RL-TR-94-206
Final Technical Report
November 1994

KNOWLEDGE-BASED LOGISTICS
PLANNING: ITS APPLICATION IN
MANUFACTURING AND LOGISTICS
PLANNING

Carnegie Mellon University

war 02 1995 @ B

G

T e i
e i e AP e AT A

Sponsored by
Advanced Research Projects Agency
ARPA Order No. 7726

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19930227 126

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Advanced Research Projects Agency or the U.S. Government.

Rome Laboratory
Air Force Materiel Command
Griffiss Air Force Base, New York

Diic QUALYTv INSPECTED 4

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-94-206 has been reviewed and is approved for publication.

APPROVED: %M{) fororle o

NORTHRUP FOWLER III, Ph.D.
Project Engineer

FOR THE COMMANDER: %/%WM

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,

please notify RL (C3C) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

- Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

O O

By

Distribution|

Availability Codes

. Avail and|or
Dist Special

rZdl

KNOWLEDGE-BASED LOGISTICS PLANNING: ITS
APPLICATION IN MANUFACTURING AND LOGISTICS PLANNING

Nicola Muscettola
Steve Roth
Norman Sadeh
Katia Sycara

Contractor: Carnegie Mellon University

Contract Number: F30602-91-C-0016

Effective Date of Contract: 31 January 1991

Contract Expiration Date: 30 June 1994

Short Title of Work: Knowledge-Based Logistics Planning
Period of Work Covered: Jan 91 - Jun 94

Principal Investigator: Norman Sadeh
Phone: (402) 268-8827

RL Project Engineer: Northrup Fowler IIL
Phone: (315) 330-3011

Approved for public release; distribution unlimited.

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by Northrup Fowler III, RL (C3C),
525 Brooks Rd, Griffiss AFB NY 13441-4505.

REPORT DOCUMENTATION PAGE

Form Approved
CMB No. 0704-0188

Pubic reporting burden for this collection of informstion is estimated to average 1 hour per response,
gahahgmdnﬁt&i‘mghdﬁamededwdmﬂﬁhgwdrwbwhgﬂ‘ewbcﬁm

Including the time for reviewing instructions, searching existing data sources,
of information. Send comments regarding this burden estimate or any other aspect of this
colection of Information, including suggestions for reducing this burden, to Washington Headquarters Services, Drectorste for information Operations andReports, 1215 Jefferson
Davis Highway, Sute 1204, Ardington, VA 222024302, snd to the Office of Managerment and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20503.

2. REPORT DATE
December 1994

1. AGENCY USE ONLY (Leave Blank)

3. REPORT TYPE AND DATES COVERED

Final Jan 91 - Jun 94

4. TITLE AND SUBTITLE
KNOWLEDGE-BASED LOGISTICS PLANNING:

MANUFACTURING AND LOGISTICS PLANNING

ITS APPLICATION IN

5. FUNDING NUMBERS

C - F30602-91-C-0016
PE - 62301E

PR - G726

6. AUTHOR(S)

Nicola Muscettola, Steve Roth, Norman Sadeh, and
Katia Sycara

TA - 00
WU - 12

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh PA 15213-3891

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS (ES)
Advanced Research Projects Agency
3701 North Fairfax Drive Rome Laboratory (C3C)
Arlington VA 22203-1714 525 Brooks Rd
Griffiss AFB NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-94-206

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer:

Northrup Fowler III/C3C/(315) 330-3011

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Madmum 200 words)

and manufacturing.

toward promising solutions.

This document summarizes research in CORTES, a project in constraint-based planning,
scheduling, and control for complex large-scale domains such as military transportation
The CORTES approach keeps the planning/scheduling combinatories
in check, using quantitative problem space metrics called texture measures to:

(1) identify critical decisions that require early attention; and (2) steer search
This basic approach has been applied and validated in
several key contexts, including (1) micro-opportunistic search, which focuses on

efficient generation and dynamic maintenance of complex large-scale Just-In-Time
schedules; (2) simulated annealing search, where texture measures have been developed
to focus search and learn to recognize (un)promising runs; (3) iterative constraint
posting, which combines flexible schedule representation and dynamic identification of
conflicts requiring further arbitration; (4) integration of predictive planning/

scheduling and execution control, where texture measures and flexible schedule
representations are combined t> coordinate multiple planning/scheduling and control
agents; and (5) interactive schedule repair, where adaptive similarity metrics direct
re-use of previous repair histories and help select repair focus and actions.
Visualization issues have been addressed by developing comprehensive (see reverse)

14. SUBJECT TERMS

Constraint satisfaction problems, Transportction

Artificial intelligence, Planning, Scheduling, Resource allocation,

15 NSE%ER OF PAGES

16, PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. LMITATION OF ABSTRACT
UL

o
NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescrbed by ANSI Std 739-18
298-102

13. (Cont'd)

languages for characterizing: (1) domain concepts to be displayed; (2) user analysis
tasks; and (3) graphical presentation techniques that can be assembled to create
displays.

Table of Contents
1 Overview of the Project
2 Constraint-Directed Scheduling
2.1 Micro-Opportunistic Scheduling
2.1.1 Background and Overview of Accomplishments
2.1.2 Improving the Basic Micro-Opportunistic Search Procedure
2.1.3 New Bottleneck Optimization Procedures
2.1.4 Intelligent Backtracking Heuristics
2.1.5 Reactive Scheduling
2.1.6 Supporting Mixed Initiative Functionalities
2.2 Adaptive Simulated Annealing Search
2.3 Summary of Accomplishments and Plans for the Future
3 Distributed Scheduling
3.1 Introcduction
3.2 Summary of Experimental Results
4 Interactive Schedule Repair
4.1 Introduction
4.2 Case Indexing
4.3 Case Acquisition
4.4 Case Re-Use
4.5 Evaluation of the Approach
4.6 Summary of Experimental Results
4.6.1 Discussion
5 Integration of Predictive Planning/Scheduling and Reactive Control
5.0.1 Simulator
5.0.2 Scheduler and Dispatcher
5.0.3 Dispatcher Operation
5.0.4 Coordination protocol scheduler-dispatcher-simulator
5.0.5 Operation of Overall System
References
Appendices
A. Micro-Opportunistic Scheduling ‘
B. Backtracking Techniques for Hard Job Shop Scheduling Problems
C. Focused Simulated Annealing Search: An Application to Job Shop

Scheduling

D. Increasing the Efficiency of Simulated Annealing Search by Learning
to Recognize (Un)Promising Runs

E. Case-based Acquisition of User Preferences for Solution
Improvement in Ill-Structured Domains

F. Improving Schedule Quality through Case-Based Reasoning

G. Distributed Problem Solving through Coordination in a Society of
Agents

H. On the Utility of Bottleneck Reasoning for Scheduling

I. Interactive Graphic Design Using Automatic Presentation Knowledge

J. A Framework for Knowledge-Based, Interactive Data Exploration

CONIAAA NN EWWN

1 Overview of the Project
Objectives of the Project The CORTES project (contract #F30602-91-C-0016) aims at
developing constraint-based technologies for coordinated and distributed planning, scheduling
and control in complex large-scale domains, such as military transportation and manufacturing.
Sources of difficulty for planning/scheduling in these domains are many:
e Combinatorics: The planning/scheduling problems of interest are characterized by
extremely large search spaces in which the number of satisficing solutions
represents only a tiny fraction of the total number of explorable alternatives. Even

under highly idealistic conditions, scheduling problems such as job shop scheduling
are known to be NP-hard [Garey 79].

e Jll-Defined Problems: often problems are ill-defined in terms of the specific tasks
that need to be performed (e.g. specific orders to be scheduled in manufacturing or
specific move requirements in military transportation scheduling), the objectives and
preferences to be optimized (which often are not even compatible), etc.

e Uncertainty: problem constraints tend to change over time (e.g. resources become
unavailable, new tasks need to be performed, execution of some activities take
longer or less time than anticipated, etc.)

e Decentralization: The complexity of large-scale planning and scheduling problems,
and the distributed nature of the executing environment generally requires
decomposition and decentralization of decision-making responsibility. Because
component subproblems are rarely independent and subproblem solution proceeds
asynchronously, interactions and conflicts in the overall solution must be effectively
and efficiently managed.

Accordingly, research in the CORTES project aims at: (1) efficiently generating and
maintaining high quality solutions to large scale planning/scheduling problems that adequately
capture the causal dependencies of these domains; (2) flexibly integrating predictive
planning/scheduling and reactive execution control; (3) interactively acquiring new user
constraints and preferences and plan/schedule repair experience, and (4) visualizing and
interactively manipulating large amounts of diverse information.

The CORTES Approach: In our approach, the combinatorics of the problem is kept in check
through use of quantitative problem space metrics called fextures. Texture measures are regularly
computed to capture various types of constraint and preference interactions (e.g. resource
contention). They are used to focus search on critical decisions and efficiently steer it towards
promising areas of the search space (e.g. variable/value ordering heuristics, backtracking
heuristics, repair focusing heuristics, etc.).

This basic approach has been applied and validated in several problem solving contexts:

1. micro-opportunistic search which focuses on the efficient generation and dynamic
maintenance of Just-In-Time schedules for large-scale generalized job shop
scheduling problems subject to sequence-dependent setups, resource alternatives
("parallel resources") and temporal windows;

2. simulated annealing search where texture measures are used to (1) dynamically
focus search on critical subproblems by artificially inflating the costs associated
with major sources of inefficiency in the exisiting solution and (2) learn to

recognize (un)promising simulating runs and decide when to abandon a run and
where to restart search;

3. iterative constraint posting which combines flexible schedule representation and
dynamic identification of conflict areas where additional arbitration is needed;

4. integration of predictive planning/scheduling and reactive execution control where
texture measures and flexible temporal representations are combined to coordinate
multiple planning/scheduling and control agents;

5. interactive schedule repair where adaptive similarity metrics direct re-use of
previous repair histories and help select current repair focus and actions.

The complex task of visualizing information needed for problem solving activities has been
addressed by developing comprehensive languages for characterizing domain concepts that must
be displayed, information analysis tasks which users must perform, and libraries of graphical
presentation techniques which can be assembled to create displays. These form the
representational foundation for encoding graphics presentation knowledge for creating an
automatic design system.

2 Constraint-Directed Scheduling

Our work in constraint-directed scheduling has revolved around two search paradigms:

® micro-opportunistic search: this search paradigm emphasizes rapid development
and revision of high quality schedules, using resource contention metrics to help
focus solution (re)optimization on critical subproblems [Xiong 92] [Sadeh
94a] [Sadeh 94b] [Sadeh 92a] [Sadeh 9la] [Li&Sadeh 93] [Sadeh 93a] [Sadeh
94c] [Sadeh 91b] [Sadeh 91c] [Sadeh 92b] [Sadeh 93b].

e adaptive simulated annealing search: this search approach, which remains slower
than the first one, emphasizes the development of near-optimal solutions, using
texture-based heuristics to increase the efficiency of simulated annealing search.
These heuristics include "focus-of-attention" heuristics to identify solution
inefficiencies on which to dynamically focus the problem solving effort
[Sadeh&Nakakuki 94] as well as search cutoff and restart criteria based on new
metrics to identify (un)promising simulated annealing runs [Nakakuki&Sadeh 94].

Major accomplishments in each of these areas are summarized below. Further details on our
work over the past 3 years can be found in [Xiong 92] [Sadeh 92c][Sadeh 92a] [Sadeh
91a] [Sadeh 93a] [Sadeh 94c] [Sadeh 94a] [Sadeh 91b] [Sadeh 9lc] [Li&Sadeh 93] [Sadeh
92b] [Chen 93] [Swaminathan 93] [Swaminathan 94] [Sadeh = 93b] [Sadeh&Nakakuki
94] [Nakakuki&Sadeh 94].

2.1 Micro-Opportunistic Scheduling

2.1.1 Background and Overview of Accomplishments

In contrast to earlier bottleneck-centered scheduling approaches (e.g. [Goldratt 80, Ow
88, Adams 88]) which rely on the optimization of large resource sub-problems, micro-
opportunistic scheduling aims at increasing search efficiency and solution quality through use of
a more flexible/finer grain search procedures. In this approach, resource contention is
continuously monitored during the construction/repair of the schedule, and the problem solving
effort can be redirected at any time towards the most critical sub-problem. In our earlier research
[Sadeh 91c], we showed that because of their extra flexibility ("opportunism"), micro-
opportunistic search procedures are better equipped than traditional (less flexible) bottleneck-
centered scheduling approaches to deal with:

e localized bottlenecks, namely resources that are bottlenecks only over one or several

portions of the scheduling horizon (e.g. due to changes over time in the mix of
orders to be scheduled);

e multiple bottlenecks, which traditional bottleneck scheduling techniques have
problems dealing with, as they tend to focus on the optimization of one bottleneck
resource at the expense of others;

e bottleneck dynamics, namely the fact that the very scheduling decisions that are
made by the system can increase or decrease the severity of bottlenecks and that, as
a result, it is crucial to closely monitor resource contention throughout the
construction of the schedule.

In early 1991, when the current project started (ARPA contract #F30602-91-C-0016), micro-
opportunistic scheduling techniques had been developed to solve two classes of job shop
scheduling problems: (1) job shop scheduling constraint satisfaction problems where a feasible
job shop schedule has to be built given a set of jobs each with one or several non-relaxable time
windows (earliest/latest possible start time window) within which it has to be scheduled and (2)
Just-In-Time job shop scheduling problems where the objective is to build a schedule that
minimizes the sum of tardiness and inventory costs of all jobs. At the time, these initial micro-
opportunistic scheduling techniques, which had already been shown to significantly outperform a
variety of competing techniques proposed both in the Artificial Intelligence and Operations
Research literature, (1) could only solve relatively small problems, (2) could not solve problems
with setups or parallel machines, and (3) did not support any reactive or interactive
functionalities.

During the course of this three-year project, we have dramatically scaled-up our micro-
opportunistic scheduling heuristics, moving from prototypical procedures to a set of powerful
scheduling techniques capable of efficiently generating high quality solutions to large and
complex problems, as well as providing flexible interactive and reactive solution revision
capabilities. We have shown that micro-opportunistic scheduling techniques are not only
capable of producing high quality Just-In-Time solutions (approx. 25% improvement in schedule

quality against a combination of 39 combinations of dispatch rules and release policies [Sadeh
94c]) but can also be successfully adapted to solve a wide range of realistic problems. Over the
past three years, we have speeded up our micro-opportunistic scheduling techniques by two
orders of magnitude, improved the quality of the solutions they produce by an average of about

20%, and extended our heuristics to solve problems with sequence dependent setups and parallel
machines [Sadeh 94c, Sadeh 93b]. At the same time, variations of the Micro-Boss scheduling
heuristics were also adapted in the context of the Knowledge Based Logistics Planning Shell
(KBLPS) developed by Carnegie Group, Inc. (CGI) and LB&M Associates to solve U.S. army
transportation scheduling problems and ammunition distribution planning problems [Saks 92].
Other efforts using variations of our micro-opportunistic techniques are described in [Torma
91, Berry 91, Linden 91, Paolucci 92] and [Winklhofer 92].

At the present time, the Micro-Boss scheduling system which is written in C++ and has an
X/Motif interface, is undergoing customization for the scheduling of a Printed Wire Assembly
shop at Raytheon’s Andover facility. This involves scheduling over 20,000 operations per month
on a total of about 150 resources subject to a variety of complex constraints, including
overlapping constraints between successive manufacturing steps.

The following further outlines technical accomplishments in micro-opportunistic scheduling
over the past 3 years. Additional details can be found in the papers provided in appendix.

2.1.2 Improving the Basic Micro-Opportunistic Search Procedure

Over the past three years, the average speed of our micro-opportunistic scheduling techniques
has been increased by two orders of magnitude and average schedule quality has improved by
about 20%. These performance improvements were obtained through modifications of several
keys aspects of the basic micro-opportunistic search procedure:

¢ Hierarchical Demand Profile Construction: A key strength of our micro-
opportunistic search procedure comes from the detailed demand profiles it
continuously updates to identify areas of high contention and determine which
operation(s) to schedule next. We have been able to significantly reduce the time
required to compute these demand profiles by (1) incrementally updating
rough/coarse demand profiles for each resource in the problem and (2) using these
rough demand profiles to dynamically identify critical resource/time intervals over
which to perform a more detailed contention analysis.

¢ Variable Search Granularity: rather than performing a detailed contention analysis
at each step (i.e. each time an operation is scheduled), we have identified a set of
conditions under which it is safe to schedule more than one operation at a time. One
such condition occurs when one or several unscheduled operations have only one
reservation left, in which case all these operations can be scheduled at once without
performing any additional contention analysis. The result is a search procedure
whose granularity (which is determined by the number of operations that are
scheduled before a new contention analysis is performed) varies over time.

¢ Additional Improvements: Additional improvements include (1) the development

of new heuristics to dynamically update the best remaining reservations of
unscheduled operations and evaluate incremental tardiness and inventory costs
incurred by an operation if it is not allocated one of its best remaining reservations,
and (2) the development of new heuristics to compute demand contention based on
these results.

The resulting system can schedule problems with over 1,000 operations in a matter of minutes.
In comparison against 39 combinations of well-regarded priority dispatch rules and release
policies (taking the best schedule produced by these 39 techniques on each problem and
comparing it with the schedule obtained by Micro-Boss), Micro-Boss was shown to reduce
schedule cost by close to 25%. This includes significant reductions in work-in-process and
finished goods inventory as well as important improvements in due date satisfaction. In
comparison against the Weighted Covert dispatch rule taken in isolation, Micro-Boss improves
due date performance by an even more impressive 28% while reducing average inventory costs
by 40%. Comparisons against a variety of coarser bottleneck-centered scheduling procedures
have produced similarly impressive results.

2.1.3 New Bottleneck Optimization Procedures

The Micro-Boss scheduling procedures have also been adapted to solve problems with parallel
machines (i.e. multiple machines with either similar or dissimilar capabilities) and setups. A key
element in adapting our procedures has been the development of new bottleneck optimization
heuristics for the one-machine early/tardy problem with setups. Briefly, our heuristic
opportunistically selects between two simpler techniques: (1) a clustering scheme that identifies
clusters of early/tardy jobs and resequences them using variations of the Weighted Longest
(Shortest) Processing Time dispatch rule and (2) a two-parameter technique that generalizes a
dispatch rule developed by Ow and Morton for the single-machine early/tardy problem without
setups [Ow 89]. Based on measures of the tightness of the bottleneck optimization problem at
hand, our technique dynamically selects between these two heuristics and further optimizes the
resulting solution using a neighborhood search procedure in combination with an optimal idle
time insertion procedure first proposed by Garey and Tarjan [Garey 88] (additional details are
provided in the Micro-Boss paper in appendix). Extensive evaluation of this bottleneck
optimization technique on a total of 1,920 scheduling problems characteristic of a wide range of
scheduling conditions shows that (1) it can solve large problems in a matter of seconds and (2) it
produces solutions that are consistently within 5 to 10% of the optimum.

2.1.4 Intelligent Backtracking Heuristics

This work has focused on a version of the job shop scheduling problem in which some
operations have to be scheduled within non-relaxable time windows (i.e. earliest/latest possible
start time windows). This problem is a well-known NP-complete Constraint Satisfaction
Problem (CSP). A popular method for solving this type of problems involves using depth-first
backtrack search. In our earlier work [Sadeh 91c, Sadeh 91b], we focused on the development of
consistency enforcing techniques and variable/value ordering heuristics that improve the

efficiency of this search procedure. Under the current project, we combined these techniques
with new look-back schemes that help the search procedure recover from so-called deadend
search states (1.e. partial solutions that cannot be completed without violating some constraints).

More specifically, we developed three new "intelligent” backtracking schemes: (1) Dynamic

Consistency Enforcement, which dynamically identifies critical subproblems and determines
how far to backtrack by selectively enforcing higher levels of consistency among variables
participating in these critical subproblems, (2) Learning Ordering From Failure, which
dynamically modifies the order in which variables are instantiated based on earlier conflicts, and
(3) Incomplete Backjumping Heuristic, which abandons areas of the search space that appear to
require excessive computational efforts. These schemes have been shown to (1) further reduce
the average complexity of the backtrack search procedure, (2) enable our system to efficiently
solve problems that could not be solved otherwise due to excessive computation cost, and (3) be
more effective at solving job shop scheduling problems than other look-back schemes advocated
in the literature.

The benchmark problems used in this research have been made available to the research
community at large through an anonymous ftp account set up at CMU and have been widely
disseminated, providing for the first time a common set of problems in this area. A high point in
this work was reached in March 1992 at the AAAI Spring Symposium held in Stanford, when
our group and a group from NASA were the first ones to announce they could efficiently solve all
60 of the benchmark problems (paper to appear in the Artificial Intelligence Journal [Sadeh
94b] and provided in appendix). The speed of our procedure has been further improved since
then, making it possible to solve most problems in 1 to 2 CPU seconds on a DECstation
5000/200. While similar results have been achieved since then by a couple of other groups, our
results remain quite competitive on this class of problems and could probably be further
improved. However, rather than dwelling on this class of problems, we have concentrated our
efforts on more complex Just-In-Time scheduling problems where the objective is not just to
build feasible schedules but instead requires minimizing tardiness and inventory costs (both in-
process costs and earliness costs), a formulation that better captures situations found in many
manufacturing and transportation domains. The backtracking heuristics we developed work just
as well on these more complex Just-In-Time scheduling problems.

2.1.5 Reactive Scheduling

Earlier approaches to reactive schedule repair have emphasized the use of iterative repair
heuristics [Smith 90a, Minton 90, Zweben 91]). In the process of resolving schedule conflicts,
these repair heuristics are allowed to introduce new conflicts, which in turn need to be repaired.
This iterative behavior may sometimes lead to myopic decisions and can potentially become
expensive. In contrast to these approaches, schedule repair in Micro-Boss attempts to take a
more global view of the problem and capitalizes on the strengths of micro-opportunistic search.
Concretely, we have developed an approach in which schedule repair is performed in two steps:
(1) a set of operations that need to be rescheduled is identified using a so-called conflict
propagation procedure and all the operations in this set are unscheduled, (2) the scheduling

problem consisting of all these unscheduled operations and the constraints imposed on these
operations by operations that have already been executed or have not been unscheduled is passed
to the micro-opportunistic scheduling procedure.

In comparison with a micro-opportunistic technique that rebuilds brand new schedules from
scratch, our reactive approach has been shown to produce schedules that are almost as good
while only rescheduling a much smaller number of operations. Our reactive approach has also
been shown to outperform several iterative repair techniques.

2.1.6 Supporting Mixed Initiative Functionalities

Because of their flexibility, micro-opportunistic scheduling heuristics also seem particularly
well suited to support mixed initiative capabilities. An initial set of such capabilities has been
developed in the context of the Micro-Boss system, making it possible to interleave both manual
and automatic (micro- opportumstlc) scheduling decisions and enabling the user to incrementally
manipulate, save, analyze and compare alternative (complete or partial) schedules (e.g., "What-
if" type of analysis).

2.2 Adaptive Simulated Annealing Search

Our work on Adaptive Simulated Annealing Search is complementary to our research on
micro-opportunistic search procedures and aims at the development of near-optimal (though
possibly slower) scheduling procedures.

Simulated Annealing (SA) procedures can potentially yield near-optimal solutions to many
difficult combinatorial optimization problems (not just scheduling problems), though often at the
expense of intensive computational efforts. The single most significant source of inefficiency in
SA search is the inherent stochasticity of the procedure, typically requiring a large number of
runs before a near-optimal solution is found. Our work in this area aims at developing
mechanisms that (1) speed up the basic SA procedure while improving average solution quality
and (2) reduce the number of runs required to obtain near-optimal solutions. Specifically, we
have developed two sets of techniques: (1) focus of attention mechanisms that dynamically
identify major inefficiencies in the solution on which to focus the optimization effort
[Sadeh&Nakakuki 94] and (2) speedup learning mechanisms that learn to recognize
(un)promising runs and can be used to determine when to abandon a run and where to restart
search [Nakakuki&Sadeh 94].

This work, which is more recent, is described in two papers provided in appendix.

2.3 Summary of Accomplishments and Plans for the Future

During the course of this three-year project we have shown that micro-opportunistic
scheduling techniques are not only capable of producing high quality Just-In-Time solutions
(approx. 25% improvement in schedule quality against a combination of 39 combinations of

dispatch rules and release policies [Sadeh 94c]) but can also be successfully adapted to solve a
wide range of realistic problems. Over the past three years, we have speeded up our micro-
opportunistic scheduling techniques by two orders of magnitude, improved the quality of the

solutions they produce by an average of about 20%, extended our heuristics to solve problems

with sequence dependent setups and paralle] machines, and have shown that these techniques can
support powerful reactive and mixed initiative capabilities [Sadeh 94c, Sadeh 93b].

Our micro-opportunistic techniques have been adapted in the context of the Knowledge Based
Logistics Planning Shell (KBLPS) developed by Carnegie Group, Inc. (CGI) and LB&M
Associates to solve U.S. army transportation scheduling problems and ammunition distribution
planning problems [Saks 92], demonstrating the dual-use applicability of this technology. We
have now embarked on a technology demonstration effort with Raytheon, which involves
customizing Micro-Boss for the scheduling of the Printed Wire Assembly area at Raytheon’s
Andover manufacturing facility and will continue to work with ARPA to further transition this
technology into practical environments (manufacturing, transportation or others).

In the longer term, we see several important areas for future development of this technology:

e Iterative improvement techniques: with the advent of ever more powerful
computers, we believe that it is now possible to complement micro-opportunistic
scheduling techniques with anytime iterative improvement techniques that could be
applied to post-process schedules. Our work in Simulated Annealing suggests that
the efficiency of such techniques can greatly be enhanced using simple speedup
learning mechanisms.

¢ Integration with higher-level planning decisions: Traditionally, manufacturing
scheduling has focused on sequencing and release decisions, ignoring higher level
(MRP-level) decisions that critically constrain the lower-level scheduling problem.
Examples of such decisions include batching decisions, overtime decisions, safety
stock/safety leadtime decisions, subcontracting decisions, order promising,
procurement and other supply chain management decisions. We believe that
significant improvements in scheduling practice could be achieved by integrating
some of these decisions with sequencing and release decisions. Similar integrations
are also required in other scheduling domains such as transportation scheduling.

e Integration with Process Planning: Another area in Computer Integrated
Manufacturing that has received very little attention involves integrating process
planning decisions with production scheduling and control decisions. Such
integration is particularly critical to support Agile Manufacturing scenarios in which
customer orders require the generation of new process plans that need to be
dynamically integrated into the production schedule.

e Analysis Tools for Mixed Initiative Decision Support: Micro-Boss has
demonstrated the usefulness of texture measures to dynamically identify critical
decisions and guide the scheduling process. Similar texture measures could be
developed to support mixed initiative scenarios, helping the user identify sources of
inefficiency in a current solution, evaluate and possibly even propose alternative
options for solution improvement (e.g. where to add extra capacity, how much

capacity to add, which deadlines to relax, what is the right mix of transportation
modes, etc.).

3 Distributed Scheduling

3.1 Introcduction

We have developed a computational framework for collective problem solving by a society of
reactive agents [Liu.Sycara 93a] [Liu.Sycara 93b] [Liu.Sycara 94a] [Liu.Sycara 94b]. Problem
solving is viewed as an emergent functionality from the evolving process of the society of
diverse, interacting, and well-coordinated reactive agents. Agents are situated in their
environment and act by stimulus and response. Coordinated interactions are based on simple
flows of information. The collective actions of the reactive agents potentially provide an
effective tool for complex problem solving. Specifically, the development of the collective
problem solving framework involves the following issues:

e Problem decomposition: The transformation from a problem to a society of simple
agents is defined by a decomposition scheme. Each agent is assigned to a task
corresponding to a small part of the problem. Situation-action rules specify how
agents would act to achieve their tasks. The problem is solved when all agents
achieve their tasks simultaneously.

e Interaction analysis: When a problem is mapped into a society of agents, intense
interactions among agents ensue. In order for the society to move toward coherence,
influences of agents’ actions on each other need to be identified. These interactions
are viewed as rich information sources that can be exploited to guide agents’
behaviors toward group coherence.

e Coordination mechanism: Group behavior of agents is characterized by the
coordination mechanism in the society. For our problem-solving purpose, we require
the group of agents to reach coherence in order to provide a solution. In addition, we
seek for rapid convergence to improve problem-solving efficiency. The design of a
coordination mechanism includes regulation policies and communication among
agents.

e Behavior design: An agent’s behavior corresponds to various actions it performs to
achieve its goal. The collective behavior of agents represents problem-solving
activities that the group performs. In this framework, it is critical to analyze agent
interactions, investigate useful information exchange between agents, and
coordinate the highly distributed activities. All of these lead to designing agents’
behaviors such that (1) they avoid harmful interactions with other agents, (2) they
react appropriately towards rapid group convergence.

The problem domains of the collective problem solving framework that we have investigated
are Constraint Satisfaction Problems (CSPs). Many problems of theoretical and practical interest
(e.g., parametric design, resource allocation, scheduling) can be formulated as CSPs. A CSP is
defined by a set of variables, each having a corresponding domain, and a set of constraints. A

constraint is a subset of the Cartesian product which specifies which values of the variables are
compatible with each other. The variable set of a constraint (or a set of constraints), is the set of
non-duplicating variables restricted by the constraint (or the set of constraints). A solution to a

CSP is an assignment of values (an instantiation) for all variables, such that all constraints are

satisfied. Numerical CSPs (NCSPs) are a subset of CSPs, in which constraints are represented by
numerical relations between quantitative variables usually with fairly large domains of possible
values. Many CSPs of practical importance, such as scheduling, and parametric design, are
NCSPs. Constraint satisfaction algorithms typically suffer from feasibility/efficiency problems
for NCSPs due to their enormous search space.

We have developed a collective problem-solving framework, called Constraint Partition and
Coordinated Reaction (CP&CR), for a subset of NCSPs. In CP&CR, a society of specialized and
well-coordinated reactive agents collectively and asynchronously solve an NCSP. Agents are
situated in their environment, react to others’ actions, and communicate with others by leaving
and perceiving particular messages on the objects they act on. A solution emerges from the
evolutionary interaction process of the society of diverse agents. Specifically, CP&CR provides
a framework to decompose an NCSP into a set of subproblems based on constraint type and
constraint connectivity, identify their interaction characteristics and, accordingly construct
effective coordination mechanisms. CP&CR assumes that an NCSP has at least two types of
constraints.

3.2 Summary of Experimental Results
We evaluated the performace of CP&CR on a benchmark suite of job shop scheduling CSPs.
The experiemntal results show that:

¢ exchange of coordination information increases the efficiency of group convergence

e CP&CR works considerably well as compared to other state-of-the-art scheduling
techniques both on number of problems successfully solved and efficiency in
finding a solution

e the performace of CP&CR is almost independent of its starting point of search, i.e. it
can start with random assignments of values to variables

e CP&CR exhibits near-linear scaling-up characteristics

We are currently extending the methodology to Constraint Optimization Problems. Preliminary
experimental results are very encouraging.

4 Interactive Schedule Repair

4.1 Introduction

Practical scheduling problems generally require allocation of resources in the presence of a
large, diverse and typically conflicting set of constraints and optimization criteria. The ill-
structuredness of both the solution space and the desired objectives make scheduling problems
difficult to formalize. The definition/evaluation itself of what is a ‘‘high quality’’ schedule is
fraught with difficulties because of the need to balance conflicting objectives and tradeoffs
among them. Such tradeoffs typically reflect the presence of context-dependent user preferences
and domain constraints not captured in the scheduling model. Therefore, there is the need for a
human operator to interact with the schedule and impart to it user preferences in terms of what is
a good schedule. These preferences, then should guide schedule optimization. The value of
incorporating such user preferences and constraints in operational scheduling environments is
becoming increasingly recognized (e.g. [McKay 88]) but good techniques are currently lacking.
Moreover, operational environments for scheduling systems (e.g. factories) are dynamic.
Unpredictable events, such as machine breakdown or operator absence, often happen during
schedule execution. Therefore, a schedule that is only predictive (i.e. it is created assuming that
the world is static and predictable) will be brittle. It is clear that any effective scheduling system
should be reactive, i.e. perform schedule revision in response to unforeseen events during
schedule execution.

Our research [Miyashita.Sycara 94a, Miyashita.Sycara 94b], [Miyashita.Sycara 93, Sycara
ed, Sycara 94a, Sycara 94b], [Sycara 94c, Zeng.Sycara ngldeveloped a case-based learning
method for acquiring context-dependent user optimization preferences and tradeoffs and using
them to incrementally improve schedule quality in generating a predictive schedule and also in
reactively managing the schedule in response to unexpected execution events. The approach,
implemented in the CABINS system, uses acquired user preferences to dynamically modify
search control to guide schedule improvement. Unlike other systems that utilize iterative repair
to find a feasible solution (e.g. [Zweben 90, Minton 90]), where executability of the schedule
was not guaranteed at the end of each repair iteration, CABINS produces an executable schedule
after each repair that has guaranteed monotonic increase in quality the more time it is allowed for
repair, thus exhibiting anytime executable behavior [Dean 88]. This is a very desirable quality
especially in reactive contexts since there could only be a certain limited amount of time for the
system to react.

CABINS can operate in different modes that exhibit various levels of autonomy. First,
user-directed mode, where the user selects a repair tactic and evaluates the results of its
application. Second, interactive assistance mode, where CABINS suggests repair tactics and
evaluations of repair tactic application, but the user can override the suggestions and make new
selections. Both the user-directed and interactive assistance modes are used for acquisition of the
case base. Third, autonomous mode where, without user intervention, CABINS uses the case
base that was acquired in the training phase for repair selection and evaluation of repair results.

Our approach uses integration of Case-based Reasoning (CBR) [Kolodner 85] and fine

granularity constraint-directed scheduling mechanisms. Integrating CBR with constraint-based
scheduling stems from a variety of motivations. Although scheduling is an ill-structured domain,
we assume that it exhibits domain regularities that could be captured, albeit only approximately,

in a case. In CABINS, a case represents application of a revision action to one activity in the

schedule, thus expressing dependencies among features of the schedule, the repair context and a
suitable repair action. CBR allows capture and re-use of this dependency knowledge to
dynamically adapt the search procedure and differentially bias scheduling decisions in future
similar situations.

Since it is impossible to judge a priori the effects of a scheduling decision on the optimization
objectives, a scheduling decision must be applied to a schedule and its outcome must be
evaluated in terms of the resulting effects on scheduling objectives. Therefore, having a single
scheduling decision as a case seemed to provide advantages in terms of focus and traceability of
the problem solving process. Focus and traceability mean that we could capture a user’s
evaluation of the results of a single scheduling decision in a case, and, if the result was
unacceptable, we could apply another scheduling decision to the same scheduling entity until
either all available scheduling decisions had been exhausted or an acceptable result had been
obtained. Therefore, it became clear that it was better to have a single activity/operation of a
scheduling job as the "scheduling entity" on which a scheduling decision was applied. Hence in
CABINS, a case describes the application of a schedule revision decision on a single activity of
a job. Operationalization of a schedule revision decision is done by means of a schedule repair
action. Currently, CABINS has 11 repair actions.

Since the result of a scheduling decision needed to be evaluated with regard to the optimization
preferences for a schedule as a whole, it is clear that constructive methods which incrementally
augment a partial schedule at every scheduling decision point would be unsuitable for our
purposes. Moreover, contextual information, which can only be provided by having a complete
schedule, is very useful in applying CBR. Therefore, revision-based scheduling was chosen as
the underlying scheduling methodology.

Because of the tightly coupled nature of scheduling decisions, a revision in one part of the
schedule may cause constraint violations in other parts. Therefore, constraint propagation
techniques are necessary to determine the ripple effects that spread conflicts to other parts of the
schedule as case-based repair actions are applied and specific schedule revisions are made. We
use constraint propagation to propagate the effects of a schedule repair action to the rest of the
schedule.

The evaluation criteria for judging the acceptability of the outcome of a repair action are often
multiple, conflicting, context dependent and reflect user judgment of tradeoffs. Therefore, it is
difficult to describe the evaluation criteria and the associated tradeoffs in a simple manner. The
case base incorporates a distribution of examples that collectively and implicitly capture a user’s
schedule evaluation preferences and tradeoffs under diverse problem solving circumstances and
enable CABINS to induce these tradeoffs from the case base. Hence, user preferences are

reflected in the case base in two ways: as preferences for selecting a repair action depending on
the features of the repair context, and as evaluation preferences for the repair outcome that
resulted from selection and application of a specific repair action.

During iterative repair, cases are exploited for: (1) repair action selection, (2) evaluation of
intermediate repair results and (3) recovery from revision failures. The method allows the system
to dynamically switch between repair heuristic actions, each of which operates with respect to a
particular local view of the problem and offers selective repair advantages. Application of a
repair action tunes the search procedure to the characteristics of the local repair problem. This is
achieved by dynamic modification of the search control bias. There is no a priori
characterization of the amount of modification that may be required by repair actions. However,
experimental results on job shop scheduling problem show that (1) the approach is potentially
effective in capturing user preferences and optimization tradeoffs that are difficult to model, (2)
it improves schedule quality irrespective of method of initial schedule generation, (3) it produces
high quality schedules at much lower computational cost as compared to simulated annealing, a
well-known iterative repair method, and (4) it is suitable as a reactive scheduling method
because it maintains high schedule quality and minimizes disruptions in the face of execution
time failures.

4.2 Case Indexing

Each application of a repair results in a new schedule. The search space of CABINS is the
space of complete schedules that incorporate acceptable user optimization tradeoffs. Hence the
predictive case features that are suitable for case indexing should be ones that capture good
tradeoffs. Although schedule optimization is ill-structured, we make the hypothesis that there
are regularities of the domain that can be captured, albeit in an approximate manner, in these
features.

In CABINS, indices are divided into three categories. The first category consists of the global
features. Since the results of schedule revision associated with a single activity pertain to the
whole schedule, global features that express characteristics of a whole schedule are relevant and
operate as contextual information for selection of a particular repair action. The local features
comprise the second category. Since it is not possible to predict in general the bounds of repair
necessitated by application of a repair action (due to constraint ripple effects), and since
reasoning about the effects of a repair action on the whole schedule a priori would amount to
unlimited lookahead analysis which is in general intractable, we confine the range of lookahead
analysis to a limited repair time horizon. Associated with this time horizon, there are local
features that allow CABINS to estimate the effects of each repair action.

The schedule resulting from application of a repair action must be evaluated in terms of user-
defined tradeoffs. The user cannot predict the effects of modification actions on schedule
correctness or quality since a modification could result in worsening schedule quality or
introducing constraint violations. Nevertheless, the user can perform consistent evaluation of the

13

results of schedule revisions. This evaluation is recorded in the case as part of the case’s repair
history. The repair history constitutes the third category of case features. Therefore, the case
base incorporates a distribution of examples that collectively capture repair performance

tradeoffs under diverse scheduling circumstances.

CABINS searches the space of complete schedules. Control for this search is provided by CBR
in two ways: First, search control is provided through case-based selection of the next repair
action to be applied and second through case-based evaluation of the outcome for the schedule
that resulted from application of a selected repair action. The global and local features are the
indices that are used to retrieve a case that suggests the next repair action to be applied. The
features associated with the repair history are used to retrieve cases that suggest evaluations of a
repair outcome.

4.3 Case Acquisition

In CABINS, the session starts with an empty case-base. A set of training problems are
presented to the user who interacts with CABINS to repair schedules by hand. At first, the user
selects the repair tactic that is deemed to be appropriate and uses CABINS’s tactic application
procedure to apply the chosen tactic to the current schedule.

The effects of the repair are calculated. An effect describes the result of the repair with respect
to one or more repair objectives. Effects pertain to either the schedule as a whole or to a job.
Possible effects pertaining to a schedule as a whole are: weighted tardiness, average resource
utilization, deviation of resource utilization, total schedule work in process inventory (WIP).
Effects that pertain to a job are changes in the tardiness of the job, changes in work-in-process
inventory, or changes in resource assignment. So, for example, the tradeoff between utilizing a
less preferred machine to reduce a job’s tardiness can be reflected in these effects. Due to tight
constraint interactions, these effects are ubiquitous in job shop scheduling and make schedule
optimization extremely hard. When application of a repair tactic produces a feasible result, the
user must decide whether the resulting schedule is acceptable or not based upon those calculated
effects.

An outcome is judged as unacceptable, if the schedule resulting from the application of the
revision heuristic does not make any improvement with respect to the user’s criteria. This could
happen because harmful effects outweighed, in the user’s judgment, the effected improvement.
For example, if reduction of job tardiness enforces increased utilization of low-quality machine,
although the total cost of this repair may be low, it may be unacceptable to a user who worries
that the quality of resulting products might be low. Therefore such a repair might be judged as
unacceptable. The user’s judgment as to balancing favorable and unfavorable effects related to a
particular optimization objective constitute the explanations of the repair outcome. The user
supplies an explanation in terms of rating the importance of each effect. At the end of each
repair iteration, the applied repair tactic, the effects of the repair and user judgment / explanation
as to the repair outcome are recorded in a case along with the current problem features. If the

effects are acceptable to the user, the repair outcome is recorded as "acceptable” and the user
tries to repair another activity. If the user does not like the tradeoffs that are incorporated in the
repair effects, then the outcome of the current repair tactic ("unacceptable"), the effects
calculated by CABINS and the salience assigned by the user are recorded in the repair history of
the case. Subsequently, the user tries to utilize another repair tactic to repair the same activity.

The process continues until an acceptable outcome is reached, or failure is declared. Failure is
declared when all available tactics have been used to repair an activity, but the user finds each
repair outcome unacceptable. The sequence of application of successive repair actions, the
effects, user’s judgment and explanation in case of failed application are recorded in the repair
history of the case. Two remarks are in order here with respect to case acquisition. First, a new
case is acquired only when a new activity is under repair. When an activity is repeatedly repaired
due to unacceptable repair tactic application results, no new case is acquired, but the repair
history of the same case is augmented by each successive repair tactic application, its effects and
outcome. In this way, a number of cases are accumulated in the case-base.

4.4 Case Re-Use

Once CABINS has constructed a case-base from training data, it can perform schedule repair
without any interaction with its user. Cases are retrieved for three purposes: selection of a repair
tactic to be applied, evaluation of the resulting schedule after application of the selected repair
tactic, and, in case of failure, retrieval of a tactic that had fixed a previous similar failure. In
each of these three situations, CABINS utilizes a different set of indices for case retrieval. In
order to retrieve cases to select a repair tactic, global and local features of the current case (the
current focal_activity) are used. For each of the three case retrieval situations described above,
CABINS uses a k-Nearest Neighbor method (k-NN) [Dasarathy 90] for case retrieval.

After a repair has been applied and, if the result is a feasible schedule, repair evaluation is
performed through CBR. Using the effect features (type, value, and salience) as new indices,
CBR is invoked and returns an outcome in the set (acceptable, unacceptable).

If the outcome of current revision is decided as unacceptable, CABINS performs another CBR
invocation using as indices the conjunction of the current outcome (unacceptable), the failed
heuristic and the case global and local features to find another possibly applicable revision
heuristic. Invoking CBR with these indices retrieves cases that have failed in the past in a similar
manner as the current revision. This use of CBR in the space of failures is a domain-independent
method of failure recovery [Sycara 88, Simpson 85], and allows the problem solver to access
past solutions to the failure. If the result is acceptable, then CABINS proceeds to repair another
activity.

15

4.5 Evaluation of the Approach
We conducted a set of experiments to test the following hypotheses:

1. Our approach is potentially effective in capturing user preferences and
optimization tradeoffs that are difficult to model.

2. Our approach improves schedule quality irrespective of method of initial schedule
generation.

3. Our approach produces high quality schedules at much lower computational cost as
compared to simulated annealing, a well-known iterative repair method.

4. Our approach is suitable as a reactive scheduling method because it maintains high
schedule quality and minimizes disruptions in the face of execution time failures.

We evaluated the approach on a benchmark suite of job shop scheduling problems where
parameters, such as number of bottlenecks, range of due dates and activity durations were varied
to cover a broad range of parallel machine job shop scheduling problem instances. In particular,
the benchmark problems have the following structure: each problem has 10 orders of 5 activities
each. Each order has a linear process routing specifying a sequence where each order must visit
bottleneck resources after a fixed number of activities, so as to increase resource contention and
make the problem tighter. Two parameters were used to cover different scheduling conditions: a
range parameter, RG, controlled the distribution of order due dates and release dates, and a
bottleneck parameter, BK, controlled the number of bottleneck resources. To ensure that we had
not unintentionally hardwired knowledge of the problem into the solution strategies, we used a
problem generator function that embodied the overall problem structure described above to
generate job shop scheduling instances where the problem parameters were varied in controlled
ways. In particular, six groups of 10 problems each were randomly generated by considering
three different values of the range parameter (static, moderate, dynamic), and two values of the
bottleneck configuration (1 and 2 bottleneck problems). The slack was adjusted as a function of
the range and bottleneck parameters to keep demand for bottleneck resources close to 100\%
over the major part of each problem. Durations for activities in each order were also randomly
generated.

The benchmark problems are variations of the problems originally reported in [Sadeh 91c] and
used as a benchmark by a number of researchers (e.g. [Muscettola 92, Liu.Sycara 93a]). Our
problem sets are, however, different in two respects: (a) we allow substitutable resources for
non-bottleneck resources, thus solving the parallel machine rather than the simple job shop
scheduling problem, and (b) the due dates of orders in our problems are tighter by 20 percent
than in the original problems.

A cross-validation method was used to evaluate the capabilities of CABINS. Each problem set
in each class was divided in half. The overall training sample, consisting of 30 problems, each of
which has 50 activities, was repaired to gather cases. A case is acquired for each activity that is
repaired. An activity (and consequently a job) may be repaired more than once during an overall
repair cycle, since it could require repair after being moved as a result of repairing another

activity. Allowing each activity to be repaired once for each problem would give a maximum of
30X50 = 1,500 cases for each training sample. In our experiments, some of the activities did not
need repair. So, for each training sample, CABINS was trained with approximately 1,100 cases.
These cases were then used for case-based repair of the validation problems (the other 30
problems). We repeated the above process by interchanging the training and the test sets. Since
it is not possible to theoretically predict the bounds of repair or the global optimum, in the
experiments, CABINS was allowed to run for three overall repair cycles.

4.6 Summary of Experimental Results
Extensive experimentation on the benchmark suite of problems showed that:

1. CABINS is capable of acquiring user and state dependent schedule optimization
preferences. In addition, CABINS can acquire user preferences that change over
time.

2.In predictive schedule generation, the methodology consistently improves the
quality of schedules generated by a variety of scheduling methods.

3. In predictive schedule generation, CABINS generates schedules of higher quality
along a variety of optimization objectives with much lower processing cost (almost
an order of magnitude better) as compared to simulated annealing.

4. In recovering from execution time failures, the approach (1) attends to schedule
quality both in terms of optimization objectives, and disruption, and (2) is
responsive in that it allows continuation of execution without delays in response to
execution failures, and (3) it exhibits anytime executable behavior.

5. Different scheduling objectives implicitly reflected in the case base differentially
bias the schedule repair procedure. Experiments showed that learning of the
control model for repair action selection improved schedule quality by 90% as
compared with random selection of repair actions.

6. The approach scales up in that knowledge gathered in the form of cases from a
smaller set of problems (e.g. 10-job problems) produces schedules of high quality
when used to repair larger problems (e.g. 20-job problems). In addition the pattern
of schedule quality improvement independent of method of initial schedule
generation holds for the larger set of problems.

7. With respect to the question of the case size that will give the "optimal" tradeoff
with respect to schedule quality vs case acquisition and retrieval cost, our results
showed that:

e The larger the number of cases, the better the schedule quality. However,
the marginal payoff from the increase in case base size decreases. This can
be explained partially by the fact that some number of cases (say, 1000
cases) capture well characteristics of the problem space, and additional 1000
new cases may give much redundant information. When the size of case-
base is relatively small, every time new cases are acquired, we may get
information about a different part of the problem space which results in
higher quality improvement.

17

e In terms of balancing efficiency of finding the solution and solution quality,
the experiments showed that the case-base with 1000 cases affords the best
tradeoff.

4.6.1 Discussion

We believe the power of the approach stems from the following four reasons. First, as has
been pointed out by others (e.g. [Minton 92]), revision-based approaches, by making available a
complete assignment (a complete schedule) provide more information that can guide search as
compared with constructive methods where only a partial assignment is available. Our CBR-
based revision method captures such relevant information in global case features and exploits it
as contextual information during case retrieval. Second, although job shop schedule optimization
belongs to the category of "hard" NP-complete problems, the case features were able to capture
some important domain regularities, such as repair flexibility. This was complemented by
keeping information about failed applications of revisions in the repair case history and also
keeping failed cases in the case memory. These failures were exploited by CBR to prune
unpromising paths in the search space in future similar situations. Finally, we believe that some
of the regularities in the structure of the experimental problems were captured in cases during the
training phase and this information was transferable to solve the test problems. Moreover, this
information seems to transfer also across problem size. For example, the cases acquired during
training with a set of 10-job problems were effective in solving test problems with 20 jobs.

The effort expended to capture a large number of cases can be amortized by future repeated
use of the case base to get high quality schedules efficiently. More importantly, CABINS can
acquire the cases through user interaction during the process of solution improvement without
imposing undue overhead on the user.

S Integration of Predictive Planning/Scheduling and Reactive Control

A plan/schedule represents a predictive view of how the future should look and expresses
expectations about future events. For example, a factory schedule expresses an expectation that
particular operations will be assigned to particular resources at particular start times and will
execute on these resources for the indicated operation durations. However, since the world is
unpredictable, the expectations associated with the predictive plan/schedule might not be
realized (e.g., operations might finish earlier or later than their durations indicate in the schedule,
capacity might be lost due to machine breakdowns etc). These realities of execution uncertainty
give rise to the following issues: (1) how execution of a plan/schedule should be controlled, (2)
how a schedule can be reactively managed and (3) how the behavior of the world could be
simulated (since our system does not have access to a real factory floor that can be sensed,
simulation of the world must be employed).

Our research create a distributed testbed for planning and execution that is suitable to
experiment with interactions and tradeoffs arising from adopting a variety of control regimes to
select tasks for execution, the actual execution policies and the physics of the world.

The distributed testbed cosists of the following agents: a planner/scheduler, a controller (in the
manufacturing domain this is called the dispatcher) and a simulator that simulates the behavior
of the world. The overall system behavior is the result of interactions among the three agents.
The goal of this effort is to make the testbed sufficiently parametrized and general so that it can
operate using a variety of possible scheduling strategies, a variety of control execution regimes
and a variety of assumptions in terms of the physics of the world. In addition, monitoring
processes will be gathering performance statistics for particular experimental combinations of
scheduling strategies, control regimes and world models.

In order to gather statistics on the performance of the distributed planner/scheduler, controller
and simulator, we implemented an additional moniftoring agent. Its role is to monitor the state of
the different agents and the state of the messages exchanged among the different agents and
return appropriate statistics. For example, by collecting the messages announcing the start of the
first operation and the end of the last operation for each job, the monitor can return statistics on
tardiness; analogously, messages on start and end of resource down-time, type of failure and start
and end of failure repair activities can be gathered to obtain statistics on the effectiveness of the
reaction of the dispatching policies to unpredictable events.

In general, the system performs as follows. The scheduler passes to the dispatcher a DAG of
operations to be executed. The simulatior simulates the execution of operations based on
different conditions of uncertian execution (e.g., every third operation has a probability x of
excheeding its time bounds by y). If an operation executes successfuly (i.e. within its time
bounds) then, it becomes a finished operation. If its execution causes constraint violation, then,
the dispatcher tries to "fix" the situation performing local repairs. If the dispatcher repairs do not
resolve the constraint conflicts, the dispatcher returne the operations to the scheduler for re-
scheduling.

The dispatcher has limited time horizon within which to impose repairs. This limited time
horizon has two effects (1) it limits the search space of the dispatcher thus enabling quick
repairs, and (2) keeps the repairs local, i.e. without causing inconsistencies in the global
scheduler’s constraints. these two characteristics enable the dispatcher to respond efficiently to
detected problems and opportunities.

5.0.1 Simulator

The simulator allows generation of behaviors of finite state machines equivalent to HSTS
models used for planning and scheduling. The explicit simulation of the behavior of a system
under consideration and of the interactions with control and prediction (planning and scheduling)
agents is the basis for the study of appropriate regimes of coordination. The simulator takes as
input a model, an initial state, and a start and an end time for the simulation. The model defines
state transitions, agents and objects that can respond to messages. Both agents and objects
communicate by sending and receiving messages. For the sake of better exposition, we call the
messages handled by objects signals and the messages handled by agents stimuli. These

19

messages are contained in temporal order in the simulator’s queue. Objects have associated state
variables and state transition rules; given the current state and a set of received messages, an
object can change its state according to its transistion rules. Agents consist of arbitrary code that

can receive messages (stimuli), and can respond with commands. Only the method of

communication is described for agents; no visibility is given on the internal state of the agents.
This capability will allow the incorporation of complex agents (e.g., planner, scheduler) in the
simulation of complex regimes of coordination.

The simulator maintains the value of the state variables associated to the model objects. The
current set of assignments of the state variables within the simulator constitute the current state.
State transitions can be described as:

old state + signal => new state + post new signals

An agent receives stimuli generated by the simulator and sends commands to the simulator.
Objects have handler functions that select the appropriate state transition rules and apply them to
generate changes in the value of its state variables.

State Transition Rules (STR) consist of:

e signal-test. It is used to determine whether this STR should be considered given the
current signal.

* prior-state. It is used to determine whether this STR should be considered given the
current state and the current signal.

® post-state. It is used to assign to state variables the values they will have after all
variable assignments are done. There are two types of value assignment: (1) a
simple assignment where the value given to the state variable is a function of prior-
state, signal, and STR, and (2) a functional assignment, where the state variable
assignment is a function of prior-state, signal, STR and new value of the given
variable (caused by the assignmenet of some other STR).

e validity-test. It is a test to check whether the resulting state is a valid one.

5.0.2 Scheduler and Dispatcher

The scheduler agent of the predictor/controller/simulator architecture is based on the Conflict
Partition Scheduling procedure. The scheduler generates an HSTS temporal data base
representing the network of precedence among activities and their time bounds. The dispatcher
receives a subnetwork consisting of the first operations that can be executed and the activities
that follow them on a chain of job precedences (i.e., op; before op; because of a job imposed
constraint) or on a chain of resource precedences (i.e., op; before op, because they use the same
resource). At any point in time the dispatcher will contain up to » links on any chain; this is an
extension of the approach in [Smith 90b] which considers chains of length 2 at most. The
constraints imposed by the rest of the schedule not visible to the dispatcher are represented as
absolute temporal constraints (i.e., due date constraints); the constraints are updated every time
new operations are added to the dispatcher’s temporal data base.

Unexpected events are represented in the dispatcher’s network with the change of activity
parameters (e.g., change of an activity duration constraint if the simulation determines that its
duration is shorter or longer than expected) or the introduction of new activities (e.g., a resource
unavailability requires the introduction of a "resource down" state token and a "resource repair”
activity token). There are two categories of unexpected events: (1) Small changes, such as
delays in the execution of activities, that could be "absorbed" in the current time map flexibility
(because, for ex. there is downstream slack present). In this case the controller does not need to
execute any adjustment to its portion of the schedule (over which it has visibility). In constrast, a
controller using "crisp" schedules, such as the one described in [Smith 90b] often deals with
similar situations with an active modification of the schedule through appropriate reactive
scheduling rules that could incurr computational cost. (2) Large perturbations to the dispatcher’s
time map, due for example to a machine break down or to large execution delays, might generate
inconsistencies in the current schedule. In this case it is necessary to determine where the
inconsistency is and how to repair it. We concentrate on the detemination of inconsistencies that
are representable as temporal constraint violations in the network. The determinations of these
inconsistencies requires an extension of the HSTS temporal propagation mechanism. The HSTS
temporal propagation, in fact, can detect the presence of inconsistencies but cannot localize
them; this is sufficient for the backtrack-based approaced to planning and scheduling but not in
repair based approaches where we need to identify the constraints that participate in the conflict
and, therefore, need to be modified. We started the investigation of propagation procedures that
localize temporal constraint inconsistencies.

We implemented and integrated in the HSTS temporal data base an additional temporal
propagation mechanism which allows detection of the location of conflicting sets of constraints.
The method applies the Floyd-Warshall (FW) algorithm for the determination of all-pair shortest
paths. The algorithm has been advocated for the resolution of consistent networks of temporal
constraints in [Dechter 91]. While in most cases FW computes much more information than it is
needed (e.g., consistency of a temporal data base), in case of network inconsistency it can detect
shortest cyclical paths of temporal constraints with negative distance. The elimination of such
paths from the temporal data base is a necessary condition for the removal of the network’s
inconsistency. As for the ordinary time bound propagator, in HSTS the FW propagator can be
called on demand, given the computational burden of the algorithm. A typical situation is one in
which FW is called after the ordinary and cheaper time bound propagation detects an
inconsistency. The wealth of information returned by FW can be used to guide the design of
effective repair rules. For example, having detected a number of disjoint negative distance
cycles, it is necessary to repair all of them before the temporal database can become consistent
again. The repair rules will use different patterns of repair (e.g., repair one cycle at a time,
exchange constraints among cycles, etc.) depending on the topology of the temporal data base.

21

5.0.3 Dispatcher Operation
The dispatcher receives an externally generated DAG of operations with nominal start and end
times associated with each operation. This DAG constitutes a consistent schedule.

Execution time failures

The dispatcher’s reactive behavior in response to execution time failure, such as an activity
finishign late, is as follows:

e Identification of deviation from nominal plan/schedule behavior: this is done using
the execution information that the managed system communicates to dispatcher.

* Localization of violated constraints: this is done via use of Floyd Warshall algorithm
to identify negative cycles in the temporal network under dispatcher’s control.

e Identification of cause of deviation: activities that are part of a negative cycle are
potential causes.

¢ Local repair:
1. Next activity of a negative cycle is unlinked from the network.

2. Constraint propagation is performed.

3. If propagation shows that the network is now consistent, the unlinked
activity is relinked at a place where there is enough slack. Repair is
complete. Otherwise, previous activity is put in its old place. Go to step 1.

4.1f all activities in a negative cycle have been tested but the network is still
inconsistent, the dispatcher sends to the scheduler all activities that have not
finished executing for rescheduling.

Dispatcher execution opportunities

The dispatcher also responds to execution opportunities (e.g., an activity finishing earlier than
its expected finish time). The intuition behind a revision to recognize and take advantage of
opportunities is to try, if possible, to locally re-optimize the part of the schedule under the
control of the dispatcher, The "opportunity revision” can be initiated under the following
circumstances: (1) when an activity finishes earlier than its expected finish time, (2) when an
activity finishes later than its expected finish time (but the dispatcher’s constraint network is still
consistent). In this case, the "opportunity revision" is tried along with the ’repair revision". (3)
when an activity finishes at its expected finish time, and (4) when the dispatcher gets a new set
of activities to dispatch.

The opportunity revision is checked for each idle resource, and each activity, call it "current
activity", on that resource (except the first activity). The opportunity revision steps are as
follows:

1. Break resource links before and after the "current activity"

2. Add resource link between the old prior-activity to the "current activity”, and old

22

next-activity to the "current activity"
3. Try placing the "current activity" in the first position on the resource

4. Check if the constraint network is consistent. If it is, then the "current activity" is a
"candidate" to be moved. Keep track of its minimum legal start time in the
“candidate-set”. If not, place the "current activity" in its old position (taking care of
maintaining the correct links) and try another activity.

5. Collect all activities in the "candidate-set" and select the one with the earliest
minimum start time.

The algorithm ensures that the activity that can be dispatched at the earliest time is found.

5.0.4 Coordination protocol scheduler-dispatcher-simulator

The coordination assumption that underlie this protocol is that the dispatcher is actively asking
the scheduler for activities to dispatch rather than waiting for the scheduler to send it activities.
The implication of this coordination regime is that activities will be dispathed expeditiously, i.e.,
the next ply of activities will be dispatched as soon as the previous ply has been sent to the
factory model. The dispatcher gets alerted that the scheduler has finished scheduling (initial
scheduling or rescheduling) by receiving a schedule-ready message from the scheduler. The
message that the dispatcher sends to the scheduler to ask for activities to dispatch is gez-next-ply.
The scheduler responds to this message by sending a series of dispatch-activity messages, one
for each activity in the first n plies. n is currently equal to 2. When the dispatcher dispatches an
activity, it checks to see if it needs another ply, and if it does, it sends get-next-ply message to
scheduler. If, due to delays in activity execution, the dispatcher finds unrepairable
inconsistencie, it send a series of rescehdule-activity messages to the scheduler. The argument to
each of these messages is an activity to be rescheduled.

The dispatcher dispatches activities by sending start-activity messages to the factory. The
factory responds to the dispatcher by sending activity-started message when it starts executing an
activity, and activity-finished message at the end of each activity execution.

5.0.5 Operation of Overall System
The overall system operates as follows;

1. At simulation time=-2, a set of self-initialization messages is sent by the simulation
infrastructure to all agents. The result of recieving these messages is that each
agent initializes itself (i.e. it local variables and message types it can send and
receive).

2. At simulation time=-1, a set of messages is sent to all agents for initialization of
others. For example, the scheduler initializes its interaction with the dispatcher by
sending a "schedule-ready" message; the dispatcher initializes its interactin with
the scheduler by sending a "get-next-ply" message (to get the first 2 plies), to
which the scheduler responds by the "dispatch-activity" series of messages, seding
it the requested activities. When the dispatcher gets the activities, it builds a

23

temporal constrant network for the activities.

3. At simulation time=0, a start message is sent to all agents. At that time the
dispatcher builds its temporal data base and checks it for consistency.

4. At simulation time=k, where k is the earliest release date of the activities to be

dispatched, the dispatcher sends messages to the factory to start execution of each
activity in the first ply, on the specified resource for each activity.

In the rest of the simulation, the following significant events occur:

e The factory sends activity-finished messages to dispatcher, as activities finish
execution.

¢ As the dispatcher dispatches each activity, it checks to see whether it needs an
additional ply from the scheduler. If it does, it sends a "get-next-ply" message,
which has a papameter n equal to the number of plies to be sent. The scheduler
responds by "dispatch-activity” series of messages, thus sending the dispatcher the
set of activities in the next n plies.

e If the dispatcher finds that its temporal data base is inconsistent, it tries to locally
repair the inconsistency. If the inconsistency is locally fixed, the dispatcher
continues processing. If the inconsistency cannot be fixed locally, the dispatcher
sends the scheduler a "reschedule-activity" series of messages containing the
activities to be rescheduled.

References
[Adams 88]

[Berry 91]

[Chen 93]

[Dasarathy 90]

[Dean 88]

[Dechter 91}

[Garey 79]

[Garey 88]

[Goldratt 80]

[Kolodner 85]

J. Adams, E. Balas, and D. Zawack.
The Shifting Bottleneck Procedure for Job Shop Scheduling.
Management Science 34(3):391-401, 1988.

Pauline M. Berry.

The PCP: A Predictive Model for Satisfying Conflicting Objectives in
Scheduling Problems.

Technical Report, Centre Universitaire d’ Informatique, Universite de Geneve,
12, Rue du Lac, CH-1207, Geneva, Switzerland, 1991.

Chen, S., S. Talukdar and N. Sadeh.

Job Shop Scheduling Using Asynchronous Teams of Optimization Agents.

In Proceedings of the IICAI-93 Workshop on Knowledge-based Production
Planning, Scheduling, and Control. Chambery, France, August, 1993.

Belur V. Dasarathy (editor).
Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques.
IEEE Computer Society Press, Los Alamos, CA, 1990.

Dean, T. and Boddy, M.

An Analysis of Time Dependent Planning.

In Proceedings of the Seventh National Conference on Artificial Intelligence,
pages 49-54. AAAI, Saint Paul, Minnesota, 1988.

Dechter, R. and Meiri, I and Pearl, J.
Temporal Constraint Networks.
Artificial Intelligence 49:61-95, May, 1991.

M.R. Garey and D.S. Johnson.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman and Co., 1979.

Michael R. Garey, Robert E. Tarjan, and Gordon T. Wilfgong.
One-Processor Scheduling with Symmetric Earliness and Tardiness Penalties.
Mathematics of Operations Research 13(2):330-348, May, 1983.

Eliyahu M. Goldratt.

Optimized Production Timetable: Beyond MRP: Something Better is finally
Here.

October, 1980

Speech to APICS National Conference.

Kolodner, J. and Simpson, R. and Sycara, K.

A Process of Case-Based Reasoning in Problem Solving.

In Proceedings of the Ninth International Joint Conference on Aritificial
Intelligence, pages 284-290. IJCAI, Los Angeles, CA, 1985.

25

[Li&Sadeh 93]

[Linden 91]

[Liu.Sycara 93a]

[Liu.Sycara 93b]

[Liu.Sycara 94a]

[Liu.Sycara 94b]

[McKay 88]

[Minton 90]

Gang Li and Norman Sadeh.

Single-Machine Early/Tardy Scheduling Problem with Setups: A Hybrid
Heuristic Approach.

Technical Report, Robotics Institute, Carnegie Mellon University, Pittsburgh,

PA 15213, 1993.

Working paper. Presented at the Joint National ORSA/TIMS meeting held in
San Francisco, November 1-4, 1992.

Theodore A. Linden.

Preference-Directed, Cooperative Resource Allocation and Scheduling.

Technical Report, Advanced Decision Systems, 1500 Plymouth St., Mountain
View, CA 94043, September, 1991.

Liu, J. and Sycara, K.

Distributed Constraint Satisfaction through Constraint Partition and
Coordinated Reaction.

In Proceedings of the 12th International Workshop on Distributed Artificial
Intelligence. AAAI, Hidden Valley, PA., 1993.

Liu, J. and Sycara, K.

Constraint Satisfaction through Multi-Agent Coordinated Interaction.

In Proceedings of the 5th European Workshop on Modeling Autonomous
Agents in a Multi-Agent World. MAAMAW, Neuchatel, Switzerland,
1993.

Liu, J. and Sycara, K.

Problem Solving through Coordinated Reaction.

In Proceedings of the IEEE Conference on Evolutionary Computation. IEEE,
Orlando, Fla., 1994.

Liu, J. and Sycara, K.

Distributed Problem Solving through Coordination in a Society of Agents.

In Proceedings of the 13th International Workshop on Distributed Artificial
Intelligence. AAAI, Seattle, WA., 1994.

K. McKay, J. Buzacott, and F. Safayeni.

The Scheduler’s Knowledge of Uncertainty: The Missing Link.

Technical Report, Department of Management Sciences, University of
Waterloo, Waterloo, Ontario, Canada, N2K 2G4, 1988.

Also presented at IFIP Working Conference on Knowledge Based Production
Management Systems, Galway, Ireland, August 1988.

S. Minton, M.D. Johnston, A.B. Philips, P. Laird.

Solving Large-Scale Constraint Satisfaction and Scheduling Problems Using a
Heuristic Repair Method.

In Proceedings of the Eighth National Conference on Artificial Intelligence,
pages 17-24. 1990.

26

[Minton 92] Minton, S. and Johnston, M and Philips, A. and Laird, P.
Minimizing conflicts: a heuristic repair method for constraint satisfaction and

scheduling problems.
Artificial Intelligence 58(1-3):161-205, 1992.

[Miyashita.Sycara 93]
Miyashita, K., Sycara, K.
Adaptive Control of Schedule Revision.
In Fox, M. and Zweben, M. (editor), Knowledge-Based Scheduling. Morgan
Kaufmann, San Mateo, CA, 1993.

[Miyashita.Sycara 94a]
Kazuo Miyashita and Katia Sycara.
A Framework for Case-Based Revision for Schedule Generation and Reactive
Schedule Management.
Journal of Japanese Society for Artificail Intelligence 9(3):426-435, 1994.

[Miyashita.Sycara 94b]
Miyashita, K. and Sycara, K.
CABINS: A Framework of Knowledge Acquisition and Iterative Revision for
Schedule Improvement and Reactive Repair.
Technical Report, Carnegie Mellon University, CMU-RI-TR-94-34, 1994.

[Muscettola 92] N. Muscettola.
Scheduling by Iterative Partition of Bottleneck Conflicts.
Technical Report CMU-RI-TR-92-05, The Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA 15213, 1992.

[Nakakuki&Sadeh 94]
Nakakuki, Yoichiro, and Norman Sadeh.
Increasing the Efficiency of Simulated Annealing Search by Learning to
Recognize (Un)Promising Runs.
In Proceedings of the Twelfth National Conference on Artificial Intelligence,
pages 1316-1322. 1994.

[Ow 88] Peng Si Ow and Stephen F. Smith.
Viewing Scheduling as an Opportunistic Problem-Solving Process.
Annals of Operations Research 12:85-108, 1988.

[Ow 89] Peng Si Ow and Thomas Morton.
The Single Machine Early/Tardy Problem.
Management Science 35(2):177-191, 1989.

[Paolucct 92] Paolucci, E., Patriarca, E., Sem, M., and Gini G.
Predit: A Temporal Predictive Framework for Scheduling Systems.
In Proceedings of the AAAI Spring Symposium on Practical Approaches to
Scheduling and Planning, pages 150-154. 1992.

27

[Sadeh 91a]

[Sadeh 91b]

{Sadeh 91c]

[Sadeh 92a]

[Sadeh 92b]

[Sadeh 92c]

{Sadeh 93a]

Norman Sadeh and Mark S. Fox.

Micro- vs. Macro-opportunistic Scheduling.

In G. Doumeingts, J. Browne, and M Tomljanovich (editor), Proceedings of
the Fourth IFIP Conference on Computer Applications in Production and

Engineering (CAPE’91), pages 651-658. Elsevier Science Publishers
B.V. (North Holland), 1991.

N. Sadeh and M.S. Fox.

Variable and Value Ordering Heuristics for Hard Constraint Satisfaction
Problems: an Application to Job Shop Scheduling.

Technical Report CMU-RI-TR-91-23, The Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA 15213, 1991.

Submitted to the Artificial Intelligence Journal.

Norman Sadeh.

Look-ahead Techniques for Micro-opportunistic Job Shop Scheduling.

PhD thesis, School of Computer Science, Carnegie Mellon University, March,
1991.

Norman M. Sadeh.

The Micro-Boss Scheduling System: Current Status and Future Efforts.

In Proceedings of the 1992 AAAI Spring Symposium on Practical Approaches
to Scheduling and Planning, pages 37-41. Stanford University, Stanford,
CA, March, 1992.

Also appeared in Proceedings of the Sixth Annual Workshop on Space

- Operations Applications and Research (SOAR’92) held in Houston, TX,
Aug. 4-6,1992.

Norman M. Sadeh.

Micro-Boss: A Micro-opportunistic Decision Support System for Factory
Scheduling.

The 1991 Annual Research Review of the Robotics Institute.

1992

Norman Sadeh, Katia Sycara, and Yalin Xiong.

Backtracking Techniques for Hard Scheduling Problems.

Technical Report CMU-RI-TR-92-06, The Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA 15213, 1992.

Submitted to the Artificial Intelligence Journal.

Norman Sadeh.

MICRO-BOSS: A Micro-opportunistic Factory Scheduler.

Expert Systems With Applications 6(3):377-392, July-September, 1993.

Special Issue on Scheduling Expert Systems and their Performances. Also
published as Carnegie Mellon University technical report CMU-RI-
TR-91-22.

28

[Sadeh 93b]

[Sadeh 94a}

[Sadeh 94b]

[Sadeh 94c]

Sadeh, N.M., S. Otsuka, and R. Schnelbach.

Predictive and Reactive Scheduling with the Micro-Boss Production
Scheduling and Control System.

In Proceedings of the IICAI-93 Workshop on Knowledge-based Production
Planning, Scheduling, and Control. Chambery, France, August, 1993.

Norman M. Sadeh.

Micro-Boss: Towards a New Generation of Manufacturing Scheduling Shells.

In Proceedings of the ARPA/Rome Laboratory Knowledge-Based Planning
and Scheduling Initiative, pages 191-203. Tucson, AZ, Februrary, 1994.

Norman Sadeh, Katia Sycara, and Yalin Xiong.

Backtracking Techniques for the Job Shop Scheduling Constraint Satisfaction
Problem.

Artificial Intelligence Journal , 1994.

To appear in Special Issue on ’Planning and Scheduling’.

Norman Sadeh.

Micro-Opportunistic Scheduling: The MICRO-BOSS Factory Scheduler.
Intelligent Scheduling.

In Mark Fox and Monte Zweben,

Morgan Kaufmann Publishers, 1994, Chapter 4.

[Sadeh&Nakakuki 94]

[Saks 92]

[Simpson 85]

{Smith 90a]

Sadeh, Norman, and Yoichiro Nakakuki.

Focused Simulated Annealing Search: An Application to Job Shop
Scheduling.

Technical Report, The Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, 1994.

Submitted to Annals of Operations Research, Issue on ’Metaheuristics in
Combinatorial Optimization.

Victor Saks, Al Kepner, and Ivan Johnson.

Knowledge Based Distribution Planning.

Technical Report, Carnegie Group, Inc., 5 PPG Place, Pittsburgh, PA 15222,
1992.

Simpson, R.L.

A Computer Model of Case-Based Reasoning in Problem Solving: An
Investigation in the Domain of Dispute Mediation.

PhD thesis, School of Information and Computer Science Georgia Institute of
Technology, 1985.

Stephen F. Smith, Peng Si Ow, Nicola Muscettola, Jean-Yves Potvin, Dirk
Matthys.

An Integrated Framework for Generating and Revising Factory Schedules.
Journal of the Operational Research Society 41(6):539-552, 1990.

29

[Smith 90b]

Smith, S.F., N. Keng, and K. Kempf.

Exploiting Local Flexibility During Execution of Pre-Computed Schedules.

Technical Report CMU-TR-RI-90-13, The Robotics Institute, Carnegie
Mellon Univeristy, June, 1990.

[Swaminathan 93] Swaminathan, J., N.M. Sadeh, and S.F. Smith.

A Knowledge-Based Multi-Agent Simulation Testbed to Support Supply
Chain Design and Management Decisions.

In Proceedings of the IJCAI-93 Workshop on Knowledge-based Production
Planning, Scheduling, and Control. Chambery, France, August, 1993.

[Swaminathan 94] Swaminathan, J., N.M. Sadeh, and S.F. Smith.

[Sycara 88]

[Sycara 94a]

[Sycara 94b]

[Sycara 94c]

[Sycara ed]

Impact of Supplier Information on Supply Chain Performance.

Technical Report, The Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, 1994.

Submitted to the Journal of Operations Management, Special issue on
"Economics of Operations Management’.

Sycara, K.

Patching Up Old Plans.

In Proceedings of the Tenth Annual Conference of the Cognitive Science
Society. Montreal, Canada, 1988.

Sycara, K., and Miyashita, K.

Adaptive Schedule Repair.

In Proceedings of the 27th Hawaii International Conference on System
Sciences. Maui, Hawaii, 1994,

Sycara, K. and Miyashita K.

Case-Based Acquisition of User Preferences for Solution Improvement in IlI-
Structured Domains.

In Proceedings of the Twelfth National Conference on Artificial Intelligence
(AAAI-94). Seattle, WA, 1994,

Sycara, K. and Miyashita, K.

Evaluation and Improvement of Schedules According to Interactively
Acquired User-Defined Criteria.

In Proceedings of the Planning Initiative Workshop. Arpa, Tucson, AZ.,
1994.

Katia Sycara and Kazuo Miyashita.

Learning Control Knowledge through Case-Based Acquisition of User
Optimization Preferences in Ill-Structured Domain.

In Tecuci, G. and Kodratoff, Y. (editor), Machine Learning and Knowledge
Acquisition: Integrated Approaches. Morgan Kaufmann, San Mateo, CA,
To be published.

30

[Torma 91]

[Winklhofer 92]

[Xiong 92]

[Zeng.Sycara ng]

[Zweben 90]

[Zweben 91]

Seppo Torma, Ora Lassila and Markku Syrjanen.

Adapting the Activity-Based Scheduling Method to Steel Rolling.

In G. Doumeingts, J. Browne, and M Tomljanovich (editor), Proceedings of
the Fourth IFIP Conference on Computer Applications in Production and
Engineering (CAPE’91), pages 159-166. Elsevier Science Publishers
B.V. (North Holland), 1991.

Andreas Winklhofer, Manfred Maierhofer, and Paul Levi.

Efficient Propagation and Computation of Problem Features for Activity-
Based Scheduling.

In Proceedings of the Seventh Symposium on Information Control Problems
in Manufacturing Technology (INCOM-92). Toronto, Canada, 1992.

Yalin Xiong, Norman Sadeh, and Katia Sycara.

Intelligent Backtracking Techniques for Job Shop Scheduling.

In Proceedings of the Third International Conference on Principles of
Knowledge Representation and Reasoning, pages 14-23. KR’92,
Cambridge, MA, October, 1992.

Zeng, D. and Sycara, K.
Case-Based Acquisition of User Changing Preferences.
Technical Report, Carnegie Mellon University, Forthcoming.

M. Zweben and M. Deale and M. Gargan.

Anytime Rescheduling.

In Proceedings of the DARPA Workshop on Innovative Approaches to
Planning, Scheduling and Control, pages 251-259. DARPA, San Diego,
CA,, 1990.

Monte Zweben, Eugene Davis, and Michael Deale.

Iterative Repair for Scheduling and Rescheduling.

Technical Report, NASA Ames Reserch Center, MS 244-17, Moffett Field,
CA 94035, 1991.

31

Micro-Opportunistic Scheduling

Norman M. Sadeh
The Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, Pennsylvania 15213-3891
sadeh@cs.cmu.edu

Abstract

A major challenge for research in production management is to develop new finite-capacity
scheduling techniques and tools that (1) can account more precisely for actual production
management constraints and objectives, (2) are better suited for handling production
contingencies, and (3) allow the user to interactively manipulate the production schedule to
reflect idiosyncratic constraints and preferences not easily amenable to representation in the
computer model. This chapter describes Micro-Boss, a decision-support system for factory
scheduling currently under development at Carnegie Mellon University. Micro-Boss aims at
generating and maintaining high-quality realistic production schedules by combining powerful
predictive, reactive, and interactive scheduling capabilities. Specifically, the system relies on
new micro-opportunistic search heuristics that enable it to constantly revise its scheduling
strategy during the construction or repair of a schedule. These search heuristics are shown to be
more effective than less flexible scheduling techniques proposed in the Operations Research and

Artificial Intelligence literature.

This chapter summarizes our work in micro-opportunistic scheduling and describes predictive,
reactive and interactive capabilities developed in the context of the Micro-Boss scheduling
system. It is a condensed version of three papers: [Sadeh 94], [Sadeh 93] and [Li&Sadeh 93].

This research was supported, in part, by the Advanced Research Projects Agency under
contract #F30602-91-F-0016 and in part by grants from McDonnell Aircraft Company, Digital
Equipment Corporation.

Al

1 Introduction
In a global market economy, the need for cost-efficient production management techniques is
becoming more critical every day. In contrast with this need, current production management

practice is too often characterized by low levels of due date satisfaction, high levels of inventory

and, more generally, a state of chaos in which the computer systems that are used to provide
managerial guidance do not accurately reflect the current state of affairs, because they rely on
oversimplified and rigid models of the production environment. A major challenge for research
in this area is to develop new production management techniques and tools that (1) can account
more precisely for actual production management constraints and objectives, (2) are better suited
for handling production contingencies, and (3) allow the user to interactively manipulate the
production schedule to reflect idiosyncratic constraints and preferences not easily amenable to
representation in the computer model. This chapter describes Micro-Boss, a decision-support
system for factory scheduling currently under development at Carnegie Mellon University.
Micro-Boss aims at generating and maintaining high-quality realistic production schedules by
combining powerful predictive, reactive, and interactive scheduling capabilities. Specifically,
the system relies on new micro-opportunistic search heuristics that enable it to constantly revise
its scheduling strategy during the construction or repair of a schedule. These search heuristics are
shown to be more effective than less flexible scheduling techniques proposed in the Operations
Research and Artificial Intelligence literature.

1.1 The Production Scheduling Problem
Production scheduling requires allocating resources (e.g., machines, tools, human operators)
over time to a set of jobs while attending to a variety of constraints and objectives.

Typical constraints include

® functional constraints limiting the types of operations that a specific resource can
perform

® capacity constraints restricting the number of jobs a resource can process at any
given time

® availability constraints specifying when each resource is available (e.g., number of
shifts available on a group of machines)

® precedence constraints existing between operations in a job, as specified in the job’s
process routing

® processing time constraints specifying how long it usually takes to perform each
operation

e setup constraints requiring that each machine be in the proper configuration before
performing a particular task (e.g., proper sets of fixtures and tools)

o time-bound constraints specifying for each job an earliest acceptable release date
before which the job cannot start (e.g., because its raw materials cannot arrive
earlier) and a due date by which ideally it should be delivered to a customer

Some of these constraints must be satisfied for a schedule to be valid (so-called non-relaxable
or hard constraints). For instance, milling operations can only be performed on milling
machines. Other groups of constraints are not always satisfiable and might need to be relaxed
(so-called relaxable or soft constraints). For instance, due date constraints often need to be
relaxed for a couple of jobs because of the limited capacity of the production facility.
Availability constraints are another example of constraints that can be relaxed, by either working
overtime or adding extra shifts. A good schedule is one that satisfies all hard constraints while
selectively relaxing soft constraints to maximize performance along one or several metrics.

Two factors that critically influence the quality of a schedule are due date satisfaction and
inventory levels. Missing a customer due date can result in tardiness penalties, loss of customer
orders, delayed revenue receipts, etc. Inventory costs include interests on the costs of raw
materials, direct inventory holding costs, interests on processing costs, etc. One often
distinguishes between in-process inventory costs (also referred to as work-in-process inventory
costs) and finished-goods inventory costs. Work-In-Process (WIP) inventory costs account for
inventory costs resulting from orders that have not yet been completed, and finished-goods
inventory costs result from completed orders that have not yet been shipped to customers.

Manufacturing contingencies such as machine breakdowns, late arrivals of raw materials, and
variations in operation durations and yields further complicate production scheduling. In the face
of contingencies, schedules need to be updated to reflect the new state of affairs. The sheer size
of most factory scheduling problems precludes the generation of new schedules from scratch
each time an unanticipated event occurs. In fact, most contingencies do not warrant such
extreme actions and are best handled by repairing a portion of the existing schedule [Bean 91].

As schedules are optimized at a more detailed level, they can also become more sensitive to
disruptions and require more frequent repairs. In general, there is a limit to the amount and
detail of information that one can reasonably expect to represent in a computer model. For
instance, a worker’s preference for performing more demanding tasks in the morning might not
be worth storing in the computer model and, instead, might be best accounted for by allowing the
end-user to interactively manipulate the schedule.

Even under idealized conditions such as simplified objectives (e.g., minimizing total tardiness
or maximizing throughput) and deterministic assumptions, scheduling has been shown to be an
NP-hard problem [Garey 79, Graves 81, French 82]. Uncertainty further adds to the difficulty of

A3

the problem, and makes it even more impractical to look for optimal solutions. Instead, practical
approaches to production scheduling are heuristic in nature. The next subsection briefly reviews
earlier approaches to production scheduling; identifies some of their shortcomings; and
introduces a new search paradigm, called micro-opportunistic search, that shows promise for

addressing some of these shortcomings.

1.2 A Micro-Opportunistic Approach to Production Scheduling

To this date, the most widely used computer-based approach to production scheduling remains
by far the Material Requirements Planning (MRP) or Manufacturing Resource Planning (MRP-
IT) approach developed in the 1970s [Orlicky 75, Wight 81, Wight 84]. In this approach, demand
for end-products as specified in a Master Production Schedule is exploded into time-phased
requirements for component items (subassemblies, parts, raw materials, etc.) required for the
production of these end-products!. Because their time-phasing logic relies on standard operation
leadtimes that do not account for the actual load of the production facility, MRP systems often
fail to produce realistic schedules. They sometimes overload the facility, thereby causing orders
to be delivered late. In an attempt to alleviate this problem, MRP systems often pad the schedule
by inserting generous "safety" leadtimes. These safety leadtimes tend to be rather arbitrary and
produce unnecessarily large amounts of inventory. In fact, because they are often unrealistic and
are not meant to be updated in real-timeZ, MRP schedules are not directly used to schedule
production but rather to assign priorities to jobs {[Panwalkar 77, Vollmann 88]. These priorities
in turn determine the order in which jobs are actually processed at each work center.

Shortcomings of the traditional MRP approach reflect limitations of computing technologies
available in the 1970s. In the 1980s with the advent of more powerful computers, several more
sophisticated techniques emerged [Goldratt 80, Fox 83, Ow 85, Adams 88, Ow 88a, Morton 88].
The first and by far most publicized of these techniques is the one developed by Goldratt and his
colleagues within the context of the OPT factory scheduling system [Goldratt 80, Jacobs 84, Fox
87]. OPT demonstrated the benefits of building detailed production schedules that account for
the actual load of the plant and the finite capacity of its resources (“finite scheduling"
approaches). This system also underscored the potential benefits of distinguishing between
bottleneck and non-bottleneck resources [Jacobs 84, Fox 87]. In OPT, bottlenecks are scheduled
first to optimize the throughput of the plant. Later, the production schedule is completed by
compactly scheduling non-bottleneck operations to reduce inventory. The distinction between
bottleneck and non-bottleneck machines was pushed one step further in the OPIS system [Smith
86, Ow 88a], as it was recognized that new bottlenecks can appear during the construction of the
schedule. The OPIS scheduler combines two scheduling perspectives: a resource-centered

IFor instance, if an end-product required by the end of week 2 is obtained by assembling two sub-components and
the assembly process typically takes a week to be completed, both sub-components will be required by the end of
week 1.

MRP systems are generally run on a weekly, possibly even a monthly basis.

A4

perspective for scheduling bottleneck resources, and a job-centered perspective to schedule non-
bottleneck operations on a job-by-job basis. Rather than relying on its initial bottleneck analysis,
OPIS typically repeats this analysis each time a resource or a job has been scheduled. This ability
to detect the emergence of new bottlenecks during the construction of the schedule and revise the
current scheduling strategy has been termed opportunistic scheduling [Ow 88a]. Nevertheless,
the opportunism in this approach remains limited in the sense that it typically requires scheduling
an entire bottleneck (or at least a large chunk of it) before being able to switch to another one.
For this reason, we actually refer to these techniques as macro-opportunistic.

In fact, variations in the job mix over time often cause different machines (or groups of
machines) to be bottlenecks over different time intervals. Bottlenecks are sometimes said to
"wander over time". Also, as a schedule is constructed for a bottleneck machine, a new machine
can become more constraining than the original bottleneck. For instance, scheduling decisions
on a bottleneck machine might require that a large number of jobs be processed on a preceding
machine over a short period of time. At some point during the construction of the schedule,
contention for the preceding machine might become higher than that for the original bottleneck.
A scheduling technique that can only schedule large resource/job subproblems will not be able to
take such considerations into account. It will overconstrain its set of alternatives before having
worked on the subproblems that will most critically affect the quality of the entire schedule.
This, in turn, will often result in poorer solutions. A more flexible approach would stop
scheduling operations on a resource as soon as another resource is identified as more
constraining. In the presence of multiple bottlenecks, such a technique would be able to shift
attention from one bottleneck to another during the construction of the schedule rather than focus
on the optimization of a single bottleneck at the expense of others. This chapter presents such a
flexible approach to scheduling. We call it micro-opportunistic scheduling. In this approach,
resource contention is continuously monitored during the construction of the schedule, and the
problem solving effort is constantly redirected toward the most serious bottleneck resource. In
its simplest form, this micro-opportunistic approach results in an operation-centered view of
scheduling, in which each operation is considered an independent decision point and can be
scheduled without requiring that other operations using the same resource or belonging to the
same job be scheduled at the same time3.

Experimental results presented at the end of this chapter indicate that micro-opportunistic
scheduling procedures often yield better schedules than less flexible bottleneck-centered
approaches. Because of their flexibility, micro-opportunistic scheduling heuristics also seem

3An alternative approach in which resources can be resequenced to adjust for resource schedules built further
down the road is described in [Adams 88] and [Dauzere-Peres 90]. This approach has been very successful at
minimizing makespan, namely, the total duration of the schedule. This measure is closely related to the throughput
of the plant but does not account for individual job due dates, tardiness costs or inventory costs. Attempts to
generalize the procedure to account for due dates seem to have been less successful so far [Serafini 88]. It should be
pointed out that the idea of continuously reoptimizing the current partial schedule is compatible with a micro-
opportunistic approach.

A5

particularly well suited to solving problems in which some operations have to be performed
within non-relaxable time windows [Sadeh 91a, Sadeh 92] as well as repairing schedules in the
face of contingencies. Finally, we find that they can easily be integrated in interactive systems in
which manual and automatic scheduling decisions can be interleaved, thereby allowing the user
to incrementally manipulate and compare alternative schedules (e.g., "What-if" type of analysis).

1.3 Paper Outline
The remainder of this chapter successively reviews the predictive, reactive, and interactive
capabilities of the Micro-Boss scheduling system.

Section 2 describes the micro-opportunistic search procedure implemented in Micro-Boss,
focusing on look-ahead techniques used to measure contention, and heuristics to identify and
schedule critical operations. A small example illustrating the use of these techniques is provided
in Section 3. Section 4 describes the reactive and interactive components of the system. Section
5 reports the results of an experimental study comparing Micro-Boss with several popular
scheduling approaches, including coarser opportunistic schedulers, under a wide range of
simulated situations. Finally, Section 6 briefly reviews current research efforts and summarizes
the impact of this work.

A6

2 A Micro-opportunistic Search Procedure

In this section, a deterministic scheduling model is assumed, in which all jobs to be scheduled
are known in advance. Issues pertaining to reactive scheduling and control in the face of
manufacturing contingencies such as machine breakdowns are addressed in a later section.

2.1 A Deterministic Scheduling Model
For the time being, we consider a deterministic scheduling problem in which a set of jobs
J={j{»-J,} has to be scheduled on a set of physical resources RES={R;,....R,,}. Each job j,

consists of a set of operations Ol= { 0’1,...,0fl } to be scheduled according to a process routing that
!

specifies a partial ordering among these operations (e.g., Of BEFORE Ojl.). We further assume
scheduling problems with in-tree process routings, namely process routings in which operations
can have one or several direct predecessors but at most one direct successor (e.g., assembly
process routings). This is by far the most common type of process routing encountered in
manufacturing.

Additionally, each job j, has an earliest acceptable release date, erd,, a due-date, dd), and a
latest acceptable completion date, lcd;, where lcd; 2 dd; 2 erd;. All jobs need to be scheduled
between their earliest acceptable release date and latest acceptable completion date*. The earliest
acceptable release date might correspond to the earliest possible arrival date of raw materials. It
is assumed that the actual release date (or job start date) will be determined by the schedule that
is constructed. The latest acceptable completion date might correspond to a date after which the
customer will refuse delivery. If such a date does not actually exist, it can always be chosen far
enough in the future so that it is no longer a constraint.

Each operation Of has an expected duration, duf, and a start time, stf (to be determined), whose

domain of possible values is delimited by an earliest start time, estf, and a latest start time, lstf
(initially derived from the job’s earliest acceptable release date erd; and latest acceptable

completion date lcd;). We assume that each operation Of. requires a single resource Rf for which
there might be several alternatives in RES. The model further allows for resource availability
constraints that specify the times when each resource is normally available (e.g., what the
number of shifts is and whether the resource is available over the week-end). Finally, setup
operations might be required before an operation can start on a machine. Examples of setup
operations include changing the fixtures holding a part, loading a new part, cleaning a painting
station when switching from one color to another, etc.

The objective of the scheduling system, under deterministic assumptions, is to build a schedule
that satisfies the above constraints and minimizes (as much as possible) the costs incurred for
missing due dates or carrying overhead inventories. These costs are briefly described below.

“Notice that this formulation does not exclude infeasible problems.

A7

COSTS
Each job j, has

* A marginal tardiness cost, tard;: This is the cost incurred for each unit of time that the job is
tardy (i.e., finishes past its due date). Marginal tardiness costs generally include tardiness

penalties, interest on delayed profits, loss of customer goodwill, etc”. The tardiness cost of job Ji
in a given schedule is

TARD)=tard, x Max(0, C;—dd,) (1)

where Cl=stf1 -&-dufl is the completion date of job j, in that schedule, assuming that Of,, is the last
! (]
operation in job j;.

e Marginal in-process and finished-goods inventory costs: In our model, each operation Oﬁ
can incrementally introduce its own non-negative marginal inventory cost, invf. Typically, the
first operation in a job introduces marginal inventory costs that correspond to interest on the
costs of raw materials, interest on processing costs (for that first operation), and marginal
holding costs. Downstream operations® introduce additional marginal inventory costs such as
interest on processing costs or interest on the costs of additional raw materials required by these
operations. The total inventory cost for a job j,, in a given schedule, is:

n

1
INV,=Y inv;x [Max(Cj,dd) - st]) (2)
i=1

This cost accounts for both work-in-process and finished-goods inventory costs’

The total cost of a schedule is obtained by summing the cost of each job schedule:

Schedule Cost = z (TARD+INV)) 3)
=1

A SMALL EXAMPLE

Figure 1 depicts a small scheduling problem with four jobs that will be used in this section to

3In this model, inventory costs incurred after the due date are not included in the tardiness costs but, rather, in the
inventory costs described below.

. L . [SRy 2 .
6An operation Of is said to be downstream (upstream) of another operation Oj within its job if O; is a direct or

indirect successor (predecessor) of Ojl.‘ in that job, as defined by the job’s process routing.

TNote that, in this deterministic model, minimizing work-in-process inventory costs is equivalent to minimizing
job leadtimes or flowtimes.

A8

illustrate the behavior of the micro-opportunistic scheduling heuristics implemented in Micro-
Boss. Each square box represents an operation and is labeled by the name of this operation (e.g.,
0:), its (expected) duration (e.g., du{: 2), and the resource it requires (e.g., Ri:Rl). In this
simple example, each operation is assumed to require a single resource, for which there are no
substitutes. The arrows represent precedence constraints. For instance, job j; has 5 operations

0:, 0;,..., 0;. Oi has to be performed before 0;, 0; before O}, etc. The other arcs in the graph
represent capacity constraints that require that each resource be allocated to only one operation at
a time. There is a capacity constraint between each pair of operations that require the same
resource. Notice that R, is the only resource required by four operations (one from each job).
Notice also that in three out of four jobs (namely, j; , j3, and j4), the operation requiring R, is
one of the job’s longest operations. Consequently, resource R, can be expected to be the main
bottleneck of the problem. We will see that, to some extent, resource R, constitutes a secondary
bottleneck.

— —» precedence constraint

_______ capacity constraint

Figure 1: A simple job shop problem with four jobs. Each node is labeled by the operation
that it represents, its duration, and the resource that it requires.

A9

The earliest acceptable release dates, due dates, and latest acceptable completion dates of the
jobs are provided in Table 1 along with the marginal tardiness and inventory costs of these jobs.

Earliest acceptable release dates, due dates, latest acceptable completion dates, and costs
lobj, | erd, | dd, | led, | tard, | v, | im} invy, | iny), inv
Ji 0 12 20 20 2 1 2 0 0
J 0 14 20 20 5 0 - - -
Js 0 9 20 5 1 0 0 - -
Ja 0 18 20 10 1 0 - - -

Table 1: Earliest acceptable release dates, due dates, latest
acceptable completion dates and marginal costs.

2.2 Overview of the Search Procedure

In Micro-Boss, each operation is considered an independent decision point. Any operation can
be scheduled at any time, if deemed appropriate by the system. There is no obligation to
simultaneously schedule other operations upstream or downstream within the same job, nor is
there any obligation to schedule other operations competing for the same resource.

Micro-Boss proceeds by iteratively selecting an operation to be scheduled and a reservation
(i.e., a resource/time interval) to be assigned to that operation. Every time an operation is
scheduled, a new search state is created, where new constraints are added to account for the
reservation assigned to that operation. A consistency enforcing procedure then takes care of
updating the set of remaining possible reservations of each unscheduled operation. If an
unscheduled operation is found to have no possible reservations left, a deadend state has been
reached, in which case the system needs to backtrack (i.e., it needs to undo some earlier
reservation assignments to be able to complete the schedule). If the search state does not appear
to be a deadend, the system moves on and looks for a new operation to schedule and a
reservation to assign to that operation.

To enhance search efficiency® and produce high quality schedules, Micro-Boss interleaves
search with the application of consistency enforcing mechanisms and a set of look-ahead
techniques that help decide which operation to schedule next (operation ordering heuristic) and
which reservation to assign to that operation (reservation ordering heuristic).

1. Consistency Enforcing/Checking: Consistency enforcing techniques prune the

8We define search efficiency as the ratio of the number of operations to be scheduled over the number of search
states generated. If the number of search states generated to build the schedule is equal to the number of operations,
search efficiency is equal to 1.

AlQ

search space by inferring new constraints resulting from earlier reservation
assignments {[Mackworth 85, Sadeh 91b]. By constantly accounting for earlier
scheduling decisions, these techniques reduce the chances of reaching a deadend
(i.e., a partial schedule that cannot be completed without backtracking).
Simultaneously, by allowing for the early detection of deadend states, these
techniques limit the amount of work wasted in the exploration of fruitless

alternatives.

2. Look-Ahead Analysis: A two-step look-ahead procedure is applied in each search
state, which first optimizes reservation assignments within each job and then, for
each resource, computes contention between jobs over time. Resource/time
intervals where contention is the highest help identify the critical operation to be
scheduled next (operation ordering heuristic). Reservations for that operation are
then ranked according to their ability to minimize the costs incurred by the jobs
contending for the critical resource (reservation ordering heuristic). By constantly
redirecting its effort toward the most serious conflicts, the system is able to build
schedules that are closer to the global optimum. Simultaneously, because the
scheduling strategy is aimed at reducing job contention as rapidly as possible,

chances of reaching deadend states tend to quickly subside too.

The opportunism in Micro-Boss results from the ability of the system to constantly revise its
search strategy and redirect its effort toward the scheduling of the operation that appears to be
the most critical in the current search state. This degree of opportunism differs from the one
displayed by earlier approaches where scheduling entities were large resource/job subproblems
[Ow 88a, Collinot 88], i.e., where large resource/job subproblems had to be scheduled before
the system could revise its scheduling strategy.

Concretely, given a scheduling problem such as the one described in Figure 1, Micro-Boss
starts in a search state in which no operation has been scheduled yet?, and proceeds according to
the following steps:

1. If all operations have been scheduled, then stop; else go on to 2.

2. Apply the consistency enforcing procedure.

9 Alternatively, Micro-Boss can also complete a partial schedule, in which case the initial search state corresponds
to the initial partial schedule. A description of reactive and interactive capabilities of the system is provided in
Section 4.

All

3. If a deadend is detected then backtrack; else go on to 4.

4. If one or more operations were found to have only one possible reservation left,

then schedule these operations (creating a new search state for each one). If all

operations have been scheduled, then stop; else go on to 3.

5. Perform a look-ahead analysis: Rank the possible reservations of each
unscheduled operation according to how well they minimize the costs of the job to
which the operation belongs (step 1), and evaluate resource contention over time

(step 2).
6. Select the next operation to be scheduled (i.e., operation ordering heuristic).
7. Select a reservation for that operation (i.e., reservation ordering heuristic).

8. Create a new search state by adding the new reservation assignment to the current

partial schedule. Go back to 1.

As in other constraint-directed scheduling systems [LePape 87], the consistency enforcing
procedure used in Micro-Boss (1) maintains for each unscheduled operation a pair of
earliest/latest possible start times and (2) marks as unavailable those resource/time intervals
allocated to already scheduled operations. Additionally, reservation pruning performed by the
Micro-Boss consistency procedure also accounts for resource/time intervals that are absolutely
needed by unscheduled operations. Figure 2 displays an example of an unscheduled operation
Of.‘ whose earliest and latest possible reservations overlap. Whichever reservation this operation
is ultimately assigned, it will always need time interval [lstf.‘, eftf]. Accordingly, the Micro-Boss
consistency procedure prunes the set of remaining possible reservations of other unscheduled
operations requiring that resource by removing all those reservations that overlap with time
interval [lstf, eﬂf]lo.

Results presented in this chapter were obtained using a simple chronological backtracking
scheme. Experimentation with more sophisticated backtracking schemes is described in [Sadeh

I0This differs from an earlier version of the system [Sadeh 91b), in which resource/time intervals needed by
unscheduled operations were only used to detect conflicts. In this earlier version, a conflict would be detected when
two or more unscheduled operations needed overlapping resource/time intervals. Rather than waiting for such
conflicts to arise, our new consistency procedure efficiently prevents such confticts from occurring, thereby further
reducing backtracking. A generalized version of this procedure is used for parallel machines.

Al2

AT earliest possible reservation

AR latest possible reservation

absolutely needed interval

Figure 2: An example of an unscheduled operation that absolutely needs
a resource/time interval.

92].

The remainder of this section gives a more detailed description of the look-ahead analysis and
the operation/reservation ordering heuristics used in Micro-Boss. Further details on these
techniques, as well as other aspects of the system, can be found in [Sadeh 91b].

2.3 Look-Ahead Analysis in Micro-Boss

2.3.1 Optimizing Critical Conflicts First

If all jobs could be scheduled optimally (i.e., just-in-time), there would be no scheduling
problem. Generally, this is not the case. Jobs typically have conflicting resource requirements.
The look-ahead analysis carried out by Micro-Boss in each search state aims at helping the
scheduling system focus its effort on those conflicts that currently appear most critical. A
critical conflict is one that will require an important trade-off, i.e., a trade-off that will
significantly impact the quality of the entire schedule. By first focusing on critical contflicts,
Micro-Boss ensures that it has as many options as possible to optimize these conflicts. As
illustrated by a trace provided in the next section, once critical trade-offs have been worked out,
the remaining unscheduled operations tend to become more decoupled and, hence, easier to
optimizel 1 As contention subsides, so does the chance of needing to backtrack. In other words,
by constantly redirecting search towards those trade-offs that appear most critical, Micro-Boss is

''This is similar to the way bottleneck schedules drive other scheduling decisions in OPT.

Al3

expected to produce better schedules and simultaneously keep backtracking at a low level.

More specifically, a two-step look-ahead procedure is applied to each search state. This
procedure first optimizes reservation assignments within each job and then, for each resource,
computes contention between jobs over time. The so-called demand profiles produced by these

computations help identify operations whose good reservations (as identified in the first step)

conflict with the good reservations of other operations. These operations define the critical
conflicts on which Micro-Boss works first.

This two-step look-ahead analysis is further detailed below.

2.3.2 Step 1: Reservation Optimization within a Job

In order to measure contention between the resource requirements of unscheduled operations,
Micro-Boss keeps track of the best start times that remain available to each unscheduled
operation within its job. Additionally, the system implicitly maintains, for each remaining
possible start time T of each unscheduled operation Of, a function mincostf('r) that indicates the
minimum additional costs that would be incurred by job j, (the job to which Of.‘ belongs), if Of.‘
were to start at stf:‘c rather than at one of its best possible start times. By definition, if stf:r is
one of the best start times that remain available to Of.‘ within its job, then mincostf(‘c):O. Rather
than explicitly maintaining mincost functions, Micro-Boss simply maintains for each
unscheduled operation Of.‘ (1) an apparent marginal tardiness cost, app—tardf, that approximates
the cost incurred by job j; for each unit of time that Of.‘ starts past its latest best start time and (2)
an apparent marginal inventory cost, app—invf, that approximates the cost incurred by job j, for

each unit of time that Of starts before its earliest best start time. These costs are updated in each
search state to account for earlier scheduling decisions, using a set of efficient propagation
procedures described in [Sadeh 91b].

2.3.3 Step 2: Building Demand Profiles to Identify Critical Resource/Time Intervals

In Micro-Boss, critical conflicts are identified as groups of operations whose good reservations
(within their jobs) conflict with each other. The importance of a conflict depends on the number
of operations that are competing for the same resource, the amount of temporal overlap between
the requirements of these operations, the number of alternative reservations still available to each
of these conflicting operations and their costs, as determined by the mincost functions computed
in step 1.

To identify critical conflicts, Micro-Boss uses a probabilistic framework in which each
remaining possible start time T of an unscheduled operation Of is assigned a subjective
probability O'f (7) to be selected for that operation in the final schedule. Possible start times with
lower mincost values are assigned a larger probability, thereby reflecting our expectation that
they will yield better schedules. Given these start time probability distributions, the probability

Al

12

that an unscheduled operation O' uses its resource!? at time f, which is referred to as the

individual demand of O for R}, is:

Di@= ; o} (1) 4)

t—dui<1:St

where duf. is the duration of 05. Df(t) is also a (subjective) measure of the reliance of operation

Of on the availability of its resource at time ¢. By adding the individual demands of all
unscheduled operations requiring a given resource, say R, the system obtains an aggregate

demand profile, D (1), that indicates contention between (all) unscheduled operations for that
k
resource R, as a function of time:

D (=Y Di(9) (5)

where the summation is carried over all unscheduled operations that need resource Ry .

Start time distribution og (1)

0.40
4

probability

0.30 -

0.20 ¢

0.10 4

! ? . .
7 8 9 10 11 12 13 14 15
start time

Figure 3: Start time distribution o% (t) for operation 0; in the initial search state
for the problem defined in Figure 1.

I2For the sake of simplicity, we assume here that each operation requires a single resource for which there are no
alternatives. The construction of demand profiles can easily be generalized to deal with parallel machines by
building profiles for entire groups of machines and normalizing them based on their remaining available capacities
over time.

AlS

Figure 3 displays 0% (1), the start time distribution of operation 0; in the problem defined in
Figure 1. This start time distribution is depicted in the initial search state, where all operations
still have to be scheduled. In this search state, start time st§=9 is the best possible start time for

0;: it corresponds to a just-in-time schedule of job j,. Later start times have a lower subjective
probability because they would force the job to finish after its due date. Earlier start times are

also suboptimal because they would produce additional inventory. In this example, the marginal
tardiness cost of job j,, tard,=20, is four times larger than the marginal inventory cost

introduced by operation 0? , invf: 5. Accordingly, c% (1) decreases faster for T > 9 than for 1 < 9.

Figure 4 displays the individual demand profiles of the four operations requiring resource R,.
These demand profiles represent the subjective probability that each one of these operations uses
resource R, as a function of time. The aggregate demand for resource R, is obtained by summing

these four individual demands over time. The individual demands of operations 0; and 0; are
quite uniform because these two operations have relatively low apparent marginal costs (see the
marginal tardiness and inventory costs of job j; and job j, in Table 1). In contrast, operations Oé

and 0%, which have larger apparent marginal costs, have individual demands that are
concentrated around their best reservations.

Similar computations can be performed for each of the five resources in the problem. The
resulting aggregate demands (in the initial search state) are displayed in Figure 5. As expected,
resource R, appears to be the most contended for. The aggregate demand for that resource is well
above 1.0 over a large time interval, with a peak at 1.79. Resource R, appears to be a potential
bottleneck at the beginning of the problem, with a demand peaking at 1.52. Whether R will
actually be an auxiliary bottleneck or not cannot be determined directly from the curves
displayed in Figure S. Instead, the system needs to update these curves in each search state to
account for earlier decisions. It could be the case that as operations requiring R, are scheduled,
the aggregate demand for R; becomes smoother. In this example, this is not the case. On the
contrary, as operations are scheduled on resource R,, some operations on resource R, end up
with only one possible reservation and need to be immediately scheduled, as indicated by the
trace provided in Section 4.

2.4 Operation Selection

Critical operations are identified as operations whose good reservations (as identified in the
first step of the look-ahead analysis) conflict with the good reservations of other operations. The
largest peak in the aggregate demand profiles determines the next conflict (or micro-bottleneck)
to be optimized; the operation with the largest reliance on the availability of the corresponding
resource/time interval (i.e., the operation with the largest individual contribution to the peak) is
selected to be scheduled next. Indeed, this operation is the one whose good reservations are the
most likely to become unavailable if other operations contending for the current micro-
bottleneck were scheduled first.

Al6

1.00
0.80
0.60
0.40
0.20
0.00 4

demand

Dé(*c): Individual Demand of 0; for R,

1.00
0.80
0.60
0.40
0.20

demand

T T T T L} 1 T T 1 1 I L L
9 10 11 12 13 14 15 16 17 18 19 20
time

e
N
(%1
&
e
[
~
[

Dg(’c): Individual Demand of 0% for R,

0.00 4

0.60
0.40
0.20
0.00 4

demand

T T T T T T T T ¥ L} T 1 T Ll
7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

-
nN
[}
e
L]
a4

DX(1): Individual Demand of O for R,

e

0.60
0.40
0.20

demand

T L] 1 L T T T T T 1 T 1 T T I T L
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

~

D¥(1): Individual Demand of O} for R,

0.00 4
0

1.80
1.60 4
1.40 S
1.20
1.00 4
0.80
0.60
0.40 4
0.20 4

aggregate demand

0.00

' [

L ¥ T T T T T T 1 L T ¥ 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

contention

peak

T L] L] T T 1 T T T T T T T T 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

Figure 4: Building R,’s aggregate demand profile in the initial search state.

Al7

1.60 - DF¥'(1): Aggregate Demand for R,
I
1.40 4
1.20 4
1.00 4
0.60
0.60
0.40 1
0.20 4
0.00

aggregate demand

L L] T T L T T 1 T ¥ T T T 1] \J ¥ L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

Dj’{ig’("c): Aggregate Demand for R,

1.80 4
1.60
1.40]
1.20 4
1.00 4
0.80
0.60 4
0.40 4
0.20 4
0.00

contention

aggregate demand

peak

T T L] L] T T L} ¥ J 1 Li T J T L T L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time
1.60
1.40.] Dzig'(‘c): Aggregate Demand for R,
1.20
1.00 4
0.80 4
0.60 4
0.40 4
0.20

'_-—'——-|_\——|ﬁ
0.00 T T T T T T ! T Y Y T T e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

aggregate demand

1.60 -
:;Z | D;fg’(t): Aggregate Demand for R,
1:00 -
0.80 4
0.60 4
0.40 4

0.20 4
et
0.00 —

T T ¥ T T T T T J T LS T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

aggregate demand

1.60
1.40 - D;fg '(1): Aggregate Demand for R
1.20 4 k
1.00 4
0.80
0.60 4
0.40 4
0.20 1
0.00

aggregate demand

T T T T T T T T T ¥ T \J T T T L3 T 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

Figure 5: Aggregate demands in the initial search state for each of the five resources.

In the example introduced earlier, the largest demand peak is the one for resource R, over

Al8

aggregate demand

demand demand

demand

demand

D‘;ig’(r): Aggregate Demand for R,

T
9

t
10

T J \J T 1] T ¥ J
11 12 13 14 15 16 17 18
time

D;('t): Individual Demand of 0; for R,

il N

12 13 14 15 16 17 18 19 20
time

Dg(‘c): Individual Demand of 02 for R,

.

1.00
0.80
0.60
0.40
0.20

10

11 12 13 14 15 16 17 18 19 20
time

Dg(‘t): Individual Demand of 0; for R,

0.60
0.40
0.20
0.00

9

T
10

T T T T T I T 1 1
11 12 13 14 15 16 17 18 19 20
time

Dg(‘c): Individual Demand of 0‘2t for R,

T
9

T
10

T T T L] T T L) T T T
11 12 13 14 15 16 17 18 19 20
time

Figure 6: Operation selection in the initial search state.

Al9

interval [4,8[. Figure 6 displays the aggregate demand for resource R, together with the
individual demands of the four operations requiring this resource. The operation with the largest
contribution to the demand peak is O,. Therefore this operation is selected to be scheduled next.

This is no real surprise: 05 belongs to one of the two jobs in the problem that have a high
marginal tardiness cost (tard;=20). While any delay in starting job j, will result in large

tardiness costs, job j, (i.e., the job with the next highest contribution) can tolerate a small delay
and is subject to lower tardiness penalties.

The computation of demand profiles, as described in 2.3.3 can be quite expensive when
performed for each resource in each search state over the entire scheduling horizon. Micro-Boss
can avoid this problem by incrementally maintaining a set of rough demand profiles for each
resource (or group of identical resources). These rough demand profiles use a much coarser time
granularity and are obtained by splitting the demand of each unscheduled operation into two
components. One component (50% of the operation’s total demand in the current implementation
I3) is evenly spread between the start and end times of the latest best reservation of the operation
while the second component (the remaining 50% of the operation’s demand) is evenly spread
between the earliest start time and latest finish time of the operation. Rough demand profiles can
be quickly updated as the system moves from one search state to the next and are used in each
search state to identify a small number of critical resource/time intervals over which the more
detailed demand profiles described in 2.3.3 are then constructed.

2.5 Reservation Selection

To schedule the critical operation identified in 2.4, the system attempts to identify a
reservation (for the critical operation) that will reduce as much as possible the costs incurred by
the job to which that operation belongs and the other jobs with which that operation competes.
This is approximated as a single-machine or parallel-machine early/tardy scheduling problem in
which operations scheduled past their best start times incur penalties determined by their
apparent marginal tardiness costs, while operations scheduled before their best start times incur
earliness penalties, as determined by their apparent marginal inventory costs [Baker 90, Sadeh
91b]. For problems without setups, several variations of a single-machine early/tardy procedure
developed by Ow and Morton [Ow 89, Sadeh 91b] are successively run and the single-machine
schedule with the lowest cost is used to determine the reservation assigned to the critical
operation. More recently, a new scheduling heuristic has also been developed to solve problems
with setups [Li&Sadeh 93]. This heuristic is further described below along with experimental
results comparing it with Ow and Morton’s heuristic.

Briefly, our heuristic for problems with setups opportunistically selects between two simpler
techniques:

13The total demand of an operation is equal to its duration.

A20

e A clustering technique that identifies clusters of early(tardy) jobs and resequences
them using variations of the Weighted Longest (Shortest) Processing Time dispatch
rule;

e A two-parameter technique ("ET-2") that generalizes the priority dispatch rule
developed by Ow&Morton for the problem without setups [Ow 89].

Our heuristic opportunistically selects between ET-2 and the clustering heuristic (based on the
tightness of the problem at hand) to generate an initial schedule, which is then refined using a
neighbordhood search procedure and an optimal idle time insertion procedure [Li&Sadeh 93].

To evaluate the performance of this heuristic, a set of 1920 problems was generated by
adjusting the following 6 parameters:
e Two different product mixes (with 3 product families each)

e Early/tardy cost ratios: 0.05, 0.1, 0.25,0.5,1.0and 5.0
e Tardiness Factor (tight vs. loose due dates)
¢ Due date ranges (wide vs. narrow)

e Setup severity (average value of setup time divided by processing time): low and
high

e Problem sizes: 9-job problems and 50-job problems

By combining the different values of these 6 parameters, a total of 192 problem sets was
generated. Ten problems were randomly generated within each set.

The smaller 9-job problems were used to see how far our heuristic is from the optimum: on
these smaller problems, it is possible to find an optimal solution, using a simple branch-and-
bound procedure (this is not possible on larger problems, as the procedure would take for ever).
Figure 7 and 8 depict the average deviation of the solutions produced by our heuristic from the
optimum. We see that on low tardy factor problems (loose due dates), our heuristic is within
11.62% of the optimum. On high tardy factor problems, the results are even better: our heuristic
is consistently within 10% of the optimum and, on average,it is within 4.77% of the optimum.
Figure 9 further indicates that, compared to the one-parameter developed by Ow and Morton, our
heuristic reduces schedule cost by an average of 30.61%.

A21

Distance of Hybrid/Interchange Heuristic from Optimal Solution

(2 Job, High Tardy Factor Problems)
20

18

16

4 ¢ M

%10 | M Average = 4.77%

2

T R .rmﬂ

0 —3 | Lt et At g |
—NMVWWNQQOFNMVWWN@G’OFNMV
—————————— NN NN

Each bar represents a set of 10 problems

b=

Figure 7: Distance from Optimum - High Tardy Factor

A22

Distance of Hybrid/Interchange Heuristic from Optimal Solution
(9 Job, Low Tardy Factor Problems)

25 - u
Average = 11.62%

%20 - M \\ i
] i

3

L

FUIS 17 30 {100 11 O [IS 13 0 £ 8 |
= innn b b bl Bt e bt e b |

AN TNONDODNO~NMTNONOONQ

Each bar represents a set of 10 problems

Figure 8: Distance from Optimum - Low Tardy Factor

A23

improvement of Hybrid/Interchange Heuristic Over 1-Parameter Early/Tardy Heuristic

(For 50 Job Problems)

40 v

' Average = 30.61% ﬂ '

3 é M \ r r Wﬂ Ei]‘.(i

| u HEL i S A R R
30 Jill:‘!—--n—- L —— . -mng --P-.ﬂriﬂﬁq!l?lﬂdf ll-ﬁ.-.:-‘i-olui-i«rm-

| s P RN e AR N N

| N sPREIRIRININ rr‘[?ii"wi %:[?If;:v,fgif

! i ! ! i Pl b
25 il - | ~| ! {*I : !i‘ ! :1111 | g :_l

| M AR e

%20 | M | IR RN

: | L
| HHE T

i i i o ”l o

i i . i Sl

| (e
L i P

b

(T !

' N
‘| ! i I]
oi“wz:uw::z':‘!e:z’s::;:sw's;L:::'w“w“’c'lwl—w

SRR L R IR R R EE TR F Y F E R E T I

(Each bar represents 10 simulations)
Figure 9: Improvement over one-parameter early/tardy heuristic.
3 A Small Example

Micro-Boss is implemented in C++ with an X™/Motif™ interface. The small example used
throughout this chapter requires less than 0.1 CPU seconds on a DECstationT™ 5000/200
running under UNIX™14 " Ap edited trace of this example 1s given in Figure 10.

In this example, the scheduling procedure first focuses on the scheduling of the main
bottleneck resource, R,. However, as it schedules operations on this resource, the system can
also jump to other resources and consolidate the schedule by allocating reservations to critical
operations requiring these other resources. In this small example where operations have a small
number of possible reservations, this is mainly accomplished through the identiﬁcation of
operations that have only one possible reservation left (e.g. the scheduling of O or O* D- In

14X Window System is a registered trademark of the Massachusetts Institute of Technology. Motif is a registered
trademark of the Open Software Foundation, Inc. UNIX is a registered trademark of UNIX Systems Laboratories,
Inc. DECstation is a registered trademark of the Digital Equipment Corporation.

A24

general, this can be done based on the contention analysis performed by Micro-Boss (e.g., the
identification of a critical conflict on resource R, at depth 6). As a result, the system jumps back
and forth between several resources, always trying to focus on what appears to be the most
critical decision.

The average expected demand displayed in each search state is the average demand for the
critical demand peak, and the average contribution is the percentage of the total demand for the
peak that comes from the critical operation. When search starts, contention is relatively high, as
illustrated by the average expected demand for the critical peak (1.58 at depth 0, 1.73 at depth 2
and 1.50 at depth 4) and the relatively low contribution of the critical operation to the demand
for the peak (e.g., O; contributes only 63% of the total demand for the peak in the initial search

state, 0; 57% at depth 2, etc.) indicating that the resource requirements of the critical operation
compete with those of several other operations. During construction of the schedule, the average
demand for the critical peak progressively decreases!® and the critical operation progressively
contributes a larger percentage of the demand for the critical peak. This indicates that contention
between unscheduled operations decreases. After half of the operations have been scheduled
(depth 7), contention has totally disappeared: the critical operation is the only one to contribute
to the demand for the peak. The resource requirements of the operations that still need to be
scheduled no longer compete with each other. This is not particular to this example: the same
has been observed on all the problems we have run and suggests that the operation ordering
heuristic implemented in Micro-Boss is indeed very effective at redirecting search towards the
most serious conflicts.

Notice also that no backtracking was necessary to schedule this problem. The resulting
schedule is displayed in Figure 11. ’

15Remember that the demand peak corresponds to the interval of highest contention in the current search state.

A25

>>

>>

>>

>>

>>

>>

>>

>>

Depth: 0, Number of states visited: 0
Critical demand peak:
R2 between 4 and 8, Avg. expected demand: 1.58

Critical Operation: 0;, Avg. contrib.: 63%

0; is scheduled between 2 and 8 on R,

Depth: 1, Number of states visited: 1

O: has only one possible reservation left
and is scheduled between 0 and 2 on R,

Depth: 2, Number of states visited: 2
Critical demand peak:
R2 between 10 and 14, Avg. expected demand: 1.73

Critical Operation: 0;, Avg. contrib.: 57%
Og is scheduled between 9 and 14 on R,

Depth: 3, Number of states visited: 3
0? has only one possible reservation left
and is scheduled between 2 and 9 on Rl

Depth: 4, Number of states visited: 4
Critical demand peak:
R, between 14 and 18, Avg. expected demand: 1.50

Critical Operation: 0;, Avg. contrib.: 50%
Og is scheduled between 14 and 17 on R2

Depth: 5, Number of states visited: 5
0; has only one possible reservation left
and is scheduled between 17 and 20 on R2

Depth: 6, Number of states visited: 6
Critical demand peak:
R4 between 10 and 12, Avg. expected demand: 1.12

Critical Operation: O;, Avg. contrib.: 73%
0; is scheduled between 10 and 12 on R,

Depth: 7, Number of states visited: 7
C& has only one possible reservation left
and is scheduled between 8 and 10 on R3

Figure 10: An edited trace

A26

>>

>>

>>

>>

>>

Depth: 8, Number of states visited: 8
Critical demand peak:
R5 between 5 and 8, Avg. expected demand: 0.95

Critical Operation: 0;, Avg. contrib.: 100%

0; is scheduled between 5 and 8 on R5

Depth: 9, Number of states visited: 9
Critical demand peak:
R4 between 7 and 9, Avg. expected demand: 0.96

Critical Operation: OT, Avg. contrib.: 100%
0? is scheduled between 7 and 10 on R,

Depth: 10, Number of states visited: 10
Critical demand peak:
R] between 14 and 17, Avg. expected demand: 0.65

Critical Operation: Og, Avg. contrib.: 100%
0; is scheduled between 15 and 17 on Rl

Depth: 11, Number of states visited: 11
Critical demand peak:
R3 between 13 and 15, Avg. expected demand: 0.52

Critical Operation: O?, Avg. contrib.: 100%
O% scheduled between 14 and 15 on R,

Depth: 12, Number of states visited: 12

Schedule Completed

Total Cost: 180

Total Tardiness Cost: 55

Total Inventory Cost: 125

Avg. Weighted Tardiness: 1.0

Avg. Weigh