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Evidence and Inference in Educational Assessment 

Abstract 

Educational assessment concerns inference about students' knowledge, 

skills, and accomplishments. Because data are never so comprehensive and 

unequivocal as to ensure certitude, test theory evolved in part to address 

questions of weight, coverage, and import of data. The resulting concepts 

and techniques can be viewed as applications of more general principles for 

inference in the presence of uncertainty. Issues of evidence and inference in 

educational assessment are discussed from this perspective. 
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Probability isn't really about numbers; it's about the structure of reasoning. 

Glenn Shafer (quoted in Pearl, 1988) 

Introduction 

Harold Gulliksen, reviewing the field of Measurement of Learning and Mental 

AbilitiesM the 25th anniversary of the Psychometric Society in 1961, described "the central 

problem of test theory" as "the relation between the ability of the individual and his [or her] 

observed score on the test" (Gulliksen, 1961). Twenty-five years later, at the 50th 

anniversary, Charles Lewis observed that "much of the recent progress in test theory has 

been made by treating the study of the relationship between responses to a set of test items 

and a hypothesized trait (or traits) of an individual as a problem of statistical inference" 

(Lewis, 1986). This trend represents practical progress to be sure, providing solutions to 

formerly intractable problems such as tailoring tests to individual examinees (e.g., Lord, 

1980, Chap. 10) and sorting out relationships in patterns of achievement in hierarchical 

schooling systems (e.g., Aitkin & Longford, 1986). 

Perhaps more importantly in the long run, it represents a certain progress in 

understanding. The early literature on test theory blurred the distinction between models 

for students' knowledge or accomplishments on the one hand, and, on the other, an 

observer's state of knowledge about the forms and parameters of these models. The 

statistical developments Lewis spoke of helped researchers explicate the evidence that test 

data convey for assessment problems framed under trait and behaviorist psychological 

conceptions of abilities. Ironically, the very success of statistical reasoning for assessment 

problems cast under the trait and behaviorist paradigms gave rise to a misconception that 

statistical reasoning applies to assessment framed only within those paradigms. 

We can, however, view test theory as the application of principles that have evolved 

over hundreds of years in many fields, to deal with such pervasive problems as multi-stage 

inference and multiple sources of disparate evidence. While recent developments in 

cognitive and educational psychology may suggest student models and observational 

strategies quite different from those employed by, say, Spearman, Thurstone, and 

Thorndike, practical work under alternative perspectives inevitably faces these same general 
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problems in some form. The same general principles of inference—central among them the 

concepts and tools of mathematical probability—can help explicate relationships between 

evidence and inference for a broader discourse about students' knowledge, learning, and 

accomplishments than is traditionally associated with standard test theory and standardized 

achievement tests. This paper aims to elaborate this claim and to illustrate points with 

vignettes from current projects. 

The following section reviews basic ideas about evidence and inference, drawing in 

part from Daavid Schum's (1987) monograph, Evidence and inference for the intelligence 

analyst. Jurist John Henry Wigmore's contributions to understanding the structure of 

complexbodies of evidence and evidentiary arguments are then discussed (Anderson & 

Twining, 1991; Wigmore, 1937) with reference to analogous problems in jurisprudence 

and assessment. Conceptual machinery from mathematical probability-based reasoning that 

can be applied to these structures is then considered. A series of examples uses this 

approach to structure inference concerning proportional reasoning, mixed-number 

subtraction, foreign-language learning, and accomplishment in a studio art program. The 

focus in each case is modeling evidentiary reasoning, through an inferential model built 

around a psychological model for competence in the domain. The interplay between 

probability-based reasoning within a model and non-mathematical reasoning about the 

model is then discussed; the former provides a framework for reasoning through the 

complexities Wigmore described, the latter emphasizes a perspective of criticizing and 

improving that framework. 

Evidence and Inference 

Questions of evidence are continually presenting themselves to every human 

being, every day, and almost every waking hour, of his life... Whether the 

leg of mutton now on the spit be roasted enough, is question of evidence ... 

which the cook decides upon in the cook way, as if by instinct; deciding 

upon evidence, as Monsieur Jourdan talked prose, without having ever 

heard of any such word, perhaps, in the whole course of her life. 

Jeremy Bentham, 1827, p. 18-19. 

Data versus Evidence 

Inference is reasoning from what we know and what we observe to explanations, 

conclusions, or predictions. We always reason in the presence of uncertainty. The 
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information we work with is typically incomplete, inconclusive, amenable to more than one 

explanation. We attempt to establish the weight and coverage of evidence in what we 

observe. But the very first question we must address is, "Evidence about what?" Schum 

(1987, p. 16) stresses the crucial distinction between data and evidence: "A datum becomes 

evidence in some analytic problem when its relevance to one or more hypotheses being 

considered is established. ... Evidence is relevant on some hypothesis [conjecture] if it 

either increases or decreases the likeliness of the hypothesis. Without hypotheses, the 

relevance of no datum could be established." The same data can thus prove conclusive for 

some inferences, but barely suggestive for others; it can provide complete coverage for 

some inferences, yet miss core issues of others; it can constitute direct evidence for some 

inferences and indirect evidence for others, yet be wholly irrelevant to still others. 

Conjectures, and the understanding of what constitutes evidence about them, 

emanate from the variables, concepts, and relationships of the field within which reasoning 

is taking place—the paradigm, to use Kuhn's (1970) term. Educational assessments 

provide data such as written essays, correct and incorrect marks on answer sheets, 

presentations of projects, or students' explanations of their problem solutions. These data 

become evidence only with respect to conjectures about students and their work— 

conjectures constructed around notions of the character and acquisition of knowledge and 

skill, and shaped by the purpose of the assessment and the nature of the inference required. 

For example: 

• From a behavioral perspective, the focus is on chances of success in a domain of 

relevant tasks. A student is characterized in terms of "overall proficiency" in the 

domain in terms of, say, the score that would be expected if she were administered 

all tasks in the domain, and conjectures would concern her level of proficiency in 

relation to the tasks themselves or to other students, or her behavior in other 

situations. Responses to a sample of tasks constitutes direct evidence for a 

conjecture about proficiency so construed. 

• From an information processing perspective, competence is construed in terms of 

"production rules," and conjectures concern the sets of production rules (production 

systems) students have at their disposal. A production rule comprises descriptions 

of conditions which, when recognized, trigger actions. An example is "smaller- 

from-larger-when-borrowed-from: When there are two borrows in a row, the 

student does the first one correctly, but for the second one she does not borrow; 
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instead she subtracts the smaller from the larger digit—e.g., 824-157=747" 

(VanLehn, 1990, p. 228). Individual production rules can be correct or erroneous; 

a given production system might handle certain features of the substantive domain 

correctly but miss others. 

• From a constmctivist perspective, a student comes to understand the important 

attributes and relations of specific contexts and circumstances (including social 

circumstances), and through wider experiences extends, connects, and generalizes 

the patterns so that they may be applied more broadly and more effectively. 

Conjectures concern the degree to which a student has developed useful 

knowledge, both within and across particular contexts and circumstances, and the 

nature of that knowledge (including, for example, the kinds of meaning the student 

can construct in new situations). 

This presentation does not argue that any of these perspectives represents "the 

truth." All are constructions, organized around patterns that have been perceived in aspects 

of human learning and problem-solving. Each can be useful in certain circumstances to 

improve learning and problem-solving, much as wave and particle models for atomic 

phenomena are each advantageous for certain physics problems. Our concern is that 

practical work under any psychological perspective must proceed with less than perfect 

knowledge. To this end, examples of evidentiary problems in assessment will be 

illustrated with examples from all three perspectives. 

Kinds of Inference 

Schum (1987) distinguishes deductive, inductive, and abductive reasoning, all of 

which play essential and interlocking roles in educational assessment: 

Deductive reasoning flows from generals to particulars, within an established 

framework of relationships among variables—from causes to effects, from diseases 

to symptoms, from the way a crime is committed to the evidence likely to be found 

at the scene, from a student's knowledge and skills to observable behavior. Under 

a given state of affairs, what are the likely outcomes? Formal logic includes 

instances of conclusive deductive reasoning; accepting "A implies B" and learning 

"not B," we conclude "not A" with certainty. In practice, deductive reasoning is 

often probabilistic; under different states, various possibilities become more or less 

likely but not completely determined. 
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• Inductive reasoning flows in the opposite direction, also within an established 

framework of relationships—from effects to possible causes, from symptoms to 

probable diseases, from students' solutions or patterns of solutions to likely 

configurations of knowledge and skill. Given outcomes, what state of affairs may 

have produced them? 

• Abductive reasoning (a term coined by the philosopher Charles S. Peirce) proceeds 

from observations to new hypotheses, new variables, or new relationships among 

variables. "Such a 'bottom-up' process certainly appears similar to induction; but 

there is an argument that such reasoning is, in fact, different from induction since 

an existing hypothesis collection is enlarged in the process. Relevant evidentiary 

tests of this new hypothesis are then deductively inferred from the new 

hypothesis." (Schum, 1987, p. 20; emphasis original). 

The theories and explanations of a field suggest the structure through which 

deductive reasoning flows. Inductive and abductive reasoning depend likewise critically on 

the same structures, as the task is to speculate on circumstances which, when their 

consequences are projected deductively, lead plausibly to the evidence at hand. 

Determining promising possibilities, we reason deductively to other likely consequences— 

potential sources of corroborating or disconfirming evidence for our conjectures, by means 

of which we may further develop our understanding (Lakatos, 1970). 

A detective at the scene of a crime reasons abductively to reconstruct the essentials 

and principals of the event. Anything he sees, in light of a career of experience, can 

suggest possibilities; ways things might have happened which, reasoning deductively, 

could have produced the present state of affairs (e.g., documents, eyewitness reports, 

physical evidence). Given tentative hypotheses, does inductive reasoning from other 

observations conflict or fit in? When they conflict, does their juxtaposition spark a new 

hypothesis? A successful investigation leads to a plausible explanation of the case, which, 

reasoning deductively, appears to lead convincingly to the data at hand. This is the "theory 

of the case" the prosecution brings to trial. 

Severely limited in time and place, a jury cannot "begin at the beginning" in the 

same way the detective did. Their charge is to decide whether the mass of evidence the 

prosecution presents to support this particular hypothesis is sufficiently credible, or 

whether it falls short when the defense's rebuttals and alternative explanations are 

considered. The jury addresses a problem of inductive inference—"Does the evidentiary 
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fact point to the desired conclusion (not as the only rational inference, but) as the inference 

(or explanation) most plausible or most natural out of the various ones that are 

conceivable?" (Wigmore, 1937, p. 25)—within a framework constructed only through 

substantial abductive inference on the part of the investigator and the prosecution. Even 

though the detective may have more information and better insight than the jury ("I know 

the butler did it, but I just can't prove it yet"), the credibility of the legal system is enhanced 

by this separation: The decision is made on the basis of public presentation of evidence and 

argument, by different people from those who gathered the evidence and structured the 

inferential framework. 

Probability-Based Reasoning 

According to the assumption of situated cognition, most cognitive activity 

occurs in direct interaction with a situation, rather than being mediated by 

cognitive representations. Cognitive representations play a role when 

something goes wrong. They are resources that humans have for dealing 

with situations when their more direct connection with objects and persons 

are not working well. ...The capabilities that we characterize as critical 

thinking, then, need to include recognition of circumstances when reflection 

and evaluation might be helpful in overcoming some difficulty that has 

emerged in the normal course of activity or conversation. 

Greeno, 1989, p. 130. 

We do not build probability models for most of the reasoning we do, either in our 

jobs or our everyday lives. We continually reason deductively, inductively, and 

abductively, to be sure, but not through explicit formal models. Why not? Partly because 

we use heuristics, which, though suboptimal (e.g., Kahneman, Slovic, & Tversky, 1982), 

generally suffice for our purposes. More importantly, because much of our reasoning 

concerns domains we know something about. Greeno (op. cit, p. 130) continues, "rather 

than assimilation of information, concepts, and procedures, we can consider learning in a 

domain as becoming able to think with and about the information, concepts, and 

procedures of the domain. This includes coming to know the generative principles of the 

domain, that is, learning what makes the information and procedures of the domain work, 

rather than simply learning what they are." Attending to the right features of a situation and 

reasoning through the right relationships, informally or even unconsciously, provides some 

robustness against suboptimal use of available information within that structure. 
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Some robustness, but not invincibility. Heuristics, habits, rules of thumb, 

standards of proof, and typical operating procedures guide practice in substantive domains, 

more or less in response to what seems to have worked in past and what seems to have led 

to trouble. This inferential machinery co-evolves with, and is intimately intertwined with, 

the problems, the concepts, the constraints, and the methodologies of the field (Kuhn, 

1970, p. 109). Difficulties arise when inferential problems become so complex that the 

usual heuristics fail, when the costs of unexamined standard practices become exorbitant, 

or when novel problems appear. It is in these situations that more generally framed and 

formally developed systems of inference provide their greatest value. 

Given key concepts and relationships, inferential objectives, and data, how should 

reasoning proceed? How can we characterize the nature and force of persuasion a mass of 

data conveys about a target inference? Workers in every field have had to address these 

questions as they arise with the kinds of inferences and the kinds of evidence they 

customarily address. Currently, the promise of computerized expert systems has sparked 

interest in principles of inference at a level that might transcend the particulars of fields and 

problems. Historically, this quest has received most attention in the fields of statistics 

(unsurprisingly), philosophy, and jurisprudence. In the sequel we focus on the concepts 

and the uses of probability-based reasoning. 

Two traditions of "probability" have arisen over time: mathematical or Pascalian 

(after Blaise Pascal) probability, and epistemic or Baconian (after Francis Bacon) 

probability. Those of us in test theory are more familiar with Pascalian probability. For 

our purposes, the essential elements are a specified space of outcomes, or sample space; a 

space of parameters, or variables that determine how likely outcomes are; and a function 

that specifies the probabilities of "Pascalian events," or subsets of the sample space, given 

values of parameters. Probabilities are numbers that satisfy the following requirements: (i) 

an event's probability is greater than or equal to 0, (ii) the probability of the event that 

includes all possible outcomes is 1, and (iii) the probability of an event defined as the union 

of a collection of disjoint events is the sum of their individual probabilities (Kolmogorov, 

1950); they correspond to strength of belief. It is portentous that given parameter values, 

we can express the relative chances of a Pascalian event as compared to any other events; 

and given an event, we can express the relative plausibility of a given parameter value as 

compared to any other parameter value. We shall have more to say about this aspect of 

Pascalian probability-based inference below. 
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In contrast, a "Baconian event" is closer to the everyday notion of "something that 

has happened." Baconian probability refers to a conviction of belief or persuasion, without 

necessary reference to a numerical characterization of its strength, a specifiable sample 

space (things that "might have happened," in addition to "what did happen"), a parameter 

space (potential "true states of affairs" that might have led to the observed event), or 

functions that explicate the relationships between what is observed and what is inferred. 

We may nevertheless be able to say that given the evidence, we feel that one conjecture is 

more likely than another (Cohen, 1977). We find ourselves mildly or strongly convinced 

of a conjecture given a body of data, and may be able to lay out arguments that persuade us 

or give us pause. This Baconian perspective underlies much judicial evidentiary reasoning, 

and from this perspective, John Henry Wigmore, Dean of Evidence at Northwestern 

University the first third of the century, was able to identify, if not resolve, some central 

inferential challenges. 

Wigmore on Evidence 

Wigmore, like Jeremy Bentham a hundred years before him, was troubled by the 

agglomeration of "rules of evidence" that had evolved in Anglo-American law over the 

centuries. Each rule, specifying particular kinds or aspects of information that may or may 

not be introduced to jurors as evidence in a case, is intended to reduce the chances of some 

presumed inferential error. Beyond the fact that certain rules offend sensibility (Quakers 

could not give testimony in some jurisdictions because they refused to swear an oath of 

truthfulness), Wigmore felt that what was missing was "the big picture:" 

The study of the principles of Evidence, for a lawyer, falls into two distinct 

parts. One is Proof in the general sense, the part concerned with the 

ratiocinative process of contentious persuasion, mind to mind, counsel to 

Judge or juror, each partisan seeking to move the mind of the tribunal. The 

other part is Admissibility, the procedural rules devised by the law, based 

on litigious experience and tradition, to guard the tribunal (particularly the 

jury) against erroneous persuasion. Hitherto, the latter has loomed largest in 

our formal studies—has, in fact, monopolized them; while the former, 

virtually ignored, has been left to the chances of later acquisition, casual and 

empirical, in the course of practice. 

Here we have been wrong; and in two ways: 
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For one thing, there is, and there must be, a probative science—the 

principles of proof—independent of the artificial rules of procedure; hence, 

it can be and should be studied. This science, to be sure, may as yet be 

imperfectly formulated. But all the more need is there to begin in earnest to 

investigate and develop it. Furthermore, this process of Proof represents the 

objective in every judicial investigation. The procedural rules for 

Admissibility are merely a preliminary aid to the main activity, viz. the 

persuasion of the tribunal's mind to a correct conclusion by safe materials. 

Wigmore, 1937, pp. 3-4. 

Wigmore thus sought to explicate principles upon which evidence-based inference 

appeared to be founded in the law. Although every case is unique, he identified recurring 

patterns in relationships among propositions to be proved (the facta probanda) and 

propositions that tend to support or refute them (the facta probans). "Basic concepts 

include conjunction; compound propositions; corroboration; convergence; and catenate 

inferences (inference upon inference)... Each of these notions raises difficult questions 

about what is involved in determining the overall probative force or weight of evidence" 

(Twining, 1985, p. 182). To aid understanding of these relationships in particular cases, 

Wigmore developed a system for charting the structure of arguments. Symbols represent 

propositions, such as statements of physical evidence, witness testimony, generalizations, 

or implications of evidence or other propositions; lines among them represent inferential 

connections. Additional notation, not needed for our purposes, can be used to distinguish 

among propositions offered by the defense, the prosecution, and the judge, or to suggest 

the strength and direction of implication. 

The process of constructing a Wigmore diagram forces careful thought about how 

evidence leads to inferences and how inferences inter-relate, through conjunction, 

catenation, and so on. This process may be at least as valuable as the product (Twining, 

1985, p. 133). The product, or the diagram itself, serves to communicate this thinking to 

others, so that they may be persuaded, or moved to adduce missing themes, counter- 

explanations, or new lines of evidence to explore. Wigmore's approach can be applied in 

assessments in which open-ended performances are characterized in terms of established 

but generally-stated qualities. Just as an apparently simple guilty/not-guilty verdict can be 

determined by complex arguments from unique data in light of abstract legal principles, a 

seemingly straightforward numerical rating can involve "questions of what is of value, 

rather than simple correctness ... an episode in which students and teachers might learn, 
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through reflection and debate, about the standards of good work and the rules of evidence" 

(Wolf, Bixby, Glenn, & Gardner, 1991, p. 51). 

Example 1: Advanced Placement Studio Art Portfolio Assessment. The purpose 

of the College Entrance Examination Board's Advanced Placement (AP) Studio Art 

portfolio assessment is to determine whether high school students exhibit knowledge 

and skills commensurate with first-year post-secondary art courses (Askin, 1985; 

Mitchell, 1992). Students develop works for their portfolios during the course of the 

year, through which they demonstrate the knowledge and skills described in the AP 

Studio Art materials. The portfolios are rated centrally by artist/educators at the end 

of the year, using standards set in general terms and monitored by the AP Art 

advisory committee. At a "standards setting session," the chief faculty consultant and 

table leaders select portfolios to exemplify the committee's standards. The full team 

of about 25 readers spends the equivalent of another day of the week-long scoring 

session examining, discussing, and practicing with these and other examples in order 

to establish a common framework of meaning. The assessment features ratings on 

three distinct sections of each portfolio, multiple ratings of all sections for all 

students, and virtually unbridled student choice in demonstrating their capabilities and 

creative problem-solving skills within guidelines set forth for the sections. Section 

B, the student's "concentration," consists of up to 20 slides, a film, or a videotape 

illustrating a concentration on a student-selected theme mentioned above and a 

paragraph or two describing the student's goals, intentions, influences, and other 

factors that help explain the series of works. 

Figure 1 is a simplified Wigmore chart based on a discussion of Section B of an 

Advanced Placement Studio Art portfolio (Myford & Mislevy, in press). At the top 

of the diagram is the ultimate probandum, namely, that this submission should be 

assigned a rating of 3. Propositions that support or refute this proposition appear 

below it; propositions that in turn support or refute them appear further below, with 

the bottom-most propositions closest to the observed data. Several distinct themes 

appear in the chart. For example, the constellation near the center leading to 

Proposition #9 concerns the way the project (and the student) developed during the 

course of the work. The first pieces were weak—evidence which, in and of itself, 

would tend to move a reader toward a lower rating (#10). But later works, tackling 

more successfully the same challenge, build strongly from initial efforts (#12). In 

conjunction, these two propositions support #9, which posits notable progress over 
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time. The constellation at the right leading to #15 concerns evidence about the degree 

of technical skill exhibited in the work. 

[[Figure 1]] 

Figure 1 also illustrates several catenated or chained inferences, in which 

propositions play the role of probans, or supporting or refuting evidence, for some 

inference in the chain, but also play the role of probanda when other propositions are 

offered in turn to support or refute them. For example, Proposition #3 is evidence 

about #2, while #3 is itself evidenced by #4. Wigmore noted first that uncertainty 

accumulates in chained inferences. We would have some degree of uncertainty about 

the quality of ideation of this project (#2) even if we knew the student had "ingested 

some difficult art" (#3). We have even more uncertainty about #2 if we do not know 

#3 directly, but infer it from the references to Jaspar Johns and Lucas Samaras in his 

written statement (#4)—which may betoken name-dropping rather than knowledge. 

Wigmore noted secondly that to think through a chain from the bottom up (i.e., 

inductively), it is useful to consider at each step the weight of evidence offered by the 

factum probans if it were known to be true: "In dealing with the probative value of the 

circumstantial class, we are to take the alleged circumstantial... fact as somehow 

believed, then determine its effect. It is immaterial whether it has itself to be 

proved..." (Wigmore, 1937, p. 17). We shall see that this advice is similar in spirit, 

though opposite in direction, to the way conditional probability structures are used in 

Pascalian probability-based reasoning with chained inferences. § 

The direction of the arrows in a Wigmore diagram indicates a flow of inductive 

inference. Wigmore was concerned with the difficulty of combining a mass of disparate 

evidence for ultimate inferences, and he developed his charts to explicate the structure of 

evidence and inferences. However, he did not claim to prescribe rules for determining that 

outcome; that is, how to combine a mass of evidence into summary judgments, or to 

characterize its weight. He left it to the jurors to determine, in a Baconian sense, the extent 

to which a mass of evidence persuades them of the story of the case. As discussed below, 

mathematical probability does provide tools for combining evidence within a substantively- 

determined structure—provided that the crucial elements of the situation can be 

satisfactorily mapped into the probability framework. The usual problem in jurisprudence 

is that one would like to know "what really happened," but it is difficult to construct a 

parameter space comprised of "all the things that could have happened," upon which 
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evidence would induce numerical measures of relative likeliness among all possibilities 

(i.e., posterior probabilities). 

Mathematical Probability 

When it is possible to map the salient elements of an inferential problem into the 

probability framework, powerful tools become available to combine explicitly the evidence 

that various probans convey about probanda, as to both weight and direction of probative 

force. Inferential subtleties such as catenation, missingness, disparateness of sources of 

evidence, and complexities of interrelationships among probans and probanda, can be 

resolved, A properly-structured statistical model embodies the salient qualitative patterns in 

the application at hand, and spells out, within that framework, the relationship between 

conjectures and evidence. It overlays a substantive model for the situation with a model for 

our knowledge of the situation, so that we may characterize and communicate what we 

come to believe—as to both content and conviction—and why we believe it—as to our 

assumptions, our conjectures, our evidence, and the structure of our reasoning. 

Perhaps the two most important building blocks of mathematical probability are 

conditional independence and Bayes theorem. Conditional independence is a tool for 

mapping Greeno's (op cit) "generative principles of the domain" into the framework of 

mathematical probability, for erecting structures that express the substantive theory upon 

which deductive reasoning in a field is based.1 This accomplished, Bayes theorem is a tool 

for reversing the flow of reasoning—inductively, from observations, through these same 

structures, to expressions of revised belief about conjectures cast in the more fundamental 

concepts of the domain, expressed in the language of mathematical probability. 

Conditional Independence 

Two random variables x and y are independent if their joint probability distribution 
p(x,y) is simply the product of their individual distributions— p(x,y) = p{x)p{y).   These 

variables are unrelated, in the sense that knowing the value of one provides no information 

about what the value of the other might be. Conditionally independent variables seem to be 
related— p(x,y) ± p{x)p{y)—but their co-occurrence can be understood as determined by 

the values of one or more other variables— p{x,y\z) = p(x\z)p{y\z), where the conditional 

probability distribution p{x\z) is the distribution of x, given the value z of another variable. 

The conjunction of sneezing, watery eyes, and a runny nose described as a "histemic 

reaction" could be triggered by various causes such as an allergy or a cold; the specific 
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symptoms play the role of JC'S and y's, while the status of "having a histemic reaction" 

plays the role of z. The paradigms of a field supply "explanations" of phenomena in terms 

of concepts, variables, and putative conditional independence relationships. Judah Pearl 

(1988) argues that inventing intervening variables is not merely a technical convenience, 

but a natural element in human reasoning: 

Conditional independence is not a grace of nature for which we must wait 

passively, but rather a psychological necessity which we satisfy actively by 

organizing our knowledge in a specific way. An important tool in such 

organization is the identification of intermediate variables that induce 

conditional independence among observables; if such variables are not in our 

vocabulary, we create them. In medical diagnosis, for instance, when some 

symptoms directly influence one another, the medical profession invents a 

name for that interaction (e.g., "syndrome," "complication," "pathological 

state ") and treats it as a new auxiliary variable that induces conditional 

independence; dependency between any two interacting systems is fully 

attributed to the dependencies of each on the auxiliary variable, (p. 44) 

In psychology, Charles Spearman's methodological insight was that conditional 

independence of observable scores in standardized tests, given an unobservable 

"intelligence" variable g, would imply particular patterns of relationships among the 

observable scores (Spearman, 1904,1927). Now while conditional independence is thus 

used to express Spearman's psychological concept of a trait that determines behavior across 

a broad array of situations, the mathematical concept of conditional independence per se in 

no way implies g or anything like it. Indeed, Examples 4 and 5 below show how 

conditional independence is used to express psychological theories under which the 

interactions between persons' knowledge structures and the situations they encounter are 

central to understanding behavior. The point is that Spearman's inferential machinery, as 

distinct from his psychological theory, supplied a framework for reasoning deductively and 

inductively within his paradigm, and, at least in principle, for disconfirming conjectures 

about behavior in terms of hypothesized traits. 

The tradition of statistical inference founded upon unobservable variables and 

induced conditional probability relationships now dominant in educational and 

psychological measurement thus extends back to Spearman's early work, bolstered by 

Wright's (1934) path analysis, Lazarsfeld's (1950) latent class models, and more recent 
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work on structural equations modeling in the presence of measurement errors (e.g., 

Jöreskog & Sörbom, 1979). Lewis (1986) notes continued and considerable extensions of 

the logic of inference for problems involving unobservable variables, exploring 

possibilities and limitations, developing statistical machinery for estimation and prediction 

(e.g., Rasch, 1960/1980; Holland & Rosenbaum, 1986). The first part of Example 2 

(below) illustrates how deductive reasoning flows from the conditional probability 

relationship at the core of Rasch's (1960/1980) item response theory (IRT) model for 

dichotomous test items. 

Example 2: An Item Response Theory Model. The Rasch model for 

dichotomous test items is used to structure inference about students' overall level of 

proficiency in a specified domain of test items. It posits that responses to n test items 

from the domain are conditionally independent, given parameters characterizing a 

student's overall tendency to make correct responses (denoted 0) and each item's 

difficulty (ßj denoting the difficulty parameter for Item;'): 

V{xv...,xn\e,ßv...,ßn) = flP(xjW>ßj\ 
j=1 (1) 

with 

x     exp[jc,(e-j3,)l 
1 '    Hj)    [l + exp(0-£,)] 

where XJ is the response to Item; (1 for right, 0 for wrong). Figure 2 shows the 

probabilities of correct response to three items, with difficulty parameters -1,0, and 

+1, as a function of 6. Low values of 6 indicate lower chances of correct response 

and high values indicate higher chances, at rates determined by the item parameters. 

[Figure 2] 

Figure 3 depicts the relationships expressed in (1) among the variables pertaining 

to a single student as a directed acyclic graph (DAG). Each node represents a 

variable—one proficiency variable, 6, and three items, x\, xi, and X3. An arrow 

between nodes represents a conditional probability relationship between variables, the 

direction signifying which variable is being conditioned on (from "parents" to 

"children," in DAG terminology from genetic applications). The lack of arrows 
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among the individual JC'S represents the conditional independence indicated in (1); 

they are posited to be unrelated except through 0. For any given XJ, the probability 
distribution is modeled as depending on 0 and ßi as indicated in (2). Equations (1) 

and (2) represent deductive inference from 6 and ß's to expectations about x's; that 

is, 0 and ß's are probans, the JC'S, probanda. Alternatively stated, if particular 

values of 0 and ß's were given, we could use (1) and (2) to assign probabilities, or 

numerical statements of our expectations, to conjectures about observable responses 

such as "The response to Item 1 will be 0 rather than 1" or "All three responses will 

be correct as opposed to a pattern with at least one 0." 

[Figure 3] 

The arrows in Figure 3 indicate the structure of relationships, but not their 

strengths. Suppose for simplicity that 0 can take only four values, -1.5, -.5, .5, and 

1.5, and we know the ß values of the three items to be -1, 0, and 1 respectively. 

Table 1 gives the probabilities of correct response to each of the items conditional on 

each possible 0 value, as calculated from (3). These relationships are depicted as 

augmented DAGs in the four panels of Figure 4. Each panel depicts the probabilities 

of right and wrong item responses if 0 is known with certainty to take one of its four 

possible values. Bars in the nodes corresponding to items represent probabilities 

from Table 1 for right and wrong responses, given the 0 values. The bar for the 0 

node goes all the way to 1 for the keyed 0 value in each panel, thereby conditioning 

expectations for JC'S that would follow (deductively) if it were the true value. § 

[Figure 4] 

[Table 1] 

Bayes Theorem 

We must reason inductively in most practical applications. In the IRT example, we 

observe item responses JC in order to increase our knowledge about a student's level of 

proficiency on tasks in the domain. If we know or have good estimates of the /Ts, then the 

x's are now probans and 0 the probandum. That is, given a particular pattern of item 

responses, we wish to express our belief about conjectures about 0 such as "0=-1.5." 

Since we can map the possibilities into the probability framework in this case, Bayes 

theorem provides a mechanism for accomplishing the desired inductive inference. 
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In general terms, let x be a variable whose probability distribution p(x\z) depends 

on the variable z. Suppose also that prior to observing x, belief about the value of z can be 

expressed in terms of a probability distribution p(z) For example, we may consider all 

possible values of z equally likely, or we may have an empirical distribution based on 

values observed in the past. Bayes Theorem says 

p(x\z)p{z) (~ 
p{z\x) = ——, (3) 

p(x) 

where p(x) is the expected value of x over all possible values of z, or 

f p(x\z)p(z)d(z)   z continuous 
p(x) = E[p(x\z)] = 

^T p(x\ z)p(z)       z discrete 
(4) 

with the integral or sum taken over the admissible range of z (Box & Tiao, 1973, p. 10). 

We see in (3) that the terms which change belief about a conjecture, from p(z) to 

p(z\x), are the so-called likelihoods, p(x\z); that is, the relative probabilities of the observed 

datum given each of the possible states that might have produced it. While the expressions 

p{x\z) drive deductive reasoning about possible JC'S for a given z, the same expressions 

drive inductive reasoning about the likelihood of possible z's once a particular value of x is 

observed. If, for a particular value of x, pixlz^) is twice p(x\z2), then observing this 

value of x argues in and of itself twice as strongly for z, as for z2, independently of our 

prior state of belief about their relative prospects and of evidence from other sources (this 

latter information to be taken into account in ways discussed below in connection with 

inference networks). From a Bayesian statistical perspective, likelihoods characterize 

completely the weight and direction of evidential value that observations bear for a 

conjecture. 

This last point deserves emphasis, for it is the essence the characterization of belief 

and weight of evidence under the paradigm of mathematical probability: 

• Prior to observing a datum, relative belief in a space of possible propositions is 

effected as a probability (density) distribution, namely, the prior distribution p(z). 

• Posterior to observing the datum x, relative belief in the same space is effected as 

another probability (density) distribution, the posterior distribution p(z\x). 
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The evidential value of the datum x is conveyed by the multiplicative factor that 

revises the prior to the posterior for all possible values of z, namely, the likelihood 

function p(x\z). One examines the direction by which beliefs associated with any 

given z change in response to observing JC (is a particular value of z now considered 

more probable or less probable than before?) and the extent to which they change 

(by a little or by a lot?). 

Example 3: A Latent Class Model. "Achievement testing as we have defined it is 

a method of indexing stages of competence through indicators of the level of 

development of knowledge, skill, and cognitive process," submitted Glaser, Lesgold, 

and Lajoie (1987, p. 81); "These indicators display stages of performance that have 

been attained and on which further learning can proceed." The important questions 

for guiding learning are not "How many items did this student answer correctly?" or 

"What proportion of the population would have scores lower than his?" but, in 

Thompson's (1982) words, "What can this person be thinking so that his actions 

make sense from his perspective?" and "What organization does the student have in 

mind so that his actions seem, to him, to form a coherent pattern?" This example 

shows how a series of tasks devised by Robert Siegler (1981) and a latent class 

statistical model (Lazarsfeld, 1950) support probability-based inference about such 

aspects of children's proportional reasoning a viewed from the perspective of a neo- 

Piagetian paradigm (also see Kempf, 1983). 

Jean Piaget proposed that children develop proportional reasoning in stages that 

reflect increasing awareness of the salient properties of a problem class, and 

increasing sophistication in how they combine to produce a solution (Inhelder & 

Piaget, 1958). Conjectures about children's proficiency under Piaget's 

developmental paradigm concern the stages of development at which they are 

functioning, and observable data consist of their words and actions as they solve 

proportional reasoning tasks. Siegler's tasks show varying numbers of weights 

placed at varying locations on a balance beam, and a child predicts whether the beam 

will tip to the left, tip to the right, or remain in balance. The six basic types of task 

are illustrated in Figure 5. Following Piaget, Siegler hypothesized that children could 

be classified into one of five stages: four characterized by how many of the 

cumulative reasoning rules shown in Table 2 they had acquired—representing Stages 

I through TV—and an earlier "pre-operational" Stage 0 in which neither weight nor 
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distance from the fulcrum are seen to bear any systematic relationship to the 

movement of the beam. 

[[Figure 5]] 

[[Table 2]] 

If the underlying developmental theory were perfect, children's stages of 

reasoning would tightly control the rates at which they would respond correctly to the 

various types of tasks; these rates are shown as Table 3. But because the model is 

not perfect2, and because children make slips and lucky guesses, any response could 

be observed from a child in any stage. A latent class model can be used to express 

the expectations of correctness of the various tasks at each of the stages, while 

allowing for some "noise" in real data (Mislevy, Yamamoto, & Anacker, 1992). 

Instead of positing that children in Stage II will with certainty respond incorrectly to 

"Conflict-Dominant" tasks, we might instead estimate the proportion of correct 

answers, or P(CD=correct I Stage=IT). These probabilities play the same role as the 

item parameters ß in the IRT example, quantifying expectations of potential 

observations x (in this case, predictions about which way the balance beam will 

move) given the unobservable psychological variable of interest 0 (in this case, the 

child's stage of reasoning). Estimated values for proportions of correct response 

given reasoning stages appear in Table 4. 

[[Tables 3 & 4]] 

A child in Stage I usually predicts the side with more weight will go down, 

although different distances from the fulcrum may cause the other side to go down or 

the beam to remain in balance; it is necessary to compare torques to know. But in CD 

tasks the side with more weight actually does go down, and the Stage I child gets the 

right answer for the wrong reason! When a child's understanding deepens to the 

point at which he realizes distance matters but doesn't know how to combine it with 

weight, he is less likely to get CD tasks right than when he was in Stage I. Because 

probabilities of correct response to CD tasks do not increase monotonically with 

increasing total test scores, they provide weak evidence for the inferential problem 

IRT is meant to address, namely gauging overall tendency to make correct responses. 

From the perspective of the developmental theory, however, not only is this reversal 

expected, it provides useful evidence for distinguishing among children with different 
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ways of thinking about the domain. Succeeding with the more complex "Conflict- 

Dominant" (CD) tasks while missing the simpler "Subordinate" (S) tasks is 

converging evidence that a child is reasoning in Stage I. This pattern highlights the 

distinction between Wigmore's two terms, "corroborating evidence" and "converging 

evidence." Corroborating evidence refers to repeated, consonant observations of the 

same kind of data for the same conjecture: Consistently correct CD responses are 

corroborating evidence for inferring proficiency in the subdomain of CD tasks; 

consistently incorrect S responses are corroborating evidence for inferring proficiency 

in the subdomain of S tasks. Converging evidence refers to patterns of data of 

different kinds that are consistent with a conjecture: Correct CD responses together 

with incorrect S responses are converging evidence about membership in Stage I. 

Though cast within a different psychological paradigm, the DAG for this model 

is similar in structure to that of the Rasch model: A single unobservable variable 

(stage of reasoning) is posited to determine probabilities of task outcomes (correct 

and incorrect predictions about the balance-beam movement).  Suppose that our 

beliefs that a student is in each of the stages from 0 through IV before we observe a 

response to any task, corresponding to the values of p(z) in the expression above for 

Bayes Theorem, are given by the Mislevy et al. estimates of proportions of children at 

each of the stages in Siegler's sample: 

(P(Stage = 0),P(Stage = I),P(Stage = II),P(Stage = EI),P(Stage = IV)) 

= (.257,. 227,. 163,. 275,. 078). 

This state of knowledge is depicted in the first panel of Figure 6, showing for 

simplicity only the nodes for Stage Membership and one task of each type. Suppose 

now we observe a correct response to a S task. The values in the S column of Table 

4 correspond to the values of p(x\z) with x being "correct response to a S item" and 

with z taking the values of the five possible stage memberships. These values 

register the evidential value of a correct-S observation with respect to inference about 

a student's stage of understanding, shifting belief upwards in general, and away from 

Stage I and toward Stage IE in particular. Updated beliefs about a student's stage 

membership, or values of p(z\x) with x and z interpreted as above, are then obtained 

in two steps, through first (4) then (3) as follows: 
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P(x) = P(Correct response to S) 
5 

= 2>(Correct response to SI Stage = y)P(Stage = j) 
;=i 

= (.333)(.257) + (.026)(.227) + (.883)(.163) + (.981)(.275) + (.943)(.078) 

=.086+.006+.144+.270+.073 =.579. 

(P(Stage = 01 Correct response to S),...,P(Stage = IVICorrect response to S)) 

- r— — — ^- —) 
~ ^579'.579'.579'.579'.579 

= (.149,.010,.249,.466,.126). 

These revised beliefs, as well as updated expectations for possible future responses to 

other task types, appear in the second panel of Figure 6.   § 

[[Figure 6]] 

The keys to successful exploitation of probability-based reasoning in a given 

application are the definitions of variables to capture the salient elements of the situation, 

and the structuring of probability distributions and conditional independences that capture 

the most important relationships among those elements. It may be painstaking and difficult 

work to model subtleties of the kinds mentioned above (see, for example, how Schum, 

1981, sorted out intricacies of witness credibility), and it may be necessary to add 

additional layers of parameters to express uncertainty about relationships. Nevertheless, if 

the relationships necessary for deductive reasoning and prior beliefs about unknown 

parameters can be mapped into the framework of mathematical probability, then Bayes 

Theorem can provide principled inductive reasoning that accounts for the subtleties within 

the same framework. 

Bayesian Inference Networks 

Applying Bayes theorem in its textbook form (Equations 3 and 4) becomes 

unwieldy rather quickly as the number of variables in a problem increases. Efficient 

probability-based inference in complex networks of interdependent variables is an active 

topic in statistical research, spurred by applications in such diverse areas as forecasting, 

pedigree analysis, troubleshooting, and medical diagnosis (e.g., Lauritzen & Spiegelhalter, 

1988; Pearl, 1988). Interest centers on obtaining the distributions of selected variables 

conditional on observed values of other variables, such as likely characteristics of offspring 
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of selected animals given characteristics of their ancestors, or probabilities of disease states 

given symptoms and test results. The conditional independence relationships suggested by 

substantive theory play a central role in the topology of the network of interrelationships in 

a system of variables. If the topology is favorable, such calculations can be carried out 

efficiently through extended application of Bayes theorem even in very large systems, by 

means of strictly local operations on small subsets of interrelated variables ("cliques") and 

their intersections. Discussions of construction and local computation in Bayesian 

inference networks can be found in the statistical and expert-systems literature (see, for 

example, Lauritzen & Spiegelhalter, 1988, Pearl, 1988, and Shafer & Shenoy, 1988; 

computer programs that carry out the required computations include Andersen, Jensen, 

Olesen, & Jensen, 1989, and Noetic Systems, 1991). 

A recursive representation of the joint distribution of a set of random variables 

x\,... ,XN takes the form 

p(xv...,xn) = p(xn\xn_v...,xl)p(xn_,\xn_2,...,xl}-p(x2\xl)p(xl) 

n 

= Y[p(xj\xj_v...,xl), (5) 

where the term for j=l is defined as simply p(xi). A recursive representation can be 

written for any ordering of the variables, but one that exploits conditional independence 

relationships is more useful because variables drop out of the conditioning lists. This is 

equivalent to omitting arrows ("edges") from the DAG, thus simplifying the topology of 

the network. It is here that substantive theory comes into play, in (i) defining unobservable 

variables that characterize students' state or structure of understanding, and observable 

variables that will convey evidence about that understanding, and (ii) defining intervening 

variables and conditional independences through which deductive reasoning flows, so as to 

capture important substantive relationships and simplify computations.  An inference 

network for medical diagnosis, for example, includes nodes for symptoms and test results, 

which are observable, and for syndrome and disease states, which are not observable, but 

in terms of which theories of the progression and treatment of disease are framed 

(Andreassen, Jensen, & Olesen, 1990).   Analogously, an inference network for cognitive 

diagnosis includes nodes for students' actions and explanations and conditions of 

assessment situations, which are observable, and for skill and knowledge states, which are 

not, but in terms of which theories of knowledge and learning are framed (Mislevy, in 

press; Martin & VanLehn, 1993). 
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Example 2: An IRT Model, continued. This section extends the IRT example to 

sequential gathering and evaluating of evidence, or adaptive testing (Wainer et al, 

1990), and uncertainty about item parameter values—still with examinees' overall 

proficiency the target of inference. Suppose that prior belief about an examinee's 0, 

before seeing any item responses, is characterized by equal probabilities of .25 for 

each of the four possible values posited above. (Alternatively, prior beliefs might be 

based on his results from earlier tests, empirical distributions of other examinees who 

have been tested, or on knowledge of his instructional history.) Assuming the 

probabilities of correct response given in Table 4 conditional on each possible 0, we 

can deduce probabilities that represent our expectations of seeing correct responses 

from a student about whom we have no additional information. These are depicted in 

the first panel of Figure 7. If we now observe a correct response to Item 1, we can 

apply Bayes theorem to update our beliefs about this examinee's 0, as shown in the 

second panel. But once our belief about 0 is revised through inductive reasoning 

from x\, we reason deductively to update our expectations for Items 2 and 3. The 

second panel of Figure 7 thus shows (i) certain knowledge about the response to Item 

1, (ii) a shift of belief about 9 to higher values, and (iii) greater expectations of 

correct response to the items not yet presented. The third panel shows the results of 

another cycle of inductive reasoning (from observing X2 to belief about 9) followed 

by deductive reasoning (from revised belief about 9 to revised expectations about 

xj), that are initiated by an incorrect response to Item 2. 

[Figure 7] 

Figures 4 and 7 treat as known the conditional probabilities fork's given 9 

implied by item parameters ß and the prior distribution p(9); only uncertainty 

concerning an individual students 9 and x's is addressed. This may be reasonable 

when strong evidence is available about these quantities, but in principle they too are 

never known with certainty. We learn something about them inductively from 

responses of several students to several items. A more complete Bayesian treatment 

of the IRT setup includes unknown parameters rfor the distribution of 9, parameters 

E, for the distribution of ß's, and hyperparameters r\ and £for the distributions of T 

and | (Mislevy, 1986; this setup can be further extended to incorporate information 

from collateral information about students, as in Mislevy & Sheehan, 1989, and 

collateral information about tasks, as in Mislevy, Sheehan, & Wingersky, 1993). As 

a particular instance of (5), we might thus posit 
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P(x, oM, *>v, 0 = M MM« *)/>(* ^M^M/^M^1 CMO> 

and, after observing only response vectors x from a collection of students to a 

collection of tasks, calculate approximate posterior distributions for any item or 

population parameters of interest, or for task or individual student parameters taking 

uncertainty about higher-level parameters into account. A portion of a corresponding 

extended DAG appears as Figure 8. § 

[Figure 8] 

Example 4: Mixed-Number Subtraction. The data in this example are again 

familiar right/wrong responses to open-ended mixed-number subtraction problems, 

but inference now concerns a more complex student model meant to support short- 

term instructional guidance. We see how conditional independence relationships can 

structure and support inference for a psychological model under which the difficulty 

of an item depends on the strategy a student employs—a source of uncertainty for 

inferences about overall proficiency, but a source of evidence for inferences about 

strategy usage. We further see how the interrelationships among skills and between 

skills and observable responses exemplify some of Wigmore's basic evidential 

structures, and how they are handled in the framework of mathematical probability. 

The data and the cognitive model are due to Tatsuoka (1987,1990). The 530 middle- 

school students she studied characteristically solved mixed number subtraction 

problems using one of two strategies: 

Method A:   Convert mixed numbers to improper fractions, subtract, then reduce if 

necessary. 

Method B:   Separate mixed numbers into whole number and fractional parts, subtract 

as two subproblems, borrowing one from minuend whole number if 

necessary, then reduce if necessary. 

Mislevy (in press) characterizes 15 items in terms of which of seven 

subprocedures are required to solve it with Method A and with Method B. The 

corresponding student model consists of a variable for which strategy a student 

characteristically uses, and which of the seven subprocedures the student is able to 

apply. The structure connecting the observable responses to the unobservable 

student-model parameters is that ideally, a student using, say, Method A would 
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correctly answer items which under that strategy require only subprocedures the 

student has at his disposal (Falmagne, 1989; Tatsuoka, 1990; Haertel & Wiley, 

1993). But sometimes students miss items even under these conditions (false 

negatives), and sometimes they answer items correctly when they don't possess the 

requisite subprocedures by other, possibly faulty, strategies (false positives). 

Figure 9 depicts an inference network for Method B only. Five nodes represent 

basic subprocedures that a student who uses Method B needs to solve various kinds 

of items; these are labeled Skill 1 through Skill 5. Conjunction, one of the basic 

evidential structures described by Wigmore, appears in this DAG: The conjunctive 

node "Skills 1&2," for example, takes the value "yes" if and only if a student has both 

Skill 1 and Skill 2. Each node for the observable response to a particular subtraction 

item is the child of a node representing the minimal conjunction of skills needed to 

solve it with Method B. The relationship between such a node and an item 

incorporates false positive and false negative probabilities. Catenation, another of 

Wigmore's basic structures, appears in chains such as the one from "Skill 2" to 

"Skills 1&2" to "Item 12." Inference in this chain is structured through the 

conditional probability distributions of Item 12 responses given each possible value 

of "Skills 1&2" as if it were true, and the conditional probability distribution of 

"Skill 1&2" values given each possible combination of the values of its parents, 

"Skilll" and "Skill2" if it were true. The numerical values of all the conditional 

probability relationships for the examples in this presentation were approximated with 

results from Tatsuoka's (1983) "rule space" analysis of the data, using only students 

classified as Method B users.3 

[Figure 9] 

Figure 10 depicts base rate probabilities of skill possession and item percents- 

correct, or the state of knowledge one would have about a student known to use 

Method B, before observing any item responses. Suppose we observe a pattern of 

responses that has mostly correct answers to items that don't require Skill 2, but 

incorrect answers to most of those that do. This is a body of disparate evidence: 

Right and wrong answers to items involving different skills in different 

combinations. Its evidential value is discerned through the relationships whose 

structure is depicted in the DAG and whose strengths and directions are expressed in 

the accompanying conditional probability distributions. (The network could be 
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extended to accommodate evidence from even more disparate sources, such as 

teachers' observations or explanations of solutions, if conditional probabilities of 

their outcomes given potential values of the skill nodes could be assessed. The 

extended network might require variables to model the effects of important influences 

on the new observables, above and beyond the skill variables.) Assuming the 

veracity of this structure, Figure 11 shows how beliefs change after observing such a 

response pattern. In particular, the updated probabilities for the five skills required 

for various items under Method B show substantial shifts away from the base-rate, 

toward the belief that the student commands Skills 1,3,4, and possibly 5, but almost 

certainly not Skill 2. 

[Figures 10 & 11] 

Figure 12 incorporates the Method B network and a similar network for Method 

A into a single network that is appropriate if we don't know which strategy a student 

uses. The evidential structure is a disjunction, not one of Wigmore's basic structures 

but as common in educational assessment as in everyday life: There are multiple 

routes to an outcome, and observing the outcome alone does not indicate the route. 

Each item-response node now has three parents: minimally sufficient sets of 

subprocedures under Method A and under Method B, and the new node "Is the 

student using Method A or Method B?" By virtue of their demands, two items can 

have the same minimal sufficient set of skills under one method but different minimal 

sets under the other. Their responses are conditionally independent only given status 

on these minimally sufficient skill sets and the method with which they are attempted. 
We find that an item like l\ - 5\ is hard under Method A but easy under Method B; 

an item like l\ -1| is just the opposite. A response vector with most of the first kind 

of items right and the second kind wrong shifts belief toward Method B. The 

opposite pattern shifts belief toward the use of Method A. These are patterns in data 

that constitute noise, in the form of conflicting evidence, in an overall proficiency 

model, yet which constitute evidence, in the form of converging evidence, about 

strategy usage under the combined network—a conjecture that cannot even be framed 

within the overall proficiency model. 

[Figure 12 about here] 
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With the present student model, one might explore additional sources of 

evidence about strategy use: monitoring response times, tracing solution steps, or 

simply asking the students to describe their solutions. Each has tradeoffs in terms of 

cost and evidential value. The student model could be extended by allowing for 

strategy switching (Kyllonen, Lohman, & Snow, 1984); that is, deciding whether to 

use Method A or Method B on an item only after gauging which strategy would be 

easier to apply. The variables in this more complex student model would express the 

tendencies of a student to employ different strategies under various conditions, with 

"always use Method A" and "always use Method B" as extreme cases.   § 

The Role of Conditionally 

When the target inference is defined in terms of general behavioral tendencies over a 

specified domain of task situations, modeling responses as if conditionally independent 

given "average proficiency" as in Example 2 can be a useful expedient for characterizing the 

evidential value of observations. The evidence a task provides is posited to have the same 

character for all students, expressed through probabilities of potential responses x given 0. 

Obviously, however, any particular task might be relatively easy compared with other tasks 

for some students but relatively hard for other students, due, perhaps, to the different 

books they have read, courses they have taken, or experiences through which they have 

developed their proficiencies. Such interactions are a source of uncertainty with respect to 

inference about overall proficiency defined in this manner, and more extensive interactions 

further degrade the tasks' weight of evidence about overall proficiency. This is 

appropriately signaled in classical test theory by lower reliability coefficients and in IRT by 

lower slope parameters. From a constructivist perspective, these interactions are fully 

expected, since knowledge typically develops first in context, then is extended and 

decontextualized so that it can be applied across a broader range of contexts. This point of 

view can suggest a different student-model variable, a different target inference, and 

additional conceptual relationships to support that inference—a situation in which more 

extensive interactions can enhance the weight of evidence from task responses, to the extent 

that the differential patterns are expected outcomes of distinctions in a more variegated 

student model space. 

Example 5: Assessing Proficiency in a Foreign Language. Themileposts 

described in the American Council of Teachers of Foreign Languages Reading 

guidelines (ACTFL, 1989), excerpts of which appear in Table 5, are founded on 
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empirical evidence and theories about the development of competence in acquiring 

information from text in a foreign language. Note the contrast between Intermediate 

readers' competence with texts "about which the reader has personal interest or 

knowledge" with Advanced readers' comprehension of "texts which treat unfamiliar 

topics and situation"—a distinction fundamental to the underlying conception of 

developing language proficiency. If we wish to assess students' proficiency in a 

foreign language, we encounter a fork in the road. Suppose, on one hand, the target 

of inference is overall proficiency with respect to a domain of tasks. We can 

predefine successful behavior on each task in the same way for all students regardless 

of their familiarity, administer a sample of tasks to a student, and thereby obtain direct 

evidence about expected behavior in the domain. Suppose, on the other hand, the 

target of inference is level of accomplishment with respect to the ACTFL Guidelines. 

If we know that the context of a given situation is familiar to one student but 

unfamiliar to a second, the same observed behavior from the two students holds 

radically different evidential import about their ACTFL levels. This example shows 

in a simple case how the machinery of probability-based inference can be applied 

when auxiliary information conditions the evidential value of students' performances. 

[[Table 5]] 

Contextual dependencies between situations and individuals can be incorporated 

into a Bayesian inference network by extending the structure beyond nodes that 

characterize the situation only from an "objective" point of view that pertains equally 

to all students. Nodes are introduced that vary across students in accordance with 

their points of view—for example, whether a student is familiar with the topic upon 

which a reading passage is based—and are modeled are additional parents of 

observable responses. Consider the following situation: 

• The single student-model variable 6 has four ACTFL levels, Novice, 

Intermediate, Advanced, and Superior. 

• The observed variable x, a response to a passage based on a particular book, is 

rated in a five-category scale of quality, with levels denoted I, II,..., V. 

• The student is characterized as either familiar or unfamiliar with the book in 

question, indicated by the auxiliary student/context familiarity variable y. 
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Figure 13 illustrates expectations about JC as a function of given values of 6 and 

y, or the flow of deductive reasoning. Note the different expectations when the 

student is and is not familiar with the context. Even students in the Superior category 

rarely perform well when the context is not familiar to them. When the student's 

level of familiarity is not known to an observer, the observer's expectations are a 

mixture of the two familiarity-known conditions, and are consequently much more 

diffuse. (The mixture is weighted by the proportion of students in each category who 

are and are not familiar with the context; this illustration uses a 50-50 split.) Figure 

14 shows the results of inductive reasoning from observing a low, medium, or high 

performance, under the conditions of (1) knowing the student is familiar with the 

context, (2) knowing the student is not familiar, and (3) not knowing whether the 

student is familiar. The task conveys much more evidence about reading competence 

when we know the student is familiar with the context, and very little when she is 

not. This kind of difference gains importance as tasks demand more time from 

students. The in-depth project that provides solid assessment information and a 

meaningful learning experience for the students whose prior knowledge structures it 

dovetails, becomes an unconscionable waste of time for students for whom it has no 

connection. 

[[Figures 13 & 14]] 

If tasks provide so much more information when we know that the student is 

familiar with the context, why don't we always determine familiarity? The answer 

depends on the purpose of assessing and the cost of information to the assessor. 

Assessing a class of 30 fourth-grade students, a teacher can administer tasks related 

to what students have been studying and allow students to choose topics for projects. 

The teacher can generally arrange to observe data that can be interpreted under 

"familiarity=yes" conditions. A national testing program constrained to present the 

same tasks to 30,000 fourth-grade students generally cannot. Unlike a student's 

teacher, a distant observer lacks immediate and detailed information about contextual 

and situational student-by-task interactions. 

Some large-scale surveys gather "opportunity to learn" (OTL) information from 

teachers or students themselves in an attempt to shift inference from the default 

"familiarity=unknown" condition to either the "=yes" or "=no" condition (Platt, 

1975). The good news is that OTL improves estimates of population-level 
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relationships among schooling variables and attainment. The bad news is that OTL 

measures are not sufficiently dependable to be treated as "known with certainty" for 

individual students. Correlations between students' reports on background variables 

and independently verified values range from very low (-.2) to very high (-.9) 

(Koretz, 1992). 

Figure 15 illustrates some consequences of uncertainty about auxiliary variables. 

Suppose that we did not ascertain familiarity directly, but obtained only a student's 

report. Suppose further that students who were truly unfamiliar with a context 

always reported they were unfamiliar, but 15-percent of the students who were truly 

familiar reported they were unfamiliar. The top two DAGs in Figure 15 repeat the 

inferences that follow if we know a student is familiar or is not familiar with the 

context. If a student is truly familiar, incorrectly reports he is unfamiliar, and we 

accept the report as a certain truth, then we mistakenly reason as shown in the top 

right DAG rather than the appropriate top left one. We would substantially 

overestimate his proficiency. The lower DAG adds a new node for the report. Its 

parent is true familiarity, and the conditional probability distribution when 

"familiarity=yes" is .85 for "report=yes" and .15 for "report=no." Conditioning on 

what we actually observe ("Report=yes" and "Task=m") accounts for this degree of 

uncertainty about true familiarity, and moderates the influence of the familiarity to a 

87/13 mixture of "=no" and "=yes" familiarity-known conditions.4 The result is an 

attenuated belief about proficiency that correctly reflects the average proficiency 

distribution among students with scores of IE who report they are unfamiliar with the 

context. However, this distribution tends to understate slightly the proficiencies of 

those who are truly unfamiliar and still overstates substantially the proficiency of 

students who are familiar but report they are not. Depending on unsubstantiated 

reports in this manner would invite abuse in high-stakes "test as contest" applications; 

a student would raise his score by always claiming unfamiliarity whether it were true 

or not, even if the possibility of incorrect reports were accounted for on the average. 

Tradeoffs between the potential value of evidence and the difficulties in 

ascertaining its credibility arise similarly in jurisprudence. American rules of 

evidence strictly limit hearsay testimony, or witnesses' claims about what a third 

party said. If that person isn't present, we can't be sure he made the statement in 

question; even if he did, we can't examine his demeanor when he says it, or cross- 

examine his motives and meanings. Although hearsay testimony can provide 
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important information, it is generally excluded because it can also provide 

misinformation, be it guileless or self-serving, with little means for jurors to assess 

its credibility. In contrast, Swedish courts have far fewer exclusionary rules of 

evidence and generally do admit hearsay evidence.5 The side entering hearsay must 

be prepared in turn support its credibility, however, through evidence and 

argumentation in further layers of catenation, to counter the doubts and counter- 

explanations the opposition advances. One must weigh the probative value of 

hearsay testimony against its requirements for support before deciding to use it.   § 

[Figure 15] 

Abductive Reasoning and Mathematical Probability 

There are perfectly satisfactory answers to all your questions. ...But I don't 

think you understand how little you would learn from them. ... Your 

questions are much more revealing about yourself than my answers would 

be about me. 
The Passenger, Peploe, Wollen, & Antonioni, 1975. 

A Bayesian inference network builds around theory-driven, deductive-reasoning 

structures—likely values of data given states of ultimate interest—in order to support 

subsequent inductive reasoning from realized data to probabilities of states. Yet abductive 

reasoning, apparently missing from the loop, is vital in two ways. First, just as a 

detective's and prosecutor's abductive reasoning provides the framework for the jury's 

inductive reasoning, insightful use of substantive theory is essential to construct the 

network. Secondly, while the network is a tool for reasoning deductively and inductively 

within the posited structure, abduction is required again to reason about the structure—to 

criticize and improve the structure, in response to mismatches between modeled and 

realized patterns. In the framework of mathematical probability, statistical diagnostic tools 

can highlight such anomalies as unexpected observations, departures from modeled 

conditional independences, and failures to capture salient features of data (Rubin, 1984). 

When we can model expected patterns with sufficient accuracy to be surprised when they 

don't occur, we open the door to learning; perhaps leading us to improve the way we 

collect data or to refine our statistical model, or, more profoundly, triggering a 

reconstruction of our conceptual model of the situation: 
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To the extent that measurement and quantitative technique play an especially 

significant role in scientific discovery, they do so precisely because, by 

displaying serious anomaly, they tell scientists when and where to look for 

new qualitative phenomenon. To the nature of that phenomenon, they 

usually provide no clues. 

Kuhn, 1970, p. 205. 

Inferring posterior distributions of parameters or predictive distributions of future 

observations within the framework of a model is analogous to a jury's guilty/not-guilty 

deliberation with respect to the prosecutor's story of the case. The establishment of a 

framework within which reasoning will take place facilitates communication, making 

explicit and public the structure of the argument and its grounding in evidence, and it 

secures credibility by separating the data-gathering and decision-making functions—but at 

the cost of narrowing the channel of what is communicated. Errors arise when the true 

state of affairs cannot be adequately approximated within the proffered framework. It is 

important to remember that the numerical probabilities that result from the use of Bayes 

Theorem (and all the more when embedded in a complex network) depend on the posited 

structure. Only possibilities built into the model can end up with positive probabilities! 

Apparently precise numerical statements of belief prove misleading or downright 

embarrassing when it is later determined that the true state of affairs could not even be 

approximated in the analytic model.6 

Two strategies from the mathematical-probability toolkit help address this problem 

in practice in educational assessment. One approach is to augment theoretically-expected 

unobservable states with one or more "catch-all" states to which increase in probability 

when unexpected patterns arise in observable data. Yamamoto's (1987) HYBRID model 

for item response data includes not only latent classes (such as those described in the 

Example 3 above for proportional reasoning) that are associated with distinctive response 

patterns, but a catch-all class (the "IRT class") that merely characterizes examinees in terms 

of their overall tendency to answer items correctly. When response patterns occur that are 

unlike any of the patterns associated with the latent classes, the posterior probability for the 

catch-all class dominates; in this way, the model can express the fact that evidence may not 

support membership in any of the classes suggested by the associated substantive theory.7 

A second approach is to calculate indices of model misfit (in IRT, for example, Levine & 

Drasgow, 1982). While carrying out inference within a given probabilistic structure to 

update beliefs, indices are calculated to indicate how usual or unusual the observed data are 



Evidence and Inference 

Page 32 

under that structure: If higher-level parameters took their most likely values in accordance 

with the observed datum, how likely would this datum be? Surprising observations are 

flagged, for it is here that actual circumstances may differ most severely from modeled 

circumstances. 

Example 1: AP Studio Art Portfolios, continued. A project can stimulate the 

kind of constructed learning or creative problem-solving thinking we wish to 

promote, yet fail nevertheless as an assessment tool unless we can abstract from the 

performance the critical evidence for the targeted inferences. It is necessary to 

establish a common framework of meaning among students and readers—shared 

standards for recognizing what is valued in performance and how it maps into the 

evaluative structure (Wolf, Bixby, Glenn, & Gardner, 1991). To this end, Carol 

Myford and I (Myford & Mislevy, in press) have been studying the AP portfolio 

rating process from what might be called a "naturalistic" perspective and a "statistical" 

perspective. These two components of the project concern, respectively, the 

Baconian reasoning readers employ to assign ratings to portfolio sections, and 

Pascalian reasoning analyzing patterns among those ratings in a mathematical- 

probability framework—a partitioning in some ways analogous to that between the 

detective's realm and the jury's. 

In the "naturalistic" component, we identified 18 portfolios in the 1992 reading 

with a section that had received highly discrepant ratings from two readers. 

Currently, such occurrences are identified and rectified by a final rating from the chief 

faculty consultant; our motivation for discussing work that evoked discrepant ratings 

will become clear below. We discussed each sections with two experienced readers 

to gain insights into the judging process in general, and into the features that made 

rating these particular portfolios difficult. The Wigmore chart shown above as Figure 

1 above is based on one of these conversations. It would help this particular student 

understand why his Section B submission received the rating it did, and it would help 

other students, teachers, and new readers understand the kinds of evidence, 

inference, arguments, and standards that underlie ratings more generally. However, 

more than 50,000 individual ratings were produced in the reading, and it is simply 

impossible to hold such discussions, let alone produce Wigmore charts, for each of 

them. A summary result for each, in the form of a numerical rating, provides the data 

for the complementary statistical perspective. 
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In the "statistical" component of the project, we used Linacre's (1989) FACETS 

model, a main-effects model for the log-odds of adjacent rating categories, to analyze 

patterns in the more than. While IRT was invented to model regularities in 

examinees' overt behavior in common contexts considered invariant over people, 

FACETS uses similar mathematical structures to model regularities in readers' 

application of common standards to possibly quite different forms of evidence in 

different contexts from diffierent students. How the student whose concentration 

was "angularity in ceramics" would fare in a domain defined by all possible 

concentration topics is not an inference of interest; the consistency with which 

different readers would map her particular accomplishments in "angularity in 

ceramics" into the common evaluative framework is. The data for each student were 

13 scores on 0-to-4 scales, 3 from different readers on Section A (Quality), 2 from 

other readers on Section B (Concentration), and a total of 8 from each of two other 

readers on the four subsections of Section C (Breadth). The probability of a rating in 

category k on Scale h for a student with parameter 6 from Reader/ is modeled as 

exp 
•'=1 

K 

;xp 'sh 

KJM=    K
L r ^r (6) 

The numerator is understood to be 1 for Rating Category 0; 6 is a parameter for the 

portfolio, indicating a tendency over readers and sections to receive high or low 
ratings; £. is the "harshness" parameter associated with Reader j; r\h is an "easiness" 

parameter for Section h; and %, for fc=l,... ,K, is a parameter indicating the relative 

probability of a rating in Category k as opposed to Category k-\ for the scale of 

Section h. Figure 16 graphs probabilities of response in each category of a 0-4 

performance task as a function of 6. Figure 17 is a simplified version of the DAG for 

inference under this model. 

[[Figures 16 and 17]] 

The posterior distribution of the portfolio parameter, 6, summarizes the weight 

and direction of evidence provided by the 15 elemental ratings. Main effects of 
readers as to harshness or leniency are taken into account through £;. 's, as are the 

average difficulties of the sections through 77/s. Figure 18 shows pairs of draws 

from the posterior distributions of the 0's of the 1992 portfolios, the spread away 
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from the diagonal indicating the degree of uncertainty associated with the current 

configuration of readings. It is also possible to project through the model what the 

posterior precision of a portfolio parameter would be under different configurations 

of readings; say, one rating per section from different readers, two ratings for 

Sections A and B from the same two readers and two for Section C from two 

different readers, and so on (as in Cronbach, Gleser, Nanda, & Rajaratnam, 1972). 

This "pre-posterior" analysis is a tool for allocating a scarce resource (the expert 

readers' time) efficiently, as is done in adaptive testing with IRT. 

[[Figure 18]] 

While systematic reader effects can be taken into account, readers-by-portfolio 

interactions cannot be when, as in AP Studio Art, a reader rates a section only once; 

they therefore contribute uncertainty to the composite score. To what degree are these 

interactions caused by fatigue, by ambiguous directions to students or readers, by 

strongly idiosyncratic points of view, or different ways of integrating disparate 

aspects of accomplishment in the works within portfolio sections? Patterns of 

variation can be detected and quantified by statistical analyses, but the numbers 

cannot in and of themselves tell us how to improve reader training, sharpen the 

definition of standards, or distinguish aspects of accomplishment that should be rated 

separately. Since no one individual can become intimately familiar with all 50,000 

rating processes, FACETS highlights particular reader/portfolio combinations that are 

especially unusual in light of the main effects, to help focus attention where it is most 

needed. 

Statistical identification of outliers tells us where to look, but not what to look 

for. These cases are unusual precisely because the causes of variation we already 

understand do not explain them. Further insight requires information outside the 

statistical framework, to seek new hypotheses for previously unrecognized factors. 

When a discrepancy arises, how would Wigmore charts summarizing the abductive 

reasoning of two readers differ? Would one show themes the other missed, due 

perhaps to specialized knowledge about the glazes the student used? Or would 

similar themes appear, but with conflicting aspects integrated in accordance with 

differing priorities? Such analyses, as occurred informally in our discussions, can 

reveal opportunities to improve the evaluation system. Several avenues for possible 

exploration emerged in our project, including the development of verbal rubrics, 



Evidence and Inference 

Page 35 

particularly as a learning tool for new readers; having students write statements for 

the color and design sections, as for concentrations, to help readers understand the 

self-defined challenges the students were attacking; and refining directives and 

providing additional examples for Section B to clarify to both students and readers the 

interplay between the written and productive aspects of a concentration. 

By working back and forth between statistical and naturalistic analyses, a 

common framework of meaning can be established, monitored, and refined over 

time. Readers' abductive reasoning from an open universe of possible student work 

leads to numerical ratings, through processes that can be made public through 

discussions, publications, or Wigmore charts concerning a range of representative 

examples. Once ratings have been obtained, statistical analysis can characterize 

evidence for inductive reasoning about typical cases within the system, and help 

identify atypical cases to trigger further abductive reasoning about the system itself. 

Mathematical tools originally developed under the mental measurement paradigm can 

thus be adapted to support inference in an assessment cast under a constructivist 

paradigm. By making public the materials and results of such a process, one 

communicate the meaning and value of the work such assessments engender, and of 

the quality of the processes by which evidence about students' competence is 

inferred. § 

Conclusion 

1.   There is a close relation between the Science [of inference] and the Trial 

Rules [i.e., rules of evidence] - analogous to the relation between the 

scientific principles of nutrition and digestion and the rules of diet as 

empirically discovered and practiced by intelligent families. 

2. The Trial Rules are, in a broad sense, founded upon the Science; but 

that the practical conditions of trials bring into play certain limiting 

considerations not found in the laboratory pursuit of the Science, and 

therefore the Rules do not and cannot always coincide with the 

principles of the Science. 

3.   That for this reason the principles of the Science, as a whole, cannot be 

expected to replace the Trial Rules; the Rules having their own right to 

exist independently. 
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4.  But that, for the same reason, the principles of the Science may at 

certain points confirm the wisdom of the Trial Rules, and may at other 

points demonstrate the unwisdom of the Rules. 

Wigmore, 1937, p. 925. 

Wigmore concluded that there are indeed general principles to guide and analyze 

evidentiary reasoning, but they alone are insufficient for the full range of issues of evidence 

and inference that arise in jurisprudence. To begin with, questions of what constitutes 

evidence cannot even be framed without conceptions of the nature of people and the nature 

of justice. Within a conceptual framework, determining whether and how to gather, admit, 

and evaluate data must weigh its evidential value against such considerations as the 

following: its tendencies to mislead jurors (e.g., hearsay testimony); costs of obtaining and 

supporting it (as this is written, genetic testing is potentially valuable, but often contentious 

and certainly expensive); and its feedback effects on the system (the Fifth Amendment 

protections against self-incrimination forgo highly relevant data, in order to discourage 

coerced confessions). Every general rule of evidence and every specific procedural 

decision must take such factors into account, but it should not, Wigmore argued, take them 

alone into account. Our chances of devising legal structures that strike appropriate balances 

among costs, rights, and correctness must surely increase as we more fully understand the 

implications of the tradeoffs we face. This includes, particularly and importantly, 

improving our understanding of the relationships between evidence and inference. 

Educational assessment likewise takes place in social, political, theoretical, and 

personal contexts. Who collects and uses assessment data, for what purpose, at what 

costs, under what conception of competence, and with what feedback effects on curriculum 

and instruction? All of these issues impact assessment forms and practices—necessarily 

so, properly so. Yet assessment forms and practices, like rules of evidence, impact just as 

surely the weight and coverage of evidence that assessment data convey for the inferences 

and decisions they are meant to support. Apprehending the evidential value of assessment 

data requires (1) defining what we wish to accomplish, or our purposes for assessing; (2) 

specifying what we need to find out about students to achieve our purposes; and (3) 

constructing a principled framework in which we can evaluate and improve our efforts. As 

a general framework for reasoning in the presence of uncertainty, the paradigm of 

mathematical probability provides tools and concepts to further this end. 
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Notes 

1 Conditional independence also plays a key role in justifying the use of mathematical 

probability-based reasoning for real-world problems. The layman unfamiliar with 

probability and statistics, other than through informal notions about random sampling and 

large samples, might question whether mathematical probability has anything to do with 

real-world observations that are governed by disparate mechanisms and may be linked with 

one another in unknown ways (e.g., prospective test scores of students about whom we 

know nothing other than that each surely brings a unique personality and history to the 

tasks, aspects of which are similar to certain other students in some ways but not in other 

ways). Even if we admit the possibility, indeed the inevitability, of such differences 

among the antecedents of potential observations, yet at a given point in time have no 

information to distinguish among them a priori, then these observations are "exchangeable" 

from our point of view. That is, our subjective probability distribution for their scores 

would be the same under any permutation of the variables. Even if the mechanism by 

which values are produced is nothing like random, de Finetti's Theorem (de Finetti, 1974) 

says the distribution of finite subsets of an infinite sequence of exchangeable variables can 

be expressed as the expectation, over a mixing distribution, of conditionally independent 

and identically distributed (iid) variables. Diaconis and Freedman (1980) show further that 

conditionally iid representations can be used to approximate subsets of finite sets of 

exchangeable variables, with increasing fidelity for larger sets. Thus, the use of 

mathematical probability need not be justified by the manner in which values of variables 

arise, but by our state of knowledge about them. Of course if we learn more about 

influences and mechanisms that produce values of variables, we can improve our model of 

the situation. Variables that were exchangeable in light of previous knowledge need not be 

later. The interested is referred to Lindley and Novick (1981) for an exploration of the role 

of exchangeability vis a vis random sampling and populations in connection with inference 

in experimental and non-experimental settings. 

2 This model assumes that the five exhaustive and mutually exclusive states. Alternative 

models could be used to relax these restrictions. The section on abductive reasoning 

discusses the role of detecting unexpected response patterns for tempering inference in 

specific cases, and for gaining insights on how to refine or revise a provisional model. 
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3 Duanli Yan and I have also estimated conditional probabilities in this network with the 

EM algorithm, and are currently working on Gibbs sampling characterizations of such 

networks. 

4 The relevant probabilities, now interpreted as the likehihood function, are 

p(report=nolfamiliarity=no)=1.00 and p(report=nolfamiliarity=yes)=.15, a ratio of 87/13 

favoring familiarity=no. 

5 The Swedish system is closer to Bentham's ideal of "free proof proceedings. "To find 

infallible rules for evidence, rules which insure a just decision is, from the nature of things, 

absolutely impossible; but the human mind is too apt to establish rules which only increase 

the probabilities of a bad decision. All the service that an impartial investigator of the truth 

can perform in this respect is, to put legislators and judges on their guard against such 

hasty rules" (Bentham, 1825, p. 180). 

6 The House Select Committee on Assassinations assigned a 95% probability to the 

proposition that four shots were fired in the John Kennedy assassination, based on a 

dictabelt recording of sounds believed to have been recorded from a microphone on a police 

motorcycle in Dealy Plaza at the time of the incident. The sound patterns consituting the 

evidence, assumed to be echo impulses of shots during the six critical seconds, did in fact 

provide a much better match to experimentally-produced patterns for four shots than any 

other number of shots. But rock drummer Steve Barber discovered, faintly recorded on the 

dictabelt in the same time interval, words known to be spoken by Sheriff Bill Decker more 

than a minute after the assassination (Posner, 1993)—an observation that obviated any 

relationship between the putative echo impulses and the actual number of shots. The lesson 

is that the utility of numerical probabilities calculated within a posited inferential structure 

depends on the structure's fidelity to the real-world situation in question. 

7 Dempster-Shafer belief theory (Shafer, 1976) extends Bayesian inference in a manner that 

can also withhold support from all or some possibilities without having to assign support to 

other possibilities. 
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Table 1 

Conditional Probabilities of Correct Response in IRT Example 

Item Parameter (ß) 

Student Parameter (ff) -1 0 1 

-1.5 .378 .182 .076 

-.5 .622 .378 .182 

.5 .818 .622 .378 

1.5 .924 .818 .622 



Table 2 
* 

Successive Rules Children are Posited to Acquire as Proportional Reasoning Develops 

Rule I: If the weights on both sides are equal, the beam will balance. 

If they are not equal, the side with the heavier weight will go 

down. 

Weight is the "dominant dimension" in this domain of tasks, because 

children are generally aware that weight is important in the problem earlier 

than they realize that distance from the fulcrum, the "subordinate 

dimension," also matters. 

Rule II: If the weights and distances on both sides are equal, then the 

beam will balance.   If the weights are equal but the distances 

are not, the side with the longer distance will go down. 

Otherwise, the side with the heavier weight will go down. 

A child using this rule uses the subordinate dimension only when 

information from the dominant dimension is equivocal. 

Rule HI: Same as Rule II, except that if the values of both weight and 

distance are unequal on both sides, the child will "muddle 

through" (Siegler, 1981, p.6). 

A child using this rule now knows that both dimensions matter, but doesn't 

know just how they combine. 

Rule TV: Combine weights and distances correctly (i.e., compare torques, or 

products of weights and distances). 

These rules are based on Seigler's (1981) presentation. Stage x signifies being 
apply to apply all rules up through and including Rule x. 



Table 3 

Theoretical Conditional Probabilities of Correct Response in Balance Beam Example 

Task Type 

Stage E D S CD cs CE 

0 .333 .333 .333 .333 .333 .333 

I 1.000 1.000 .000 1.000 .000 .000 

II 1.000 1.000 1.000 1.000 .000 .000 

m 1.000 1.000 1.000 .333 .333 .333 

IV 1.000 1.000 1.000 1.000 1.000 1.000 



Table 4 

Estimated Conditional Probabilities of Correct Response in Balance Beam Example 

Task Type 

Stage E D S CD CS CE 

0 .333* .333* .333* .333* .333* .333* 

I .973 .973 .026 .973 .026 .026 

n - .883 .883 .883 .883 .116 .116 

in .981 .981 .981 .333* .333* .333* 

IV .943 .943 .943 .943 .943 .943 

Denotes fixed value for estimation. Note also that true-positive and false-positive 

probabilities within a given stage are constrained to be equal across task types, to 

ensure that the latent class model is identified. 



Table 5 

Excerpts from the ACTFL Proficiency Guidelines for Reading* 

Level Generic Description 

Novice-Low Able occasionally to identify isolated words and/or major phrases 
when strongly supported by context. 

Intermediate-Mid Able to read consistently with increased understanding simple 
connected texts dealing with a variety of basic and social needs.... 
They impart basic information about which the reader has to make 
minimal suppositions and to which the reader brings 
personal information and/or knowledge.   Examples may 
include short, straightforward descriptions of persons, places, and 
things, written for a wide audience, [emphasis added] 

Advanced 

Advanced-Plus 

Superior 

Able to read somewhat longer prose of several paragraphs in 
length, particularly if presented with a clear underlying structure. 
... Comprehension derives not only from situational and 
subject matter knowledge but from increasing control of 
the language. Texts at this level include descriptions and 
narrations such as simple short stories, news items, bibliographical 
information, social notices, personal correspondence, routinized 
business letters, and simple technical material written for the 
general reader, [emphasis added] 

.. .Able to understand parts of texts which are conceptually abstract 
and linguistically complex, and/or texts which treat unfamiliar 
topics and situations, as well as some texts which involve 
aspects of target-language culture. Able to comprehend the facts to 
make appropriate inferences. ... [emphasis added] 

Able to read with almost complete comprehension and at normal 
speed expository prose on unfamiliar subjects and a variety of 
literary texts. Reading ability is not dependent on subject matter 
knowledge, although the reader is not expected to comprehend 
thoroughly texts which are highly dependent on the knowledge of 
the target culture.... At the superior level the reader can match 
strategies, top-down or bottom-up, which are most appropriate to 
the text....   

* Based on the ACTFL proficiency guidelines, American Council on the Training of 

Foreign Languages (1989). 
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+: Corroborating evidence 
-: Mitigating factor 

Key List 

1 I agree [with Walter about putting it in the high range-specifically, a rating of 3] 

2 .. .if you read the statement, there's a genuine focus on ideation. 
3 [We see] a person who has done some, at least been directed to, or has independently gone out and looked at, quite a 

bit of art that's not easy to ingest and not easy to come to grips with. 
4 [The student relates his concentration to the work of Lucas Samaras and Jasper Johns] 
5 [We see] the student's involvement as he's working, responding as he's working through the thing. 
6 It's pretty obvious that when he's using the material, he really responds to it. He's not just simply opting to do 

something with the material and then just letting that stay in that point. He does something and seems to maybe 
see beyond that and through it and say, "Hey, I can do this to it now." 

7 I think particularly in the use of the wire [he responds to the material]. 
8 I think that finding the focus is very strong. He's very much right on track with what he says he's doing. 

9 [The pattern of pieces shows development/learning over the course of the work] 

10 .. .the beginning elements-trie first four of these [would be rated lower]. 
11 One has to realize, though, I think in the production of art-I think we discussed this some earlier today-about that 

you're going to have moments where things just don't work. 
12 He arranged [the slides] so we would be able to see how he may have evolved through the process. 
13 [The later work is] almost unbelievably better than the first works that you see up there... the transformation that 

has occurred on the part of the student is the kind of growth that you would like to see take place in a concentration, 
rather than being slavish to an idea. 

14 ... something [interesting] is down here [in the later work]. 

15 [Good, though not excellent, use of materials and formal elements] 

16 The only problem that may exist with this is the somewhat looseness of the work 
17 It seems to be not as controlled in the sense of skillfully manipulating the materials, in the sense that we 

traditionally think of it, like if you're directed more toward quote "realistic" work. 

18 But I don't have a problem with this [looseness]. 
19 I find [the looseness] to be very exciting. It's almost kind of, I hate to use the word, but gutsy. The person is 

obviously one who is very well equipped to taking risks. He's not afraid to really jump into something and really 
try something rather extraordinary. And I find it to be quite interesting. 

20 [There are many close-ups in the submission] 
21 There may be some problem maybe in the fact that there are so many close-ups of the work, 
22 but I find [the close-ups] to be a way of clarifying to some degree what he's really about in each individual part of the 

whole unit. 
Figure 1 

Wigmore Chart for Rating an AP Studio Art Concentration Submission 



1.0 

0.8 |  ß-JX] j\    >^ - 

ib
ab

ili
ty

 
o

 
as

 1 /\^A\ yC 

£ 0.4 A /\^A\ 
0.2 ~    .^^       .^^       .J^ 

-1.5 -0.5 0.5 

0 

1.5 

Figure 2 
Probability of a Correct Response, Conditional on 0, for Items with ß = -1, =0, and =1 



Figure 3 

Directed Acyclic Graph for the IRT Example 
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Nodes represent variables; bars represent probabilities of potent values of a 

variable, summing to one, with a dashed bar to one representing certainty. 

Figure 4 

Probabilities of Item Responses, Given Student Proficiency. 



Item Type        Sample Description 

E wj* 
Equal problems (E), with matching 
weights and distances on both sides. 

D ALU 
"* 

Dominant problems (D), with unequal 
weights but equal distances. 

CD 

CS 

6IH I* 

Mil A i 

iULB 
I A 

Subordinate problems (S), with unequal 
distances but equal weights. 

Conflict-dominant problems (CD), in 
which one side has greater weight, the other has 
greater distance, and the side with the heavier 
weight will go down. 

Conflict-subordinate problems (CS), in 
which one side has greater weight, the other has 
greater distance, and the side with the greater 
distance will go down. 

CE JMUM 
Conflict-equal problems (CE), in which one 
side has greater weight, the other has greater 
distance, and the beam will balance. 

Figure 5 

Basic Types of Balance Beam Tasks 
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More Complete Directed Acyclic Graph for the IRT Example 
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Figure 9 

Directed Acyclic Graph for Method B 
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Figure 10 

Inference Network for Method B, Initial Status 
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Figure 11 

Inference Network for Method B, After Observing Item Responses 
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Directed Acyclic Graph for Both Methods 
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Expected distribution of extended-task response categories from a Novice Reader, for a text 
known to be familiar, a text known to be unfamiliar, and a text of unknown familiarity. 
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Expected distribution of extended-task response categories from an Intermediate Reader, for a 
text known to be familiar, a text known to be unfamiliar, and a text of unknown familiarity. 
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text known to be familiar, a text known to be unfamiliar, and a text of unknown familiarity. 
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Expected distribution of extended-task response categories from a Superior Reader, for a 
text known to be familiar, a text known to be unfamiliar, and a text of unknown familiarity. 

Figure 13 

Probabilities of Task Response Categories, Conditional on Student 

Competence and Familiarity with Text. 
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Figure 14 
Posterior Probabilities for Student Proficiency After Observing Task Response, under 

Various States of Knowledge about Task Familiarity 
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Figure 15 

Implications of a Level El Response, with Reported Familiarity = "No" 
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Figure 16 

Probability of a Response in Categories as a Function of 6, for a Task 
with 77=0, a Reader with £=0, and r=(l,.5,-.5,-2) 
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Figure 17 

Directed Acyclic Graph for the AP Studio Art Example 
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Figure 18 

Two Draws from the Posterior Distributions of Portfolio Parameters 
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