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PREFACE 

The work reported here was performed in the Optical and IR Science Laboratory of 

the Advanced Concepts Division (which is now the Electro-Optics Laboratory), the 
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Office of Naval Research (ONR), Boston, Contract No. N00014-93-C-0093, funded 

from the Innovative Science and Technology Office of the Strategic Defense Initiative 

Office (SDIO/IST). The project monitors at ONR were Dr. Robert Mongeon, Mr. 

William Miceli, and Dr. William Stachnik. 

This final report covers work performed from June 1993 to July 1994. The 

principal investigator was Dr. James R. Fienup. Additional contributors to this work 

also included Dr. Jack N. Cederquist, Ms. Ann M. Kowalczyk, Dr. Joseph C. Marron, 

Dr. Richard G. Paxman, Mr. Kirk S. Schroeder, and Ms. Joy E. VanBuhler. 
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1 INTRODUCTION AND OVERVIEW 

This report describes an effort to examine a variety of unconventional imaging 

experiments that could be carried out at the Innovative Science and Technology 

Experimental Facility (ISTEF) at Cape Canaveral, FL. These unconventional imaging 

modalities all share the following attributes: they are based on illuminating a target by a 

laser and detecting the reflected light in a non-imaged (pupil or aperture) plane, as 
illustrated in Figure 1-1. This allows for a very light-weight, rapidly steerable, 
inexpensive receiver capable of very fine resolution. Such imaging approaches could 
have a large impact for such applications as theater missile defense, interceptor updates, 
surveillance, and medical imaging. The imaging approaches we studied include 
heterodyne array imaging, quasi-heterodyne imaging, laser correlography, and a new 

imaging modality: 3-D imaging by phase retrieval using an opacity constraint. 

Filled array 
= expensive 

OO   O     o o o Sparse array 
Atmosphere/0   o   o = affordable, 
— o ° o o    lightweight 

Detector array 
in aperture plane 

Computer 
Processing 

Laser 

Figure 1-1. Unconventional Aperture-Plane Imaging with Lasers. 

Under this effort we accomplished the following. 



We planned sparse-array unconventional imaging experiments for ISTEF. We 

outlined experimental considerations for experiments to demonstrate imaging with 

sparse arrays of heterodyne receivers. Our plans are described in Section 2. 

Through computer simulations we demonstrated the trade-off between the number 

of sparse-array subapertures and the number of speckle realizations for heterodyne 

array imaging and imaging correlography. We showed that when imaging a low- 

contrast, extended target with sparse arrays, many dozens or hundreds of speckle 

realizations are required for good-quality imagery, whereas for a target consisting of 

only a few bright points, only a few speckle realizations are required. This is described 

in Section 3. 

We developed two new algorithms for phasing sparse arrays of heterodyne 

receivers, which no previous algorithms could do without additional information. 

These algorithms would correct for phase errors due to both heterodyne-receiver local- 

oscillator path-length errors and atmospheric turbulence. One of the algorithms is 

based on the iterative transform algorithm using a support constraint, and the other is 

an image sharpening algorithm. Section 4 gives derivations of the algorithms and shows 

successful phase-error correction results on computer-simulated data. 

We performed analysis of near-ground atmospheric turbulence and derived limits of 

field-of-view and detector sizes for the 1 km and 10 km ranges at ISTEF. We found the 

most limiting factor to be anisoplanatism. This is described in Section 5. 

We analyzed a multiple-wavelength data-collection system for use with 3-D phase 

retrieval with an opacity constraint. We performed computer simulations of 3-D 

(angle-angle-wavelength) laser intensity data, developed a phase retrieval algorithm 

using an opacity constraint, and demonstrated image reconstruction from the simulated 

data. This represents the first demonstration of this novel 3-D imaging concept. This is 

described in Section 6. 
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We set up a laboratory experiment and gathered quasi-heterodyne data with multiple 

speckle realizations and successfully processed the data into an image. This is described 

in Section 7. 

We invented a new, efficient, deterministic sparse-array design, called the "arrow," 
which fills optical transfer function (OTF) space with a very small number of 
subapertures and is scalable to any arbitrary array size. It and a companion that gives 

double redundancy in OTF space are described in Section 8. 

We analyzed a novel sensing method for gathering data with a CCD array that is in 

an intermediate plane that is in neither a focal plane nor in a plane conjugate to the 

pupil plane. This allows us to perform pupil-plane detection while simultaneously 
obtaining some background suppression by limiting the field-of-view, and optimally 

trading off these two aspects. 

To make this report more self-contained and to avoid the need for extensive review 
material within the main body of the report, we have included, as Appendix A, a 
description the theory behind most of the imaging modalities analyzed in this report. It 
is from J.R. Fienup, "Unconventional Imaging Systems: Image Formation from Non- 

imaged Laser Speckle Patterns," in Emerging Systems and Technologies. S.R. 

Robinson, Ed., Vol. 8 of The Infrared & Electro-optical Systems Handbook. (ERIM, 

Ann Arbor, 1993), Chapter 1.5, pp.92-109. A reader unfamiliar with pupil-plane laser 

imaging modalities would benefit from reading Appendix A first. 

References are at the end of each section. 

Portions of this effort are described in the following presentations and publications. 

We have included as Appendices B, C, and D the first three, which have appeared as 

proceedings papers. 

J.R. Fienup, A.M. Kowalczyk and J.E. Van Buhler, "Phasing Sparse Arrays 

of Heterodyne Receivers," presented in Orlando, Fla., and published in Proc. 
SPIE 2241-15. Inverse Optics III (April 1994), pp. 127-131. 
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R.G. Paxman, J.H. Seldin, J.R. Fienup, and J.C. Marron, "Use of an Opacity 

Constraint in Three-Dimensional Imaging," presented in Orlando, FL, and 
published in Proc. SPIE 2241-14. Inverse Optics in (April 1994), pp. 116- 

126. 

J.C. Marron and R.G. Paxman, "Pulsed Heterodyne-Array Imaging," 

presented in Orlando, FL, and published in Proc. SPIE 2241-13. Inverse 

Optics in (April 1994), pp. 111-115. 

J.R. Fienup, "Phasing Distributed Arrays of Heterodyne Receivers," presented 

to the Annual Meeting of the Optical Society of America, Dallas, TX, October 

1994. 

J.C. Marron, J.R. Fienup, and R.G. Paxman, "Unconventional 3-D Laser 
Imaging," submitted for presentation to Lasers '94, Quebec, Canada, 

December 1994. 
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2 PLAN FOR FIELD EXPERIMENTS 

We envision a set of four major experimental thrusts to be performed at ISTEF: (1) 

direct-detection imaging, (2) short-range distributed heterodyne array imaging, (3) 3-D 

imaging, and (4) long-range imaging. Each major experiment would build on the 
infrastructure and knowledge resulting from the previous experiments. The 
relationships among these experiments are illustrated in Figure 2-1. They are described 

briefly in the Section 2.1 and in more detail in Section 2.3. 

Figure 2-1. Illustration of the Relations Among the Major Sets of Experiments (boxes). 
The ovals show how infrastructure capabilities will be introduced to enable each new 
set of experiments in the experimental sequence. 

2.1 FOUR PLANNED  EXPERIMENTS 

In our first major set of experiments, we would reconstruct high-quality images 
from speckle data collected at the 1 km range at ISTEF. These speckle data would be 
collected using a speckle camera - a high-quality detector array in the reimaged pupil 

plane of a telescope. This initial sensor, which would be constructed and demonstrated 
in Years 1 and 2 of the effort, would allow us to demonstrate image formation by 
modalities such as imaging correlography and coherent-imaging by phase retrieval. A 
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further goal of these experiments is to determine our ability to measure key target 

parameters such as size, rotation rate, and rotation axis, and to answer a variety of 

other science questions. The activities with the speckle camera would go on throughout 

the three years of the program. 

The second major set of experiments would involve the demonstration of imaging 

with a distributed array of heterodyne receivers. These experiments would be 

performed in Years 1 and 2. The eight heterodyne receiver elements built by CREOL 

would be arranged in a sparse (quasi-non-redundant) 1-D array. Imaging experiments 

would be performed using target rotation to synthesize the second dimension of the 

receiver aperture. Experiments would also be conducted with the array elements in a 

non-redundant 2-D array. We would conduct these experiments at the 1 km and 3 km 

ranges at ISTEF in cooperation with other contractors. To obtain meaningful imagery 

in Year 2 experiments with non-synthetic apertures, a 32-element array of receiver 

elements would be built. In Year 1 of the program, contractors would produce a high- 

performance, cost-effective design that would be the key to an affordable array of this 

size. These experiments would make use of knowledge from the previous stages of the 

program. 

A third set of experiments, conducted primarily during Years 2 and 3, would be 

designed to examine a technique for 3-D imaging. We refer to the 3-D imaging method 

as Phase Retrieval with an Opacity Constraint for LAser IMaging (PROCLAIM). This 

technique relies on measurement of the speckle patterns recorded at a series of 

wavelengths. A tunable illumination source would be added to the ISTEF experimental 

suite to perform these experiments. The speckle camera would be used to record 

speckle patterns at a series of wavelengths. An algorithm invented at ERIM that makes 

use of an opacity constraint would be tested for the reconstruction of 3-D images. 

These experiments would build upon the experience gained in the speckle camera 

experiments. 

Long-range imaging experiments would comprise the final set of experiments in this 

program. These experiments would be begun during Year 1 and performed primarily 

during Years 2 and 3. They would use the imaging modalities developed earlier in the 



program, with emphasis on the 32-element array of heterodyne receivers. Carefully 

controlled experiments would be designed to perform imaging at ranges of from 10 to 

100 km. Potential targets include tethered balloons, manned or unmanned aircraft 

flying dedicated paths over the ISTEF range, and sounding rocket borne payloads, such 

as balloons. Each of the receivers developed during the previous phases of the program 

would be modified and used for these experiments. 

At each stage, the imaging testbed would build upon the previous stages, both 

conceptually and using, to the extent possible, previously acquired hardware. 

Furthermore, at each stage we would be exploring science questions (described earlier), 

and so each year's effort would result in tangible accomplishments as well as building 

toward the further stages 

The ultimate goal of the experiments is to image distant targets. However, for the 

less-mature direct-detection imaging modalities we would start with receiver 

characterization locally and then experiments indoors at ISTEF before moving to the 

outside range. Then as the imaging modalities mature, we would perform experiments 

on the ISTEF outdoor 1 km range and later employ longer up-looking paths using 

manned or unmanned aircraft, weather balloons, or sounding-rocket payloads as 

targets. 

In parallel with the experimental effort, we would perform extensive analysis, 

computer simulations, and algorithm development. We would predict received light 

levels, calculate signal-to-noise-ratios, and derive information-theoretic Cramer-Rao 

lower bounds on performance. We would also analyze the advantages and disadvantages 

of sparse arrays over filled arrays. Simulations would include laser power and 

coherence properties, solid modeling of three-dimensional targets, modeling target 

surface scattering, polarization effects, atmospheric turbulence (including phase errors, 

scintillation, and anisoplanatism), receiver aperture configuration, background light, 

detector area and efficiency, and receiver noise. We would reconstruct images from 

simulated data and measure their quality (rms error, resolution) to predict the 

performance of any given imaging scenario. The analyses and simulations would define 

the expected performance of the candidate imaging modalities. The results of the 



analysis and simulation efforts would be readily applicable to a wide range of imaging 

modalities and scenarios. The experiments would provide data points that would either 

confirm the analyses and simulations or cause us to refine them so that we can more 

accurately predict actual performance. Algorithm development would include 

optimizing sparse-array design algorithms, phasing-up algorithms, and phase retrieval 

algorithms, and investigating the use of new approaches such as genetic algorithms. 

We also considered other possible sets of experiments, including sparse-array direct- 

detection experiments and quasi-heterodyne experiments. For both of these we decided 

that, given budgetary considerations, they had lower priority and would yield less 

significant results than the four experiments outlined above. Both of these experiments 

would be beneficial as precursors to the sparse heterodyne array experiments. 

However, since the sparse heterodyne array experiments could take place at an early 

date, there is less need for the sparse-array direct-detection experiments. The sparse 

array of heterodyne receivers can provide similar data as the sparse-array direct- 

detection experiments by simply discarding the phase information. Similarly, the 

speckle-camera experiments can provide similar data as the sparse-array direct- 

detection experiments by simply discarding the information from most of pixels in the 

CCD array. In that way the speckle camera can explore the effect of many different 

sparse array patterns from a single filled array of data. Many aspects of the quasi- 

heterodyne array experiments can also be covered by either the speckle camera 

experiments or the sparse heterodyne array experiments. However, the quasi- 

heterodyne experiments would have allowed for testing a variety of sparse array 

patterns in a much more efficient manner. From one set of filled-aperture quasi- 

heterodyne data we could, by processing selected groups of pixels from the array, try 

out many different sparse-array patterns. 

Section 2.3 give additional details of the experimental plan. 

2.2 SCIENCE  QUESTIONS 

Much of the effort in the planned experiments would entail the fabrication, 

assembly, and testing of the optical, mechanical, and electronic equipment, integrating 



it at the ISTEF site, and performing imaging experiments. In addition, we would 

conduct experiments that would address numerous scientific questions. Some of them 

are as follows. 

Imaging Performance The most important question is: what is the performance of a 

variety of active imaging modalities employing sparse, distributed arrays of detectors. 

We would determine the trade-off between array sparsity, number of speckle 

realizations, and laser power. 

Target Effects What are the effects of the target on the received speckle pattern and on 

the image? In particular, what is the effect of target flexure and of multiple targets in 

the field of view rotating at different angular rates. What is the effect of target size, 

shape, and texture on its spatial power spectrum and on the quality of an image of it? 

What is the effect of the target geometry and surface microstructure on polarization? 

Target Parameter Estimation Short of reconstructing an image, how well can we 

determine target diameter and other target characteristics from the aperture-plane 

speckles? How can we optimally estimate target motion from the motion of the detected 

speckles? 

Atmospheric Effects How does imaging performance correlate with the degree of 

atmospheric turbulence (for both the illumination and the backscattered light)? What is 

the effect of anisoplanatism on imagery, and how can it be overcome? How much must 

we reduce the back-scattered light from aerosol scattering, and to what degree do 

various approaches (such as using a finite bistatic angle, range gating, spectral filtering 

and spatial filtering) or a combination of approaches reduce it? What laser pulse 

duration is needed to adequately freeze the atmosphere for different imaging paths? 

Illuminator What is the effect of partial coherence of the laser? What wave forms are 

optimal for the different imaging modalities? 

Array Pattern What is the effect of the configuration of a sparse array? In particular, 

how sparse can the receiver array be while still achieving good image quality? How 



important is it that the autocorrelation of the array pattern fill Fourier ("u-v") space? 

What spatial frequencies are most critical to preserve? What geometric properties are 

desirable in the configuration of a sparse array? 

Other For operation during daylight hours, how much suppression of sunlight reflected 

from the object, and scattered in the atmosphere, is needed? What is the value of a 3-D 

signature relative to a 2-D signature? 

2.3 EXPERIMENTAL PLAN DETAILS 

In what follows we give more detailed plans for the experiments at ISTEF that were 

outlined in Section 2.1. 

2.3.1 Speckle Camera Direct Detection Experiments 

We suggest a program that would begin with direct detection experiments. Direct 

detection in the aperture plane has two primary features that make it attractive for 

imaging experiments. First, it is several times less expensive to perform direct 

detection imaging than to use an array of heterodyne receivers and, second, direct 

detection imaging is not as sensitive to atmospheric phase errors because intensity 

detection is employed. In addition, direct detection offers flexibility for proving 

imaging concepts, evaluating performance versus parameters such as aperture fill, and 

analyzing science issues. To support the development of unconventional imaging, we 

would construct a speckle camera and conduct direct detection experiments with it. In 

the sections below we give a program approach for this activity. 

2.3.1.1 Speckle Camera Experiments 

The primary motivation for the speckle camera experiments is to produce a low- 

risk, low-cost sensor for early demonstration of unconventional imaging on the outdoor 

test range at ISTEF. To accomplish this, we would construct a speckle camera 

experiment as shown in Figure 2-2. The components of this experiment include a CW 

laser for illumination of targets, target rotation stage for generating multiple 

10 



realizations of speckle patterns, a high-speed CCD detector array, frame grabber, 

computer and transmit/receive optics. This camera would be able to sample speckle 

patterns from the object at frame rates up to the KHz range. Our approach is to use a 

class of low-cost, digital-output CCD cameras manufactured by Dalsa Inc. These 

cameras are available in several array formats (32x32, 64x64, 128x128, and 

256 x 256) and operate at maximum pixel rates of 16 MHz. The output of the speckle 

camera is captured by a digital-input frame-grabber and then stored by a computer. 

Processing of the speckle data can be performed on either a local computer for initial 

processing or on other computers to which the data can be transferred. The equipment 

would be tested first on an indoor test range at ERIM and then on an outdoor test range 

at ISTEF where long horizontal paths are available. 
Transmit 

Optics Atmosphere 

Laser 

Receive 
CCD     Optics 

Target/ 
Rotation Stage 

Computer 

Figure 2-2. Speckle Camera for Direct Detection Imaging Experiments. 

The main experiments to be conducted using the speckle camera include image 

formation experiments and supporting experiments to address various science 

questions. The two primary image formation methods that would be used for image 

recovery are imaging correlography [2.1], which yields an incoherent (non-speckled) 

image, and complex phase retrieval [2.2] which yields a coherent (speckled and 

complex-valued) image. These methods for image recovery are discussed in greater 

depth in Appendix A. The collected data would consist of a filled array of 

measurements; we can also simulate the effect of a sparse, distributed array by 

processing only a selected subset of the data. The science issues to be addressed are 

discussed in Section 2.2. They include image quality, the effects of target properties 

and motion on the speckle pattern, polarization effects, array-pattern trade-offs, 
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atmospheric effects, and so forth. The path at the outdoor test range at ISTEF can 

provide challenging atmospheric conditions due to its proximity to the ground and 
extended path lengths. While direct detection is much less sensitive to turbulence than 

heterodyne detection, direct detection is sensitive to anisoplanatism, beam wander, and 
break-up (scintillation) for both the outward and return paths. As part of these 
experiments, atmospheric conditions would be monitored, and modifications to the 
beam path, such as elevating it from the ground and adapting the length, would be 

considered. 

Table 2-1 contains a discussion of various parameters and how they affect the 

speckle camera experiments. As an example we give parameters for a relatively benign 

value of the atmospheric structure function, Cn
2. More stressing turbulence would 

cause us to use smaller targets and larger speckle demagnifications. Measurements of 

Cn
2 at the site would be necessary for the final design of the experiment. 

12 



Table 2-1. Impact of Various Parameters on Speckle Camera Experiments 

Experimental 
Parameter 

Comment 

Target Size Object size must be smaller than isoplanatic patch size. 
Preliminary analysis gives object size of 10 cm at 1 km range. 

Target Material Variety of materials would be evaluated. Examples include: 
diffuse paints, depolarizing coatings, specular metal, or retro- 
paint for boosting signal. 

Speckle Size For target diameter D = 10 cm at range R = 1 km and 
A, = 0.5 |im, speckle size (X.R/D) is 5 mm. 

Target Rotation Target rotation causes speckle patterns to translate. Generation 
of independent speckle realizations requires rotation of NX/D 
radians, where N is # of speckles across array. For N = 32, 
rotation of 0.16 mrad is required. Measurements of rotation 
rate can be made for rates up to roughly 1 rad/sec. 

Path Geometry Bistatic path is desirable for background rejection. 
Background rejection can also be achieved by locating laser 
near target and/or folding path. Path can also be elevated to 
reduce turbulence. 

Signal Level Signal levels for diffuse targets are marginal for highest frame 
rates. To boost signal level, retro-paint can be used, or 
detector-array master clock rate can be reduced. 

Daytime Operation MODTRAN calculations show that daytime operation is 
feasible with 10 nm spectral filter. 

Optics 
Size/Magnification 

Size of receiver fore-optic encompasses N x N speckles. For 
N = 32, fore-optic is 0.16 m in diameter. For 2x2 
sampling of speckles onto 16 (I pixels, demagnification of 
pupil by 156x is required. Can be accomplished using a 
telescope/microscope objective pair. 

2.3.1.2 Algorithm Development 

The main aspect of algorithm development would be the application of previously 
demonstrated image recovery algorithms to the data generated by the speckle camera. 
For complex phase retrieval it would also be necessary to develop improved estimates 

of the support on the autocorrelation from the computed autocorrelation function [2.3]. 

This is made difficult because the autocorrelation function is speckled. For the case of 

13 



^>ERIM .  

sparse arrays, the problem is compounded. Algorithms would be developed to format 

and calibrate data, then adapt image formation and speckle analysis software to the 

available computer platforms. The speckle analysis software includes features such as 

estimation of target rotation rates and rotation axis from translating speckles. In 

addition, control and diagnostic software would be required for (a) capturing multiple 

realizations of the speckle data as the target is rotated under computer control, and (b) 

assessing the quality of the speckle patterns for various atmospheric conditions and 

detection circumstances, such as noise level and sampling geometry. 

2.3.1.3 Experiment Simulation 

Assessment of the operation of image recovery algorithms developed for the speckle 

camera requires the ability to simulate speckle patterns that correspond to the type of 

targets being imaged under appropriate atmospheric and detection conditions. To 

accomplish this, we would generate reflectance models of the targets and then apply 

statistical processes associated with scattering and propagation through the atmosphere. 

We would then apply detector sampling and noise processes to generate versions of the 

detected speckle patterns. Resulting speckle patterns would then be used as input to 

image recovery and speckle analysis algorithms. Simulated recovered images and 

speckle parameters would then be compared to actual images and parameters 

reconstructed from the real data. This comparison is valuable for analyzing 

nonintuitive effects that may arise in either collected or simulated data. 

2.3.1.4 Experiment Design and Analysis 

Early in the program we would conduct an experiment design and analysis task. We 

have already performed feasibility calculations of atmospheric turbulence parameters 

and signal power levels. This analysis would be refined and used for detailed 

experimental design, which would allow us to determine experimental parameters such 

as maximum target size and maximum range, and specify optical components. 
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2.3.1.5 Hardware Fabrication/Acquisition 

Upon completion of the design task, the speckle camera would be fabricated. This 

involves the acquisition of new hardware components and fabrication of some 

components such as mounting hardware for optics. 

2.3.1.6 Hardware Integration/Lab Testing 

Following completion of the hardware fabrication and acquisition, we would 

integrate and test the speckle camera at a 20-meter indoor test range at ERIM in Ann 

Arbor. At ERIM we have access to auxiliary equipment, including electronic test 

equipment, that would be required for integration and testing. For testing at ERIM we 

would use an existing argon laser for illuminating targets. This testing phase would 

include characterization of the recorded data by evaluating properties such as the 

speckle statistics and demonstration of image recovery. 

2.3.1.7 Field Experiment Execution 

Once lab testing is complete, we would transport the speckle camera to the ISTEF 

facility for experiment execution. The laser power required is 1 or 2 watts, preferably 

in the green. As mentioned above, we would use an existing argon laser as a source at 

ERIM. For this effort we require an appropriate laser at ISTEF, which could be either 

an argon laser or a frequency-doubled, CW, YAG laser. If no such lasers are available, 

an ERIM laser could be used. We would perform initial experiments at a relatively 

modest range, and then perform the main experiments at the 1-km range and longer 

ranges. An important consideration in the design of the experiments is the laser power 

level. The desirable received light from the target is significantly above the noise level 

of the detector. The energy received by each pixel of the array is given by 

PLA2At770bi77T E = _L iobj_n_ (21) 

2nD2 

assuming that the target is perfectly diffuse and the detector size is equal to the speckle 

size. With the laser power PL = 1.0 watt, X = 0.5 [im, At = 1/12,000 second (which 
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is the fastest rate for the 32 x 32 CCD camera), object diameter D = 5 cm, object 

illumination efficiency T|obj=0.2, and path-length transmittance of T|T = 0.5, it 

follows that E = 5.3 x 10"16 joules. This value should be compared to the CCD noise 

value of 4.48 x 10"16 joules/pixel. Note that for this worst case of short integrations 

and diffuse target the return is roughly equal to the CCD noise level. This relationship 

is improved by orders of magnitude by slowing the CCD frame rate to 100 frames per 

second (which gives two orders of magnitude) and using, if necessary, retro-reflective 

paint on the targets. Also note that, as long as the detector size scales with the speckle 

size, the receiver power is independent of target range. 

2.3.1.8 Image Formation/Data Analysis 

Following speckle camera installation and data collection, image-formation and 

speckle-analysis algorithms would be exercised. 

2.3.2 Short-Range Distributed-Array  Heterodyne  Experiments 

A significant goal of the suggested experiments is to demonstrate imaging with a 

distributed array of heterodyne receivers. To accomplish this, we would make use of 

infrastructure capabilities developed under the speckle camera task described in 

Section 2.3.1. In cooperation with other contractors, we would use heterodyne receiver 

elements built by CREOL to generate images of coherently illuminated targets. 

Challenging aspects of this task include designing sparse arrays that use aperture 

synthesis methods to generate discernible images with limited numbers of receiver 

elements and applying phase-error correction algorithms that are required to phase-up 

the receiver array and to correct for atmospheric turbulence. ERIM's approach for 

these distributed-array experiments makes use of significant expertise that we have 

gained through several years of research on unconventional imaging and is outlined 

below. 
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2.3.2.1 Experiment Specification 

The distributed-array heterodyne experiments have three primary tasks. First, with 

other contractors, we would contribute to the design of the heterodyne receiver 

elements and array configurations. Our primary input would be to establish 

performance specifications required for robust image formation and to aid in the 

evaluation of designs to ensure that the performance specifications are met. For 

example, image formation with heterodyne receivers requires measurement of the 

complex-valued optical field and these measurements are subject to errors from sources 

such as detector noise and background light. To correct for array-phasing errors and 

atmospheric turbulence, the field measurements must be made with sufficient accuracy. 

Also, in order for the experiments to succeed, certain detector noise and signal level 

specifications must be met. Other aspects of receiver element design that are crucial for 

experiment success include the mechanical robustness of the receiver elements. The 

bandwidth of phase errors imparted by mechanical disturbances of the optical fiber 

network must be lower than the image formation bandwidth to ensure that the 

systematic phase errors are constant over the data collection time. To accomplish this 

task ERIM would establish performance specifications and evaluate design approaches 

for meeting them in cooperation with other contractors. In addition we would develop 

diagnostic software for the assessment of measurement quality. 

The second task is to use a limited number of receiver elements (eight) along with 

aperture synthesis methods, to generate target images at the 1- and 3-km test ranges at 

ISTEF. These experiments would be conducted in cooperation with other contractors. 

ERIM would contribute to the areas of algorithm development, experimental design, 

simulation, and image formation. More specifically, we would develop experimental 

procedures for conducting aperture synthesis based on object rotation. In addition, 

ERIM would provide algorithms for data assessment, phase error correction, and 

image formation. The phase-error correction algorithms must remove phase errors 

caused by array misalignment and atmospheric turbulence. Because the atmospheric 

component of the phase errors is time-variant it is likely to be the most difficult to 

correct, particularly since aperture synthesis requires an extended time interval for data 

collection. Ideally, the atmospheric phase would be frozen (quasi-static) during the 

17 



aperture synthesis interval so the resulting phase error is one-dimensional; in this case 

the Digital Shearing Laser Interferometry phase-error correction algorithm can be 

used [2.4]. We would also explore ways to correct phase errors when they are changing 

within the data-collection time. 

For the third task we would use an increased number of receiver elements (32) for 

image generation without aperture synthesis. Key elements of this task would include 

the development of algorithms for phase-error correction and, in cooperation with 

another contractor, the design of array formats that fill the largest area with a small 

number of elements. In previous work we have developed phase-up algorithms based 

on image sharpness that allow for correction of a constant phase error on each receiver 

element that is attributable to the array not being phase aligned [2.5]. These algorithms 

ideally require multiple realizations of the pupil-plane speckle field; however, we have 

also used sharpness to correct for similar phase errors encountered in Synthetic 

Aperture Radar (SAR) when only a single realization of the speckle pattern is available 

[2.6]. After phase correction, images are recovered by Fourier transformation. Image 

quality would then be assessed by comparison of reconstructed images to simulated 

images. 

2.3.2.2 Algorithm Development 

As discussed above, a key element of these experiments is algorithm development. 

The algorithms of primary importance apply to data diagnostics, phase error correction 

and image formation. Once these algorithms are developed they would be ported to the 

primary data collection and image formation computers at ISTEF for application. For 

algorithm development prior to the availability of field data, we require simulated data 

as discussed below. 

2.3.2.3 Experiment Simulation 

Simulated data sets are required for algorithm development and evaluation of 

experimental results by comparing them to ideal simulated images. ERIM has had 

several years of experience in generating simulated imagery including ideal target 
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models, the effects of atmospheric turbulence, imperfect data-collection hardware, and 

phenomenology modeling. Important aspects of the simulations required for this task 

include accurately modeling the various image-degrading processes (atmospheric 

turbulence, detector noise, etc.) to evaluate the entire image-formation process and 

diagnose unanticipated problems. 

2.3.2.4 Experiment Design and Analysis 

Our primary tasks are to ensure that the hardware meets the required performance 

levels for image formation and to help with the experimental design so that meaningful 

images are obtained with the limited number of receiver elements. To provide this 

support we would conduct analyses of the image formation processes to determine 

various hardware performance specifications and to design experiments. In addition, 

we would develop diagnostic software to use in the laboratory and field for assessment 

of data quality. 

2.3.2.5 Field Experiments 

Field experiments would be conducted on the test ranges at ISTEF. During these 

experiments we would provide support primarily to ensure that the data are of 

sufficient quality for image formation. For the first experiments, which use a small 

number (eight) of receivers, aperture synthesis is recommended. Experiments would 

require careful adjustment of object rotation rate and careful monitoring of 

atmospheric and alignment phase errors. Evaluation of these effects would require the 

use of the diagnostic software for data assessment. It is expected that this data 

assessment would occur as data are being collected so that adjustments can be promptly 

made. The second set of experiments would again require the careful assessment of the 

data collection process and evaluation of output data using diagnostic software. 

2.3.2.6 Image Formation/Data Analysis 

We would exercise our phase error correction algorithms and image formation 

software, and to assess the results relative to ideal simulated data. This work would 
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involve the two main experiment types (small number of receivers with aperture 

synthesis and larger number of receivers without aperture synthesis). It is also 

anticipated that several trials of each experiment type would be conducted to obtain 

improved performance, gain experience, and answer science questions. 

2.3.3 Three-Dimensional   Imaging  Experiments 

The PROCLAIM imaging modality is attractive because of the improved 

identification capability offered by three-dimensional imaging and because only the 

intensity data are directly detected. The advantages of direct detection, including 

robustness to atmospheric phase aberrations and savings in expense and complexity 

relative to heterodyne detection, apply to the PROCLAIM modality. Furthermore, the 

speckle camera that would be developed under the first set of experiments can be used 

for PROCLAIM experiments. The philosophy of this modality is to trade hardware 

complexity for increased computational load. In this section we describe the algorithm 

development, experiment design, simulations, hardware acquisition and integration, and 

testing, all leading to a field experiment in which the novel PROCLAIM three- 

dimensional imaging modality would be demonstrated on a 1-km horizontal test range. 

2.3.3.1 Three-Dimensional Experiment Specification 

There are many illumination strategies that can be considered for the PROCLAIM 

imaging modality. As discussed in Section 6, we performed analyses to show the 

preliminary feasibility of using a serial-illumination strategy to image a missile or some 

other long-range target from the ground with the PROCLAIM concept. For 

PROCLAIM to work, the target should be relatively stable over the illumination 

sequence. Using the rather restrictive criterion that the speckle pattern does not move 

more than half a speckle width during the entire collection sequence, we arrive at the 

following condition on the target's angular frequency of rotation, 

co<  , (2.2) 
8NDobjZobj 
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where O) is the object angular frequency, A, is the wavelength, c is the speed of light, 

N is the number of frequency samples or equivalently the number of range bins 

desired, Dob.is the cross-range diameter of the object, and Zob: is the depth of the 

object in range. Let Dobj- = 5, Zob; = 2 m, X = 1 jxm, and suppose that we desire 

N = 10 range bins. The maximum angular velocity that can be tolerated for such an 

object is found to be co<0.375 radians/second. This sample calculation suggests that 

the requirement on object angular frequency is not particularly restrictive and that 

there are likely to be many objects that can be imaged with serial-frequency 

illumination. Therefore our ground experiments would be designed to investigate this 

illumination modality. 

The actual layout of the experiment would be closely related to the speckle camera 

experiments, discussed in Section 2.3.1. Consequently, the PROCLAIM experiments 

would greatly benefit from the experience gained and infrastructure developed in the 

speckle-camera experiments. We have performed a preliminary experiment design that 

suggests that a three-dimensional object, such as a cone painted with retro-reflective 

paint, can be imaged at a range of 1 km. Anisoplanatism is much more challenging in 

this horizontal-imaging scenario than in the envisioned application of PROCLAIM, 

namely looking up to identify missiles. As with the speckle camera experiments, the 

object would need to be no larger than the isoplanatic angle, on the order of 10 cm in 

clear conditions. The same re-imaging optics that would be used in the speckle camera 

experiments can be used here as well. 

The PROCLAIM experiments differ from the speckle-camera experiments in one 

fundamental way: a frequency-tunable laser is needed for illumination. A coordinated 

illumination, frame-detection, and data-storage sequence would be controlled by a 

computer. In this way the required data set, consisting of far-field speckle (intensity) 

patterns for each of several illuminating frequencies, would be obtained. 

2.3.3.2 Algorithm Development 

Since the PROCLAIM concept trades hardware complexity for increased 

computational load, one might properly infer that the algorithms needed for three- 
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dimensional image reconstruction are somewhat complicated. A gradient-search 

algorithm has been developed by ERIM researchers and it has been demonstrated in a 

simple simulation [2.7]. This algorithm would have to be developed to accommodate 

noise and the effects of diffraction. 

We believe that the opacity constraint can be used not only for phase retrieval, but 

also for estimating very tight bounds on the object support, given the object's three- 

dimensional autocorrelation function (or equivalently, the object's three-dimensional 

Fourier intensity). Such a bound on the support or extent of the object is called a 

locator set and ERIM researchers have previously developed locator set algorithms for 

two-dimensional data sets that can readily be generalized to accommodate three- 

dimensional data sets [2.3]. Preliminary analysis suggests that locator sets for opaque 

objects can be made very tight and would provide excellent initial estimates in a phase- 

retrieval algorithm. It may actually be possible to identify a specific target from a tight 

locator set that would give strong target profile information. We would develop both 

phase-retrieval and locator-set algorithms for coherent three-dimensional opaque 

objects. 

2.3.3.3 Detailed Experiment Design 

This design would follow from the detailed design performed for the speckle 

camera experiments. The object would be designed so that significant depth information 

can be retrieved and so that it can be rigidly mounted. The detailed design of the 

illumination, detection, and data-storage sequence would have to be performed 

separately for the PROCLAIM experiments, as it involves multiple wavelengths. 

2.3.3.4 Experiment Simulation 

Once the algorithms have been developed and the detailed experiment design has 

been performed, we would perform simulation experiments that conform to the 

intended field experiments. The same speckle simulation algorithms developed in the 

speckle-camera experiments would be used in this simulation but with wavelength 

diversity added. The simulation would provide confidence that we can succeed with the 

22 



SJ7ERIM  

field-experiment demonstration. In addition, the exercise would provide a means of 

isolating the source of non-intuitive effects that may arise in the collection of data or 

the reconstruction of three-dimensional objects. 

2.3.3.5 Hardware Acquisition/Fabrication 

Much of the hardware required for the PROCLAIM experiments would already 

have been acquired for the speckle-camera experiments. Of course the frequency- 

tunable laser would have to be acquired. ERIM has a frequency-tunable laser that can 

readily be used in the laboratory integration and testing phases. We would rely on 

government-furnished equipment (GFE) for this component of the outdoor experiment. 

The laser would need to have a gain curve that would provide the desired range 

resolution, which is given by 

(2.3) 
2Av 

where Av is the bandwidth over which the source is tuned. To get a range resolution of 

1 cm, we require Av = 1.5 x 1010 Hz or AX = 0.25 Angstroms. Therefore, it should 

be easy to achieve the desired range resolution. The laser would be tuned with a 

precisely rotatable etalon that is placed in the laser cavity and is electronically 

controlled with the data-acquisition computer. 

2.3.3.6 Hardware Integration and Laboratory Testing 

Before the equipment is transported to the ISTEF test range, we would integrate the 

experimental hardware in a laboratory test range so that the integrated imaging system 

can be tested and validated. Again, we would benefit from laboratory tests performed 

in the speckle-camera experiments. This integration task would give us additional 

experience and may suggest adjustments to the detailed experiment design. 
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2.3.3.7 Execution of Field Experiment 

When the laboratory equipment testing and integration are completed, the equipment 

would be transported to the ISTEF facility to conduct the field experiment. The 
ultimate goal of the entire three-dimensional imaging task is to demonstrate the 
feasibility and utility of the PROCLAIM imaging modality on the ISTEF horizontal test 
range at a range of 1 km. This would help to establish the importance of the third 

dimension of information for target discrimination. This could motivate the extension 

of the heterodyne array imaging from two dimensions to three. 

2.3.3.8 Image Formation and Data Analysis 

The phase-retrieval algorithms would be installed on ISTEF computers and images 
would be formed after the data are collected. These images would be scored primarily 

with regard to how well the target profile is recovered. Experimental results would be 

compared with simulation results. 

2.3.4 Long-Range  Imaging  Experiments 

The final set of experiments to be conducted in the series concern imaging of distant 

targets. Emphasis would be on using the 32-element array of heterodyne receivers 
discussed in Section 2.3.2, but experiments with the speckle camera would be 

conducted as well. These experiments are to be conducted at ranges greater than 3 km 
and would make extensive use of hardware and software developed under previous 

tasks. Our approach for these experiments is discussed in greater depth below. 

2.3.4.1 Experiment Specification 

The purpose of these experiments is to demonstrate long-range imaging using 
primarily an array of heterodyne receivers. However, other sensors developed under 
the program would also be tested for long-range capability. Initial analysis of the long- 

range experiments indicates that the target should be elevated to avoid the extreme 

atmospheric conditions present for a long horizontal path. Two options for target 
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location exist: the target can be located on a distant tower, or an airborne target can be 

used. Certainly the airborne target can provide a path that is closer to vertical, and thus 

encompasses lower turbulence levels. However, tracking of an airborne target can be 

more challenging. Furthermore, the class of airborne targets is limited by 

characteristics of the heterodyne receiver array. Specifically, the receiver bandwidth 

and frequency offset are obtained using acousto-optic methods that have insufficient 

bandwidth to record the high frequencies inherent to high-speed targets such as rockets, 

unless they are traveling approximately perpendicular to the line of sight. (This would 

not be a limitation of an eventually deployed system.) This feature drives the 

experiments to use stationary or slowly moving targets. Of the several candidates for 

stationary airborne targets (tethered balloons, helicopters, remotely piloted vehicles 

(RPV), etc.), our preliminary analysis shows that a good candidate is an RPV in the 

form of a radio-controlled helicopter with the target tethered below it. These RPVs are 

capable of flying at altitudes limited to first order by the ability to see the RPV. We 

estimate that such an RPV can be piloted by using a telescope to an altitude of 3 km. 

The target, which can have a weight of roughly 3 lb, is tethered at a distance of up to 

100 ft below the RPV. The tether would be designed to damp vibrations from the RPV 

engine. For greater altitudes, a manned helicopter can be used, however, the expense is 

considerably greater than for an RPV. Other options that we have considered include 

tethered and non-tethered balloons; however, these approaches are not as controllable. 

Sounding rockets may be used, but their cost limits the number of experiments that can 

be performed. 

One desirable feature associated with using a vertical path (airborne target) is that 

the level of turbulence is significantly lower than for a horizontal path. Thus the 

atmospherics, the anisoplanatic patch size in particular, may be less of a problem for 

airborne experiments. It is anticipated, however, that tracking would be a significant 

complication for the airborne case. 

Because of the long ranges involved, these experiments would be made difficult by 

the lower signal levels. These signal levels can, however, be offset by using larger 

receiver optics. If the receiver aperture is scaled with the speckle size, the signal level 
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is independent of range. Thus for long ranges we would anticipate replacement of the 

fore-optics for the various imaging sensors. 

2.3.4.2 Experiment Execution 

We anticipate that these long-range experiments would make significant use of 

hardware, software and capabilities developed for previous experiments. The effort 

would thus concentrate on customizing the hardware, such as mounting the sensors on 

tracking mounts and modifying collection optics, and planning and execution of the 

experiments. 
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3 TRADE-OFF BETWEEN ARRAY SPARSITY AND NUMBER OF 
REALIZATIONS 

The quality of a reconstructed image depends on numerous factors, including signal- 

to-noise ratio (SNR), aperture diameter, aperture fill, distance to target, target 

structure, wavelength, phase errors, scattered light, etc. In this section we show digital 

simulations demonstrating the trade-offs for (a) different amounts of aperture fill, (b) 

different numbers of speckle realizations, and (c) different types of objects. We do this 

both for noise-free diffraction-limited coherent imaging and for noise-free imaging 

correlography. 

For a review of coherent imaging and imaging correlography, see Appendix A. 

3.1 DIFFRACTION-LIMITED COHERENT IMAGING 

Images from coherent systems also suffer from a mottled appearance that we call 

speckle, which decreases image intelligibility. We can decrease the image speckle by 

collecting several frames of data, each with the object having translated or rotated 

slightly, which would result in different realizations of the speckle pattern. By 

averaging the intensities of these speckled images we arrive at an image with reduced 

speckle. Averaging over a large number of speckle realizations results in an image that 

is equivalent to a speckle-free image of the target. 

For the case of imaging with sparse, distributed arrays of detectors, the details of 

the shape of the impulse response play a major role in image quality. The impulse 

response from a filled array typically has a bright, narrow mainlobe that contains most 

of the energy and small sidelobes. For a sparse array having a length comparable to the 

length of a given filled array, the impulse response would be similarly narrow, but it 

would contain only a small fraction of the energy, and most of the energy would be in 

the sidelobes. The result is typically an image having similar resolution as that from a 

filled array, but having much poorer contrast and many artifacts. Equivalently, the 

optical transfer function (OTF), or its magnitude, the modulation transfer function 

(MTF) drops off quickly at the lower spatial frequencies as compared with the MTF 
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for a filled array, which typically has approximately a triangular shape. For reducing 

speckle artifacts, for distributed arrays we need a greater number of realizations than 

for a filled array from the simple point of view that we are measuring fewer speckles 

at any given time. Similarly, we are measuring a proportionally smaller number of 

photons. 

The theoretical signal-to-noise ratio for an average of K speckle images is, in the 

regime of low sensor and photon noise (i.e., dominated by coherent speckle effects) 

[3.1] 

SNR(u) = |JI(U)| VK SBP IOTF(U)| (3.1) 

where u is a 2-D spatial-frequency coordinate, |^i(u)| is the magnitude of the Fourier 

transform of the incoherent object normalized to be unity at the origin, SBP is the 

space-bandwidth product of the data and OTF(u) is the optical transfer function (the 

autocorrelation of the aperture when normalized to unity at the origin). SBP equals Ns, 

the number of subapertures, if the system does not oversample the speckle pattern. 
2 

Suppose we have a square filled array with L subapertures on a side, or a total of L 

subapertures. Then SBP = L2, and at the middle spatial frequencies OTF = (1/2), so 

SBP OTF = L2/2. For an efficient sparse array, however, we might have Ns = 3(L - 1) 

subapertures (see the section on array design). For a nonredundant sparse array, 

OTF(u) = 1/NS. For a typical array pattern we would have OTF(u) = 1/NS at many of 

the middle spatial frequencies. Then for the sparse array SBP OTF = Ns/Ns = 1. Hence 

the factor V SBP OTF in the expression for SNR is L/V2 times greater for a filled 

array than for a minimally-filled sparse array. Hence to make up for this we would 

need the number, K, of speckle realizations to be L/V2 times greater for the sparse 

array. We could also argue that, at the spatial frequency components outside the DC 

component, the OTF of an efficient sparse array has an average value of the OTF of 

about 2/Ns. Hence we may need only L/(2^2) - L/2.8 times as many speckle 

realizations for the sparse array. Alternatively, we can build sparse array patterns that 

are not minimally redundant but purposely have some redundancy. For example, with 

4L - 2 subapertures we can guarantee that each spatial frequency has an OTF of at least 

2. Then the factor SBP OTF = Ns2/Ns = 2, and we would need only half as many 

realizations as with the minimally redundant pattern of 3L - 3 subapertures. 
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After averaging image intensities to form a speckle-reduced image, we may apply a 

Fourier-domain filter that boosts the higher spatial frequencies so that, in the case of 

high signal-to-noise ratio (SNR) it can regain the character of an incoherent image 

through a filled aperture. This factor makes sparse arrays particularly appealing: with 

enough averaging and with filtering we can overcome both the speckle effects and 

reduce the large sidelobes to retrieve a speckle-free image that is as good as one that 

would have come from a filled aperture costing several times as much. 

By computer simulations we demonstrated the trade-off of aperture fill versus 

number of speckle realizations for different classes of objects. The top row of Figure 

3-1 shows coherent images as seen through a filled aperture in the shape of a circle. 

The bottom row shows images of the same object as seen through a sparse array 

consisting of 21 small circles, arranged in an annulus with outer diameter equal to the 

diameter of the filled-aperture circle. The object consists of a rectangle of size 2x3 

pixels plus four additional points, each lxl pixel in size. This could represent a 

resolved post-boost vehicle with nearby unresolved re-entrant vehicles or decoys. We 

consider this "four-points" object to be a fairly simple object. An ideal (diffraction- 

limited and noise-free) incoherent image of the object is shown in the upper right of 

Figure 3-1. The slight fuzziness is due to the impulse response of the circular aperture. 

A single coherent image of the object is shown in the second column of the first row. 

The image is complex valued, and the figure shows the intensity of the image. Note that 

the relative brightnesses of the points is distorted and the 2x3-pixel block at the top is 

broken up. The coherent nature of the imaging process produces laser speckles in the 

image that cause these effects. Each speckle realization would break up and distort the 

image intensity in a different way. By noncoherently averaging (i.e., averaging the 

intensities of) images with several different speckle realizations, we can reduce the 

speckle artifacts to arrive at an image that more closely resembles the incoherent 

image. The third and fourth columns show the effect of averaging ten and one hundred 

speckle realizations, respectively. Even with as few as ten speckle realizations the image 

looks like a somewhat noisy version of the ideal incoherent image for this simple object 

through the filled aperture. The average of one hundred realizations is visually nearly 

perfect. 
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Filled Aperture    Coherent Image 
Average 

10 Images 
Average        Ideal Incoherent 

100 Images Image 

_ , Average Average Wiener Filtered 
Sparse Aperture     Coherent Image       10 images 100 Images 100 Images 

Figure 3-1. Imaging Four-Points Object Through a Sparse Aperture of 21 Circles. 
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The first four columns of the second row of Figure 3-1 show the same thing as the 

first row, but for the case of the sparse aperture consisting of 21 small circles. The 
single coherent image is almost indecipherable. The average of ten realizations starts to 
bring out some of the features. All four parts to the object finally become discernible 
after averaging 100 realizations. The ring-like artifact that is especially evident around 
the 2x3 block part of the image is a sidelobe due to the sparse aperture. This artifact 
can be greatly reduced by Wiener filtering [3.2], the result of which is shown in the 

rightmost column of the second row. In the process of filtering the sidelobes are 
greatly reduced, but at the cost of slightly coarser resolution and a slight enhancement 
of the background noise. The quality of the Wiener-filtered average of 100 images 
through the sparse aperture is slightly better than the average of only ten realizations 

from the filled aperture. This is consistent with the fact that there is about five times as 
much area covered by the filled aperture as by the sparse aperture. 

We can appreciate the effect of the sparse aperture better by looking at Figure 3-2. 

The first column shows the original object without the effects of speckle or low-pass 
filtering by the aperture. The second column shows the speckle pattern in the aperture 
plane caused by a coherent realization of the object. This and the next two columns are 
shown demagnified by a factor of two compared with the aperture functions shown in 

Figure 3-1. The 21-subaperture sparse array collects the speckles shown in the third 

column. The aperture pattern itself constitutes the coherent transfer function that 

defines the impulse response for coherent imaging. Note that the patterns evident in the 
speckle pattern that would have been evident in a filled-aperture collection are less 

evident in the sparse array collection. The right-most column shows the optical transfer 
function (OTF) of the sparse array pattern. This is the transfer function for the 

noncoherently averaged image. The central part was overexposed lest the surrounding 
parts be too dark to see clearly. This demonstrates the property of sparse aperture that 

the high spatial frequencies have little energy compared with the low spatial 
frequencies. Furthermore, the detailed structure of the OTF causes distortions of the 
objects Fourier transform that cause a distortion in the image. The Wiener filtering 

step is essentially dividing by the OTF in order to compensate for its distortion. The 

Wiener filter also includes a noise term that prevents us from unduly enhancing the 
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noise by dividing by too small a number where the OTT is small. This is described 

further at the end of this section. 

Figure 3-3 shows similar images for a second object, consisting of a cylinder (post- 

boost vehicle) with five cones (re-entrant vehicles) attached plus a sixth cone detached 

from the cylinder. This object, which we call "bus+rv" can be thought of as a much 

finer-resolution image of the central portion of the four-points object, for which the 

cylinder is now well resolved, allowing us to count the number of cones attached and to 

discern their shape. Note that, from a single coherent image (top row, second column) 

from a filled aperture, the speckle artifacts make it impossible to identify the attached 

cones. Only the overall shape can be easily discerned. The noncoherent average of one 

hundred image realizations, shown in the third column, yields a good-quality image that 

is a somewhat noisy version of the ideal incoherent image. Recall, however, that for the 

four-points object the average of 100 realizations yielded an almost perfect image. The 

bottom row shows the results through the same sparse aperture as before. The single 

coherent image shown in the second column is almost totally useless—the existence of 

the detached cone is not even evident. The noncoherent average of one hundred images, 

shown in the third column, contains some information, and it is improved considerably 

by Wiener filtering, as shown in the fourth column. We can clearly see the separated 

cone (although it may be difficult to tell that it is a cone), and the cones attached to the 

cylinder can be seen, but counting them is difficult. Hence we see that, for the same 

aperture and the same number of image realizations, the image of the four-points object 

has considerably higher quality than the image of the bus+rv. We can understand this 

from the spatial power spectra of the two objects, which are shown in Figure 3-4. The 

spatial power spectrum (and its square root, which is the magnitude of the Fourier 

transform of the underlying incoherent object) of the bus+rv, which is an extended 

object, falls off much more rapidly than that of the four-points; hence the signal-to- 

noise ratio (SNR) at the higher spatial frequencies is much lower for the bus+rv object 

since there is just less signal there. 
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over Sparse Array 
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Figure 3-2. Transfer Functions for Imaging Through a Sparse Aperture of 21 Circles. 
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Filled Aperture        Coherent Image 
Average Ideal 

100 Images        Incoherent Image 

Sparse Aperture       Coherent Image 
Average 

100 Images Wiener Filtered 

Figure 3-3. Imaging Bus+Rv Object Through a Sparse Aperture of 21 Circles. 
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Figure 3-4. Spatial Power Spectra of Three Objects. 

35 



gj>ERIM .  

The examples above with the aperture consisting of 21 small circles are for the case 

of each small circle having several detectors across it. Hence the total number of 

detectors is several times 21. Suppose, on the other hand, that the total number of 

detectors is a similar small number, only 22. Figure 3-5 shows the result for a small 

quasi-random array consisting of just 22 detectors. Henshaw [3.3] designed this array 

configuration using a genetic algorithm (see Section 8). Note that the apparent 

resolution is many times coarser than for the 21-circles aperture because of the great 

difference in numbers of detectors. Figure 3-5 shows the bus+rv and 4-points images, 

at a lower resolution, as seen through the small-array aperture. Note that the 

noncoherent average of 100 realizations of the bus+rv image, even after Wiener 

filtering, shows no evidence of the detached cone. Even for the incoherent image 

(which is equivalent to averaging an infinite number of speckle realizations), shown in 

the right-most column, there is no evidence of the cones on the cylinder. These 

examples demonstrate a fundamental principal: to gather an image with a fixed array of 

detectors, we need a large number of detectors to arrive at an image with a large 

number of resolution elements across it. Hence with, say, 32 or even 64 detectors in a 

fixed pattern we can hope to reconstruct only fairly simple images. The bottom half of 

Figure 3-5 shows the 4-point object through the same small aperture; in this case we 

can discern the shape of this simple object with a reasonable number of speckle 

realizations. 

If we allow the detectors to move and/or use aperture synthesis by observing the 

speckles as they flow past the detectors, then extended objects can be successfully 

imaged with fewer detectors, but with a much higher detector read-out rate. 
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Bus+RV Object Four-pts. Object        Sparse Aperture OTF 

Averaged 
Images 

Wiener 
Filtered 

Single Image       Avg. 10 Images    Avg. 100 Images   Incoherent Image 

Averaged 
Images 

Wiener 
Filtered 

Avg. 3 Images      Avg. 10 Images     Avg. 64 Images   Incoherent Image 

Figure 3-5. Imaging Through a 22-Element Detector Array; 
Top row: Extended object ("Bus/RV"), simple object ("four points"), sparse aperture, 
OTF. Second row: noncoherent average of coherent images of Bus/RV object. Third 
row: Wiener filtered images of Bus/RV. Fourth row: average of images of four-points 
object. Fifth row: Wiener filtered images of four-points object. 
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3.2 IMAGING CORRELOGRAPHY 

Some of the advantages of imaging correlography are that it allows the 

reconstruction of a fine-resolution image (a) despite atmospheric turbulence, 

misaligned array elements, and other sources of phase errors, and (b) with relatively 

inexpensive optical hardware and detectors. It computes the average autocovariance of 

multiple aperture-plane speckle intensity realizations to estimate the magnitude of the 

Fourier transform of the incoherent image and employs a phase retrieval algorithm to 

reconstruct the image. See Appendix A for more details. In this section we show the 

effect of a sparse aperture on imaging correlography. 

An estimate of the Fourier magnitude of the 4-points object, determined from 

correlography using 100 speckle realizations through the 21-circle aperture (shown 

earlier), is shown on the left in Figure 3-6. The higher spatial frequencies are 

suppressed because of the fall-off in the OTF as seen in Figure 3-2. A Wiener-filtered 

version of that estimate, in which the suppressed spatial frequencies are enhanced, is 

shown in the second column of Figure 3-6. For comparison, the third column shows the 

true Fourier magnitude of the object. From this we can see that the Wiener-filtered 

estimate is somewhat depressed at the lower spatial frequencies, an effect we have not 

fully explained. The right-most column of the Figure shows an image reconstructed 

from the Fourier magnitude estimate (see Appendix A for an explanation). This 

reconstruction is a faithful representation of the ideal image, demonstrating that 

imaging correlography can work with sparse arrays of detectors. 

Figure 3-7 shows the effect of the number of realizations on the quality of the 

reconstructed image. The top row shows the Fourier magnitudes (left-to-right): of the 

true object, estimated from one hundred speckle realizations, from twenty speckle 

realizations, and from five speckle realizations. The bottom row shows the 

corresponding images reconstructed by phase retrieval. For twenty or more speckle 

realizations the basic structure of the object is preserved whereas for five realizations 

the image is badly distorted. 
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Fourier Magnitude        Wiener Filtered 
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Figure 3-6. Fourier Magnitude and Reconstructed Image from Correlography. 
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Figure 3-7. Image from Correlography for Different Numbers of Realizations. 
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As discussed in Appendix A, the signal-to-noise ratio for correlography is given by 

-JN ns S(u, v) lul2 

SNR(u, v)=— N (3.2) 

where nd = the average number of photons per detector 

M = the number of detectors (pixels) per aperture-plane speckle area 

M nd = the average number of photons per speckle 

N = the number of speckle realizations 

ns = the number of speckles within the area of the aperture 

H(u, v) = F^u, v)/Fj(0, 0), and 
Fj(u, v) = the Fourier transform of the underlying incoherent object 

i i For the higher spatial frequencies where |JJ,|  is small, the SNR of |jx|   is proportional to 
9 

N, to |n| , and to the square root of the area of the aperture (which is proportional to 

ns). However, we have an additional proportionality factor of S(u, v), the OTF, which 

also depends on the aperture area and on the shape of the aperture pattern. For 

example, for a sparse nonredundant aperture in which each detector sees a different 

speckle, nsS(u, v) = 1 for (u, v) *■ (0, 0). However, for a sparse redundant aperture 

nsS(u, v) can be very large. In general, the number of independent Fourier components 

sampled, including their redundancy but ignoring the zero-frequency component, is 

Nd(Nd - l)/2, where Nd is the number of detectors. Hence by adding just one more 

detector to a given number, Nd, we add (Nd +l)(Nd)/2 - Nd(Nd - l)/2 = Nd additional 

measurements. The quadratic dependence of the number of Fourier measurements on 

the number of detectors strongly suggests using as many detectors as possible. 

3.3 SIMULATION   DETAILS 

Some details of the simulation are as follows. We use the following notation. 

fj(x) = incoherent object 

Fj(u) = FT of incoherent object 
9 

|Fj(u)|   = power spectrum of incoherent object 

c(x) = coherent impulse response (IPR) 
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s(x) = point-spread function (PSF) = |c(x)|2 

A(u) = aperture function = coherent transfer function (a binary mask) 

OTF(u) = optical transfer function = autocorrelation of A(u) 

1. Calculate c(x), s(x), OTF(u). 
1.0 Make sure A(u) is of width <N/2 embedded in an NxN array 

l.lc(x)=FT[A(u)] 

[if you want to use c(x) itself later, first shift A(u) so its DC is in u.l. corner] 

1.2 s(x) = |c(x)|2 [imaginary part = 0] 

1.3 OTF^onnatoedCu) = FT^lx)]  [Note: FT1 includes x N"2 factor ] 

1.4 OTF(u) = OTFmnono3ili2ßd(u)/OTFmmonna[i7£d(0) 

2. Create an incoherent image, g^x) = s(x) * f^x), from f^x). 

2.1 fIc(x) = fr(x), [imaginary part = 0] 

2.2FI(u) = FT[fIc(x)] 

2.3 Gj(u) = Fj(u) OTF(u) 

2.4s(x)*fI(x) = FT-1[GI(u)] 

2.5 Take real part of s(x) * fj(x) [imaginary part should « real part] 

3. Create a coherent image, gk(x), from fj(x). 

3.1 The real and imaginary parts of gk(x) are chosen from a zero-mean Gaussian 

random variable with variance (1/2) fj(x). To do this, 

3.1.1 Form a uniform array of complex Gaussian random numbers 

(independent Gaussian r.n. for both real and imaginary parts) each having 

unity variance   

3.1.2 Multiply that array by -yf^(x)/2 . 

(Note: then E[|gk(x)|2] = 2fI(x)/2 = f^x).) 

3.2 FT[»]   [• = result from previous step] 

3.3 • x A(u) [having DC of A(u) in u.l. corner] 

3.4gk(x)=FT-1[.] 

Get multiple realizations by changing the value of the seed in the random number 

generator that produced the Gaussian r.n.'s. To be able to reproduce results, always use 

a user-specified seed. 
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4. Wiener Alter the averaged image. 

Filtering an image g(x) by the filter function H(u) is accomplished by 

4.1G(u) = FT[g(x)] 

4.2Gfilt(u) = G(u)H(u) 

4.3gfilt(x) = FT1[G(u)] 

The Wiener-Helstrom filter is given by 

OTFs*(u) WF(u) OTFf(u)   _ OTF *(u) OTFf(u) 
HW

"
H(U)

 
= |OTFs(u)|2 WF(u) + WN(u) = |OTFs(u)|2 + WN(u)AVF(u) 

OTF *(u) OTFf(u) 
s l— (3.3) 

|OTFs(u)|z + ßn NSR(u) 

where OTFs(u) is the OTF of the sparse aperture, OTFf(u) is the OTF of the filled 

aperture, WF(u) = |Fr(u)|2 is the power (or energy) spectrum of the object, WN(u) is 

the power spectrum of the noise, and NSR(u) = WN(u)/WF(u) is the noise-to-signal 

ratio [l/SNR(u)], and ßn is a constant. We include the factor OTFf(u) to give the final 

image an aperture weighting closer to that of a normal filled aperture. Unfortunately, 

we do not usually know WF(u) and sometimes do not know WN(u). One approach is to 

replace NSR(u) with a constant, and adjust the constant to give the most pleasing image 

(trading off image smoothing with noise suppression for image sharpening with noise 

enhancement). Using a constant for NSR(u) usually enhances the noise at the highest 

spatial frequencies too much. Since many images have power spectra that can be 

approximated by a power law, and since noise power spectra are often a constant, a 

logical choice for NSR(u) would be a|u|^, where a and y are constants, y controlling 

how fast the WF(u) falls off with u. Values of y in the range of 0.5 to 4 are 

appropriate, with the smaller values appropriate for objects consisting of a very small 

number of points and larger values appropriate for very extended, low-contrast objects. 

This expression for NSR(u) must be modified so that it does not blow up near u = 0. 

We accomplished this by choosing 

NSR(u) = 
1 , for |u| < uL 

cc|u|^ , for |u| > uL 
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where alu^ = 1, or a = l/\uiß. Here |uf is the distance in pixels from the DC (i.e., if 

its coordinate relative to DC is (ux, uy), then |u| =\ux + uy . Therefore by 

specifying uL and y, NSR(u) is specified. Examples of SNR(u) and NSR(u) are given in 

Figures 3-8 to 3-11. 

SNR(u) for gam = 1 and ul = 2,4,8,16 

140 

Figure   3-8. Model  of  Signal-to-Noise  Ratio  Versus   Spatial  Frequency.  For 
1/(frequency) spectrum and model parameter uL = 2, 4, 8, and 16 pixels (left to right). 
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NSR(u) far gam = 1 and ul = 2,4,8,16 

60 80 120 140 

Figure  3-9. Model  of Noise-to-Signal  Ratio  Versus  Spatial  Frequency.  For 
l/(frequency) spectrum and model parameter uL = 2, 4, 8, and 16 pixels (left to right). 

SNR(u) for gam = 2 and ul = 2,4,8,16 

120 140 

Figure 3-10. Model of Signal-to-Noise Ratio Versus Spatial Frequency. For 
1/(frequency)2 spectrum and model parameter uL = 2, 4, 8, and 16 pixels (left to 
right). 
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NSR(u) for gam = 2 and ul = 2,4,8,16 

20 40 60 80 100 120 140 

Figure 3-11. Model of Noise-to-Signal Ratio Versus Spatial Frequency. For 
l/(frequency)2 spectrum and model parameter uL = 2, 4, 8, and 16 pixels (left to 

right). 

As long as the OTF does not include aberrations, then OTF = OTF* is real-valued 
and nonnegative. 
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4 PHASING OF SPARSE ARRAYS OF HETERODYNE RECEIVERS 

4.1 INTRODUCTION 

If we measure an optical field, scattered from a laser-illuminated object, with an 

array of heterodyne receivers [4.1], then we can reconstruct an image of the object by 

performing a suitable propagation transformation (typically a Fresnel or Fourier 

transform) in the computer [4.2]. However, if phase errors are present in the 

measurements, then a blurred image will result. Phase errors can be induced by many 

things, including atmospheric turbulence and path-length errors between the field from 

the object and the local oscillator within the receiver. Approaches to phasing the array 

without a beacon either require the array of heterodyne receivers to be on a filled 

regular grid [4.3, 4.4], or to have a special pattern or alternatively require a low- 

resolution image be available [4.5]. 

In this section we describe two new algorithms for phasing heterodyne arrays that 

work well for sparse distributed arrays (and should work for filled arrays as well), 

require no low-resolution image, and are relatively insensitive to noise. One is based on 

the iterative transform algorithm using a support constraint [4.6, 4.7] and the other on 

maximizing image sharpness [4.8, 4.9]. 

4.2 IMAGING   MODEL 

With the heterodyne receivers we measure the optical fields (ignoring measurement 

noise) 

Gdk(u) = Fk(u) exp[i<|>e(u)] • (4-1) 

for k = 1, ... , K, where Fk is the ideal complex field (without phase errors) for 

speckle realization k, (|>e is the phase error, and u is a 2-D coordinate (the pixel index) 

in the measurement plane. Note that we assume the phase error is the same for all K 

realizations. Different speckle realizations are obtained if the object rotates slightly or 

translates. If we estimate the phase error as <f>(u), then our estimates of the optical fields 

are 
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Gk(u) = Gdk(u) exp[-i<|>(u)] (4.2) 

our coherent images are 

gk(x) = T-l[Gk(u)] = N"2XGk(u) exp(i27iu-x/N) , (4.3) 
u 

where ux is a vector dot (inner) product, and our speckle-reduced averaged image is 

gl(x) = K-I2lgk(*)l2 , (4.4) 
k 

where summation over k is for k = 1, ..., K. 

Our goal is to estimate the image [and, equivalently <|)e(u) and the set of Fk(u)] from 

the set of Gdk(u). 

4.3 GENERALIZED ITERATIVE TRANSFORM ALGORITHM 

Our first method to estimate the phase error is a generalization of the iterative 

transform algorithm [4.6]. It iterates back and forth between the image and Fourier 

domains, applying applicable constraints in each domain. Only here we are performing 

the iterations simultaneously on all K image realizations. 

Our image-domain constraint is a support constraint. We have several ways to 

arrive at a support constraint. 

We can compute the averaged autocorrelation function, and use our methods for 

estimating image supports from autocorrelation supports [4.10, 4.11]. Let 

rk(x) = J-1[|Gdk(u)|2] (4.5) 

be the autocorrelation function of gdk(x). It is identical to the unaberrated 

autocorrelation since it depends only on the magnitude of Gdk(u) and not on its phase. 

The averaged autocorrelation function is 

rI(x) = K-1Xlrk(x)|2. (4.6) 
k 
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Except for an impulse-response-like term at the origin, rj(x) will approach the ideal 

incoherent autocorrelation for large values of K. Note that this computation is 

essentially the same one we use for imaging laser correlography [4.12], as we are using 

only the intensity of the measured optical fields. It is important to use the averaged 

autocorrelation rather than the autocorrelation from an individual realization since any 

individual autocorrelation is speckled and will have multiple drop-outs over its entire 

area, making its support difficult to estimate [4.13]. 

We may also estimate the object support by using a low-resolution image. For 

example, the averaged image gj(x) (the current blurred estimate) can be a basis for a 

support constraint. Since during the middle of the reconstruction sequence g:(x) will be 

a poor approximation to the true image, we can only use it loosely as a support 

constraint. We should therefore convolve gj(x) with a smoothing function, w(x), giving 

s(x) = gj(x) * w(x), which also has the advantage of being a relatively smooth function. 

We can use this as a gray-level support constraint that emphasizes the image where the 

probability of it being non-zero is highest and suppresses it where the probability of it 

being nonzero is lower. We can also threshold this function to form a binary mask 

representing the support. 

However we arrive at the support constraint, we will denote it by the function s(x), 

which is zero outside the support of the object. To apply the support constraint, we 

multiply each of the images by s(x): 

gsk(x) = s(x) gk(x) . (4.7) 

After transforming these support-con strained images back to the Fourier domain we 

have the new Fourier estimates Gsk(u) = ?[gsk(x)]. 

Our Fourier constraint is the collection of magnitudes of the measured optical fields, 

|Gdk(u)|. The phases of Gdk(u) are assumed to be corrupted. Furthermore, in the 

Fourier domain we also have the constraint that the phase error is common to all K 

realizations. That is, any phase changes we make should be the same for all K 

realizations. This constraint may be especially strong since it amounts to having K sets 

of equations to solve, but only one set of phases for which to solve. That is, compared 
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to the usual phase retrieval problem, this one may be much more heavily 

overdetermined, which may make it more robust. On the other hand, if the array data 

is very sparse, then we may be at a disadvantage compared with the more usual filled- 

aperture phase retrieval problems, since sparse arrays imply large sidelobes that would 

work against the effectiveness of a support constraint. The step of subtracting a 

common phase error is, in effect, using a Fourier magnitude constraint since the 

Fourier magnitude is unchanged for each k. 

The new Fourier domain estimates, Gsk(u), will differ from the previous estimates 

Gk(u) both in magnitude and in phase. In the usual manner for an iterative transform 

algorithm, we substitute for the magnitudes of Gsk(u) the measured magnitudes 

IG^Cu)!. For the phases, we want to find the phase functions to change all the Gk(u) by 

such that their phases most closely match those of the Gsk(u), in order to exploit our 

knowledge that the phase error is the same for all realizations. One way to do this is a 

follows. Estimate the phase error by taking the average of the difference in phase 

between Gdk(u) and Gsk(u). At a given point (u), for some of the realizations Gsk(u) 

will be nearer to zero, and therefore the phases for those realizations will be less 

reliable than for other realizations. Therefore we would do well to compute a weighted 

average of the phase difference. Such a weighted average would be 

(()(u) = arg{XGdk(u)Gs=k(u)}, (4.8) 
k 

where arg{X} is the phase of X. 

In summary, one iteration of the generalized algorithm consists of the following 

steps: 

(1) Calculate the Fourier estimates: Gk(u) = Gdk(u) exp[-i(|)(u)] (for k = 1 ... K). 

(2) Inverse FFT them to compute the images gk(x). 

(3) Apply the support constraint: gsk(x) = s(x) gk(x). 

(4) FFT to compute the Gsk(u). 

(5) Compute a new phase-error estimate: ())(u) = arg{£ Gdk(u) G^u)}. 
k 

For the initial iteration the phase error estimate is zero. 
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Steps (2) to (4) can also be performed by a direct convolution in the measurement 

plane: 

Gsk(u) = Gk(u) * S(u) = X S(Ul) Gk(u - Ul) , (4.9) 
ui 

where S(u) = 7 [s(x)], which would be faster to compute for the case of sparse arrays. 

For filled arrays it is ordinarily fastest to compute a convolution using two FFT's and a 
multiply. However, for sparse arrays, for which Gk(u) is zero except at P locations, 
and we only care about Gsk(u) at those same P locations, then the direct convolution to 
compute Gsk(u) will take only KP2 complex multiplications [P products for each of P 
values of Gsk(u)], which will be more efficient than the FFT's. The FFT method, on the 
other hand, is very straightforward to compute, whereas the direct convolution is 

trickier if we are to compute it efficiently. 

If we were to choose for the support constraint s(x) = gj(x) * w(x), then S(u) = 

G^u) W(u), and 

Gsk(u) = Gk(u) * [Grfu) W(u)] = X GI(u1)W(u1) Gk(u - u}) .       (4.10) 
ui 

Since w(x) would ordinarily be a real-valued symmetric kernel of width a small 
number of pixels (depending on how close we think we are to a solution), W(u) would 

be a smooth real-valued symmetric function that would play the role of a weighting 

function in the Fourier domain. 

4.4 MAXIMIZING  SHARPNESS 

The second approach is to find the phase-error estimate <j>(u) which maximize the 

sharpness, 

s^SkittP-XEigkööl2]2. (4.1D 
X X      k 

of the image estimate. 
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We will accomplish the maximization using a standard gradient search technique that 

employs an analytic expression for the gradient, which we derive as follows: 

asi      ^  _ v aigk(*)l2 

te-'i.»?^- 
Using 

3<t>( 

91 g, rx)|2 
**'   '  = -iN-2 gk*(x) Gk(u) exp(i27iu-x/N) + c.c. , (4.13) 

where c.c. denotes the complex conjugate of the term that precedes it, and rearranging 

the order of summations yields 

2^ = 4N-2 Im{ £Gk(u) (£gk(x) gl(x) exp(-i27tu-x/N))*} 

= 4N-2 Im{ £Gk(u) (J[gk(x) gl(x)])*} . (4.14) 
k 

Sx would be maximized by a gradient search algorithm employing the expressions 

above for S^ and its gradient. 

Note that the product gk(x) gj(x) resembles constraining the support of gk(x) to fit 

within the support of gj(x). Hence this algorithm is somewhat related to the iterative 

transform algorithm and other phase-retrieval gradient-search algorithms we have 

employed. We give a more detailed analysis of this point later. 

If we are dealing with sparse apertures, gj(x) will have large sidelobes, and we may 

wish to filter it first to undo the severe weighting due to the optical transfer function. 

Let a filtered version of gj(x) be 

giwto = ^-MGrwOO} = J-MW(u) J[gr(x)]} 
= N-2 XW(u') expCilnu'-x/N) ^g^x') exp(-i27tu'-x,/N) , (4.15) 

u' x' 

where W(u) is a filter function, a good choice for which would be a Wiener-Helstrom 

filter. W(u) will be centra-symmetric, making gIW(u) real-valued, but not necessarily 

nonnegative. Then our new sharpness metric is 
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Siw = X[giw«l2- (4-16) 
x 

Similar to the approach above, we take the derivative of S1W with respect to (|>(u), 

reverse the order of the (four) summations, and, using the fact that W(u) is Hermitian, 

we obtain 

3^ = 4N-2 Im{£Gk(u) (j{gk(x) ^[G^W]})*} 1W 

= 4N-2 Im{£Gk(u) (Gk(u) * [G^2])*} , (4.17) 
k 

where GIW(u) = W(u) 7 [gl(x)]f making GIW(u)W(u) = W2(u) J [gj(x)i. This 

expression is the same as that for Sj given above, except that gj(x) is replaced by J 
_1[GIWW] = giwW * J-1[W] = gj(x) * J_1[W2] , where * denotes convolution. S1W 

reduces to Sj if W(u) = 1 everywhere. 

The major burden of computing Sj is the K FFT's needed to compute the gk(x)'s. 

The major computational burden of computing the gradient of Sj with respect to <|>(u) 

is the 2K FFT's needed to compute gk(x) and ?[giOc) gk(x)]. 

The primary burden of computing Sj^ is (2K + 2) FFT's, which is only slightly 

greater than that of computing S^ 

4.5 COMPARISON WITH MAXIMIZING SHARPNESS 

In this section we show that the error-reduction [4.6] version of our generalized 

iterative transform algorithm is similar in effect to a steepest-descent gradient search to 

maximize sharpness with a fixed step size. (However, we in practice use a more 

powerful gradient search algorithm, such as conjugate-gradient, and we can use a more 

powerful version of the iterative transform algorithm as well, such as hybrid input- 

output [4.6]). 

In the section above we derived a gradient of a sharpness merit function, given as 
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J|*g= 4N-2 Im{£Gk(u) (j{gk(x) J-l[GiW2]})*} , (4.18) 

for the weighted-Gj case, where Gj(u) is replaced by GIW(u) = Gj(u)W(u). The 
unweighted case would be the same with W(u) = 1 everywhere. This can be rewritten 

3^g= 4N-2 Im{XGk(u) (Gk(x) * [Gflfi])*} . (4.19) 

Let 

Gtk(u)=Gk(u)*[Glw2l- (4-20> 

Note that Gtk(u) is very similar to Gsk(u) — it is identical if W(u) is a binary function. 

We have 

3S 
^= 4N-2 Im{£Gk(u) G£(u)} . (4.21) 

For small values 6, Im{|A| exp[i6(u)]} = |A| 5(u), and by definition arg{|A| exp[i8(u)]} 
= 8(u), or Im{|A| exp[i8(u)]} ~ |A| arg{|A| exp[i8(u)]}. Therefore in the equation 
above, the gradient with respect to the phase error estimate is proportional to the 

average phase difference between Gk(u) and Gtk(u). Since we want to maximize the 

sharpness (climb up the hill) we want the phase-error estimate, (J)(u), to go in the 

direction of this gradient. So if the phase moves in that direction by a step size, b, then 

the new phase error estimate will be 

<t>new(") ~ 4>old(") + b arg{£Gk(u) G£(u)} 
k 

« 0oId(u) + b arg {£Gdk(u) exp[-i0old(u)] G£(u)} . (4.22) 

where we have included the magnitude of the sum in the step size b. If we happen to 

choose a step size b=l, then we have, for maximizing sharpness, 

4>new(u) « argfEGdkCu) G£(u)} . (4.23) 
k 
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Comparing this with our new phase error estimate for the iterative transform 

algorithm (Step 5), we see that it is nearly the same, since G^u) = Gsk(u). That is, our 

iterative transform algorithm using a low-resolution image as a support constraint is 

approximately the same as a sharpness-maximization steepest-descent gradient search 

method with a particular fixed step size. 

Which of the two algorithms is better is difficult to predict. We know from previous 

work that the error-reduction (ER) version of the iterative transform algorithm (ITA) 

is equivalent to a fixed-step steepest descent algorithm, and it is inferior to both the 

hybrid input-output (HIO) version of the ITA and to a conjugate-gradient algorithm. 

The algorithm we described above is an ER-like algorithm. Therefore the sharpness- 

maximizing gradient-search algorithm (which would employ a sophisticated gradient 

search) would be superior to the iterative algorithm given above both because the type 

of gradient search is superior and because it is not restricted to a specific step size. On 

the other hand, a HIO version of this algorithm might work well. An HIO version of 

the iterative algorithm would be to replace Step 3, gsk(x) = s(x) gk(x), with 

gsk(x) = s(x) gk(x) + [1 - s(x)] [gskold(x) - ß gk(x)] 

= s(x) [(1 + ß) gk(x) - gskoid(x)] + gskoldW - ß gkW (4-24> 

where gskoid(x) is gsk(x) ^rom tne Previ°us iteration and we assume that s(x) is binary 

(1 or 0), although this might also work for s(x) defined continuously between 0 and 1. 

A Fourier-domain convolution version of the HIO algorithm, which would speed the 

algorithm for sparse arrays, would be as follows (replacing Steps 2 to 4): 

Gsk(u) = S(u) * [(1 + ß) Gk(u) - Gskold(u)] + Gskold(u) - ß Gk(u) .      (4.25) 

4.6 IMAGE RECONSTRUCTION EXAMPLE 

Figure 4-1 shows a computer simulation example of phase-error correction using 

the generalized iterative-transform algorithm for a distributed array of heterodyne 

receivers. At the top is the 4-points object, consisting of a block of 2x3 pixels and three 

separated points, embedded in a 64x64 array. The sparse aperture we used for this 

experiment has 54 subapertures within a 16x16 area, which is shown in the upper left, 
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magnified by a factor of two (only the central 32x32 pixels in its 64x64 array are 

shown). This sub-aperture pattern was designed using a genetic-based algorithm by P. 

Henshaw [4.14]. The average of ten ideal diffraction-limited speckled images through 

this aperture has significant sidelobe artifacts making it difficult to discern the four 

points, as seen in the next part of the figure. The Wiener-Helstrom [4.15] filtered 

version of the averaged image (on the right) has few of these artifacts, and from it one 

can easily discern the major parts of the image. The bottom row in the figure shows the 

results when we added, to the Fourier transform, random phase errors that were 

uniformly distributed Gaussian random numbers with standard deviation 2n radians. 

The raw aberrated image (on the left) has no information content, whereas the image 

corrected by the iterative transform is almost identical to the ideal diffraction-limited 

image. The reconstructed image was shifted in position from the ideal, as is usually the 

case for phase-correction algorithms. (All images in this example are the average of ten 

speckled images.) We obtained comparable results using the image sharpness algorithm. 

The algorithms usually produced images with better quality as the number of 

realizations increases. It was unreliable when using only one to four realizations. Tests 

showed that the algorithm is not very sensitive to noise. 

4.7 CONCLUSIONS 

We have derived two new algorithms for phasing an array of heterodyne receivers, 

and have demonstrated that they can work well for sparse distributed arrays, require a 

modest number of speckle realizations, and are robust in the presence of measurement 

noise. 
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Object 

Sparse array Ideal image 
(no phase error) 

Wiener-Filtered 
Ideal Image 

Aberrated Image 
(2n phase error) 

Corrected Image Wiener-Filtered 
Corrected Image 

Figure 4-1. Computer Simulation of Sparse Heterodyne Array Phasing by the Iterative 
Transform Algorithm. 
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5   TURBULENCE ISSUES FOR LASER-IMAGING EXPERIMENTS 

5.1 INTRODUCTION 

Atmospheric turbulence plays an important role in the design of laser-imaging ex- 

periments. Such experiments could include the investigation of heterodyne methods, 

quasi-heterodyne methods, and direct-detection methods. Phase aberrations caused 

by atmospheric turbulence add to receiver misalignments in heterodyne detection to 

cause a total phase error that can cause severe blurring of the imagery. In addition, 

anisoplanatic effects (phase errors being different for different points in the object) 

are not accommodated by any of these methods, in their current formulation. It is 

natural to consider horizontal-path geometries in order to simplify the experimen- 

tal design. However, induced phase aberrations, anisoplanatism, and scintillation 

are much more severe with horizontal geometries than with vertical geometries. A 

candidate experiment design might set the range at R = 1 km, the sparse aperture 

diameter at D = 25 cm and the wavelength at A = 1.0e-6m to get a target resolution 

of 

Ax   =   RX/D (5.1) 

=   3.9 mm. (5.2) 

Phase-aberration strength (quantified with a correlation diameter) and anisopla- 

natism (quantified with an isoplanatic patch diameter) should be evaluated with 

respect to the aperture diameter and extent of the target (Aa; times number of res- 

olution elements across target), respectively. In this Section we investigate the ex- 

pected phase-aberration strength and anisoplanatism for a horizontal-path geometry 

at ranges of 1 and 10km. 

5.2 TURBULENCE STRENGTH 

The index structure parameter, C^, is a measure of turbulence strength that 

depends upon altitude, time of day, meteorological conditions, and season.  Induced 

61 



^ERIM 

Table 5-1. Correlation Diameter, r0, as a Function of C2 and Range, R. 

Cl   \ R 
rQ 

1km 10 km 
io-15 33.3 cm 8.36 cm 
10-14 8.36 cm 2.10 cm 
io-13 2.10 cm 0.53 cm 
IO"12 0.53 cm 0.13 cm 

phase aberrations, anisoplanatism, and scintillation derive from path integrals involv- 

ing C2, under the Kolmogorov turbulence model. Horizontal imaging implies that C\ 

is independent of position on path, simplifying computation of these path integrals. 

Note however that C\ is highly variable, so that several computations must be made. 

Figure 5-1 shows the variability in C2 at an altitude of 9 m over the diurnal cycle 

under cloudless desert conditions. This figure suggests that G\ could be expected 

to vary over 4 orders of magnitude at a given site. Fried has defined the correlation 

diameter (or seeing parameter) to be [5.1] 

r0   = 
'2.9r 

,6\88, 
)(T)   J0

RCl(z)[l-(z/R)]*f3dz 
-3/5 

(5.3) 

Using this expression we computed the correlation diameter as a function of C\ and 

range. These values are given in Table 5-1. We see from Table 5-1 that only the 1 km 

range and the most favorable turbulence conditions yield a correlation diameter that 

is comparable to the hypothetical aperture diameter, D = 25 cm. 

5.3 ANISOPLANATISM 

Another important factor to consider in an experiment design is the amount of 

anisoplanatism induced by the long-path turbulence. The origin of the anisopla- 

natism is the fact that radiation emanating from differing points in the field of view 

encounter different volumes of turbulence in route to the aperture. Fried has derived 

an expression for anisoplanatism-induced mean-square phase error in an adaptively 
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Figure 5-1. C\ Measurements. Measurements are taken at an altitude of 9m under 
cloudless desert conditions over the diurnal cycle. Statistical variability in the form 
of ±1 standard deviation is also given (from Infrared and Electro-Optical Systems 
Handbook, SPIE Optical Engineering Press, Bellingham WA, Vol. 2, p. 202). 
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corrected system [5.2]: 

S(r:a)   =   2.905 (y)aj[Ä^(z)({r[l-(z/Ä)]}B/8 + (az)5/8 

-i|{r[l - (z/R)}}2 + 2razc[l - (z/R)] + (azff'& 

-\\W ~ (z/R)]}2 - 2razc[l - (z/R)} + (az)T/6) dz     (5.4) 

where a is a field-angle vector relative to the beacon and 

c   =   r ■ ac/(ra) . (5-5) 

The function S(r, a) is interpreted as the mean-square phase error between points in 

the pupil separated by r for a point in the field-of-view at field-angle a. Equation (5.4) 

applies to a system with ideal phase correction for waves generated at the beacon. 

The RMS phase difference at a separation of 25 cm in the pupil as a function of field 

position and at a range R = 1 km with c = 1 is given in Figure 5-2. 

The isoplanatic angle has been defined by Fried to be 

'2ir\2 [R 
an   = 2.9i(f) law* 

-3/5 

(5.6) 

Notice that this expression resembles the definition of r0 (Eq. (5.3)), although there is 

a different scale factor and the path integral emphasizes turbulence near the target. 

In order to interpret the meaning of the anisoplanatic angle it is useful to consider 

the anisoplanatism induced mean-square phase error in two important limiting cases. 

/ a \5/3 

lim   S{r,a)   =    ( — ) (5.7) 
r/a-i-co \O0/ 

/ r \ 5/3 
lim S{r,a)   =   6.88   — (5.8) 

r/a->0 \r0J 

We define the isoplanatic patch diameter as 

p0   =   Ra0 . (5.9) 
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Figure 5-2. RMS Phase Difference as a Function of Field Position. The phase differ- 
ence is measured at a separation of 25 cm in the pupil. The range is R = 1 km and 
c= 1. 
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Table 5-2. Isoplanatic Patch Diameter as a Function of Turbulence Strength, C„, and 

Range, R. 

Cl   \ R 
Po 

1km 10 km . 
10-15 105.0 mm 26.3 mm 
10-14 26.3 mm 6.6 mm 
10-13 6.6 mm 1.7mm 
io-12 1.7 mm 0.4 mm 

Table 5-2 gives the isoplanatic patch diameter as a function of turbulence strength, 

C2, and range, R. Table 5-2 suggests that for an experiment design with R — 1 km and 

very good turbulence conditions, we might expect to have between 7 (for C2 = 10~14) 

and 27 (for C\ = 10-15) resolution elements across an isoplanatic patch when the 

resolution is Ax = 3.9 mm. 

Consider the case in which we are not troubled by phase aberrations in the pupil 

but are only constrained to have the field of view confined to an isoplanatic patch. 

This would be the case when we have an adaptive optics system or when we have full 

confidence in a phase-correction algorithm. In this case we have 

NAx   =   p0 

-   Ra0 

(5.10) 

(5.11) 

Using Eq. (5.1) to substitute for Ax and solving for D we get 

NR\ 
D   = 

{Ra0) 
(5.12) 

Let N = 31, R = 1km, and A = 1.0/im.   Table 5-3 gives the required aperture 

diameter values as a function of turbulence strength, C\. 
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Table 5-3.   Aperture Diameter as a Function of Turbulence Strength, C\.   Fixed 
parameters include iV = 31, R = 1 km, and A = 1.0 ^m. 

n Ra0 D 
10-1B 105.0 mm 0.32 m 
10-14 26.3 mm 1.22m 
io-13 6.6 mm 4.85 m 
io-12 1.7 mm 18.82 m 

5.4 RECOMMENDATIONS AND OUTSTANDING ISSUES 

These calculations have been made using plausible values for C\. We recommend 

that on-site measurements be made of C\ to help guide the experiment design. We 

also recommend that the simulation experiments be performed to investigate the ef- 

fects of anisoplanatism on phase correction algorithms. If necessary, these algorithms 

could be developed to explicitly accommodate anisoplanatic effects. It appears that 

a horizontal range of no more than 1 km should be used for initial experiments. Data 

may need to be collected at the diurnal minima for C2 and a temperature structure 

constant, Cf, may need to be monitored to optimize data-collection times. 

There are several outstanding issues needing further study. The effects of boundary- 

layer turbulence (due to proximity to the ground) have not been considered. On-site 

measurements should be designed to statistically characterize C2 as a function of time 

of day and height off of the ground. In addition, effects of scintillation also need to 

be characterized for any experimental design. Finally, an extended-path experiment 

might be designed with a vertical geometry. Although such a geometry significantly 

reduces problematic atmospheric effects, target design becomes more challenging. 
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6   NEW 3-D IMAGING MODALITY USING 

AN OPACITY CONSTRAINT 

6.1 INTRODUCTION 

In this section we present a candidate three-dimensional imaging concept that 

we refer to as Phase Retrieval with an Opacity Constraint for LAser IMaging (PRO- 

CLAIM). Three-dimensional imaging significantly enhances target identification over 

two-dimensional imaging modes. 

6.2 IMAGING CONCEPT 

Marron has demonstrated that three-dimensional imaging can be accomplished 

by sequentially illuminating an object with different laser frequencies and measuring 

the far-field speckle pattern for each of the illuminating frequencies [6.1]. In-phase 

and quadrature measurements provide field quantities for the laser-speckle patterns. 

Properly formatted, these data form a three-dimensional Fourier-volume (or aperture) 

representation of the illuminated object. A simple three-dimensional DFT can be 

performed to get a three-dimensional image of the object. This three-dimensional 

lensless imaging concept is referred to as Holographic Laser Radar (HLR). 

The collection of HLR data could be considerably simplified if, instead of collecting 

field measurements for the speckle images, we collect intensity measurements. Inten- 

sity measurements are straightforward and eliminate the need for interference with 

a reference beam with precision alignment, tracking, and phase stability. A speckle- 

intensity data set would provide three-dimensional Fourier-magnitude information 

or, equivalently, the three-dimensional object autocorrelation. In order to recover a 

literal three-dimensional image, a phase-retrieval algorithm is required. Therefore, 

this proposed imaging concept trades complexity and cost in hardware for increased 

computing. 

Phase retrieval requires some type of a priori information about the object. Two- 

dimensional complex-valued objects have been recovered using phase retrieval with a 
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support constraint [6.2], although this is a challenging problem. It is well known that 

the uniqueness properties of two-dimensional phase retrieval are much better than 

for the one-dimensional problem [6.3]. We conjecture that three-dimensional phase 

retrieval with a support constraint is better conditioned than its two-dimensional 

counterpart. 

An alternative constraint that has great promise in the three-dimensional imaging 

case is an opacity constraint. An opaque object is an object that exhibits only surface 

scattering and no volume scattering (over volumes that extend beyond the desired 

range resolution). The reflectivity function for an opaque object is confined to a two- 

dimensional manifold embedded in a three-dimensional space. An opacity constraint 

has been used to perform superresolution [6.4]. 

The opacity constraint is a special type of support constraint. It is a "quality 

of support" constraint - the actual location of the support is not given, although 

the object is known to be confined to a two-dimensional manifold. This constraint 

promises to be very powerful since it greatly reduces the class of feasible objects 

from which to choose an estimate. Moreover, there are many imaging applications in 

which the objects will be known with confidence to be opaque. For example, ballistic 

missiles certainly qualify as opaque objects. Most objects in our everyday experience 

satisfy the opaque condition. The constraint is invalid for objects with distributed 

volume scatterers such as translucent or fog-like objects. 

The use of an opacity constraint in conjunction with frequency-diverse pupil- 

plane speckle measurements to reconstruct a three-dimensional object constitutes the 

unconventional imaging concept that we refer to as Phase Retrieval with an Opacity 

Constraint for LAser IMaging (PROCLAIM). In the following sections we consider 

various embodiments of this imaging concept. 

6.3 SYNTHETIC-APERTURE DESIGN 

Consider a missile or a space object that is moving with some trajectory overhead. 

When it is illuminated with a laser, the reflected light will form a speckle pattern on 
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the ground. The diameter of a speckle on the ground is given by 

/>   =   #-. (6-D 

where R is the target range, A is the wavelength, and D0bj is the object diameter 

in the cross-range direction. We wish to detect this speckle pattern. The spatial 

sampling interval required to satisfy the Nyquist criterion is 

Ax   <   p/2 (6.2) 

—   2D0i)j 

For an object with D0bj = 5m at R = 100km and A = 1 /urn. we have Ax < 1 cm. 

One way to collect an angle-angle speckle pattern at a particular frequency is 

to use a filled array, as depicted in Figure 6-l(a). Filled arrays can be expensive. 

An alternative is to recognize that the object will be rotating and the speckle will 

be translating on the ground, which suggests the use of a synthetic aperture. The 

speckle will translate on the ground at a speed given by 

vt = 2Rw (6.4) 

where to is the angular velocity of the target. If a linear array of detectors is oriented 

perpendicular to the direction of speckle motion, an angle-angle speckle pattern can 

be built up synthetically in time, as depicted in Figure 6-1 (b). The hardware require- 

ments for such a system are dramatically reduced over a filled array of comparable 

diameter. 

6.4 SERIAL-FREQUENCY ILLUMINATION 

The goal is to acquire a separate array of speckle measurements for each of several 

illuminating laser frequencies. This can be accomplished by modulating the illu- 

minating laser output with an acousto-optic (AO) device to serially step through a 

sequence of desired frequencies. A time-frequency representation of a step-frequency 
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(a) 

collecting lens 

detector element 

direction of 
speckle translation 

(b) 

Figure 6-1.   Detection Geometry,   (a) Filled-aperture array, (b) synthetic-aperture 
array. 

72 



(^ERIM 

Frequency 

-I At 

Time 

Figure 6-2: Time-Frequency Representation of Step-Frequency Illumination Pulse. 

illumination is shown in Figure 6-2. We require that the duration of a frequency 

step, A£, be long enough so that returns from near and far points in the target can 

simultaneously have the same frequency. 

M > 2Zobj/c , (6.5) 

where Z0bj is the depth of the object and c is the speed of light. The duration of a 

step-frequency sequence will be 

T = N/±t , (6.6) 

where iV is the number of individual illuminating frequencies or, equivalently, the 

number of range bins desired in the three-dimensional image. 

There is also an upper limit on the speed of the speckle translating at the detector 

array that can be tolerated. We require that a speckle move no more than a half of a 

speckle diameter during an entire step-frequency sequence. This requirement insures 

that the angular sampling in the synthetic-aperture direction will meet the Nyquist 

criterion for each of the frequencies: 

vs < 
2NM 

(6.7) 
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Substituting in expressions for vs, />, and M, we find that this criterion restricts the 

angular velocity of the target that can be tolerated: 

u < . (6.8) 
8NDobjZ0bj 

It is worth noting that this expression is independent of range. As a sample calcula- 

tion, consider an object for which D0bj = 5 m and Z0bj = 2 m. Suppose also that we 

desire N = 10 and that we are imaging at A = 1 /mi. The maximum angular velocity 

that can be tolerated for such an object is found to be u < .375 radians/second. 

This sample calculation suggests that the requirement on object angular frequency is 

not particularly restrictive and that there are likely to be many objects that can be 

imaged with serial-frequency illumination. Objects that rotate at a rate faster than 

the criterion prescribed by Eq. (6.8) will give data that is undersampled (aliased) in 

one angular dimension. It is possible that the opacity constraint could perform in- 

terpolation in addition to phase retrieval to accommodate such undersampled data. 

Of course this conjecture would need to be validated and quantified. Note that 

restrictions on target angular velocities are relaxed as the array is built up in the 

synthetic-aperture direction. In the case of a completely filled array, only a single 

step-frequency illumination sequence is needed to collect the entire data set and the 

three-dimensional Fourier volume will be mildly skewed in the illumination-frequency 

dimension for targets that rotate particularly fast. 

6.5 PARALLEL-FREQUENCY ILLUMINATION 

In serial-frequency illumination, speckle measurements for differing frequencies are 

differentiated by temporal multiplexing. An alternative is to illuminate the object 

with all frequencies simultaneously and use a dispersive element prior to detection to 

differentiate frequencies. This mode of operation is referred to as parallel-frequency 

illumination and is depicted in Figure 6-3. 

Parallel-frequency illumination is attractive since an AO device is not required to 

produce a precisely timed illuminating waveform, as is true in the serial-frequency 

illumination mode.   Multiple frequencies can be created by operating the laser at 

74 



^ERIM 

direction of 
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Figure 6-3. Parallel-Frequency Illumination Mode 
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multiple longitudinal modes simultaneously. On the other hand, the resolving power 

needed to differentiate frequencies with a dispersive element is demanding. The fre- 

quency interval required to meet the Nyquist criterion is given by [6.1] 

^   <   w^h- (6-9) 

The resolving power of a dispersive element is defined as 

K   ,   Ä (6.10) 

where Ä and v represent the center wavelength and frequency, respectively. Substi- 

tuting in the expression for the maximum frequency interval (Eq. (6.9)), we have 

n > ^^ (6.12) 
c 

>   H^i. (6.13) 
A 

For Zotj = 2 m and operating at A = 1/mi we have Az/ < 75 MHz and K > 4 x 106. 

The resolving power of a grating is given by [6.5] 

Kg   =   mM , (6.14) 

where m is the order and M is the number of grating lines. A blazed grating design 

could be used to direct the light to a higher order perhaps the 5th order.   In 

order to achieve a resolving power of H = 4 x 106 we require M = 8 x 105 in a 

diffraction-limited grating. With a grating-line separation of 1 /um, such a grating 

would be 80 cm in length. Such an element would be impractical and motivates 

us to investigate other possibilities. Some spectrograph designs rely upon multiple 

passes through a single grating, which may make a grating design more feasible; 

but this would require additional study. For a proof-of-principal experiment using 

small objects on a 1 km test range, a grating would be feasible. For example, if we 

are making a target of depth 2 cm, then the grating would have to be just 8mm in 

length. 
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A Fabry-Perot interferometer can be used to achieve resolving powers that are 

significantly larger than gratings. The expression for the resolving power for a Fabry- 

Perot interferometer is given by [6.6] 

^ lirndr .„ „ „. n" = W^i • <6-15> 
where n is the index of refraction of the material between reflective surfaces, d is the 

separation between reflective surfaces, and r is the reflectivity. As an example, if 

we select r = .95, n = 1, and d = .lm, the resolving power is found to be 1ZJP = 

6.1 x 106, which is sufficient for the previous example. Unfortunately, the Fabry- 

Perot interferometer only passes one narrow spectral band at a time and rejects the 

remaining light. This inefficiency would not be acceptable for our imaging application 

in which photons are a highly valued commodity. One can imagine a scheme in which 

the rejected light is repeatedly recycled through the Fabry-Perot interferometer at 

slightly different angles on each pass to yield a high-efficiency system. Such a device 

would take further study. 

The differentiation of frequencies can also be accomplished with heterodyne de- 

tection. In this mode of operation it is natural to try to detect both Fourier modulus 

and phase information. If the phase information is corrupted due to instabilities in 

the local oscillator or mechanical instabilities in the optical distribution of the local- 

oscillator signal to each detector in the array, then a phasing algorithm (see Section 4) 

will be needed. Opacity can also help the phasing algorithm. 

6.6 CONCLUSIONS 

Various embodiments of three-dimensional imaging with frequency-diverse speckle 

have been described. The serial-frequency illumination imaging mode offers a simple 

hardware design and appears to be valid for a significant range of objects of interest. 

This mode relies heavily upon an opacity constraint to accomplish phase retrieval. In 

the parallel-frequency illumination imaging mode, a practical dispersive element with 

sufficient resolving power and high efficiency has not been identified for the case of 

large objects. Opacity can also play a role with phasing algorithms when heterodyne 
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detection is employed. In any case, opacity promises to play a role in post-detection 

processing of the data for phase retrieval, bandwidth extrapolation, or interpolation. 

Appendix C is a reprint of a publication showing the first successful reconstruc- 

tions of a 3-D image from computer-simulated data using the PROCLAIM technique. 
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7 LABORATORY DEMONSTRATION OF QUASI-HETERODYNE 
IMAGING 

We conducted a laboratory experiment to demonstrate quasi-heterodyne imaging 

and correction of phase errors. The general approach was to record pupil plane 

complex optical field data by using a detector array. We also introduced quadratic 

phase errors by imparting defocus to the reference beam. We obtained multiple 

realizations of the pupil plane field by rotating the target slightly. 

Target on Rotation Stage 

Laser 

Lens 

Piezo Mirror 

Figure 7-1. Experimental Setup Used for Laboratory Data Collection. 

7.1 LABORATORY DATA COLLECTION 

The diagram for the experimental setup is shown in Fig. 7-1. Light from an argon 

laser is collimated and separated into object and reference beams. The object beam 

illuminates a target which consists of cutout pieces of retro-reflective tape mounted on 

glass. The target occupies an area that is roughly 2 cm x 2 cm. Light reflected by the 

79 



target passes back through a beamsplitter and then, without imaging optics, to a CCD 

detector array. The reference beam of light travels through the beam splitter and to a 

lens that creates a point source that is initially at the same distance from the CCD array 

as the object, and is located to coincide with the center of the target. Light from this 

reference beam then propagates to a mirror that is mounted on a piezo-electric 

transducer. Longitudinal motion of the transducer is used to change the phase of the 

reference beam. The reference beam then propagates through a beamsplitter to the 

detector array that records the interference pattern of the object and reference beams. 

The data recording procedure consists of recording four interferograms for each 

realization of the pupil plane field. These four interferograms are separated in phase by 

90°, which we accomplish by motion of the piezo mirror. In this manner we can record 

the complex values of the optical field [7.1]. To obtain independent realizations of the 

pupil-plane field, we rotate the object is rotated so that new speckles occupy the CCD 

array. 

For the initial set of data, we recorded a series of 64 independent realizations of the 

pupil-plane field. These frames of data are initially stored on a personal computer and 

are then passed to a network of workstation computers for processing. 

7.2 IMAGE  RECONSTRUCTION 

From a set of four interferograms we compute the complex values of the optical 

field in the aperture (CCD) plane. Then by Fourier transformation we compute a 

complex-valued image. Figure 7-2 shows a noncoherent average of ten of the image 

realizations when no phase error was introduced. 

80 



©>ERIM 

Figure 7-2. Image from Quasi-Heterodyne Laboratory Experiment. The average of the 
intensities of ten reconstructed images is show. 

7.3 SECTION 7 REFERENCES 
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8 DETERMINISTIC SPARSE ARRAY DESIGN 

As discussed in Section 3, given a large enough number of speckle realizations, we 
can reconstruct a diffraction-limited incoherent (speckle-free) image of a laser- 

illuminated target. But to do so from a sparse aperture, we must design the pattern of 
subapertures so that the autocorrelation function of the aperture fills optical transfer 
function (OTF) space. If there are gaps in OTF space, then we cannot recover those 
missing spatial frequencies by Wiener filtering. At the same time, to minimize cost we 

may wish to use the least number of subapertures possible. Hence we have the problem 
of finding a pattern with the minimum number of subapertures whose autocorrelation 
forms a filled pattern. In this section we describe two such patterns, one of which, the 
"arrow," fills a square OTF and the second of which, the "box + 2," fills a square OTF 

with two-fold redundancy. Unlike other subaperture pattern designs, they are 

completely deterministic and are immediately scalable to any array size. We wish to 
define the patterns on square array because that matches the format of the image 
formation/reconstruction processing we perform in the computer. 

Before showing the more efficient arrow pattern, we consider the pattern shown in 
Figure 8-1, which has the shape of the letter "U" turned on its side. (Rotating the 
pattern by 90° gives another pattern that also fills OTF space, so the pattern that looks 

like an upright "U" has the same properties.) For a subaperture pattern defined on a 
square grid with L positions on a side, it produces a filled autocorrelation of size 
(2L - 1) x (2L - 1) using (3L - 2) subapertures. For the example shown in Figure 8- 
1, for a subaperture pattern with L = 8, it forms a square autocorrelation having 

(2L - 1) = 15 points on a side from (3L - 2) = 22 subapertures. 

Figure 8-2 shows an example of the arrow array, which is the most efficient array 
we have found to date. The arrow array is defined on a square grid, which has the first 

row filled, the first column filled, and the diagonal between them filled, except for the 
(2, 2) point, which is missing. (The array can also be rotated by 90°.) It yields a filled 
autocorrelation of size (2L - 1) x (2L - 1) using only (3L - 3) subapertures, one less 

than the U array. For the example shown in Figure 8-2, it forms a square 

autocorrelation of (2L - 1) = 15 points on a side from only (3L - 3) = 21 subapertures. 
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Figure 8-1. U Array Pattern. Figure 8-2. Arrow Array Pattern. 

Table 8-1 compares the number of subapertures in the U and arrow patterns with 

those designed by a genetic algorithm [8.1]. Of the five cases given in Figure 4 of [8.1], 

the U array ties the genetic algorithm in two cases and beats it in one. The arrow array 

ties the genetic algorithm in two cases and beats it in three. 

Table 8-1. Number of Subapertures to Fill (2L-l)x(2L-l) Autocorrelation Space 

Array Size 
(L) 

Autocorr. 
Size (2L-1) Genetic U Arrow 

4 7 9 10 9 

6 11 16 16 15 

7 13 19 19 18 

8 15 21 22 21 

16 31 54 46 45 

Figure 8-3, taken from Reference [8.1] shows graphically that the Arrow array 

significantly outperforms the computer-designed arrays for large array sizes. 

Depending on the desired effect, other pattern design problems can be defined. For 

example, what pattern with the minimum number of subapertures yields an OTF with 

two-fold redundancy? This would give twice the signal-to-noise ratio as a pattern 

simply filling OTF space. We designed the "box + 2" pattern, an example of which is 

shown in Figure 8-4. It yields a filled, doubly redundant autocorrelation of size 

(2L - 1) x (2L - 1) using only (4L - 2) subapertures. For the example shown, L = 9, 
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(2L - 1) = 17, from only (4L - 2) = 34 subapertures, compared with 36 for a pattern 

designed with the genetic algorithm. 

8.1 SECTION 8 REFERENCES 

[8.1] P.D. Henshaw and N.R. Guivens, Jr., "Genetic Algorithms for Unconventional 

Imaging," in Inverse Optics III. Proc. SPIE 2241. 257-265 (April 1994). 
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Figure 8-3. Comparison of Number of Subapertures Needed to Synthesize a Filled 
OTF as a Function of OTF (Autocorrelation) Size.(From [8.1].) 

Figure 8-4. Box+2 Array Pattern. 
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9 INTERMEDIATE-PLANE  DETECTION 

Usually conventional imaging sensors make measurements in a focal plane of an 

optical system, whereas many unconventional imaging sensors, including the ones 

considered in this report, make measurements in the pupil plane. An exception is the 

case in which each subaperture of the receiver is small compared with the diameter of a 

pupil-plane laser speckle. If we put an array of detectors in such a focal plane, then the 

intensity measured by any one CCD element (or any collection of them) is equivalent to 

the intensity in the pupil plane. However, each CCD element then "sees" laser light 

from only a small portion of the sky. Consequently, a CCD array in the focal plane of a 

small subaperture can (1) rapidly steer the field-of-view, (2) have a large instantaneous 

field-of-regard, (3) gather data on multiple well-separated target complexes in parallel, 

and (4) suppress background light. These advantages of a CCD array in the focal plane 

of each subaperture must be weighed against some disadvantages, including the 

relatively slow read-out time associated with most CCD arrays as opposed to an array 

of, say, avalanche photo-diodes. 

For those situations in which a CCD array in the back focal plane is desirable, we 

can obtain additional design options by a new approach that entails putting the CCD 

array in a plane that is not the focal plane of the subarray optics. Specifically, it allows 

the use of subapertures that are larger in diameter than the speckle size in the pupil 

plane; that is, the target can be partially resolved by the subaperture. This would allow 

a system that can image targets at a wider range of distances. 

This situation is illustrated in Figure 9-1. In the figure, the first plane behind the 

lens represents the focal plane of the subaperture. Parallel rays from the target come to 

focus in that plane. The second plane behind the lens represents the new proposed 

position for the array of detectors. Rays striking a point in that plane come from the 

same general direction as the rays striking the corresponding (demagnified) position in 

the focal plane. However, the rays coming to the second plane arrive from a wider 

range of angles than rays hitting the corresponding point in the focal plane. Hence there 

is less field-of-view selectivity in the second plane. However, notice that the rays hitting 

that point all pass through a single point in front of the pupil, in a plane indicated in the 
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figure by the second, longer line a distance in front of the lens. In effect, the optical 

system is forming an image of the speckle pattern that is in that plane in front of the 

lens. Hence, if the lens has a diameter of more than one speckle, the detector can record 

multiple speckles. As seen from the lower part of the figure, rays hitting different 

pixels come from different parts of the lens, i.e., from different speckles. 

All rays that reach a given pixel 
pass through a point in front of 
the subaperture that is conjugate 
toihatpixei. 

Rays from object that reach a given 
pixel pass through only part of the 
lens, i.e., come from one of the 
speckles in the subaperture. 

Figure 9-1. Detector Array in a Plane Behind the Focal Plane of the Lens, 
(a—upper) Rays arriving at a pixel pass through a single point in a plane in front of the 
lens; (b—lower) rays hitting different pixels come from different parts of the lens, i.e., 
from different speckles. 

In summary, for a detector array in focal plane, each pixel sees a different IFOV, 

thereby maximizing spatial background suppression, and each pixel integrates over the 

entire entrance aperture. Then we must have subaperture diameter less than a speckle 

size. At the other extreme, for a detector array in a plane that re-images the aperture 

plane, each pixel sees the FOV of the telescope, yielding minimum background 

suppression, and each pixel sees a small portion of the entrance aperture, and so we can 

measure many speckles over a subaperture. Both of these extremes are poor for the 
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case of a small number of speckles per subaperture. The new method of putting the 
detector array in an intermediate plane, behind the focal plane, then each pixel sees a 
somewhat larger IFOV than for the focal plane, yielding partial background 
suppression, and each area of the detector sees a different aperture-plane speckle, 

allowing multiple speckles to be measured simultaneously. Hence it allows a trade-off 
of IFOV (background suppression) against the ability to measure multiple aperture- 

plane speckles simultaneously. 
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APPENDIX A 

This appendix describes the theory behind most of the imaging modalities analyzed 

in this report. It is from J.R. Fienup, "Unconventional Imaging Systems: Image 

Formation from Non-imaged Laser Speckle Patterns," in Emerging Systems and 

Technologies. S.R. Robinson, Ed., Vol. 8 of The Infrared & Electro-optical Systems 

Handbook. (ERIM, Ann Arbor, 1993), Chapter 1.5, pp. 92-109. 

A reader unfamiliar with pupil-plane laser imaging modalities would benefit from 

reading this appendix first. 
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1.5    IMAGE FORMATION FROM NONIMAGED LASER SPECKLE PATTERNS 

Written by James R. Fienup 

In most conventional imaging systems, an image is formed by an optical system 
and the electromagnetic radiation (light, when at optical wavelengths) is de- 
tected in the image plane directly. However, if the scene or object being imaged 
is illuminated by coherent radiation, as from a laser, then several alternative 
approaches can be used to form an image without the use of image-forming 
optics. Images can be formed from data collected in a plane where the aperture 
of an imaging system would ordinarily be located. This is possible because the 
electromagnetic field in the plane of the receiver is related to the field reflected 
by the scene by an invertible transform. The transform is the Fresnel transform 
if the scene is in the near field of the receiver, and the Fourier transform if in 
the far field.393 If field measurements are made at an array of points in an 
aperture plane (i.e., without a focusing system) by heterodyne or holographic 
methods, then the image formation can be accomplished by an inverse Fourier 
(or Fresnel) transform in a digital computer. This is commonly done for mi- 
crowave synthetic aperture radar (SAR) systems. 

The symbols used in this section are defined in Table 1.2. 
The resolution limit imposed by diffraction is 

p = KR/Da , (!-144) 

where p = resolution at the object, X = wavelength, R = range to target, and 
Da = diameter of the aperture or collecting array. 

The familiar 1.22\R/Da is replaced by \RIDa because we are considering a 
square aperture of length Da. To image distant objects with very fine resolution, 
this limit on resolution forces the use of short wavelengths in order to allow 
for apertures of practical size. However, for shorter wavelengths, particularly 
in the ultraviolet through the midinfrared, heterodyne measurements of the 
field are very difficult. Furthermore, at these wavelengths the turbulence of 
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Table 1.2   Symbols, Nomenclature, and Units 

Symbol Nomenclature 

c 

C 

da 

daT\d 

Da 

Do 

f 

fl 

F 

Fi 

8 

h 

i 

Lc 

Lp 

M 

ribP 

id 

ns 

N 

Nm 

P 

P 

r 

n 
ra 

R 

s 

S 

So 

obimax 

SNR 

(u,v) 

Ur 

Va 

Vo 

(x,y) 

(Xaja) 

(Xojo) 

Greek: 

Mi 

Speed of light 

Autocovariance of aperture-plane intensity 

Detector spacing 

Area of one detector 

Diameter of receiver aperture 

Object diameter 

Optical field in object plane 

Incoherent object brightness 

Optical field in aperture plane 

Fourier transform of incoherent object 

Optical field in image plane 

Planck's constant 

Coherence length of laser 

Length of laser pulse 

Number of detectors per aperture-plane speckle 

Number of resolved bright image points at a given resolu- 
tion 

Average number of photons per detector 

Number of speckles in the aperture 

Number of independent realizations of the speckle pattern 

Maximum number of independent realizations available 

Coherent impulse response 

Pupil function 

Autocorrelation of coherent object 

Autocorrelation of incoherent object 

Object average reflectivity 

Range to object 

Point spread function, |p|2 

(Normalized) optical transfer function 

(Unnormalized) optical transfer function 

Maximum 1-D space-bandwidth product 

Signal-to-noise ratio 

Spatial-frequency coordinates 

(u2 + v2)n 

Speckle velocity in aperture plane 

Object velocity 

Image-plane coordinates 

Aperture-plane coordinates 

Object-plane coordinates 

Time for pattern to move across one-quarter of the speckle 
width 

Units 

m/s 

W2/m2 

m 

m2 

m 

m 

VW/m2 

W/m2 

VW/m2 

W/m2 

VW/m2 

is 

m 

m 

W/m 

W2/m2 

m 

m 

m 

m/s 

m/s 

m 

m 

m 
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Table 1.2   (continued) 

Symbol Nomenclature Units 

Ma 
Time for pattern to move across aperture s 

A*m Time before object rotates too much s 

Az Object depth along line of sight m 

1\d 
Detector duty cycle 

fUi 
Quantum efficiency of the detector 

k Wavelength 
m 

\>- Complex coherence factor 

Pa Speckle width at aperture m 

Po Potential resolution at object m 

Tatm 
One-way atmospheric transmittance 

fopt 
Transmittance of receiver optics (if any) . 

Tpol 

4> 

Fraction of light reflected in desired polarity    - 

Estimate of aperture-plane phase rad 

«J» Aperture-plane phase rad 

(jj 
Object rotation rate (axis perpendicular to line of sight) rad/s 

Operators: 

9 Fourier transformation 

* Convolution 

® Autocorrelation 

the atmosphere causes phase errors in the field propagated through it, which 
can severely limit the resolution of a heterodyne system. If it is possible to 
reconstruct an image from the intensity of the field in the aperture plane then 
these limits to resolution caused by aberrations can be overcome. Figure 1.40 
hows examples of configurations that can be used to gather the aperta^ne 

intensity. These laser intensity patterns are speckled if the scene is rough in 
comparison to the wavelength of illumination. In this section, some methods 
for forming images from nonimaged, aperture-plane speckle patterns are dis- 
cussed First some terms are defined and a few methods are briefly described. 
Then one particular method, imaging laser correlography, is described in more 
detail, to serve as an example of a nonconventional imaging method using 
aperture-plane speckled intensity patterns. 

These techniques generally require that the scene be.of limited e xtent- 
that it be a bright object on a dark background. They have been developed 
primarily for the applications of fine-resolution imaging of space objects by 
ground based systems and of discriminating decoys from reentry vehicles for 
the Space Defense Initiative (SDI) midcourse phase. Another application could 
be the imaging of a ground scene from an overhead platform if only a well- 
defined portion of the ground were illuminated by a coherent source. Relying 
on powerful sources of short-wavelength, coherent radiation, these technique, 
have been in development only since the 1960s The first concerted effort^ 396 
to develop these ideas began at the Woods Hole Summer Study in 1966. 
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Atmosphere 

Laser   Detector array 

(a) 

(b) (c) 

Alternative detector array geometries 

Fig. 1.40 Imaging geometries: (a) The intensity of coherent radiation scattered from an 
object is measured by an array of detectors without intervening optics, (b) Alternatively, a 
collection lens can be used to gather the light onto each of the individual detectors, which 
can have smaller areas, (c) Another alternative is to reimage the pupil plane of a telescope 
onto a detector array of small dimensions, such as a CCD array. 

1.5.1     Basic Imaging Equations 

Because of the mixture of coherent and incoherent imaging concepts inherent 
in imaging correlography, it is necessary to define here the basic imaging 
equations that will be needed later in this section. 

The object is assumed to be illuminated by radiation that is both spatially 
and temporally coherent over the volume of the object. Here we refer to the 
illuminated scene as the object. Let the complex field reflected by the object 
be f'(x0,y0) in a plane perpendicular to the line of sight (LOS). Then the field 
in the aperture plane at the detector array, also for simplicity assumed to be 
perpendicular to the LOS, is given by the Fresnel transform393: 

i      /;2TT
N 

F'(xa,ya) = 7~rJ exP( T5" I exP kR 
(xl + yi) 

\\f'(xo,yo)exv 

-I2TT 
x exp 

\R 

kR 

(xax0 + yay0 

{xl +yi) 

dx0 dy0 (1.145) 
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In this section, all integrals are over (- *,*). For the case of a diffusely scat- 
tering object, the intensity of this aperture-plane optical field is a speckle 
pattern. We are assuming that in front of the detector array is a polarizer that 
selects a single polarization, which is necessary for the methods described here 
to work. Hence, throughout this section we are considering radiation of a single 
polarization, enabling us to employ scalar diffraction theory. 

If we absorb the constant phase term -2TT/\R, the quadratic phase term 
(- Tt/kR)(x2

a + y2
a), and the factor i into the phase ofF'(xa,ya) to form F(xa,ya), 

and absorb the quadratic phase term (ir/XÄ )(x2
0 + y o) into the phase off'(Xojo) 

to form f(x0,y0), then we have the simpler Fourier transform relationship 

F(xa,ya) = \F(xa,ya)\ exp[ity(xa,ya)] = &[f(x0,y0)] 

-i2iT 

■ k\\« x0,y0) exp \R 
■{xaXo + yay0) dx0 dy0 (1.146) 

between the field f(x0,y0) at the object plane and the field F(xa,ya) at the 
receiver plane. This Fourier relationship is valid for the near-field conditions 
normally allowed only for the Fresnel transform. If the complex-valued 
aperture-plane field, F(xa,ya), could be measured without any phase errors, 
then an inverse Fourier transform performed in a computer would yield a 
diffraction-limited complex-valued, coherent image. This image would be given 
by the convolution (with appropriate scaling of the coordinates to account for 
the image magnification) 

g{x,y) = f*p{x,y) = rEjjf(x°>y°Wx ~ xo,y ~ y0) dx0 dy0 , (1.147) 

where * denotes convolution, p(x,y) = & '^[PiXaja)] is the system (coherent) 
impulse response, and P(xa,ya) is the pupil function (unity over the extent of 
the aperture and zero outside). The corresponding point spread function for 
incoherent imaging through the same aperture would be 

s(x,y) = \p(x,yf = &-l[So(u,v)] , (1.148) 

where S0(u,v) is the unnormalized optical transfer function, given by the au- 
tocorrelation of the pupil function: 

S0(u,v) = P®P(u,v) = ^\\ P(xa,ya)P*(xa - u,ya - v) dxa dy0 

(1.149) 

and P* is the complex conjugate of P, and (u,v) is a spatial-frequency coordi- 
nate. The (normalized) optical transfer function is given by 
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Like any coherent image, g(x,y) would be speckled, assuming that the surface 
of the object is rough compared to the wavelength of the radiation.397 As the 
object translates or rotates, a new part of the back-scattered field falls on the 
receiver; effectively, the object takes on a different realization of the phase in 
the object plane. When we wish to distinguish these different fields coming 
from the object, we denote the n'th realization of the object field as fn(x0,y0) 
and the corresponding field at the aperture plane as Fn(xa,ya)- The image of 
each fn(xo,y0) would have a different realization of the speckle pattern across 
it. If the field in the aperture plane translates by the width of the aperture 
between the time the two images are collected, then, for the case of a diffusely 
scattering object, the two field distributions are independent and the complex 
images are uncorrelated. Conditions for achieving this are discussed in Sec. 
1.5.4.1. An average over many such object realizations would give 

1  N 

-fi(x0,y0) = (\fn(Xo,yo)\\ =   Hm T: £ \fn{x0,y0)\2 , - (1.151) 
,/V_ * ./V „ = i 

where (• )„ denotes the ensemble average over the speckle realizations or aspect 
angles and N is the number of independent realizations. This noncoherent 
average of many coherent objects yields the ordinary incoherent reflectivity 
(or brightness distribution) of the object, which is a real-valued, non-negative 
distribution. We denote the Fourier transform of the incoherent object, fi(x0,y0), 
as Fiiu,v). The coherent imagesp*fn(x,y) are speckled versions of s*fi(x,y), the 
image of the incoherent object. The normalized Fourier transform, 

vXu.v) =   , (l.loz) 
*   ' F/(0,0) ' 

is the complex coherence factor (or the complex visibility function),398 and 
\\L(U,V)\

2
 is the normalized spatial power spectrum (i.e., the normalized squared 

modulus of the Fourier transform) of the incoherent object. 

1.5.2    Imaging Methods 

The quantity that we assume to be measured, and from which we wish to 
reconstruct an image, is the aperture-plane intensity, |F(xa,ya)|2 = \F'(xa,ya)\2. 
The square root of the intensity, \F{xa,ya)\, is the magnitude (commonly called 
the modulus or amplitude) of the field and il/Ua,yQ) is the phase. Without the 
phase of F(xa,ya), the image cannot be computed simply by inverse Fourier 
transformation. Since \9[f*(-x,-y)]\ = \&[f(x,y)]\ = \F(xa,ya)\, from the 
aperture-plane intensity it is impossible to distinguish between the object 
f(x,y) and its twin f*(-x,-y). This twofold ambiguity is usually acceptable 
since the twin looks just like the object, but rotated by 180 deg, and it usually 
suffices for identifying the object. In addition, | & [fix - xh y - y\)\ = | &[f(x,y)]\, 
and so the absolute position of the object cannot be determined from the in- 
tensity |F(xa,ya)|2 alone. 
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We next briefly describe some of the methods that can be used to form images 
from this seemingly insufficient aperture-plane intensity data. 

1.5.2.1 Holography. By inverse Fourier transforming \F(xa,ya)\2, we arrive 
at the autocorrelation of the object: 

r(x,y) = f®f(x,y) = ^JjVk'O^H* ~ *'•*" />**' 

= V-'ilFiXajaf) . (1.153) 

If the object consists of an extended part of the object plus a glint, separated 
from the extended part by at least the width of the extended part, then \F(xa,ya)\ 
is the equivalent of a hologram399 of the extended part. When this holographic 
condition is met, the autocorrelation consists of four terms, one of which is an 
image of the extended part of the object. Since \F(xa,ya)\ is measured only 
over the aperture P(xa,ya) of width Da, the autocorrelation and the recon- 
structed image are limited in resolution (in object space) to p = \R/Da. This 
imaging modality was analyzed for the case of imaging space objects from the 
earth by Refs. 394 and 395. 

1.5.2.2 Object Support from Autocorrelation Support. The diameter of the 
object f{x,y) along any direction is just half the diameter of the autocorrelation 
r(x,y) along the same direction. The support of the object is defined as a set 
of points (or an area) outside of which the object has a value of zero, consistent 
with the assumption that we are considering bright objects on a dark back- 
ground. The support of the autocorrelation allows us to determine bounds on 
the support of the object. For the sake of brevity these methods are not detailed 
here, except to say that they involve taking the intersection of two or more 
translated versions of the support of the autocorrelation. The reader is referred 
to Refs. 401 and 402 for the details. For favorable cases, such as a highly 
nonconvex object or an object consisting of two or more separated parts, the 
upper bound on the support of the object can serve as an approximate outline 
of the object. This outline may be sufficient information about the object for 
some applications. For less favorable cases, such as for a convex object, the 
upper bound only gives the general size of the support of the object. In all 
cases, the upper bound on the support can be used as a support constraint for 
phase retrieval, as is described in the next section. 

1.5.2.3 Phase Retrieval. An approach to image formation from coherent 
aperture-plane intensity is phase retrieval. The approach is to use a computer 
algorithm to determine a phase <$>(xa,ya), which, when combined with \F(xa,ya)\ 
from the measured intensity and Fourier transformed, yields an image 

g{x,y) = $-l{\F{xa,ya)\ exV[i<t>(xa,ya)]} d-154> 

that is consistent with the support constraint (i.e., has a value close to zero in 
the region outside the upper bound on the support of the object). Dozens of 
phase retrieval algorithms have been proposed—see, for example, Ref. 403. 
Phase retrieval algorithms have been particularly successful for real-valued, 
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non-negative images such as those one would have for incoherent illumination. 
However, from \F(xa,ya)\ the quantity being reconstructed is the field, which 
is complex valued. Then the only constraint available is the support constraint. 
In this case it is possible to reconstruct an image, particularly for objects 
consisting of two or more separated parts; but it is difficult and is not yet 
reliable for general objects.404*405 

1.5.2.4 Additional Measurements. If additional measurements are made, 
then the problem of reconstructing a complex-valued image becomes much 
easier. One example for a space-based system is to have a diffraction-limited 
aperture of moderate size embedded within a larger array of detectors. By use 
of a beamsplitter, the intensity passing through the moderate-sized aperture 
is measured simultaneously in two different planes: in the focal plane, which 
contains a diffraction-limited but moderate-resolution image, and in the plane 
of the aperture.406 Then the reconstruction of the phase over the diffraction- 
limited aperture can be accomplished by an iterative algorithm that is ro- 
bust.407'408 This phase can then be used to help to reconstruct the phase over 
the larger array, where only intensity measurements were made, in a boot- 
strapping version of a phase retrieval algorithm. 

A second approach using additional measurements is to combine aperture- 
plane intensity methods with wavefront sensor data. The imaging wavefront 
(Hartmann-Idell) sensor409 combines wavefront slope data from a Hartmann 
array with the aperture-plane intensity data to reconstruct the optical field, 
from which an image is reconstructed by Fourier transformation. By tempo- 
rally averaging the wavefront slopes over many speckle realizations during a 
time interval less than the atmospheric correlation time, it is also possible to 
estimate the aberrations due to the turbulent atmosphere, which could then 
be subtracted to form a diffraction-limited image. 

Other schemes using additional measurements are also possible. 

1.5.3    Imaging Correlography 

The diffraction-limited autocorrelation, p*rn(x,y), which can be computed from 
the aperture-plane intensity P(xa,ya)\Fn(xa,ya)\2, is a complex-valued, speckled 
autocorrelation. As the object translates or rotates, the aperture-plane inten- 
sity pattern moves. After sufficient motion at the receiver a new realization 
of the speckled intensity pattern appears, which yields a new realization of 
the speckled autocorrelation. The diffraction-limited autocorrelation of the 
incoherent image, \p\2*n(x,y), can be determined by averaging the squared 
magnitudes of the speckled autocorrelations over many realizations of the 
speckle pattern410"412: 

,   N 

lim ^T 2 \p*rn(x,y)\2 = &i|pU,v)|2 + b2\p\2*n(x,y) , (1.155) 

where 

b\ = &2 jjlfjix'yfdx'dy1 (1.156) 
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is the square of the total measured intensity, 62 is a constant and N is the 
number of independent realizations. This result assumes a rough object whose 
coherent autocorrelation function is of the form of a delta function. The first 
term on the right-hand side of Eq. (1.155) is a point-spread function of known 
shape located at the origin (the dc term) that can be subtracted, leaving H *r/Cx£), 
the diffraction-limited autocorrelation of the incoherent object. That is, the 
noncoherent average of the autocorrelations of the coherent images yields the 
autocorrelation of the incoherent image. Alternatively, processing the same 
intensity measurements P(xa,ya)\Fn(xa,yaf in a different way,413 we compute 
the autocovariance of the intensity, which is given by 

C{u,v) =  lim ^ f llPiXa + u,ya + v)P(xa,ya) 

x [\Fnixa + u,ya + vf\Fn(xa,ya)\2- 721 dxa dya , (1-157) 

where I is the average intensity over the aperture plane. Using themornent 
factoring theorem for circular-complex Gaussian fields (Ref. 414, p. 44), it can 
be shown that 

lim I £ U'-fa. + "* + »«V-ta.*»2 - ?21 - lF'("."»l2 •     (1158) 

and so 

C(u,v) = S(u,v)\Fi(u,v)\2 , (L159) 

where S(u,v) is the optical transfer function for the aperture. That is, the 
autocovariance of the intensity of the coherent aperture-plane field is propor- 
tional to the squared magnitude of the Fourier transform of the incoherent 
obiect This is related to the incoherent autocorrelation n(x,y) by a Fourier 
transform. Computation of the autocovariance of the aperture-plane intensity 
is completely equivalent to intensity interferometry,415 but using realizations 
of reflected laser speckle patterns rather than incoherent light emitted by the 

° Each pair of detectors over the aperture contributes to a measure of C(u,v) 
and therefore to |F/(urf. If the pair of detectors is at locations (xai,y„i) and 
(xa2,ya2) in the aperture plane, then they contribute to a measurement of 
\Fi(u,vf at spatial frequency (u,v) = ± (xai - xa2, yai ~ yah Une _ is oue 
to the fact that \Fj{-u,-vf = \FM,v)\\ and both are measured simulta- 
neously.] In radio interferometry, the separations (u,v) are referred to as base- 
line separations. Redundant measurements-different pairs of detectors with 
the same baseline separations-contribute to increasing S(u,v) and increasing 
the SNR of the estimate of \Fi(u,u)\ . 

Having computed |F/(«,i;)| as described, an incoherent image can be fairly 
reliably reconstructed using a phase retrieval algorithm, even though the 
reconstruction of the individual coherent images from the intensities ^„(xa,ya)| 
is difficult. The reconstruction is easier for incoherent images because m 
addition to the support constraint, we have the additional constraint that the 
image is a real-valued, non-negative function. 
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Prior to image reconstruction, it is usually advantageous to perform a fil- 
tering or a weighting of \Fi(u,v)\. This is needed because the SNR for the 
higher spatial frequencies is much poorer than that at lower spatial frequen- 
cies For the highest spatial frequencies, the noise usually dominates. The 
spatial frequencies at which SNR < 1 should be discarded or at least greatly 
deemphasized. This can be accomplished, for example, by multiplying \Fi(u,v)\ 
by a filter function 

W(u,v) = 
S(u,v)\Fi(u,v)\A 

(1.160) 
\S(u,v)\\FiM\   + «KM 

where \Fi(u,vf is an estimate of |F/(K,I>)|
2
 (which could be an average power 

spectrum for objects of an appropriate class) and <i>(u,v) is the variance of the 
noise in the estimate of the autocovariance function. This filter function is 
related to the Wiener-Helstrom filter.416 Other variations on the filter function 
have also been used—anything that suppresses the highest spatial frequencies, 
where SNR < 1, can be beneficial. 

Figures 1.41 and 1.42 show an example of a computer simulation of imaging 
laser correlography.412 In Fig. 1.41 we see that as more realizations of the 

Fie 1 41 Noncoherent averages of coherent image autocorrelations. First row, left to 
right: noncoherent average of N = 4 coherent image autocorrelations, dc term and averaged 
autocorrelation with dc term subtracted; second row: N = 32; third row: TV = 128; and fourth 
row: N = 1024. 
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Fie 1 42 Image recovery from simulated correlography data.4U (A> Estimate of the au- 
tocorrelation of the incoherent image from .V = 10.000 coherent image autocorrelations; 
(B) estimate of the Fourier modulus of the incoherent object; id image reconstructed from 
(B) by means of the iterative-transform phase retrieval algorithm; (D) Wiener filter: <Ei filtered 
Fourier modulus: IFI image reconstructed from (E>; (G> original incoherent object; (H) Wiener- 
filtered incoherent object: and fl« result of Wiener filtering of (O. 

speckled autocorrelations are averaged together, it approaches the autocor- 
relation of the incoherent object. Figure 1.42 shows an example of image re- 
construction from simulated correlography data using the iterative transform 
phase retrieval algorithm.408 Filtering the data is necessary to suppress noise 
at the higher spatial frequencies. Figure 1.42(F), which shows the image re- 
constructed from the filtered data, compares favorably with Fig. 1.42(H), which 
shows the ideal image passed through the same filter. Figure 1.43 shows an 
example of imaging laser correlography in a laboratory experiment.    • 
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Fig. 1.43 Example of reconstruction from data gathered in the laboratory. Top left: one 
realization of the measured speckle intensity patterns: top right: incoherent image of the 
object; bottom left: autocorrelation estimate computed using 100 realizations of the speckle 
pattern; and bottom right: the reconstructed image. (Image courtesy of J. D. Gonglewski, 
P. S. Idell, and D. G. Voelz. Phillips Laboratory) 

1.5.4    System Parameters 

With the basic method of imaging laser correlography in hand, we now describe 
the requirements on the system—the transmitter (laser) and the receiver (de- 
tector array). For the sake of an example calculation, we use the parameters 
given in Table 1.3. 

1.5.4.1 Receiver Requirements. To obtain a resolution at the object of p0 

(= 0.2 m for the example), an aperture with a diameter of at least 

Da = 
\R 

Po 
(1.161) 
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Table 1.3   Example of Parameters for an Imaging Scenario 

Symbol Example Value Description 

D0 5 m Object diameter 

Az 5 m Object depth along LOS 

u> 1 rad/s Object rotation rate (axis perpendicular to LOS) 

Vo 5 km/s Object velocity perpendicular to LOS 

X 1 fun Wavelength 

R 1000 km Range to object 

Da 5 m Receiver aperture diameter 

Po 0.2 m Resolution at object = \RIDa 

Pa 0.2 m Speckle size in aperture = \R/D0 — 

(= 5 m for the example) is required. Limits on resolution that have to do with 
the SNR will be discussed later. 

A fundamental quantity needed to explain the system requirements is the 
characteristic diameter pa of the speckles in the detected intensity pattern, 
\Fn(xa,ya)\2. It is given by 

Pa   = 
\R 
Do 

(1.162) 

(= 0.2 m for the example). The maximum possible space-bandwidth product 
of the image in each dimension is 

SBPr 
Do  = DoDa  = Da_ 

Po ^R Pa 
(1.163) 

(= 25 for the example). This is the maximum number of resolution elements 
across the object, which is equal to the number of speckles across the aperture. 
The actual number of resolution elements across the object may be fewer 
because the resolution can be limited by noise, as is described later. In order 
for \Fn(xa,ya)\2 to be measured in the aperture plane without aliasing (to avoid 
undersampling), the center-to-center spacing of the detectors must satisfy 

d   <££ = ^ 
° "  2      2Do 

(1.164) 

(= 0.1 m for the example), which gives two samples per speckle in each di- 
mension. For a filled array, DJda (= 50 for the example) detectors are needed 
in each dimension. However, since the data used for reconstruction, |F/(i*,u)| , 
are given by the autocorrelation of the measured data, |F„(xa,ya)| , sampling 
of the measured data on a regular filled grid is not necessary. In fact, sparse 
arrays of detectors may be used.413 The effective transfer function of the system 
is the autocorrelation of the aperture function, which is equivalent to the 
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optical transfer function. Issues regarding filling of the (u,v) plane (Fourier 
aperture) are similar to those encountered in radio interferometry.4 

The intensity pattern moves across the aperture plane, due to the object's 
rotation, at a velocity 2iaR (= 2000 km/s for the example), and so it moves by 
a speckle diameter in time p„/(2ü>Ä) = X/(2o>D„) (= 100 ns for the example). 
Therefore the integration time for a single speckle pattern (without some form 
of speckle tracking) should be limited to about 

A(l s     * (1.165) 

(= 25 ns for the example). The intensity pattern also moves across the aperture 
plane at a velocity 2v0 ( = 10 km/s for the example) due to the velocity of the 
object. Note that at long ranges the velocity of the aperture-plane speckles due 
to object rotation are much greater than that due to object velocity.except for 
very slow rotation rates. If the detectors have an integration time or a readout 
time that is long compared with A*i, then the detectors must be gated over 
an interval of time A*i (or the speckles must be tracked). For a pulsed laser 
of pulse length Lp, a long-readout detector could only use the fraction cLt\ILp 

of the energy of the pulse, where c is the speed of light. 
The time it takes the speckles to pass over the receiver aperture of diameter 

Da is 

"■ " tu - ■ (1166) 

(= 2.5 M-S for the example). This is the time necessary to obtain an independent 
realization of the speckle pattern and defines the maximum rate at which 
independent realizations can be collected (400,000 independent realizations 
per second, for the example). The maximum integration time for a single 
speckle realization is less than Ma even with speckle tracking. Since there 
are SBPmax = D0/p0 (= 25 for the example) diffraction-limited resolution 
elements across the object, a rotation of the object by roughly kR/{D0Da) ra- 
dians will cause the object brightness distribution to begin to change sub- 
stantially. This would occur in time 

Mm   =  -^- (1-167) 

u>D0Da 

(= 40 ms for the example). Unless multiple revolutions of the object are used, 
this is also the maximum amount of time available for gathering an image of 
the object for a single aspect angle. During time Mm, the maximum number 
of independent realizations available is 

N   _ ^n = 
2kR (1.168) 

"m - A*a      D0Dl 

(= 16,000 realizations for the example). 
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A synthetic-aperture collection approach may also be taken. The approach 
described above is to gather N snapshots of the laser speckle pattern over a 
two-dimensional (possibly sparse) array of detectors. Using a synthetic-aperture 
approach, only a one-dimensional array of detectors is required. For simplicity, 
suppose that the 1-D array is along the ya axis and that the speckles move in 
the xa direction with velocity va = 2«oÄ < = 2000 km/s for the example). At 
any instant in time t, the array is collecting a 1-D cut, \Fn(vat,ya)\ , through 
the speckle pattern. As the speckle pattern sweeps across the 1-D array, ad- 
ditional slices of speckle pattern fall on the detector array. For the case of cw 
illumination, the detectors must read out each sample of the intensity in a 
time Mi < X/(8ü)Z)O) (= 25 ns for the example). Then the total data rate is 
(DJdaVMi (= 2 x 109 samples per second for the example). After time Afa 

= aDJva (= 2.5 |xs for the example), a two-dimensional array of values of 
\Fnixajaf has been read out, equivalent to a square area of length Da After 
time NMa, a rectangular array of values of \Fn(xa,yaf has been read out of 
size NDa x Da. This rectangular array can be subdivided into N square arrays 
of size Da x Da, each equivalent to one of the snapshots (realizations) of the 
speckle pattern that would have been measured if we had a filled 2-D array. 
Even better than dividing the rectangle into squares would be to compute the 
covariance function C(u,v) by summing over the products of all pairs of inten- 
sity measurements separated by the distance (u,v). This would increase the 
SNR somewhat for spatial frequencies having components in the u direction, 
since separations would be used that would otherwise have crossed the bound- 
aries between the squares of data forming the snapshots. This idea of synthe- 
sizing a 2-D array from a 1-D array has the advantage of requiring many 
fewer detectors than a real 2-D array, but the detectors must be read out very 
fast and must be oriented appropriately with respect to the direction of the 

speckle velocity. 

15 4 2 Transmitter Requirements. The received illumination is assumed 
to be quasimonochromatic, i.e., the intensity pattern \Fn(xa,ya)\ should be 
constant over the wavelength band in use. The requirements on the coherence 
length of the laser almost always supersede this requirement, which can thereby 
be ignored. The coherence length required of the laser illuminator is 

U ^ 2A, (1-169) 

(= 10 m for the example), where Az is the depth of the object along the LOS. 
If the laser is pulsed, then the pulse repetition frequency is required to be 

fast enough in order to obtain a large number of speckle realizations before 
the object rotates too much. 

The laser power requirements are driven by several factors, including the 
fraction of the transmitted energy that falls on a detector and the SNR of 
\Fi(u,v)\2 for correlography. 

15 4 3 Signal-to-Noise Ratio. The SNR of |F/(u,u)|2 (the signal divided by 
the standard deviation of the noise), as limited by the number of realizations 
and photon noise, is given by 

104 



UNCONVENTIONAL IMAGING SYSTEMS    107 

SNR(u,y) = 
[NnsS(u,v)]1/2\ii.\2 

3+14N   +8W   + ___+ j 
1/2 

(1.170) 

where 

M 
Mnd 
ns 

the average number of photons per detector 
the number of detectors (pixels) per aperture-plane speckle area 
the average number of photons per speckle 
the number of speckles within the area of the aperture. 

In this formula, |^|2 is a function of (u,v). Figure 1.44 shows two families of 
plots of SNR(i/,u) as a function of light level for two values of |^|2 (0.25 and 
0.01); and several values of Mnd, the number of photons per speckle. The first 
three terms in the denominator of the expression for SNR(a,u) are due to the 
approximation of the ensemble average for the autocovariance by a finite sum 
over N realizations, and the last two terms are due to photon noise. For ||x|2 

« 1, and for M = 4 detectors per speckle, these two contributions to the noise 
are equal when rid = 0.5 photon per detector or Mrid = 2 photons per speckle. 
Consequently, photon noise can be ignored when there are much greater than 
2 photons per speckle. For the case of a photon-counting detector, any laser 
power that yields more than about 8 photons per speckle is wasting energy, 
since at that point it is the number of realizations, not the photon noise, that 
is limiting the SNR, as can be seen from Fig. 1.44. 

For the higher spatial frequencies, for which |(JL|
2
 « 1, and for moderate 

light levels (greater than two photons per speckle), the SNR expression reduces to 

SNR(u,u) - [W3)n8S(u,v)]Vi\VL(u,v)\2 . (1.171) 

For a given object and resolution, this expression shows the trade-off that can 
be made between the number N of realizations and the number nsS(u,v) of 
redundant measurements of a given spatial frequency (u,v). 

1000. 
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EC z 
10. 

0.1 

0.0 0.1 1 10. 

Photons/speckle 

Fig. 1.44 The SNR versus number of photons per speckle. Solid lines: |y.|2 = 0.25; dashed 
lines: \\J.\

2
 = 0.01. Number of realizations (top to bottom): (a) 10,000; (b) 1000; (c) 100; (d) 10; 

and (e) 1. 

105 



108    IR/EO HANDBOOK 

Fig 1 45   Three types of objects: (a) four points-a 2 x 4-pixel rectangle plus three single- 
pixel points; (b) satellite-an object with glints; and (c) bus/RV-an extended diffuse object. 
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Fig. 1-46   Visibility (Fourier modulus) |u.| as a function of spatial frequency. 

The SNR is approximately proportional to |u.(u,i;)|2, which heavily depends 
both on(uv) and on the structure of the object being imaged. At one extreme 
an object consisting of a single unresolved glint (a delta function) has |»t(« ü)| 
= 1 0 for all (u v) At the other extreme, a diffuse, constant-value object that 
fills the field of view will have \^(u,v)\ that is a delta function and is negligibly 
small for (u v) 4 (0,0). To give you a feel for the values that \^(u,v)\ takes on 
for different types of objects, Fig. 1.45 shows three types of objects and Fig. 
1.46 shows MM, the spin-averaged (azimuthally averaged) values of the 

visibility \pJLu,vt where * = ("2 + v }    A Very r0Ugh mle of thumb lsthat 
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\tfur)\2  - —   , (1-172) 
nbp 

where ribp is the number of resolved bright image points at resolution ur. For 
an extended object npb is the number of 2-D resolution elements within the 
area of the object. So if, as the resolution improves with increasing ur, more 
points in the diffraction-limited image of an object are resolved, then |jx(Mr)|

2 

decreases correspondingly. 
Ideally the laser should have sufficient power so that the number of detected 

photons per speckle exceeds two. For a simplified object consisting of a flat 
plate that is a Lambertian reflector, the average number of photons per speckle 
is given by 

o 9        9 
Mrid = -^LTatmTiLA(cos8i cos60/TT)r0TpoiT0pt(Ti<i<4/-ft h\qQ</hc) , (1.173) 

where 
EL = energy of the laser per pulse or per detector integration time 
Tatm = one-way atmospheric transmittance 
T]LA = fraction of laser intensity falling on the area of the object 
0; = angle between object surface normal and illumination 
0O = angle between object surface normal and LOS 
r0 = average reflectivity of object 
Tpoi = fraction of light reflected in desired polarization 
T0pt = transmittance of receiver optics (if any) 
t)dd2

a = area of one detector 
T\q = quantum efficiency of the detector 
hc/X = energy of one photon (Planck's constant times frequency). 

For example, for the parameters of Table 1.3 and for EL = 1 J/pulse, 
TatmTpoiTopt = 0.2, <r\LA = 0.1, 0; = 0O = 0, r0 = 0.5, T\d(fa = 0.005 m2, T\q = 
0.1, and hclk = 2 x 10-19 J/photon, we have Mns = 8 photons per speckle 
per pulse, which is in the high light-level regime. 

If the receiver is ground based, then atmospheric scintillation could be a 
limiting factor, since it directly changes the measured aperture-plane inten- 
sity. However, since many speckle patterns are averaged, the effects of scin- 
tillation tend to cancel and are not expected to be a limiting factor for imaging 
objects directly overhead. 

1.5.5    Conclusion 

The use of laser illumination opens the possibility for many novel ways to 
image objects with resolution one to two orders of magnitude finer than con- 
ventional imaging systems that are limited by the blurring effects due to 
atmospheric turbulence. These imaging methods, which spring from the her- 
itage of holography, are especially useful for obtaining fine-resolution images 
of earth-orbiting satellites. These same methods can also be applied to other 
imaging scenarios, ranging from microscopy to imaging of the ground from 
space. While these methods have been investigated and demonstrated to vary- 
ing degrees of sophistication, they are just now on the verge of becoming 
operationally feasible. 
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Abstract: 

We describe two new methods for phasing arrays of heterodyne receivers. Both can 

be used when the arrays are sparse and distributed. One is based on the iterative 

transform algorithm using a support constraint and the other on maximizing image 

sharpness. Both work well: they require a modest number of speckle realizations with 

the same aberrations and are relatively immune to measurement noise. 
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ABSTRACT 

We describe two new methods for phasing arrays of heterodyne receivers. Both can be used when the 
arrays are sparse and distributed. One is based on the iterative transform algorithm using a support 
constraint and the other on maximizing image sharpness. Both work well: they require a modest number of 
speckle realizations with the same aberrations and are relatively immune to measurement noise. 

1  INTRODUCTION 

If we measure an optical field, scattered from a laser-illuminated object, with an array of heterodyne 
receivers 1 then we can reconstruct an image of the object by performing a suitable propagation 
transformation (typically a Fresnel or Fourier transform) in the computer.* However, if phase errors je 
present in the measurements, then a blurred image will result Phase errors can be induced by many things 
including atmospheric turbulence and path-length errors between the field from the object and the local 
oscillator within the receiver. Approaches to phasing the array without a beacon either require the array of 
heterodyne receivers to be on a filled regular grid,*'4 or to have a special pattern or alternatively require a 
low-resolution image be available.5 

In this paper we describe two new algorithms for phasing heterodyne arrays that work well for sparse 
distributed arrays (and will work for filled arrays as well), requires no low-resolution image, and is 
relatively insensitive to noise. One is based on the iterative transform algorithm using a support 
constraint6,7 and the other on maximizing image sharpness. • 

? TM AGING MODEL 

We measure the optical fields (ignoring measurement noise) 

Gdk(u)=Fk(u)exp[i<|>e(u)], (1) 

for k = 1 K where K is the ideal complex field (without phase errors) for realization k, <t>e is the 
phase error' and Ü is a 2-D coordinate (the pixel index) in the measurement plane. Note that we assume the 
Phase error'is the same for all K realizations. Different speckle realizations are obtained if the object rotates 
slightly or translates. If we estimate the phase error as <j>(u), then our estimates of the optical fields are 

Gk(u) = Gdk(u) exp[-i({>(u)] (2) 

our coherent images are 
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gk(x) = J-^G^u)] = N-2XGk(u) exp(i2rcirx/N) , (3) 
u 

where u-x is a vector dot (inner) product, and our speckle-reduced averaged image is 

gl(x) = K-lX|gk(x)P, (4) 
k 

where summation over k is for k = 1,..., K. 

T TTRRATIVF. TRANSFORM ALGORITHM 

Our first method to estimate the phase error is a generalization of the iterative transform algorithm.6 In 
summary, one iteration of the generalized algorithm consists of the following steps: 

(1) Calculate the Fourier estimates: Gk(u) = G^u) exp[-i<t>(u)] (for k = 1 ... K). 
(2) Inverse FFT them to compute the gk(x). 
(3) Apply the support constraint: gsk(x) = s(x) gk(x). 
(4) FFT to compute the Gsk(u). 
(5) Compute a new phase-error estimate: (t>(u) = argf^ Gdk(u) GskW'- 

k 
For the initial iteration the phase error estimate is zero. The support constraint can be known a priori 
estimated from the autocorrelation support (which can be calculated from the given data),10'11 or estimated 
from gT(x). To estimate the support from gr(x), the current estimate of the averaged image we could 
smooth it, giving s(x) = w(x) * gl(x), and possibly threshold it. The smoothing function, w(x) could be, 
for example, a uniform disk having a radius of a few pixels. The new phase-error estimate, <()(u) given m 
step 5 is like a weighted average of the difference in phase between G^u), the measured data, and Gsk(u), 
the current estimate of optical fields constrained by the image support constraint. 

Steps (2) to (4) can also be performed by a direct convolution in the measurement plane: 

Gsk(u) = Gk(u) * S(u) = £ S(Ul) Gk(u - Ul) , (5) 

ui 

where S(u) = 7 [s(x)], which would be faster to compute for the case of sparse arrays. 

A TVTAYTMTZTNrT SHARPNESS 

The second approach is to find the phase-error estimate ()>(u) which maximize the sharpness, 

S^Xtg^l^Itllg^x)!2]2, G> 
x   k 

of the image estimate. Alternatively, we can maximize S1W, a weighted version of the sharpness, based on 

a filtered version of the averaged image, 

gIW(x) = 5-1{W(u) J[gl(x)]} (7) 
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where W(u) is a weighting function (for example, a Wiener filter). 

We maximize the sharpness using a standard nonlinear optimization technique which we make 
computationally efficient by using an analytic expression for the gradient of the sharpness with respect to 
the phase-error estimate: 

^ = 4N-2 Im{VGk(u) (Gk(u) * [^W2])*} , (8) 
3<K") k 

where GI(u) = ^r[gI(x)]. 

We can show that the error-reduction6 version of our generalized iterative transform algorithm is similar 
in effect to a steepest-descent gradient search to maximize sharpness with a fixed step size. However, we in 
practice use a more powerful gradient search algorithm, such as conjugate-gradient, and we can use a more 
powerful version of the iterative transform algorithm as well, such as hybrid input-output. 

5. IMAGE RECONSTRUCTION EXAMPLE 

Figure 1 shows a computer simulation example of phasing an array of sparse, distributed heterodyne 
receivers. Figure 1(a) shows the object, consisting of a block of 2x3 pixels and three separated points, 
embedded in a 64x64 array. We created complex-valued speckled images by replacing each pixel in the 
object by a circular complex Gaussian random number with variance equal to the square root of the original 
pixel value; Fourier transforming, multiplying by the a sparse aperture, and inverse transforming to 
produce the image. The sparse aperture we used for this experiment has 21 pixels within a 8x8 area, which 
is shown in Figure 1(b), magnified by a factor of four (only the central 16x16 pixels in its 64x64 arraj are 
shown). This sub-aperture pattern was designed by a genetic-based algorithm by P. Henshaw. An 
average of ten such diffraction-limited speckled images is shown in Figure 1(c). Figure 1(d) shows a 
Wiener-Helstrom13 filtered version of the averaged image, from which one can discern the major parts of 
the image. Figure 1(e) shows the blurred averaged image that resulted when we added, to the Fourier 
transform, random phase errors that were uniformly distributed Gaussian random numbers with standard 
deviation'% radians. Figure 1(f) shows the averaged image corrected by the image sharpening algorithm 
and Figure 1(g) shows a Wiener-filtered version of the corrected image. The corrected image is clearly 
superior to the blurred image and strongly resembles the diffraction-limited image. We obtained comparable 
results using the generalized iterative transform algorithm. The algorithms usually produced images with 
better quality as the number of realizations increases. It was unreliable when using only one to four 
realizations. Tests with noise showed that the algorithm is not very sensitive to noise. 

6. CONCLUSIONS 

We have derived two new algorithms for phasing an array of heterodyne receivers, and have 
demonstrated that they can work well for sparse distributed arrays, require a modest number of speckle 
realizations, and are robust in the presence of measurement noise. 
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(b) (c) (d) 

(e) (f) (g) 

Figure 1. Computer Simulation of Sparse Heterodyne Array Phasing, 
(a) Object; (b) 21-element sparse, distributed array (within an 8 x 8 -sample area); 
(c) average of ten diffraction-limited speckled images; (d) Wiener-filtered version 
of (c); (e) average of ten aberrated speckled images; (f) average of ten speckled 
images corrected by image-sharpening phase-up algorithm; (g) Wiener-filtered 
version of (f). 
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ABSTRACT 

Three-dimensional imaging provides profile information not available with conventional two- 
dimensional imaging. Many three-dimensional objects of interest are opaque to the illuminating 
radiation, meaning that the object exhibits surface, as opposed to volume, scattering. We inves- 
tigate the use of an opacity constraint to perform three-dimensional phase retrieval. The use of 
an opacity constraint in conjunction with frequency-diverse pupil-plane speckle measurements to 
reconstruct a three-dimensional object constitutes a novel unconventional-imaging concept. This 
imaging modality avoids the difficulties associated with making phase measurements at a' cost of 
increased computations. 

1. INTRODUCTION 

Marron and Schroeder [1,2] have demonstrated that three-dimensional imaging can be accom- 
plished by sequentially illuminating an object with different laser frequencies and measuring the 
far-field speckle pattern for each of the illuminating frequencies [1]. In-phase and quadrature mea- 
surements provide optical-field values for the laser-speckle patterns. Properly formatted, these data 
form a three-dimensional Fourier-volume (or Fourier-aperture) representation of the illuminated 
object. A simple three-dimensional Discrete Fourier Transform (DFT) can be performed to provide 
a three-dimensional representation of the object. This three-dimensional lensless-imaging concept 
is referred to as Holographic Laser Radar (HLR). 

The collection of HLR data could be considerably simplified if instead of collecting field mea- 
surements for the speckle images, intensity measurements were collected. Intensity measurements 
are straightforward and eliminate the need for interference with a reference beam with precision 
alignment, tracking, and phase stability. A multiple-frequency speckle-intensity data set would pro- 
vide three-dimensional Fourier-magnitude information or, equivalently, the three-dimensional object 
autocorrelation. In order to recover a literal three-dimensional image, a phase-retrieval algorithm 
is required. Therefore, this proposed imaging concept trades complexity and cost in hardware for 
increased computing. 

Phase retrieval requires some type of a priori information about the object. Two-dimensional 
complex-valued objects have been recovered using phase retrieval with a support constraint [3], 
although this is a challenging problem. It is well known that the uniqueness properties of two- 
dimensional phase retrieval are much better than for the one-dimensional problem [4]. We conjecture 
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that three-dimensional phase retrieval with a support constraint is better conditioned than its two- 
dimensional counterpart. 

An additional constraint that has great promise in the three-dimensional imaging case is an 
opacity constraint. An opaque object is one that exhibits only surface scattering and no volume 
scattering (over volumes that extend beyond the desired range resolution). The reflectivity function 
for an opaque object is confined to a two-dimensional curved (possibly discontinuous) surface, 
embedded in a three-dimensional space. In this paper we explore the use of an opacity constraint to 
perform phase retrieval. We have previously used an opacity constraint to perform superresolution 
[5]. 

The opacity constraint is a special type of support constraint. It is a "quality of support" 
constraint - the actual location of the support is not given, although the object is known to be 
confined to a two-dimensional curved surface. This constraint promises to be very powerful since 
it greatly reduces the class of feasible objects from which to choose an estimate. Moreover, there 
are many imaging applications in which the objects will be known with confidence to be opaque. 
For example, space objects, balistic missiles, aircraft, and a multitude of industrial-inspection parts 
qualify as opaque objects. Most objects in our everyday experience satisfy the opaque condition. 
The constraint is invalid for objects with distributed volume scatterers such as translucent or fog-like 
objects. 

The use of an opacity constraint in conjunction with frequency-diverse pupil-plane speckle mea- 
surements to reconstruct a three-dimensional object constitutes a novel unconventional-imaging 
concept. 

2. REPRESENTATION OF OPAQUE OBJECTS 

Consider a three-dimensional opaque object, f(x, y, z), defined on an object-centered coordinate 
system. Let x and y be the cross-range (angle-angle) coordinates and let z be the range coordinate 
that is co-aligned with the illumination direction. Since the collected data will be sampled and 
since object reconstructions must be performed with a digital computer, we will adopt a discrete 
representation for the object. Accordingly, we require the coordinates (x,y,z) to take on integer 
values. Because of the opaque nature of the object, only radiation from reflecting sources in the 
illuminated surface will contribute to the received signal. Hidden surfaces do not contribute. Let 
h(x, y) denote the height of the object in the ^-dimension. Because the object is confined to a 
two-dimensional curved surface embedded in three-dimensional space, it can be represented with 
delta-function notation [5,6], 

f{x,y,z)   =   r(x,y)5[z-h(x,y)},      x, y, z e {0,1,2,... N - 1} , (1) 

where r(x, y) is the complex surface reflectivity, TV is the total number of samples in each dimension, 
and 8(-) is used to represent the Kronecker delta, 

*(*-*>) =   n ::r • (2) 
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Recall that the collected Fourier intensity data can be transformed to compute a three-dimensional 
object autocorrelation. In order to avoid aliasing, we require the object to have finite support with 
sufficient zero padding, 

(N N ) 
f(x,y,z)   =   0,      x,y,z€|_ _ + l,...,AT-l| . (3) 

The rectilinear object-support bound given in Eq. (3) is not likely to be a "tight" bound. More 
restrictive or tighter bounds on object support can be determined from the known object auto- 
correlation by using a generalization of methods developed for two-dimensional phase retrieval [7]. 
Any three-dimensional support bound can be expressed in terms of a two-dimensional angle-angle 
support bound and a one-dimensional range support bound that depends upon angle-angle position. 

3. STATEMENT OF PROBLEM 

The Fourier representation of the object is found with the DFT, 

N-1N-1N-1 

F(u,v,w)   =    Y S J2 f(x,y,z)exp{-i2n(ux + vy + wz)/N} (4) 
x=0 y=0  z=0 

N-1N-1N-1 

=    Y YJ 12 r(x,y)6[z-h(x,y)]exp{-i2ir(ux + vy + wz)/N} (5) 
x=0 y=0  z=0 

N-1N-1 
=    Y 12 r(x,y)exp{-i27r[ux + vy + wh(x,y)]/N} , (6) 

x=0  y=0 

where we have used the Kronecker delta to eliminate the summation over z. Since we detect 
intensities in the Fourier domain, a noiseless measurement would be given by the squared modulus 
of the DFT of the object, \F(u,v,w)\2. The actual detected data will be corrupted by noise. The 
detected data are represented by 

D(u,v,w)   =   Af{\F(u,v,w)\2} , (7) 

where the noise operator Äf{-} corrupts the argument according to an appropriate noise model. 
Additive Gaussian or Poisson noise models are appropriate when detector readout noise or photon 
noise, respectively, are the dominant noise sources. 

The problem that we wish to address can now be stated. Given the data, D(u,v,w), estimate 
the object height function, h(x,y), and the object surface reflectivity function, r(x,y), over the 
angle-angle object-support bound. Performing such an estimate implicitly provides an estimate for 
the object's Fourier phase. Therefore this problem may be properly viewed as a phase-retrieval 
problem. 

4. MAXIMUM-LIKELIHOOD ESTIMATION 

When detector readout noise dominates, the noise operator has the effect of adding a realization 
of a Gaussian noise process, 

D(u,v,w)   =   \F(u,v, w)\2 + n(u,v,w) . (8) 
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Assuming a common noise variance and statistical independence between differing samples of the 
noise process, it is straightforward to express the probability density function for the recorded data 
[8] . The associated log-likelihood function is readily found to be [8] 

N-1N-1N-1 

L[r(x,y),h(x,y)} = - £ £ £ [D(U,V,W) - \F(u,v,w)\2 

u=0 u=0 w=( 

D(u,v,w) — 
N-1N-1N-1 

= -£££ 
u=0 v=0 u;=0 

N-1N-1 

^2 ^2 f(x, y) exp{-?27r[ua; + vy + wh(x, y)]/N] 
x=0  y=0 

(9) 

,(10) 

where the caret symbol indicates an estimated quantity. Recall that the object surface reflectivity is 
complex valued. It is convenient to explicitly denote the real and imaginary parts of the reflectivity, 

r(x,y)   =   rr(x,y) + iri(x,y) (11) 

We can use standard nonlinear optimization methods to search for rr(x,y), fi(x,y), and h(x,y) 
((xiy) £ the angle-angle object-support bound) that maximize the objective function, L, to yield a 
maximum-likelihood estimate. If the angle-angle object support bound is comprised of N/2 by N/2 
samples, then L is defined on a parameter space of dimension 3iV2/4. The range support bound 
that derives from the three-dimensional support bound could be used to constrain the search over 
h(x,y). 

There are a variety of nonlinear optimization algorithms that could be used to maximize the 
log-likelihood function. One choice is the well-known conjugate-gradients algorithm [9]. As its 
name suggests, this algorithm makes use of the gradient of the objective function. We have derived 
closed-form expressions for the partial derivatives that constitute the gradient. These expressions 
afford a gradient computation that is more accurate and computationally much more efficient than 
would be rendered using the method of finite differences. The partial derivatives of the log-likelihood 
function with respect to the real and imaginary parts of the surface reflectivity and with respect to 
the height function, at the angle-angle location (x0,y0), are given by 

dL 
drr{x0,y0) 

(N-lN-lN-l „ „ „1 
4Rel J2 Yl X) [D{U,V,W) - \F(u,v,w)\2] F*(u,v,w) exp{-i2w[ux0 + vy0 + whixo^o^/N}^ , (12) 

I u=0  v=0 u/=0 

dL 
dri{x0,y0) 

(N-lN-lN-l 

-4ImiE E E [D(u,v,w)-\F(u,v,w)f 
V. u—0 u=0 m=0 

F*(u, v, w) exp{-i2ir[ux0 + vy0 + wh(x0, y0)]/N} > , (13) 
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r)T R ( N-lN-lN-l 
=     -^lmlr(x0,y0)J2 £ ]£ [D(U,V,W)-\F(U,V,W)\' 

dh(x0,y0) N      { u=0 v=0 wzz0 

F*(u, v, w) wexp{-i2n[ux0 + vy0 + wh(x0, y0)]/N} > ,    (14) 

where the operators Re{-} and Im{-} take the real and imaginary parts of the argument, respectively. 
Notice that these partial-derivative expressions each have the form of a two-dimensional DFT (over 
u and v) followed by a summation over w for each (x0, y0). This affords efficient evaluation the entire 
gradient using the Fast Fourier Transform (FFT). The three-dimensional function F(u,v,w) must 
be computed to evaluate the objective function and the gradient. We find that N two-dimensional 
FFTs are needed to compute F(u,v,w). Careful examination of Eqs. (12) —(14) reveals that the 
entire gradient can be computed with an additional N two-dimensional FFTs followed by 2SN2 

summations over w, where S is the proportion of pixels in the angle-angle object support relative 
to the number of samples in the total angular field of view. In the case of the rectilinear support 
expressed in Eq. (3), S = 1/4. Of course additional computational overhead is required to perform 
complex multiplies and sums. Closed-form expressions for the log-likelihood and its gradient can 
also be derived for the case of photon noise. 

5. SIMULATIONS 

We have performed two simulations that demonstrate three-dimensional phase retrieval using 
an opacity constraint. For both of the simulations we chose N = 32 and a maximum object extent 
of 16 samples in each dimension, as required by Eq. (3). This guarantees that the Fourier-intensity 
data are adequately sampled. In addition, for this initial demonstration we used noiseless Fourier- 

intensity data, giving n(u,v,w) = 0 in Eq. (8). 

The first simulation utilized a simple object consisting of 6 separated points of equal reflect- 
ing strength. The angle-angle (x-y) view of the magnitude of the surface reflectivity is shown in 
Figure 1(A). The phases of these points are independent, identically-distributed samples from a 
probability distribution function (PDF) that is uniformly distributed on the interval [0, 27r]. The 
height distribution and reflectivity of these points are summarized in Table 1. Coordinates are 
referenced from (0,0) in the upper left corner. Despite the discrete representation of the object in 
the x and y dimensions, the ^-dimension heights, h(x,y), are not restricted to integer values. 

The phase-retrieval problem consists of estimating a set of real-valued quantities, rr(x,y), 
ri(x,y), and h(x,y), defined on a discrete (x,y) coordinate system. The conjugate-gradients al- 
gorithm, used to estimate the object parameters, is initiated with a first guess of the unknown 
parameters. We began with an initial estimate of h(x,y) = 0 and independent, identically dis- 
tributed samples from a PDF that is uniform on the interval [0,1] for rr(x,y) and r,-(x,j/). The 
magnitude and phase of the initial reflectivity guess are shown in Figures 1(B) and 1(C), respec- 
tively. The magnitude of the initial reflectivity guess ranges between 0.083 and 1.34, and the phase 
varies from 0.001 to 1.567 radians. By restricting the initial guess of rr(x, y) and r,(x, y) to positive 
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Figure 1. 6-point object simulation. (A) Angle-angle (x-y) view of the magnitude of the 
reflectivity of a 6-point, complex-valued object; (B) Magnitude of the initial 
reflectivity estimate; (C) Phase of the initial reflectivity estimate; (D) Recon- 
structed object. 
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(x,y) rr(x,y) ri(x,y) h(x,y) 
(1,3) -0.976 0.216 0.0 
(2,7) 0.411 0.911 0.3 
(7,8) 0.994 0.111 0.9 

(3,12) -0.988 0.153 1.5 
(8,14) 0.745 -0.666 2.1 

(11,12) 0.089 0.996 3.0 

Table 1: 6-Point Object Description. 

values, we have reduced the chance of biasing the simulation by starting too close to the true solu- 
tion. No a priori knowledge of the support of the unknown object was used during the estimation 
of its reflectivity and height distribution, so a total of 16 x 16 x 3 = 768 parameters were estimated 

simultaneously. 

The angle-angle view of the estimated reflectivity magnitude after about 400 iterations of the 
conjugate-gradients algorithm is shown in Figure 1(D). The reconstruction is virtually perfect, and 
is limited only by computational precision. There are several features of the reconstruction to note. 
First, the reconstructed object is shifted from its true location. A feature of all phase retrieval 
algorithms is a translation ambiguity among the set of valid object solutions. A translation of the 
object adds a linear phase term to the complex-valued Fourier transform, but does not affect the 
Fourier intensity. There is also a 180-degree object-rotation ambiguity. Such a rotation gives rise 
to a Fourier transform that is the complex-conjugate of the original Fourier transform, but which 

leaves the Fourier intensity unchanged. 

The height estimates were also virtually perfect. It is of interest that the non-integer height 
values were estimated very accurately, indicating that in addition to phase retrieval, we were ac- 
complishing superresolution in range. Not only is the object estimate translated in (x,y), but it is 
also translated in the z direction by a constant value of -1.2. Also, whereas the magnitude of the 
estimated reflectivity matches the true reflectivity, the phase of the estimate differs by the constant 
value of 0.64 radians at each point. This is yet another ambiguity associated with the phase retrieval 
of complex-valued objects. A constant phase bias across the object, however, is typically irrelevant. 

For the case of noiseless Fourier-intensity measurements we have shown that an array of points 
with a modest height distribution can be reconstructed perfectly with no a priori knowledge about 
the support or height distribution of the points, except for the use of an opacity constraint. We have, 
however, found that the conjugate-gradients algorithm is subject to stagnation in what we believe 
to be local extrema in the log-likelihood function, and a successful reconstruction was obtained only 
after several random initial guesses for the reflectivity. Also, we have observed that the relative 
distribution of the points in the z-dimension has a bearing on the success of the reconstruction. We 
chose a distribution over a range of 3 samples, and we have noted that as this range is expanded, 
stagnation becomes more likely when using a naive initial guess of h(x,y) = 0.   Thus, we believe 
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that the development of methods that yield improved initial estimates and support bounds that 
will constrain the range of height parameters will be important for successful reconstructions for 
surfaces that have large variation in depth. Our second simulation provides an example of how such 
a height constraint could be derived and utilized. 

The second simulation example involves an object that is a curved surface with an angle-angle 
(x-y) support that is a 5 x 5-pixel right triangle. To simplify the height distribution, we made the 
height of the object a function of the ^-dimension alone. The support of the object projected in 
each of the 3 directions is shown in Figure 2. When the object is projected in the y-direction, we 
obtain a single pixel of ^-direction support for each position in the x dimension, as illustrated in 
Figure 2(A). We conclude from this that the height is constant in y for each x and is symmetric 
about the x = 8 plane. The height of the object varies over a 5-pixel interval, with a 2-pixel height 
gap between the rc-dimension edges and their neighbors. 

If no support constraint is used along with a naive initial guess of h(x,y) = 0, the parameter 
estimation stagnates and the object cannot be reconstructed. Thus, the reconstruction of this 
more complicated object might benefit from a support constraint. Techniques for bounding the 
object support using the autocorrelation support have been developed for two-dimensional phase- 
retrieval problems [7]. We can apply these same techniques to the support of the three-dimensional 
autocorrelation projected into 2 dimensions in each of the 3 directions. Unfortunately, in doing 
so we lose registration information between the 3 resulting 2-D support constraints and, thus, 
cannot merge these results into a tight 3-D support constraint. However, for this particular object 
for which the height is constant along the y-direction, the triple-intersection rule [7] applied to 
the support of the y-projected autocorrelation yields the exact z-support shown in Figure 2(A). 
This somewhat surprising result suggests that opacity could be extremely useful in finding support 
bounds. The derived height support in turn yields the true solution for the height and indicates 
that the ^-dimension support is 5-pixels wide. Merging this information with the support of the 
autocorrelation projected along the z-direction into the x-y plane yields the x-y object support 
bound shown in Figure 3(A). This bound could further be reduced using a two-point intersection 
rule, but we found that this was not necessary. 

The magnitude of the reflectivity of the true object is shown in Figure 3(B). The initial guess 
for the reflectivity is found in Figure 3(C), and the initial guess for the height was set to the values 
yielded from the x-z support derived from the triple-intersection of the projected autocorrelation. 
The initial guess of the height was set constant in the y-direction over the support defined in 
Figure 3(A). The x-y support constraint reduces the number of parameters to be estimated to 
114. After approximately 800 iterations of the conjugate-gradients algorithm, the estimates were 
perfect to within the limits of computational precision. Despite our knowledge of the height from 
the support estimate, we still allowed the height estimates to vary during minimization. The final 
estimates actually moved a fixed distance from their initial settings, but remained constant in the 
y-direction. The final estimate of the reflectivity is shown in Figure 3(D), and is essentially identical 
to the true reflectivity in Figure 3(B). 

Although it is unlikely that the height of the object can be estimated directly from the projected 
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(A) 

(B) (C) 

Figure 2. Three views of the support of a triangular curved surface. (A) x-z view of the sur- 
face. From this view we see that the height distribution is the same for every value 
of v and is symmetric about the x=S plane; (B) x-y view of the surface; (C) y-z view 
of the surface. 
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Figure 3. Reconstruction of triangular curved surface. (A) x-y support bound. The bound was 
obtained by intersecting the estimated x-z support bound [same as shown in Figure 
2(A)] with the x-y autocorrelation support; (B) Magnitude of the true reflectivity; 
(C) Magnitude of the initial guess on the support of (A); (D) Magnitude of recon- 
structed reflectivity. 
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autocorrelation in practical scenarios involving measurement noise and 2-D height variation (instead 
of the 1-D variation of this example), this example demonstrates that a filled surface reflectivity 

can be estimated with a loose angle-angle support. 

6. CONCLUSIONS 

We have reported the first demonstration of three-dimensional phase retrieval with an opacity 
constraint. These results make feasible the possibility of an entirely new three-dimensional imaging 
modality. Further experimentation is required to determine how loose the height constraint can be 
made and the importance of the role of the initial height estimate. We believe that the theory of 
two-dimensional support bounds [7] can be generalized to the three-dimensional case to give good 
support bounds. We also conjecture that opacity will play a role to help tighten range-dimension 
support bounds. Historically modes of stagnation have been studied in the two-dimensional phase- 
retrieval problem and appropriate algorithms to avoid such modes have been developed. A similar 
process needs to be undertaken in the three-dimensional case. Finally, the sensitivity of three- 

dimensional phase retrieval to noise needs to be investigated. 
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Abstract 

We discuss a 3-D imaging modality called Pulsed Heterodyne-array Imaging (PHI). The 
relationship between PHI and stepped-frequency methods for 3-D coherent image formation is 
derived. For both cases, we consider flood-illumination of the object and detection with a 2-D 
array of coherent receivers located in the pupil plane. It is shown that PHI can recover the same 
coherent 3-D image as with a stepped-frequency method such as holographic laser radar [1]. 

1.0 Introduction 

In previous research, we have demonstrated the ability to form 3-D coherent images by 
flood-illuminating an object with a tunable laser and detecting the scattered light with a 2-D array 
of coherent (field-recording) receivers. As the source frequency is tuned, the optical field is 
recorded and a 3-D image is formed by 3-D Fourier transformation of the data. We refer to this 
method as Holographic Laser Radar (HLR). 

The basis for HLR imaging is the 3-D Fourier Transform relationship between the optical 
field, U, and the object's 3-D complex reflectivity function, a(r). This relationship can be written 
as [2-4] 

U(rd,(ö) = a exp(ikR) j o(r)exp[-i(ö(pr)]d3r   , (1) 

where rd is the unit vector corresponding to the location of a detector element with respect to the 
object domain origin (r = 0), CO is the source angular frequency, a is an inessential complex con- 
stant, R is the distance from the source to the object domain origin to the detector, and p = (rs + 
rä)/c, where c is the speed of light and rs is the unit vector corresponding to the source location 
with respect to r = 0. For HLR, data is recorded for a series of rd values as the source frequency is 
tuned. For this reason Eq. (1) is written as a function of these two variables, rd and co. 

By using Eq. (1), we have been able to demonstrate fine-resolution 3-D coherent imaging 
[5]. For these experiments we used a tunable dye laser and a 256 X 256 coherent detector array. A 
3-D DFT was used for image formation and range resolution on the order of 10|im was reported. 
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2.0 Pulsed Heterodyne-Array Imaging 

Now consider 3-D image formation with pulsed illumination. This imaging modality has 
been discussed previously [6]; however, in this paper we present the underlying theory for image 
formation and analyze it in the context of stepped-frequency imaging. To begin this analysis con- 
sider the output of a mode-locked laser. A mode-locked laser coherently phases longitudinal cav- 
ity modes of the laser to produce a series of short pulses. In frequency space the output can be 
written as 

A(co) = [comb (aco) • rect (6co)] ® 8(a)-co0), (2) 

where ® represents a convolution and 8 represents the Dirac delta function. To simplify the 
expression we have assumed that the modes all have the same phase, however, this treatment 
extends readily to the more general case of linear mode phasing. An illustration of the laser output 
in frequency space is shown in Fig. 1; the pulse consists of several laser cavity modes that are 
equally spaced in frequency. 

Intensity 
Individual Laser Modes 

UUUi 

CO 

COQ 

Figure 1. Frequency Representation of a Mode-Locked Laser Pulse. 

The temporal form of this laser output, found by taking the Fourier transform of Eq. (1), is 

"A (,) = feW0""^) * sinciiJ\'exp <-"v> • (3) 

which is a time series of sine pulses of light at base angular frequency co0. 

Now consider the return obtained by illuminating an object with such a mode-locked 
pulse. It follows that each frequency is multiplied by a complex constant that is equivalent to the 
detected optical field that results when the object is illuminated with the particular laser frequency 
at unit amplitude. Using Eq. (1), we can write the return pulse as a superposition of the output fre- 
quencies with each multiplied by a complex constant corresponding to the return field 

Aret^rd'^ = u(rd'a^ {[comb {am) -rect(bGi)] <8»8(co-co0)} (4) 
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where U(rd,oa) is the optical field from the object for the particular detector location and source 
frequency given in Eq. (1). As shown by this equation and illustrated in Fig. 2, frequency analysis 
of the return pulse yields a sampled version of the objects complex reflectivity. 

a 
o 

Modulus of object's complex reflectivity 
sampled at discrete frequencies 

t 
i" 

1 CO 

COo 

Figure 2. Frequency Representation of a Returned Mode-Locked Laser Pulse. 

The detection scheme for PHI is to detect the return given in Eq. (4) using a heterodyne receiver. 
The resulting output is the optical field as a function of time. This temporal signal is found by tak- 
ing the Fourier transform of Eq. (4) with respect to the time variable which gives 

Aret(rd,t)  - &(^0([j^cO»ft(i)®^)].eVH(Db0) (5) 

As shown in Eq. (4), PHI provides a convenient means for sampling the object field at a series of 
equally spaced samples. Also, 2-D Fourier transformation of the received signal for each time- 
bin with respect to the variable rd will yield an estimate of the 3-D object. 

A block diagram for a PHI system is shown in Fig. 3. Essential elements include a pulsed 
laser source and a 2-D array of pupil-plane heterodyne receiver elements. 3-D image recovery is 
achieved by 2-D Fourier transformation of the received data in the dimensions of the receiver 
array for each time bin. Note that only the return from a single pulse is needed for image recovery. 

Further insight into PHI can be gained by considering the temporal Fourier transform of 
the received field. This is equivalent to the received field when the object is illiminated by an 
impulse. From Eq. (1) we have 

(6) ü(rd,t) =ajc(r)b{t-^ + (r-^)-r]d^   . 

For the monostatic case with rs and rd pointing in the z direction, we have 

lf(rd,t) = a jcix,y,z)d(t-- + 2-^dxdydz   , (7) 

where we have switched to Cartesian coordinates. Further evaluation of this equation yields 
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Figure 3. Block diagram for Pulsed Heterodyne-array Imaging (PHI). 

Ü(rd,t) =ccJop(z)8(f-£ + 2^dz , (8) 

where op(z) is the object's complex reflectivity projected onto the z-axis. Evaluation of this inte- 
gral yields 

*<',o«tfo,(f-!') (9) 

where a' is an innessential constant. Now consider the received field in the time domain. From 
Eqs. (5) and (9) we have in the case of monostatic operation along the z-axis 

~Aret (rd, t) = rfap(f - f) ® k_JL_co,n*(jE) <g> Swc (*)] • exp (-/ay)   .    (10) 

This result shows, in agreement with intuition, that the return consists of a time series of sine 
pulses convolved with the projected cross-section of the object's complex reflectivity. 

3-0 Summary 

In summary, we have shown that PHI provides a way to generate coherent 3-D images of 
targets. It uses a pulsed laser with pulse-length equal to the desired range resolution. The use of a 
pulsed laser eliminates the need for performing a Fourier transform in the source frequency 
dimension as required with HLR. It is anticipated that PHI will be useful for 3-D imaging distant 
objects where pulsed illumination and high-speed detection are advantageous. 
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