
AEROSPACE REPORT NO.
ATR-92(2778)-9

Timelines and Proofs of Safety Properties
in the State Delta Verification System (SDVS)

30 September 1992

Prepared by

L. G. MARCUS and T. K. MENAS
Computer Systsems Division

Prepared for

NATIONAL SECURITY AGENCY
Ft. George G. Meade, MD 20755-6000

Engineering and Technology Group

EUECTE;
MW

THE AEROSPACE
CORPORATION

El Segundo, California

19950301 105

PUBLIC RELEASE IS AUTHORIZED

\

•<$££

Aerospace Report No.
ATR-92(2778)-9

TIMELINES AND PROOFS OF SAFETY PROPERTIES
IN THE STATE DELTA VERIFICATION SYSTEM (SDVS)

Prepared by

L. G. Marcus and T. K. Menas
Computer Systems Division

30 September 1992

Engineering and Technology Group
THE AEROSPACE CORPORATION

El Segundo, CA 90245-4691

Prepared for

NATIONAL SECURITY AGENCY
Ft. George G. Meade, MD 20755-6000

PUBLIC RELEASE IS AUTHORIZED

Report No.
ATR-92(2778)-9

TIMELINES AND PROOFS OF SAFETY PROPERTIES
IN THE STATE DELTA VERIFICATION SYSTEM (SDVS)

Prepared

■Ü, [TfrMUA*/
L. G. Marcus

Approved

B. FL Levy, Manager
Computer Assurance Section

D. B. Baker, Director
Trusted Computer Systems Department

C. A. Sunshine, Principal
Computer Science and

Subdivision

-^-K
rector

5hnology

Accession For

HTIS GRA&I Q^
I>TIC TAB D
Unannounced Q
Justification .. -

Distributiv :fe'^§fc

111

Availability g<j|88

ist
Svail and/ftr

Special
C(j--"&:..;

Abstract

Proofs of typical safety properties of programs in temporal-logic-based systems can be
facilitated by the use of two proof rules: the Rule of Negation and the w-Induction Rule.
We show that each of these rules is valid only on timelines of certain order types; the joint
use of these two rules is valid only on timelines that are finite, or ordered like the natural
numbers.

We demonstrate the use of these rules by giving proofs of safety properties of a simple
concurrent program in the State Delta Verification System (SDVS).

Contents

Abstract v

1 Introduction 1

2 Negation 5

3 u-Induction 7

4 Syntax and Semantics of SDVS 9

4.1 Syntax 9

4.2 Semantics 10

4.3 Definable Extensions of L 12

5 Proofs of Safety in SDVS 13

6 SDVS Proof Commands and Transcripts 17

6.1 The Negate Command 17

6.2 The Omegainduct Command 18

6.3 Transcripts of Proofs 19

7 Conclusions 25

References 27

vii

1 Introduction

We consider automated theorem provers and proof checkers based on temporal logic with
a linear timeline, in particular in their application to computer verification. The variations
in possible temporal systems are manifold. One issue is the choice of the order type of the
timeline or timeframe. Most temporal systems assume a timeline that is ordered like the
natural numbers (a standard reference is [1] or [2]), though there are occasions where more
general timelines have been suggested and used.

The State Delta Verification System [3] (SDVS) is a system whose temporal operators are
based on the weak versions of the standard temporal operators of □, O, and £/, i.e., all future
states may include the present.1 Most proof commands do not impose any restriction on
the underlying timeline. However, we have found that in order for certain safety properties
to be valid, we had to restrict the timelines admitted by our logic.

The constraints that certain proof rules impose on the timelines of temporal structures arise
in two situations.

First, if the proof of a safety property of a program contains the negation of a temporal
formula with "until," then it is often convenient to simplify that formula by using the
Negation Rule:

-.(p U q) = [G-ig V -.p V (-ig U (-ip A -iq))]

Since this rule is valid on precisely well-ordered timelines (Theorem 3), the proof of such
a safety property could very well be valid only for temporal structures with well-ordered
timelines. Such a property will be given in Section 5 (Theorem 6). The importance of this
formula is that it "pushes" the negation of an until formula inside another until formula.
Successive applications of this rule result in an equivalent formula in which no until operator
is in the scope of a negation. In an important sense, this reduction is impossible for linear
timelines that are not well-ordered.

Second, the proof of even a simple safety property of a nonterminating program may require
an w-Induction Rule of the form

[(a A ß) A D(o A ß -* 3a0 .. .3o„_i (/\ xt- = a{ A {aU{ahß/\\J x{ £ a,-))))] -+ Da
»<n i<n

where {xi : i < n} is the finite set of program variables.2

1 (M, t) (= p U q is defined to hold iff (M, t) |= p and there is r > t such that (M, r) \= q and for all 5, if
t <s <r, then {M, s) |= p. Notice that even if r = t, p must hold at t.

2This rule might seem strange to those familiar with the more standard temporal logic induction rules,
such as

(a A D(a —* Nexta)) —► Da.

First of all, the weakness of the until means that there is no definable Next operator; also, the weak until
means that to guarantee "progress" we must explicitly include the conjunct representing the claim that some

Consider, for example, the program P that initially assigns to its only variable x the value
zero and thereafter repeatedly decrements the value of x by one. Clearly one safety property,
5, that this program satisfies is that at every time in the future, the value of x will be less
than or equal to zero. However, a "natural" translation of this program into temporal logic,
for example the translation into the formula simply asserting "x is equal to zero now and
at every time in the future the value of x will be discretely decremented by one,"3 will be
true in the temporal structure whose timeline is u + u and in which the values of x are

0,-1,-2, ... ,1,0,-1,-2, ...

However, S fails to be true in this model; the problem is the limit point tu of the timeline
at which the value of x is 1. Note that u> + 1 is embeddable in this timeline.

It is easy to prove that the w-Induction Rule above is valid for precisely those temporal
structures in whose timeline u> + 1 is not embeddable (Theorem 4).

Thus, to recapitulate, the use of the Negation Rule implies that the timeline is well-ordered,
and the use of the w-Induction Rule implies that the timeline does not embed u + 1. Thus,
the use of both implies that the timeline is either finite or isomorphic to w.

We give examples of two safety properties and their proofs in SDVS that use the above
rules. Here we will be concerned only with understanding enough about SDVS in order
to translate the results of Sections 2 and 3 into the logic and proof commands of SDVS.
The logical formulas of SDVS are called state deltas, which are written in a precondition-
postcondition style, but correspond roughly to temporal logic with weak box (D), diamond
(O), and until (U). This weak semantics was chosen because we wanted the truth of state
delta formulas to be preserved under "stuttering," i.e., through a time interval where no
values of local variables change.

The particular syntax of state deltas was chosen to facilitate intuitive proofs of program
correctness by symbolic execution. The reader is referred to [4] for the exact correspon-
dences.

The Negation Rule is incorporated in SDVS as the proof command negate and the u-
Induction Rule as the proof command omegainduct (Section 6). It thus follows that proofs
in SDVS+negate+omegainduct are valid only for temporal structures whose timelines
are either finite or isomorphic to u.

What restriction on the applicability of such a safety proof does the timeline restriction
impose? There are examples where, in order to represent faithfully a computation, it has
been suggested to assume a non-w timeline. In such cases, a proof of safety must utilize
other rules. For examples see [5] and [6], or [7].

Now we define the structures over which we interpret temporal formulas. We are given

program variable has changed value. Second, the above rule without ß (i.e., with ß = true) is weaker in our
proof system. We use ß in the proofs of safety properties of loops, specifically by letting ß encode the claim
that execution is at the "top of the loop."

3 Of course, there is another translation of P that by the above usage would have to fall into the "un-
natural" category; this translation obviates the need for induction: add the sentence saying that x never
mcreases.

a first-order structure that can be thought of as the domain of values, a set of variables
ranging over those values, and a finite set of variables that can be thought of as the set of
program variables.

Definition 1 Let A be a first-order structure, GlobalVars a set, and ProgramVars a finite
set. A first-order temporal structure M with base A is a triple ((T, <), £, a) such that

• (T, <), the timeline, is a linearly ordered set with a least element, usually denoted by

to!

• £ : GlobalVars —*\ A \; and

• a :T X ProgramVars ->\ A |.

We assume the normal syntax for first-order temporal logic with propositional operators A,
V, -i, and the "weak future" semantics for the temporal operator U, as described above.
The operators (weak) □ and (weak) O are defined in terms of U in the standard manner,
e.g.

(M,t)\=Oq = {M,t)\=(trueU q) = 3? > t(M,t') (= q

We refer to this language as Weak Propositional Temporal Logic, WPTL. The state delta
language and an intermediate language will be introduced in Section 4.

Notation: If 0 is an interval of the timeline T, then MnQ f= <j> is defined by Vi G 0 (M, t) \=
<t>.

2 Negation

In this section we show that negations can be pushed inside WPTL formulas if and only if
the timeline is well-ordered. Thus, using the Negation Rule

i(p U q) = [n-,q V ->p V (-19 U (-rp A ->q))]

entails an assumption that the timeline is in fact well-ordered.

First we show that the above Negation Rule is not valid in general, and that no similar rule
for simplifying negations is valid.

Definition 2 A WPTL formula is positive if no temporal operator is in the scope of ->.

Theorem 1 There is a WPTL formula a that is not equivalent to any positive WPTL
formula.

Note: Without U all WPTL formulas are equivalent to positive formulas.

Proof: Let a = n(-ip U p), i.e., that there is no first time at which p is true. We will define
a temporal structure (over a non-well-ordered timeline) in which a is not equivalent to any
positive formula.

Let Mi be the temporal structure over timeline {to,...,Si...} where i ranges over the
negative integers, of order type 1 + u* (u* is the order type of the negative integers.) where
p is true at t iff t > to, and Ni be the temporal structure over (io^i) where p is defined
similarly (i.e., false at io and true at <i.)

Note that (Mi, to) N <* and (iVi,io) |= -•<*•

Let T = {7 : 7 is a WPTL formula such that (Mj,t0) (= 7 -»■ (Ni,t0) \= 7}.

The theorem will follow if we show that T contains all the positive formulas, as implied by
the following lemma:

Lemma 1 The following facts are true ofT:

1. T contains all static (containing no temporal operator) formulas .

2. T is closed under A and V.

3. T is closed under □ and O

4- T is closed under U.

Proof of Lemma: The first two items are obvious. The next one follows from:

Claim: For every WPTL formula r and every negative integer i,

(Mi,si)^r-^(N1,tl)]FT

The proof is a simple induction on the complexity of r; it also is a trivial consequence of
Corollary 3 in [4].

Now consider fact 4. Let (Mi, to) (= 7 U $ where 7,6 6 T. If (Mi, to) (= S, we are through.
Otherwise, (Mj,Sj) f= £ for some z and Mi D [*o,s;) t= 7-

Thus, (Ni,h) \= Shy the above claim and (Ni,to) \= 7 (Lemma 1 and Theorem 1).H

The above theorem can be strengthened as follows:

Theorem 2 There is a WPTL formula a such that for every timeline T that has an initial
element but is not well-ordered, a is not equivalent to a positive formula over T.

Proof: Let a be as before, and let to be the initial element of T. Since T is not well-ordered,
there is a decreasing sequence ... > r,- > r,+i > Let J = {t G T : (3i) t > rj} and
I = T-J.

Define M2 over T by (M2, t)\=piff tel. Let ti > t0 and define N2 by (7V2, *) (= ->p iff t <
h-

Note that (M2,to) |= <* and (N2,to) \= ->a.

By Theorem 3 of [4], for every formula 7, (N2,t0) \= 7 if and only if (JVi,t0) \= 7- And
likewise (M2,t0) (= 7 if and only if (Mi,t0) (= 7- Thus, the desired result follows from
Lemma 1. H

Theorem 3 The Negation Rule is true if (and only if) the timeline is well-ordered.

Note that the "only if" part follows from Theorem 1.

Proof:

The right-to-left implication of the Negation Rule is always true.

Now assume T is well-ordered with initial element t0, M is a temporal structure over T,
and (M,t0) (= ->(pU q). If (M,t0) \= D-.9 or (M,t0) \= -.p, we are done.

So assume otherwise: let (M,t0) \= p, h > t0 be the least such that (M,tx) (= q. In fact,
to < h, otherwise (M,t0) (= p U q. Thus, M n [t0,ti) \= iq. Let t2 > t0 be the least
such that (M,t2) (= ->p. Thus, tQ < t2 < t1? otherwise, again, (M,t0) \= p U q. Thus,
(M, t2) |= -.p A 1?, M n [t0, <2) |= "^9, so (M, t0) \= (^q U (-.p A -<q)). -\.

3 ^-Induction

In this section we show that the w-Induction Rule is valid if and only if the timeline does
not embed u> + 1. Thus, the use of this rule entails the assumption that in fact the timeline
does not embed u> + 1.

The w-Induction Rule states that

1. if a (the "always" formula) and ß (the "auxiliary" formula) are true now,

2. and it is always true in the future that if a and ß are true, then a is true until some
variable has changed value and a and ß are true again,

3. then a will be always true in the future.

Formally, the w-Induction Rule is given by the following sentence:

[(a A /?) A ü(a A /3 -*• 3a0.. .3an_i (f\ xt = a{ A (a U (a A ß A V x,- £ a,-))))] -»• Qa
i<n i<7i

where {xt- : i < n} is the finite set of program variables.

Theorem 4 The u-Induction Rule is valid over Tiff T does not embedu + 1.

Proof:

<—: Assume T does not embed u + 1 and let M be a temporal structure over T such that
(M,io) satisfies the antecedent of the u;-Induction Rule. Thus, there are U € T, t{ < 2;+i,
where M 0 [t,-,t,-+i] |= a and (M,i,) (= ß. If the conclusion of the o;-Induction Rule is not
true, i.e., if (M, to) ^ Ha, then there is some tw such that (M, C) |= -ia. Since it- < tu for all
z, the sequence {*o,.. •, <t"> • • • ? *a;} constitutes an embedding of a; +1 into T, a contradiction.

-»: Assume T embeds u +1, and let *o < *i < • ■ • < tw be the image of such an embedding.
Define M over T such that M has one local variable x whose values are (M, t) \= x = —i for
t 6 [ti,ti+i), i < u, and x = 1 elsewhere, including *w. Now for a = [x < 0] and /3 = true,
we get that the proof rule is not true in M. -\

4 Syntax and Semantics of SDVS

In this section we give a brief introduction to the syntax and the semantics of SDVS. For
the reader who is acquainted with the usual temporal logic notation, we also introduce
an intermediate language between the language of SDVS, LSD[I), and the language of
classical first-order temporal logic. This intermediate language is I(#r)(Z/). Since LSD[I)

and Lt#\(U) differ only in their temporal operator, in the definitions that follow we denote
both languages by L.

4.1 Syntax

Alphabet

The alphabet of L contains the following symbols:

• for every n-ary function / of A, an n-ary function symbol /;

• for every n-ary predicate p of A , an n-ary predicate symbol p;

• the binary predicate symbol =;

• the propositional constant true;

• the symbols -i, A, (,),., #, and V;

• for £(#,.)(£/), the temporal operator symbol M, until;

• for I>SD[I), the temporal operator symbol ~», state delta;

• a, finite set, ProgramVars, of program variables (local variables); and

• a denumerable set, GlobalVars, of global variables.

Terms

The terms of L are defined by induction:

• Every global variable is a term.

• For every program variable x, ,x and #x are terms.

• Every 0-ary function symbol is a term.

• If t\,..., tn are terms and / is an n-ary function symbol, then]{t\... tn) is a term.

• All terms arise by application of the above four clauses.

Note that unadorned program variables are not terms.

Formulas

The atomic formulas of L consist of the prepositional constant true and any string of
the form p(ti. ..tn), where p is an n-ary predicate symbol and t\,...,tn are terms. The
other formulas are defined inductively.

• Every atomic formula of I- is a formula of L.

• If A and B are formulas of X, then (A A B) and ->A are formulas of L.

• If A is a formula of L and v is a global variable, then VvA is a formula of L.

• If A and B are formulas of Z(#).)(Z/), then (A U B) is a formula of £(#j.)(£/).

• If A, B, and C are formulas of LSD[I), then (A Xl..^„-S- yi...ykB) is a formula of
-ksr» [-0? where «i,..., xn and yi,...,r/k are (possibly empty) strings of program vari-
ables. This formula is a state delta with precondition A, postcondition B, and invari-
ant C.

Note that in the SDVS transcripts in Section 6.3 a state delta of the above form will be
written as

[sd pre: A
comod: x\... xn

mod: y\...yk
inv: C
post: B]

Any degenerate fields are simply omitted, e.g. if the comod is empty or the inv is true.

4.2 Semantics

Let M be a temporal structure (recall Definition 1.) M determines an evaluation VM that,
for every pair of times ti and t2 of T such that t\ < f2, maps every term r of L to an element
VM(ti,t2,T) of the universe of A, and every formula A of I to a truth value VM(t1,t2,A)
of the boolean algebra < {t,f}; A, V, -i >.

Evaluation of Terms

Base Case: For every global variable v, VM(tut2,v) = S(v). For every program vari-
able x, VM(tx,t2,.x) = a(tux) and VM(tut2,#x) = a(t2,x).

Step Case: For every term /(rx.. .rn),

VM(tl,hJ(T1...Tn)) = f(VM(l1,t2,T1)...V
M(t1,t2,Tn))

10

Evaluation of Formulas

Base Case: For the prepositional constant true, VM(<i,t2,true) = t. For every other
atomic formula p{r\ .. .r„),

VM(t1,h,p(r1...rn)) = p(VM(t1,t2,T1)...V
M(t1,t2,rn))

Step Case: Let A be a formula of X(#>.)(W). We assume that VM*{f\,a7,D) has been
defined

• for every proper subformula D of A,

• for every pair of times t^ and t2 of T such that t[< t'2\ and

• for every temporal structure M* =« T,<>,E*,o- >, where S* is any evaluation of
the global variables of L.

We now consider the various cases for A.

• If A = (B A C), then VM(h,t2, A) = VM(h,t2,B)AVM(tut2,C).

• EA = ^B, then VM(h,t2,A) = -VM(t1,t2,B).

• IS A = VvB, then VM(h,t2, A) = t iff for every

S* : GlobalVars ->\A\

such that £*(«>) = £(tu) for every global variable w ^ v, if

M*=«T,<>,E*,<7>

then VM'(h,t2,B) = t. Otherwise, VM{h,t2,A) = f.

• If A = (JBWC), then FM(ii,t2, A) = t iff VM(i2,i2,.B) = t and there is a*3 in T such
that *3 > t2, V

M(t2,t3,C) = t, and for all f in [*2,*3), VM(t2,t*,B) = t. Otherwise,
VM(t1,t2,A) = f.

• J£A = (B Xl..jzn'
i*yi...ykC), then VM(tut2r A) = t iff for every t3 > t2 such that the

values of the program variables x-i,...,xn remain constant in the time interval [t2, t3]
and VM(t3,t3,B) = t, there is a time t± > t3 such that only the program variables
3/1? • • • ? Vk may change their value in the time interval [£3, £4], and

- VM(t3,U,C) = t,

-VM(t3,t3,I) = t,

- for every time t in [<3,t4), VM(t3,t,I) = t.

Definition 3 Let A be a formula of L, M a temporal structure, and ti <t2 a pair of times
ofT. Then M{h,t2) |= A iffVM(tut2,A) = t.

11

4.3 Definable Extensions of L

The boolean connectives V and ->, and the existential quantifier 3, are defined for L in the
usual way. Henceforth, we assume that all is a canonical string consisting of all program
variables X\ ...£„, and if s = y\.. .yn is any string of program variables, then there is a
canonical string, — s = zx .. ,zm, of program variables that lists the program variables that
do not appear in s.

Definition 4 Let A be a formula of L, s = y\. ..yn be any string of program variables, and
all — s = z\...zm.

• Ow...»^ = (((#«1 = .2iA...A#2ro = .zm)) U ((#*! = .zx A... A #zm = .zm) A A))4

for the language L^^(lf), and

• ®yi-ynA — (true ajr^yi...ynA) for the language LSD\I)-

• OA = OaiiA = 0Xl...XnA,

• nyi-yn
A = -*<>yi...yn-'A> and

• UA = -.O-iA.

The semantics for these extensions are, of course, fixed by their definitions, but they are
what one would expect. For example, if M is a temporal structure and ii < t2 are times
in T, then M(h,t2) |= ^yi...ynA iff for every t3 > i2, if the value of every program variable
that is not in the set {y,- : 1 < i < n] remains constant in the time interval fo)^]? then
M(t2,t3)\=A.

A formula A of L has an upper-level dot (pound) if it contains an occurrence of a term of
the form .x (#x) that is not in the scope of a temporal operator of L. We note the following
simple fact:

If a formula A of L has no upper-level dots, then for every temporal structure M and times
h < t2 of T,

M(tut2) N A <-► M(t2,t2) \= A

In this case we write (M,t2) \= A.

We also note without proof that LSD[I) is equivalent to i(#i.)(W) [4].

4If TO = 0, we take the invariant of the until to be true and the "eventually" formula to be A.

12

5 Proofs of Safety in SDVS

In this section we give a simple concurrent program, its translation, and the statement of
two safety properties in the intermediate language I(#).)(W). The proof commands and
transcripts of the proofs will be included in the next section.

This example is drawn from [8]; it was analyzed in [9] and proved in [10].

Program F
declare x : integer
declare y : integer
loop
assign

(y := -y if x < 0 A y > 0) || (x := x - 1)
end {F}

The variables x and y have some input value at the time this parallel program begins to
execute. The symbol || separating the parallel branches has the (liveness) semantics that
both branches get executed infinitely often, at "random" times, and perhaps simultaneously.
This requires slightly more care: we mean that for each time when one branch gets exe-
cuted, there is a later time when the other branch gets executed. There is no requirement
about the relative frequency of execution of the two branches over the space of all possible
computations.

Looking at the left-most parallel component, that involving y, note that the above condition
on execution guarantees only that the test will be evaluated at arbitrary times; if the test
is true, then at some later time the assignment to y will be performed. It is not necessarily
the case that at every time, if the test is true at that time, then the assignment will be
made at some later time.

Also, the (safety) semantics determine that the following two properties hold:

• If y is ever < 0, then y < 0 thereafter.

• x is weakly decreasing, i.e., the value of x is never greater than it was at a previous
time.

Our translation of the program is the conjunction of Si, S2, and 55 below, where

So : (#* < 0 A #y > 0) - (#» =.yU#y = -.y)

Si : DOsSo

S2 : D(#z = .xU#x = .x-l)

S5 : □-!([-!(#* < 0 A #y > 0) V -.So] U #y ± .y)

13

Si describes when y changes, and S2 does the same for x. S$ regulates the change in y by
forcing any change in y to be due to 5o- No similar requirement need be placed on x.

The safety property that uy ^ 0 is stable" can be represented as

56: D(#^0-*□#?#())

and similarly for y < 0

S7: D(#y < 0 -*■ ö#y < 0)

The fact that "x never increases" can be written as

Ss : °(#z < a -► D#x < a)

or equivalently,

□D#i < .ar

(however, the former gives a more direct translation to state deltas).

The theorem representing the safety properties of the above program is

Theorem 5 Sx A S2 A S5 -*■ S6 A S7 A 58

We discuss only two parts:

Theorem 6 S2 -* 58

and

Theorem 7 S5-> S7

The proof of 56 is more difficult and will not be considered here.

The correspondences between 52, S5,57, and S8 and their state delta representations 52, s5, si
and 58 are given below.

s2:

[sd pre: (true)
mod: (all)
inv: (#x = .x)

post: (#x = .x - 1)]

s5:

[sd pre: (true) post: ("(formula(pi)))]

14

pi:

[sd pre: (true)
comod: (all)
nod: (all)
inv: C(#x le 0 ft #y gt 0) or "(lormula(sO)))

post: C(#y = .y))]

s0:

[sd pre: (.x le 0,.y gt 0)
comod: (x,y)

mod: (x,y)
inv: (#y = .y)

post: (#y = -.y)]

s7:

[sd pre: (.y It 0) post: (formula(ql))]

ql:
[sd pre: (true) post: (#y It 0)]

sS:

[sd pre: (.x le a)
post: (formula(x.always.le.a))]

i.always.le.a:

[sd pre: (true) post: (#x le a)]

15

6 SDVS Proof Commands and Transcripts

In this section we give the SDVS proof commands corresponding to the Negation Rule
and the w-Induction Rule, and give the transcript of the SDVS proof of Theorems 6 and
7. We do not intend the transcripts to be totally intelligible, since full explanation of all
that is involved would take us too far afield. They are presented here more as a "proof of
existence." The SDVS Users' Manual [?] contains all the details needed to follow theproof
traces.

6.1 The Negate Command

In this section we note the circumstances in which the negate command is invoked and the
results of its invocation. Suppose that at a certain stage of a proof ->S is known to be true
by the system, where S is the state delta

Then upon the user's invocation of the negate command with S as its argument, SDVS
prompts the user for the names of the three formulas that it will create and insert in the
postcondition of the negated state delta. Specifically, SDVS will create and assert the
following state delta S*:

(true air^-c(p[#/-] A (formula(orl) V formula(or2) V f ormula(orZ))

where

• formula(orl) = (True -m'^%~,q*)

• formula(or2) = ->![#/.]

• formula(orZ) = (True ajp39 m(-<I A -iq))

• "orl", "or2", and "or3" are the names for the formulas given by the user;

• for any formula s, s[#/.] is obtained from s by replacing all upper-level dotted places
in s by the corresponding #'s; and

• q* is obtained from q by replacing all upper-level dotted places in q by their symbolic
values. For example, if q = ((#x = .y + 1) A a), where a is a state delta, then q*
would have the form ((#x = yl23 + 1) A a), where j/123 is the symbolic value of .y.

The state delta S* asserts that there is a future time t\ such that the value of every place
in c remains constant between now and t\, p is true at ii, and either

• q is false at every time t > t\ such that the value of every place in the complement of
m remains constant in the interval [ti,t], or

17

• the invariant I is false at t\, or

• there is a time ti > t\ such that the value of every place in the complement of m
remains constant in the interval [ti,^]) the invariant I is false at t^, and q is false in
the interval [ti,^].

6.2 The Omegainduct Command

If omegainduct is used in the course of a proof, the user must enter the "always formula,"
a, and the "auxiliary formula," /?, as parameters. The "always formula" a is the formula
that will be asserted to be henceforth true. The purpose of the "auxiliary formula" is to
allow the induction to proceed over loop bodies that are generated by the SDVS program
translators. In these cases, the "auxiliary formula" is intended to be the state delta that
asserts that execution is at the top of the loop. The form of the state deltas that are
generated by the translators must be altered to allow proofs that involve the omegainduct
command in these circumstances. This capability has not yet been implemented in SDVS
and will not be discussed in this paper. If the user does not enter an auxiliary formula, the
system assumes that the formula is "true."

After the "always" and "auxiliary" parameters have been added, SDVS opens the proof of
the base-case of the induction, (true a»~*0O A ß). Once the user proves the base case state
delta, SDVS opens the proof of the step-case state delta

(true 0~»j)/>)

where p is the state delta
(aA/?«ir^.«a[#/.!A/3[#/.])

and where I is a[#/.]. Once the the step-case state delta has been proved as well, SDVS
asserts the state delta (true 0~»0a:[#/.]) at the state at which the omegainduct command
was given.

18

6.3 Transcripts of Proofs

In this section we present the proofs of the two safety properties. The following transcripts
include the proof commands (marked with asterisks), interspersed with query commands
for readability.

First the proof of Theorem 6, called safety 1 below, using negate.

safety1:

[sd pre: (formula(s5) ,covering(all,x,y))
post: (formula(s7))]

* sdvs.l prove
sd: safety 1
proof []:

open - [sd pre: (formula(s5)Icovering(all,x,y))
post: (formula(s7))]

Complete the proof.

* sdvs.1.1 prove
sd: s7
pro of [J:

open - [sd pre: (.y It 0)
post: (formula(ql))]

Complete the proof.

sdvs. 1.1.1 simp
expression: .y It 0

sdvs.1.1.1 usable

u(l) [sd pre: (true)
post: ("(formula(pl)))]

No usable quantifiers.

* sdvs. 1.1.1 apply
sd[highest applicable]:
pro of Q:

apply - [sd pre: (true)
post: ("(formula(pl)))]

* sdvs.1.1.1 negate
state delta : pi
formula name #1: dial
formula name #2: dU2
formula name #3: dis3

inserting negated state delta -
[sd pre: (true)

comod: (all)
mod: (diff(all,all))

post: (#y = y6166,true,

([sd pre: (true)
comod: (diff(aU.all))
post: (-(C(#y = y6166))))])

-(-(#x le 0 & #y gt 0) or
"(([sd pre: (.x le 0,.y gt 0)

comod: (x,y)
mod: (x,y)

19

sdvs.1.1.2 pp
this: disl

inv: (#y = .y)
post: (#y = -y)])))

([sd pre: (true)
comod: (all)

mod: (all)
inv: C(C(#y = .y))))

post: ("("(#x le 0 & #y gt 0) or
"(formula(sO))),
-((-(#y = .y))))]))]

formula disl: [sd pre: (true)
comod: (diff(all,all))
post: ("((-(#y = y6166))))]

sdvs.1.1.2 pp
this: dis2

formula dis2: "("(-x le 0 k .y gt 0) or
"(([sd pre: (.x lc 0,.y gt 0)

comod: (x,y)
mod: (x,y)
inv: (#y = .y)

post: (#y = -.y)])))

sdvs.1.1.2 pp
this: dis3

formula dis3: [sd pre: (true)
comod: (all)

mod: (all)
inv: C((-(#y = .y))))

post: ("("(#x le 0 & #y gt 0) or -(formula(sO))),
'((-(#y = -y))))]

sdvs.1.1.2 usable

u(l) [sd pre: (true)
comod: (all)

mod: (diff(all,all))
post: (#y = y6166,true,

([sd pre: (true)
comod: (diff(all,all))
post: ("((-(#y = y6166))))])

-(-(#x le 0 & #y gt 0) or
"(([sd pre: (.x le 0,.y gt 0)

comod: (x,y)
mod: (x,y)
inv: (#y = .y)

post: (#y = -.y)])))

([sd pre: (true)
comod: (all)

mod: (all)
inv: ("((-(#y = .y))))

post: CC(.#* le 0 & #y gt 0) or
-(formula(sO))),

"((-(#y = -y))))]))]

u(2) [sd pre: (true)
post: (-(formula(pl)))]

* sdvs.1.1.2 apply
sd [highest applicable]:
prooffj:

apply - [sd pre: (true)
comod: (all)

mod: (diff(all,all))
post: (#y = y6166,true,

([sd pre: (true)
comod: (difT(aU,aU))
post: C(C(#y = y6166))))])

20

-(-(#x lc 0 & #y gt 0) or
-(([sd pre: (.x le 0,.y gt 0)

comod: (x,y)
mod: (x,y)
inv: (#y = .y)

post: (#y = -y)])))

([sd pre: (true)
comod: (all)

mod: (all)
inv: C((-(#y = .y))))

po»t: (-('(#3t le 0 & #y gt 0) or
"(formula(sO))),

-(C(#y = -y))))]))]

non-trivial propagations - ([sd pre: (true)
comod: (diff(aU,all))
post: (*((-(#y = y6166))))])

([sd pre: (true)
comod: (all)

mod: (all)
inv: C((-(#y = .y))))

post: ("("(#* le 0 & #y gt 0) or
"(formula(sO))),

'((-(#y = -y))))])

sdvs.l.1.2 pp
this: dis2

formula dis2: *("(-x le 0 & .y gt 0) or
"(([sd pre: (.x le 0,.y gt 0)

comod: (x,y)
mod: (x,y)
inv: (#y = .y)

post: (#y = -.y)])))

* sdvs.l.1.2 meases
number of cases: 2

1st case: formula(disl)
pro of Q:

2nd case: formula(dis3)
proofQ:

meases - 2

open - [sd pre: (formula(disl))
comod: (all)
post: ([sd pre: (true)

post: (#y It 0)])J

* sdvs.l.1.2.1.1 prove
sd: ql
proofQ:

open - [sd pre: (true)
post: (#y It 0)]

Complete the proof.

sdvs.l. 1.2.1.1.1 usable

u(l) [sd pre: (true)
comod: (diff(all,all))
post: C(C(#y = y6166))))]

u(2) [sd pre: (true)
post: ('(formula(pl)))]

* sdvs.1.1.2.1.1.1 apply
sd [highest applicable]: u
number: 1
proofQ:

apply - [sd pre: (true)
comod: (diff(all,all))
post: r(C(#y = y6166))))]

close - 0 steps/applications

21

dose - 1 steps/applications

open - [sd pre: (formula(dis3))
comod: (all)
post: ([sd pre: (true)

post: (#y It 0)])]

Complete the proof.

sdvs.1.1.2.2.1 usable

u(l) [sd pre: (true)
comod: (all)

mod: (all)
inv: C((-(#y = .y))))

post: ("("(#x le 0 ic #y gt 0) or -(formula(sO))),
'((-(#y = -y))))l

u(2) [sd pre: (forxnula(disl))
comod: (all)
post: ([sd pre: (true)

post: (#y It 0)])]

u(3) [sd pre: (true)
comod: (all)

mod: (diff(all,all))
post: (#y = y6166,true,

([sd pre: (true)
comod: (diff(all,all))
post: C((-(#y = y6166))))]) or

-(-(#x le 0 & #y gt 0) or
"(([sd pre: (.x le 0,.y gt 0)

comod: (x,y)
mod: (x,y)
inv: (#y = .y)

post: (#y = -.y)]))) or
([sd pre: (true)

comod: (all)
mod: (all)
inv: ("((-(#y = .y))))

post: ("C(#x le 0 & #y gt 0) or
""(lbrmula(sO))),

-((-(#y = .y))))]))]

u(4) [sd pre: (true)
post: ("(formula(pl)))]

No usable quantifiers.

* sdvs.1.1.2.2.1 apply
sd[highest applicable]: u
number: 1
proofQ:

apply - [sd pre: (true)
comod: (all)

mod: (all)
inv: (-(C(#y = .y))))

post: ("C(#x le 0 & #y gt 0) or
"(formula(sO))),

"((-(#y = .y))))]

The postcondition of the last applied state delta is inconsistent
with the current state.

close - 0 steps/applications

join - [sd pre: (formula^disl) or formula(dis3))
comod: (all)
post: ([sd pre: (true)

post: (#y It 0)])]

close - 2 steps/applications

close - 1 steps/applications

22

Now the proof of Theorem 7, below called safety2, using omegainduct.

safety2:

[sd pre: (covering(all,x,y) ft formula(s2))
comod: (all)
post: (iomrala(s8))]

* sdvs.l prove
state deltaQ: safety2
proofQ:

open - [sd pre: (covering(all,x,y) & formula(s2))
comod: (all)
post: (formula(s8))]

Complete the proof.

* sdvs.1.1 prove
state deltaQ: s8
proof []:

open - [sd pre: (.x le a)
post: (formula(x.always.le.a))]

Complete the proof.

sdvs.l.1.1 usable

u(l) [sd pre: (true)
mod: (all)
inv: (#x = .x)

post: (#x = .x - 1)]

No usable quantified formulas.

* sdvs.l. 1.1 omegainduct
always-formulas: .x le a

auxiliary-formulasQ:
base pro of Q:
step proofQ:

omegainduct ion on - (.x le a)

open - [sd pre: (true)
comod: (all)
post: (.x le a,true)]

close - 0 steps/applications

open - [sd pre: (true)
post: ([sd pre: (.x le a,true)
comod: (all)

mod: (all)
inv: (#x le a)

post: (#all "= -aU,#x le a.true)])]

Complete the proof.

sdvs.l.1.1.2.1 goals

g(l) [sd pre: (.x le a.true)
comod: (all)

mod: (all)
inv: (#x le a)

post: (#all "= -aU,#x le a.true)]

* sdvs.l.1.1.2.1 prove
state deltaf]: g

number: 1
proofQ:

open - [sd pre: (.x le a,true)
comod: (all)

mod: (all)
inv: (#x le a)

post: (#all *= .all.#x le a.true)]

comment - prove the invariant of the state delta to be proven

23

open - [sd pre: (true)
comod: (&11)
post: (#x le a)]

close - 0 steps/applications

Complete the proof.

sdvs.1.1.1.2.1.2 usable

u(l) [sd pre: (true) comod: (all) post: (#x le a)]

u(2) [sd pre: (true)
mod: (all)
inv: (#x = .x)

post:(#x = .x-l)]

No usable quantified formulas.

* sdvs.l. 1.1.2.1-2 apply
sd/number[highest applicable/once]: u

number: 2

comment - prove the invariant prior to the application

open - [sd pre: (.x = x"12)
comod: (all)
post: (#x le a)]

close - 1 steps/applications

apply - [sd pre: (true)
mod: (all)
inv: (#x = .x)

post: (#x = .x- 1)]

close - 1 steps/applications

close - 1 steps/applications

assert always formula
- [sd pre: (true) post: (#x le a)]

close - 1 steps/applications

close - 1 steps/applications

sdvs.2 usable

u(l) [sd pre: (covering all,x,y) &: formula(s2))
comod: (all)
post: (formula(sS))]

No usable quantified formulas.

24

7 Conclusions

Proofs of typical safety properties of programs in temporal-logic-based systems can be
facilitated by the use of two proof rules: the Rule of Negation and the w-Induction Rule.
We have shown that each of these rules is valid only on timelines of certain order types;
the joint use of these two rules is valid only on timelines that are finite, or ordered like the
natural numbers.

We have demonstrated the use of these rules by giving proofs of safety properties of a simple
concurrent program in the State Delta Verification System (SDVS).

25

References

[1] F. Kroger, Temporal Logic of Programs, (Springer-Verlag, 1987). EATCS Monographs
on Theoretical Computer Science, Volume 8.

[2] E. A. Emerson, "Temporal and Modal Logic," in Handbook of Theoretical Computer
Science (ed. J. van Leeuwen), pp. 995-1072, (Elsevier Science Publishers B. V., 1990).

[3] J. V. Cook, I. V. Filippenko, B. H. Levy, L. G. Marcus, and T. K. Menas, "Formal
Computer Verification in the State Delta Verification System (SDVS)," in Proceedings
of the AIAA Computing in Aerospace Conference, (Baltimore, Maryland), pp. 77-87,
American Institute of Aeronautics and Astronautics, October 1991.

[4] T. K. Menas, "The Relation of the Temporal Logic of the State Delta Verification
System (SDVS) to Classical First-Order Temporal Logic," Technical Report ATR-
90(5778)-10, The Aerospace Corporation, 1990.

[5] IEEE, VHDL Language Reference Manual, draft standard 1076/B ed., May 1987.

[6] I. V. Filippenko, "VHDL Verification in the State Delta Verification System (SDVS),"
in Proceedings of the 1991 International Workshop on Formal Methods in VLSI Design,
(Miami, FL), ACM, January 1991.

[7] R. Alur and T. A. Henzinger, "A Really Temporal Logic," Technical Report STAN-
CS-89-1267, Stanford University, 1989.

[8] K. M. Chandy and J. Misra, Parallel Program Design: A Foundation, (Reading, Mas-
sachusetts: Addison Wesley, 1988).

[9] L. Marcus, "The Semantics of Concurrency in SDVS," Technical Report ATR-89(8490)-
4, The Aerospace Corporation, 1989.

[10] T. K. Menas, "A Proof of a Safety Property of a Concurrent Program Using the State
Delta Verification System (SDVS) with Invariants," Technical Report ATR-90(5778)-9,
The Aerospace Corporation, 1990.

[11] L. Marcus, "SDVS 10 Users' Manual," Technical Report ATR-91(6778)-10, The
Aerospace Corporation, 1991.

27

