH 

No. of CPU Result No. ofi CPU Result 

1 
Nodes (sec) Nodes (sec) 
122 1232 S* 350 1800 F 

2 500 1272 F 203 1124 S 
3 63 117 S 63 123 S 
4 52 120 s 52 116 s 
5 65 134 s 65 144 s 
6 500 1486 F 127 424 s 
7 59 130 S 59 125 s 
8 41 145 S* 457 1800 F 
9 53 108 S 53 100 S 

10 500 1536 F 67 170 S 
11 85 1800 F 74 170 S 
12 500 1131 F 164 616 S 
13 51 81 S 51 92 s 
14 63 138 S 63 149 s 
15 69 142 S 69 158 s 
16 500 1183 F 156 524 s 

S: Solved ; 
Time Limit: 

F: Failure; S*: Proved infeasible 
1800 sec. Node Limit: 500 

Table 5: Results of Two-bottleneck Experiments 

Exp. 
No. DCE & LOFF DCE & LOFF & IBH 

No. of CPU Result No. of CPU Result 

1 
Nodes (sec) Nodes (sec) 
113 1800 F 151 456 S 

2 425 1800 F 371 1780 s 
3 109 202 S 95 210 s 
4 56 112 S 56 108 s 
5 51 113 S 51 97 s 
6 321 1800 F 420 1800 F 
7 500 1357 F 159 534 s 
8 52 115 S 52 96 s 
9 247 974 S 423 1705 s 

10 91 1800 F 440 1800 F 
11 59 104 S 59 113 S 
12 58 104 S 58 112 S 
13 52 91 s 52 102 S 
14 346 1800 F 239 512 S 
15 324 1800 F 73 195 S 

S: Solved ; F: Failure; S*: Proved infeasible 
Time Limit: 1800 sec. Node Limit: 500 

Table 4 and 5 compare the performance of the complete search procedure based on DCE & 
LOFF against that of an incomplete search procedure using DCE & LOFF in combination with 
the IBH heuristic described in Section 6. While DCE & LOFF could only solve 10 out of 16 
one-bottleneck problems and 8 out 15 two-bottleneck problems, DCE & LOFF combined with 
EBH solved 14 one-bottleneck problems and 13 two-bottleneck problems. The only one- 
bottleneck problems that were not solved by DCE & LOFF & IBH are the two problems 
identified as infeasible by the complete procedure with DCE & LOFF (see Table 2). This is 
hardly a surprise. While the addition of IBH to DCE & LOFF enables the search procedure to 
solve a larger number of problems, it also makes the procedure incomplete (i.e. infeasible 
problems can no longer be identified). Additional experiments combining IBH with a simple 
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chronological backtracking scheme produced results that were not as good as those obtained by 
DCE & LOFF & IBH, indicating that both EBH and DCE & LOFF contribute to the performance 
improvement observed in Table 4 and 5. 

Results on two-bottleneck problems (See Table 5) also suggest that the impact of IBH is 
particularly effective on these problems. This is attributed to the fact that two-bottleneck 
problems give rise to more complex conflicts. Identifying the assignments participating in these 
more complex conflicts might simply be too difficult for any exact backtracking scheme. Instead, 
because it can undo assignments that are not provably wrong but simply appear overly 
restrictive, IBH seems more effective at solving these problems. 

8. Concluding Remarks 
We have presented three look-back techniques for the job shop scheduling CSP: 

1. Dynamic Consistency Enforcement (DCE), a heuristic that dynamically focuses on 
restoring consistency within small critical subproblems, 

2. Learning Ordering From Failure (LOFF), a technique that modifies the order in 
which variables are instantiated based on earlier conflicts, and 

3. Incomplete Backjumping Heuristic (IBH) which, when thrashing occurs, can undo 
assignments that are not provably inconsistent but appear overly restrictive. 

The significance of this research is twofold: 
1. Job shop scheduling problems with non-relaxable time windows have multiple 

applications (e.g. manufacturing, space, transportation, health care, etc.). We have 
shown that our look-back heuristics combined with powerful techniques that we 
had previously developed (1) further reduce the average complexity of backtrack 
search, and (2) enable this search procedure to efficiently solve problems that could 
not be solved otherwise due to excessive computational requirements. While the 
results reported in this study were obtained on problems that require finding a 
feasible schedule, the backtracking schemes presented in this paper can also be 
used on optimization versions of the scheduling problem, such as the Just-In-Time 
job shop scheduling problems described in [Sadeh 94b]. 

2. This research also points to shortcomings of dependency-directed backtracking 
schemes advocated earlier in the literature. In particular, comparison with 2nd- 
order deep learning indicates that this technique failed to improve performance on 
our set of job shop scheduling problems. More generally, N-th order deep and 
shallow learning techniques often appear inadequate when applied to job shop 
scheduling problems because they rely solely on constraint size to decide whether 
or not to record earlier failures. When these techniques limit themselves to small- 
size conflicts, they often fail to record some important constraints; when they 
consider larger conflicts, their computational complexity becomes prohibitive. A 
more general weakness of traditional backtracking schemes has to do with the fact 
that they never undo assignments unless they can be proven to be at the source of 
the conflict. When dealing with large complex conflicts, proving that a particular 
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assignment should be undone can be very expensive. Instead, our experiments 
suggest that, when thrashing cannot easily be avoided, it is often a better idea to 
use incomplete backjumping heuristics that undo decisions simply because they 
appear overly restrictive. 
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Abstract 

This paper presents a simulated annealing search procedure developed to solve job 
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increasing the efficiency of simulated annealing by dynamically inflating the costs as- 
sociated with major inefficiencies in the current solution. Three different variations 
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reductions in computation time, especially on problems where search is more likely to 
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1    Introduction 

Over the past several years, with the advent of ever more powerful computers, stochas- 
tic procedures such as Simulated Annealing (SA) [14, 2] (and improved variations 
exploiting Tabu Search principles [9, 10]) or Genetic Algorithms (GAs) [11] have at- 
tracted the attention of a growing number of researchers. This interest has been fueled 
by both experimental and theoretical results indicating that, if properly designed and if 
given enough time, these procedures are often capable of finding near-optimal solutions 
to complex optimization problems. 

This paper presents results obtained using SA to find solutions to job shop schedul- 
ing problems where the objective is to minimize the sum of weighted tardiness and 
inventory costs (both work-in-process inventory and finished-goods inventory costs). 
The model is particularly attractive as it is compatible with the Just-In-Time objective 
of meeting customer demand in a timely yet cost-effective manner. In the scheduling 
literature, this objective function is known to be irregular, as its value may sometimes 
be decreased by delaying the execution of some operations [3]. As will be shown, this 
property needs to be taken into account in the design of SA procedures for this class 
of problems. 

By reference to simpler problems (e.g. the one machine version of this problem), 
this problem can easily be shown to be NP-hard [5, 6, 22, 23]. Surprisingly enough, 
despite the "'attractiveness" of its modeling assumptions, this problem has been given 
very little attention in the literature. Two notable exceptions are the work of Tom 
Morton on resource-pricing heuristics in the context of the Sched-Star system [17] and 
our earlier work on micro-opportunistic bottleneck-centered techniques in the context 
of the Micro-Boss factory scheduling system [24]. 

The first part of this paper presents a SA procedure developed to solve job shop 
scheduling problems subject to both tardiness and inventory costs. Experimental re- 
sults are presented comparing the performance of our procedure with that of several 
other scheduling heuristics. The results corroborate earlier studies performed on other 
combinatorial optimization problems. They indicate that SA consistently produces 
high quality solutions, often significantly outperforming other scheduling heuristics, 
though at the expense of intensive computational efforts. In the second part of this pa- 
per, we introduce "Focused Simulated Annealing" (FSA), a meta-heuristic procedure 
that aims at improving the efficiency of SA search. The idea behind FSA is that by 
dynamically inflating the costs associated with major inefficiencies in the existing so- 
lution, it is possible to focus the procedure and force it to get rid of these inefficiencies. 
By iteratively inflating costs in different subproblems, FSA can reduce the chances that 
the procedure gets trapped in local minima. Three variations of this meta-heuristic are 
considered that differ in the type of subproblems they rely on: job subproblems, re- 
source subproblems, or operation subproblems. Experimental results comparing these 
three variations of the meta-heuristic against the original SA procedure show that the 
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job-based meta-heuristic significantly improves performance, especially on problems 
where search is particularly likely to get caught in local minima. We further analyze 
why this variation of the meta-heuristic is more effective than the others, trying to 
shed some light on why, in general, some decompositions are likely to work better than 
others for a given SA procedure. 

The balance of this paper is organized as follows. Section 2 provides a formal defi- 
nition of the job shop scheduling problem considered in this study. Section 3 presents a 
SA search procedure developed for this problem. Section 4 reports experimental results 
comparing the performance of the procedure against that of other scheduling heuris- 
tics. The concept of Focused Simulated Annealing is introduced in Section 5 and three 
variations of this meta-heuristic procedure are developed for the job shop scheduling 
problem with tardiness and inventory costs. Performance of these meta-heuristics is 
reported in Section 6. These results are further discussed and analyzed in Section 7. 
Section 8 presents some concluding remarks. 

2    The Job Shop Scheduling Problem with Tardiness and In- 
ventory Costs 

We consider a factory, in which a finite set of jobs, J = {J1J2, ■ ■ • ,jn}, has to be 
scheduled on a finite set of resources, RES = {Ri,R,2, • • ■ ,i?m}- The jobs are assumed 
to be known ahead of time and all resources are assumed to be available over the entire 
scheduling horizon. Each job ji requires performing a set of manufacturing operations 
Ol — {0[,02, ■ • • Ol

n } and, ideally, should be completed by a specific due date, ddi, 
for delivery to a customer. Precedence constraints specify a complete order in which 
operations in each job have to be performed. By convention, we assume that operation 
0\ has to be completed before operation 0'i+1 can start (i = 1,2, ■ • ■, ra; — 1). 

Each job ji has an earliest acceptable release date, erdi, before which it cannot start, 
e.g. because the raw materials or components required by this job cannot be delivered 
before that date. Each job also has a latest acceptable completion date (or deadline), 
Icdi, by which it should absolutely be completed, e.g. because the customer would 
otherwise refuse delivery of the order. For each job, we assume that erdi < dd\ < lcd\. 
Furthermore, we assume that these constraints are loose enough to always allow for 
the construction of a feasible schedule (i.e. we are not concerned with the detection of 
infeasible problems). 

This paper considers problems in which each operation 0\ requires a single resource 
R\ € RES and the order in which a job visits different resources varies from one 
job to another. Each resource can only process one operation at a time and is non- 
preemptable. The duration du\ of each operation 0\ is assumed to be known. 

The problem requires finding a schedule (i.e. a set of start times, st\, for all op- 
erations, 0j) that satisfies all these constraints while minimizing the sum of tardiness 
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costs and inventory costs of all the jobs. 

Specifically, each job jt incurs a positive marginal tardiness cost tardi for each 

unit of time that it finishes past its due date dd\. Marginal tardiness costs generally 
correspond to tardiness penalties, interests on lost profits, loss of customer goodwill, 
etc. The total tardiness cost of job ;'/, in a given schedule, is measured as: TARD1 = 
tardt • MAX(0,Ci - ddt) where C, is the completion date of job jt. That is C/ = 
stlni + dul

ni, where Ol
n( is the last operation of jt. 

Inventory costs on the other hand can be introduced at the level of any operation 
in a job. In our model, each operation 0\ can have its own non-negative marginal 
inventory cost, in\. This is the marginal cost that is incurred for each unit of time 
that spans between the start time of this operation and either the completion date of 
the job or its due date, whichever is larger. In other words, the total inventory cost 
introduced by an operation 0\ in a given schedule is: 

INVl = in\ ■ (MAX{C,,dd,) - st\) 

Typically, the first operation in a job introduces marginal inventory costs that corre- 
spond to interests on the costs of raw materials, interests on processing costs (for that 
first operation), and marginal holding costs. Following operations introduce additional 
inventory costs such as interests on processing costs, interests on the costs of additional 
raw materials or components required by these operations, etc. Additional details on 
this model can be found in [23, 24]. 

The total cost of a schedule is: 

52 TARD' + 52J2INV! 
ieJ iej i=i 

For reasons that will become clearer in Section 5, it is often useful to look at the 
total tardiness and inventory costs of a job as sums of tardiness and inventory costs 
introduced by each of the operations in the job. For each operation O-, we can define 
a best start time (or "just-in-time" start time), bst\, where: 

bst\ = 

Accordingly, the tardiness cost TARD1 of job jt in a given schedule, can be rewritten 

TARD1 = J2 tcost'i 

as: 

i=l 

where, 

tcosti 

tardi ■ Af A.Y(0, st\ - bst\) (i = 1) 
tardi ■ {MAX(0,stli - bst'A - MAX(0, st1^ - bst'^)}    (1< i < n;) 
tardi ■ {MAX(0,Ci - ddt) - MAX^st1^ - bst1^)}     (i = n,) 
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tcost\ can be seen as the contribution of operation 0\ to the total tardiness cost of job 
ji. Similarly, the total inventory cost of a job ji can be rewritten as: 

ni 

INV1 = Y,icost'i 
1 = 1 

where: 

TAn/l      .       .     f inv[-(MAX(stl + dul
i,ddi)-3t\)   (i=m) 

INV- = icost: = <   .    }   ; ,1 ,|> /■. ^ ■ . „ \ 1      \ mv\ ■ (st'i+1 - stj) (1 < i < ni) 

and inv[ = £l=i*ni- Accordingly, the total cost of a schedule can also be expressed 

as: 
ni 

Y, TARD1 + J2INV' = E E (tcost'i +icoaf') 
iej ieJ ieJ i=i 

For the sake of simplicity, the remainder of this paper further assumes that time 
is discrete, i.e. that job due dates/earliest acceptable release dates/latest acceptable 
completion dates and operation durations can only can only take integer values. 

The following section introduces a SA procedure developed for this problem. 

3    A Simulated Annealing Procedure 

Simulated Annealing (SA) is a general-purpose search procedure that generalizes iter- 
ative improvement approaches to combinatorial optimization by sometimes accepting 
transitions to lower quality solutions so as to avoid getting trapped in local minima 
[14, 2]. SA procedures have been successfully applied to a variety of combinatorial op- 
timization problems, including Traveling Salesman Problems [2], Graph Partitioning 
Problems [12], Graph Coloring Problems [13], Vehicle Routing Problems [21], Design 
of Integrated Circuits, Minimum Makespan Flow-Shop Scheduling Problems [20], Min- 
imum Makespan Job Shop Scheduling Problems [16, 27], etc. 
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x = x0 (€ S); 
BestSol = x0;   M = cost(BestSol); 
while (r>7\)    { 

forz' = l,AT    { 
x' = neighbor(x); 
if (cost(x') < cost(x))    { 

if (cost(x') < M)   {BestSol = x'; M = cost(BestSol); } 

else if (rand() < exp{(cost(x) - cost(x'))/T})    x = x'\ 

} 
if (M was not modified in the above loop)    T = T * a; 

} 

Fig. 1 Pseudo-code for a Basic SA Search Procedure. 

Figure 1 outlines the main steps of a SA search procedure designed to find a 

solution x £ S that minimizes a real-valued cost function, cost(x). The procedure 

starts from an initial solution ar0 and iteratively moves to other neighboring solutions, 

while remembering the best solution found so far (BestSol). Typically, the procedure 

only moves to neighboring solutions that are better than the current one. However, 

the probability of moving from a solution x to an inferior solution x' is greater than 

zero, thereby allowing the procedure to escape from local minima. rand() is a function 

that randomly draws a number from a uniform distribution on the interval [0,1]. The 

so-called temperature, T, of the procedure is a parameter controlling the probability of 

accepting a transition to a lower quality solution. It is initially set to a high value, T0, 

thereby frequently allowing such transitions. If, after N iterations, the best solution 

found by the procedure has not improved, the temperature parameter T is decremented 

by a factor a (0 < a < 1). When the temperature drops below a preset level, 7\, the 

procedure stops and the best solution it found (BestSol) is returned (not shown in the 

pseudo-code in Figure   1). 

As indicated earlier, procedures similar to the one outlined above have been suc- 

cessfully applied to other scheduling problems such as the minimum makespan job-shop 
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scheduling problem 1. When dealing with regular scheduling objectives such as min- 

imum makespan, it is possible to limit search to permutations of operations on the 

same machine. For instance, in their SA procedure, Van Laarhoven et al. exploit this 

observation and restrict the neighborhood structure to permutations of consecutive 

operations on a same machine [27]. In the case of scheduling problems with irregular 

objectives, such a neighborhood structure would not be sufficient, as it does not allow 

for the insertion of idle-time in the schedule, which sometimes improves the quality of 

a solution 2. Here, two main approaches can be considered. A first approach would 

be to combine a SA procedure relying on permutation-based neighborhoods with a 

procedure that inserts idle-time optimally. As it turns out, the problem of inserting 

idle time optimally in a schedule, given completely specified sequences of operations on 

each machine, can be formulated as a Linear Programming (LP) problem and, hence, 

can be solved in polynomial time (See Appendix A for details). When considering 

the permutation of two operations, the SA procedure would first invoke an idle-time 

insertion procedure to compute the cost of the best schedule compatible with the new 

set of sequencing decisions. Based on this cost and the cost of the current solution, 

the search procedure would probabilistically determine whether or not to accept the 

transition. Nevertheless, at the present time, the idle time insertion procedures that 

the authors are aware of for the job shop scheduling problem remain too slow and 

would significantly limit the number of solutions that SA could explore in a reasonable 

amount of time 3. 

Instead, an alternative neighborhood structure was adopted that directly allows 

1The makespan of a schedule is the length of the time interval that spans between the start time 
of the first released job and the end time of the last completed job. 

Scheduling problems with regular objective functions have been shown to be reducible to sequenc- 
ing problems [1]. Given fixed operation sequences on each machine, the schedule obtained by starting 
each operation as early as possible is undominated. With irregular objectives, this is no longer the 
case and it is sometimes better to delay the start of some operations. Here, we generically refer to 
the problem of deciding by how much to delay operations as the problem of " inserting idle time" in 
the schedule. 

3For instance, using the CPLEX Linear Programming package on a DECstation 5000/200, inserting 
idle time optimally in a 100 operation job shop schedule takes about 1 CPU second. Taking into 
account similarities between the current schedule and the schedule obtained after permuting the order 
of two operations on the same resource, it is generally possible to reduce the time required to re- 
optimize the schedule to about 0.1 to 0.2 CPU seconds. Even under these conditions, a SA run of 
about 10 minutes would only be able to explore a few thousand solutions. 
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for idle time insertion. This structure, which is described below, lends itself to quick 

updates of the cost function. A possibly more subjective advantage has to do with the 

fact that the resulting procedure relies solely on SA and hence is not affected by the 

performance of a separate idle time insertion procedure. Specifically, the neighborhood 

function used in our implementation randomly selects among three types of modifica- 

tion operators, respectively referred to below as "RIGHT-SHIFT", "LEFT-SHIFT" 

and "EXCHANGE": 

RIGHT-SHIFT This operator randomly chooses a "right-shiftable" operation and 

increases its start time by one time unit (Figure 2-(a)). An operation is assumed to be 

"right-shiftable", if it can be shifted by one time unit without bumping into another 

operation on the same resource or violating the latest acceptable completion date of 

the job to which it belongs (Figure 2-(b)). Precedence constraints within a job are 

ignored when determining whether or not an operation can be right-shifted. Instead, 

as will be seen later, these constraint violations are taken care of by inserting artificial 

costs in the objective function. 

Resource R Resource R 

or 

Resource R 

t+1 

(a) SHIFT-RIGHT 

Resource R 

led, 

(b) not shiftable 

Fig. 2 RIGHT-SHIFT operator 

LEFT-SHIFT This operator is the mirror image of RIGHT-SHIFT. It randomly 

picks a "left-shiftable" operation and decreases its start time by one time unit (Figure 

3-(a)). It is assumed that an operation cannot be shifted left, if it would either bump 

into an adjacent operation on the same resource (top case in Figure 3-(b)) or violate 

the earliest acceptable release date of the job to which it belongs (bottom case in Figure 
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3-(b)). 

Resource R 

Resource R 

A 
Resource R Hi    i^HSB 

or 

A 
Resource R 

t-1 

(a) SHIFT-LEFT 

erd, 

(b) not shiftable 

Fig. 3 LEFT-SHIFT operator 

EXCHANGE This operator selects a pair of consecutive operations on a resource 

and exchanges the order in which the operations are scheduled to be processed on that 

resource. Specifically, given two consecutive operations, A and B on a resource R, with 

A preceding B in the current solution, the exchange operator sets the new start time 

of B to the old start time of A and the new end time of A to the old end time of B, 

as depicted in Figure  4. 

Resource R 

Resource R 

Fig. 4 EXCHANGE operator 

In the experiments presented in this paper, the probability of picking the EX- 

CHANGE operator was empirically set to 3/7 while the probabilities of picking a 

RIGHT- or LEFT-SHIFT operator were both set to 2/7. The initial solution x0 used 

by the SA procedure is randomly generated in such a way that no two operations use 

the same resource at the same time. As with the RIGHT- and LEFT-SHIFT opera- 

tor, precedence constraints between consecutive operations within a same job are not 

enforced in the process. Instead these constraints are enforced using artificial costs. If 
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an operation 0\ overlaps with a preceding operation 0\_x (within the same job ji), an 

artificial cost fcost\ is introduced in the objective function: 

ii 

cost(x) = ]P XI {fcost\ + tcost\ + icost\) 
l&J :=1 

where fcosti is proportional to the amount of overlap between 0\ and its predecessor 

0\_x. Specifically: 

fcost[ = 0 

fcost\ = 3 ■ max(0,s<{_1 + du\_x - st\)  (i > 2) 

where ß is a large positive constant. 

The next section summarizes the results of experiments comparing this basic SA 

procedure with several other scheduling heuristics. 

4    A First Set of Empirical Results 

Performance of this first SA procedure was assessed through comparative studies 

against a number of other scheduling heuristics. This section summarizes the results 

of experiments comparing the SA procedure against 39 combinations of well-regarded 

dispatch rules and release policies (including those combinations that were reported to 

perform best in the evaluation of the Sched-Star scheduling system [17]) both with and 

without idle-time optimization, using the LP formulation provided in Appendix A. 

Specifically, two types of dispatch rules were considered: 

1. A set of five priority dispatch rules that have been reported to be particularly 

good at reducing tardiness under various scheduling conditions [28]: the Weighted 

Shortest Processing Time (WSPT) rule, the Earliest Due Date (EDD) rule, the 

Slack per Remaining Processing Time (SRPT) rule, and two parametric rules, 

the Weighted Cost OVER Time (WCOVERT) rule and the Apparent Tardiness 

Cost (ATC) rule (also referred to sometimes as the Rachamadugu&Morton rule 

[18]). 
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2. An exponential version of the parametric early/tardy dispatch rule recently de- 

veloped by Ow and Morton [22, 17] and referred to below as EXP-ET. This rule 

differs from the other 5 in that it can explicitly account for both tardiness and 

inventory costs. 

EXP-ET was successively run in combination with two release policies: an intrinsic 

release policy that only releases jobs when their priorities become positive, as sug- 

gested in [17], and an immediate release policy (IM-REL) that allowed each job to 

be relased immediately. The other five dispatch rules were also successively run in 

combination with two release policies: an immediate release policy and the Average 

Queue Time release policy (AQT) described in [17]. AQT is a parametric release policy 

that estimates queuing time as a multiple of the average job duration (the look-ahead 

parameter serving as the multiple). A job's release date is determined by offsetting the 

due date of the job by the sum of its total duration and its estimated queuing time. 

In their evaluation of the SCHED-STAR scheduling system, Morton et al. report that 

the combination of WCOVERT and AQT performed best after their SCHED-STAR 

system and was within 0.1% of the best schedule in 42% of the problems they studied 

and within 4% in 70% of their problems [17]. They also report that the next best 

scheduling heuristic is EXP-ET in combination with its intrinsic release policy. 

Combinations of release policies and dispatch rules with a look-ahead parameter 

were successively run with four different parameter values that had been identified as 

producing the best results. By combining these different dispatch rules, release policies 

and parameter settings a total of 39 heuristics4 was obtained. 

These 39 combinations of priority dispatch rules and release policies were run in 

two different ways: 

1. On each problem, the best of the 39 schedules produced by these combinations 

was recorded. In this case, out of the 39 combinations, 13 performed best on 

at least one of the 40 problems considered in the study. These 13 combinations 

4The 39 combinations were as follows: EXP-ET and its intrinsic policy (times four parameter 
settings), EXP-ET/IM-REL (times four parameter settings), EDD/AQT (times four parameter set- 
tings), EDD/IM-REL, WSPT/AQT (times four parameter settings), WSPT/IM-REL, SRPT/AQT 
(times four parameter settings), SRPT/IM-REL, WCOVERT/IM-REL (times four parameter set- 
tings), WCOVERT/AQT (times four parameter settings), ATC/IM-REL (times four parameter set- 
tings), ATC/AQT (times four parameter settings). 
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included 5 of the 6 dispatch rules (SRPT was never best on this set of problems) 

and all 3 release policies. 

On each problem, each of the 39 schedules obtained by these combinations was 

post-processed using an LP program to insert idle time optimally. Again, on each 

problem, the best of the 39 post-processed schedules was recorded for comparison 

against the SA procedure. In this case, out of the 39 combinations, 11 performed 

best (after post-processing) on at least one of the 40 problems considered in the 

study. These 11 combinations included 5 of the 6 dispatch rules (here, WSPT 

was never best) and all 3 release policies. 

Table 1 Characteristics of the eight probl em sets 

Problem Set Number of Bottlenecks Avg. Due Date Due Date Range 

1 1 loose wide 

2 1 loose narrow 

3 1 tight wide 
4 1 tight narrow 

5 2 loose wide 
6 2 loose narrow 
7 2 tight wide 
8 2 tight narrow 

The results reported below were obtained on a suite of 40 scheduling problems 

similar to the ones described in [24]. The series consisted of eight sets of scheduling 

problems obtained by adjusting three parameters to cover a wide range of scheduling 

conditions (See Table 1): an average due date parameter (tight versus loose average 

due date), a due date range parameter (narrow versus wide range of due dates), and a 

parameter controlling the number of major bottlenecks (in this case one or two). For 

each parameter combination, a set of 5 scheduling problems was randomly generated, 

thereby resulting in a total of 40 problems (5 problems x 2 average due date values x 

2 due date ranges x 2 bottleneck configurations). Each problem involved 20 jobs and 

5 resources for a total of 100 operations. Marginal tardiness costs in these problems 

were set to be, on average, ten times larger than marginal inventory costs to model a 

situation where tardiness costs dominate but inventory costs are non-negligible5. 
5 Similar results have also been obtained on a set of problems where marginal tardiness costs were 

on average five times larger than marginal inventory costs. 
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The SA procedure was run 10 times on each problem. For each problem, we recorded 

both the average performance of the procedure (referred to below as SA-AVG) as well 

as the best solution it found for each problem over 10 runs (SA-BEST) . In each run, 

the initial temperature, T0, was set to 700, temperature T\ was 6.25 and the cooling 

rate a was 0.85.    The value of ß was 1000 6.   The number N of iterations in the 

6The problems that were run typically had optimal solutions with a value ranging between 3000 
and 15000. Setting ß to 1000 was sufficient to guarantee that all precedence constraints were satisfied 
at the end of each run. 
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inner-loop of the procedure (See Figure   1) was set to 300,000. 

25000Y 

20000 

4 5 

Problem Set 

G Combination of 39 
priority dispatch rules 
and release policies 

Combination of 39 
priority dispatch rules 
and release policies 

SA-AVG (over 10 
runs) 

□ SA-BEST(over 10 
runs) 

(recording the best with idle time 
of 39 schedules on optimization (i.e. on 
each problem) each problem, all 39 

schedules are post- 
processed and the 
best post-processed 
schedule is recorded) 

Fig.    5: Comparison of SA and a combination of 39 dispatch rules and 

release policies with and without optimal idle time insertion. 

Figure 5 compares the schedules produced by the SA procedure with the best 

schedules obtained on each problem by the 39 combinations of dispatch rules and release 

policies both with and without idle time optimization. For instance, on Problem Set 6 
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(problems with two bottleneck resources, loose average due dates and narrow due date 

ranges), (1) SA-BEST reduced schedule cost by almost 11% compared to SA-AVG. 

(2) SA-AVG reduced schedule cost by about 18% compared to the 39 combinations of 

dispatch rules and release policies with optimal idle time insertion and (3) performance 

of the 39 combinations of dispatch rules and release policies (taking the best of 39 

schedules on each problem) improves by more than 6% with optimal idle time insertion. 

Overall, Figure 5 indicates that SA-BEST consistently outperforms the combina- 

tions of dispatch rules and release policies with and without idle time insertion on all 

8 problem sets. The comparison also holds for SA-AVG with the exception of the two 

easier problem sets (Problem Set 1 and 5, i.e. problems with loose and widely spread 

due dates), where SA-AVG does slightly worse than the 39 combinations with idle time 

optimization. Notice that SA-AVG still outperforms the 39 combinations without idle 

time optimization on these two problem sets. Overall, compared against the 39 combi- 

nations of dispatch rules and release policies without idle time optimization, SA-AVG 

reduced schedule cost by close to 16% and SA-BEST by close to 28%. Even when, on 

each problem, idle time was optimally inserted in each of the 39 schedules obtained by 

the combinations of dispatch rules and release policies, SA-AVG still reduced schedule 

cost by an average of about 7% and SA-BEST by over 20%. A more detailed analysis 

indicates that these reductions in schedule cost reflect reductions in both tardiness 

and inventory costs. However, while running all 39 combinations of dispatch rules and 

release policies requires only a few CPU seconds on each problem and about 45 to 50 

CPU seconds when idle time is optimally inserted in each of the 39 schedules, a SA 
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run takes 3 to 5 minutes on a DECstation 5000/200 running C. 

20000-ff 

18000 

4 5 
Problem Set 

□ SA-AVG (over ■ SA-AVG with      ■ SA-BEST (over   D SA-BEST with 
10 runs) idle time                  10 runs)                 idle time 

optimization                                            optimization 
(over 10 runs)                                       (over 10 runs) j 

Fig. 6 Performance of the SA procedure with and without idle time 

optimization. 

Additional experiments were also conducted to evaluate the performance of the 

SA procedure with respect to idle time optimization. Figure 6 summarizes these 

experiments, reporting both the average and best performance of the SA procedure 

C16 



over 10 runs with and without post-processing for optimal idle time insertion. The 

results clearly indicate that the schedules produced by the SA procedure are nearly 

optimal with respect to idle time insertion, thereby validating the choice of the LEFT- 

and RIGHT-SHIFT operators used to define the neighborhood of the procedure. On 

average, idle time insertion improved performance of SA-BEST by a meager 0.94% 

(with a standard deviation of 0.8%) and that of SA-AVG by 1.02% (with a standard 

deviation of 0.5%). 

The results in Figure 5 and 6 generally attest to the ability of the SA procedure 

to produce high quality solutions, often significantly reducing schedule cost compared 

to other well-regarded scheduling heuristics. They also indicate that the computa- 

tional requirements of the procedure are quite large compared to these other heuristics, 

though experiments with larger problems suggest that the average complexity of our 

SA procedure only grows linearly with the size of the problem. 

Finally, we observe that the performance of the SA procedure can significantly vary 

from one run to another, as illustrated by the results in Figure 5. In our experiments, 

an average run of SA produced schedules with costs 14% higher than those of the best 

schedule obtained over 10 runs (SA-AVG vs. SA-BEST). This suggests that important 

speedups could possibly be obtained if the procedure was more consistent in producing 

high quality solutions. In the following section, a meta-heuristic procedure is presented 

that aims at reducing performance variability using artificial costs to dynamically focus 

the SA procedure on critical subproblems. 

5     Focused Simulated Annealing Search 

Figure 7 depicts 5 typical runs of the SA procedure introduced in the previous sections, 

plotting the cost of the best schedule found in each run, as the the temperature is slowly 
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lowered over time. 

Cost 

25000 

20000- 

15000- 

-►•Temp. 
200       100 50 25 12.5      6.25 

Fig. 7 Solution improvement in 5 runs of SA. 

The behavior exhibited in Figure 7 is characteristic of SA search procedures: the 

largest improvements are observed at relatively high temperatures. In the case of 

our SA procedure, we observed that below T = 50 the quality of the solution never 

improved by more than a few percent. In other words, the early stage of the procedure 

is the one that determines whether or not the procedure will get trapped in a local 

minimum (e.g. See run A in Figure 7). The remainder of this section describes a 

meta-heuristic that relies on the dynamic introduction of artificial costs in the objective 

function to focus SA on critical subproblems and attempt to steer clear of local minima 

during the high temperature phase of the procedure. Below we refer to the resulting 

procedure as "Focused Simulated Annealing" (FSA) search. 

To improve the quality of an existing solution, FSA iteratively identifies major 

inefficiencies in the current solution and attempts to make these inefficiencies more 

obvious to the search procedure by artificially inflating their costs. As a result, the 

search procedure works harder on getting rid of these inefficiencies, possibly introducing 

new inefficiencies in the process. By regularly tracking sources of inefficiency in the 

existing solution and reconfiguring the cost function to eliminate these inefficiencies, 

FSA can increase the chances that the procedure finds a high quality solution. 
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T = T0; 
x - xo (€ S); 
BestSol = XQ\ M = cost(BestSol); 
while (T > 7\)    { 

if (T > T2) 
CritSubp = identify-high-cost-subp (x); 

else 
CritSubp = 0; 

fori = l,A^    { 
a;' = neighbor(x); 
if (costl(x') < costl(x))    x = x'\ 
else if (rand() < exp{(cost 1 (x) - costl(x'))/T})    x = x'\ 
if (cosi(x') < M)     {BestSol = a;'; M = cost(£es*So/);} 

} 
if (M was not modified in the above loop)     T = T * a; 

} 

Fig. 8 The FSA Procedure: A meta-heuristic that continuously attempts 

to reduce major inefficiencies in the solution. 

Pseudo-code for the FSA procedure is given in Figure 8. T2 is a threshold temper- 

ature between T0 and 7\. Below T2, FSA behaves exactly as the SA search procedure 

described in Figure 1. Before reaching this temperature, the procedure uses a different 

cost function to decide whether or not to accept transitions to neighboring solutions, 

namely: 

costl(x) = cost(x) + ArtifCost(x) 

where: 

or, equivalently: 

ArtifCost(x) =       Yl       {Htcostl + icost'i)} 
Ol

tECritSubj> 

costl{x) = J2   E    (fcost'i + tcosti + icost'i) +       E       Wcost\ + icost1^} 
leJ l<i<nt 0\eCritSubp 

k is a parameter that controls the amount by which the costs associated with 

operations in critical subproblems are inflated.   In our experiments, we found that 
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setting k to 2 and T2 to 50 generally yielded good results. Results obtained with other 

values for these parameters are provided in Appendix B. 

Notice that inflating the costs associated with one or several subproblems is equiv- 

alent to reducing the temperature associated with the corresponding components of 

the objective function (or raising the temperature in the remainder of the problem). 

Accordingly, FSA can be viewed as a SA procedure in which transition probabilities 

are subject to different temperatures in different parts of the problem. Temperatures 

in different subproblems are regularly modified (lowered or raised) to get rid of ma- 

jor inefficiencies in one part or another of the working solution. In this regard, FSA 

is reminiscent of the Strategic Oscillation idea of developing non-monotonic cooling 

schedules [7, 21. 10]. However, while Strategic Oscillation cooling schedules proposed 

in the literature vary temperature in the entire problem, FSA emphasizes selective 

temperature variations in dynamically identified subproblems, as detailed below. 

The specific parts of the solution in which FSA attempts to eliminate inefficiencies 

are determined by the identify-high-cost-subpQ function. Here several variations of 

the procedure are considered that differ in the way they decompose the problem: a 

job-based variation, a resource-based variation and an operation-based variation. 

"Critical Job" (CJ) variation This variation of FSA dynamically inflates the costs 

associated with critical jobs. Here, identify-high-cost-subpQ computes the the cost of 

each job jt in the current schedule, namely, 

y]   {tcost\ + icost\) 
l<:'<n, 

. The function then returns the set of all jobs whose costs are above p • CLVR , where 

avR is the average cost of a job in the current schedule and p is a constant. In the 

experiments reported below, p was empirically set to 3. Below we refer to this variation 

of the procedure as FSA(CJ). Results obtained with other values of p are also reported 

in Appendix B. 

"Bottleneck Resource" (BR) variation This variation of FSA inflates the costs 

associated with critical ("bottleneck") resources in the existing schedule. This is done 
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by computing a cost for each resource Rk'. 

y^y (tcost[ + icost\) 
R\=Rk 

In this case, the highest cost resource is selected and all the operations requiring this 

resource are returned by identify-high-cost-subp(). This procedure will be referred to 

as FSA{BR). 

"Critical Operation" (CO) variation Here, FSA focuses on critical operations 

rather than critical jobs or critical resources. The average cost of an operation in the 

current schedule, avo, is computed: 

ayo = Y,   2  (tcost\ + ic°st'i)/Y,n' 
lej i<i<ni leJ 

All the operations with a cost above q ■ av0 are considered critical, q is a constant. 

In the experiments reported below, q was equal to 3. We will denote this procedure 

FSA(CO). Results obtained with other values of q are also reported in Appendix B. 

6    Performance Evaluation 

To evaluate the effectiveness of FSA, all three variations of the procedure were run on a 

set of 40 scheduling problems similar to the ones described in Section 4. Each variation 

was run 10 times on each problem. Table 2 compares each of the three variations of 

the FSA procedure against the SA procedure described in Section 3. Both the average 

and best performance over 10 runs are reported. 

Table 2 Cost Reduction (%) obtained by FSA over SA 
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Problem 
Set 

FSA(CJ) FSA BR) FSA(CO) 
Avg Best Avg Best Avg Best 

1 4.5 2.0 -0.8 0.9 -0.6 -0.6 
2 6.5 5.1 4.3 2.3 3.5 4.3 
3 7.3 5.2 -1.2 -2.6 -0.9 -2.3 
4 0.4 0.2 -2.4 -2.2 -2.1 -2.2 
5 8.6 4.5 -9.4 -1.7 1.9 3.2 
6 8.0 2.4 -2.8 -4.3 2.3 4.2 
7 6.7 6.2 -25.2 -6.3 -2.4 0.4 
8 0.2 3.5 -2.7 -0.5 -2.1 0.7 

Overall 5.2 3.6 -5.0 -2.0 -0.5 0.9 

The results in Table 2 show that the dynamic introduction of artificial costs, as 

implemented in the FSA procedure, can potentially lead to significant improvements 

both in the average and best performance of the SA procedure. The results also show 

that the effectiveness of this approach depends on the type of subproblems considered 

by the procedure. While FSA(CJ) reduced schedule cost by an average of 5.2% and 

improved the quality of the best schedule found in 10 runs by an average of 3.6%, the 

other two variations of the procedure, FSA(BR) and FSA(CO), did not fare as well. 

FSA(CO) performed approximately like the original SA procedure and FSA(BR) actu- 

ally did worse. Below, we further analyze the performance improvement obtained with 

FSA(CJ). In the following section, we attempt to explain why FSA(CO) and FSA(BR) 

did not perform as well. For now, we further analyze the performance improvements 

observed with FSA(CJ). 
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Figure  9 and   10 show the cost distributions of the schedules obtained by succes- 

sively running SA and FSA(CJ) 300 times on two typical scheduling problems. 

frequency 

av=9790 

40 

20- 

*■ cost 
5000 7500 10000 12500 15000 

Simple SA 

frequency 

40- 

20- 

■*• cost 
5000 7500 10000 12500 15000 

FSA (CJ) 

Fig. 9 Improvement of FSA(CJ) over the original SA procedure (Problem 

1) 

On the problem in Figure 9, the improvement obtained with FSA(CJ) is quite 

obvious: both the average and standard deviation of the cost distribution produced by 

FSA(CJ) are lower than those of the original SA procedure. Accordingly, it appears 

that for this problem the probability of getting trapped in a local optimum has been 

greatly reduced. This in turn can translate in significant reductions in computation 

time. For instance, while the original SA procedure would require an average of 2.5 

runs to find a schedule with cost below 9000, FSA(CJ) would only require an average 

of 1.1 run, a saving of more than 50%. To find a schedule of cost below 8000, FSA(CJ) 
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reduces computation time by more than 90%. 
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Fig. 10 Improvement of FSA(CJ) over the original SA procedure 

(Problem 2) 

On the other hand, for the problem in Figure 10, the performance improvement 

yielded by FSA(CJ) is rather modest: no significant reduction in average schedule cost 

or even in the standard deviation of the distribution. 

Looking more carefully at these two problems, we observe that, in the case of the 

problem in Figure 9, SA yields a cost distribution with two clearly separated peaks, 

thereby suggesting that the procedure is often caught in local minima. In contrast, in 

the case of the problem analyzed in Figure 10, the cost distribution obtained using the 

original SA procedure is generally more compact. This would suggest that FSA(CJ) 

is more effective in those situations where the original procedure is more likely to get 

trapped in local optima. 
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To verify this hypothesis, we measure for each problem the average reduction in 

schedule cost yielded by FSA(CJ) (compared to the original SA procedure) and the 

spread of the cost distribution obtained with the original SA procedure. This spread 

is simply measured as the standard deviation of the cost distribution obtained by SA 

divided by the mean of this distribution. The results for all 40 problems of the study 

are summarized in Figure   11. 

Improvement (%) 

20 

15 

10 

0- 

-5 - 

0.05       0.1        0.15       0.2       0.25 
-*■ Deviation (sd/av) 

Fig. 11 Improvements obtained with FSA(CJ) as a function of the relative 

variation in schedule cost observed when using the original SA procedure. 

The graph clearly confirms our intuition. The most important improvements are 

observed on problems where the original SA procedure showed the least consistency, 

namely those problems where it had the highest chance of getting trapped in local min- 

ima. The Figure also indicates that FSA(CJ) rarely performs worse than the original 

SA procedure, and, when it does, the degradation in schedule quality is marginal. 
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7    Further Analysis 

If we are to apply FS A to other problems, we need to understand why some variations of 
the procedure perform better than others. There are at least two ways of approaching 

this question. One approach is to attempt to analyze the search procedure and the 

neighborhood structure it relies on and try to understand how the choice of a given type 

of subproblems influences the effectiveness of FSA on this specific class of scheduling 

problems. This approach is probably the one a scheduling expert would be tempted to 

follow. It could potentially lead to very insightful conclusions for the class of scheduling 

problems of interest in this study. However, our purpose here is different, as we are 

looking for insight that can possibly carry over to other domains. For this reason, we 

take a different approach and limit our analysis to the external behavior of the search 

procedure. 

As pointed out at the beginning of Section 5, the early phase of a SA run, where 

temperature is still high, generally determines whether the procedure gets caught in a 

local minimum or not. Different neighborhood structures for a same class of problem 

can possibly lead to different types of local minima. The nature of these local minima 

can in turn affect the effectiveness of different problem decompositions in the FSA 

procedure. In Figure 12, we analyze cost reductions in different types of subproblems 

during the lower temperature phase of the original SA procedure. Specifically, Figure 

12 considers improvements in three different types of subproblems: 

1. CJ: the set of critical jobs that would be identified by FSA(CJ) at T = 100 

2. BR: the critical ("bottleneck") resource that would be used by FSA(BR) at T = 

100 

3. CO: the set of critical operations that would be considered by FSA(CO) at T = 

100 
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Fig. 12 Changes of Cost in the Later Stage of SA 

For each of these subproblems, Figure 12 plots the average variation in cost as- 

sociated with these 3 subproblems as the temperature in the original SA procedure 

is progressively lowered. The curve labeled " TotaF plots the cost variations of the 

overall schedule as temperature decreases. The points in Figure 12 represent averages 

taken over the set of 40 problems studied in Section 6 and over 10 runs of SA on each 

problem. 

Figure 12 indicates that, when using the original SA procedure, major inefficiences 

in job schedules do not get corrected below temperature T = 100, while major ineffi- 

ciencies at the level of critical resources or critical operations are still easy to eliminate. 

This explains why FSA(CJ) is the variation that performs best: it is the one that best 

matches the weaknesses of the original SA procedure. By working hard on eliminat- 

ing inefficiencies at the level of critical jobs, FSA(CJ) reduces the chances that such 

inefficiencies remain when the procedure reaches its lower temperature phase, a phase 

when it is no longer effective at getting rid of these inefficiencies. For the same reason, 

the BR curve suggests that FSA(BR) wastes its time getting rid of inefficiencies that 
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are still easy to eliminate in the lower temperature phase of the procedure, and hence 

can be expected to perform poorly, as observed in the results presented in Section 6, 

8     Summary and Concluding Remarks 

In summary, the contribution of this work is twofold: 

1. On the scheduling front, a SA procedure has been developed to solve job shop 

scheduling problems with both tardiness and inventory costs. The procedure has 

been shown to produce high quality solutions, reducing schedule cost by 28% over 

a combination of 39 well-regarded dispatch rules and release policies (and by 20% 

when the dispatch schedules are post-processed for optimal idle time insertion), 

though at the expense of significant computational efforts. 

2. To reduce the computational requirements of this procedure, a meta-heuristic 

search procedure called Focused Simulated Annealing (FSA) search has been 

developed. This procedure aims at reducing variability in the performance of SA 

by dynamically focusing on the elimination of major inefficiencies in the solution. 

The procedure works by dynamically inflating the costs associated with critical 

subproblems and requires a decomposable objective function. 

Three variations of FSA have been developed for the job shop scheduling problem 

with tardiness and inventory costs. These variations of the procedure differ in the 

type of subproblems they rely on: job subproblems, resource subproblems, or op- 

eration subproblems. Experiments show that, with the right decomposition, FSA 

can significantly improve solution quality especially on problems where search is 

likely to get caught in local minima. Equivalently, for the same solution quality, 

FSA can greatly reduce computation time over a regular SA search. 

Our experiments also indicate that the performance of FSA critically depends 

on the selection of a good decomposition of the objective function. An analy- 

sis suggests that the most effective decompositions are those corresponding to 

subproblems whose solutions are particularly difficult to improve during the low 

temperature phase of the SA procedure. By focusing on inefficiencies at the level 
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of these subproblems, FSA can greatly reduce the chance of getting trapped in 

local minima. 

As is often the case in this type of study, many design alternatives remain to be 

explored. Further work will also be required to assess the effectiveness of FSA or 

FSA-like meta-heuristics in combination with more sophisticated SA procedures, e.g. 

procedures incorporating some aspects of Tabu Search [9, 26, 19]. Like Strategic Oscil- 

lation [7, 21, 10], FSA can be viewed as implementing a non-monotonic cooling sched- 

ule, though selectively, by focusing on dynamically identified subproblems. Strategic 

Oscillation could possibly also be exploited to control the value of ß, the parameter 

used in our procedure to penalize precedence constraint violations within a job. Other 

aspects of Tabu Search such as Target Analysis [8, 15], which, like FSA, adds a term 

to the objective function to drive the procedure towards high quality solutions, would 

also be worth comparing with and possibly incorporating in the existing procedure. 
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Appendix A:    Idle Time Insertion as a Linear Program 

The problem of optimally inserting idle in an existing job shop schedule (i.e. given 

completely defined operation sequences on each resource) can be formulated as a linear 

program, as detailed below: 

Tl| — 1 

MIN £{ W, ■ T, + £ [inv't ■ (st\+1 - st1,)} + inv'ni ■ (du'ni + t,)} (1) 
leJ «=i 

such that: 

Ti - ti - stlni = dul
ni - ddi / = l,...,n (2) 

st\ — stli+1 < — du\ / = l,...,n      i = 1, ...,ni — 1     (3) 

-"/otolM       SI;ou;(fc,i+l) ^      aUlow(k,})      K — L,...,m    J-L,...,pk        1     ^J 

T/ ,e; > 0 / = 1, ...,n (5) 

st[   > erdi / = l,...,n (6) 

<(   < lcdt-dul
ni 1= l,...,n (7) 

where: 

• T\ is the tardiness of job j\ 

• t\ is the earliness of job j\ 

• 0^,'A} is the j-th operation scheduled on resource Rk (in the given schedule). 

In other words, up(k,j) is the index of the job to which this opeation belongs 

and /ow(fc, j) the index of this operation within its job 

• pk is the number of operations requiring resource Rk 

• The other notations are as defined in Section 2 
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Note that, in Equation (2), when job ji is tardy, 77 = stlni + dul
nt — ddi > 0 and 

e/ = 0, and, when it is early, t\ = dd\ - (stlni + dul
ni) > 0 and 77 = 0. A similar 

formulation was first proposed by Fry et al. for the one-machine early/tardy problem 

[4]. While more efficient procedures are described in the literature for the one-machine 

early/tardy problem, including an O(NlogN) procedure developed by Garey et al. [6], 

it is not clear at this time how these procedures could be efficiently generalized to the 

job shop case. 

Appendix B:     Results Obtained Under Different Parameter 
Settings 

This appendix summarizes results obtained with FSA for different values of the follow- 

ing four parameters: 

• T2: temperature above which FSA artificially inflates the costs of critical sub- 

problems. The results in Table 3 were obtained using FSA(CJ), the variation 

of FSA that performed best in our experiments. In these experiments, k — 2 and 

p = 3. 

• k: the parameter by which FSA inflates the costs of critical subproblems. The 

results in Table 4 were obtained using FSA(CJ), the variation of FSA that 

performed best in our experiments. In these experiments, T2 = 50 and p = 3. 

• p: the parameter used by FSA(CJ) to identify critical jobs. Results obtained 

with different values of this parameter are summarized in Table 5. In these 

experiments, T2 = 50 and k — 2. 

• q: the parameter used by FSA(CO) to identify critical operations. Results 

obtained with different values of this parameter are summarized in Table 6. In 

these experiments, T2 = 50 and k = 2. 

More detailed definitions of these parameters are provided in Section   5.  The tables 

below report both average and best performance of FSA over 10 runs. 

The best results are generally obtained for T2 = 50, k = 2, p = 3 and q = 3, the 

values used in the experiments reported in Section 6. 
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Table 3 Percentage performance improvement(-f)/degradation(-) observed 

when running FSA(CJ) with different values of T2. Performance with 

T2 = 50 is used as the reference. 

Problem 

Set 

Best Performance Average Performance 

T2 = 25 r2 = 50 T2 = 100 T2 = 200 r2 = 25 r2 = 50 T2 = 100 T2 = 200 

1 -2.3 0.0 -7.7 -3.5 -2.4 0.0 -1.2 -0.2 

2 -0.3 0.0 3.3 1.6 0.8 0.0 0.2 -4.1 

3 -2.3 0.0 0.5 0.0 -2.4 0.0 -0.5 1.3 

4 -3.7 0.0 -1.6 -0.9 -2.5 0.0 -0.7 0.7 

5 -1.2 0.0 0.0 0.8 -0.1 0.0 -2.6 -1.2 

6 -1.8 0.0 2.5 -0.5 -1.1 0.0 1.4 1.7 

7 -0.6 0.0 -1.2 -4.0 -3.6 0.0 -0.1 -0.4 

8 -2.1 0.0 -5.6 -6.8 -0.4 0.0 0.7 2.8 

Overall -1.8 0.0 -1.2 -1.7 -1.5 0.0 -0.4 0.1 
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Table 4 Percentage performance improvement(+)/degradation(-) observed 

when running FSA(CJ) with different values of k. Performance with k = 2 

is used as the reference. 

Problem 

Set 

Best Performance Average Performance 

k = l k = 2 k = 3 k = 4 k = 1 k = 2 k = z k = i 

1 -3.8 0.0 -4.4 -0.3 1.0 0.0 0.8 0.1 

2 -0.2 0.0 -1.2 -2.0 1.3 0.0 0.0 -1.3 

3 -1.9 0.0 -2.6 3.2 -2.2 0.0 1.6 1.5 

4 -2.2 0.0 -3.4 -3.6 0.4 0.0 -2.4 -1.1 

5 -3.6 0.0 -2.8 -0.5 -1.1 0.0 -4.2 -12.1 

6 -0.3 0.0 2.5 -0.9 -1.1 0.0 -2.4 -1.8 

7 2.9 0.0 -5.2 2.1 3.2 0.0 0.1 -3.1 

8 -3.6 0.0 -2.1 -5.0 2.9 0.0 3.0 2.5 

Overall -1.6 0.0 -2.4 -0.9 0.6 0.0 -0.4 -1.9 
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Table 5 Percentage performance improvement(+)/degradation(-) observed 

when running FSA(CJ) with different values of p. Performance with p = 3 

is used as the reference. 

Problem 

Set 

Best Performance Average Performance 

p=l p = 2 p = 3 p = 4 p=l p = 2 p = 3 p = 4 

1 -2.4 -1.6 0.0 0.3 0.6 1.8 0.0 -2.7 

2 1.1 1.6 0.0 -1.7 2.2 1.2 0.0 -4.7 

3 1.3 -1.0 0.0 -1.8 0.0 -0.6 0.0 0.9 

4 1.2 1.2 0.0 3.7 -1.7 -1.3 0.0 2.5 

5 -1.0 -4.1 0.0 -1.8 -32.1 -14.9 0.0 -0.2 

6 2.3 1.0 0.0 -2.6 2.0 1.6 0.0 -0.4 

7 -1.4 1.3 0.0 -3.1 -7.6 -2.7 0.0 0.4 

8 -3.7 -2.2 0.0 -4.0 -5.2 2.1 0.0 1.6 

Overall -0.3 -0.5 0.0 -1.4 -5.2 -1.6 0.0 -0.3 
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Table 6 Percentage performance improvement(+)/degradation(-) observed 

when running FSA(CO) with different values of q. Performance with q = 3 

is used as the reference. 

Problem 

Set 

Best Performance Average Performance 

q = l q = 2 q = 3 q = A 9 = 1 q = 2 9 = 3 9 = 4 

1 0.7 0.5 0.0 1.0 -0.8 0.8 0.0 -1.6 

2 -1.7 -1.2 0.0 -2.6 0.4 0.8 0.0 -0.5 

3 2.7 3.9 0.0 2.3 2.4 1.1 0.0 1.1 

4 -3.6 -3.7 0.0 -8.4 -0.2 -0.4 0.0 -3.5 

5 2.7 0.2 0.0 1.3 -17.3 -6.9 0.0 1.3 

6 -4.7 1.2 0.0 1.5 -2.4 0.9 0.0 1.8 

7 1.6 1.7 0.0 0.5 -2.8 0.1 0.0 0.8 

8 -1.0 1.5 0.0 1.8 -5.2 -1.8 0.0 1.6 

Overall -0.4 0.5 0.0 -0.3 -3.2 -0.7 0.0 0.1 
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Abstract 

Simulated Annealing (SA) procedures can potentially yield near-optimal solutions to 
many difficult combinatorial optimization problems, though often at the expense of 
intensive computational efforts. The single most significant source of inefficiency in 
SA search is the inherent stochasticity of the procedure, typically requiring that the 
procedure be rerun a large number of times before a near-optimal solution is found. 
This paper describes a mechanism that attempts to learn the structure of the search 
space over multiple SA runs on a given problem. Specifically, probability distributions 
are dynamically updated over multiple runs to estimate at different checkpoints how 
promising a SA run appears to be. Based on this mechanism, two types of criteria are 
developed that aim at increasing search efficiency: (1) a cutoff criterion used to de- 
termine when to abandon unpromising runs and (2) restart criteria used to determine 
whether to start a fresh SA run or restart search in the middle of an earlier run. Ex- 
perimental results obtained on a class of complex job shop scheduling problems show 
(1) that SA can produce high quality solutions for this class of problems, if run a 
large number of times, and (2) that our learning mechanism can significantly reduce 
the computation time required to find high quality solutions to these problems. The 
results further indicate that, the closer one wants to be to the optimum, the larger the 

speedups. 
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1    Introduction 

Simulated Annealing (SA) is a general-purpose search procedure that generalizes iter- 
ative improvement approaches to combinatorial optimization by sometimes accepting 
transitions to lower quality solutions to avoid getting trapped in local minima [8, lj. SA 
procedures have been successfully applied to a variety of combinatorial optimization 
problems, including Traveling Salesman Problems [1], Graph Partitioning Problems 
[6], Graph Coloring Problems [7], Vehicle Routing Problems [14], Design of Integrated 
Circuits, Minimum Makespan Scheduling Problems [9, 13, 19] as well as other com- 
plex scheduling problems [23], often producing near-optimal solutions, though at the 
expense of intensive computational efforts. 

The single most significant source of inefficiency in S A search is the inherent stochas- 
ticity of the procedure, typically requiring that the procedure be rerun a large number 
of times before a near-optimal solution is found. Glover et al. developed a set of 
"Tabu" mechanisms that attempt to increase the efficiency of SA and other neighbor- 
hood search procedures by maintaining a selective history of search states encountered 
earlier during the same run [4]. This history is then used to dynamically derive "tabu 
restrictions" or "aspirations", that guide search, preventing it, for instance, from revis- 
iting areas of the search space it just explored. This paper describes a complementary 
mechanism that attempts to learn the structure of the search space over multiple runs 
of SA on a given problem. Specifically, we introduce a mechanism that attempts to 
predict how (un)promising a SA run is likely to be, based on probability distributions 
that are refined ("learned") over multiple runs. The distributions, which are built at 
different checkpoints, each corresponding to a different value of the temperature pa- 
rameter used in the procedure, approximate the cost reductions that one can expect if 
the SA run is continued below these temperatures. Two types of criteria are developed 
that aim at increasing search efficiency by exploiting these distributions: 

• A Cutoff Criterion: This criterion is used to detect runs that are unlikely to 
result in an improvement of the best solution found so far and, hence, should be 
abandoned; 

• Restart Criteria: When completing a run or abandoning an unpromising one, 
these criteria help determine whether to start a fresh SA run or restart search in 
the middle of an earlier promising run. 

The techniques presented in this paper have been applied to a class of complex 
job shop scheduling problems first described in [18]. Problems in this class require 
scheduling a set of jobs that each need to be completed by a possibly different due 
date. The objective is to minimize the sum of tardiness and inventory costs incurred 
by all the jobs. This class of problems is known to be NP-complete and is representa- 
tive of a large number of actual scheduling problems, including Just-In-Time factory 
scheduling problems [18, 17].  Experimental results indicate (1) that SA can produce 
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high quality solutions for this class of problems, if run a large number of times, and 
(2) that our learning mechanism can yield significant reductions in computation time. 
The results further indicate that, the closer one wants to be to the optimum, the larger 
the speedups. 

The balance of this paper is organized as follows. Section 2 quickly reviews fun- 
damentals of SA search. Section 3 analyzes the behavior of typical SA runs and 
introduces a mechanism that aims at learning to recognize (un)promising runs on a 
given problem, using the concept of Expected Cost Improvement Distributions (ECID). 
In Section 4, we use EC ID distributions to develop a cutoff criterion to determine 
when to abandon unpromising runs. Section 5 presents three restart criteria based 
EC ID distributions. Experiments obtained on a set of benchmark job shop scheduling 
problems with tardiness and inventory costs are reported in Section 6. A summary is 
provided in Section   7. 

2    Simulated Annealing Search 

Figure 1 outlines the main steps of a SA procedure designed to find a solution x £ S 
that minimizes a real-valued function, cost(x). The procedure starts from an initial 
solution x0 (randomly drawn from 5") and iteratively moves to other neighboring so- 
lutions, as determined by a neighborhood function, neighbor(x), while remembering 
the best solution found so far (denoted by s). Typically, the procedure only moves to 
neighboring solutions that are better than the current one. However, the probability 
of moving from a solution x to an inferior solution x' is greater than zero, thereby al- 
lowing the procedure to escape from local minima. rand() is a function that randomly 
draws a number from a uniform distribution on the interval [0,1]. The so-called tem- 
perature, T, of the procedure is a parameter controlling the probability of accepting 
a transition to a lower quality solution. It is initially set at a high value, T0, thereby 
frequently allowing such transitions. If. after N iterations, the best solution found by 
the procedure has not improved, the temperature parameter T is decremented by a 
factor a (0 < a < 1). One motivation for progressively lowering the temperature is 
to obtain convergence. Additionally, as the procedure slowly moves towards globally 
better solutions, accepting transitions to lower quality solutions becomes increasingly 
less attractive. When the temperature drops below a preset level 7\, the procedure 
stops and s is returned (not shown in Figure   1). 
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T = T0;x = XQ (€ 5); min = oo; 
w hile (T 

for ' 
>Ti)   { 
•=1,N    { 

x' = neighbor(x); 
if (cost(x') < cost(x))    x — x'; 
else if (rand() < exp{(cost(x) — cost(x '))/T» x = x'; 
if(cost(x) < min)    min = cost(x), s = x; 

} 

if (Min was not modified in the above loop) T = T *a; 

Fig. 1 Basic Simulated Annealing Procedure. 

Fig. 2 depicts the cost distribution of the best solutions returned by 300 SA runs on 
a typical combinatorial optimization problem — a job shop scheduling problem from a 
set of benchmarks to be described in Section  6. 

Frequency 

cost 
10000 15000 20000 25000 30000 

Fig. 2 Cost Distribution of the Best Solutions Found by 300 SA Runs. 

The optimal solution for this problem is believed to have a cost around 11,500 — 
the value in itself is of no importance here. Figure 2 indicates that, if run a large 
number of times, SA is likely to eventually find an optimal solution to this problem. 
It also shows that, in many runs, SA gets trapped in local minima with costs much 
higher than the global minimum. For instance, 60% of the runs produce solutions 
with a cost at least 30% above the global minimum. This suggests that, if rather than 
completing all these unsuccessful runs, one could somehow predict when a run is likely 
to lead to a highly sub-optimal solution and abandon it, the efficiency of SA could be 
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greatly enhanced. The following section further analyzes the behavior of typical SA 
runs and proposes a mechanism which, given a problem, aims at learning to recognize 
(un)promising SA runs. 

3     Learning To Recognize (Un)promising SA Runs 

Figure 3 depicts the behavior of a SA procedure on two different scheduling problems 
(from the set of benchmarks used in Section 6). For each problem, the figure depicts 
five SA runs, plotting the cost of the best solution, s, as the temperature of the pro- 
cedure is progressively lowered — temperatures are shown in log scale, which is almost 
equivalent to computation time in linear scale. SA behaves very differently on these 
two problems. For instance, in Problem #1, the range of final solutions is relatively 
narrow, while in Problem #2 it is much wider. Another differentiating factor is the 
behavior of the procedure at low temperatures. It seems that for Problem #1, the 
quality of a run can already be estimated quite accurately at T — 50 (e.g. the best run 
at T = 50 remains best at lower temperatures), while this is less so for Problem #2. 

Cost 
30000 

25000 

20000 

15000 

200 100 50   25 12.5 6.25 
(a) Problem 1 

200001 

12500 
♦        15000 

Temp. 

7800 

200 100 50   25 12.5 6.25 
(b) Problem 2 

Temp. 

Fig. 3 Cost reductions in five SA runs on two different problems. 

Clearly, such properties are not intrinsic to a problem itself. They could change if 
a different neighborhood structure or a different cooling profile was selected, as these 
parameters can affect the types of local optima encountered by the procedure and the 
chance that the procedure extricates itself from these local optima below a given tem- 
perature. While, in general, it may be impossible to find a SA procedure that reliably 
converges to near-optimal solutions on a wide class of problems, we can try to design 
adaptive SA procedures which, given a problem, can learn to recognize (un)promising 
runs and improve their performance over time. Below, we present a mechanism, which, 
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given a problem, attempts to "learn" at different checkpoint temperatures the distri- 

bution of cost improvements that one can hope to achieve by continuing search below 

these temperatures. 
Specifically, we postulate that, given a problem and a checkpoint temperature T = t, 

the distribution of the cost improvement that is likely to be achieved by continuing a 
run below t can be approximated by a normal distribution. Using performance data 
gathered over earlier runs on a same problem, it is possible to approximate these Ex- 
pected Cost Improvement Distributions (ECID) for a set C of checkpoint temperatures 
and use these distributions to identify (un)promising runs. 

Formally, given a combinatorial optimization problem and a SA procedure for that 
problem, we define c\ as the cost of the best solution, s, at check point t in the i-th 
run and c° as the cost of the best solution obtained at temperature T = T\ in the i-th 
execution. When the (n + l)-st run reaches a checkpoint temperature t, the ECID 
below t is approximated as a normal distribution JV[^,<TJJ , whose average, filn, and 
standard deviation, al

n, are given by: 

„i _ E?=1(cj-<f)       ,      /E?=i{(cj-cP)-/4}» 
**»-  n '     *« = V ^Tl  

By incrementally refining these estimators over multiple runs, this mechanism can in 
essence "learn" to recognize (un)promising SA runs. The following sections successively 
describe a cutoff criterion and three restart criteria based on ECID distributions. 

4    A Cutoff Criterion 

Suppose that, in a sixth run on Problem #1, the best solution obtained at checkpoint 
T = 100 is solution A — Figure 4(a). At this checkpoint, the distribution of c° - 
the cost of the best solution that will have been found if the run is completed — can 
be approximated by the normal distribution N[cl°° - /4°°, o^00]. This distribution, 
represented in Fig. 4(a), suggests that, if continued, the current run has a good chance 
of improving the current best solution, x. Suppose that based on this analysis, the 
run continues until the next checkpoint, T = 50, and that the best solution found by 
the run when it reaches that temperature is A'. At this point, a new distribution of c° 
can be computed to check how the run is doing. This distribution, N[CQ° — /j|j0, af*} is 
shown in Figure 4(b). It appears much less promising than the one at T = 100. Now, 
the chances of improving the current best solution, x, appear remote: it probably does 
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not make sense to continue this run. 

Cost 

25000 

20000 
_100 
C6 

15000 

Expected 
Distribution 

"i 1 1 r 

200 100   50   25  12.5 6.25 
"Temp. 

Cost 
(a) 

25000 

20000 

Expected 
Distribution 

15000 

200 100   50   25  12.5 6.25 
(b) 

Fig. 4 Expected Cost Improvement Distributions at T=100 and T=50. 

Formally, when the (n + l)-st run reaches a checkpoint temperature t, a cutoff 
criterion is used to determine whether or not to continue this run. In the study reported 
in Section   6, we use a cutoff criterion of the form: 

lCra+l        Pn)       Xn > threshold 

where xn is the cost of the best solution found during the previous n runs and threshold 
is a threshold value. If the inequality holds, the current run is abandoned. For example, 
if threshold = 3 (the value used in our experiments) and the cutoff inequality holds at 
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a given checkpoint temperature t, the probability of improving xn by continuing the 

run below t is expected to be less than 1% [2]. 

5    Three Restart Criteria 

Whenever a run is completed or abandoned, two options are available: either start a 
fresh new annealing run or, instead, restart an earlier (promising) run, using a different 
sequence of random numbers ("reannealing"). In total, if reannealing is constrained 
to start from one of the checkpoint temperatures, there are up to n ■ \C\ + 1 possible 
options, where n is the number of earlier runs and \C\ the number of checkpoints in 
set C. Below, we describe three "restart criteria" that aim at selecting among these 
options so as to maximize the chances of quickly converging to a near-optimal solution. 

5.1     Maximum Cost Reduction Rate Criterion 

When considering several points from which to restart search, two factors need to 
be taken into account: (1) the likelihood that restarting search from a given point 
will lead to an improvement of the current best solution and (2) the time that it 
will take to complete a run from that point. Restarting from a low temperature will 
generally bring about moderate solution improvements, if any, while requiring little 
CPU time. Starting fresh new runs or restarting from higher temperatures can lead 
to more significant improvements, though less consistently and at the cost of more 
CPU time. In general, the cost improvements that can be expected from different 
temperatures will vary from one problem to another, as illustrated in Figure 3 (and 
as formalized by EC ID distributions). 

A natural restart criterion is one that picks the restart point expected to maximize 
the rate at which the cost of the current best solution will improve. For each restart 
candidate Ok (fresh annealing or reannealing), this can be approximated as the ex- 
pected cost reduction (in the best solution), if search is restarted from Ok, divided by 
the expected CPU time required to complete a run from that restart point. Below, we 
use R(Ok) to denote this approximation of the expected cost reduction rate, if search 
is restarted from Ok'. 

expected-reduction(Ok) 
(   k> =     expected-CPU(Ok) 

where expected-reduction(Ok) is the expected cost reduction at the end of a run start- 
ing from Ok and expected-CPU(Ok) is the CPU time that this run is expected to 
require. expected-C PU (Ok) can be approximated as the average time required to 
complete earier runs from O^'s temperature. expected-reduction(Ok) can be evaluated 
using ECID distributions, as detailed below. 
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Given a reannealing point Ok at checkpoint temperature t and n earlier SA runs 
completed from i or above, expected-reduction(Ok) can be approximated as: 

fx" 
expected-reduction(Ok) =  I     {Pnk(x) ' (xn ~~ x)}dx 

J LB 

where P^x) 1S the density function of the normal distribution N[ck — ß*n, <TJJ, ck is the 
cost of Ofc's best solution1, xn is the cost of the best solution obtained over the first n 
runs, and LB is a lower-bound on the optimal solution2 

Similarly, if Ok is a fresh SA run, expected-reduction(Ok) can be approximated as: 

fXn 

expected-reduction(Ok) = /     {Pn(x) ■ (xn — x)}dx 
JLB 

where Pn(x) is the density function of the normal distribution N[fi°,a°], with 

o _  2_,i=l Ci _o _  . jl^i=l\Ci        VnS 
n 

n V n 

5.2 Randomized Criterion 

One possible problem with the above criterion is its high sensitivity to possible inac- 
curacies in approximations of EC ID distributions. This can be a problem when the 
number of earlier runs is still small. When inaccurate ECID distributions lead the 
criterion to choose a poor restart point, the procedure may take a long time before it 
improves the quality of the current best solution. In the meantime, it may keep on 
coming back to the same poor restart point. For this reason, it is tempting to use 
a randomized version of the criterion. One such variation involves randomly picking 
from a set of promising restart points, H = {Oi\R(Oi) > ß ■ Max{R(Ok)}}, while 
assuming that each element in H has the same probability, 1/\H\, of being selected, ß 
is a constant whose value is between 0 and 1. 

5.3 Hybrid Criterion 

A third alternative involves keeping some level of stochasticity in the restart crite- 
rion, while ensuring that more promising restart points have a higher chance of being 
selected. This is done by selecting restart points in H according to a Boltzmann dis- 
tribution that assigns to each element 0\ 6 H a probability 

exp(R{Oi)lT) 
P(Oi) 

ZokeHexp(R(Ok)/r)) 

xTo be consistent, if Ok correponds to the i-th SA run, cj = c\, as defined in Section  3. 
2In the experiments reported in this paper, LB was simply set to 0. 
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Here, r is a positive constant. If r is very large, this method becomes equivalent to 

the randomized criterion described in subsection  5.2. Ifr « 0, this criterion becomes 

similar to the criterion of subsection  5.1.  A similar distribution is used in the Q- 
learning algorithm described in [21]. 

6     Performance Evaluation 

6.1     The Job Shop Scheduling Problem with Tardiness and Inventory Costs 

To evaluate performance of our cutoff and restart criteria, we consider a set of complex 
job shop scheduling problems first introduced in [18]. The problems assume a factory, 
in which a set of jobs, J = {ji, j2, • • • ijn}-, has to be scheduled on a set of resources, 
RES = {i?i, R-2, • • •, Rm}- Each job requires performing a set of operations O1 = 
{0[,Ol

2,- ■ ■ Ol
ni} and, ideally, should be completed by a given due date, ddi, for delivery 

to a customer. Precedence constraints specify a complete order in which operations in 
each job have to be performed. By convention, it is assumed that operation 0\ has 
to be completed before operation 0|+1 can start (i — 1,2, • • • ,n; — 1). Each operation 
0\ has a deterministic duration du[ and requires a resource R[ € RES. Resources 
cannot be assigned to more than one operation at a time. The problem is to find a 
feasible schedule that minimizes the sum of tardiness and inventory costs of all the 
jobs ("Just-In-Time" objective). This problem is known to be NP-complete [18] and 
is representative of a large number of actual factory scheduling problems where the 
objective is to meet customer demand in a timely yet cost effective manner. Additional 
details on this model can be found in [18]. 

Experimental results reported below suggest that a good neighborhood function for 
this problem can be obtained by randomly applying one of the following three operators 
to the current schedule3: 

• SHIFT-RIGHT: randomly select a "right-shiftable" operation and increase its 
start time by one time unit4. 

• SHIFT-LEFT (mirror image of SHIFT-RIGHT): randomly select a "left-shiftable" 
operation and decrease its start time by one time unit. 

• EXCHANGE: randomly select a pair of adjacent operations on a given resource 
and permute the order in which they are processed by that resource. Specifically, 

3In the scheduling jargon, the Just-In-Time objective considered in this study is known to be 
irregular[10]. Prior applications of SA to job shop scheduling have only considered regular objectives 
such as Minimum Makespan. It can be shown that the neighborhoods used in these earlier studies 
are not adequate to deal with irregular objectives such as the one considered here [16]. 

4An operation is said to be "right(left)-shiftable" if its start time can be increased (decreased) by 
one time unit without overlapping with another operation. 
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given two consecutive operations. .4 and B on a resource R, with A preceding B 
in the current solution, the exchange operator sets the new start time of B to 
the old start time of A and the new end time of A to the old end time of B 5. 

In our experiments, the probability of picking the EXCHANGE operator was empiri- 
cally set to 3/7 while the probabilities of picking SHIFT-RIGHT or SHIFT-LEFT were 
each set to 2/7. Additionally, the values of parameters in the SA procedure (see Figure 
1) were set as follows: T0 = 700, Tx = 6.25. N = 200, 000 and a = 0.85. 

The performance of this SA procedure has been evaluated in a comparison against 
39 combinations of well-regarded dispatch rules and release policies previously used to 
assess the performance of the Sched-Star [11] and Micro-Boss [18, 17] systems on a set 
of 40 benchmark problems similar to the ones described in [18]. The 40 benchmarks 
consisted of 8 problem sets obtained by adjusting three parameters to cover a wide range 
of scheduling condition: an average due date parameter (tight versus loose average due 
date), a due date range parameter (narrow versus wide range of due dates), and a 
parameter controlling the number of major bottlenecks (in this case one or two). For 
each parameter combination, a set of 5 scheduling problems was randomly generated, 
thereby resulting in a total of 40 problems. Each problem involved 20 jobs and 5 
resources for a total of 100 operations. On average, when compared against the best 
solution found on each problem by the 39 combinations of dispatch rules and release 
policies, SA reduced schedule cost by 15% (average over 10 SA runs). When comparing 
the best solution obtained in 10 SA runs against the best solution obtained on each 
problem by the 39 combinations of dispatch rules and release policies, SA produced 
schedules that were 34% better. However, while running all 39 combinations of dispatch 
rules and release policies takes a few CPU seconds on a problem, a single SA run takes 
about 3 minutes on a DECstation 5000/200 running C. Additional details on these 
experiments can be found in [16]. 

6.2     Empirical Evaluation of Cutoff and Restart Criteria 

We now turn to the evaluation of the cutoff and restart criteria presented in this paper 
and compare the performance of five variations of the SA procedure presented in  6.1: 

• N-SA: regular SA, as described in 6.1 (no learning). 

• P-SA: SA with cutoff criterion. 

• B-SA: SA with cutoff and Maximum Cost Reduction Rate restart criteria. 
5In our implementation, exchanging two operations is allowed even if a precedence constraint is 

violated in the process. Precedence constraint violations are handled using large artificial costs that 
force the SA procedure to quickly get rid of them [16]. 
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• R-SA: SA with cutoff and randomized restart criteria (ß = 0.5). 

• H-SA: SA with cutoff and hybrid restart criteria (ß = 0.5 and r = 1). 

When running P-SA, B-SA, R-SA, and H-SA, the cutoff and/or restart criteria were 
only activated after 5 complete SA runs to allow for the construction of meaningful 
ECID distributions. All four of these procedures used the same set of checkpoints, 
C = {200, 100. 50, 25, 12.5}. 

The five procedures were compared on the same 40 benchmark problems described 
in subsection 6.16. Each SA procedure was run for 2 hours on each benchmark problem. 
Furthermore, to eliminate possible noise effects, each two-hour experiment was repeated 
a total of 15 times. The results presented here were obtained by averaging performance 
of these 15 runs of each procedure on each problem. 

Fig. 5 depicts the performance of the five SA procedures on a typical benchmark 
problem. The first 15 minutes are not represented, as they correspond to the first 5 
runs when the cutoff and restart criteria have not yet been activated. 

cost 

8500- 

8000 

7500 

N-SA 

"" • ■ '—"Time (min.) 
30        60        90        120 

Fig. 5 Improvement of the best solution over time. 

The figure shows that throughout its run, N-SA was dominated by the other four 
procedures. It also indicates that both the cutoff criterion and the restart criteria 
contributed to this performance improvement. Among the three restart criteria, EI- 
SA appears to perform best. Figure 5 further suggests that the restart criterion in 
H-SA improves performance through the entire run, as the gap between H-SA and 
N-SA widens over time. These observations are confirmed by results obtained on the 
8 problem sets of the study, as depicted in Figure 6. Fig. 6(a) shows the average 
cost reductions yielded by P-SA, B-SA, R-SA and H-SA over N-SA at the end of the 
two-hour runs. Figure 6(b) gives the average reduction in the CPU time required by 
each of these four procedures to find a solution of equal or better quality than the best 

6At the present time, only a subset of the problems in each of the 8 problem sets have been 
completed. Complete results will be presented in the final version of the paper. 
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solution found by N-SA in two hours. It can be seen that H-SA requires between 30% 
and 70% less CPU time than N-SA. 

Cost reduction (%) 
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Speedup (%) 

-i 1 1 1 1 1 r- 
2     3     4     5     6     7     8 
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nn- ' 1 r——1 1 1 1 1 1  

(a) Cost reduction (computation time: fixed) 

12     3     4      5      6      7      8 

Problem Set 
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Fig. 6 Empirical comparison. 

A finer analysis indicates that performance improvements produced by our cutoff 
and restart criteria increase as one requires higher quality solutions. Figure 7, compares 
the average CPU time of each of the five procedures as the required quality of solutions 
is increased. While all five procedures take about as long to find a solution with cost 
below 9000 or 8800, the time required to find a solution below 8500 varies significantly 
(e.g. H-SA can find such a solution in 3500 seconds while N-SA requires close to 10,000 
seconds). 

Time (sec) 

10000- 

5000- 

0.0 

Cost = 8400 

• Cost: 
£OSt 

:8500 
:8600 
:8800 
:9000 

N-SA   P-SA  B-SA   R-SA   H-SA 
Fig. 7 Speedups as a function of required solution quality. 

As already indicated in Section  5, the difference in performance between B-SA, R- 
SA and H-SA suggests that a deterministic use of EC ID distributions to decide where 
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to restart search can be tricky, as these distributions may not be accurate, especially 

when only a small number of runs has been completed. By injecting non-determinism 
in the restart criterion, R-SA and H-SA ensure that the procedure will not always 
restart from the same point. The procedure is forced to sample a wider area and in 
the process gets a chance to refine EC ID distributions. From this point of view, B-SA 
is a procedure that places more emphasis on using existing knowledge of the search 
space than acquiring new one, while R-SA places more emphasis on learning and less 
on exploiting already acquired information. H-SA appears to provide the best balance 
between these two requirements. 

Finally, it should be obvious that the CPU time and memory overheads of our 
cutoff and restart criteria are very moderate. All in all, in our experiments, the CPU 
time required to learn EC ID distributions and apply the cutoff and restart criteria 
was well under 1% of total CPU time. 

7    Summary 

In summary, we have developed a mechanism that learns to recognize (un)promising 
SA runs by refining "Expected Cost Improvement Distributions" (ECIDs) over mul- 
tiple SA runs, and have developed search cutoff and restart criteria that exploit these 
distributions. These mechanisms can be applied to any SA procedure and have been 
validated on complex job shop scheduling problems with tardiness and inventory costs, 
where they have been shown to dramatically reduce the computational requirements 
of a competitive SA procedure. Experiments presented in this paper further indicate 
that the closer one seeks to be to the optimum, the larger the speedups. 
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Abstract 

1 2 We have developed an approach to acquire complicated user 

optimization criteria and use them to guide iterative solution im- 

provement. The effectiveness of the approach was tested on job shop 

scheduling problems. The ill-structuredness of the domain and the 

desired optimization objectives in real-life problems, such as factory 

scheduling, makes the problems difficult to formalize and costly to 

solve. Current optimization technology requires explicit global opti- 

mization criteria in order to control its search for the optimal solution. 

But often, a user's optimization preferences are state-dependent and 

cannot be expressed in terms of a single global optimization criterion. 

In our approach, the optimization preferences are represented implic- 

itly and extensionally in a case base. Experimental results in job 

shop scheduling problems support the hypotheses that our approach 

(1) is capable of capturing diverse user optimization preferences and 

re-using them to guide solution quality improvement, (2) is robust in 

the sense that it improves solution quality independent of the method 

1This research was partially supported by the Defense Advance Research Projects 
Agency under contract #F30602-91-C-0016. Most of the work was performed when the 
second author was a visiting scientist at the Robotics Institute at Carnegie Mellon Uni- 
versity under the support of Matsushita Electric Industrial Co. 

2This paper appeared in the Proceedings of AAAI-94, Seattle, Washington, August 
1994. 
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of initial solution generation, and (3) produces high quality solutions, 

which are comparable with solutions generated by traditional iterative 

optimization techniques, such as simulated annealing, at much lower 

computational cost. 

1     Introduction 

We present an approach, implemented in the CABINS system, to demon- 

strate the capability of acquiring user context-dependent optimization pref- 

erences and reusing them to guide iterative solution optimization in ill- 

structured domains. This capability is very important for two main reasons. 

First, traditional search methods, both Operations Research-based and Al- 

based, that are used in combinatorial optimization, need explicit representa- 

tion of objectives in terms of a cost function to be optimized [15]. In many 

practical problems, such as scheduling and design, optimization criteria often 

involve context- and user-dependent tradeoffs which are impossible to realisti- 

cally consolidate in a cost function. Second, expert system approaches, while 

having the potential to capture context-dependent tradeoffs in rules, require 

considerable knowledge acquisition effort [14]. Our approach uses case-based 
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reasoning (CBR) which has been successful in dealing with exceptional data 

[5, 16], acquiring user knowledge in complex domains [3, 10], and expending 

less effort in knowledge acquisition compared with knowledge acquisition for 

rule-based systems [9]. CABINS acquires, stores and reuses two categories 

of concepts that reflect user preferences (1) what heuristic local optimization 

action to choose in a particular context, and (2) what combinations of effects 

of application of a particular local optimization action constitutes an accept- 

able or unacceptable outcome. These are recorded in the case base and are 

used by CABINS to guide iterative optimization and induce optimization 

tradeoffs to evaluate the current solution. The optimization criteria are not 

explicitly represented as case features or in terms of a cost function but are 

implicitly and extensionally represented in the case base. 

Previous case-based systems for incremental solution revision (e.g. [6, 18]) 

have been motivated only by concerns of computational efficiency, preserv- 

ing plan correctness rather than improving plan quality, and have assumed 

the existence of a strong domain model that provides feedback as to plan 

correctness. Case-based knowledge acquisition systems, (e.g. [1]) require 

causal explanations from an expert teacher to acquire domain knowledge. 

In our approach neither the user nor the program are assumed to possess 
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causal domain knowledge. The user's expertise lies in his/her ability to per- 

form consistent evaluation of the results of problem solving and impart to 

the program cases of problem solving experiences and histories of evaluation 

tradeoffs. 

In this paper, we present initial experimental results to test three hy- 

potheses. First, our CBR-based incremental revision methodology shows 

good potential for capturing user optimization preferences in ill-structured 

domains, such as job shop scheduling, and re-using them to guide optimiza- 

tion. Second, the method is robust in the sense that it improves solution 

quality independent of the method of initial solution generation. Third, 

CABINS produces high quality solutions. To test this, we compared the 

solutions produced by CABINS with explicit optimization criteria, with so- 

lutions produced by simulated annealing (a well known iterative optimization 

technique [7, 19, 8]) for the same criteria. Our investigation was conducted in 

the domain of job shop schedule optimization and the experimental results, 

shown in section 5.1 confirmed these hypotheses. 
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2   Job Shop Schedule Optimization 

The job shop scheduling problem is one of the most difficult NP-hard com- 

binatorial optimization problems [4]. Job shop scheduling deals with allo- 

cation of a limited set of resources to a number of activities (operations) 

associated with a set of jobs so as to respect given temporal relations (e.g. 

precedence relations among activities), temporal constraints (e.g. job release 

and due dates) and resource capacity restrictions in order to optimize a set 

of objectives, such as minimize tardiness, minimize work in process inven- 

tory (WIP), maximize resource utilization etc. Due to the tight interactions 

among scheduling constraints and the often conflicting nature of optimization 

criteria, it is impossible to assess with any precision the extent of schedule 

revision or the impact of a scheduling decision on the global satisfaction of op- 

timization criteria. For example, in figure 1 moving forward the last activity 

of 0RDER3 creates downstream cascading constraint violations. Therefore, 

a repair action must be applied and its repair outcome must be evaluated 

in terms of the resulting effects on scheduling objectives. In addition, the 

evaluation itself of what is a "high quality" schedule is difficult because of 

the need to balance conflicting objectives and trade-off among them.  Such 
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tradeoffs typically reflect user preferences, which are difficult to express as 

a cost function. For example, WIP and weighted tardiness are not always 

compatible with each other. As shown in figure 2, there are situations where 

a repair action can reduce weighted tardiness, but WIP increases. Which is 

a better schedule depends on user preferences. 

CABINS incrementally revises a complete but sub-optimal schedule to 

improve its quality, based on flexible optimization tradeoffs. Revision-based 

approaches to scheduling have also been investigated by [11, 19, 2, 8]. In 

those systems, the initial schedule is repaired by several techniques, such as 

the min-conflict heuristic or simulated annealing, to minimize the number of 

constraint violations or optimize a simple cost function (e.g. make-span) of 

the schedule. The value of incorporating context-dependent user preferences 

in operational scheduling environments is becoming increasingly recognized 

(e.g. [10]) but adequate techniques are lacking. 

3    CABINS Overview 

CABINS is composed of three modules: (1) an initial schedule builder, (2) an 

interactive schedule repair (case acquisition) module and (3) an automated 
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schedule repair (case re-use) module. To generate an initial schedule, CAB- 

INS can use any of several scheduling methods (e.g. traditional dispatching 

rules or a constraint-based scheduler). 

3.1     Case representation 

In each repair iteration. CABINS focuses on one activity at a time, the 

focaLactivity, and tries to repair it. A case in CABINS describes the appli- 

cation of a particular modification to a focaLactivity. Figure 3 shows the 

information content of a case. Our assumption, borne out by the experimen- 

tal results, is that despite the ill-structuredness of the domain, the global, 

local and repair history features express (in an approximate manner) domain 

regularities. The global features reflect an abstract characterization of po- 

tential repair flexibility for the whole schedule. High 'Resource Utilization 

Average', for example, often indicates a tight schedule without much repair 

flexibility. Associated with a focal_activity are local features that we have 

identified, based on those reported in [13], and which potentially are pre- 

dictive of estimating the effects of applying a particular repair tactic to the 

schedule.   For example, 'Predictive Shift Gain' predicts how much overall 
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gain will be achieved by moving the current focaLactivity earlier in its time 

horizon.  In particular, it predicts the likely reduction of the focaLactivity's 

waiting time when moved to the left within the repair time horizon. 

Global Feature 

Weighted Tare*In*a« 
Value salience 

Ruourc« Utilization Avaraga 
Value Salience 

Raaourca Utilization Davtation 
Value Salience 

Local Faatura 
Waiting Time 

Value Salience 
Predictive Shift Gain 

Value Salience 
Predictive Alt Shift Gain 

Value Salience 
Pradlctlva Swap Gain 

Value Salience 
Pradlctlva Alt Swap Gain 

Value Salience 

Rapalr Hlatory 

Salience 
Salience 

Effatct 
Type 

0 

Figure 3: CABINS Case Representation 

The repair history records the sequence of applications of successive re- 

pair tactics, the repair outcome and the effects. Repair effect values describe 

the impact of the application of a repair action on scheduling objectives (e.g. 

weighted tardiness, WIP). A repair outcome is the evaluation assigned to 

the set of effects of a repair action and takes values in the set ['acceptable', 

'unacceptable']. Typically the outcome reflects tradeoffs among different ob- 

jectives.   If the application of a repair tactic results in a feasible schedule, 
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the result is judged as either acceptable or unacceptable with respect to the 

repair objectives. An outcome is 'acceptable' if the user accepts the tradeoffs 

involved in the set of effects for the current application of a repair action. 

Otherwise, it is 'unacceptable'. The effect salience is assigned when the out- 

come is 'unacceptable', and it indicates the significance of the effect to the 

repair outcome. This value is decided subjectively and interactively. The 

user's judgment as to balancing favorable and unfavorable effects related to 

a particular objective constitutes the explanation of the repair outcome. 

3.2     Case acquisition 

To gather cases, sample scheduling problems are solved by a scheduler. CAB- 

INS identifies jobs that must be repaired in the initial sub-optimal schedule. 

Those jobs are sorted according to the significance of defect, and repaired 

manually by a user according to this sorting. For example, if the user's op- 

timization criterion is to minimize order tardiness, the most tardy order is 

repaired first. The user selects a repair tactic to be applied. Tactic appli- 

cation consists of two parts: (a) identify the activities, resources and time 

intervals that will be involved in the repair, and (b) execute the repair by 
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applying constraint-based scheduling to reschedule the activities identified in 

(a). Currently CABINS has 11 tactics and a flexible interface through which 

the user can define more. 

After tactic selection and application, the repair effects are calculated 

and shown to the user who is asked to evaluate the outcome of the repair. If 

the user evaluates the repair outcome as 'acceptable', CABINS proceeds to 

repair another focal_activity and the process is repeated. If the user evaluates 

the repair outcome as 'unacceptable', s/he is asked to supply an explanation 

in terms of rating the salience/importance of each of the effects. The repair 

is undone and the user is asked to select another repair tactic for the same 

focaLactivity. The process continues until an acceptable outcome for the 

current focaLactivity is reached, or the repair is given up. Repair is given up 

when there are no more tactics to be applied to the current focal_activity; in 

this situation. CABINS carries on repair of another activity. The sequence of 

applications of successive repair actions, the effects, the repair outcome, and 

the user's explanation for failed application of a repair tactic are recorded in 

the repair history of the case. In this way, a number of cases are accumulated 

in the case base. 
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3.3    Case re-use 

Once cases have been gathered, CABINS repairs sub-optimal schedules with- 

out user interaction. CABINS repairs the schedules by (1) recognizing sched- 

ule sub-optimalities, (2) focusing on a focaLactivity to be repaired in each 

repair cycle, (3) invoking CBR with the set of global and local features as 

indices to decide the most appropriate repair tactic to be used for each fo- 

cal_activity, (4) invoking CBR using the repair effect features (type, value 

and salience) as indices to evaluate the repair result, and (5) when the re- 

pair result is unacceptable, deciding which repair tactic to use next.   Note 

that in contrast to traditional local iterative optimization approaches, (e.g. 

tabu search, simulated annealing) where the schedule generated in the cur- 

rent iteration as a result of local revision is directly compared (in terms of its 

associated cost function) with the current schedule, in CABINS, evaluation 

of the revision is provided by the case base, thus obviating the need for the 

presence of an explicit cost function. 

The similarity between i-th case and the current problem is calculated as 

follows : 

exp(- 

\ 

N npi _ pp. 

j=l '3 
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where SV- is the salience of j-th feature of i-th case in the case-base, and 

its value has been heuristically denned by the user. CF- is the value of j-th 

feature of i-th case, PFj is the value of j-th feature in the current problem, 

E-Dj is the standard deviation of j-th feature value of all cases in the case- 

base. Feature values are normalized by division by a standard deviation of 

the feature value so that features of equal salience have equal weight in the 

similarity function. 

4     An Example 

We briefly illustrate the repair process with a very simple example schedule 

to be repaired shown in figure 4. The example has ten jobs (Ji,..., J10) 

and each job has five activities with linear precedence constraints, (e.g. 0™ 

BEFORE 0£, ... , 0\ BEFORE 0%). Resources R1 and R2, R3 and R5 

are substitutable; resource R4 is a bottleneck. Suppose that the job under 

repair is J8. This job has a weight of 2, a due date of 1250 and the scheduled 

end-time of its last activity is 1390. Hence it has a weighted tardiness of 

2 x (1390 - 1250) = 280. Suppose the current focaLactivity is Of. CBR is 

invoked with global features (weighted tardiness= 280, resource utilization 

E14 



average=0.544, resource utilization deviation=0.032) plus the set of local 

features as indices and selects swap as a repair tactic. One can see from 

the figure that this is a good choice since the focaLactivity is scheduled on 

machine R4, which doesn't have any substitutable machine and any idle time 

in the repair time horizon (time between the end of Of and the end of Of). 

To apply swap, CABINS calculates the activity with which Of will be 

swapped. To do this, CABINS selects the activity which, if swapped with 

Of, will result in least amount of precedence constraint violations. In the 

example, activity 0\ is selected as the activity to be swapped with the current 

focaLactivity Of. Job J4 has weight 3 and weighted tardiness 3 x (1370 — 

1320) = 150. The effect of applying the swap tactic is that Of and 0\ are 

unscheduled on R4 and Of is re-scheduled to start at time 1090 (the start 

time of activity 0\ prior to the swap). The repair process resolves occurring 

constraint violations. The repaired schedule is shown in figure 5. 

The effects of repairing Of are calculated. CABINS calculates the effects 

on J8 and J4, the jobs affected by the application of the swap on Of. Machine 

utilization did not change but J8 had an estimated decrease in weighted- 

tardiness of 180 time units and an estimated decrease in WIP of 200 units, 

J4 had an increase in weighted-tardiness of 150 units and an increase in WIP 
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Figure 5: Schedule Results after Repair on Of 

of 750 units. CBR is invoked using these effect values, weighted tardiness, 

WIP, as indices to determine whether this repair outcome is acceptable. The 

acceptability or unacceptability of the repair will depend on the biases re- 

flected in the case base. 

E16 



5    Evaluation of the Approach 

We conducted a set of experiments to test the hypothesis that (1) our CBR- 

based incremental modification and re-use methodology could be effective 

in capturing user schedule optimization preferences and re-using them to 

control schedule optimization, (2) the approach is robust in that the sched- 

ules produced by CABINS consistently improve a schedule independent of 

the method used for initial schedule generation and (3) as an iterative op- 

timization method, the approach produces schedules of high quality. These 

hypotheses are difficult to test since, due to the subjective and ill-defined na- 

ture of user preferences, it is not obvious how to correlate scheduling results 

with the captured preferences or how to define quality of a schedule whose 

evaluation is subjective. 

To address these issues, we had to devise a method to test the hypotheses 

in a consistent manner. To do that, it is necessary to know the optimization 

criterion that would be implicit in the case base, so that the experimental 

results can be evaluated. In the experiments reported here, we used two 

different explicit criteria (weighted tardiness; WIP+weighted tardiness) to 

reflect the user's optimization criterion and built a rule-based reasoner (RBR) 
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that goes through a trial-and-error repair process to optimize a schedule. For 

each repair, the repair effects were calculated and, on this basis, since RBR 

had a predefined evaluation objective, it could evaluate the repair outcome 

in a consistent manner. Thus, we used RBR with different rules each time 

to generate different case bases (each with 1,000 cases) 3 for different explicit 

optimization objectives. Naturally, an objective, though known to us, is 

not known to CABINS and is only implicitly and indirectly reflected in an 

extensional way in each case base. By designing an objective into the RBR 

so it could be reflected in the corresponding case base we got an experimental 

baseline against which to evaluate the schedules generated by CABINS. 

We evaluated the approach on a benchmark suite of 60 job shop schedul- 

ing problems where parameters, such as number of bottlenecks, range of due 

dates and activity durations were varied to cover a range of job shop schedul- 

ing problem instances with the following structure. Each problem class has 

10 jobs of 5 operations each and 5 machines. Two parameters were used 

to cover different scheduling conditions: a range parameter controlled the 

distribution of job due dates and release dates, and a bottleneck parameter 

3Since a case represents the application of one repair tactic to an activity, if, for ex- 
ample, 5 repair tactics are utilized in an attempt to successfully repair an activity, then 5 
cases would be created. 
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controlled the number of bottleneck resources. Six groups of 10 problems each 

were randomly generated by considering three different values of the range 

parameter, and two values of the bottleneck configuration (1 and 2 bottle- 

neck problems). These problems are variations of the problems originally 

reported in [17]. Our problem sets are, however, different in two respects: 

(a) we allow substitutable resources for non-bottleneck resources whereas the 

original problems did not, and (b) the due dates of jobs in our problems are 

tighter by 20 percents than in the original problems. We also tested the 

approach on another set of 60 problems of 20 orders and 5 resources with 

similar results. 

A cross-validation method was used to evaluate the learning capability of 

CABINS. Each problem set in each class was divided in half. The training 

sample was repaired by RBR to gather cases. These cases were then used for 

case-based repair of the validation problems. We repeated the above process 

by interchanging the training and test sets. Reported results are for the 

validation problem sets. 
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5.1    Experimental Results 

Figures 6 show the performance of CABINS using "weighted tardiness" case 

base (labeled in the figures as CABINS(WT)) vs performance of CABINS 

using the "weighted tardiness and WIP" case base (labeled in the figures as 

CABINS(WT+WIP)). The cases constituted the only source of knowledge 

for CABINS. In other words, there was no objective given to CABINS explic- 

itly. The case-bases were used both as a source of suitable repairs, and also 

as a source of advice regarding repair evaluation. From the results we ob- 

serve that CABINS(WT) generated higher quality schedules with respect to 

minimizing weighted tardiness than CABINS(WT+WIP). Conversely, CAB- 

INS(WT+WIP) generated higher quality schedules with respect to WIP, and 

weighted tardiness plus WIP than CABINS(WT). These results indicate that 

CABINS can acquire different and subjective user preferences. 

In order to test the hypothesis that CABINS consistently improves sched- 

ule quality independent of the method of initial schedule generation, we gen- 

erated initial schedules for the benchmark suite of problems using three dif- 

ferent state-of-the-art dispatch scheduling heuristics (EDD, WSPT, R&M) 

[12] and a constraint-based scheduler (CBS). The optimization objective was 
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Figure 6: Scheduling Results with Different Case Bases 

Wei.Tar.     WIP Total CPU Sec. 

EDD 956.0       1284.6 2240.6 0.1 
CABINS 

SA 
349.5       1311.2 
340.5       1333.4 

1660.7 
1673.9 

73.5 
388.2 

WSPT 584.0       1241.0 1825.0 0.1 
CABINS 

SA 
321.0       1254.9 
328.5       1320.4 

1575.9 
1684.9 

72.1 
398.3 

R&M 556.0       1242.0 1798.0 0.1 
CABINS 

SA 
305.3       1264.9 
330.1       1290.8 

1570.2 
1620.9 

84.9 
450.5 

CBS 1173.0      1481.0 2654.0 17.4 
CABINS 

SA 
405.3       1195.0 
395.5       1220.0 

1600.3 
1615.5 

296.5 
1380.0 

Table 1:  Repair by CABINS and SA based on Different Methods of Initial 
Schedule Generation 
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WT+WIP. Table 1 presents the average of all 60 problems in the benchmark 

and shows that CABINS improved schedule quality independent of method 

to create the initial schedule. To test the hypothesis that CABINS generates 

schedules of high quality, we compared the schedules generated by CAB- 

INS against schedules generated by simulated annealing with the explicit 

objective of WT+WIP. Table 1 shows that CABINS generated schedules of 

comparable quality but was on the average 4-5 times more efficient than 

simulated annealing. 

6     Conclusions 

We have presented a case-based approach to acquire user optimization prefer- 

ences and reuse them to guide iterative solution optimization in ill-structured 

domains. We demonstrated the effectiveness of the approach in capturing 

user preferences and creating efficiently high quality solutions on job shop 

scheduling problems. One crucial issue is how much effort should be spent to 

capture "enough" number of cases for '"sufficient" solution quality improve- 

ment. This is an issue we are currently pursuing. Initial experiments to 

determine case base size versus quality improvement have shown that a case 
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base of 800 cases gives on the average 20% higher quality improvement at 

15% lower computational cost than a case base of 400 cases. It seems that the 

effort expended to capture a big number of cases can be amortized by future 

repeated use of the case base to get high quality schedules efficiently. More 

importantly, CABINS can acquire those cases from user's interaction during 

the process of solution improvement, thus imposing low additional effort on 

the user but enhancing solution improvement. We believe that CABINS has 

the potential for accommodating acquisition of user preferences that change 

over time. Future work will investigate this issue. 
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Abstract 

1 2We describe a framework, implemented in CABINS, for iterative 

schedule revision based on acquisition and reuse of user optimization 

preferences to improve schedule quality. Practical scheduling problems 

generally require allocation of resources in the presence of a large, di- 

verse and typically conflicting set of constraints and optimization cri- 

teria. The ill-structuredness of both the solution space and the desired 

objectives make scheduling problems difficult to formalize. CABINS 

records situation-dependent tradeoffs about repair actions and sched- 

ule quality to guide schedule improvement. During iterative repair, 

cases are exploited for: (1) repair action selection, (2) evaluation of 

intermediate repair results and (3) recovery from revision failures. The 

contributions of the work lie in experimentally demonstrating in a do- 

main where neither the user nor the program possess causal knowledge 

of the domain that (a) taking into consideration failure information in 

the form of failed cases or a repair history of a case improves schedule 

quality, (b) schedule quality improves with increasing case size and 

(c) preserving the case base rather than inducing rules gives better 

results. 

1     Introduction 

Recently there has been increased interest in approaches that incrementally 

modify an artifact (e.g., program, plan, design) by reusing previous expe- 

^his research was partially supported by the Defense Advance Research Projects 

Agency under contract #F30602-91-C-0016. 
2This paper appeared in the Proceedings of the AAAI-93 Case-Based Reasoning Work- 

shop, July 11-12, Washington, D.C., 1993. 
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riences in order to accommodate changed artifact specifications or recover 

from failures. Most current approaches have the following common charac- 

teristics: (1) they are motivated by considerations of computational efficiency 

[5, 13, 12], (2) they are concerned with preserving artifact correctness not 

addressing optimization issues [5, 13, 12, 4], and (3) they assume the exis- 

tence of a strong domain model that is utilized to guide artifact modification 

and repair [5, 13, 12, 4]. For example, CHEF [4] uses rules rather than CBR 

for repair tactic selection, uses a model-based simulator for detecting failures 

in a generated plan, and addresses plan correctness issues (recovery from a 

failed plan) but ignores issues of plan optimization. Such characteristics limit 

current approaches in their ability to handle interesting real world tasks since 

the existence of a strong domain model can almost never be assumed and 

improving artifact quality (as opposed to only correctness) in terms of a set 

of evaluation criteria is often a crucial consideration. 

We present an approach, implemented in CABINS, that demonstrates 

that reuse of previous relevant experiences is effective not only to ensure ar- 

tifact correctness but also to improve quality. Through case-based reasoning 

(CBR), CABINS learns two categories of concepts: (1) what heuristic repair 

actions to choose in a particular repair context, and (2) what combinations 

of effects of application of a particular repair action constitutes an acceptable 

or unacceptable repair outcome in terms of optimization criteria. In contrast 

to the knowledge acquisition task [1] where the program interacts with an 

expert teacher to acquire domain knowledge, in our approach neither the user 

nor the program possess causal domain knowledge. The user cannot predict 

the effects of modification actions on artifact correctness or quality. In the 

domain of scheduling, for example, a modification could result in worsen- 
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ing schedule quality or introducing constraint violations (see next section). 

The user's expertise lies in his/her ability to perform consistent evaluation 

of the results of problem solving and impart to the program cases of problem 

solving experiences and histories of evaluation tradeoffs. 

CABINS has been evaluated in the domain of iterative improvement of job 

shop schedules. Experimental results reported in [7] have shown that CAB- 

INS substantially increased schedule quality along a variety of optimization 

criteria (improvements ranged from 30-70 percent) without undue degrada- 

tion in efficiency as compared with (1) a state of the.art constraint-based 

scheduler, and (2) a variety of well regarded dispatch heuristics that are used 

in production management. 

In contrast to approaches that utilize a single repair heuristic [6] or use 

a statically predetermined model for selection of repair actions [8], our ap- 

proach utilizes a repair model that is incrementally learned and encoded in 

the case base. Learning allows dynamic selection and application of repair 

actions depending on the repair context. In [15] plausible explanation based 

learning has been successfully used to learn schedule repair control rules for 

speed up. Our experimental results show that in the context of CABINS, 

keeping the case base rather than inducing rules gives better results in terms 

of schedule quality. 

In this paper we experimentally demonstrate that (a) taking into consid- 

eration failure information improves performance results, (b) result quality 

improves with increasing case size and (c) preserving the case base rather 

than inducing rules gives better results. 
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1.1    Task Domain 

Scheduling assigns a set of jobs to a set of resources with finite capacity 

over time. One of the most difficult scheduling problem classes is job shop 

scheduling. Job shop scheduling is a well-known NP-complete problem [3]. 

In job shop scheduling, each job consists of a set of activities to be scheduled 

according to a partial activity ordering. Each job is assigned a release date, 

the date that it will be ready for starting processing, and a due date, a date 

on which the job should finish. Each activity within a job is assigned a 

set of substitutable resources on which the activity can be performed, and an 

activity duration. For example a drilling activity could be performed utilizing 

either a drilling machine or a milling machine. The dominant constraints in 

job shop scheduling are: temporal precedence constraints that specify the 

relative sequencing of activities within a job and resource capacity constraints 

that restrict the number of activities that can be assigned to a resource during 

overlapping time intervals. 

The activity precedence constraints along with a job's release date and 

due date restrict the set of acceptable start times for each activity. The ca- 

pacity constraints restrict the number of activities that can use a resource 

at any particular point in time and create conflicts among activities that 

are competing for the use of the same resource at overlapping time inter- 

vals. The goal of a scheduling system is to produce schedules that respect 

temporal relations and resource capacity constraints, and optimize a set of 

objectives, such as minimization of job tardiness (i.e., how late a job will 

finish), minimization of weighted tardiness (the sum of tardiness of all jobs, 

each weighted by its importance), minimization of work in process inventory 

(WIP) (i.e., the time a job spends in a factory waiting to be processed), 
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maximization of resource utilization, etc. 

CABINS incrementally revises a complete schedule to improve its quality. 

Revision consists in identifying and moving activities in the schedule. Be- 

cause of the tight constraint interactions, a revision in one part of the schedule 

may cause constraint violations in other parts. It is generally impossible to 

(a) predict in advance either the extent of the constraint violations resulting 

from a repair action, or the nature of the conflicts, or (b) judge a priori the 

effects of a repair action on the optimization objectives. Therefore, a repair 

action must be applied and its repair outcome must be evaluated in terms 

of the resulting effects on scheduling objectives. The evaluation criteria are 

often context dependent and reflect user preferences with respect to trade- 

offs. For example, WIP and weighted tardiness are not always compatible 

with each other. There are situations where WIP is reduced, but weighted 

tardiness increases. Tradeoffs are context dependent and therefore difficult 

to fully describe a priori even for a human expert. In CABINS, evaluation 

feedback is used to incrementally acquire context dependent schedule evalu- 

ation tradeoffs and their justifications. These are recorded in the case base 

and can be re-used to evaluate future schedule revision outcomes. Hence, 

preferences are reflected in the case base in two ways: as preferences for se- 

lecting a repair action, and as evaluation preferences for the repair outcome 

that resulted from selection and application of a specific repair action. 
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Global Feature 

Weighted Tardiness 
Value Salience 

Resource Utilization Average 
Value Salience 

Resource Utilization Deviation 
Value Salience 

Local Feature 

Waiting Time 
Value Salience 

Predictive Shift Gain 
Value Salience 

Predictive Alt Shift Gain 
Value Salience 

Predictive Swap Gain 
Value Salience 

Predictive Alt Swap Gain 
Value Salience 

Repair History 

Salience 

Salience 

Figure 1: CABINS Case Representation 

2     Overview of CABINS 

2.1     Case representation 

Within a job, repair is performed one activity at a time. At each iteration, 

the current job whose activity is being repaired is called the focaLjob and the 

current activity being repaired is called the focaLactivity. A case describes 

the application of ä particular modification to an activity. Case indices are 

of three types (figure 1). First, there are features that reflect potential re- 

pair flexibility for the schedule as a whole, (global features). High resource 

utilization, for example, often indicates a tight schedule without much re- 

pair flexibility. High standard deviation of resource utilization indicates the 

presence of highly contended-for resources which in turn indicates low re- 

pair flexibility. Second, there are features that reflect flexibility for schedule 
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revision within limited temporal bounds (local features). In particular, the 

temporal bound that CABINS uses is a time interval called repair time hori- 

zon. The repair time horizon of a focal-activity is the time interval between 

the end of the activity preceding the focaLactivity in the same focaLjob and 

the end of the focal_activity (see figure 2). 

ACT1 

n-1 

waiting time 
ACT1 

n 

repair time horizon 

Figure 2: Repair time horizon of focaLactivity (.4 CT,!;) 

Associated with the repair time horizon are local features that we have 

identified and which potentially are predictive of the effectiveness of applying 

a particular repair tactic. These features are in the same spirit as those 

utilized in [8]. For example, predictive-shift-gain predicts how much overall 

gain will be achieved by moving the current focaLactivity earlier in its time 

horizon. In particular, it predicts the likely reduction of the focaLactivity's 

waiting time when moved to the left within the repair time horizon. Because 

of the ill-structuredness of job shop scheduling, local and global features are 

heuristic approximations that reflect problem space characteristics. 

The third category of case indices is a set of features that reflect the se- 

quence of revisions to an activity (repair history). The repair history records 

the sequence of applications of successive repair actions, the repair effects 

and the repair outcome. Repair effects describe the impact of the applica- 

tion of a repair action on schedule optimization objectives (e.g., weighted 

tardiness. WIP). Typically these effects reflect tradeoffs among different ob- 
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jectives. A repair outcome is the evaluation assigned to the set of effects of a 

repair action and takes values in the set ['acceptable', 'unacceptable']. This 

judgement is made in the training phase and gets recorded in the case base. 

An outcome is 'acceptable' if the tradeoffs involved in the set of effects for 

the current application of a repair action is judged acceptable. If, during 

case acquisition, the outcome is judged as "unacceptable", the application 

of the repair tactic is considered a failure and an explanation that expresses 

tradeoffs with respect to balancing favorable and unfavorable outcomes on 

optimization objectives is provided. If during CBR repair the repair outcome 

is deemed unacceptable, another tactic is selected from success cases to re- 

pair the same activity, using as indices global and local case features, the 

failed tactic, and the indication of the failed outcome. This CBR invocation 

retrieves similar past failures of the tactic that were successfully repaired 

and the tactic that was eventually successful in fixing the past failure. The 

intuition here is that a similar outcome for the same tactic implies similarity 

of causal structure between the past and current case. Therefore, the even- 

tually successful tactic of a similar failure can potentially be successful in the 

current problem. 

2.2     Case acquisition 

To gather enough cases, sample scheduling problems are solved by a constraint- 

based scheduler [11]. CABINS identifies jobs in a schedule that must be 

repaired. Those jobs are sorted according to the significance of defect, and 

repaired according to this sorting. For example, if the optimization criterion 

is to minimize job tardiness, the most tardy job is repaired first. A repair 

tactic is selected to be applied. Tactic application consists of two parts: (a) 
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identify the activities, resources and time intervals that will be involved in 

the repair, and (b) execute the repair by applying constraint-based schedul- 

ing to reschedule the activities identified in (a). Repairing an activity, i.e., 

unscheduling it from its current position and re-scheduling at another time 

interval may cause conflicts with other activities. In each tactic applica- 

tion, the focaLactivity and the conflicting activities are all re-scheduled. For 

details of the approach, see [7]. 

The tactics currently available in CABINS are: 

left_shift : try to move the focaLactivity on the same resource as much to 

the left on the timeline as possible within the repair time horizon, so 

as to minimize the amount of resource capacity contention created by 

the move. 

left_shift_into_alt : try to move the focal_activity on a substitutable resource 

as much to the left on the timeline as possible within the repair time 

horizon, so as to minimize the amount of resource capacity contention 

created by the move. 

swap : swap the focaLactivity with the activity on the same resource within 

the repair time horizon which causes the least amount of precedence 

constraint violations. 

swap_into_alt : swap the focaLactivity with the activity on a substitutable 

resource within the repair time horizon which causes the least amount 

of precedence constraint violations. 

After tactic selection and application, the repair effects are calculated 

and evaluated. For example, repair of the current focaLactivity may de- 

crease WIP by 200 units and decrease weighted tardiness of the focaLjob by 
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180 units while at the same time increasing weighted tardiness of another 

job by 130 units and increasing WIP by 300 units. If the repair outcome is 

evaluated as 'acceptable', CABINS proceeds to repair another activity and 

the process is repeated. If the evaluation of the repair outcome is "unaccept- 

able", an explanation is supplied, the repair is undone and another repair 

tactic is selected for the same focaLactivity. The process continues until an 

acceptable outcome for the current focal_activity is reached, or failure is de- 

clared. Failure is declared when there are no more tactics to be applied to 

the current focaLactivity. The sequence of applications of successive repair 

actions, the effects, the repair outcome, and the explanation for failed appli- 

cation of a repair tactic are recorded in the repair history of the case. In this 

way, a number of cases are accumulated in the case base. 

In the experiments reported here, we used a simple metric, minimizing 

weighted tardiness, 3 as an objective function to evaluate the performance 

of CABINS. Although there is no straightforward way to modify a schedule 

to optimize a realistic multi-criteria objective function, by using a single- 

criterion objective we built a rule-based reasoner (RBR) that goes through 

a trial-and-error repair process to optimize a schedule and forms an experi- 

mental baseline against which to compare CABINS. Since the RBR is con- 

structed not to select the same tactic after tactic failure, it could go through 

all the tactics before giving up repairing an activity. For each repair, the 

repair effects are calculated and the repair outcome is correctly determined 

by comparing the change in the objective function. Since a clearly-defined 

objective function (which is available only in a user's mind) was used for 

30f course, CABINS does not know this metric but had to induce it from the contents 

of the case base. 
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evaluation, RBR can work as an emulator of a human scheduler, whose ex- 

pertise lies in the ability of consistent evaluation. Therefore, we used RBR 

not only to make a comparison baseline for the CABINS experiment results 

but also to generate the case base for CABINS. So far, CABINS has been 

trained with 1,000 cases. 

Once a case base is created, CABINS can repair a suboptimal schedule 

through CBR. CABINS repairs a schedule by (1) recognizing schedule sub- 

optimalities, (2) focusing on an activity to be repaired in each repair cycle, 

(3) invoking CBR with global and local features as indices to decide the most 

appropriate repair tactic to be used for each activity, (4) invoking CBR us- 

ing the repair effect features (type, value and salience) as indices to evaluate 

the repair result, and (5) in case of failure, deciding whether to give up or 

which repair tactic to use next by using global and local features and the 

repair history as indices. In the experimental study section, we report re- 

sults about the effectiveness of indexing schemes that in situations of failure 

utilize different types of failure information. 

2.3     Case retrieval 

In CABINS concepts are defined extensionally by a collection of cases. As 

a case retrieval mechanism, CABINS uses a variation of k-Nearest Neighbor 

method (k-NN). [2] where not the frequency but the sum of similarity of 

k-nearest neighbors is used as a selection criterion. The similarity between 

i-th case and the current problem is calculated as follows : 

exp( — 
iV (~1  T?l        DP 
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where SLlj is the salience of j-th feature of i-th case in the case-base. 

Salience and values of features are numeric and have been heuristically de- 

fined by the user. CFj is the value of j-th feature of i-th case, PFj is the 

value of j-th feature in the current problem, E-Dj is a standard deviation of 

j-th feature value of all cases in the case-base. Feature values are normalized 

by division by a standard deviation of the feature value so that features of 

equal salience have equal weight in the similarity function. 

3    Experimental Studies 

To evaluate CABINS, we performed a set of controlled experiments where 

job shop schedule parameters, such as number of bottlenecks, range of due 

date, and activity durations were varied to cover a broad range of job shop 

scheduling problems. To ensure that we had not unintentionally hardwired 

knowledge of the problem into the solution strategies, we generated 60 job 

shop scheduling problems at random from problem generator functions where 

the above problem parameters were varied in controlled ways. Each problem 

has 5 resources and 10 jobs of 5 activities each. Each job has a process 

routing specifying a sequence where each job must visit bottleneck resources 

after a fixed number of activities, so as to increase resource contention and 

make the problem more difficult. We also varied job due dates and release 

dates, as well as the number of bottleneck resources (1 and 2). Six groups 

of 10 problems each were randomly generated by considering three different 

values of the due date range parameter (static, moderate, dynamic), and 

two values of the bottleneck configuration (1 and 2 bottleneck problems). 

The slack was adjusted as a function of the due date range and bottleneck 
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parameters to keep demand for bottleneck resources close to 100 percent over 

the major part of each problem. Durations for activities in each job were also 

randomly generated. These problems are variations of the problems originally 

reported in [10]. Our problem sets are different in two respects: (a) we allow 

substitutable resources for non-bottleneck resources, and (b) the due dates 

of jobs in our problems are more constrained by 20 percent. 

To make an accurate determination of CABINS' capabilities, we applied a 

two-fold cross-validation method. Each problem set in each class was divided 

in half. One half was repaired by the RBR emulator to gather cases. These 

cases were used to iteratively repair the other half of the problem set. We 

repeated the above process interchanging the sample set and the test set. 

Our results are the average of the two sets of results using case-based repair. 

3.1     Evaluation of three repair strategies 

Our hypothesis is that CBR enables CABINS to improve its competence both 

in repair quality and efficiency compared with RBR by utilizing different 

types of failure information recorded in the cases. 

We experimentally compared three repair strategies: 

(1) one-shot repair, where CABINS selects a repair tactic, applies it to 

a focaLactivity and proceeds to repair the next focal-activity regardless of 

repair outcome. 

(2)exhaustive repair, where CABINS selects a repair tactic and applies it 

to repair an activity. If the repair outcome is deemed unacceptable, another 

tactic is selected from success cases to repair the same activity, using as 

indices global and local case features, the failed tactic, and the indication of 

the failed outcome.   This CBR invocation retrieves similar past failures of 
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the tactic that were successfully repaired and the tactic that was eventually 

successful in fixing the past failure. The intuition here is that similar outcome 

for the same tactic imply similarity of causal structure between the past and 

current case. Therefore, the eventually successful tactic of a similar failure 

can potentially be successful in the current problem. 

(3) limited exhaustive repair, where CABINS gives up further repair when 

it determines that it would be a waste of time. To decide whether to give up 

further repair, previous repair failed cases are utilized in conjunction with 

repair successes to determine case similarity. If the most similar case is a 

failure, CABINS gives up repair of the current activity and switches its at- 

tention to another activity. Since, in difficult problems, such as schedule 

repair, failures usually outnumber successes, if both case types are weighted 

equally, overly pessimistic results could be produced (i.e., CBR suggests giv- 

ing up too often.) To avoid this, we bias (negatively) usage of failures by 

placing a threshold on the similarity value. Failure experiences whose simi- 

larity to the current problem is below this threshold are ignored in similarity 

calculations. Since the similarity metric selects the tactic which maximizes 

the sum of the most similar k cases, this biases tactic selection in favor of 

success cases which are moderately similar to the current problem. 

The graphs in figure 3 show comparative results with respect to sched- 

ule quality improvement (weighted tardiness) and repair efficiency (in CPU 

sees) among limited exhaustive repair, exhaustive repair, one-shot repair and 

rule-based repair. The results show that one-shot repair is the worst in qual- 

ity (even compared to rule-based repair) but best in efficiency. Exhaustive 

repair outperformed one-shot repair and rule-based repair in quality. But, 

the efficiency of exhaustive repair was worse than that of one-shot repair or 

F15 



w1700 

J16OO 
^1500 
]gl400 
lh 300 
S1200 
1100 
1000 
goo 
eoo 
700 
eoo 
500 
400 
300 
200 
100 

■—■  Rule-based Repair 
■—• One-shot repair 
 Exhaustive repair 
 •  Limited Exhaustive repair 

<o900 

joaoo 
£ 
= 700 o_ 
O 
600 

500 

400 

300 

200 

100 

■—■ Rule-based Repair 
•- - One-shot repair 
— —  Exhaustive repair 
•   Limited Exhaustive repair 

4 5 6 
Problem Set 5 6 

Problem Set 

Figure 3: Effect of repair strategies in quality and efficiency 

rule-based repair. We believe that this result stems from the following two 

reasons: (1) greediness - exhaustive repair applies the tactic from the most 

similar cases no matter how small their similarity is, and (2) stubbornness - 

exhaustive repair continues to repair an activity without giving up when the 

problem seems difficult. The quality of repair by limited exhaustive repair 

is only slightly worse than that by exhaustive repair, but is still comparable 

with that of rule-based repair. The efficiency of limited exhaustive repair is 

much higher than both rule-based repair and exhaustive repair. Although 

the efficiency of limited exhaustive repair is comparable with that of one-shot 

repair, the quality of repairs by limited exhaustive repair is much better than 

that of one-shot repair. With respect to repair quality, we can observe the 

following: (1) one shot repair does not have enough information to induce 

an adequate repair model, and (2) prediction accuracy can be improved by 

using information about failed application of a repair tactic as an additional 

index feature. 
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3.2    Comparison with different sized case-bases 
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Figure 4: Effects of case-base size in quality and efficiency 

The graphs in figure 4 show the comparison of CABINS' performance with 

different sized case-bases. In the experiments, we randomly chose half of 

the cases in the original case-base (used in the comparative repair strategy 

experiments) and created a new case-base. Then, we solved the same sixty 

problems by limited exhaustive repair with each of the case-bases. The graphs 

depict that CABINS with full case-base outperforms CABINS with half case- 

base both in quality and efficiency. This means that, as the case base of 

CABINS is enriched, its competence increases. 

3.3     Comparison of CBR and rule induction 

We tested the hypothesis that keeping the cases rather than inducing rules 

for repair tactic selection would result in better quality repairs. The graphs in 

figure 5 show the comparison of CABINS' performance with case-based rea- 
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Figure 5: Comparison of CABINS and C4 in quality and efficiency 

soning and CABINS' performance with rules induced from the case base by 

C4, a decision tree induction algorithm (descendant of ID3) [9]. The results 

show that CABINS' performance with C4-induced rules is better with respect 

to efficiency but much poorer in terms of quality than CABINS' performance 

with case-base. This drawback of C4 stems from the fact that geometrically, 

C4 (and most of other decision-tree induction programs) can't produce non- 

rectangular decision regions in the decision space. In the rules used for 

repairing schedules and creating cases, there are many conditions specifying 

the relationships of attributes, such as If attribute-A is greater than 

attribute-B, then C. To approximate the decision behavior of the nonrect- 

angular regions produced by those rules, C4 has to fit many small rectangle 

sections in the form of a staircase function, which requires more training 

data.[14, 9] 
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4 Conclusions 

We described a framework for acquisition and reuse of past problem solving 

experiences for plan revision in domains, such as job shop scheduling, without 

a strong domain model. Our experimental results show that our methodology 

can outperform rule based methods, and improve its own performance by: 

(1) using failures and their repairs as additional indices, and (2) trading off 

the use of success and failure cases depending on the context in which a 

repair tactic is applied. In addition, our experimental results showed that 

increasing case base size improves both quality and efficiency. Finally, CBR 

techniques used in CABINS, though lower in efficiency, result in superior 

solution quality compared with rule induction. 
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Abstract 

We present a methodology, called Constraint Partition and Coordi- 

nated Reaction (CP&CR), where a problem solution emerges from the 

evolving computational process of a group of diverse, interacting, and 

well-coordinated reactive agents. -Problem characteristics are utilized 

to achieve problem solving by asynchronous and well coordinated lo- 

cal interactions. The coordination mechanisms guide the search space 

exploration by the society of interacting agents, facilitating rapid con- 

vergence to a solution. Our domain of problem solving is constraint 

satisfaction. We have applied the methodology to job shop scheduling 

with non-relaxable time windows, an NP-complete constraint satis- 

faction problem. Utility of different types of coordination information 

in CP&CR was investigated. In addition, experimental results on a 

benchmark suite of problems show that CP&CR performed consid- 
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erably well as compared to other centralized search scheduling tech- 

niques, in both computational cost and number of problems solved. 

1     Introduction 

Distributed AI (DAI) has primarily focused on Cooperative Distributed Prob- 

lem Solving [4] [5] [10] by sophisticated agents that work together to solve 

problems that are beyond their individual capability. Another trend has 

been the study of computational models of agent societies [13], composed 

of simple agents that interact asynchronously. With few exceptions (e.g. 

[1][7][23]), these models have been used to investigate the evolutionary be- 

havior of biological systems [12] [17] rather than the utility of these models 

in problem solving. We have developed a computational framework for prob- 

lem solving by a society of simple interacting agents and applied it to solve 

job shop scheduling Constraint Satisfaction Problems (CSPs). Experimental 

results, presented in section 4, show that the approach performs considerably 

well as compared to centralized search methods for a set of benchmark job 

shop scheduling problems. These encouraging results indicate good problem 

solving potential of approaches based on distributed agent interactions. 

Many problems of theoretical and practical interest (e.g., parametric de- 

sign, resource allocation, scheduling) can be formulated as CSPs. A CSP is 

defined by a set of variables X = {x\, x2, • • •, xm}, each having a correspond- 

ing domain V = {vi, v2, ■ ■ ■, um}, and a set of constraints C = {cl7 c2, • • •, cn}. 

A constraint c, is a subset of the Cartesian product v\ x • • • x vq which specifies 

which values of the variables are compatible with each other. The variable 

set of a constraint (or a set of constraints), denoted by vs( ), is the set of non- 
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duplicating variables restricted by the constraint (or the set of constraints). 

A solution to a CSP is an assignment of values (an instantiation) for all 

variables, such that all constraints are satisfied. Numerical CSPs (NCSPs) 

[14] are a subset of CSPs, in which constraints are represented by numerical 

relations between quantitative variables usually with fairly large domains of 

possible values. Many CSPs of practical importance, such as scheduling, and 

parametric design, are NCSPs. Constraint satisfaction algorithms typically 

suffer from feasibility/efficiency problems for NCSPs due to their enormous 

search spaces. 

In general, CSPs are solved by two complementary approaches, back- 

tracking and network consistency algorithms [16] [2] [21]. Recently, heuristic 

revision [18] and decomposition [3] [8] techniques for CSPs have been pro- 

posed. On the other hand, recent work in DAI has considered the distributed 

CSPs [11] [25] [27] in which variables of a CSP are distributed among agents. 

Each agent has an exclusive subset of the variables and has sole responsibility 

to instantiate their values. Instead, our approach provides a decomposition 

scheme in which constraint type as well as constraint connectivity are used. 

This results in no inter-agent constraints, but each variable may be instan- 

tiated by more than one agent. While satisfying its own constraints, each 

agent instantiates/modifies variable values based on coordination information 

supplied by others. Coordination among agents facilitates effective problem 

solving. 

In this paper, we present an approach, called Constraint Partition and 

Coordinated Reaction (CP&CR), in which a job shop scheduling NCSP is 

collectively solved by a set of agents with simple local reactions and effective 

coordination.   CP&CR divides an NCSP into a set of subproblems accord- 
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ing to constraint type and assigns each subproblem to an agent. Interac- 

tion characteristics among agents are identified. Agent coordination defines 

agent roles, the information they exchange, and the rules of interaction. The 

problem solution emerges as a result of the evolving process of the group of 

interacting and coordinating agents. The remainder of the paper is organized 

as follows. In Section 2, we define the CP&CR model, in which problem de- 

composition, coordination mechanisms, and asynchronous search procedure 

are specified. In Sections 3 and 4, we describe an application of CP&CR to 

job shop scheduling with non-relaxable time windows, and present compar- 

ative results on previously studied test problems. Finally, in Section 5, we 

conclude the paper and outline our current work on CP&CR. 

2    CP&CR Model 

CP&CR is a problem-solving framework in which a society of specialized 

and well-coordinated agents collectively solve a problem. Each agent reacts 

to others' actions and communicates with others by leaving and perceiving 

particular messages on the objects it acts on. A solution emerges from the 

evolutionary interaction process of the society of diverse agents. Specifi- 

cally, CP&CR provides a framework to decompose an NCSP into a set of 

subproblems based on constraint type and constraint connectivity, identify 

their interaction characteristics and, accordingly construct effective coordi- 

nation mechanisms. CP&CR assumes that an NCSP has at least two types 

of constraints. 
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2.1     Constraint Partition &: Problem Decomposition 

Constraints label relations between variables that specify how the values 

of variables are restricted for compatibility. We formally define constraint 

characteristics (e.g., constraint type, constraint connectivity) for NCSPs. 

Definition 1: Constraint Type - In CP&CR, quantitative constraints 

are classified by differences in the numerical compatibility between two vari- 

ables. We identify four types of quantitative constraints. In Figure 1, a 

black dot represents a value, u,-, that has been assigned to a variable, X{. An 

empty dot represents the only possible value for the other variable, Xj. A 

shaded region (either open or closed) represents an interval within which an 

instantiation of the other variable, Xj, will violate the constraint. 

real line m real line 

Adherence constraint 

Xi + const = Xj 

Exclusion-around constraint 

(Xi + consti < Xj)w(Xi> Xj + constfi 

real line 

Exclusion-off constraint 

Xi + const < Xj 

real line 

Inclusion-around constraint 

(Xi - consti < Xj)* (Xi> Xj - constß 

Figure 1: Constraint types classification 

1. adherence type - A constraint is of adherence type if the instantiation 

of a variable, Xi, to the value ut restricts the instantiation of another 

variable, XJ, to an individual point in the domain. For example, xt- + 

const = Xi. 
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2. exclusion-around type - A constraint is of exclusion-around type if the 

instantiation of a variable, xt-, to the value v{ restricts the instantiation 

of another variable, x}. from a subsection within certain distances from 

V{. For example, xt- + const ^ Xj, or (x; + consti < XJ) V (xt- > x^ + 

constj),consti,const] > 0. 

3. exclusion-off type - A constraint is of exclusion-off type if the instan- 

tiation of a variable, x,, to the value i;,- restricts the instantiation of 

another variable. xr from a connected subsection of the domain with 

a boundary set by v,. For example, x, + const < xr 

4. inclusion-around type - A constraint is of inclusion-around type if the 

instantiation of a variable, x„ to the value v{ restricts the instantiation 

of another variable. Xj, within a connected subsection of the domain 

with boundaries set by v{. For example, (xt- - const, < Xj) A (xt- > 

Xj — constj), consti, constj > 0. 

We illustrate how our definitions can describe the constraints of some well 

known CSPs. In the N-Queen problem, both vertical and diagonal attack 

constraints are of exclusion-around type. In the Zebra problem, association 

constraints (e.g. the Englishman lives in the red house.) are of adherence 

type, and single-occupancy constraints (e.g. each attribute, such as pet, 

color, etc., must be assigned to each house.) are of exclusion-around type. 

Definition 2: Constraint Connectivity - Two constraints are said 

to be connected iff the intersection of their variable sets is not empty. This 

implies that they have constrained variables in common. 

cp and c7 are connected = vs(cp) H vs(cg) ^ 0. 
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Definition 3: Constraint Partition is a scheme to decompose an 

NCSP into a set of subproblems by constraint type and constraint connectiv- 

ity (see Figure 2). Two types of constraint grouping, constraint bunch, and 

constraint cluster, are introduced by the decomposition scheme. 

A constraint bunch, Ct, is a set of constraints of the same constraint type. 

Define an operator, pb( ), which partitions the constraint set Cof an NCSP 

into a set of constraint bunches, Ct, according to constraint type. Denote 

the resulting set of constraint bunches by C Define an operator, denoted 

by type( ), which identifies the constraint type of a constraint bunch. A 

constraint bunch has the following properties. 

.   Pb(C) = {£■} = c 

• d partition C 

• type(d) ^ type{Cj), i ^ j 

A constraint cluster, C,,m, is a set of constraints which are of the same 

constraint type and are connected to each other. Define an operator, pc( 

), which partitions a set of constraint bunches into a set of constraint clus- 

ters. C", according to constraint connectivity. A constraint cluster has the 

following properties. 

.   pc(C') = {d,m} = C" 

• Constraint clusters of the same constraint type have no variables in 

common 

• If a constraint cluster contains more than one constraint, each con- 

straint is connected to at least one other constraint in the constraint cluster 

By constraint partition, an NCSP is decomposed into a set of subprob- 

lems, each of which is concerned with the satisfaction of constraints in a 

constraint cluster, and is assigned to an agent. A solution to a subproblem 
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Figure 2: Constraint partition 

is an instantiation of the variables in the constraint cluster such that none 

of the constraints in the subproblem are violated. Each agent has full juris- 

diction over variables in the variable set of the assigned constraint cluster. 

A variable constrained by more than one type of constraint is under the ju- 

risdiction of more than one agent. Agents responsible for the same variable 

have the same authority on its value, i.e. they can independently change its 

value. Therefore, a given value of a given variable is part of a solution, if it is 

agreed upon by all its responsible agents in the sense that no agent seeks to 

further change it. When all subproblems are solved, a solution of the NCSP 

is found. 
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2.2    A Society of Reactive Agents 

In the framework of CP&CR, problem solving of an NCSP is transformed 

into collective behaviors of reactive agents. Variables of an NCSP are re- 

garded as objects which constitute agents' environment. An instantiation of 

the variables characterizes a particular state of the environment. Each agent 

examines and makes changes to only local environment (variables under its 

responsibility), and seeks for satisfaction by ensuring that no constraint in its 

assigned constraint cluster is violated. When an agent detects constraint vio- 

lations, it reacts by changing the instantiated values of some of the variables 

under its jurisdiction so that it becomes satisfied. 

Agents are equipped with only primitive behavior. When activated, each 

agent reacts to the current state of the environment by going through an 

Examine-Resolve-Encode cycle (see Figure 3). It first examines its local view 

of current environment, i.e. the values of the variables under its jurisdiction. 

If there are constraint violations, it changes variable instantiations to resolve 

conflicts according to innate heuristics and coordination information. 

Activated 
Examine Local View 

Reaction of Agent 
Idle 

Figure 3: Agent's reactive behavior 

Agents coordinate by passive communication. They do not communicate 

with each other directly. Instead, each agent reads and writes coordination 

information on objects under its jurisdiction. Coordination information on 

an object represents an agent's partial "view" on the current state of the 
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environment and is consulted when other agents are considering changing the 

current instantiation of the variable to resolve their conflicts. Each time an 

agent is activated and has ensured its satisfaction, it writes down its view on 

current instantiations on each variable under its jurisdiction as coordination 

information. 

Agents are divided into subgroups according to perspective (e.g., con- 

straint type). For example, in job shop scheduling problems, one agent sub- 

group is responsible for resolving capacity constraints, whereas another agent 

subgroup is responsible for resolving temporal constraints. A variable is un- 

der the jurisdiction of agents from different perspectives. Agent subgroups of 

different perspectives are activated in turn, while agents within a subgroup 

can be activated simultaneously. An iteration cycle is an interval in which 

all agents are activated once. An initial instantiation of all variables is con- 

structed by a subset of agents. The agents, then, arrive at a solution through 

collective and successive modifications. 

2.3     Coordination Strategy 

In a coordinated group of agents, individual behavior is regulated by policies 

so that the agents' collective actions achieve the common goals. Given the 

tasks of solving complex, large-scale NCSPs, our coordination mechanisms 

emphasize convergence efficiency by exploiting characteristics of agent group 

structure, agent tasks, and communicated information. We have developed 

coordination strategies that promote rapid convergence by considering the 

following principles of interaction control. 

1. Least disturbance - When an agent is resolving conflicts, interactions 

should be initiated only when necessary and. in such a wav as to reduce 
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the chances of causing other concerned agents to subsequently initiate 

further interaction. 

2. Island of reliability - Consensus should be reached by a process of evolv- 

ing coherent group decision-making based on islands of reliability, and 

modifying islands of reliability only when group coherence is perceived 

as infeasible under current assumptions. 

3. Loop prevention - Looping behaviors, such as oscillatory value changes 

by a subset of agents, should be prevented. 

Least disturbance Least disturbance corresponds to an attempt to mini- 

mize ripple effects of agents' actions. To reach group coherence, the number 

of unsatisfied agents within an operation cycle must be gradually reduced to 

zero. While an agent always becomes satisfied in an iteration cycle since it 

instantiates its variables to satisfy only its own constraints, its actions may 

cause conflicts to instantiations of other agents. Therefore, an agent should 

resolve conflicts in a way that minimizes the extent of causing disturbances 

to other agents. Least disturbance is incorporated in agent's heuristics of 

conflict resolution (see section 3.3). The least disturbance principle is oper- 

ationalized during conflict resolution in two ways. First, an agent changes 

the instantiated values of as few variables as possible. Second, for a given 

selected variable, an agent changes the instantiated value as little as possible. 

Island of reliability An island of reliability is a subset of variables whose 

consistent instantiated values are more likely than others to be part of the 

solution.   In particular, islands of reliability should correspond to the most 
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critical constraint clusters, i.e. clusters whose variables have the least flexi- 

bility in satisfying their constraints. Islands of reliability provide anchoring 

for reaching group coherence in terms of propagating more promising partial 

solutions and are changed less often.3 For example, in job shop scheduling, a 

bottleneck resource is an island of reliability. A variable which is a member 

of an island of reliability is called a seed variable. A variable which is not 

a seed variable is a regular variable. Division of seed and regular variables 

reflects the inherent structure of the problem. The division is static and is 

complemented by the dynamic interactions among different kinds of agents. 

Each agent assumes a role depending on the types of variables it controls. 

Dominant agents are responsible only for seed variables and therefore, are in 

charge of making decisions within islands of reliability. Intermediate agents 

control variable sets including both seed variables and regular variables. Sub- 

missive agents are responsible for only regular variables. Intermediate agents 

interact with submissive agents in a group effort to evolve an instantiation of 

regular variables compatible with the decisions of dominant agents regarding 

seed variables. A counter associated with each regular variable records the 

number of times that a submissive agent has changed the value of the regular 

variable and, thus, provides an estimate of the search efforts of intermedi- 

ate and submissive agents to comply with islands of reliability. Intermediate 

agents monitor the value of the counter associated with the regular variables 

3Blackboard systems (e.g., Hearsay-II speech-understanding system [6]) have used the 

notion of solution islands to conduct an incremental and opportunistic problem solving 

process. Partial solution islands emerge and grow into larger islands, which it is hoped will 

culminate in a hypothesis spanning the entire solution structure. In CP&CR, islands of 

reliability refer to partial solutions from some local perspectives and are used as anchors of 

interaction during the iterative solution repairing process from different local perspectives. 
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under their jurisdiction. When the counter of a conflicting regular variable 

exceeds a threshold, the intermediate agent, instead of changing the con- 

flicting regular variable again, changes the value of its seed variables. In 

response to value changes in seed variables that result in conflicts, the dom- 

inant agent modifies its decisions on islands of reliability. All counters are 

reset to zero and, therefore, intermediate and submissive agents resume the 

efforts to evolve a compatible instantiation of regular variables. 

Loop prevention Under the principles of least disturbance and islands of 

reliability, the system exhibits only two types of cyclic behavior. First, a 

subset of intermediate and submissive agents may be involved in cyclic value 

changes in order to find a compatible instantiation with dominant agents' 

decisions. Secondly, a dominant agent may be changing the value of its seed 

variables in a cyclic way. 

The first type of looping behavior is interrupted by intermediate agents 

when the counter of a conflicting regular variable exceeds a threshold. To 

prevent the second type of looping behavior, a dominant agent keeps a history 

of its value changes so that it does not repeat the same configuration of 

variable instantiations. 

2.3.1     Coordinated Group Search 

From the point of view of search, the collective problem solving process is a 

coordinated, localized heuristic search with partially overlapping local search 

spaces (the values of variables that are the common responsibility of more 

than one agent). The process starts from an initial instantiation of all vari- 

ables.    The search proceeds as the agents interact with each other while 
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seeking their own goals. Islands of reliability provide the means of anchoring 

the search, thus providing long term stability of partial solutions. The prin- 

ciple of least disturbance provides short term opportunistic search guidance. 

The search space is explored based on local feedback. The group of agents 

essentially performs a search through a series of modifications of islands of 

reliability. Within each configuration of islands of reliability, intermediate 

and submissive agents try to evolve a compatible instantiation on regular ac- 

tivities. The search ends when a solution is found or when dominant agents 

have exhausted all possible instantiation of the seed variables. 

CP&CR. provides a general framework that is potentially applicable to 

many NCSPs. We have applied it to solve the Zebra problem (classical 

test problem for constraint satisfaction algorithms). Experimental results 

show that CP&CR obtained a favorable performance in terms of the number 

of variable instantiations required as compared to a number of constraint 

satisfaction algorithms. In this paper, we focus on the application of CP&CR 

in job shop scheduling problems. 

3     Job Shop Scheduling 

Job shop scheduling with non-relaxable time windows involves synchroniza- 

tion of the completion of a number of jobs on a limited set of resources 

(machines). Each job is composed of a sequence of activities (operations), 

each of which has a specified processing time and requires the exclusive use 

of a designated resource for the duration of its processing (i.e. resources 

have only unit processing capacity). Each job must be completed within an 

interval (a time window) specified by its release and due time.   A solution 
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of the problem is a schedule, which assigns start times to each activity, that 

satisfies all temporal activity precedence, release and due date, and resource 

capacity constraints. This problem is known to be NP-complete [9], and has 

been considered as one of the most difficult CSPs. Traditional constraint 

satisfaction algorithms are shown to be insufficient for this problem [22]. 

3.1    Problem Decomposition and Transformation 

Job shop scheduling with non-relaxable time windows is an NCSP, in which 

each activity is viewed as a quantitative variable with a value corresponding 

to the start time of the activity, and all constraints are expressed as numerical 

relations between variables. CP&CR, by applying the pb( ) operator, parti- 

tions the constraint set into two constraint bunches: a constraint bunch of 

exclusion-off constraints to express temporal precedence constraints on activ- 

ities within each job4, and a constraint bunch of exclusion-around constraints 

to express capacity constraints on resources. 

By applying the pc( ) operator, CP&CR further partitions the constraint 

bunches into a set of constraint clusters corresponding to jobs or resources. 

Each job is a constraint cluster of exclusion-off constraints and is assigned to 

a job agent. Each job agent is responsible for enforcing temporal precedence 

constraints within the job. Similarly, each resource is a constraint cluster of 

exclusion-around constraints and is assigned to a resource agent. Each re- 

source agent is responsible for enforcing capacity constraints on the resource. 

Therefore, for a given scheduling problem, the number of subproblems (and 

4Release and due dates constraints are considered as temporal precedence constraints 

between activities and fixed time points and are included in the exclusion-off constraint 

bunch. 

G15 



the number of agents) is equal to the sum of the number of jobs plus the 

number of resources. 

An activity is governed both by a job agent and a resource agent. Ma- 

nipulation of activities by job agents may result in constraint violations for 

resource agents and vice-versa. Therefore, coordination between agents is 

crucial for prompt convergence on a final solution. A bottleneck resource is 

the most contended resource among the resources, and corresponds to the 

most critical constraint cluster. The set of activities contending for the use 

of a bottleneck resource constitute an island of reliability and, therefore, are 

seed variables. A bottleneck resource agent assumes the role of a dominant 

agent, and a regular resource agent is a submissive agent. With the assump- 

tion that each job has at least one activity contending for the bottleneck 

resources, a job agent is an intermediate agent. 

3.2    Coordination Information 

Coordination information written by a job agent on an activity is referenced 

by a resource agent, and vice-versa. 

Job agents provide the following coordination information for resource 

agents. 

1. Boundary is the interval between the earliest start time and latest finish 

time of an activity (see Figure 4). It represents the overall temporal 

flexibility of an activity and is calculated only once during initial acti- 

vation of job agents. 

2. Temporal Slack is an interval between the current finish time of the 

previous activity and current start time of the next activity (see Figure 
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Figure 4: Coordination information: Boundary and Temporal Slack 

4). It indicates the temporal range within which an activity may be 

assigned to without causing temporal constraint violations. (This is not 

guaranteed since temporal slacks of adjacent activities are overlapping 

with each other.) 

3. Weight is the weighted sum of relative temporal slack with respect 

to activity boundary and relative temporal slack with respect to the 

interval bound by the closest seed activities (see Figure 5). It is a 

measure of the likelihood of the activity "bumping" into an adjacent 

activity, if its start time is changed. Therefore, a high weight represents 

a job agent's preference for not changing the current start time of the 

activity. In Figure 5, activity-p of job B will have a higher weight than 

that of activity-a of job A. If both activities use the same resource 

and are involved in a resource capacity conflict, the resource agent will 

change the start time of activity-a rather than start time of activity-p. 

Resource agents provide the following coordination information for job 

agents. 

1. Bottleneck Tag is a tag which marks that this activity uses a bottleneck 

resource. It indicates the seed variable status of the activity. 

2. Resource Slack is an interval between the current finish time of the 

previous activity and the current start time of the next activity on the 
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Figure 5: Coordination information: Weight 
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Figure 6: Coordination information: Resource Slack 

resource timeline (see Figure 6). It indicates the range of activity start 

time in which an activity may be changed without causing capacity 

constraint violations. (There is no guaranteed since resource slacks of 

adjacent activities are overlapping with each other.) 

3. Change Frequency is a counter of how frequently the start time of this 

regular activity set by a job agent is changed by a submissive resource 

agent. It measures the search effort of job and regular resource agents 

between each modification on islands of reliability. 

3.3     Reaction Heuristics 

Agents' reaction heuristics attempt to minimize the ripple effects of causing 

conflicts to other agents as a result of fixing the current constraint viola- 

tions.  Conflict minimization is achieved by minimizing the number and ex- 
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tent of activity start time changes. The reaction heuristics utilize perceived 

coordination information and incorporate coordination strategies of group 

behaviors. 

3.3.1    Reaction Heuristics of Job Agent 

Job agents resolve conflicts by considering conflict pairs. A conflict pair 

involves two adjacent activities whose current start times violate the prece- 

dence constraint between them (see Figure 7). Conflict pairs are resolved one 

by one. A conflict pair involving a seed activity, i.e., an activity with tighter 

constraints, is given a higher conflict resolution priority. To resolve a con- 

flict pair, job agents essentially determine which activity's current start time 

should be changed. If a conflict pair includes a seed and a regular activity, 

depending on whether the change frequency counter on the regular activity 

in the conflict pair is still under a threshold, job agents change the start 

time of either the regular or the seed activity. For conflict pairs of regular 

activities, job agents take into consideration additional factors, such as value 

changes feasibility of each activity, change frequency, and resource slack. 

considered change of start time 

Job Agent A 

Al AO 

JLL 

 | A3 |    seed activity 
"ATI     I     A2      ' 

_I3_ 
_I2_ time line 

bottleneck conflict pair: activity-A2 
activity-A3 

minus T2 
plus T2 

regular conflict pair: activity-AO 
activity-A 1 

minus Tl 
plusTl 

regular conflict pair: activity-A3 
activity-A4 

minus T3 
plus T3 

Figure 7: Conflict Resolution of Job Agent 

In Figure 7. the conflict pair of activity-A2 and activity-A3 will be re- 

solved first since activity-A2 is a seed variable. If the change frequency of 

activity-A3 is still below a threshold, start time of activity-A3 will be changed 
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by an addition of T2 (the distance between current start time of activity-A3 

and current end time of activity-A2) to its current start time. Otherwise, 

start time of activity-A2 will be changed by a subtraction of T2 from its 

current start time. In both cases, start time of activity-A4 will be changed 

to the end time of activity-A3. To resolve the conflict pair of activity-AO and 

activity-Al, either start time of activity-AO will be changed by a subtraction 

of Tl from its current start time or start time of activity-Al will be changed 

by an addition of Tl to its current start time. If one of the two activities 

can be changed within its boundary and resource slack, job agent A will 

change that activity. Otherwise, job agent A will change the activity with 

less change frequency. 

3.3.2    Reaction Heuristics of Regular Resource Agents 

Resource Agent X 

Before conflict resolution 
[GUI 

I C3; rÄ4i rm r*n 
Sequence of allocation: 

activity-El  -> activity-DO 

i DOl 1 Ell time line -> activity-GO -> activity-A4 -> activity-C3 

After conflict resolution 

I~BTI PF4~1 
(activity-EI  has the highest weight. 

! C3 1 DO | GO | 1 A4 | El I uctivity-C3 has the lowest weight) 
time line 

Figure 8: Conflict Resolution of Regular Resource Agent 

To resolve constraint violations, resource agents re-allocate the over-contended 

resource intervals to the competing activities in such a way as to resolve the 

conflicts and, at the same time, keep changes to the start times of these ac- 

tivities to a minimum. Activities are allocated according to their weights, 

boundaries, and temporal slacks. Since an activity's weight is a measure of 

the desire of the corresponding job agent to keep the activity at its current 

G20 



value, activity start time decisions based on weight reflect group coordina- 

tion. For example, in Figure 8, activity-A4 was preempted by activity-El 

which has higher weight. Start time of activity-A4 is changed as little as pos- 

sible. In addition, when a resource agent perceives a high resource contention 

during a particular time interval (such as the conflict involving activity-C3, 

activity-DO, and activity-GO), it allocates the resource intervals and assigns 

high change frequency to these activities, and thus dynamically changes the 

priority of these instantiation. 

3.3.3    Reaction Heuristics of Bottleneck Resource Agents 

A bottleneck resource agent has high resource contention. This means that 

most of the time a bottleneck resource agent does not have resource slack 

between activities. When the start time of a seed activity is changed, ca- 

pacity constraint violations are very likely to occur. A bottleneck resource 

agent considers the amount of overlap of activity resource intervals on the 

resource to decide whether to right-shift some activities (Figure 9 (i)) or 

re-sequence some activities according to their current start times by swap- 

ping the changed activity with an appropriate activity. (Figure 9 (ii)). The 

intuition behind the heuristics is to keep the changes as minimum as possible. 

3.4    System 

3.4.1     System Operations 

System initialization is done as follows: (1) decomposition of the input 

scheduling problem according to resource and job constraints, (2) creation of 

the corresponding resource and job agents, (3) activation of the agents (see 
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Figure 10). Initially each job agent calculates boundary for each variable 

under its jurisdiction considering its release and due date constraints. Each 

resource agent calculates the contention ratio for its resource by summing 

the durations of activities on the resource and dividing by the interval length 

between the earliest and latest time boundary among the activities. If this 

ratio is larger than a certain threshold, a resource agent concludes that it is 

a bottleneck resource agent.5 6 

Activities under the jurisdiction of a bottleneck resource agent are marked 

as seed activities by the agent. Each resource agent heuristically allocates the 

earliest free resource interval to each activity under its jurisdiction according 

to each activity's boundary. After the initial activation of resource agents, 

all activities are instantiated with a start time. This initial instantiation of 

all variables represents the initial configuration of the solution.7 

Subsequently, job agents and resource agents engage in an evolving pro- 

cess of reacting to constraint violations and making changes to the current 

instantiation. In each operation cycle, job and resource agents are activated 

alternatively, while agents of the same type are activated simultaneously, each 

working independently. When an agent finds constraint violations under its 

5If no bottleneck resource is identified, threshold value is lowered until the most con- 

tended resource is identified. 
6In job shop scheduling, the notion of bottleneck corresponds to a particular resource 

interval demanded by activities that exceeds the resource's capacity. Most state-of-the-art 

techniques emphasize the capability to identify dynamic bottlenecks that arise during the 

construction of solution. In our approach, the notion of bottleneck is static and we exploit 

the dynamic local interactions of agents. 
7We have conducted experiments with random initial configurations and confirmed 

that the search is barely affected by its starting point, i.e. the search procedure has equal 

overall performance with heuristic and random initial configurations. 
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jurisdiction, it employs local reaction heuristics to resolve the violations. The 

process stops when none of the agents detect constraint violations during an 

iteration cycle. The system outputs the current instantiation of variables as 

a solution to the problem. 

3.4.2    Solution Evolution 

Res. X 1A31IA21I!   |A13| 

Res. Y 

Res. Y 

1 A32 :   A22 :|   A12 

(Alii |A23|A33   I 

0                    20 40 
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A23: 
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Figure 11: A Simplified Scenario 

Figure 11 shows a solution evolution process of a very simple problem where 

resource Y is regarded as a bottleneck resource. In (a), resource agents 

allocate their earliest possible free resource intervals to activities, and thus 

construct the initial configuration of variable instantiation. In (b), Jobl and 

Job2 agents are not satisfied with current instantiation and change the start 

times of A13 and A23, respectively. In (c), Res.Z agent finds a constraint 

violation and changes the start time of A33. All agents are satisfied with the 

current instantiation of variables in (d) which represents a solution to the 

problem. 
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Figure 12: Conflicts Evolution of a more difficult problem 

Figure 12 shows a solution evolution process in terms of occurred conflicts 

for a more difficult problem which involves 10 jobs on 5 resources. In cycle 

0, resource agents construct an initial instantiation of variables that includes 

islands of reliability set by dominant (bottleneck resource) agents. During 

cycle 1 to cycle 9, intermediate (job) agents and submissive (regular resource) 

agents try to evolve a compatible instantiation with islands of reliability, i.e., 

the instantiation of variables (activities) on the bottleneck resource. In cycle 

10, some job agents perceive the effort as having failed and change the values 

of their seed variables. Bottleneck resource agents respond to constraint 

violations by modifying instantiation on the islands of reliability. This results 

in a sharp increase of conflicting activities for job agents in cycle 11. Again, 

the search for compatible instantiation resumes until another modification 

on islands of reliability in cycle 16. In cycle 18, the solution is found. 

4    Evaluation on Experimental Results 

We evaluated the performance of CP&CR on a suite of job shop scheduling 

CSPs proposed in [22].   The benchmark consists of 6 groups, representing 
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different scheduling conditions, of 10 problems, each of which has 10 jobs of 

5 activities and 5 resources. Each problem has at least one feasible solution. 

CP&CR has been implemented in a system, called CORA (Coordinated 

Reactive Agents). We experimentally (1) investigated the effects of coor- 

dination information in the system. (2) compared CORA's performance to 

other constraint-based as well as priority dispatch scheduling methods, (3) 

investigated CORA's scaling up characteristics on problems of larger sizes. 

The effectiveness of different types of coordination information was reported 

in [15]. We focus on the remaining aspects of evaluation in this paper. 

CORA was compared to four other heuristic search scheduling techniques, 

ORR/FSS, MCIR, CPS, and PCP. ORR/FSS [22] incrementally constructs a 

solution by chronological backtracking search guided by specialized variable 

and value ordering heuristics. ORR/FSS+ is an improved version augmented 

with an intelligent backtracking technique [26]. Min-Conflict Iterative Repair 

(MCIR) [18] starts with an initial, inconsistent solution and searches through 

the space of possible repairs based on a min-conflicts heuristic which attempts 

to minimize the number of constraint violations after each step. Conflict 

Partition Scheduling (CPS) [20] employs a search space analysis methodology 

based on stochastic simulation which iteratively prunes the search space by 

posting additional constraints. Precedence Constraint Posting (PCP) [24] 

conducts the search by establishing sequencing constraints between pairs of 

activities using the same resource based on slack-based heuristics. In addition, 

three frequently used and appreciated priority dispatch rules from the field 

of Operations Research: EDD. COVERT, and R&M [19], are also included 

for comparison. 
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Table 1 reports the number of problems solved8 and the average CPU 

time spent over all the benchmark problems for each technique. Note that 

the results of ORR/FSS. ORR/FSS+, MCIR, CPS, and PCP were obtained 

from published reports, of mostly the developers of the techniques. MCIR is 

the only exception, which is implemented by Muscettola who reported its re- 

sults based on randomly generated initial solutions [20]. All CPU times were 

obtained from Allegro Common Lisp implementations on a DEC 5000/200. 

In particular. CORA was implemented in CLOS (Common Lisp Object 

System). CPS. MCIR. ORR/FSS, and ORR/FSS+ were implemented us- 

ing CRL (Carnegie Representation Language) as an underlying frame-based 

knowledge representation language. CPU times of CPS, MCIR, ORR/FSS, 

and ORR/FSS+ were divided by six from the published numbers as an esti- 

mate of translating to straight Common Lisp implementation.9 PCP's CPU 

times are not listed for comparison because its CPU times in Common Lisp 

are not available. Its reported CPU times in C are 0.3 second [24]. Although 

CORA can operate asynchronously, it was sequentially implemented for fair 

comparison. The results show that CORA works considerably well as com- 

pared to the other techniques both on feasibility and efficiency in finding a 

solution. In addition, the same problem generator function producing the 

benchmark problems was used to produce problem sets of 250 and 500 vari- 

ables (e.g. 100 factory jobs on 5 machines which is a problem of realistic 

size). Figure 13 shows CORA's performance on these larger sized problems, 

which exhibits favorable, near-linear scaling-up characteristics. 

8PCP's performance is sensitive to the parameters that specify search bias [24]. 
9ORR/FSS and ORR/FSS+ obtained 30 times speedup in C/C++ implementation. 

We assumed a factor of five between Common Lisp and C/C++ implementations. 
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As a scheduling technique, CORA performs a heuristic approximate search 

in the sense that it does not systematically try all possible configurations. Al- 

though there are other centralized scheduling techniques that employ similar 

search strategies, CORA distinguishes itself by an interaction driven search 

mechanism based on well-coordinated asynchronous local reactions. Heuris- 

tic approximate search provides a middle ground between the generality of 

domain-independent search mechanisms and the efficiency of domain-specific 

heuristic rules. Instead of the rigidity of one-pass attempt in solution con- 

struction (either it succeeds or fails, and the decisions are never revised) in 

approaches using heuristic rules, CORA adapts to constraint violations and 

performs an effective search for a solution. As opposed to generic search 

approaches, in which a single search is performed on the whole search space 

and search knowledge is obtained by analyzing the whole space at each step, 

CORA exploits local interactions by analyzing problem characteristics and 

conducts well-coordinated asynchronous local searches. 

The experimental results obtained by various approaches concur with the 

above observations. Approaches using generic search techniques augmented 

by domain-specific search-focus heuristics (ORR/FSS, ORR/FSS+, MCIR, 

CPS) required substantial amount of computational effort. Some of them 

could not solve all problems in the sense that they failed to find a solution for 

a problem within the time limit set by their investigators. Approaches using 

dispatch rules (EDD, COVERT, R&M) were computationally efficient, but 

did not succeed in all problems. PCP relies on heuristic rules to conduct one- 

pass search and its performance is sensitive to parameters that specify search 

bias. CORA struck a good balance in terms of solving all problems with 

considerable efficiency.  Furthermore, with a mechanism based on collective 
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operations, CORA can be readily implemented in parallel processing such 

that only two kinds of agents are activated sequentially in each iteration cycle, 

instead of 10 job agents and 5 resource agents under current implementation. 

This would result in an approximate time-reducing factor of 7 (i.e., 15/2) 

and would enable CORA to outperform all other scheduling techniques in 

comparison. 

CORA exploits local interactions based on the notion of islands of relia- 

bility and has showed to perform quite well on problems with clear resource 

bottlenecks. For problems with no clear bottlenecks and all resources are 

loosely utilized (say, below 50 percents of utilization), we expect CORA 

perform with the same efficiency by selecting the most utilized resource as 

islands of reliability. However, CORA's current mechanism based on domi- 

nant coordination may not be sufficient for problems in which all resources 

are at least moderately utilized (say, above 60 percents of utilization) and 

there is no outstanding bottleneck. We are interested in developing a more 

sophisticated mechanism based on competing coordination and investigate its 

utility in various scheduling conditions. 

5     Conclusions 

In this paper, we have presented a collective problem solving framework, 

where problem solving is viewed as an emergent functionality from the evolv- 

ing process of a society of diverse, interacting, well-coordinated reactive 

agents. We show that large-scaled NCSPs can be decomposed and assigned 

to different problem solving agents according to disjoint functionality (con- 

straint types) and overlapping responsibility (variable subsets). This decom- 
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position results in utilization of interaction characteristics to achieve problem 

solving by asynchronous and well coordinated local interactions. Application 

of the methodology to job shop scheduling with non-relaxable time windows 

results in very good performance. Our experimental results show that the 

coordination mechanism (1) incorporates search knowledge and guides the 

search space exploration by the society of interacting agents, facilitating rapid 

convergence to a solution, and (2) is independent of initial configuration. In 

addition, the search complexity grows only linearly with problem size. We 

are currently applying the CP&CR methodology to Constraint Optimization 

Problems (COPs). Preliminary experiments show encouraging results com- 

pared to both heuristic search and simulated-annealing-based techniques. We 

are also investigating the utility of CP&CR in other domains with different 

problem structures. 
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Abstract 

The design of better schedulers requires a deeper understanding of each component 
technique and of their interactions. Although widely accepted in practice, bottleneck 
reasoning for scheduling has not yet been sufficiently validated, either formally or em- 
pirically. This paper reports an empirical analysis of the heuristic information used by 
bottleneck-centered, opportunistic scheduling systems to solve constraint satisfaction 
scheduling problems. Different configurations of a single scheduling framework are ap- 
plied to a benchmark set of scheduling problems and compared with respect to number 
of problems solved and processing time. We show superior performances for schedulers 
that use bottleneck information. We also show that focusing at the bottleneck might 
not only provide an effective "most constrained first" heuristic but also, unexpectedly, 
increase the utility of other heuristic information. 

1     Introduction 
Problem solvers often use combinations of several different heuristics and reasoning methods 
(e.g., constraint propagation, search). Empirical comparisons of performances of different 
problem solvers can show that one combination of techniques is superior to another. However, 
to design better problem solvers we need a deeper understanding of the importance of each 
component technique and of how different techniques interact. 

This paper reports an empirical analysis of the performance of heuristic information typ- 
ically used to solve constraint satisfaction scheduling problems. We will focus on bottleneck- 
centered, opportunistic schedulers, a class of systems that has shown better performance 
than other kinds of schedulers [1, 13, 11]. We will show that there is strong empirical evi- 
dence on the effectiveness of reasoning about bottlenecks. Moreover, we will show evidence 
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of the fact that heuristic information gathered at the bottleneck is "more useful" than av- 
erage. This allows a bottleneck centered scheduler to make several decisions without having 

to re-evaluate its heuristic information too often. 
Although widely accepted in practice (e.g., manufacturing scheduling), bottleneck reason- 

ing has not yet been sufficiently validated, either formally or empirically. Although formal 
validation would be most desirable, at present no formal model realistically captures the 
deep structure of scheduling problems. In its absence, strong evidence of performance can 
be gathered with empirical studies. We believe that such studies will also be extremely useful 
to discover new "phenomena" which will guide the search for an appropriate formal model. 

The goal of an opportunistic scheduler is to build an assignment of time and resources to a 
network of activities and a set of resources such as to avoid resource over-subscriptions. The 
goal is achieved by repeatedly applying the following basic opportunistic scheduling cycle: 

1. Analyze: analyze the current problem solving state; 

2. Focus: select one or more activities that are expected to participate in a critical inter- 
action among problem constraints; 

3. Decide: add constraints to reduce negative interactions among critical activities. 

Opportunistic schedulers differ on the specific techniques used to implement each phase 
[15, 3, 13, 1, 11] but share several fundamental characteristics. The Analyze phase consists 
of building estimates of demand/supply ratios for the different resources and/or activities. 
These estimates are usually conducted on relaxed versions of the problem obtained by drop- 
ping some of its original temporal and/or resource constraints. During the Focus phase, all 
opportunistic schedulers use bottlenecks as the primary means of selecting critical interac- 
tions. While the exact definition of a bottleneck may vary, all opportunistic schedulers agree 
on relating this concept to a resource and time interval with a high demand/supply ratio. 
Critical activities are usually defined as those that are likely to request the use of a bottle- 
neck. The constraints posted during the Decide phase impose arbitration among conflicting 
capacity and time requests. This is the phase where opportunistic schedulers differ the most 
with respect to the type of constraint posted (assigning a value to a variable versus imposing 
a precedence among activities) and to the granularity of the decision making process (the 
number of decisions taken at each cycle). 

The study in this paper was conducted on Conflict Partition Scheduling (CPS) [11], a 
scheduling method that implements the opportunistic scheduling paradigm. We first describe 
CPS and the stochastic simulation method used to compute heuristic information. Then we 
analyze two steps of the procedure: bottleneck detection and scheduling decision making. We 
discuss modifications of these steps and make hypotheses on how these modifications might 
affect performance. We then verify our hypotheses against the results of an experimental 
analysis. 

We believe that our results are typical of the performance of other opportunistic sched- 
ulers. We base our belief on the similarity of each CPS step to other opportunistic schedulers 
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Figure 1: Conflict Partition Scheduling 

and on the applicability of the performance hypotheses to comparable modifications of other 

schedulers. 

2     Conflict Partition Scheduling 

CPS adopts a constraint posting approach to scheduling, i.e., it operates by posting temporal 
precedences among activities (activity a, must precede activity ctj). During problem solving, 
each activity has an associated window of opportunity for its execution; these can be deduced 
by propagating activity durations and metric temporal constraints (absolute and relative) 
across the activity network [5]. Previous empirical studies have shown that constraint posting 
schedulers perform better than schedulers that proceed by assigning precise values to the 
start and end time of each activity [2, 11, 14]. 

Figure 1 shows how CPS organizes its computation. In relation to the opportunistic cycle 
described in the introduction. Capacity Analysis corresponds to Analyze, Conflict Identifi- 
cation to Focus, and Conflict Arbitration to Decide. The consistency test is a propagation 
of the metric temporal constraints in the activity network. 

The algorithm described in the diagram follows an iterative sampling approach to search 
[10, 9]. If the consistency test fails, the activity network is reset to the initial state and the 
procedure is re-started. As we will see later, CPS' capacity analysis is stochastic in nature; 
therefore, each repetition can explore a different path in the problem solving space. If a 
solution has not been found after a fixed number of repetitions (in our case, 10), CPS termi- 
nates with an overall failure. The choice of iterative sampling is consistent with our interest 
in isolating the information content of the heuristic information generated by the Capacity 
Analysis. However, it is also possible to use the internal CPS cycle in a systematic search 
approach. For example, Conflict Arbitration could sprout several alternative ways of adding 
constraints among conflicting activities. Prioritization of these alternatives could make use of 
Capacity Analysis information and a backtracking scheme would ensure continuation when 

reaching a dead end. 
The Capacity Analysis computes all the heuristic information used for decision-making 
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by generating estimates of the structure of the remaining search space without engaging in 

detailed problem solving. Such estimates are statistics computed from a sample of complete 

time assignments to activity start times. These assignments are consistent with all the tem- 

poral constraints explicitly represented in the current activity network1, but do not usually 
result in consistent schedules since they do not necessarily satisfy all the constraints of the 
problem (i.e., those capacity constraints that have not yet been explicitly enforced). CPS 
uses a stochastic simulation process to generate each complete time assignment. This pro- 
cess differs from other stochastic simulation techniques [6, 7] used to estimate the possible 
outcomes of executing a detailed schedule in an uncertain environment. Having to insure 
executability, these simulations must introduce additional constraints to complete an inter- 
mediate problem solving state into a consistent schedule. Therefore, they end up considering 
many more details than are useful or necessary for an aggregate capacity analysis. Instead, 
CPS' stochastic simulation [12] considers only the constraints that are explicit in the current 
intermediate state, with very weak assumptions on how it will be extended into a complete 
schedule. 

In the following, EST (a) and LFT (a) will denote, respectively, the earliest start time 
and the latest finish time of the activity a, H will denote the overall scheduling horizon, and 
R will be the set of resources. 

CPS' stochastic simulation proceeds by repeating the following cycle. Before the simula- 
tion starts, a temporal constraint propagation establishes the range of possible start times 
for each activity. At each simulation cycle i, an activity a,- is selected according to a given 
strategy. After the selection, a start time is randomly chosen among a,'s possible start times 
and assigned to the activity. The random choice follows a given probability distribution, or 
selection rule. The consequences of the start time assignment are then propagated through 
the network to restrict the range of other activities' start times, and the simulation cycle 
is repeated. The simulation terminates when all the activities of the network have been 
assigned a start time. 

Different implementations of CPS can choose different activity selection strategies and 
start time selection rules. A typical activity selection strategy is forward temporal dispatching 
which selects a,- among the set of activities whose predecessors have all start times assigned by 
previous simulation cycles. A possible start time selection rule is a linearly biased distribution 
(i.e., the weight of the currently available times increases or decreases linearly over the time 
bound) for each activity in the network. These choices are crucial to the performance of 
CPS since they determine: (1) the computational cost of each cycle and (2) the probability 
of generating each of the possible total start time assignments and, therefore, the bias of the 
sampling base. 

Figure 2 illustrates a single simulation cycle using a linear selection rule. In the figure, 
activity a,- precedes activity a,-+i in the activity network. Figure 2 (a) shows the time bounds 
for each activity; a,- has a linear value selection rule superimposed on its time bound. In 
Figure 2 (b), a start time has been selected for a,- and time has been reserved for its execution; 

although CPS can deal with activities with flexible durations {i.e., the duration of a must fall in the 
range [da,Da] ), we will only consider activities with fixed durations to simplify the presentation. 
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Figure 2: Simulation step: (a) before step i; (b) after step i 

the reservation is represented by the black rectangle. This causes a,+i 's time bound to shrink. 
A triangular selection rule is now superimposed on a,-+i's time bound and the simulation 

cycle can start again. 
Repeating the simulation N times yields a sample of TV" complete time assignments. CPS' 

Capacity Analysis uses this sample to estimate the following two problem space metrics: 

• activity demand: for each activity a and for each time EST (a) < £,-'< LFT (a), 
the activity demand. A(aJi), is equal to ntJN, where nu is the number of complete 
time assignments in the sample for which a is being executed at time £,-. 

• resource contention: for each resource p € R and for each time tj £ H, the resource 
contention. X(p,t3), is equal to ntj/N, where ntj is the number of complete time 
assignments in the sample for which p is requested by more than one activity at time 

tj. 

Activity demand and resource contention represent two different aspects of the current 
problem solving state. Activity demand is a measure of preference; it indicates how much 
the current constraints bias an activity toward being executed at a given time. Resource 
contention is a measure of potential inconsistency; it indicates how likely it is that the current 
constraints will generate a congestion of capacity requests on a resource at a given time. 

3    Bottleneck Detection 

In problem solving, a widely accepted principle is to focus on the most tightly interacting 
variables, i.e.. those with the smallest set of possible values. For example, in constraint 
satisfaction search [8] the 'most constrained first' heuristic minimizes the expected length of 
any path in the search tree and, therefore, increases the probability of achieving a solution 
in less time. In opportunistic scheduling this principle translates into looking for bottleneck 

resources. 
In CPS each problem solving cycle focuses on a set of activities that are potentially in 

conflict, called the conflict set. More precisely, a conflict set is a set of activities that: (1) 
request the same resource, (2) have overlapping execution time bounds, and (3) are not 
necessarily totallv ordered according to the precedence constraints of the current activity 

network. 
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To detect a conflict set CPS first identifies a bottleneck using resource contention: 

t Bottleneck: Given the set of resource contention functions {X{p,t)} with p £ R and 

t £ H, we define a bottleneck to be a pair < pb,tb > such that: 

X{pb,h) = max{X (p,t)} 

for any p 6 R and t e H such that X(p, t) > 0. 

The conflict set is then extracted among the activities requesting pb with current time 
bounds overlapping tf,. 

Although focusing on bottlenecks is widely accepted in opportunistic scheduling, there is 
little quantitative evidence of its effectiveness. One could wonder if the performance of the 
scheduler would remain unaffected if it focussed on any set of activities, either associated 
with a bottleneck or not. If this were true, one could save the additional cost required to 
compute resource contention and base all decision making on activity demand alone. 

To answer this question we consider two different configurations of CPS' Bottleneck 
Identification step. 

1. Maximum contention bottleneck (BTL): The original method used in CPS; the 
set of conflicting activities is selected around the bottleneck. 

2. Random (RAND): The conflict set is selected around a randomly chosen resource 
and time. 

4    Conflict Arbitration 

At each Conflict Arbitration step, CPS introduces additional precedence constraints between 
pairs of activities to restrict their mutual position and their time bounds. An important 
differentiating aspect among schedulers is the granularity of decision making. At one end 
of the spectrum there are schedulers that make the minimum possible decision at each 
scheduling cycle; this follows the spirit of micro-opportunistic scheduling [13]. At the other 
end there are schedulers that make decisions that eliminate any possibility of conflict among 
all the activities in the conflict set; this follows the spirit of macro-opportunistic approaches 
[15,1]. 

Within CPS we can explore the consequences of different decision making granularities. 
For example, a micro-opportunistic approach translates into adding a single precedence con- 
straint between two activities in the conflict set. Conversely, a macro-opportunistic approach 
could be implemented by imposing a total ordering on all activities in the conflict set. 

The current implementation of CPS [11] proposes an intermediate granularity approach 
by partitioning the conflict set into two subsets. Akef0Te and Aa/teT, and then constraining 
every activity in /Ue/ore to occur before any activity in AajteT.    The bi-partition of the 
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Figure 3: A Conflict Arbitration step 

original conflict set relies on a clustering analysis of activity demands. Figure 3 (a) shows 
four conflicting activities and their demand profiles; figure 3 (b) shows the new precedence 
constraints added by Conflict Arbitration. 

To choose the appropriate decision granularity one needs to evaluate a trade-off. The 
greater the number of scheduling decisions in a step, the greater the pruning of the search 
space and, therefore, the faster the scheduler. However, the more decisions that are made, 
the greater the change in the topology of the activity network after the step. Therefore, an 
analysis done before the step could give little information on the structure of the destination 
state. This can increase the likelihood of failure and consequent backtracking, and therefore 
slow down the scheduler. In summary, an important trade-off involves, the speed of conver- 
gence vs. the number of restarts needed during iterative sampling. This trade-off rests on 
the reasonable assumption that making fewer decisions at each cycle is always at least as 
accurate as making several; in other words, although possibly slower, a micro-opportunistic 
scheduler should solve at least as many problems as a larger granularity scheduler [13]. 

We therefore consider two distinct Conflict Arbitration rules: 

1. conflict bi-partition (BIP): The technique originally used in CPS; the conflict set 
is separated into two Abejore and Aafter subsets. 

2. most separated activities (MS): A micro arbitration technique; it introduces a 
single precedence between two activities extracted from the conflict set. To minimize 
the impact of sampling noise, we select the two activities whose demand profiles are 
maximally separated. 

5    Experimental Results 
The experimental analysis made use of the Constraint Satisfaction Scheduling benchmark 
proposed in [13]. The benchmark consists of 6 groups of 10 problems, each with 50 activities, 
5 resources, and non-relaxable release and due date constraints. The groups vary according 
to their expected difficulty. Each group is identified by two parameters: (1) the spread of 
the release and due dates, which can assume the three levels (in increasing order of expected 
difficulty) Wfor wide, N for narrow and 0 for null; (2) the number of expected bottleneck 
resources, either 1 or 2. For more details see [13]. 
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< BTL, < BTL, < RAND. < RAND, 
BIP> MS > BIP> MS> 

W/1 10.00 10.00 9.95 7.68 

W/2 10.00 10.00 9.95 9.10 
N/1 10.00 10.00 9.10 8.70 
N/2 10.00 10.00 8.20 6.26 
0/1 10.00 9.95 8.30 8.60 
0/2 9.25 10.00 4.85 4.05 

TOT 59.25 59.95 50.35 46.30 

Table 1: Experimental results: number of problem solved 

< BTL, < BTL, < RAND, < RAND, 
BIP > MS > BIP > MS > 

W/l 44.94 120.90 61.74 281.49 
W/2 44.59 134.00 90.82 476.97 
N/l 47.02 127.40 106.67 360.72 
N/2 46.03 138.90 142.81 754.39 
0/1 50.27 140.40 118.24 405.10 
0/2 64.86 161.10 212.96 908.89 

AVG 49.62 137.10 122.20 531.26 

Table 2: Experimental results: processing time 

Tables 1 and 2 report the performance of all possible combinations of the alternative 
settings described in the previous sections. Table 1 shows the average number of problems 
solved over 20 independent runs of the procedure. Table 2 reports the corresponding average 
processing times. In order to factor out the effects of known implementation inefficiencies, 
processing times are given as the number of opportunistic cycles needed either to find a 
solution or to fail. The number of iterations was weighed differently depending on the 
conflict identification method, with each RAND cycle taking 85.64% of the time of a BTL 
cycle. The speed-up results from avoiding the computation of resource contention. 

The cardinality of the Capacity Analysis sample was N = 10. We used forward temporal 
dispatching as the activity selection strategy. The start time selection rule was linearly biased 
over the time bound, with highest preference to the earliest time and lowest (0) to the latest. 

All of the following conclusions have been tested for statistical significance using the 
methods available in the S statistical package [4]. For the average number of problems 
solved we fitted the results as a function of the configuration; this was done through a 
logit generalized linear regression. An analysis of deviance and a Chi-squared test yielded 
the desired measure of significance (see [4], chapter 6). For the processing time we used 
a standard analysis of variance (see [4], chapter 5). Unless otherwise noted, differences in 
performance are statistically significant at a 1% level. 

To test the importance of bottleneck information, let us compare each < RAND, ?x > 
entry with the corresponding < BTL, ?x > entry. Differences in performance are always 
significant except for the number of problems solved for groups  W/l and W/2 when using 
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bi-partition for Conflict Arbitration (BIP). These are the two problem groups with lowest 
expected difficulty. In every other case, random focusing performs significantly worse than 
bottleneck focusing, with an average slowdown of approximately 3.1 times. Therefore, these 
results show that, all things remaining equal, there is a substantial advantage in focusing 
problem solving on what CPS characterizes as bottlenecks. 

To test the effect of decision making granularity, let us compare each < BTL, BIP > 
configuration with the corresponding < BTL, MS > configuration. With respect to the 
number of problem solved, only for group 0/2 there is a statistically significant advantage 
in using most-separated-pair for Conflict Arbitration; 0/2 is the the group with the highest 
expected difficulty. This advantage is due to a single problem that MS always solves while 
BIP solves less than 50% of the time. Although small, this advantage is consistent with 
the expectation of better problem solving accuracy with smaller decision making granular- 
ity, especially on difficult problems. However, when comparing processing times we see an 
average slowdown of approximately 3.2 times going from BIP to MS which makes the cost 
of micro-granularity scheduling prohibitive (except for one problem). 

Unexpectedly, the trend toward better accuracy with lower decisions granularity is com- 
pletely reversed when comparing < RAND, BIP > to < RAND, MS >. In fact, for 
all problem groups, the average number of problems solved tend to decrease when going 
from bi-partition to most-separated-pair. This trend is statistically significant for groups 
W/l (at a 2% level), W/2, and N/2. This result contradicts our expectations. After all, 
a macro decision step can always be seen as a sequence of micro steps without additional 
intermediate capacity analyses. A macro-granularity approach should be less informed than 
a micro-granularity approach and therefore more prone to errors. 

However, worse performance with lower granularity can be explained by assuming that 
at each step there is a probability p of selecting a misleading conflict set, i.e., one for 
which the preferential information leads to a wrong ordering among activities. The overall 
probability of following a dead-end path is the sum of the probabilities of failing after x 
cycles, with x less or equal to maximum path length in the search tree. When the decision 
making granularity decreases, the expected path length increases. Correspondingly, if p does 
not substantially decrease, the overall probability of failure increases. The experimental 
results seem to indicate that the decrement of p is adequate only when using the bottleneck 
information for focusing. In other words, the expected utility of preferential information at 
the bottleneck is higher than average. 

6     Conclusions 

In this paper we experimentally analyzed the role of bottleneck reasoning in opportunistic 
schedulers. The aim was to go beyond a bulk comparison of systems and to identify important 
design trade-offs among system components. The results of the study empirically validate 
the importance of bottlenecks to focus problem solving. The results seem to indicate that 
preferential information at bottlenecks has a higher expected utility than average. Therefore 
the utility of bottleneck-focusing goes beyond the classical view of a "most constrained first" 
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heuristic in a constraint satisfaction search.  This is an unexpected result that will further 

focus the search for a plausible formal model of the performance of schedulers. 

Acknowledgements 

The author thanks the following people for reviewing earlier drafts of the paper: John 
Allen, John Bresina, Mark Drummond. Keith Swanson. This work was carried out when the 
author was at the Center for Integrated Manufacturing and Decision Systems, The Robotics 
Institute, Carnegie Mellon University. This work was sponsored in part by the National 
Aeronautics and Space Administration under contract # NCC 2-707, the Defense Advanced 
Research Projects under contract # F30602-91-F-0016, and the Robotics Institute. 

References 

[1] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for job shop 
scheduling. Management Science, 34:391-401, 1988. 

[2] D. Applegate and W. Cook. A computational study of job-shop scheduling. Technical 
Report CMU-CS-90-145, School of Computer Science, Carnegie Mellon University, 1990. 

[3] E. Biefeld and L. Cooper. Bottleneck identification using process chronologies. In 
Proceedings of the 12th International Joint Conference on Artificial Intelligence, pages 
218-224, Menlo Park, California, 1991. AAAI Press. 

[4] J.M. Chambers and T.J. Hastie. editors. Statistical Models in S. Wadsworth and 
Brooks/Cole, 1992. 

[5] R. Dechter, I Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence, 
49:61-95, May 1991. 

[6] M. Drummond and J. Bresina. Anytime synthetic projection: Maximizing the proba- 
bility of goal satisfaction. In Proceedings of the 8th National Conference on Artificial 
Intelligence, pages 138-144. AAAI Press, 1990. 

[7] S. Hanks. Practical temporal projection. In Proceedings of the 8th National Conference 
on Artificial Intelligence, pages 158-163. AAAI Press, 1990. 

[8] R.M. Haralick and G.L. Elliot. Increasing tree search efficiency for constraint satisfaction 
problems. Artificial Intelligence, 14(3):263-313, October 1980. 

[9] P. Langley. Systematic and nonsystematic search strategies. In Proceedings of the 1st 
International Conference on Artificial Intelligence Planning Systems, pages 145-152. 
Morgan Kaufmann, 1992. 

H10 



[10] S. Minton, M. Drummond, J.L. Bresina, and A.B Philips. Total order vs. partial order 
planning: Factors influencing performance. In Proceedings of the 3rd International 
Conference on Principles of Knowledge Representation and Reasoning (KR'92), pages 

83-92. Morgan Kaufmann, 1992. 

[11] N. Muscettola. Scheduling by iterative partition of bottleneck conflicts. In Proceedings of 
the 9th Conference on Artificial Intelligence for Applications, pages 49-55, Los Alamitos, 
California, March 1993. IEEE Computer Society Press. 

[12] N. Muscettola and S.F. Smith. A probabilistic framework for resource-constrained multi- 
agent planning. In Proceedings of the 10th International Joint Conference on Artificial 
Intelligence, pages 1063-1066, Menlo Park, California, 1987. AAAI Press. 

[13] N. Sadeh. Look-ahead techniques for micro-opportunistic job shop scheduling. Technical 
Report CMU-CS-91-102, School of Computer Science, Carnegie Mellon University, 1991. 

[14] S.F. Smith and Cheng-Chung Cheng. Slack-based heuristics for constraint satisfaction 
scheduling. In Proceedings of the 11th National Conference on Artificial Intelligence 
(AAAI 93), pages 139-144, Menlo Park, California, 1993. The AAAI Press. 

[15] S.F. Smith, P.S. Ow, J.Y. Potvin, N. Muscettola, and D. Matthys. An integrated 
framework for generating and revising factory schedules. Journal of the Operational 
Research Society, 41(6):539-552, 1990. 

Hll 



Interactive Graphic Design Using Automatic 

Presentation Knowledge 
Steven F. Roth, John Kolojejchick, Joe Mattis, Jade Goldstein 

School of Computer Science 

Carnegie Mellon University 
Pittsburgh, PA 15213 

(412) 268-7690 

Steven.Roth@cs.cmu.edu 

ABSTRACT 

We present three novel tools for creating data graphics: (1) SageBrush, for assembling graphics 
from primitive objects like bars, lines and axes, (2) SageBook, for browsing previously created 
graphics relevant to current needs, and (3) SAGE, a knowledge-based presentation system that 
automatically designs graphics and also interprets a user's specifications conveyed with the other 
tools. The combination of these tools supports two complementary processes in a single 
environment: design as a constructive process of selecting and arranging graphical elements, and 
design as a process of browsing and customizing previous cases. SAGE enhances user-directed 
design by completing partial specifications, by retrieving previously created graphics based on 
their appearance and data content, by creating the novel displays that users specify, and by 
designing alternatives when users request them. Our approach was to propose interfaces 
employing styles of interaction that appear to support graphic design. Knowledge-based 
techniques were then applied to enable the interfaces and enhance their usability. 

KEYWORDS: Graphic Design, Data Visualization, Automatic Presentation Systems, 
Intelligent Interfaces, Design Environments, Interactive Techniques 

INTRODUCTION 

Graphic displays of information have been valuable for supporting data exploration, analysis, and 
presentation. Still, current graphics packages remain very limited because: (1) they do not 
provide integrative displays for viewing the relations among several data attributes or data sets, 
(2) they have time-consuming and complex interfaces, and (3) they provide little guidance for the 
majority of users who are not experienced graphic designers. 

Consider these problems in the context of two graphics in Roth Color Plate 1. In la, a sequence 
of indented text, charts, and a table are aligned to integrate six attributes of activities 
(organization, start, end, status, cost, resource). 

In Proceedings CHI'94: Human Factors in Computing Systems. April 24-28, 1994. Boston, 
Massachusetts. This research was partially supported by DARPA under contract #F30602-91- 
C-0016.   
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All information about a single activity can be obtained by glancing horizontally across the 
graphic. Most packages do enable users to create charts and tables like these, but only as isolated 
displays. Even painstaking cutting, pasting, and resizing (usually the only means provided) are 
insufficient to layout and sort the bars and text in a coordinated way. 

Similarly, current packages provide no way to create a single display with different graphical 
objects. In lb, properties of lines, text strings and diamond-shaped marks vary to integrate ten 
data attributes. Also, graphical objects are clustered to express facts (i.e. each diamond is 
accompanied by two text labels to convey the geographic location, city, and date of battles). 
Together, these graphics illustrate the large number of possible combinations of object types, 
their graphical properties, the encoding spaces in which they occur (e.g. within a chart, map, 
table, or network), and the different ways they can be clustered and aligned. Clearly, current 
menu-style interfaces in spreadsheet packages would not support the creation of so many 
alternatives, nor could they help users assign data attributes to these graphics easily. Imagine the 
difficulty of conveying the relationship between data in spreadsheet columns and all the 
graphical objects and properties in lb. 

Furthermore, imagine the considerable design expertise required of users to produce these 
displays, including an awareness of the appropriateness of graphic choices for each data type. 
Even when users can judge the effectiveness of a particular display of their data, they often lack 
exposure to the many types and combinations of graphics that are possible. Systems that provide 
the ability to create new integrative designs will need to provide design guidance as well. 

One approach to these problems is to build systems that are knowledgeable of graphic design, so 
they can generate a variety of effective displays based on descriptions of data and viewing goals 
[1,3,4,9,10]. This research has provided a vocabulary for describing the elements of graphics, 
knowledge about the appropriateness of their use for different data and tasks, and design 
operations for combining elements to form integrative displays. 

Armed with this knowledge, automatic design systems should reduce the need for interaction and 
expertise, while providing great flexibility in customizing displays. However, previous automatic 
design research has not been concerned with supporting interaction with users and has focused 
on issues of identifying and encoding knowledge of data, tasks, and design. No paradigms have 
been developed for a collaborative process between human and automated designers. 

This paper describes a novel approach to interactive graphic design, in which automatic 
mechanisms are used to support users, not replace them. The following sections describe an 
overview of our approach, two major components of the system that correspond to two 
complementary styles of design, and some sample design interactions which illustrate these 
capabilities. 

OVERVIEW OF CURRENT APPROACH 

Our approach to supporting design has been to integrate an evolving automatic presentation 
system called SAGE [9,10] with two new interactive design tools called SageBrush and 
SageBook. Both tools enable users to manipulate familiar objects in order to perform natural 
design operations, shielding users from the more complex representations and operations that 
SAGE uses to create graphics. 

SageBrush (also called Brush) is representative of design tool interfaces in which users specify 
graphics by constructing sketches from a palette of primitives and/or partial designs. Our goal is 
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to provide a flexible, generative, direct manipulation design interface, in which users can create a 
large number of possible combinations of graphical elements, customize their spatial and 
structural relationships, and map them to the data they wish to visualize. 

SageBook (also called Book) is an interface for browsing and retrieving previously created 
pictures (i.e. complete, rendered designs) and utilizing them to visualize new data. Book supports 
an approach to design in which people remember or examine previous successful visualizations 
and use them as a starting point for designing displays of new data, extending and customizing 
them as needed. Our experiences in graphic design, as well as related research on engineering 
and software design [2,6], suggest that search and reuse of prior cases with customization is a 
common process. Therefore, our goal is to provide methods for searching through previously 
created pictures based on their graphical properties and/or the properties of the data they express. 
A picture found in this way can optionally be modified in Brush prior to sending it to SAGE, 
which creates a graphic for the new data. 

SAGE is an automatic presentation system containing many features of related systems like 
APT, BOZ, and ANDD [1,3,4]. Inputs are a characterization of data to be visualized and a user's 
data viewing goals. Design operations include selecting techniques based on expressiveness and 
effectiveness criteria, and composing and laying out graphics appropriate to data and goals. A 
detailed discussion of automatic design capabilities, including the operations that produced Roth 
Color Plate la, can be found elsewhere [7,9]. 

The current version of SAGE goes beyond previous systems in several ways. SAGE can create 
graphics when users completely specify their designs as well as when they provide no 
specifications at all. Most importantly, it can accept partial specifications at any level of 
completeness between these two extremes and finish the design reasonably. User specifications 
serve as design directives, which constrain the path of a search algorithm that selects and 
composes graphics to create a design. 

The ability to accept partial specifications from Brush is due to a rich object representation of the 
components of graphic displays, including their syntax (i.e. their spatial and structural 
relationships) and semantics (i.e. how they indicate the correspondence between data and 
graphics). The representation allows SAGE to produce combinations of a wide variety of 2D 
graphics (e.g. charts, tables, map-like coordinate systems, text-outlines, networks). It also enables 
SAGE to support Book's search for previous pictures with graphical elements specified by users. 

The object representation is highly extensible, allowing new graphical objects (e.g. lines, 
polygons, custom icons) and encoder mechanisms (e.g. charts, color keys, maps) to be added 
incrementally. For example, when a line object is added to the library, each end-point is defined 
as having horizontal and vertical positions, enabling the line to be displayed against the axes of a 
chart. If a map-style is later defined in the library as an encoder that displays horizontal and 
vertical positions, then SAGE can automatically draw lines on maps (as in Roth Color Plate lb). 

SAGE also contains a richer representation of the characteristics of data (e.g. distinguishing 
scales of measurement, temperature, dates, spatial coordinates, etc). Data transformation 
operations enable the design of graphics without depending on the surface form of input data 
(e.g. in relational database terms, SAGE can display N-ary relations and is not dependent on 
whether data is expressed as multiple binary relations or as a single N-ary relation). 

ARCHITECTURE 
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Figure 1 illustrates the conceptual relationships among SageBrush, SageBook, SAGE, and a Data 
Selector - a tool for indicating the mapping between data and graphics. The process of retrieving 
data needs to be integrated with graphic creation but is not the focus of this paper. We are 
exploring several interactive methods for retrieving and transferring data to the selector, where 
data appears as a table whose headers can be mapped to graphics (Figure 2). 

Users interact with Brush to create graphic design sketches, which are schematic views of 
designs. These are translated into design directives, which are specifications expressed in 
SAGE's graphic representation language. Directives include: 

• grapheme and property choices (e.g. color and size of circles, lines, text, and other 
graphical objects), 

• encoding mechanisms that provide frames of reference against which properties of 
graphemes are interpreted (e.g. 2-axis chart, table, map, network), 

• layout constraints (e.g. alignment of multiple charts horizontally; ordering of labels and 
graphemes), 

• grouping constraints indicating that clusters of graphemes are being used to express a 
single fact (e.g. a bar annotated with a text string; a cluster of items around a city on a map), 

• mappings between data and these graphic elements. 

Deskyi Directives 

USEFK 

Pictures 

[Picture"] 
LLibraryJ 

Figure 1: Architecture 

Design directives from Brush serve two purposes: they guide SAGE's automatic processes and 
provide criteria for Book to use in searching its library of previously designed pictures. Brush 
can also translate graphics produced by SAGE back into sketches so that users can modify them. 

Users interact with Book to view and save pictures created by SAGE. The saved information 
includes a bit map scaled to a browsable size, a sequence of design operations that SAGE can use 
to reconstruct the picture efficiently (i.e. without redesigning), the picture's data and data type 
characteristics, and a complete representation of the rendered graphic. Book searches its picture 
library based on data users specify with the Selector and/or design directives derived from 
sketches created in Brush's work area (Figure 2). Users request the creation of a graphic based on 
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a previously found one by transferring it to Brush (where they modify it as a sketch) or directly 
to SAGE. The next sections describe these components in detail. 

SAGEBRUSH 

Brush is representative of tools with which users sketch or assemble graphical elements to create 
designs and map them to data. Brush provides users with an intuitive and efficient language for 
sketching their designs, and translates these sketches into a form that can be interpreted by 
SAGE. There are other possible styles of graphic design interface that could be coordinated with 
SAGE's internal design mechanisms. One alternative is the demonstrational approach proposed 
for Gold [5], in which users draw examples of displays. Our claim is that any interactive design 
interface that attempts to provide complete coverage of graphics will require a knowledgeable 
system behind it to be successful. 

An example: Figures 2, 3, and Roth Color Plate lb illustrate a sequence for creating a new 
version of the famous graphic by Minard showing Napoleon's 1812 Campaign [11]. One data set 
describes the march segments (start and end latitudes/longitudes of each segment, the number of 
troops remaining, and the temperature). The other data set contains the city, date, and location of 
each major battle. These will be visualized by composing multiple graphemes and their 
properties on a map. 

o 
tbrk 

Sa vgt 

IPata Selectoi 

p 
Battles  of  NoDoleon's 1812 Caapaiq n 
Battle Date Latitude Lonaitude 
Smolensk 7-Auq 54.783 32.05 
Borodino 7-Sep 55.583 35.833 
Trautino 6-0ct 55.225 37.009 
Polock 18-0ct 55.517 26 
M»loi»rosi»vec 24-0ct 55.017 36.467 
Krtsnyl 5-Hov 54.567 31.433 
BorisoT 16-Hov 54.25 28.5 

Figure 2: Starting a design sketch in SageBrush. 
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Anchoring new designs with partial prototypes. The creation of a new design begins with a 
user's selection of a partial prototype. As illustrated in Figure 2, Brush's interface consists of a 
design work area (center) into which users drag prototypes (top), graphemes (left), and data 
names (bottom). Prototypes are partial designs, each with a spatial organization, graphemes, 
and/or encoders that commonly occur together. Encoders are frames of reference for interpreting 
properties of graphemes. For example, axes enable us to interpret (i.e. derive a data value from) 
the position of a bar in a chart. 

The choice of prototypes to include in the top menu can be customized to applications and could 
include previously designed graphics. Although primarily a constructive interface, Brush still 
allows design to be viewed as a process of refining prior, effective graphics. The first prototype 
in the top-left of Figure 2 is a general one for constructing all charts. It is actually a composite of 
horizontal and vertical axes. Although users could construct charts by assembling separate axes, 
doing so requires more steps and appears less intuitive than selecting a chart prototype. A similar 
rationale led to a network prototype, consisting of both graphemes (i.e. lines) and an encoder 
against which the graphemes are interpreted (i.e. the nodes). This eliminates the need for users 
to construct networks from primitives each time. In the example, a map prototype (more 
precisely, a 2D spatial coordinate display) was dragged to the design work area. 

Customizing by adding primitives to prototypes. Prototypes are extended by adding graphemes. 
While the chart and map prototypes have no graphemes, dragging them into the design work area 
creates an encoding space which supports new design choices. The encoding space of a chart or 
map is defined by the interior of the two axes or coordinate-frame, respectively. Dragging line 
and mark graphemes (to represent march segments and battles) from the left window into the 
map's encoding space results in directives to SAGE to include these grapheme types in a design, 
with their positional properties interpreted relative to the map's coordinate system. 

Troop 
Sice ^ 

\ 
•*"♦ El 

J  t 
Start 

Latitude 

Start 
Longitude 

iBattle U Date 
V 

Figure 3: Property selection and data mapping in SageBrush's work area. 

Customizing the properties of graphemes. Graphemes have other properties for encoding data 
besides position. Properties are chosen by selecting property icons, displayed by double-clicking 
a grapheme in the design work area. Double-clicking on the line in Figure 3 displays a menu of 
line properties (width and color) and arrows representing the positional properties of end-points. 
Selecting a property directs SAGE to use it to encode data in a design but does not indicate the 
data to which it corresponds. Double-clicking on a property icon allows users to convey specific 
directives (e.g. make all marks diamond-shaped or all lines blue; reject the use of color). 

Completing the graphic requires a way to create grapheme clusters. As described above, 
dragging graphemes into an encoding space results in directives to use their positional properties 
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in a design. When two or more graphemes are dropped close together in the same space, the 
position of one is interpreted relative to the axes or coordinate system, while the positions of 
others are interpreted to convey association by adjacency. In Figure 3, two text strings have been 
placed next to the mark (which has been customized to be diamond-shaped) to convey 
association. Note that Brush only determined that the two strings and diamond are associated. 
SAGE must infer which of the three is used to convey position in the coordinate system (using 
knowledge of data characteristics and graphic expressiveness criteria [8,9]). Of course, a user can 
explicitly double-click on the diamond and select its property icons for position (a pair of 
arrows). 

Communicating the mapping of data to graphics. Dropping a grapheme in a chart and selecting 
its color result in directives to SAGE to generate a design where position and color encode data. 
It does not specify which data (i.e. relation domains) to assign to these properties. While SAGE 
could attempt to infer this (just as it could also make choices of graphemes and properties), users 
can explicitly make these choices by dragging data labels from the Data Selector (bottom Figure 
2), and dropping them on property icons. In Figure 3, Troop Size was mapped to line thickness 
and Start Latitude and Start Longitude to the position of one end of the line. Battle and Date have 
been mapped to text labels adjacent to the diamond (dragging a data name into the space 
simultaneously specifies that a text grapheme be used and maps the data to it). The completed 
design resulting from this interaction is shown in Roth Color Plate lb, which was generated by 
SAGE. 

Coordinating multiple design spaces. In addition to defining encoding spaces, prototypes also 
define layout spaces, which enable users to specify the relative positions of prototypes with 
respect to each other. There are two types of layout spaces, reflecting adjacency and embedding 
relationships. Adjacency spaces enable horizontal and vertical alignments among charts, tables, 
maps and other prototypes. Two charts and a table in Figure 5 have been sequenced by 
placement adjacent to each others' layout spaces. Embedding spaces enable the placement of one 
prototype within another (e.g. a network placed within a map or chart; a list placed within a 
network node). 

Finally, it is important to emphasize that all of these design choices are optional. Users only need 
to specify the data they wish to visualize, but may further specify (to any level of completion): 

prototypes only, 

prototypes and additional graphemes, 

graphemes and their properties, 

the mapping of data to graphemes, and 

the mapping of data to specific grapheme properties. 

The Napoleon example illustrates that users needn't specify all mappings. The system inferred 
End Latitude, End Longitude, and Temperature (and could have made choices for the other data, 
possibly differing from those of the user). The strength of this approach is that it can (1) reduce 
the amount of work needed to convey design choices and map them to data, (2) enable the 
construction of composites that could not be created by menu-based approaches, (3) provide 
design expertise to supplement that of users, and (4) provide design directives for SageBook to 
use in searching its library of previously constructed pictures. 
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SAGEBOOK 

The goal of Book is to provide users with the ability to create new pictures analogous to existing 
ones they consider useful. Our intent is to provide users with access to a growing portfolio of 
graphic designs to provide ideas for visualizing their data. Book capitalizes on the explicit 
representation of designs and data characteristics by SAGE to provide a vocabulary for 
expressing search criteria. 

Book provides two mechanisms for browsing pictures. The first is a file-folder metaphor 
analogous to that used in the Macintosh system, in which pictures created by SAGE are named 
and stored in locations defined by users. The second mechanism provides browsing by two types 
of picture content: graphical elements and data. Search criteria are based on exact match or 
partial overlap with data in the Data Selector and/or design elements in Brush. 

Figure 4 illustrates the interface for browsing pictures retrieved by a search based on data 
overlap. The data for the search were facts about activities in a project management database (the 
final picture is shown in Roth Color Plate la). Pictures in the library that expressed similar data 
were listed by the interface. As a user selects each picture name, its bitmap is displayed. Multiple 
full size pictures can be displayed and arranged by users for comparison. 

ISAGEBOOKJ m 
CD Demo Pictures 

nf^-i ProccssGantt 

Ij^l ProcenNetvort 

[?i£, StockPricelntaraJ 

Viev Full Picture 

Brovse by FoUa Modify Sketch in SAGEBRUSH 

I     BrorabyCootentI 

□ Use SAGEBRUSH Q Exact 

[x] Use Data Q Exact 

Generale Hew Picture 

Figure 4: Browsing graphics by their data content in SageBook. 

We have designed search criteria for several levels of match overlap based on data. These 
involve retrieving pictures which: 

• show exactly the same data relations/attributes as in the data selector (e.g. find pictures of 
Activity End), 

• contain the selected data in addition to other data, 

• show different data that have the same underlying data characteristics. 

For example, a data relation (to use relational database terms) representing quarterly expenses 
for a company's departments (Department, Business Quarter, Operating Cost) may have the same 
properties as another relation for stock market data (Stock, Calendar Date, Shares Traded). Both 
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relations contain three domains with identical data characteristics: a nominal type, a temporal 
coordinate, and a quantity. There is also exactly one quantity for each nominal-time pair in both 
relations (i-C functional dependency). See [8] for a more complete treatment of data 
characterization relevant to graphic design. 

We have designed search criteria for several levels of match overlap based on graphical elements 
as well. These involve retrieving pictures that (1) show exactly the same design elements as those 
in the Brush sketch and (2) contain the Brush elements as a subset of a more complex design. 

Our current work is addressing the problem of defining match criteria for combinations of data 
and graphical properties. We are also exploring similarity criteria for defining close matches with 
partial overlaps. For example, we need criteria for determining whether a network where the 
color of links encodes data is more similar to a chart using the color of bars or to another 
network where the widths of links encode data (i.e. what graphical elements are salient to users). 
Our intuitions suggest the latter, but a cognitive model based on user studies is needed to define 
similarity, as well as to verify the appropriate graphical primitives for the Book and Brush 
interfaces. 

Our preliminary view is that searches based on different criteria serve different purposes for 
users, including: 

• discovering how basic techniques can be expanded with additional graphical elements (e.g. 
how a network can encode using additional text or marks along its links or within its nodes), 

• quickly retrieving a picture whose name has been forgotten, but some of whose elements 
are known, 

• minimizing the effort of sketching a new design by retrieving a picture similar to the one 
desired and then modifying it in Brush. 

L Current 
Status 

1 

Figure 5: Adding graphics in SageBrush to a picture found using SageBook (see Figure 4). 

The last case is illustrated in Figures 4 and 5. Book found an indented chart with color-coded 
interval bars for data matching only part of a large data selection (activity, organization, start, 
end, current-status, labor-cost, resource). The chart was converted to a sketch in Brush, and the 
user added a bar chart and table aligned with the original interval chart. The user also mapped 
Current-Status to the interval grapheme, leaving it to automatic mechanisms in SAGE to map it 
to color (because the original picture used color). SAGE can automatically assign Activity to the 
Y-axis, dates to the interval bar, and Labor-Cost to the horizontal position of the bars in the 
added chart, based on expressiveness rules for these graphical properties. The resulting picture is 
shown in Roth Color Plate la. SAGE integrated all design elements and determined appropriate 
data mappings. Notice that Resource is placed in the table, while Organization is placed in the 
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indentation of the Y-axis...an arbitrary choice that a user can easily reverse. The operations that 
produced Roth Color Plate la can be found in [9]. 

SUMMARY AND CONCLUSIONS 

Our approach views the task of creating visualizations of data as a combination of two 

interrelated processes: 

• constructing designs from graphical elements, and 

• finding and customizing relevant prior examples. 

The extent to which each process occurs varies with user and context. Consequently, we created 
two tools that play flexible, mutually supportive roles to enable design. SageBrush provides users 
with an interface for constructing graphic designs and customizing graphics found with 
SageBook. Brush also enables users to compose graphical queries to be searched using Book. 

Another central theme of our approach is the use of automated design knowledge in SAGE to 
provide new display capabilities, to enhance the usability of graphic design interfaces, and to 
provide design expertise when needed by users. These are realized in several ways. 

First, SAGE enables users to create a wide variety of integrative displays, which coordinate 
multiple spaces, graphemes, and visual properties to show the relationships among several data 
attributes or data sets. This is possible because SAGE recognizes and parses the structure and 
semantics of sketches that users construct. 

Second, knowledge enables a system to automatically design a graphic when requested by users. 
This can occur when users do not know how to represent data (i.e. they lack expertise in general 
or for a specific problem) or when they want to compare alternative designs with the ones they 
have created. 

Third, SAGE reduces the work of designing a graphic by completing it automatically when 
partially specified. This often eliminates the need for users to assign data to elements of the 
graphic, select graphical properties once objects are specified, or perform other repetitive 
selections. 

Fourth, SAGE makes it possible to search displays created previously based on meaningful 
criteria: the data and graphic elements they contain. Without this knowledge, Book would be 
limited to browsing graphics based on file attributes. 

There are many research problems remaining, especially for supporting users with limited 
graphics expertise. First, the operation of any automatic presentation system depends on the 
existence of data characterizations [8]. In this research, data characterizations were already 
present in the database or spreadsheet. We will be exploring ways to infer them or obtain them 
interactively. 

Second, although SAGE considers user information-seeking goals or tasks [1,8,9], no attempt 
was made to provide users with the ability to specify these. We are considering creating a goal- 
selection interface so users can convey their intentions as design directives. 
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Finally, there are numerous new graphic design problems to address, including the design of 
interactive mechanisms for manipulating data displays, displays of large data sets, and graphical 
techniques such as animation and 3D. See [7] for a more complete discussion of research 
problems in this area. 
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Roth, Color Plate 1b: "Napoleon's 1812 Campaign", designed interactively using SageBrush. In all, ten data 
attributes are integrated in a single map-like coordinate space using several kinds of graphical objects. The 
lines trace the path of Napoleon's eastward advance and westward retreat, including the path of troops that 
branched north to protect his main force. Line thickness conveys the number of troops traveling each 
segment, line color conveys the temperature, and the dates and sites of battles are signified by yellow 
diamonds and text. 

Napoleon's eastward advance began in extreme heat, with the weather cooling as he approached 
Moscow (bright red at left fading to pink at upper right). During the westward retreat, the army circled back 
to retrace its route while the temperature dropped below freezing (the light blue segments overlying the red 
path). Upon reaching Krasnyj, the army veered south from its previous route. When the march ended, less 
than three percent of Napoleon's troops remained, as shown by the striking decrease in line thickness. 
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Roth, Color Plate 1a: Result of a SageBrush customizaton of a picture retrieved using SageBook. Six data 
attributes are integrated in a coordinated set of aligned displays that illustrate project management data. 
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ABSTRACT 

In this paper, we propose a framework that combines the functionality of data exploration and 
automatic presentation systems to create a knowledge-based, interactive, data exploration 
system. The purpose of a data exploration system is to enable users to uncover and extract 
relationships hidden in large data sets. The purpose of an automatic presentation system is to 
reduce the need for users and application developers to have graphic design expertise and to 
spend much time interacting with graphics packages to view their data. Previous work on data 
exploration was limited to query mechanisms that were often complex to learn and difficult to 
use, data manipulation mechanisms that did not provide complete coverage of the operations 
needed by users (especially the ability to form ad hoc groupings of data), and graphics that were 
restricted to a small set of predefined visualizations. Automatic presentation research, although 
addressing these issues, has been limited to the display of small data sets. This research has also 
not developed approaches to combine interactive, user-directed processes of design and data 
manipulation with automatic presentation mechanisms. We propose a framework that overcomes 
these limitations of current data exploration systems and integrates new interactive capabilities 
with automatic presentation components. This approach to supporting data exploration integrates 
recent work on SageTools, an environment for interactive and automatic presentation design, 
with a prototypical interactive data manipulation system called IDES. In this paper, we present 
our work on the IDES data manipulation capabilities and discuss requirements for coordinating 
them with automatic presentation of large data sets. 

KEYWORDS: Data Exploration, Data Visualization, Intelligent Interfaces, Automatic 
Presentation Systems, Graphic Design, Computer-supported Design, Large Data Sets. 

1. INTRODUCTION 

The widespread use of databases and computers is requiring growing numbers of people to use 
and understand increasing amounts of information. These databases contain diverse data, 
including combinations of quantitative, temporal, categorical, hierarchical, geographic, and other 
types of information. Users of these large data repositories will not be limited to scientists and 
technically oriented professionals. Thus, there is a need for software that assists users with 
diverse levels of expertise in their data exploration tasks without substantial training and/or 
effort. The tasks users need to perform with information go beyond retrieving simple facts and 
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answering focused questions. Instead, the tasks involve solving problems and making decisions 
based on the current state of the data, which is often repeatedly refined and extracted. These 
decisions depend upon the user's understanding of the relationships latent within the data. Once 
an interesting relationship is discovered, the user can use it to guide the next instruction to the 
system. This iterative and interactive process, which Brachman [5] calls data archaeology, is 
initiated and controlled by people. In contrast, data mining [10] emphasizes the use of automatic 
mechanisms to search for patterns. 

We propose a framework for building a knowledge-based interactive data exploration system 
that will support the data archaeology process. Doing so requires understanding the interactive 
and iterative processes of data exploration. Specifically, tools must support three kinds of 
exploration subtasks: 

1. data visualization operations, which include finding or designing and creating effective 
graphics. 

2. data manipulation operations, which include selecting data for display, focusing on 
particular attributes of the data, and grouping or reorganizing data. 

3. data analysis operations, which include statistical testing, summarization, and 
transformation for understanding properties of the data. 

Of course, these subtasks are interdependent and overlapping. For example, a user may wish to 
select data directly from a visualization (a data manipulation operation performed on a 
visualization). Data exploration systems will need to employ other user interface techniques that 
provide easy interaction and communication with the components of the system that generate 
displays, such as direct manipulation [11]. They also need to employ query mechanisms that 
allow the user to focus on their data and results and not on the process of creating a query. 

Data Visualization. Automating portions of the data exploration process requires specific 
knowledge relevant to each of the three exploration subtasks. For data visualization, research has 
focused on systems that can automatically generate a display of data composed of graphics and 
text or developing new techniques customized to specific tasks or types of analyses. The intent of 
automatic presentation systems is to relieve users and application programmers of the need for 
graphic design knowledge and of the task of designing and specifying displays. This lets users 
concentrate on their goals for viewing information. Furthermore, for complex combinations of 
data, automatic presentation systems have the ability to generate graphics that users might not 
even consider. However, research on existing automatic presentation systems has been narrow, 
primarily focusing on representing knowledge of graphic design and not on interactive 
mechanisms for performing design. Recent work [19] has applied this technology to create 
computer supported data-graphic design tools, in which users can interactively specify and/or 
search and choose from a library of previously created graphics. This system, called SageTools, 
builds on an automatic presentation system called SAGE [16, 17, 18] and provides an approach 
to situating automatic technology in an environment which supports iterative and interactive 
data-graphic creation. 

Previous automatic presentation systems have also been limited to the display of small data sets - 
those that fit well in a single computer window [6, 12, 14, 16, 17, 19]. These systems are unable 
to support many applications that use hundreds or even thousands of data elements. When 
dealing with such large data sets, it is no longer sufficient for the presentation system to create 
only a display. The system must also provide mechanisms for interactive manipulation and 
analysis of large data sets. 
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Data Manipulation. The functionality needed for large data set manipulation and analysis in an 
automatic presentation system is an extension of that needed in a conventional data exploration 
system. Thus, it is useful to first explore standard data exploration systems in which there are 
several popular approaches to providing interactive data manipulation techniques. Data base 
query systems, statistical packages and electronic spreadsheets provide various levels of support 
for accessing, modifying and reorganizing data. However, these are not well integrated with 
effective graphics techniques, nor do they provide flexible, low-effort tools that can be used by a 
broad cross-section of users. Query systems have great flexibility but require learning 
programming skills and lack convenient tools for organizing and summarizing information. 
Spreadsheets have greater intuitive appeal but lose the flexibility of query languages for selecting 
data. They also have a limited ability to rapidly reorganize information. Attempts to provide 
spreadsheets with these capabilities have often resulted in new programming environments rather 
than effective interface mechanisms. 

In exploring the nature of data manipulation techniques, we classify data manipulation goals into 
three categories: controlling the scope (selecting desired portions of data), choosing the level of 
detail (creating and decomposing aggregates of data), and selecting the focus of attention 
(concentrating on the attributes of data that are relevant to current analysis). We have used this 
classification to evaluate the functionality of existing data manipulation interface techniques. 

Based on these results, we have expanded an interface mechanism called the Aggregate 
Manipulator (AM) [15] and combined it with Dynamic Queries (DQ) [1] in a prototype system 
called IDES (Interactive Data Exploration System). We use the results of our experience with 
IDES to propose extensions to SageTools to handle large data sets. The goal of these extensions 
and the integration of IDES with SageTools is a knowledge-based interactive data exploration 
system, a tool for users who are investigating relationships in large data sets. 

In this paper, we concentrate on an overview of a framework for accomplishing this goal and the 
details of the IDES system. Section 2 discusses the proposed integration of SAGE and IDES. 
Section 3 discusses the data manipulation operations: controlling the scope, choosing the level of 
detail, and selecting the focus of attention. Section 4 explains how we selected the interface 
mechanisms used in IDES. Section 5 gives an overview of the design of IDES. Section 6 
provides examples of how IDES is an effective tool for covering the data manipulation 
operations, due to the complementary nature of AM and DQ, as well as IDES's inherent 
flexibility in methods of exploring large data sets. This is demonstrated in two domains: 
shipping and real estate. Section 7 highlights the extensions required for SAGE as illustrated by 
the properties of large data sets in IDES. 

2. A FRAMEWORK FOR KNOWLEDGE-BASED INTERACTIVE DATA 
EXPLORATION 

In this section, we propose a framework for a knowledge-based interactive data exploration 
system. Figure 1 shows the conceptual architecture that will be discussed in this section. The 
framework is composed of system modules, communication protocols, and knowledge of data 
and task characteristics and graphic design. Users communicate through direct manipulation 
interfaces, which generate appropriate directives to other components. The components access 
stored knowledge relevant to their functionality and the data. The following subsections will 
expand on these three concepts. 
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Figure 1: Proposed architecture for knowledge-based interactive data exploration. 

2.1 System Components 

All the components in the architecture provide one or more mechanisms for supporting data 
visualization, data manipulation, or data analysis. SAGE [16, 17, 18] is an automatic 
presentation system containing many features of related systems like APT, BOZ, and ANDD 
[12, 6, 14]. SAGE uses a characterization of data [16] to be visualized and a user's data viewing 
goals to design graphics. Design operations include selecting techniques based on expressiveness 
and effectiveness criteria and composing and laying out graphics appropriate to the data and user 
goals. 

SageTools [19], an extension of SAGE, goes beyond previous presentation systems in several 
ways. SAGE can create graphics when users completely specify their designs (using SageBrush) 
as well as when they provide no specifications at all. Most importantly, it can accept partial 
specifications at any level of completeness between these two extremes and finish the design in a 
reasonable manner. User specifications generate design directives, which constrain the path of a 
search algorithm that selects and composes graphics to create a design. The ability to accept 
partial specifications is due to a rich object representation of the components of graphic displays, 
including their syntax (i.e., their spatial and structural relationships) and semantics (i.e., how 
they indicate the correspondence between data and graphics). The representation allows SAGE to 
produce combinations of a wide variety of 2D graphics (e.g., charts, tables, map-like coordinate 
systems, text-outlines, networks). It also enables SageBook to support search for previously 
created pictures with graphical or data elements specified by users. A detailed discussion of 
automatic design capabilities can be found elsewhere [6, 12, 16, 17, 18, 19]. 

SageBrush is a tool with which users sketch or assemble graphical elements to create designs and 
map them to data. SageBrush provides users with an intuitive and efficient language for 
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sketching their designs, then translates these sketches into a form that can be interpreted by 
SAGE. The assumption is that any interactive design interface that attempts to provide complete 
coverage of graphics will require a knowledgeable system behind it to be successful. 

New designs begin with a user's selection of a partial prototype. As illustrated in Figure 2, 
SageBrush's interface (left window) consists of a design work area (center ) into which users 
drag prototypes (top), graphemes (left), and data attribute names (bottom). Prototypes are partial 
designs, each with a spatial organization, graphemes, and/or encoders that commonly occur 
together. Encoders are frames of reference for interpreting properties of graphemes. For example, 
axis encoders enable us to interpret (i.e., derive a data value from) the position of a bar (a 
grapheme) in a chart (a spatial framework). 

Prototypes are extended by adding graphemes and selecting properties of them to assign to data 
attributes (e.g., their color, shape, size, position, etc.). While the chart and map prototypes have 
no graphemes, dragging them into the design work area creates an encoding space which 
supports new design choices. The encoding space of a chart or map is defined by the interior of 
the two axes or coordinate-frame, respectively. Dragging a mark grapheme into a chart's 
encoding space results in directives to SAGE to include these grapheme types in the design, with 
their positional properties interpreted relative to the chart's coordinate system. 

Figure 2: The SageBrush interface (on left) and the SageBook interface (on right) 

SageBook (Figure 2, right windows) is a tool for browsing and retrieving previously created 
pictures (i.e. complete, rendered designs) and utilizing them to visualize new data. SageBook 
supports an approach to design in which people remember or examine previous successful 
visualizations and use them as a starting point for designing displays of new data. After selecting 
a visualization, users extend or customize it as needed. Our experiences in graphic design suggest 
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that search and reuse of prior cases with customization is a common process. Therefore, our goal 
is to provide methods for searching through previously created pictures based on their graphical 
properties and/or the properties of the data they express. A picture found in this way can 
optionally be modified in SageBrush prior to sending it to SAGE, which creates a similar style 
graphic for the new data. SageBook capitalizes on the explicit representation of designs and data 
characteristics by SAGE to provide a vocabulary for expressing search criteria. 

SAGE and SageBrush will need to be extended to handle large data sets. For example, SAGE 
will need to create visualizations that group portions of data to control level of detail (e.g., given 
screen constraints and user direction, SAGE might choose the picture in Figure 4b rather than in 
Figure 4a). Section 7.2 will briefly discuss how the syntactic and semantic representation of 
graphics and data characteristics will need be extended to create displays containing these data 
groupings. SageBrush will need to include new interactive graphemes, such as the aggregate 
gateway grapheme, the graphical representation for a grouping of data. 

Most of all, SageTools will need a Data Manipulation component to provide a variety of 
interface mechanisms for grouping, filtering, transforming and performing other operations on 
data. Data manipulation operations are the focus of IDES, and Section 7 will discuss their role in 
the broader framework. Sections 3-6 explain the purpose and capabilities of IDES in detail. 

2.2 Communication 

Communication between the user and the components of the exploration system occurs via 
directives, which are messages that can result from user actions. Directives are generated 
through interactions with a variety of user interfaces, including menu commands, dialog boxes 
and direct manipulation techniques, such as sliders, button selection, and drag and drop 
mechanisms. There are several types of directive: 

Presentation directives are the means by which users communicate their intent for the creation 
of graphics. There are four types of presentation directives: task, style, aesthetic, and data. Task 
directives are used to communicate a user's information-seeking goals (e.g., the data must be 
viewed very accurately). Style directives are display goals which affect the types of graphic 
techniques that are used to encode data (e.g., use saturation to show neighborhood as in Figure 
4). Aesthetic directives influence the choice of values for graphical techniques (e.g. the color 
values, scale of axes, shape of objects). Data directives, discussed in subsequent sections, are the 
means by which the user communicates with the data manipulation and analysis component of 
the system. Following are some examples of each types of presentation directive. 

Task Directives: 
• indicate specific information-seeking goals for particular data attributes, e.g., looking up 

accurate values, detecting correlations, locating needs, scanning for differences. 
• prioritize data attributes, e.g., the "cost" data attribute should be displayed more 

prominently than the "quantity" attribute, and the information-seeking goals for cost have 
a higher priority than the information-seeking goals for quantity. 

• will need to include focus of attention and level of detail directives, because the choice of 
number of attributes and the groupings of data affect the choice of graphical techniques. 

Display Directives: 
• Style Directives: Convey combinations of graphical and textual techniques. For example, 

users may specify a display with two bar charts side by side, whose vertical axes are 
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identical, or that they don't want to use color to encode a data attribute. Design directives 
will also need to convey interface objects to be included in displays to perform data 
manipulation. 

• Aesthetic Directives: Inform the presentation system of the user's preferences for the 
appearance of the picture, e.g., use red, blue, and white, or draw the picture in a 3" x 5" 
window. 

Previous automatic presentation systems did not provide interfaces for users to convey 
directives. In SageTools, task, style and aesthetic directives are generated through SageBrush 
and SageBook specifications. For an interactive data exploration system, we need to expand the 
task and display directives to include operations associated with large data sets. We also need to 
introduce data directives for communication with the data manipulation and analysis component 
of the system. Section 7.1 will briefly discuss the data directives. 

2.3 Data Characterization and Design Knowledge 

A knowledge-based interactive data exploration system must be application-independent, yet 
able to interpret data sufficiently in each new application. It is able to do this because of a 
general vocabulary for describing the data and task characteristics of domains. It uses these 
characteristics along with design knowledge to generate graphics [16, 17, 18, 19]. 

The data characterization is provided by an application developer or user and can be modified or 
updated by the user through a data characterization generator. It is based on an underlying 
vocabulary for describing the semantic and structural properties of the data (actual and derived) 
that are relevant to presentation design [4, 16]. A complete set of data characteristics enables 
appropriate mappings between the data and graphics. All current work on automatic presentation 
is founded on a strong definition of the data characteristics. Data characteristics include: 

• sets of data objects, including distinctions among quantitative, ordinal, and nominal 
scales of measurement; whether objects represent coordinates or amounts, where a 
coordinate is a point or location temporally, spatially or otherwise (e.g., calendar-date) 
and an amount is a value not embedded in a frame of reference (e.g., weight or number- 
of-days); ordering conventions among objects, etc. 

• attributes of objects, e.g., whether an attribute or relation maps from one object to one or 
more other objects; whether missing values are meaningful; the arity of a relation; etc. 

• higher order relationships among attributes, e.g., the semantics underlying the relation 
between the beginning, end and duration of a time interval or the relationship between 
longitude and latitude in a two-dimensional spatial representation. 

• domain of membership, which refers to whether data measures time, space, temperature, 
currency, mass, etc., which enables a system to preserve such standard conventions as 
time displayed along a horizontal axis, and East-West appearing right to left. 

• algebraic dependencies among database elements, e.g., each bar in the stacked bar chart 
displays the sum of its parts. 

The data characterization is interpreted by using application-independent design knowledge. 
Design knowledge contains two components: a library of presentation techniques and 
mechanisms for selecting and combining techniques. The library of presentation techniques 
consists of: (1) graphical and textual techniques for displaying the components of various kinds 
of tables, charts, maps and network diagrams; (2) information describing the types of data for 
which the technique is suitable (e.g., the graphical technique color is suitable for nominal data 
with six or fewer items); and (3) the syntactic or structural relations among elements used in 
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graphics (e.g., axes, lines, points, labels). The presentation design knowledge contains 
information about which techniques best satisfy which goals, how techniques can be combined, 
and which combinations of techniques create the most effective presentation for the users' data, 
according to their information seeking and display goals. It also has knowledge about how to 
structure, organize, and lay out displays and their components. Extensions to this knowledge and 
to the data and task characterization language are needed to support large data set exploration 
and are discussed in subsequent sections. 

This section provided an overview of the components of a framework for data exploration 
environments. It was based on prior research on SageTools, which was an approach to computer 
supported data-graphic design and IDES, an experimental data manipulation tool for large data 
sets. Our future research will involve extending SageTools to incorporate the features of IDES 
so that visualizations created with SageTools include appropriate data manipulation operations. 
Sections 3-6 will discuss the implementation and functionality of IDES, and Section 7 will 
discuss the extensions necessary for large data set functionality. 

3. DATA MANIPULATION: CONTROLLING SCOPE, FOCUS OF ATTENTION, & 
LEVEL OF DETAIL 

The exploration goals that a user will have are clearly task dependent. These goals are also 
dynamic, changing as the user views various data and displays. Data manipulation is one of the 
processes that users perform in data exploration. Springmeyer [20] performed an extensive 
empirical analysis of the processes that scientists use when performing data analysis. Her 
category "data culling" is most similar to that of data manipulation. We have analyzed the data 
manipulation process in detail for object-attribute data (data which consists of an object such as a 
house and several attributes for that object, such as selling-price and number of bedrooms) and 
have identified three types of exploration operations: controlling the scope, selecting the focus of 
attention, and choosing the level of detail. 

Controlling scope involves restricting the amount of data one wishes to consider. There are two 
ways this can be accomplished: (1) selecting a subset of values of a data attributes, such as only 
cities with a population over 2 million, or (2) disjunctively join subsets of the data, such as data 
for cities where the population is over 1 million (set 1) or cities which have a population between 
2 million and 10 million and are in the Eastern US (set 2) 

The second class of goals addresses focus of attention, which involves choosing the attributes of 
data one wishes to view in displays, to use for scope operations, and to use to control the level of 
detail. For example, a database of cars may consist of various attributes (car-model, year, 
company, cost, miles-per-gallon, repair-rating), but a user may wish to just focus on the average 
miles-per-gallon (for all car-models of a given company). 

There is one specialized focus operation, the creation of derived attributes, which are attributes 
that do not occur in the original data and are defined by the user. For example, for our car data, 
we can create a derived-attribute called manufacturing-location (with values of American, 
European and Asian) by assigning a value to each car based on its manufacturer. The result is 
three groups, that can be displayed visually by coloring the cars on a display based on their 
manufacturer. Referred to as brushing [7] or painting [13], this technique control focus of 
attention using color. Another way to create derived attributes is to transform existing attributes 
by some filter [9], for example, create a binary attribute, fuel-efficient, from the car attribute 
miles-per-gallon by filtering the data by miles-per-gallon greater than 30. 
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The third type of goal is choosing the level of detail, which involves changing the granularity of 
the data that the user wants to examine, either by aggregation (combining data into meaningful 
groups) or by decomposition: (breaking a larger data group into smaller groups). The process of 
aggregation is sometimes referred to as composition, when the process involves combining two 
data groups. Suppose we have house-sale data with the following attributes: number-houses- 
sold, total-sale-price, and date, where date represents a day of 1992. This involves 365 data 
points. The user may wish to change the level of detail by grouping dates into months and 
displaying the total sales per month. This reduces a display of 365 data points to one of 12 
(aggregation). On any resultant aggregate, users might want to do data analysis operations, 
which involve examining derived properties of the data. These include defining summary 
statistics, which are statistics that can be computed on the values of attributes (e.g., sum or 
average), such as the average total-sale-price for 1992. 

Decomposition involves reducing a data group into smaller groups based on the same or different 
attributes of the included data objects. Figure 3a gives an example of how decomposition could 
occur for a real estate sales database with the following attributes: house-selling-price, 
neighborhood, number-of-bedrooms, lot-size. The neighborhood attribute has the values 
{Squirrel Hill, Shadyside, Point Breeze}. The grouping of "All Houses" is decomposed by 
neighborhood into three sub-groups of houses, one for each neighborhood. Each neighborhood 
group is partitioned further by lot size: lot sizes less than or equal to 8000 ft. and lot sizes greater 
than 8000 ft. Figure 3b shows the representation of the house data in the aggregate 
manipulator's outliner (described further in section 6). 

W 0» 
AH Houses 

count leverage         Imin-mox         I average 
1* of Bedrmsl* of SedrmslLot Size 

Imin-max 
ILot Size 

AHKouses 292 1 4 12.8                 1             4793 1945.15730 
Point  Breeze 52 1 4 12.6                   1              4911 11349.11543 
under8000 47 1 4 12.6                   1              4392 11349.7800 
over8000 S 1 5 13.6                   1              9789 18100.11543 

Stodvs ide 47 i 4 12.6                 1             3373 1945.8784 
under8000 46 1 4 12.6                 1             3255 1945.7500 
ov»r8000 1 1 5 IS.5                   1              8784 18784.8784 

Sou irre 1  Hill 193 1 4 12.8                   1              5107 11066.15730 
und*r8000 164 1 4 12.6                   1              4172 11066.7975 
over8000 29 1 5 12.8                   1            10393 18050.15730 

i8000 >8000      iBOOO >8000 iSOOO >8000 

Figure 3: Decomposition Representations: (a) Decomposition Tree (b) Aggregate 
Manipulator representation. 

We could also perform the same aggregation using data visualizations. For the same real estate 
data (as in Figure 3b), Figure 4a shows the scatter plot depicting houses, where the number of 
bedrooms attribute is on the x-axis and price is on the y-axis. If we aggregate all the individual 
data points by neighborhood, we obtain the scatter plot in Figure 4b which consists of three data 
groups, each of which is plotted using the average bedroom and average price. Figure 4c shows 
the plot where each neighborhood aggregate has been decomposed into two lot-size partitions 
(under8000 and over8000). 

As we can see from Figure 3a, the process of decomposition forms a hierarchy, which structures 
data into meaningful groupings specified by the user. We have identified four classes of 
decomposition: 

• user-defined or pre-defined natural groupings: These can be defined interactively by the 
user or in advance as built-in knowledge. A possible pre-defined natural grouping is 
time, e.g., years -> quarters -> months. An example of a user-defined grouping is data on 
crimes, where each crime data object has a date attribute. An analyst may decide to break 
the year into holiday days and non-holiday days (as illustrated in Figure 5 a). 
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• element frequency divisions: Divisions are computed by the system to have the same 
number of elements (equi-frequency). For example, if the user wants 20 divisions 
(partitioned by time) of the 1000 crimes committed in 1991, then there will be 50 crimes 
per time interval and each time interval can have a different size (Figure 5b). 

• set interval divisions: Divisions are computed by the system to have the same interval 
size (equi-intervai). In the above example, if the user wants weekly divisions of the data, 
the system would divide the data into weeks: 1/1-1/7,1/8-1/14, etc. (Figure 5c). 

• system-provided statistical methods: The system can use clustering statistics or other 
methods to partition the data into groups. 
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Figure 4: Example of Aggregation in Visualization, (a) The raw data, (b) 
Aggregating the raw data by neighborhood, (c) Decomposing the neighborhood 
aggregates by the lot-size attribute. 

(a) USER-DEFINED (b) EQUI-FREQUENCY     (c) EOUI-INTERVAL 

ALL-DATES ALL-DATES 
AGGREGATES: * "\ ^"^ 

HOLIDAY  NON-HOLIDAY 1/1-1/5      1/6-1/29 
NUMBER OF 
CRIMES: 350 650 50 50 

Figure 5: Types of decomposition. 

ALL-DATES 

1/1-1/7      1/8-1/14 

65 17 

4. SELECTING INTERFACE MECHANISMS 

In the last section, we discussed a categorization of data manipulation operations - methods of 
selecting, grouping, and transforming data. In previous work [8], the authors have evaluated data 
exploration software according to this classification and discussed their advantages and 
disadvantages; the results are summarized in Table 1. 

Dynamic Query or Queries (DQ) is an interactive technique which allows the user to manipulate 
sliders to control the amount of data displayed [1]. Each slider as shown in Figure 11, 
corresponds to a data attribute. The Aggregate Manipulator mechanism of Webs [15] was 
designed for level of detail operations, that of aggregation (grouping) and decomposition 
(partitioning groups), along with the display of group summary statistics. Iconographer [9] uses 
directed graphs that are programmed visually by the user to control scope, level of detail, and 
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focus of attention operations. Powerplay [3] allows decomposition in pre-defined hierarchical 
structures. Excel allows level of detail operations through an "outline" mechanism in which the 
user can create groupings of data sets through a cumbersome process of individually linking cells 
in the database. SQL and other database query interfaces provide the most expressive means for 
specifying control of scope, but require learning complex programming languages to perform 
these and other operations. 

DATA MANIPULATION OPERATIONS 

o-   ■£■   #    i 

/ / / / <£ / / / # 

SCOPE 
- filter data using attribute(s) 
- select multiple disjunctive subsets 

XX X 

XX 

X 

X X 

FOCUS 
OF 

ATTENTION 

- select attribute(s) for viewing operations 
- select attribute(s) for level of detail operations 
- derive attribute(s) from existing attributes 

XX X 

XX 

XX 

XX 

X 

X 

X 

X 

X 

X 

X 

LEVEL OF 
DETAIL 

- predefined aggregation & decomposition 
- flexible aggregation & decomposition 

XX 

XX 

X 

X 

X X 

X 

Table 1: The data exploration operations provided by different software or techniques. 
If the software (technique) allowed the operation in a simple, straightforward manner, 
we assigned the value "xx". If the operation involved non-intuitive operations, lots of 
steps, or steps bordering on programming, we assigned the value "x". 

Table 1 suggests that the aggregate manipulator provides complete coverage of desired data 
manipulation operations. However, the AM does not perform the scope operations of filtering 
data or selecting attributes for viewing operations as well as DQ does. For filtering data, the AM 
requires creating user-defined partitions, which might have to be re-created for a slightly 
different choice of data (e.g., if users decide they want to view data for houses which sold for 
$125,000-$200,000 instead of $100,000-$200,000). Furthermore, if the user partitions the data 
set several times, it can be confusing what portion of the data (i.e., what range of values for the 
various attributes) is being displayed. In the case of DQ, determining these values is 
straightforward, since each attribute has its own slider or selector mechanism. However, DQ does 
not have the ability to disjunctively combine sets (e.g., display houses which sold for $50,000- 
$100,000 in the neighborhood Squirrel Hill and those that sold for $50,000-$ 150,000 in 
Shadyside) without creating methods that have multiple sets of dynamic queries linked to the 
same display. Thus, there is a need for a mechanism such as the AM to perform this and other 
operations (e.g. displaying summary statistics). Examples of the interactions between DQ and 
the AM will be given in Section 6. 

In order to integrate AM and DQ in a prototype for exploration of large data sets LDES [8], we 
needed to extend them to function for many types of data. For the AM, this required exploring 
the types of operations that users would want to do with their data and then extending the AM so 
it could perform these types of decompositions and summary statistics based on a general data 
characterization rather than application-specific mechanisms. For DQ, we needed to be able to 
create a slider on demand and to have a method to select elements of nominal (non-numeric, 
unordered elements) data rather than just ranges of quantitative (numeric) data. For nominal data 
we use a scrolling list of elements (see Figure 11) and allow the user to select multiple elements 
of the list. Since the combination of these new versions of AM and DQ is not data specific, it is 
easily generalized to any new object-attribute data set. 
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5. SYSTEM DESIGN 

The main functionality and dataflow of IDES is summarized in Figure 6. Decoupling the display 
area and the AM (which were linked in Webs) has the advantage that the user can explore and 
manipulate the data in the display area or the AM without affecting the other workspaces. This 
allows maintaining multiple perspectives on the data at different levels of detail. However, this 
has the drawback that aggregates that appear in the AM may or may not appear in the Display 
Area and vice versa. Whether or not this causes problems for users will be evaluated in user 
studies. 

DISPLAY: 
map, chart, etc. 

passes  ^ AGGREGATE 
MANIPULATOR: 

• summary statistics 
• good at level of detail 

operations: creating and 
manipulating aggregegates 

aggregates 

passes 
.-data and 

t 
DYNAMIC QUERY: 
• controls data on display 
• good at scope operations 

aggregate 
for 

display 

Figure 6: Data Flow for the AM & DQ. 

The AM, DQ, and display comprise three of the four IDES workspaces (see Figure 11). The AM 
is a workspace for creating, decomposing, and directing the display of aggregates in other areas. 
The Display Area is both a work area for creating aggregates and a place to view the elements of 
the aggregates created by the AM. Dynamic query sliders are always connected to the current 
display. Changing the sliders changes the portion of the data that is displayed. Above the Display 
Area are menus that allow the user to create an aggregate, show an aggregate, clear the Display 
Area, and perform related functions. New aggregates can be created in the Display Area by 
selecting data points (represented by icons or graphical symbols) individually or as groups. 
Selected icons can be composed into a new aggregate, by the "Create Aggregate" command from 
the Display options. The user gives the aggregate a name, and the points representing the 
individual data objects are replaced by an icon representing an the aggregate data object, which 
we call an aggregate gateway. Users can move aggregates into the AM to be worked on further 
and optionally transferred back to the Display Area. If the aggregate is selected in the Display 
Area and a corresponding aggregate exists in the AM, both are highlighted. Lastly, users can 
decompose an existing aggregate into its components in the Display Area by double-clicking on 
the aggregate gateway object. The number of objects displayed reflects the bounds of the existing 
dynamic query sliders. This change in detail is not mirrored in the AM. 

The last workspace consists of the data detail area (lower right corner), which is used for 
showing selected attributes of subsets of aggregates or individual data objects. 

6 APPLICATIONS 

We have implemented this design for a shipping domain and a real estate domain. We will show 
advantages of using multiple visualizations, aggregation of data, and iterative processing to allow 
the user to find answers to data exploration questions. We will also show the usefulness of the 
AM for combining groupings of data, in particular joining sets disjunctively, and we will show 
the advantages of combining both DQ and the AM mechanisms. 

6.1 Shipping 
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Consider a scenario in which the U.S. government is sending emergency supplies worldwide. 
Transportation planners use a database of shipments, where each record represents a description 
of a single order to be transported. An order has the following attributes: shipment ID, origin 
port, destination port, mode of transportation (air/sea), priority, quantity (shipment weight in 
tons), scheduled arrival date (FAD), due date (LAD), and lateness (FAD - LAD). The initial 
state of IDES is a scatterplot display (Figure 7 shows the scatterplot after some operations have 
been performed) and a single aggregate of all individual records, called ALL-SHIPMENTS, in 
the aggregate manipulator. All points above the diagonal line in Figure 7 are late. We want to 
know which destination seaports have large quantities of high priority late shipments, so that we 
can send additional personnel and equipment to assist with the situation. 

We first want to display the number of items in ALL-SHIPMENTS and the total quantity (in 
tons) of shipments in the AM. We obtain these values by pressing on the top column header area 
of the AM table and selecting the summary statistic "count". This gives the total number of 
items, i.e. 265 (Figure 7). For the second column we select the summary statistic "total", then 
obtain a list of the possible attributes that can be used with "total" and from this list select 
"quantity". This procedure could just as easily have been done in reverse, choosing the attribute 
"quantity" and then selecting from a list of possible summary statistic options. Because the 
system has built-in knowledge data characteristics for each attribute (refer to Section 2.3), the 
choices are limited to those appropriate for the attribute. For example, since "total" is not a valid 
summary statistic for the attribute "due-date" (dates are coordinates rather than quantities and 
hence can't be totaled) it wouldn't be on the list if the "due-date" attribute were already chosen. 

We then decompose the ALL-SHIPMENTS aggregate by mode, by pressing on the ALL- 
SHIPMENTS aggregate in the aggregate manipulator, which gives a pop-up menu of attributes, 
the decomposition options. We choose "mode" which creates two aggregates, AIR and SEA 
(Figure 7). These new aggregates are indented from the initial group ALL-SHIPMENTS in the 
outliner (the leftmost column) of the AM. We want to display only the sea shipping data, so we 
clear the display, select and move the SEA aggregate from the AM into the display We then 
double click on the SEA aggregate (i.e. gateway) in the display area to display the individual 
shipment data. 
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Figure 7: Scatterplot display after a series of operations. In the upper right hand 
corner is the outliner portion of the AM and in the upper left hand corner are the 
option buttons. Pressing on an option button gives a pop-up menu of available 
commands. 

We now create a slider bar for priority by pressing on "Create DQ" in the DQ area. We choose 
the attribute "priority" from the list of options and use the resulting slider to limit the shipments 
displayed to those with priority 1 to 6. Figure 7 shows the results of these operations. 
Additional sliders for other attributes could also be created. 

We decide to focus only on the first cluster of the two late shipment clusters (the lower left 
region of the display in Figure 7). We select all shipments above the diagonal line using 
bounding boxes . When we have the desired group, we choose the command Create Aggregate 
from the Display Options and name the aggregate SEA-LATE-HIGHPRIO. We then display this 
aggregate in the aggregate manipulator and decompose it by all values of the attribute destination 
port (Figure 8). 

We change to the map display, then select the four aggregates in the AM that represent ports with 
the largest total quantity of late shipments. We display them on the map (their representation is a 
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larger graphical object than the individual shipments) to see their location. We notice that three 
of them are in North Tunisia, and we select those three aggregates on the display, which 
highlights (selects) them in the AM. We then create an aggregate in the AM and name it 
NORTH-TUNISIA-LATE. Figure 8 shows the results of these operations. We can see the total 
quantity (in tons) of late shipments, which gives us an idea of the extent of the problem and what 
resources we might need to allocate to the situation. 

Data Display Options Display Options    HM Options 
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count total             I 
auontitv      1 

flLL-SKIJMENTO 265 35558   1 
A IK 100 2973   1 
SEA 165 32585   1 

SEA-LATE-KIGKPRIO 35 13418   1 
ASHTORT 2 1568   1 
imzsn 3 3H i 
KELIBIA l 43   1 
LA-SKHIRRA l 27   1 
LIVÜRN0 l 7   1 
MONASTIC 2 51   1 
PALERMO 4 615   1 
rmsssmm a 9. I 
KOKA 2 167   1 
SIAX 2 17   1 
SIGONELLA 2 68   1 
S0ÜSSE I 447   1 
TORREJON-AB 1 10   1 
iMlki 3 

NORTH-TON IS IA-LATE 16 10398   1 

Figure 8: The map display and AM after creating an aggregate NORTH-TUNISIA- 
LATE out of the ports in North Tunisia with the largest weight of late shipments 
(Bizerte, Porto-Farina, and Tunis). 

This example has shown the value of multiple visualizations for aggregate creation and 
decomposition to support the user in the exploration process. Formulating SQL-like queries for 
this situation would be difficult because the user is unaware at the beginning where the problem 
destination ports are located and whether or not these ports are close enough geographically to be 
grouped together. For example, the set of shipments represented by the NORTH-TUNISIA- 
LATE aggregate would have been retrieved by a query like: "the set of shipments, whose mode 
is SEA, priority is between 1 and 6, lateness is positive, LAD (i.e. due-date) is 'among the 
lowest values', and which are delivered to ports where 'there are a lot of late shipments and some 
of which are close geographically'." 

One of the features of the AM is its ability to create (compose) an aggregate by just selecting and 
combining multiple aggregates in the AM. For example, suppose we are interested in the 
combination of high-priority (<4) sea shipments and all air shipments (we assume air is high 
priority). We can decompose SEA into different priority levels (or choose only one priority level 
if we so desire) and then compose the high-priority sea aggregate (SEA-HIGHPRIO<4) with the 
aggregate representing all air shipments (AIR) in the AM (see Figure 9) to form a new aggregate 
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(HIGH-PRIO). Composed aggregates, such as HIGH-PRIO are placed in the outliner one step to 
the left of their leftmost child aggregate to avoid confusing them as parts of other aggregates. 

Since AIR and SEA are distinct categories their combination contains no overlapping elements. 
Suppose we decide that North Tunisia is a high priority area and thus any shipment with a 
destination port there is considered high priority. We could aggregate all shipments in North 
Tunisia on the map, name it NORTH-TUNISIA-PRIO and move the aggregate to the AM. We 
then compose NORTH-TUNISIA-PRIO with HIGH-PRIO to form INTEREST-SHIPMENTS 
(Figure 9). There may be overlapping shipments between these two sets. The system is aware of 
any overlapping shipments and makes sure that the resulting aggregate references each 
appropriately. Notice that the count for the INTEREST-SHIPMENTS aggregate is less than the 
sum of HIGH-PRIO and NORTH-TUNIS A-PRIO. 

I count 

1 
total 
quantity 

0LL-SHIPMENT3 1 265 35558 
ftIR 1 100 2973 
SIfl 1 165 32585 
SIA-KIGKPJU0<4 1 64 16050 

KIGK-JRIO 1 164 19023 
NORTH-TUNISIfl-PJUO 1 109 16067 
INTEREST-SHIPMENTS 1 206 24708 

Figure 9: Combining aggregates. 

Note that the integration of AM and DQ supports the formation of disjunctive queries which are 
impossible with DQ alone. Forming complex queries in the aggregate manipulator is intuitive — 
users do not even have to recognize that they are creating queries. Such a straightforward 
mechanism helps the users to concentrate on their data and goals, rather than on the formation of 
queries. 

These examples have shown how the AM is a useful mechanism for discovering properties of 
information in a large data set and how the use of various visualizations can assist the user in this 
process. In the real estate example, we will elaborate on how AM and DQ synergistically 
operate in our system and how they are useful for different purposes. 

6.2 Real Estate 

Our real estate data consists of attributes from an actual real estate database of houses sold. There 
are 27 attributes (Figure 10) with varied data types: quantitative (e.g., selling price), nominal 
(e.g., neighborhood), and interval (e.g., date of sale). The attributes of the house data have three 
natural hierarchical relationships. City can be decomposed into neighborhoods or zip codes. 
Companies can be decomposed into offices (selling or listing), and offices can be decomposed by 
agents. There are many possible user-defined partition options as discussed in Section 3. 

• address number of rooms         • lot size                        • selling price   • selling office 
• neighborhood number of bedrooms    • living room size          • asking price    • listing office 
•city number of bathrooms   • dining room size         • date of sale     • listing agent 
•zip code style of house              'kitchen size                 "assessment     »company 
• age of house fireplace                      * master bedroom size   "tax                 • days on market 
• type of house garage 

^igure 10 : Attributes of the real estate data set. 
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In this section, we will discuss two scenarios. The first shows the weaknesses of using the AM 
alone. The second scenario shows how using DQ alone would require substantial work for the 
user. For both these cases, we show how using the combination of the AM and DQ is most 
effective. 

Consider the following scenario. Jennifer is new to the Pittsburgh area and has the following 
goals for a house: (a) in the price range $100,000 to $150,000, (b) a lot size of at least 5000 sq. 
ft., because she wants a nice back yard, (c) at least 4 bedrooms, and (d) close to Carnegie Mellon 
University (i.e. in the neighborhoods of Shadyside, Squirrel or Pt. Breeze). 

Jennifer would like to see houses which match these criteria and their map locations. The initial 
state of the system has the aggregate "AllHouses" in the AM and all houses displayed on the map 
(Figure 11). First, Jennifer creates dynamic query sliders for the attributes Selling Price, Lot Size 
and Neighborhood. After she selects the appropriate ranges or values for these queries, the map 
displays houses in Shadyside, Squirrel Hill and Point Breeze, with a price between 100-150K 
and lot size over 5000 sq. ft. Jennifer then selects all the data on the map and creates a new 
aggregate "Sq-Shady-PB". 

Note that if Jennifer wanted a group with more or fewer houses, she could change the sliders 
until she had approximately the number she desired. This is an awkward procedure in the AM 
because it requires creating a new user-defined partition for each revision and then looking either 
at the summary statistics or displaying the new partition on the map. 

MAP DISPLAY AGGREGATE MANIPULATOR 

System Data Detail Display   ||   AM   | 

Bloomfield East Liberty 

Schenley Farms 

Shady side# 
_      Point Breeze 
*        •      •• 

Oakland 
• .                           * 

CMU 
Squirrel Hill   • 

• • •  • • 

Average 
Sellinq Price 

Count 

AllHouses 
bftHJIAHIBaai 

3 

90 
130 
120 

607 
16 

4 

O 

4 128 4 
5 140 3 
6 122 2 
7 132 2 
8 149 1 

o 
SELLING PRICE LOT SIZE 

—HIH-flH^ -HIH*—fl) 
[TÖÖ~| to    |T50   |     15000 | to   120000 | 

NEIGHBORHOOD Create DO 

SQ-SHADY-PB * BEDROOMS 
3004 Beechwood 3 O 
5872 Burohfield 3 
6920 Reynolds 3 
108Pt. Breeze 3 
4265 Saline 4 
6427 Landview 4 
5871 Darlington 4 
330 Leroi 4 O 

DYNAMIC QUERY AREA DATA DETAIL AREA 

Figure 11: A readable representation of the interface as a result of using the AM and 
DQ to partition house data. There are four workspaces with various options 
accessible via pop-up menus from the buttons in the upper left hand corner. 
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Figure 11 shows the results of the operations and summary statistics and data for the aggregate 
"Sq-Shady-PB". To partition "Sq-Shady-PB", she presses on it in the outliner of the AM, which 
gives a pop-up menu of attributes and selects the attribute "# Bedrooms." She chooses to 
partition the attribute "# Bedrooms" into individual values. All non-empty aggregate groups are 
displayed in the AM (in this case 3-8) along with summary statistics for any specified columns 
(in this case Average Selling Price and Count). To get the display in the Data Detail Area, she 
selects the aggregate "Sq-Shady-PB", uses an AM option to move it to the Detail Area and then 
chooses the attribute "# Bedrooms" from a column header pop-up menu in the same manner as 
that for the summary statistics. 

The second scenario involves another situation in which we show the combination of the AM 
and DQ is superior to either method alone. John wants to sell his house and is looking for 
possible real estate agents. He believes his house will sell for around $250,000. He wants to 
know which company and then which sales agent has sold the most houses in the price range 
$200,000-$300,000 in his neighborhood in the last year. DQ alone is quite awkward to use 
because John would have to select all combinations of company and sales agents and then count 
the number of houses that appear on the map. However, DQ is easy to use for simple selection 
of the neighborhood and ranges for the price and date. From this he creates an aggregate 
ExpensiveSales (Figure 12). He then partitions this aggregate by the attribute company and 
selects two summary statistics: "Total" (for the attribute "Selling Price") and "Count". After 
finding that Howell & Co. sold the most houses, he decomposes this aggregate of houses by sales 
agent. The result of this decomposition is that John can quickly see that Helen Foster sold the 
most houses. 

AGGREGATE MANIPULATOR 
Total Count 

Selling Price 

AllKouses 151403 607 o 
ExpensiveSales 6984 29 

Best Realty 1306 5 
Coleman 1217 5 
Cooper Agency 687 3 
Howell & Co. 3774 16 
Betty fish 225 1 
Bert Brown 240 1 
Dolly Cooper 220 1 
Joan Tenton 201 1 
Helen Foster 674 3 
Jackie Jones 295 2 
Amy Kim 285 1 
Bob Moore 494 2 
Lynn Nelson 220 1 :::•:■: 

Jill Pate 225 1 O 
Figure 12: The AM as a result of decomposing the aggregate ExpensiveSales by the 
attribute company and decomposing the partition Howell & Co. by the attribute sales 
agent. 

These examples have shown how AM and DQ synergistically operate in our system and how 
they are useful for different purposes. The process of aggregation provides control over the level 
of detail of data shown. Slider mechanisms allow rapid filtering of the data. We will now 
discuss how these techniques can be used in our framework and how the components, 
knowledge, and directives modules need to be extended. 
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7. EXTENSIONS REQUIRED FOR LARGE DATA SETS 

The IDES system and the examples above show how effective data manipulation tools can assist 
users in the data exploration process. For a computer-supported data graphic design system to 
handle these capabilities, the directives and knowledge must be extended and a data manipulation 
and analysis tool must be provided. In addition, we propose adding a data characterization 
generator, which allows the user to specify their own hierarchical decompositions. This section 
will discuss these extensions. 

7.1 Presentation Directives 

As discussed in section 2.2, presentation directives are the means by which users communicate 
their intent for the creation of graphics. In order to support interactive data exploration, 
presentation directives must be extended to allow users to communicate their data exploration 
intent as well. 

Additional data directives must be generated when users communicate with the data 
manipulation and analysis component of the system to control their data. Examples of data 
directives include specifying the scope of the data to be displayed and specifying desired 
summary statistics for a group of data. 

Task directives must be extended to allow users to specify when control over scope, focus of 
attention or level of detail is needed in a visualization. For example, to allow control over focus 
of attention a directive specifying the users need to actively filter visualized data based on values 
of a specified attribute could be generated. Such a request might result in the design of a 
visualization with built-in dynamic query sliders. 

To allow control over level of detail, a directive might allow users to specify a particular data 
hierarchy to be used when data needs to be aggregated. For example, the user might specify 
when presenting data on people that if there are too many individuals to display, the system 
should display groups of people by income, age or other breakdown which accomplishes a 
directive (like minimizing overlap or achieving better distribution of attribute values). Such 
directives must be expressed in a vocabulary that is sufficiently general and atomic to enable 
their use in interface mechanisms which control the addition and removal of visible data as part 
of the process of controlling scope or expanding aggregates. 

7.2 Data Characterization for Aggregates 

Exploration of large data sets requires two features with which we have experimented in IDES: 
aggregates and hierarchies. Aggregates represent groupings of data and abstractions or 
summaries of their attributes. Hierarchies help define and organize aggregates. Each aggregate 
data object has an associated set of data elements, a data characterization that describes the set, 
and representative data values for each attribute based on global properties of the set. A system 
can use representative values and display them using aggregate gateways, which are the graphic 
representation of aggregate data objects that enable interactive expansion to greater detail. A 
system selects representative values of attributes and visualizes them as gateways appropriately 
is due to its knowledge of aggregate data characteristics. 

An aggregate data object is an abstraction and grouping of similar individual data objects and its 
characteristics can be derived partly from those of the data elements from which it is composed. 
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For example, an aggregate of shipment data objects will express abstractions of shipment 
attributes: weight, port, and date. Weight is a quantitative attribute that can be summarized by a 
mean, mode, total, range, or a distribution frequency (i.e. number of elements with each value or 
the number of different values). In contrast, port is a nominal attribute, which can only be 
summarized with a distribution-count (i.e. the frequency of different values in the set, or possibly 
just the most frequent value). Dates are interval attributes, which can be represented with the 
same summary statistics as quantitative attributes except total. 

Knowledge of data characteristics can also guide the choice of an attribute to partition data 
elements into aggregates, independent of the manner in which their attributes are summarized. 
For example, nominal attributes can be used to group data objects which have the same value 
(e.g. shipments destined for the same port). Quantitative and temporal attributes can be used to 
group data objects with common values, but they can also group data based on intervals (i.e. 
ranges). We discussed the use of equi-frequency and equi-interval methods of grouping data into 
aggregates in the section on IDES. 

These observations enable a knowledge-based system to automatically select (or support user 
selection of) attributes and values to define groupings to create aggregates when the level of 
detail must be reduced. They also enable a system to select appropriate graphic techniques to 
visualize groups and the representative values which summarize their attributes. For example, 
they enable a system to select bar lengths for totals or medians of quantitative attributes but not 
for the medians of sets of dates - a median of a set of dates is still a date and must be expressed 
as a coordinate rather than an amount [16]. Similar knowledge enables interval bars to be 
selected to express quantitative or temporal ranges. 

In addition to knowledge of aggregate characteristics derived from element data, a data 
exploration system requires knowledge of strategies for hierarchically structuring data 
aggregates. There are three types of knowledge of hierarchical relationships: 

• Domain independent: knowledge of universal hierarchical relationships, e.g., that days 
are grouped into weeks or calendar months, and then into years. 

• Domain dependent: knowledge specific to an application, e.g. that dates in a college's 
academic year can be aggregated by months with semesters (Fall, Spring and Summer 
semesters); dates in a business calendar might be aggregated by quarter (Jan-Mar, Apr- 
Jun, etc.). 

• User-defined: knowledge that a user provides for a particular data set. For example, for 
population data, the user may want to use a new partition of the states which divide the 
states into coastal and non-coastal ones or alphabetically organized groups. 

Just as a system can choose attributes to group data elements and summarize other attributes, it 
can use hierarchical structures like these to control the level of detail. Hierarchies provide 
intuitive methods for moving flexibly across levels of detail, enabling users to control 
aggregation and decomposition and keep track of the relationships among aggregates at different 
levels (i.e. parents and siblings in a tree). 

A mechanism which must be added to support manipulation is a data characterization builder. 
Such a tool would enable users to interactively create and store new hierarchical structures for 
grouping data and controlling level of detail (e.g. to provide the ability to create the holiday/non- 
holiday breakdown of all-dates depicted in Figure 5a). It updates the data characterization so that 
the presentation system will be aware of the new hierarchy for aggregation purposes. The ability 
to quickly and easily create hierarchies allows users to group their data in partitions they want to 
explore repeatedly and in ways that are meaningful for specific instances of data. 
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7.3 Extensions to the Design Knowledge 

Besides being used to display data, the IDES display area can be used to create and manipulate 
aggregates as we have shown. If the level of detail is too great (i.e. there are too many 
overlapping data points), the presentation system can choose to group and aggregate data by 
using the aggregate gateway graphical object. Once displayed, the user can expand an aggregate 
gateway to increase detail. If the aggregate gateway contains too much data to fit into a newly 
generated display, the presentation system must choose between three options: permit overly 
dense and overlapping data representations, change the scale and use scrolling controls to expose 
portions of the data, or reduce the visible data by creating new aggregates (i.e., those that do not 
overlap as much or that create an intermediate number of aggregates). 

In addition, there are several possibilities for the graphic resulting from the expansion of the 
aggregate gateway: 

• expand the aggregate data into the same display. 
• create a separate display for the more detailed data, using the same graphic techniques as 

the parent display. 
• create a separate display, using new techniques which shows Only the detailed data. 
• create a new display with new techniques which enable both the expanded and 

unexpanded aggregate data from the original display to coexist effectively. 
• create a new display following some presentation directives that the user provides. For 

example, the user might want to emphasize a particular dimension of the aggregate 
differently from the previous display. 

Design knowledge can also be used to select interface techniques in the data exploration tools. 
For example, instead of the outliner form of the aggregate manipulator as shown in Figure 11, a 
hierarchical graph (node-link diagram) might be used to show additional relations between 
aggregates or a Tree Map [21] to better show quantitative attributes of aggregates. Another 
example is the case where the data includes nominal attributes with a large number of values. 
Based on knowledge of the task and data characteristics, a system could select a form of DQ 
called the Alphaslider [2], which allow users to rapidly choose nominal values. 

8. SUMMARY AND CONCLUSION 

One important component in the design of user interfaces for exploring large data sets is that of 
data manipulation techniques. In this paper we explored these techniques with respect to a 
classification for data manipulation user goals, that of scope, focus of attention, and level of 
detail. We integrated into our interactive data exploration system, IDES, the technique of 
dynamic query, whose strength is scope operations, with the aggregate manipulator, whose 
strength is control of level of detail. We demonstrated how the combination of these tools can 
enable people to efficiently answer questions that are typical in data exploration. 

Another important component for exploration large data sets is data visualization techniques. 
Automatic presentation systems are useful in that they relieve the user of the need to design and 
construct pictures. However, they must have features that allow users to construct graphics (as 
with SageBrush) and find previously constructed graphics to reuse or modify (as with 
SageBook). 

In this paper, we have proposed a framework for knowledge-based, interactive data exploration. 
We have discussed the components that such a system should have in terms of our research on 

J21 



IDES and SageTools. Implementing this framework would requite addressing all the issues we 
have presented: 

• Developing richer directives that refer to characteristics of data, tasks, design choices, 
and aesthetic preferences. 

• Extending characterization vocabulary to describe both the hierarchical structure of data 
as well as the data exploration tasks that users perform. 

• Developing approaches to visualizing information using aggregate graphical objects, to 
serve both as useful representations of data and as mechanisms to explore data, i.e. as a 
gateway to more detailed data. 

• Developing and testing interface mechanisms that support data exploration, including 
filtering, dynamic query, painting, hierarchy expansion and contraction, scrolling, and 
mechanisms for structuring, partitioning, and aggregating data. 

• Developing interface mechanisms for interacting with automatic presentation systems, 
such as SageBrush and SageBook, which enable users to communicate presentation 
directives in a natural way. 

• Developing and understanding the processes of data manipulation, data analysis and data 
visualization and their relationships. 

In addition, future research will involve performing user studies to ascertain how well people are 
able to use the various components of these systems. In regard to IDES, we plan to explore how 
our object-attribute paradigm needs to be expanded to relational data that does not fall in this 
paradigm. We also plan to incorporate other visualization techniques, such as brushing, which 
supports coordination of attributes across multiple displays. 
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LOS ALAMOS NM 87545 

AEDC LIBRARY 
TECH FILES/MS-100 
ARNOLD AFS TN 373 89 

COMMANDER/USAISC 
ATTN:  ASOP-OO-TL 
8LDG 61801 
FT HUACHUCA AZ 85613-5000 
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AIR WEATHER SERVICE TECHNICAL LIB 
FL 4V1* 
SCOTT AF3 IL 62225-5458 

AFIWC/MSO 
102 HALL 8LV0 STE 315 
SAN ANTONIO TX 73243-7016 

SOFTWARE ENGINEERING INST CSEI) 
TECHNICAL LIBRARY 
5000 FORBES AVE 
PITTSBURGH PA 15213 

DIPECTOR NSA/CSS 
W157 
9800 SAVAGE ROAD 
FQPT MEADE MD 21055-6000 

NSA 
ATTN: 0. ALLEY 
DIV X911 
9800 SAVAGP ROAD 
FT MEADE MD 20755-6000 

OOD 
R31 
9300 SAVAGE ROAD 
FT. MEADE MO 20755-6000 

DIPNSA 
R509 
9800 SAVAGE ROAD 
FT MEADt MD 20775 

OOD COMPUTER CENTER 
C^TIC 
9300 SAVAGE ROAD 
«=ORT GEORGE G. MEADE MD 20755-6000 

ESC/IC 
50 GRIFFISS STREET 
HANSCOM AFB MA 01731-1619 
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ESC/AV 
20 SCHILLING CIRCLE 
HANSCOM AFB MA 01731-2816 

OCMAO/GWE 
ATTN:  JOH* CHENG 
US COURTHOUSE/SUITE 8-34 
401 N HARKET 
WICHITA KS 67202-2095 

FL 2807/RESEARCH LIBRARY 
OL AA/SULL 
HANSCOM AFB MA 01731-5000 

TECHNICAL REPORTS CENTER 
MAIL DROP D130 
BURLINGTON ROAD 
BEDFORD MA 01731 

DEFENSE TECHNOLOGY SEC AOMIN 
ATTN:  STTD/PATRICK SULLIVAN 
400 ARMY NAVY DRIVE 
SUITE 300 
ARLINGTON VA 22202 

CDTSA) 

SOFTWARE ENGR'G INST TECH LIBRARY 
ATTN:  MR DENNIS SMITH 
CARNEGIE MELLON UNIVERSITY 
PITTSBURGH PA 15213-3890 

SOFTWARE OPTIONS, INC. 
ATTN:  MR TOM CHEATHAM 
22 HILLIARD STREET 
CAMBRIDGE MA 02133 

USC-ISI 
ATTN:  OR ROBERT M. BAL2ER 
4676 ADMIRALTY WAf 
MARINA DFL RET CA 90292-6695 

KESTREL INSTITUTE 
ATTN:  DP CORDELL GREEN 
1801 PAGE MILL ROAD 
PALO ALTO CA 94304 
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ROCHESTER INSTITUTE OF TECHNOLOGY 
ATTN: PROF J. A. LASKY 

1 L0M3 MEMORIAL DRIVE 
P.O. BOX 9887 
ROCHESTER NY 14613-5700 

WCSTINGHOUSE ELECTRONICS CORP 
ATTN:  MR DENNIS BIELAK 
ELECTRONICS SYSTEMS GROUP 
P.O. BOX 746, MAIL STOP 432 
BALTIMORE MO 21203 

AFIT/ENG 
ATTN:  PAUL BAILOR. 
WPAFB OH 45433-6533 

MAJOR, USAF 

THE MITRE CORPORATION 
ATTN:  MR EDWARD H. BcNSLEY 
BURLINGTON RO/MAIL STOP A350 
8EDF0R0 MA 01730 

UNIV OF ILLINOIS, URBANA-CHAMPAIGN 
ATTN:  SANJAY BHANSALI 
OEPT OF COMPUTER SCIENCES 
1304 WEST SPRINGFIELD 
URSANA IL 61*01 

ANDERSEN CONSULTING 
ATTN:  MR MICHAEL E. DEBELLIS 
100 SOUTH WACKER DRIVE 
CHICAGO IL 60606 

UNIV OF ILLINOIS, URBANA-CHAMPAIGN 
ATTN:  OR MEHDl HARANDI 
DEPT OF COMPUTER SCIENCES 
1304 W. SPRINGFIELD/240 DIGITAL LAB 
UR3ANA IL 61801 

HONEYWELL, INC. 
ATTN:  MR BERT HARRIS 
FEDERAL SYSTEMS 
7900 WESTPARK DRIVE 
MCLEAN VA 22102 

SOFTWARE ENGINEERING INSTITUTE 
ATTN:  MR WILLIAM E. HEFLEY 
CARNEGIE-MELLON UNIVERSITY 
SEI 2218 
PITTSBURGH PA 15213-38990 
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UNIVERSITY 0*= SOUTHERN CALIFORNIA 
ATTN:  OR M. LEWIS JOHNSON 
INFORMATION SCIENCES INSTITUTE 
4676 ADMIRALTY WAY/SUITE 1001 
MARINA DEL REY CA 90292-6695 

COLUMBIA UNIV/DEPT COMPUTER SCIENC! 
ATTN:  OR GAIL £. KAISER 
450 COMPUTER SCIENCE BLDG 
500 WEST 120TH STREET 
NEW YORK NY 10027 

SOFTWARE ENGINEERING INSTITUTE 
ATTN:  KYO CHUL KANG 
CARNEGIE-MELLON UNIVERSITY 
PITTSBURGH PA 15213-3890 

SOFTWARE PRODUCTIVITY CONSORTIUM 
ATTN:  MR ROBERT LAI 
2214 ROCK HILL ROAD 
HERNDON VA 22070 

AFIT/ENG 
ATTN: Q^   GARY 8. LAMONT 
SCHOOL OF ENGINEERING 
OEPT ELECTRICAL & COMPUTER ENGRG 
WPAFS OH 45433-6583 

NSA/OFC Of RESEARCH 
ATTN:  MS MARY ANNE OVERMAN 
9800 SAVAGE ROAD 
FT GEORGE 5. MEADE MD 20755-6000 

THE MITRE CORPORATION 
ATTN:  MR HOWARD REUSENSTEIN 
BURLINGTON ROAD 
BEDFORD MA 01730 

ANDERSEN CONSULTING 
ATTN:  OR WILLIAM C. SASSO 
CENTER FOR STRATEGIC TECH RSCH 
100 SOUTH WACKER DRIVE 
CHICAGO IL 60606 

AT&T BELL LABORATORIES 
ATTN:  MR PETER G. SELFRIOGE 
ROOM 3C-441 
600 MOUNTAIN AVE 
MURRAY HILL NJ 07974 
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VITRO CORPORATION 
ATTN:  MR ROBtRT A. SMALL 

14000 GEORGIA AVENUE 
SILVER SPRING MD 20906-2972 

ODYSSEY RESEARCH ASSOCIATES, 
ATTN:  MS MAUREEN STILLHAN 
301A HARRIS B. DATES DRIVE 
ITHACA NY 14350-131? 

IMC. 

WROC/AAAP-3 
ATTN:  JAMES P. WE9ER, CAPT, USAF 
AERONAUTICAL SYSTEMS CENTER 
WPAFB OH 45433-6543 

TEXAS INSTRUMENTS INCORPORATED 
ATTN:  OR DAVID L. WELLS 
P.O. bOX 655474, MS 233 
DALLAS TX 75265 

BOEING COMPUTER SERVICES 
ATTN:  DR PHIL NEWCOMB 
MS 7L-64 
P.O. SOX 24346 
SEATTLE WA 93L24-0346 

LOCKHEED SOFTWARE TEHNOLOGY CENTER 
ATTN:  MR HENSON GRAVES 
ORG. 96-LO SLOG 254E 
3251 HANOVER STREET 
PALO ALTO CA 94304-LL9L 

REASONING SYSTEMS 
ATTN:  DR GORDON KOTIK 
3260 HILLVIEW AVENUE 
PALO ALTO CA 94304 

TEXAS ARM UNIVERSITY 
ATTN:  OR PAULA MAYER 
KNOWLEDGE BASED SYSTEMS LABORATORY 
OEPT OF INDUSTRIAL ENGINEERING 
COLLEGE STATION TX 77843 

KESTREL DEVELOPMENT CORPORATION 
ATTN:  DP PICHARO JULLIG 
3260 HILLVieW AVENUE 
PALO ALTO CA 94304 
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AEROSPACE CORPORATION 

ATTN: DR. KIRSTIE BELLMAN 

ML/102 COMPUTER SCI £ TECH SU3DIV 
P. 0. BOX 92957 
LOS ANGELES CA 90009-2957 

LOCKHEED 0/96-10 8/254E 
ATTN: JACKY COMBS 

3251 HANOVER STREET 
PALO ALTO CA 94304-1191 

NASA/JOHNSON SPACE CENTER 
ATTN:  CHRIS CUL8ERT 
MAIL CODE PT4 
HOUSTON TX 77053 

SAIC 
ATTN:  LANCE MILLER 
MS Tl-6-3 
PO BOX 1303 COR 1710 GOOÜRIDGE DR} 
MCLEAN VA 22102 

STERLING IMO INC. 
KSC OPERATIONS 
ATTN:  MARK MAGINN 
BEECHES TECHNICAL CAMPUS/RT 26 N. 
ROME NY 13440 

NAVAL POSTGRADUATE SCHOOL 
ATTN:  BALA PAMESH 
CODE AS/RS 
ADMINISTRATIVE SCIENCES DSPT 
MONTEREY CA 93943 

KESTREL INSTITUTE 
ATTN:  MARIA PRYCE 
3260 HILLVIEW AVENUE 
PALO ALTO CA 94304 

HUGHES AIRCRAFT COMPANY 
ATTN:  GERRY 8ARKSDALE 
P. 0. BOX 3310 
SLDG 618 MS £215 
«=ULLERTQN CA 92634 

FORWISS UNIVERSITY OF ERLANGEN 
ATTN:  ERNST LUTZ 
AM WEICHSELGARTEN 7 
8520 ERLANGEN, GERMANY 
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THE MITRE CORPORATION 
ATTN:  HOWARD PEU3ENSTEIN 

BURLINGTON ROAD, K302 
BEDFORD MA 01730 

SCHLUM3ERGER LABORATORY FOR 
COMPUTER SCIENCE 

ATTN:  DR. GUILLFRMO ARANGO 
9311 NORTH FM620 
AUSTIN, TX 78720 

PARAMAX SYSTEMS CORPORATION 
ATTN:  OON YU 
9201 GREENSBORO DRIVE, SUITE 1000 
MCLEAN VA 22101 

MOTOROLA, INC. 
UTTN:  MP. ARNOLD PITTLEP 
3701 ALGONQUIN ROAD, SUTF 601 
ROLLING MEADOWS, IL 60003 

DECISION SYSTEMS DEPARTMENT 
ATTN:  PROF WALT SCACCHI 
SCHOOL 0= BUSINESS 
UNIVERSITY OF SOUTHERN CALIFORNIA 
LOS ANGELES, CA 90039-1421 

SOUTHWEST RESEARCH INSTITUTE 
ATTN:  8RUCE REYNOLDS 
6220 CULESRA ROAD 
SAN ANTONIO, TX 78228-0510 

NATIONAL INSTITUTE OF STANDARDS 
AND TECHNOLOGY 

ATTN:  CHRIS DA8R0WSKI 
ROOM A266, 3LDG 225 
GAITHS3URG MD 20899 

EXPERT SYSTEMS LABORATORY 
ATTN:  STEVEN H. SCHWARTZ 
NYNEX SCIENCE Z. TECHNOLOGY 
500 WESTCHESTER AVENUE 
WHITE PLANS NY 20604 

NAVAL TRAINING SYSTEMS CENTER 
ATTN:  ROBERT 3REAUX/CQDE 252 
12350 RESEARCH PARKWAY 
ORLANDO FL 32326-3224 
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CENTER FOR EXCELLENCE IN COMPUTER- 
AIOEO SYSTEMS ENGINEERING 

ÄTTN:  PERRY ALEXANDER 
2291 IRVING HILL ROAD 
LAWRENCE KS 66049 

SOFTWARE TECHNOLOGY SUPPORT CENTER 
ATTN:  MAJ ALAN K. MILLER 
QGDEN ALC/TISE 
RLDÖ 100, BAY G 
HILL A^B, UTAH 84056 

MS. KAREN ALGUIRE 
RL/C3CA 
525 BROOKS RO 
GRIFFISS AFB NY 13441-4505 

JAMES ALLEN 
COMPUTER SCIENCE OEPT/SLDG RM 
UNIV 0*   ROCHESTER 
WILSON SLVn 
ROCHESTER NY 14627 

732 

MS TIFFANY WALKER 
DIGITAL SYSTEMS RSCH INC 
4301 NORTH FAIRFAX ORIVE 
SUITE 725 
ARLINGTON VA 22203 

YIGAL ARENS 
USC-ISI 
4676 ADMIRALTY 
MARINA OEL RAY 

WAY 
CA 90292 

MR. RAY 8AREISS 
THE INST. FOR LEARNING SCIENCES 
NORTHWESTERN UNIV 
1390 MAPLE AVE 
EVANSTON IL 60201 

MR. JEFF BERLINER 
83N SYSTEMS «. TECHNOLOGIES 
10 MOULTON STREET 
CAMBRIDGE MA 02138 

MARIE A. BIENKOWSKI 
SRI INTERNATIONAL 
333 RAVENSWOOO AVE/EK 
MENLO PRK CA 94025 

337 
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OR MARK S. äOODY 
HONEYWELL SYSTEMS E RSCH CENTER 
3660 TECHNOLOGY ORIVF 

MINNEAPOLIS m 55418 

PIERO P. SONISSONE 
GE CORPORATE RESEARCH 6 DEVELOPMENT 
3LDG K.1-RM 5C-32A 
°. 0. BOX 8 
SCHENECTADY NY 12301 

MR. DAVID BROWN 
MITRF 
EAGLE CENTER 3, SUITE 3 
0«FALLON IL 62269 

MR. MARK 8URSTEIN 
B8N SYSTEMS S TECHNOLOGIES 
10 MOULTON STREET 
CAM3RI0GE MA 02133 

MR. GREGG COLLINS 
INST FOR LEARNING SCIENCES 
1390 MAPLE AVE 
EVANSTON IL 60201 

MR. RANDALL J. CALISTRI-YEH 
ORA CORPORATION 
301 DATES DRIVE 
ITHACA NY 14950-1313 

OR STEPHEN E. CROSS 
SCHOOL OF COMPUTER SCIENCE 
CARNEGIE MELLON UNIVERSITY 
PITTS3URGH PA 15213 

MS. JUDITH OALY 
ARPA/ASTO 
3701 N. FAIRFAX DR., 7TH FLOOR 
ARLINGTON VA 22209-1714 

THOMAS CHEATHAM 
HARVARD UNIVERSITY 
DIV OF APPLIED SCIENCE 
AIKEN, RM 104 
CAMBRIDGE MA 02133 
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MS. LAURA DAVIS 
CODE 5510 
NAVY CTR FOR APPLIED RES IN AI 
NAVAL RESEARCH LABORATORY 
WASH OC 2 0375-5 33 7 

SS. GLADYS CHOW 
COMPUTER SCIENCE DEPT. 
UNIV OF CALIFORNIA 
LOS ANGELES CA 90024 

THOMAS L. DEAN 
BROWN UNIVERSITY 
OSPT OF COMPUTER SCIENCE 
P.O. BOX 1910 
PROVIDENCE RI 02912 

WESLEY CHU 
COMPUTER SCIENCE OEPT 
UNIV OF CALIFORNIA 
LOS ANGELES CA 90024 

MR. ROBERTO DESIMONE 
SRI INTERNATIONAL CEK335) 
333 RAVENSWOOO AVE 
MENLO PRX CA 94025 

PAUL R. COHEN 
UNIV OF MASSACHUSETTS 
COINS DEPT 
LEDERLE GRC 
AMHERST MA 01003 

MS. MARIE OEJARDINS 
SRI INTERNATIONAL 
333 RAVENSWOOO AVENUE 
MENLO PRK CA 94025 

JON DOYLE 
LABORATORY FOR COMPUTER SCIENCE 
MASS INSTITUTE OF TECHNOLOGY 
545 TECHNOLOGY SQUARE 
CAMBRIDGE MA 02139 

DR. 5RTAN DRABBLE 
AI APPLICATIONS INSTITUTE 
UNIV OF EDINBURGH/80 S. BRIDGE 
EDINBURGH EH1 LHN 
UNITED KINGDOM 
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MR. SCOTT FQUSE 
TSX CORPORATION 

4353  PARK  T£!?R4Cr  DRIVE 

yESTURE VILLAGE CA 91361 

MR. STU DRAPES 
MITRE 
EAGLF CENTER 3, SUITE 3 
O'FALLON IL 62269 

MARK FOX 
D£PT Q INDUSTRIAL ENGRG 
•JNTV QF TORONTO 
4 TAODLE CREAK ROAD 
TORONTO, ONTARIO, CANADA 

MR. GARY EDWARDS 
4353 PARK TERRACE DRIVE 
WESTLAKE VILLACA 91361 

MS. MARTHA FARINACCI 
MITRE 
7525 C0LSHIR5 DRIVE 
MCLEAN VA 22101 

MR. ?USS F1EW 
GENERAL ELECTRIC 
MOORESTOWN CORPORATE 
«LDG ATK 145-2 
MOORESTOWN NJ 03057 

CENTER 

MICHAEL FEHLING 
STANFORD UNIVERSITY 
ENGINEERING ECO SYSTEMS 
STANFORD CA 94305 

MR. RICH FRITISON 
CENTER OR ADVANCED INFO TECHNOLOGY 
UNISYS 
P.O. BOX 517 
PAOLT PA 19301 

MR KRISTIAN J. HAMMOND 
UNIV OF CHICAGO 
COMPUTER SCIENCE DEPT/RY155 
1100 E. 58TH STREET 
CHICAGO IL 60637 
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MR. ROBERT FROST 
MITRE CORP 
WASHINGTON C3 CENTER, MS 644 
7525 COLSHIER ROAO 
MCLEAN VA 22101-3481 

RICK HAYES-RQTH 
CIMFLEX-TEKNOWLEDGE 
1810 EMBARCADERO RO 
PALO ALTO CA 94303 

RANDY GARRETT 
INST FOR DEFENSE ANALYSES CIOA) 
1S01 N. BEAUREGARO STREET 
ALEXANDRA VA 22311-1772 

MR. JIM HENOLER 
UNIV OF MARYLAND 
OEPT OF COMPUTER SCIENCE 
COLLEGE PARK MO 20742 

MS. YQLANOA GIL 
USC/ISI 
4676 AOMIRALTY MAY 
MARINA OEL RAY CA 90292 

MR.MAX HcRION 
ROCKWELL INTERNATIONAL SCIENCE CTR 
444 HIGH STREET 
PALO ALTO CA 94301 

MR. STEVE SÜYA 
OISA/JIEO/SSli 
CODE TBÖ 
11440 ISAAC NEWTON S3 
RESTON VA 22090 

MR. MORTON A. HIRSCHSERG, DIRECTOR 
US ARMY RESEARCH LABORATORY 
ATTN;  AMSRL-CI-C3 
ABERDEEN PROVING GROUND MO 
21305-5066 

MR. MARK A. HOFFMAN 
TSX CORPORATION 
1165 NORTHCHASE PARKWAY 
MARIETTA GA 10067 
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MR. ROM LARSHN 
NAVAL CMO, CONTROL L   OCEAN SUR CTR 
RESEARCH, DEVELOP, TEST i  BVAL DIV 
CODE 444 
SAN DIEGO CA 92152-5000 

OR. JAMES JUST 
MITRE 
DEPT. WQ32-M/S Z360 
7525 COLSHIER RD 
MCLEAN Vft 22101 

MR. CRAIG KN03L0CK 
USC-ISI 
4676 ADMIRALTY WAY 
MARINA OEL RAY CA 90292 

MR. RICHARD LOME CAP-10) 
SRA CORPORATION 
2000 15TH STREET NORTH 
ARLINGTON VA 22201 

MR. TED C. KRAL 
83N SYSTEMS G TECHNOLOGIES 
4015 HANCOCK STREET, SUIT£E 1Q1 
SAN OIEGO CA 92110 

MR. JOHN LOWPENCE 
SRI INTERNATIONAL 
ARTIFICIAL INTELLIGENCE CENTER 
333 RAVENSWOOQ AVE 
MENLO PARK CA 94025 

OR. ALAN MEYR3WITZ 
NAVAL RESEARCH LA30RATORY/CODE 5510 
4555 OVERLOOK AVE 
WASH OC 2037r> 

ALICE MULVEHTLL 
MITRE CORPORATION 
BURLINGTON RO 
M/S K-302 
6EDF0R0 MA 01730 

ROBERT MACGREGOR 
USC/ISI 
4676 ADMIRALTY WAY 
MARINA DEL REY CA 90292 
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WILLIAM S. MARK, MGR AI CENTER 
LOCKHEED MISSILES £ SPACE CENTER 
1801 PAGE «ILL RD 
PALO ALTO CA 94304-1211 

RICHARD MARTIN 
SQTWARE ENGINEERING INSTITUTE 
CARNEGIE MELLON UNIV 
PITTSBURGH PA 16213 

DREW MCDERMOTT 
YALE COMPUTER SCIENCE DEPT 
P.O. ßnx 2158, YALE STATION 
51 PROPSPECT STREET 
HEW HAVEN CT 06520 

MS. CECILE PARTS 
USC/ISI 
4676 ADMIRALTY WAY 
MARINA DEL RAY CA 90292 

DOUGLAS SMITH 
KESTREL INSTITUTE 
3260 HILLVIEW AVE 
PALO ALTO CA 94304 

DR. AUSTIN TÄTE 
AI APPLICATIONS INSTITUTE 
UNIV OF EDINBURGH 
30 SOUTH 8PIOGE 
EDINBURGH "Hl IHN - SCOTLAND 

EDWARD THOMPSON 
ARPA/SISTO 
3701 N. FAIRFAX DR., 7TH PL 
ARLINGTON VA 22209-1714 

MR. STEPHEN F. SMITH 
ROBOTICS INSTITUTE/CMU 
SCHENLEY PRK 
PITTSBURGH PA 15213 

LTCOL RAYMOND STACHA 
DEPUTY SCIENTIFIC £ TECHNICAL 
ADVISOR 

HQ USCINCPSC/STA 
CAMP H. M. SMITH HI 96861 
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08. ABRAHAM WAKSMAN 
AFOSR/NM 

110 0Ü1CAN AVE., SUITS 8115 

BULLING AF9 DC 20331-0001 

JONATHAN P.5TILLMAN 
GENERAL ELECTRIC CRD 
1 RIVE» ZD,   RM K1-5C31A 
P. Q. 30X 9 
SCHENECTAOf NY 12345 

MR. EDWARD C. T. WALKER 
B3N SYSTEMS I   TECHNOLOGIES 
10 MOULTON STREET 
CAMBRIDGE MA 02138 

MR. BILL SWARTOUT 
USC/ISI 
4676 ADMIRALTY WAY 
MARINA OEL RAY CA 90292 

SIO WIEDERHOLO 
STANFORD UNIVERSITY 
DtPT OF COMPUTER SCIENCE 
439 MARGARET JACKS HALL 
STANFORD Cft 94305-2140 

KATIA SYCARA/THE ROBOTICS INST 
SCHOOL OF COMPUTER SCIENCE 
CARNEGIE M=LLGN UNIV 
OGHERTY HALL RM 3325 
PITTSBURGH PA 15213 

MR. DAVID E. WILKINS 
SRI INTERNATIONAL 
ARTIFICIAL INTELLIGENCE CENTER 
333 RAVENSWOOO AVE 
MENLO PAR< CA 94025 

DR. PATRICK WINSTON 
MASS INSTITUTE OF TECHNOLOGY 
PM NE43-817 
545 TECHNOLOGY SQUARE 
CAMBRIDGE MA 02139 

HUA YANG 
COMPUTER SCIENCE DEPT 
UNIV OF CALIORNIA 
LOS ANGELES CA 90024 
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LTCOL DAVE NEVLAND 1 
ARPA/ISTO 
3701 N. FAIRFAX DRIVE, 7TH FLOOR 
ARLINGTON VA 22209-1714 

MR- RICK SCHANTZ 1 
33N STSTEMS £ TECHNOLOGIES 
10 MOULTON STREET 
CAMBRIDGE *A 02138 

LTC FRED M. RAWCLIFFE 1 
USTRANSCOH/TCJ5-SC 
8L06 1900 
SCDTT AF3 IL 62225-7001 

JOHN P. SCHILL 1 
NAVAL COHHAND, CONTROL & OC£AN 
SURVEILLANCE CENTER/CODE 423 
EVALUATION DIVISION 
SAN DIEGO CA 92152-5000 

MR. DONALD F. ROBERTS 1 
RL/C3C* 
525 BROOKS ROAD 
GRIFFISS A^B NY 13441-4505 

ALLEN SEARS 1 
MITRE 
7525 CDLFSHIRt DRIVE, STOP Z2B9 
MCLEAN VA 22101 

STEVE ROTH 1 
CENTER FOR INTEGRATED MANUFACTURING 
THE ROBOTICS INSTITUTE 
CARNEGIE MELLON UNIV 
PITTSBURGH PA 15213-3390 

JEFF R0THEN3ERG 
SENIOR COMPUTER SCIENTIST 
THE RAND CORPORATION 
1700 MAIN STREET 
SANTA MONICA CA 90407-2138 

YOAV SHQHAM 
STANFORD UNIVERSITY 
COMPUTER SCIENCE DEPT 
STANFORD CA 94305 
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MR. DAVID 3. SKALAK 
UNIV Qf   MASSACHUSETTS 
OEPT 0* COMPUTER SCIENCE 
RM 243, LGRC 
AMHERST MA 01003 

MR. MIKE ROUSE 
AFSC 
7800 HAMPTON RD 
NORFOLK VA 23511-6097 

MR. DAVID F. SMITH 
ROCKWELL INTERNATIONAL 
444 HIGH STREET 
PALO ALTO CA 94301 

JEFF ROTHENSERG 
SENIOR COMPUTER SCIENTIST 
THE RAND CORPORATION 
1700 MIN STREET 
SANTA MONICA CA 90407-2133 

OR LARSV 3IRN3AUM 
NORTHWESTERN UNIVERSITY 
ILS 
1390 MAPLE AVE 
EVANSTON IL 60201 

MR RANDALL J. CALISTRI-YEH 
ORA 
301 OATES DR 
ITHACA NY 14S5P-1313 

MR WESLEY CHU 
COMPUTER SCIENCE OEPT 
UNIVERSITY QF CALIFORNIA 
LOS ANGELES CA 9002 

MR PAUL R COHEN 
UNIVERSITY OF MASSACHUSETTS 
COINS DEPT, LEDEPLE GRC 
AMHERST MA 01003 

MR DON EDDINGTON 
NAVAL COMMAND, CONTROL t   OCEAN 
SURV CENTER 
RDT&E DIVISION, COOE 404 
SAN DIEGO CA 92152-5000 
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MR. LEE ERMAN 
CIMFLEX TECKNOWLEDGE 
1810 EM3ARCARQERQ RO 
PALO ALTO CA 94303 

MR DICK ESTRADA 
3SN SYSTEMS 6 TECHNOLOGIES 
10 MOULTON ST 
CAMBRIDGE MA 02138 

MR HARRY FORSDICK 
88N SYSTEMS AND TECHNOLOGIES 
10 MOULTON ST 
CAMBRIDGE MA 02138 

MR MATTHEU L. GINSBERG 
CIRL, 126» 
UNIVERSITY OF OREGON 
EUGENE OR 97403 

MR IRA GOLDSTEIN 
OPEN SW FOUNDATION RESEARCH INST 
ONE CAMBRIDGE CENTER 
CAMBRIDGE MA 02142 

MR MOISES G0LDS2MIDT 
INFORMATION AND DECISION SCIENCES 
ROCKWELL INTL SCIENCE CENTER 
444 HIGH ST, SUITE 400 
PALO ALTO CA 94301 

MR JEFF GROSSMAN, CO 
NCCOSC ROTE DIV 44 
5370 SILVERGATE AVE, ROOM 1405 
SAN DIEGO CA 92152-5146 

JAN GÜNTHER 
ASCENT TECHNOLOGY, INC. 
64 SIDNEY ST, SUITE 380 
CAMBRIDGE MA 02139 

OR LYNETTE HIRSCHMAN 
MITRE CORPORATION 
202 BURLINGTON RO 
BEDFORD MA 01730 
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MS ADELE E. HOWE 
COMPUTER SCIENCE OFPT 
COLORADO STATE UNIVERSITY 

FQST COLLINS CO 80523 

DR LESLIE PACK KAELBLING 
COMPUTER SCIENCE OSPT 
3R0WN UNIVERSITY 
PROVIDENCE RI 02912 

SUBSARÄO KAMBHAMPATI 
OEPT OF COMPUTER SCIENCE 
ARIZONA STATE UNIVERSITY 
TENPE AI 85237-5406 

MR THOMAS E. KAZMIERCZAK 
SRA CORPORATION 
331 SALEM PLACE, SUITE 200 
FATRVI^W HEIGHTS IL 62208 

PRADEEP K. KHOSLA 
ARPA/SSTO 
3701 M. FAIRFAX DR 
ARLINGTON VA 22203 

MR CRAIG KNOBLOCK 
USC-ISI 
4676 AOMIRALTY WAY 
MARINA OFL RAY CA 90292 

DR CARLA LUDLOW 
POME LAB0RAT0RY/C3CA 
525 BROOKS ÄO 
GRIFFISS AF3 NY 13441-4505 

DR MARK T. MAYBURY 
ASSOCIATE DIRECTOR GF AI CENTER 
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MISSION 

OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Materiel 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


