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Generic Package of Primitive Functions (GPPF) for Ada 

Description 

The proposed standard for the Generic Package of Primitive Functions (GPPF) for Ada represents the work of 
a large number of people in both the United States and Europe who have collaborated to develop specifications 
for packages of Ada mathematical functions. This development has been difficult and lengthy. The exceptional 
dedication and perseverance of these people have resulted in the completed specifications for two pack- 
ages—GPPF, and the Generic Package of Elementary Functions (GPEF) for Ada. 

GPPF is the specification for primitive functions and procedures for manipulating the fraction part and exponent 
part of machine numbers of the generic floating-point type. Additional functions are provided for directed 
rounding to a nearby integer, for computing an exact remainder, for determining the immediate neighbors of a 
floating-point machine number, for transferring the sign from one floating-point machine number to another, and 
for shortening a floating-point machine number to a specified number of leading radix digits. 

Background 

The Ada-Europe Numerics Working Group (A-ENWG) was formed in 1984 about the same time that an early 
study proposing standard mathematical packages in Ada was undertaken by Symm and Kok. In 1986, the 
Numerics Working Group (NUMWG) of the Association of Computing Machinery's Special Interest Group on 
Ada (ACM SIGAda) was formed, and has met every few months since. During the 1980s, members of A-ENWG 
met on a regular basis with the NUMWG so that close cooperation was achieved on developing specifications 
that were joint effort of both groups. The A-ENWG has not met for some three years, but the NUMWG continues 
informal liaison with key European Ada individuals on continuing work. 

Current Status of Standardization 

The proposed standards for GPEF and GPPF have been adopted by the Numerics Rapporteur Group (NRG), a 
subcommittee of Working Group 9 (Ada) of Subcommittee 22 of Joint Technical Committee 1 of the Interna- 
tional Organization for Standardization-International Electrotechnical Commission (ISO-IEC JTC1/SC22/ 
WG9 (Ada). WG9 has approved both proposed standards and has forwarded them to SC22 for voting. GPEF 
has been accepted as Draft International Standard (DIS) 11430 and GPPF has been approved as DIS 11729. The 
completion of editorial formatting of both documents for final publication as international standards is expected 
this year. 

Gilbert Myers 
Chair, ACM SIGAda NUMWG, ISO NRG 
May 10, 1994 
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This document defines the specification of a generic package of primitive functions and procedures called 
GENERIC_PRIMITIVE_FUKCTIONS. It does not define the body. 

Working closely with the Ada-Europe Numerics Working Group, the ACM SIGAda Numerics Working Group 
has prepared this document for submission to the ISO-IEC/JTC1/SC22/WG9 (Ada) Numerics Rapporteur Group 
as a proposed standard. It is intended to provide primitive operations required to endow mathematical software, 
such as implementations of the elementary functions, with the qualities of accuracy, efficiency, and portability. 
With this standard, such mathematical software can achieve all of these qualities simultaneously; without it, one 
or more of them typically must be sacrificed. 

The generic package specification included in this document is presented as compilable Ada and is followed 
by explanatory text in numbered sections. The explanatory text is an integral part of the standard, with the 
exception of the following items: 

(1) in Section 8, notes (under the heading Notes associated with some of the subprograms); and 
(2) examples and notes (labeled as such) presented at the end of any numbered section. 

As used in this document, "must" and "shall" both express a requirement; "may" expresses permission; 
"should" expresses a recommendation; and "can," "might," and "could" all express possibility. In formulas, |vj 
and \v\ mean the greatest integer less than or equal to v, and the least integer greater than or equal to v, 
respectively, and other notations have their customary meaning. 

This proposal was prepared under the leadership of G. Myers with contributions by the following individuals, 
listed in alphabetical order A. Adamson, J.-M. Chebat, W. J. Cody, P. M. Cohen, S. G. Cohen, T. J. Dekker, 
R. B. K. Dewar, K. W. Dritz, B. Ford, J. B. Goodenough, G. S. Hodgson, J. Kok, R. F. Mathis, T. G. Mattson, 
B. T. Smith, J. S. Squire, P. T. P. Tang, W. A. Whitaker, and D. T. Winter. Many others contributed through 
international meetings and electronic mail reviews. Organizations lending support to this effort were the Naval 
Ocean Systems Center, Argonne National Laboratory, Westinghouse Electric Corporation, Numerical Algorithms 
Group, Centrum voor Wiskunde en Informatica, Software Productivity Consortium, Contel, Martin Marietta, the 
Software Engineering Institute (Carnegie Mellon University), Quantitative Technology Corporation, Alsys, the 
Courant Institute of Mathematical Sciences (New York University), University of Amsterdam, and IBM. 
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generic 
type FLOATJTYPE   is digits <>; 

type EXPONENT JTYPE is range <>; 

package GENERIC_PRIMITIVE_FUNCTIONS is 

function EXPONENT 
function FRACTION 

procedure DECOMPOSE 

function COMPOSE 

function SCALE 

function FLOOR 
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function    COPY_SIGN (VALUE, SIGN 
function    LEADING_PART (X 

RADIX.DIGITS 

FLOAT_TYPE) return EXPONENTJTYPE; 
FLOAT_TYPE)        return FLOAT_TYPE      ; 
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out FLOATJTYPE; 
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end GENERIC_PRIMITIVE_FUNCTIONS; 



1. Purpose 

This generic package contains primitive functions and procedures for manipulating the fraction part and 
the exponent part of machine numbers (cf. Section 5) of the generic floating-point type. Additional functions 
are provided for directed rounding to a nearby integer, for computing an exact remainder, for determining the 
immediate neighbors of a floating-point machine number, for transferring the sign from one floating-point machine 
number to another, and for shortening a floating-point machine number to a specified number of leading radix-digits. 
Some subprograms are redundant in that they are combinations of other subprograms. This is intentional so that 
convenient calls and fast execution can be provided to the user. 

These subprograms are intended to augment standard Ada operations and to be useful in portably implementing 
such packages as those providing real and complex elementary functions, where (for example) the steps of argument 
reduction and result construction demand fast, error-free scaling and remaindering operations. 

2. Subprograms provided 

The following fifteen subprograms are provided: 

EXPONENT FRACTION DECOMPOSE COMPOSE SCALE 

FLOOR CEILING ROUND TRUNCATE REMAINDER 

ADJACENT SUCCESSOR PREDECESSOR 
COPY_SIGN LEADING.PART 

The EXPONENT and FRACTION functions, and the DECOMPOSE procedure, decompose a floating-point machine number 
into its constituent parts, whereas the COMPOSE function constructs a floating-point machine number from those 
parts. The SCALE function scales a floating-point machine number accurately by a power of the hardware radix. The 
FLOOR, CEILING, ROUND, and TRUNCATE functions all yield an integer value (in floating-point format) "near" the 
given floating-point argument, using distinct methods of rounding. The REMAINDER function provides an accurate 
remainder for floating-point operands, using the semantics of the IEEE REM operation. The ADJACENT, SUCCESSOR, 
and PREDECESSOR functions yield floating-point machine numbers in the immediate vicinity of other floating-point 
machine numbers. The COPY_SIGN function transfers the sign of one floating-point machine number to another. 
The LEADING.PART function retains only the specified number of high-order radix-digits of a floating-point number, 
effectively replacing the remaining (low-order) radix-digits by zeros. 

3. Instantiations 

This standard describes a generic package which the user must instantiate to obtain a package. The generic 
package has two generic formal parameters: a generic formal type named FLOAT_TYPE and a generic formal type 
named EXPONENT_TYPE. At instantiation, the user must specify a floating-point type or subtype as the generic 
actual parameter to be associated with FLOAT.TYPE, and an integer type or subtype as the generic actual parameter 
to be associated with EXPONENT.TYPE. These are referred to below as the "generic actual types." These types are 
used as the parameter and, where applicable, the result types of the subprograms contained in the generic package. 

Depending on the implementation, the user may or may not be allowed to associate, with FLOAT_TYPE, a 
generic actual type having a range constraint (cf. Section 4). If allowed, such a range constraint will have the 
usual effect of causing CONSTRAINT.ERROR to be raised when a floating-point argument outside the user's range is 
passed in a call to one of the subprograms, or when one of the subprograms attempts to return a floating-point value 
(either as a function result or as a formal parameter of mode out) outside the user's range. Allowing the generic 
actual type associated with FLOAT_TYPE to have a range constraint also has some implications for implementors. 

The user is allowed to associate any integer-type generic actual type with EXPONENT_TYPE. However, 
insufficient range in the generic actual type will have the usual effect of causing C0NSTRAINT_ERR0R to be raised 



when an integer-type argument outside the user's range is passed in a call to one of the subprograms, or when one 
of the subprograms attempts to return an integer-type value (either as a function result or as a formal parameter of 
mode out) outside the user's range. Further considerations are discussed in Section 4. 

In addition to the body of the generic package itself, implementors may provide (non-generic) library 
packages that can be used just like instantiations of the generic package for the predefined floating-point 

types (in combination with INTEGER for EXPONENT.TYPE). The name of a package serving as a replacement 
for an instantiation of GENERIC_PRIMITIVE_FUKCTIONS in which FLOAT_TYPE is equated with FLOAT (and 
EXPONENT.TYPE with INTEGER) should be PRIMITIVE_FUNCTIONS; for LONG.FLOAT and SH0RT_FL0AT, the 
names should be LONG_PRIMITIVE_FUNCTIONS and SHORT_PRIMITIVE_FUNCTIONS, respectively; etc. When 
such a package is used in an application in lieu of an instantiation of GENERIC_PRIMITIVE_FUNCTIONS, it 
must have the semantics implied by this standard for an instantiation of the generic package. This standard 
does not prescribe names for implementor-supplied non-generic library packages serving as pre-instantiations of 
GENERIC_PRIHITIVE_FUNCTIONS for EXPONENT_TYPEs other than INTEGER. 

4. Implementations 
For the most part, the results specified for the subprograms in Section 8 do not permit the kinds of 

approximations allowed by Ada's model of floating-point arithmetic. For this reason, portable implementations 
of the body of GENERIC_PRIMITIVE_FUNCTIONS are not believed to be possible. An implementation of the 
standard in Ada may use pragma INTERFACE or other pragmas, unchecked conversion, machine-code insertions, 
representation clauses, or other machine-dependent techniques as desired. 

An implementor is assumed to have knowledge of the underlying hardware environment and is expected 
to utilize that knowledge to produce the exact results (or, in a few cases, highly constrained approximations) 
specified by this standard; for example, implementations may directly manipulate the exponent field and fraction 
field of floating-point numbers. 

An implementation is allowed to impose a restriction that the generic actual type associated with FLOAT_TYPE 
must not have a range constraint that reduces the range of allowable values. If it does impose this restriction, then 
the restriction must be documented, and the effects of violating the restriction must be one of the foUowing: 

(1) Compilation of a unit containing an instantiation of GENERIC_PRIMITIVE_FUNCTIONS is rejected. 

(2) COHSTRAINT_ERR0R or PROGRAM_ERR0R is raised during  the elaboration  of an  instantiation of 
GENERIC_PRIMITIVE_FUNCTIONS. 

Conversely, if an implementation does not impose the restriction, then it must not aUow such a range constraint, 
when included with the user's actual type, to interfere with the internal computations of the subprograms; that is, 
if the floating-point argument and result are within the range of the type, then the implementation must return the 
result and must not raise an exception (such as CONSTRAINT.ERROR). 

An implementation must not allow insufficient range in the user's generic actual type associated with 
EXPOSENT_TYPE to interfere with the internal computations of a subprogram when the range is sufficient to 
accommodate the integer-type arguments and integer-type results of the subprogram. 

An implementation must function properly in a tasking environment. Apart from the obvious restriction 
that an implementation of GENERIC_PRIMITIVE_FUKCTIONS must avoid declaring variables that are global to the 
subprograms, no special constraints are imposed on implementations. Nothing in this standard requires the use 
of such global variables. 

Some hardware and their accompanying Ada implementations have the capability of representing 
and discriminating between positively and negatively signed zeros as a means, e.g., of preserving the 
sign of an infinitesimal quantity that has underflowed to zero. This standard allows implementations of 
GENERIC_PRIMITIVE_FUKCTIONS to exploit that capability, when available, in appropriate ways. At the same 
time, it accommodates implementations in which that capability is unavailable. Because a definition of what 
comprises the capability of representing and distinguishing signed zeros is beyond the scope of this standard, 



implementations are allowed the freedom not to exploit the capability, even when it is available. This standard 
accommodates the various choices allowed to implementations by, e.g., defining the results of COPY.SIGH to be an 
implementation dependent choice between two values when its SIGN argument is zero. An implementation must 
exercise its choice consistently, either exploiting signed-zero behavior everywhere or nowhere in this package. In 
addition, an implementation must document its behavior with respect to signed zeros. 

Note: 

It is intended that implementations of FLOOR, CEILING, ROUND, and TRUNCATE determine the result without 
an intermediate conversion to an integer type, which might raise an exception. 

5. Machine numbers and storable machine numbers 

In the broad sense, a floating-point "machine number" of type FLOAT_TYPE is any number that can arise 
in the course of computing with operands and operations of that type. The set of such numbers depends on the 
implementation of Ada. Some implementations hold intermediate results in extended registers having a longer 
fraction part and/or wider exponent range than the storage cells that hold the values of variables. Thus, in the broad 
sense, there can be two or more different representations of floating-point machine numbers of type FLOAT_TYPE. 

One such representation is that of the set of "storable" floating-point machine numbers. This representation is 
assumed to be the one characterized by the representation attributes of FLOAT_TYPE—for example (and in particular), 
FLOAT_TYPE'MACHINE_MANTISSA, FLOAT_TYPE' BASE' FIRST, and FLOAT_TYPE' BASE' LAST. The significance of 
the storable floating-point machine numbers is that they can be assumed to be propagated by assignment, parameter 
association, and function returns; because of the limited lifetime of values held in extended registers, there is no 
guarantee that a floating-point machine number outside this subset, once generated, can be so propagated. 

The machine numbers referred to subsequently in this document are to be understood to be storable floating- 
point machine numbers. An implementation of GENERIC_PRIMITIVE_FUNCTIONS is thus entitled to assume that 
the arguments of all of its subprograms are always storable floating-point machine numbers; furthermore, to 
support this standard, an implementation of Ada must guarantee that only storable floating-point machine numbers 
are received as arguments by these subprograms. Without the assumption and the restriction, the exact results 
specified by this standard would be unrealistic (because, for example, they would imply that extra-precise results 
must be delivered when extra-precise arguments are received), and those specified for ADJACENT, SUCCESSOR, and 
PREDECESSOR would not even be well-defined. 

The storability of a subprogram's arguments does not always guarantee that the desired mathematical result is 
representable as a storable floating-point machine number. In the few subprograms where the desired mathematical 
result can sometimes be unrepresentable, the actual result is permitted to be a specified approximation of the 
mathematical result, or it is omitted and replaced by the raising of an exception (cf. Section 7). 

The term "neighboring machine number" is used in two contexts in this standard. 

(1) When a desired mathematical result a is not representable but lies within the range of machine numbers, 
it necessarily falls between two adjacent machine numbers, the one immediately above and the one 
immediately below; those two numbers are referred to as the "machine numbers neighboring a." 

(2) Every machine number X except the most positive (FLOAT.TYPE"BASE'LAST) has a nearest neighbor 
in the positive direction, and every one except the most negative (FLOAT_TYPE' BASE * FIRST) has a 
nearest neighbor in the negative direction; each is referred to as the "machine number neighboring X" 
in the given direction. 

In both cases, the identity of the neighboring machine numbers is uniquely (if here only informally) determined 
by the fact that the set of machine numbers is understood to be the set of storable machine numbers (having 
FLOAT_TYPE'MACHINE_MANTISSAradix-digits in the fractional part of their canonical form) and is totally ordered. 



6. Denormalized numbers 

On machines fully or partially obeying IEEE arithmetic, the denormalized numbers are included in the set of 
machine numbers if the implementation of Ada uses the hardware in such a way that they can arise from normal 

Ada arithmetic operations (such implementations are said in this standard to "recognize denormalized numbers"); 

otherwise, they are not. Whether an implementation recognizes denormalized numbers determines whether the 
results of some subprograms, for particular arguments, are exact or approximate; it is also taken into account in 
determining the results that can be produced by the ADJACENT, SUCCESSOR, and PREDECESSOR functions. 

As used in this standard, a nonzero quantity a is said to be "in the denormalized range" when 
ja| < FLOAT_TYPE'MACHINE_RADIX**(FLOAT_TYPE'MACHINE_EMIN-l); the term "canonical form of a floating- 
point number" is taken from the Ada Reference Manual, but its applicability is here extended to denormalized 
numbers by allowing the leading digit of the fractional part to be zero when the exponent part is equal to 
FLOAT_TYPE'MACHIHE_EMIN. 

7. Exceptions 

Various conditions can make it impossible for a subprogram in GENERIC_PRIMITIVE_FUNCTIONS to deliver 
a result. Whenever this occurs, the subprogram raises an exception instead. No exceptions are declared in 
GENERIC_PRIMITIVE_FUNCTIONS; thus, only predefined exceptions are raised, as described below. 

The REMAINDER function performs an operation related to division. When its second argument is zero, it 
raises the exception specified by Ada for signaling division by zero (this is NUMERIC.ERROR in the Ada Reference 
Manual, but it is changed to CONSTRAINT_ERROR by AI-00387). 

The result defined for the SCALE, COMPOSE, SUCCESSOR, PREDECESSOR, and, on some hardware, COPY_SIGN 
functions can exceed the overflow threshold of the hardware. When this occurs (or, more precisely, when 
the defined result exceeds FLOAT_TYPE'BASE "LAST in magnitude), the function raises the exception specified 
by Ada for signaling overflow (this is NUMERIC_ERROR in the Ada Reference Manual, but it is changed to 
CONSTRAINT_ERROR by AI-00387). 

All of the subprograms, as stated in Section 3, are subject to raising CONSTRAINT_ERROR when an integer-type 
value outside the bounds of the user's generic actual type associated with EXPONENT_TYPE is passed as an argument, 
or when one of the subprograms attempts to return such an integer-type value. Similarly, if the implementation 
allows range constraints in the generic actual type associated with FLOAT_TYPE, then C0NSTRAINT_ERR0R will be 
raised when the value of a floating-point argument lies outside the range of that generic actual type, or when a 
subprogram in GENERIC_PRIMITIVE_FUNCTIONS attempts to return a value outside that range. AdditionaUy, all 
of the subprograms are subject to raising STORAGE_ERROR when they cannot obtain the storage they require. 

Whereas a result that is too large to be represented causes the signaling of overflow, a result that is too small 
to be represented exactly does not raise an exception; such a result, which can be computed by SCALE, COMPOSE, 
and REMAINDER, is instead approximated (possibly by zero), as specified separately for each of these subprograms. 

The only exceptions allowed during an instantiation of GENERIC_PRIMITIVE_FUNCTIONS, including the 
execution of the optional sequence of statements in the body of the instance, are CONSTRAINT_ERROR, 
PROGRAM_ERROR, and STORAGE_ERROR, and then only for the reasons given below. The raising of 
CONSTRAINT_ERROR during instantiation is only allowed when the implementation imposes the restriction that 
the generic actual type associated with FLOAT_TYPE must not have a range constraint, and the user violates that 
restriction (it may, in fact, be an inescapable consequence of the violation). The raising of PROGRAM.ERROR during 
instantiation is only allowed for the purpose of signaling errors made by the user—for example, violation of this 
same restriction. The raising of STORAGE_ERROR during instantiation is only allowed for the purpose of signaling 
the exhaustion of storage. 



8. Specifications of the subprograms 

Except where an approximation is explicitly allowed and defined, the formulas given below under the heading 
Definition specify precise mathematical results. In a few cases, these formulas leave a subprogram undefined for 
certain arguments; in those cases, the subprogram will raise an exception, as stated under the heading Exceptions, 
instead of delivering a result. 

In the specifications of EXPONENT, FRACTION, DECOMPOSE, COMPOSE, SCALE, and LEADING_PART, the symbol 
ß stands for the value of FLOATJTYPE'MACHINE.RADIX 

8.1. EXPONENT—Exponent of the Canonical Representation 
of a Floating-Point Machine Number 

Specification: 

function EXPONENT (X : FLOATJTYPE) return EXPONENT_TYPE; 

Definition: 

(a) EXPONENT(0.0) = 0 

(b) For X ^ 0.0, EXPONENT(X) = the unique integer k such that ßk~l < |X| < ßk 

Notes: 

When X is a denormalized number, EXPONENT(X) < FLOAT_TYPE'MACHINE_EMIN. 

8.2. FRACTION—Signed Mantissa of the Canonical Representation 
of a Floating-Point Machine Number 

Specification: 

function FRACTION (X : FLOATJTYPE) return FLOATJTYPE; 

Definition: 

(a) FRACTION(O.O) =0.0 

(b) For X ^ 0.0, FRACTION(X) = X • ß~k, where ifc is the unique integer such that /?*-1 < |X| < ßk 



8.3. DECOMPOSE—Extract the Components of the Canonical 
Representation of a Floating-Point Machine 
Number 

Specification: 

procedure DECOMPOSE (X       : in FLOATJTYPE; 
FRACTION : out FLOATJTYPE; 
EXPONENT : out EXPONENTJTYPE); 

Definition: 

(a) FRACTION = 0.0 and EXPONENT = 0 upon return from an invocation of 
DECOMPOSER, 0, FRACTION, EXPONENT) 

(b) For X ^ 0.0, FRACTION = X • ß~k and EXPONENT = k, where k is the unique integer such that 
ßk~l < |X| < ßk, upon return from an invocation of DECOMPOSE(X, FRACTION, EXPONENT) 

Notes: 

When X is a denormalized number, EXPONENT < FLOAT_TYPE'MACHINE_EMIN upon return from an 
invocation of DECOMPOSE(X, FRACTION, EXPONENT). 

8.4. COMPOSE—Construct a Floating-Point Machine Number from 
the Components of its Canonical Representation 

Specification: 

function COMPOSE (FRACTION : FLOATJTYPE; 
EXPONENT : EXPONENTJTYPE) return FLOATJTYPE; 

Definition: 

(a) C0MP0SE(0.0, EXPONENT) = 0.0 for any EXPONENT 

(b) For FRACTION ^ 0.0, let a = FRACTION • ßs*™*Ell?->°, where k is the unique integer such that 
ß*>-i < JFRACTION| < ßk. If a is exactly representable as a floating-point machine number (cf. Sec- 
tion 5), C0MP0SE(FRACTI0N, EXPONENT) = a; otherwise, COMPOSE(FRACTION, EXPONENT) = 
either one of the machine numbers neighboring a, provided that \a\ < FLOATJTYPE' BASE' LAST. 

Exceptions: 

When a as defined above is such that \a\ > FLOATJTYPE'BASE'LAST, COMPOSE raises the exception 
specified by Ada for signaling overflow (cf. Section 7) instead of delivering a result. 



Notes: 

(a) For FRACTION £ 0.0, this function can deliver an approximation (possibly zero) to the exact 
mathematical result a only when EXPONENT is sufficiently negative to force a to be in the 
denormalized range, and either the implementation does not recognize denormalized numbers, 
or a is not exactly representable as a denormalized number (cf. Section 6). 

(b) The name FRACTION is not meant to suggest that the first argument is restricted to fractional values; 
rather, it is meant to suggest that the first argument supplies (via its fractional part in the canonical 
form) the fractional part of the result 

8.5. SCALE—Increment/Decrement the Exponent of the Canonical 
Representation of a Floating-Point Machine Number 

Specification: 

function SCALE (X       : FLOATJTYPE; 
EXPONENT : EXPDNENTJTYPE) return FLOATJTYPE; 

Definition: 

Let a = X • /JEXP0I,EIIT. If a is exactly representable as a floating-point machine number (cf. Section 5), 
SCALE(X, EXPONENT) = a; otherwise, SCALE(X, EXPONENT) = either one of the machine numbers 
neighboring a, provided that \a\ < FLOATJTYPE * BASE* LAST. 

Exceptions: 

When a as defined above is such that \a\ > FLOATJTYPE'BASE'LAST, SCALE raises the exception 
specified by Ada for signaling overflow (cf. Section 7), instead of delivering a result. 

Notes: 

This function can deliver an approximation (possibly zero) to the exact mathematical result a only when 
EXPONENT is sufficiently negative to force a to be in the denormalized range, and either the implementation 
does not recognize denormalized numbers, or a is not exactly representable as a denormalized number 
(cf. Section 6). 

8.6. FLOOR—Greatest Integer Not Greater Than a Floating-Point 
Machine Number, as a Floating-Point Number 

Specification: 

function FLOOR (X : FLOATJTYPE) return FLOAT_TYPE; 



Definition: 

FLOOR(X) = |Xj 

Notes: 

For sufficiently large |X|, this function merely returns its argument 

8.7. CEILING—Least Integer Not Less Than a Floating-Point 
Machine Number, as a Floating-Point Number 

Specification: 

function CEILING (X : FLOAT.TYPE) return FLOAT_TYPE; 

Definition: 

CEILING(X) =  [Y| 

Notes: 

For sufficiently large |X|, this function merely returns its argument. 

8.8. ROUND—Integer Nearest to a Floating-Point Machine Number, 
as a Floating-Point Number 

Specification: 

function ROUND (X : FLOAT_TYPE) return FLOAT_TYPE; 

Definition: 

ROUND(X) = the integer nearest to X; if X is equidistant from two integers, then the even integer is chosen 

Notes: 

For sufficiently large |X|, this function merely returns its argument. 



8.9. TRUNCATE—Integer Part of a Floating-Point Machine Number, 
as a Floating-Point Number 

Specification: 

function TRUNCATE (X  : FLOATJTYPE) return FLOATJTYPE; 

Definition: 

a»«»«, = {W; J^;J 

Notes: 

For sufficiently large |X|, this function merely returns its argument. 

8.10. REMAINDER—Exact Remainder Upon Dividing One Floating- 
Point Machine Number by Another 

Specification: 

function REMAINDER (X, Y : FLOAT_TYPE) return FLOATJTYPE; 

Definition: 

For Y ^ 0.0, let a = X - (Y • n), where n is the integer nearest to the exact value of X/Y; if 
\n - (X/Y)| = 1/2, then n is chosen to be even. If a is exactly representable as a floating-point machine 
number (cf. Section 5), REMAINDERS, Y) = a; otherwise, REMAINDERS, Y) = 0.0 

Exceptions: 

For any X, REMAINDERS, 0.0) raises the exception specified by Ada for signaling division by zero 
(cf. Section 7) instead of delivering a result. 

Notes: 

(a) This function can deliver an approximation (namely, zero) to the exact mathematical result a only 
when Y is in the neighborhood of zero, X is sufficiently close to a multiple of Y to force a to 
be in the denormalized range, and the implementation does not recognize denormalized numbers 
(cf. Section 6). 

(b) The magnitude of the result is < |Y/2|. 



8.11. ADJACENT—Floating-Point Machine Number Next to One 
Floating-Point Machine Number in the Direction 
of a Second 

Specification: 

function ADJACENT (X, TOWARDS : FLOAT.TYPE) return FLOAT.TYPE; 

Definition: 

(a) ADJACENT(X,  X) = X 

(b) For TOWARDS ^ x, ADJACENT(X, TOWARDS) = the floating-point machine number (cf. Section 
5) neighboring x in the direction toward TOWARDS; in an implementation exploiting signed zeros 
(cf. Section 4), a zero result must have the sign of X 

Notes: 

(a) Unlike SUCCESSOR and PREDECESSOR, to which it is related, ADJACENT never raises an exception. 

(b) For certain normalized arguments, the numerical value of the result depends on whether or not the 
implementation recognizes denormalized numbers (cf. Section 6). For example, for TOWARDS ^0.0, 
ADJACENT(0.0, TOWARDS) yields a denormalized number if the implementation recognizes 
denormalized numbers, and a normalized number otherwise. Similarly, ADJACENT(± a, 0.0), 
where a is the smallest positive normalized number, yields a denormalized number if the 
implementation recognizes denormalized numbers, and zero otherwise. 

8.12. SUCCESSOR—Floating-Point Machine Number Next Above a 
Given Floating-Point Machine Number 

Specification: 

function SUCCESSOR (X : FL0AT_TYPE) return FL0AT_TYPE; 

Definition: 

SUCCESSOR(X) = the floating-point machine number (cf. Section 5) neighboring X in the positive 
direction, provided that X ^ FL0AT_TYPE' BASE' LAST, in an implementation exploiting signed zeros 
(cf. Section 4), a zero result must be a negatively signed zero 

Exceptions: 

Since there is no floating-point machine number neighboring FL0AT_TYPE' BASE' LAST in the positive 
direction (a consequence of the assumption and restriction in Section 5), SUCCESSOR raises the 
exception specified by Ada for signaling overflow (cf. Section 7), instead of delivering a result, when 
X = FLOAT.TYPE'BASE'LAST. 
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Notes: 

For certain arguments, the numerical value of the result depends on whether or not the implementation 
recognizes denormalized numbers (cf. Section 6). For example, SUCCESSOR(O.O) yields a denormalized 
number if the implementation recognizes denormalized numbers, and a normalized number otherwise. 
Similarly, SUCCESSOR - <r), where cr is the smallest positive normalized number, yields a denormalized 
number if the implementation recognizes denormalized numbers, and zero otherwise. 

8.13. PREDECESSOR—Floating-Point Machine Number Next Below a 
Given Floating-Point Machine Number 

Specification: 

function PREDECESSOR (X : FLOAT_TYPE) return FLOATJTYPE; 

Definition: 

PREDECESSOR(X) = the floating-point machine number (cf. Section 5) neighboring X in the negative 
direction, provided that X £ FLOATJTYPE' BASE' FIRST, in an implementation exploiting signed zeros 
(cf. Section 4), a zero result must be a positively signed zero 

Exceptions: 

Since there is no floating-point machine number neighboring FLOAT_TYPE' BASE' FIRST in the negative 
direction (a consequence of the assumption and restriction in Section 5), PREDECESSOR raises the 
exception specified by Ada for signaling overflow (cf. Section 7), instead of delivering a result, when 
X = FLOATJTYPE' BASE' FIRST. 

Notes: 

For certain arguments, the numerical value of the result depends on whether or not the implementation 
recognizes denormalized numbers (cf. Section 6). For example, PREDECESSOR(O.O) yields a 
denormalized number if the implementation recognizes denormalized numbers, and a normalized number 
otherwise. Similarly, PREDECESSOR(cr), where a is the smallest positive normalized number, yields a 
denormalized number if the implementation recognizes denormalized numbers, and zero otherwise. 

8.14. COPY_SIGN—Transfer of Sign from One Floating-Point Machine 
Number to Another 

Specification: 

function COPY.SIGH (VALUE,  SIGN  :  FLOATJTYPE)  return FLOATJTYPE; 
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Definition: 

{|VALUE|, SIGN > 0.0 
±|VALUE| (see note a),   SIGH = 0.0 
-|VALUE|, SIGN < 0.0 

(b) COPY_SIGN(O.O, SIGN) = o.o (seenoteb) 

Exceptions: 

Since the negation of some representable values causes overflow on some hardware (e.g., when 2's- 
complement representation is used for floating-point), C0PY_SIGN raises the exception specified by Ada 
for signaling overflow (cf. Section 7), instead of delivering a value, in that case. 

Notes: 

(a) Two cases arise when VALUE ^ 0.0 and SIGN = 0.0: 

(i)   in an implementation exploiting signed zeros (cf. Section 4), C0PY_SIGN must deliver -|VALUE| 
when SIGN is a negatively signed zero and |VALUE| when SIGN is a positively signed zero; 

(ii)  in an implementation not exploiting signed zeros, C0PY_SIGN must deliver [VALUE]. 

(b) In an implementation exploiting signed zeros, the zero delivered by C0PY_SIGN(0.0, SIGN) must 
be a negatively signed zero when either SIGN < 0.0 or SIGN is a negatively signed zero, and it 
must be a positively signed zero when either SIGN > 0.0 or SIGN is a positively signed zero. 

8.15. LEADING_PART—Floating-Point Machine Number with its 
Mantissa (in the Canonical Representation) 
Truncated to a Given Number of Radix-Digits 

Specification: 

function LEADING.PART (X : FLOAT.TYPE; 
RADIX.DIGITS : POSITIVE) return FLOAT_TYPE; 

Definition: 

(a) LEADING_PART(0.0, RADIX_DIGITS) = 0.0 for any RADIX.DIGITS 

(b) ForX> 0.0,LEADING_PART(X, RADIX_DIGITS) = [x//?fc-RADIX-DIGITSJ •/?fc-RADIXJ,ICITS, where ifc 
is the unique integer such that ßk~1 < |X| < ßk 

(c) For X < 0.0, LEADING_PART(X, RADIX_DIGITS) = [x//?*-R*DIX-DIalTS] . ßk-wntjtinus^ where k 

is the unique integer such that ßk~l < |x| < ßk 

Notes: 

For RADIX.DIGITS > FLOAT_TYPE'HACHINE_MANTISSA, this function merely returns its first argument. 
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Abstract 

This paper supplements the "Proposed Standard for a Generic Package of Primitive Functions 
for Ada," written by the ISO-IEC/JTC1/SC22/WG9 (Ada) Numerics Rapporteur Group. Based 
on recommendations made jointly by the ACM SIGAda Numerics Working Group and the Ada- 
Europe Numerics Working Group, the proposed primitive functions standard is the second of 
several anticipated secondary standards to address the interrelated issues of portability, efficiency, 
and robustness of numerical software written in Ada. Its purpose, features, and developmental 
history are outlined in this commentary. 

At about the time that work on a proposed Ada standard for the elementary functions began in 1986, early efforts 
to implement the elementary functions—square root, logarithm, trigonometric functions, and the like—underscored 
the need to be able to perform certain steps in their computation with extreme accuracy. These functions are typically 
implemented by transforming the argument so that it lies within a reduced range, computing the desired function 
on the transformed argument by a polynomial or rational approximation (designed to be sufficiently accurate over 
the relatively narrow reduced argument range) to obtain an intermediate result, and then constructing the final result 
by appropriately transforming the intermediate result. Accuracy is controlled in the middle step by the choice of 
approximation method, which bounds the approximation error. However, the final result can be extremely sensitive 
to errors (such as roundoff errors) made in the argument reduction step. Unnecessary error can also enter in the 
final step if the transformation it represents is not carried out carefully. 

Details of the transformations needed in the argument reduction and result construction steps depend, of course, 
on the function being implemented. In the case of the periodic functions, the essential requirement is to compute an 
accurate remainder when the argument is divided by the period, if specified; when the period is allowed to default 
to the irrational 2TT, a technique other than a simple division is required to obtain a suitably accurate remainder. 
In other cases, especially SQRT and LOG, decomposition of the argument into its exponent and fraction parts is the 
starting point, with the fraction part (or a simple function of it) becoming the transformed argument; the result 
construction step in these cases usually involves a simple modification—often just a scaling—of the intermediate 
result by a simple function of the exponent part. 

If one is interested in implementing the elementary functions in a portable fashion, how does one go about 
computing accurate floating-point remainders and decomposing floating-point numbers into their constituent parts 
portably? Two problems arise if one tries to do these things entirely in portable Ada: the result is inefficient, 
often involving loops that require many traversals; and it cannot be proven fully accurate with Ada's model of 
floating-point arithmetic, since the model caters to the weaknesses of the weakest conforming implementation of 
Ada. (On machines manifesting them, such weaknesses—for example, lack of a guard digit—can introduce errors in 
the argument reduction step that become amplified as the loops are traversed.) The efficiency and accuracy problems 
can be solved, of course, by judicious use of representation clauses or interface programming in assembler language 
or even machine language insertions, given knowledge of the host machine, but that obviously destroys portability. 

Exact floating-point remainder and decomposition of a floating-point number into its constituent parts are two 
examples of primitive functions—low-level floating-point functions having the property that they cannot be coded 
in Ada so as to be simultaneously accurate, efficient, and portable. Since we know how to solve the accuracy and 
efficiency problems when details of the underlying machine are available (indeed, some of the primitive functions 
are directly available as hardware operations on specific machines), all that is really lacking is a standardized 
interface to the functions. That is what the proposed generic primitive functions standard [1] provides. 
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Portable implementations of the generic elementary functions standard will be the first beneficiary of the generic 
primitive functions standard; others will follow. However, the generic primitive functions standard will always have 
a specialized clientele: experts, probably highly trained numerical analysts, concerned with the development of high 
quality, portable mathematical software. It is not for the average application programmer. 

The proposed standard has been developed by the ACM SIGAda Numerics Working Group in collaboration with 

the Ada-Europe Numerics Working Group. The proposal has been adopted by the WG9 Numerics Rapporteur Group 
and is to be submitted to WG9 and its parents, leading ultimately to an ISO standard. The standardization effort 
has been supported and encouraged in the United States by the Ada Joint Program Office of the U.S. Department 
of Defense, and in Europe by the Commission of the European Communities. 

Although work on the primitive and the elementary functions standards began at about the same time, the 
elementary functions standard was completed, except for some late refinements, about a year and a half earlier [9]. 
Earliest drafts of the primitive functions standard drew heavily from recommendations made many years earlier in 
[3]; other works influencing the Ada primitive functions at an early date were [6, 11, 15, 14]. Later versions of 
the primitive functions were influenced by the IEEE floating-point standards [7, 8] and by the proposed Language 
Compatible Arithmetic Standard (LCAS) [12, 13]. One reason for the delay in completing the primitive functions, 
relative to the elementary functions, was a series of late additions to the proposed primitive functions standard as 
the result of evolving implementation experience with the elementary functions. Another was the recognition that 
software intending to exploit IEEE arithmetic had to pay particular attention to some of its more subtle features, 
such as denormalized numbers and signed zeros. It took considerable effort to describe the primitive functions 
so mat they could be implemented in either IEEE or non-IEEE environments. This issue also had ramifications 
for the elementary functions standard, resulting in a recent revision of it [10] and in the updating of its rationale 
document [5]. 

The proposed standard for the primitive functions defines the specification of a generic package called 
GENERIC_PRIMITIVE_FUNCTIONS. It is a package because that is the accepted way to collect together several 
related subprograms; it is generic, with generic formal parameters for the two types used for the arguments and 
results of the subprograms, in view of the rules for parameter associations and the inability to anticipate the types 
used in applications. The generic formal parameter FL0AT_TYPE gives the type to be used for the floating-point 
arguments and results of subprograms in GENERIC_PRIMITIVE_FUNCTIONS, while the generic formal parameter 
EXPONENT_TYPE gives the type to be used for the few integer arguments and results that, with one exception,1 deal 
with exponents of the canonical machine representation. When an instantiation of GENERIC_PRIMITIVE_FUNCTIOMS 
is used in an implementation of the elementary functions (e.g., in the body of GENERIC_ELEMENTARY_FUKCTIOHS), 
the FLOAT.TYPE of the latter should be passed through to the former, and a sufficiently wide integer type should 
be associated with EXPONENT_TYPE. The predefined type INTEGER probably suffices for the latter, but if one is 
worried about sufficient range, then an integer type whose range covers SYSTEM.MIN.INT . . SYSTEM.MAX_IBT 
can be defined and used instead. 

Like the elementary functions standard, the primitive functions standard permits implementations to impose 
a restriction that the generic actual type associated with FL0AT_TYPE in an instantiation must not contain a range 
constraint that reduces the range of aUowable values. Implementations choosing not to impose the restriction 
must be designed to be immune from the avoidable effects of such range constraints; in general, this means 
that variables of type FLOAT.TYPE cannot safely be used for intermediate results within an implementation of 
GENERIC_PRIMITIVE_FUNCTIONS. Those imposing the restriction must document it; they can safely use suclhi 
variables, but they must behave in one of several stated ways (i.e., predictably) if the restriction is violated. (For a 
detailed discussion of the genesis of this optional restriction and its implications, see the latest revision of [5]. The 
freedom of an implementation to impose the restriction will be revoked in the future if and when Ada—for example, 
as part of the Ada 9X revision process—acquires additional functionality that allows the declaration of variables 
having the precision, but not the range, of a generic formal floating-point type.) Incidentally, implementations are 
not allowed to impose a similar restriction on the generic actual types that can be associated with EXP0NENT_TYPE 
during instantiation; it is not difficult to implement GENERIC_PRIMITIVE_FOTCTI01JS to be efficient while limiting 
the consequences of insufficient range in that generic actual type to the unavoidable raising of CDNSTRAINT_ERRQR 
during a subprogram call or return. 

One of the subprograms takes an argument that is a nonzero count of the number of digits to be retained in a particular computation; the 
predefined integer subtype POSITIVE is used for the corresponding parameter. 
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Perhaps the most significant difference between the two standards, other than subject area, is their respective 
handling of accuracy requirements. The elementary functions standard allowed implementations to approximate the 
exact mathematical result but constrained the approximation error by requiring implementations to satisfy "maximum 
relative error" bounds. In contrast, the primitive functions standard requires implementations to deliver the exact 
mathematical result defined for each function, whenever that result is representable; approximations are permitted 
only when the mathematical result is not representable and is smaller in magnitude than the smallest normalized 
positive floating-point number; and even then, the result is constrained to be one of the adjacent representable 
numbers. This level of accuracy is an essential aspect of the definition of the functions as operations on machine 
numbers yielding related machine numbers, without which their utility in argument reduction, etc., would be 
compromised. Achieving the required accuracy is not something that can be accomplished portably in Ada, at 
least not without making assumptions about the performance of the hardware that go well beyond the requirements 
imposed by the Ada model of floating-point arithmetic. On the other hand, the required accuracy can be easily 
and efficiently achieved by targeting implementations for specific environments and by utilizing knowledge of the 
machine representations in conjunction with appropriate operations (often integer or bit operations), accessed if 
necessary through low-level interfaces. A precedent for the accuracy required of the primitive functions can be 
found in the Ada attribute T'BASE"LAST for a floating-point type T: by definition, it has full machine-number 
accuracy, which, in general, exceeds model-number and safe-number accuracy. 

Because the primitive functions transform machine numbers into other well-defined machine numbers, the 
standard includes a discussion of exactly what is meant by "floating-point machine number" within the context 
of the subprograms' definitions. What numbers are in the set of machine numbers? Does that set include the 
extra-precise numbers that some Ada implementations generate as a consequence of using extended registers for 
intermediate results? The answer to the latter question must be no, for otherwise the precise mathematical formulas 
used to specify the results of some of the functions would imply that the output from a function must be extra- 
precise if its input is, and yet the programmer has no means to ensure that that will be the case. Thus, it is clearly 
stated that the "machine numbers" referred to throughout the standard are the storable machine numbers—the 
ones that can be (a) stored; (b) propagated by assignment, parameter association, and function returns; and (c) 
characterized by the representation attributes FLOAT_TYPE'MACHINE_MANTISSA, FLOAT_TYPE'BASE'FIRST, and 
FLOAT_TYPE' BASE' LAST. Implementations of the primitive functions are entitled to assume that only storable 
machine numbers will be seen as arguments, and implementations of Ada must uphold that assumption (by forcing 
storage, if necessary, before calling a primitive function) in order for implementations of the primitive functions 
to have any hope of conforming to the standard. 

Furthermore, because some hardware (e.g., that implementing IEEE arithmetic) has the capability of repre- 
senting denormalized numbers—those with the minimum exponent and an unnormalized fraction part—one must 
also be precise about whether the set of machine numbers includes them. The standard says that it does if the 
hardware has the capability of representing them and the Ada implementation uses the hardware in such a way that it 
actually generates them; otherwise, it does not. This is especially significant when talking about "adjacent machine 
numbers," since the machine number adjacent to the smallest positive normalized number, in the direction toward 
zero, will be a denormalized number if the hardware and Ada implementation recognize denormalized numbers, 
and zero otherwise. It is also germane to the approximations that are permitted when a defined result falls in the 
denormalized range and is not exactly representable. 

Some hardware (again, typically hardware conforming to IEEE arithmetic) has the capability of representing 
both positive and negative zeros (i.e., the sign of zero is relevant in some contexts). Like the elementary functions 
standard, the primitive functions standard allows signed zeros to be exploited if they are present in the hardware, 
but does not require them to be exploited. And like the elementary functions standard, the primitive functions 
standard does not give the required sign of each zero result (when signed zeros are being exploited), but leaves 
that to other standards or interpretations.2 The behavior of one of the primitive functions, C0PY_SIGN, does depend 
on the sign of a zero argument {when signed zeros are being exploited), as is also true of ARCTAN and ARCCOT in 
the elementary functions. The standard also clarifies that plus and minus zero are not to be considered "adjacent" 
(and therefore different) machine numbers, in any context where adjacency is relevant; thus, the "neighbors" of 
zero do not depend on the sign of zero. 

2There are four exceptions, however. The required signs of zero results from ADJACENT, SUCCESSOR, PREDECESSOR, and COPY.SIGH are 
spelled out in the standard because those functions are intimately concerned with representations. 
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Early versions of the proposed primitive functions standard did not permit any approximations: when the exact 
mathematical result was not representable, they called for the raising of an exception to signal that fact. Indeed, this 
applied not just to underflow situations,3 but to overflow as well. An exception called REPRESENTATIGN_ERRGR was 
reserved for that purpose. Commenting on an early version of the proposal, an observer convinced the committee 
that it would be better to signal overflow in the usual way (i.e., by raising the predefined exception provided by 

Ada for that contingency) and that it would also be better to provide a result conforming to the Ada standard m 
cases of underflow (including flushing to zero, if nothing better could be done) instead of raising an exception. An 
overflow or underflow in the result of a primitive function is most likely to occur when the primitive function is 
used for scaling purposes in the final step of some other computation, such as that of an elementary function. In 
such a case, the elementary function would overflow or underflow as well, and it would be undesirable to force the 
latter to intercept a REPRESENTATION.ERROR exception arising in the former just so that it could substitute some 
other behavior. As the primitive functions standard is now written, an overflow or underflow occurring in the result 
of a primitive function called to perform scaling in the final step of the computation of an elementary function car 
simply be propagated from the primitive function through the elementary function to the latter's caller, which will 
thus satisfy the requirements of the elementary functions standard in a most efficient way. 

With underflows reported by approximations and overflows signaled by the appropriate predefined exception, 
there was no longer any need for the REPRESENTATION_ERROR exception, which was accordingly eliminated 
No exceptions are declared by GENERIC_PRIMT.TIVE_FUNCTI.ONS. Only predefined exceptions may be raised by 
implementations of the primitive functions, and even those are restricted (as they were in the elementary functions 
standard) to specific cases where they are unavoidable. 

The subprograms (fourteen functions and one procedure) in GENERIC_PRIMITIVE_FUNCTIüNS can be orga- 
nized into four groups for presentation purposes. In the discussions that follow, arguments and results are of the 
floating-point type FLOAT_TYPE except where noted, and ß stands for the value of FLOAT_TYPE'MACHINE_RADIX 

The first group comprises basic decomposition, composition, and scaling subprograms for floating-point 
numbers. These are the EXPONENT, FRACTION, COMPOSE, and SCALE functions and the DECOMPOSE procedure. 

EXPONENT is primarily useful in argument reduction steps, where it gives a coarse indication of the magnitude 
of its argument. Except when X = 0.0, the function EXPONENT(X) delivers—as a value of the integer type 
EXPONENT_TYPE—the unique integer k such that ßk~l < |X| < ßk. This definition is entirely mathematical and not 
related to the representation of X on the machine. Thus, as a positive X decreases through the normalized range and 
into the denormalized range, EXPONENT(X) continues to decrease, even though the exponent part of the machine 
representation of X stops decreasing when the smallest normalized number is reached. In fact, on the assumption 
that FLOATJTYPE'MACHINE_EMIN is the value of that minimum exponent,4 EXPONENT(X) can return a value ti\?> 
is less than FLOATJTYPE'MACHINE_EMIN (e.g., when X is denormalized). Finally, EXPONENT(O.O) is defined m 
this standard to deliver 0. 

The EXPONENT function can be computed on typical hardware by extracting and unbiasing the exponent field 
of the representation, with a special case for X = 0.0 and with additional steps required when X is denormalized 
EXPONENT corresponds closely to the IEEE recommended function logb, which is usually available in hardware 
except that its result is of an integer type instead of a floating-point type. 

Some observers contended that EXPONENT(O.O) should not be 0; the most mathematically sensible alternative, 
-oo, which can be represented on IEEE hardware at least, is ruled out by the integer-type result of EXPONENT. The 
committee staunchly preferred to stick with an integer type for the representation of the integer values delivered 
by this function, especially when it concluded that a result of zero for a zero argument is often a "don't care" 
case anyway (in the sense that the potential caller of EXPONENT will avoid the call and take a different path, when 
X = 0.0), and is probably harmless when not. Another alternative, raising an exception to signal an illegal argumerd 
when X = 0.0, was ruled out because it is unnecessarily harsh when a zero result is harmless. 

The companion function FRACTION is also useful in argument reduction steps. For nonzero X, FRACTION(X) t 
defined to yield X •/?-*, where jfc is as defined above for EXPONENT; FRACTION (0.0) isO.O. Thus, FRACTION (X) r 
the fraction part of the canonical form of the floating-point number x (normalized, however, when X is denormalized) 
This function can be computed on typical hardware by extracting the fraction field of the representation, with ■ 
special case for x = 0.0 and with additional steps required when x is denormalized. 

3For simplicity, this is understood to mean either actual underflow or merely denormalization, which is also known as "gradual underflow.' 
"•This is a reasonable assumption, without which some numbers expressible in the canonical form would not be representable. It require 

however, that the definition of canonical form be relaxed to allow unnormalized fraction parts. 
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Often, both the exponent part and the fraction part of a floating-point number are needed in argument reduction. 
For such occasions, the procedure DECOMPOSE, which computes and delivers both simultaneously through a pair 
of arguments of mode "out," is provided. 

The function COMPOSE is essentially the inverse of DECOMPOSE; it constructs a floating-point value from a given 
fraction and exponent part. Except when FRACTION = 0.0, C0MP0SE(FRACTI0N, EXPONENT)—for arguments 
of the floating-point type FLOAT.TYPE and the integer type EXPONENT.TYPE, respectively—delivers the value 
FRACTION • /?Expo»E»T-fc (if it is representable), where k is the unique integer such that ßk~l < [FRACTION] < ßk; 
COMPOSE(o.o, EXPONENT) delivers 0.0 for any EXPONENT. If the defined result is not representable, then the 
appropriate predefined exception is raised in overflow situations, and one of the adjacent representable numbers is 
delivered in underflow situations. Note that the FRACTION argument is not required to be a pure fraction, with a 
zero exponent part (as if it had been obtained from the FRACTION function previously); rather, the fraction part of 
FRACTION is extracted and used to construct the result. It should be obvious that this function can be computed, on 
typical hardware, by appropriate manipulations of the fraction and exponent parts of floating-point quantities, as for 
the previous functions. COMPOSE finds representative uses in the result construction step of mathematical functions. 

The remaining function of the first group, SCALE, is similar to COMPOSE; it has uses both in result construction 
steps and in argument conditioning (for Euclidean norms, complex arithmetic, and some matrix computations, for 
example). It takes arguments X and EXPONENT and returns X • /3EXPOt,EHT (with the same provisions for dealing with 
overflow and underflow as exhibited by COMPOSE). SCALE is analogous to the IEEE recommended function scalb. 
When implemented by directly manipulating the exponent part of a floating-point number, it is potentially more 
efficient than multiplying or dividing by a power of the hardware radix, and by definition it retains full accuracy 
(multiplication and division, even by a power of the hardware radix, can lose accuracy on systems lacking guard 
digits for these operations). The function is sometimes available as a hardware operation. 

The functions of the first group are not all independent. In theory, it is sufficient to have just EXPONENT and 
SCALE, or alternatively EXPONENT and COMPOSE; the others can be obtained in terms of these two. For greater 
efficiency, however, implementations should code each independently using the most direct interface to low-level 
representations and operations available. 

The second group of subprograms comprises directed rounding functions (ROUND, TRUNCATE, FLOOR, and 
CEILING, all of which yield an integer value in the floating-point type FLOAT.TYPE) and an exact remainder 
function (REMAINDER). 

ROUND, of course, delivers the value of its argument, rounded to the nearest integer, with ties being broken by 
choosing the even integer; this corresponds to IEEE unbiased rounding. Ada already has something comparable 
in its predefined conversion between floating-point and integer types. The ROUND function differs in having a 
floating-point result type and in specifying that ties will be broken by choosing the even integer. ROUND and the 
other directed rounding functions are supposed to produce their floating-point results without going through an 
intermediate conversion to an integer type, which could raise an exception (often the higher-precision floating-point 
types can accommodate larger integer values than can be represented in the available integer type of widest range). 
TRUNCATE simply discards the fractional part, thereby rounding in the direction of zero. FLOOR and CEILING round 
in the negative and positive directions, respectively. All of these functions can be programmed efficiently at a low 
level and might even exist as hardware operations. 

The REMAINDER function delivers the exact remainder upon dividing its first floating-point argument by its 
second floating-point argument. More precisely, REMAINDERS, Y) finds an integer quotient q and a remainder r 
such that r = X - Y • q; it delivers r. Algorithms exist for computing the result exactly, and reasonably efficiently, 
regardless of the relative magnitudes of the dividend and divisor, the operation is available as a hardware instruction 
on some machines. 

There are two customary ways of defining the quotient g, which determines the corresponding remainder r. 
One way defines q as the integer obtained by rounding the exact value of X/Y towards zero. This gives r the sign 
of the dividend and a magnitude less than that of the divisor; it is the definition used by Ada for its predefined 
"rem" operator on integer-type operands, yielding an integer-type result. The other way defines q as the integer 
nearest the exact value of X/Y, with ties broken by choosing the even integer. This, in turn, gives r a magnitude 
not greater than half that of the divisor and a sign that may be either positive or negative. Because the latter 
definition, corresponding to the IEEE rem operation, is slightly preferred by numerical analysts for such purposes 
as argument reduction in the arbitrary-cycle versions of the trigonometric functions, it is what has been adopted for 
the primitive functions standard. It is tempting to offer this function in the form of an overloading of the predefined 
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"rent" operator, and indeed an earlier version of the proposed standard did so. However, the two overloaded "rem'! 

operators would have distinctly different numerical behavior (e.g., 43 rera 5 yields 3, whereas 43.0 rem 5.0 
would yield -2.0), so to avoid confusion the functional form REMAINDERS, Y) was preferred for the floating-poto 
remainder operation in GENERIC_PRIHITIVE_FUNCTIONS.5 

The third group of subprograms contains the PREDECESSOR, SUCCESSOR, and ADJACENT functions, which allow 

a floating-point machine number to be perturbed by the smallest possible amount to obtain the next larger or smalb 
machine number. The principal use for these functions is in testing mathematical software, where very fine conto? 
over test arguments is sometimes needed. As defined, they are also useful for generating the machine numbers 
(denormalized, if the hardware has that capabiüty) adjacent to zero. 

PREDECESSOR and SUCCESSOR are one-argument functions that deliver the machine number adjacent to their 
argument in the direction inferred from the name, whereas ADJACENT is a two-argument function that returns the 
machine number adjacent to its first argument in the direction of the second argument. The latter function is 
provided for appücations in which the direction of motion is not known in advance and needs to be determined 
dynamically; it is identical to the IEEE recommended function nextafter. There is another difference between 
ADJACENT and the other two functions: PREDECESSOR and SUCCESSOR raise the predefined exception signaling 
overflow upon an attempt to move beyond the first or last floating-point machine number, while ADJACENT never 
raises an exception (it is not possible to move beyond the range of machine numbers with it). The commutes 
debated whether it was extravagant to have both sets and found itself split into two camps, neither of which wanted 
to give up its preferred choice. It was argued that one could not be assured of obtaining the other set if only on« 
set were provided, because of a well-known weakness in the Ada model of floating-point arithmetic that makes the 
comparison of nearby floating-point numbers indeterminate. 

The final group of subprograms contains miscellaneous functions—namely, C0PY_SIGN and LEADING_PART. 

The C0PY_SIGN function, often found in other languages and represented in LCAS by sign and in the IEEE 
recommended functions by copysign, delivers the value obtained by transferring the sign of its second argument to 
the first (but otherwise retaining aU the precision of the first argument). This function is often useful in giving the 
final result of some computation the appropriate sign (without resorting to an if-fhen-else test) after having stripped 
the sign away in the argument reduction step, perhaps by using the very same function to set it positive there. 
In highly accurate and portable code, this function is preferable to negation and the abs operator because those 
can lose low-order digits on hardware lacking a guard digit for subtraction. On hardware distinguishing the sign 
of zero (such as IEEE hardware), and where the implementation of GENERIC_PRIMITIVE_FUNCTIONS chooses to 
exploit the capability of signed zeros, C0PY_SIGN is required to distinguish between plus zero and minus zero for 
its second argument; thus, it confers the sign of its second argument on the result even when the second argument 
is zero.  C0PY_SIGN was a late addition to GENERIC_PRIMITIVE_FUNCTIONS. 

LEADING.PART, another late addition, was motivated by the LCAS trunc operation. It delivers the value of 
its first argument with only some of the leading radix-digits retained (the number of them given by the value of 
the second argument, which is of the predefined type POSITIVE), and with the remaining radix-digits—the low 
order digits—replaced by zeros. This function plays a leading role in sophisticated strategies for simulating higher 
precision, where a floating-point number needs to be decomposed into a major portion of limited precision and m. 
additive residue. The leading part is usually used as a factor in a subsequent multiplication by a small integer, 
such that the result has a sufficiently smaU number of radix-digits to be represented exactly within the model of 
floating-point arithmetic. The residue can be accurately obtained by subtraction, assuming the starting value has 
no more precision than that of safe numbers. 

Two functions in the earliest versions of the proposed standard, both taken from [3], were dropped along the. 
way. These were RECIPROCAL_REL_SPACING(X) and ABS_SPACING(X), which give information about the spacing 
of machine numbers in the neighborhood of X. Although they are useful for fine control over the termination of an 
iterative algorithm, or for measuring and reporting error, committee members did not find them important enougi? 
to retain; when the committee was unable to justify their inclusion to the satisfaction of some observers, it decider' 
to omit them. 

The relationship between functions in GENERIC_PRIMITIVE_FUNCTIONS and certain required operations or 
recommended functions of the IEEE floating-point standards has been mentioned repeatedly in this rationale. It is 

5The preceding discussion only scratches the surface of the long and involved history of this operation. Many other alternatives, some of 
which made their way into earlier drafts of the standard, were considered at one time or another. 
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anticipated that relevant functions in GENERIC_PRIMITIVE_FUNCTIOHS will serve as the realization of some of the 
functionality of the proposed IEEE binding for Ada [4]. 

The relationship between functions in GENERIC_PRIMITIVE_FUNCTIONS and some of the features of LCAS 
has also been discussed. The fair degree of overlap between the two has prompted the suggestion that every- 
thing in LCAS that is not already built into Ada should be available in GENERIC_PRIMITIVE_FUNCTIONS in a 
compatibly defined way. The obvious benefit of following that suggestion to the letter would be the ability of 
an LCAS binding for Ada to point to GENERIC_PRIMITIVE_FUNCTIONS as the embodiment of that part of its 
functionality not built into Ada. Unfortunately, this goal was not expounded early enough in the development of 
GENERIC_PRIMITIVE_FUNCTIONS, and a few differences remain. 

Several partial implementations of GENERIC_PRIMITIVE_FUNCTIONS, varying in the degree to which they 
exploit knowledge of the underlying machine, exist. Some of them have tried to be relatively general, that is, 
adaptable to different architectures by suitable choice of parameters; none have yet tried to be as efficient as 
possible. 

Through a report [16] to the Ada 9X Requirements Team, the SIGAda Numerics Working Group has had 
an influence on Ada 9X as a result of the work it did in developing the proposed primitive and elementary 
functions standards. The report contains a discussion of the problems of writing high-quality, portable mathematical 
software; it included a number of Ada 9X revision requests aimed at solving some of these problems. One of the 
recommendations was to include the functionality of GENERIC_PRIMITIVE_FUNCTIONS in the Ada language, in 
the form of attributes (of the function kind). Several of the issues discussed in the report have been accepted by 
the Ada 9X Requirements Team as requirements for Ada 9X [2], including the incorporation of both elementary 
functions and primitive functions in optional annexes in Ada 9X. 
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