
RL-TR-94-206
Final Technical Report
November 1994

KNOWLEDGE-BASED LOGISTICS
PLANNING: ITS APPLICATION IN
MANUFACTURING AND LOGISTICS
PLANNING

Carnegie Mellon University

Sponsored by
Advanced Research Projects Agency
ARPA Order No. 7726

DTIC
ELECTE
MAR 02 1995

G

APPROVED FOR PUBLtC RELEASE; D/STRfBUTfON UNLIMITED.

19950227 126
The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Advanced Research Projects Agency or the U.S. Government.

Rome Laboratory
Air Force Materiel Command

Griff iss Air Force Base, New York
1TO«ttÄLnTnsiBPECTBD4

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations!

RL-TR-94-206 has been reviewed and is approved for publication.

APPROVED: f&4j*Üu

NORTHRUP FOWLER III, Ph.D.
Project Engineer

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3C) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

I
D

By
Distribution /

Availability Codes

Dist

m
Avail and /or

Special

KNOWLEDGE-BASED LOGISTICS PLANNING: ITS
APPLICATION IN MANUFACTURING AND LOGISTICS PLANNING

Nicola Muscettola
Steve Roth

Norman Sadeh
Katia Sycara

Contractor: Carnegie Mellon University
Contract Number: F30602-91-C-0016
Effective Date of Contract: 31 January 1991
Contract Expiration Date: 30 June 1994
Short Title of Work: Knowledge-Based Logistics Planning
Period of Work Covered: Jan 91 - Jun 94

Principal Investigator:
Phone:

RL Project Engineer:
Phone:

Norman Sadeh
(402) 268-8827
Northrup Fowler III
(315) 330-3011

Approved for public release; distribution unlimited.

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by Northrup Fowler III, RL (C3C),
525 Brooks Rd, Griffiss AFB NY 13441-4505.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Pur* reportng burden for trte cotecdon of irforrnaticn Is estimated to average 1 hour per response, hdudng the time for revlewng "f""°"f. "^"B B"örS„data S^L

cctection of WormaUon. hdudng suggestions for redudng this burden to Wasr^on Headquarters Servk^ Director
Davis Highway Suta 1204 Araigtan, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Protect (07044)188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

December 1994

a REPORT TYPE AND DATES COVERED

Final Jan 91 - Jun 94

4. TITLE AND SUBTITLE
KNOWLEDGE-BASED LOGISTICS PLANNING: ITS APPLICATION IN
MANUFACTURING AND LOGISTICS PLANNING

6. AUTHOR(S)

Nicola Muscettola, Steve Roth, Norman Sadeh, and
Katia Sycara

5. FUNDING NUMBERS
C - F30602-91-C-0016
PE - 62301E
PR - G726
TA - 00
WU - 12

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh PA 15213-3891

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)
Advanced Research Projects Agency
3701 North Fairfax Drive Rome Laboratory (C3C)
Arlington VA 22203-1714 525 Brooks Rd

Griffiss AFB NY 13441-4505

a PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-94-206

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Northrup Fowler III/C3C/(315) 330-3011

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

1 a ABSTRACTfMaxhTum 2Xwords)

This document summarizes research in CORTES, a project in constraint-based planning,
scheduling, and control for complex large-scale domains such as military transportation
and manufacturing. The CORTES approach keeps the planning/scheduling combinatories
in check, using quantitative problem space metrics called texture measures to:
(1) identify critical decisions that require early attention; and (2) steer search
toward promising solutions. This basic approach has been applied and validated in
several key contexts, including (1) micro-opportunistic search, which focuses on
efficient generation and dynamic maintenance of complex large-scale Just-In-Time
schedules; (2) simulated annealing search, where texture measures have been developed
to focus search and learn to recognize (un)promising runs; (3) iterative constraint
posting, which combines flexible schedule representation and dynamic identification of
conflicts requiring further arbitration; (4) integration of predictive planning/
scheduling and execution control, where texture measures and flexible schedule
representations are combined to coordinate multiple planning/scheduling and control
agents; and (5) interactive schedule repair, where adaptive similarity metrics direct
re-use of previous repair histories and help select repair focus and actions.
Visualization issues have been addressed by developing comprehensive (see reverse)

14. SUBJECT TERMS
Artificial intelligence, Planning, Scheduling, Resource allocation,
Constraint satisfaction problems, Transportrtion

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

LrW OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
NSN 75404)1-280-5500

Standard Form 298 [Rev. 2-89)
Prescrbed by ANSI Std Z39-18
298-102

13. (Cont'd)

languages for characterizing: (1) domain concepts to be displayed; (2) user analysis
tasks; and (3) graphical presentation techniques that can be assembled to create

displays.

Table of Contents
1 Overview of the Project 1
2 Constraint-Directed Scheduling 2

2.1 Micro-Opportunistic Scheduling 3
2.1.1 Background and Overview of Accomplishments 3
2.1.2 Improving the Basic Micro-Opportunistic Search Procedure 4
2.1.3 New Bottleneck Optimization Procedures 5
2.1.4 Intelligent Backtracking Heuristics 5
2.1.5 Reactive Scheduling 6
2.1.6 Supporting Mixed Initiative Functionalities 7

2.2 Adaptive Simulated Annealing Search 7
2.3 Summary of Accomplishments and Plans for the Future 7

3 Distributed Scheduling 9
3.1 Introcduction 9
3.2 Summary of Experimental Results 10

4 Interactive Schedule Repair 10
4.1 Introduction 11
4.2 Case Indexing 13
4.3 Case Acquisition 14
4.4 Case Re-Use 15
4.5 Evaluation of the Approach 16
4.6 Summary of Experimental Results 17

4.6.1 Discussion 18
5 Integration of Predictive Planning/Scheduling and Reactive Control 18

5.0.1 Simulator 19
5.0.2 Scheduler and Dispatcher 20
5.0.3 Dispatcher Operation 22
5.0.4 Coordination protocol scheduler-dispatcher-simulator 23
5.0.5 Operation of Overall System 23

References 25
Appendices
A. Micro-Opportunistic Scheduling
B. Backtracking Techniques for Hard Job Shop Scheduling Problems
C. Focused Simulated Annealing Search: An Application to Job Shop

Scheduling
D. Increasing the Efficiency of Simulated Annealing Search by Learning

to Recognize (Un)Promising Runs
E. Case-based Acquisition of User Preferences for Solution

Improvement in Ill-Structured Domains
F. Improving Schedule Quality through Case-Based Reasoning
G. Distributed Problem Solving through Coordination in a Society of

Agents
H. On the Utility of Bottleneck Reasoning for Scheduling
I. Interactive Graphic Design Using Automatic Presentation Knowledge
J. A Framework for Knowledge-Based, Interactive Data Exploration

1 Overview of the Project
Objectives of the Project The CORTES project (contract #F30602-91-C-0016) aims at

developing constraint-based technologies for coordinated and distributed planning, scheduling
and control in complex large-scale domains, such as military transportation and manufacturing.
Sources of difficulty for planning/scheduling in these domains are many:

• Combinatorics: The planning/scheduling problems of interest are characterized by
extremely large search spaces in which the number of satisficing solutions
represents only a tiny fraction of the total number of explorable alternatives. Even
under highly idealistic conditions, scheduling problems such as job shop scheduling
are known to be NP-hard [Garey 79].

• Ill-Defined Problems: often problems are ill-defined in terms of the specific tasks
that need to be performed (e.g. specific orders to be scheduled in manufacturing or
specific move requirements in military transportation scheduling), the objectives and
preferences to be optimized (which often are not even compatible), etc.

• Uncertainty: problem constraints tend to change over time (e.g. resources become
unavailable, new tasks need to be performed, execution of some activities take
longer or less time than anticipated, etc.)

• Decentralization: The complexity of large-scale planning and scheduling problems,
and the distributed nature of the executing environment generally requires
decomposition and decentralization of decision-making responsibility. Because
component subproblems are rarely independent and subproblem solution proceeds
asynchronously, interactions and conflicts in the overall solution must be effectively
and efficiently managed.

Accordingly, research in the CORTES project aims at: (1) efficiently generating and
maintaining high quality solutions to large scale planning/scheduling problems that adequately
capture the causal dependencies of these domains; (2) flexibly integrating predictive
planning/scheduling and reactive execution control; (3) interactively acquiring new user
constraints and preferences and plan/schedule repair experience, and (4) visualizing and
interactively manipulating large amounts of diverse information.

The CORTES Approach: In our approach, the combinatorics of the problem is kept in check
through use of quantitative problem space metrics called textures. Texture measures are regularly
computed to capture various types of constraint and preference interactions (e.g. resource
contention). They are used to focus search on critical decisions and efficiently steer it towards
promising areas of the search space (e.g. variable/value ordering heuristics, backtracking
heuristics, repair focusing heuristics, etc.).

This basic approach has been applied and validated in several problem solving contexts:
1. micro-opportunistic search which focuses on the efficient generation and dynamic

maintenance of Just-In-Time schedules for large-scale generalized job shop
scheduling problems subject to sequence-dependent setups, resource alternatives
("parallel resources") and temporal windows;

2. simulated annealing search where texture measures are used to (1) dynamically
focus search on critical subproblems by artificially inflating the costs associated
with major sources of inefficiency in the exisiting solution and (2) learn to
recognize (un)promising simulating runs and decide when to abandon a run and
where to restart search;

3. iterative constraint posting which combines flexible schedule representation and
dynamic identification of conflict areas where additional arbitration is needed;

4. integration of predictive planning/scheduling and reactive execution control where
texture measures and flexible temporal representations are combined to coordinate
multiple planning/scheduling and control agents;

5. interactive schedule repair where adaptive similarity metrics direct re-use of
previous repair histories and help select current repair focus and actions.

The complex task of visualizing information needed for problem solving activities has been
addressed by developing comprehensive languages for characterizing domain concepts that must
be displayed, information analysis tasks which users must perform, and libraries of graphical
presentation techniques which can be assembled to create displays. These form the
representational foundation for encoding graphics presentation knowledge for creating an
automatic design system.

2 Constraint-Directed Scheduling
Our work in constraint-directed scheduling has revolved around two search paradigms:

micro-opportunistic search: this search paradigm emphasizes rapid development
and revision of high quality schedules, using resource contention metrics to help
focus solution (re)optimization on critical subproblems [Xiong 92] [Sadeh
94a] [Sadeh 94b] [Sadeh 92a] [Sadeh 91a] [Li&Sadeh 93] [Sadeh 93a] [Sadeh
94c] [Sadeh 91b] [Sadeh 91c] [Sadeh 92b] [Sadeh 93b].

• adaptive simulated annealing search: this search approach, which remains slower
than the first one, emphasizes the development of near-optimal solutions, using
texture-based heuristics to increase the efficiency of simulated annealing search.
These heuristics include "focus-of-attention" heuristics to identify solution
inefficiencies on which to dynamically focus the problem solving effort
[Sadeh&Nakakuki 94] as well as search cutoff and restart criteria based on new

metrics to identify (un)promising simulated annealing runs [Nakakuki&Sadeh 94].

Major accomplishments in each of these areas are summarized below. Further details on our
work over the past 3 years can be found in [Xiong 92] [Sadeh 92c] [Sadeh 92a] [Sadeh
91a] [Sadeh 93a] [Sadeh 94c] [Sadeh 94a] [Sadeh 91b] [Sadeh 91c] [Li&Sadeh 93] [Sadeh
92b] [Chen 93] [Swaminathan 93] [Swaminathan 94] [Sadeh 93b] [Sadeh&Nakakuki
94] [Nakakuki&Sadeh 94].

•

2.1 Micro-Opportunistic Scheduling

2.1.1 Background and Overview of Accomplishments
In contrast to earlier bottleneck-centered scheduling approaches (e.g. [Goldratt 80, Ow

88, Adams 88]) which rely on the optimization of large resource sub-problems, micro-
opportunistic scheduling aims at increasing search efficiency and solution quality through use of
a more flexible/finer grain search procedures. In this approach, resource contention is
continuously monitored during the construction/repair of the schedule, and the problem solving
effort can be redirected at any time towards the most critical sub-problem. In our earlier research
[Sadeh 91c], we showed that because of their extra flexibility ("opportunism"), micro-

opportunistic search procedures are better equipped than traditional (less flexible) bottleneck-
centered scheduling approaches to deal with:

• localized bottlenecks, namely resources that are bottlenecks only over one or several
portions of the scheduling horizon (e.g. due to changes over time in the mix of
orders to be scheduled);

• multiple bottlenecks, which traditional bottleneck scheduling techniques have
problems dealing with, as they tend to focus on the optimization of one bottleneck
resource at the expense of others;

• bottleneck dynamics, namely the fact that the very scheduling decisions that are
made by the system can increase or decrease the severity of bottlenecks and that, as
a result, it is crucial to closely monitor resource contention throughout the
construction of the schedule.

In early 1991, when the current project started (ARPA contract #F30602-91-C-0016), micro-
opportunistic scheduling techniques had been developed to solve two classes of job shop
scheduling problems: (1) job shop scheduling constraint satisfaction problems where a feasible
job shop schedule has to be built given a set of jobs each with one or several non-relaxable time
windows (earliest/latest possible start time window) within which it has to be scheduled and (2)
Just-In-Time job shop scheduling problems where the objective is to build a schedule that
minimizes the sum of tardiness and inventory costs of all jobs. At the time, these initial micro-
opportunistic scheduling techniques, which had already been shown to significantly outperform a
variety of competing techniques proposed both in the Artificial Intelligence and Operations
Research literature, (1) could only solve relatively small problems, (2) could not solve problems
with setups or parallel machines, and (3) did not support any reactive or interactive
functionalities.

During the course of this three-year project, we have dramatically scaled-up our micro-
opportunistic scheduling heuristics, moving from prototypical procedures to a set of powerful
scheduling techniques capable of efficiently generating high quality solutions to large and
complex problems, as well as providing flexible interactive and reactive solution revision
capabilities. We have shown that micro-opportunistic scheduling techniques are not only
capable of producing high quality Just-In-Time solutions (approx. 25% improvement in schedule

quality against a combination of 39 combinations of dispatch rules and release policies [Sadeh
94c]) but can also be successfully adapted to solve a wide range of realistic problems. Over the
past three years, we have speeded up our micro-opportunistic scheduling techniques by two
orders of magnitude, improved the quality of the solutions they produce by an average of about

20%, and extended our heuristics to solve problems with sequence dependent setups and parallel
machines [Sadeh 94c, Sadeh 93b]. At the same time, variations of the Micro-Boss scheduling
heuristics were also adapted in the context of the Knowledge Based Logistics Planning Shell
(KBLPS) developed by Carnegie Group, Inc. (CGI) and LB&M Associates to solve U.S. army
transportation scheduling problems and ammunition distribution planning problems [Saks 92].
Other efforts using variations of our micro-opportunistic techniques are described in [Torma
91, Berry 91, Linden 91, Paolucci 92] and [Winklhofer 92].

At the present time, the Micro-Boss scheduling system which is written in C++ and has an
X/Motif interface, is undergoing customization for the scheduling of a Printed Wire Assembly
shop at Raytheon's Andover facility. This involves scheduling over 20,000 operations per month
on a total of about 150 resources subject to a variety of complex constraints, including
overlapping constraints between successive manufacturing steps.

The following further outlines technical accomplishments in micro-opportunistic scheduling
over the past 3 years. Additional details can be found in the papers provided in appendix.

2.1.2 Improving the Basic Micro-Opportunistic Search Procedure
Over the past three years, the average speed of our micro-opportunistic scheduling techniques

has been increased by two orders of magnitude and average schedule quality has improved by
about 20%. These performance improvements were obtained through modifications of several
keys aspects of the basic micro-opportunistic search procedure:

• Hierarchical Demand Profile Construction: A key strength of our micro-
opportunistic search procedure comes from the detailed demand profiles it
continuously updates to identify areas of high contention and determine which
operation(s) to schedule next. We have been able to significantly reduce the time
required to compute these demand profiles by (1) incrementally updating
rough/coarse demand profiles for each resource in the problem and (2) using these
rough demand profiles to dynamically identify critical resource/time intervals over
which to perform a more detailed contention analysis.

• Variable Search Granularity: rather than performing a detailed contention analysis
at each step (i.e. each time an operation is scheduled), we have identified a set of
conditions under which it is safe to schedule more than one operation at a time. One
such condition occurs when one or several unscheduled operations have only one
reservation left, in which case all these operations can be scheduled at once without
performing any additional contention analysis. The result is a search procedure
whose granularity (which is determined by the number of operations that are
scheduled before a new contention analysis is performed) varies over time.

• Additional Improvements: Additional improvements include (1) the development

of new heuristics to dynamically update the best remaining reservations of
unscheduled operations and evaluate incremental tardiness and inventory costs
incurred by an operation if it is not allocated one of its best remaining reservations,
and (2) the development of new heuristics to compute demand contention based on
these results.

The resulting system can schedule problems with over 1,000 operations in a matter of minutes.
In comparison against 39 combinations of well-regarded priority dispatch rules and release
policies (taking the best schedule produced by these 39 techniques on each problem and
comparing it with the schedule obtained by Micro-Boss), Micro-Boss was shown to reduce
schedule cost by close to 25%. This includes significant reductions in work-in-process and
finished goods inventory as well as important improvements in due date satisfaction. In
comparison against the Weighted Covert dispatch rule taken in isolation, Micro-Boss improves
due date performance by an even more impressive 28% while reducing average inventory costs
by 40%. Comparisons against a variety of coarser bottleneck-centered scheduling procedures
have produced similarly impressive results.

2.1.3 New Bottleneck Optimization Procedures
The Micro-Boss scheduling procedures have also been adapted to solve problems with parallel

machines (i.e. multiple machines with either similar or dissimilar capabilities) and setups. A key
element in adapting our procedures has been the development of new bottleneck optimization
heuristics for the one-machine early/tardy problem with setups. Briefly, our heuristic
opportunistically selects between two simpler techniques: (1) a clustering scheme that identifies
clusters of early/tardy jobs and resequences them using variations of the Weighted Longest
(Shortest) Processing Time dispatch rule and (2) a two-parameter technique that generalizes a
dispatch rule developed by Ow and Morton for the single-machine early/tardy problem without
setups [Ow 89]. Based on measures of the tightness of the bottleneck optimization problem at
hand, our technique dynamically selects between these two heuristics and further optimizes the
resulting solution using a neighborhood search procedure in combination with an optimal idle
time insertion procedure first proposed by Garey and Tarjan [Garey 88] (additional details are
provided in the Micro-Boss paper in appendix). Extensive evaluation of this bottleneck
optimization technique on a total of 1,920 scheduling problems characteristic of a wide range of
scheduling conditions shows that (1) it can solve large problems in a matter of seconds and (2) it
produces solutions that are consistently within 5 to 10% of the optimum.

2.1.4 Intelligent Backtracking Heuristics
This work has focused on a version of the job shop scheduling problem in which some

operations have to be scheduled within non-relaxable time windows (i.e. earliest/latest possible
start time windows). This problem is a well-known NP-complete Constraint Satisfaction
Problem (CSP). A popular method for solving this type of problems involves using depth-first
backtrack search. In our earlier work [Sadeh 91c, Sadeh 91b], we focused on the development of
consistency enforcing techniques and variable/value ordering heuristics that improve the

efficiency of this search procedure. Under the current project, we combined these techniques
with new look-back schemes that help the search procedure recover from so-called deadend
search states (i.e. partial solutions that cannot be completed without violating some constraints).

More specifically, we developed three new "intelligent" backtracking schemes: (1) Dynamic
Consistency Enforcement, which dynamically identifies critical subproblems and determines
how far to backtrack by selectively enforcing higher levels of consistency among variables
participating in these critical subproblems, (2) Learning Ordering From Failure, which
dynamically modifies the order in which variables are instantiated based on earlier conflicts, and
(3) Incomplete Backjumping Heuristic, which abandons areas of the search space that appear to
require excessive computational efforts. These schemes have been shown to (1) further reduce
the average complexity of the backtrack search procedure, (2) enable our system to efficiently
solve problems that could not be solved otherwise due to excessive computation cost, and (3) be
more effective at solving job shop scheduling problems than other look-back schemes advocated
in the literature.

The benchmark problems used in this research have been made available to the research
community at large through an anonymous ftp account set up at CMU and have been widely
disseminated, providing for the first time a common set of problems in this area. A high point in
this work was reached in March 1992 at the A A AI Spring Symposium held in Stanford, when
our group and a group from NASA were the first ones to announce they could efficiently solve all
60 of the benchmark problems (paper to appear in the Artificial Intelligence Journal [Sadeh
94b] and provided in appendix). The speed of our procedure has been further improved since
then, making it possible to solve most problems in 1 to 2 CPU seconds on a DECstation
5000/200. While similar results have been achieved since then by a couple of other groups, our
results remain quite competitive on this class of problems and could probably be further
improved. However, rather than dwelling on this class of problems, we have concentrated our
efforts on more complex Just-In-Time scheduling problems where the objective is not just to
build feasible schedules but instead requires minimizing tardiness and inventory costs (both in-
process costs and earliness costs), a formulation that better captures situations found in many
manufacturing and transportation domains. The backtracking heuristics we developed work just
as well on these more complex Just-In-Time scheduling problems.

2.1.5 Reactive Scheduling
Earlier approaches to reactive schedule repair have emphasized the use of iterative repair

heuristics [Smith 90a, Minton 90, Zweben 91]. In the process of resolving schedule conflicts,
these repair heuristics are allowed to introduce new conflicts, which in turn need to be repaired.
This iterative behavior may sometimes lead to myopic decisions and can potentially become
expensive. In contrast to these approaches, schedule repair in Micro-Boss attempts to take a
more global view of the problem and capitalizes on the strengths of micro-opportunistic search.
Concretely, we have developed an approach in which schedule repair is performed in two steps:
(1) a set of operations that need to be rescheduled is identified using a so-called conflict
propagation procedure and all the operations in this set are unscheduled, (2) the scheduling

problem consisting of all these unscheduled operations and the constraints imposed on these
operations by operations that have already been executed or have not been unscheduled is passed
to the micro-opportunistic scheduling procedure.

In comparison with a micro-opportunistic technique that rebuilds brand new schedules from
scratch, our reactive approach has been shown to produce schedules that are almost as good
while only rescheduling a much smaller number of operations. Our reactive approach has also
been shown to outperform several iterative repair techniques.

2.1.6 Supporting Mixed Initiative Functionalities
Because of their flexibility, micro-opportunistic scheduling heuristics also seem particularly

well suited to support mixed initiative capabilities. An initial set of such capabilities has been
developed in the context of the Micro-Boss system, making it possible to interleave both manual
and automatic (micro-opportunistic) scheduling decisions and enabling the user to incrementally
manipulate, save, analyze and compare alternative (complete or partial) schedules (e.g., "What-
if' type of analysis).

2.2 Adaptive Simulated Annealing Search
Our work on Adaptive Simulated Annealing Search is complementary to our research on

micro-opportunistic search procedures and aims at the development of near-optimal (though
possibly slower) scheduling procedures.

Simulated Annealing (SA) procedures can potentially yield near-optimal solutions to many
difficult combinatorial optimization problems (not just scheduling problems), though often at the
expense of intensive computational efforts. The single most significant source of inefficiency in
SA search is the inherent stochasticity of the procedure, typically requiring a large number of
runs before a near-optimal solution is found. Our work in this area aims at developing
mechanisms that (1) speed up the basic SA procedure while improving average solution quality
and (2) reduce the number of runs required to obtain near-optimal solutions. Specifically, we
have developed two sets of techniques: (1) focus of attention mechanisms that dynamically
identify major inefficiencies in the solution on which to focus the optimization effort
[Sadeh&Nakakuki 94] and (2) speedup learning mechanisms that learn to recognize

(un)promising runs and can be used to determine when to abandon a run and where to restart
search [Nakakuki&Sadeh 94].

This work, which is more recent, is described in two papers provided in appendix.

2.3 Summary of Accomplishments and Plans for the Future
During the course of this three-year project we have shown that micro-opportunistic

scheduling techniques are not only capable of producing high quality Just-In-Time solutions
(approx. 25% improvement in schedule quality against a combination of 39 combinations of

dispatch rules and release policies [Sadeh 94c]) but can also be successfully adapted to solve a
wide range of realistic problems. Over the past three years, we have speeded up our micro-
opportunistic scheduling techniques by two orders of magnitude, improved the quality of the
solutions they produce by an average of about 20%, extended our heuristics to solve problems

with sequence dependent setups and parallel machines, and have shown that these techniques can
support powerful reactive and mixed initiative capabilities [Sadeh 94c, Sadeh 93b].

Our micro-opportunistic techniques have been adapted in the context of the Knowledge Based
Logistics Planning Shell (KBLPS) developed by Carnegie Group, Inc. (CGI) and LB&M
Associates to solve U.S. army transportation scheduling problems and ammunition distribution
planning problems [Saks 92], demonstrating the dual-use applicability of this technology. We
have now embarked on a technology demonstration effort with Raytheon, which involves
customizing Micro-Boss for the scheduling of the Printed Wire Assembly area at Raytheon's
Andover manufacturing facility and will continue to work with ARPA to further transition this
technology into practical environments (manufacturing, transportation or others).

In the longer term, we see several important areas for future development of this technology:

• Iterative improvement techniques: with the advent of ever more powerful
computers, we believe that it is now possible to complement micro-opportunistic
scheduling techniques with anytime iterative improvement techniques that could be
applied to post-process schedules. Our work in Simulated Annealing suggests that
the efficiency of such techniques can greatly be enhanced using simple speedup
learning mechanisms.

• Integration with higher-level planning decisions: Traditionally, manufacturing
scheduling has focused on sequencing and release decisions, ignoring higher level
(MRP-level) decisions that critically constrain the lower-level scheduling problem.
Examples of such decisions include batching decisions, overtime decisions, safety
stock/safety leadtime decisions, subcontracting decisions, order promising,
procurement and other supply chain management decisions. We believe that
significant improvements in scheduling practice could be achieved by integrating
some of these decisions with sequencing and release decisions. Similar integrations
are also required in other scheduling domains such as transportation scheduling.

• Integration with Process Planning: Another area in Computer Integrated
Manufacturing that has received very little attention involves integrating process
planning decisions with production scheduling and control decisions. Such
integration is particularly critical to support Agile Manufacturing scenarios in which
customer orders require the generation of new process plans that need to be
dynamically integrated into the production schedule.

• Analysis Tools for Mixed Initiative Decision Support: Micro-Boss has
demonstrated the usefulness of texture measures to dynamically identify critical
decisions and guide the scheduling process. Similar texture measures could be
developed to support mixed initiative scenarios, helping the user identify sources of
inefficiency in a current solution, evaluate and possibly even propose alternative
options for solution improvement (e.g. where to add extra capacity, how much

capacity to add, which deadlines to relax, what is the right mix of transportation
modes, etc.).

3 Distributed Scheduling

3.1 Introcduction
We have developed a computational framework for collective problem solving by a society of

reactive agents [Liu.Sycara 93a] [Liu.Sycara 93b] [Liu.Sycara 94a] [Liu.Sycara 94b]. Problem
solving is viewed as an emergent functionality from the evolving process of the society of
diverse, interacting, and well-coordinated reactive agents. Agents are situated in their
environment and act by stimulus and response. Coordinated interactions are based on simple
flows of information. The collective actions of the reactive agents potentially provide an
effective tool for complex problem solving. Specifically, the development of the collective
problem solving framework involves the following issues:

• Problem decomposition: The transformation from a problem to a society of simple
agents is defined by a decomposition scheme. Each agent is assigned to a task
corresponding to a small part of the problem. Situation-action rules specify how
agents would act to achieve their tasks. The problem is solved when all agents
achieve their tasks simultaneously.

• Interaction analysis: When a problem is mapped into a society of agents, intense
interactions among agents ensue. In order for the society to move toward coherence,
influences of agents' actions on each other need to be identified. These interactions
are viewed as rich information sources that can be exploited to guide agents'
behaviors toward group coherence.

• Coordination mechanism: Group behavior of agents is characterized by the
coordination mechanism in the society. For our problem-solving purpose, we require
the group of agents to reach coherence in order to provide a solution. In addition, we
seek for rapid convergence to improve problem-solving efficiency. The design of a
coordination mechanism includes regulation policies and communication among
agents.

• Behavior design: An agent's behavior corresponds to various actions it performs to
achieve its goal. The collective behavior of agents represents problem-solving
activities that the group performs. In this framework, it is critical to analyze agent
interactions, investigate useful information exchange between agents, and
coordinate the highly distributed activities. All of these lead to designing agents'
behaviors such that (1) they avoid harmful interactions with other agents, (2) they
react appropriately towards rapid group convergence.

The problem domains of the collective problem solving framework that we have investigated
are Constraint Satisfaction Problems (CSPs). Many problems of theoretical and practical interest
(e.g., parametric design, resource allocation, scheduling) can be formulated as CSPs. A CSP is
defined by a set of variables, each having a corresponding domain, and a set of constraints. A

constraint is a subset of the Cartesian product which specifies which values of the variables are
compatible with each other. The variable set of a constraint (or a set of constraints), is the set of
non-duplicating variables restricted by the constraint (or the set of constraints). A solution to a
CSP is an assignment of values (an instantiation) for all variables, such that all constraints are

satisfied. Numerical CSPs (NCSPs) are a subset of CSPs, in which constraints are represented by
numerical relations between quantitative variables usually with fairly large domains of possible
values. Many CSPs of practical importance, such as scheduling, and parametric design, are
NCSPs. Constraint satisfaction algorithms typically suffer from feasibility/efficiency problems
for NCSPs due to their enormous search space.

We have developed a collective problem-solving framework, called Constraint Partition and
Coordinated Reaction (CP&CR), for a subset of NCSPs. In CP&CR, a society of specialized and
well-coordinated reactive agents collectively and asynchronously solve an NCSP. Agents are
situated in their environment, react to others' actions, and communicate with others by leaving
and perceiving particular messages on the objects they act on. A solution emerges from the
evolutionary interaction process of the society of diverse agents. Specifically, CP&CR provides
a framework to decompose an NCSP into a set of subproblems based on constraint type and
constraint connectivity, identify their interaction characteristics and, accordingly construct
effective coordination mechanisms. CP&CR assumes that an NCSP has at least two types of
constraints.

3.2 Summary of Experimental Results
We evaluated the performace of CP&CR on a benchmark suite of job shop scheduling CSPs.

The experiemntal results show that:

• exchange of coordination information increases the efficiency of group convergence

• CP&CR works considerably well as compared to other state-of-the-art scheduling
techniques both on number of problems successfully solved and efficiency in
finding a solution

• the performace of CP&CR is almost independent of its starting point of search, i.e. it
can start with random assignments of values to variables

• CP&CR exhibits near-linear scaling-up characteristics

We are currently extending the methodology to Constraint Optimization Problems. Preliminary
experimental results are very encouraging.

4 Interactive Schedule Repair

10

4.1 Introduction
Practical scheduling problems generally require allocation of resources in the presence of a

large, diverse and typically conflicting set of constraints and optimization criteria. The ill-
structuredness of both the solution space and the desired objectives make scheduling problems
difficult to formalize. The definition/evaluation itself of what is a "high quality" schedule is
fraught with difficulties because of the need to balance conflicting objectives and tradeoffs
among them. Such tradeoffs typically reflect the presence of context-dependent user preferences
and domain constraints not captured in the scheduling model. Therefore, there is the need for a
human operator to interact with the schedule and impart to it user preferences in terms of what is
a good schedule. These preferences, then should guide schedule optimization. The value of
incorporating such user preferences and constraints in operational scheduling environments is
becoming increasingly recognized (e.g. [McKay 88]) but good techniques are currently lacking.
Moreover, operational environments for scheduling systems (e.g. factories) are dynamic.
Unpredictable events, such as machine breakdown or operator absence, often happen during
schedule execution. Therefore, a schedule that is only predictive (i.e. it is created assuming that
the world is static and predictable) will be brittle. It is clear that any effective scheduling system
should be reactive, i.e. perform schedule revision in response to unforeseen events during
schedule execution.

Our research [Miyashita.Sycara 94a, Miyashita.Sycara 94b], [Miyashita.Sycara 93, Sycara
ed, Sycara 94a, Sycara 94b], [Sycara 94c, Zeng.Sycara ng]developed a case-based learning
method for acquiring context-dependent user optimization preferences and tradeoffs and using
them to incrementally improve schedule quality in generating a predictive schedule and also in
reactively managing the schedule in response to unexpected execution events. The approach,
implemented in the CABINS system, uses acquired user preferences to dynamically modify
search control to guide schedule improvement. Unlike other systems that utilize iterative repair
to find a feasible solution (e.g. [Zweben 90, Minton 90]), where executability of the schedule
was not guaranteed at the end of each repair iteration, CABINS produces an executable schedule
after each repair that has guaranteed monotonic increase in quality the more time it is allowed for
repair, thus exhibiting anytime executable behavior [Dean 88]. This is a very desirable quality
especially in reactive contexts since there could only be a certain limited amount of time for the
system to react.

CABINS can operate in different modes that exhibit various levels of autonomy. First,
user-directed mode, where the user selects a repair tactic and evaluates the results of its
application. Second, interactive assistance mode, where CABINS suggests repair tactics and
evaluations of repair tactic application, but the user can override the suggestions and make new
selections. Both the user-directed and interactive assistance modes are used for acquisition of the
case base. Third, autonomous mode where, without user intervention, CABINS uses the case
base that was acquired in the training phase for repair selection and evaluation of repair results.

Our approach uses integration of Case-based Reasoning (CBR) [Kolodner 85] and fine

11

granularity constraint-directed scheduling mechanisms. Integrating CBR with constraint-based
scheduling stems from a variety of motivations. Although scheduling is an ill-structured domain,
we assume that it exhibits domain regularities that could be captured, albeit only approximately,
in a case. In CABINS, a case represents application of a revision action to one activity in the

schedule, thus expressing dependencies among features of the schedule, the repair context and a
suitable repair action. CBR allows capture and re-use of this dependency knowledge to
dynamically adapt the search procedure and differentially bias scheduling decisions in future
similar situations.

Since it is impossible to judge a priori the effects of a scheduling decision on the optimization
objectives, a scheduling decision must be applied to a schedule and its outcome must be
evaluated in terms of the resulting effects on scheduling objectives. Therefore, having a single
scheduling decision as a case seemed to provide advantages in terms of focus and traceability of
the problem solving process. Focus and traceability mean that we could capture a user's
evaluation of the results of a single scheduling decision in a case, and, if the result was
unacceptable, we could apply another scheduling decision to the same scheduling entity until
either all available scheduling decisions had been exhausted or an acceptable result had been
obtained. Therefore, it became clear that it was better to have a single activity/operation of a
scheduling job as the "scheduling entity" on which a scheduling decision was applied. Hence in
CABINS, a case describes the application of a schedule revision decision on a single activity of
a job. Operationalization of a schedule revision decision is done by means of a schedule repair
action. Currently, CABINS has 11 repair actions.

Since the result of a scheduling decision needed to be evaluated with regard to the optimization
preferences for a schedule as a whole, it is clear that constructive methods which incrementally
augment a partial schedule at every scheduling decision point would be unsuitable for our
purposes. Moreover, contextual information, which can only be provided by having a complete
schedule, is very useful in applying CBR. Therefore, revision-based scheduling was chosen as
the underlying scheduling methodology.

Because of the tightly coupled nature of scheduling decisions, a revision in one part of the
schedule may cause constraint violations in other parts. Therefore, constraint propagation
techniques are necessary to determine the ripple effects that spread conflicts to other parts of the
schedule as case-based repair actions are applied and specific schedule revisions are made. We
use constraint propagation to propagate the effects of a schedule repair action to the rest of the
schedule.

The evaluation criteria for judging the acceptability of the outcome of a repair action are often
multiple, conflicting, context dependent and reflect user judgment of tradeoffs. Therefore, it is
difficult to describe the evaluation criteria and the associated tradeoffs in a simple manner. The
case base incorporates a distribution of examples that collectively and implicitly capture a user's
schedule evaluation preferences and tradeoffs under diverse problem solving circumstances and
enable CABINS to induce these tradeoffs from the case base. Hence, user preferences are

12

reflected in the case base in two ways: as preferences for selecting a repair action depending on
the features of the repair context, and as evaluation preferences for the repair outcome that
resulted from selection and application of a specific repair action.

During iterative repair, cases are exploited for: (1) repair action selection, (2) evaluation of
intermediate repair results and (3) recovery from revision failures. The method allows the system
to dynamically switch between repair heuristic actions, each of which operates with respect to a
particular local view of the problem and offers selective repair advantages. Application of a
repair action tunes the search procedure to the characteristics of the local repair problem. This is
achieved by dynamic modification of the search control bias. There is no a priori
characterization of the amount of modification that may be required by repair actions. However,
experimental results on job shop scheduling problem show that (1) the approach is potentially
effective in capturing user preferences and optimization tradeoffs that are difficult to model, (2)
it improves schedule quality irrespective of method of initial schedule generation, (3) it produces
high quality schedules at much lower computational cost as compared to simulated annealing, a
well-known iterative repair method, and (4) it is suitable as a reactive scheduling method
because it maintains high schedule quality and minimizes disruptions in the face of execution
time failures.

4.2 Case Indexing
Each application of a repair results in a new schedule. The search space of CABINS is the

space of complete schedules that incorporate acceptable user optimization tradeoffs. Hence the
predictive case features that are suitable for case indexing should be ones that capture good
tradeoffs. Although schedule optimization is ill-structured, we make the hypothesis that there
are regularities of the domain that can be captured, albeit in an approximate manner, in these
features.

In CABINS, indices are divided into three categories. The first category consists of the global
features. Since the results of schedule revision associated with a single activity pertain to the
whole schedule, global features that express characteristics of a whole schedule are relevant and
operate as contextual information for selection of a particular repair action. The local features
comprise the second category. Since it is not possible to predict in general the bounds of repair
necessitated by application of a repair action (due to constraint ripple effects), and since
reasoning about the effects of a repair action on the whole schedule a priori would amount to
unlimited lookahead analysis which is in general intractable, we confine the range of lookahead
analysis to a limited repair time horizon. Associated with this time horizon, there are local
features that allow CABINS to estimate the effects of each repair action.

The schedule resulting from application of a repair action must be evaluated in terms of user-
defined tradeoffs. The user cannot predict the effects of modification actions on schedule
correctness or quality since a modification could result in worsening schedule quality or
introducing constraint violations. Nevertheless, the user can perform consistent evaluation of the

results of schedule revisions. This evaluation is recorded in the case as part of the case's repair
history. The repair history constitutes the third category of case features. Therefore, the case
base incorporates a distribution of examples that collectively capture repair performance

tradeoffs under diverse scheduling circumstances.

CABINS searches the space of complete schedules. Control for this search is provided by CBR
in two ways: First, search control is provided through case-based selection of the next repair
action to be applied and second through case-based evaluation of the outcome for the schedule
that resulted from application of a selected repair action. The global and local features are the
indices that are used to retrieve a case that suggests the next repair action to be applied. The
features associated with the repair history are used to retrieve cases that suggest evaluations of a
repair outcome.

4.3 Case Acquisition
In CABINS, the session starts with an empty case-base. A set of training problems are

presented to the user who interacts with CABINS to repair schedules by hand. At first, the user
selects the repair tactic that is deemed to be appropriate and uses CABINS's tactic application
procedure to apply the chosen tactic to the current schedule.

The effects of the repair are calculated. An effect describes the result of the repair with respect
to one or more repair objectives. Effects pertain to either the schedule as a whole or to a job.
Possible effects pertaining to a schedule as a whole are: weighted tardiness, average resource
utilization, deviation of resource utilization, total schedule work in process inventory (WIP).
Effects that pertain to a job are changes in the tardiness of the job, changes in work-in-process
inventory, or changes in resource assignment. So, for example, the tradeoff between utilizing a
less preferred machine to reduce a job's tardiness can be reflected in these effects. Due to tight
constraint interactions, these effects are ubiquitous in job shop scheduling and make schedule
optimization extremely hard. When application of a repair tactic produces a feasible result, the
user must decide whether the resulting schedule is acceptable or not based upon those calculated
effects.

An outcome is judged as unacceptable, if the schedule resulting from the application of the
revision heuristic does not make any improvement with respect to the user's criteria. This could
happen because harmful effects outweighed, in the user's judgment, the effected improvement.
For example, if reduction of job tardiness enforces increased utilization of low-quality machine,
although the total cost of this repair may be low, it may be unacceptable to a user who worries
that the quality of resulting products might be low. Therefore such a repair might be judged as
unacceptable. The user's judgment as to balancing favorable and unfavorable effects related to a
particular optimization objective constitute the explanations of the repair outcome. The user
supplies an explanation in terms of rating the importance of each effect. At the end of each
repair iteration, the applied repair tactic, the effects of the repair and user judgment / explanation
as to the repair outcome are recorded in a case along with the current problem features. If the

14

effects are acceptable to the user, the repair outcome is recorded as "acceptable" and the user
tries to repair another activity. If the user does not like the tradeoffs that are incorporated in the
repair effects, then the outcome of the current repair tactic ("unacceptable"), the effects
calculated by CABINS and the salience assigned by the user are recorded in the repair history of
the case. Subsequently, the user tries to utilize another repair tactic to repair the same activity.

The process continues until an acceptable outcome is reached, or failure is declared. Failure is
declared when all available tactics have been used to repair an activity, but the user finds each
repair outcome unacceptable. The sequence of application of successive repair actions, the
effects, user's judgment and explanation in case of failed application are recorded in the repair
history of the case. Two remarks are in order here with respect to case acquisition. First, a new
case is acquired only when a new activity is under repair. When an activity is repeatedly repaired
due to unacceptable repair tactic application results, no new case is acquired, but the repair
history of the same case is augmented by each successive repair tactic application, its effects and
outcome. In this way, a number of cases are accumulated in the case-base.

4.4 Case Re-Use
Once CABINS has constructed a case-base from training data, it can perform schedule repair

without any interaction with its user. Cases are retrieved for three purposes: selection of a repair
tactic to be applied, evaluation of the resulting schedule after application of the selected repair
tactic, and, in case of failure, retrieval of a tactic that had fixed a previous similar failure. In
each of these three situations, CABINS utilizes a different set of indices for case retrieval. In
order to retrieve cases to select a repair tactic, global and local features of the current case (the
current focal_activity) are used. For each of the three case retrieval situations described above,
CABINS uses a k-Nearest Neighbor method (k-NN) [Dasarathy 90] for case retrieval.

After a repair has been applied and, if the result is a feasible schedule, repair evaluation is
performed through CBR. Using the effect features (type, value, and salience) as new indices,
CBR is invoked and returns an outcome in the set (acceptable, unacceptable).

If the outcome of current revision is decided as unacceptable, CABINS performs another CBR
invocation using as indices the conjunction of the current outcome (unacceptable), the failed
heuristic and the case global and local features to find another possibly applicable revision
heuristic. Invoking CBR with these indices retrieves cases that have failed in the past in a similar
manner as the current revision. This use of CBR in the space of failures is a domain-independent
method of failure recovery [Sycara 88, Simpson 85], and allows the problem solver to access
past solutions to the failure. If the result is acceptable, then CABINS proceeds to repair another
activity.

15

4.5 Evaluation of the Approach
We conducted a set of experiments to test the following hypotheses:

1. Our approach is potentially effective in capturing user preferences and
optimization tradeoffs that are difficult to model.

2. Our approach improves schedule quality irrespective of method of initial schedule
generation.

3. Our approach produces high quality schedules at much lower computational cost as
compared to simulated annealing, a well-known iterative repair method.

4. Our approach is suitable as a reactive scheduling method because it maintains high
schedule quality and minimizes disruptions in the face of execution time failures.

We evaluated the approach on a benchmark suite of job shop scheduling problems where
parameters, such as number of bottlenecks, range of due dates and activity durations were varied
to cover a broad range of parallel machine job shop scheduling problem instances. In particular,
the benchmark problems have the following structure: each problem has 10 orders of 5 activities
each. Each order has a linear process routing specifying a sequence where each order must visit
bottleneck resources after a fixed number of activities, so as to increase resource contention and
make the problem tighter. Two parameters were used to cover different scheduling conditions: a
range parameter, RG, controlled the distribution of order due dates and release dates, and a
bottleneck parameter, BK, controlled the number of bottleneck resources. To ensure that we had
not unintentionally hardwired knowledge of the problem into the solution strategies, we used a
problem generator function that embodied the overall problem structure described above to
generate job shop scheduling instances where the problem parameters were varied in controlled
ways. In particular, six groups of 10 problems each were randomly generated by considering
three different values of the range parameter (static, moderate, dynamic), and two values of the
bottleneck configuration (1 and 2 bottleneck problems). The slack was adjusted as a function of
the range and bottleneck parameters to keep demand for bottleneck resources close to 100\%
over the major part of each problem. Durations for activities in each order were also randomly
generated.

The benchmark problems are variations of the problems originally reported in [Sadeh 91c] and
used as a benchmark by a number of researchers (e.g. [Muscettola 92, Liu.Sycara 93a]). Our
problem sets are, however, different in two respects: (a) we allow substitutable resources for
non-bottleneck resources, thus solving the parallel machine rather than the simple job shop
scheduling problem, and (b) the due dates of orders in our problems are tighter by 20 percent
than in the original problems.

A cross-validation method was used to evaluate the capabilities of CABINS. Each problem set
in each class was divided in half. The overall training sample, consisting of 30 problems, each of
which has 50 activities, was repaired to gather cases. A case is acquired for each activity that is
repaired. An activity (and consequently a job) may be repaired more than once during an overall
repair cycle, since it could require repair after being moved as a result of repairing another

16

activity. Allowing each activity to be repaired once for each problem would give a maximum of
30X50 = 1,500 cases for each training sample. In our experiments, some of the activities did not
need repair. So, for each training sample, CABINS was trained with approximately 1,100 cases.
These cases were then used for case-based repair of the validation problems (the other 30
problems). We repeated the above process by interchanging the training and the test sets. Since
it is not possible to theoretically predict the bounds of repair or the global optimum, in the
experiments, CABINS was allowed to run for three overall repair cycles.

4.6 Summary of Experimental Results
Extensive experimentation on the benchmark suite of problems showed that:

1. CABINS is capable of acquiring user and state dependent schedule optimization
preferences. In addition, CABINS can acquire user preferences that change over
time.

2. In predictive schedule generation, the methodology consistently improves the
quality of schedules generated by a variety of scheduling methods.

3. In predictive schedule generation, CABINS generates schedules of higher quality
along a variety of optimization objectives with much lower processing cost (almost
an order of magnitude better) as compared to simulated annealing.

4. In recovering from execution time failures, the approach (1) attends to schedule
quality both in terms of optimization objectives, and disruption, and (2) is
responsive in that it allows continuation of execution without delays in response to
execution failures, and (3) it exhibits anytime executable behavior.

5. Different scheduling objectives implicitly reflected in the case base differentially
bias the schedule repair procedure. Experiments showed that learning of the
control model for repair action selection improved schedule quality by 90% as
compared with random selection of repair actions.

6. The approach scales up in that knowledge gathered in the form of cases from a
smaller set of problems (e.g. 10-job problems) produces schedules of high quality
when used to repair larger problems (e.g. 20-job problems). In addition the pattern
of schedule quality improvement independent of method of initial schedule
generation holds for the larger set of problems.

7. With respect to the question of the case size that will give the "optimal" tradeoff
with respect to schedule quality vs case acquisition and retrieval cost, our results
showed that:

• The larger the number of cases, the better the schedule quality. However,
the marginal payoff from the increase in case base size decreases. This can
be explained partially by the fact that some number of cases (say, 1000
cases) capture well characteristics of the problem space, and additional 1000
new cases may give much redundant information. When the size of case-
base is relatively small, every time new cases are acquired, we may get
information about a different part of the problem space which results in
higher quality improvement.

17

• In terms of balancing efficiency of finding the solution and solution quality,
the experiments showed that the case-base with 1000 cases affords the best
tradeoff.

4.6.1 Discussion
We believe the power of the approach stems from the following four reasons. First, as has

been pointed out by others (e.g. [Minton 92]), revision-based approaches, by making available a
complete assignment (a complete schedule) provide more information that can guide search as
compared with constructive methods where only a partial assignment is available. Our CBR-
based revision method captures such relevant information in global case features and exploits it
as contextual information during case retrieval. Second, although job shop schedule optimization
belongs to the category of "hard" NP-complete problems, the case features were able to capture
some important domain regularities, such as repair flexibility. This was complemented by
keeping information about failed applications of revisions in the repair case history and also
keeping failed cases in the case memory. These failures were exploited by CBR to prune
unpromising paths in the search space in future similar situations. Finally, we believe that some
of the regularities in the structure of the experimental problems were captured in cases during the
training phase and this information was transferable to solve the test problems. Moreover, this
information seems to transfer also across problem size. For example, the cases acquired during
training with a set of 10-job problems were effective in solving test problems with 20 jobs.

The effort expended to capture a large number of cases can be amortized by future repeated
use of the case base to get high quality schedules efficiently. More importantly, CABINS can
acquire the cases through user interaction during the process of solution improvement without
imposing undue overhead on the user.

5 Integration of Predictive Planning/Scheduling and Reactive Control
A plan/schedule represents a predictive view of how the future should look and expresses

expectations about future events. For example, a factory schedule expresses an expectation that
particular operations will be assigned to particular resources at particular start times and will
execute on these resources for the indicated operation durations. However, since the world is
unpredictable, the expectations associated with the predictive plan/schedule might not be
realized (e.g., operations might finish earlier or later than their durations indicate in the schedule,
capacity might be lost due to machine breakdowns etc). These realities of execution uncertainty
give rise to the following issues: (1) how execution of a plan/schedule should be controlled, (2)
how a schedule can be reactively managed and (3) how the behavior of the world could be
simulated (since our system does not have access to a real factory floor that can be sensed,
simulation of the world must be employed).

Our research create a distributed testbed for planning and execution that is suitable to
experiment with interactions and tradeoffs arising from adopting a variety of control regimes to
select tasks for execution, the actual execution policies and the physics of the world.

The distributed testbed cosists of the following agents: a planner/scheduler, a controller (in the
manufacturing domain this is called the dispatcher) and a simulator that simulates the behavior
of the world. The overall system behavior is the result of interactions among the three agents.
The goal of this effort is to make the testbed sufficiently parametrized and general so that it can
operate using a variety of possible scheduling strategies, a variety Of control execution regimes
and a variety of assumptions in terms of the physics of the world. In addition, monitoring
processes will be gathering performance statistics for particular experimental combinations of
scheduling strategies, control regimes and world models.

In order to gather statistics on the performance of the distributed planner/scheduler, controller
and simulator, we implemented an additional monitoring agent. Its role is to monitor the state of
the different agents and the state of the messages exchanged among the different agents and
return appropriate statistics. For example, by collecting the messages announcing the start of the
first operation and the end of the last operation for each job, the monitor can return statistics on
tardiness; analogously, messages on start and end of resource down-time, type of failure and start
and end of failure repair activities can be gathered to obtain statistics on the effectiveness of the
reaction of the dispatching policies to unpredictable events.

In general, the system performs as follows. The scheduler passes to the dispatcher a DAG of
operations to be executed. The simulatior simulates the execution of operations based on
different conditions of uncertian execution (e.g., every third operation has a probability x of
excheeding its time bounds by y). If an operation executes successfuly (i.e. within its time
bounds) then, it becomes a finished operation. If its execution causes constraint violation, then,
the dispatcher tries to "fix" the situation performing local repairs. If the dispatcher repairs do not
resolve the constraint conflicts, the dispatcher returne the operations to the scheduler for re-
scheduling.

The dispatcher has limited time horizon within which to impose repairs. This limited time
horizon has two effects (1) it limits the search space of the dispatcher thus enabling quick
repairs, and (2) keeps the repairs local, i.e. without causing inconsistencies in the global
scheduler's constraints, these two characteristics enable the dispatcher to respond efficiently to
detected problems and opportunities.

5.0.1 Simulator
The simulator allows generation of behaviors of finite state machines equivalent to HSTS

models used for planning and scheduling. The explicit simulation of the behavior of a system
under consideration and of the interactions with control and prediction (planning and scheduling)
agents is the basis for the study of appropriate regimes of coordination. The simulator takes as
input a model, an initial state, and a start and an end time for the simulation. The model defines
state transitions, agents and objects that can respond to messages. Both agents and objects
communicate by sending and receiving messages. For the sake of better exposition, we call the
messages handled by objects signals and the messages handled by agents stimuli. These

19

messages are contained in temporal order in the simulator's queue. Objects have associated state
variables and state transition rules; given the current state and a set of received messages, an
object can change its state according to its transistion rules. Agents consist of arbitrary code that

can receive messages (stimuli), and can respond with commands. Only the method of

communication is described for agents; no visibility is given on the internal state of the agents.
This capability will allow the incorporation of complex agents (e.g., planner, scheduler) in the
simulation of complex regimes of coordination.

The simulator maintains the value of the state variables associated to the model objects. The
current set of assignments of the state variables within the simulator constitute the current state.
State transitions can be described as:

old state + signal => new state + post new signals

An agent receives stimuli generated by the simulator and sends commands to the simulator.
Objects have handler functions that select the appropriate state transition rules and apply them to
generate changes in the value of its state variables.

State Transition Rules (STR) consist of:

• signal-test. It is used to determine whether this STR should be considered given the
current signal.

• prior-state. It is used to determine whether this STR should be considered given the
current state and the current signal.

• post-state. It is used to assign to state variables the values they will have after all
variable assignments are done. There are two types of value assignment: (1) a
simple assignment where the value given to the state variable is a function of prior-
state, signal, and STR, and (2) a functional assignment, where the state variable
assignment is a function of prior-state, signal, STR and new value of the given
variable (caused by the assignmenet of some other STR).

• validity-test. It is a test to check whether the resulting state is a valid one.

5.0.2 Scheduler and Dispatcher
The scheduler agent of the predictor/controller/simulator architecture is based on the Conflict

Partition Scheduling procedure. The scheduler generates an HSTS temporal data base
representing the network of precedence among activities and their time bounds. The dispatcher
receives a subnetwork consisting of the first operations that can be executed and the activities
that follow them on a chain of job precedences (i.e., opi before op- because of a job imposed
constraint) or on a chain of resource precedences (i.e., opt before opk because they use the same
resource). At any point in time the dispatcher will contain up to n links on any chain; this is an
extension of the approach in [Smith 90b] which considers chains of length 2 at most. The
constraints imposed by the rest of the schedule not visible to the dispatcher are represented as
absolute temporal constraints (i.e., due date constraints); the constraints are updated every time
new operations are added to the dispatcher's temporal data base.

20

Unexpected events are represented in the dispatcher's network with the change of activity
parameters (e.g., change of an activity duration constraint if the simulation determines that its
duration is shorter or longer than expected) or the introduction of new activities (e.g., a resource
unavailability requires the introduction of a "resource down" state token and a "resource repair"
activity token). There are two categories of unexpected events: (1) Small changes, such as
delays in the execution of activities, that could be "absorbed" in the current time map flexibility
(because, for ex. there is downstream slack present). In this case the controller does not need to
execute any adjustment to its portion of the schedule (over which it has visibility). In constrast, a
controller using "crisp" schedules, such as the one described in [Smith 90b] often deals with
similar situations with an active modification of the schedule through appropriate reactive
scheduling rules that could incurr computational cost. (2) Large perturbations to the dispatcher's
time map, due for example to a machine break down or to large execution delays, might generate
inconsistencies in the current schedule. In this case it is necessary to determine where the
inconsistency is and how to repair it. We concentrate on the detemination of inconsistencies that
are representable as temporal constraint violations in the network. The determinations of these
inconsistencies requires an extension of the HSTS temporal propagation mechanism. The HSTS
temporal propagation, in fact, can detect the presence of inconsistencies but cannot localize
them; this is sufficient for the backtrack-based approaced to planning and scheduling but not in
repair based approaches where we need to identify the constraints that participate in the conflict
and, therefore, need to be modified. We started the investigation of propagation procedures that
localize temporal constraint inconsistencies.

We implemented and integrated in the HSTS temporal data base an additional temporal
propagation mechanism which allows detection of the location of conflicting sets of constraints.
The method applies the Floyd-Warshall (FW) algorithm for the determination of all-pair shortest
paths. The algorithm has been advocated for the resolution of consistent networks of temporal
constraints in [Dechter 91]. While in most cases FW computes much more information than it is
needed (e.g., consistency of a temporal data base), in case of network inconsistency it can detect
shortest cyclical paths of temporal constraints with negative distance. The elimination of such
paths from the temporal data base is a necessary condition for the removal of the network's
inconsistency. As for the ordinary time bound propagator, in HSTS the FW propagator can be
called on demand, given the computational burden of the algorithm. A typical situation is one in
which FW is called after the ordinary and cheaper time bound propagation detects an
inconsistency. The wealth of information returned by FW can be used to guide the design of
effective repair rules. For example, having detected a number of disjoint negative distance
cycles, it is necessary to repair all of them before the temporal database can become consistent
again. The repair rules will use different patterns of repair (e.g., repair one cycle at a time,
exchange constraints among cycles, etc.) depending on the topology of the temporal data base.

21

5.0.3 Dispatcher Operation
The dispatcher receives an externally generated DAG of operations with nominal start and end

times associated with each operation. This DAG constitutes a consistent schedule.

Execution time failures

The dispatcher's reactive behavior in response to execution time failure, such as an activity
finishign late, is as follows:

• Identification of deviation from nominal plan/schedule behavior: this is done using
the execution information that the managed system communicates to dispatcher.

• Localization of violated constraints: this is done via use of Floyd Warshall algorithm
to identify negative cycles in the temporal network under dispatcher's control.

• Identification of cause of deviation: activities that are part of a negative cycle are
potential causes.

• Local repair:
1. Next activity of a negative cycle is unlinked from the network.

2. Constraint propagation is performed.

3. If propagation shows that the network is now consistent, the unlinked
activity is relinked at a place where there is enough slack. Repair is
complete. Otherwise, previous activity is put in its old place. Go to step 1.

4. If all activities in a negative cycle have been tested but the network is still
inconsistent, the dispatcher sends to the scheduler all activities that have not
finished executing for rescheduling.

Dispatcher execution opportunities

The dispatcher also responds to execution opportunities (e.g., an activity finishing earlier than
its expected finish time). The intuition behind a revision to recognize and take advantage of
opportunities is to try, if possible, to locally re-optimize the part of the schedule under the
control of the dispatcher, The "opportunity revision" can be initiated under the following
circumstances: (1) when an activity finishes earlier than its expected finish time, (2) when an
activity finishes later than its expected finish time (but the dispatcher's constraint network is still
consistent). In this case, the "opportunity revision" is tried along with the 'repair revision". (3)
when an activity finishes at its expected finish time, and (4) when the dispatcher gets a new set
of activities to dispatch.

The opportunity revision is checked for each idle resource, and each activity, call it "current
activity", on that resource (except the first activity). The opportunity revision steps are as
follows:

1. Break resource links before and after the "current activity"

2. Add resource link between the old prior-activity to the "current activity", and old

22

next-activity to the "current activity"

3. Try placing the "current activity" in the first position on the resource

4. Check if the constraint network is consistent. If it is, then the "current activity" is a
"candidate" to be moved. Keep track of its minimum legal start time in the
"candidate-set". If not, place the "current activity" in its old position (taking care of
maintaining the correct links) and try another activity.

5. Collect all activities in the "candidate-set" and select the one with the earliest
minimum start time.

The algorithm ensures that the activity that can be dispatched at the earliest time is found.

5.0.4 Coordination protocol scheduler-dispatcher-simulator
The coordination assumption that underlie this protocol is that the dispatcher is actively asking

the scheduler for activities to dispatch rather than waiting for the scheduler to send it activities.
The implication of this coordination regime is that activities will be dispathed expeditiously, i.e.,
the next ply of activities will be dispatched as soon as the previous ply has been sent to the
factory model. The dispatcher gets alerted that the scheduler has finished scheduling (initial
scheduling or rescheduling) by receiving a schedule-ready message from the scheduler. The
message that the dispatcher sends to the scheduler to ask for activities to dispatch is get-next-ply.
The scheduler responds to this message by sending a series of dispatch-activity messages, one
for each activity in the first n plies, n is currently equal to 2. When the dispatcher dispatches an
activity, it checks to see if it needs another ply, and if it does, it sends get-next-ply message to
scheduler. If, due to delays in activity execution, the dispatcher finds unrepairable
inconsistencie, it send a series of rescehdule-activity messages to the scheduler. The argument to
each of these messages is an activity to be rescheduled.

The dispatcher dispatches activities by sending start-activity messages to the factory. The
factory responds to the dispatcher by sending activity-started message when it starts executing an
activity, and activity-finished message at the end of each activity execution.

5.0.5 Operation of Overall System
The overall system operates as follows;

1. At simulation time=-2, a set of self-initialization messages is sent by the simulation
infrastructure to all agents. The result of recieving these messages is that each
agent initializes itself (i.e. it local variables and message types it can send and
receive).

2. At simulation time=-l, a set of messages is sent to all agents for initialization of
others. For example, the scheduler initializes its interaction with the dispatcher by
sending a "schedule-ready" message; the dispatcher initializes its interactin with
the scheduler by sending a "get-next-ply" message (to get the first 2 plies), to
which the scheduler responds by the "dispatch-activity" series of messages, seding
it the requested activities. When the dispatcher gets the activities, it builds a

23

temporal constrant network for the activities.

3. At simulation time=0, a start message is sent to all agents. At that time the
dispatcher builds its temporal data base and checks it for consistency.

4. At simulation time=k, where k is the earliest release date of the activities to be
dispatched, the dispatcher sends messages to the factory to start execution of each
activity in the first ply, on the specified resource for each activity.

In the rest of the simulation, the following significant events occur:

• The factory sends activity-finished messages to dispatcher, as activities finish
execution.

• As the dispatcher dispatches each activity, it checks to see whether it needs an
additional ply from the scheduler. If it does, it sends a "get-next-ply" message,
which has a papameter n equal to the number of plies to be sent. The scheduler
responds by "dispatch-activity" series of messages, thus sending the dispatcher the
set of activities in the next n plies.

• If the dispatcher finds that its temporal data base is inconsistent, it tries to locally
repair the inconsistency. If the inconsistency is locally fixed, the dispatcher
continues processing. If the inconsistency cannot be fixed locally, the dispatcher
sends the scheduler a "reschedule-activity" series of messages containing the
activities to be rescheduled.

24

References
[Adams 88]

[Berry 91]

[Chen 93]

[Dasarathy 90]

[Dean 88]

[Dechter91]

[Garey 79]

[Garey 88]

[Goldratt 80]

[Kolodner 85]

J. Adams, E. Balas, and D. Zawack.
The Shifting Bottleneck Procedure for Job Shop Scheduling.
Management Science 34(3):391-401, 1988.

Pauline M. Berry.
The PCP: A Predictive Model for Satisfying Conflicting Objectives in

Scheduling Problems.
Technical Report, Centre Universitaire dTnformatique, Universite de Geneve,

12, Rue du Lac, CH-1207, Geneva, Switzerland, 1991.

Chen, S., S. Talukdar and N. Sadeh.
Job Shop Scheduling Using Asynchronous Teams of Optimization Agents.
In Proceedings of the IJCAI-93 Workshop on Knowledge-based Production

Planning, Scheduling, and Control. Chambery, France, August, 1993.

Belur V. Dasarathy (editor).
Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques.
IEEE Computer Society Press, Los Alamos, CA, 1990.

Dean, T. and Boddy, M.
An Analysis of Time Dependent Planning.
In Proceedings of the Seventh National Conference on Artificial Intelligence,

pages 49-54. AAAI, Saint Paul, Minnesota, 1988.

Dechter, R. and Meiri, I and Pearl, J.
Temporal Constraint Networks.
Artificial Intelligence 49:61-95, May, 1991.

M.R. Garey and D.S. Johnson.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman and Co., 1979.

Michael R. Garey, Robert E. Tarjan, and Gordon T. Wilfgong.
One-Processor Scheduling with Symmetric Earliness and Tardiness Penalties.
Mathematics of Operations Research 13(2):330-348, May, 1988.

Eliyahu M. Goldratt.
Optimized Production Timetable: Beyond MRP: Something Better is finally

Here.
October, 1980
Speech to APICS National Conference.

Kolodner, J. and Simpson, R. and Sycara, K.
A Process of Case-Based Reasoning in Problem Solving.
In Proceedings of the Ninth International Joint Conference on Aritificial

Intelligence, pages 284-290. IJCAI, Los Angeles, CA, 1985.

25

[Li&Sadeh 93]

[Linden 91]

Gang Li and Norman Sadeh.
Single-Machine Early/Tardy Scheduling Problem with Setups: A Hybrid

Heuristic Approach.
Technical Report, Robotics Institute, Carnegie Mellon University, Pittsburgh,

PA 15213,1993.
Working paper. Presented at the Joint National ORSA/TIMS meeting held in

San Francisco, November 1-4, 1992.

Theodore A. Linden.
Preference-Directed, Cooperative Resource Allocation and Scheduling.
Technical Report, Advanced Decision Systems, 1500 Plymouth St., Mountain

View, CA 94043, September, 1991.

[Liu.Sycara 93a] Liu, J. and Sycara, K.
Distributed Constraint Satisfaction through Constraint Partition and

Coordinated Reaction.
In Proceedings of the 12th International Workshop on Distributed Artificial

Intelligence. AAAI, Hidden Valley, PA., 1993.

[Liu.Sycara 93b] Liu, J. and Sycara, K.
Constraint Satisfaction through Multi-Agent Coordinated Interaction.
In Proceedings of the 5th European Workshop on Modeling Autonomous

Agents in a Multi-Agent World. MAAMAW, Neuchatel, Switzerland,
1993.

[Liu.Sycara 94a] Liu, J. and Sycara, K.
Problem Solving through Coordinated Reaction.
In Proceedings of the IEEE Conference on Evolutionary Computation. IEEE,

Orlando, Fla., 1994.

[Liu.Sycara 94b] Liu, J. and Sycara, K.
Distributed Problem Solving through Coordination in a Society of Agents.
In Proceedings of the 13th International Workshop on Distributed Artificial

Intelligence. AAAI, Seattle, WA., 1994.

[McKay 88] K. McKay, J. Buzacott, and F. Safayeni.
The Scheduler's Knowledge of Uncertainty: The Missing Link.
Technical Report, Department of Management Sciences, University of

Waterloo, Waterloo, Ontario, Canada, N2K 2G4, 1988.
Also presented at IFIP Working Conference on Knowledge Based Production

Management Systems, Galway, Ireland, August 1988.

[Minton 90] S. Minton, M.D. Johnston, A.B. Philips, P. Laird.
Solving Large-Scale Constraint Satisfaction and Scheduling Problems Using a

Heuristic Repair Method.
In Proceedings of the Eighth National Conference on Artificial Intelligence,

pages 17-24. 1990.

26

[Minton 92] Minton, S. and Johnston, M and Philips, A. and Laird, P.
Minimizing conflicts: a heuristic repair method for constraint satisfaction and

scheduling problems.
Artificial Intelligence 58(1-3): 161-205, 1992.

[Miyashita.Sycara 93]
Miyashita, K., Sycara, K.
Adaptive Control of Schedule Revision.
In Fox, M. and Zweben, M. (editor), Knowledge-Based Scheduling. Morgan

Kaufmann, San Mateo, CA, 1993.

[Miyashita.Sycara 94a]
Kazuo Miyashita and Katia Sycara.
A Framework for Case-Based Revision for Schedule Generation and Reactive

Schedule Management.
Journal of Japanese Society for Artificail Intelligence 9(3):426-435, 1994.

[Miyashita.Sycara 94b]
Miyashita, K. and Sycara, K.
CABINS: A Framework of Knowledge Acquisition and Iterative Revision for

Schedule Improvement and Reactive Repair.
Technical Report, Carnegie Mellon University, CMU-RI-TR-94-34, 1994.

[Muscettola 92] N. Muscettola.
Scheduling by Iterative Partition of Bottleneck Conflicts.
Technical Report CMU-RI-TR-92-05, The Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA 15213, 1992.

[Nakakuki&Sadeh 94]
Nakakuki, Yoichiro, and Norman Sadeh.
Increasing the Efficiency of Simulated Annealing Search by Learning to

Recognize (Un)Promising Runs.
In Proceedings of the Twelfth National Conference on Artificial Intelligence,

pages 1316-1322. 1994.

[Ow 88] Peng Si Ow and Stephen F. Smith.
Viewing Scheduling as an Opportunistic Problem-Solving Process.
Annals of Operations Research 12:85-108, 1988.

[Ow 89] Peng Si Ow and Thomas Morton.
The Single Machine Early/Tardy Problem.
Management Science 35(2): 177-191, 1989.

[Paolucci 92] Paolucci, E., Patriarca, E., Sem, M., and Gini G.
Predit: A Temporal Predictive Framework for Scheduling Systems.
In Proceedings of the AAAI Spring Symposium on Practical Approaches to

Scheduling and Planning, pages 150-154. 1992.

27

[Sadeh 91a] Norman Sadeh and Mark S. Fox.
Micro- vs. Macro-opportunistic Scheduling.
In G. Doumeingts, J. Browne, and M Tomljanovich (editor), Proceedings of

the Fourth IFIP Conference on Computer Applications in Production and
Engineering (CAPE'91), pages 651-658. Elsevier Science Publishers
B.V. (North Holland), 1991.

[Sadeh 91b] N. Sadeh and M.S. Fox.
Variable and Value Ordering Heuristics for Hard Constraint Satisfaction

Problems: an Application to Job Shop Scheduling.
Technical Report CMU-RI-TR-91-23, The Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA 15213, 1991.
Submitted to the Artificial Intelligence Journal.

[Sadeh 91c] Norman Sadeh.
Look-ahead Techniques for Micro-opportunistic Job Shop Scheduling.
PhD thesis, School of Computer Science, Carnegie Mellon University, March,

1991.

[Sadeh 92a] Norman M. Sadeh.
The Micro-Boss Scheduling System: Current Status and Future Efforts.
In Proceedings of the 1992 AAAI Spring Symposium on Practical Approaches

to Scheduling and Planning, pages 37-41. Stanford University, Stanford,
CA, March, 1992.

Also appeared in Proceedings of the Sixth Annual Workshop on Space
Operations Applications and Research (SOAR'92) held in Houston, TX,
Aug. 4-6,1992.

[Sadeh 92b] Norman M. Sadeh.
Micro-Boss: A Micro-opportunistic Decision Support System for Factory

Scheduling.
The 1991 Annual Research Review of the Robotics Institute.
1992

[Sadeh 92c] Norman Sadeh, Katia Sycara, and Yalin Xiong.
Backtracking Techniques for Hard Scheduling Problems.
Technical Report CMU-RI-TR-92-06, The Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA 15213, 1992.
Submitted to the Artificial Intelligence Journal.

[Sadeh 93a] Norman Sadeh.
MICRO-BOSS: A Micro-opportunistic Factory Scheduler.
Expert Systems With Applications 6(3):377-392, July-September, 1993.
Special Issue on Scheduling Expert Systems and their Performances. Also

published as Carnegie Mellon University technical report CMU-RI-
TR-91-22.

28

[Sadeh 93b] Sadeh, N.M., S. Otsuka, and R. Schnelbach.
Predictive and Reactive Scheduling with the Micro-Boss Production

Scheduling and Control System.
In Proceedings of the IJCAI-93 Workshop on Knowledge-based Production

Planning, Scheduling, and Control. Chambery, France, August, 1993.

[Sadeh 94a] Norman M. Sadeh.
Micro-Boss: Towards a New Generation of Manufacturing Scheduling Shells.
In Proceedings of the ARPA/Rome Laboratory Knowledge-Based Planning

and Scheduling Initiative, pages 191-203. Tucson, AZ, Februrary, 1994.

[Sadeh 94b] Norman Sadeh, Katia Sycara, and Yalin Xiong.
Backtracking Techniques for the Job Shop Scheduling Constraint Satisfaction

Problem.
Artificial Intelligence Journal, 1994.
To appear in Special Issue on 'Planning and Scheduling'.

[Sadeh 94c] Norman Sadeh.
Micro-Opportunistic Scheduling: The MICRO-BOSS Factory Scheduler.
Intelligent Scheduling:
In Mark Fox and Monte Zweben,
Morgan Kaufmann Publishers, 1994, Chapter 4.

[Sadeh&Nakakuki 94]
Sadeh, Norman, and Yoichiro Nakakuki.
Focused Simulated Annealing Search: An Application to Job Shop

Scheduling.
Technical Report, The Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA 15213, 1994.
Submitted to Annals of Operations Research, Issue on 'Metaheuristics in

Combinatorial Optimization.

[Saks 92] Victor Saks, Al Kepner, and Ivan Johnson.
Knowledge Based Distribution Planning.
Technical Report, Carnegie Group, Inc., 5 PPG Place, Pittsburgh, PA 15222,

1992.

[Simpson 85] Simpson, R.L.
A Computer Model of Case-Based Reasoning in Problem Solving: An

Investigation in the Domain of Dispute Mediation.
PhD thesis, School of Information and Computer Science Georgia Institute of

Technology, 1985.

[Smith 90a] Stephen F. Smith, Peng Si Ow, Nicola Muscettola, Jean-Yves Potvin, Dirk
Matthys.
An Integrated Framework for Generating and Revising Factory Schedules.
Journal of the Operational Research Society 41(6):539-552, 1990.

29

[Smith 90b] Smith, S.F., N. Keng, and K. Kempf.
Exploiting Local Flexibility During Execution of Pre-Computed Schedules.
Technical Report CMU-TR-RI-90-13, The Robotics Institute, Carnegie

Mellon Univeristy, June, 1990.

[Swaminathan 93]Swaminathan, J., N.M. Sadeh, and S.F. Smith.
A Knowledge-Based Multi-Agent Simulation Testbed to Support Supply

Chain Design and Management Decisions.
In Proceedings of the IJCAI-93 Workshop on Knowledge-based Production

Planning, Scheduling, and Control. Chambery, France, August, 1993.

[Swaminathan 94] Swaminathan, J., N.M. Sadeh, and S.F. Smith.
Impact of Supplier Information on Supply Chain Performance.
Technical Report, The Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA 15213, 1994.
Submitted to the Journal of Operations Management, Special issue on

'Economics of Operations Management'.

[Sycara 88] Sycara, K.
Patching Up Old Plans.
In Proceedings of the Tenth Annual Conference of the Cognitive Science

Society. Montreal, Canada, 1988.

[Sycara 94a] Sycara, K., and Miyashita, K.
Adaptive Schedule Repair.
In Proceedings of the 27th Hawaii International Conference on System

Sciences. Maui, Hawaii, 1994.

[Sycara 94b] Sycara, K. and Miyashita K.
Case-Based Acquisition of User Preferences for Solution Improvement in Ill-

Structured Domains.
In Proceedings of the Twelfth National Conference on Artificial Intelligence

(AAAI-94). Seattle, WA., 1994.

[Sycara 94c] Sycara, K. and Miyashita, K.
Evaluation and Improvement of Schedules According to Interactively

Acquired User-Defined Criteria.
In Proceedings of the Planning Initiative Workshop. Arpa, Tucson, AZ.,

1994.

[Sycara ed] Katia Sycara and Kazuo Miyashita.
Learning Control Knowledge through Case-Based Acquisition of User

Optimization Preferences in Ill-Structured Domain.
In Tecuci, G. and Kodratoff, Y. (editor), Machine Learning and Knowledge

Acquisition: Integrated Approaches. Morgan Kaufmann, San Mateo, CA,
To be published.

30

[Winklhofer 92]

[Torma 91] Seppo Torma, Ora Lassila and Markku Syrjanen.
Adapting the Activity-Based Scheduling Method to Steel Rolling.
In G. Doumeingts, J. Browne, and M Tomljanovich (editor), Proceedings of

the Fourth IFIP Conference on Computer Applications in Production and
Engineering (CAPE'91), pages 159-166. Elsevier Science Publishers
B.V. (North Holland), 1991.

Andreas Winklhofer, Manfred Maierhofer, and Paul Levi.
Efficient Propagation and Computation of Problem Features for Activity-

Based Scheduling.
In Proceedings of the Seventh Symposium on Information Control Problems

in Manufacturing Technology (INCOM-92). Toronto, Canada, 1992.

[Xiong 92] Yalin Xiong, Norman Sadeh, and Katia Sycara.
Intelligent Backtracking Techniques for Job Shop Scheduling.
In Proceedings of the Third International Conference on Principles of

Knowledge Representation and Reasoning, pages 14-23. KR'92,
Cambridge, MA, October, 1992.

[Zeng.Sycara ng] Zeng, D. and Sycara, K.
Case-Based Acquisition of User Changing Preferences.
Technical Report, Carnegie Mellon University, Forthcoming.

[Zweben 90] M. Zweben and M. Deale and M. Gargan.
Anytime Rescheduling.
In Proceedings of the DARPA Workshop on Innovative Approaches to

Planning, Scheduling and Control, pages 251-259. DARPA, San Diego,
CA., 1990.

[Zweben 91] Monte Zweben, Eugene Davis, and Michael Deale.
Iterative Repair for Scheduling and Rescheduling.
Technical Report, NASA Ames Reserch Center, MS 244-17, Moffett Field,

CA 94035, 1991.

31

Micro-Opportunistic Scheduling

Norman M. Sadeh
The Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, Pennsylvania 15213-3891
sadeh@cs.cmu.edu

Abstract

A major challenge for research in production management is to develop new finite-capacity

scheduling techniques and tools that (1) can account more precisely for actual production

management constraints and objectives, (2) are better suited for handling production

contingencies, and (3) allow the user to interactively manipulate the production schedule to

reflect idiosyncratic constraints and preferences not easily amenable to representation in the

computer model. This chapter describes Micro-Boss, a decision-support system for factory

scheduling currently under development at Carnegie Mellon University. Micro-Boss aims at

generating and maintaining high-quality realistic production schedules by combining powerful

predictive, reactive, and interactive scheduling capabilities. Specifically, the system relies on

new micro-opportunistic search heuristics that enable it to constantly revise its scheduling

strategy during the construction or repair of a schedule. These search heuristics are shown to be

more effective than less flexible scheduling techniques proposed in the Operations Research and

Artificial Intelligence literature.

This chapter summarizes our work in micro-opportunistic scheduling and describes predictive,

reactive and interactive capabilities developed in the context of the Micro-Boss scheduling

system. It is a condensed version of three papers: [Sadeh 94], [Sadeh 93] and [Li&Sadeh 93].

This research was supported, in part, by the Advanced Research Projects Agency under
contract #F30602-91-F-0016 and in part by grants from McDonnell Aircraft Company, Digital
Equipment Corporation.

Al

1 Introduction
In a global market economy, the need for cost-efficient production management techniques is

becoming more critical every day. In contrast with this need, current production management
practice is too often characterized by low levels of due date satisfaction, high levels of inventory

and, more generally, a state of chaos in which the computer systems that are used to provide
managerial guidance do not accurately reflect the current state of affairs, because they rely on
oversimplified and rigid models of the production environment. A major challenge for research
in this area is to develop new production management techniques and tools that (1) can account
more precisely for actual production management constraints and objectives, (2) are better suited
for handling production contingencies, and (3) allow the user to interactively manipulate the
production schedule to reflect idiosyncratic constraints and preferences not easily amenable to
representation in the computer model. This chapter describes Micro-Boss, a decision-support
system for factory scheduling currently under development at Carnegie Mellon University.
Micro-Boss aims at generating and maintaining high-quality realistic production schedules by
combining powerful predictive, reactive, and interactive scheduling capabilities. Specifically,
the system relies on new micro-opportunistic search heuristics that enable it to constantly revise
its scheduling strategy during the construction or repair of a schedule. These search heuristics are
shown to be more effective than less flexible scheduling techniques proposed in the Operations
Research and Artificial Intelligence literature.

1.1 The Production Scheduling Problem
Production scheduling requires allocating resources (e.g., machines, tools, human operators)

over time to a set of jobs while attending to a variety of constraints and objectives.

Typical constraints include

•functional constraints limiting the types of operations that a specific resource can
perform

• capacity constraints restricting the number of jobs a resource can process at any
given time

• availability constraints specifying when each resource is available (e.g., number of
shifts available on a group of machines)

• precedence constraints existing between operations in a job, as specified in the job's
process routing

• processing time constraints specifying how long it usually takes to perform each
operation

A2

• setup constraints requiring that each machine be in the proper configuration before
performing a particular task (e.g., proper sets of fixtures and tools)

• time-bound constraints specifying for each job an earliest acceptable release date
before which the job cannot start (e.g., because its raw materials cannot arrive
earlier) and a due date by which ideally it should be delivered to a customer

Some of these constraints must be satisfied for a schedule to be valid (so-called non-relaxable
or hard constraints). For instance, milling operations can only be performed on milling
machines. Other groups of constraints are not always satisfiable and might need to be relaxed
(so-called relaxable or soft constraints). For instance, due date constraints often need to be
relaxed for a couple of jobs because of the limited capacity of the production facility.
Availability constraints are another example of constraints that can be relaxed, by either working
overtime or adding extra shifts. A good schedule is one that satisfies all hard constraints while
selectively relaxing soft constraints to maximize performance along one or several metrics.

Two factors that critically influence the quality of a schedule are due date satisfaction and
inventory levels. Missing a customer due date can result in tardiness penalties, loss of customer
orders, delayed revenue receipts, etc. Inventory costs include interests on the costs of raw
materials, direct inventory holding costs, interests on processing costs, etc. One often
distinguishes between in-process inventory costs (also referred to as work-in-process inventory
costs) and finished-goods inventory costs. Work-In-Process (WIP) inventory costs account for
inventory costs resulting from orders that have not yet been completed, and finished-goods
inventory costs result from completed orders that have not yet been shipped to customers.

Manufacturing contingencies such as machine breakdowns, late arrivals of raw materials, and
variations in operation durations and yields further complicate production scheduling. In the face
of contingencies, schedules need to be updated to reflect the new state of affairs. The sheer size
of most factory scheduling problems precludes the generation of new schedules from scratch
each time an unanticipated event occurs. In fact, most contingencies do not warrant such
extreme actions and are best handled by repairing a portion of the existing schedule [Bean 91].

As schedules are optimized at a more detailed level, they can also become more sensitive to
disruptions and require more frequent repairs. In general, there is a limit to the amount and
detail of information that one can reasonably expect to represent in a computer model. For
instance, a worker's preference for performing more demanding tasks in the morning might not
be worth storing in the computer model and, instead, might be best accounted for by allowing the
end-user to interactively manipulate the schedule.

Even under idealized conditions such as simplified objectives (e.g., minimizing total tardiness
or maximizing throughput) and deterministic assumptions, scheduling has been shown to be an
NP-hard problem [Garey 79, Graves 81, French 82]. Uncertainty further adds to the difficulty of

A3

the problem, and makes it even more impractical to look for optimal solutions. Instead, practical
approaches to production scheduling are heuristic in nature. The next subsection briefly reviews
earlier approaches to production scheduling; identifies some of their shortcomings; and
introduces a new search paradigm, called micro-opportunistic search, that shows promise for

addressing some of these shortcomings.

1.2 A Micro-Opportunistic Approach to Production Scheduling
To this date, the most widely used computer-based approach to production scheduling remains

by far the Material Requirements Planning (MRP) or Manufacturing Resource Planning (MRP-
II) approach developed in the 1970s [Orlicky 75, Wight 81, Wight 84]. In this approach, demand
for end-products as specified in a Master Production Schedule is exploded into time-phased
requirements for component items (subassemblies, parts, raw materials, etc.) required for the
production of these end-products1. Because their time-phasing logic relies on standard operation
leadtimes that do not account for the actual load of the production facility, MRP systems often
fail to produce realistic schedules. They sometimes overload the facility, thereby causing orders
to be delivered late. In an attempt to alleviate this problem, MRP systems often pad the schedule
by inserting generous "safety" leadtimes. These safety leadtimes tend to be rather arbitrary and
produce unnecessarily large amounts of inventory. In fact, because they are often unrealistic and
are not meant to be updated in real-time2, MRP schedules are not directly used to schedule
production but rather to assign priorities to jobs [Panwalkar 77, Vollmann 88]. These priorities
in turn determine the order in which jobs are actually processed at each work center.

Shortcomings of the traditional MRP approach reflect limitations of computing technologies
available in the 1970s. In the 1980s with the advent of more powerful computers, several more
sophisticated techniques emerged [Goldratt 80, Fox 83, Ow 85, Adams 88, Ow 88a, Morton 88].
The first and by far most publicized of these techniques is the one developed by Goldratt and his
colleagues within the context of the OPT factory scheduling system [Goldratt 80, Jacobs 84, Fox
87]. OPT demonstrated the benefits of building detailed production schedules that account for
the actual load of the plant and the finite capacity of its resources ("finite scheduling"
approaches). This system also underscored the potential benefits of distinguishing between
bottleneck and non-bottleneck resources [Jacobs 84, Fox 87]. In OPT, bottlenecks are scheduled
first to optimize the throughput of the plant. Later, the production schedule is completed by
compactly scheduling non-bottleneck operations to reduce inventory. The distinction between
bottleneck and non-bottleneck machines was pushed one step further in the OPIS system [Smith
86, Ow 88a], as it was recognized that new bottlenecks can appear during the construction of the
schedule. The OPIS scheduler combines two scheduling perspectives: a resource-centered

'For instance, if an end-product required by the end of week 2 is obtained by assembling two sub-components and
the assembly process typically takes a week to be completed, both sub-components will be required by the end of
week 1.

-MRP systems are generally run on a weekly, possibly even a monthly basis.

A4

perspective for scheduling bottleneck resources, and a job-centered perspective to schedule non-
bottleneck operations on a job-by-job basis. Rather than relying on its initial bottleneck analysis,
OPIS typically repeats this analysis each time a resource or a job has been scheduled. This ability
to detect the emergence of new bottlenecks during the construction of the schedule and revise the
current scheduling strategy has been termed opportunistic scheduling [Ow 88a]. Nevertheless,
the opportunism in this approach remains limited in the sense that it typically requires scheduling
an entire bottleneck (or at least a large chunk of it) before being able to switch to another one.
For this reason, we actually refer to these techniques as macro-opportunistic.

In fact, variations in the job mix over time often cause different machines (or groups of
machines) to be bottlenecks over different time intervals. Bottlenecks are sometimes said to
"wander over time". Also, as a schedule is constructed for a bottleneck machine, a new machine
can become more constraining than the original bottleneck. For instance, scheduling decisions
on a bottleneck machine might require that a large number of jobs be processed on a preceding
machine over a short period of time. At some point during the construction of the schedule,
contention for the preceding machine might become higher than that for the original bottleneck.
A scheduling technique that can only schedule large resource/job subproblems will not be able to
take such considerations into account. It will overconstrain its set of alternatives before having
worked on the subproblems that will most critically affect the quality of the entire schedule.
This, in turn, will often result in poorer solutions. A more flexible approach would stop
scheduling operations on a resource as soon as another resource is identified as more
constraining. In the presence of multiple bottlenecks, such a technique would be able to shift
attention from one bottleneck to another during the construction of the schedule rather than focus
on the optimization of a single bottleneck at the expense of others. This chapter presents such a
flexible approach to scheduling. We call it micro-opportunistic scheduling. In this approach,
resource contention is continuously monitored during the construction of the schedule, and the
problem solving effort is constantly redirected toward the most serious bottleneck resource. In
its simplest form, this micro-opportunistic approach results in an operation-centered view of
scheduling, in which each operation is considered an independent decision point and can be
scheduled without requiring that other operations using the same resource or belonging to the
same job be scheduled at the same time3.

Experimental results presented at the end of this chapter indicate that micro-opportunistic
scheduling procedures often yield better schedules than less flexible bottleneck-centered
approaches. Because of their flexibility, micro-opportunistic scheduling heuristics also seem

3An alternative approach in which resources can be resequenced to adjust for resource schedules built further
down the road is described in [Adams 88] and [Dauzere-Peres 90]. This approach has been very successful at
minimizing makespan, namely, the total duration of the schedule. This measure is closely related to the throughput
of the plant but does not account for individual job due dates, tardiness costs or inventory costs. Attempts to
generalize the procedure to account for due dates seem to have been less successful so far [Serafini 88]. It should be
pointed out that the idea of continuously reoptimizing the current partial schedule is compatible with a micro-
opportunistic approach.

A5

particularly well suited to solving problems in which some operations have to be performed
within non-relaxable time windows [Sadeh 91a, Sadeh 92] as well as repairing schedules in the
face of contingencies. Finally, we find that they can easily be integrated in interactive systems in
which manual and automatic scheduling decisions can be interleaved, thereby allowing the user
to incrementally manipulate and compare alternative schedules (e.g., "What-if" type of analysis).

1.3 Paper Outline
The remainder of this chapter successively reviews the predictive, reactive, and interactive

capabilities of the Micro-Boss scheduling system.

Section 2 describes the micro-opportunistic search procedure implemented in Micro-Boss,
focusing on look-ahead techniques used to measure contention, and heuristics to identify and
schedule critical operations. A small example illustrating the use of these techniques is provided
in Section 3. Section 4 describes the reactive and interactive components of the system. Section
5 reports the results of an experimental study comparing Micro-Boss with several popular
scheduling approaches, including coarser opportunistic schedulers, under a wide range of
simulated situations. Finally, Section 6 briefly reviews current research efforts and summarizes
the impact of this work.

A6

2 A Micro-opportunistic Search Procedure
In this section, a deterministic scheduling model is assumed, in which all jobs to be scheduled

are known in advance. Issues pertaining to reactive scheduling and control in the face of
manufacturing contingencies such as machine breakdowns are addressed in a later section.

2.1 A Deterministic Scheduling Model
For the time being, we consider a deterministic scheduling problem in which a set of jobs

J=Ul'—Jn} has to be scheduled on a set of physical resources RES={R\,...,Rm}. Each job jt

consists of a set of operations Ol= {0[,...,Ol
n} to be scheduled according to a process routing that

specifies a partial ordering among these operations (e.g., 0\ BEFORE O'). We further assume
scheduling problems with in-tree process routings, namely process routings in which operations
can have one or several direct predecessors but at most one direct successor (e.g., assembly
process routings). This is by far the most common type of process routing encountered in
manufacturing.

Additionally, each job jt has an earliest acceptable release date, erdt, a due-date, ddb and a
latest acceptable completion date, Icd^ where lcd{ > ddt > erd[. All jobs need to be scheduled
between their earliest acceptable release date and latest acceptable completion date4. The earliest
acceptable release date might correspond to the earliest possible arrival date of raw materials. It
is assumed that the actual release date (or job start date) will be determined by the schedule that
is constructed. The latest acceptable completion date might correspond to a date after which the
customer will refuse delivery. If such a date does not actually exist, it can always be chosen far
enough in the future so that it is no longer a constraint.

Each operation 0\ has an expected duration, du\, and a start time, stt (to be determined), whose
domain of possible values is delimited by an earliest start time, estt, and a latest start time, lst\
(initially derived from the job's earliest acceptable release date erdl and latest acceptable

completion date ledj). We assume that each operation 0\ requires a single resource Rl
{ for which

there might be several alternatives in RES. The model further allows for resource availability
constraints that specify the times when each resource is normally available (e.g., what the
number of shifts is and whether the resource is available over the week-end). Finally, setup
operations might be required before an operation can start on a machine. Examples of setup
operations include changing the fixtures holding a part, loading a new part, cleaning a painting
station when switching from one color to another, etc.

The objective of the scheduling system, under deterministic assumptions, is to build a schedule
that satisfies the above constraints and minimizes (as much as possible) the costs incurred for
missing due dates or carrying overhead inventories. These costs are briefly described below.

4Notice that this formulation does not exclude infeasible problems.

A7

COSTS

Each job jt has

• A marginal tardiness cost, tardf This is the cost incurred for each unit of time that the job is
tardy (i.e., finishes past its due date). Marginal tardiness costs generally include tardiness

penalties, interest on delayed profits, loss of customer goodwill, etc5. The tardiness cost ofjob^
in a given schedule is

TARDt = tard[x Max(0, Cz-ddj) (1)

where Ci=stl
n +du'n is the completion date of joby'; in that schedule, assuming that o'n is the last

operation in job_/z.

• Marginal in-process and finished-goods inventory costs: In our model, each operation 0\

can incrementally introduce its own non-negative marginal inventory cost, invr Typically, the
first operation in a job introduces marginal inventory costs that correspond to interest on the
costs of raw materials, interest on processing costs (for that first operation), and marginal
holding costs. Downstream operations6 introduce additional marginal inventory costs such as
interest on processing costs or interest on the costs of additional raw materials required by these
operations. The total inventory cost for a job jz, in a given schedule, is:

INVl=Z inv'i x [MaxiC^ddt)-rfj] (2)
1=1

This cost accounts for both work-in-process and finished-goods inventory costs7

The total cost of a schedule is obtained by summing the cost of each job schedule:

Schedule Cost = Y, (JARD^INVj) (3)

A SMALL EXAMPLE

Figure 1 depicts a small scheduling problem with four jobs that will be used in this section to

5In this model, inventory costs incurred after the due date are not included in the tardiness costs but, rather, in the
inventory costs described below.

A k k k "An operation 0- is said to be downstream (upstream) of another operation 0 within its job if 0- is a direct or

indirect successor (predecessor) of O- in that job, as defined by the job's process routing.

7Note that, in this deterministic model, minimizing work-in-process inventory costs is equivalent to minimizing
job leadtimes or flowtimes.

A8

illustrate the behavior of the micro-opportunistic scheduling heuristics implemented in Micro-
Boss. Each square box represents an operation and is labeled by the name of this operation (e.g.,
0\), its (expected) duration (e.g., du\ = 2), and the resource it requires (e.g., R\=R]). In this
simple example, each operation is assumed to require a single resource, for which there are no
substitutes. The arrows represent precedence constraints. For instance, job y'j has 5 operations

0\, Ol
2,..., 0\. 0\ has to be performed before 0\, 0>\ before 0\, etc. The other arcs in the graph

represent capacity constraints that require that each resource be allocated to only one operation at
a time. There is a capacity constraint between each pair of operations that require the same
resource. Notice that R2 is the only resource required by four operations (one from each job).
Notice also that in three out of four jobs (namely, y'j , y3 , and y4), the operation requiring 7?2 *s

one of the job's longest operations. Consequently, resource R2 can be expected to be the main
bottleneck of the problem. We will see that, to some extent, resource R^ constitutes a secondary
bottleneck.

Ji PI2 Ri 0 6 R2 fo-
k 4 2 R 1 fo1

2 R!
\ /

i, (^^h^W^}

3J ^ ^-^— \

SIZD

'. (5; 3 R. o> R=

precedence constraint

capacity constraint

Figure 1: A simple job shop problem with four jobs. Each node is labeled by the operation
that it represents, its duration, and the resource that it requires.

A9

The earliest acceptable release dates, due dates, and latest acceptable completion dates of the
jobs are provided in Table 1 along with the marginal tardiness and inventory costs of these jobs.

Earliest acceptable release dates, due dates, latest acceptable completion dates, and costs

Jobj; erdl ddi lcdl tardt
• /
IMV,

• /
inv2 inv[inv\

• /
inv5

h 0 12 20 20 2 l 2 0 0

h 0 14 20 20 5 0 - - -

h 0 9 20 5 1 0 0 - -

h 0 18 20 10 1 0 - - -

Table 1: Earliest acceptable release dates, due dates, latest
acceptable completion dates and marginal costs.

2.2 Overview of the Search Procedure
In Micro-Boss, each operation is considered an independent decision point. Any operation can

be scheduled at any time, if deemed appropriate by the system. There is no obligation to
simultaneously schedule other operations upstream or downstream within the same job, nor is
there any obligation to schedule other operations competing for the same resource.

Micro-Boss proceeds by iteratively selecting an operation to be scheduled and a reservation
(i.e., a resource/time interval) to be assigned to that operation. Every time an operation is
scheduled, a new search state is created, where new constraints are added to account for the
reservation assigned to that operation. A consistency enforcing procedure then takes care of
updating the set of remaining possible reservations of each unscheduled operation. If an
unscheduled operation is found to have no possible reservations left, a deadend state has been
reached, in which case the system needs to backtrack (i.e., it needs to undo some earlier
reservation assignments to be able to complete the schedule). If the search state does not appear
to be a deadend, the system moves on and looks for a new operation to schedule and a
reservation to assign to that operation.

To enhance search efficiency8 and produce high quality schedules, Micro-Boss interleaves
search with the application of consistency enforcing mechanisms and a set of look-ahead
techniques that help decide which operation to schedule next {operation ordering heuristic) and
which reservation to assign to that operation (reservation ordering heuristic).

1. Consistency Enforcing/Checking: Consistency enforcing techniques prune the

8We define search efficiency as the ratio of the number of operations to be scheduled over the number of search
states generated. If the number of search states generated to build the schedule is equal to the number of operations,
search efficiency is equal to 1.

A10

search space by inferring new constraints resulting from earlier reservation

assignments [Mackworth 85, Sadeh 91b]. By constantly accounting for earlier

scheduling decisions, these techniques reduce the chances of reaching a deadend

(i.e., a partial schedule that cannot be completed without backtracking).

Simultaneously, by allowing for the early detection of deadend states, these

techniques limit the amount of work wasted in the exploration of fruitless

alternatives.

2. Look-Ahead Analysis: A two-step look-ahead procedure is applied in each search

state, which first optimizes reservation assignments within each job and then, for

each resource, computes contention between jobs over time. Resource/time

intervals where contention is the highest help identify the critical operation to be

scheduled next {operation ordering heuristic). Reservations for that operation are

then ranked according to their ability to minimize the costs incurred by the jobs

contending for the critical resource {reservation ordering heuristic). By constantly

redirecting its effort toward the most serious conflicts, the system is able to build

schedules that are closer to the global optimum. Simultaneously, because the

scheduling strategy is aimed at reducing job contention as rapidly as possible,

chances of reaching deadend states tend to quickly subside too.

The opportunism in Micro-Boss results from the ability of the system to constantly revise its
search strategy and redirect its effort toward the scheduling of the operation that appears to be
the most critical in the current search state. This degree of opportunism differs from the one
displayed by earlier approaches where scheduling entities were large resource/job subproblems
[Ow 88a, Collinot 88], i.e., where large resource/job subproblems had to be scheduled before

the system could revise its scheduling strategy.

Concretely, given a scheduling problem such as the one described in Figure 1, Micro-Boss
starts in a search state in which no operation has been scheduled yet9, and proceeds according to
the following steps:

1. If all operations have been scheduled, then stop; else go on to 2.

2. Apply the consistency enforcing procedure.

alternatively, Micro-Boss can also complete a partial schedule, in which case the initial search state corresponds
to the initial partial schedule. A description of reactive and interactive capabilities of the system is provided in
Section 4.

All

3. If a deadend is detected then backtrack; else go on to 4.

4. If one or more operations were found to have only one possible reservation left,

then schedule these operations (creating a new search state for each one). If all

operations have been scheduled, then stop; else go on to 5.

5. Perform a look-ahead analysis: Rank the possible reservations of each

unscheduled operation according to how well they minimize the costs of the job to

which the operation belongs (step 1), and evaluate resource contention over time

(step 2).

6. Select the next operation to be scheduled (i.e., operation ordering heuristic).

7. Select a reservation for that operation (i.e., reservation ordering heuristic).

8. Create a new search state by adding the new reservation assignment to the current

partial schedule. Go back to 1.

As in other constraint-directed scheduling systems [LePape 87], the consistency enforcing
procedure used in Micro-Boss (1) maintains for each unscheduled operation a pair of
earliest/latest possible start times and (2) marks as unavailable those resource/time intervals
allocated to already scheduled operations. Additionally, reservation pruning performed by the
Micro-Boss consistency procedure also accounts for resource/time intervals that are absolutely
needed by unscheduled operations. Figure 2 displays an example of an unscheduled operation
O) whose earliest and latest possible reservations overlap. Whichever reservation this operation
is ultimately assigned, it will always need time interval [1st), eft)]. Accordingly, the Micro-Boss
consistency procedure prunes the set of remaining possible reservations of other unscheduled
operations requiring that resource by removing all those reservations that overlap with time
interval [faif, eft)]10.

Results presented in this chapter were obtained using a simple chronological backtracking
scheme. Experimentation with more sophisticated backtracking schemes is described in [Sadeh

10This differs from an earlier version of the system [Sadeh 91b], in which resource/time intervals needed by
unscheduled operations were only used to detect conflicts. In this earlier version, a conflict would be detected when
two or more unscheduled operations needed overlapping resource/time intervals. Rather than waiting for such
conflicts to arise, our new consistency procedure efficiently prevents such conflicts from occurring, thereby further
reducing backtracking. A generalized version of this procedure is used for parallel machines.

A12

est 1st eft lft? time

W////////Ä earliest possible reservation

FSS^^S^ latest possible reservation

absolutely needed interval

Figure 2: An example of an unscheduled operation that absolutely needs
a resource/time interval.

92].

The remainder of this section gives a more detailed description of the look-ahead analysis and
the operation/reservation ordering heuristics used in Micro-Boss. Further details on these
techniques, as well as other aspects of the system, can be found in [Sadeh 91b].

2.3 Look-Ahead Analysis in Micro-Boss

2.3.1 Optimizing Critical Conflicts First
If all jobs could be scheduled optimally (i.e., just-in-time), there would be no scheduling

problem. Generally, this is not the case. Jobs typically have conflicting resource requirements.
The look-ahead analysis carried out by Micro-Boss in each search state aims at helping the
scheduling system focus its effort on those conflicts that currently appear most critical. A
critical conflict is one that will require an important trade-off, i.e., a trade-off that will
significantly impact the quality of the entire schedule. By first focusing on critical conflicts,
Micro-Boss ensures that it has as many options as possible to optimize these conflicts. As
illustrated by a trace provided in the next section, once critical trade-offs have been worked out,
the remaining unscheduled operations tend to become more decoupled and, hence, easier to
optimize11. As contention subsides, so does the chance of needing to backtrack. In other words,
by constantly redirecting search towards those trade-offs that appear most critical, Micro-Boss is

'This is similar to the way bottleneck schedules drive other scheduling decisions in OPT.

A13

expected to produce better schedules and simultaneously keep backtracking at a low level.

More specifically, a two-step look-ahead procedure is applied to each search state. This
procedure first optimizes reservation assignments within each job and then, for each resource,
computes contention between jobs over time. The so-called demand profiles produced by these

computations help identify operations whose good reservations (as identified in the first step)

conflict with the good reservations of other operations. These operations define the critical
conflicts on which Micro-Boss works first.

This two-step look-ahead analysis is further detailed below.

2.3.2 Step 1: Reservation Optimization within a Job
In order to measure contention between the resource requirements of unscheduled operations,

Micro-Boss keeps track of the best start times that remain available to each unscheduled
operation within its job. Additionally, the system implicitly maintains, for each remaining
possible start time x of each unscheduled operation Ot, a function mincost^x) that indicates the
minimum additional costs that would be incurred by job jk (the job to which O) belongs), if 0\

were to start at st*=x rather than at one of its best possible start times. By definition, if s^=x is

one of the best start times that remain available to 0* within its job, then mincostk
i(x)=0. Rather

than explicitly maintaining mincost functions, Micro-Boss simply maintains for each
unscheduled operation 0{ (1) an apparent marginal tardiness cost, app-tara~, that approximates
the cost incurred by job jk for each unit of time that Ok starts past its latest best start time and (2)

an apparent marginal inventory cost, app-inv\, that approximates the cost incurred by job jk for

each unit of time that Ok starts before its earliest best start time. These costs are updated in each
search state to account for earlier scheduling decisions, using a set of efficient propagation
procedures described in [Sadeh 91b].

2.3.3 Step 2: Building Demand Profiles to Identify Critical Resource/Time Intervals
In Micro-Boss, critical conflicts are identified as groups of operations whose good reservations

(within their jobs) conflict with each other. The importance of a conflict depends on the number
of operations that are competing for the same resource, the amount of temporal overlap between
the requirements of these operations, the number of alternative reservations still available to each
of these conflicting operations and their costs, as determined by the mincost functions computed
in step 1.

To identify critical conflicts, Micro-Boss uses a probabilistic framework in which each
remaining possible start time x of an unscheduled operation 0{ is assigned a subjective

probability oj(x) to be selected for that operation in the final schedule. Possible start times with
lower mincost values are assigned a larger probability, thereby reflecting our expectation that
they will yield better schedules. Given these start time probability distributions, the probability

A14

that an unscheduled operation 0\ uses its resource12 at time t, which is referred to as the
individual demand of 0(for Rt, is:

D\{t)= £ oi(t) (4)
<-rfU; < T < t

where JM' is the duration of 0\. D\{i) is also a (subjective) measure of the reliance of operation
0\ on the availability of its resource at time t. By adding the individual demands of all
unscheduled operations requiring a given resource, say Rk, the system obtains an aggregate
demand profile, Da

R
88r(t), that indicates contention between (all) unscheduled operations for that

resource Rk as a function of time:

£>7'(0 = X D^t) (5)

where the summation is carried over all unscheduled operations that need resource Rk.

Start time distribution c^ (x)
,C" 0.40

'£ a
■8

0.30

0.20. i

0.10

0.00
10 12 13 14 15

start time

Figure 3: Start time distribution c^ (x) for operation 0\ in the initial search state
for the problem defined in Figure 1.

12For the sake of simplicity, we assume here that each operation requires a single resource for which there are no
alternatives. The construction of demand profiles can easily be generalized to deal with parallel machines by
building profiles for entire groups of machines and normalizing them based on their remaining available capacities
over time.

A15

Figure 3 displays a\ (t), the start time distribution of operation 0\ in the problem defined in
Figure 1. This start time distribution is depicted in the initial search state, where all operations
still have to be scheduled. In this search state, start time st\ = 9 is the best possible start time for

9

02: it corresponds to a just-in-time schedule of job;2- Later start times have a lower subjective

probability because they would force the job to finish after its due date. Earlier start times are
also suboptimal because they would produce additional inventory. In this example, the marginal
tardiness cost of job j2, tard2 = 20, is four times larger than the marginal inventory cost

introduced by operation 0\, inv\=5. Accordingly, G^(T) decreases faster for x > 9 than for T < 9.

Figure 4 displays the individual demand profiles of the four operations requiring resource R2.
These demand profiles represent the subjective probability that each one of these operations uses
resource R2 as a function of time. The aggregate demand for resource R2 is obtained by summing

these four individual demands over time. The individual demands of operations o\ and 0\ are
quite uniform because these two operations have relatively low apparent marginal costs (see the
marginal tardiness and inventory costs of joby3 and job j4 in Table 1). In contrast, operations 0\

and 02, which have larger apparent marginal costs, have individual demands that are
concentrated around their best reservations.

Similar computations can be performed for each of the five resources in the problem. The
resulting aggregate demands (in the initial search state) are displayed in Figure 5. As expected,
resource R2 appears to be the most contended for. The aggregate demand for that resource is well
above 1.0 over a large time interval, with a peak at 1.79. Resource R[appears to be a potential
bottleneck at the beginning of the problem, with a demand peaking at 1.52. Whether R\ will
actually be an auxiliary bottleneck or not cannot be determined directly from the curves
displayed in Figure 5. Instead, the system needs to update these curves in each search state to
account for earlier decisions. It could be the case that as operations requiring R2 are scheduled,
the aggregate demand for /?[becomes smoother. In this example, this is not the case. On the
contrary, as operations are scheduled on resource R2, some operations on resource /?, end up
with only one possible reservation and need to be immediately scheduled, as indicated by the
trace provided in Section 4.

2.4 Operation Selection
Critical operations are identified as operations whose good reservations (as identified in the

first step of the look-ahead analysis) conflict with the good reservations of other operations. The
largest peak in the aggregate demand profiles determines the next conflict (or micro-bottleneck)
to be optimized; the operation with the largest reliance on the availability of the corresponding
resource/time interval (i.e., the operation with the largest individual contribution to the peak) is
selected to be scheduled next. Indeed, this operation is the one whose good reservations are the
most likely to become unavailable if other operations contending for the current micro-
bottleneck were scheduled first.

A16

•o 1.00-.
IB
E 0.80-

0.60-
0.40-
0.20-
0.00-

D\{x): Individual Demand of 0\ for R2

T 1 1 1 1 1 1 1—T—r—i—p—i—i 1 1 1 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time

D2
2(x): Individual Demand of 0\ for R2

10 11 12 13 14 15 16 17 18 19 20
time

D](x): Individual Demand of 0] for R2

10 11 13 14 15 16 17 18 19 20
time

Dtot): Individual Demand of 0\ for R7

0.60-,

10 11 12 13 14 15 16 17 18 19 20
time

Da
R
ggr(x): Aggregate Demand for R2

Figure 4: Building R2s aggregate demand profile in the initial search state.

A17

■o
c
CO

E
*

R P1

8
CO

1.60 ,
1.40-
1.20-
1.00-
0.80-

0.60-

0.40-
0.20-
0.00

Da
R
8g\x): Aggregate Demand for /?,

Da
R
8gr(x): Aggregate Demand for R

c
CO

E

&
CO

p>

1.60-,
1.40
1.20-
1.00
0.80
0.60

| 0.40 -|
CO

Dag8r(x): Aggregate Demand for R?

■ i i i i i—i—i—i—i—i—^^^— i i i i i i i

' 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20

c
CO

E
*
Ä
CO

p>

1.60

1.40-
1.20
1.00
0.80
0.60

time

g; o.4o
co 0.20 -

0.00

Da
R
88r(x): Aggregate Demand for R4

~i i i i i i 1 1 1 1 1 1 1 1 i r^^T-—i i i
' 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time

Dagg\x): Aggregate Demand for R.

Figure 5: Aggregate demands in the initial search state for each of the five resources.

In the example introduced earlier, the largest demand peak is the one for resource R2 over

A18

Da
R
88r(x): Aggregate Demand for R2

C 1ml
1 1S°-
& 1.40 ■

a. 'oo-
g 0.80-
S o.eo.
" 0.40-

0.20-
0.00-

0 1 9 10 11 12 13 14 15 16 17 18 19 20
time

Dj(x): Individual Demand of 0\ for R2

1 r i i 1 1 1 1
0 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time

D?(T): Individual Demand of (f2 for R2

Z^(x): Individual Demand of 0\ for R2

D4Jx): Individual Demand of o\ for R2

0 1234567
1 1 1 1 1 1 1 r

9 10 11 12 13 14 15 16 17 18 19 20
time

Figure 6: Operation selection in the initial search state.

A19

interval [4,8[. Figure 6 displays the aggregate demand for resource R2 together with the
individual demands of the four operations requiring this resource. The operation with the largest
contribution to the demand peak is 0\. Therefore this operation is selected to be scheduled next.
This is no real surprise: 0\ belongs to one of the two jobs in the problem that have a high
marginal tardiness cost (tard\ = 20). While any delay in starting job ;'| will result in large

tardiness costs, job j3 (i.e., the job with the next highest contribution) can tolerate a small delay
and is subject to lower tardiness penalties.

The computation of demand profiles, as described in 2.3.3 can be quite expensive when
performed for each resource in each search state over the entire scheduling horizon. Micro-Boss
can avoid this problem by incrementally maintaining a set of rough demand profiles for each
resource (or group of identical resources). These rough demand profiles use a much coarser time
granularity and are obtained by splitting the demand of each unscheduled operation into two
components. One component (50% of the operation's total demand in the current implementation
13) is evenly spread between the start and end times of the latest best reservation of the operation
while the second component (the remaining 50% of the operation's demand) is evenly spread
between the earliest start time and latest finish time of the operation. Rough demand profiles can
be quickly updated as the system moves from one search state to the next and are used in each
search state to identify a small number of critical resource/time intervals over which the more
detailed demand profiles described in 2.3.3 are then constructed.

2.5 Reservation Selection
To schedule the critical operation identified in 2.4, the system attempts to identify a

reservation (for the critical operation) that will reduce as much as possible the costs incurred by
the job to which that operation belongs and the other jobs with which that operation competes.
This is approximated as a single-machine or parallel-machine early/tardy scheduling problem in
which operations scheduled past their best start times incur penalties determined by their
apparent marginal tardiness costs, while operations scheduled before their best start times incur
earliness penalties, as determined by their apparent marginal inventory costs [Baker 90, Sadeh
91b]. For problems without setups, several variations of a single-machine early/tardy procedure
developed by Ow and Morton [Ow 89, Sadeh 91b] are successively run and the single-machine
schedule with the lowest cost is used to determine the reservation assigned to the critical
operation. More recently, a new scheduling heuristic has also been developed to solve problems
with setups [Li&Sadeh 93]. This heuristic is further described below along with experimental
results comparing it with Ow and Morton's heuristic.

Briefly, our heuristic for problems with setups opportunistically selects between two simpler
techniques:

13' The total demand of an operation is equal to its duration.

A20

• A clustering technique that identifies clusters of early(tardy) jobs and resequences
them using variations of the Weighted Longest (Shortest) Processing Time dispatch
rule;

• A two-parameter technique ("ET-2") that generalizes the priority dispatch rule
developed by Ow&Morton for the problem without setups [Ow 89].

Our heuristic opportunistically selects between ET-2 and the clustering heuristic (based on the
tightness of the problem at hand) to generate an initial schedule, which is then refined using a
neighbordhood search procedure and an optimal idle time insertion procedure [Li&Sadeh 93].

To evaluate the performance of this heuristic, a set of 1920 problems was generated by
adjusting the following 6 parameters:

• Two different product mixes (with 3 product families each)

• Early/tardy cost ratios: 0.05, 0.1, 0.25, 0.5, 1.0 and 5.0

• Tardiness Factor (tight vs. loose due dates)

• Due date ranges (wide vs. narrow)

• Setup severity (average value of setup time divided by processing time): low and
high

• Problem sizes: 9-job problems and 50-job problems

By combining the different values of these 6 parameters, a total of 192 problem sets was
generated. Ten problems were randomly generated within each set.

The smaller 9-job problems were used to see how far our heuristic is from the optimum: on
these smaller problems, it is possible to find an optimal solution, using a simple branch-and-
bound procedure (this is not possible on larger problems, as the procedure would take for ever).
Figure 7 and 8 depict the average deviation of the solutions produced by our heuristic from the
optimum. We see that on low tardy factor problems (loose due dates), our heuristic is within
11.62% of the optimum. On high tardy factor problems, the results are even better: our heuristic
is consistently within 10% of the optimum and, on average,it is within 4.77% of the optimum.
Figure 9 further indicates that, compared to the one-parameter developed by Ow and Morton, our
heuristic reduces schedule cost by an average of 30.61%.

A21

20 T

18

16

14

12

%10

8

6

4

Distance of Hybrid/Interchange Heuristic from Optimal Solution

(9 Job, High Tardy Factor Problems)

Pi fl fl

Average - 4.77%

ß HI
♦SStSSO^NnSSSN«^;«;^^

Each bar represents a set of 10 problems

Figure 7: Distance from Optimum - High Tardy Factor

A22

40 T-

Distance of Hybrid/Interchange Heuristic from Optimal Solution
(9 Job, Low Tardy Factor Problems)

35

30

25 -

%20

15

10

Average - 11.62%

|U|U|U|U|U|U|U|U|U|U|U|U|U|U|U| Q luMlufJlMHuiulL-l)ululLJlulL-iuHluN|U|U|U|U|U(U|U|U|U| a
Each bar represents a set of 10 problems

Figure 8: Distance from Optimum - Low Tardy Factor

A23

40

35

30

25 I!
li

ü
%20 i

i

15 '■

10]

Improvement of Hybrid/Interchange Heuristic Over 1 -Parameter Early/Tardy Heuristic

(For 50 Job Problems)

Average-30.61%

o i- luHuHul
* W ID S «

)MLJM
o •- f\J

i li

n
T
\

■ -■-■-■)-■-•■«■-B-»J»»

n ir
„n n

il;

lflN»ffio<-N(nttn»s»oio--N(>)tiniONa)ftO

(Each bar represents 10 simulations)

Figure 9: Improvement over one-parameter early/tardy heuristic.

3 A Small Example
Micro-Boss is implemented in C++ with an X™/Motif™ interface. The small example used

throughout this chapter requires less than 0.1 CPU seconds on a DECstation™ 5000/200
running under UNIX™14. An edited trace of this example is given in Figure 10.

In this example, the scheduling procedure first focuses on the scheduling of the main
bottleneck resource, R2- However, as it schedules operations on this resource, the system can
also jump to other resources and consolidate the schedule by allocating reservations to critical
operations requiring these other resources. In this small example where operations have a small
number of possible reservations, this is mainly accomplished through the identification of
operations that have only one possible reservation left (e.g. the scheduling of 0\ or Ö\). In

l4X Window System is a registered trademark of the Massachusetts Institute of Technology. Motif is a registered
trademark of the Open Software Foundation, Inc. UNIX is a registered trademark of UNIX Systems Laboratories,
Inc. DECstation is a registered trademark of the Digital Equipment Corporation.

A24

general, this can be done based on the contention analysis performed by Micro-Boss (e.g., the
identification of a critical conflict on resource i?4 at depth 6). As a result, the system jumps back
and forth between several resources, always trying to focus on what appears to be the most
critical decision.

The average expected demand displayed in each search state is the average demand for the
critical demand peak, and the average contribution is the percentage of the total demand for the
peak that comes from the critical operation. When search starts, contention is relatively high, as
illustrated by the average expected demand for the critical peak (1.58 at depth 0, 1.73 at depth 2
and 1.50 at depth 4) and the relatively low contribution of the critical operation to the demand
for the peak (e.g., 0\ contributes only 63% of the total demand for the peak in the initial search
state, 02 57% at depth 2, etc.) indicating that the resource requirements of the critical operation
compete with those of several other operations. During construction of the schedule, the average
demand for the critical peak progressively decreases15 and the critical operation progressively
contributes a larger percentage of the demand for the critical peak. This indicates that contention
between unscheduled operations decreases. After half of the operations have been scheduled
(depth 7), contention has totally disappeared: the critical operation is the only one to contribute
to the demand for the peak. The resource requirements of the operations that still need to be
scheduled no longer compete with each other. This is not particular to this example: the same
has been observed on all the problems we have run and suggests that the operation ordering
heuristic implemented in Micro-Boss is indeed very effective at redirecting search towards the
most serious conflicts.

Notice also that no backtracking was necessary to schedule this problem. The resulting
schedule is displayed in Figure 11.

15Remember that the demand peak corresponds to the interval of highest contention in the current search state.

A25

>> Depth: 0, Number of states visited: 0
Critical demand peak:
R2 between 4 and 8, Avg. expected demand: 1.58

Critical Operation: 02, Avg. contrib.: 63%

02 is scheduled between 2 and 8 on R2

» Depth: 1, Number of states visited: 1
0, has only one possible reservation left
and is scheduled between 0 and 2 on /?,

>> Depth: 2, Number of states visited: 2
Critical demand peak:
R2 between 10 and 14, Avg. expected demand: 1.73

2
Critical Operation: 02, Avg. contrib.: 57%
2

02 is scheduled between 9 and 14 on R2

» Depth: 3, Number of states visited: 3
2

O, has only one possible reservation left
and is scheduled between 2 and 9 on /?(

>> Depth: 4, Number of states visited: 4
Critical demand peak:
R2 between 14 and 18, Avg. expected demand: 1.50

4
Critical Operation: 02, Avg. contrib.: 50%
4

02 is scheduled between 14 and 17 on R2

» Depth: 5, Number of states visited: 5
3

03 has only one possible reservation left
and is scheduled between 17 and 20 on R2

>> Depth: 6, Number of states visited: 6
Critical demand peak:
R4 between 10 and 12, Avg. expected demand: 1.12

Critical Operation: Os, Avg. contrib.: 73%

Os is scheduled between 10 and 12 on R4

» Depth: 7, Number of states visited: 7
04 has only one possible reservation left
and is scheduled between 8 and 10 on R-,

Figure 10: An edited trace

A26

>> Depth: 8, Number of states visited: 8
Critical demand peak:
R~ between 5 and 8, Avg. expected demand: 0.95

Critical Operation: 03, Avg. contrib.

03 is scheduled between 5 and 8 on R5

100%

>> Depth: 9, Number of states visited: 9
Critical demand peak:
R4 between 7 and 9, Avg. expected demand: 0.96

4
Critical Operation: 0,, Avg. contrib.: 100%

Oj is scheduled between 7 and 10 on R4

» Depth: 10, Number of states visited: 10
Critical demand peak:
R] between 14 and 17, Avg. expected demand: 0.65

3
Critical Operation: O-,, Avg. contrib 100%
J 0-, is scheduled between 15 and 17 on /?,

>> Depth: 11, Number of states visited: 11
Critical demand peak:
R-, between 13 and 15, Avg. expected demand: 0.52

Critical Operation: O,, Avg. contrib.

O, scheduled between 14 and 15 on R

100%

3

>> Depth: 12, Number of states visited: 12
Schedule Completed
Total Cost: 180
Total Tardiness Cost: 55
Total Inventory Cost: 125
Avg. Weighted Tardiness: 1.0
Avg. Weighted Flowtime (WIP): 10.33
Avg. Weighted Inventory (Flowtime + Earliness)
CPU time: 0.067 seconds

10.42

Figure 10, concluded

A27

o: ^5
' K^XXxV^

o1
0 S3

o:

7/m

J i i i i i j L

0 2 6 8 10 12 14 16 18 20

job

job

^^ job

VZZZÄ j°b

time

Figure 11: Gantt chart of the final schedule produced by Micro-Boss.

A28

4 Reactive and Interactive Scheduling in Micro-Boss
Manufacturing is a process often fraught with contingencies and subject to a multitude of

constraints and preferences that are not always easily amenable to representation in a computer
model.

Operation durations tend to vary, machines break down, raw materials fail to arrive on time,
new customer orders arrive, others get cancelled, etc. Many ad hoc constraints and preferences
that vary over time, such as the preference of a worker on a specific day to perform more
demanding tasks in the morning, might be best accounted for via interactive manipulation of the
schedule. This section briefly outlines reactive and interactive scheduling capabilities currently
under development in the Micro-Boss decision support system.

4.1 Reactive Scheduling and Control Issues
Small disruptions such as minor deviations in operation durations often do not warrant major

modifications of the schedule. However, as the impact of small disruptions accumulate or as
more severe disruptions occur, such as long machine breakdowns, it is sometimes desirable to
reoptimize the schedule from a more global perspective. Accordingly, in Micro-Boss, schedule
disruptions can be handled at two levels based on their severity and the required response time:

1. Control level: Small disruptions that require fast responses are handled by simple
control heuristics such as "process the operation with the earliest scheduled start
time first", or, "when a machine is down, reroute critical jobs to equivalent
machines, if any".

2. Scheduling level: In the face of more severe deviations from the schedule, the
control level calls upon the Micro-Boss scheduling module to repair/reoptimize the
schedule from a more global perspective, while possibly continuing to attend to
immediate decisions.

Determining when disruptions should be handed over to the scheduling level can be tricky.
Decisions at the control level tend to be rather fast as they are based on local heuristics with a
very restricted view of the problem. Decisions at the scheduling level tend to produce better
repairs but take longer as they are based on more global considerations. There is generally a
tradeoff between the responsiveness of the overall system and the amount of reoptimization that
can be performed. In manufacturing environments where disruptions are very frequent, a large
number of disruptions may need to be handled at the control level, whereas, in less chaotic
environments, a larger proportion of disruptions may be processed at the scheduling level. A
similar two-tier approach to handling schedule disruptions was first proposed by Smith et al.
[Smith 90a]. Within this approach, the scheduling level restricts the set of alternatives to be

considered at the control level by imposing a legal temporal window of execution on each
operation. If the controller cannot respect an operation's window of execution, it has to request a
new schedule (and a new set of execution windows) from the scheduler. One objective of
ongoing research in reactive scheduling and control within Micro-Boss aims at assessing the
merits of different coordination regimes between the scheduling and control levels.

A29

Schedule repair in Micro-Boss differs from recent approaches that emphasized the use of
iterative repair heuristics [Smith 90b, Minton 90, Zweben 91]. In the process of resolving
schedule conflicts, iterative repair heuristics are allowed to introduce new conflicts, which in
turn need to be repaired. This iterative behavior may sometimes lead to myopic decisions and

can potentially become expensive. In contrast to these approaches, schedule repair in Micro-
Boss attempts to take a more global view of the problem and capitalize on the strengths of the
micro-opportunistic search procedures in the system. Concretely, schedule repair in Micro-Boss
is performed in two steps: (1) a set of operations that need to be rescheduled is identified using a
so-called conflict propagation procedure and all the operations in this set are unscheduled, (2) the
scheduling problem consisting of all these unscheduled operations and the constraints imposed
on these operations by operations that have already been executed or have not been unscheduled
is passed to the micro-opportunistic scheduling module described in the previous sections. The
set of operations unscheduled in the first phase is selected in such a way that the resulting
scheduling problem (i.e. the one solved in phase (2)) generally admits a solution. In the event
that a feasible schedule cannot be built in phase (2), the system needs to return to phase (1) and
undo a larger number of operations. In practice, this situation can generally be avoided, as
explaine in the next subsection. For particularly severe schedule disruptions such as the
breakdown of a bottleneck machine over a long time period, we are also considering
rescheduling techniques that subdivide the scheduling horizon and only reschedule those
operations that are expected to fall within the near future while overlooking conflicts with
operations whose execution is expected to take place later.

4.2 An Initial Set of Conflict Propagation Techniques
In this subsection, we summarize initial experiments with different conflict propagation

heuristics used to determine which operations to reschedule in order to recover from constraint
violations introduced in the schedule by contingencies such as machine breakdowns or variations
in operation processing times.

Ideally, a good conflict propagation procedure should (1) minimize the number of operations
to be rescheduled (to maximize system responsiveness and minimize schedule disruptions) and
(2) identify a set of operations which, when rescheduled, will (a) be sufficient to restore schedule
integrity (i.e. eliminate all constraint violations) and (b) maximize schedule quality. Clearly these
objectives are not always compatible. Procedures that reschedule more operations are likely to
yield better schedules but may also lead to less responsive and more disruptive behaviors.

Figure 12 displays a simple reactive heuristic, which, given a conflict, simply bumps
operations forward in time until schedule integrity is restored. This reactive procedure is
sometimes refered to as a Right Shifting (RSh) heuristic [Ow 88b] and is always sufficient to
restore schedule integrity. Clearly, this procedure can be quite inefficient, as it does not
resequence operations but simply bumps them. Rather than actually bumping operations, a
simple conflict propagation heuristic involves unscheduling all the operations that would be
bumped by RSh. These unscheduled operations can then be rescheduled using the micro-

A30

Ml

Machine Breakdown
«iiiiiinnuiiui

ji
iniiiHiiiiiini *

J3

M3 «r* ji. m J3

Time

m Right Shifting

* To be rescheduled by the reactive scheduler

Figure 12: Simple "Right Shifting" Conflict Propagation Procedure

opportunistic procedures described in Section 3, thereby taking advantage of possible
resequencing opportunities. Below we refer to this elementary conflict propagation technique as
a right shifting conflict propagation procedure and denote by React(RSh) the reactive procedure
that micro-opportunistically reschedules the operations identified by this conflict propagation
procedure.

Ml

Machine Breakdown
nuiiiiiiniiiiiii

Ji
uiniiiuniiuni

J3

M3 J3

Time

Right Shifting

Jumping

* To be rescheduled by the reactive scheduler

Figure 13: "Right Shifting and Jumping" Conflict Propagation Procedure

A slightly more sophisticated reactive heuristic first described in [Ow 88b] involves bumping
operations forward in time, while jumping over some operations that do not need to be moved, as
illustrated in Figure 13. We refer to the immediate implementation of this reactive procedure as

A31

"Right Shifting and Jumping" (RShJ). Additionally, denote by React(RShJ) the procedure that
involves (1) using RShJ as a conflict propagation procedure and (2) micro-opportunistically
rescheduling the operations identified by this conflict propagation procedure. Like RSh, RShJ is
sufficient to guarantee restoration of schedule integrity and is less disruptive than RSh. Similarly

React(RShJ) is less disruptive than React(RSh). However, due to the smaller number of
operations it micro-opportunistically reschedules, React(RShJ) can be expected to sometimes
produce schedules that are not as good as those obtained with React(RSh) (See also experiments
reported below). Several procedures can be devised to improve the quality of schedules
produced by React(RShJ). Below we report initial experiments with two such procedures:

1. React(RShJ+Job) first unschedules the operations that would normally be

Ml

Machine Breakdown
Diiminnnnm

ji * ^KXI
IIIIIIUIIIIUW

•»•

M3 J3 .

Time

Right Shifting

Jumping

Operations to be rescheduled based on Right Shifting and
Jumping propagation

** Additional job-critical operations to be rescheduled

Figure 14: Unscheduling additional job-critical operations.

unscheduled using React(RShJ) then selectively unschedules additional job-critical
operations using the following two heuristics (See also Figure 14):

a. Heuristic 1: If the next to last operation in a job has been unscheduled, then
also unschedule the last operation in that job. The intuition here is that the
last operation in a job is particularly critical as it determines the completion
date of the job (and hence its tardiness or earliness). By also unscheduling
the job's last operation, this heuristic gives more room to the micro-
opportunistic procedure to find a good schedule.

b. Heuristic 2: If the second operation in a job has been unscheduled, then
also unschedule the first operation. Again the idea here is to give more
room to the micro-opportunistic procedure, in this case by unscheduling the
operation that determines the job's release date (i.e. an operation that
critically impacts inventory costs).

A32

2. React(RShJ+Job+Int): In addition to rescheduling the operations unscheduled by
React(RShJ+Job), this procedure selectively unschedules additional operations in
jobs and on resources. In the experiments reported below, the following two
heuristics were used:

a. Heuristic 1: If two operations surrounding an operation O on a resource R
have both been unscheduled, then also unschedule operation O.

b. Heuristic 2: If the two operations surrounding an operation O in a job J
have both been unscheduled, then also unschedule operation O.

4.3 Interactive Scheduling with Micro-Boss
Although the combinatorial complexity of factory scheduling problems is best handled by

automatic scheduling procedures such as the ones described earlier in this chapter, ad hoc
scheduling constraints and preferences that occur very infrequently or change over time are often
best accounted for through interactive manipulation of the schedule. Interactive user support
should also include mechanisms that help the user identify sources of inefficiency in the
schedule (e.g., tardy orders, overloaded resources, etc.) and ways of correcting these
inefficiencies (e.g., adding overtime on a set of resources, rerouting some orders, etc.). Through
interaction with the system, the user should be able to explore "what-if' scenarios and weigh
different alternatives (e.g., decide whether to complete some jobs past their due dates or work
overtime).

The Micro-Boss decision support system enables the end-user to interleave both manual and
automatic (micro-opportunistic) scheduling decisions, analyze, edit, save, and compare complete
and partial schedules.

Interactive schedule manipulation is performed using an interactive Gantt chart that displays
each resource along with the operations to which that resource has been allocated over time
(Figure 15). Schedule manipulation is performed under the supervision of the Micro-Boss
consistency enforcing module, which enforces consistency with earlier scheduling decisions
(manual and automatic). Partial or complete schedules can be saved and compared against each
other along different metrics, including total schedule cost, average weighted tardiness, average
weighted earliness, Work-In-Process and Work-in-System (which accounts for both Work-In-
Process inventory and finished goods inventory). Optimistic estimates are used for partial
schedules for which these metrics cannot be computed exactly. By interleaving both manual and
automatic scheduling decisions and saving/restoring partial and complete schedules, the user can
compare the impact of alternative scheduling decisions and perform "what-if" analyses.

Figure 15 shows a typical view of the Micro-Boss user interface. In this example, the user is
getting ready to modify the working schedule displayed in the Gantt chart, by manually
unscheduling an operation on which he/she just clicked. Statistics for the working schedule are
compared with statistics for the "current" schedule, namely, the schedule currently in force in the
system. These statistics are continuously updated as the user edits the schedule. In another

A3 3

Figure 15: The Micro-Boss user interface allows for interactive manipulation
of schedules. By interleaving both manual and automatic scheduling

decisions, saving and comparing alternative schedules, the user can easily
assess different trade-offs and locally impose ad hoc constraints or

preferences that are not easily amenable to representation in the computer
model.

window, the user can check information about specific orders {order! in this example). In yet
another window, he/she has elected to rank orders based on their tardiness in the working
schedule. Alternative metrics to rank jobs or resources can be selected in the statistics menu
(e.g., cost, tardiness, flowtime, resource utilization, etc.). By clicking on boxes displayed in the
Gantt chart, the user can directly obtain information on specific operations (e.g., information on
operation milling31), manually unschedule and reschedule operations (by moving the
corresponding box in the Gantt chart), unschedule jobs, or highlight a job by changing its color.
The Gantt menu also allows for zooming in and out of the Gantt chart, unscheduling specific
resource/time intervals, displaying contention measures over time for different resources, etc.

A34

5 Performance Evaluation
Experimental studies performed with an initial version of Micro-Boss implemented using

Knowledge Craft™ were reported in [Sadeh 91b]. These experiments studied the performance
of the system under a variety of scheduling conditions and different cost assumptions16. They
included comparisons with combinations of popular priority dispatch rules and release policies
advocated in the Operations Research literature, comparisons with coarser bottleneck-centered
approaches to scheduling described in the Artificial Intelligence literature and a comparison with
a variation of Micro-Boss in which resource contention was measured using unbiased demand
profiles.

In this chapter, we first report the results of a similar study performed on the same set of
scheduling problems with a more recent version of the system written in C++. Additionally, we
also report experiments evaluating the effectiveness of new bottleneck optimization heuristics
developed for problems with setups and report experiments in reactive scheduling

At the present time (January 1994), the new version of Micro-Boss is two orders of magnitude
faster than the version described in [Sadeh 91b] on this set of problems, mainly because of the
C++ reimplementation and the use of rough demand profiles to identify small areas of high
contention over which more detailed profiles are then constructed (see section 2.4). The new
system also uses a more powerful consistency enforcing procedure (See Subsection 2.2) than the
original version, which almost eliminates the need for backtracking on the experiments reported
in this chapter. Finally, the new system also produces schedules that are significantly better than
those obtained with the earlier version. This improvement in schedule quality is mainly
attributed to the use of a more accurate set of propagation heuristics to update the best remaining
start time(s) of unscheduled operations during construction of the schedule and the use of a
stronger bias in the construction of demand profiles.

The results reported below were obtained on a suite of 80 scheduling problems. The suite,
which is described in detail in [Sadeh 91b], consists of eight sets of scheduling problems
obtained by adjusting three parameters to cover a wide range of scheduling conditions. The
three parameters are the following: an average due date parameter (tight versus loose average
due date), a due date range parameter (narrow versus wide range of due dates), and a parameter
controlling the number of major bottlenecks (in this case one or two). For each parameter
combination, a set of 10 scheduling problems was randomly generated (see Table 2), thereby
resulting in a total of 80 scheduling problems (10 problems x 2 average due date values x 2 due
date ranges x 2 bottleneck configurations). Each problem requires scheduling 20 jobs on 5
resources for a total of 100 operations. Marginal tardiness costs in these problems were set to be,
on the average, five times larger than marginal inventory costs to model a situation where

l6Knowledge Craft is a registered trademark of Carnegie Group.

A35

Problem Sets

Problem
Set

Number of
Bottlenecks

Avg.
Due Date

Due Date
Range

1 1 loose wide

2 1 loose narrow

3 1 tight wide

4 1 tight narrow

5 2 loose wide

6 2 loose narrow

7 2 tight wide

8 2 tight narrow

Table 2: Characteristics of the eight problem sets,

tardiness costs dominate but inventory costs are non-negligible17.

Micro-Boss required between 10 and 15 CPU seconds to schedule each problem on a
DECstation™ 5000/200. Nearly all problems were solved without any backtracking.

5.1 Comparison Against Combinations of Priority Dispatch Rules and Release
Policies.

In a first set of experiments, Micro-Boss was compared with the best of a set of 39
combinations of popular priority dispatch rules and release policies. The priority dispatch rules
used in these experiments were of two types:

1. a set of five priority dispatch rules that have been reported to be particularly good

at reducing tardiness under various scheduling conditions [Vepsalainen 87]: the

Weighted Shortest Processing Time (WSPT) rule; the Earliest Due Date (EDD)

rule; the Slack per Remaining Processing Time (S/RPT) rule; and two parametric

rules, the Weighted Cost OVER Time (WCOVERT) rule and the Apparent

Tardiness Cost (ATC) rule.

2. an exponential version of the parametric early/tardy dispatch rule recently

developed by Ow and Morton [Ow 89, Morton 88] and referred to below as EXP-

ET. This rule differs from the other five in that it can explicitly account for both

''Experiments under different cost assumptions were also reported in [Sadeh 91b].

A36

o

14000

12000

10000-j

8000 -j

6000

: i

4000 H !

2000 | j

D Best of 39 combinations of dispatch
rules and release policies

I Micro-Boss

Problem Set

Figure 16: Comparison of Micro-Boss and the best of 39 combinations of priority
dispatch rules and release policies under 8 different scheduling
conditions (10 problems were generated under each condition).

tardiness and inventory costs.

EXP-ET was successively run in combination with an immediate release policy (IM-REL) that
allows each job to be released immediately and with an intrinsic release policy that only releases
jobs when their priorities become positive, as suggested in [Morton 88]. The other five dispatch
rules were successively run in combination with two release policies: an immediate release
policy (IM-REL) and the Average Queue Time release policy (AQT) described in [Morton 88].
AQT is a parametric release policy that estimates queuing time as a multiple of the average job
duration (the look-ahead parameter serving as the multiple). A job's release date is determined
by offsetting the job's due date by the sum of its total duration and its estimated queuing time.
Combinations of release policies and dispatch rules with a look-ahead parameter were
successively run with four different parameter values that generally appeared to produce the best
schedules. By combining these different dispatch rules, release policies, and parameter settings a

A37

total of 39 heuristics18 was obtained. On each problem, the best of the 39 schedules produced by
these heuristics was compared with the schedule obtained by Micro-Boss. Among the 39
scheduling heuristics (i.e., excluding Micro-Boss), each of the 6 dispatch rules (WSPT, EDD,
S/RPT, WCOVERT, ATC and EXP-ET) and each of the 3 release policies (IM-REL, AQT and

EXP-ET's intrinsic release policy) performed best on at least one problem out of the 80 and 12
combinations out of the 39 performed best on at least 1 problem.

Figure 16 compares the average cost of the schedules produced by Micro-Boss with the
average cost obtained by the best of the 39 combinations of dispatch rules and release policies on
each problem set. Schedule cost was computed as the sum of tardiness and inventory costs, as
specified in Equation (3). The results indicate that Micro-Boss consistently outperformed the
combination of 39 heuristics under all eight conditions of the study. Overall Micro-Boss yielded
reductions of 20% in schedule cost over the 39 heuristics. A more detailed analysis indicates that
this reduction in schedule cost corresponds to a reduction of about 20% in tardiness costs and
about 23% in inventory costs (combined work-in-process and finished goods inventory costs).

5.2 Comparison Against Coarser Opportunistic Scheduling Procedures
Micro-Boss was also compared with several coarser opportunistic schedulers that dynamically

combine a resource-centered perspective and a job-centered perspective, such as in the OPIS
scheduling system [Ow 88a]. Although OPIS relies on a set of repair heuristics to recover from
inconsistencies [Ow 88b], the macro-opportunistic schedulers of this study were built to use the
same consistency enforcing techniques and the same backtracking scheme as Micro-Boss19. The
macro-opportunistic schedulers also used the same demand profiles as Micro-Boss. When
average demand for the most critical resource/time interval was above some threshold level (a
parameter of the system that was empirically adjusted), the macro-opportunistic scheduler
focused on scheduling the operations requiring that resource/time interval; otherwise, it used a
job-centered perspective to identify a critical job and schedule some or all of the operations in
that job. Each time a resource/time interval or a portion of a job was scheduled, new demand
profiles were computed to decide which scheduling perspective to use next.

18The 39 combinations were as follows: EXP-ET and its intrinsic release policy (times four parameter settings),
EXP-ET/IM-REL (times four parameter settings), EDD/AQT (times four parameter settings), EDD/IM-REL,
WSPT/AQT (times four parameter settings), WSPT/IM-REL, S/RPT/AQT (times four parameter settings),
S/RPT/IM-REL, WCOVERT/IM-REL (times four parameter settings), WCOVERT/AQT (times four parameter
settings), ATC/IM-REL (times four parameter settings), and ATC/AQT (times four parameter settings).

An alternative would have been to implement a variation of Micro-Boss using the same repair heuristics as
OPIS. Besides being time-consuming to implement, such a comparison would have been affected by the quality of
the specific repair heuristics currently implemented in the OPIS scheduler.

A38

14000-fT

D Micro-Boss I Macro-opportunistic
Scheduler
(Granularity = 4)

I Macro-opportunistic
Scheduler
(Granularity = 8)

Figure 17: Comparison of Micro-Boss and two coarser opportunistic schedulers.

Figure 17 summarizes the results of a comparison between Micro-Boss20 and two macro-
opportunistic schedulers that differed in the number of operations that they were allowed to
schedule at once in their resource-centered perspective (referred to below as the granularity of
the scheduler). The macro-opportunistic scheduler with granularity 4 was allowed to schedule as
many as 4 operations in its resource-centered perspective, after which it had to compute new
demand profiles and decide which subproblem (job-centered or resource-centered) to focus on
next. The macro-opportunistic scheduler with granularity 8 was allowed to schedule at once as
many as 8 operations in its resource-centered perspective. The results in Figure 17 indicate not
only that Micro-Boss consistently produced better schedules than the two macro-opportunistic
schedulers but also that schedule performance degraded as the granularity of the macro-
opportunistic scheduler was increased, namely, as the search procedure became less flexible.
More detailed performance measures not presented here indicate that the reductions in schedule
cost achieved by Micro-Boss correspond to reductions in both tardiness and inventory costs.

Overall, these results strongly suggest that the additional flexibility of a micro-opportunistic
scheduling procedure over coarser opportunistic procedures generally yields important
improvements in schedule quality.

20These experiments as well as the ones presented in the next subsection were performed in 1993 with an earlier
version of Micro-Boss than the one used in the comparison with dispatch rules.

A39

5.3 Evaluating the Impact of Using Biased Demand Profiles
A third set of experiments was carried out to test the effect of using biased demand profiles to

guide the micro-opportunistic scheduler. A variation of Micro-Boss using unbiased demand
profiles was run on the same set of 80 scheduling problems.

16000 -/i

Ö 12000
O

3 10000 -S'

Micro-Boss (biased version) ■ Unbiased version

Figure 18: Comparison of the cost of the schedules produced by Micro-Boss
and a variation of the system that used unbiased demand profiles.

Figure 18 compares the average schedule costs obtained by both variations of Micro-Boss. In
7 out of the 8 scheduling situations of the study, biasing the demand profiles produced reductions
in schedule cost ranging from 3 to 22 percent, including an impressive 20 percent in the most
difficult scheduling situation (Problem Set 8 with two bottlenecks, a tight average due date and a
narrow range of due dates). In the one case (out of eight) where the unbiased version produced
better schedules, the biased version was only 5% worse. A more detailed analysis of the results
indicates that overall, the biased version of Micro-Boss performed 30% better with respect to
tardiness while incurring a slight increase of 0.6% in inventory costs. Altogether, biasing the
demand profiles reduced schedule costs by more than 15%. These results validate both the idea
of building biased demand profiles to guide the micro-opportunistic search procedure and the
particular technique used in Micro-Boss to operationalize this idea (namely, the use of the
mincost functions). In general, it should be possible to obtain even better results by varying the
bias according to specific problem characteristics. One could also consider fine-tuning the bias
during the construction of the schedule.

A40

5.4 Evalutation of the Micro-Boss Bottleneck Optimization Heuristics for Problems
with Setups

5.5 Reactive Scheduling Experiments
Table 3 summarizes the results of experiments conducted with the reactive heuristics described

earlier in this chapter and a a procedure that systematically reschedules all available operations
(i.e. all operations that had not yet been started at the time of the contingency considered in each
problem).

A total of 40 reactive problems were generated similar to the problems used for the
experiments reported in Section 4. For each problem, a single machine breakdown was
randomly generated in such a way that it conflicted with the schedule of at least one operation.
Breakdowns were generated both on bottleneck and non-bottleneck machines. Performance is
reported along the following dimensions:

• Normalized Cost: a normalized measure of the average schedule cost obtained with
each technique;

• Tardiness: the average weighted tardiness of the schedules produced by each
technique;

• WIS: the average work-in-system inventory of the schedules produced by each
technique, as defined in [Sadeh 91b]. This is a measure that accounts for both work-
in-process and finished-goods inventories.

• Nb. op. resched: the average number of operations rescheduled by each technique.

Method
Normalized

Cost Tardiness WIS
Nb. op.
resched.

Total Rescheduling 1.06 12.4 61.2 52.3

RSh 1.23 15.3 62.8 34.4

RShJ 1.20 14.6 63.0 32.5

React(RSh) 1.13 13.1 63.5 34.4

React(RShJ) 1.16 13.5 64.3 32.5

React(RShJ + Job) 1.12 13.0 62.8 34.3

React(RShJ + Job + Int) 1.09 12.8 62.2 35.7

Table 3: Comparison of Seven Reactive Scheduling Procedures.

As expected, the results indicate that the worst schedules (highest cost) were produced by RSh
and the best ones by the total rescheduling procedure. The total rescheduling procedure was also
the most disruptive one (over 52 operations rescheduled on the average) and took the most time.
The right shifting procedure on the other hand was generally the fastest one, requiring an average
of 3 CPU seconds in these experiments. More interestingly, the results indicate that
React(RShJ+Job+Int) produced schedules almost as good as those obtained with the the total

A41

rescheduling procedure and did so while rescheduling significantly fewer operations. In these
experiments, React(RShJ+Job+Int) required about 9 CPU seconds on the average, only 3 times
as much as the simplest procedure, RSh.

A42

6 Concluding Remarks
Current computer solutions to production management such as the one implemented in

MRP/MRP-II systems are of limited help, because they rely on oversimplified models of the
plant and only provide weak feedback loops to update the production schedule during execution
(typically, complete updates of the schedule are only performed on a weekly basis). A major
challenge for researchers in production scheduling is to come up with new techniques that can
account more precisely for actual manufacturing objectives and constraints, including execution
contingencies such as machine breakdowns, new job arrivals, variations in processing times,
yields, etc. New production scheduling tools should also enable the user to interactively perform
"what-if' analysis and account for ad hoc constraints and/or preferences that are not easily
amenable to representation in the computer model.

In this chapter, we presented Micro-Boss, a decision support system for factory scheduling.
Micro-Boss aims at combining powerful predictive, reactive, and interactive scheduling
capabilities. To this end, the system relies on a new micro-opportunistic search procedure that
enables it to continuously track the evolution of micro-bottlenecks (or conflicts) during the
construction or repair of the schedule and to refocus its optimization effort on those micro-
bottlenecks that appear most critical. This approach differs from earlier opportunistic
approaches [Ow 88a, Collinot 88], because it does not require scheduling large resource
subproblems or large job subproblems before revising the current scheduling strategy. The
results of an experimental study comparing Micro-Boss with combinations of popular priority
dispatch rules and release policies advocated in the Operations Research literature as well as
coarser opportunistic scheduling approaches proposed in the Artificial Intelligence literature,
suggest that the flexibility of this new search procedure can often yield important improvements
in schedule quality. We find that because of their flexibility, micro-opportunistic scheduling
procedures are also particularly well suited for repairing schedules in the face of execution
contingencies and can easily be integrated in interactive decision support systems that enable the
user to incrementally manipulate and compare alternative schedules.

Although our work on Micro-Boss has focused on generalized versions of the job shop
scheduling problem, micro-opportunistic scheduling techniques have been applied to other
manufacturing problems and other classes of problems such as transportation scheduling.
Rautaruukki Oy, a large Finnish steel manufacturer, and researchers at the Helsinki University of
Technology have reported adapting an earlier version of our micro-opportunistic scheduling
heuristics to schedule a steel rolling mill [Torma 91]. Variations of the Micro-Boss scheduling
heuristics are also used in the Knowledge Based Logistics Planning Shell (KBLPS) developed by
Carnegie Group, Inc. (CGI) and LB&M Associates to solve U.S. army transportation scheduling
problems and ammunition distribution planning problems [Dunmire 90, Camden 90, Saks 92].
Other efforts using variations of the micro-opportunistic techniques developed in the context of
Micro-Boss are described in [Berry 91, Linden 91, Paolucci 92] and [Winklhofer 92].

Current research efforts within our project aim at applying and extending the existing approach

A4 3

to solve both manufacturing and transportation scheduling problems.

[Adams 88] J. Adams, E. Balas, and D. Zawack.
The Shifting Bottleneck Procedure for Job Shop Scheduling.
Management Science 34(3):391-401, 1988.

[Baker 90] Kenneth R. Baker and Gary D. Scudder.
Sequencing with Earliness and Tardiness Penalties: A Review.
Operations Research 38(l):22-36, January-February, 1990.

[Bean 91] Bean, J.C.J.R. Birge, J. Mittenthal, C.E. Noon.
Matchup Scheduling with Multiple Resources, Release Dates and Disruptions.
Operations Research 39(3):470-483, May-June, 1991.

[Berry 91] Pauline M. Berry.
The PCP: A Predictive Model for Satisfying Conflicting Objectives in

Scheduling Problems.
Technical Report, Centre Universitaire d'Informatique, Universite de Geneve,

12, Rue du Lac, CH-1207, Geneva, Switzerland, 1991.

[Camden 90] Camden, R., Dunmire, C, Goyal, R., Sathi.N., Elm, B., and Fox, M.
Distribution Planning: An Integration of Constraint Satisfaction and Heuristic

Search Techniques.
In Proceedings of the Conference on AI Applications in Military Logistics.

1990.

[Collinot 88] A. Collinot, C. Le Pape and G. Pinoteau.
SONIA: a Knowledge-based Scheduling System.
International Journal of Artificial Intelligence in Engineering 2(4):86-94,

1988.

[Dauzere-Peres 90]

[Dunmire 90]

[Fox 83]

S. Dauzere-Peres and J.B. Lasserre.
A Modified Shifting Bottleneck Procedure for Job Shop Scheduling.
Technical Report LAAS 90106, Laboratoire d'Automatique et d'Analyse des

Systemes, 7, Av. du Colonel Roche, 31077 Toulouse Cedex, France, 1990.

Dunmire, C, Sathi,N., Goyal, R., Fox, M., and Kott, A.
Ammunition Inventory Planning: An Integration of Configuration and

Resource Allocation Techniques.
In Proceedings of the Conference on AI Applications in Military Logistics.

1990.

Mark S. Fox.
Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
PhD thesis, Department of Computer Science, Carnegie-Mellon University,

1983.

A44

[Fox 87]

[French 82]

[Garey 79]

[Goldratt 80]

[Graves 81]

[Jacobs 84]

[LePape 87]

[Li&Sadeh 93]

[Linden 91]

R.E. Fox.
OPT: Leapfrogging the Japanese.
Just-in-time Manufacture.
In C.A. Voss,
IFS Ltd, Springer Verlag, 1987.

S. French.
Sequencing and Scheduling: An Introduction to the Mathematics of the

Job-Shop.
Wiley, 1982.

M.R. Garey and D.S. Johnson.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman and Co., 1979.

Eliyahu M. Goldratt.
Optimized Production Timetable: Beyond MRP: Something Better is finally

Here.
October, 1980
Speech to APICS National Conference.

Graves, S.C.
A Review of Production Scheduling.
Operations Research 29(4):646-675, July-August, 1981.

F. Robert Jacobs.
OPT Uncovered: Many Production Planning And Scheduling Concepts Can

Be Applied With Or Without The Software.
Industrial Engineering 16(10):32-41, October, 1984.

Claude Le Pape and Stephen F. Smith.
Management of Temporal Constraints for Factory Scheduling.
Technical Report, The Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA 15213, 1987.
Also appeared in Proc. Working Conference on Temporal Aspects in

Information Systems, Sponsored by AFCET and IFIP Technical
Committee TC8, North Holland Publishers, Paris, France, May 1987.

Gang Li and Norman Sadeh.
Single-Machine Early/Tardy Scheduling Problem with Setups: A Hybrid

Heuristic Approach.
Technical Report, Robotics Institute, Carnegie Mellon University, Pittsburgh,

PA 15213, 1993.
Working paper. Presented at the Joint National ORSA/TIMS meeting held in

San Francisco, November 1-4, 1992.

Theodore A. Linden.
Preference-Directed, Cooperative Resource Allocation and Scheduling.
Technical Report, Advanced Decision Systems, 1500 Plymouth St., Mountain

View, CA 94043, September, 1991.

A4 5

[Mackworth 85]

[Minton 90]

[Morton 88]

[Orlicky 75]

[Ow 85]

[Ow 88a]

[Ow 88b]

[Ow 89]

[Panwalkar 77]

[Paolucci 92]

[Sadeh91a]

A.K. Mackworth and E.C. Freuder.
The Complexity of some Polynomial Network Consistency Algorithms for

Constraint Satisfaction Problems.
Artificial Intelligence 25(l):65-74, 1985.

S. Minton, M.D. Johnston, A.B. Philips, P. Laird.
Solving Large-Scale Constraint Satisfaction and Scheduling Problems Using a

Heuristic Repair Method.
In Proceedings of the Eighth National Conference on Artificial Intelligence,

pages 17-24. 1990.

T.E. Morton, S.R. Lawrence, S. Rajagopolan, S Kekre.
SCHED-STAR: A Price-Based Shop Scheduling Module.
Journal of Manufacturing and Operations Management: 131 -181, 1988.

Joseph Orlicky.
Material Requirements Planning.
McGraw Hill, New York, 1975.

Peng Si Ow.
Focused Scheduling in Proportionate Flowshops.
Management Science 31(7):852-869, 1985.

Peng Si Ow and Stephen F. Smith.
Viewing Scheduling as an Opportunistic Problem-Solving Process.
Annals of Operations Research 12:85-108, 1988.

P.S. Ow, S.F. Smith, and A. Thiriez.
Reactive Plan Revision.
In Proceedings of the Seventh National Conference on Artificial Intelligence,

pages 77-82. 1988.

Peng Si Ow and Thomas Morton.
The Single Machine Early/Tardy Problem.
Management Science 35(2): 177-191, 1989.

S.S. Panwalkar and Wafik Iskander.
A Survey of Scheduling Rules.
Operations Research 25(1):45-61, January-February, 1977.

Paolucci, E., Patriarca, E., Sem, M., and Gini G.
Predit: A Temporal Predictive Framework for Scheduling Systems.
In Proceedings of the AAAI Spring Symposium on Practical Approaches to

Scheduling and Planning, pages 150-154. 1992.

N. Sadeh and M.S. Fox.
Variable and Value Ordering Heuristics for Hard Constraint Satisfaction

Problems: an Application to Job Shop Scheduling.
Technical Report CMU-RI-TR-91-23, The Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA 15213, 1991.
Submitted to the Artificial Intelligence Journal.

A4 6

[Sadeh 91b] Norman Sadeh.
Look-ahead Techniques for Micro-opportunistic Job Shop Scheduling.
PhD thesis, School of Computer Science, Carnegie Mellon University, March,

1991.

[Sadeh 92] Norman Sadeh, Katia Sycara, and Yalin Xiong.
Backtracking Techniques for Hard Scheduling Problems.
Technical Report CMU-RI-TR-92-06, The Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA 15213, 1992.
Submitted to the Artificial Intelligence Journal.

[Sadeh 93] Sadeh, N.M., S. Otsuka, and R. Schnelbach.
Predictive and Reactive Scheduling with the Micro-Boss Production

Scheduling and Control System.
In Proceedings of the IJCAI-93 Workshop on Knowledge-based Production

Planning, Scheduling, and Control. Chambery, France, August, 1993.

[Sadeh 94] Norman Sadeh.
Micro-Opportunistic Scheduling: The MICRO-BOSS Factory Scheduler.
Intelligent Scheduling.
In Mark Fox and Monte Zweben,
Morgan Kaufmann Publishers, 1994, Chapter 4.

[Saks 92] Victor Saks, Al Kepner, and Ivan Johnson.
Knowledge Based Distribution Planning.
Technical Report, Carnegie Group, Inc., 5 PPG Place, Pittsburgh, PA 15222,

1992.

[Serafini 88] P. Serafini, W. Ukovich, H. Kirchner, F. Giardina, and F. Tiozzo.
Job-shop scheduling: a case study.
Operations Research Models in FMS.
In F. Archetti, M. Lucertini, and P. Serafini,
Springer, Vienna, 1988.

[Smith 86] S. Smith, M. Fox, and P.S. Ow.
Constructing and Maintaining Detailed Production Plans: Investigations into

the Development of Knowledge-Based Factory Scheduling Systems.
AI Magazine 7(4):45-61, Fall, 1986.

[Smith 90a] Smith, S.F., N. Keng, and K. Kempf.
Exploiting Local Flexibility During Execution of Pre-Computed Schedules.
Technical Report CMU-TR-RI-90-13, The Robotics Institute, Carnegie

Mellon Univeristy, June, 1990.

[Smith 90b] Stephen F. Smith, Peng Si Ow, Nicola Muscettola, Jean-Yves Potvin, Dirk
Matthys.
An Integrated Framework for Generating and Revising Factory Schedules.
Journal of the Operational Research Society 41(6):539-552, 1990.

A4 7

[Torma 91] Seppo Torma, Ora Lassila and Markku Syrjanen.
Adapting the Activity-Based Scheduling Method to Steel Rolling.
In G. Doumeingts, J. Browne, and M Tomljanovich (editor), Proceedings of

the Fourth IFIP Conference on Computer Applications in Production and
Engineering (CAPE'91), pages 159-166. Elsevier Science Publishers
B.V. (North Holland), 1991.

[Vepsalainen 87] Ari P.J. Vepsalainen and Thomas E. Morton.
Priority Rules for Job Shops with Weighted Tardiness Costs.
Management Science 33(8): 1035-1047, 1987.

[Vollmann 88]

[Wight 81]

[Wight 84]

[Winklhofer 92]

[Zweben91]

Thomas Vollmann, William Berry, and Clay Whybark.
Manufacturing Planning and Control.
Dow Jones-Irwin, Homewood, IL, 1988.
Second Edition.

Oliver Wight.
MRP II: Unlocking America's Productivity Potential.
Oliver Wight Limited Publications, Williston, VT, 1981.

Oliver Wight.
Manufacturing Resource Planning: MRPII.
Oliver Wight Limited Publications, Essex Junction, VT, 1984.

Andreas Winklhofer, Manfred Maierhofer, and Paul Levi.
Efficient Propagation and Computation of Problem Features for Activity-

Based Scheduling.
In Proceedings of the Seventh Symposium on Information Control Problems

in Manufacturing Technology (INCOM-92). Toronto, Canada, 1992.

Monte Zweben, Eugene Davis, and Michael Deale.
Iterative Repair for Scheduling and Rescheduling.
Technical Report, NASA Ames Reserch Center, MS 244-17, Moffett Field,

CA 94035, 1991.

A4 8

Backtracking Techniques for
Hard Job Shop Scheduling Problems

Norman Sadeh, Katia Sycara and Yalin Xiong

The Robotics Institute
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, Pennsylvania 15213-3891

Abstract

This paper studies a version of the job shop scheduling problem in which some operations have

to be scheduled within non-relaxable time windows (i.e. earliest/latest possible start time

windows). This problem is a well-known NP-complete Constraint Satisfaction Problem (CSP).

A popular method for solving this type of problems involves using depth-first backtrack search.

In our earlier work, we focused on the development of consistency enforcing techniques and

variable/value ordering heuristics that improve the efficiency of this search procedure. In this

paper, we combine these techniques with new look-back schemes that help the search procedure

recover from so-called deadend search states (i.e. partial solutions that cannot be completed

without violating some constraints). More specifically, we successively describe three

"intelligent" backtracking schemes: (1) Dynamic Consistency Enforcement dynamically

identifies critical subproblems and determines how far to backtrack by selectively enforcing

higher levels of consistency among variables participating in these critical subproblems, (2)

Learning Ordering From Failure dynamically modifies the order in which variables are

instantiated based on earlier conflicts, and (3) Incomplete Backjumping Heuristic abandons areas

of the search space that appear to require excessive computational efforts. These schemes are

shown to (1) further reduce the average complexity of the backtrack search procedure, (2) enable

our system to efficiently solve problems that could not be solved otherwise due to excessive

computation cost, and (3) be more effective at solving job shop scheduling problems than other

look-back schemes advocated in the literature.

This paper is a short version of a paper to appear in the Artificial Intelligence Journal

[Sadeh94a].

This research was supported, in part, by the Defense Advanced Research Projects Agency under
contract #F30602-91-F-0016, and in part by grants from McDonnell Aircraft Company and
Digital Equipment Corporation.

Bl

1. Introduction
This paper is concerned with the design of recovery schemes for incremental scheduling

approaches that sometimes require undoing earlier scheduling decisions in order to complete the
construction of a feasible schedule.

Job shop scheduling deals with the allocation of resources over time to perform a collection of
tasks. The job shop scheduling model studied in this paper further allows for operations that
have to be scheduled within non-relaxable time windows (e.g. earliest possible start time/latest
possible finish time windows). This problem is a well-known NP-complete Constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of this problem include factory scheduling
problems, in which some operations have to be performed within one or several shifts, spacecraft
mission scheduling problems, in which time windows are determined by astronomical events
over which we have no control, factory rescheduling problems, in which a small set of operations
need to be rescheduled without revising the schedule of other operations, etc.

One approach to solving CSPs is to use depth-first backtrack search [Walker 60, Golomb
65, Bitner 75]. Using this approach, scheduling problems can be solved through the iterative
selection of an operation to be scheduled next (i.e. variable selection) and the tentative
assignment of a reservation (i.e. value) to that operation. If in the process of constructing a
schedule, a partial solution is reached that cannot be completed without violating some of the
problem constraints, one or several earlier assignments need to be undone. This process of
undoing earlier assignments is referred to as backtracking. It deteriorates the efficiency of the
search procedure and increases the time required to come up with a solution. While the worst-
case complexity of backtrack search is exponential, several techniques to reduce its average-case
complexity have been proposed in the literature [Dechter 88]:

• Consistency Enforcing Schemes: These techniques prune the search space from
alternatives that cannot participate in a global solution [Mackworth 85]. There is
generally a tradeoff between the amount of consistency enforced in each search
state1 and the savings achieved in search time.

• Variable/Value Ordering Heuristics: These heuristics help judiciously decide which
variable to instantiate next and which value to assign to that variable [Bitner
75, Haralick 80, Purdom 83, Dechter 88, Fox 89, Sadeh 91]. By first instantiating
difficult variables, the system increases its chances of completing the current partial
solution without backtracking [Haralick 80, Fox 89, Sadeh 91]. Good value ordering
heuristics reduce backtracking by selecting values that are expected to participate in
a large number of solutions [Dechter 88, Sadeh 91].

• Look-back Schemes: [Stallman 77, Doyle 79, Gaschnig 79, Dechter 89a] While it is
possible to design consistency enforcing schemes and variable/value ordering

'A search state is associated with each partial solution. Each search state defines a new CSP whose variables are
the variables that have not yet been instantiated and whose constraints are the initial problem constraints along with
constraints reflecting current assignments.

B2

heuristics that are, on average, very effective at reducing backtracking, it is
generally impossible to efficiently guarantee backtrack-free search. Look-back
schemes are designed to help the system recover from deadend states and, if
possible, learn from past mistakes .

In our earlier work, we focused on the development of efficient consistency enforcing
techniques and variable/value ordering heuristics for job shop scheduling CSPs [Sadeh 88, Sadeh
89, Fox 89, Sycara 91, Sadeh 90, Sadeh 91, Sadeh 92]. In this paper, we combine these
techniques with new look-back schemes. These schemes are shown to further reduce the average
complexity of the search procedure. They also enable our system to efficiently solve problems
that could not be efficiently solved otherwise. Finally, experimental results indicate that these
techniques are more effective at solving job shop scheduling problems than other look-back
schemes advocated in the literature.

The simplest deadend recovery strategy goes back to the most recently instantiated variable
with at least one alternative value left, and assigns ones of the remaining values to the variable.
This strategy is known as chronological backtracking. Often the source of the current deadend
is not the most recent assignment but an earlier one. Because it typically modifies assignments
that have no impact on the conflict at hand, chronological backtracking often returns to similar
deadend states. When this happens, search is said to be thrashing. Thrashing can be reduced
using backjumping schemes that attempt to backtrack all the way to one of the variables at the
source of the conflict [Gaschnig 79]. Search efficiency can be further improved by learning
from past mistakes. For instance, a system can record earlier conflicts in the form of new
constraints that will prevent it from repeating earlier mistakes [Stallman 77, Doyle 79].
Dependency-directed backtracking is a technique incorporating both backjumping and constraint
recording [Stallman 77]. Although dependency-directed backtracking can greatly reduce the
number of search states that need to be explored, this scheme is often impractical due to the
exponential worst-case complexity of its constraint recording component (both in time and
space). Simpler techniques have also been developed that approximate dependency-directed
backtracking. Graph-based backjumping reduces the amount of book-keeping required by full-
blown backjumping by assuming that any two variables directly connected by a constraint may
have been assigned conflicting values [Dechter 89a]2. N-th order deep and shallow learning
reduce the constraint recording complexity of dependency-directed backtracking by only
recording conflicts involving N or fewer variables [Dechter 89a].

Graph-based backjumping works best on CSPs with sparse constraint graphs [Dechter 89a].
Instead, job shop scheduling problems have highly interconnected constraint graphs.
Furthermore graph-based backjumping does not increase search efficiency when used in
combination with forward checking [Haralick 80] mechanisms or stronger consistency enforcing
mechanisms such as those entailed by job shop scheduling problems [Sadeh 91]. Our

2Two variables are said to be "connected" by a constraint if they both participate in that constraint.

B3

experiments suggest that N-th order deep and shallow learning techniques often fail to improve
search efficiency when applied to job shop scheduling problems. This is because these
techniques use constraint size as the only criterion to decide whether or not to record earlier
failures. When they limit themselves to small-size conflicts, they fail to record some important
constraints. When they do not, their complexities become prohibitive.

Instead, this paper presents three look-back techniques that have yielded good results on job
shop scheduling problems:

1. Dynamic Consistency Enforcement (DCE): a selective dependency-directed
scheme that dynamically focuses its effort on critical resource subproblems,

2. Learning Ordering From Failure (LOFF): an adaptive scheme that suggests new
variable orderings based on earlier conflicts,

3. Incomplete Backjumping Heuristic (IBH) a scheme that gives up searching areas of
the search space that require too much work.

Related work in scheduling includes that of Prosser and Burke who use N-th order shallow
learning to solve one-machine scheduling problems [Burke 89], and that of Badie et al. whose
system implements a variation of deep learning in which a minimum set is heuristically selected
as the source of the conflict [Badie et al 90].

The remainder of this paper is organized as follows. Section 2 provides a more formal
definition of the job shop CSP. Section 3 describes the backtrack search procedure considered in
this study. Sections 4, 5 and 6 successively describe each of the three backtracking schemes
developed in this study. Experimental results are presented in section 7. Section 8 summarizes
the contributions of this paper.

2. The Job Shop Constraint Satisfaction Problem
The job shop scheduling problem requires scheduling a set of jobs J= {y'j ,...,j } on a set of

resources RES ={/?,,..., Rm). Each job;'; consists of a set of operations Ol={ 0\,...,Ol } tobe
scheduled according to a process routing that specifies a partial ordering among these operations
(e.g. o\ BEFORE 0J).

In the job shop CSP studied in this paper, each joby'j has a release date rdl and a due-date ddl

between which all its operations have to be performed. Each operation o\ has a fixed duration

dui and a variable start time st'r The domain of possible start times of each operation is initially
constrained by the release and due dates of the job to which the operation belongs. If necessary,
the model allows for additional unary constraints that further restrict the set of admissible start
times of each operation, thereby defining one or several time windows within which an operation
has to be carried out (e.g. one or several shifts in factory scheduling). In order to be successfully
executed, each operation o\ requires p\ different resources (e.g. a milling machine and a
machinist) R- (1 <_/</?.), for each of which there may be a pool of physical resources from

B4

which to choose, QJ. c RES (e.g. one or several milling machines).

More formally, the problem can be defined as follows:

VARIABLES:

A vector of variables is associated with each operation, 0\ (1 < / < n, 1 < / < <?;]), which consists
of:

1. the start time, st\ of the operation, and

2. its resource requirements, R{-, (1 <j<p).

CONSTRAINTS:

The non-unary constraints of the problem are of two types:
1. Precedence constraints defined by the process routings translate into linear

inequalities of the type: st\+du\ < st) (i.e. 0\ BEFORE 0J);

2. Capacity constraints that restrict the use of each resource to only one operation at a
time translate into disjunctive constraints of the form:
(Vp \fq R\ ±Rl) v st'l+du'l < st1- v stj+du'j < st\. These constraints simply express

that, unless they use different resources, two operations 0\ and Oj cannot overlap3.
Additionally, our model can accommodate unary constraints that restrict the set of possible

values of individual variables. These constraints include non-relaxable due dates and release
dates, between which all operations in a job need to be performed. More generally, the model
can accommodate any type of unary constraint that further restricts the set of possible start times
of an operation.

Time is assumed discrete, i.e. operation start times and end times can only take integer values
and each resource requirement Ri has to be selected from a set of resource alternatives,

Qj. c RES.

OBJECTIVE:

In the job shop CSP studied in this paper, the objective is to come up with a feasible solution as
fast as possible. Notice that this objective is different from simply minimizing the number of
search states visited. It also accounts for the time spent by the system deciding which search state
to explore next.

EXAMPLE:

3These constraints have to be generalized when dealing with resources of capacity larger than one.

B5

0\ 3 R,
 F

Oz 4 R2 '0 5 R:

s

/

0t 3 R,
v '

\'
\

\
_s

\ /

\
\

Oz 5 R;

0 U^\ *jol 3 R^

0? 4 R,

O3 3 Rz

»{02 6 R2)

_ capacity constraint

-^_ precedence constraint

Figure 1: A simple problem with 4 jobs. Each node is labeled
by the operation that it represents, its duration and

the resource it requires.

Figure 1 depicts a simple job shop scheduling problem with four jobs J= {jx ,j2 J3 j4} and four
resources RES={Rl,R2,R?l,R4}. In this example, each operation has a single resource
requirement with a single possible value. It is further assumed that all jobs are released at time 0
and have to be completed by time 20. Please note that none of these simplifying assumptions is
required by the techniques to be discussed: jobs can have different release and due dates,
operations can have several resource requirements, and several alternatives for each of these
requirements. Note also that the problem we have just defined is infeasible. None of the
operations on resource R2 can start before time 3 and the sum of durations of these operations is
18. Hence, it is impossible to complete these operations before time 21. As we will see, this
observation can easily be operationalized in the form of a simple consistency checking rule.
However, as the number of operations to schedule grows, the exponential complexity of applying

B6

this simple rule to all possible subsets of operations on a given resource quickly becomes
prohibitive, hence the need to be more selective in applying such checks. Additionally, passing
such a check is no guarantee that a problem is feasible, hence the need to also rely on more
complex mechanisms, as described below.

3. The Search Procedure
A depth-first backtrack search procedure is considered, in which search is interleaved with the

application of consistency enforcing mechanisms and variable/value ordering heuristics that
attempt to steer clear of deadend states4 Specifically, search starts in a state where all operations
still have to be scheduled. The BASIC-DEPTH-FIRST procedure proceeds by incrementally
scheduling operations one by one. Each time an operation is scheduled, a new search state is
created in which a consistency enforcing procedure (or constraint propagation procedure) is first
applied to update the set of possible reservations of unscheduled operations. Next, an operation
is selected to be scheduled and a reservation is selected for that operation. The procedure goes
on, recursively calling itself, until either all operations are successfully scheduled or an
inconsistency (or conflict) is detected. In the latter case, the procedure needs to undo earlier
decisions or backtrack. The simplest possible backtracking mechanism for such a procedure is a
"chronological" procedure that systematically goes back to the most recently scheduled operation
and tries alternative reservations for that operation. If no alternative reservation is left, the
procedure goes back to the next most recently scheduled operation and so on. If the procedure
returns to the initial search state (i.e. the state with an empty schedule), the problem is infeasible.

The default consistency enforcing mechanisms and variable/value ordering heuristics used in
our study are the ones described in [Sadeh 91]. These mechanisms, which have been favorably
compared against a number of other heuristics [Sadeh 91, Sadeh 92], are briefly described below.

Consistency Enforcing Procedure: The consistency enforcing procedure we use combines
three consistency mechanisms:

1. Consistency with respect to precedence constraints: Consistency with respect to
precedence constraints is maintained using a longest path procedure that
incrementally updates, in each search state, a pair of earliest/latest possible start
times for each unscheduled operation. Essentially, as in PERT/CPM [Johnson 74],
earliest start time constraints are propagated downstream within the job whereas
latest start time constraints are propagated upstream (Figure 2). The complexity of
this simple propagation mechanism is linear in the number of precedence
constraints. In the absence of capacity constraints, the procedure can be shown to
guarantee decomposability [Dechter 89b], i.e. it is sufficient to guarantee
backtrack-free search [Sadeh 91].

2. Forward consistency checks with respect to capacity constraints: Enforcing
consistency with respect to capacity constraints is more difficult due to the

additional details on this procedure, including pseudo-code, can be found in [Sadeh 94a].

B7

Before propagation

r -\
0\ 3 R,

r -s

024 R2

r -\

O3 5 R3

[0, [0, [0,15]

Downstream Propagation

[O.oo] [3,-] [7, 15]

Upstream Propagation

O] 3 R,

[0,8]

02 4 R2

[3,11]

O3 5 R;

[7, 15]

-^- precedence constraint

Figure 2: Consistency with respect to precedence constraints.

disjunctive nature of these constraints. Whenever a resource is allocated to an
operation over some time interval, a "forward checking" mechanism [Haralick
80]checks the set of remaining possible reservations of other operations requiring
that same resource, and removes those reservations that would conflict with the
new assignment, as first proposed in [LePape 87] (See Figure 3).

3. Additional consistency checks with respect to capacity constraints: Additionally,
our default consistency enforcing mechanism checks that no two unscheduled
operations require overlapping resource/time intervals. An example of such a
situation is illustrated in Figure 4, where two operations requiring the same
resource, Oi and Ojt rely on the availability of overlapping time intervals, namely
the intervals between their respective latest start times and earliest finish times
([lsti,eftj] and [lstj,eftj]). This additional consistency mechanism has been shown to
often increase search efficiency, while only resulting in minor computational
overheads [Sadeh 91].

Variable/Value Ordering Heuristics: The default variable/value ordering heuristics used by
our search procedure are the Operation Resource Reliance (ORR) variable ordering heuristic

B8

03 5 R3

Before propagation: [7,15]
After propagation: [10,15]

/".

Ill

scheduled to start at time 6

capacity constraint

Figure 3: Forward consistency checks with respect to capacity constraints.

est* 1st* est1

i i J

oversubscribed
interval

1st1 eft* eft1 1ft* Ift1

J i J i J
time

earliest possible reservation

latest possible reservation

time interval absolutely required by the operation,
whatever its start time

Figure 4: Detecting situations where two unscheduled operations requiring the same
resource are in conflict.

B9

and Filtered Survivable Schedules value ordering heuristic described in [Sadeh 91]. The ORR
variable ordering heuristic aims at reducing backtracking by first scheduling difficult operations,
namely operations whose resource requirements are expected to conflict with those of other
operations. The FSS value ordering heuristic is a least constraining value ordering heuristic. It

attempts to further reduce backtracking by selecting reservations that are expected to be
compatible with a large number of schedules.

These default heuristics have been reported to outperform several other schemes described in
the literature, both generic CSP heuristics and specialized heuristics designed for similar
scheduling problems [Sadeh 91, Sadeh 92]. They seem to provide a good compromise between
the efforts spent enforcing consistency, ordering variables, or ranking assignments for a variable
and the actual savings obtained in search time. Nevertheless, the job shop CSP is NP-complete
and, hence, these efficient procedures are not sufficient to guarantee backtrack-free search.

The remainder of this paper describes new backtracking schemes that help the system recover
from deadend states. We show that, when the default consistency enforcing mechanisms and/or
variable ordering heuristics are not sufficient to steer clear of deadends, look-back mechanisms
can be devised that modify these schemes so as to avoid repeating past mistakes (i.e.so as to
avoid reaching similar deadend states).

4. Dynamic Consistency Enforcement (DCE)
Backtracking is generally an indication that the default consistency enforcing scheme and/or

variable/value ordering heuristics used by the search procedure are insufficient to deal with the
subproblems at hand. Consequently, if search keeps on relying on the same default mechanisms
after reaching a deadend state, it is likely to start thrashing. Experiments reported in [Sadeh
91, Sadeh 92], in which search always used the same set of consistency enforcing procedures and
variable/value ordering heuristics, clearly illustrated this phenomenon. Search in these
experiments exhibited a dual behavior. The vast majority of the problems fell in either of two
categories: a category of problems that were solved with no backtracking whatsoever (by far the
largest category) and a category of problems that caused the search procedure to thrash.

Theoretically, thrashing could be eliminated by enforcing full consistency in each search state.
Clearly, such an approach is impractical as it would amount to performing a complete search.
Instead, our approach involves (1) heuristically identifying one or a few small subproblems that
are likely to be at the source of the conflict, (2) determining how far to backtrack by enforcing
full consistency among the variables in these small subproblems, and (3) recording conflict
information for possible reuse in future backtracking episodes. This approach is operationalized
in the context of a backtracking scheme called Dynamic Consistency Enforcement (DCE). Given
a deadend state and a history of earlier backtracking episodes within the same search space (i.e.
while working on the same problem), this technique dynamically identifies small critical
resource subproblems expected to be at the source of the current deadend. DCE then backtracks,
undoing assignments in a chronological order, until a search state is reached, within which

BIO

consistency has been fully restored in each critical resource subproblem (i.e. consistency with
respect to capacity constraints in these subproblems). Experimental results reported in Section 7
suggest that often, by selectively checking for consistency in small resource subproblems, DCE
can quickly recover from deadends. The remainder of this section further describes the
mechanics of this heuristic.

4.1. Identifying Critical Resource Subproblems
The critical resource subproblems used by DCE consist of groups of operations participating in

the current conflict along with groups of critical operations identified during earlier backtracking
episodes involving the same resources. Below, we refer to the group of (unscheduled)
operations identified by the default consistency enforcing mechanism as having no possible
reservations left as the Partial Conflicting Set of operations (PCS). In order to restore
consistency, the search procedure needs to at least go back to a search state in which each PCS
operation has one or more possible reservations5. DCE attempts to identify such additional
operations by maintaining a group of critical resource subproblems identified during earlier
backtracking episodes. Below, we refer to this data structure as the Former Dangerous Groups
of operations (FDG). Details on how this data structure is created and maintained are provided in
Subsection 4.3.

For each capacity constraint violation among operations in the PCS, DCE checks the FDG data
structure and retrieves all related resource subproblems. A resource subproblem in the FDG is
considered related to a capacity constraint violation in the PCS if, in an earlier backtracking
episode, operations in that resource subproblem were involved in a capacity constraint violation
on the same resource and over a "close" time interval. A system parameter is used to determine
if two resource conflicts are "close". In the experiments reported at the end of this paper, two
conflicts were considered close if the distance separating them was not greater than twice the
average operation duration. Related critical subproblems identified by inspecting the FDG data
structure are then merged with corresponding operations in the PCS to form a new set of one or
more critical resource subproblems, which we refer to as the as the Dangerous Group of
operations (DG) for the conflict at hand. Like the FDG, the DG is organized in subgroups of
resource subproblems consisting of operations contending for the same resource over close or
overlapping time intervals. While backtracking, operations that are unscheduled are inserted in
the DG, either by being added to existing resource subproblems or by creating new resource
subproblems.

5Clearly, this is not guaranteed to be sufficient, as other operations may also contribute to the conflict:

Bll

4.2. Backtracking While Selectively Enforcing Consistency
Once the initial DG has been identified, DCE backtracks, undoing assignments in a

chronological order, until it reaches a search state in which consistency is restored within each of
the resource subproblems defined by operations in the DG6. This is done by enforcing full

consistency with respect to capacity constraints in each of the resource subproblems in the DG.
As long as conflicts are detected, the procedure continues to backtrack and unscheduled
operations are inserted into existing or new resource subproblems in the DG. While restoring
consistency within each of these resource subproblems is a necessary condition to backtrack to a
consistent search state, it is not always a sufficient one. In other words, the effectiveness of DCE
critically depends on its ability to heuristically focus on the right resource subproblems7.

Because full consistency checking can be expensive on large subproblems, if a resource
subproblem in the DG becomes too large, k-consistency is enforced instead of full-consistency,
where k is a parameter of the system [Freuder 82]. In the experiments reported at the end of this
paper, k was set to 4. At the end of a backtracking episode, the DG has maximum size, call it
DGmax. Assuming that the procedure was able to backtrack to a consistent search state, DGmax

is expected to contain all the operations at the origin of the deadend8 and often more. DGmax is
then saved for later use in the FDG data structure. Additional details regarding the management
of this data structure are provided in the next subsection. If a related backtracking episode is
later encountered by the system, DGmax can be retrieved and combined with the PCS of this new
episode.

4.3. Storing Information About Past Backtracking Episodes
The purpose of the Former Dangerous Groups of operations (FDG) maintained by the system

is to help determine more efficiently and more precisely the scope of each deadend by focusing
on critical resource subproblems. Each group of operations in the FDG consists of operations
that are in high contention for the allocation of a same resource. Accordingly, whenever, a
conflict is detected that involves some of the operations in one group, the backtracking procedure
checks for consistency among all operations in that group.

The groups of operations in the FDG are built from the Dangerous Groups (DGs) obtained at
the end of previous backtracking episodes (DGmax). Indeed, whenever a backtracking episode is
completed, DGmax is expected to contain all the conflicting operations at the origin of this
episode. Generally, DGmax may involve one or several resource subproblems (i.e. groups of

6Additional details on this procedure, including pseud-code can be found in [Sadeh 94a]

7Note that DCE is not expected to be very effective at recovering from complex conflicts involving interactions
between multiple resource subproblems. A heuristic which is often more effective for these complex conflicts is
described in Section 6.

"Clearly, while this is not guaranteed, experimental results suggest that this is often the case.

B12

operations requiring the same resource). Each one of these subproblems is merged with related
subproblems currently stored in the FDG. If there is no related group in FDG, the new group is
separately added to the data structure. Finally, as operations are scheduled, they are removed
from the FDG.

4.4. An Example
Figure 5 illustrates the behavior of DCE on the small scheduling problem introduced in Figure

1. After scheduling operations 02 and 0\ on resource /?2, the procedure detects that operation 0\
has no possible reservations left. Given that the FDG data structure is initially empty (no prior
backtracking episode), we have PCS=DG= [O]}. The procedure unschedules the most recently
scheduled operation, namely 0\, and inserts it in DG together with operation 0\, as both of these
operations require the same resource. At this point, DCE enforces full consistency with respect
to capacity constraints between these two operations9 and finds that, after consistency checking,
the operations still admit some possible reservations. This marks the end of the first backtracking
episode. The procedure saves the current DG in FDG, for possible reuse, then schedules
operation 0\ at its next best available start time10, namely start time 6. In the process, 0\ is
removed from the FDG. Another conflict is detected in this new search state, which marks the
beginning of a second backtracking episode. This time the consistency enforcing procedure finds
that operation Ox has no possible reservations left (i.e. PCS= { 02 }). Using the FDG, the system
adds operation 03 to the group of dangerous operations, DG= { 02,03}. Accordingly, this time,
when it unschedules operation 0\, DCE enforces full consistency11 with respect to capacity

constraints in DG={ 0\,o\,0\). When it finds that the current search state is still inconsistent,
DCE proceeds and unschedules operation 0A

2, thereby returning to the root search state with
DG= {Ol

2,o\,0\,0\}. In this search state, full consistency with respect to capacity constraints
between operations in DG indicates that the problem is infeasible. In total, the system only
generates three search states to find that the problem is infeasible. In contrast, a total of 50
search states is required for the same small problem, when relying on a simple chronological
backtracking procedure. The example also shows how the use of the Formerly Dangerous
Groups (FDG) of operations helps the system identify critical resource subproblems. If it was not
for this mechanism, the procedure would not detect an inconsistency when it comes back to
Depth 1 in the second backtracking episode, as it would only check for consistency between 0\
and 0\. More generally, experimental results presented in Section 7 show that DCE often results
in important increases in search efficiency and important reductions in computation time.

9This is equivalent to 2-consistency or arc-consistency, given that there are only 2 operations [Freuder 82].

10Actually, start time 6 is not the start time picked by our reservation ordering heuristic. The system was
manually forced to pick this value to make the example more interesting.

11 This time the system enforces 3-consistency, given that there are 3 operations in DG.

B13

>> Depth: 0, Number of states visited: 0, FDG=0
4

02 is scheduled between 14 and 20 on R2

» Depth: 1, Number of states visited: 1, FDG=<Z
2

02 is scheduled between 9 and 14 on R2

» Depth: 2, Number of states visited: 2, FDG = 0
3

Conflict detected: 03 has no possible reservations left:
3

PCS = DG={[0-i]} [Beginning of first backtracking episode]
2

02 is unscheduled

>> Depth: 1, Number of states visited: 2, FDG-0
DG=[[0\,0\}}
Full consistency checking with respect to capacity constraints in DG:

Remaining possible start times:
o\: {3,4,5,6}

0\: {8,9,10,11}

FDG={[o\,o\]} [End of first backtracking episode]
2

02 is scheduled between 6 and 11 on R2

» Depth: 2, Number of states visited: 3, FDG={[o\]}

Conflict detected: 02 has no possible reservations left:

PCS=[[02]}, DG=[[02,Oj]} [Beginning of second backtracking episode]
2

02 is unscheduled

» Depth: 1, Number of states visited: 3, FDG={[o\}}

DG={{02,0
2

2,0\]}
Full consistency checking with respect to capacity constraints in DG:
Conflict detected

4
02 is unscheduled

>> Depth: 0, Number of states visited: 3, FDG={[o\])

DG={[02,0
2

2,0l,02]}
Full consistency checking with respect to capacity constraints in DG:
Conflict detected
unfeasible Problem [End of second backtracking episode]

Figure 5: An edited trace illustrating the DCE procedure.

B14

4.5. Additional "Watch Dog" Consistency Checks
Because groups of operations in the FDG are likely deadend candidates, our system further

performs simple "watch dog" checks on these dynamic groups of operations.

More specifically, for each group G of operations in FDG, the system performs a rough check
to see if the resource can still accommodate all the operations in the group. This is done using
redundant constraints of the form:

Maxilsti+du'^O1^ G)-Min{est\,0\e G) > Y du\
0(e G

where est\ and lst\ are respectively the earliest and latest possible start times of 0\ in the current
search state.

Whenever such a constraint is violated, an inconsistency has been detected. Though very
simple and inexpensive, these checks enable to catch inconsistencies involving large groups of
operations that would not be immediately detected by the default consistency mechanisms.
Clearly, some inconsistencies can still escape these rough checks.

While backtracking, the same "watch dog" checks can be used prior to enforcing full
consistency with respect to capacity constraints in the critical resource subproblems in DG. This
can significantly reduce computation time. For instance, in the second backtracking episode in
Figure 5, these simple checks are sufficient to detect inconsistencies at depth 1 and 0. For
example, at depth 1, where DG = {[0\,0\,0\]},

Max{lst\+du|,Oje DG)-Min(est\,0\z DG)=14-3 = 11,

while Y du\= 12.
Oi 6 DG

5. Learning Ordering From Failures (LOFF)
Often, reaching a deadend state is also an indication that the default variable ordering was not

adequate for dealing with the subproblem at hand. Typically, the operations participating in the
deadend turn out to be more difficult to schedule than the ones selected by the default variable
ordering heuristic. In other words, it is often a good idea to first schedule the operations
participating in the conflict that was just resolved. Learning Ordering From Failure (LOFF) is
an adaptive procedure that overrides the default variable ordering in the presence of conflicts.

After recovering from a deadend, namely after backtracking all the way to an apparently
consistent search state, LOFF uses the Partial Conflicting Set (PCS) of the deadend to reorganize
the order in which operations will be rescheduled and make sure that operations in the PCS are
scheduled first. This is done using a quasi-stack, QS, on which operations in the PCS are pushed
in descending order of domain size, i.e. PCS operations with a large number of remaining
reservations are pushed first on the quasi-stack. When the quasi-stack is empty, the procedure
uses its default variable ordering heuristic, as described in Section 3. However, when QS

B15

contains some operations, the procedure first schedules these operations, starting with the ones
on top of the quasi-stack, namely those QS operations with the smallest number of remaining
reservations.

If a candidate operation is already in QS, i.e. if it is encountered for a second time, it is pushed
again on QS as if it had a smaller domain. This orders operations based on the recency of the
conflict in which they were last involved and based on their number of remaining reservations.

6. An Incomplete Backjumping Heuristic
Traditional backtrack search procedures only undo decisions that have been proven to be

inconsistent. Proving that an assignment is inconsistent with others can be very expensive,
especially when dealing with large conflicts. Graph-based backjumping and N-th order
shallow/deep learning attempt to reduce the complexity of full-blown dependency-directed
backtracking by either simplifying the process of identifying inconsistent decisions (e.g. based
on the topology of the constraint graph) or restricting the size of the conflicts that can be
detected. The Dynamic Consistency Enforcement (DCE) procedure described in Section 6 also
aims at reducing the complexity of identifying the source of a conflict by dynamically focusing
its effort on small critical subproblems. Because these techniques focus on smaller conflicts, they
all have problems dealing with more complex conflicts involving a large number of variables12.
It might in fact turn out that the only effective way to deal with more complex conflicts is by
using heuristics that undo decisions not because they have been proven inconsistent but simply
because they appear overly restrictive. This is the approach taken in the heuristic described in
this section. Clearly, the resulting search procedure is no longer complete and may fail to find
solutions to feasible problems, hence the name of Incomplete Backjumping Heuristic (IBH).

Texture measures such as the ones described in [Fox 89] could be used to estimate the
tightness of different search states, for instance, by estimating the number of global solutions
compatible with each search state. Clearly, a search state whose partial solution is compatible
with a large number of global solutions is loosely constrained, whereas one compatible with a
small number of global solutions is tightly constrained. Assignments leading to much tighter
search states would be prime candidates to be undone when a complex conflict is suspected. The
Incomplete Backjumping Heuristic (IBH) used in this study is simpler and, yet, often seems to be
sufficient. Whenever the system starts thrashing, this heuristic backjumps all the way to the first
search state and simply tries the next best value (i.e. reservation) for the critical operation in that
state (i.e. the first operation selected by the variable ordering heuristic). EBH considers that the
search procedure is thrashing, and hence that it is facing a complex conflict, when more than 8
assignments had to be undone since the last time the system was thrashing or since the procedure
began, if no thrashing occurred earlier. 6 is a parameter of the procedure.

Clearly, there are some conflicts involving large numbers of variables that are easy to catch, as illustrated by the
watch dog checks described in Section 4.

B16

7. Empirical Evaluation
This section reports the results of empirical studies conducted to assess the performance of the

look-back schemes presented in this paper. The first study reports performance on a suite of 60
benchmark problems introduced in [Sadeh 91]. This is followed by a more detailed study
comparing the performance of the first two look-back schemes introduced in this paper
(DCE&LOFF) against that of second-order deep learning [Dechter 89a] and chronological
backtracking. Finally, we compare the performance of the complete search procedure relying on
DCE&LOFF with that of an incomplete procedure combining all three of the look-back schemes
presented in this paper (DCE&LOFF&IBH).

7.1. Performance Evaluation On a First Suite of Problems
A first set of experiments was run on a testsuite of 60 job shop scheduling problems first

introduced in [Sadeh 91]. In the experiments reported in [Sadeh 91], the default variable and
value ordering heuristics used in our study (i.e. the ORR and FSS heuristics described in Section
3) were shown to outperform a variety of other variable/value ordering combinations, though
they still failed to solve 8 out of the 60 problems. In contrast, the results presented below indicate
that the combination of our three look-back techniques (DCE&LOFF&IBH) can efficiently solve
all 60 problems in the testsuite.

Specifically, the testsuite consists of 6 groups of 10 problems each. Each problem requires
scheduling 10 jobs on 5 resources and involves a total of 50 operations (5 operations per job).
Each job has a linear process routing specifying a sequence in which it has to visit each one of
the five resources. This sequence varies from one job to another, except for a predetermined
number of bottleneck resources (one or two in these experiments) which are always visited after
the same number of steps. The six groups of problems were obtained by varying two
parameters:

1. the number of apriori bottlenecks (BTNK): one (BTNK=1) or two (BTNK=2), and

2. the spread (SP) of the release and due dates between which each job has to be
scheduled: wide (SP=W), narrow (SP=N), or null (SP = 0).

The SP parameter and the operation durations have been adjusted so that bottleneck utilization
remains close to 100% over most of the span of each problem. In these problems, each operation
had slightly over 100 possible start times (i.e. values) after application of the consistency
enforcing techniques in the initial search state. Additional details on these problems can be
found in [Sadeh 91]13.

Table 1 compares the performance of the following two procedures:
1. a basic depth-first procedure relying on chronological backtracking and on the

13The problems are also accessible via anonymous ftp to cimds3.cimds.ri.cmu.edu, where they can be found in
/usr/sadeh/public/csp_test_suite. A README file details the content of the various files in the directory.

B17

default consistency enforcing techniques and variable/value ordering heuristics
described in Section 3. This is also the procedure reported to perform best in
[Sadeh91].

2. the same procedure enhanced with the DCE, LOFF and IBH look-back schemes
presented in this paper.

For each of the 60 problems, search was stopped if it required more than 500 search states.
Performance in each problem category is reported along three dimensions:

1. Search efficiency: the average ratio of the number of operations to be scheduled
over the total number of search states that were explored. In the absence of
backtracking, only one search state is generated for each operation, and hence
search efficiency is equal to 1.

2. Number of experiments solved in less than 500 search states.

3. CPU seconds: this is the average CPU time required to solve a problem. When a
solution could not be found, this time was approximated as the CPU time taken to
explore 500 search states (this approximation was only used for Chronological
Backtracking, since DCE&LOFF&IBH solved all problems). All CPU times were
obtained on a DECstation 5000 running Knowledge Craft on top of Allegro
Common Lisp. Experimentation with a variation of the system written in C
indicates that the search procedure would run about 30 times faster if
reimplemented in this language [Sadeh 94b].

The results indicate that DCE&LOFF&IBH consistently outperformed the chronological
backtracking scheme in terms of CPU time, search efficiency and number of problems solved.
On the easier problems (SP=W), both techniques solved all 20 problems in approximately the
same amount of time. On the more difficult problems (SP=N and SP=0), DCE&LOFF&IBH
clearly dominated chronological backtracking. In particular, on problems with SP=0 and BK=1,
DCE&LOFF&IBH solved 40% more problems than the chronological backtracking scheme and,
on average, proved to be 3.5 times faster. Overall, while chronological backtracking failed to
solve 8 problems out of 60, DCE&LOFF&IBH efficiently solved all 60 problems, and, on
average, was almost twice as fast as the procedure with chronological backtracking. Had we not
stopped the chronological backtracking procedure after 500 search states, the speedup achieved
by DCE&LOFF&IBH would be even more significant. In fact, based on a couple of problems
for which the chronological procedure was allowed to expand a larger number of search states, it
appears that problems that are not solved in 500 states often require thousands more to be solved
(with chronological backtracking).

7.2. Further Evaluation
To further evaluate our look-back schemes, we picked the most difficult problem category in

the testsuite, namely the category for which the default consistency enforcing procedure and
variable/value ordering heuristics are least effective (SP=0) and generated an additional 80
scheduling problems, 40 with BTNK=1 and 40 with BTNK=2. The SP=0 problem category was
also the most difficult one for all the other combinations of variable and value ordering heuristics

B18

Chronological DCE&LOFF&IBH

SP=W
BTNK=1

Search Efficiency 0.96 0.96

Nb. exp. solved
(out of 10)

10 10

CPU seconds 88.5 90.5

SP=W
BTNK=2

Search Efficiency 0.99 0.99

Nb. exp. solved
(out of 10)

10 10

CPU seconds 93 95

SP=N
BTNK=1

Search Efficiency 0.78 0.91

Nb. exp. solved
(out of 10)

8 10

CPU seconds 331.5 106

SP=N
BTNK=2

Search Efficiency 0.87 0.93

Nb. exp. solved
(out of 10)

9 10

CPU seconds 184 119.5

SP=0
BTNK=1

Search Efficiency 0.73 0.88

Nb. exp. solved
(out of 10)

7 10

CPU seconds 475 134.5

SP=0
BTNK=2

Search Efficiency 0.82 0.84

Nb. exp. solved
(out of 10)

8 10

CPU seconds 300.5 226.5

Overall
Performance

Search Efficiency 0.86 0.92

Nb. exp. solved
(out of 60)

52 60

CPU seconds 245.5 128.7

Table 1: Comparison of Chronological Backtracking and DCE&LOFF&IBH on 6 sets
of 10 job shop problems.

tested in the study reported in [Sadeh 91]. It corresponds to problems in which all jobs are
released at a common date and need to be completed by a common due date. Among the
resulting 80 problems, we only report performance on those problems for which the default
schemes were not sufficient to guarantee backtrack-free search14. This leaves 16 scheduling
problems with one bottleneck (SP=0 and BTNK=1), and 15 with two bottlenecks (SP=0 and

14Clearly, performance on problems that do not require backtracking is of no interest, since our backtracking
schemes never get invoked, and hence CPU time remains unchanged.

B19

BTNK=2).

Below, we successively report the results of two studies. The first one compares the
performance of three complete backtracking schemes: chronological backtracking, 2nd-order

deep learning, and the procedure combining the DCE and LOFF backtracking heuristics15. The
second study compares the complete search procedure using DCE and LOFF with the incomplete
search procedure combining DCE, LOFF and IBH.

Table 2: Results of One-Bottleneck Experiments.

Exp.
No. Chronological DCE & LOFF Deep Learning

No. of CPU Result No. of CPU Result No. of CPU Result

1
Nodes (sec) Nodes (sec) Nodes (sec
500 1427 F 122 1232 S* 500 5756 F

2 500 1587 F 500 1272 F 500 5834 F
3 74 148 S 63 117 S 25 36000 F
4 69 152 S 52 120 S 69 391 S
5 500 1407 F 65 134 S 500 11762 F
6 500 1469 F 500 1486 F 500 8789 F
7 500 1555 F 59 130 S 500 9681 F
8 500 1705 F 41 145 s* 500 9560 F
9 53 108 S 53 102 s 53 122 S

10 500 1529 F 500 1536 F 500 9114 F
11 500 1460 F 85 1800 F 500 14611 F
12 500 1694 F 500 1131 F 500 21283 F
13 51 109 S 51 81 S 51 88 S
14 500 1762 F 63 138 s 500 18934 F
15 500 1798 F 69 142 s 500 9600 F
16 500 1584 F 500 1183 F 65 36000 F

S: Solved ; F: Failure; S*: Proved infeasible
Time Limit: 1800 sec (Except Deep Learning)
Node Limit: 500

The results of the first study comparing chronological backtracking, 2nd-order deep learning
[Dechter 89a] and the DCE & LOFF procedures advocated in Section 4 and 5 are summarized in

Table 2 and 3. The results reported here were obtained using a search limit of 500 nodes and a
time limit of 1800 seconds (except for deep learning, for which the time limit was increased to
36,000 seconds16). All CPU times reported below were obtained on a DECstation 5000 running
Knowledge Craft on top of Allegro Common Lisp. As already indicated above, comparison
between C and Knowledge Craft implementations of similar variable and value ordering
heuristics indicates that the code would run about 30 times faster in C [Sadeh 94b].

On the one-bottleneck problems, chronological backtracking solved only 4 problems out of 16
(See Table 2). Interestingly enough, deep learning showed no improvement over chronological
backtracking either in the number of problems solved or in CPU time. As a matter of fact, deep

15Besides the experiments reported below, additional experiments were performed to assess the benefits of using
DCE and LOFF separately. These experiments show that both techniques contribute to the improvements reported in
this section.

16This was motivated by the fact that our implementation of deep learning may not be optimal.

B20

learning was even too slow to find solutions to some of the problems solved by chronological
backtracking. This is attributed to the fact that the constraints in job shop scheduling are more
tightly interacting than those in the zebra problem, where the improvement of deep learning over
chronological backtracking was originally ascertained [Dechter 89a]. On the other hand, DCE &
LOFF solved 10 problems out of 16 (2 out of these 10 problems were successfully proven
infeasible). As expected, by focusing on a small number of critical subproblems, DCE & LOFF
is able to discover larger more useful conflicts than 2nd-order deep learning, while requiring
only a fraction of the time. Another observation is that DCE & LOFF expanded fewer search
states than chronological backtracking for the problems that chronological backtracking solved.
However, each of the DCE & LOFF expansions took slightly more CPU time, due to the higher
level of consistency enforcement.

Table 3: Results of Two-bottleneck Experiments

Exp.
No. Chronological DCE & LOFF Deep Learning

No. of CPU Result No. of CPU Result No. of CPU Result

1
Nodes (sec) Nodes (sec) Nodes (sec)

500 1139 F 113 1800 F 18 36000 F
2 500 1444 F 425 1800 F 115 36000 F
3 84 175 S 109 202 S 84 811 S
4 56 123 S 56 112 S 56 213 S
5 51 101 S 51 113 S 13 36000 F
6 500 1531 F 321 1800 F 328 36000 F
7 500 1775 F 500 1357 F 500 2793 F
8 52 102 S 52 115 S 33 36000 F
9 500 1634 F 247 974 S 500 1519 F
10 500 1676 F 91 1800 F 26 36000 F
11 66 163 S 59 104 S 66 2240 S
12 56 139 S 58 104 S 58 281 s
13 54 129 S 52 91 s 54 28900 s
14 500 1676 F 346 1800 F 500 9031 F
15 500 1522 F 324 1800 F 296 36000 F

S: Solved ; F: Failure; S*: Proved infeasible
Time Limit : 1800 sec. (36000 sec. for Deep Learning)
Node Limit : 500

Results for the set of two-bottleneck problems are reported in Table 3. Similar results are
observed here again: deep learning shows no improvement over chronological backtracking and
seems significantly slower. The difference between chronological backtracking and
DCE&LOFF is not as impressive as in the first set of experiments. As can be seen in Table 3,
chronological backtracking solved 7 out of 15 problems, whereas DCE & LOFF solved 8. On the
problems solved by both chronological backtracking and DCE & LOFF, DCE & LOFF turned
out to be slightly faster overall. These less impressive results suggest that the presence of
multiple bottlenecks often introduces more complex conflicts. Results presented in the following
subsection suggest that in this case incomplete backtracking procedures such as the one entailed
by the IBH heuristic are often much more effective.

B21

7.3. Complete vs. Incomplete Search Procedures

Table 4: Results of One-bottleneck Experiments.

Exp.
No. DCE & LOFF DCE & LOFF & IBH

No. of CPU Result No. ofi CPU Result

1
Nodes (sec) Nodes (sec)
122 1232 S* 350 1800 F

2 500 1272 F 203 1124 S
3 63 117 S 63 123 S
4 52 120 s 52 116 s
5 65 134 s 65 144 s
6 500 1486 F 127 424 s
7 59 130 S 59 125 s
8 41 145 S* 457 1800 F
9 53 108 S 53 100 S

10 500 1536 F 67 170 S
11 85 1800 F 74 170 S
12 500 1131 F 164 616 S
13 51 81 S 51 92 s
14 63 138 S 63 149 s
15 69 142 S 69 158 s
16 500 1183 F 156 524 s

S: Solved ;
Time Limit:

F: Failure; S*: Proved infeasible
1800 sec. Node Limit: 500

Table 5: Results of Two-bottleneck Experiments

Exp.
No. DCE & LOFF DCE & LOFF & IBH

No. of CPU Result No. of CPU Result

1
Nodes (sec) Nodes (sec)
113 1800 F 151 456 S

2 425 1800 F 371 1780 s
3 109 202 S 95 210 s
4 56 112 S 56 108 s
5 51 113 S 51 97 s
6 321 1800 F 420 1800 F
7 500 1357 F 159 534 s
8 52 115 S 52 96 s
9 247 974 S 423 1705 s

10 91 1800 F 440 1800 F
11 59 104 S 59 113 S
12 58 104 S 58 112 S
13 52 91 s 52 102 S
14 346 1800 F 239 512 S
15 324 1800 F 73 195 S

S: Solved ; F: Failure; S*: Proved infeasible
Time Limit: 1800 sec. Node Limit: 500

Table 4 and 5 compare the performance of the complete search procedure based on DCE &
LOFF against that of an incomplete search procedure using DCE & LOFF in combination with
the IBH heuristic described in Section 6. While DCE & LOFF could only solve 10 out of 16
one-bottleneck problems and 8 out 15 two-bottleneck problems, DCE & LOFF combined with
EBH solved 14 one-bottleneck problems and 13 two-bottleneck problems. The only one-
bottleneck problems that were not solved by DCE & LOFF & IBH are the two problems
identified as infeasible by the complete procedure with DCE & LOFF (see Table 2). This is
hardly a surprise. While the addition of IBH to DCE & LOFF enables the search procedure to
solve a larger number of problems, it also makes the procedure incomplete (i.e. infeasible
problems can no longer be identified). Additional experiments combining IBH with a simple

B22

chronological backtracking scheme produced results that were not as good as those obtained by
DCE & LOFF & IBH, indicating that both EBH and DCE & LOFF contribute to the performance
improvement observed in Table 4 and 5.

Results on two-bottleneck problems (See Table 5) also suggest that the impact of IBH is
particularly effective on these problems. This is attributed to the fact that two-bottleneck
problems give rise to more complex conflicts. Identifying the assignments participating in these
more complex conflicts might simply be too difficult for any exact backtracking scheme. Instead,
because it can undo assignments that are not provably wrong but simply appear overly
restrictive, IBH seems more effective at solving these problems.

8. Concluding Remarks
We have presented three look-back techniques for the job shop scheduling CSP:

1. Dynamic Consistency Enforcement (DCE), a heuristic that dynamically focuses on
restoring consistency within small critical subproblems,

2. Learning Ordering From Failure (LOFF), a technique that modifies the order in
which variables are instantiated based on earlier conflicts, and

3. Incomplete Backjumping Heuristic (IBH) which, when thrashing occurs, can undo
assignments that are not provably inconsistent but appear overly restrictive.

The significance of this research is twofold:
1. Job shop scheduling problems with non-relaxable time windows have multiple

applications (e.g. manufacturing, space, transportation, health care, etc.). We have
shown that our look-back heuristics combined with powerful techniques that we
had previously developed (1) further reduce the average complexity of backtrack
search, and (2) enable this search procedure to efficiently solve problems that could
not be solved otherwise due to excessive computational requirements. While the
results reported in this study were obtained on problems that require finding a
feasible schedule, the backtracking schemes presented in this paper can also be
used on optimization versions of the scheduling problem, such as the Just-In-Time
job shop scheduling problems described in [Sadeh 94b].

2. This research also points to shortcomings of dependency-directed backtracking
schemes advocated earlier in the literature. In particular, comparison with 2nd-
order deep learning indicates that this technique failed to improve performance on
our set of job shop scheduling problems. More generally, N-th order deep and
shallow learning techniques often appear inadequate when applied to job shop
scheduling problems because they rely solely on constraint size to decide whether
or not to record earlier failures. When these techniques limit themselves to small-
size conflicts, they often fail to record some important constraints; when they
consider larger conflicts, their computational complexity becomes prohibitive. A
more general weakness of traditional backtracking schemes has to do with the fact
that they never undo assignments unless they can be proven to be at the source of
the conflict. When dealing with large complex conflicts, proving that a particular

B23

assignment should be undone can be very expensive. Instead, our experiments
suggest that, when thrashing cannot easily be avoided, it is often a better idea to
use incomplete backjumping heuristics that undo decisions simply because they
appear overly restrictive.

B24

References

[Badie et al 90]

[Bitner 75]

[Burke 89]

[Dechter 88]

[Dechter 89a]

[Dechter 89b]

[Doyle 79]

[Fox 89]

[Freuder 82]

[Garey 79]

C. Badie and G. Bel and E. Bensana and G. Verfaillie.
Operations Research and Artificial Intelligence Cooperation to solve

Scheduling Problems.
In First International Conference on Expert Planning Systems. 1990.

J.R. Bitner and E.M. Reingold.
Backtrack Programming Techniques.
Communications of the ACM 18(11):651-655, 1975.

Peter Burke and Patrick Prosser.
A Distributed Asynchronous System for Predictive and Reactive Scheduling.
Technical Report AISL-42, Department of Computer Science, University of

Strathclyde, 26 Richmond Street, Glasgow, GIIXH, United Kingdom,
October, 1989.

Rina Dechter and Judea Pearl.
Network-Based Heuristics for Constraint Satisfaction Problems.
Artificial Intelligence 34(1): 1-38, 1988.

Rina Dechter.
Enhancement Schemes for Constraint Processing: Backjumping, Learning,

and Cutset Decomposition.
Artificial Intelligence 41:273-312, 1989.

Rina Dechter and Itay Meiri.
Experimental Evaluation of Preprocessing Techniques in Constraint

Satisfaction Problems.
In Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence, pages 271-277. 1989.

John Doyle.
A Truth Maintenance System.
Artificial Intelligence 12(3):231-272, 1979.

Mark S. Fox and Norman Sadeh and Can Baykan.
Constrained Heuristic Search.
In Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence, pages 309-315. 1989.

E.C. Freuder.
A Sufficient Condition for Backtrack-free Search.
Journal of the ACM 29(l):24-32, 1982.

M.R. Garey and D.S. Johnson.
Computers and Intractability: A Guide to the Theory of W-Completeness.
Freeman and Co., 1979.

B25

[Gaschnig 79]

[Golomb65]

[Haralick 80]

[Johnson 74]

[LePape 87]

[Mackworth 85]

[Purdom 83]

[Sadeh 88]

[Sadeh 89]

John Gaschnig.
Performance Measurement and Analysis of Certain Search Algorithms.
Technical Report CMU-CS-79-124, Computer Science Department, Carnegie

Mellon University, Pittsburgh, PA 15213, 1979.

Solomon W. Golomb and Leonard D. Baumert.
Backtrack Programming.
Journal of the Association for Computing Machinery 12(4):516-524, 1965.

Robert M. Haralick and Gordon L. Elliott.
Increasing Tree Search Efficiency for Constraint Satisfaction Problems.
Artificial Intelligence 14(3):263-313, 1980.

L.A. Johnson and D.C. Montgomery.
Operations Research in Production Planning, Scheduling, and Inventory

Control.
Wiley, 1974.

Claude Le Pape and Stephen F. Smith.
Management of Temporal Constraints for Factory Scheduling.
Technical Report, The Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA 15213, 1987.
also appeared in Proc. Working Conference on Temporal Aspects in

Information Systems, Sponsored by AFCET and IFIP Technical
Committee TC8, North Holland Publishers, Paris, France, May 1987.

A.K. Mackworth and E.C. Freuder.
The Complexity of some Polynomial Network Consistency Algorithms for

Constraint Satisfaction Problems.
Artificial Intelligence 25(l):65-74, 1985.

Paul W. Purdom, Jr.
Search Rearrangement Backtracking and Polynomial Average Time.
Artificial Intelligence 21:117-133, 1983.

N. Sadeh and M.S. Fox.
Preference Propagation in Temporal/Capacity Constraint Graphs.
Technical Report CMU-CS-88-193, Computer Science Department, Carnegie

Mellon University, Pittsburgh, PA 15213, 1988.
Also appears as Robotics Institute technical report CMU-RI-TR-89-2.

N. Sadeh and M.S. Fox.
Focus of Attention in an Activity-based Scheduler.
In Proceedings of the NASA Conference on Space Telerobotics. January,

1989.

B26

[Sadeh 90] Norman Sadeh, and Mark S. Fox.
Variable and Value Ordering Heuristics for Activity-based Job-shop

Scheduling.
In Proceedings of the Fourth International Conference on Expert Systems in

Production and Operations Management, Hilton Head Island, S.C., pages
134-144. 1990.

[Sadeh 91] Norman Sadeh.
Look-ahead Techniques for Micro-opportunistic Job Shop Scheduling.
PhD thesis, School of Computer Science, Carnegie Mellon University, March,

1991.

[Sadeh 92] N. Sadeh and M.S. Fox.
Variable and Value Ordering Heuristics for Hard Constraint Satisfaction

Problems: an Application to Job Shop Scheduling.
Technical Report CMU-RI-TR-91-23, The Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA 15213, 1992.

[Sadeh 94a] Norman Sadeh, Katia Sycara, and Yalin Xiong.
Backtracking Techniques for the Job Shop Scheduling Constraint Satisfaction

Problem.
Artificial Intelligence Journal, 1994.
To appear in Special Issue on 'Planning and Scheduling'.

[Sadeh 94b] Norman Sadeh.
Micro-Opportunistic Scheduling: The MICRO-BOSS Factory Scheduler.
Intelligent Scheduling.
In Mark Fox and Monte Zweben,
Morgan Kaufmann Publishers, 1994, Chapter 4.

[Stallman 77] R. Stallman and G. Sussman.
Forward Reasoning and Dependency-directed Backtracking in a Sysem for

Computer-aided Circuit Analysis.
Artificial Intelligence 9:135-196, 1977.

[Sycara 91] Sycara, K. and Roth, S. and Sadeh, N. and Fox, M.
Distributed Constrained Heuristic Search.
IEEE Transactions on System, Man and Cybernetics 21(6), 1991.

[Walker 60] R.J. Walker.
An Enumerative Technique for a Class of Combinatorial Problems.
Combinatorial Analysis, Proc. Sympos. Appl. Math.
In R. Bellman and M. Hall,
American Mathematical Society, Rhode Island, 1960, pages 91-94, Chapter 7.

B27

Focused Simulated Annealing Search:
An Application to Job Shop

Scheduling

Norman M. Sadeh and Yoichiro Nakakuki
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper presents a simulated annealing search procedure developed to solve job
shop scheduling problems simultaneously subject to tardiness and inventory costs.
The procedure is shown to significantly increase schedule quality compared to mul-
tiple combinations of dispatch rules and release policies, though at the expense of
intense computational efforts. A meta-heuristic procedure is developed that aims at
increasing the efficiency of simulated annealing by dynamically inflating the costs as-
sociated with major inefficiencies in the current solution. Three different variations
of this procedure are considered. One of these variations is shown to yield significant
reductions in computation time, especially on problems where search is more likely to
get trapped in local minima. We analyze why this variation of the meta-heuristic is
more effective than the others.

This paper has been submitted for publication in the "Annals of Operations Re-
search" (special issue on Metaheuristics in Combinatorial Optimization) [25].

This research was supported, in part, by the Defense Advanced Research Projects
Agency under contract F30602-91-C-0016 and, in part, by an industrial grant from

NEC.

Cl

1 Introduction

Over the past several years, with the advent of ever more powerful computers, stochas-
tic procedures such as Simulated Annealing (SA) [14, 2] (and improved variations
exploiting Tabu Search principles [9, 10]) or Genetic Algorithms (GAs) [11] have at-
tracted the attention of a growing number of researchers. This interest has been fueled
by both experimental and theoretical results indicating that, if properly designed and if
given enough time, these procedures are often capable of finding near-optimal solutions
to complex optimization problems.

This paper presents results obtained using SA to find solutions to job shop schedul-
ing problems where the objective is to minimize the sum of weighted tardiness and
inventory costs (both work-in-process inventory and finished-goods inventory costs).
The model is particularly attractive as it is compatible with the Just-In-Time objective
of meeting customer demand in a timely yet cost-effective manner. In the scheduling
literature, this objective function is known to be irregular, as its value may sometimes
be decreased by delaying the execution of some operations [3]. As will be shown, this
property needs to be taken into account in the design of SA procedures for this class
of problems.

By reference to simpler problems (e.g. the one machine version of this problem),
this problem can easily be shown to be NP-hard [5, 6, 22, 23]. Surprisingly enough,
despite the "'attractiveness" of its modeling assumptions, this problem has been given
very little attention in the literature. Two notable exceptions are the work of Tom
Morton on resource-pricing heuristics in the context of the Sched-Star system [17] and
our earlier work on micro-opportunistic bottleneck-centered techniques in the context
of the Micro-Boss factory scheduling system [24].

The first part of this paper presents a SA procedure developed to solve job shop
scheduling problems subject to both tardiness and inventory costs. Experimental re-
sults are presented comparing the performance of our procedure with that of several
other scheduling heuristics. The results corroborate earlier studies performed on other
combinatorial optimization problems. They indicate that SA consistently produces
high quality solutions, often significantly outperforming other scheduling heuristics,
though at the expense of intensive computational efforts. In the second part of this pa-
per, we introduce "Focused Simulated Annealing" (FSA), a meta-heuristic procedure
that aims at improving the efficiency of SA search. The idea behind FSA is that by
dynamically inflating the costs associated with major inefficiencies in the existing so-
lution, it is possible to focus the procedure and force it to get rid of these inefficiencies.
By iteratively inflating costs in different subproblems, FSA can reduce the chances that
the procedure gets trapped in local minima. Three variations of this meta-heuristic are
considered that differ in the type of subproblems they rely on: job subproblems, re-
source subproblems, or operation subproblems. Experimental results comparing these
three variations of the meta-heuristic against the original SA procedure show that the

C2

job-based meta-heuristic significantly improves performance, especially on problems
where search is particularly likely to get caught in local minima. We further analyze
why this variation of the meta-heuristic is more effective than the others, trying to
shed some light on why, in general, some decompositions are likely to work better than
others for a given SA procedure.

The balance of this paper is organized as follows. Section 2 provides a formal defi-
nition of the job shop scheduling problem considered in this study. Section 3 presents a
SA search procedure developed for this problem. Section 4 reports experimental results
comparing the performance of the procedure against that of other scheduling heuris-
tics. The concept of Focused Simulated Annealing is introduced in Section 5 and three
variations of this meta-heuristic procedure are developed for the job shop scheduling
problem with tardiness and inventory costs. Performance of these meta-heuristics is
reported in Section 6. These results are further discussed and analyzed in Section 7.
Section 8 presents some concluding remarks.

2 The Job Shop Scheduling Problem with Tardiness and In-
ventory Costs

We consider a factory, in which a finite set of jobs, J = {J1J2, ■ ■ • ,jn}, has to be
scheduled on a finite set of resources, RES = {Ri,R,2, • • ■ ,i?m}- The jobs are assumed
to be known ahead of time and all resources are assumed to be available over the entire
scheduling horizon. Each job ji requires performing a set of manufacturing operations
Ol — {0[,02, ■ • • Ol

n } and, ideally, should be completed by a specific due date, ddi,
for delivery to a customer. Precedence constraints specify a complete order in which
operations in each job have to be performed. By convention, we assume that operation
0\ has to be completed before operation 0'i+1 can start (i = 1,2, ■ • ■, ra; — 1).

Each job ji has an earliest acceptable release date, erdi, before which it cannot start,
e.g. because the raw materials or components required by this job cannot be delivered
before that date. Each job also has a latest acceptable completion date (or deadline),
Icdi, by which it should absolutely be completed, e.g. because the customer would
otherwise refuse delivery of the order. For each job, we assume that erdi < dd\ < lcd\.
Furthermore, we assume that these constraints are loose enough to always allow for
the construction of a feasible schedule (i.e. we are not concerned with the detection of
infeasible problems).

This paper considers problems in which each operation 0\ requires a single resource
R\ € RES and the order in which a job visits different resources varies from one
job to another. Each resource can only process one operation at a time and is non-
preemptable. The duration du\ of each operation 0\ is assumed to be known.

The problem requires finding a schedule (i.e. a set of start times, st\, for all op-
erations, 0j) that satisfies all these constraints while minimizing the sum of tardiness

C3

costs and inventory costs of all the jobs.

Specifically, each job jt incurs a positive marginal tardiness cost tardi for each

unit of time that it finishes past its due date dd\. Marginal tardiness costs generally
correspond to tardiness penalties, interests on lost profits, loss of customer goodwill,
etc. The total tardiness cost of job ;'/, in a given schedule, is measured as: TARD1 =
tardt • MAX(0,Ci - ddt) where C, is the completion date of job jt. That is C/ =
stlni + dul

ni, where Ol
n(is the last operation of jt.

Inventory costs on the other hand can be introduced at the level of any operation
in a job. In our model, each operation 0\ can have its own non-negative marginal
inventory cost, in\. This is the marginal cost that is incurred for each unit of time
that spans between the start time of this operation and either the completion date of
the job or its due date, whichever is larger. In other words, the total inventory cost
introduced by an operation 0\ in a given schedule is:

INVl = in\ ■ (MAX{C,,dd,) - st\)

Typically, the first operation in a job introduces marginal inventory costs that corre-
spond to interests on the costs of raw materials, interests on processing costs (for that
first operation), and marginal holding costs. Following operations introduce additional
inventory costs such as interests on processing costs, interests on the costs of additional
raw materials or components required by these operations, etc. Additional details on
this model can be found in [23, 24].

The total cost of a schedule is:

52 TARD' + 52J2INV!
ieJ iej i=i

For reasons that will become clearer in Section 5, it is often useful to look at the
total tardiness and inventory costs of a job as sums of tardiness and inventory costs
introduced by each of the operations in the job. For each operation O-, we can define
a best start time (or "just-in-time" start time), bst\, where:

bst\ =

Accordingly, the tardiness cost TARD1 of job jt in a given schedule, can be rewritten

TARD1 = J2 tcost'i

as:

i=l

where,

tcosti

tardi ■ Af A.Y(0, st\ - bst\) (i = 1)
tardi ■ {MAX(0,stli - bst'A - MAX(0, st1^ - bst'^)} (1< i < n;)
tardi ■ {MAX(0,Ci - ddt) - MAX^st1^ - bst1^)} (i = n,)

C4

tcost\ can be seen as the contribution of operation 0\ to the total tardiness cost of job
ji. Similarly, the total inventory cost of a job ji can be rewritten as:

ni

INV1 = Y,icost'i
1 = 1

where:

TAn/l . . f inv[-(MAX(stl + dul
i,ddi)-3t\) (i=m)

INV- = icost: = < . } ; ,1 ,|> /■. ^ ■ . „ \ 1 \ mv\ ■ (st'i+1 - stj) (1 < i < ni)

and inv[= £l=i*ni- Accordingly, the total cost of a schedule can also be expressed

as:
ni

Y, TARD1 + J2INV' = E E (tcost'i +icoaf')
iej ieJ ieJ i=i

For the sake of simplicity, the remainder of this paper further assumes that time
is discrete, i.e. that job due dates/earliest acceptable release dates/latest acceptable
completion dates and operation durations can only can only take integer values.

The following section introduces a SA procedure developed for this problem.

3 A Simulated Annealing Procedure

Simulated Annealing (SA) is a general-purpose search procedure that generalizes iter-
ative improvement approaches to combinatorial optimization by sometimes accepting
transitions to lower quality solutions so as to avoid getting trapped in local minima
[14, 2]. SA procedures have been successfully applied to a variety of combinatorial op-
timization problems, including Traveling Salesman Problems [2], Graph Partitioning
Problems [12], Graph Coloring Problems [13], Vehicle Routing Problems [21], Design
of Integrated Circuits, Minimum Makespan Flow-Shop Scheduling Problems [20], Min-
imum Makespan Job Shop Scheduling Problems [16, 27], etc.

C5

x = x0 (€ S);
BestSol = x0; M = cost(BestSol);
while (r>7\) {

forz' = l,AT {
x' = neighbor(x);
if (cost(x') < cost(x)) {

if (cost(x') < M) {BestSol = x'; M = cost(BestSol); }

else if (rand() < exp{(cost(x) - cost(x'))/T}) x = x'\

}
if (M was not modified in the above loop) T = T * a;

}

Fig. 1 Pseudo-code for a Basic SA Search Procedure.

Figure 1 outlines the main steps of a SA search procedure designed to find a

solution x £ S that minimizes a real-valued cost function, cost(x). The procedure

starts from an initial solution ar0 and iteratively moves to other neighboring solutions,

while remembering the best solution found so far (BestSol). Typically, the procedure

only moves to neighboring solutions that are better than the current one. However,

the probability of moving from a solution x to an inferior solution x' is greater than

zero, thereby allowing the procedure to escape from local minima. rand() is a function

that randomly draws a number from a uniform distribution on the interval [0,1]. The

so-called temperature, T, of the procedure is a parameter controlling the probability of

accepting a transition to a lower quality solution. It is initially set to a high value, T0,

thereby frequently allowing such transitions. If, after N iterations, the best solution

found by the procedure has not improved, the temperature parameter T is decremented

by a factor a (0 < a < 1). When the temperature drops below a preset level, 7\, the

procedure stops and the best solution it found (BestSol) is returned (not shown in the

pseudo-code in Figure 1).

As indicated earlier, procedures similar to the one outlined above have been suc-

cessfully applied to other scheduling problems such as the minimum makespan job-shop

C6

scheduling problem 1. When dealing with regular scheduling objectives such as min-

imum makespan, it is possible to limit search to permutations of operations on the

same machine. For instance, in their SA procedure, Van Laarhoven et al. exploit this

observation and restrict the neighborhood structure to permutations of consecutive

operations on a same machine [27]. In the case of scheduling problems with irregular

objectives, such a neighborhood structure would not be sufficient, as it does not allow

for the insertion of idle-time in the schedule, which sometimes improves the quality of

a solution 2. Here, two main approaches can be considered. A first approach would

be to combine a SA procedure relying on permutation-based neighborhoods with a

procedure that inserts idle-time optimally. As it turns out, the problem of inserting

idle time optimally in a schedule, given completely specified sequences of operations on

each machine, can be formulated as a Linear Programming (LP) problem and, hence,

can be solved in polynomial time (See Appendix A for details). When considering

the permutation of two operations, the SA procedure would first invoke an idle-time

insertion procedure to compute the cost of the best schedule compatible with the new

set of sequencing decisions. Based on this cost and the cost of the current solution,

the search procedure would probabilistically determine whether or not to accept the

transition. Nevertheless, at the present time, the idle time insertion procedures that

the authors are aware of for the job shop scheduling problem remain too slow and

would significantly limit the number of solutions that SA could explore in a reasonable

amount of time 3.

Instead, an alternative neighborhood structure was adopted that directly allows

1The makespan of a schedule is the length of the time interval that spans between the start time
of the first released job and the end time of the last completed job.

Scheduling problems with regular objective functions have been shown to be reducible to sequenc-
ing problems [1]. Given fixed operation sequences on each machine, the schedule obtained by starting
each operation as early as possible is undominated. With irregular objectives, this is no longer the
case and it is sometimes better to delay the start of some operations. Here, we generically refer to
the problem of deciding by how much to delay operations as the problem of " inserting idle time" in
the schedule.

3For instance, using the CPLEX Linear Programming package on a DECstation 5000/200, inserting
idle time optimally in a 100 operation job shop schedule takes about 1 CPU second. Taking into
account similarities between the current schedule and the schedule obtained after permuting the order
of two operations on the same resource, it is generally possible to reduce the time required to re-
optimize the schedule to about 0.1 to 0.2 CPU seconds. Even under these conditions, a SA run of
about 10 minutes would only be able to explore a few thousand solutions.

C7

for idle time insertion. This structure, which is described below, lends itself to quick

updates of the cost function. A possibly more subjective advantage has to do with the

fact that the resulting procedure relies solely on SA and hence is not affected by the

performance of a separate idle time insertion procedure. Specifically, the neighborhood

function used in our implementation randomly selects among three types of modifica-

tion operators, respectively referred to below as "RIGHT-SHIFT", "LEFT-SHIFT"

and "EXCHANGE":

RIGHT-SHIFT This operator randomly chooses a "right-shiftable" operation and

increases its start time by one time unit (Figure 2-(a)). An operation is assumed to be

"right-shiftable", if it can be shifted by one time unit without bumping into another

operation on the same resource or violating the latest acceptable completion date of

the job to which it belongs (Figure 2-(b)). Precedence constraints within a job are

ignored when determining whether or not an operation can be right-shifted. Instead,

as will be seen later, these constraint violations are taken care of by inserting artificial

costs in the objective function.

Resource R Resource R

or

Resource R

t+1

(a) SHIFT-RIGHT

Resource R

led,

(b) not shiftable

Fig. 2 RIGHT-SHIFT operator

LEFT-SHIFT This operator is the mirror image of RIGHT-SHIFT. It randomly

picks a "left-shiftable" operation and decreases its start time by one time unit (Figure

3-(a)). It is assumed that an operation cannot be shifted left, if it would either bump

into an adjacent operation on the same resource (top case in Figure 3-(b)) or violate

the earliest acceptable release date of the job to which it belongs (bottom case in Figure

C8

3-(b)).

Resource R

Resource R

A
Resource R Hi i^HSB

or

A
Resource R

t-1

(a) SHIFT-LEFT

erd,

(b) not shiftable

Fig. 3 LEFT-SHIFT operator

EXCHANGE This operator selects a pair of consecutive operations on a resource

and exchanges the order in which the operations are scheduled to be processed on that

resource. Specifically, given two consecutive operations, A and B on a resource R, with

A preceding B in the current solution, the exchange operator sets the new start time

of B to the old start time of A and the new end time of A to the old end time of B,

as depicted in Figure 4.

Resource R

Resource R

Fig. 4 EXCHANGE operator

In the experiments presented in this paper, the probability of picking the EX-

CHANGE operator was empirically set to 3/7 while the probabilities of picking a

RIGHT- or LEFT-SHIFT operator were both set to 2/7. The initial solution x0 used

by the SA procedure is randomly generated in such a way that no two operations use

the same resource at the same time. As with the RIGHT- and LEFT-SHIFT opera-

tor, precedence constraints between consecutive operations within a same job are not

enforced in the process. Instead these constraints are enforced using artificial costs. If

C9

an operation 0\ overlaps with a preceding operation 0_x (within the same job ji), an

artificial cost fcost\ is introduced in the objective function:

ii

cost(x) =]P XI {fcost\ + tcost\ + icost\)
l&J :=1

where fcosti is proportional to the amount of overlap between 0\ and its predecessor

0_x. Specifically:

fcost[= 0

fcost\ = 3 ■ max(0,s<{_1 + du_x - st\) (i > 2)

where ß is a large positive constant.

The next section summarizes the results of experiments comparing this basic SA

procedure with several other scheduling heuristics.

4 A First Set of Empirical Results

Performance of this first SA procedure was assessed through comparative studies

against a number of other scheduling heuristics. This section summarizes the results

of experiments comparing the SA procedure against 39 combinations of well-regarded

dispatch rules and release policies (including those combinations that were reported to

perform best in the evaluation of the Sched-Star scheduling system [17]) both with and

without idle-time optimization, using the LP formulation provided in Appendix A.

Specifically, two types of dispatch rules were considered:

1. A set of five priority dispatch rules that have been reported to be particularly

good at reducing tardiness under various scheduling conditions [28]: the Weighted

Shortest Processing Time (WSPT) rule, the Earliest Due Date (EDD) rule, the

Slack per Remaining Processing Time (SRPT) rule, and two parametric rules,

the Weighted Cost OVER Time (WCOVERT) rule and the Apparent Tardiness

Cost (ATC) rule (also referred to sometimes as the Rachamadugu&Morton rule

[18]).

CIO

2. An exponential version of the parametric early/tardy dispatch rule recently de-

veloped by Ow and Morton [22, 17] and referred to below as EXP-ET. This rule

differs from the other 5 in that it can explicitly account for both tardiness and

inventory costs.

EXP-ET was successively run in combination with two release policies: an intrinsic

release policy that only releases jobs when their priorities become positive, as sug-

gested in [17], and an immediate release policy (IM-REL) that allowed each job to

be relased immediately. The other five dispatch rules were also successively run in

combination with two release policies: an immediate release policy and the Average

Queue Time release policy (AQT) described in [17]. AQT is a parametric release policy

that estimates queuing time as a multiple of the average job duration (the look-ahead

parameter serving as the multiple). A job's release date is determined by offsetting the

due date of the job by the sum of its total duration and its estimated queuing time.

In their evaluation of the SCHED-STAR scheduling system, Morton et al. report that

the combination of WCOVERT and AQT performed best after their SCHED-STAR

system and was within 0.1% of the best schedule in 42% of the problems they studied

and within 4% in 70% of their problems [17]. They also report that the next best

scheduling heuristic is EXP-ET in combination with its intrinsic release policy.

Combinations of release policies and dispatch rules with a look-ahead parameter

were successively run with four different parameter values that had been identified as

producing the best results. By combining these different dispatch rules, release policies

and parameter settings a total of 39 heuristics4 was obtained.

These 39 combinations of priority dispatch rules and release policies were run in

two different ways:

1. On each problem, the best of the 39 schedules produced by these combinations

was recorded. In this case, out of the 39 combinations, 13 performed best on

at least one of the 40 problems considered in the study. These 13 combinations

4The 39 combinations were as follows: EXP-ET and its intrinsic policy (times four parameter
settings), EXP-ET/IM-REL (times four parameter settings), EDD/AQT (times four parameter set-
tings), EDD/IM-REL, WSPT/AQT (times four parameter settings), WSPT/IM-REL, SRPT/AQT
(times four parameter settings), SRPT/IM-REL, WCOVERT/IM-REL (times four parameter set-
tings), WCOVERT/AQT (times four parameter settings), ATC/IM-REL (times four parameter set-
tings), ATC/AQT (times four parameter settings).

Cll

included 5 of the 6 dispatch rules (SRPT was never best on this set of problems)

and all 3 release policies.

On each problem, each of the 39 schedules obtained by these combinations was

post-processed using an LP program to insert idle time optimally. Again, on each

problem, the best of the 39 post-processed schedules was recorded for comparison

against the SA procedure. In this case, out of the 39 combinations, 11 performed

best (after post-processing) on at least one of the 40 problems considered in the

study. These 11 combinations included 5 of the 6 dispatch rules (here, WSPT

was never best) and all 3 release policies.

Table 1 Characteristics of the eight probl em sets

Problem Set Number of Bottlenecks Avg. Due Date Due Date Range

1 1 loose wide

2 1 loose narrow

3 1 tight wide
4 1 tight narrow

5 2 loose wide
6 2 loose narrow
7 2 tight wide
8 2 tight narrow

The results reported below were obtained on a suite of 40 scheduling problems

similar to the ones described in [24]. The series consisted of eight sets of scheduling

problems obtained by adjusting three parameters to cover a wide range of scheduling

conditions (See Table 1): an average due date parameter (tight versus loose average

due date), a due date range parameter (narrow versus wide range of due dates), and a

parameter controlling the number of major bottlenecks (in this case one or two). For

each parameter combination, a set of 5 scheduling problems was randomly generated,

thereby resulting in a total of 40 problems (5 problems x 2 average due date values x

2 due date ranges x 2 bottleneck configurations). Each problem involved 20 jobs and

5 resources for a total of 100 operations. Marginal tardiness costs in these problems

were set to be, on average, ten times larger than marginal inventory costs to model a

situation where tardiness costs dominate but inventory costs are non-negligible5.
5 Similar results have also been obtained on a set of problems where marginal tardiness costs were

on average five times larger than marginal inventory costs.

C12

The SA procedure was run 10 times on each problem. For each problem, we recorded

both the average performance of the procedure (referred to below as SA-AVG) as well

as the best solution it found for each problem over 10 runs (SA-BEST) . In each run,

the initial temperature, T0, was set to 700, temperature T\ was 6.25 and the cooling

rate a was 0.85. The value of ß was 1000 6. The number N of iterations in the

6The problems that were run typically had optimal solutions with a value ranging between 3000
and 15000. Setting ß to 1000 was sufficient to guarantee that all precedence constraints were satisfied
at the end of each run.

C13

inner-loop of the procedure (See Figure 1) was set to 300,000.

25000Y

20000

4 5

Problem Set

G Combination of 39
priority dispatch rules
and release policies

Combination of 39
priority dispatch rules
and release policies

SA-AVG (over 10
runs)

□ SA-BEST(over 10
runs)

(recording the best with idle time
of 39 schedules on optimization (i.e. on
each problem) each problem, all 39

schedules are post-
processed and the
best post-processed
schedule is recorded)

Fig. 5: Comparison of SA and a combination of 39 dispatch rules and

release policies with and without optimal idle time insertion.

Figure 5 compares the schedules produced by the SA procedure with the best

schedules obtained on each problem by the 39 combinations of dispatch rules and release

policies both with and without idle time optimization. For instance, on Problem Set 6

C14

(problems with two bottleneck resources, loose average due dates and narrow due date

ranges), (1) SA-BEST reduced schedule cost by almost 11% compared to SA-AVG.

(2) SA-AVG reduced schedule cost by about 18% compared to the 39 combinations of

dispatch rules and release policies with optimal idle time insertion and (3) performance

of the 39 combinations of dispatch rules and release policies (taking the best of 39

schedules on each problem) improves by more than 6% with optimal idle time insertion.

Overall, Figure 5 indicates that SA-BEST consistently outperforms the combina-

tions of dispatch rules and release policies with and without idle time insertion on all

8 problem sets. The comparison also holds for SA-AVG with the exception of the two

easier problem sets (Problem Set 1 and 5, i.e. problems with loose and widely spread

due dates), where SA-AVG does slightly worse than the 39 combinations with idle time

optimization. Notice that SA-AVG still outperforms the 39 combinations without idle

time optimization on these two problem sets. Overall, compared against the 39 combi-

nations of dispatch rules and release policies without idle time optimization, SA-AVG

reduced schedule cost by close to 16% and SA-BEST by close to 28%. Even when, on

each problem, idle time was optimally inserted in each of the 39 schedules obtained by

the combinations of dispatch rules and release policies, SA-AVG still reduced schedule

cost by an average of about 7% and SA-BEST by over 20%. A more detailed analysis

indicates that these reductions in schedule cost reflect reductions in both tardiness

and inventory costs. However, while running all 39 combinations of dispatch rules and

release policies requires only a few CPU seconds on each problem and about 45 to 50

CPU seconds when idle time is optimally inserted in each of the 39 schedules, a SA

C15

run takes 3 to 5 minutes on a DECstation 5000/200 running C.

20000-ff

18000

4 5
Problem Set

□ SA-AVG (over ■ SA-AVG with ■ SA-BEST (over D SA-BEST with
10 runs) idle time 10 runs) idle time

optimization optimization
(over 10 runs) (over 10 runs) j

Fig. 6 Performance of the SA procedure with and without idle time

optimization.

Additional experiments were also conducted to evaluate the performance of the

SA procedure with respect to idle time optimization. Figure 6 summarizes these

experiments, reporting both the average and best performance of the SA procedure

C16

over 10 runs with and without post-processing for optimal idle time insertion. The

results clearly indicate that the schedules produced by the SA procedure are nearly

optimal with respect to idle time insertion, thereby validating the choice of the LEFT-

and RIGHT-SHIFT operators used to define the neighborhood of the procedure. On

average, idle time insertion improved performance of SA-BEST by a meager 0.94%

(with a standard deviation of 0.8%) and that of SA-AVG by 1.02% (with a standard

deviation of 0.5%).

The results in Figure 5 and 6 generally attest to the ability of the SA procedure

to produce high quality solutions, often significantly reducing schedule cost compared

to other well-regarded scheduling heuristics. They also indicate that the computa-

tional requirements of the procedure are quite large compared to these other heuristics,

though experiments with larger problems suggest that the average complexity of our

SA procedure only grows linearly with the size of the problem.

Finally, we observe that the performance of the SA procedure can significantly vary

from one run to another, as illustrated by the results in Figure 5. In our experiments,

an average run of SA produced schedules with costs 14% higher than those of the best

schedule obtained over 10 runs (SA-AVG vs. SA-BEST). This suggests that important

speedups could possibly be obtained if the procedure was more consistent in producing

high quality solutions. In the following section, a meta-heuristic procedure is presented

that aims at reducing performance variability using artificial costs to dynamically focus

the SA procedure on critical subproblems.

5 Focused Simulated Annealing Search

Figure 7 depicts 5 typical runs of the SA procedure introduced in the previous sections,

plotting the cost of the best schedule found in each run, as the the temperature is slowly

C17

lowered over time.

Cost

25000

20000-

15000-

-►•Temp.
200 100 50 25 12.5 6.25

Fig. 7 Solution improvement in 5 runs of SA.

The behavior exhibited in Figure 7 is characteristic of SA search procedures: the

largest improvements are observed at relatively high temperatures. In the case of

our SA procedure, we observed that below T = 50 the quality of the solution never

improved by more than a few percent. In other words, the early stage of the procedure

is the one that determines whether or not the procedure will get trapped in a local

minimum (e.g. See run A in Figure 7). The remainder of this section describes a

meta-heuristic that relies on the dynamic introduction of artificial costs in the objective

function to focus SA on critical subproblems and attempt to steer clear of local minima

during the high temperature phase of the procedure. Below we refer to the resulting

procedure as "Focused Simulated Annealing" (FSA) search.

To improve the quality of an existing solution, FSA iteratively identifies major

inefficiencies in the current solution and attempts to make these inefficiencies more

obvious to the search procedure by artificially inflating their costs. As a result, the

search procedure works harder on getting rid of these inefficiencies, possibly introducing

new inefficiencies in the process. By regularly tracking sources of inefficiency in the

existing solution and reconfiguring the cost function to eliminate these inefficiencies,

FSA can increase the chances that the procedure finds a high quality solution.

C18

T = T0;
x - xo (€ S);
BestSol = XQ\ M = cost(BestSol);
while (T > 7\) {

if (T > T2)
CritSubp = identify-high-cost-subp (x);

else
CritSubp = 0;

fori = l,A^ {
a;' = neighbor(x);
if (costl(x') < costl(x)) x = x'\
else if (rand() < exp{(cost 1 (x) - costl(x'))/T}) x = x'\
if (cosi(x') < M) {BestSol = a;'; M = cost(£es*So/);}

}
if (M was not modified in the above loop) T = T * a;

}

Fig. 8 The FSA Procedure: A meta-heuristic that continuously attempts

to reduce major inefficiencies in the solution.

Pseudo-code for the FSA procedure is given in Figure 8. T2 is a threshold temper-

ature between T0 and 7\. Below T2, FSA behaves exactly as the SA search procedure

described in Figure 1. Before reaching this temperature, the procedure uses a different

cost function to decide whether or not to accept transitions to neighboring solutions,

namely:

costl(x) = cost(x) + ArtifCost(x)

where:

or, equivalently:

ArtifCost(x) = Yl {Htcostl + icost'i)}
Ol

tECritSubj>

costl{x) = J2 E (fcost'i + tcosti + icost'i) + E Wcost\ + icost1^}
leJ l<i<nt 0\eCritSubp

k is a parameter that controls the amount by which the costs associated with

operations in critical subproblems are inflated. In our experiments, we found that

C19

setting k to 2 and T2 to 50 generally yielded good results. Results obtained with other

values for these parameters are provided in Appendix B.

Notice that inflating the costs associated with one or several subproblems is equiv-

alent to reducing the temperature associated with the corresponding components of

the objective function (or raising the temperature in the remainder of the problem).

Accordingly, FSA can be viewed as a SA procedure in which transition probabilities

are subject to different temperatures in different parts of the problem. Temperatures

in different subproblems are regularly modified (lowered or raised) to get rid of ma-

jor inefficiencies in one part or another of the working solution. In this regard, FSA

is reminiscent of the Strategic Oscillation idea of developing non-monotonic cooling

schedules [7, 21. 10]. However, while Strategic Oscillation cooling schedules proposed

in the literature vary temperature in the entire problem, FSA emphasizes selective

temperature variations in dynamically identified subproblems, as detailed below.

The specific parts of the solution in which FSA attempts to eliminate inefficiencies

are determined by the identify-high-cost-subpQ function. Here several variations of

the procedure are considered that differ in the way they decompose the problem: a

job-based variation, a resource-based variation and an operation-based variation.

"Critical Job" (CJ) variation This variation of FSA dynamically inflates the costs

associated with critical jobs. Here, identify-high-cost-subpQ computes the the cost of

each job jt in the current schedule, namely,

y] {tcost\ + icost\)
l<:'<n,

. The function then returns the set of all jobs whose costs are above p • CLVR , where

avR is the average cost of a job in the current schedule and p is a constant. In the

experiments reported below, p was empirically set to 3. Below we refer to this variation

of the procedure as FSA(CJ). Results obtained with other values of p are also reported

in Appendix B.

"Bottleneck Resource" (BR) variation This variation of FSA inflates the costs

associated with critical ("bottleneck") resources in the existing schedule. This is done

C20

by computing a cost for each resource Rk'.

y^y (tcost[+ icost\)
R\=Rk

In this case, the highest cost resource is selected and all the operations requiring this

resource are returned by identify-high-cost-subp(). This procedure will be referred to

as FSA{BR).

"Critical Operation" (CO) variation Here, FSA focuses on critical operations

rather than critical jobs or critical resources. The average cost of an operation in the

current schedule, avo, is computed:

ayo = Y, 2 (tcost\ + ic°st'i)/Y,n'
lej i<i<ni leJ

All the operations with a cost above q ■ av0 are considered critical, q is a constant.

In the experiments reported below, q was equal to 3. We will denote this procedure

FSA(CO). Results obtained with other values of q are also reported in Appendix B.

6 Performance Evaluation

To evaluate the effectiveness of FSA, all three variations of the procedure were run on a

set of 40 scheduling problems similar to the ones described in Section 4. Each variation

was run 10 times on each problem. Table 2 compares each of the three variations of

the FSA procedure against the SA procedure described in Section 3. Both the average

and best performance over 10 runs are reported.

Table 2 Cost Reduction (%) obtained by FSA over SA

C21

Problem
Set

FSA(CJ) FSA BR) FSA(CO)
Avg Best Avg Best Avg Best

1 4.5 2.0 -0.8 0.9 -0.6 -0.6
2 6.5 5.1 4.3 2.3 3.5 4.3
3 7.3 5.2 -1.2 -2.6 -0.9 -2.3
4 0.4 0.2 -2.4 -2.2 -2.1 -2.2
5 8.6 4.5 -9.4 -1.7 1.9 3.2
6 8.0 2.4 -2.8 -4.3 2.3 4.2
7 6.7 6.2 -25.2 -6.3 -2.4 0.4
8 0.2 3.5 -2.7 -0.5 -2.1 0.7

Overall 5.2 3.6 -5.0 -2.0 -0.5 0.9

The results in Table 2 show that the dynamic introduction of artificial costs, as

implemented in the FSA procedure, can potentially lead to significant improvements

both in the average and best performance of the SA procedure. The results also show

that the effectiveness of this approach depends on the type of subproblems considered

by the procedure. While FSA(CJ) reduced schedule cost by an average of 5.2% and

improved the quality of the best schedule found in 10 runs by an average of 3.6%, the

other two variations of the procedure, FSA(BR) and FSA(CO), did not fare as well.

FSA(CO) performed approximately like the original SA procedure and FSA(BR) actu-

ally did worse. Below, we further analyze the performance improvement obtained with

FSA(CJ). In the following section, we attempt to explain why FSA(CO) and FSA(BR)

did not perform as well. For now, we further analyze the performance improvements

observed with FSA(CJ).

C22

Figure 9 and 10 show the cost distributions of the schedules obtained by succes-

sively running SA and FSA(CJ) 300 times on two typical scheduling problems.

frequency

av=9790

40

20-

*■ cost
5000 7500 10000 12500 15000

Simple SA

frequency

40-

20-

■*• cost
5000 7500 10000 12500 15000

FSA (CJ)

Fig. 9 Improvement of FSA(CJ) over the original SA procedure (Problem

1)

On the problem in Figure 9, the improvement obtained with FSA(CJ) is quite

obvious: both the average and standard deviation of the cost distribution produced by

FSA(CJ) are lower than those of the original SA procedure. Accordingly, it appears

that for this problem the probability of getting trapped in a local optimum has been

greatly reduced. This in turn can translate in significant reductions in computation

time. For instance, while the original SA procedure would require an average of 2.5

runs to find a schedule with cost below 9000, FSA(CJ) would only require an average

of 1.1 run, a saving of more than 50%. To find a schedule of cost below 8000, FSA(CJ)

C23

reduces computation time by more than 90%.

frequency

40-

20

av=16128

30000

20-

*• cost
10000 15000 20000 25000

Simple SA
frequency

40-

*• cost
10000 15000 20000 25000 30000

FSA (CJ)

Fig. 10 Improvement of FSA(CJ) over the original SA procedure

(Problem 2)

On the other hand, for the problem in Figure 10, the performance improvement

yielded by FSA(CJ) is rather modest: no significant reduction in average schedule cost

or even in the standard deviation of the distribution.

Looking more carefully at these two problems, we observe that, in the case of the

problem in Figure 9, SA yields a cost distribution with two clearly separated peaks,

thereby suggesting that the procedure is often caught in local minima. In contrast, in

the case of the problem analyzed in Figure 10, the cost distribution obtained using the

original SA procedure is generally more compact. This would suggest that FSA(CJ)

is more effective in those situations where the original procedure is more likely to get

trapped in local optima.

C24

To verify this hypothesis, we measure for each problem the average reduction in

schedule cost yielded by FSA(CJ) (compared to the original SA procedure) and the

spread of the cost distribution obtained with the original SA procedure. This spread

is simply measured as the standard deviation of the cost distribution obtained by SA

divided by the mean of this distribution. The results for all 40 problems of the study

are summarized in Figure 11.

Improvement (%)

20

15

10

0-

-5 -

0.05 0.1 0.15 0.2 0.25
-*■ Deviation (sd/av)

Fig. 11 Improvements obtained with FSA(CJ) as a function of the relative

variation in schedule cost observed when using the original SA procedure.

The graph clearly confirms our intuition. The most important improvements are

observed on problems where the original SA procedure showed the least consistency,

namely those problems where it had the highest chance of getting trapped in local min-

ima. The Figure also indicates that FSA(CJ) rarely performs worse than the original

SA procedure, and, when it does, the degradation in schedule quality is marginal.

C25

7 Further Analysis

If we are to apply FS A to other problems, we need to understand why some variations of
the procedure perform better than others. There are at least two ways of approaching

this question. One approach is to attempt to analyze the search procedure and the

neighborhood structure it relies on and try to understand how the choice of a given type

of subproblems influences the effectiveness of FSA on this specific class of scheduling

problems. This approach is probably the one a scheduling expert would be tempted to

follow. It could potentially lead to very insightful conclusions for the class of scheduling

problems of interest in this study. However, our purpose here is different, as we are

looking for insight that can possibly carry over to other domains. For this reason, we

take a different approach and limit our analysis to the external behavior of the search

procedure.

As pointed out at the beginning of Section 5, the early phase of a SA run, where

temperature is still high, generally determines whether the procedure gets caught in a

local minimum or not. Different neighborhood structures for a same class of problem

can possibly lead to different types of local minima. The nature of these local minima

can in turn affect the effectiveness of different problem decompositions in the FSA

procedure. In Figure 12, we analyze cost reductions in different types of subproblems

during the lower temperature phase of the original SA procedure. Specifically, Figure

12 considers improvements in three different types of subproblems:

1. CJ: the set of critical jobs that would be identified by FSA(CJ) at T = 100

2. BR: the critical ("bottleneck") resource that would be used by FSA(BR) at T =

100

3. CO: the set of critical operations that would be considered by FSA(CO) at T =

100

C26

cost

1.00

0.95-

0.90

0.85

0.80-

o CJ

Temp.

100

Fig. 12 Changes of Cost in the Later Stage of SA

For each of these subproblems, Figure 12 plots the average variation in cost as-

sociated with these 3 subproblems as the temperature in the original SA procedure

is progressively lowered. The curve labeled " TotaF plots the cost variations of the

overall schedule as temperature decreases. The points in Figure 12 represent averages

taken over the set of 40 problems studied in Section 6 and over 10 runs of SA on each

problem.

Figure 12 indicates that, when using the original SA procedure, major inefficiences

in job schedules do not get corrected below temperature T = 100, while major ineffi-

ciencies at the level of critical resources or critical operations are still easy to eliminate.

This explains why FSA(CJ) is the variation that performs best: it is the one that best

matches the weaknesses of the original SA procedure. By working hard on eliminat-

ing inefficiencies at the level of critical jobs, FSA(CJ) reduces the chances that such

inefficiencies remain when the procedure reaches its lower temperature phase, a phase

when it is no longer effective at getting rid of these inefficiencies. For the same reason,

the BR curve suggests that FSA(BR) wastes its time getting rid of inefficiencies that

C27

are still easy to eliminate in the lower temperature phase of the procedure, and hence

can be expected to perform poorly, as observed in the results presented in Section 6,

8 Summary and Concluding Remarks

In summary, the contribution of this work is twofold:

1. On the scheduling front, a SA procedure has been developed to solve job shop

scheduling problems with both tardiness and inventory costs. The procedure has

been shown to produce high quality solutions, reducing schedule cost by 28% over

a combination of 39 well-regarded dispatch rules and release policies (and by 20%

when the dispatch schedules are post-processed for optimal idle time insertion),

though at the expense of significant computational efforts.

2. To reduce the computational requirements of this procedure, a meta-heuristic

search procedure called Focused Simulated Annealing (FSA) search has been

developed. This procedure aims at reducing variability in the performance of SA

by dynamically focusing on the elimination of major inefficiencies in the solution.

The procedure works by dynamically inflating the costs associated with critical

subproblems and requires a decomposable objective function.

Three variations of FSA have been developed for the job shop scheduling problem

with tardiness and inventory costs. These variations of the procedure differ in the

type of subproblems they rely on: job subproblems, resource subproblems, or op-

eration subproblems. Experiments show that, with the right decomposition, FSA

can significantly improve solution quality especially on problems where search is

likely to get caught in local minima. Equivalently, for the same solution quality,

FSA can greatly reduce computation time over a regular SA search.

Our experiments also indicate that the performance of FSA critically depends

on the selection of a good decomposition of the objective function. An analy-

sis suggests that the most effective decompositions are those corresponding to

subproblems whose solutions are particularly difficult to improve during the low

temperature phase of the SA procedure. By focusing on inefficiencies at the level

C28

of these subproblems, FSA can greatly reduce the chance of getting trapped in

local minima.

As is often the case in this type of study, many design alternatives remain to be

explored. Further work will also be required to assess the effectiveness of FSA or

FSA-like meta-heuristics in combination with more sophisticated SA procedures, e.g.

procedures incorporating some aspects of Tabu Search [9, 26, 19]. Like Strategic Oscil-

lation [7, 21, 10], FSA can be viewed as implementing a non-monotonic cooling sched-

ule, though selectively, by focusing on dynamically identified subproblems. Strategic

Oscillation could possibly also be exploited to control the value of ß, the parameter

used in our procedure to penalize precedence constraint violations within a job. Other

aspects of Tabu Search such as Target Analysis [8, 15], which, like FSA, adds a term

to the objective function to drive the procedure towards high quality solutions, would

also be worth comparing with and possibly incorporating in the existing procedure.

References

[1] Baker, K.R. "Introduction to Sequencing and Scheduling," Wiley, 1974.

[2] Cerny, V., "Thermodynamical Approach to the Traveling Salesman Problem: An

Efficient Simulation Algorithm," J. Opt. Theory AppL, Vol. 45, pp. 41-51, 1985.

[3] French, S. "Sequencing and Scheduling: An Introduction to the Mathematics of

the Job-Shop," Wiley, 1982.

[4] Fry,T., R. Amstrong and J. Blackstone "Minimizing Weighted Absolute Deviation

in Single Machine Scheduling," HE Transactions, Vol. 19, pp. 445-450, 1987.

[5] Garey, M. R. and Johnson, D. S. "Computers and Intractability: A Guide to the

Theory of NP-Completeness," Freeman and Co., 1979

[6] Garey M.R., R.E. Tarjan, and G. T. Wilfgong, "One-Processor Scheduling with

Symmetric Earliness and Tardiness Penalties," Mathematics of Operations Re-

search, Vol. 13, No. 2, pp. 330-348, 1988.

C29

[7] Glover, F. "Heuristics for Integer Programming Using Surrogate Constraints,"

Decision Sciences, Vol. 8, No. 1, pp. 156-166, January 1977.

[8] Glover, F. "Future Paths for Integer Programming and Links to Artificial In-

telligence," Computer and Operations Research, Vol. 13, No. 5, pp. 533-549,

1986.

[9] Glover, F. "Tabu Thresholding: Improved Search by Non-Monotonie Trajecto-

ries," Technical Report, Graduate School of Business, University of Colorado,

Boulder, Colorado 80309-0419, 1993.

[10] Glover, F. and M. Laguna "Tabu Search," Chapter in Modern Heuristic Tech-

niques for Combinatorial Problems, pp. 70-150, Colin Reeves (Ed.), Blackwell

Scientific Publications, Oxford, 1992

[11] Holland J. "Adaptation in Natural and Artificial Systems" University of Michigan

Press, Ann Arbor, MI. 1975.

[12] Johnson, D. S., Aragon, C. R., McGeoch, L. A. and Schevon, C. "Optimization

by Simulated Annealing: Experimental Evaluation; Part I, Graph Partitioning"

Operations Research Vol. 37 no. 6, pp. 865-892, 1989

[13] Johnson, D. S., Aragon, C. R., McGeoch, L. A. and Schevon, C. "Optimization

by Simulated Annealing: Experimental Evaluation; Part II, Graph Coloring and

Number Partitioning" Operations Research Vol. 39 no. 3, pp. 378-406, 1991

[14] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., "Optimization by Simulated

Annealing," Science, Vol. 220, pp. 671-680, 1983.

[15] Laguna M. and F. Glover "Integrating Target Analysis and Tabu Search for

Improved Scheduling Systems," Expert Systems with Applications, Vol. 6, pp. 287-

297, 1993.

[16] Matsuo H., C.J. Suh, and R.S. Sullivan "A Controlled Search Simulated Annealing

Method for the General Jobshop Scheduling Problem" Tech. Report, "Dept. of

Management, The Univ. of Texas at Austin Austin, TX, 1988.

C30

[17] Morton, T.E. "SCHED-STAR: A Price-Based Shop Scheduling Module," Journal

of Manufacturing and Operations Management, pp. 131-181, 1988.

[18] Morton, T.E. and Pentico, D.W. "Heuristic Scheduling Systems," Wiley Series

in Engineering and Technology Management, 1993

[19] Nowicki E. and C. Smutnicki "A Fast Taboo Search Algorithm for the Job Shop

Problem," Technical University of Wroclaw, Institute of Engineering Cybernetics,

ul. Janiszewskiego 1/17, 50-372 Wrocklaw, Poland, 1993.

[20] Osman,I.H., and Potts, C.N., "Simulated Annealing for Permutation Flow-Shop

Scheduling," OMEGA Int. J. of Mgmt Sei., Vol. 17, pp. 551-557, 1989.

[21] Osman, I.H. "Meta-Strategy Simulated Annealing and Tabu Search Algorithms

for the Vehicle Routing Problem" Annals of Operations Research, Vol. 41, pp. 421-

451, 1993.

[22] Ow, P.S. and T. Morton, "The Single Machine Early/Tardy Problem" Manage-

ment Science, Vol. 35, pp. 177-191, 1989.

[23] Sadeh, N. "Look-ahead Techniques for Micro-Opportunistic Job Shop Scheduling"

Ph.D. thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,

PA 15213, March 1991.

[24] Sadeh, N. "Micro-Opportunistic Scheduling: The Micro-Boss Factory scheduler"

Ch. 4, Intelligent Scheduling, Zweben and Fox (Ed.), Morgan Kaufmann Publish-

ers, 1994.

[25] Sadeh, N. and Y. Nakakuki "Focused Simulated Annealing Search: An Application

to Job Shop Scheduling" Submitted to Annals of Operations Research, Issue on

'Metaheuristics in Combinatorial Optimization., 1994.

[26] Taillard, E. "Parallel Taboo Search Technique for the Job Shop Scheduling Prob-

lem," ORSA Journal on Computing, Vol. 6, pp. 108-117, 1994.

[27] Van Laarhoven, P.J., Aarts, E.H.L., and J.K. Lenstra "Job Shop Scheduling by

Simulated Annealing," Operations Research, Vol. 40, No. 1, pp. 113-125, 1992.

C31

[28] Vepsalainen.A.P.J. and Morton, T.E. "Priority Rules for Job Shops with Weighted

Tardiness Costs," Management Science. Vol. 33, No. 8, pp. 1035-1047, 1987.

Appendix A: Idle Time Insertion as a Linear Program

The problem of optimally inserting idle in an existing job shop schedule (i.e. given

completely defined operation sequences on each resource) can be formulated as a linear

program, as detailed below:

Tl| — 1

MIN £{ W, ■ T, + £ [inv't ■ (st\+1 - st1,)} + inv'ni ■ (du'ni + t,)} (1)
leJ «=i

such that:

Ti - ti - stlni = dul
ni - ddi / = l,...,n (2)

st\ — stli+1 < — du\ / = l,...,n i = 1, ...,ni — 1 (3)

-"/otolM SI;ou;(fc,i+l) ^ aUlow(k,}) K — L,...,m J-L,...,pk 1 ^J

T/ ,e; > 0 / = 1, ...,n (5)

st[> erdi / = l,...,n (6)

<(< lcdt-dul
ni 1= l,...,n (7)

where:

• T\ is the tardiness of job j\

• t\ is the earliness of job j\

• 0^,'A} is the j-th operation scheduled on resource Rk (in the given schedule).

In other words, up(k,j) is the index of the job to which this opeation belongs

and /ow(fc, j) the index of this operation within its job

• pk is the number of operations requiring resource Rk

• The other notations are as defined in Section 2

C32

Note that, in Equation (2), when job ji is tardy, 77 = stlni + dul
nt — ddi > 0 and

e/ = 0, and, when it is early, t\ = dd\ - (stlni + dul
ni) > 0 and 77 = 0. A similar

formulation was first proposed by Fry et al. for the one-machine early/tardy problem

[4]. While more efficient procedures are described in the literature for the one-machine

early/tardy problem, including an O(NlogN) procedure developed by Garey et al. [6],

it is not clear at this time how these procedures could be efficiently generalized to the

job shop case.

Appendix B: Results Obtained Under Different Parameter
Settings

This appendix summarizes results obtained with FSA for different values of the follow-

ing four parameters:

• T2: temperature above which FSA artificially inflates the costs of critical sub-

problems. The results in Table 3 were obtained using FSA(CJ), the variation

of FSA that performed best in our experiments. In these experiments, k — 2 and

p = 3.

• k: the parameter by which FSA inflates the costs of critical subproblems. The

results in Table 4 were obtained using FSA(CJ), the variation of FSA that

performed best in our experiments. In these experiments, T2 = 50 and p = 3.

• p: the parameter used by FSA(CJ) to identify critical jobs. Results obtained

with different values of this parameter are summarized in Table 5. In these

experiments, T2 = 50 and k — 2.

• q: the parameter used by FSA(CO) to identify critical operations. Results

obtained with different values of this parameter are summarized in Table 6. In

these experiments, T2 = 50 and k = 2.

More detailed definitions of these parameters are provided in Section 5. The tables

below report both average and best performance of FSA over 10 runs.

The best results are generally obtained for T2 = 50, k = 2, p = 3 and q = 3, the

values used in the experiments reported in Section 6.

C33

Table 3 Percentage performance improvement(-f)/degradation(-) observed

when running FSA(CJ) with different values of T2. Performance with

T2 = 50 is used as the reference.

Problem

Set

Best Performance Average Performance

T2 = 25 r2 = 50 T2 = 100 T2 = 200 r2 = 25 r2 = 50 T2 = 100 T2 = 200

1 -2.3 0.0 -7.7 -3.5 -2.4 0.0 -1.2 -0.2

2 -0.3 0.0 3.3 1.6 0.8 0.0 0.2 -4.1

3 -2.3 0.0 0.5 0.0 -2.4 0.0 -0.5 1.3

4 -3.7 0.0 -1.6 -0.9 -2.5 0.0 -0.7 0.7

5 -1.2 0.0 0.0 0.8 -0.1 0.0 -2.6 -1.2

6 -1.8 0.0 2.5 -0.5 -1.1 0.0 1.4 1.7

7 -0.6 0.0 -1.2 -4.0 -3.6 0.0 -0.1 -0.4

8 -2.1 0.0 -5.6 -6.8 -0.4 0.0 0.7 2.8

Overall -1.8 0.0 -1.2 -1.7 -1.5 0.0 -0.4 0.1

C34

Table 4 Percentage performance improvement(+)/degradation(-) observed

when running FSA(CJ) with different values of k. Performance with k = 2

is used as the reference.

Problem

Set

Best Performance Average Performance

k = l k = 2 k = 3 k = 4 k = 1 k = 2 k = z k = i

1 -3.8 0.0 -4.4 -0.3 1.0 0.0 0.8 0.1

2 -0.2 0.0 -1.2 -2.0 1.3 0.0 0.0 -1.3

3 -1.9 0.0 -2.6 3.2 -2.2 0.0 1.6 1.5

4 -2.2 0.0 -3.4 -3.6 0.4 0.0 -2.4 -1.1

5 -3.6 0.0 -2.8 -0.5 -1.1 0.0 -4.2 -12.1

6 -0.3 0.0 2.5 -0.9 -1.1 0.0 -2.4 -1.8

7 2.9 0.0 -5.2 2.1 3.2 0.0 0.1 -3.1

8 -3.6 0.0 -2.1 -5.0 2.9 0.0 3.0 2.5

Overall -1.6 0.0 -2.4 -0.9 0.6 0.0 -0.4 -1.9

C35

Table 5 Percentage performance improvement(+)/degradation(-) observed

when running FSA(CJ) with different values of p. Performance with p = 3

is used as the reference.

Problem

Set

Best Performance Average Performance

p=l p = 2 p = 3 p = 4 p=l p = 2 p = 3 p = 4

1 -2.4 -1.6 0.0 0.3 0.6 1.8 0.0 -2.7

2 1.1 1.6 0.0 -1.7 2.2 1.2 0.0 -4.7

3 1.3 -1.0 0.0 -1.8 0.0 -0.6 0.0 0.9

4 1.2 1.2 0.0 3.7 -1.7 -1.3 0.0 2.5

5 -1.0 -4.1 0.0 -1.8 -32.1 -14.9 0.0 -0.2

6 2.3 1.0 0.0 -2.6 2.0 1.6 0.0 -0.4

7 -1.4 1.3 0.0 -3.1 -7.6 -2.7 0.0 0.4

8 -3.7 -2.2 0.0 -4.0 -5.2 2.1 0.0 1.6

Overall -0.3 -0.5 0.0 -1.4 -5.2 -1.6 0.0 -0.3

C36

Table 6 Percentage performance improvement(+)/degradation(-) observed

when running FSA(CO) with different values of q. Performance with q = 3

is used as the reference.

Problem

Set

Best Performance Average Performance

q = l q = 2 q = 3 q = A 9 = 1 q = 2 9 = 3 9 = 4

1 0.7 0.5 0.0 1.0 -0.8 0.8 0.0 -1.6

2 -1.7 -1.2 0.0 -2.6 0.4 0.8 0.0 -0.5

3 2.7 3.9 0.0 2.3 2.4 1.1 0.0 1.1

4 -3.6 -3.7 0.0 -8.4 -0.2 -0.4 0.0 -3.5

5 2.7 0.2 0.0 1.3 -17.3 -6.9 0.0 1.3

6 -4.7 1.2 0.0 1.5 -2.4 0.9 0.0 1.8

7 1.6 1.7 0.0 0.5 -2.8 0.1 0.0 0.8

8 -1.0 1.5 0.0 1.8 -5.2 -1.8 0.0 1.6

Overall -0.4 0.5 0.0 -0.3 -3.2 -0.7 0.0 0.1

C37

Increasing the Efficiency of
Simulated Annealing Search by

Learning to Recognize (Un)Promising Runs

Yoichiro Nakakuki and Norman M. Sadeh
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Simulated Annealing (SA) procedures can potentially yield near-optimal solutions to
many difficult combinatorial optimization problems, though often at the expense of
intensive computational efforts. The single most significant source of inefficiency in
SA search is the inherent stochasticity of the procedure, typically requiring that the
procedure be rerun a large number of times before a near-optimal solution is found.
This paper describes a mechanism that attempts to learn the structure of the search
space over multiple SA runs on a given problem. Specifically, probability distributions
are dynamically updated over multiple runs to estimate at different checkpoints how
promising a SA run appears to be. Based on this mechanism, two types of criteria are
developed that aim at increasing search efficiency: (1) a cutoff criterion used to de-
termine when to abandon unpromising runs and (2) restart criteria used to determine
whether to start a fresh SA run or restart search in the middle of an earlier run. Ex-
perimental results obtained on a class of complex job shop scheduling problems show
(1) that SA can produce high quality solutions for this class of problems, if run a
large number of times, and (2) that our learning mechanism can significantly reduce
the computation time required to find high quality solutions to these problems. The
results further indicate that, the closer one wants to be to the optimum, the larger the

speedups.

This paper appeared in the proceedings of the Twelfth National Conference on Ar-

tificial Intelligence (AAAI-94)[12].

This research was supported, in part, by the Defense Advanced Research Projects
Agency under contract F30602-91-C-0016 and, in part, by an industrial grant from

NEC.

Dl

1 Introduction

Simulated Annealing (SA) is a general-purpose search procedure that generalizes iter-
ative improvement approaches to combinatorial optimization by sometimes accepting
transitions to lower quality solutions to avoid getting trapped in local minima [8, lj. SA
procedures have been successfully applied to a variety of combinatorial optimization
problems, including Traveling Salesman Problems [1], Graph Partitioning Problems
[6], Graph Coloring Problems [7], Vehicle Routing Problems [14], Design of Integrated
Circuits, Minimum Makespan Scheduling Problems [9, 13, 19] as well as other com-
plex scheduling problems [23], often producing near-optimal solutions, though at the
expense of intensive computational efforts.

The single most significant source of inefficiency in S A search is the inherent stochas-
ticity of the procedure, typically requiring that the procedure be rerun a large number
of times before a near-optimal solution is found. Glover et al. developed a set of
"Tabu" mechanisms that attempt to increase the efficiency of SA and other neighbor-
hood search procedures by maintaining a selective history of search states encountered
earlier during the same run [4]. This history is then used to dynamically derive "tabu
restrictions" or "aspirations", that guide search, preventing it, for instance, from revis-
iting areas of the search space it just explored. This paper describes a complementary
mechanism that attempts to learn the structure of the search space over multiple runs
of SA on a given problem. Specifically, we introduce a mechanism that attempts to
predict how (un)promising a SA run is likely to be, based on probability distributions
that are refined ("learned") over multiple runs. The distributions, which are built at
different checkpoints, each corresponding to a different value of the temperature pa-
rameter used in the procedure, approximate the cost reductions that one can expect if
the SA run is continued below these temperatures. Two types of criteria are developed
that aim at increasing search efficiency by exploiting these distributions:

• A Cutoff Criterion: This criterion is used to detect runs that are unlikely to
result in an improvement of the best solution found so far and, hence, should be
abandoned;

• Restart Criteria: When completing a run or abandoning an unpromising one,
these criteria help determine whether to start a fresh SA run or restart search in
the middle of an earlier promising run.

The techniques presented in this paper have been applied to a class of complex
job shop scheduling problems first described in [18]. Problems in this class require
scheduling a set of jobs that each need to be completed by a possibly different due
date. The objective is to minimize the sum of tardiness and inventory costs incurred
by all the jobs. This class of problems is known to be NP-complete and is representa-
tive of a large number of actual scheduling problems, including Just-In-Time factory
scheduling problems [18, 17]. Experimental results indicate (1) that SA can produce

D2

high quality solutions for this class of problems, if run a large number of times, and
(2) that our learning mechanism can yield significant reductions in computation time.
The results further indicate that, the closer one wants to be to the optimum, the larger
the speedups.

The balance of this paper is organized as follows. Section 2 quickly reviews fun-
damentals of SA search. Section 3 analyzes the behavior of typical SA runs and
introduces a mechanism that aims at learning to recognize (un)promising runs on a
given problem, using the concept of Expected Cost Improvement Distributions (ECID).
In Section 4, we use EC ID distributions to develop a cutoff criterion to determine
when to abandon unpromising runs. Section 5 presents three restart criteria based
EC ID distributions. Experiments obtained on a set of benchmark job shop scheduling
problems with tardiness and inventory costs are reported in Section 6. A summary is
provided in Section 7.

2 Simulated Annealing Search

Figure 1 outlines the main steps of a SA procedure designed to find a solution x £ S
that minimizes a real-valued function, cost(x). The procedure starts from an initial
solution x0 (randomly drawn from 5") and iteratively moves to other neighboring so-
lutions, as determined by a neighborhood function, neighbor(x), while remembering
the best solution found so far (denoted by s). Typically, the procedure only moves to
neighboring solutions that are better than the current one. However, the probability
of moving from a solution x to an inferior solution x' is greater than zero, thereby al-
lowing the procedure to escape from local minima. rand() is a function that randomly
draws a number from a uniform distribution on the interval [0,1]. The so-called tem-
perature, T, of the procedure is a parameter controlling the probability of accepting
a transition to a lower quality solution. It is initially set at a high value, T0, thereby
frequently allowing such transitions. If. after N iterations, the best solution found by
the procedure has not improved, the temperature parameter T is decremented by a
factor a (0 < a < 1). One motivation for progressively lowering the temperature is
to obtain convergence. Additionally, as the procedure slowly moves towards globally
better solutions, accepting transitions to lower quality solutions becomes increasingly
less attractive. When the temperature drops below a preset level 7\, the procedure
stops and s is returned (not shown in Figure 1).

D3

T = T0;x = XQ (€ 5); min = oo;
w hile (T

for '
>Ti) {
•=1,N {

x' = neighbor(x);
if (cost(x') < cost(x)) x — x';
else if (rand() < exp{(cost(x) — cost(x '))/T» x = x';
if(cost(x) < min) min = cost(x), s = x;

}

if (Min was not modified in the above loop) T = T *a;

Fig. 1 Basic Simulated Annealing Procedure.

Fig. 2 depicts the cost distribution of the best solutions returned by 300 SA runs on
a typical combinatorial optimization problem — a job shop scheduling problem from a
set of benchmarks to be described in Section 6.

Frequency

cost
10000 15000 20000 25000 30000

Fig. 2 Cost Distribution of the Best Solutions Found by 300 SA Runs.

The optimal solution for this problem is believed to have a cost around 11,500 —
the value in itself is of no importance here. Figure 2 indicates that, if run a large
number of times, SA is likely to eventually find an optimal solution to this problem.
It also shows that, in many runs, SA gets trapped in local minima with costs much
higher than the global minimum. For instance, 60% of the runs produce solutions
with a cost at least 30% above the global minimum. This suggests that, if rather than
completing all these unsuccessful runs, one could somehow predict when a run is likely
to lead to a highly sub-optimal solution and abandon it, the efficiency of SA could be

D4

greatly enhanced. The following section further analyzes the behavior of typical SA
runs and proposes a mechanism which, given a problem, aims at learning to recognize
(un)promising SA runs.

3 Learning To Recognize (Un)promising SA Runs

Figure 3 depicts the behavior of a SA procedure on two different scheduling problems
(from the set of benchmarks used in Section 6). For each problem, the figure depicts
five SA runs, plotting the cost of the best solution, s, as the temperature of the pro-
cedure is progressively lowered — temperatures are shown in log scale, which is almost
equivalent to computation time in linear scale. SA behaves very differently on these
two problems. For instance, in Problem #1, the range of final solutions is relatively
narrow, while in Problem #2 it is much wider. Another differentiating factor is the
behavior of the procedure at low temperatures. It seems that for Problem #1, the
quality of a run can already be estimated quite accurately at T — 50 (e.g. the best run
at T = 50 remains best at lower temperatures), while this is less so for Problem #2.

Cost
30000

25000

20000

15000

200 100 50 25 12.5 6.25
(a) Problem 1

200001

12500
♦ 15000

Temp.

7800

200 100 50 25 12.5 6.25
(b) Problem 2

Temp.

Fig. 3 Cost reductions in five SA runs on two different problems.

Clearly, such properties are not intrinsic to a problem itself. They could change if
a different neighborhood structure or a different cooling profile was selected, as these
parameters can affect the types of local optima encountered by the procedure and the
chance that the procedure extricates itself from these local optima below a given tem-
perature. While, in general, it may be impossible to find a SA procedure that reliably
converges to near-optimal solutions on a wide class of problems, we can try to design
adaptive SA procedures which, given a problem, can learn to recognize (un)promising
runs and improve their performance over time. Below, we present a mechanism, which,

D5

given a problem, attempts to "learn" at different checkpoint temperatures the distri-

bution of cost improvements that one can hope to achieve by continuing search below

these temperatures.
Specifically, we postulate that, given a problem and a checkpoint temperature T = t,

the distribution of the cost improvement that is likely to be achieved by continuing a
run below t can be approximated by a normal distribution. Using performance data
gathered over earlier runs on a same problem, it is possible to approximate these Ex-
pected Cost Improvement Distributions (ECID) for a set C of checkpoint temperatures
and use these distributions to identify (un)promising runs.

Formally, given a combinatorial optimization problem and a SA procedure for that
problem, we define c\ as the cost of the best solution, s, at check point t in the i-th
run and c° as the cost of the best solution obtained at temperature T = T\ in the i-th
execution. When the (n + l)-st run reaches a checkpoint temperature t, the ECID
below t is approximated as a normal distribution JV[^,<TJJ , whose average, filn, and
standard deviation, al

n, are given by:

„i _ E?=1(cj-<f) , /E?=i{(cj-cP)-/4}»
**»- n ' *« = V ^Tl

By incrementally refining these estimators over multiple runs, this mechanism can in
essence "learn" to recognize (un)promising SA runs. The following sections successively
describe a cutoff criterion and three restart criteria based on ECID distributions.

4 A Cutoff Criterion

Suppose that, in a sixth run on Problem #1, the best solution obtained at checkpoint
T = 100 is solution A — Figure 4(a). At this checkpoint, the distribution of c° -
the cost of the best solution that will have been found if the run is completed — can
be approximated by the normal distribution N[cl°° - /4°°, o^00]. This distribution,
represented in Fig. 4(a), suggests that, if continued, the current run has a good chance
of improving the current best solution, x. Suppose that based on this analysis, the
run continues until the next checkpoint, T = 50, and that the best solution found by
the run when it reaches that temperature is A'. At this point, a new distribution of c°
can be computed to check how the run is doing. This distribution, N[CQ° — /j|j0, af*} is
shown in Figure 4(b). It appears much less promising than the one at T = 100. Now,
the chances of improving the current best solution, x, appear remote: it probably does

D6

not make sense to continue this run.

Cost

25000

20000
_100
C6

15000

Expected
Distribution

"i 1 1 r

200 100 50 25 12.5 6.25
"Temp.

Cost
(a)

25000

20000

Expected
Distribution

15000

200 100 50 25 12.5 6.25
(b)

Fig. 4 Expected Cost Improvement Distributions at T=100 and T=50.

Formally, when the (n + l)-st run reaches a checkpoint temperature t, a cutoff
criterion is used to determine whether or not to continue this run. In the study reported
in Section 6, we use a cutoff criterion of the form:

lCra+l Pn) Xn > threshold

where xn is the cost of the best solution found during the previous n runs and threshold
is a threshold value. If the inequality holds, the current run is abandoned. For example,
if threshold = 3 (the value used in our experiments) and the cutoff inequality holds at

D7

a given checkpoint temperature t, the probability of improving xn by continuing the

run below t is expected to be less than 1% [2].

5 Three Restart Criteria

Whenever a run is completed or abandoned, two options are available: either start a
fresh new annealing run or, instead, restart an earlier (promising) run, using a different
sequence of random numbers ("reannealing"). In total, if reannealing is constrained
to start from one of the checkpoint temperatures, there are up to n ■ \C\ + 1 possible
options, where n is the number of earlier runs and \C\ the number of checkpoints in
set C. Below, we describe three "restart criteria" that aim at selecting among these
options so as to maximize the chances of quickly converging to a near-optimal solution.

5.1 Maximum Cost Reduction Rate Criterion

When considering several points from which to restart search, two factors need to
be taken into account: (1) the likelihood that restarting search from a given point
will lead to an improvement of the current best solution and (2) the time that it
will take to complete a run from that point. Restarting from a low temperature will
generally bring about moderate solution improvements, if any, while requiring little
CPU time. Starting fresh new runs or restarting from higher temperatures can lead
to more significant improvements, though less consistently and at the cost of more
CPU time. In general, the cost improvements that can be expected from different
temperatures will vary from one problem to another, as illustrated in Figure 3 (and
as formalized by EC ID distributions).

A natural restart criterion is one that picks the restart point expected to maximize
the rate at which the cost of the current best solution will improve. For each restart
candidate Ok (fresh annealing or reannealing), this can be approximated as the ex-
pected cost reduction (in the best solution), if search is restarted from Ok, divided by
the expected CPU time required to complete a run from that restart point. Below, we
use R(Ok) to denote this approximation of the expected cost reduction rate, if search
is restarted from Ok'.

expected-reduction(Ok)
(k> = expected-CPU(Ok)

where expected-reduction(Ok) is the expected cost reduction at the end of a run start-
ing from Ok and expected-CPU(Ok) is the CPU time that this run is expected to
require. expected-C PU (Ok) can be approximated as the average time required to
complete earier runs from O^'s temperature. expected-reduction(Ok) can be evaluated
using ECID distributions, as detailed below.

D8

Given a reannealing point Ok at checkpoint temperature t and n earlier SA runs
completed from i or above, expected-reduction(Ok) can be approximated as:

fx"
expected-reduction(Ok) = I {Pnk(x) ' (xn ~~ x)}dx

J LB

where P^x) 1S the density function of the normal distribution N[ck — ß*n, <TJJ, ck is the
cost of Ofc's best solution1, xn is the cost of the best solution obtained over the first n
runs, and LB is a lower-bound on the optimal solution2

Similarly, if Ok is a fresh SA run, expected-reduction(Ok) can be approximated as:

fXn

expected-reduction(Ok) = / {Pn(x) ■ (xn — x)}dx
JLB

where Pn(x) is the density function of the normal distribution N[fi°,a°], with

o _ 2_,i=l Ci _o _ . jl^i=l\Ci VnS
n

n V n

5.2 Randomized Criterion

One possible problem with the above criterion is its high sensitivity to possible inac-
curacies in approximations of EC ID distributions. This can be a problem when the
number of earlier runs is still small. When inaccurate ECID distributions lead the
criterion to choose a poor restart point, the procedure may take a long time before it
improves the quality of the current best solution. In the meantime, it may keep on
coming back to the same poor restart point. For this reason, it is tempting to use
a randomized version of the criterion. One such variation involves randomly picking
from a set of promising restart points, H = {Oi\R(Oi) > ß ■ Max{R(Ok)}}, while
assuming that each element in H has the same probability, 1/\H\, of being selected, ß
is a constant whose value is between 0 and 1.

5.3 Hybrid Criterion

A third alternative involves keeping some level of stochasticity in the restart crite-
rion, while ensuring that more promising restart points have a higher chance of being
selected. This is done by selecting restart points in H according to a Boltzmann dis-
tribution that assigns to each element 0\ 6 H a probability

exp(R{Oi)lT)
P(Oi)

ZokeHexp(R(Ok)/r))

xTo be consistent, if Ok correponds to the i-th SA run, cj = c\, as defined in Section 3.
2In the experiments reported in this paper, LB was simply set to 0.

D9

Here, r is a positive constant. If r is very large, this method becomes equivalent to

the randomized criterion described in subsection 5.2. Ifr « 0, this criterion becomes

similar to the criterion of subsection 5.1. A similar distribution is used in the Q-
learning algorithm described in [21].

6 Performance Evaluation

6.1 The Job Shop Scheduling Problem with Tardiness and Inventory Costs

To evaluate performance of our cutoff and restart criteria, we consider a set of complex
job shop scheduling problems first introduced in [18]. The problems assume a factory,
in which a set of jobs, J = {ji, j2, • • • ijn}-, has to be scheduled on a set of resources,
RES = {i?i, R-2, • • •, Rm}- Each job requires performing a set of operations O1 =
{0[,Ol

2,- ■ ■ Ol
ni} and, ideally, should be completed by a given due date, ddi, for delivery

to a customer. Precedence constraints specify a complete order in which operations in
each job have to be performed. By convention, it is assumed that operation 0\ has
to be completed before operation 0|+1 can start (i — 1,2, • • • ,n; — 1). Each operation
0\ has a deterministic duration du[and requires a resource R[€ RES. Resources
cannot be assigned to more than one operation at a time. The problem is to find a
feasible schedule that minimizes the sum of tardiness and inventory costs of all the
jobs ("Just-In-Time" objective). This problem is known to be NP-complete [18] and
is representative of a large number of actual factory scheduling problems where the
objective is to meet customer demand in a timely yet cost effective manner. Additional
details on this model can be found in [18].

Experimental results reported below suggest that a good neighborhood function for
this problem can be obtained by randomly applying one of the following three operators
to the current schedule3:

• SHIFT-RIGHT: randomly select a "right-shiftable" operation and increase its
start time by one time unit4.

• SHIFT-LEFT (mirror image of SHIFT-RIGHT): randomly select a "left-shiftable"
operation and decrease its start time by one time unit.

• EXCHANGE: randomly select a pair of adjacent operations on a given resource
and permute the order in which they are processed by that resource. Specifically,

3In the scheduling jargon, the Just-In-Time objective considered in this study is known to be
irregular[10]. Prior applications of SA to job shop scheduling have only considered regular objectives
such as Minimum Makespan. It can be shown that the neighborhoods used in these earlier studies
are not adequate to deal with irregular objectives such as the one considered here [16].

4An operation is said to be "right(left)-shiftable" if its start time can be increased (decreased) by
one time unit without overlapping with another operation.

D10

given two consecutive operations. .4 and B on a resource R, with A preceding B
in the current solution, the exchange operator sets the new start time of B to
the old start time of A and the new end time of A to the old end time of B 5.

In our experiments, the probability of picking the EXCHANGE operator was empiri-
cally set to 3/7 while the probabilities of picking SHIFT-RIGHT or SHIFT-LEFT were
each set to 2/7. Additionally, the values of parameters in the SA procedure (see Figure
1) were set as follows: T0 = 700, Tx = 6.25. N = 200, 000 and a = 0.85.

The performance of this SA procedure has been evaluated in a comparison against
39 combinations of well-regarded dispatch rules and release policies previously used to
assess the performance of the Sched-Star [11] and Micro-Boss [18, 17] systems on a set
of 40 benchmark problems similar to the ones described in [18]. The 40 benchmarks
consisted of 8 problem sets obtained by adjusting three parameters to cover a wide range
of scheduling condition: an average due date parameter (tight versus loose average due
date), a due date range parameter (narrow versus wide range of due dates), and a
parameter controlling the number of major bottlenecks (in this case one or two). For
each parameter combination, a set of 5 scheduling problems was randomly generated,
thereby resulting in a total of 40 problems. Each problem involved 20 jobs and 5
resources for a total of 100 operations. On average, when compared against the best
solution found on each problem by the 39 combinations of dispatch rules and release
policies, SA reduced schedule cost by 15% (average over 10 SA runs). When comparing
the best solution obtained in 10 SA runs against the best solution obtained on each
problem by the 39 combinations of dispatch rules and release policies, SA produced
schedules that were 34% better. However, while running all 39 combinations of dispatch
rules and release policies takes a few CPU seconds on a problem, a single SA run takes
about 3 minutes on a DECstation 5000/200 running C. Additional details on these
experiments can be found in [16].

6.2 Empirical Evaluation of Cutoff and Restart Criteria

We now turn to the evaluation of the cutoff and restart criteria presented in this paper
and compare the performance of five variations of the SA procedure presented in 6.1:

• N-SA: regular SA, as described in 6.1 (no learning).

• P-SA: SA with cutoff criterion.

• B-SA: SA with cutoff and Maximum Cost Reduction Rate restart criteria.
5In our implementation, exchanging two operations is allowed even if a precedence constraint is

violated in the process. Precedence constraint violations are handled using large artificial costs that
force the SA procedure to quickly get rid of them [16].

Dll

• R-SA: SA with cutoff and randomized restart criteria (ß = 0.5).

• H-SA: SA with cutoff and hybrid restart criteria (ß = 0.5 and r = 1).

When running P-SA, B-SA, R-SA, and H-SA, the cutoff and/or restart criteria were
only activated after 5 complete SA runs to allow for the construction of meaningful
ECID distributions. All four of these procedures used the same set of checkpoints,
C = {200, 100. 50, 25, 12.5}.

The five procedures were compared on the same 40 benchmark problems described
in subsection 6.16. Each SA procedure was run for 2 hours on each benchmark problem.
Furthermore, to eliminate possible noise effects, each two-hour experiment was repeated
a total of 15 times. The results presented here were obtained by averaging performance
of these 15 runs of each procedure on each problem.

Fig. 5 depicts the performance of the five SA procedures on a typical benchmark
problem. The first 15 minutes are not represented, as they correspond to the first 5
runs when the cutoff and restart criteria have not yet been activated.

cost

8500-

8000

7500

N-SA

"" • ■ '—"Time (min.)
30 60 90 120

Fig. 5 Improvement of the best solution over time.

The figure shows that throughout its run, N-SA was dominated by the other four
procedures. It also indicates that both the cutoff criterion and the restart criteria
contributed to this performance improvement. Among the three restart criteria, EI-
SA appears to perform best. Figure 5 further suggests that the restart criterion in
H-SA improves performance through the entire run, as the gap between H-SA and
N-SA widens over time. These observations are confirmed by results obtained on the
8 problem sets of the study, as depicted in Figure 6. Fig. 6(a) shows the average
cost reductions yielded by P-SA, B-SA, R-SA and H-SA over N-SA at the end of the
two-hour runs. Figure 6(b) gives the average reduction in the CPU time required by
each of these four procedures to find a solution of equal or better quality than the best

6At the present time, only a subset of the problems in each of the 8 problem sets have been
completed. Complete results will be presented in the final version of the paper.

D12

solution found by N-SA in two hours. It can be seen that H-SA requires between 30%
and 70% less CPU time than N-SA.

Cost reduction (%)

7.0"

6.0"

5.0-

4.0-

3.0-

2.0

1.0"

0.0

o P-SA
■ B-SA
A R-SA
• H-SA

Speedup (%)

-i 1 1 1 1 1 r-
2 3 4 5 6 7 8

Problem Set

o P-SA
80- ■ B-SA

A R-SA

£\ * H"SA

60-

#\N\
40- x uV^
20-

nn- ' 1 r——1 1 1 1 1 1

(a) Cost reduction (computation time: fixed)

12 3 4 5 6 7 8

Problem Set

(b) Speedup (cost: fixed)

Fig. 6 Empirical comparison.

A finer analysis indicates that performance improvements produced by our cutoff
and restart criteria increase as one requires higher quality solutions. Figure 7, compares
the average CPU time of each of the five procedures as the required quality of solutions
is increased. While all five procedures take about as long to find a solution with cost
below 9000 or 8800, the time required to find a solution below 8500 varies significantly
(e.g. H-SA can find such a solution in 3500 seconds while N-SA requires close to 10,000
seconds).

Time (sec)

10000-

5000-

0.0

Cost = 8400

• Cost:
£OSt

:8500
:8600
:8800
:9000

N-SA P-SA B-SA R-SA H-SA
Fig. 7 Speedups as a function of required solution quality.

As already indicated in Section 5, the difference in performance between B-SA, R-
SA and H-SA suggests that a deterministic use of EC ID distributions to decide where

D13

to restart search can be tricky, as these distributions may not be accurate, especially

when only a small number of runs has been completed. By injecting non-determinism
in the restart criterion, R-SA and H-SA ensure that the procedure will not always
restart from the same point. The procedure is forced to sample a wider area and in
the process gets a chance to refine EC ID distributions. From this point of view, B-SA
is a procedure that places more emphasis on using existing knowledge of the search
space than acquiring new one, while R-SA places more emphasis on learning and less
on exploiting already acquired information. H-SA appears to provide the best balance
between these two requirements.

Finally, it should be obvious that the CPU time and memory overheads of our
cutoff and restart criteria are very moderate. All in all, in our experiments, the CPU
time required to learn EC ID distributions and apply the cutoff and restart criteria
was well under 1% of total CPU time.

7 Summary

In summary, we have developed a mechanism that learns to recognize (un)promising
SA runs by refining "Expected Cost Improvement Distributions" (ECIDs) over mul-
tiple SA runs, and have developed search cutoff and restart criteria that exploit these
distributions. These mechanisms can be applied to any SA procedure and have been
validated on complex job shop scheduling problems with tardiness and inventory costs,
where they have been shown to dramatically reduce the computational requirements
of a competitive SA procedure. Experiments presented in this paper further indicate
that the closer one seeks to be to the optimum, the larger the speedups.

D14

References

[1] Cerny, V., "Thermodynamical Approach to the Traveling Salesman Problem: An
Efficient Simulation Algorithm," ./. Opt. Theory AppL, Vol. 45, pp. 41-51, 1985.

[2] Beyer, W.H. "CRC Standard Mathematical Tables, 28th Edition," CRC Press,
Inc., Boca Raton, Florida, 1987.

[3] Garey, M. R. and Johnson, D. S. "Computers and Intractability: A Guide to the
Theory of NP-Completeness," Freeman and Co., 1979

[4] Glover, F. and Laguna M. "Tabu Search," To appear as a Chapter in Modern
Heuristic Techniques for Combinatorial Problems, June 1992

[5] Graves, S. C. "A Review of Production Scheduling," Operations Research Vol. 29
no. 4, pp. 646-675, 1981

[6] Johnson, D. S., Aragon, C. R., McGeoch, L. A. and Schevon, C. "Optimization
by Simulated Annealing: Experimental Evaluation; Part I, Graph Partitioning"
Operations Research Vol. 37 no. 6, pp. 865-892, 1989

[7] Johnson, D. S., Aragon, C. R., McGeoch, L. A. and Schevon, C. "Optimization
by Simulated Annealing: Experimental Evaluation; Part II, Graph Coloring and
Number Partitioning" Operations Research Vol. 39 no. 3, pp. 378-406, 1991

[8] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., "Optimization by Simulated
Annealing," Science, Vol. 220, pp. 671-680, 1983.

[9] Matsuo H., C.J. Suh, and R.S. Sullivan "A Controlled Search Simulated Annealing
Method for the General Jobshop Scheduling Problem" Technical Report, "Depart-
ment of Management, The University of Texas at Austin Austin, TX, Working
Paper, 1988. 1992.

[10] Morton, T.E. and Pentico, D.W. "Heuristic Scheduling Systems," Wiley Series
in Engineering and Technology Management, 1993

[11] Morton, T.E. "SCHED-STAR: A Price-Based Shop Scheduling Module," Journal
of Manufacturing and Operations Management, pp. 131-181, 1988.

[12] Nakakuki,Y. and Sadeh,N. "Increasing the Efficiency of Simulated Annealing
Search by Learning to Recognize (Un)Promising Runs," Proceedings of the Twelfth
National Conference on Artificial Intelligence, To appear, 1994.

D15

[13] Osman.I.H., and Potts, C.N., "Simulated Annealing for Permutation Flow-Shop

Scheduling," OMEGA Int. J. of Mgmt Sei., Vol. 17, pp. 551-557, 1989.

[14] Osman. I.H. "Meta-Strategy Simulated Annealing and Tabu Search Algorithms
for the Vehicle Routing Problem" Technical Report, Institute of Mathematics and
Statistics, University of Kent, Canterbury, Kent CT2 7NF, UK 1992.

[15] Palay, A. "Searching With Probabilities" PhD thesis, Department of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213, July 1983.

[16] Sadeh. N. and Nakakuki Y. "Focused Simulated Annealing Search: An Application
to Job Shop Scheduling" Technical Report, The Robotics Institute, Carnegie
Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213 1994.

[17] Sadeh. N. "Micro-Opportunistic Scheduling: The Micro-Boss Factory scheduler"
Morgan Kaufmann Publishers. 1993.

[18] Sadeh. N. "Look-ahead Techniques for Micro-opportunistic Job Shop Scheduling"
PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA 15213, March 1991.

[19] Van Laarhoven, P.J., Aarts, E.H.L., and J.K. Lenstra "Job Shop Scheduling by
Simulated Annealing," Operations Research, Vol. 40, No. 1, pp. 113-125, 1992.

[20] Vepsalainen,A.P.J. and Morton, T.E. "Priority Rules for Job Shops with Weighted
Tardiness Costs," Management Science. Vol. 33, No. 8, pp. 1035-1047, 1987.

[21] Watkins, C. J. C. M., "Learning with Delayed Rewards" PhD thesis, Cambridge
University, Psychology Department, 1989.

[22] Wefald, E.H. and Rüssel, S.J. "Adaptive Learning of Decision-Theoretic Search
Control Knowledge" Sixth International Workshop on Machine Learning, Ithaca.
NY, 1989.

[23] Zweben, M., Davis E., Daun B., Deale M., "Rescheduling with Iterative Repair"
Technical Report FIA-92-15, NASA Ames Research Center, Artificial Intelligence
Research Branch, Moffett Field, CA 94025 April, 1992.

D16

Case-based Acquisition of User Preferences
for Solution Improvement in 111-Structured

Domains

Katia Sycara
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

katia@cs.cmu.edu

Kazuo Miyashita
Production Engineering Division

Matsushita Electric Industrial Co.
Kadoma, Osaka 571, Japan

miyasit a@mcec. ped. mei .co.jp

El

Abstract

1 2 We have developed an approach to acquire complicated user

optimization criteria and use them to guide iterative solution im-

provement. The effectiveness of the approach was tested on job shop

scheduling problems. The ill-structuredness of the domain and the

desired optimization objectives in real-life problems, such as factory

scheduling, makes the problems difficult to formalize and costly to

solve. Current optimization technology requires explicit global opti-

mization criteria in order to control its search for the optimal solution.

But often, a user's optimization preferences are state-dependent and

cannot be expressed in terms of a single global optimization criterion.

In our approach, the optimization preferences are represented implic-

itly and extensionally in a case base. Experimental results in job

shop scheduling problems support the hypotheses that our approach

(1) is capable of capturing diverse user optimization preferences and

re-using them to guide solution quality improvement, (2) is robust in

the sense that it improves solution quality independent of the method

1This research was partially supported by the Defense Advance Research Projects
Agency under contract #F30602-91-C-0016. Most of the work was performed when the
second author was a visiting scientist at the Robotics Institute at Carnegie Mellon Uni-
versity under the support of Matsushita Electric Industrial Co.

2This paper appeared in the Proceedings of AAAI-94, Seattle, Washington, August
1994.

E2

of initial solution generation, and (3) produces high quality solutions,

which are comparable with solutions generated by traditional iterative

optimization techniques, such as simulated annealing, at much lower

computational cost.

1 Introduction

We present an approach, implemented in the CABINS system, to demon-

strate the capability of acquiring user context-dependent optimization pref-

erences and reusing them to guide iterative solution optimization in ill-

structured domains. This capability is very important for two main reasons.

First, traditional search methods, both Operations Research-based and Al-

based, that are used in combinatorial optimization, need explicit representa-

tion of objectives in terms of a cost function to be optimized [15]. In many

practical problems, such as scheduling and design, optimization criteria often

involve context- and user-dependent tradeoffs which are impossible to realisti-

cally consolidate in a cost function. Second, expert system approaches, while

having the potential to capture context-dependent tradeoffs in rules, require

considerable knowledge acquisition effort [14]. Our approach uses case-based

E3

reasoning (CBR) which has been successful in dealing with exceptional data

[5, 16], acquiring user knowledge in complex domains [3, 10], and expending

less effort in knowledge acquisition compared with knowledge acquisition for

rule-based systems [9]. CABINS acquires, stores and reuses two categories

of concepts that reflect user preferences (1) what heuristic local optimization

action to choose in a particular context, and (2) what combinations of effects

of application of a particular local optimization action constitutes an accept-

able or unacceptable outcome. These are recorded in the case base and are

used by CABINS to guide iterative optimization and induce optimization

tradeoffs to evaluate the current solution. The optimization criteria are not

explicitly represented as case features or in terms of a cost function but are

implicitly and extensionally represented in the case base.

Previous case-based systems for incremental solution revision (e.g. [6, 18])

have been motivated only by concerns of computational efficiency, preserv-

ing plan correctness rather than improving plan quality, and have assumed

the existence of a strong domain model that provides feedback as to plan

correctness. Case-based knowledge acquisition systems, (e.g. [1]) require

causal explanations from an expert teacher to acquire domain knowledge.

In our approach neither the user nor the program are assumed to possess

E4

causal domain knowledge. The user's expertise lies in his/her ability to per-

form consistent evaluation of the results of problem solving and impart to

the program cases of problem solving experiences and histories of evaluation

tradeoffs.

In this paper, we present initial experimental results to test three hy-

potheses. First, our CBR-based incremental revision methodology shows

good potential for capturing user optimization preferences in ill-structured

domains, such as job shop scheduling, and re-using them to guide optimiza-

tion. Second, the method is robust in the sense that it improves solution

quality independent of the method of initial solution generation. Third,

CABINS produces high quality solutions. To test this, we compared the

solutions produced by CABINS with explicit optimization criteria, with so-

lutions produced by simulated annealing (a well known iterative optimization

technique [7, 19, 8]) for the same criteria. Our investigation was conducted in

the domain of job shop schedule optimization and the experimental results,

shown in section 5.1 confirmed these hypotheses.

E5

2 Job Shop Schedule Optimization

The job shop scheduling problem is one of the most difficult NP-hard com-

binatorial optimization problems [4]. Job shop scheduling deals with allo-

cation of a limited set of resources to a number of activities (operations)

associated with a set of jobs so as to respect given temporal relations (e.g.

precedence relations among activities), temporal constraints (e.g. job release

and due dates) and resource capacity restrictions in order to optimize a set

of objectives, such as minimize tardiness, minimize work in process inven-

tory (WIP), maximize resource utilization etc. Due to the tight interactions

among scheduling constraints and the often conflicting nature of optimization

criteria, it is impossible to assess with any precision the extent of schedule

revision or the impact of a scheduling decision on the global satisfaction of op-

timization criteria. For example, in figure 1 moving forward the last activity

of 0RDER3 creates downstream cascading constraint violations. Therefore,

a repair action must be applied and its repair outcome must be evaluated

in terms of the resulting effects on scheduling objectives. In addition, the

evaluation itself of what is a "high quality" schedule is difficult because of

the need to balance conflicting objectives and trade-off among them. Such

E6

tradeoffs typically reflect user preferences, which are difficult to express as

a cost function. For example, WIP and weighted tardiness are not always

compatible with each other. As shown in figure 2, there are situations where

a repair action can reduce weighted tardiness, but WIP increases. Which is

a better schedule depends on user preferences.

CABINS incrementally revises a complete but sub-optimal schedule to

improve its quality, based on flexible optimization tradeoffs. Revision-based

approaches to scheduling have also been investigated by [11, 19, 2, 8]. In

those systems, the initial schedule is repaired by several techniques, such as

the min-conflict heuristic or simulated annealing, to minimize the number of

constraint violations or optimize a simple cost function (e.g. make-span) of

the schedule. The value of incorporating context-dependent user preferences

in operational scheduling environments is becoming increasingly recognized

(e.g. [10]) but adequate techniques are lacking.

3 CABINS Overview

CABINS is composed of three modules: (1) an initial schedule builder, (2) an

interactive schedule repair (case acquisition) module and (3) an automated

E7

I _) Rasouroa Constraint Propagation

L Prscadanca Constraint Propagation

HI 0RDER1 (JH 0RDER2 9 OR0ER3

Figure 1: Example of Tight Constraint Interactions

Rtttit Dmtt (A mud B]

Schaduls-1 I Ordar

Dm* DmU (A) Dm* Dot* IB)

Time Horizon

Figure 2: Example of Conflicting Objectives

E8

schedule repair (case re-use) module. To generate an initial schedule, CAB-

INS can use any of several scheduling methods (e.g. traditional dispatching

rules or a constraint-based scheduler).

3.1 Case representation

In each repair iteration. CABINS focuses on one activity at a time, the

focaLactivity, and tries to repair it. A case in CABINS describes the appli-

cation of a particular modification to a focaLactivity. Figure 3 shows the

information content of a case. Our assumption, borne out by the experimen-

tal results, is that despite the ill-structuredness of the domain, the global,

local and repair history features express (in an approximate manner) domain

regularities. The global features reflect an abstract characterization of po-

tential repair flexibility for the whole schedule. High 'Resource Utilization

Average', for example, often indicates a tight schedule without much repair

flexibility. Associated with a focal_activity are local features that we have

identified, based on those reported in [13], and which potentially are pre-

dictive of estimating the effects of applying a particular repair tactic to the

schedule. For example, 'Predictive Shift Gain' predicts how much overall

E9

gain will be achieved by moving the current focaLactivity earlier in its time

horizon. In particular, it predicts the likely reduction of the focaLactivity's

waiting time when moved to the left within the repair time horizon.

Global Feature

Weighted Tare*In*a«
Value salience

Ruourc« Utilization Avaraga
Value Salience

Raaourca Utilization Davtation
Value Salience

Local Faatura
Waiting Time

Value Salience
Predictive Shift Gain

Value Salience
Predictive Alt Shift Gain

Value Salience
Pradlctlva Swap Gain

Value Salience
Pradlctlva Alt Swap Gain

Value Salience

Rapalr Hlatory

Salience
Salience

Effatct
Type

0

Figure 3: CABINS Case Representation

The repair history records the sequence of applications of successive re-

pair tactics, the repair outcome and the effects. Repair effect values describe

the impact of the application of a repair action on scheduling objectives (e.g.

weighted tardiness, WIP). A repair outcome is the evaluation assigned to

the set of effects of a repair action and takes values in the set ['acceptable',

'unacceptable']. Typically the outcome reflects tradeoffs among different ob-

jectives. If the application of a repair tactic results in a feasible schedule,

E10

the result is judged as either acceptable or unacceptable with respect to the

repair objectives. An outcome is 'acceptable' if the user accepts the tradeoffs

involved in the set of effects for the current application of a repair action.

Otherwise, it is 'unacceptable'. The effect salience is assigned when the out-

come is 'unacceptable', and it indicates the significance of the effect to the

repair outcome. This value is decided subjectively and interactively. The

user's judgment as to balancing favorable and unfavorable effects related to

a particular objective constitutes the explanation of the repair outcome.

3.2 Case acquisition

To gather cases, sample scheduling problems are solved by a scheduler. CAB-

INS identifies jobs that must be repaired in the initial sub-optimal schedule.

Those jobs are sorted according to the significance of defect, and repaired

manually by a user according to this sorting. For example, if the user's op-

timization criterion is to minimize order tardiness, the most tardy order is

repaired first. The user selects a repair tactic to be applied. Tactic appli-

cation consists of two parts: (a) identify the activities, resources and time

intervals that will be involved in the repair, and (b) execute the repair by

Ell

applying constraint-based scheduling to reschedule the activities identified in

(a). Currently CABINS has 11 tactics and a flexible interface through which

the user can define more.

After tactic selection and application, the repair effects are calculated

and shown to the user who is asked to evaluate the outcome of the repair. If

the user evaluates the repair outcome as 'acceptable', CABINS proceeds to

repair another focal_activity and the process is repeated. If the user evaluates

the repair outcome as 'unacceptable', s/he is asked to supply an explanation

in terms of rating the salience/importance of each of the effects. The repair

is undone and the user is asked to select another repair tactic for the same

focaLactivity. The process continues until an acceptable outcome for the

current focaLactivity is reached, or the repair is given up. Repair is given up

when there are no more tactics to be applied to the current focal_activity; in

this situation. CABINS carries on repair of another activity. The sequence of

applications of successive repair actions, the effects, the repair outcome, and

the user's explanation for failed application of a repair tactic are recorded in

the repair history of the case. In this way, a number of cases are accumulated

in the case base.

E12

3.3 Case re-use

Once cases have been gathered, CABINS repairs sub-optimal schedules with-

out user interaction. CABINS repairs the schedules by (1) recognizing sched-

ule sub-optimalities, (2) focusing on a focaLactivity to be repaired in each

repair cycle, (3) invoking CBR with the set of global and local features as

indices to decide the most appropriate repair tactic to be used for each fo-

cal_activity, (4) invoking CBR using the repair effect features (type, value

and salience) as indices to evaluate the repair result, and (5) when the re-

pair result is unacceptable, deciding which repair tactic to use next. Note

that in contrast to traditional local iterative optimization approaches, (e.g.

tabu search, simulated annealing) where the schedule generated in the cur-

rent iteration as a result of local revision is directly compared (in terms of its

associated cost function) with the current schedule, in CABINS, evaluation

of the revision is provided by the case base, thus obviating the need for the

presence of an explicit cost function.

The similarity between i-th case and the current problem is calculated as

follows :

exp(-

\

N npi _ pp.

j=l '3

E13

where SV- is the salience of j-th feature of i-th case in the case-base, and

its value has been heuristically denned by the user. CF- is the value of j-th

feature of i-th case, PFj is the value of j-th feature in the current problem,

E-Dj is the standard deviation of j-th feature value of all cases in the case-

base. Feature values are normalized by division by a standard deviation of

the feature value so that features of equal salience have equal weight in the

similarity function.

4 An Example

We briefly illustrate the repair process with a very simple example schedule

to be repaired shown in figure 4. The example has ten jobs (Ji,..., J10)

and each job has five activities with linear precedence constraints, (e.g. 0™

BEFORE 0£, ... , 0\ BEFORE 0%). Resources R1 and R2, R3 and R5

are substitutable; resource R4 is a bottleneck. Suppose that the job under

repair is J8. This job has a weight of 2, a due date of 1250 and the scheduled

end-time of its last activity is 1390. Hence it has a weighted tardiness of

2 x (1390 - 1250) = 280. Suppose the current focaLactivity is Of. CBR is

invoked with global features (weighted tardiness= 280, resource utilization

E14

average=0.544, resource utilization deviation=0.032) plus the set of local

features as indices and selects swap as a repair tactic. One can see from

the figure that this is a good choice since the focaLactivity is scheduled on

machine R4, which doesn't have any substitutable machine and any idle time

in the repair time horizon (time between the end of Of and the end of Of).

To apply swap, CABINS calculates the activity with which Of will be

swapped. To do this, CABINS selects the activity which, if swapped with

Of, will result in least amount of precedence constraint violations. In the

example, activity 0\ is selected as the activity to be swapped with the current

focaLactivity Of. Job J4 has weight 3 and weighted tardiness 3 x (1370 —

1320) = 150. The effect of applying the swap tactic is that Of and 0\ are

unscheduled on R4 and Of is re-scheduled to start at time 1090 (the start

time of activity 0\ prior to the swap). The repair process resolves occurring

constraint violations. The repaired schedule is shown in figure 5.

The effects of repairing Of are calculated. CABINS calculates the effects

on J8 and J4, the jobs affected by the application of the swap on Of. Machine

utilization did not change but J8 had an estimated decrease in weighted-

tardiness of 180 time units and an estimated decrease in WIP of 200 units,

J4 had an increase in weighted-tardiness of 150 units and an increase in WIP

E15

rcsourccl

resource!

resource}

rcsourccl

resource?

,—itt) an.,,,3» t« isu.-.i^isu.tt-iti-xij.^L.^.^^-. oo
i :U p p p ■;,;..■;:::; i.:::::-:::::::::..:.:.:;..:.:.:-:j.:.::.-..-:..:.:::

) pp 10 ho pi pi :.:::::::::::: r: j :::::::: :::* 1:1 :::::;:::;::::

:::::::: i > p ? 10 p k j I p ::::.

im ii if * 6 ::;::;:::::: :::io :::.:: :.i :::.:..::: :::i

Figure 4: Original Schedule Results

Vf ..U»....,2DC . .as....» 0 SCO »] m m an I wc um ™ 1100 1400
resource] i fff) i -v:: » ! ::::!::; :'::: :::
resource.;) 'r 0 10 B

1
1

■■:: ::

:j ;;;) ::.::: i :

rcsourcc3 i 1 j b ■■ :::;
':::::::: :::: ::: :;: ::: :::: » :::: :::

rcsourccl Z ::::i i i ! 13) i i i :
:

resource? 11 10 1) 2 1 1 B
!:::: ::::::

10 :: l :::: ::::::!

Figure 5: Schedule Results after Repair on Of

of 750 units. CBR is invoked using these effect values, weighted tardiness,

WIP, as indices to determine whether this repair outcome is acceptable. The

acceptability or unacceptability of the repair will depend on the biases re-

flected in the case base.

E16

5 Evaluation of the Approach

We conducted a set of experiments to test the hypothesis that (1) our CBR-

based incremental modification and re-use methodology could be effective

in capturing user schedule optimization preferences and re-using them to

control schedule optimization, (2) the approach is robust in that the sched-

ules produced by CABINS consistently improve a schedule independent of

the method used for initial schedule generation and (3) as an iterative op-

timization method, the approach produces schedules of high quality. These

hypotheses are difficult to test since, due to the subjective and ill-defined na-

ture of user preferences, it is not obvious how to correlate scheduling results

with the captured preferences or how to define quality of a schedule whose

evaluation is subjective.

To address these issues, we had to devise a method to test the hypotheses

in a consistent manner. To do that, it is necessary to know the optimization

criterion that would be implicit in the case base, so that the experimental

results can be evaluated. In the experiments reported here, we used two

different explicit criteria (weighted tardiness; WIP+weighted tardiness) to

reflect the user's optimization criterion and built a rule-based reasoner (RBR)

E17

that goes through a trial-and-error repair process to optimize a schedule. For

each repair, the repair effects were calculated and, on this basis, since RBR

had a predefined evaluation objective, it could evaluate the repair outcome

in a consistent manner. Thus, we used RBR with different rules each time

to generate different case bases (each with 1,000 cases) 3 for different explicit

optimization objectives. Naturally, an objective, though known to us, is

not known to CABINS and is only implicitly and indirectly reflected in an

extensional way in each case base. By designing an objective into the RBR

so it could be reflected in the corresponding case base we got an experimental

baseline against which to evaluate the schedules generated by CABINS.

We evaluated the approach on a benchmark suite of 60 job shop schedul-

ing problems where parameters, such as number of bottlenecks, range of due

dates and activity durations were varied to cover a range of job shop schedul-

ing problem instances with the following structure. Each problem class has

10 jobs of 5 operations each and 5 machines. Two parameters were used

to cover different scheduling conditions: a range parameter controlled the

distribution of job due dates and release dates, and a bottleneck parameter

3Since a case represents the application of one repair tactic to an activity, if, for ex-
ample, 5 repair tactics are utilized in an attempt to successfully repair an activity, then 5
cases would be created.

E18

controlled the number of bottleneck resources. Six groups of 10 problems each

were randomly generated by considering three different values of the range

parameter, and two values of the bottleneck configuration (1 and 2 bottle-

neck problems). These problems are variations of the problems originally

reported in [17]. Our problem sets are, however, different in two respects:

(a) we allow substitutable resources for non-bottleneck resources whereas the

original problems did not, and (b) the due dates of jobs in our problems are

tighter by 20 percents than in the original problems. We also tested the

approach on another set of 60 problems of 20 orders and 5 resources with

similar results.

A cross-validation method was used to evaluate the learning capability of

CABINS. Each problem set in each class was divided in half. The training

sample was repaired by RBR to gather cases. These cases were then used for

case-based repair of the validation problems. We repeated the above process

by interchanging the training and test sets. Reported results are for the

validation problem sets.

E19

5.1 Experimental Results

Figures 6 show the performance of CABINS using "weighted tardiness" case

base (labeled in the figures as CABINS(WT)) vs performance of CABINS

using the "weighted tardiness and WIP" case base (labeled in the figures as

CABINS(WT+WIP)). The cases constituted the only source of knowledge

for CABINS. In other words, there was no objective given to CABINS explic-

itly. The case-bases were used both as a source of suitable repairs, and also

as a source of advice regarding repair evaluation. From the results we ob-

serve that CABINS(WT) generated higher quality schedules with respect to

minimizing weighted tardiness than CABINS(WT+WIP). Conversely, CAB-

INS(WT+WIP) generated higher quality schedules with respect to WIP, and

weighted tardiness plus WIP than CABINS(WT). These results indicate that

CABINS can acquire different and subjective user preferences.

In order to test the hypothesis that CABINS consistently improves sched-

ule quality independent of the method of initial schedule generation, we gen-

erated initial schedules for the benchmark suite of problems using three dif-

ferent state-of-the-art dispatch scheduling heuristics (EDD, WSPT, R&M)

[12] and a constraint-based scheduler (CBS). The optimization objective was

E20

a. 3600 r ".2100
33400| «2000

^1900

»30O0t ,21800

■S2800t H1600
™2600t Ifisoo
«2400t 31400
OC200 1300

=j200ot ^ N\^^-«. 1200

"■• '--^^. 1000
16001 -^. 900
1400[N --• 800
1200t * 700

- - CABINS(WT+WIP) 500
400

BOOt — CABINSfWTl
600|
400t 200
200) 100

0 2 3 4 5 6 0
Problem Set

- - CABINS(WT+WIP)
— CABINS(WT)

Problem Set

Figure 6: Scheduling Results with Different Case Bases

Wei.Tar. WIP Total CPU Sec.

EDD 956.0 1284.6 2240.6 0.1
CABINS

SA
349.5 1311.2
340.5 1333.4

1660.7
1673.9

73.5
388.2

WSPT 584.0 1241.0 1825.0 0.1
CABINS

SA
321.0 1254.9
328.5 1320.4

1575.9
1684.9

72.1
398.3

R&M 556.0 1242.0 1798.0 0.1
CABINS

SA
305.3 1264.9
330.1 1290.8

1570.2
1620.9

84.9
450.5

CBS 1173.0 1481.0 2654.0 17.4
CABINS

SA
405.3 1195.0
395.5 1220.0

1600.3
1615.5

296.5
1380.0

Table 1: Repair by CABINS and SA based on Different Methods of Initial
Schedule Generation

E21

WT+WIP. Table 1 presents the average of all 60 problems in the benchmark

and shows that CABINS improved schedule quality independent of method

to create the initial schedule. To test the hypothesis that CABINS generates

schedules of high quality, we compared the schedules generated by CAB-

INS against schedules generated by simulated annealing with the explicit

objective of WT+WIP. Table 1 shows that CABINS generated schedules of

comparable quality but was on the average 4-5 times more efficient than

simulated annealing.

6 Conclusions

We have presented a case-based approach to acquire user optimization prefer-

ences and reuse them to guide iterative solution optimization in ill-structured

domains. We demonstrated the effectiveness of the approach in capturing

user preferences and creating efficiently high quality solutions on job shop

scheduling problems. One crucial issue is how much effort should be spent to

capture "enough" number of cases for '"sufficient" solution quality improve-

ment. This is an issue we are currently pursuing. Initial experiments to

determine case base size versus quality improvement have shown that a case

E22

base of 800 cases gives on the average 20% higher quality improvement at

15% lower computational cost than a case base of 400 cases. It seems that the

effort expended to capture a big number of cases can be amortized by future

repeated use of the case base to get high quality schedules efficiently. More

importantly, CABINS can acquire those cases from user's interaction during

the process of solution improvement, thus imposing low additional effort on

the user but enhancing solution improvement. We believe that CABINS has

the potential for accommodating acquisition of user preferences that change

over time. Future work will investigate this issue.

References

[1] Ray Bareiss. Exemplar-based knowledge acquisition : a unified approach

to concept regression, classification, and learning. Academic Press, New

York, NY, 1989.

[2] E. Biefeld and L. Cooper. Bottleneck identification using process

chronologies. In Proceedings of the 12th International Joint Conference

on Artificial Intelligence (IJCAI-91), Sydney, Australia, 1991.

E23

[3] A.R, Chaturvedi. Acquiring Implicit Knowledge in a Complex Domain.

Expert Systems with Applications, 1992.

[4] Simon French. Sequencing and Scheduling: An Introduction to the Math-

ematics of the Job-Shop. Ellis Horwood, New York, NY, 1982.

[5] Andrew R. Golding and Paul S. Rosenbloom. Improving Rule-Based

Systems Through Case-Based Reasoning. In Proceedings of the Ninth

National Conference on Artificial Intelligence, pages 22-27. A A AI, 1991.

[6] Kristian J. Hammond. Case-Based Planning : Viewing Planning as a

Memory Task. Academic Press, New York, NY, 1989.

[7] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimiza-

tion By Simulated Annealing: An Experimental Evaluation, Part II

(Graph Coloring and Number Partitioning). Operations Research, 1991.

[8] Peter J. M. Van Laarhoven, Emile H. L. Aarts, and Jan Karel Lenstra.

Job shop scheduling by simulated annealing. Operations Research,

40(1):113-125, 1992.

E24

[9] L.M. Lewis, D.V. Minior, and S.J. Brown. A Case-Based Reasoning

Solution to the Problem of Redundant Engineering in Large Scale Man-

ufacturing. International Journal of Expert Systems, 4(2):189-201, 1991.

[10] K. Mckay, J. Buzacott, and F. Safayeni. The scheduler's knowledge of

uncertainty: The missing link. In Proceedings of IFIP Working Con-

ference on Knowledge Based Production Management Systems, Galway,

Ireland. 1988.

[11] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Solving large-

scale constraint satisfaction and scheduling problems using a heuristic

repair method. In Proceedings, Eighth National Conference on Artificial

Intelligence, pages 17-24, Boston, MA., 1990. AAAI.

[12] Thomas E. Morton. HEURISTIC SCHEDULING SYSTEMS: With

Application to Production Systems and Product Management. GSIA,

Carnegie Mellon University, Pittsburgh, PA., 1992. Course Textbook.

[13] P. S. Ow, S. F. Smith, and A. Thiriez. Reactive plan revision. In Pro-

ceedings of the Seventh National Conference on Artificial Intelligence,

pages 77-82, St-Paul, Minnesota, 1988. AAAI.

E25

[14] D. S. Prerau. Developing and Managing Expert Systems: Proven Tech-

niques for Business and Industry. Addison-Wesley, Reading, MA, 1990.

[15] C.R. Reeves, editor. Modern Heuristic Techniques for Combinatorial

Problems. Halsted Press. New York, 1993.

[16] David Ruby and Dennis Kibler. Learning Episodes for Optimization.

In Machine Learning : proceedings of the Ninth International Workshop

(ML92), pages 379-384, 1992.

[17] Norman Sadeh. Look-Ahead Techniques for Micro-Opportunistic Job

Shop Scheduling. PhD thesis, School of Computer Science, Carnegie

Mellon University, 1991.

[18] Manuela M. Veloso. Learning by Analogical Reasoning in General Prob-

lem Solving. PhD thesis, School of Computer Science. Carnegie Mellon

University, 1992.

[19] M. Zweben, M. Deale, and M. Gargan. Anytime rescheduling. In Pro-

ceedings of the DARPA Workshop on Innovative Approaches to Plan-

ning, Scheduling and Control, pages 251-259, San Diego, CA., 1990.

DARPA.

E26

Improving Schedule Quality

through Case-Based Reasoning

Kazuo Miyashita

Matsushita Electric Industrial Co. Ltd.,

2-7 Matsuba-cho, Kadoma, Osaka 571, JAPAN

miyasita@mcec.ped.mei.co.jp

Katia Sycara

The Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.

katia@cs.cmu.edu

Fl

Abstract

1 2We describe a framework, implemented in CABINS, for iterative

schedule revision based on acquisition and reuse of user optimization

preferences to improve schedule quality. Practical scheduling problems

generally require allocation of resources in the presence of a large, di-

verse and typically conflicting set of constraints and optimization cri-

teria. The ill-structuredness of both the solution space and the desired

objectives make scheduling problems difficult to formalize. CABINS

records situation-dependent tradeoffs about repair actions and sched-

ule quality to guide schedule improvement. During iterative repair,

cases are exploited for: (1) repair action selection, (2) evaluation of

intermediate repair results and (3) recovery from revision failures. The

contributions of the work lie in experimentally demonstrating in a do-

main where neither the user nor the program possess causal knowledge

of the domain that (a) taking into consideration failure information in

the form of failed cases or a repair history of a case improves schedule

quality, (b) schedule quality improves with increasing case size and

(c) preserving the case base rather than inducing rules gives better

results.

1 Introduction

Recently there has been increased interest in approaches that incrementally

modify an artifact (e.g., program, plan, design) by reusing previous expe-

^his research was partially supported by the Defense Advance Research Projects

Agency under contract #F30602-91-C-0016.
2This paper appeared in the Proceedings of the AAAI-93 Case-Based Reasoning Work-

shop, July 11-12, Washington, D.C., 1993.

F2

riences in order to accommodate changed artifact specifications or recover

from failures. Most current approaches have the following common charac-

teristics: (1) they are motivated by considerations of computational efficiency

[5, 13, 12], (2) they are concerned with preserving artifact correctness not

addressing optimization issues [5, 13, 12, 4], and (3) they assume the exis-

tence of a strong domain model that is utilized to guide artifact modification

and repair [5, 13, 12, 4]. For example, CHEF [4] uses rules rather than CBR

for repair tactic selection, uses a model-based simulator for detecting failures

in a generated plan, and addresses plan correctness issues (recovery from a

failed plan) but ignores issues of plan optimization. Such characteristics limit

current approaches in their ability to handle interesting real world tasks since

the existence of a strong domain model can almost never be assumed and

improving artifact quality (as opposed to only correctness) in terms of a set

of evaluation criteria is often a crucial consideration.

We present an approach, implemented in CABINS, that demonstrates

that reuse of previous relevant experiences is effective not only to ensure ar-

tifact correctness but also to improve quality. Through case-based reasoning

(CBR), CABINS learns two categories of concepts: (1) what heuristic repair

actions to choose in a particular repair context, and (2) what combinations

of effects of application of a particular repair action constitutes an acceptable

or unacceptable repair outcome in terms of optimization criteria. In contrast

to the knowledge acquisition task [1] where the program interacts with an

expert teacher to acquire domain knowledge, in our approach neither the user

nor the program possess causal domain knowledge. The user cannot predict

the effects of modification actions on artifact correctness or quality. In the

domain of scheduling, for example, a modification could result in worsen-

F3

ing schedule quality or introducing constraint violations (see next section).

The user's expertise lies in his/her ability to perform consistent evaluation

of the results of problem solving and impart to the program cases of problem

solving experiences and histories of evaluation tradeoffs.

CABINS has been evaluated in the domain of iterative improvement of job

shop schedules. Experimental results reported in [7] have shown that CAB-

INS substantially increased schedule quality along a variety of optimization

criteria (improvements ranged from 30-70 percent) without undue degrada-

tion in efficiency as compared with (1) a state of the.art constraint-based

scheduler, and (2) a variety of well regarded dispatch heuristics that are used

in production management.

In contrast to approaches that utilize a single repair heuristic [6] or use

a statically predetermined model for selection of repair actions [8], our ap-

proach utilizes a repair model that is incrementally learned and encoded in

the case base. Learning allows dynamic selection and application of repair

actions depending on the repair context. In [15] plausible explanation based

learning has been successfully used to learn schedule repair control rules for

speed up. Our experimental results show that in the context of CABINS,

keeping the case base rather than inducing rules gives better results in terms

of schedule quality.

In this paper we experimentally demonstrate that (a) taking into consid-

eration failure information improves performance results, (b) result quality

improves with increasing case size and (c) preserving the case base rather

than inducing rules gives better results.

F4

1.1 Task Domain

Scheduling assigns a set of jobs to a set of resources with finite capacity

over time. One of the most difficult scheduling problem classes is job shop

scheduling. Job shop scheduling is a well-known NP-complete problem [3].

In job shop scheduling, each job consists of a set of activities to be scheduled

according to a partial activity ordering. Each job is assigned a release date,

the date that it will be ready for starting processing, and a due date, a date

on which the job should finish. Each activity within a job is assigned a

set of substitutable resources on which the activity can be performed, and an

activity duration. For example a drilling activity could be performed utilizing

either a drilling machine or a milling machine. The dominant constraints in

job shop scheduling are: temporal precedence constraints that specify the

relative sequencing of activities within a job and resource capacity constraints

that restrict the number of activities that can be assigned to a resource during

overlapping time intervals.

The activity precedence constraints along with a job's release date and

due date restrict the set of acceptable start times for each activity. The ca-

pacity constraints restrict the number of activities that can use a resource

at any particular point in time and create conflicts among activities that

are competing for the use of the same resource at overlapping time inter-

vals. The goal of a scheduling system is to produce schedules that respect

temporal relations and resource capacity constraints, and optimize a set of

objectives, such as minimization of job tardiness (i.e., how late a job will

finish), minimization of weighted tardiness (the sum of tardiness of all jobs,

each weighted by its importance), minimization of work in process inventory

(WIP) (i.e., the time a job spends in a factory waiting to be processed),

F5

maximization of resource utilization, etc.

CABINS incrementally revises a complete schedule to improve its quality.

Revision consists in identifying and moving activities in the schedule. Be-

cause of the tight constraint interactions, a revision in one part of the schedule

may cause constraint violations in other parts. It is generally impossible to

(a) predict in advance either the extent of the constraint violations resulting

from a repair action, or the nature of the conflicts, or (b) judge a priori the

effects of a repair action on the optimization objectives. Therefore, a repair

action must be applied and its repair outcome must be evaluated in terms

of the resulting effects on scheduling objectives. The evaluation criteria are

often context dependent and reflect user preferences with respect to trade-

offs. For example, WIP and weighted tardiness are not always compatible

with each other. There are situations where WIP is reduced, but weighted

tardiness increases. Tradeoffs are context dependent and therefore difficult

to fully describe a priori even for a human expert. In CABINS, evaluation

feedback is used to incrementally acquire context dependent schedule evalu-

ation tradeoffs and their justifications. These are recorded in the case base

and can be re-used to evaluate future schedule revision outcomes. Hence,

preferences are reflected in the case base in two ways: as preferences for se-

lecting a repair action, and as evaluation preferences for the repair outcome

that resulted from selection and application of a specific repair action.

F6

Global Feature

Weighted Tardiness
Value Salience

Resource Utilization Average
Value Salience

Resource Utilization Deviation
Value Salience

Local Feature

Waiting Time
Value Salience

Predictive Shift Gain
Value Salience

Predictive Alt Shift Gain
Value Salience

Predictive Swap Gain
Value Salience

Predictive Alt Swap Gain
Value Salience

Repair History

Salience

Salience

Figure 1: CABINS Case Representation

2 Overview of CABINS

2.1 Case representation

Within a job, repair is performed one activity at a time. At each iteration,

the current job whose activity is being repaired is called the focaLjob and the

current activity being repaired is called the focaLactivity. A case describes

the application of ä particular modification to an activity. Case indices are

of three types (figure 1). First, there are features that reflect potential re-

pair flexibility for the schedule as a whole, (global features). High resource

utilization, for example, often indicates a tight schedule without much re-

pair flexibility. High standard deviation of resource utilization indicates the

presence of highly contended-for resources which in turn indicates low re-

pair flexibility. Second, there are features that reflect flexibility for schedule

F7

revision within limited temporal bounds (local features). In particular, the

temporal bound that CABINS uses is a time interval called repair time hori-

zon. The repair time horizon of a focal-activity is the time interval between

the end of the activity preceding the focaLactivity in the same focaLjob and

the end of the focal_activity (see figure 2).

ACT1

n-1

waiting time
ACT1

n

repair time horizon

Figure 2: Repair time horizon of focaLactivity (.4 CT,!;)

Associated with the repair time horizon are local features that we have

identified and which potentially are predictive of the effectiveness of applying

a particular repair tactic. These features are in the same spirit as those

utilized in [8]. For example, predictive-shift-gain predicts how much overall

gain will be achieved by moving the current focaLactivity earlier in its time

horizon. In particular, it predicts the likely reduction of the focaLactivity's

waiting time when moved to the left within the repair time horizon. Because

of the ill-structuredness of job shop scheduling, local and global features are

heuristic approximations that reflect problem space characteristics.

The third category of case indices is a set of features that reflect the se-

quence of revisions to an activity (repair history). The repair history records

the sequence of applications of successive repair actions, the repair effects

and the repair outcome. Repair effects describe the impact of the applica-

tion of a repair action on schedule optimization objectives (e.g., weighted

tardiness. WIP). Typically these effects reflect tradeoffs among different ob-

F8

jectives. A repair outcome is the evaluation assigned to the set of effects of a

repair action and takes values in the set ['acceptable', 'unacceptable']. This

judgement is made in the training phase and gets recorded in the case base.

An outcome is 'acceptable' if the tradeoffs involved in the set of effects for

the current application of a repair action is judged acceptable. If, during

case acquisition, the outcome is judged as "unacceptable", the application

of the repair tactic is considered a failure and an explanation that expresses

tradeoffs with respect to balancing favorable and unfavorable outcomes on

optimization objectives is provided. If during CBR repair the repair outcome

is deemed unacceptable, another tactic is selected from success cases to re-

pair the same activity, using as indices global and local case features, the

failed tactic, and the indication of the failed outcome. This CBR invocation

retrieves similar past failures of the tactic that were successfully repaired

and the tactic that was eventually successful in fixing the past failure. The

intuition here is that a similar outcome for the same tactic implies similarity

of causal structure between the past and current case. Therefore, the even-

tually successful tactic of a similar failure can potentially be successful in the

current problem.

2.2 Case acquisition

To gather enough cases, sample scheduling problems are solved by a constraint-

based scheduler [11]. CABINS identifies jobs in a schedule that must be

repaired. Those jobs are sorted according to the significance of defect, and

repaired according to this sorting. For example, if the optimization criterion

is to minimize job tardiness, the most tardy job is repaired first. A repair

tactic is selected to be applied. Tactic application consists of two parts: (a)

F9

identify the activities, resources and time intervals that will be involved in

the repair, and (b) execute the repair by applying constraint-based schedul-

ing to reschedule the activities identified in (a). Repairing an activity, i.e.,

unscheduling it from its current position and re-scheduling at another time

interval may cause conflicts with other activities. In each tactic applica-

tion, the focaLactivity and the conflicting activities are all re-scheduled. For

details of the approach, see [7].

The tactics currently available in CABINS are:

left_shift : try to move the focaLactivity on the same resource as much to

the left on the timeline as possible within the repair time horizon, so

as to minimize the amount of resource capacity contention created by

the move.

left_shift_into_alt : try to move the focal_activity on a substitutable resource

as much to the left on the timeline as possible within the repair time

horizon, so as to minimize the amount of resource capacity contention

created by the move.

swap : swap the focaLactivity with the activity on the same resource within

the repair time horizon which causes the least amount of precedence

constraint violations.

swap_into_alt : swap the focaLactivity with the activity on a substitutable

resource within the repair time horizon which causes the least amount

of precedence constraint violations.

After tactic selection and application, the repair effects are calculated

and evaluated. For example, repair of the current focaLactivity may de-

crease WIP by 200 units and decrease weighted tardiness of the focaLjob by

F10

180 units while at the same time increasing weighted tardiness of another

job by 130 units and increasing WIP by 300 units. If the repair outcome is

evaluated as 'acceptable', CABINS proceeds to repair another activity and

the process is repeated. If the evaluation of the repair outcome is "unaccept-

able", an explanation is supplied, the repair is undone and another repair

tactic is selected for the same focaLactivity. The process continues until an

acceptable outcome for the current focal_activity is reached, or failure is de-

clared. Failure is declared when there are no more tactics to be applied to

the current focaLactivity. The sequence of applications of successive repair

actions, the effects, the repair outcome, and the explanation for failed appli-

cation of a repair tactic are recorded in the repair history of the case. In this

way, a number of cases are accumulated in the case base.

In the experiments reported here, we used a simple metric, minimizing

weighted tardiness, 3 as an objective function to evaluate the performance

of CABINS. Although there is no straightforward way to modify a schedule

to optimize a realistic multi-criteria objective function, by using a single-

criterion objective we built a rule-based reasoner (RBR) that goes through

a trial-and-error repair process to optimize a schedule and forms an experi-

mental baseline against which to compare CABINS. Since the RBR is con-

structed not to select the same tactic after tactic failure, it could go through

all the tactics before giving up repairing an activity. For each repair, the

repair effects are calculated and the repair outcome is correctly determined

by comparing the change in the objective function. Since a clearly-defined

objective function (which is available only in a user's mind) was used for

30f course, CABINS does not know this metric but had to induce it from the contents

of the case base.

Fll

evaluation, RBR can work as an emulator of a human scheduler, whose ex-

pertise lies in the ability of consistent evaluation. Therefore, we used RBR

not only to make a comparison baseline for the CABINS experiment results

but also to generate the case base for CABINS. So far, CABINS has been

trained with 1,000 cases.

Once a case base is created, CABINS can repair a suboptimal schedule

through CBR. CABINS repairs a schedule by (1) recognizing schedule sub-

optimalities, (2) focusing on an activity to be repaired in each repair cycle,

(3) invoking CBR with global and local features as indices to decide the most

appropriate repair tactic to be used for each activity, (4) invoking CBR us-

ing the repair effect features (type, value and salience) as indices to evaluate

the repair result, and (5) in case of failure, deciding whether to give up or

which repair tactic to use next by using global and local features and the

repair history as indices. In the experimental study section, we report re-

sults about the effectiveness of indexing schemes that in situations of failure

utilize different types of failure information.

2.3 Case retrieval

In CABINS concepts are defined extensionally by a collection of cases. As

a case retrieval mechanism, CABINS uses a variation of k-Nearest Neighbor

method (k-NN). [2] where not the frequency but the sum of similarity of

k-nearest neighbors is used as a selection criterion. The similarity between

i-th case and the current problem is calculated as follows :

exp(—
iV (~1 T?l DP

F12

where SLlj is the salience of j-th feature of i-th case in the case-base.

Salience and values of features are numeric and have been heuristically de-

fined by the user. CFj is the value of j-th feature of i-th case, PFj is the

value of j-th feature in the current problem, E-Dj is a standard deviation of

j-th feature value of all cases in the case-base. Feature values are normalized

by division by a standard deviation of the feature value so that features of

equal salience have equal weight in the similarity function.

3 Experimental Studies

To evaluate CABINS, we performed a set of controlled experiments where

job shop schedule parameters, such as number of bottlenecks, range of due

date, and activity durations were varied to cover a broad range of job shop

scheduling problems. To ensure that we had not unintentionally hardwired

knowledge of the problem into the solution strategies, we generated 60 job

shop scheduling problems at random from problem generator functions where

the above problem parameters were varied in controlled ways. Each problem

has 5 resources and 10 jobs of 5 activities each. Each job has a process

routing specifying a sequence where each job must visit bottleneck resources

after a fixed number of activities, so as to increase resource contention and

make the problem more difficult. We also varied job due dates and release

dates, as well as the number of bottleneck resources (1 and 2). Six groups

of 10 problems each were randomly generated by considering three different

values of the due date range parameter (static, moderate, dynamic), and

two values of the bottleneck configuration (1 and 2 bottleneck problems).

The slack was adjusted as a function of the due date range and bottleneck

F13

parameters to keep demand for bottleneck resources close to 100 percent over

the major part of each problem. Durations for activities in each job were also

randomly generated. These problems are variations of the problems originally

reported in [10]. Our problem sets are different in two respects: (a) we allow

substitutable resources for non-bottleneck resources, and (b) the due dates

of jobs in our problems are more constrained by 20 percent.

To make an accurate determination of CABINS' capabilities, we applied a

two-fold cross-validation method. Each problem set in each class was divided

in half. One half was repaired by the RBR emulator to gather cases. These

cases were used to iteratively repair the other half of the problem set. We

repeated the above process interchanging the sample set and the test set.

Our results are the average of the two sets of results using case-based repair.

3.1 Evaluation of three repair strategies

Our hypothesis is that CBR enables CABINS to improve its competence both

in repair quality and efficiency compared with RBR by utilizing different

types of failure information recorded in the cases.

We experimentally compared three repair strategies:

(1) one-shot repair, where CABINS selects a repair tactic, applies it to

a focaLactivity and proceeds to repair the next focal-activity regardless of

repair outcome.

(2)exhaustive repair, where CABINS selects a repair tactic and applies it

to repair an activity. If the repair outcome is deemed unacceptable, another

tactic is selected from success cases to repair the same activity, using as

indices global and local case features, the failed tactic, and the indication of

the failed outcome. This CBR invocation retrieves similar past failures of

F14

the tactic that were successfully repaired and the tactic that was eventually

successful in fixing the past failure. The intuition here is that similar outcome

for the same tactic imply similarity of causal structure between the past and

current case. Therefore, the eventually successful tactic of a similar failure

can potentially be successful in the current problem.

(3) limited exhaustive repair, where CABINS gives up further repair when

it determines that it would be a waste of time. To decide whether to give up

further repair, previous repair failed cases are utilized in conjunction with

repair successes to determine case similarity. If the most similar case is a

failure, CABINS gives up repair of the current activity and switches its at-

tention to another activity. Since, in difficult problems, such as schedule

repair, failures usually outnumber successes, if both case types are weighted

equally, overly pessimistic results could be produced (i.e., CBR suggests giv-

ing up too often.) To avoid this, we bias (negatively) usage of failures by

placing a threshold on the similarity value. Failure experiences whose simi-

larity to the current problem is below this threshold are ignored in similarity

calculations. Since the similarity metric selects the tactic which maximizes

the sum of the most similar k cases, this biases tactic selection in favor of

success cases which are moderately similar to the current problem.

The graphs in figure 3 show comparative results with respect to sched-

ule quality improvement (weighted tardiness) and repair efficiency (in CPU

sees) among limited exhaustive repair, exhaustive repair, one-shot repair and

rule-based repair. The results show that one-shot repair is the worst in qual-

ity (even compared to rule-based repair) but best in efficiency. Exhaustive

repair outperformed one-shot repair and rule-based repair in quality. But,

the efficiency of exhaustive repair was worse than that of one-shot repair or

F15

w1700

J16OO
^1500
]gl400
lh 300
S1200
1100
1000
goo
eoo
700
eoo
500
400
300
200
100

■—■ Rule-based Repair
■—• One-shot repair
 Exhaustive repair
 • Limited Exhaustive repair

<o900

joaoo
£
= 700 o_
O
600

500

400

300

200

100

■—■ Rule-based Repair
•- - One-shot repair
— — Exhaustive repair
• Limited Exhaustive repair

4 5 6
Problem Set 5 6

Problem Set

Figure 3: Effect of repair strategies in quality and efficiency

rule-based repair. We believe that this result stems from the following two

reasons: (1) greediness - exhaustive repair applies the tactic from the most

similar cases no matter how small their similarity is, and (2) stubbornness -

exhaustive repair continues to repair an activity without giving up when the

problem seems difficult. The quality of repair by limited exhaustive repair

is only slightly worse than that by exhaustive repair, but is still comparable

with that of rule-based repair. The efficiency of limited exhaustive repair is

much higher than both rule-based repair and exhaustive repair. Although

the efficiency of limited exhaustive repair is comparable with that of one-shot

repair, the quality of repairs by limited exhaustive repair is much better than

that of one-shot repair. With respect to repair quality, we can observe the

following: (1) one shot repair does not have enough information to induce

an adequate repair model, and (2) prediction accuracy can be improved by

using information about failed application of a repair tactic as an additional

index feature.

F16

3.2 Comparison with different sized case-bases

gjnoor
a?

"21000

J 900
gi

S 800

700

600

500

400

300

200

100

cz
o

□ 0.300

 ■ Full Case-Base
-—- Half Case-Base

. \

'/ \ V

\

/'
ll

a.

A

■—- Full Case-Base
■—- Half Case-Base

4 5 6
Problem Set

4 5 6
Problem Set

Figure 4: Effects of case-base size in quality and efficiency

The graphs in figure 4 show the comparison of CABINS' performance with

different sized case-bases. In the experiments, we randomly chose half of

the cases in the original case-base (used in the comparative repair strategy

experiments) and created a new case-base. Then, we solved the same sixty

problems by limited exhaustive repair with each of the case-bases. The graphs

depict that CABINS with full case-base outperforms CABINS with half case-

base both in quality and efficiency. This means that, as the case base of

CABINS is enriched, its competence increases.

3.3 Comparison of CBR and rule induction

We tested the hypothesis that keeping the cases rather than inducing rules

for repair tactic selection would result in better quality repairs. The graphs in

figure 5 show the comparison of CABINS' performance with case-based rea-

F17

g?1600

|j1500

(=1400

Jjl300
^1200

11 OO

lOOO

900

800

TOO

600

500

400

300

200

100

/ \
I \

CABINS
Rules induced by C4

=3400
8
V)

E — CABINS
— — Rules induced by C4

4 5 6 O
Problem Set

5 6
Problem Set

Figure 5: Comparison of CABINS and C4 in quality and efficiency

soning and CABINS' performance with rules induced from the case base by

C4, a decision tree induction algorithm (descendant of ID3) [9]. The results

show that CABINS' performance with C4-induced rules is better with respect

to efficiency but much poorer in terms of quality than CABINS' performance

with case-base. This drawback of C4 stems from the fact that geometrically,

C4 (and most of other decision-tree induction programs) can't produce non-

rectangular decision regions in the decision space. In the rules used for

repairing schedules and creating cases, there are many conditions specifying

the relationships of attributes, such as If attribute-A is greater than

attribute-B, then C. To approximate the decision behavior of the nonrect-

angular regions produced by those rules, C4 has to fit many small rectangle

sections in the form of a staircase function, which requires more training

data.[14, 9]

F18

4 Conclusions

We described a framework for acquisition and reuse of past problem solving

experiences for plan revision in domains, such as job shop scheduling, without

a strong domain model. Our experimental results show that our methodology

can outperform rule based methods, and improve its own performance by:

(1) using failures and their repairs as additional indices, and (2) trading off

the use of success and failure cases depending on the context in which a

repair tactic is applied. In addition, our experimental results showed that

increasing case base size improves both quality and efficiency. Finally, CBR

techniques used in CABINS, though lower in efficiency, result in superior

solution quality compared with rule induction.

5 Acknowledgments

This work was done when the first author was a visiting scientist at the

Robotics Institute of Carnegie Mellon University under the support of Mat-

sushita Electric Industrial Co... C4 program used in this paper was imple-

mented by Dr. Wray Buntine at NASA Ames Research Center as a module

of his IND software package.

References

[1] Ray Bareiss. Exemplar-based knowledge acquisition : a unified approach

to concept regression, classification, and learning. Academic Press, New

York, NY, 1989.

F19

[2] Belur V. Dasarathy, editor. Nearest Neighbor (NN) Norms: NN Pattern

Classification Techniques. IEEE Computer Society Press, Los Alamitos,

CA, 1990.

[3] Simon French. Sequencing and Scheduling: An Introduction to the Math-

ematics of the Job-Shop. Ellis Horwood, New York, NY, 1982.

[4] Kristian J. Hammond. Case-Based Planning : Viewing Planning as a

Memory Task. Academic Press, New York, NY, 1989.

[5] Subbarao Kambhampati and James A. Hendler. A validation-structure-

based theory of plan modification and reuse. Artificial Intelligence.

55:193-258, 1992.

[6] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Solving large-

scale constraint satisfaction and scheduling problems using a heuristic

repair method. In Proceedings, Eighth National Conference on Artificial

Intelligence, pages 17-24, Boston, MA., 1990. AAAI.

[7] Kazuo Miyashita and Katia Sycara. Adaptive case-based control of

schedule revision. In M. Fox and M. Zweben, editors, Knowledge-Based

Scheduling. Morgan Kaufmann, San Mateo, CA, 1993.

[8] P. S. Ow, S. F. Smith, and A. Thiriez. Reactive plan revision. In Pro-

ceedings of the Seventh National Conference on Artificial Intelligence,

pages 77-82, St-Paul, Minnesota, 1988. AAAI.

[9] J. Ross Quinlan. C4-5: programs for machine learning. Morgan Kauf-

mann Publisher, Inc., San Mateo. CA, 1993.

F20

[10] Norman Sadeh. Look-Ahead Techniques for Micro-Opportunistic Job

Shop Scheduling. PhD thesis, School of Computer Science, Carnegie

Mellon University, 1991.

[11] Norman Sadeh and Mark S. Fox. Variable and value ordering heuristics

for activity-based job-shop. In Proceedings of the Fourth International

Conference on Expert Systems in Production and Operations Manage-

ment, pages 134-144, Hilton Head Island, SC, 1990.

[12] Reid G. Simmons. The roles of associational and causal reasoning in

problem solving. Artificial Intelligence, 53:159-207, 1992.

[13] Manuela M. Veloso. Learning by Analogical Reasoning in General Prob-

lem Solving. PhD thesis, School of Computer Science, Carnegie Mellon

University, 1992.

[14] Sholom M. Weiss and Casimir A. Kulikowski. Computer Systems That

Learn : Classification and Prediction Methods from Statistics, Neural

Nets, Machine Learnig and Expert Systems. Morgan Kaufmann Pub-

lisher, Inc., San Mateo, CA, 1990.

[15] M. Zweben, E. Davis, D. Brian, E. Drascher, M. Deale, and M. Eskey.

Learning to improve constraint-based scheduling. Artificial Intelligence,

58(l-3):271-296, 1992.

F21

Distributed Problem Solving
through Coordination in a Society of Agents12

JyiShane Liu Katia Sycara

jsl@cs.cmu.edu katia@cs.cmu.edu

Robotics Institute

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present a methodology, called Constraint Partition and Coordi-

nated Reaction (CP&CR), where a problem solution emerges from the

evolving computational process of a group of diverse, interacting, and

well-coordinated reactive agents. -Problem characteristics are utilized

to achieve problem solving by asynchronous and well coordinated lo-

cal interactions. The coordination mechanisms guide the search space

exploration by the society of interacting agents, facilitating rapid con-

vergence to a solution. Our domain of problem solving is constraint

satisfaction. We have applied the methodology to job shop scheduling

with non-relaxable time windows, an NP-complete constraint satis-

faction problem. Utility of different types of coordination information

in CP&CR was investigated. In addition, experimental results on a

benchmark suite of problems show that CP&CR performed consid-

:In the Proceedings of the 13th International Workshop on Distributed Artificial Intel-

ence (1994)
2This research was partially supported

Agency under contract #F30602-91-C-0016.

ligence (1994)
2This research was partially supported by the Defense Advance Research Projects

Gl

erably well as compared to other centralized search scheduling tech-

niques, in both computational cost and number of problems solved.

1 Introduction

Distributed AI (DAI) has primarily focused on Cooperative Distributed Prob-

lem Solving [4] [5] [10] by sophisticated agents that work together to solve

problems that are beyond their individual capability. Another trend has

been the study of computational models of agent societies [13], composed

of simple agents that interact asynchronously. With few exceptions (e.g.

[1][7][23]), these models have been used to investigate the evolutionary be-

havior of biological systems [12] [17] rather than the utility of these models

in problem solving. We have developed a computational framework for prob-

lem solving by a society of simple interacting agents and applied it to solve

job shop scheduling Constraint Satisfaction Problems (CSPs). Experimental

results, presented in section 4, show that the approach performs considerably

well as compared to centralized search methods for a set of benchmark job

shop scheduling problems. These encouraging results indicate good problem

solving potential of approaches based on distributed agent interactions.

Many problems of theoretical and practical interest (e.g., parametric de-

sign, resource allocation, scheduling) can be formulated as CSPs. A CSP is

defined by a set of variables X = {x\, x2, • • •, xm}, each having a correspond-

ing domain V = {vi, v2, ■ ■ ■, um}, and a set of constraints C = {cl7 c2, • • •, cn}.

A constraint c, is a subset of the Cartesian product v\ x • • • x vq which specifies

which values of the variables are compatible with each other. The variable

set of a constraint (or a set of constraints), denoted by vs(), is the set of non-

02

duplicating variables restricted by the constraint (or the set of constraints).

A solution to a CSP is an assignment of values (an instantiation) for all

variables, such that all constraints are satisfied. Numerical CSPs (NCSPs)

[14] are a subset of CSPs, in which constraints are represented by numerical

relations between quantitative variables usually with fairly large domains of

possible values. Many CSPs of practical importance, such as scheduling, and

parametric design, are NCSPs. Constraint satisfaction algorithms typically

suffer from feasibility/efficiency problems for NCSPs due to their enormous

search spaces.

In general, CSPs are solved by two complementary approaches, back-

tracking and network consistency algorithms [16] [2] [21]. Recently, heuristic

revision [18] and decomposition [3] [8] techniques for CSPs have been pro-

posed. On the other hand, recent work in DAI has considered the distributed

CSPs [11] [25] [27] in which variables of a CSP are distributed among agents.

Each agent has an exclusive subset of the variables and has sole responsibility

to instantiate their values. Instead, our approach provides a decomposition

scheme in which constraint type as well as constraint connectivity are used.

This results in no inter-agent constraints, but each variable may be instan-

tiated by more than one agent. While satisfying its own constraints, each

agent instantiates/modifies variable values based on coordination information

supplied by others. Coordination among agents facilitates effective problem

solving.

In this paper, we present an approach, called Constraint Partition and

Coordinated Reaction (CP&CR), in which a job shop scheduling NCSP is

collectively solved by a set of agents with simple local reactions and effective

coordination. CP&CR divides an NCSP into a set of subproblems accord-

G3

ing to constraint type and assigns each subproblem to an agent. Interac-

tion characteristics among agents are identified. Agent coordination defines

agent roles, the information they exchange, and the rules of interaction. The

problem solution emerges as a result of the evolving process of the group of

interacting and coordinating agents. The remainder of the paper is organized

as follows. In Section 2, we define the CP&CR model, in which problem de-

composition, coordination mechanisms, and asynchronous search procedure

are specified. In Sections 3 and 4, we describe an application of CP&CR to

job shop scheduling with non-relaxable time windows, and present compar-

ative results on previously studied test problems. Finally, in Section 5, we

conclude the paper and outline our current work on CP&CR.

2 CP&CR Model

CP&CR is a problem-solving framework in which a society of specialized

and well-coordinated agents collectively solve a problem. Each agent reacts

to others' actions and communicates with others by leaving and perceiving

particular messages on the objects it acts on. A solution emerges from the

evolutionary interaction process of the society of diverse agents. Specifi-

cally, CP&CR provides a framework to decompose an NCSP into a set of

subproblems based on constraint type and constraint connectivity, identify

their interaction characteristics and, accordingly construct effective coordi-

nation mechanisms. CP&CR assumes that an NCSP has at least two types

of constraints.

G4

2.1 Constraint Partition &: Problem Decomposition

Constraints label relations between variables that specify how the values

of variables are restricted for compatibility. We formally define constraint

characteristics (e.g., constraint type, constraint connectivity) for NCSPs.

Definition 1: Constraint Type - In CP&CR, quantitative constraints

are classified by differences in the numerical compatibility between two vari-

ables. We identify four types of quantitative constraints. In Figure 1, a

black dot represents a value, u,-, that has been assigned to a variable, X{. An

empty dot represents the only possible value for the other variable, Xj. A

shaded region (either open or closed) represents an interval within which an

instantiation of the other variable, Xj, will violate the constraint.

real line m real line

Adherence constraint

Xi + const = Xj

Exclusion-around constraint

(Xi + consti < Xj)w(Xi> Xj + constfi

real line

Exclusion-off constraint

Xi + const < Xj

real line

Inclusion-around constraint

(Xi - consti < Xj)* (Xi> Xj - constß

Figure 1: Constraint types classification

1. adherence type - A constraint is of adherence type if the instantiation

of a variable, Xi, to the value ut restricts the instantiation of another

variable, XJ, to an individual point in the domain. For example, xt- +

const = Xi.

G5

2. exclusion-around type - A constraint is of exclusion-around type if the

instantiation of a variable, xt-, to the value v{ restricts the instantiation

of another variable, x}. from a subsection within certain distances from

V{. For example, xt- + const ^ Xj, or (x; + consti < XJ) V (xt- > x^ +

constj),consti,const] > 0.

3. exclusion-off type - A constraint is of exclusion-off type if the instan-

tiation of a variable, x,, to the value i;,- restricts the instantiation of

another variable. xr from a connected subsection of the domain with

a boundary set by v,. For example, x, + const < xr

4. inclusion-around type - A constraint is of inclusion-around type if the

instantiation of a variable, x„ to the value v{ restricts the instantiation

of another variable. Xj, within a connected subsection of the domain

with boundaries set by v{. For example, (xt- - const, < Xj) A (xt- >

Xj — constj), consti, constj > 0.

We illustrate how our definitions can describe the constraints of some well

known CSPs. In the N-Queen problem, both vertical and diagonal attack

constraints are of exclusion-around type. In the Zebra problem, association

constraints (e.g. the Englishman lives in the red house.) are of adherence

type, and single-occupancy constraints (e.g. each attribute, such as pet,

color, etc., must be assigned to each house.) are of exclusion-around type.

Definition 2: Constraint Connectivity - Two constraints are said

to be connected iff the intersection of their variable sets is not empty. This

implies that they have constrained variables in common.

cp and c7 are connected = vs(cp) H vs(cg) ^ 0.

G6

Definition 3: Constraint Partition is a scheme to decompose an

NCSP into a set of subproblems by constraint type and constraint connectiv-

ity (see Figure 2). Two types of constraint grouping, constraint bunch, and

constraint cluster, are introduced by the decomposition scheme.

A constraint bunch, Ct, is a set of constraints of the same constraint type.

Define an operator, pb(), which partitions the constraint set Cof an NCSP

into a set of constraint bunches, Ct, according to constraint type. Denote

the resulting set of constraint bunches by C Define an operator, denoted

by type(), which identifies the constraint type of a constraint bunch. A

constraint bunch has the following properties.

. Pb(C) = {£■} = c

• d partition C

• type(d) ^ type{Cj), i ^ j

A constraint cluster, C,,m, is a set of constraints which are of the same

constraint type and are connected to each other. Define an operator, pc(

), which partitions a set of constraint bunches into a set of constraint clus-

ters. C", according to constraint connectivity. A constraint cluster has the

following properties.

. pc(C') = {d,m} = C"

• Constraint clusters of the same constraint type have no variables in

common

• If a constraint cluster contains more than one constraint, each con-

straint is connected to at least one other constraint in the constraint cluster

By constraint partition, an NCSP is decomposed into a set of subprob-

lems, each of which is concerned with the satisfaction of constraints in a

constraint cluster, and is assigned to an agent. A solution to a subproblem

G7

Constraint Network

X^5^S^6 _pb()/

x7ö-4> \x9

Constraint Type 1

Constraint Type 2

Constraint Bunch C|

XjO-X-20 Ox3

X£-X50 % -

X7O-X80--CXC,

Constraint Bunch Cj

XlQ^X29^X3

pc()

1,1 1,2 ^1,3

Constraint Clusters

pc()

'2,1 '2,2 '2,3

Figure 2: Constraint partition

is an instantiation of the variables in the constraint cluster such that none

of the constraints in the subproblem are violated. Each agent has full juris-

diction over variables in the variable set of the assigned constraint cluster.

A variable constrained by more than one type of constraint is under the ju-

risdiction of more than one agent. Agents responsible for the same variable

have the same authority on its value, i.e. they can independently change its

value. Therefore, a given value of a given variable is part of a solution, if it is

agreed upon by all its responsible agents in the sense that no agent seeks to

further change it. When all subproblems are solved, a solution of the NCSP

is found.

G8

2.2 A Society of Reactive Agents

In the framework of CP&CR, problem solving of an NCSP is transformed

into collective behaviors of reactive agents. Variables of an NCSP are re-

garded as objects which constitute agents' environment. An instantiation of

the variables characterizes a particular state of the environment. Each agent

examines and makes changes to only local environment (variables under its

responsibility), and seeks for satisfaction by ensuring that no constraint in its

assigned constraint cluster is violated. When an agent detects constraint vio-

lations, it reacts by changing the instantiated values of some of the variables

under its jurisdiction so that it becomes satisfied.

Agents are equipped with only primitive behavior. When activated, each

agent reacts to the current state of the environment by going through an

Examine-Resolve-Encode cycle (see Figure 3). It first examines its local view

of current environment, i.e. the values of the variables under its jurisdiction.

If there are constraint violations, it changes variable instantiations to resolve

conflicts according to innate heuristics and coordination information.

Activated
Examine Local View

Reaction of Agent
Idle

Figure 3: Agent's reactive behavior

Agents coordinate by passive communication. They do not communicate

with each other directly. Instead, each agent reads and writes coordination

information on objects under its jurisdiction. Coordination information on

an object represents an agent's partial "view" on the current state of the

G9

environment and is consulted when other agents are considering changing the

current instantiation of the variable to resolve their conflicts. Each time an

agent is activated and has ensured its satisfaction, it writes down its view on

current instantiations on each variable under its jurisdiction as coordination

information.

Agents are divided into subgroups according to perspective (e.g., con-

straint type). For example, in job shop scheduling problems, one agent sub-

group is responsible for resolving capacity constraints, whereas another agent

subgroup is responsible for resolving temporal constraints. A variable is un-

der the jurisdiction of agents from different perspectives. Agent subgroups of

different perspectives are activated in turn, while agents within a subgroup

can be activated simultaneously. An iteration cycle is an interval in which

all agents are activated once. An initial instantiation of all variables is con-

structed by a subset of agents. The agents, then, arrive at a solution through

collective and successive modifications.

2.3 Coordination Strategy

In a coordinated group of agents, individual behavior is regulated by policies

so that the agents' collective actions achieve the common goals. Given the

tasks of solving complex, large-scale NCSPs, our coordination mechanisms

emphasize convergence efficiency by exploiting characteristics of agent group

structure, agent tasks, and communicated information. We have developed

coordination strategies that promote rapid convergence by considering the

following principles of interaction control.

1. Least disturbance - When an agent is resolving conflicts, interactions

should be initiated only when necessary and. in such a wav as to reduce

G10

the chances of causing other concerned agents to subsequently initiate

further interaction.

2. Island of reliability - Consensus should be reached by a process of evolv-

ing coherent group decision-making based on islands of reliability, and

modifying islands of reliability only when group coherence is perceived

as infeasible under current assumptions.

3. Loop prevention - Looping behaviors, such as oscillatory value changes

by a subset of agents, should be prevented.

Least disturbance Least disturbance corresponds to an attempt to mini-

mize ripple effects of agents' actions. To reach group coherence, the number

of unsatisfied agents within an operation cycle must be gradually reduced to

zero. While an agent always becomes satisfied in an iteration cycle since it

instantiates its variables to satisfy only its own constraints, its actions may

cause conflicts to instantiations of other agents. Therefore, an agent should

resolve conflicts in a way that minimizes the extent of causing disturbances

to other agents. Least disturbance is incorporated in agent's heuristics of

conflict resolution (see section 3.3). The least disturbance principle is oper-

ationalized during conflict resolution in two ways. First, an agent changes

the instantiated values of as few variables as possible. Second, for a given

selected variable, an agent changes the instantiated value as little as possible.

Island of reliability An island of reliability is a subset of variables whose

consistent instantiated values are more likely than others to be part of the

solution. In particular, islands of reliability should correspond to the most

Gil

critical constraint clusters, i.e. clusters whose variables have the least flexi-

bility in satisfying their constraints. Islands of reliability provide anchoring

for reaching group coherence in terms of propagating more promising partial

solutions and are changed less often.3 For example, in job shop scheduling, a

bottleneck resource is an island of reliability. A variable which is a member

of an island of reliability is called a seed variable. A variable which is not

a seed variable is a regular variable. Division of seed and regular variables

reflects the inherent structure of the problem. The division is static and is

complemented by the dynamic interactions among different kinds of agents.

Each agent assumes a role depending on the types of variables it controls.

Dominant agents are responsible only for seed variables and therefore, are in

charge of making decisions within islands of reliability. Intermediate agents

control variable sets including both seed variables and regular variables. Sub-

missive agents are responsible for only regular variables. Intermediate agents

interact with submissive agents in a group effort to evolve an instantiation of

regular variables compatible with the decisions of dominant agents regarding

seed variables. A counter associated with each regular variable records the

number of times that a submissive agent has changed the value of the regular

variable and, thus, provides an estimate of the search efforts of intermedi-

ate and submissive agents to comply with islands of reliability. Intermediate

agents monitor the value of the counter associated with the regular variables

3Blackboard systems (e.g., Hearsay-II speech-understanding system [6]) have used the

notion of solution islands to conduct an incremental and opportunistic problem solving

process. Partial solution islands emerge and grow into larger islands, which it is hoped will

culminate in a hypothesis spanning the entire solution structure. In CP&CR, islands of

reliability refer to partial solutions from some local perspectives and are used as anchors of

interaction during the iterative solution repairing process from different local perspectives.

GI:

under their jurisdiction. When the counter of a conflicting regular variable

exceeds a threshold, the intermediate agent, instead of changing the con-

flicting regular variable again, changes the value of its seed variables. In

response to value changes in seed variables that result in conflicts, the dom-

inant agent modifies its decisions on islands of reliability. All counters are

reset to zero and, therefore, intermediate and submissive agents resume the

efforts to evolve a compatible instantiation of regular variables.

Loop prevention Under the principles of least disturbance and islands of

reliability, the system exhibits only two types of cyclic behavior. First, a

subset of intermediate and submissive agents may be involved in cyclic value

changes in order to find a compatible instantiation with dominant agents'

decisions. Secondly, a dominant agent may be changing the value of its seed

variables in a cyclic way.

The first type of looping behavior is interrupted by intermediate agents

when the counter of a conflicting regular variable exceeds a threshold. To

prevent the second type of looping behavior, a dominant agent keeps a history

of its value changes so that it does not repeat the same configuration of

variable instantiations.

2.3.1 Coordinated Group Search

From the point of view of search, the collective problem solving process is a

coordinated, localized heuristic search with partially overlapping local search

spaces (the values of variables that are the common responsibility of more

than one agent). The process starts from an initial instantiation of all vari-

ables. The search proceeds as the agents interact with each other while

G13

seeking their own goals. Islands of reliability provide the means of anchoring

the search, thus providing long term stability of partial solutions. The prin-

ciple of least disturbance provides short term opportunistic search guidance.

The search space is explored based on local feedback. The group of agents

essentially performs a search through a series of modifications of islands of

reliability. Within each configuration of islands of reliability, intermediate

and submissive agents try to evolve a compatible instantiation on regular ac-

tivities. The search ends when a solution is found or when dominant agents

have exhausted all possible instantiation of the seed variables.

CP&CR. provides a general framework that is potentially applicable to

many NCSPs. We have applied it to solve the Zebra problem (classical

test problem for constraint satisfaction algorithms). Experimental results

show that CP&CR obtained a favorable performance in terms of the number

of variable instantiations required as compared to a number of constraint

satisfaction algorithms. In this paper, we focus on the application of CP&CR

in job shop scheduling problems.

3 Job Shop Scheduling

Job shop scheduling with non-relaxable time windows involves synchroniza-

tion of the completion of a number of jobs on a limited set of resources

(machines). Each job is composed of a sequence of activities (operations),

each of which has a specified processing time and requires the exclusive use

of a designated resource for the duration of its processing (i.e. resources

have only unit processing capacity). Each job must be completed within an

interval (a time window) specified by its release and due time. A solution

G14

of the problem is a schedule, which assigns start times to each activity, that

satisfies all temporal activity precedence, release and due date, and resource

capacity constraints. This problem is known to be NP-complete [9], and has

been considered as one of the most difficult CSPs. Traditional constraint

satisfaction algorithms are shown to be insufficient for this problem [22].

3.1 Problem Decomposition and Transformation

Job shop scheduling with non-relaxable time windows is an NCSP, in which

each activity is viewed as a quantitative variable with a value corresponding

to the start time of the activity, and all constraints are expressed as numerical

relations between variables. CP&CR, by applying the pb() operator, parti-

tions the constraint set into two constraint bunches: a constraint bunch of

exclusion-off constraints to express temporal precedence constraints on activ-

ities within each job4, and a constraint bunch of exclusion-around constraints

to express capacity constraints on resources.

By applying the pc() operator, CP&CR further partitions the constraint

bunches into a set of constraint clusters corresponding to jobs or resources.

Each job is a constraint cluster of exclusion-off constraints and is assigned to

a job agent. Each job agent is responsible for enforcing temporal precedence

constraints within the job. Similarly, each resource is a constraint cluster of

exclusion-around constraints and is assigned to a resource agent. Each re-

source agent is responsible for enforcing capacity constraints on the resource.

Therefore, for a given scheduling problem, the number of subproblems (and

4Release and due dates constraints are considered as temporal precedence constraints

between activities and fixed time points and are included in the exclusion-off constraint

bunch.

G15

the number of agents) is equal to the sum of the number of jobs plus the

number of resources.

An activity is governed both by a job agent and a resource agent. Ma-

nipulation of activities by job agents may result in constraint violations for

resource agents and vice-versa. Therefore, coordination between agents is

crucial for prompt convergence on a final solution. A bottleneck resource is

the most contended resource among the resources, and corresponds to the

most critical constraint cluster. The set of activities contending for the use

of a bottleneck resource constitute an island of reliability and, therefore, are

seed variables. A bottleneck resource agent assumes the role of a dominant

agent, and a regular resource agent is a submissive agent. With the assump-

tion that each job has at least one activity contending for the bottleneck

resources, a job agent is an intermediate agent.

3.2 Coordination Information

Coordination information written by a job agent on an activity is referenced

by a resource agent, and vice-versa.

Job agents provide the following coordination information for resource

agents.

1. Boundary is the interval between the earliest start time and latest finish

time of an activity (see Figure 4). It represents the overall temporal

flexibility of an activity and is calculated only once during initial acti-

vation of job agents.

2. Temporal Slack is an interval between the current finish time of the

previous activity and current start time of the next activity (see Figure

G16

acüvyy-a

Boundary of activity-b

Boundary of activity-a

Releas: date

Order A

activity-a activity-c
current finish time Current start time

nn rn i c i m
acti rity-a

latest finish time
time line

npoi Temporal Slack of[activity-b
time tine

Figure 4: Coordination information: Boundary and Temporal Slack

4). It indicates the temporal range within which an activity may be

assigned to without causing temporal constraint violations. (This is not

guaranteed since temporal slacks of adjacent activities are overlapping

with each other.)

3. Weight is the weighted sum of relative temporal slack with respect

to activity boundary and relative temporal slack with respect to the

interval bound by the closest seed activities (see Figure 5). It is a

measure of the likelihood of the activity "bumping" into an adjacent

activity, if its start time is changed. Therefore, a high weight represents

a job agent's preference for not changing the current start time of the

activity. In Figure 5, activity-p of job B will have a higher weight than

that of activity-a of job A. If both activities use the same resource

and are involved in a resource capacity conflict, the resource agent will

change the start time of activity-a rather than start time of activity-p.

Resource agents provide the following coordination information for job

agents.

1. Bottleneck Tag is a tag which marks that this activity uses a bottleneck

resource. It indicates the seed variable status of the activity.

2. Resource Slack is an interval between the current finish time of the

previous activity and the current start time of the next activity on the

G17

Release date
tempt! ral slack of activity-a (N)

Job A

ÄL
bottleneck activity

boundary of acti

restricted interval of activity-a
bound by closest bottleneck activity (M)

'JÄL
rity-a (L)

Release date
JobB

i bottleneck activity

1 P I 1 I s I

Due date

time line

H

Weight of activity-a = W j
(length of L - length of N - length of O)

(length of L)

(length of N)

(length of M)

Figure 5: Coordination information: Weight

Resource X XI XZL
time line

resource slack of activity-a

Figure 6: Coordination information: Resource Slack

resource timeline (see Figure 6). It indicates the range of activity start

time in which an activity may be changed without causing capacity

constraint violations. (There is no guaranteed since resource slacks of

adjacent activities are overlapping with each other.)

3. Change Frequency is a counter of how frequently the start time of this

regular activity set by a job agent is changed by a submissive resource

agent. It measures the search effort of job and regular resource agents

between each modification on islands of reliability.

3.3 Reaction Heuristics

Agents' reaction heuristics attempt to minimize the ripple effects of causing

conflicts to other agents as a result of fixing the current constraint viola-

tions. Conflict minimization is achieved by minimizing the number and ex-

G18

tent of activity start time changes. The reaction heuristics utilize perceived

coordination information and incorporate coordination strategies of group

behaviors.

3.3.1 Reaction Heuristics of Job Agent

Job agents resolve conflicts by considering conflict pairs. A conflict pair

involves two adjacent activities whose current start times violate the prece-

dence constraint between them (see Figure 7). Conflict pairs are resolved one

by one. A conflict pair involving a seed activity, i.e., an activity with tighter

constraints, is given a higher conflict resolution priority. To resolve a con-

flict pair, job agents essentially determine which activity's current start time

should be changed. If a conflict pair includes a seed and a regular activity,

depending on whether the change frequency counter on the regular activity

in the conflict pair is still under a threshold, job agents change the start

time of either the regular or the seed activity. For conflict pairs of regular

activities, job agents take into consideration additional factors, such as value

changes feasibility of each activity, change frequency, and resource slack.

considered change of start time

Job Agent A

Al AO

JLL

 | A3 | seed activity
"ATI I A2 '

I3
I2 time line

bottleneck conflict pair: activity-A2
activity-A3

minus T2
plus T2

regular conflict pair: activity-AO
activity-A 1

minus Tl
plusTl

regular conflict pair: activity-A3
activity-A4

minus T3
plus T3

Figure 7: Conflict Resolution of Job Agent

In Figure 7. the conflict pair of activity-A2 and activity-A3 will be re-

solved first since activity-A2 is a seed variable. If the change frequency of

activity-A3 is still below a threshold, start time of activity-A3 will be changed

G19

by an addition of T2 (the distance between current start time of activity-A3

and current end time of activity-A2) to its current start time. Otherwise,

start time of activity-A2 will be changed by a subtraction of T2 from its

current start time. In both cases, start time of activity-A4 will be changed

to the end time of activity-A3. To resolve the conflict pair of activity-AO and

activity-Al, either start time of activity-AO will be changed by a subtraction

of Tl from its current start time or start time of activity-Al will be changed

by an addition of Tl to its current start time. If one of the two activities

can be changed within its boundary and resource slack, job agent A will

change that activity. Otherwise, job agent A will change the activity with

less change frequency.

3.3.2 Reaction Heuristics of Regular Resource Agents

Resource Agent X

Before conflict resolution
[GUI

I C3; rÄ4i rm r*n
Sequence of allocation:

activity-El -> activity-DO

i DOl 1 Ell time line -> activity-GO -> activity-A4 -> activity-C3

After conflict resolution

I~BTI PF4~1
(activity-EI has the highest weight.

! C3 1 DO | GO | 1 A4 | El I uctivity-C3 has the lowest weight)
time line

Figure 8: Conflict Resolution of Regular Resource Agent

To resolve constraint violations, resource agents re-allocate the over-contended

resource intervals to the competing activities in such a way as to resolve the

conflicts and, at the same time, keep changes to the start times of these ac-

tivities to a minimum. Activities are allocated according to their weights,

boundaries, and temporal slacks. Since an activity's weight is a measure of

the desire of the corresponding job agent to keep the activity at its current

G20

value, activity start time decisions based on weight reflect group coordina-

tion. For example, in Figure 8, activity-A4 was preempted by activity-El

which has higher weight. Start time of activity-A4 is changed as little as pos-

sible. In addition, when a resource agent perceives a high resource contention

during a particular time interval (such as the conflict involving activity-C3,

activity-DO, and activity-GO), it allocates the resource intervals and assigns

high change frequency to these activities, and thus dynamically changes the

priority of these instantiation.

3.3.3 Reaction Heuristics of Bottleneck Resource Agents

A bottleneck resource agent has high resource contention. This means that

most of the time a bottleneck resource agent does not have resource slack

between activities. When the start time of a seed activity is changed, ca-

pacity constraint violations are very likely to occur. A bottleneck resource

agent considers the amount of overlap of activity resource intervals on the

resource to decide whether to right-shift some activities (Figure 9 (i)) or

re-sequence some activities according to their current start times by swap-

ping the changed activity with an appropriate activity. (Figure 9 (ii)). The

intuition behind the heuristics is to keep the changes as minimum as possible.

3.4 System

3.4.1 System Operations

System initialization is done as follows: (1) decomposition of the input

scheduling problem according to resource and job constraints, (2) creation of

the corresponding resource and job agents, (3) activation of the agents (see

G21

Resource Agent Y Resource Agent Y

Before conflict resolution

G2 F2 1 A2

latest finished time

E2 [B2 | C2
D2

Before conflict resolution

G2 F2 7 A2

latest finished time

E2 1 B2 |C2

After conflict resolution

time line

latest finished time

D2

After conflict resolution

time line

latest finished time

G2 | F2 [A2 | 1 D2 | E2 | B2 | C2 1] I G2 | F2 [A2 | B2 | E2 | D2 |~C2~1 ..

(i)
time line

(>i)
time line

Figure 9: Conflict Resolution of Bottleneck Resource Agent

Problem
Divide problem

&
Create agents

Initiate all Job Agents Activate all Resource Agents

Initiate all Resource Agents " Activate all Job Agents

Solution

Figure 10: System Control Flow

G22

Figure 10). Initially each job agent calculates boundary for each variable

under its jurisdiction considering its release and due date constraints. Each

resource agent calculates the contention ratio for its resource by summing

the durations of activities on the resource and dividing by the interval length

between the earliest and latest time boundary among the activities. If this

ratio is larger than a certain threshold, a resource agent concludes that it is

a bottleneck resource agent.5 6

Activities under the jurisdiction of a bottleneck resource agent are marked

as seed activities by the agent. Each resource agent heuristically allocates the

earliest free resource interval to each activity under its jurisdiction according

to each activity's boundary. After the initial activation of resource agents,

all activities are instantiated with a start time. This initial instantiation of

all variables represents the initial configuration of the solution.7

Subsequently, job agents and resource agents engage in an evolving pro-

cess of reacting to constraint violations and making changes to the current

instantiation. In each operation cycle, job and resource agents are activated

alternatively, while agents of the same type are activated simultaneously, each

working independently. When an agent finds constraint violations under its

5If no bottleneck resource is identified, threshold value is lowered until the most con-

tended resource is identified.
6In job shop scheduling, the notion of bottleneck corresponds to a particular resource

interval demanded by activities that exceeds the resource's capacity. Most state-of-the-art

techniques emphasize the capability to identify dynamic bottlenecks that arise during the

construction of solution. In our approach, the notion of bottleneck is static and we exploit

the dynamic local interactions of agents.
7We have conducted experiments with random initial configurations and confirmed

that the search is barely affected by its starting point, i.e. the search procedure has equal

overall performance with heuristic and random initial configurations.

G23

jurisdiction, it employs local reaction heuristics to resolve the violations. The

process stops when none of the agents detect constraint violations during an

iteration cycle. The system outputs the current instantiation of variables as

a solution to the problem.

3.4.2 Solution Evolution

Res. X 1A31IA21I! |A13|

Res. Y

Res. Y

1 A32 : A22 :| A12

(Alii |A23|A33 I

0 20 40
(a)

60 XO

|A31|A21|: IAI3| :

1 ; A32 ! A22 :| A12

ism
* -A33 :
|A33 ;|A23|

40
(C)

:ase date ■ Release, date ■

Job 1
AB Due date

At2 |A13l

A23:
. time line

Job 2 PA2T1 A22 :|A23|

k Job 3 |A31|; A32 | [| A33 |

time line
80

time line
40
(b)

:ase date.

i krn;
Release, date:

Job 1

60 70

Due date

;| At2 |A13|

75 time line

Job 2 1 |A21|; | A22 ;|A23|

k Job 3 1A31 I A32" | 1 A33

time line
80

time line
40
(d)

60 70

Figure 11: A Simplified Scenario

Figure 11 shows a solution evolution process of a very simple problem where

resource Y is regarded as a bottleneck resource. In (a), resource agents

allocate their earliest possible free resource intervals to activities, and thus

construct the initial configuration of variable instantiation. In (b), Jobl and

Job2 agents are not satisfied with current instantiation and change the start

times of A13 and A23, respectively. In (c), Res.Z agent finds a constraint

violation and changes the start time of A33. All agents are satisfied with the

current instantiation of variables in (d) which represents a solution to the

problem.

G24

number of activities
involved in conflicts

2(

(from Job Agents'
point of views)

number of activities
involved in contlicts

(from Resource Agents
point of views)

A.../\
I 2 3 4 5 6 7 8 9 10 II 12 1314 15 1617 18 Cycle 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 1617 18 Cycle

Figure 12: Conflicts Evolution of a more difficult problem

Figure 12 shows a solution evolution process in terms of occurred conflicts

for a more difficult problem which involves 10 jobs on 5 resources. In cycle

0, resource agents construct an initial instantiation of variables that includes

islands of reliability set by dominant (bottleneck resource) agents. During

cycle 1 to cycle 9, intermediate (job) agents and submissive (regular resource)

agents try to evolve a compatible instantiation with islands of reliability, i.e.,

the instantiation of variables (activities) on the bottleneck resource. In cycle

10, some job agents perceive the effort as having failed and change the values

of their seed variables. Bottleneck resource agents respond to constraint

violations by modifying instantiation on the islands of reliability. This results

in a sharp increase of conflicting activities for job agents in cycle 11. Again,

the search for compatible instantiation resumes until another modification

on islands of reliability in cycle 16. In cycle 18, the solution is found.

4 Evaluation on Experimental Results

We evaluated the performance of CP&CR on a suite of job shop scheduling

CSPs proposed in [22]. The benchmark consists of 6 groups, representing

G25

different scheduling conditions, of 10 problems, each of which has 10 jobs of

5 activities and 5 resources. Each problem has at least one feasible solution.

CP&CR has been implemented in a system, called CORA (Coordinated

Reactive Agents). We experimentally (1) investigated the effects of coor-

dination information in the system. (2) compared CORA's performance to

other constraint-based as well as priority dispatch scheduling methods, (3)

investigated CORA's scaling up characteristics on problems of larger sizes.

The effectiveness of different types of coordination information was reported

in [15]. We focus on the remaining aspects of evaluation in this paper.

CORA was compared to four other heuristic search scheduling techniques,

ORR/FSS, MCIR, CPS, and PCP. ORR/FSS [22] incrementally constructs a

solution by chronological backtracking search guided by specialized variable

and value ordering heuristics. ORR/FSS+ is an improved version augmented

with an intelligent backtracking technique [26]. Min-Conflict Iterative Repair

(MCIR) [18] starts with an initial, inconsistent solution and searches through

the space of possible repairs based on a min-conflicts heuristic which attempts

to minimize the number of constraint violations after each step. Conflict

Partition Scheduling (CPS) [20] employs a search space analysis methodology

based on stochastic simulation which iteratively prunes the search space by

posting additional constraints. Precedence Constraint Posting (PCP) [24]

conducts the search by establishing sequencing constraints between pairs of

activities using the same resource based on slack-based heuristics. In addition,

three frequently used and appreciated priority dispatch rules from the field

of Operations Research: EDD. COVERT, and R&M [19], are also included

for comparison.

G26

\ CORA CPS MCIR
ORR/
FSS

ORR/
FSS+

PCP EDD COVER! R&M

w/1

| w/2

| n/1

n/2

[0/1

0/2

10

10

10

10

10

10

10

10

10

10

10

10

9.8

2.2

7.4

1

4.2

0

10

10

8

9

7

8

10

10

10

10

10

10

10

10

10

10

10

8-10

10

10

8

8

3

8

8

7

7

6

4

8

10

10

9

9

6

8

Total 60 60 24.6 52 60 58-60 47 40 52
AVG.

! CPU
time

4.8
seconds

13.07 *
seconds

49.74 *
seconds

39.12*
seconds

21.46*
seconds

N/A 0.9
seconds

0.9
seconds

0.9
seconds

Table 1: Performance Comparison

60

25

CPU Time
60.2

Problem Size
50 250 500

Figure 13: CORA's Scaling Up Property

G27

Table 1 reports the number of problems solved8 and the average CPU

time spent over all the benchmark problems for each technique. Note that

the results of ORR/FSS. ORR/FSS+, MCIR, CPS, and PCP were obtained

from published reports, of mostly the developers of the techniques. MCIR is

the only exception, which is implemented by Muscettola who reported its re-

sults based on randomly generated initial solutions [20]. All CPU times were

obtained from Allegro Common Lisp implementations on a DEC 5000/200.

In particular. CORA was implemented in CLOS (Common Lisp Object

System). CPS. MCIR. ORR/FSS, and ORR/FSS+ were implemented us-

ing CRL (Carnegie Representation Language) as an underlying frame-based

knowledge representation language. CPU times of CPS, MCIR, ORR/FSS,

and ORR/FSS+ were divided by six from the published numbers as an esti-

mate of translating to straight Common Lisp implementation.9 PCP's CPU

times are not listed for comparison because its CPU times in Common Lisp

are not available. Its reported CPU times in C are 0.3 second [24]. Although

CORA can operate asynchronously, it was sequentially implemented for fair

comparison. The results show that CORA works considerably well as com-

pared to the other techniques both on feasibility and efficiency in finding a

solution. In addition, the same problem generator function producing the

benchmark problems was used to produce problem sets of 250 and 500 vari-

ables (e.g. 100 factory jobs on 5 machines which is a problem of realistic

size). Figure 13 shows CORA's performance on these larger sized problems,

which exhibits favorable, near-linear scaling-up characteristics.

8PCP's performance is sensitive to the parameters that specify search bias [24].
9ORR/FSS and ORR/FSS+ obtained 30 times speedup in C/C++ implementation.

We assumed a factor of five between Common Lisp and C/C++ implementations.

G28

As a scheduling technique, CORA performs a heuristic approximate search

in the sense that it does not systematically try all possible configurations. Al-

though there are other centralized scheduling techniques that employ similar

search strategies, CORA distinguishes itself by an interaction driven search

mechanism based on well-coordinated asynchronous local reactions. Heuris-

tic approximate search provides a middle ground between the generality of

domain-independent search mechanisms and the efficiency of domain-specific

heuristic rules. Instead of the rigidity of one-pass attempt in solution con-

struction (either it succeeds or fails, and the decisions are never revised) in

approaches using heuristic rules, CORA adapts to constraint violations and

performs an effective search for a solution. As opposed to generic search

approaches, in which a single search is performed on the whole search space

and search knowledge is obtained by analyzing the whole space at each step,

CORA exploits local interactions by analyzing problem characteristics and

conducts well-coordinated asynchronous local searches.

The experimental results obtained by various approaches concur with the

above observations. Approaches using generic search techniques augmented

by domain-specific search-focus heuristics (ORR/FSS, ORR/FSS+, MCIR,

CPS) required substantial amount of computational effort. Some of them

could not solve all problems in the sense that they failed to find a solution for

a problem within the time limit set by their investigators. Approaches using

dispatch rules (EDD, COVERT, R&M) were computationally efficient, but

did not succeed in all problems. PCP relies on heuristic rules to conduct one-

pass search and its performance is sensitive to parameters that specify search

bias. CORA struck a good balance in terms of solving all problems with

considerable efficiency. Furthermore, with a mechanism based on collective

G29

operations, CORA can be readily implemented in parallel processing such

that only two kinds of agents are activated sequentially in each iteration cycle,

instead of 10 job agents and 5 resource agents under current implementation.

This would result in an approximate time-reducing factor of 7 (i.e., 15/2)

and would enable CORA to outperform all other scheduling techniques in

comparison.

CORA exploits local interactions based on the notion of islands of relia-

bility and has showed to perform quite well on problems with clear resource

bottlenecks. For problems with no clear bottlenecks and all resources are

loosely utilized (say, below 50 percents of utilization), we expect CORA

perform with the same efficiency by selecting the most utilized resource as

islands of reliability. However, CORA's current mechanism based on domi-

nant coordination may not be sufficient for problems in which all resources

are at least moderately utilized (say, above 60 percents of utilization) and

there is no outstanding bottleneck. We are interested in developing a more

sophisticated mechanism based on competing coordination and investigate its

utility in various scheduling conditions.

5 Conclusions

In this paper, we have presented a collective problem solving framework,

where problem solving is viewed as an emergent functionality from the evolv-

ing process of a society of diverse, interacting, well-coordinated reactive

agents. We show that large-scaled NCSPs can be decomposed and assigned

to different problem solving agents according to disjoint functionality (con-

straint types) and overlapping responsibility (variable subsets). This decom-

G30

position results in utilization of interaction characteristics to achieve problem

solving by asynchronous and well coordinated local interactions. Application

of the methodology to job shop scheduling with non-relaxable time windows

results in very good performance. Our experimental results show that the

coordination mechanism (1) incorporates search knowledge and guides the

search space exploration by the society of interacting agents, facilitating rapid

convergence to a solution, and (2) is independent of initial configuration. In

addition, the search complexity grows only linearly with problem size. We

are currently applying the CP&CR methodology to Constraint Optimization

Problems (COPs). Preliminary experiments show encouraging results com-

pared to both heuristic search and simulated-annealing-based techniques. We

are also investigating the utility of CP&CR in other domains with different

problem structures.

References

[1] Rodney A. Brooks. Intelligence without reason. In Proceedings of the

IJCAI-91. pages 569-595, 1991.

[2] Rina Dechter. Network-based heuristics for constraint satisfaction prob-

lems. Artificial Intelligence, 34(1):1—38, 1988.

[3] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint net-

works. Artificial Intelligence, 49:61-95, 1991.

[4] Keith S. Decker. Distributed problem-solving techniques: A survey.

IEEE Transactions on Systems. Man, and Cybernetics, 17(5):729-739,

1987.

G31

[5] Edmund H. Durfee. Coordination of Distributed Problem Solvers.

Kluwer Academic Publishers, 1988.

[6] L. D. Erman, F. A. Hayes-Roth, V. R. Lesser, and D. R. Reddy. The

hearsay-II speech-understanding system: integrating knowledge to re-

solve uncertainty. Computer Survey, 12(2):213-253, 1980.

[7] J. Ferber and E. Jacopin. The framework of Eco Problem Solving.

In Demazeau and Müller, editors. Decentralized AI 2. Elsevier, North-

Holland. 1991.

[8] Eugene C. Freuder and Paul D. Hubbe. Using inferred disjunctive con-

straints to decompose constraint satisfaction problems. In Proceedings

of the IJCAI-93, pages 254-260, 1993.

[9] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. Freeman and Co., 1979.

[10] Les Gasser and Randall W. Hill, Jr. Engineering coordinated problem

solvers. Annual Review of Computer Science. 4:203-253, 1990.

[11] M. Huhns and D. Bridgeland. Multiagent truth maintenance. IEEE

Transactions on System, Man, and Cybernetics, 21(6):1437—1445, 1991.

[12] C. Langton, C. Taylor, J. Farmer, and S. Rasmussen, editors. Artificial

Life II. Addison-Wesley, 1991.

[13] Christopher G. Langton, editor. Artificial Life. Addison-Wesley, 1989.

[14] Olivier Lhomme. Consistency techniques for numerical CSPs. In Pro-

ceedings of IJCAI-93, pages 232-238, 1993.

G32

[15] JyiShane Liu and Katia P. Sycara. Distributed constraint satisfaction

through constraint partition and coordinated reaction. In Proceedings

of the 12th International Workshop on Distributed AI, 1993.

[16] Alan K. Mackworth. Constraint satisfaction. In S. C. Shapiro, editor,

Encyclopedia in Artificial Intelligence, pages 205-211. Wiley, New York,

1987.

[17] Jean-Arcady Meyer and Stewart W. Wilson, editors. Proceedings of the

First International Conference on Simulation of Adaptive Behavior -

From Animals To Animats. MIT Press, 1991.

[18] S. Minton, M. Johnston, A. Philips, and P. Laird. Minimizing conflicts:

a heuristic repair method for constraint satisfaction and scheduling prob-

lems. Artificial Intelligence, 58:161-205, 1992.

[19] Thomas E. Morton and David W. Pentico. Heuristic Scheduling Sys-

tems: With Applications to Production Systems and Project Manage-

ment. John Wiley & Sons, New York, 1993.

[20] Nicola Muscettola. HSTS: Integrated planning and scheduling. In Mark

Fox and Monte Zweben, editors, Knowledge-Based Scheduling. Morgan

Kaufmann, 1993.

[21] Bernard A. Nadel. Constraint satisfaction algorithms. Computational

Intelligence, 5:188-224, 1989.

[22] Norman Sadeh. Look-ahead techniques for micro-opportunistic job shop

scheduling. Technical Report CMU-CS-91-102, School of Computer Sci-

ence. Carnegie-Mellon University, 1991.

G33

[23] Yoav Shoham and Moshe Tennenholtz. On the synthesis of useful social

laws for artificial agent societies. In Proceedings of AAAI-92, pages

276-281, 1992.

[24] Stephen F. Smith and Cheng-Chung Cheng. Slack-based heuristics for

constraint satisfaction scheduling. In Proceedings of AAAI-93, pages

139-144, 1993.

[25] Katia Sycara, Steve Roth, Norman Sadeh, and Mark Fox. Distributed

constraint heuristic search. IEEE Transactions on System, Man, and

Cybernetics, 21(6): 1446-1461, 1991.

[26] Yalin Xiong, Norman Sadeh, and Katia Sycara. Intelligent backtracking

techniques for job shop scheduling. In Proceedings of the Third In-

ternational Conference on Principles of Knowledge Representation and

Reasoning, pages 14-23, 1992.

[27] M. Yokoo, E. Durfee, T. Ishida. and K. Kuwabara. Distributed con-

straint satisfaction for formalizing distributed problem solving. In Pro-

ceedings of the 12th IEEE International Conference on Distributed Com-

puting Systems, pages 614-621, 1992.

G34

On the Utility of Bottleneck Reasoning for
Scheduling

Nicola Muscettola
RECOM Technologies

NASA Ames Research Center
AI Research Branch, Mail Stop: 269-2

Moffett Field, CA 94035-1000
e-mail: mus@ptolemy.arc.nasa.gov

Abstract

The design of better schedulers requires a deeper understanding of each component
technique and of their interactions. Although widely accepted in practice, bottleneck
reasoning for scheduling has not yet been sufficiently validated, either formally or em-
pirically. This paper reports an empirical analysis of the heuristic information used by
bottleneck-centered, opportunistic scheduling systems to solve constraint satisfaction
scheduling problems. Different configurations of a single scheduling framework are ap-
plied to a benchmark set of scheduling problems and compared with respect to number
of problems solved and processing time. We show superior performances for schedulers
that use bottleneck information. We also show that focusing at the bottleneck might
not only provide an effective "most constrained first" heuristic but also, unexpectedly,
increase the utility of other heuristic information.

1 Introduction
Problem solvers often use combinations of several different heuristics and reasoning methods
(e.g., constraint propagation, search). Empirical comparisons of performances of different
problem solvers can show that one combination of techniques is superior to another. However,
to design better problem solvers we need a deeper understanding of the importance of each
component technique and of how different techniques interact.

This paper reports an empirical analysis of the performance of heuristic information typ-
ically used to solve constraint satisfaction scheduling problems. We will focus on bottleneck-
centered, opportunistic schedulers, a class of systems that has shown better performance
than other kinds of schedulers [1, 13, 11]. We will show that there is strong empirical evi-
dence on the effectiveness of reasoning about bottlenecks. Moreover, we will show evidence

HI

of the fact that heuristic information gathered at the bottleneck is "more useful" than av-
erage. This allows a bottleneck centered scheduler to make several decisions without having

to re-evaluate its heuristic information too often.
Although widely accepted in practice (e.g., manufacturing scheduling), bottleneck reason-

ing has not yet been sufficiently validated, either formally or empirically. Although formal
validation would be most desirable, at present no formal model realistically captures the
deep structure of scheduling problems. In its absence, strong evidence of performance can
be gathered with empirical studies. We believe that such studies will also be extremely useful
to discover new "phenomena" which will guide the search for an appropriate formal model.

The goal of an opportunistic scheduler is to build an assignment of time and resources to a
network of activities and a set of resources such as to avoid resource over-subscriptions. The
goal is achieved by repeatedly applying the following basic opportunistic scheduling cycle:

1. Analyze: analyze the current problem solving state;

2. Focus: select one or more activities that are expected to participate in a critical inter-
action among problem constraints;

3. Decide: add constraints to reduce negative interactions among critical activities.

Opportunistic schedulers differ on the specific techniques used to implement each phase
[15, 3, 13, 1, 11] but share several fundamental characteristics. The Analyze phase consists
of building estimates of demand/supply ratios for the different resources and/or activities.
These estimates are usually conducted on relaxed versions of the problem obtained by drop-
ping some of its original temporal and/or resource constraints. During the Focus phase, all
opportunistic schedulers use bottlenecks as the primary means of selecting critical interac-
tions. While the exact definition of a bottleneck may vary, all opportunistic schedulers agree
on relating this concept to a resource and time interval with a high demand/supply ratio.
Critical activities are usually defined as those that are likely to request the use of a bottle-
neck. The constraints posted during the Decide phase impose arbitration among conflicting
capacity and time requests. This is the phase where opportunistic schedulers differ the most
with respect to the type of constraint posted (assigning a value to a variable versus imposing
a precedence among activities) and to the granularity of the decision making process (the
number of decisions taken at each cycle).

The study in this paper was conducted on Conflict Partition Scheduling (CPS) [11], a
scheduling method that implements the opportunistic scheduling paradigm. We first describe
CPS and the stochastic simulation method used to compute heuristic information. Then we
analyze two steps of the procedure: bottleneck detection and scheduling decision making. We
discuss modifications of these steps and make hypotheses on how these modifications might
affect performance. We then verify our hypotheses against the results of an experimental
analysis.

We believe that our results are typical of the performance of other opportunistic sched-
ulers. We base our belief on the similarity of each CPS step to other opportunistic schedulers

H2

Initialize
Network

RT

F .
Inconsistent?.

T

Analyze Focus Decide

Capacity
Analysis

m(No Capacity X_^
\Conflicts'?/

IT

Conflict
Identification

Conflict
Arbitration

SOLUTION

Figure 1: Conflict Partition Scheduling

and on the applicability of the performance hypotheses to comparable modifications of other

schedulers.

2 Conflict Partition Scheduling

CPS adopts a constraint posting approach to scheduling, i.e., it operates by posting temporal
precedences among activities (activity a, must precede activity ctj). During problem solving,
each activity has an associated window of opportunity for its execution; these can be deduced
by propagating activity durations and metric temporal constraints (absolute and relative)
across the activity network [5]. Previous empirical studies have shown that constraint posting
schedulers perform better than schedulers that proceed by assigning precise values to the
start and end time of each activity [2, 11, 14].

Figure 1 shows how CPS organizes its computation. In relation to the opportunistic cycle
described in the introduction. Capacity Analysis corresponds to Analyze, Conflict Identifi-
cation to Focus, and Conflict Arbitration to Decide. The consistency test is a propagation
of the metric temporal constraints in the activity network.

The algorithm described in the diagram follows an iterative sampling approach to search
[10, 9]. If the consistency test fails, the activity network is reset to the initial state and the
procedure is re-started. As we will see later, CPS' capacity analysis is stochastic in nature;
therefore, each repetition can explore a different path in the problem solving space. If a
solution has not been found after a fixed number of repetitions (in our case, 10), CPS termi-
nates with an overall failure. The choice of iterative sampling is consistent with our interest
in isolating the information content of the heuristic information generated by the Capacity
Analysis. However, it is also possible to use the internal CPS cycle in a systematic search
approach. For example, Conflict Arbitration could sprout several alternative ways of adding
constraints among conflicting activities. Prioritization of these alternatives could make use of
Capacity Analysis information and a backtracking scheme would ensure continuation when

reaching a dead end.
The Capacity Analysis computes all the heuristic information used for decision-making

H3

by generating estimates of the structure of the remaining search space without engaging in

detailed problem solving. Such estimates are statistics computed from a sample of complete

time assignments to activity start times. These assignments are consistent with all the tem-

poral constraints explicitly represented in the current activity network1, but do not usually
result in consistent schedules since they do not necessarily satisfy all the constraints of the
problem (i.e., those capacity constraints that have not yet been explicitly enforced). CPS
uses a stochastic simulation process to generate each complete time assignment. This pro-
cess differs from other stochastic simulation techniques [6, 7] used to estimate the possible
outcomes of executing a detailed schedule in an uncertain environment. Having to insure
executability, these simulations must introduce additional constraints to complete an inter-
mediate problem solving state into a consistent schedule. Therefore, they end up considering
many more details than are useful or necessary for an aggregate capacity analysis. Instead,
CPS' stochastic simulation [12] considers only the constraints that are explicit in the current
intermediate state, with very weak assumptions on how it will be extended into a complete
schedule.

In the following, EST (a) and LFT (a) will denote, respectively, the earliest start time
and the latest finish time of the activity a, H will denote the overall scheduling horizon, and
R will be the set of resources.

CPS' stochastic simulation proceeds by repeating the following cycle. Before the simula-
tion starts, a temporal constraint propagation establishes the range of possible start times
for each activity. At each simulation cycle i, an activity a,- is selected according to a given
strategy. After the selection, a start time is randomly chosen among a,'s possible start times
and assigned to the activity. The random choice follows a given probability distribution, or
selection rule. The consequences of the start time assignment are then propagated through
the network to restrict the range of other activities' start times, and the simulation cycle
is repeated. The simulation terminates when all the activities of the network have been
assigned a start time.

Different implementations of CPS can choose different activity selection strategies and
start time selection rules. A typical activity selection strategy is forward temporal dispatching
which selects a,- among the set of activities whose predecessors have all start times assigned by
previous simulation cycles. A possible start time selection rule is a linearly biased distribution
(i.e., the weight of the currently available times increases or decreases linearly over the time
bound) for each activity in the network. These choices are crucial to the performance of
CPS since they determine: (1) the computational cost of each cycle and (2) the probability
of generating each of the possible total start time assignments and, therefore, the bias of the
sampling base.

Figure 2 illustrates a single simulation cycle using a linear selection rule. In the figure,
activity a,- precedes activity a,-+i in the activity network. Figure 2 (a) shows the time bounds
for each activity; a,- has a linear value selection rule superimposed on its time bound. In
Figure 2 (b), a start time has been selected for a,- and time has been reserved for its execution;

although CPS can deal with activities with flexible durations {i.e., the duration of a must fall in the
range [da,Da]), we will only consider activities with fixed durations to simplify the presentation.

H4

(a) time (b) time

Figure 2: Simulation step: (a) before step i; (b) after step i

the reservation is represented by the black rectangle. This causes a,+i 's time bound to shrink.
A triangular selection rule is now superimposed on a,-+i's time bound and the simulation

cycle can start again.
Repeating the simulation N times yields a sample of TV" complete time assignments. CPS'

Capacity Analysis uses this sample to estimate the following two problem space metrics:

• activity demand: for each activity a and for each time EST (a) < £,-'< LFT (a),
the activity demand. A(aJi), is equal to ntJN, where nu is the number of complete
time assignments in the sample for which a is being executed at time £,-.

• resource contention: for each resource p € R and for each time tj £ H, the resource
contention. X(p,t3), is equal to ntj/N, where ntj is the number of complete time
assignments in the sample for which p is requested by more than one activity at time

tj.

Activity demand and resource contention represent two different aspects of the current
problem solving state. Activity demand is a measure of preference; it indicates how much
the current constraints bias an activity toward being executed at a given time. Resource
contention is a measure of potential inconsistency; it indicates how likely it is that the current
constraints will generate a congestion of capacity requests on a resource at a given time.

3 Bottleneck Detection

In problem solving, a widely accepted principle is to focus on the most tightly interacting
variables, i.e.. those with the smallest set of possible values. For example, in constraint
satisfaction search [8] the 'most constrained first' heuristic minimizes the expected length of
any path in the search tree and, therefore, increases the probability of achieving a solution
in less time. In opportunistic scheduling this principle translates into looking for bottleneck

resources.
In CPS each problem solving cycle focuses on a set of activities that are potentially in

conflict, called the conflict set. More precisely, a conflict set is a set of activities that: (1)
request the same resource, (2) have overlapping execution time bounds, and (3) are not
necessarily totallv ordered according to the precedence constraints of the current activity

network.

H5

To detect a conflict set CPS first identifies a bottleneck using resource contention:

t Bottleneck: Given the set of resource contention functions {X{p,t)} with p £ R and

t £ H, we define a bottleneck to be a pair < pb,tb > such that:

X{pb,h) = max{X (p,t)}

for any p 6 R and t e H such that X(p, t) > 0.

The conflict set is then extracted among the activities requesting pb with current time
bounds overlapping tf,.

Although focusing on bottlenecks is widely accepted in opportunistic scheduling, there is
little quantitative evidence of its effectiveness. One could wonder if the performance of the
scheduler would remain unaffected if it focussed on any set of activities, either associated
with a bottleneck or not. If this were true, one could save the additional cost required to
compute resource contention and base all decision making on activity demand alone.

To answer this question we consider two different configurations of CPS' Bottleneck
Identification step.

1. Maximum contention bottleneck (BTL): The original method used in CPS; the
set of conflicting activities is selected around the bottleneck.

2. Random (RAND): The conflict set is selected around a randomly chosen resource
and time.

4 Conflict Arbitration

At each Conflict Arbitration step, CPS introduces additional precedence constraints between
pairs of activities to restrict their mutual position and their time bounds. An important
differentiating aspect among schedulers is the granularity of decision making. At one end
of the spectrum there are schedulers that make the minimum possible decision at each
scheduling cycle; this follows the spirit of micro-opportunistic scheduling [13]. At the other
end there are schedulers that make decisions that eliminate any possibility of conflict among
all the activities in the conflict set; this follows the spirit of macro-opportunistic approaches
[15,1].

Within CPS we can explore the consequences of different decision making granularities.
For example, a micro-opportunistic approach translates into adding a single precedence con-
straint between two activities in the conflict set. Conversely, a macro-opportunistic approach
could be implemented by imposing a total ordering on all activities in the conflict set.

The current implementation of CPS [11] proposes an intermediate granularity approach
by partitioning the conflict set into two subsets. Akef0Te and Aa/teT, and then constraining
every activity in /Ue/ore to occur before any activity in AajteT. The bi-partition of the

H6

as
aJ

(a) (b)

Figure 3: A Conflict Arbitration step

original conflict set relies on a clustering analysis of activity demands. Figure 3 (a) shows
four conflicting activities and their demand profiles; figure 3 (b) shows the new precedence
constraints added by Conflict Arbitration.

To choose the appropriate decision granularity one needs to evaluate a trade-off. The
greater the number of scheduling decisions in a step, the greater the pruning of the search
space and, therefore, the faster the scheduler. However, the more decisions that are made,
the greater the change in the topology of the activity network after the step. Therefore, an
analysis done before the step could give little information on the structure of the destination
state. This can increase the likelihood of failure and consequent backtracking, and therefore
slow down the scheduler. In summary, an important trade-off involves, the speed of conver-
gence vs. the number of restarts needed during iterative sampling. This trade-off rests on
the reasonable assumption that making fewer decisions at each cycle is always at least as
accurate as making several; in other words, although possibly slower, a micro-opportunistic
scheduler should solve at least as many problems as a larger granularity scheduler [13].

We therefore consider two distinct Conflict Arbitration rules:

1. conflict bi-partition (BIP): The technique originally used in CPS; the conflict set
is separated into two Abejore and Aafter subsets.

2. most separated activities (MS): A micro arbitration technique; it introduces a
single precedence between two activities extracted from the conflict set. To minimize
the impact of sampling noise, we select the two activities whose demand profiles are
maximally separated.

5 Experimental Results
The experimental analysis made use of the Constraint Satisfaction Scheduling benchmark
proposed in [13]. The benchmark consists of 6 groups of 10 problems, each with 50 activities,
5 resources, and non-relaxable release and due date constraints. The groups vary according
to their expected difficulty. Each group is identified by two parameters: (1) the spread of
the release and due dates, which can assume the three levels (in increasing order of expected
difficulty) Wfor wide, N for narrow and 0 for null; (2) the number of expected bottleneck
resources, either 1 or 2. For more details see [13].

H7

< BTL, < BTL, < RAND. < RAND,
BIP> MS > BIP> MS>

W/1 10.00 10.00 9.95 7.68

W/2 10.00 10.00 9.95 9.10
N/1 10.00 10.00 9.10 8.70
N/2 10.00 10.00 8.20 6.26
0/1 10.00 9.95 8.30 8.60
0/2 9.25 10.00 4.85 4.05

TOT 59.25 59.95 50.35 46.30

Table 1: Experimental results: number of problem solved

< BTL, < BTL, < RAND, < RAND,
BIP > MS > BIP > MS >

W/l 44.94 120.90 61.74 281.49
W/2 44.59 134.00 90.82 476.97
N/l 47.02 127.40 106.67 360.72
N/2 46.03 138.90 142.81 754.39
0/1 50.27 140.40 118.24 405.10
0/2 64.86 161.10 212.96 908.89

AVG 49.62 137.10 122.20 531.26

Table 2: Experimental results: processing time

Tables 1 and 2 report the performance of all possible combinations of the alternative
settings described in the previous sections. Table 1 shows the average number of problems
solved over 20 independent runs of the procedure. Table 2 reports the corresponding average
processing times. In order to factor out the effects of known implementation inefficiencies,
processing times are given as the number of opportunistic cycles needed either to find a
solution or to fail. The number of iterations was weighed differently depending on the
conflict identification method, with each RAND cycle taking 85.64% of the time of a BTL
cycle. The speed-up results from avoiding the computation of resource contention.

The cardinality of the Capacity Analysis sample was N = 10. We used forward temporal
dispatching as the activity selection strategy. The start time selection rule was linearly biased
over the time bound, with highest preference to the earliest time and lowest (0) to the latest.

All of the following conclusions have been tested for statistical significance using the
methods available in the S statistical package [4]. For the average number of problems
solved we fitted the results as a function of the configuration; this was done through a
logit generalized linear regression. An analysis of deviance and a Chi-squared test yielded
the desired measure of significance (see [4], chapter 6). For the processing time we used
a standard analysis of variance (see [4], chapter 5). Unless otherwise noted, differences in
performance are statistically significant at a 1% level.

To test the importance of bottleneck information, let us compare each < RAND, ?x >
entry with the corresponding < BTL, ?x > entry. Differences in performance are always
significant except for the number of problems solved for groups W/l and W/2 when using

H8

bi-partition for Conflict Arbitration (BIP). These are the two problem groups with lowest
expected difficulty. In every other case, random focusing performs significantly worse than
bottleneck focusing, with an average slowdown of approximately 3.1 times. Therefore, these
results show that, all things remaining equal, there is a substantial advantage in focusing
problem solving on what CPS characterizes as bottlenecks.

To test the effect of decision making granularity, let us compare each < BTL, BIP >
configuration with the corresponding < BTL, MS > configuration. With respect to the
number of problem solved, only for group 0/2 there is a statistically significant advantage
in using most-separated-pair for Conflict Arbitration; 0/2 is the the group with the highest
expected difficulty. This advantage is due to a single problem that MS always solves while
BIP solves less than 50% of the time. Although small, this advantage is consistent with
the expectation of better problem solving accuracy with smaller decision making granular-
ity, especially on difficult problems. However, when comparing processing times we see an
average slowdown of approximately 3.2 times going from BIP to MS which makes the cost
of micro-granularity scheduling prohibitive (except for one problem).

Unexpectedly, the trend toward better accuracy with lower decisions granularity is com-
pletely reversed when comparing < RAND, BIP > to < RAND, MS >. In fact, for
all problem groups, the average number of problems solved tend to decrease when going
from bi-partition to most-separated-pair. This trend is statistically significant for groups
W/l (at a 2% level), W/2, and N/2. This result contradicts our expectations. After all,
a macro decision step can always be seen as a sequence of micro steps without additional
intermediate capacity analyses. A macro-granularity approach should be less informed than
a micro-granularity approach and therefore more prone to errors.

However, worse performance with lower granularity can be explained by assuming that
at each step there is a probability p of selecting a misleading conflict set, i.e., one for
which the preferential information leads to a wrong ordering among activities. The overall
probability of following a dead-end path is the sum of the probabilities of failing after x
cycles, with x less or equal to maximum path length in the search tree. When the decision
making granularity decreases, the expected path length increases. Correspondingly, if p does
not substantially decrease, the overall probability of failure increases. The experimental
results seem to indicate that the decrement of p is adequate only when using the bottleneck
information for focusing. In other words, the expected utility of preferential information at
the bottleneck is higher than average.

6 Conclusions

In this paper we experimentally analyzed the role of bottleneck reasoning in opportunistic
schedulers. The aim was to go beyond a bulk comparison of systems and to identify important
design trade-offs among system components. The results of the study empirically validate
the importance of bottlenecks to focus problem solving. The results seem to indicate that
preferential information at bottlenecks has a higher expected utility than average. Therefore
the utility of bottleneck-focusing goes beyond the classical view of a "most constrained first"

H9

heuristic in a constraint satisfaction search. This is an unexpected result that will further

focus the search for a plausible formal model of the performance of schedulers.

Acknowledgements

The author thanks the following people for reviewing earlier drafts of the paper: John
Allen, John Bresina, Mark Drummond. Keith Swanson. This work was carried out when the
author was at the Center for Integrated Manufacturing and Decision Systems, The Robotics
Institute, Carnegie Mellon University. This work was sponsored in part by the National
Aeronautics and Space Administration under contract # NCC 2-707, the Defense Advanced
Research Projects under contract # F30602-91-F-0016, and the Robotics Institute.

References

[1] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for job shop
scheduling. Management Science, 34:391-401, 1988.

[2] D. Applegate and W. Cook. A computational study of job-shop scheduling. Technical
Report CMU-CS-90-145, School of Computer Science, Carnegie Mellon University, 1990.

[3] E. Biefeld and L. Cooper. Bottleneck identification using process chronologies. In
Proceedings of the 12th International Joint Conference on Artificial Intelligence, pages
218-224, Menlo Park, California, 1991. AAAI Press.

[4] J.M. Chambers and T.J. Hastie. editors. Statistical Models in S. Wadsworth and
Brooks/Cole, 1992.

[5] R. Dechter, I Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence,
49:61-95, May 1991.

[6] M. Drummond and J. Bresina. Anytime synthetic projection: Maximizing the proba-
bility of goal satisfaction. In Proceedings of the 8th National Conference on Artificial
Intelligence, pages 138-144. AAAI Press, 1990.

[7] S. Hanks. Practical temporal projection. In Proceedings of the 8th National Conference
on Artificial Intelligence, pages 158-163. AAAI Press, 1990.

[8] R.M. Haralick and G.L. Elliot. Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 14(3):263-313, October 1980.

[9] P. Langley. Systematic and nonsystematic search strategies. In Proceedings of the 1st
International Conference on Artificial Intelligence Planning Systems, pages 145-152.
Morgan Kaufmann, 1992.

H10

[10] S. Minton, M. Drummond, J.L. Bresina, and A.B Philips. Total order vs. partial order
planning: Factors influencing performance. In Proceedings of the 3rd International
Conference on Principles of Knowledge Representation and Reasoning (KR'92), pages

83-92. Morgan Kaufmann, 1992.

[11] N. Muscettola. Scheduling by iterative partition of bottleneck conflicts. In Proceedings of
the 9th Conference on Artificial Intelligence for Applications, pages 49-55, Los Alamitos,
California, March 1993. IEEE Computer Society Press.

[12] N. Muscettola and S.F. Smith. A probabilistic framework for resource-constrained multi-
agent planning. In Proceedings of the 10th International Joint Conference on Artificial
Intelligence, pages 1063-1066, Menlo Park, California, 1987. AAAI Press.

[13] N. Sadeh. Look-ahead techniques for micro-opportunistic job shop scheduling. Technical
Report CMU-CS-91-102, School of Computer Science, Carnegie Mellon University, 1991.

[14] S.F. Smith and Cheng-Chung Cheng. Slack-based heuristics for constraint satisfaction
scheduling. In Proceedings of the 11th National Conference on Artificial Intelligence
(AAAI 93), pages 139-144, Menlo Park, California, 1993. The AAAI Press.

[15] S.F. Smith, P.S. Ow, J.Y. Potvin, N. Muscettola, and D. Matthys. An integrated
framework for generating and revising factory schedules. Journal of the Operational
Research Society, 41(6):539-552, 1990.

Hll

Interactive Graphic Design Using Automatic

Presentation Knowledge
Steven F. Roth, John Kolojejchick, Joe Mattis, Jade Goldstein

School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

(412) 268-7690

Steven.Roth@cs.cmu.edu

ABSTRACT

We present three novel tools for creating data graphics: (1) SageBrush, for assembling graphics
from primitive objects like bars, lines and axes, (2) SageBook, for browsing previously created
graphics relevant to current needs, and (3) SAGE, a knowledge-based presentation system that
automatically designs graphics and also interprets a user's specifications conveyed with the other
tools. The combination of these tools supports two complementary processes in a single
environment: design as a constructive process of selecting and arranging graphical elements, and
design as a process of browsing and customizing previous cases. SAGE enhances user-directed
design by completing partial specifications, by retrieving previously created graphics based on
their appearance and data content, by creating the novel displays that users specify, and by
designing alternatives when users request them. Our approach was to propose interfaces
employing styles of interaction that appear to support graphic design. Knowledge-based
techniques were then applied to enable the interfaces and enhance their usability.

KEYWORDS: Graphic Design, Data Visualization, Automatic Presentation Systems,
Intelligent Interfaces, Design Environments, Interactive Techniques

INTRODUCTION

Graphic displays of information have been valuable for supporting data exploration, analysis, and
presentation. Still, current graphics packages remain very limited because: (1) they do not
provide integrative displays for viewing the relations among several data attributes or data sets,
(2) they have time-consuming and complex interfaces, and (3) they provide little guidance for the
majority of users who are not experienced graphic designers.

Consider these problems in the context of two graphics in Roth Color Plate 1. In la, a sequence
of indented text, charts, and a table are aligned to integrate six attributes of activities
(organization, start, end, status, cost, resource).

In Proceedings CHI'94: Human Factors in Computing Systems. April 24-28, 1994. Boston,
Massachusetts. This research was partially supported by DARPA under contract #F30602-91-
C-0016.

II

All information about a single activity can be obtained by glancing horizontally across the
graphic. Most packages do enable users to create charts and tables like these, but only as isolated
displays. Even painstaking cutting, pasting, and resizing (usually the only means provided) are
insufficient to layout and sort the bars and text in a coordinated way.

Similarly, current packages provide no way to create a single display with different graphical
objects. In lb, properties of lines, text strings and diamond-shaped marks vary to integrate ten
data attributes. Also, graphical objects are clustered to express facts (i.e. each diamond is
accompanied by two text labels to convey the geographic location, city, and date of battles).
Together, these graphics illustrate the large number of possible combinations of object types,
their graphical properties, the encoding spaces in which they occur (e.g. within a chart, map,
table, or network), and the different ways they can be clustered and aligned. Clearly, current
menu-style interfaces in spreadsheet packages would not support the creation of so many
alternatives, nor could they help users assign data attributes to these graphics easily. Imagine the
difficulty of conveying the relationship between data in spreadsheet columns and all the
graphical objects and properties in lb.

Furthermore, imagine the considerable design expertise required of users to produce these
displays, including an awareness of the appropriateness of graphic choices for each data type.
Even when users can judge the effectiveness of a particular display of their data, they often lack
exposure to the many types and combinations of graphics that are possible. Systems that provide
the ability to create new integrative designs will need to provide design guidance as well.

One approach to these problems is to build systems that are knowledgeable of graphic design, so
they can generate a variety of effective displays based on descriptions of data and viewing goals
[1,3,4,9,10]. This research has provided a vocabulary for describing the elements of graphics,
knowledge about the appropriateness of their use for different data and tasks, and design
operations for combining elements to form integrative displays.

Armed with this knowledge, automatic design systems should reduce the need for interaction and
expertise, while providing great flexibility in customizing displays. However, previous automatic
design research has not been concerned with supporting interaction with users and has focused
on issues of identifying and encoding knowledge of data, tasks, and design. No paradigms have
been developed for a collaborative process between human and automated designers.

This paper describes a novel approach to interactive graphic design, in which automatic
mechanisms are used to support users, not replace them. The following sections describe an
overview of our approach, two major components of the system that correspond to two
complementary styles of design, and some sample design interactions which illustrate these
capabilities.

OVERVIEW OF CURRENT APPROACH

Our approach to supporting design has been to integrate an evolving automatic presentation
system called SAGE [9,10] with two new interactive design tools called SageBrush and
SageBook. Both tools enable users to manipulate familiar objects in order to perform natural
design operations, shielding users from the more complex representations and operations that
SAGE uses to create graphics.

SageBrush (also called Brush) is representative of design tool interfaces in which users specify
graphics by constructing sketches from a palette of primitives and/or partial designs. Our goal is

12

to provide a flexible, generative, direct manipulation design interface, in which users can create a
large number of possible combinations of graphical elements, customize their spatial and
structural relationships, and map them to the data they wish to visualize.

SageBook (also called Book) is an interface for browsing and retrieving previously created
pictures (i.e. complete, rendered designs) and utilizing them to visualize new data. Book supports
an approach to design in which people remember or examine previous successful visualizations
and use them as a starting point for designing displays of new data, extending and customizing
them as needed. Our experiences in graphic design, as well as related research on engineering
and software design [2,6], suggest that search and reuse of prior cases with customization is a
common process. Therefore, our goal is to provide methods for searching through previously
created pictures based on their graphical properties and/or the properties of the data they express.
A picture found in this way can optionally be modified in Brush prior to sending it to SAGE,
which creates a graphic for the new data.

SAGE is an automatic presentation system containing many features of related systems like
APT, BOZ, and ANDD [1,3,4]. Inputs are a characterization of data to be visualized and a user's
data viewing goals. Design operations include selecting techniques based on expressiveness and
effectiveness criteria, and composing and laying out graphics appropriate to data and goals. A
detailed discussion of automatic design capabilities, including the operations that produced Roth
Color Plate la, can be found elsewhere [7,9].

The current version of SAGE goes beyond previous systems in several ways. SAGE can create
graphics when users completely specify their designs as well as when they provide no
specifications at all. Most importantly, it can accept partial specifications at any level of
completeness between these two extremes and finish the design reasonably. User specifications
serve as design directives, which constrain the path of a search algorithm that selects and
composes graphics to create a design.

The ability to accept partial specifications from Brush is due to a rich object representation of the
components of graphic displays, including their syntax (i.e. their spatial and structural
relationships) and semantics (i.e. how they indicate the correspondence between data and
graphics). The representation allows SAGE to produce combinations of a wide variety of 2D
graphics (e.g. charts, tables, map-like coordinate systems, text-outlines, networks). It also enables
SAGE to support Book's search for previous pictures with graphical elements specified by users.

The object representation is highly extensible, allowing new graphical objects (e.g. lines,
polygons, custom icons) and encoder mechanisms (e.g. charts, color keys, maps) to be added
incrementally. For example, when a line object is added to the library, each end-point is defined
as having horizontal and vertical positions, enabling the line to be displayed against the axes of a
chart. If a map-style is later defined in the library as an encoder that displays horizontal and
vertical positions, then SAGE can automatically draw lines on maps (as in Roth Color Plate lb).

SAGE also contains a richer representation of the characteristics of data (e.g. distinguishing
scales of measurement, temperature, dates, spatial coordinates, etc). Data transformation
operations enable the design of graphics without depending on the surface form of input data
(e.g. in relational database terms, SAGE can display N-ary relations and is not dependent on
whether data is expressed as multiple binary relations or as a single N-ary relation).

ARCHITECTURE

13

Figure 1 illustrates the conceptual relationships among SageBrush, SageBook, SAGE, and a Data
Selector - a tool for indicating the mapping between data and graphics. The process of retrieving
data needs to be integrated with graphic creation but is not the focus of this paper. We are
exploring several interactive methods for retrieving and transferring data to the selector, where
data appears as a table whose headers can be mapped to graphics (Figure 2).

Users interact with Brush to create graphic design sketches, which are schematic views of
designs. These are translated into design directives, which are specifications expressed in
SAGE's graphic representation language. Directives include:

• grapheme and property choices (e.g. color and size of circles, lines, text, and other
graphical objects),

• encoding mechanisms that provide frames of reference against which properties of
graphemes are interpreted (e.g. 2-axis chart, table, map, network),

• layout constraints (e.g. alignment of multiple charts horizontally; ordering of labels and
graphemes),

• grouping constraints indicating that clusters of graphemes are being used to express a
single fact (e.g. a bar annotated with a text string; a cluster of items around a city on a map),

• mappings between data and these graphic elements.

Deskyi Directives

USEFK

Pictures

[Picture"]
LLibraryJ

Figure 1: Architecture

Design directives from Brush serve two purposes: they guide SAGE's automatic processes and
provide criteria for Book to use in searching its library of previously designed pictures. Brush
can also translate graphics produced by SAGE back into sketches so that users can modify them.

Users interact with Book to view and save pictures created by SAGE. The saved information
includes a bit map scaled to a browsable size, a sequence of design operations that SAGE can use
to reconstruct the picture efficiently (i.e. without redesigning), the picture's data and data type
characteristics, and a complete representation of the rendered graphic. Book searches its picture
library based on data users specify with the Selector and/or design directives derived from
sketches created in Brush's work area (Figure 2). Users request the creation of a graphic based on

14

a previously found one by transferring it to Brush (where they modify it as a sketch) or directly
to SAGE. The next sections describe these components in detail.

SAGEBRUSH

Brush is representative of tools with which users sketch or assemble graphical elements to create
designs and map them to data. Brush provides users with an intuitive and efficient language for
sketching their designs, and translates these sketches into a form that can be interpreted by
SAGE. There are other possible styles of graphic design interface that could be coordinated with
SAGE's internal design mechanisms. One alternative is the demonstrational approach proposed
for Gold [5], in which users draw examples of displays. Our claim is that any interactive design
interface that attempts to provide complete coverage of graphics will require a knowledgeable
system behind it to be successful.

An example: Figures 2, 3, and Roth Color Plate lb illustrate a sequence for creating a new
version of the famous graphic by Minard showing Napoleon's 1812 Campaign [11]. One data set
describes the march segments (start and end latitudes/longitudes of each segment, the number of
troops remaining, and the temperature). The other data set contains the city, date, and location of
each major battle. These will be visualized by composing multiple graphemes and their
properties on a map.

o
tbrk

Sa vgt

IPata Selectoi

p
Battles of NoDoleon's 1812 Caapaiq n
Battle Date Latitude Lonaitude
Smolensk 7-Auq 54.783 32.05
Borodino 7-Sep 55.583 35.833
Trautino 6-0ct 55.225 37.009
Polock 18-0ct 55.517 26
M»loi»rosi»vec 24-0ct 55.017 36.467
Krtsnyl 5-Hov 54.567 31.433
BorisoT 16-Hov 54.25 28.5

Figure 2: Starting a design sketch in SageBrush.

15

Anchoring new designs with partial prototypes. The creation of a new design begins with a
user's selection of a partial prototype. As illustrated in Figure 2, Brush's interface consists of a
design work area (center) into which users drag prototypes (top), graphemes (left), and data
names (bottom). Prototypes are partial designs, each with a spatial organization, graphemes,
and/or encoders that commonly occur together. Encoders are frames of reference for interpreting
properties of graphemes. For example, axes enable us to interpret (i.e. derive a data value from)
the position of a bar in a chart.

The choice of prototypes to include in the top menu can be customized to applications and could
include previously designed graphics. Although primarily a constructive interface, Brush still
allows design to be viewed as a process of refining prior, effective graphics. The first prototype
in the top-left of Figure 2 is a general one for constructing all charts. It is actually a composite of
horizontal and vertical axes. Although users could construct charts by assembling separate axes,
doing so requires more steps and appears less intuitive than selecting a chart prototype. A similar
rationale led to a network prototype, consisting of both graphemes (i.e. lines) and an encoder
against which the graphemes are interpreted (i.e. the nodes). This eliminates the need for users
to construct networks from primitives each time. In the example, a map prototype (more
precisely, a 2D spatial coordinate display) was dragged to the design work area.

Customizing by adding primitives to prototypes. Prototypes are extended by adding graphemes.
While the chart and map prototypes have no graphemes, dragging them into the design work area
creates an encoding space which supports new design choices. The encoding space of a chart or
map is defined by the interior of the two axes or coordinate-frame, respectively. Dragging line
and mark graphemes (to represent march segments and battles) from the left window into the
map's encoding space results in directives to SAGE to include these grapheme types in a design,
with their positional properties interpreted relative to the map's coordinate system.

Troop
Sice ^

\
•*"♦ El

J t
Start

Latitude

Start
Longitude

iBattle U Date
V

Figure 3: Property selection and data mapping in SageBrush's work area.

Customizing the properties of graphemes. Graphemes have other properties for encoding data
besides position. Properties are chosen by selecting property icons, displayed by double-clicking
a grapheme in the design work area. Double-clicking on the line in Figure 3 displays a menu of
line properties (width and color) and arrows representing the positional properties of end-points.
Selecting a property directs SAGE to use it to encode data in a design but does not indicate the
data to which it corresponds. Double-clicking on a property icon allows users to convey specific
directives (e.g. make all marks diamond-shaped or all lines blue; reject the use of color).

Completing the graphic requires a way to create grapheme clusters. As described above,
dragging graphemes into an encoding space results in directives to use their positional properties

16

in a design. When two or more graphemes are dropped close together in the same space, the
position of one is interpreted relative to the axes or coordinate system, while the positions of
others are interpreted to convey association by adjacency. In Figure 3, two text strings have been
placed next to the mark (which has been customized to be diamond-shaped) to convey
association. Note that Brush only determined that the two strings and diamond are associated.
SAGE must infer which of the three is used to convey position in the coordinate system (using
knowledge of data characteristics and graphic expressiveness criteria [8,9]). Of course, a user can
explicitly double-click on the diamond and select its property icons for position (a pair of
arrows).

Communicating the mapping of data to graphics. Dropping a grapheme in a chart and selecting
its color result in directives to SAGE to generate a design where position and color encode data.
It does not specify which data (i.e. relation domains) to assign to these properties. While SAGE
could attempt to infer this (just as it could also make choices of graphemes and properties), users
can explicitly make these choices by dragging data labels from the Data Selector (bottom Figure
2), and dropping them on property icons. In Figure 3, Troop Size was mapped to line thickness
and Start Latitude and Start Longitude to the position of one end of the line. Battle and Date have
been mapped to text labels adjacent to the diamond (dragging a data name into the space
simultaneously specifies that a text grapheme be used and maps the data to it). The completed
design resulting from this interaction is shown in Roth Color Plate lb, which was generated by
SAGE.

Coordinating multiple design spaces. In addition to defining encoding spaces, prototypes also
define layout spaces, which enable users to specify the relative positions of prototypes with
respect to each other. There are two types of layout spaces, reflecting adjacency and embedding
relationships. Adjacency spaces enable horizontal and vertical alignments among charts, tables,
maps and other prototypes. Two charts and a table in Figure 5 have been sequenced by
placement adjacent to each others' layout spaces. Embedding spaces enable the placement of one
prototype within another (e.g. a network placed within a map or chart; a list placed within a
network node).

Finally, it is important to emphasize that all of these design choices are optional. Users only need
to specify the data they wish to visualize, but may further specify (to any level of completion):

prototypes only,

prototypes and additional graphemes,

graphemes and their properties,

the mapping of data to graphemes, and

the mapping of data to specific grapheme properties.

The Napoleon example illustrates that users needn't specify all mappings. The system inferred
End Latitude, End Longitude, and Temperature (and could have made choices for the other data,
possibly differing from those of the user). The strength of this approach is that it can (1) reduce
the amount of work needed to convey design choices and map them to data, (2) enable the
construction of composites that could not be created by menu-based approaches, (3) provide
design expertise to supplement that of users, and (4) provide design directives for SageBook to
use in searching its library of previously constructed pictures.

17

SAGEBOOK

The goal of Book is to provide users with the ability to create new pictures analogous to existing
ones they consider useful. Our intent is to provide users with access to a growing portfolio of
graphic designs to provide ideas for visualizing their data. Book capitalizes on the explicit
representation of designs and data characteristics by SAGE to provide a vocabulary for
expressing search criteria.

Book provides two mechanisms for browsing pictures. The first is a file-folder metaphor
analogous to that used in the Macintosh system, in which pictures created by SAGE are named
and stored in locations defined by users. The second mechanism provides browsing by two types
of picture content: graphical elements and data. Search criteria are based on exact match or
partial overlap with data in the Data Selector and/or design elements in Brush.

Figure 4 illustrates the interface for browsing pictures retrieved by a search based on data
overlap. The data for the search were facts about activities in a project management database (the
final picture is shown in Roth Color Plate la). Pictures in the library that expressed similar data
were listed by the interface. As a user selects each picture name, its bitmap is displayed. Multiple
full size pictures can be displayed and arranged by users for comparison.

ISAGEBOOKJ m
CD Demo Pictures

nf^-i ProccssGantt

Ij^l ProcenNetvort

[?i£, StockPricelntaraJ

Viev Full Picture

Brovse by FoUa Modify Sketch in SAGEBRUSH

I BrorabyCootentI

□ Use SAGEBRUSH Q Exact

[x] Use Data Q Exact

Generale Hew Picture

Figure 4: Browsing graphics by their data content in SageBook.

We have designed search criteria for several levels of match overlap based on data. These
involve retrieving pictures which:

• show exactly the same data relations/attributes as in the data selector (e.g. find pictures of
Activity End),

• contain the selected data in addition to other data,

• show different data that have the same underlying data characteristics.

For example, a data relation (to use relational database terms) representing quarterly expenses
for a company's departments (Department, Business Quarter, Operating Cost) may have the same
properties as another relation for stock market data (Stock, Calendar Date, Shares Traded). Both

18

relations contain three domains with identical data characteristics: a nominal type, a temporal
coordinate, and a quantity. There is also exactly one quantity for each nominal-time pair in both
relations (i-C functional dependency). See [8] for a more complete treatment of data
characterization relevant to graphic design.

We have designed search criteria for several levels of match overlap based on graphical elements
as well. These involve retrieving pictures that (1) show exactly the same design elements as those
in the Brush sketch and (2) contain the Brush elements as a subset of a more complex design.

Our current work is addressing the problem of defining match criteria for combinations of data
and graphical properties. We are also exploring similarity criteria for defining close matches with
partial overlaps. For example, we need criteria for determining whether a network where the
color of links encodes data is more similar to a chart using the color of bars or to another
network where the widths of links encode data (i.e. what graphical elements are salient to users).
Our intuitions suggest the latter, but a cognitive model based on user studies is needed to define
similarity, as well as to verify the appropriate graphical primitives for the Book and Brush
interfaces.

Our preliminary view is that searches based on different criteria serve different purposes for
users, including:

• discovering how basic techniques can be expanded with additional graphical elements (e.g.
how a network can encode using additional text or marks along its links or within its nodes),

• quickly retrieving a picture whose name has been forgotten, but some of whose elements
are known,

• minimizing the effort of sketching a new design by retrieving a picture similar to the one
desired and then modifying it in Brush.

L Current
Status

1

Figure 5: Adding graphics in SageBrush to a picture found using SageBook (see Figure 4).

The last case is illustrated in Figures 4 and 5. Book found an indented chart with color-coded
interval bars for data matching only part of a large data selection (activity, organization, start,
end, current-status, labor-cost, resource). The chart was converted to a sketch in Brush, and the
user added a bar chart and table aligned with the original interval chart. The user also mapped
Current-Status to the interval grapheme, leaving it to automatic mechanisms in SAGE to map it
to color (because the original picture used color). SAGE can automatically assign Activity to the
Y-axis, dates to the interval bar, and Labor-Cost to the horizontal position of the bars in the
added chart, based on expressiveness rules for these graphical properties. The resulting picture is
shown in Roth Color Plate la. SAGE integrated all design elements and determined appropriate
data mappings. Notice that Resource is placed in the table, while Organization is placed in the

19

indentation of the Y-axis...an arbitrary choice that a user can easily reverse. The operations that
produced Roth Color Plate la can be found in [9].

SUMMARY AND CONCLUSIONS

Our approach views the task of creating visualizations of data as a combination of two

interrelated processes:

• constructing designs from graphical elements, and

• finding and customizing relevant prior examples.

The extent to which each process occurs varies with user and context. Consequently, we created
two tools that play flexible, mutually supportive roles to enable design. SageBrush provides users
with an interface for constructing graphic designs and customizing graphics found with
SageBook. Brush also enables users to compose graphical queries to be searched using Book.

Another central theme of our approach is the use of automated design knowledge in SAGE to
provide new display capabilities, to enhance the usability of graphic design interfaces, and to
provide design expertise when needed by users. These are realized in several ways.

First, SAGE enables users to create a wide variety of integrative displays, which coordinate
multiple spaces, graphemes, and visual properties to show the relationships among several data
attributes or data sets. This is possible because SAGE recognizes and parses the structure and
semantics of sketches that users construct.

Second, knowledge enables a system to automatically design a graphic when requested by users.
This can occur when users do not know how to represent data (i.e. they lack expertise in general
or for a specific problem) or when they want to compare alternative designs with the ones they
have created.

Third, SAGE reduces the work of designing a graphic by completing it automatically when
partially specified. This often eliminates the need for users to assign data to elements of the
graphic, select graphical properties once objects are specified, or perform other repetitive
selections.

Fourth, SAGE makes it possible to search displays created previously based on meaningful
criteria: the data and graphic elements they contain. Without this knowledge, Book would be
limited to browsing graphics based on file attributes.

There are many research problems remaining, especially for supporting users with limited
graphics expertise. First, the operation of any automatic presentation system depends on the
existence of data characterizations [8]. In this research, data characterizations were already
present in the database or spreadsheet. We will be exploring ways to infer them or obtain them
interactively.

Second, although SAGE considers user information-seeking goals or tasks [1,8,9], no attempt
was made to provide users with the ability to specify these. We are considering creating a goal-
selection interface so users can convey their intentions as design directives.

110

Finally, there are numerous new graphic design problems to address, including the design of
interactive mechanisms for manipulating data displays, displays of large data sets, and graphical
techniques such as animation and 3D. See [7] for a more complete discussion of research
problems in this area.

REFERENCES

1. Casner, S. M. A Task-Analytic Approach to the Automated Design of Information
Graphic Presentations. ACM Transactions on Graphics, 10, 2 (Apr. 1991), 111-151.

2. Fischer, G. Cognitive View of Reuse and Redesign. IEEE Software, (July, 1987), 60-72.

3. Mackinlay, J. D. Automating the Design of Graphical Presentations of Relational
Information. ACM Transactions on Graphics, 5, 2 (Apr. 1986), 110-141.

4. Marks, J. W. Automating the Design of Network Diagrams. Ph.D. thesis, Harvard
University, 1991.

5. Myers, B. A., Goldstein, J., and Goldberg, M. A. Creating Charts by Demonstration.
Proceedings SIGCHI'94 Human Factors in Computing Systems, Boston, MA, ACM, April, 1994.

6. Navin-Chandra, D. Exploration and Innovation in Design: Towards a Computational
Model. Springer-Verlag, 1991.

7. Roth, S. F. and Hefley, W.E. Intelligent Multimedia Presentation Systems: Research and
Principles. In Mark Maybury (Ed.) Intelligent Multimedia Interfaces, AAAI Press, 1993, pp. 13-
53.

8. Roth, S. F. and Mattis J. Data Characterization for Intelligent Graphics Presentation.
Proceedings SIGCHI'90 Human Factors in Computing Systems, Seattle, WA, ACM, April, 1990,
pp. 193-200.

9. Roth, S. F. and Mattis, J. Automating the Presentation of Information. Proceedings IEEE
Conference on AI Applications, Miami Beach, FL, Feb. 1991, pp. 90-97.

10. Roth, S. F., Mattis, J., and Mesnard, X. Graphics and Natural Language Generation as
Components of Automatic Explanation. In Sullivan and Tyler (Ed.), Intelligent User Interfaces,
Addison-Wesley, Reading, MA, 1991, 207-239.

11. Tufte, E. R. The Visual Display of Quantitative Information. Graphic Press, Cheshire,
CT, 1983.

Ill

Utlt«4* («•«»•■ j

SC.ii

JO.B 11.1 1J.• 14.0 IS.« li.B J7.I It.« S».l

Roth, Color Plate 1b: "Napoleon's 1812 Campaign", designed interactively using SageBrush. In all, ten data
attributes are integrated in a single map-like coordinate space using several kinds of graphical objects. The
lines trace the path of Napoleon's eastward advance and westward retreat, including the path of troops that
branched north to protect his main force. Line thickness conveys the number of troops traveling each
segment, line color conveys the temperature, and the dates and sites of battles are signified by yellow
diamonds and text.

Napoleon's eastward advance began in extreme heat, with the weather cooling as he approached
Moscow (bright red at left fading to pink at upper right). During the westward retreat, the army circled back
to retrace its route while the temperature dropped below freezing (the light blue segments overlying the red
path). Upon reaching Krasnyj, the army veered south from its previous route. When the march ended, less
than three percent of Napoleon's troops remained, as shown by the striking decrease in line thickness.

0RGANIZATI0 fl-BREAKDOWN

-

rzzi

□

]

RESOURCE

Bill-smith

Bulk-Clear I Bulldozer

clean-Site u Truck

Dig-Trench I Bulldozer

Excavate H Bulldozer

Bob-Drab eck

Roof-Frame I steel-worker

shingling I 1 1 Crane

E&P-CO

E&P-Under 1 Elec-Plumber

Gutters 1 Crane

Land-Co

Landscape i I ZJ Truck

Pave-Path I 1 Truck

Tom-Davis

Brick-w-1 Crane

Brick-w-2 I 1 1 crane

Masonry-1 I 1 Zl Mason

(25

DAY

50 75

-IH-PROJECT

100 0 700 1400

LABOR-COST

2100 2800

CURRIHT-STATVS □
Unstarted

D
Active

■
suspended

■
Complete

Roth, Color Plate 1a: Result of a SageBrush customizaton of a picture retrieved using SageBook. Six data
attributes are integrated in a coordinated set of aligned displays that illustrate project management data.

112

A FRAMEWORK FOR KNOWLEDGE-BASED,
INTERACTIVE DATA EXPLORATION
Jade Goldstein, Steven F. Roth, John Kolojejchick, and Joe Mattis

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

(412) 268-7690

Steven.Roth@cs.cmu.edu

ABSTRACT

In this paper, we propose a framework that combines the functionality of data exploration and
automatic presentation systems to create a knowledge-based, interactive, data exploration
system. The purpose of a data exploration system is to enable users to uncover and extract
relationships hidden in large data sets. The purpose of an automatic presentation system is to
reduce the need for users and application developers to have graphic design expertise and to
spend much time interacting with graphics packages to view their data. Previous work on data
exploration was limited to query mechanisms that were often complex to learn and difficult to
use, data manipulation mechanisms that did not provide complete coverage of the operations
needed by users (especially the ability to form ad hoc groupings of data), and graphics that were
restricted to a small set of predefined visualizations. Automatic presentation research, although
addressing these issues, has been limited to the display of small data sets. This research has also
not developed approaches to combine interactive, user-directed processes of design and data
manipulation with automatic presentation mechanisms. We propose a framework that overcomes
these limitations of current data exploration systems and integrates new interactive capabilities
with automatic presentation components. This approach to supporting data exploration integrates
recent work on SageTools, an environment for interactive and automatic presentation design,
with a prototypical interactive data manipulation system called IDES. In this paper, we present
our work on the IDES data manipulation capabilities and discuss requirements for coordinating
them with automatic presentation of large data sets.

KEYWORDS: Data Exploration, Data Visualization, Intelligent Interfaces, Automatic
Presentation Systems, Graphic Design, Computer-supported Design, Large Data Sets.

1. INTRODUCTION

The widespread use of databases and computers is requiring growing numbers of people to use
and understand increasing amounts of information. These databases contain diverse data,
including combinations of quantitative, temporal, categorical, hierarchical, geographic, and other
types of information. Users of these large data repositories will not be limited to scientists and
technically oriented professionals. Thus, there is a need for software that assists users with
diverse levels of expertise in their data exploration tasks without substantial training and/or
effort. The tasks users need to perform with information go beyond retrieving simple facts and

To Appear in Journal of Visual Languages and Computing, December 1994. This
research was partially supported by DARPA under contract #F30602-91-C-0016.

Ji

answering focused questions. Instead, the tasks involve solving problems and making decisions
based on the current state of the data, which is often repeatedly refined and extracted. These
decisions depend upon the user's understanding of the relationships latent within the data. Once
an interesting relationship is discovered, the user can use it to guide the next instruction to the
system. This iterative and interactive process, which Brachman [5] calls data archaeology, is
initiated and controlled by people. In contrast, data mining [10] emphasizes the use of automatic
mechanisms to search for patterns.

We propose a framework for building a knowledge-based interactive data exploration system
that will support the data archaeology process. Doing so requires understanding the interactive
and iterative processes of data exploration. Specifically, tools must support three kinds of
exploration subtasks:

1. data visualization operations, which include finding or designing and creating effective
graphics.

2. data manipulation operations, which include selecting data for display, focusing on
particular attributes of the data, and grouping or reorganizing data.

3. data analysis operations, which include statistical testing, summarization, and
transformation for understanding properties of the data.

Of course, these subtasks are interdependent and overlapping. For example, a user may wish to
select data directly from a visualization (a data manipulation operation performed on a
visualization). Data exploration systems will need to employ other user interface techniques that
provide easy interaction and communication with the components of the system that generate
displays, such as direct manipulation [11]. They also need to employ query mechanisms that
allow the user to focus on their data and results and not on the process of creating a query.

Data Visualization. Automating portions of the data exploration process requires specific
knowledge relevant to each of the three exploration subtasks. For data visualization, research has
focused on systems that can automatically generate a display of data composed of graphics and
text or developing new techniques customized to specific tasks or types of analyses. The intent of
automatic presentation systems is to relieve users and application programmers of the need for
graphic design knowledge and of the task of designing and specifying displays. This lets users
concentrate on their goals for viewing information. Furthermore, for complex combinations of
data, automatic presentation systems have the ability to generate graphics that users might not
even consider. However, research on existing automatic presentation systems has been narrow,
primarily focusing on representing knowledge of graphic design and not on interactive
mechanisms for performing design. Recent work [19] has applied this technology to create
computer supported data-graphic design tools, in which users can interactively specify and/or
search and choose from a library of previously created graphics. This system, called SageTools,
builds on an automatic presentation system called SAGE [16, 17, 18] and provides an approach
to situating automatic technology in an environment which supports iterative and interactive
data-graphic creation.

Previous automatic presentation systems have also been limited to the display of small data sets -
those that fit well in a single computer window [6, 12, 14, 16, 17, 19]. These systems are unable
to support many applications that use hundreds or even thousands of data elements. When
dealing with such large data sets, it is no longer sufficient for the presentation system to create
only a display. The system must also provide mechanisms for interactive manipulation and
analysis of large data sets.

J2

Data Manipulation. The functionality needed for large data set manipulation and analysis in an
automatic presentation system is an extension of that needed in a conventional data exploration
system. Thus, it is useful to first explore standard data exploration systems in which there are
several popular approaches to providing interactive data manipulation techniques. Data base
query systems, statistical packages and electronic spreadsheets provide various levels of support
for accessing, modifying and reorganizing data. However, these are not well integrated with
effective graphics techniques, nor do they provide flexible, low-effort tools that can be used by a
broad cross-section of users. Query systems have great flexibility but require learning
programming skills and lack convenient tools for organizing and summarizing information.
Spreadsheets have greater intuitive appeal but lose the flexibility of query languages for selecting
data. They also have a limited ability to rapidly reorganize information. Attempts to provide
spreadsheets with these capabilities have often resulted in new programming environments rather
than effective interface mechanisms.

In exploring the nature of data manipulation techniques, we classify data manipulation goals into
three categories: controlling the scope (selecting desired portions of data), choosing the level of
detail (creating and decomposing aggregates of data), and selecting the focus of attention
(concentrating on the attributes of data that are relevant to current analysis). We have used this
classification to evaluate the functionality of existing data manipulation interface techniques.

Based on these results, we have expanded an interface mechanism called the Aggregate
Manipulator (AM) [15] and combined it with Dynamic Queries (DQ) [1] in a prototype system
called IDES (Interactive Data Exploration System). We use the results of our experience with
IDES to propose extensions to SageTools to handle large data sets. The goal of these extensions
and the integration of IDES with SageTools is a knowledge-based interactive data exploration
system, a tool for users who are investigating relationships in large data sets.

In this paper, we concentrate on an overview of a framework for accomplishing this goal and the
details of the IDES system. Section 2 discusses the proposed integration of SAGE and IDES.
Section 3 discusses the data manipulation operations: controlling the scope, choosing the level of
detail, and selecting the focus of attention. Section 4 explains how we selected the interface
mechanisms used in IDES. Section 5 gives an overview of the design of IDES. Section 6
provides examples of how IDES is an effective tool for covering the data manipulation
operations, due to the complementary nature of AM and DQ, as well as IDES's inherent
flexibility in methods of exploring large data sets. This is demonstrated in two domains:
shipping and real estate. Section 7 highlights the extensions required for SAGE as illustrated by
the properties of large data sets in IDES.

2. A FRAMEWORK FOR KNOWLEDGE-BASED INTERACTIVE DATA
EXPLORATION

In this section, we propose a framework for a knowledge-based interactive data exploration
system. Figure 1 shows the conceptual architecture that will be discussed in this section. The
framework is composed of system modules, communication protocols, and knowledge of data
and task characteristics and graphic design. Users communicate through direct manipulation
interfaces, which generate appropriate directives to other components. The components access
stored knowledge relevant to their functionality and the data. The following subsections will
expand on these three concepts.

J3

USEFK

Database

. »-

1

Data Manipulation
and Analysis Tools

'
Data

SageBrwh . *.

J

Design
Directives

Presentation
V. Directives

SAGE
f Data"

"

Sag«Book

Data Graphic Design J
J

D
Graf
Des

ata
hie
kjn

=::4,
Data Graphic

L._Portfolto_.J

Interactive
Data
Graphic

Figure 1: Proposed architecture for knowledge-based interactive data exploration.

2.1 System Components

All the components in the architecture provide one or more mechanisms for supporting data
visualization, data manipulation, or data analysis. SAGE [16, 17, 18] is an automatic
presentation system containing many features of related systems like APT, BOZ, and ANDD
[12, 6, 14]. SAGE uses a characterization of data [16] to be visualized and a user's data viewing
goals to design graphics. Design operations include selecting techniques based on expressiveness
and effectiveness criteria and composing and laying out graphics appropriate to the data and user
goals.

SageTools [19], an extension of SAGE, goes beyond previous presentation systems in several
ways. SAGE can create graphics when users completely specify their designs (using SageBrush)
as well as when they provide no specifications at all. Most importantly, it can accept partial
specifications at any level of completeness between these two extremes and finish the design in a
reasonable manner. User specifications generate design directives, which constrain the path of a
search algorithm that selects and composes graphics to create a design. The ability to accept
partial specifications is due to a rich object representation of the components of graphic displays,
including their syntax (i.e., their spatial and structural relationships) and semantics (i.e., how
they indicate the correspondence between data and graphics). The representation allows SAGE to
produce combinations of a wide variety of 2D graphics (e.g., charts, tables, map-like coordinate
systems, text-outlines, networks). It also enables SageBook to support search for previously
created pictures with graphical or data elements specified by users. A detailed discussion of
automatic design capabilities can be found elsewhere [6, 12, 16, 17, 18, 19].

SageBrush is a tool with which users sketch or assemble graphical elements to create designs and
map them to data. SageBrush provides users with an intuitive and efficient language for

J4

sketching their designs, then translates these sketches into a form that can be interpreted by
SAGE. The assumption is that any interactive design interface that attempts to provide complete
coverage of graphics will require a knowledgeable system behind it to be successful.

New designs begin with a user's selection of a partial prototype. As illustrated in Figure 2,
SageBrush's interface (left window) consists of a design work area (center) into which users
drag prototypes (top), graphemes (left), and data attribute names (bottom). Prototypes are partial
designs, each with a spatial organization, graphemes, and/or encoders that commonly occur
together. Encoders are frames of reference for interpreting properties of graphemes. For example,
axis encoders enable us to interpret (i.e., derive a data value from) the position of a bar (a
grapheme) in a chart (a spatial framework).

Prototypes are extended by adding graphemes and selecting properties of them to assign to data
attributes (e.g., their color, shape, size, position, etc.). While the chart and map prototypes have
no graphemes, dragging them into the design work area creates an encoding space which
supports new design choices. The encoding space of a chart or map is defined by the interior of
the two axes or coordinate-frame, respectively. Dragging a mark grapheme into a chart's
encoding space results in directives to SAGE to include these grapheme types in the design, with
their positional properties interpreted relative to the chart's coordinate system.

Figure 2: The SageBrush interface (on left) and the SageBook interface (on right)

SageBook (Figure 2, right windows) is a tool for browsing and retrieving previously created
pictures (i.e. complete, rendered designs) and utilizing them to visualize new data. SageBook
supports an approach to design in which people remember or examine previous successful
visualizations and use them as a starting point for designing displays of new data. After selecting
a visualization, users extend or customize it as needed. Our experiences in graphic design suggest

J5

that search and reuse of prior cases with customization is a common process. Therefore, our goal
is to provide methods for searching through previously created pictures based on their graphical
properties and/or the properties of the data they express. A picture found in this way can
optionally be modified in SageBrush prior to sending it to SAGE, which creates a similar style
graphic for the new data. SageBook capitalizes on the explicit representation of designs and data
characteristics by SAGE to provide a vocabulary for expressing search criteria.

SAGE and SageBrush will need to be extended to handle large data sets. For example, SAGE
will need to create visualizations that group portions of data to control level of detail (e.g., given
screen constraints and user direction, SAGE might choose the picture in Figure 4b rather than in
Figure 4a). Section 7.2 will briefly discuss how the syntactic and semantic representation of
graphics and data characteristics will need be extended to create displays containing these data
groupings. SageBrush will need to include new interactive graphemes, such as the aggregate
gateway grapheme, the graphical representation for a grouping of data.

Most of all, SageTools will need a Data Manipulation component to provide a variety of
interface mechanisms for grouping, filtering, transforming and performing other operations on
data. Data manipulation operations are the focus of IDES, and Section 7 will discuss their role in
the broader framework. Sections 3-6 explain the purpose and capabilities of IDES in detail.

2.2 Communication

Communication between the user and the components of the exploration system occurs via
directives, which are messages that can result from user actions. Directives are generated
through interactions with a variety of user interfaces, including menu commands, dialog boxes
and direct manipulation techniques, such as sliders, button selection, and drag and drop
mechanisms. There are several types of directive:

Presentation directives are the means by which users communicate their intent for the creation
of graphics. There are four types of presentation directives: task, style, aesthetic, and data. Task
directives are used to communicate a user's information-seeking goals (e.g., the data must be
viewed very accurately). Style directives are display goals which affect the types of graphic
techniques that are used to encode data (e.g., use saturation to show neighborhood as in Figure
4). Aesthetic directives influence the choice of values for graphical techniques (e.g. the color
values, scale of axes, shape of objects). Data directives, discussed in subsequent sections, are the
means by which the user communicates with the data manipulation and analysis component of
the system. Following are some examples of each types of presentation directive.

Task Directives:
• indicate specific information-seeking goals for particular data attributes, e.g., looking up

accurate values, detecting correlations, locating needs, scanning for differences.
• prioritize data attributes, e.g., the "cost" data attribute should be displayed more

prominently than the "quantity" attribute, and the information-seeking goals for cost have
a higher priority than the information-seeking goals for quantity.

• will need to include focus of attention and level of detail directives, because the choice of
number of attributes and the groupings of data affect the choice of graphical techniques.

Display Directives:
• Style Directives: Convey combinations of graphical and textual techniques. For example,

users may specify a display with two bar charts side by side, whose vertical axes are

J6

identical, or that they don't want to use color to encode a data attribute. Design directives
will also need to convey interface objects to be included in displays to perform data
manipulation.

• Aesthetic Directives: Inform the presentation system of the user's preferences for the
appearance of the picture, e.g., use red, blue, and white, or draw the picture in a 3" x 5"
window.

Previous automatic presentation systems did not provide interfaces for users to convey
directives. In SageTools, task, style and aesthetic directives are generated through SageBrush
and SageBook specifications. For an interactive data exploration system, we need to expand the
task and display directives to include operations associated with large data sets. We also need to
introduce data directives for communication with the data manipulation and analysis component
of the system. Section 7.1 will briefly discuss the data directives.

2.3 Data Characterization and Design Knowledge

A knowledge-based interactive data exploration system must be application-independent, yet
able to interpret data sufficiently in each new application. It is able to do this because of a
general vocabulary for describing the data and task characteristics of domains. It uses these
characteristics along with design knowledge to generate graphics [16, 17, 18, 19].

The data characterization is provided by an application developer or user and can be modified or
updated by the user through a data characterization generator. It is based on an underlying
vocabulary for describing the semantic and structural properties of the data (actual and derived)
that are relevant to presentation design [4, 16]. A complete set of data characteristics enables
appropriate mappings between the data and graphics. All current work on automatic presentation
is founded on a strong definition of the data characteristics. Data characteristics include:

• sets of data objects, including distinctions among quantitative, ordinal, and nominal
scales of measurement; whether objects represent coordinates or amounts, where a
coordinate is a point or location temporally, spatially or otherwise (e.g., calendar-date)
and an amount is a value not embedded in a frame of reference (e.g., weight or number-
of-days); ordering conventions among objects, etc.

• attributes of objects, e.g., whether an attribute or relation maps from one object to one or
more other objects; whether missing values are meaningful; the arity of a relation; etc.

• higher order relationships among attributes, e.g., the semantics underlying the relation
between the beginning, end and duration of a time interval or the relationship between
longitude and latitude in a two-dimensional spatial representation.

• domain of membership, which refers to whether data measures time, space, temperature,
currency, mass, etc., which enables a system to preserve such standard conventions as
time displayed along a horizontal axis, and East-West appearing right to left.

• algebraic dependencies among database elements, e.g., each bar in the stacked bar chart
displays the sum of its parts.

The data characterization is interpreted by using application-independent design knowledge.
Design knowledge contains two components: a library of presentation techniques and
mechanisms for selecting and combining techniques. The library of presentation techniques
consists of: (1) graphical and textual techniques for displaying the components of various kinds
of tables, charts, maps and network diagrams; (2) information describing the types of data for
which the technique is suitable (e.g., the graphical technique color is suitable for nominal data
with six or fewer items); and (3) the syntactic or structural relations among elements used in

J7

graphics (e.g., axes, lines, points, labels). The presentation design knowledge contains
information about which techniques best satisfy which goals, how techniques can be combined,
and which combinations of techniques create the most effective presentation for the users' data,
according to their information seeking and display goals. It also has knowledge about how to
structure, organize, and lay out displays and their components. Extensions to this knowledge and
to the data and task characterization language are needed to support large data set exploration
and are discussed in subsequent sections.

This section provided an overview of the components of a framework for data exploration
environments. It was based on prior research on SageTools, which was an approach to computer
supported data-graphic design and IDES, an experimental data manipulation tool for large data
sets. Our future research will involve extending SageTools to incorporate the features of IDES
so that visualizations created with SageTools include appropriate data manipulation operations.
Sections 3-6 will discuss the implementation and functionality of IDES, and Section 7 will
discuss the extensions necessary for large data set functionality.

3. DATA MANIPULATION: CONTROLLING SCOPE, FOCUS OF ATTENTION, &
LEVEL OF DETAIL

The exploration goals that a user will have are clearly task dependent. These goals are also
dynamic, changing as the user views various data and displays. Data manipulation is one of the
processes that users perform in data exploration. Springmeyer [20] performed an extensive
empirical analysis of the processes that scientists use when performing data analysis. Her
category "data culling" is most similar to that of data manipulation. We have analyzed the data
manipulation process in detail for object-attribute data (data which consists of an object such as a
house and several attributes for that object, such as selling-price and number of bedrooms) and
have identified three types of exploration operations: controlling the scope, selecting the focus of
attention, and choosing the level of detail.

Controlling scope involves restricting the amount of data one wishes to consider. There are two
ways this can be accomplished: (1) selecting a subset of values of a data attributes, such as only
cities with a population over 2 million, or (2) disjunctively join subsets of the data, such as data
for cities where the population is over 1 million (set 1) or cities which have a population between
2 million and 10 million and are in the Eastern US (set 2)

The second class of goals addresses focus of attention, which involves choosing the attributes of
data one wishes to view in displays, to use for scope operations, and to use to control the level of
detail. For example, a database of cars may consist of various attributes (car-model, year,
company, cost, miles-per-gallon, repair-rating), but a user may wish to just focus on the average
miles-per-gallon (for all car-models of a given company).

There is one specialized focus operation, the creation of derived attributes, which are attributes
that do not occur in the original data and are defined by the user. For example, for our car data,
we can create a derived-attribute called manufacturing-location (with values of American,
European and Asian) by assigning a value to each car based on its manufacturer. The result is
three groups, that can be displayed visually by coloring the cars on a display based on their
manufacturer. Referred to as brushing [7] or painting [13], this technique control focus of
attention using color. Another way to create derived attributes is to transform existing attributes
by some filter [9], for example, create a binary attribute, fuel-efficient, from the car attribute
miles-per-gallon by filtering the data by miles-per-gallon greater than 30.

J8

The third type of goal is choosing the level of detail, which involves changing the granularity of
the data that the user wants to examine, either by aggregation (combining data into meaningful
groups) or by decomposition: (breaking a larger data group into smaller groups). The process of
aggregation is sometimes referred to as composition, when the process involves combining two
data groups. Suppose we have house-sale data with the following attributes: number-houses-
sold, total-sale-price, and date, where date represents a day of 1992. This involves 365 data
points. The user may wish to change the level of detail by grouping dates into months and
displaying the total sales per month. This reduces a display of 365 data points to one of 12
(aggregation). On any resultant aggregate, users might want to do data analysis operations,
which involve examining derived properties of the data. These include defining summary
statistics, which are statistics that can be computed on the values of attributes (e.g., sum or
average), such as the average total-sale-price for 1992.

Decomposition involves reducing a data group into smaller groups based on the same or different
attributes of the included data objects. Figure 3a gives an example of how decomposition could
occur for a real estate sales database with the following attributes: house-selling-price,
neighborhood, number-of-bedrooms, lot-size. The neighborhood attribute has the values
{Squirrel Hill, Shadyside, Point Breeze}. The grouping of "All Houses" is decomposed by
neighborhood into three sub-groups of houses, one for each neighborhood. Each neighborhood
group is partitioned further by lot size: lot sizes less than or equal to 8000 ft. and lot sizes greater
than 8000 ft. Figure 3b shows the representation of the house data in the aggregate
manipulator's outliner (described further in section 6).

W 0»
AH Houses

count leverage Imin-mox I average
1* of Bedrmsl* of SedrmslLot Size

Imin-max
ILot Size

AHKouses 292 1 4 12.8 1 4793 1945.15730
Point Breeze 52 1 4 12.6 1 4911 11349.11543
under8000 47 1 4 12.6 1 4392 11349.7800
over8000 S 1 5 13.6 1 9789 18100.11543

Stodvs ide 47 i 4 12.6 1 3373 1945.8784
under8000 46 1 4 12.6 1 3255 1945.7500
ov»r8000 1 1 5 IS.5 1 8784 18784.8784

Sou irre 1 Hill 193 1 4 12.8 1 5107 11066.15730
und*r8000 164 1 4 12.6 1 4172 11066.7975
over8000 29 1 5 12.8 1 10393 18050.15730

i8000 >8000 iBOOO >8000 iSOOO >8000

Figure 3: Decomposition Representations: (a) Decomposition Tree (b) Aggregate
Manipulator representation.

We could also perform the same aggregation using data visualizations. For the same real estate
data (as in Figure 3b), Figure 4a shows the scatter plot depicting houses, where the number of
bedrooms attribute is on the x-axis and price is on the y-axis. If we aggregate all the individual
data points by neighborhood, we obtain the scatter plot in Figure 4b which consists of three data
groups, each of which is plotted using the average bedroom and average price. Figure 4c shows
the plot where each neighborhood aggregate has been decomposed into two lot-size partitions
(under8000 and over8000).

As we can see from Figure 3a, the process of decomposition forms a hierarchy, which structures
data into meaningful groupings specified by the user. We have identified four classes of
decomposition:

• user-defined or pre-defined natural groupings: These can be defined interactively by the
user or in advance as built-in knowledge. A possible pre-defined natural grouping is
time, e.g., years -> quarters -> months. An example of a user-defined grouping is data on
crimes, where each crime data object has a date attribute. An analyst may decide to break
the year into holiday days and non-holiday days (as illustrated in Figure 5 a).

J9

• element frequency divisions: Divisions are computed by the system to have the same
number of elements (equi-frequency). For example, if the user wants 20 divisions
(partitioned by time) of the 1000 crimes committed in 1991, then there will be 50 crimes
per time interval and each time interval can have a different size (Figure 5b).

• set interval divisions: Divisions are computed by the system to have the same interval
size (equi-intervai). In the above example, if the user wants weekly divisions of the data,
the system would divide the data into weeks: 1/1-1/7,1/8-1/14, etc. (Figure 5c).

• system-provided statistical methods: The system can use clustering statistics or other
methods to partition the data into groups.

Average House Price

House Price
SbUUK-

• ♦
S4S0K-

* 4
♦

♦
♦

$300Ki
♦ « t

S1S0K;

1 ^
•
l
| ! =

l • ♦
SOK-

• SHADYSIDE

O POINT-BREEZE

0 SQUIRREL-HILL

Average House Price
S140K

S130K

S120K

POINT-BREIZE
O

SQUIRREL -HILL

4 6

Nuaber of Bedroc-MS

3 4 S

Average nuaber of Bedrooma

SU4UK -

OVER-8000
•

$200K

OVER-8000
O

S1G0K •

UNDER-8000

$120K-
UNDER
O

-8000

$80K-

UNDER-8000
•

OVER-8000
•

4 5 6

Average number of Bedrooms

(a) (b) (c)

Figure 4: Example of Aggregation in Visualization, (a) The raw data, (b)
Aggregating the raw data by neighborhood, (c) Decomposing the neighborhood
aggregates by the lot-size attribute.

(a) USER-DEFINED (b) EQUI-FREQUENCY (c) EOUI-INTERVAL

ALL-DATES ALL-DATES
AGGREGATES: * "\ ^"^

HOLIDAY NON-HOLIDAY 1/1-1/5 1/6-1/29
NUMBER OF
CRIMES: 350 650 50 50

Figure 5: Types of decomposition.

ALL-DATES

1/1-1/7 1/8-1/14

65 17

4. SELECTING INTERFACE MECHANISMS

In the last section, we discussed a categorization of data manipulation operations - methods of
selecting, grouping, and transforming data. In previous work [8], the authors have evaluated data
exploration software according to this classification and discussed their advantages and
disadvantages; the results are summarized in Table 1.

Dynamic Query or Queries (DQ) is an interactive technique which allows the user to manipulate
sliders to control the amount of data displayed [1]. Each slider as shown in Figure 11,
corresponds to a data attribute. The Aggregate Manipulator mechanism of Webs [15] was
designed for level of detail operations, that of aggregation (grouping) and decomposition
(partitioning groups), along with the display of group summary statistics. Iconographer [9] uses
directed graphs that are programmed visually by the user to control scope, level of detail, and

J10

focus of attention operations. Powerplay [3] allows decomposition in pre-defined hierarchical
structures. Excel allows level of detail operations through an "outline" mechanism in which the
user can create groupings of data sets through a cumbersome process of individually linking cells
in the database. SQL and other database query interfaces provide the most expressive means for
specifying control of scope, but require learning complex programming languages to perform
these and other operations.

DATA MANIPULATION OPERATIONS

o- ■£■ # i

/ / / / <£ / / / #

SCOPE
- filter data using attribute(s)
- select multiple disjunctive subsets

XX X

XX

X

X X

FOCUS
OF

ATTENTION

- select attribute(s) for viewing operations
- select attribute(s) for level of detail operations
- derive attribute(s) from existing attributes

XX X

XX

XX

XX

X

X

X

X

X

X

X

LEVEL OF
DETAIL

- predefined aggregation & decomposition
- flexible aggregation & decomposition

XX

XX

X

X

X X

X

Table 1: The data exploration operations provided by different software or techniques.
If the software (technique) allowed the operation in a simple, straightforward manner,
we assigned the value "xx". If the operation involved non-intuitive operations, lots of
steps, or steps bordering on programming, we assigned the value "x".

Table 1 suggests that the aggregate manipulator provides complete coverage of desired data
manipulation operations. However, the AM does not perform the scope operations of filtering
data or selecting attributes for viewing operations as well as DQ does. For filtering data, the AM
requires creating user-defined partitions, which might have to be re-created for a slightly
different choice of data (e.g., if users decide they want to view data for houses which sold for
$125,000-$200,000 instead of $100,000-$200,000). Furthermore, if the user partitions the data
set several times, it can be confusing what portion of the data (i.e., what range of values for the
various attributes) is being displayed. In the case of DQ, determining these values is
straightforward, since each attribute has its own slider or selector mechanism. However, DQ does
not have the ability to disjunctively combine sets (e.g., display houses which sold for $50,000-
$100,000 in the neighborhood Squirrel Hill and those that sold for $50,000-$ 150,000 in
Shadyside) without creating methods that have multiple sets of dynamic queries linked to the
same display. Thus, there is a need for a mechanism such as the AM to perform this and other
operations (e.g. displaying summary statistics). Examples of the interactions between DQ and
the AM will be given in Section 6.

In order to integrate AM and DQ in a prototype for exploration of large data sets LDES [8], we
needed to extend them to function for many types of data. For the AM, this required exploring
the types of operations that users would want to do with their data and then extending the AM so
it could perform these types of decompositions and summary statistics based on a general data
characterization rather than application-specific mechanisms. For DQ, we needed to be able to
create a slider on demand and to have a method to select elements of nominal (non-numeric,
unordered elements) data rather than just ranges of quantitative (numeric) data. For nominal data
we use a scrolling list of elements (see Figure 11) and allow the user to select multiple elements
of the list. Since the combination of these new versions of AM and DQ is not data specific, it is
easily generalized to any new object-attribute data set.

Jll

5. SYSTEM DESIGN

The main functionality and dataflow of IDES is summarized in Figure 6. Decoupling the display
area and the AM (which were linked in Webs) has the advantage that the user can explore and
manipulate the data in the display area or the AM without affecting the other workspaces. This
allows maintaining multiple perspectives on the data at different levels of detail. However, this
has the drawback that aggregates that appear in the AM may or may not appear in the Display
Area and vice versa. Whether or not this causes problems for users will be evaluated in user
studies.

DISPLAY:
map, chart, etc.

passes ^ AGGREGATE
MANIPULATOR:

• summary statistics
• good at level of detail

operations: creating and
manipulating aggregegates

aggregates

passes
.-data and

t
DYNAMIC QUERY:
• controls data on display
• good at scope operations

aggregate
for

display

Figure 6: Data Flow for the AM & DQ.

The AM, DQ, and display comprise three of the four IDES workspaces (see Figure 11). The AM
is a workspace for creating, decomposing, and directing the display of aggregates in other areas.
The Display Area is both a work area for creating aggregates and a place to view the elements of
the aggregates created by the AM. Dynamic query sliders are always connected to the current
display. Changing the sliders changes the portion of the data that is displayed. Above the Display
Area are menus that allow the user to create an aggregate, show an aggregate, clear the Display
Area, and perform related functions. New aggregates can be created in the Display Area by
selecting data points (represented by icons or graphical symbols) individually or as groups.
Selected icons can be composed into a new aggregate, by the "Create Aggregate" command from
the Display options. The user gives the aggregate a name, and the points representing the
individual data objects are replaced by an icon representing an the aggregate data object, which
we call an aggregate gateway. Users can move aggregates into the AM to be worked on further
and optionally transferred back to the Display Area. If the aggregate is selected in the Display
Area and a corresponding aggregate exists in the AM, both are highlighted. Lastly, users can
decompose an existing aggregate into its components in the Display Area by double-clicking on
the aggregate gateway object. The number of objects displayed reflects the bounds of the existing
dynamic query sliders. This change in detail is not mirrored in the AM.

The last workspace consists of the data detail area (lower right corner), which is used for
showing selected attributes of subsets of aggregates or individual data objects.

6 APPLICATIONS

We have implemented this design for a shipping domain and a real estate domain. We will show
advantages of using multiple visualizations, aggregation of data, and iterative processing to allow
the user to find answers to data exploration questions. We will also show the usefulness of the
AM for combining groupings of data, in particular joining sets disjunctively, and we will show
the advantages of combining both DQ and the AM mechanisms.

6.1 Shipping

J12

Consider a scenario in which the U.S. government is sending emergency supplies worldwide.
Transportation planners use a database of shipments, where each record represents a description
of a single order to be transported. An order has the following attributes: shipment ID, origin
port, destination port, mode of transportation (air/sea), priority, quantity (shipment weight in
tons), scheduled arrival date (FAD), due date (LAD), and lateness (FAD - LAD). The initial
state of IDES is a scatterplot display (Figure 7 shows the scatterplot after some operations have
been performed) and a single aggregate of all individual records, called ALL-SHIPMENTS, in
the aggregate manipulator. All points above the diagonal line in Figure 7 are late. We want to
know which destination seaports have large quantities of high priority late shipments, so that we
can send additional personnel and equipment to assist with the situation.

We first want to display the number of items in ALL-SHIPMENTS and the total quantity (in
tons) of shipments in the AM. We obtain these values by pressing on the top column header area
of the AM table and selecting the summary statistic "count". This gives the total number of
items, i.e. 265 (Figure 7). For the second column we select the summary statistic "total", then
obtain a list of the possible attributes that can be used with "total" and from this list select
"quantity". This procedure could just as easily have been done in reverse, choosing the attribute
"quantity" and then selecting from a list of possible summary statistic options. Because the
system has built-in knowledge data characteristics for each attribute (refer to Section 2.3), the
choices are limited to those appropriate for the attribute. For example, since "total" is not a valid
summary statistic for the attribute "due-date" (dates are coordinates rather than quantities and
hence can't be totaled) it wouldn't be on the list if the "due-date" attribute were already chosen.

We then decompose the ALL-SHIPMENTS aggregate by mode, by pressing on the ALL-
SHIPMENTS aggregate in the aggregate manipulator, which gives a pop-up menu of attributes,
the decomposition options. We choose "mode" which creates two aggregates, AIR and SEA
(Figure 7). These new aggregates are indented from the initial group ALL-SHIPMENTS in the
outliner (the leftmost column) of the AM. We want to display only the sea shipping data, so we
clear the display, select and move the SEA aggregate from the AM into the display We then
double click on the SEA aggregate (i.e. gateway) in the display area to display the individual
shipment data.

J13

System! [Change Display]

2000

JData Display Options||Display Options]| RM Options |

FAD

2000

LAD

priority

 dh

aU^iHItMtHW

2ia
aiB-UTI-HIC«»I0

I tot»! I
I quantity I

268 I 355M I
100 1
1" I

_22ZJJ
3258S I
13-11» I

fro« I to 6

Create DQ

Figure 7: Scatterplot display after a series of operations. In the upper right hand
corner is the outliner portion of the AM and in the upper left hand corner are the
option buttons. Pressing on an option button gives a pop-up menu of available
commands.

We now create a slider bar for priority by pressing on "Create DQ" in the DQ area. We choose
the attribute "priority" from the list of options and use the resulting slider to limit the shipments
displayed to those with priority 1 to 6. Figure 7 shows the results of these operations.
Additional sliders for other attributes could also be created.

We decide to focus only on the first cluster of the two late shipment clusters (the lower left
region of the display in Figure 7). We select all shipments above the diagonal line using
bounding boxes . When we have the desired group, we choose the command Create Aggregate
from the Display Options and name the aggregate SEA-LATE-HIGHPRIO. We then display this
aggregate in the aggregate manipulator and decompose it by all values of the attribute destination
port (Figure 8).

We change to the map display, then select the four aggregates in the AM that represent ports with
the largest total quantity of late shipments. We display them on the map (their representation is a

J14

larger graphical object than the individual shipments) to see their location. We notice that three
of them are in North Tunisia, and we select those three aggregates on the display, which
highlights (selects) them in the AM. We then create an aggregate in the AM and name it
NORTH-TUNISIA-LATE. Figure 8 shows the results of these operations. We can see the total
quantity (in tons) of late shipments, which gives us an idea of the extent of the problem and what
resources we might need to allocate to the situation.

Data Display Options Display Options HM Options

.* "v.

f~*-~s~* A
r v

**$

%
\.

x.»
'>-,

'-l

^^Wc^W^.^.' Jab^
,"*■'"

s--^.
■**-""%/

*?

vi

>

count total I
auontitv 1

flLL-SKIJMENTO 265 35558 1
A IK 100 2973 1
SEA 165 32585 1

SEA-LATE-KIGKPRIO 35 13418 1
ASHTORT 2 1568 1
imzsn 3 3H i
KELIBIA l 43 1
LA-SKHIRRA l 27 1
LIVÜRN0 l 7 1
MONASTIC 2 51 1
PALERMO 4 615 1
rmsssmm a 9. I
KOKA 2 167 1
SIAX 2 17 1
SIGONELLA 2 68 1
S0ÜSSE I 447 1
TORREJON-AB 1 10 1
iMlki 3

NORTH-TON IS IA-LATE 16 10398 1

Figure 8: The map display and AM after creating an aggregate NORTH-TUNISIA-
LATE out of the ports in North Tunisia with the largest weight of late shipments
(Bizerte, Porto-Farina, and Tunis).

This example has shown the value of multiple visualizations for aggregate creation and
decomposition to support the user in the exploration process. Formulating SQL-like queries for
this situation would be difficult because the user is unaware at the beginning where the problem
destination ports are located and whether or not these ports are close enough geographically to be
grouped together. For example, the set of shipments represented by the NORTH-TUNISIA-
LATE aggregate would have been retrieved by a query like: "the set of shipments, whose mode
is SEA, priority is between 1 and 6, lateness is positive, LAD (i.e. due-date) is 'among the
lowest values', and which are delivered to ports where 'there are a lot of late shipments and some
of which are close geographically'."

One of the features of the AM is its ability to create (compose) an aggregate by just selecting and
combining multiple aggregates in the AM. For example, suppose we are interested in the
combination of high-priority (<4) sea shipments and all air shipments (we assume air is high
priority). We can decompose SEA into different priority levels (or choose only one priority level
if we so desire) and then compose the high-priority sea aggregate (SEA-HIGHPRIO<4) with the
aggregate representing all air shipments (AIR) in the AM (see Figure 9) to form a new aggregate

J15

(HIGH-PRIO). Composed aggregates, such as HIGH-PRIO are placed in the outliner one step to
the left of their leftmost child aggregate to avoid confusing them as parts of other aggregates.

Since AIR and SEA are distinct categories their combination contains no overlapping elements.
Suppose we decide that North Tunisia is a high priority area and thus any shipment with a
destination port there is considered high priority. We could aggregate all shipments in North
Tunisia on the map, name it NORTH-TUNISIA-PRIO and move the aggregate to the AM. We
then compose NORTH-TUNISIA-PRIO with HIGH-PRIO to form INTEREST-SHIPMENTS
(Figure 9). There may be overlapping shipments between these two sets. The system is aware of
any overlapping shipments and makes sure that the resulting aggregate references each
appropriately. Notice that the count for the INTEREST-SHIPMENTS aggregate is less than the
sum of HIGH-PRIO and NORTH-TUNIS A-PRIO.

I count

1
total
quantity

0LL-SHIPMENT3 1 265 35558
ftIR 1 100 2973
SIfl 1 165 32585
SIA-KIGKPJU0<4 1 64 16050

KIGK-JRIO 1 164 19023
NORTH-TUNISIfl-PJUO 1 109 16067
INTEREST-SHIPMENTS 1 206 24708

Figure 9: Combining aggregates.

Note that the integration of AM and DQ supports the formation of disjunctive queries which are
impossible with DQ alone. Forming complex queries in the aggregate manipulator is intuitive —
users do not even have to recognize that they are creating queries. Such a straightforward
mechanism helps the users to concentrate on their data and goals, rather than on the formation of
queries.

These examples have shown how the AM is a useful mechanism for discovering properties of
information in a large data set and how the use of various visualizations can assist the user in this
process. In the real estate example, we will elaborate on how AM and DQ synergistically
operate in our system and how they are useful for different purposes.

6.2 Real Estate

Our real estate data consists of attributes from an actual real estate database of houses sold. There
are 27 attributes (Figure 10) with varied data types: quantitative (e.g., selling price), nominal
(e.g., neighborhood), and interval (e.g., date of sale). The attributes of the house data have three
natural hierarchical relationships. City can be decomposed into neighborhoods or zip codes.
Companies can be decomposed into offices (selling or listing), and offices can be decomposed by
agents. There are many possible user-defined partition options as discussed in Section 3.

• address number of rooms • lot size • selling price • selling office
• neighborhood number of bedrooms • living room size • asking price • listing office
•city number of bathrooms • dining room size • date of sale • listing agent
•zip code style of house 'kitchen size "assessment »company
• age of house fireplace * master bedroom size "tax • days on market
• type of house garage

^igure 10 : Attributes of the real estate data set.

J16

In this section, we will discuss two scenarios. The first shows the weaknesses of using the AM
alone. The second scenario shows how using DQ alone would require substantial work for the
user. For both these cases, we show how using the combination of the AM and DQ is most
effective.

Consider the following scenario. Jennifer is new to the Pittsburgh area and has the following
goals for a house: (a) in the price range $100,000 to $150,000, (b) a lot size of at least 5000 sq.
ft., because she wants a nice back yard, (c) at least 4 bedrooms, and (d) close to Carnegie Mellon
University (i.e. in the neighborhoods of Shadyside, Squirrel or Pt. Breeze).

Jennifer would like to see houses which match these criteria and their map locations. The initial
state of the system has the aggregate "AllHouses" in the AM and all houses displayed on the map
(Figure 11). First, Jennifer creates dynamic query sliders for the attributes Selling Price, Lot Size
and Neighborhood. After she selects the appropriate ranges or values for these queries, the map
displays houses in Shadyside, Squirrel Hill and Point Breeze, with a price between 100-150K
and lot size over 5000 sq. ft. Jennifer then selects all the data on the map and creates a new
aggregate "Sq-Shady-PB".

Note that if Jennifer wanted a group with more or fewer houses, she could change the sliders
until she had approximately the number she desired. This is an awkward procedure in the AM
because it requires creating a new user-defined partition for each revision and then looking either
at the summary statistics or displaying the new partition on the map.

MAP DISPLAY AGGREGATE MANIPULATOR

System Data Detail Display || AM |

Bloomfield East Liberty

Schenley Farms

Shady side#
_ Point Breeze
* • ••

Oakland
• . *

CMU
Squirrel Hill •

• • • • •

Average
Sellinq Price

Count

AllHouses
bftHJIAHIBaai

3

90
130
120

607
16

4

O

4 128 4
5 140 3
6 122 2
7 132 2
8 149 1

o
SELLING PRICE LOT SIZE

—HIH-flH^ -HIH*—fl)
[TÖÖ~| to |T50 | 15000 | to 120000 |

NEIGHBORHOOD Create DO

SQ-SHADY-PB * BEDROOMS
3004 Beechwood 3 O
5872 Burohfield 3
6920 Reynolds 3
108Pt. Breeze 3
4265 Saline 4
6427 Landview 4
5871 Darlington 4
330 Leroi 4 O

DYNAMIC QUERY AREA DATA DETAIL AREA

Figure 11: A readable representation of the interface as a result of using the AM and
DQ to partition house data. There are four workspaces with various options
accessible via pop-up menus from the buttons in the upper left hand corner.

J17

Figure 11 shows the results of the operations and summary statistics and data for the aggregate
"Sq-Shady-PB". To partition "Sq-Shady-PB", she presses on it in the outliner of the AM, which
gives a pop-up menu of attributes and selects the attribute "# Bedrooms." She chooses to
partition the attribute "# Bedrooms" into individual values. All non-empty aggregate groups are
displayed in the AM (in this case 3-8) along with summary statistics for any specified columns
(in this case Average Selling Price and Count). To get the display in the Data Detail Area, she
selects the aggregate "Sq-Shady-PB", uses an AM option to move it to the Detail Area and then
chooses the attribute "# Bedrooms" from a column header pop-up menu in the same manner as
that for the summary statistics.

The second scenario involves another situation in which we show the combination of the AM
and DQ is superior to either method alone. John wants to sell his house and is looking for
possible real estate agents. He believes his house will sell for around $250,000. He wants to
know which company and then which sales agent has sold the most houses in the price range
$200,000-$300,000 in his neighborhood in the last year. DQ alone is quite awkward to use
because John would have to select all combinations of company and sales agents and then count
the number of houses that appear on the map. However, DQ is easy to use for simple selection
of the neighborhood and ranges for the price and date. From this he creates an aggregate
ExpensiveSales (Figure 12). He then partitions this aggregate by the attribute company and
selects two summary statistics: "Total" (for the attribute "Selling Price") and "Count". After
finding that Howell & Co. sold the most houses, he decomposes this aggregate of houses by sales
agent. The result of this decomposition is that John can quickly see that Helen Foster sold the
most houses.

AGGREGATE MANIPULATOR
Total Count

Selling Price

AllKouses 151403 607 o
ExpensiveSales 6984 29

Best Realty 1306 5
Coleman 1217 5
Cooper Agency 687 3
Howell & Co. 3774 16
Betty fish 225 1
Bert Brown 240 1
Dolly Cooper 220 1
Joan Tenton 201 1
Helen Foster 674 3
Jackie Jones 295 2
Amy Kim 285 1
Bob Moore 494 2
Lynn Nelson 220 1 :::•:■:

Jill Pate 225 1 O
Figure 12: The AM as a result of decomposing the aggregate ExpensiveSales by the
attribute company and decomposing the partition Howell & Co. by the attribute sales
agent.

These examples have shown how AM and DQ synergistically operate in our system and how
they are useful for different purposes. The process of aggregation provides control over the level
of detail of data shown. Slider mechanisms allow rapid filtering of the data. We will now
discuss how these techniques can be used in our framework and how the components,
knowledge, and directives modules need to be extended.

J18

7. EXTENSIONS REQUIRED FOR LARGE DATA SETS

The IDES system and the examples above show how effective data manipulation tools can assist
users in the data exploration process. For a computer-supported data graphic design system to
handle these capabilities, the directives and knowledge must be extended and a data manipulation
and analysis tool must be provided. In addition, we propose adding a data characterization
generator, which allows the user to specify their own hierarchical decompositions. This section
will discuss these extensions.

7.1 Presentation Directives

As discussed in section 2.2, presentation directives are the means by which users communicate
their intent for the creation of graphics. In order to support interactive data exploration,
presentation directives must be extended to allow users to communicate their data exploration
intent as well.

Additional data directives must be generated when users communicate with the data
manipulation and analysis component of the system to control their data. Examples of data
directives include specifying the scope of the data to be displayed and specifying desired
summary statistics for a group of data.

Task directives must be extended to allow users to specify when control over scope, focus of
attention or level of detail is needed in a visualization. For example, to allow control over focus
of attention a directive specifying the users need to actively filter visualized data based on values
of a specified attribute could be generated. Such a request might result in the design of a
visualization with built-in dynamic query sliders.

To allow control over level of detail, a directive might allow users to specify a particular data
hierarchy to be used when data needs to be aggregated. For example, the user might specify
when presenting data on people that if there are too many individuals to display, the system
should display groups of people by income, age or other breakdown which accomplishes a
directive (like minimizing overlap or achieving better distribution of attribute values). Such
directives must be expressed in a vocabulary that is sufficiently general and atomic to enable
their use in interface mechanisms which control the addition and removal of visible data as part
of the process of controlling scope or expanding aggregates.

7.2 Data Characterization for Aggregates

Exploration of large data sets requires two features with which we have experimented in IDES:
aggregates and hierarchies. Aggregates represent groupings of data and abstractions or
summaries of their attributes. Hierarchies help define and organize aggregates. Each aggregate
data object has an associated set of data elements, a data characterization that describes the set,
and representative data values for each attribute based on global properties of the set. A system
can use representative values and display them using aggregate gateways, which are the graphic
representation of aggregate data objects that enable interactive expansion to greater detail. A
system selects representative values of attributes and visualizes them as gateways appropriately
is due to its knowledge of aggregate data characteristics.

An aggregate data object is an abstraction and grouping of similar individual data objects and its
characteristics can be derived partly from those of the data elements from which it is composed.

J19

For example, an aggregate of shipment data objects will express abstractions of shipment
attributes: weight, port, and date. Weight is a quantitative attribute that can be summarized by a
mean, mode, total, range, or a distribution frequency (i.e. number of elements with each value or
the number of different values). In contrast, port is a nominal attribute, which can only be
summarized with a distribution-count (i.e. the frequency of different values in the set, or possibly
just the most frequent value). Dates are interval attributes, which can be represented with the
same summary statistics as quantitative attributes except total.

Knowledge of data characteristics can also guide the choice of an attribute to partition data
elements into aggregates, independent of the manner in which their attributes are summarized.
For example, nominal attributes can be used to group data objects which have the same value
(e.g. shipments destined for the same port). Quantitative and temporal attributes can be used to
group data objects with common values, but they can also group data based on intervals (i.e.
ranges). We discussed the use of equi-frequency and equi-interval methods of grouping data into
aggregates in the section on IDES.

These observations enable a knowledge-based system to automatically select (or support user
selection of) attributes and values to define groupings to create aggregates when the level of
detail must be reduced. They also enable a system to select appropriate graphic techniques to
visualize groups and the representative values which summarize their attributes. For example,
they enable a system to select bar lengths for totals or medians of quantitative attributes but not
for the medians of sets of dates - a median of a set of dates is still a date and must be expressed
as a coordinate rather than an amount [16]. Similar knowledge enables interval bars to be
selected to express quantitative or temporal ranges.

In addition to knowledge of aggregate characteristics derived from element data, a data
exploration system requires knowledge of strategies for hierarchically structuring data
aggregates. There are three types of knowledge of hierarchical relationships:

• Domain independent: knowledge of universal hierarchical relationships, e.g., that days
are grouped into weeks or calendar months, and then into years.

• Domain dependent: knowledge specific to an application, e.g. that dates in a college's
academic year can be aggregated by months with semesters (Fall, Spring and Summer
semesters); dates in a business calendar might be aggregated by quarter (Jan-Mar, Apr-
Jun, etc.).

• User-defined: knowledge that a user provides for a particular data set. For example, for
population data, the user may want to use a new partition of the states which divide the
states into coastal and non-coastal ones or alphabetically organized groups.

Just as a system can choose attributes to group data elements and summarize other attributes, it
can use hierarchical structures like these to control the level of detail. Hierarchies provide
intuitive methods for moving flexibly across levels of detail, enabling users to control
aggregation and decomposition and keep track of the relationships among aggregates at different
levels (i.e. parents and siblings in a tree).

A mechanism which must be added to support manipulation is a data characterization builder.
Such a tool would enable users to interactively create and store new hierarchical structures for
grouping data and controlling level of detail (e.g. to provide the ability to create the holiday/non-
holiday breakdown of all-dates depicted in Figure 5a). It updates the data characterization so that
the presentation system will be aware of the new hierarchy for aggregation purposes. The ability
to quickly and easily create hierarchies allows users to group their data in partitions they want to
explore repeatedly and in ways that are meaningful for specific instances of data.

J20

7.3 Extensions to the Design Knowledge

Besides being used to display data, the IDES display area can be used to create and manipulate
aggregates as we have shown. If the level of detail is too great (i.e. there are too many
overlapping data points), the presentation system can choose to group and aggregate data by
using the aggregate gateway graphical object. Once displayed, the user can expand an aggregate
gateway to increase detail. If the aggregate gateway contains too much data to fit into a newly
generated display, the presentation system must choose between three options: permit overly
dense and overlapping data representations, change the scale and use scrolling controls to expose
portions of the data, or reduce the visible data by creating new aggregates (i.e., those that do not
overlap as much or that create an intermediate number of aggregates).

In addition, there are several possibilities for the graphic resulting from the expansion of the
aggregate gateway:

• expand the aggregate data into the same display.
• create a separate display for the more detailed data, using the same graphic techniques as

the parent display.
• create a separate display, using new techniques which shows Only the detailed data.
• create a new display with new techniques which enable both the expanded and

unexpanded aggregate data from the original display to coexist effectively.
• create a new display following some presentation directives that the user provides. For

example, the user might want to emphasize a particular dimension of the aggregate
differently from the previous display.

Design knowledge can also be used to select interface techniques in the data exploration tools.
For example, instead of the outliner form of the aggregate manipulator as shown in Figure 11, a
hierarchical graph (node-link diagram) might be used to show additional relations between
aggregates or a Tree Map [21] to better show quantitative attributes of aggregates. Another
example is the case where the data includes nominal attributes with a large number of values.
Based on knowledge of the task and data characteristics, a system could select a form of DQ
called the Alphaslider [2], which allow users to rapidly choose nominal values.

8. SUMMARY AND CONCLUSION

One important component in the design of user interfaces for exploring large data sets is that of
data manipulation techniques. In this paper we explored these techniques with respect to a
classification for data manipulation user goals, that of scope, focus of attention, and level of
detail. We integrated into our interactive data exploration system, IDES, the technique of
dynamic query, whose strength is scope operations, with the aggregate manipulator, whose
strength is control of level of detail. We demonstrated how the combination of these tools can
enable people to efficiently answer questions that are typical in data exploration.

Another important component for exploration large data sets is data visualization techniques.
Automatic presentation systems are useful in that they relieve the user of the need to design and
construct pictures. However, they must have features that allow users to construct graphics (as
with SageBrush) and find previously constructed graphics to reuse or modify (as with
SageBook).

In this paper, we have proposed a framework for knowledge-based, interactive data exploration.
We have discussed the components that such a system should have in terms of our research on

J21

IDES and SageTools. Implementing this framework would requite addressing all the issues we
have presented:

• Developing richer directives that refer to characteristics of data, tasks, design choices,
and aesthetic preferences.

• Extending characterization vocabulary to describe both the hierarchical structure of data
as well as the data exploration tasks that users perform.

• Developing approaches to visualizing information using aggregate graphical objects, to
serve both as useful representations of data and as mechanisms to explore data, i.e. as a
gateway to more detailed data.

• Developing and testing interface mechanisms that support data exploration, including
filtering, dynamic query, painting, hierarchy expansion and contraction, scrolling, and
mechanisms for structuring, partitioning, and aggregating data.

• Developing interface mechanisms for interacting with automatic presentation systems,
such as SageBrush and SageBook, which enable users to communicate presentation
directives in a natural way.

• Developing and understanding the processes of data manipulation, data analysis and data
visualization and their relationships.

In addition, future research will involve performing user studies to ascertain how well people are
able to use the various components of these systems. In regard to IDES, we plan to explore how
our object-attribute paradigm needs to be expanded to relational data that does not fall in this
paradigm. We also plan to incorporate other visualization techniques, such as brushing, which
supports coordination of attributes across multiple displays.

REFERENCES

1. Ahlberg, C, Williamson, C. and Shneiderman, B. Dynamic Queries for Information
Exploration: An Implementation and Evaluation, in Proceedings of the CHI '92 Conference
(May 1992), ACM Press, pp. 619-626.

2. Ahlberg, C. and Shneiderman, B. The Alphaslider: A Compact and Rapid Selector, in
Proceedings of the CHI '94 Conference (Boston, April 1994), ACM Press, pp. 365-371.

3. Barr, R. Using Graphs to Explore Databases and Create Reports, in SIGCHI Bulletin (Julv
1990), p. 24-27. y

4. Bertin, J. Semiology of Graphics, The University of Wisconsin Press 1983.

5. Brachman, R.J. et. al. Intelligent Support for Data Archaeology, in proceedings of Workshop
on Intelligent Visualization Systems, IEEE Visualization'93 Conference (San Jose, October
1993), p. 5-19.

6. Casner, S. A Task-Analytic Approach to the Automated Design of Graphic Presentations in
ACM Transactions on Graphics, 10, 2 (April 1991), 111-151.

7. Cleveland, W.S. and McGill, M.E. Dynamic Graphics for Statistics, Wadsforth Inc., Belmont
CA 1988.

8. Goldstein, J. and Roth, S.F. Using Aggregation and Dynamic Queries for Exploring Large
Data Sets, in Proceedings of the CHI'94 Conference (Boston, April 1994), ACM Press DD
23-29.

9. Gray, P.D., Waite, K.W., and Draper, S.W. Do-It Yourself Iconic Displays, in Human-
Computer Interaction - INTERACT '90, D. Diaper et al., Elsevier Science Publishers B V
1990, pp. 639-644.

J22

10. Holsheimer, M. and Siebes, A. Data Mining: The Search for Knowledge in Databases,
Report CS-R9406, ISSN 0169-118X, Amersterdam, The Netherlands 1991.

11. Hutchins, E.L., Hollan, J.D., and Norman, D.A. Direct Manpulation Interfaces, in User
Centered System Design , D.A Norman and S.W. Draper eds., 1986, pp. 87-124.

12. Mackinlay, J.D. Automating the Design of Graphical Presentations of Relational
Information, in ACM Transactions on Graphics, 5,2 (April 1986), ACM Press, pp. 110-141.

13. McDonald, J.A. and Stuetzle, W. Painting multiple views of complex objects, in
Proceedings of the. ECOOP/OOPSLA'90 European Conference on Object Oriented
Programming (Oct. 21-25,1990), ACM Press, pp. 245-257.

14. Marks, J.W. Automating the Design of Network Diagrams, Ph.D. Dissertation, Harvard
University, 1991.

15. Maya Design. The Webs Data Exploration Tool, Maya Design Technical Report, Maya
Design, Pittsburgh, PA 1993

16. Roth, S.F. and Mattis, J.A. Data Characterization for Intelligent Graphics Presentation, in
Proceedings of the CHI'90 Conference (Seattle, April 1990), ACM Press, pp. 193-200.

17. Roth, S.F. and Mattis, J.A. Automating the Presentation of Information, in Proceedings of
the Conference on Artificial Intelligence Applications (Miami Beach, Feb. 1991), IEEE
Press, pp. 90-97.

18. Roth, S.F., Mattis, J.A., and Mesnard, X.A. Graphics and Natural Language as Components
of Automatic Explanation, in Architectures for Intelligent Interfaces: Elements and
Prototypes. Addison-Wesley, Reading, Mass., 1991.

19. Roth, S.F., Kolojejchick, J., Mattis, J. and Goldstein, J. Interactive Graphic Design Using
Automatic Presentation Knowledge, in Proceedings of the CHI'94 Conference (Boston, April
1994), ACM Press, pp. 112-117.

20. Springmeyer, R.R., Blattner, M.M., and Max., N.L. Developing a Broader Basis for
Scientific Data Analysis Interfaces. In Proceedings of Visualization '92 (October 19-23,
1992, Boston, MA), pp. 235-242.

21. Turo, D. and Johnson, B. Improving the Viusalization of Hierarchies with Treemaps:
Design Issues and Experimentation. In Proceedings of Visualization '92 (October 19-23,
1992, Boston, MA), pp. 124-131.

„U.S. GOVERNMENT PR.NT.NG OFFICE: 1995-610-126-50108

J23

DISTRIBUTION LIST

addresses nuabar
Of COpi.33

ROME LA3QRAT0RY/C3C 15
ATTN: NORTHRUP FOWLER III
525 SPOOKS ROAD
SRIFFISS AFS NY 13441-4505

POBOTICS INSTITUTE 5
ÄTTN: OR NORMAN SAOEH
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213-3890

RL/SUL 1
TECHNICAL LIBRARY
26 ELECTRONIC PKY
GRIFFISS A^a NY 13441-4514

ADMINISTRATOR 2
DEFENSE TECHNICAL INFO CENTER
DTIC-FÖAC
CAMERON STATION BUILDING 5
ALEXANDRIA VA 22304-6145

ADVANCED RESEARCH PROJECTS AGENCY 1
JL

3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

RL/C3A3 1
525 BROOKS RD
GRIFFISS AF3 NY 13441-4505

NAVAL WARFARE ASSESSMENT CENTER 1
GIDE? OPERATIONS CENTER/CODE QA-50
ATTN: E RICHARDS
CORONA CA 91718-5000

HQ ACC/DRIY 1
ATTN: MAJ. DIVINE
LANGLEY AF3 VA 23665-5575

OL-1

ASC/FNEMS
WRIGHT-PATTERSON AF8 OH 45433-6503

WRIGHT LA80SAT0RY/AAAI-4
WRIGHT-PATTERSON AFB OH 45433-6543

WRIGHT LA30RAT0RY/AAAI-2
ATTN: MR FRANKLIN HUTSON
WRIGHT-PATTERSON AFB OH 45433-6543

AFIT/LDEF
2950 P STREET
WRIGHT-PATTIERSON AF3 OH 45433-6577

WRIGHT LA30RAT0RV/MTEL
WRIGHT-PATTERSON AF3 OH 45433

AAMRL/HE
WRIGHT-PATTERSON AFB QH 45433-6573

AIR FORCF HUMAN RESOURCES LA?
TECHNICAL DOCUMENTS CENTER
AFHRL/LRS-TOC
WRIGHT-PATTE*?SON AF8 OH 45433

AUL/LS?
3LDG 1405
MAXWELL AFS AL 36112-5564

US ARMY STRATEGIC DEF
CSSD-IM-PA
PO 30X 1500
HUNTSVILLE AL 35807-3301

OL-2

COMMANDING OFFICER
NAVAL AVIONICS CENTER
LIBRARY 0/765
INDIANAPOLIS IN 46219-2189

COMMANDING OFFICER
NCCOSC ROTE DIVISION
CODE 0274B, TECH LIBRARY
53560 HULL STREET
SAN DIEGO CA 92152-5001

CMDR
NAVAL WEAPONS CENTER
TECHNICAL LI8RARY/C3431
CHINA LAKE CA 93555-6001

SPACE £ NAVAL WARFARE SYSTEMS COMM
WASHINGTON öC 20363-5100

CDR, U.S. ARMY MISSILE COMMAND
REDSTONE SCIENTIFIC INFO CENTER
AMSMI-RD-CS-R/ILL DOCUMENTS
REDSTONE ARSENAL AL 35898-5241

ADVISORY GROUP ON ELECTRON DEVICES
ATTN: DOCUMENTS
2011 CRYSTAL DRIVE,SUITE 307
ARLINGTON VA 22202

REPORT COLLECTION, RESEARCH LIBRARY
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 87545

AEDC LIBRARY
TECH FILES/MS-100
ARNOLD AFS TN 373 89

COMMANDER/USAISC
ATTN: ASOP-OO-TL
8LDG 61801
FT HUACHUCA AZ 85613-5000

DL-3

AIR WEATHER SERVICE TECHNICAL LIB
FL 4V1*
SCOTT AF3 IL 62225-5458

AFIWC/MSO
102 HALL 8LV0 STE 315
SAN ANTONIO TX 73243-7016

SOFTWARE ENGINEERING INST CSEI)
TECHNICAL LIBRARY
5000 FORBES AVE
PITTSBURGH PA 15213

DIPECTOR NSA/CSS
W157
9800 SAVAGE ROAD
FQPT MEADE MD 21055-6000

NSA
ATTN: 0. ALLEY
DIV X911
9800 SAVAGP ROAD
FT MEADE MD 20755-6000

OOD
R31
9300 SAVAGE ROAD
FT. MEADE MO 20755-6000

DIPNSA
R509
9800 SAVAGE ROAD
FT MEADt MD 20775

OOD COMPUTER CENTER
C^TIC
9300 SAVAGE ROAD
«=ORT GEORGE G. MEADE MD 20755-6000

ESC/IC
50 GRIFFISS STREET
HANSCOM AFB MA 01731-1619

DL-4

ESC/AV
20 SCHILLING CIRCLE
HANSCOM AFB MA 01731-2816

OCMAO/GWE
ATTN: JOH* CHENG
US COURTHOUSE/SUITE 8-34
401 N HARKET
WICHITA KS 67202-2095

FL 2807/RESEARCH LIBRARY
OL AA/SULL
HANSCOM AFB MA 01731-5000

TECHNICAL REPORTS CENTER
MAIL DROP D130
BURLINGTON ROAD
BEDFORD MA 01731

DEFENSE TECHNOLOGY SEC AOMIN
ATTN: STTD/PATRICK SULLIVAN
400 ARMY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

CDTSA)

SOFTWARE ENGR'G INST TECH LIBRARY
ATTN: MR DENNIS SMITH
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213-3890

SOFTWARE OPTIONS, INC.
ATTN: MR TOM CHEATHAM
22 HILLIARD STREET
CAMBRIDGE MA 02133

USC-ISI
ATTN: OR ROBERT M. BAL2ER
4676 ADMIRALTY WAf
MARINA DFL RET CA 90292-6695

KESTREL INSTITUTE
ATTN: DP CORDELL GREEN
1801 PAGE MILL ROAD
PALO ALTO CA 94304

DL-5

ROCHESTER INSTITUTE OF TECHNOLOGY
ATTN: PROF J. A. LASKY

1 L0M3 MEMORIAL DRIVE
P.O. BOX 9887
ROCHESTER NY 14613-5700

WCSTINGHOUSE ELECTRONICS CORP
ATTN: MR DENNIS BIELAK
ELECTRONICS SYSTEMS GROUP
P.O. BOX 746, MAIL STOP 432
BALTIMORE MO 21203

AFIT/ENG
ATTN: PAUL BAILOR.
WPAFB OH 45433-6533

MAJOR, USAF

THE MITRE CORPORATION
ATTN: MR EDWARD H. BcNSLEY
BURLINGTON RO/MAIL STOP A350
8EDF0R0 MA 01730

UNIV OF ILLINOIS, URBANA-CHAMPAIGN
ATTN: SANJAY BHANSALI
OEPT OF COMPUTER SCIENCES
1304 WEST SPRINGFIELD
URSANA IL 61*01

ANDERSEN CONSULTING
ATTN: MR MICHAEL E. DEBELLIS
100 SOUTH WACKER DRIVE
CHICAGO IL 60606

UNIV OF ILLINOIS, URBANA-CHAMPAIGN
ATTN: OR MEHDl HARANDI
DEPT OF COMPUTER SCIENCES
1304 W. SPRINGFIELD/240 DIGITAL LAB
UR3ANA IL 61801

HONEYWELL, INC.
ATTN: MR BERT HARRIS
FEDERAL SYSTEMS
7900 WESTPARK DRIVE
MCLEAN VA 22102

SOFTWARE ENGINEERING INSTITUTE
ATTN: MR WILLIAM E. HEFLEY
CARNEGIE-MELLON UNIVERSITY
SEI 2218
PITTSBURGH PA 15213-38990

DL-6

UNIVERSITY 0*= SOUTHERN CALIFORNIA
ATTN: OR M. LEWIS JOHNSON
INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY/SUITE 1001
MARINA DEL REY CA 90292-6695

COLUMBIA UNIV/DEPT COMPUTER SCIENC!
ATTN: OR GAIL £. KAISER
450 COMPUTER SCIENCE BLDG
500 WEST 120TH STREET
NEW YORK NY 10027

SOFTWARE ENGINEERING INSTITUTE
ATTN: KYO CHUL KANG
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH PA 15213-3890

SOFTWARE PRODUCTIVITY CONSORTIUM
ATTN: MR ROBERT LAI
2214 ROCK HILL ROAD
HERNDON VA 22070

AFIT/ENG
ATTN: Q^ GARY 8. LAMONT
SCHOOL OF ENGINEERING
OEPT ELECTRICAL & COMPUTER ENGRG
WPAFS OH 45433-6583

NSA/OFC Of RESEARCH
ATTN: MS MARY ANNE OVERMAN
9800 SAVAGE ROAD
FT GEORGE 5. MEADE MD 20755-6000

THE MITRE CORPORATION
ATTN: MR HOWARD REUSENSTEIN
BURLINGTON ROAD
BEDFORD MA 01730

ANDERSEN CONSULTING
ATTN: OR WILLIAM C. SASSO
CENTER FOR STRATEGIC TECH RSCH
100 SOUTH WACKER DRIVE
CHICAGO IL 60606

AT&T BELL LABORATORIES
ATTN: MR PETER G. SELFRIOGE
ROOM 3C-441
600 MOUNTAIN AVE
MURRAY HILL NJ 07974

DL-7

VITRO CORPORATION
ATTN: MR ROBtRT A. SMALL

14000 GEORGIA AVENUE
SILVER SPRING MD 20906-2972

ODYSSEY RESEARCH ASSOCIATES,
ATTN: MS MAUREEN STILLHAN
301A HARRIS B. DATES DRIVE
ITHACA NY 14350-131?

IMC.

WROC/AAAP-3
ATTN: JAMES P. WE9ER, CAPT, USAF
AERONAUTICAL SYSTEMS CENTER
WPAFB OH 45433-6543

TEXAS INSTRUMENTS INCORPORATED
ATTN: OR DAVID L. WELLS
P.O. bOX 655474, MS 233
DALLAS TX 75265

BOEING COMPUTER SERVICES
ATTN: DR PHIL NEWCOMB
MS 7L-64
P.O. SOX 24346
SEATTLE WA 93L24-0346

LOCKHEED SOFTWARE TEHNOLOGY CENTER
ATTN: MR HENSON GRAVES
ORG. 96-LO SLOG 254E
3251 HANOVER STREET
PALO ALTO CA 94304-LL9L

REASONING SYSTEMS
ATTN: DR GORDON KOTIK
3260 HILLVIEW AVENUE
PALO ALTO CA 94304

TEXAS ARM UNIVERSITY
ATTN: OR PAULA MAYER
KNOWLEDGE BASED SYSTEMS LABORATORY
OEPT OF INDUSTRIAL ENGINEERING
COLLEGE STATION TX 77843

KESTREL DEVELOPMENT CORPORATION
ATTN: DP PICHARO JULLIG
3260 HILLVieW AVENUE
PALO ALTO CA 94304

DL-8

AEROSPACE CORPORATION

ATTN: DR. KIRSTIE BELLMAN

ML/102 COMPUTER SCI £ TECH SU3DIV
P. 0. BOX 92957
LOS ANGELES CA 90009-2957

LOCKHEED 0/96-10 8/254E
ATTN: JACKY COMBS

3251 HANOVER STREET
PALO ALTO CA 94304-1191

NASA/JOHNSON SPACE CENTER
ATTN: CHRIS CUL8ERT
MAIL CODE PT4
HOUSTON TX 77053

SAIC
ATTN: LANCE MILLER
MS Tl-6-3
PO BOX 1303 COR 1710 GOOÜRIDGE DR}
MCLEAN VA 22102

STERLING IMO INC.
KSC OPERATIONS
ATTN: MARK MAGINN
BEECHES TECHNICAL CAMPUS/RT 26 N.
ROME NY 13440

NAVAL POSTGRADUATE SCHOOL
ATTN: BALA PAMESH
CODE AS/RS
ADMINISTRATIVE SCIENCES DSPT
MONTEREY CA 93943

KESTREL INSTITUTE
ATTN: MARIA PRYCE
3260 HILLVIEW AVENUE
PALO ALTO CA 94304

HUGHES AIRCRAFT COMPANY
ATTN: GERRY 8ARKSDALE
P. 0. BOX 3310
SLDG 618 MS £215
«=ULLERTQN CA 92634

FORWISS UNIVERSITY OF ERLANGEN
ATTN: ERNST LUTZ
AM WEICHSELGARTEN 7
8520 ERLANGEN, GERMANY

DL-9

THE MITRE CORPORATION
ATTN: HOWARD PEU3ENSTEIN

BURLINGTON ROAD, K302
BEDFORD MA 01730

SCHLUM3ERGER LABORATORY FOR
COMPUTER SCIENCE

ATTN: DR. GUILLFRMO ARANGO
9311 NORTH FM620
AUSTIN, TX 78720

PARAMAX SYSTEMS CORPORATION
ATTN: OON YU
9201 GREENSBORO DRIVE, SUITE 1000
MCLEAN VA 22101

MOTOROLA, INC.
UTTN: MP. ARNOLD PITTLEP
3701 ALGONQUIN ROAD, SUTF 601
ROLLING MEADOWS, IL 60003

DECISION SYSTEMS DEPARTMENT
ATTN: PROF WALT SCACCHI
SCHOOL 0= BUSINESS
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CA 90039-1421

SOUTHWEST RESEARCH INSTITUTE
ATTN: 8RUCE REYNOLDS
6220 CULESRA ROAD
SAN ANTONIO, TX 78228-0510

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY

ATTN: CHRIS DA8R0WSKI
ROOM A266, 3LDG 225
GAITHS3URG MD 20899

EXPERT SYSTEMS LABORATORY
ATTN: STEVEN H. SCHWARTZ
NYNEX SCIENCE Z. TECHNOLOGY
500 WESTCHESTER AVENUE
WHITE PLANS NY 20604

NAVAL TRAINING SYSTEMS CENTER
ATTN: ROBERT 3REAUX/CQDE 252
12350 RESEARCH PARKWAY
ORLANDO FL 32326-3224

DL-10

CENTER FOR EXCELLENCE IN COMPUTER-
AIOEO SYSTEMS ENGINEERING

ÄTTN: PERRY ALEXANDER
2291 IRVING HILL ROAD
LAWRENCE KS 66049

SOFTWARE TECHNOLOGY SUPPORT CENTER
ATTN: MAJ ALAN K. MILLER
QGDEN ALC/TISE
RLDÖ 100, BAY G
HILL A^B, UTAH 84056

MS. KAREN ALGUIRE
RL/C3CA
525 BROOKS RO
GRIFFISS AFB NY 13441-4505

JAMES ALLEN
COMPUTER SCIENCE OEPT/SLDG RM
UNIV 0* ROCHESTER
WILSON SLVn
ROCHESTER NY 14627

732

MS TIFFANY WALKER
DIGITAL SYSTEMS RSCH INC
4301 NORTH FAIRFAX ORIVE
SUITE 725
ARLINGTON VA 22203

YIGAL ARENS
USC-ISI
4676 ADMIRALTY
MARINA OEL RAY

WAY
CA 90292

MR. RAY 8AREISS
THE INST. FOR LEARNING SCIENCES
NORTHWESTERN UNIV
1390 MAPLE AVE
EVANSTON IL 60201

MR. JEFF BERLINER
83N SYSTEMS «. TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE MA 02138

MARIE A. BIENKOWSKI
SRI INTERNATIONAL
333 RAVENSWOOO AVE/EK
MENLO PRK CA 94025

337

DL-11

OR MARK S. äOODY
HONEYWELL SYSTEMS E RSCH CENTER
3660 TECHNOLOGY ORIVF

MINNEAPOLIS m 55418

PIERO P. SONISSONE
GE CORPORATE RESEARCH 6 DEVELOPMENT
3LDG K.1-RM 5C-32A
°. 0. BOX 8
SCHENECTADY NY 12301

MR. DAVID BROWN
MITRF
EAGLE CENTER 3, SUITE 3
0«FALLON IL 62269

MR. MARK 8URSTEIN
B8N SYSTEMS S TECHNOLOGIES
10 MOULTON STREET
CAM3RI0GE MA 02133

MR. GREGG COLLINS
INST FOR LEARNING SCIENCES
1390 MAPLE AVE
EVANSTON IL 60201

MR. RANDALL J. CALISTRI-YEH
ORA CORPORATION
301 DATES DRIVE
ITHACA NY 14950-1313

OR STEPHEN E. CROSS
SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIVERSITY
PITTS3URGH PA 15213

MS. JUDITH OALY
ARPA/ASTO
3701 N. FAIRFAX DR., 7TH FLOOR
ARLINGTON VA 22209-1714

THOMAS CHEATHAM
HARVARD UNIVERSITY
DIV OF APPLIED SCIENCE
AIKEN, RM 104
CAMBRIDGE MA 02133

DL-12

MS. LAURA DAVIS
CODE 5510
NAVY CTR FOR APPLIED RES IN AI
NAVAL RESEARCH LABORATORY
WASH OC 2 0375-5 33 7

SS. GLADYS CHOW
COMPUTER SCIENCE DEPT.
UNIV OF CALIFORNIA
LOS ANGELES CA 90024

THOMAS L. DEAN
BROWN UNIVERSITY
OSPT OF COMPUTER SCIENCE
P.O. BOX 1910
PROVIDENCE RI 02912

WESLEY CHU
COMPUTER SCIENCE OEPT
UNIV OF CALIFORNIA
LOS ANGELES CA 90024

MR. ROBERTO DESIMONE
SRI INTERNATIONAL CEK335)
333 RAVENSWOOO AVE
MENLO PRX CA 94025

PAUL R. COHEN
UNIV OF MASSACHUSETTS
COINS DEPT
LEDERLE GRC
AMHERST MA 01003

MS. MARIE OEJARDINS
SRI INTERNATIONAL
333 RAVENSWOOO AVENUE
MENLO PRK CA 94025

JON DOYLE
LABORATORY FOR COMPUTER SCIENCE
MASS INSTITUTE OF TECHNOLOGY
545 TECHNOLOGY SQUARE
CAMBRIDGE MA 02139

DR. 5RTAN DRABBLE
AI APPLICATIONS INSTITUTE
UNIV OF EDINBURGH/80 S. BRIDGE
EDINBURGH EH1 LHN
UNITED KINGDOM

DL-13

MR. SCOTT FQUSE
TSX CORPORATION

4353 PARK T£!?R4Cr DRIVE

yESTURE VILLAGE CA 91361

MR. STU DRAPES
MITRE
EAGLF CENTER 3, SUITE 3
O'FALLON IL 62269

MARK FOX
D£PT Q INDUSTRIAL ENGRG
•JNTV QF TORONTO
4 TAODLE CREAK ROAD
TORONTO, ONTARIO, CANADA

MR. GARY EDWARDS
4353 PARK TERRACE DRIVE
WESTLAKE VILLACA 91361

MS. MARTHA FARINACCI
MITRE
7525 C0LSHIR5 DRIVE
MCLEAN VA 22101

MR. ?USS F1EW
GENERAL ELECTRIC
MOORESTOWN CORPORATE
«LDG ATK 145-2
MOORESTOWN NJ 03057

CENTER

MICHAEL FEHLING
STANFORD UNIVERSITY
ENGINEERING ECO SYSTEMS
STANFORD CA 94305

MR. RICH FRITISON
CENTER OR ADVANCED INFO TECHNOLOGY
UNISYS
P.O. BOX 517
PAOLT PA 19301

MR KRISTIAN J. HAMMOND
UNIV OF CHICAGO
COMPUTER SCIENCE DEPT/RY155
1100 E. 58TH STREET
CHICAGO IL 60637

DL-14

MR. ROBERT FROST
MITRE CORP
WASHINGTON C3 CENTER, MS 644
7525 COLSHIER ROAO
MCLEAN VA 22101-3481

RICK HAYES-RQTH
CIMFLEX-TEKNOWLEDGE
1810 EMBARCADERO RO
PALO ALTO CA 94303

RANDY GARRETT
INST FOR DEFENSE ANALYSES CIOA)
1S01 N. BEAUREGARO STREET
ALEXANDRA VA 22311-1772

MR. JIM HENOLER
UNIV OF MARYLAND
OEPT OF COMPUTER SCIENCE
COLLEGE PARK MO 20742

MS. YQLANOA GIL
USC/ISI
4676 AOMIRALTY MAY
MARINA OEL RAY CA 90292

MR.MAX HcRION
ROCKWELL INTERNATIONAL SCIENCE CTR
444 HIGH STREET
PALO ALTO CA 94301

MR. STEVE SÜYA
OISA/JIEO/SSli
CODE TBÖ
11440 ISAAC NEWTON S3
RESTON VA 22090

MR. MORTON A. HIRSCHSERG, DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN; AMSRL-CI-C3
ABERDEEN PROVING GROUND MO
21305-5066

MR. MARK A. HOFFMAN
TSX CORPORATION
1165 NORTHCHASE PARKWAY
MARIETTA GA 10067

DL-15

MR. ROM LARSHN
NAVAL CMO, CONTROL L OCEAN SUR CTR
RESEARCH, DEVELOP, TEST i BVAL DIV
CODE 444
SAN DIEGO CA 92152-5000

OR. JAMES JUST
MITRE
DEPT. WQ32-M/S Z360
7525 COLSHIER RD
MCLEAN Vft 22101

MR. CRAIG KN03L0CK
USC-ISI
4676 ADMIRALTY WAY
MARINA OEL RAY CA 90292

MR. RICHARD LOME CAP-10)
SRA CORPORATION
2000 15TH STREET NORTH
ARLINGTON VA 22201

MR. TED C. KRAL
83N SYSTEMS G TECHNOLOGIES
4015 HANCOCK STREET, SUIT£E 1Q1
SAN OIEGO CA 92110

MR. JOHN LOWPENCE
SRI INTERNATIONAL
ARTIFICIAL INTELLIGENCE CENTER
333 RAVENSWOOQ AVE
MENLO PARK CA 94025

OR. ALAN MEYR3WITZ
NAVAL RESEARCH LA30RATORY/CODE 5510
4555 OVERLOOK AVE
WASH OC 2037r>

ALICE MULVEHTLL
MITRE CORPORATION
BURLINGTON RO
M/S K-302
6EDF0R0 MA 01730

ROBERT MACGREGOR
USC/ISI
4676 ADMIRALTY WAY
MARINA DEL REY CA 90292

OL-16

WILLIAM S. MARK, MGR AI CENTER
LOCKHEED MISSILES £ SPACE CENTER
1801 PAGE «ILL RD
PALO ALTO CA 94304-1211

RICHARD MARTIN
SQTWARE ENGINEERING INSTITUTE
CARNEGIE MELLON UNIV
PITTSBURGH PA 16213

DREW MCDERMOTT
YALE COMPUTER SCIENCE DEPT
P.O. ßnx 2158, YALE STATION
51 PROPSPECT STREET
HEW HAVEN CT 06520

MS. CECILE PARTS
USC/ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

DOUGLAS SMITH
KESTREL INSTITUTE
3260 HILLVIEW AVE
PALO ALTO CA 94304

DR. AUSTIN TÄTE
AI APPLICATIONS INSTITUTE
UNIV OF EDINBURGH
30 SOUTH 8PIOGE
EDINBURGH "Hl IHN - SCOTLAND

EDWARD THOMPSON
ARPA/SISTO
3701 N. FAIRFAX DR., 7TH PL
ARLINGTON VA 22209-1714

MR. STEPHEN F. SMITH
ROBOTICS INSTITUTE/CMU
SCHENLEY PRK
PITTSBURGH PA 15213

LTCOL RAYMOND STACHA
DEPUTY SCIENTIFIC £ TECHNICAL
ADVISOR

HQ USCINCPSC/STA
CAMP H. M. SMITH HI 96861

DL-17

08. ABRAHAM WAKSMAN
AFOSR/NM

110 0Ü1CAN AVE., SUITS 8115

BULLING AF9 DC 20331-0001

JONATHAN P.5TILLMAN
GENERAL ELECTRIC CRD
1 RIVE» ZD, RM K1-5C31A
P. Q. 30X 9
SCHENECTAOf NY 12345

MR. EDWARD C. T. WALKER
B3N SYSTEMS I TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE MA 02138

MR. BILL SWARTOUT
USC/ISI
4676 ADMIRALTY WAY
MARINA OEL RAY CA 90292

SIO WIEDERHOLO
STANFORD UNIVERSITY
DtPT OF COMPUTER SCIENCE
439 MARGARET JACKS HALL
STANFORD Cft 94305-2140

KATIA SYCARA/THE ROBOTICS INST
SCHOOL OF COMPUTER SCIENCE
CARNEGIE M=LLGN UNIV
OGHERTY HALL RM 3325
PITTSBURGH PA 15213

MR. DAVID E. WILKINS
SRI INTERNATIONAL
ARTIFICIAL INTELLIGENCE CENTER
333 RAVENSWOOO AVE
MENLO PAR< CA 94025

DR. PATRICK WINSTON
MASS INSTITUTE OF TECHNOLOGY
PM NE43-817
545 TECHNOLOGY SQUARE
CAMBRIDGE MA 02139

HUA YANG
COMPUTER SCIENCE DEPT
UNIV OF CALIORNIA
LOS ANGELES CA 90024

DL-18

LTCOL DAVE NEVLAND 1
ARPA/ISTO
3701 N. FAIRFAX DRIVE, 7TH FLOOR
ARLINGTON VA 22209-1714

MR- RICK SCHANTZ 1
33N STSTEMS £ TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE *A 02138

LTC FRED M. RAWCLIFFE 1
USTRANSCOH/TCJ5-SC
8L06 1900
SCDTT AF3 IL 62225-7001

JOHN P. SCHILL 1
NAVAL COHHAND, CONTROL & OC£AN
SURVEILLANCE CENTER/CODE 423
EVALUATION DIVISION
SAN DIEGO CA 92152-5000

MR. DONALD F. ROBERTS 1
RL/C3C*
525 BROOKS ROAD
GRIFFISS A^B NY 13441-4505

ALLEN SEARS 1
MITRE
7525 CDLFSHIRt DRIVE, STOP Z2B9
MCLEAN VA 22101

STEVE ROTH 1
CENTER FOR INTEGRATED MANUFACTURING
THE ROBOTICS INSTITUTE
CARNEGIE MELLON UNIV
PITTSBURGH PA 15213-3390

JEFF R0THEN3ERG
SENIOR COMPUTER SCIENTIST
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA CA 90407-2138

YOAV SHQHAM
STANFORD UNIVERSITY
COMPUTER SCIENCE DEPT
STANFORD CA 94305

DL-19

MR. DAVID 3. SKALAK
UNIV Qf MASSACHUSETTS
OEPT 0* COMPUTER SCIENCE
RM 243, LGRC
AMHERST MA 01003

MR. MIKE ROUSE
AFSC
7800 HAMPTON RD
NORFOLK VA 23511-6097

MR. DAVID F. SMITH
ROCKWELL INTERNATIONAL
444 HIGH STREET
PALO ALTO CA 94301

JEFF ROTHENSERG
SENIOR COMPUTER SCIENTIST
THE RAND CORPORATION
1700 MIN STREET
SANTA MONICA CA 90407-2133

OR LARSV 3IRN3AUM
NORTHWESTERN UNIVERSITY
ILS
1390 MAPLE AVE
EVANSTON IL 60201

MR RANDALL J. CALISTRI-YEH
ORA
301 OATES DR
ITHACA NY 14S5P-1313

MR WESLEY CHU
COMPUTER SCIENCE OEPT
UNIVERSITY QF CALIFORNIA
LOS ANGELES CA 9002

MR PAUL R COHEN
UNIVERSITY OF MASSACHUSETTS
COINS DEPT, LEDEPLE GRC
AMHERST MA 01003

MR DON EDDINGTON
NAVAL COMMAND, CONTROL t OCEAN
SURV CENTER
RDT&E DIVISION, COOE 404
SAN DIEGO CA 92152-5000

DL-20

MR. LEE ERMAN
CIMFLEX TECKNOWLEDGE
1810 EM3ARCARQERQ RO
PALO ALTO CA 94303

MR DICK ESTRADA
3SN SYSTEMS 6 TECHNOLOGIES
10 MOULTON ST
CAMBRIDGE MA 02138

MR HARRY FORSDICK
88N SYSTEMS AND TECHNOLOGIES
10 MOULTON ST
CAMBRIDGE MA 02138

MR MATTHEU L. GINSBERG
CIRL, 126»
UNIVERSITY OF OREGON
EUGENE OR 97403

MR IRA GOLDSTEIN
OPEN SW FOUNDATION RESEARCH INST
ONE CAMBRIDGE CENTER
CAMBRIDGE MA 02142

MR MOISES G0LDS2MIDT
INFORMATION AND DECISION SCIENCES
ROCKWELL INTL SCIENCE CENTER
444 HIGH ST, SUITE 400
PALO ALTO CA 94301

MR JEFF GROSSMAN, CO
NCCOSC ROTE DIV 44
5370 SILVERGATE AVE, ROOM 1405
SAN DIEGO CA 92152-5146

JAN GÜNTHER
ASCENT TECHNOLOGY, INC.
64 SIDNEY ST, SUITE 380
CAMBRIDGE MA 02139

OR LYNETTE HIRSCHMAN
MITRE CORPORATION
202 BURLINGTON RO
BEDFORD MA 01730

DL-21

MS ADELE E. HOWE
COMPUTER SCIENCE OFPT
COLORADO STATE UNIVERSITY

FQST COLLINS CO 80523

DR LESLIE PACK KAELBLING
COMPUTER SCIENCE OSPT
3R0WN UNIVERSITY
PROVIDENCE RI 02912

SUBSARÄO KAMBHAMPATI
OEPT OF COMPUTER SCIENCE
ARIZONA STATE UNIVERSITY
TENPE AI 85237-5406

MR THOMAS E. KAZMIERCZAK
SRA CORPORATION
331 SALEM PLACE, SUITE 200
FATRVI^W HEIGHTS IL 62208

PRADEEP K. KHOSLA
ARPA/SSTO
3701 M. FAIRFAX DR
ARLINGTON VA 22203

MR CRAIG KNOBLOCK
USC-ISI
4676 AOMIRALTY WAY
MARINA OFL RAY CA 90292

DR CARLA LUDLOW
POME LAB0RAT0RY/C3CA
525 BROOKS ÄO
GRIFFISS AF3 NY 13441-4505

DR MARK T. MAYBURY
ASSOCIATE DIRECTOR GF AI CENTER
ADVANCED INFO SYSTEMS TECH G041
MITRE CORP, BURLINGTON RD, MS K-329
BEDFORD MA 01730

MR DONALD P. HCKAY
PARAMAX/UNISYS
P 0 30X 517
PAOLT PA 19301

DL-22

OR KAREN MYERS
AI CENTER
SRI INTERNTIONAL
333 RAVENSWOOQ
MENLO »ASK CA 94025

OR MARTHA E POLLACK
OEPT OF COMPUTER SCIENCE
UNIVERSITY OF PITTSBURGH
PITTSBURGH PA 15260

RAJ REOÖY
SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213

EDWINA RISSLAND
OEPT OP COMPUTER I INFO SCIENCE
UNIVERSITY OF MASSACHUSETTS
AMHERST MA 01003

MR NORMAN SAOEH
CIMOS
THE ROBOTICS INSTITUTE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213

MR ERIC TIFFANY
ASCENT TECHNOLOGY INC.
237 LONGVIE« TERRACE
WILLIAMSTQWN MA 01267

MANUELA VcLOSO
CARNEGIE MELLON UNIVERSITY
SCHOOL 0= COMPUTER SCIENCE
PITTSBURGH PA 15213-3891

MR OAN WELD
OEPT 0? COMPUTER SCIENCE t ENG
MAIL STOP PR-35
UNIVERSITY OF WASHINGTON
SEATTLE W4 98195

MR CRAIG HIER
ARPA/SISTO
3701 N. FAIRFAX OR
ARLINGTON VA 22203

OL-2 3

MR JOE R03ERTS
TSX CORPORATION

2231 CRYSTAL OHVE, SUITE 500
ARLINGTON VA 22202

COL JOHN A. WARDEN III
ASC/CC
225 CHENNAULT CIRCLE
MAXWELL AFB AL 36112-6426

OR TOM GARVEY
ARPA/SISTO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

MR JOHN N. ENTZMTNGER, JR.
ARPA/DTRO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

LT COL ANTHONY WAISANEN, PHD
COMMANO ANALYSIS GROUP
HQ AIR MOBILITY COMMAND
402 SCOTT DRIVE, UNIT 3L3
SCOTT AF3 IL 62225-5307

DIRECTOR
ARPA/SISTO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

MS LESLIE WILLIAMS
DIGITAL SfSEMS RSCH INC
4301 NORTH FAIRFAX DRIVE
SUITE 725
ARLINGTON VA 22203

DL-24

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

