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PREFACE 

It is both a privilege and a pleasure to contribute a short Preface to this 
Volume. The Proceedings of the 18th International Workshop on Condensed Matter 
Theories held in Valencia, Spain in June 1994 are recorded in the present book. 

These Workshops have a tradition of bringing together many-body theorists 
with a wide variety of interests. Evidently condensed matter is always the central 
focal point, but techniques from other areas having potential for solid and liquid state 
theories have frequently been discussed in this Series of Workshops. In this respect, 
the 1994 Workshop was no exception. Techniques useful in a variety of nuclear 
many-body problems were well represented, as were interconnections between 
various theoretical techniques, ranging through the coupled cluster method, 
variational Jastrow-like approaches, parquet theory etc. Particular emphasis was 
placed in the present Workshop on the technique of density functional theory (plus a 
little on density matrices), a wide range of applications including atomic cluster 
theory, inhomogeneous liquids and especially 4He, simple metals and metal surfaces. 
In this context, there was a Special Session, with two papers related to the 
density-functional technique; one by S. Stringari on time-dependent theory and the 
other by E. Krotscheck on the many-body construction of density functional with 
illustrative applications. Other especially notable contributions applied information 
theory in ingenious ways to quanta! many-body systems. 

Turning from (mainly) techniques to physical areas in condensed matter, there 
was considerable emphasis on the quantal liquid 4He, with discussion not only of bulk 
properties but of wetting, surface tension and 3He-4He mixtures. Contact with new 
neutron scattering experiments was highlighted in connection with bulk 4He. Some 
papers on high Tc materials, plus a discussion of recent progress, both experiment 
and theory, on electron solids, reflected important growth areas in condensed matter. 
In the latter area, the equilibrium between Laughlin electron liquid and electron solid 
was considered, the electron liquid being treated in a number of papers, including a 
study by quantal hypernetted chain methods. 

Finally, the organizers are to be congratulated on the fine, stimulating 
Workshops they created, and on the efficiency with which they have brought these 
Proceedings to fruition. As a participant in this-Workshop, in the lovely setting of 
the City of Valencia, the author can only now look ahead with eager anticipation to 
the 19th Workshop in the Series, to be held in Caracas, Venezuela. 
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FOREWORD 

The 18th International Workshop on Condensed Matter Theories was held in Valencia 

(Spain) from 6 to 10 June 1994 and attended by about 70 scientists from all over the 

world. 

In planning for an interdisciplinary workshop focussing on new developments in many- 

body theories, the Program Committee selected some forty talks collected herewith. We 

thank the members of this Committee for their help in the program. We also thank the 

International Advisory Committee members, and specially professor R. Guardiola, for 

their valuable suggestions and comments. 

The Workshop has been made possible with the financial support of several institu- 

tions. The Universidad Internacional Menendez y Pelayo hosted the Workshop at Palau de 

Pineda, its beautiful branch site in Valencia, and assisted the local organizers in numerous 

administrative tasks. We acknowledge its staff, and specially its director in Valencia, Pro- 

fessor J. Azagra, for his interest and generous support to the Workshop. The Workshop 

also benefited from the financial support of Direccion General de Investigaciön Cientifica y 

Tecnolögica (Ministerio de Educacion y Ciencia), Institut de Fisica i Matemätiques (Insti- 

tuciö Valenciana d'Estudis i Investigaciö), Consejo Superior de Investigaciones Cientificas, 

Instituto de Fisica Corpuscular and Universität de Valencia. Finally, the US Army Re- 

search Office helped some participants with travel expenses. 

We are also grateful to all participants for their presentations and careful preparation 

of manuscripts which sustain the scientific quality of this workshop and guarantee its 

future. Numerous enthusiastic and useful discussions during walks through the historic 

quarter of Valencia, where the Palau de Pinedais located, created a friendly and productive 

atmosphere throughout the Workshop. 

Finally we express our gratitude to Professor N.H. March for kindly accepting to write 

the Preface to this volume, and to Professor M. de Llano for his invaluable help in the 

edition of the series Condensed Matter Theories. 

The Local Organizing Committee: 

M. Casas, J. Navarro and A. Polls 
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TWO-BODY CORRELATIONS IN QUANTUM 
MANY-BODY SYSTEMS: A CONFRONTATION 

BETWEEN DIFFERENT TECHNIQUES 
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Department of Mathematics, UMIST 
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P.O. Box 88, Manchester M60 1QD, UK 

Abstract. The important effects of two-body correlations between interacting 
particles in a quantum many-body system are included in very different ways, de- 
pending both on the technique used to study the system and the level of approxima- 
tion made in its implementation. Our aim here is to study in depth the relationships 
between various important fundamental techniques by applying them at this level to 
a specific model, namely the so-called Lieb model of an infinite one-dimensional sys- 
tem of bosons interacting via a pairwise repulsive delta-function potential. We focus 
particularly on microscopic ab initio methods, including the coupled cluster method, 
variational techniques based on Jastrow-correlated wave functions, planar (or par- 
quet) theory, and a nonlinear integro-differential equation approach due to Lieb. 

1. INTRODUCTION 

The best of the currently available microscopic techniques in ab initio quantum 
many-body theory have been widely applied to many different physical systems, where 
they have often been found to be capable of high precision in relatively low orders 
of implementation. Most practitioners nowadays believe that the state of the art in 
quantum many-body theory is such that it is less important to develop fundamentally 
new techniques, for which there seems to be no real need, than to explore the rela- 
tionships between existing methods which are capable of systematic improvement via 
well-defined hierarchical approximation schemes. Although different such schemes in 
principle agree when carried out to the highest (usually infinite) order necessary for 
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a complete description of the system under study, they will naturally differ in prac- 
tice when truncated. In particular, the incorporation of the important, and usually 
dominant, two-body correlation effects depends critically on the formalism adopted. 

The aim of the present paper is to examine in depth the relationships between 
different methods of building two-body correlations into the many-body wave function 
in various theoretical frameworks. We are particularly interested in studying fully 
microscopic approaches, as opposed to the more phenomenological techniques that 
are not intended or designed for systematic improvement. We therefore focus on the 
following approaches: (i) the coupled cluster method [1-7]; (ii) variational techniques 
based on Jastrow-correlated wave functions [8-16]; (iii) planar (or parquet) theory 
[13,17-22]; and (iv) a nonlinear integro-differential equation approach due to Lieb 
[23-25]. 

The comparison is made by applying each technique to a particular model problem 
for which exact results are known. This is chosen to be the so-called Lieb model [26- 
30] of an infinite system of bosons constrained to move on the one-dimensional line, 
at a fixed density, and interacting via a pairwise repulsive delta-function potential. 
The strong-coupling limit thus corresponds to the case of one-dimensional hard-core 
bosons. The model is known to be exactly integrable for all values of the coupling 
constant by the Bethe-ansatz technique [30-32]. Like most exactly soluble models, 
the Lieb model provides an especially stringent test for the universal techniques of 
quantum many-body theory considered here. 

One of our main aims in this work has been to show that by bringing the various 
theoretical methodologies into confrontation by applying each of them to a specific 
model, we can gain valuable insight both into the methods themselves and, perhaps 
even more importantly, into the various interconnections between them. We shall also 
show how, by bringing into conjunction the best elements of the existing methods 
described, we might produce powerful new calculational schemes. 

The remainder of the paper is organized as follows. The Lieb model and its exact 
solution are first described in Sec. 2. In Sees. 3-5 we then describe in turn the ele- 
ments of the coupled cluster method (CCM), the local parquet approximation (LPA), 
and the nonlinear integro-differential equation approach (NIEA) of Lieb. The CCM is 
also applied in Sec. 3 to the Lieb model at the so-called SUB2 level of approximation, 
and corresponding results are given in Sees. 4 and 5 for the LPA and NIEA methods.' 
In the light of the latter results we return in Sec. 6 to consider improved truncation 
schemes within the CCM framework. We conclude in Sec. 7 with a critical discussion 
of the results obtained. 

2. THE LIEB MODEL OF INTERACTING BOSONS 

The so-called Lieb model [26-30] considered here consists of a homogeneous system 
of N bosons constrained to lie on a line of length L interacting via a repulsive pairwise 
delta-function potential, v(x) = 2cS(x), where c > 0 and x is the interparticle spacing. 
The Hamiltonian for the system, in units in which h = 2m = 1, is given by, 

N 

H = -YJd
2/dx\ + 2c     Y,     S(*i-*j)   ■ (2.1) 

» = 1 l<i<j<N 



We are particularly interested here in the ground-state Schrödinger equation, 

HV = EV   , (2.2) 

in the thermodynamic limit where N — oo, L — oo, such that p = N/L remains 
finite, and with a bosonic solution # = 9(xlt ■ • •, xn) which is symmetric under the 
interchange of any two coordinates, and which obeys periodic boundary conditions in 
each coordinate separately. 

Lieb and Liniger [26] first showed that Eqs. (2.1) and (2.2) could be solved exactly 
by a Bethe ansatz [32] form for the wave function. This general technique has now 
become of great importance as a method of solution for a number of exactly integrable 
quantum field theory and statistical mechanical models in two space-time dimensions 
All such models solvable by means of the Bethe ansatz share the following feature 
namely that they can be reduced to two-body dynamics, in complete analogy with 
the reduction of free models to one-body dynamics. More precisely, the many-particle 
scattering matrix simply becomes a product of two-particle scattering matrices, with 
the latter obeying a particular self-consistency relation. This relation is just the corre- 
sponding Yang-Baxter equation (and see Ref. [33]) for the model. The latter equation 
is nowadays regarded as perhaps the fundamental concept for exactly soluble models. 
Indeed, the role of the Yang-Baxter equation extends beyond the theory of dynamical 
systems into both knot theory and the theory of quantum groups. Furthermore, from 
a modern viewpoint, the coordinate-space Bethe ansatz generalizes into an algebraic 
counterpart and thence into the quantum inverse scattering method which lies at the 
heart of present treatments of exactly integrable two-dimensional models in quantum 
field theory and quantum statistical mechanics. The interested reader is referred to 
Ref. [31] for a modern treatment of the subject, which actually begins with a detailed 
discussion of the Lieb model, brief details of the solution to which are given below 

Due to the symmetry of * it is sufficient to consider the solution in the domain 
R where 0 < Xl < x2 < ■ ■ • < xN < L. The wave function in R is simply an 
eigenfunction of the free Hamiltonian, 

N 

-J2d2y/dx* = E<!;   inR  , (2.3) 
t=i 

together with the boundary conditions, 

(d/dxj+1 - d/dxj - c)¥ = 0;   xj+1 =Xj+0   . (2.4) 

Equations (2.3) and (2.4) are fully equivalent to Eqs. (2.1) and (2.2).   Now, it is 
readily verified that the (unnormalized) function * specified in R as 

*=      I]     (d/dxi-d/dxi + jdetlexptiknx*)]   , (2.5) 
l<t<;<JV 

satisfies Eqs. (2.3) and (2.4) with 

E = Ek?   - (2.6) 



and where the parameters {k{; i = 1, • • •, TV} are any set of distinct numbers. One also 
observes that ¥ given by Eq. (2.5) is an antisymmetric function of the parameters 
{h}. Hence * = 0 if in = kj, i ^ j, and this forms the basis of the set {k{} forming a 
filled Fermi (or Dirac) sea, which appears strange at first sight for a bosonic problem. 

Finally, the set {kt} is determined by requiring that *(KI, • • •,&,•,• ■ -,xN) = 
*(zi, • ■ ■, 3i + L, • ■ •, xN) Vz, or equivalently that *(0, x2, - • •, xN) = *(s2, • - -, xN, L) 
for * defined in the domain R. These requirements result in the following Bethe 
equations for the permitted values of {kj}, 

exp(ikjL) = — TJ 
kj — k{ + ic 

*• kj — ki — ic 

or equivalently, 

;N (2.7) 

{-l)N-1exp(-ik]L) = exp 
N 

I 

L  i=i 
i£>(*, -fc;) ,JV 

ö(*) = -2 tan-^fc/c) ;      -ir < Ö < x,   Jfe G R 

(2.8c 

(2.86) 

Although Eqs. (2.7) or (2.8) comprise TV equations in TV unknowns they have many 
sets of solutions (corresponding to the different eigenfunctions of the Hamiltonian). 
Equation (2.8a) may be rewritten as 

5j=(kJ+1-kj)L = J2[8(k1-k])-9{ki-kj+1)} + 2irnj]     j = l,..-,N-l  ,  (2.9) 
i = l 

where Uj is an integer. Equation (2.9) comprises (TV - 1) simultaneous equations for 
the set {8j}, from the solution to which the set {kj} may be found once k1 is fixed 
from Eq. (2.8a). One can show that with all n;- > 1 there is a solution to Eq. (2.8) 
with real 8j > 0. 

If we pass now to the bulk thermodynamic limit the ground state will be obtained 
with all tij = 1, since this clearly minimizes E from Eq. (2.6). In this limit, fur- 
thermore, the set {kj} becomes dense over the "Dirac sea" -K < k < K with a 
(non-uniform) distribution f(k) such that Lf(k)dk is the number of k parameters in 
the range k -> k + dk. One can then easily show that Eq. (2.9) reduces to the integral 
equation, 

f(k') JV   ' +27r/(fc)   , (2.10a) -2c dk'- 
_K       c2 + (fc-fc')2 

with the condition that the number of particles is TV given by 

/      dk f(k) = p   , 
J-K 

and the ground-state energy given from Eq. (2.6) by, 

E = L dk k2f(k) 
J-K 

(2.106) 

(2.10c 



It is now convenient to introduce the dimensionless coupling constant, 

l = c/p  , (2.11) 

in terms of which the ground-state energy E may be written as, 

E = Np2e(y)   . (2.12) 

By writing c = K\, k = Kx, f(Kx) = g(x), Eqs. (2.10a-c) become, 

i+2A£da!,A»+t-«oa=2Tg(a!) •       (2-i3a) 

7 /    dx g{x) = A   , (2.136) 

<l)= (x)3/   dx*29(x)   ■ (2.13c) 

We have solved Eqs. (2.13a-c) numerically. The values are tabulated in Tables 1 and 
2 given in later Sections. The method of solution is first to solve Eq. (2.13a) for g{x) 
for a given value of A. Equation (2.13b) then determines 7 = 7(A). This process is 
repeated until the solution for a required value of 7 is obtained. 

The above exact solutions lead to the following analytic results for e in the small- 
and large-7 limits, 

eW7-r0
7~3^71   ' (2-14) 

<y) —► -T  ■ (2-15) 

We also note an interesting feature of the Lieb model, namely that the integral equa- 
tion (2.13a) is easy to solve for large c (or 7), but as c -» 0 (or 7 —► 0) the solution 
becomes increasingly singular. This feature seems to be true of all the exactly soluble 
models, and is the opposite of what one finds from their approximate treatments by 
the general many-body formalisms discussed below, where the weak-coupling limit 
is the simplest regime to obtain correctly but the strong-coupling limit is difficult. 
Finally, we note that, although we do not discuss them further here, the elementary 
excitations of the Lieb model for all c > 0 look like the spectrum of ideal fermions 
(rather than bosons), for reasons to which we have already alluded. 

3. COUPLED CLUSTER METHOD: SUBn APPROXIMATION 

The basic coupled cluster method (CCM) approach is by now well known, and we 
refer the reader to the literature [5-7] for the details of the underlying philosophy and 
its most general features. Instead, we concentrate here on its specific application to 
the bosonic systems of interest. We consider a zero-temperature system comprising 
N bosons in a d-dimensional volume Q, and we shall mostly be concerned with the 
thermodynamic limit where N -f 00, fi -4 00, such that p = N/Q remains finite. 



The basic boson destruction and creation operators are 6(q) and 6f(q) respec- 
tively in the momentum-space representation, with the usual canonical commutation 
relations, 

[6(q),6(q')] = 0;       [6(q), fc^q')] = (21r)
Jfi-l% - q')   , (3.1) 

where 5(q) is the c7-dimensional Dirac delta function.  The zero-momentum term is 
conveniently separated explicitly as, 

Kq) = Kq) + fi-1(27r)d5(q)60;      6(g = 0) = 0   . (3.2) 

Introducing the definition of the Fourier transform of the destruction operator 6(q) 
as, 

6W = fi/^Ie-^x6(q)^6(q) = I|dXe^x6(x)   , (3.3) 

the coordinate-space analogue of the boson destruction operator is, 

6(x) = 6(x) + b0   . (3.4) 

The two-body potential term in the many-body Hamiltonian of Eq. (2.1) may be 
written quite generally in second-quantized form as, 

V=2wJdx3J dx^(x3, X4)6t(x3)6t(x4)6(x4)6(x3) 

= ^/j^«(34)^(3)6^(4)6(4)6(3)   , (3.5) 

where v(34) = v(x3, x4) = v(x3 - x4) and b(i) = 6(x;), and in a notation where, 

/'"/...n
/(1'"n)-^/<fXl'"/CfXn/(Xl''"'Xn)   ' (3-6) 

The exact ground-state wave function |¥) of the many-body Hamiltonian H is 
now written in the general CCM form, 

l*) = es|$)   , (3.7) 

in terms of an exponentiated correlation operator S and some suitable model state 
I*}. For bosons we choose |§) to be the normalized zero-momentum condensate, 

|#) = (tf!)-*(&S)"|0>;      ($|$) = 1   , (3.8) 

in terms of the bosonic vacuum state |0), 

60|0) = 0 = 6(q)|0)   . (3.9) 

The correlation operator 5 may be decomposed into its n-body partitions, 

N 

S = Y1S"   • (3.10) 
n = 2 



where Sn may be expressed in the coordinate-space representation as, 

Sn = h J • ' ' £,..„ 5"(12 • • • ")*t(l)5t(2) • • • V(n)bl   , (3.11) 

where S„(12 • • • n) is a completely symmetric function of its n position coordinates. 
We note that Eqs. (3.7) and (3.8) imply the intermediate normalization condition for 
I*), 

($|¥) = ($|$) = 1   . (3.12) 

It is also convenient to define the momentum-space matrix elements of the operator 
Sn as follows, 

Sn{ciu---,cln) = -Jdxl---Jdxn e^1-*1 •■■ei<l--x-5„(xi,---Ixn)   .     (3.13) 

We note that translational invariance implies that for an arbitrary translational vector 
a, 

5„(xi +a, •■ -,xn + a) = Sn(x1,-- -,xn)   , (3.14a) 

or, equivalently, in momentum-space representation, 

SnCqi,-- -,q„) = Sn(qlr--,qn)(2ir)dQ-16(q1 + --- + qn)   . (3.146) 

For example, in the case n = 2 we have S2(xi,x2) = S2(xi - x2); and we also write 
^(q,-q) = S2(q)-   Finally, we note that translational invariance implies that the 
one-body partition 5i = 0, as assumed in Eq. (3.10). 

By projecting the ground-state Schrödinger equation, 

ff|*) = £|¥>   , (3.15) 

with the non-interacting bra state (<3>|, and with |*) given by the CCM parametriza- 
tion of Eq. (3.7), we readily find that the ground-state energy E is given by, 

E = \N{N ~l)J J «(34)[1 + S2(34)]   . (3.16) 

We may similarly derive an equation for 52(12) by projecting Eq. (3.15) onto the bra 

state (<3>|&J 6(2)6(1). After some algebra we find, 

[*(1) + <(2)]5a(12) + v(12) + (N - 2) j [„(13)S2(32) + t/(23)S2(31)] 

+(N - 2){N -3) J J S2(13M34)S2(42) + v(12)5a(12) 

+{N - 2)52(12) j [v{U) + v{2Z)] - {2N - 3)52(12) / / «(34) 

-(2iV-3)S2(12) J j t,(34)S2(34) 

+(N-2)Jjv(14)+v{24)]S3(124)mN-2)(N-3) J j *(34)S4(1234) = 0 , (3.17) 



where t(i) = -Vt
2, and where we continue to use units where h = 2m = 1. 

In the thermodynamic limit the two terms in the third line of Eq. (3.17) cancel, 
and we may use the translational invariance to write Eq. (3.17) for S2(x) = S2(xi, x2j 
with x = xi - x2, 

-2V2S2(x) + v(x) + 2p f dx'v(x - x')S2(x') 

V J dx1 J dx"S2(x - x>(x' - x")S2(x") + v(x)S2(x) 

-2pS2(x) J dx'v{x')S2(x') + 2p J dx'v{x - x')53(0, x, x') 

+ 1P2 j dx' J dx"v(x' -x")54(0,x,x',x") =0   . (3.18) 

The ground-state energy is given in the same thermodynamic limit as, 

■ü = \pj dxv{x)[l + S2{x)}   . (3.19) 

Equations (3.18) and (3.19) may equivalently be written in the momentum-space 
representation for S2(q) = S2(q, -q) as, 

2q2S2(q) + v(q)[l + pS2{q)f + J ^v(q - q')52(?') 

-W«) / $F<*')SM) + 2PJ (^*(«')53(q, q', -q - q') 

+ 2p2/(SpV(9')54(q'_q,q''~q') = 0   ' (3-2°) 
and 

E -i 
N iP (3.21) 

In Eqs. (3.20) and (3.21) the Fourier transforms v(q) and S2(q) are defined as, 

v(q) = J dx eiclxv(x) ;      S2(q) = Jdx ei(lxS2(x)   , (3.22) 

where the latter is consistent with Eqs. (3.13) and (3.14b). 
We note that Eqs. (3.18)-(3.21) are exact in the thermodynamic limit, but that 

they involve coupling of the two-body correlation coefficients to their three- and four- 
body counterparts. Comparable equations can be derived for the latter, which will 
also involve couplings to higher-order clusters. In order to use the resulting coupled 
set of equations in practice, the hierarchy must be broken by a suitable approximation 
scheme. The most common such scheme is the so-called SUBn scheme in which all 
correlation operators Sm with TO > n are set to zero. It is this scheme upon which we 
focus in the remainder of this Section, and we return in Sec. 6 to discuss alternatives. 
Since we are primarily interested in pair correlations we focus attention on the SUB2 



Table 1. Ground-state energy per particle, E/N - p2e(j), for the 
one-dimensional Lieb model as a function of the dimensionless coupling 
constant 7 = c/p, with p = N/L. We show the exact results and the 
results from the RPA, LAD+SE, and the full COM SUB2 and SUB3 ap- 
proximations. 

7 «exact eRPA «LAD+SE eSUB2 esuB3 

0.1 0.0872 0.0866 0.0895 
0.3 0.236 0.230 - 0.251 - 
1.0 0.639 0.576 0.632 0.750 0.718 
2.0 1.050 0.800 1.136 1.374 - 
3.0 1.352 0.795 1.586 1.940 1.80 
4.0 1.584 0.605 2.000 2.466 - 
5.0 1.769 0.255 2.388 2.963 - 
10.0 2.311 -3.421 4.077 5.155 4.50 
20.0 2.724 -17.961 - 8.743 - 
30.0 2.893 -39.738 - 11.764 9.42 
—y 00 ^ «3.290 4    1 

3?r ' 2(27)* 472 - 

scheme, in which we set 53 = 0 = 54 in Eqs. (3.18) and (3.20). The remaining four 
terms in Eq. (3.20) now represent respectively: (i) the kinetic energy (KE) contri- 
bution; (ii) the term that together with the KE term generates precisely the ring or 
bubble diagrams summed in the random phase approximation (RPA); (iii) the term 
that generates the two-boson ladder (LAD) diagrams for the repeated scattering of a 
pair from out of the condensate; and (iv) the term that generates the self-consistent 
self-energy insertions on the zero-momentum hole lines, namely the condensate po- 
tential (CP) term. 

If we now specialize to the one-dimensional Lieb model introduced in Sec. 2, for 
which v(q) = 2c, the SUB2 approximation can be written from Eqs. (3.20) and (3.21) 

[pS2{z)f 4-2- 

e = 7 + 7: 
dz 

2^ 

PS2{z) + - =0 
7 

pS2(z)   , 

(3.23) 

(3.24) 

in terms of the dimensionless variables e and 7 defined in Eqs. (2.11) and (2.12), 
and a dimensionless momentum variable z defined as q = yipz. The self-consistent 
solution for the ground-state energy e = e(y) in this CCM SUB2 approximation is 
easy to obtain numerically, and results are shown in Table 1.   Both the weak- and 
strong-coupling limits of Eqs. (3.23) and (3.24) can also be found analytically.  We 
readily derive, 

4    3 
esuB2 —+7- x-72   , (3.25a) 

7->0 3-7T V ; 



esuB2 —►     t 
7       . (3.256) 

7-»oo  -yä + 4 v ' 

Whereas Eq. (3.25a) agrees with the exact weak-coupling limit of Eq. (2.14), Eq. 
(3.25b) is not only in strong disagreement with the constant strong-coupling limit 

of \ for the exact result given by Eq. (2.15), but it is clearly unbounded for large 
y. Thus, the CCM SUB2 approximation gives a very poor result in the strong- 
coupling limit. We shall examine the reasons for this in greater depth below. For the 
moment we simply remind the reader that in the limit 7 —» 00, the Lieb potential 
becomes a hard-core interaction in the sense that the wave function must vanish when 
two particles overlap. Indeed, in this one-dimensional case the particles cannot pass 
through or around each other as c —» 00, so that they behave in this limit like non- 
interacting fermions. It is precisely because of this (albeit one-dimensional) hard-core 
property that the Lieb model is of special interest in the present work, since it is well 
known that the SUBn truncation scheme cannot satisfactorily handle such hard-core 
systems [4]. The deficiencies of the SUBn schemes in general, and the SUB2 scheme 
in particular, can thus be well illustrated by the Lieb model, as can the various ways 
for compensating for them that we discuss below. 

Before leaving the SUB2 scheme, however, it is instructive to consider various 
sub-approximations contained within it. The first of these is the random phase ap- 
proximation (RPA), which is contained within the CCM SUB2 scheme by ignoring 
all but the first two terms in Eq. (3.20). In terms of the dimensionless variables 
introduced previously, the RPA equation is,' 

[pS2(z)]2 + (z2 +2) PS2{z)+ 1 = 0  , (3.26) 

with physical solution, 

PS2{z) = -\[z2 + 2-{zi + Az2)^} 

(z4 + 4z2)i - z2 

~     (*« + 4z')4+z»   ' (3'27a) 

Insertion of the RPA expression of Eq. (3.27a) into Eq. (3.24) yields the result, 

4    » 
eRPA = 7 - ^~73   , (3.276) 

which holds for ally. We note that the RPA expression becomes exact in the 7 —> 0 
limit. This is scarcely surprising since this is just the uniform limit in which the ring 
diagrams generated by the RPA dominate the ground-state energy. 

The next SUB2 sub-approximation that we shall consider is the bare ladder sum 
(LAD), in which we retain in Eq. (3.17) only the first, second and fifth terms. Equiv- 
alent^, in Eq. (3.20) we retain only the first and third terms together with the bare 
potential term v(q) from the second term. However, it is trivial to show that the 
solution to Eq. (3.20) is now pS2{z) = -e/yz2, which leads to a divergent expres- 
sion for the energy. This problem is overcome by the inclusion also of the fourth 
(self-energy or SE) term in Eq. (3.20), in order to renormalize the bare kinetic en- 
ergy denominators appearing in the ladder approximation. The resulting (LAD+SE) 
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SUB2 sub-approximation is readily expressed in terms of our dimensionless variables 
as, 

{z2-2e + 2i)pS2{z) + e = 0   , (3.28a) 

with a corresponding ground-state energy from Eq. (3.24) given by the cubic equation, 

8(e-7)3 + eV = 0 ;      e = eLAD+SB   . (3.286) 

In the interesting weak- and strong-coupling limits we obtain, 

eLAD+SE —► 7   , (3.29a) 

eLAD+SE -^ 2(27)5   . (3.296) 

From our discussion to date it is clear that the complete neglect in the SUB2 
approximation of the coupling terms to three- and four-body clusters in Eqs. (3.18) 
or (3.20) for the S2 amplitude is a very poor approximation for the Lieb model at 
intermediate and large values of 7. One might imagine naively that a possible solution 
is to proceed to higher SUBn approximations with n > 2. For example, in the SUB3 
scheme we first derive an equivalent equation to Eq. (3.17) for the S3 amplitude. 
This equation contains coupling terms to the S2, 54 and S5 amplitudes. In the SUB3 
approximation one now solves simultaneously for S2 and S3 by setting 54 and S5 to 
zero. We have also solved the full SUB3 equations (which we do not present here) for 
the Lieb model, and numerical results are also shown in Table 1. The weak-coupling 
limit of Eq. (3.25a) is again reproduced in SUB3 approximation. Although we were 
unable to obtain an analytic form for the energy in the 7 —» 00 limit, the numerical 
evidence strongly suggests that the energy again diverges, although perhaps not quite 
as rapidly as in the SUB2 case. Although the SUB3 results are marginally better 
than the SUB2 results, both approximations are extremely poor. We return in Sec. 6 
to a more detailed discussion of the reasons why, where we also consider new approx- 
imations to improve the CCM performance. Before doing so, however, we discuss two 
alternative many-body formalisms as an aid to our later discussion. 

4. PARQUET THEORY 

We now turn our attention to an alternative method of quantum many-body the- 
ory, namely the so-called planar or parquet theory [13,17-22]. Since it will be particu- 
larly useful for later purposes to draw analogies between the CCM and parquet theory, 
we derive the basic ingredients of parquet theory below in a way which emphasises 
their similarities. We stress from the outset, however, that rather than deriving the 
(two-body) parquet equations in their most general form, we shall make certain sim- 
plifying assumptions concerning the locality properties of the fundamental two-body 
amplitudes that underpin the method. In this way we consider only the so-called local 
parquet approximation (LPA). Our reasons for making the simplification are three- 
fold. Firstly, the derivation of the full parquet equations is sufficiently complicated 
that it has often obscured the underlying simplicity of the method. Secondly, the com- 
plexity of the full equations usually necessitates further approximations in practice. 
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Finally, although our resulting LPA equations are known [19] from making a suitable 
localizing approximation to the full parquet equations, our greatly simplified direct 
derivation of the LPA appears not to have appeared previously in the literature. 

The LPA is conceptually extremely simple since it contains only two principal 
ingredients, namely generalized versions of the two-body ladder diagrams familiar 
from Brueckner-Bethe-Goldstone theory, and generalized versions of the ring dia- 
grams familiar from RPA. As is well known, the ladder diagrams are necessary for 
a proper description of short-range correlations, at least for potentials with strongly 
repulsive cores, whereas the ring diagrams are necessary for describing the long-range 
behaviour. A correct description of the important intermediate-range effects clearly 
requires some degree of mixing of these two elements. The great strength of parquet 
theory, even m its present LPA form, is the very high degree to which this is achieved. 

From our discussion in Sec. 3 it should be clear to the reader that the CCM 
also includes at the SUB2 level of approximation all of the bare ring and bare ladder 
diagrams, as well as many additional diagrams which include a fusion of both elements 
(e.g., ladders in which the rungs are composed of chains of rings; and rings connected 
by ladders of two-body interactions). As we shall see later, however, although a large 
degree of self-consistency is built into the set of rings and ladders iterated together 
in the CCM SUB2 approximation, nevertheless some important terms of this sort are 
still missing, which are present in the LPA. 

Thus, the basic motivation of the LPA is to include the full self-consistent union of 
ring and ladder diagrams. To this end we introduce two new Joca/two-body operators, 
written in the momentum-space representation as W{q) and G(q). They are exten- 
sions of the bare two-body potential v(q), associated with the momentum transfer q, 
which is henceforth represented diagramatically by a dashed line. The new ingredients' 
W(q) and G(q), denoted by wavy and sawtooth lines respectively, are defined to be 
local approximations to the sum of particle-particle (s-channel) irreducible diagrams 
and the sum of particle-hole (^-channel) irreducible diagrams, respectively. We use 
here the standard terminology that a particle or a hole (denoted by a solid line with 
an arrow pointing upwards or downwards, respectively) are defined with respect to 
the non-interacting zero-momentum condensate state of Eq. (3.8). Furthermore, a di- 
agram is said to be particle-particle (or particle-hole) irreducible if it cannot be made 
disconnected simply by cutting two internal particle lines (or one internal particle and 
one internal hole line). 

In terms of Goldstone diagrams, the self-consistent definitions of W(q) and G(q) 
are given in Fig. 1, from which we clearly see that both operators are really nonlocal 
We also introduce two related functions G(q) and W(q) which are defined exactly as 
m Fig. 1 except that the bare potential (driving) term v(q) is replaced respectively 
by W(q) in the corresponding equation for G(q) and by G(q) in the corresponding 
equation for W{q). Thus, 

G(q) = G(q)-v(q) + W(q)   , (4.la) 

W(q) = W(q) - v(q) + G(q)   , (4.16) 
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G(q)s 

W(q)s 

Fig.   1.   The  self-consistent   diagrammatic definitions  of the 
amplitudes G(q) and W(q). 

LPA 

from which we have trivially the manifest self-consistency relation, 

G(q) = W(q)   , (4.2) 

which demonstrates the completely symmetric fashion in which the particle-particle 
and particle-hole channels are treated in the LPA treatment. 

Before proceeding we note that the LPA makes no provision for any self-energy 
insertions which dress the bare propagators, although these can be included in full 
parquet theory. Furthermore, the above analysis can also be extended to higher 
orders by replacing the bare potential term v(q) in the two equations represented 
diagramatically in Fig. 1 by a larger class of fully irreducible diagrams. For present 
purposes, however, we consider neither of the above extensions. 

We now introduce our final LPA amplitude S(q), which is defined as, 

sb) = -±A*) = -^*M (4.3) 

By recalling that we are using units in which h2/2m = 1, we see that the term 
(-2?2)-1 in Eq. (4.3) is simply the bare two-particle/two-hole energy denominator. 
Equation (4.3) has the trivial Fourier transform, 

G{r) = W(r) = 2V25(r) (4.4) 

From Fig. 1 and from Eqs. (4.1)-(4.3), we may express the equation determining S(q) 
in either of the two forms represented in Fig. 2, where the solid horizontal line now 
represents the energy denominator explicit in Eq. (4.3). They are easily seen to have 
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Fig. 2. The equations for the basic LPA amplitude 5(5). 

the algebraic forms, 

-2q'S(q) = W{q) + J ^ydW(q - q')S(q')   , (4.5) 

-2q2S(q)=G(q)[l+pS(q)]2 
(4.6) 

We note the strong similarity between Eq. (4.6) and the equation obtained by 
retaining only the first two terms in Eq. (3.20), where this latter approximation exactly 
generates the RPA, as described in Sec. 3. Equations (4.1a), (4.3) and (4.6) readily 
yield the relation, 

W(q) = v(q) + 2C(q)   , (4.7) 

C(q)^-q2
PS>(q)[2 + pSW 

'[l + PS(q)]>    ■ (4'8) 

Finally, the insertion of Eq. (4.7) into Eq. (4.5) gives the final equation to determine 
the basic LPA amplitude S(q), 

2q2S(q) + v(q) + J ^v(q - q')%') + 2C(q) 

+2/(2^C(q-q')5(9') = 0  • (4'Q) 

Once S(q) is determined from Eqs. (4.8) and (4.9), the ground-state energy is finally 
computed from the analogues of Eqs. (3.16) and (3.21), 

- = $pjdxv(x)[l + S(x)] = \p  v(q = 0) + J -^v(q)S(q) (4.10) 

We note that the final LPA equations encapsulated in Eqs. (4.8)-(4.10) are identical 
to those derived from the full parquet theory [19] by making the localizing approxi- 
mation made here. Before applying the LPA to the Lieb model, we make one further 
point of considerable importance for later discussion, namely that the LPA presented 
here is extremely closely related to the optimized Jastrow hypernetted chain (JHNC) 
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approach. Indeed, the diagrammatic content of the two approaches is identical, al- 
though the weighting factors of some mixed diagrams do differ [19]. Both methods 
sum all pure ring and pure ladder diagrams (i.e., those formed with links and rungs 
respectively equal to the bare two-body potential) with the correct weighting how- 
ever. Further important work in this area [20] has shown that the optimized JHNC 
approach is actually identical to a similar (but different) local form of exact parquet 
theory to that considered here. 

We now apply the LPA to the Lieb model of Sec. 2. In terms of the previously 
introduced dimensionless coupling constant 7 and energy e, and a dimensionless mo- 
mentum variable z with q = yipz, it is not difficult to show that the LPA equations 
(4.8)-(4.10) can be written in the form, 

/CO        1    / 

-£-C(z - z')S(z') = 0   , (4.11a) 
CO     ^ 

C(z) = -1Z->p*S\z)l2 + pS^] (4 llb] y !        7    F      { ;[1+P5(z)]2   ' V-Ubi 

if     dz 
e = y + y*J      ^pS(z)   , (4.11c) 

which may be compared with the corresponding CCM SUB2 equations (3.23) and 
(3.24). We have solved Eqs. (4.11a-c) numerically and the results are tabulated in 
Table 2. We observe the excellent agreement with the exact results over the whole 
range of coupling constants. 

In the weak-coupling limit it is not difficult to show that, 

eLpA
7-ro7-^! • (4-12) 

in agreement with the exact result of Eq. (2.14). Furthermore, to this accuracy, one 
may shown that the last term in Eq. (4.11a) does not contribute. If we denote the 
sub-approximation to the LPA where the last term in Eq. (4.9) or (4.11a) is omitted 
as LPAa, the resulting set of equations (4.11a-c) can be solved exactly. We find, 

eLPAa = "{1- 3H-) ~e— = -r + g - £ (1 + gr)*  •    (4.13) 
This LPAa sub-approximation is itself interesting since it turns out to be identical 

to a sub-approximation to the NIEA of Lieb discussed in Sec. 5 As here, the motivation 
behind the Lieb sub-approximation [23,25] was to keep just those terms needed to 
obtain the correct second term in the small-7 expansion for the energy. As was 
pointed out by Lieb [25], Eq. (4.13) actually gives a quite good approximation to e 
for all values of 7. In particular, unlike the CCM SUB2 approximation, it approaches 
a constant value for large 7, 

9TT
2 

eLPAa7"^l6"   ' (4-14) 

which may be compared with the exact value from Eq. (2.15). Finally, before turning 
to Lieb's NIEA method, we remark that the full LPA result for the energy also 
approaches a constant value as 7 -+ 00. Although we have been unable to calculate 
this limit analytically, the numerical solution shows that 
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Table 2. Ground-state energy per particle, E/N = p2e(j), for the one- 
dimensional Lieb model as a function of the dimensionless coupling con- 
stant 7 = c/p, with p = N/L. We show the exact results and the results 
from the local parquet approximation (LPA) and its sub-approximation 
(LPAa), Lieb's nonlinear integro-differential equation approach (NIEA), 
and the CCM approximations JSUB2 and HC-JSUB2. 

^exact «LPA 6LPAa 6NIBA 6JSUB2 6HC-JSUB2 

0.1 0.08723 0.08725    0.08745 
0.3 0.2361 0.2363      0.2379 
1.0 0.6392 0.6417      0.6562 

0.08731 - 0.08765 
0.2364      0.2453       0.2387 
0.6382      0.7042       0.6571 

3.0 1.352 1.374 1.461 1.329 1.692 1.439 
10.0 2.311 2.433 2.843 2.145 3.886 2.649 
30.0 2.893 3.150 4.129 2.493 7.289 3.535 
100.0 3.162 3.498 5.009 2.593 12.88 4.013 
300.0 3.246 3.606 5.355 2.615 20.11 4.173 
1000.0 3.277 3.645 5.491 2.622 31.33 4.232 
—► CO ^ «3.290 3.66 9»2  ^ 

16    ~ 5.552 2.63 « 3.2-yi 4.26 

eLPA  — 
7-* 

- 3.66 
OO 

? (4.15 

vhich is only 11% higher than the exact value of ^-. 

5. LIEB'S NONLINEAR INTEGRO-DIFFERENTIAL EQUATION 
APPROACH 

Lieb's analysis of the imperfect Bose gas [26,27] begins by defining the exact n- 
body ground-state subsystem amplitudes characteristic of the configuration-interac- 
tion method (CIM). In the same notation as that adopted in Sec. 3, these are defined 
in terms of the ground-state iV-body wave function, \P = *(xi, • • •, xjy), as, 

lpn{\- ■ -n) = V'nCxi.-'-.Xn) 

= /•••/ *(xi,--,Xjv) //••■ /      9(xu..;Xlf)   .       (5.1) 

Integration of both sides of the iV-body Schrödinger equation (2.2), with a Hamilto- 
nian comprising a sum of one-body kinetic energies and a potential energy term given 
by Eq. (3.5), yields the exact relation, 

E=\N{N-\)j J «(12)^(12)  . (5.2) 
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To find an equation for ^(12), the Schrödinger equation is integrated over all variables 
except 1 and 2. This yields, 

[t(l) + i(2) + *(12)ty2(12) = £ty3(12) - 2(N - 2) / ^3(123>(23) 

-\{N-2){N-Z) J J V4(1234>(34) = M(12)   , (5.3) 

which is formally equivalent to the CCM Eq. (3.17). 
Following Lieb, we now make a careful analysis of the quantity M(12), realiz- 

ing that although this quantity is expected to be of order unity, its first term in 
Eq. (5.3) scales like the particle number N. We must therefore be very careful in 
taking the thermodynamic limit. (Indeed, one of the great attractions of the CCM 
parametrization of Eq. (3.7) is that this cancellation of O(N) terms is automatically 
done properly.) By using the cluster property that ^3(123) must factorize when par- 
ticle 1 is far removed from particles 2 and 3, Vs(123) -► P(1)Q(23), and the first of 
the two relations, 

^3(123) = V2(23) ;    yy V4(1234) = V2(34)   , (5.4) 

which follow immediately from the definition of Eq. (5.1), it follows that to leading 
order in the volume Q or particle number N, P = 1 and Q = r/>2. Similarly, as particles 
1 and 2 become far removed from particles 3 and 4, we find -^4(1234) —► ^2(12)^2(34). 
By inserting these leading asymptotic forms into Eq. (5.3), and by making use of Eq. 
(5.2), we verify that M(12) -► 0 as the separation of the two particles tends to infinity. 

In order to proceed we now need to obtain the leading corrections to the above 
asymptotic forms for Tp3 and ^4- Lieb was guided in his further analysis by his 
unproven assumption that, at least at low enough densities, the functions if>3 and ip4 

would have a superposition form akin to a Jastrow-type product, 

tf3(123) = *[l + u/(12)][l + ii/(13)][l +ii/(23)]   , (5.5) 

4 

^4(1234) =t  H [l + z(ij)]   . (5.6) 
t<j=i 

The constants s and t and the functions w and z may now be determined from the 
relations (5.4). By writing ip2 as, 

lfe(12) = [l + E(12)]/(l + S);    6=yy S(12)   , (5.7) 

we see that S(xi,x2) = E(xx - x2) -+ 0 as |xi - x2| -* oo. Also, 8 -► 0 in the bulk 
limit, f2 —► oo. We readily find, 

a = i-zs + o(n-1) , 

t = l-6S + o(Q-1)   , 

w(12) = E(12) - ^2(12) j E(13)E(23) + o{Wl)   , 
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z(12) = E(12)-2^2(12) /s(13)S(23) + o(fi-1)   , (5.8) 

where the second term in each case is 0(fi_1), and the standard notation o(x) means 
that the quantity x is of order lower than x. The reason for retaining the terms 
of order ft-1 in Eq. (5.8) is, as explained above, that the first and third terms in 
M(12) of Eq. (5.3) are both of order N. They cancel to this order, leaving a residue 
of order unity. The sources of this residue are threefold in the last term of M(12), 
namely: (i) that ^(1234) goes asymptotically to ^(12)^(34) + 0(fi_1) for particles 
3 and 4 far removed from particles 1 and 2; (ii) the contribution to the integral when 
particle 3 and/or 4 is close to particle 1 and/or 2; and (iii) the presence of the factor 
(N — 2)(N-3) rather than the corresponding N(N -1) in the expression (5.2) for E. 
By inserting Eqs. (5.5)-(5.7) into Eq. (5.3), and passing to the bulk thermodynamic 
limit, we obtain the final form of the Lieb NIEA approximation, 

[t(l) + t(2)]E(12) + u(12)[l + £(12)] + 2JV[1 + E(12)] / E(13)[l + E(23)]t>(23) 

+N2{1 + £(12)] J J £(13)£(24){1 + E(14) + £(23) + ±£(14)£(23)} 

x[l + E(34)H34) = 0   . (5.9) 

By applying Eq. (5.9) to the Lieb model of Sec. 2 we readily find, 

d2H(x) 
 dx2    + peSW + 2f>    f1 + S(a:)]E(a:) + P ell + S(x)] 

/°° foo »oo 
dyT.{x - y)E(y) + 2 /      dyX(x - y)X2(y) + \ /      dyY,2{x - y)£2 

■oo J-oo J-oo (y) 

= 0   ,      (5.10a) 

e = 7[1 + £(z = 0)]   . (5.106) 

We have solved Eq. (5.10) numerically after Fourier transformation into the momen- 
tum representation. The results are shown in Table 2. For small values of j (and 
hence e) we expect E(x) to be small, and it is thus convenient to define new variables 
x = e~is/p and £(e~ %s/p) = e'<f>(s). We readily find, 

d2^ 

' ds2 + 8{s) + {l + e^(s)] J2^(s) + j^ dt<j>{s - t)4>(t) 

/oo «oo \ 
dt4>{s-t)4,2{i) + \e dt<f>2(s-t)<t>2(t)\=0   , (5.11a) 

-oo J — oo J 

e = 7[1 + e*4>{s = 0)]   . (5.116) 

Thus, we see that to obtain <j>(s = 0) to leading order, we may safely neglect the last 
two terms inside the brace in Eq. (5.11a). In this way we arrive at the equation, 

/oo 
dt4>{s - t)<f>{t) = 0   , (5.12) 

•OO 

d?l 
' ds2 
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which is readily seen (upon Fourier transformation) to be precisely the same sub- 
approximation to the NIEA as the sub-approximation LPAa to the LPA discussed 
in Sec. 4. Thus, the NIEA gives the correct weak-coupling expansion of Eq. (2.14). 
Further, just like the above (LPAa) sub-approximation to it, the full NIEA also gives 
a constant value for e as 7 -► 00. This limiting value is determined numerically to be 
approximately 2.63, or about 20% lower than the exact value of ^. 

6. COUPLED CLUSTER METHOD: ALTERNATIVE 
APPROXIMATIONS 

It is now of considerable interest to revisit the CCM, and particularly its SUBn 
approximation scheme, in the light of the LPA and NIEA techniques already discussed. 
We first recall the exact Eq. (3.17) for the CCM correlation function S2l where, in 
the bulk thermodynamic limit, the two terms on the third line cancel each other, and 
the remaining terms may be represented diagrammatically as in Fig. 3. It is clear by 
iteration that, as we have already noted, the SUB2 approximation (in which S3 and 54 

are set to zero) generates all of the pure ring and pure ladder diagrams, as well as many 
mixed diagrams composed of both ring and ladder elements, such as that illustrated 
m Fig. 4(a). Nevertheless, there are still many such mixed diagrams which are not 
present at the SUB2 level of the CCM. Examples are those in Figs. 4(b) and 4(c), 
which are only contained in the CCM by the inclusion of S3 (and hence which would 
only appear in SUBn approximations with n > 3). By contrast, Figs. 1 and 2 clearly 
show that all three diagrams in Fig. 4 are generated in the LPA. There are many 
other such diagrams present in the LPA but absent in CCM SUB2 approximation. 
Conversely, by neglecting only the self-energy insertions (which merely renormalize 
the bare propagators), all diagrams occurring in SUB2 approximation also occur in 
the LPA. 

The differences between the LPA and CCM SUB2 approximations can also be 
discussed more formally, by examination of the structure that each method assumes 
for the ground-state wave function. In the SUB2 approximation we have 

ii     A, 

CKD 

^ 

-J+W + 

ITO 
Fig. 3. Diagrammatic representation of the exact equation (3.17) for 

the CCM amplitude 52 in the bulk thermodynamic limit. 
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t:f ![j 
(a) (b) (c) 

Fig. 4. Three Goldstone diagrams which are generated in the LPA 
scheme. Note that only diagram (a) appears in the CCM SUB2 expansion. 

|*)suB2 = exp(52)|$)   , (6.1) 

where S2 is a two-body operator with the definite structure that it contains only 
creation operators with respect to the model state |$). Thus, any two S2 operators 
commute. Conversely, in a Jastrow-type approach, such as the LPA, the ansatz for 
the wave function has the form, 

|¥)j«.trow=exp(C7-2)|#) (6.2) 

where U2 is now a general two-body operator, which may have both creation and 
destruction pieces with respect to |<£). Hence, two U2 operators do not, in general, 
commute. A consequence is that the Jastrow wave function of Eq. (6.2) is a much 
more complex object than its CCM SUB2 counterpart of Eq. (6.1). 

Expressed in terms of the Goldstone diagram formalism used here, in which time 
is taken to run in the upwards direction, S2 is thus a "bottom amplitude" in the 
sense that the four legs of this four-point function always emerge from the top of 
its corresponding diagram. This is simply a reflection of the fact that S2 can only 
create particles and holes from the vacuum state |$) implicit in the diagrams. By 
contrast, U2 can be both a "middle amplitude" and "top amplitude" as well as a 
"bottom amplitude," as is evident from the representations of the elements W, G 
and S in Figs. 1 and 2. Thus, the four legs of the U2 amplitude may emerge from 
either the top or the bottom of its diagrammatic equivalent. It is clear that the fact 
that S2 is purely a bottom amplitude implies a considerable restriction on the class of 
diagrams obtained by iteration of its defining equation, by contrast with the Jastrow- 
type methods. For example, in the LPA scheme, we see that we can build onto every 
part of the parquet diagrams, and not just the bottom as in the CCM SUB2 scheme. 

For all of these reasons it seems likely that the SUBn approximation scheme may, 
for many purposes, be too drastic. Thus, recalling that Eq. (3.17) (and see Fig. 3) 
is exact, we turn our attention to alternative truncation schemes in which the higher 
5„ amplitudes are not neglected entirely, but are instead represented in some self- 
consistent fashion in terms of the lower amplitudes retained. One obvious way of 
doing this is via the so-called super-SUBn approximation discussed by Robinson [34]. 
For example, at the super-SUB2 level, we approximate for S3 and 54 in the two-body 
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equation (3.17) by reference to the corresponding CCM equations which determine S3 

and 54. In the three-body equation we retain only those terms which include either 
S2 or S3 alone, or which are simplefactorizable products of S2 and S3. We thus derive 
an approximation for S3 in terms of S*2. A similar treatment of the four-body CCM 
equation gives 54 in terms of S2 ■ 

Although we expect that the super-SUBn scheme is likely to be one of the most 
accurate available, we do not discuss it further here. Instead, for present purposes 
we choose to develop an alternative, namely the so-called Jastrow SUB2 or JSUB2 
scheme, which is motivated by the previous discussion of the LPA and NIEA ap- 
proaches, and in which we employ a Jastrow-like decomposition of the amplitudes 53 

and 54. 

We thus attempt to equate the CCM and Jastrow forms of the wave function 
parametrization, 

/ N       \ N 

*(l---JV) = (l...tf|exp    £S„    |$)=   H {l + a(zj)}   . (6.3) 
\n=2       ) i<j=l 

In fact, we only need to assume the product form for the specific cases N = 3 and 4. 
By choosing N = 2, 3, 4 respectively in Eq. (6.3) we find the JSUB2 approximations, 

*2(v) = 1 + S2{ij) = 1 + a(ij)   , (6.4a) 

¥3(yfc) = l+S2{ij)+S2{ik)+S2(jk)+S3{ijk) 

= 1 + a(ij) + a{ik) + ar(jk) + a(ij)a(ik) + cr(ij)cr(jk) 

+a(ik)a(jk) + cr(ij)a(ik)a(jk)   , (6.46) 

¥4(y *0 = 1 + S2(ij) + S2(ik) + S,(il) + S2{jk) + S2{jl) + S2(kl) 

+S2{ij)S2(kl) + S2(ik)S2(jl) + S2(il)S2(jk) 

+S3{ijk) + S3(ijl) + S3{ikl) + S3(jkl) + S^ijkl) 

= [l + <r{ij)][l+a(ik)}---[l + a(kl)]   . (6.4c) 

Equations (6.4a,b) clearly yield the JSUB2 approximation for S3, 

S3{ijk) = a(ij)a(ik) + a(ij)<r(jk) + a(ik)a(jk) + <r(ij)a(ik)a(jk)   . (6.5) 

Similarly, Eq. (6.4c) yields the JSUB2 approximation for 54 in terms of S2, which we 
do not write down here due to its length. It includes 16 terms involving products of 
3 S2 functions, 15 involving products of 4 S2 functions, 6 involving products of 5 S2 

functions, and one term containing a product of all 6 S2 functions. 
By inserting Eq. (6.5) and its counterpart for 54 into Eq. (3.17) we arrive at the 

JSUB2 approximation. After a considerable amount of algebra, it may be written in 
the form, 

[<(1) + *(2)M12) + v(12)[l + <7(12)] + 2N[1 + a(12)] J <r(13)[l + <r(23)]^(23) 

+7^2[1 + a(12)] J J  <T(13)<T(24){1 + <T(14) + «7(23) + f <T(14)<7(23)}[1 + <r(34)]t;(34) 
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+N2a{12) J J <r(13)cr(14)[l + <r(34)M34) 

+2N2a(12) j j ff(13)o-(34)t;(34) 

+N2[l + a{l2)]J j <r(13)<r(23)o-(34)t;(34) = 0   . (6.6) 

It is interesting to compare Eq. (6.6) with its NIEA counterpart of Eq. (5.9). We see 
that every term in the NIEA method is also contained in the CCM JSUB2 approach, 
and the latter also contains some additional terms. 

By applying Eq. (6.6) to the Lieb model of Sec. 2 we find, 

d2<r(x) 
 aV    + pe5^ + 2p e[l + ^M*) + P3e[l + <T{X)] 

* \j     dy<r(* - vMv) + 2 J      dy<j(x-y)a2{y) + \ j     dya2{x-y)a2{y)\ 

/CO 

dya2(y) 
-OO 

+p3(e-y)^2a(x) j^    dya{y) + [1 + a{x)} J     dycr(x - y)a(y)\ = 0   ,      (6.7a) 

e = 7[1 + cr(x = 0)]   . (6.76) 

We have solved Eq. (6.7a) numerically after Fourier transformation into the momen- 
tum representation and the ground-state energy results are shown in Table 2.   For 
small values of 7, the analysis of Eq. (6.7) proceeds exactly as for the NIEA, and 
we find that the JSUB2 approach gives the correct weak-coupling expansion of Ea 
(2.14). 

Conversely, in the large-7 limit, the JSUB2 approximation, unlike its NIEA sub- 
approximation, does not converge to a constant value for e, like the exact result of Eq. 
(2.15). Instead, from the numerical results, it appears to diverge as yi. The reason for 
this difference between the NIEA and JSUB2 results can clearly only lie in the terms 
in the last three lines of Eq. (6.6) or, equivalently, the last two lines of Eq. (6.7a). 
Each of these terms emanates from the Jastrow decomposition of the four-body cluster 
term 54 in the exact CCM two-body equation (3.17), and we might wonder why there 
is such a large difference between the two sets of results. The reason is simple. It 
stems from the hard-core nature of the Lieb model at strong coupling. For hard-core 
systems it is well known that for a perturbative or diagrammatic treatment to give 
meaningful results, the whole treatment must be formulated in terms of complete 
G-matrices. Equivalently, no bare interaction term v must appear in the formulation 
except in conjunction with an infinite sum of particle-particle ladders. 

It is clear from its construction that the LPA possesses the G-matrix property, 
which partly explains why the method is so successful in treating the Lieb model, 
especially at large 7. Conversely the CCM SUB2 approximation does not possess this 
property. This is easily seen from Fig. 4. Thus, whereas diagrams like that in Fig. 
4(a) do appear in SUB2 approximation, those like Fig. 4(c) do not. This drawback of 
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the SUB2 scheme, and indeed the whole SUBn hierarchy is well known [2,4]. Indeed, 
an alternative truncation scheme, the so-called hard-core restricted SUBn (or HC- 
SUBn), has been used in the nuclear physics context to circumvent this problem. In 
this scheme only those terms in the SUBn equations are retained which when iterated 
together lead only to diagrams which are still contained in the original SUBn class 
when each bare interaction v is replaced by a ladder-summed G-matrix, and when 
the relative time-orderings of the remaining interactions are kept fixed. Clearly, the 
HC-SUB2 is just the LAD approximation discussed in Sec. 3, which does not converge 
for the Lieb model. Furthermore, even higher order HC-SUBn schemes will not take 
proper account of the ring diagrams. 

Let us turn finally to a diagrammatic interpretation of the JSUB2 scheme. The 
most important thing to note now is that although S2 as it appears in ordinary SUBn 
calculations is purely a bottom amplitude, this is not true any longer for its JSUB2 
counterpart a. This is a direct consequence of the Jastrow-like superposition ansatz 
for S3 and 54. For example, the terms /3er(13)o-(23)v(23) and cr(12) f3 <T(13)V(23) 

which appear in the second term in Eq. (6.6) may now be represented diagrammat- 
ically as in diagrams (a) and (b) respectively of Fig. 5. Upon iteration, these terms 
clearly generate, for example, the diagrams (c) and (a) respectively of Fig. 4. By sim- 
ilarly iterating together other terms of the JSUB2 equation, we generate many more 
diagrams which are absent from the SUB2 scheme. However, the complete JSUB2 
scheme does not possess the G-matrix property, since for it to do so each bare in- 
teraction v(ij) would need to occur in conjunction with the product v(ij)a(ij) and 
vice versa, i.e., every term involving v(ij) in the defining equation should contain a 
factor [1 + a(ij)}. However, it is clear that the terms in the last two lines of Eq. (6.6) 
do not possess this property. Dropping these terms thereby results in the so-called 
HC-JSUB2 approximation, to which the NIEA is still a sub-approximation. The HC- 
JSUB2 results for the Lieb model are also shown in Table 2. They correspond to 
solving Eq. (6.7a) with the last line omitted. We observe that, as expected, the en- 
ergy e now approaches a constant value in the 7 -+ 00 limit. This value is about 30% 
higher than the exact value. 

(a) (b) 

Fig. 5. Diagrammatic representation of two terms from the JSUB2 
equation (6.6). 
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7. DISCUSSION AND CONCLUSIONS 

The incorporation of two-body correlations into the treatment of many-body sys- 
tems has been attempted many times in the past within different contexts and as part 
of different more general microscopic theories. Most modern treatments have realized 
that the dual incorporation of ring and ladder terms is vital for an accurate treatment, 
but as we have seen their self-consistent union is an extremely subtle matter. Differ- 
ent treatments and different formalisms achieve this union to quite different degrees. 
In many respects the maximal union has been achieved through parquet theory. This 
is hardly surprising, since it is the primary motivation for (two-body) parquet the- 
ory. Essentially the same degree of mixing is also achieved in the Jastrow variational 
framework, at least via a localized version of optimal hypernetted chain theory. 

Later formal developments of parquet theory have included a possible extension 
to fermionic systems [35,36]; the inclusion of three-body terms [37]; and parquet 
perturbation theory for bosons [21] as an expansion in the difference between the 
exact and approximate propagators, in order to improve systematically upon the 
local parquet equations. However, despite what is now a rather large corpus of formal 
developments, the parquet method has not yet been widely applied and tested. This 
is undoubtedly partly due to the rather complicated derivation and nature of the full 
parquet equations, before any localizing approximations are made. In this respect we 
hope that our own rather simple and direct derivation of the LPA will prove useful. 
In particular, it would be extremely useful to repeat the derivation given here for 
fermions, and we hope to report on this extension elsewhere. 

By contrast to parquet theory, the CCM has been very widely applied in physics 
and chemistry (and see Ref. [6] for a recent review). We have seen how some of the 
deficiencies of the standard SUBn truncation of the CCM equations, that we have ex- 
plored in detail here, can be remedied by attempting to mimic within the CCM some 
of the successes of the LPA and variational treatments employing Jastrow trial wave 
functions. In particular, we have shown how in the JSUB2 scheme, instead of setting 
the matrix elements of the higher-order partitions S3 and 54 of the correlation oper- 
ator to zero, as in the standard SUB2 scheme, they have been themselves represented 
as functions of the S2 matrix elements. The JSUB2 scheme essentially allocates them 
the values they would have if the exact wave function were precisely of Jastrow type. 
We also note that such an approach can be systematically improved upon by enlarging 
the Jastrow trial wave functions to the more general Jastrow-Feenberg type. In this 
way one could derive a general JSUBn scheme, in principle. The success of the JSUB2 
scheme also encourages us to explore further the more natural super-SUBn extension 
of the SUBn scheme which we have already mentioned. In this scheme one does not 
need to make appeals to other approaches for guidance on how to approximate the 
higher-order partitions Sm with m > n, which are otherwise set to zero in a standard 
SUBn scheme. 

Finally, we note that the comparison made between the methods discussed here 
has focused on the Lieb model interaction. One reason has been that due to its 
short-range nature it is a particularly sensitive probe in the strong-coupling limit of 
methods which do not possess the G-matrix property. Nevertheless, a similar com- 
parison using other potentials would also be useful. An obvious example would be 
the Coulomb potential, and we shall report comparable results using this potential 
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elsewhere. 
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Macroscopic properties of a many-body system in a random external potential 
are actively studied both in theory and experiment throughout the world. Under cer- 
tain conditions such systems can exhibit an universal behavior independent on the 
particular structure of the random potential at microscopic distances. For example, 
all glasses show the linear temperature dependence of the specific heat due to the 
constancy of the density of states of the two-level excitations [1]. The Bose-Einstein 
condensation in a random potential may also possess quite unusual features [2,3]. 
For that reason superfluidity in these systems can manifest itself in a very unusual 
way. In this paper we will consider the thermodynamic properties of a many-particle 
Bose fluid with a finite condensate fraction in a random potential. If the number 
density of potential wells is not too high one can expect that the main contribution 
to the thermodynamic features is provided by shallow energy levels. This enables one 
to define specific elementary excitations in the system and calculate all macroscopic 
characteristics in terms of the corresponding density of states. Under these conditi- 
ons a quantum Bose fluid can simultaneously-exhibit the features pertaining to glassy 
materials. Liquid helium isotopes in a porous medium can provide a direct experi- 
mental realization of the system in question. Instead of formulating the "general 
principles" of the approach we will begin with some experimental data on quantum 
3He-4He solutions, which will help us understand the most significant statements of 
the theory. 

A 3He-4He superfluid mixture in a porous medium can exhibit unique macro- 
scopic properties which are quite different from the behavior in bulk. Recent mea- 
surements of Kim, Ma, and Chan on the 3He-4He mixture in aerogel [4] revealed an 
unusual phase diagram that possesses a large number of very exciting features. In 
contrast to the phase diagram of the solution in bulk [5]-[6] the coexistence curve 
of the mixture in aerogel does not have a tricritical point and demonstrates a finite 



strands. 
In the very dilute limit, N4 —> 0, the number of 4He particles (per unit volume) 

off the condensate is given by the obvious equation: 

(0)      (MT)^  f~       zWdz [Aj+£<0) 

^4    ~ V/Wh3 Jo    exp(a + z)-l ' " ~ T        ' { ' 

which has the following asymptotic solution at high temperatures, a << 1: 

^2irh2 ^ = ffiyym-^(M±^)112].        <3) 

Here ((n) is the Riemann function. The A-hne on the phase diagram is then des- 

cribed simply by putting Ar
4
(0) = N4 and T = Tc (where To is the Bose-Einstein 

phase transition temperature) in Eqs.(2)-(3). With the same accuracy Eq.(3) can be 
rewritten to explicitly calculate the critical temperature: 

47T1/2   /|A| + £j°\1/2l 
Tc~Tc   L1 + 3C(372jl      T(o)      J     J' (4) 

where T^. is the critical temperature of the Bose-Einstein condensation in a perfect 
(non-interacting) gas. Notice that the transition temperature in the case in question 

is higher than T^\ In the opposite limiting case, a » 1, the number of the off- 
condensate particles and the equation of the A-curve take the form: 

<' = (Uf-(-^)- - I      exD I =- 
<2-K% 

The total energy, £4   , of the 4He specie is given by the following expression: 

£^-    \MN     y(0)) I (MT)3/2  r       z3/2d2 lAl + ^0)       (5) £4    --\A\(N<-M4   )+2lM*Jo    qxp(a + 2)_i'a-        T        '    (5) 

which reduces to the power-law dependence at high temperatures, a << 1: 

4" - -|A,(* -*<•>) + \T{^[C(5/2) + *%- (^f ].  (a) 

At low temperatures, a » 1, the thermal corrections in the total energy are, of 
course, exponentially small, £(

4
0) = -|A|(iV4-^'4

(0)) + (3/2)A'4
(0)T, where the number 

of thermally activated particles, vV4   , is determined by Eq.(5). 
Indeed, the 4He states in continuum are not stable. Strictly speaking, it means 

that the 4He component is not in equilibrium and at finite temperatures after a long 
enoiigh period of time the 4He particles will "evaporate" from their localized states 
(exactly like the atmosphere around the Earth). Nevertheless, this does not prevent 



us from considering the local equilibrium and taking into account the continuum 
states when calculating the thermodynamic properties. 

Such a simple "one level theory" certainly does not work either at higher densities 
of 4He or in the presence of more than one localized states. It should be emphasi- 
zed that the Bose-Einstein condensation of the 4He impurities into the quantum- 
mechanical state with the lowest energy is accompanied by a real "condensation" and 
spatial localization of the 4He quasiparticles within the potential well. As long as the 
number of captured 4He quasiparticles is not too large, so that the mean free path, 
d ~ (iV4ro)_1, calculated for the 4He-4He collisions is larger than the characteristic 
localization length, L ~ ^/(M|A|)1//2, the problem under consideration reduces in 
fact to the question of how a one particle moves in a given potential box. However, 
when the concentration of 4He accumulated in the potential box becomes higher, the 
situation drastically changes. If the lowest energy level A is deep enough, the locali- 
zation length, i.e. the "effective size" of the box, is very small. For that reason, if the 
second particle were placed at the same level A, a strong repulsion-core interaction 
between the particles would come into effect and result in a big increase in the total 
energy. This effect makes the second particle occupy a higher level or a level with the 
same energy but located in another potential well if available. A shallower energy 
state possesses a larger localization length and can adopt a bigger number of 4He im- 
purities. When adding 4He atoms one by one and thus increasing the concentration, 
the repulsive interparticle interaction at short distances will cause the particles to fill 
upper levels. Inasmuch as the typical geometric scale of the randomly distributed 
strand network in aerogel is of the macroscopic order of magnitude (a large open 
volume fraction of about 98% [4]) one can expect the total number of potential wells 
to be much less than iV4 at all reasonable macroscopic concentrations. Thus we end 
up with the picture that as a result of the Bose-Einstein condensation at T = 0 
all deep-lying states are filled with just a few particles each. Since the number of 
such states is not large, their contribution to the thermodynamics is negligibly small. 
On the contrary, the shallow levels may be populated with a macroscopic number of 
4He particles, and, consequently, they provide the main contribution to the thermo- 
dynamic properties. In the real space a shallow level occupied with a big number 
of particles, corresponds to a macroscopically large patch with a high enough 4He 
concentration. 

The shallow states can be classified in terms of the only one quantum number, 
namely: the energy of the level e [10]. (In the case of a deep level the quantum- 
mechanical state is described by the entire set^of parameters pertaining to the given 
potential well.) Thus the localization length and, consequently, the occupation num- 
ber, n, of each shallow state depend on and are determined by e only no matter what 
a "profile" of the potential well is and where this potential well is located. The ther- 
modynamic functions of such a system can be expressed in terms of the occupation 
numbers, n(e), for each energy level e, and by means of the corresponding density of 
the low-lying states, u(e). The latter is the most important feature of the theory. It is 
determined by the specifics of the random potential provided by the aerogel strands. 
We will begin with the description of the excited states which are responsible for all 
temperature-dependent terms in the thermodynamic functions. 

A,t finite temperatures, T > 0, an essential contribution from the excited states 
(above the ground state) comes along. Inasmuch as the entropy of the 4He particles 



distributed or r the shallow states can be defined in a purely combinatoric way [11]: 

S=-f    [(l + n)log(l + n)-nlogn]i/(0<fe, (7) 
J — OO 

maximizing S at constant energy E and number of particles N4, leads to the equili- 
brium distribution function of a traditional form: 

n(e)=[exp(i^i)-lp. (8) 

Let us recall that due to the interaction between 4He atoms e itself is a functional 
of n, so that expression (8) is, in fact, a complicated integral equation. The critical 
temperature of the superfluid transition as well as the number density of the "off- 
condensate" 4He particles can be calculated by means of the common equation: 

M=/° /+
(.g)*        +^"t- (9) 

where term Af£°nt is related to the contribution of the 4He impurity states in con- 
tinuum and in the low density limit is given by Eq.(2). Here /i4o is the chemical 
potential of 4He in the ground state (in the low-density limit /x40 = -|A|). To assure 
the convergence of the integral in Eq.(9) the density of states v(e) should vanish fast 
enough when e —► ^40. The thermal properties of the 4He component can be found 
using the total energy in the form: 

£i=S4Q+f°       (e+lylMe)<fe+ t 

J-M exp(^l) - 1 

Here £40 is the ground state energy at T = 0, and Z\ont describes the continuum 
contribution similar to Eq.(6) in the case of a rarefied 4He component. 

If the 4He concentration is not too high, and the 4He quasiparticles fill basically 
only the deepest of the shallow levels (let the coresponding binding energy be defined 
again as — |A|), one can easily convince onself that in the high-temperature limit, 
T » |A|, Eqs.(9-10) take the form: 

Af4 = A/;(0) + 7V(0) , £4 = 40) + T\A\u(0). (11) 

Here quantities A/"{ and £\ are the same as in Eqs.(3,7). One can see that at high 
temperatures the localized states provide only a relatively small correction to the 
contribution of a perfect gas. The magnitude of this correction is determined by the 
density of the localized states when e —► 0. 

The situation is quite different at low enough temperatures, T << |A|. In this 
case, the contibutions of the continuum states, £%ont and M^ont, are exponentially 
small, and the temperature dependence of JV4 and £4 is given by the power-law 



terms due to the localized states. As was mentioned above, i/( — |A|) = 0. Let us then 
assume that the density of states can be presented in the form: 

v(-\A\ + e) 
e-*0 

ae7 , 7 > 0 . (12) 

In the most natural case where u(e) is a normal analytic function, one would simply 
have 7 = 1, and a = dv/d( — |A|). Keeping in mind definition (21) after some, algebra 
one obtains: 

,V4=ar(l+7)C(l+7)T1+7 

£4 = -|A|(iV4-A;) + ar(2 + 7)C(2 + 7)r2+7 . (    } 

Here T(n) is the common gamma function. Putting .A/4 = JV4 and T — Tc in 
the first of Eqs.(13) one immediately obtains the 4He concentration dependence of 
the superfluid transition temperature (the A-curve). Differentiating the second one 
provides the specific heat: 

Cy = a(l + 7)r(l + 7)C(1 + 7)|A|T7 . (14) 

(In Eq.(14) we keep only the biggest term.) Term (14) can easily be detected in 
experiment when lowering the temperature as the contribution of superfluid 3He falls 
off exponentially. Using the thermodynamic identities: 

dm OS        dS 
W = -dN4'

TdT=Cv' (15) 

where S is the entropy, one can easily calculate the coexistence curve (the solubility 
of 4He in 3He as a function of temperature): 

Nc{T)_Nc{0)=m._o_£SdT. (16) 

Substituting Eqs.(13-16) into Eq.(25) yields: 

Nf(T) = Nf (0) + -T{1 + 7)C(1 + 7)1^- • ^-(«1 A|) ■ T1^ . (17) 
7 C/i40     CiV4 

To calculate iV^O) one has to consider the ground state properties. 
In principle the ground state energy .B40 of the 4He component at T = 0 can 

be expressed in terms of the occupation numbers, no(e), in a common way as a sum 
over all energy states: 

£40 = ^e„n(en) =  /     en0(e)u0(e)de . (18) 
n J-°° 

Here index "0" refers to the ground state. At T = 0 the distribution function, no(e), 
is, indeed, normalized to the total particle density, JV4: 

/ 

0 

n(e)u(e)de = iV4 . (19) 



As mentioned above, the interaction between particles and. hence, the level popula- 
tions may strongly affect the energetics of the states themselves. In other words it 
means that the energy of the level is a functional of the occupation number, e = e[n], 
and a quantitative measure of this "effective interaction" can be represented in the 
form: 

sSrr'M- (20) 

Function /(e, e') (similar to the interaction function in the fermi-liquid theory) is 
in turn a functional of no(e) and describes the interaction between the levels. In 
contrast to the thermally excited states where the population is always small at low 
enough temperatures, the ground state calculations are much more complicated due 
to the high population density and interaction between levels. Here we will restrict 
ourselves to considering the low-density limit where only one lowest level is populated 
at T = 0, and the population density is not too high. In this case one can use sort 
of a virial expansion: 

e = e0+  f    f(eo,e')no(e')Me')de', (21) 
J — oo 

where e0 is the energy of the level in the absence of 4He. After simple manipulations 
one can easily obtain: 

£4o = eN4 + IfNl , (22) 

where quantities e and / are defined as follows: 

f° 
eJV4 =  /      e0n0(e0)^o(eo)rffo , 

J~°° (23) 

I     /(fo,eo)no(fo)n0(eo)^o(fo)^o(fd)^o^o . 
-00 J—00 

Simply differentiating yields the chemical potential of the 4He component: ^40 = 
e + /iV4. From the condition of constancy of the chemical potential, //40 = const, one 
immediately finds the equilibrium concentration of 4He in the phase rich with 3He 
at T = 0: 

(6.4) _ _ 

N? (0) = ^j-1 , (24) 

where fi4 ' is the chemical potential of 4He in a 6.4% mixture of 3He in 4He, which 
ranges from -7K at saturated vapour pressure to -IK at P — 25atm [12]. According 
to the experimental data [4] the critical concentration, iVf', is about 19%. One can 
make a very crude estimate of the average binding energy, e, when using the theory of 
a weakly-interacting Bose gas in the s-wave scattering approximation [13]. Within 
this approach the magnitude of / can be calculated as: 

f-—M~^ (25) 



where a = 2.2Ä [13] is the s-wave scattering length. A simple calculation shows 
that the magnitude of e is just slightly less than the 4He chemical potentiell in bulk: 

(|e| _ |/^6-4)|/l^i6'4,| ~ 0.1. This, actually, demonstrates that the virial expansion 
holds very badly in the case in question. The accuracy of the estimate obtained is 
very poor, and improved ground state computations are certainly needed. 

Let us point out that no information about the continuum states of 4He is re- 
quired when considering the low-temperature part of the phase diagram and other 
thermodynamic properties. All the characterises are expressed in terms of the energy 
spectrum and density of levels for the shallow localazed states only. It means that 
the physical foundation of the theory is based on the bosonic macroscopic conden- 
sation of 4He atoms onto the shallow bound states in a random potential no matter 
what the state of a 4He impurity in the bulk 3He background is. That is why the 
low-temperature calculations should be valid at the temperatures higher than the 
superfluid transition temperature of 3He as well. There is no need to have the 3He 
background superfluid in order to cause the macroscopic accumulation of 4He atoms 
in the ground state. The theory, indeed, cannot be applied to 3He atoms as the 
Fermi-Dirac statistics prohibits to get more than two particles at the same level. In 
case of the 3He component the continuum states in bulk are stable and provide the 
main contribution to the thermodynamics. At high temperatures the critical fluctua- 
tions come into effect and strongly affect the thermodynamics. Nevertheless, naively 
extrapolating the developed theory to that temperature range would result in the 
absence of the tricritical point. A more elaborated theory should, however, take into 
account various surface effects (like the existence of a solid inert layer of 4He etc ) as 

the surface-to-volume ratio in aerogel be rather high. 
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1. INTRODUCTION 

In this work we focus on the low temperature properties of 4He films adsorbed 
to weakly attractive substrates. To date, the most sophisticated and accurate micro- 
scopic approach for studying the structural properties of helium films is variational 
Euler-Lagrange (EL) theory. At the present level of implementation, i.e. including 
optimized triplet correlations, the theory reproduces the zero temperature Green's 
function Monte Carlo (GFMC) and experimental equations of state in the two- and 
three-dimensional limits, respectively. Since the theory is analytic and microscopic, it 
is not hampered by finite size effects and statistical uncertainties, as in Monte Carlo 
simulations, nor does it require additional input regarding the bulk helium system, 
which is a limitation of approximate applications of density functional theory. The 
finite temperature generalization of the EL theory, has been applied extensively to 
bulk 4He as well as to the infinite half space (d x d x t; -co < d < oo, -oo < t < 0). 
Although the finite-temperature theory is at a much cruder level of implementation 
compared to the ground-state theory, it does reproduce the bulk 4He liquid-gas phase 
diagram with quite good accuracy. For example, the liquid-gas critical temperature 

and density determined by the theory is T = 4.3ÜC and p = 0.009Ä whereas the 

experimental values are T « 5.2 üf and p äS 0.009A . Since a goal of the theory is to 
describe the thermodynamic phase diagram for the film, similar success is expected. 

Although the physics that governs the growth of helium films depends on the 
particular choice of substrate (in some cases dramatically), we will concentrate on 
a graphite substrate, leaving substrate dependent effects to latter studies. Graphite 
substrates are rather unique for several reasons: 

(a) The interaction between the graphite and the 4He is sufficiently strong to cause 



the first two layers of adsorbed helium to freeze. The outermost frozen layer 
provides a very flat substrate upon which further liquid 4He can be adsorbed. 
In this work the substrate is the combined graphite plus the two frozen layers of 

helium. 

(b) Because of the substrate strength, the liquid 4He wets the substrate. The finite- 
temperature behavior of a nonwetting substrate provides an additional compli- 
cation that should be considered only when the simpler wetting case is fully 
understood. 

(c) The liquid film is truly layered in the sense that the density profile Pi(r) shows 
substantial oscillations as one moves away from the substrate. The distance 
between oscillations is approximately a broadened atomic layer. The layering is 
experimentally observed for as many as 9 layers away from the substrate [1]. 

(d) The film grows by adsorbing more and more 4He atoms to the existing film. The 
simplest growth scenario imaginable would be for the film's thickness to increase 
continuously as the number of atoms increases. There is strong evidence that 
this is not the case for liquid helium on the graphite/solid 4He substrate, at least 
for the first few liquid layers. Variational EL theory asserts that the film passes 
through a series of first-order phase transitions as the film grows [2]. Near the 
completion of a given layer it eventually becomes energetically unfavorable to 
compress it further. After the film broadens slightly, the uniform-covering phase 
gives way to a clustering phase where two-dimensional 4He clusters coexist with 
the surrounding vacuum. Upon adding a sufficient amount of 4He, the clusters 
connect whereby a low density covering phase is again reached. This process 
repeats for the growth of at least three layers. 

In the next section we will briefly describe the ground-state theory. Following 
that discussion, the growth scenario outlined in (d) will be expanded upon [3]. We 
argue that evidence for the proposed scenario has been provided by torsional os- 
cillator experiments and recent path integral Monte Carlo (PIMC) simulations. In 
Sec. 3, a brief description of finite-temperature variation theory is outlined. A low- 
temperature expansion provides useful insight into the behavior of the full set of 
finite-temperature equations. Of special interest to us here is the role of the exci- 
tations in determining the thermodynamic behavior of the films. In our numerical 
work, we will limit ourselves to the case of a monolayer. Already at this level much 
interesting physics takes place. In Sec. 4 we close with some speculative remarks 
about the thermodynamic phase diagram for a thin film. 

2. GROUND-STATE THEORY 

Ground-state variational theory has been reviewed in considerable detail else- 
where [4, 5]. Our intent here is only to summarize the relevant ground-state formu- 
lation so that we can appropriately discuss the issues important to this work, such as 
the film's stability and the low-lying excitations. This summary will culminate with 
a discussion on the predicted growth scenario. For details concerning the treatment 
of triplet correlations we refer the reader to Ref. [5] . 



The starting point of the theory is the many-body wave function: 

*o(ri,...,rjyr) = exp 
i. i<j i<j<k 

■     (2-1) 

The pseudo-potential ui(r;) is required because of the broken symmetry caused by 
the substrate, u2(ri,Tj) is the Jastrow pseudo-potential, and the triplet correlation 
pseudo-potential u3(r;, r;-, rfe) is needed to make the theory quantitatively precise. 
The Hamiltonian has contributions coming from kinetic energy, and the 4He-4He 
interaction, and the substrate-4He potential. 

*=E h2 

_      V? + Ulvb{ri) 
2m 

+ T/V(\ri-vj\). (2.2) 

In our numerical work we used the old Aziz potential [6] for the 4He-4He potential. 
The explicit form for the substrate potential can be found in Ref. [5]. The pseudo- 
potentials are determined by invoking the optimization condition: 

6E 

where 

6un(ri,...,rn) 

(^ol-Wo 

= 0 

E = 
(*ol*o) 

(2.3) 

(2.4) 

In practice, it is significantly more convenient to use the BBGKY and 
hypernetted-chain equations to eliminate the ui(rj) and it2(ri,ry) in favor of the 
(physically observable) single-particle density and the pair distribution function, 

.    . /dr2 •-dr^|*o|2 

Pi(ri) = N± ■ -j, 
J dri ■ -CLTN |*O I 

N(N-l)   JdT3--drN\^0\2 

ff(ri,r2) — —-,—r—-,—r-r- ;      .      |2- 
■   Pi(r1)pi(r2)/dr1 ••dr^|*0| 

The Euler equation for pi(r) has the form of a Hartree equation: 

6 

6y^{r) 
[E - pN] = 0 

that is, 

2m 

with a Hartree potential 

V2 + Uaub{v) + VH(r) y/pi{r) = py/pi(T) 

>« - ^ 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 



Here Ec is the correlation energy; the explicit form for it, VJJ, and VV-K (discussed 
below) are not important for this paper and may be found in Refs. [4] and [5]. 

As a result of solving the Hartree equation, one obtains the chemical potential 
H, and />i(r), for a given surface coverage n 

n = JdzPl{r). (2.10) 

Next we consider the two body-equation which may be cast into the form of an 
eigenvalue equation that is written in terms of a particle-hole interaction. Formally 
K,_h(r,r') may be defined from the second variation in density of the correlation 
energy. 

^(^» = ^»)l/Äi?5 (2'u) 

Introducing a generalized kinetic energy operator 

H^ = -£-rnVft(r)v-rn (2,12) 2m
VPi{r) vVi(r) 

the eigenvalue equation may be expressed as: 

/ 
3„/ d?r H1{T)S{T - r') + 2 V,(r, '')   J^r'tym^') = Ä2<Vm(r). (2.13) 

For an homogeneous system this equation reduces to the Bogoljubov expression for 
the excitation energy with the important exception that Vp_h replaces the bare in- 
teraction found in the usual weakly-interacting case, 

nUk = J^(*L*+2V,-h[k)). (2.14) 
y   2m   \ 2m / 

Indeed linear response theory [7] has been used to show that the poles of the density- 
density response function are completely equivalent to the eigenvalues of Eq. (2.13). 

x(r,r» = 2X>(r,a,m)(Ma _ ^ + .^(r',^). (™) 

Here 6pi(r,u)) is the transition density and is related to the eigenstates i>m(r) by: 

*Pi(rlWm) = v/P^)r^-^iV'm(r) = VP^)^m(r). (2.16) 
hu™. 

Using the fluctuation-dissipation theorem, we obtain from Eqs. (2.15) and (2.16) the 
spectral representation of the static structure function S(r,r'): 

S(r,r') = -- /dftwxfrr» = V 0m(r)MO- (2.17) 



For our model of the substrate the symmetry in the plane parallel to the substrate is 
not broken and consequently the eigenstates may be factored into z (perpendicular 
distance from the substrate) and parallel position vector x\\ parts: 

^m(r) = Vn(g||^K'q||-r|1- (2.18) 
When it is clear to do so, we will use m to refer collectively to the discrete quantum 
number n and the parallel momentum qj|. The eigenstates are normalized by the 

condition 
(^n(r)lifilV'm(r)) = hu>m6nim. (2.19) 

Finally, from the spectral representation (2.17) of S(r,r') and the normalization 
(2.19), an equivalent definition of the excitation functions is through the eigenvalue 

problem 

JTuMr) = ftwmy dVSfrr'tymtr') (2.20) 

which becomes, in the homogeneous limit, 

*->=Mi- (2-2i) 
In Eq. (2.21) S(k) is the momentum space structure function in the homogeneous 
system. It is now clear that the eigenvalues of the two-body equation (2.13) are 
Feynman excitation energies generalized to the inhomogeneous system. 

The self-consistent solutions to these equations enable us to study the ground- 
state structure and energetics of the film. This has been done in considerable detail in 
Ref. [5]. Here, we focus on the zero-temperature phase diagram and for this purpose it 
is most relevant to consider the sound velocity as a function of the coverage. By sound 
we specifically refer to the long-wavelength, lowest energy mode (i.e., n = 1, gy —> 0). 
Generically, the sound velocity in a liquid film will be driven in large part by the 
substrate as in third sound or, for thick films, by the surface tension. In the initial 

3/2 
case the dispersion is linear in q\\ and in the latter case the excitations have a q^ 

dispersion and are referred to as ripplons. In this work, we will restrict ourselves to 
thin films, i.e., the third-sound c3 limit. Two points of substantial importance need 

to be stated [8, 9]: 
(a) The lowest energy, long wavelength mode does not always propagate at the 

surface of the film: For a low density monolayer, sound is a longitudinal phonon 
propagating down the length of the monolayer. Above a cross-over coverage, as 
discussed below, the nature of the excitation changes — it now has a component 
of it's motion that is out of the plane of the layer and has substantial strength 

at the surface. 
(b) When the film is in the clustering phase it will not support sound until the 

clusters percolate. 
It is the latter point that implies that a map of the coverage dependence of the 

third sound provides a convenient representation of the phase diagram. 
The sound velocity can be theoretically determined several ways. The first is 

to calculate the chemical potential determined from the Hartree equation, and then 
differentiate it with respect to the coverage: 

mcl — n— —  , (2.22) 
an      UKT 
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where KT is the isothermal compressibility. Alternatively, a more microscopic ap- 
proach is to calculate C3 from the long wavelength limit of the excitation energies, 
i. e. from the eigenvalues of Eq. (2.13) in the limit q\\ —> 00. 

h' n 
mc~ = 

2m 
VP H1(Q) + 2Vp_h(0) V~p 

(2.23) 

These two approaches lead to the same answer only in an exact theory, otherwise they 
provide a convenient consistency check for the theory. Finally, in the next section it 
will be useful to discuss the local compressibility /c(z) defined as: 

  = n I dzK,(z). 
mc2 J 

(2.24) 

This quantity tells us about the z dependence of the stability of the film. 
In Figs. 1 and 2 the sound velocity and chemical potential is plotted as a function 

of the coverage.   Three regions of cluster/vacuum coexistence are shown in these 
o — 2 «—2 »—2 

figures corresponding to coverages (i) n < 0.033A      (ii) 0.068A      < n < 0.100A 

and (üi) 0.138Ä"2 < n < 0.170Ä"2. 

A pictorial representation of the growth scenario, as determined by the EL theory 
is displayed in Fig. 3. The coverages can be grouped as follows. 

(a) For n < 0.033 A    , the film consists of 2-d clusters existing on top of the substrate 
(graphite plus two frozen helium layers). 

(b) For 0.033A      < n < 0.045Ä      the layer uniformly covers the substrate and is 
described well as a low density 2-d liquid layer. 

(c) For 0.045Ä      < n < 0.055Ä      the film is increasingly compressed, its stability 
is rapidly increasing as is-indicated by the increasing sound velocity. 
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Figure 3.   Growth of the liquid film for the first two liquid layers, 

o —2 ° —2 
(d) For 0.055A < n < 0.068A a dramatic change in physics takes place. At 

n = 0.055Ä there is a dimensional cross-over where the film now starts to 
occupy the third dimension.   A shoulder forms in the profile and this largely 

• —2 
determines the stability of the film. As n approaches 0.068Ä the shoulder 
becomes progressively softer. 

° —2 ° — 2 
(e) For 0.068A < n < 0.100Ä the second layer begins to grow, but its growth 

is by the formation and growth of clusters,  on top of the previously formed 
° — 2 

first layer. Above 0.100A the helium once again uniformly covers the surface. 
Meanwhile the local density of the first layer continues to increase. This process 
is repeated for still another layer. 

There is new, further evidence for the proposed growth scenario. First, since the 
superfluidity in the system will be appreciably altered by the layering transitions, 
we have proposed [10] that layering transitions provide a natural explanation to the 
staircase behavior observed in the superfluidity measured in recent torsional oscillator 
experiments of liquid 4He adsorbed to a graphite substrate [11]. Second, PIMC 
studies done at 0.5 K and on a corrugated solid hydrogen substrate, find at least two 
layering transitions [12]. 

3. FINITE-TEMPERATURE THEORY 

Our goal in this section is to present an overview of the finite-temperature varia- 
tional theory. The fundamental theory is equivalent to the one first used by Gernoth 



and coworkers [13] and reviewed in his contribution to this workshop. The theory is 
a straight-forward extension of the bulk finite-temperature theory first developed by 
Campbell et al [14]. Consequently, we take the liberty of only summarize the main 
points of the theory. 

The starting point for the theory is the minimum principle for the free energy 

F <Ft = tr(H$t) + -ir(3fct In »t), (3.1) 

where the first and second terms are the internal energy and the entropy, respectively. 
Here, {Rt 

ls the trial statistical operator. As in the ground-state calculation, we work 
in the real space representation for which 

(r?l---lrJ|lß|rfl-.-l4) = »(r?>--->rÄlrJ>.-.|rJ)l 

where the density matrix is given by 

«t = ^-*(r?l---1r^)g(r?1...1r^rf|.-.|rJr)*(rf,-..|rJ)I 

Zt is the normalization integral, 

\P = exp 
1 

^2u1(ri) + ^u2(ri,rj)+   ^  ^fr, r;-, rk) 
i i<j i<j<k 

and the incoherence function, which is also of the Jastrow form, is given by 

(3.2) 

(3.3) 

(3.4) 

Q = exP 2 ^(rf.ifj-^rf.r^-^rf.rf)} (3.5) 

The pseudopotentials, 1x1,1/2,1*3, and wj, are implicitly temperature dependent, and 
are determined by solving the self-consistent set of Euler equations for the Ft 

6 Ft 
6un 

6 Ft 

ÖUJ2 

= 0 

0. 

(3.6) 

At this point two paths may be taken; we may return to Eq. (3.1) and Eq. (3.3) and 
use the replica and the Jackson-Feenberg identities [14] to calculate the the entropy 
and the internal energy, respectively. Alternatively, we may start immediately with 
the free energy of the bulk system and take the inhomogeneous limit. The second 
approach, which is possible only because we know, a priori, the results of the in- 
homogeneous zero-temperature theory, assumes that the approximations used in the 
bulk finite-temperature theory are adequate for the inhomogeneous theory. The first 



path is the one taken by Gernoth et d in this Proceedings, we choose the later. The 
free energy is 

/" fi^ 2 

d3r   — Vy/P^)    + Pi(r)Ulub(r) 
2m 

+ EC[5(r,rVi(r)] + 4 E A<(qn)"-(qii) Mqii) + A'     (3J) 

in- 

- TSt - pN 

The additional contribution to the internal energy (the fourth term in Eq. (3.7)) is 
Eq. (5.1) in the bulk studies of Ref. [15]. The trial entropy St is given the form: 

St = kBY, [("m(q||) + l)ln(nm(q||) + l)-nm(q||)ln nm(q||)], (3.8) 
111!™- 

where nm(qn) are the usual bose (quasiparticle) occupation numbers for the state 
(m, 9|i), and serve as a means of introducing a temperature dependent excitation 
spectrum 

The pair distribution function is defined in terms of the density matrix as: 

flf(ri, r2) =      } s     . \   / 4r3>''' > rjv)Kt(ri, • • •, r^; n, • • •, rN). 
Pi(ri)pi(r2) J 

In Eq. (3.7) the u* are the eigenvalues of an auxiliary equation: 

(3.10) 

(3.11) 

which is recognized as being a T-dependent generalization of Eq.  (2.20).  Choosing 
nm(qn) to be one of the independent Euler functions one immediately sees that 

Wn(q||) = wn(q||)tanh(/3w„(q||)/2)1 (3.12) 

which has an equivalent expression in the bulk calculation. 
While the ground-state theory is at a much higher level of accuracy than the 

finite-temperature theory, the latter can be improved by including multiphonon ef- 
fects. In the present formulation this means including higher-order correlations in 
the incoherence function. For example, by including w3(rf ,rj, r£), one finds in the 
bulk system that a series of correction terms to the Feynman energy are generated. 

u   = 

+ 

€g{k) 

S(k) 

~Z?N ^ S(k)S(k-q)S(q)[u*{k) - UJBF{q) - LüBF{k - q)] 
l(^bqPk-q^P-kl^) 

(3.13) 
+ 
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Here, 8H = H-E0-uBF{k) and u)BF(k) = e0(k)/S(k). The higher order terms have 
a kernel which is a Bethe-Salpeter-like equation. In principle one can use the inho- 
mogeneous generalization of this equation to improve the the accuracy of the theory 
(this has already been done for zero-temperature films [16]). At low temperatures 
these corrections are small since only those states with small k will be populated, 
but for small k the Feynman approximation is quite sufficient. 

Working directly on Eq.  (3.7) it is possible to construct the finite-temperature 
Euler equations for the film. We summarize the main results: 
(a) The distribution functions pi(r) and gf(ri,r2) have implicit temperature depen- 

dence. 
(b) Vpjy(ri,r2) and VJI{Z) that have terms with explicit T-dependence. So for ex- 

ample, the zero temperature Hartree equation is replaced by: 

~Vl + U.u>{*) + VB(') + Vg{z) 
2m 

Vpi{z) = MV
/
PI(

Z
)- (3.14) 

(c) The stability of the film is strongly influenced by finite-temperature effects. The 
well known bulk system result that limfe_o S(k) = \jßmc\ is replaced by a 
similar expression for the z-integrated static structure function 

lim       dzdz'S(z,z' ,q||) = 
ill-*0./ ßmc\ 

(3.15) 

In Fig. 4, the monolayer 5(q||) is shown for typical coverages. 
(d) As the temperature approaches 1 K, a non-superfluid gas should be present and 

this has been neglected in our calculation. The gas may have non-negligible 
consequences — it is know experimentally that by 1 K there is a measurable gas 
pressure and this pressure will undoubtedly influence the film. 

(e) The eigenvalue equation (Eq. (2.13)) remains unchanged in form but a more 
appropriate normalization condition for the states is 

(rM\H1\fa(r)) = fiu,'m6n,m. (3.16) 
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The full finite-temperature expressions do not lend themselves to elucidating the 
underlying physics (nor are they very numerically tractable) and for that purpose it 
useful to use some trustworthy approximation scheme to simplify them. First, since 
we are always in the low temperature regime, only the n = 1 state is important for 
the thermodynamics of the film. The relevant quantity is the n = 1, long-wavelength, 
transition density. Up to a z-independent normalization factor, we will refer to this 
as the the ripplon wavefunction, ^R{Z). More explicitly, the eigenvalue equation 
(Eq. (2.13)), along with the known long-wavelength properties of the eigenstates 

[17], allows us to write 

n 
Mz)=   H1(0) + 2V{0)       y/piiz), 

2mc2 

where the zeros imply q\\ —* 0. Inspection of Eqs. (2.23) and (2.24) immediately 
allow one to deduce that i>R(z) can be interpreted as being the local compressibility 
of the film (again, up to z-independent factors). Consequently a physically appeal- 
ing picture emerges which links the surface excitations, the films stability and the 
thermodynamics. The link is apparent in the next discussion. 

Expanding the finite-temperature theory in the low-temperature limit, it can 
be shown that the leading order correction 6JJL(T) = IJ.(T) - //(0), to the chemical 
potential is 

E± (3.17) 

where E± is roughly the energy that can be associated with motion out of the sym- 
metry plane: 

E± = —— / dz^Pl(z)i)R(z) 
2m   J 

d   T/>R{Z) 

dz vW2) 
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If the excitations of the film are essentially two-dimensional phonons, the excitation 
function is ij}R(r) ~ y/pi(z) and E± is small. In that case, the thermodynamics of the 
layered structure will be essentially the same as the one of a two-dimensional system 
with the same speed of sound. However, when the film develops surface excitations, 
Ej_ can become quite large, and the dominance of the second term in Eq. (3.17) 
is further enhanced when the speed of sound becomes small. Consequently, there is 
a cross-over in the physics which occurs as one term dominates over the other. In 
Fig. 5, 6fJ,(T) is plotted for three typical coverages. In Fig. 6, the density profile 
is plotted for the same set of coverages. Also shown are the local compressibilities, 
K(Z) as a function of temperature. The K(Z) are scaled to the figure size, i.e., the 
vertical axis label is for the density profile only.   One finds that the physics of the 

o —2 

monolayer changes dramatically as a function of the coverage.   For n = 0.035A    , 
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Figure 7. The speculative phase diagram 

for the monolayer. The coexistence regions 

consist of two-dimensional clusters coexisting 

with the surrounding vacuum. The boundary 

of the shaded region is the spinodal line. 

the local compressibility decreases with the increasing temperature, i.e., the film's 
rigidity increases. This is the mechanism that allows one cross above the coexistence 

region if the temperature is above the critical temperature. At n = 0.055A , the 
film is very stable already at zero temperature. By increasing the temperature the 

stability changes only slightly. Finally, at n = 0.068A , the local compressibility 
increases with temperature, i.e., the shoulder in the profile softens even more. Slightly 
above T = 0.35ÜT, the film actually pushes atoms out of the uniform layer, i.e., the 
film moves into coexistence, already for this coverage. While the profile broadening 
is always small at these low temperatures, some thermal broadening is observed 
although it is not readily apparent in the scale in which the figures are plotted. 

4. CONCLUSIONS 

From a first-principles finite-temperature variational EL theory we have calcu- 
lated the thermodynamic properties related to the structure of a monolayer of 4He 
adsorbed on graphite/frozen helium substrate. Properties related to the film's sta- 
bility are strongly dependent on the coverage of the monolayer. In particular there 
exists a well-defined two- to three-dimensional crossover coverage (for this substrate, 

o — 2 
nco = 0.055Ä ). Below nco the temperature dependence of the system is essential 
one of a 2-dimensional film and above it, the surface excitations are strongly dom- 
inate. Although we not yet completed a calculation of the thermodynamic phase 
diagram, our findings discussed in the previous section indicate that the phase dia- 
gram for the monolayer will resemble the one sketched in Fig. 7. In particular the 
the low-coverage coexistence critical temperature will be essentially that of a purely 
two-dimensional substrate (which is known to have Tc ~ 0.7ÜT). The asymmetric 
coexistence lobe for the second instability occurs because the stability of the film 

• -2 
actually decreases with increasing temperature near 0.068A 
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ABSTRACT. We use Correlated Basis Function theory to compute the longitu- 
dinal and transverse dynamical spin responses in nuclear matter, in both the isoscalar and 
isovector channels. The correlation operator includes spin, isospin and tensor components. 
Tensor correlations are shown to be responsible for differentiating the longitudinal and 
transverse responses. Their ratio is compared with the experimental values, as extracted 
from polarization transfer experiments on medium-heavy nuclei, and found to be in better 
agreement than previous RPA estimates. Finally, the effect of the one-body spin currents 
on the transverse electromagnetic response is evaluated. The experimental responses are 
underestimated by about 30%, in agreement with similar calculations in light nuclei. 

1. INTRODUCTION 

The description of the response of nuclear systems to external probes has been (and 
still it is) the goal of large parte of nuclear physics. In this field, Nuclear Matter (NM) 
plays a particular role because of the advantages coming from being an uniform, infinite 
system. The unfortunate drawback is that NM does not exist in nature. However, useful 
information can be gathered by looking at the interior of the nuclei or to the volume term 
of the mass formulae. Recently, a mass formula has been succesfully used to extract the 
NM inclusive response to relativistic electrons [1] by inspection of a consistent set of data 
from several nuclei. These empirical NM data may then serve as a test for the predictions 
of modern, sophisticated many-body theories, as Random Phase Approximation (RPA), 
Brueckner theory and so on. 

Electron scattering has been, by far, one of the most studied phenomena because 
of the large body of available experiments. However, the nuclear response to exernal 
spin-isospin fields has actracted the attention of many researchers, after the RPA based 
prediction of Alberico et ai. [2] that, at momentum transfer q ~ 1.75/m-1, the response in 
the isovector spin-longitudinal channel is enhanced and softened, because of the one-pion 
exchange (OPE) attraction, whereas it is quenched and hardened in the transverse one, 



due to short range nucleon-nucleon (NN) correlations. 
The ratio of the longitudinal and transverse spin responses has been extracted from, 

measurements of polarization transfer observables for (p,p') and (p, n) quasielastic scat- 
tering in several nuclei, at q ~ 1 — 2/m-1. At these momentum values, both RPA and 
Distorted Wave Impulse Approximation (DWIA) [3] have predicted an enhancement of 
the ratio respect to unity. However, no experimental evidence for such an enhancement 
has been found. A relativistic RPA to the Walecka model [4] in NM, at appropriate den- 
sity values, does not show appreciable deviations from unity at w > 50MeV, but still 
overestimates the experimental data at lower energies. 

In this contribution, we will discuss how to calculate the dynamical spin responses 
in NM in the framework of the Correlated Basis Function (CBF) theory. CBF theory 
has allowed for microscopic and realistic studies of many properties of strongly interacting 
systems. In particular, in CBF an accurate evaluation of the equation of state [5], based on 
the realistic hamiltonians, of both nuclear and neutron matter has been obtained. Within 
the same theory, dynamical NM quantities, as the electromagnetic responses and the one- 
body Green's functions [6,7] have been evaluated in the past. 

In CBF theory, an A-body normalized correlated wave function is given by 

= F{l^.A)\n)Fa {11) 

pa(n\FtF\n))& 

where \TI}FG is a Fermi Gas state and F(1,2...A) is an A-body correlation operator acting 
on \TI)FG- A realistic choice of the correlation operator, motivated by the operatorial 
dependence of the NN interaction, is: 

F(l,2)..A)=S{Uf{i,j)], (1.2) 

i.e. a symmetrized product of state dependent correlation factors f(i, j), given by 

HhJ) = £ /(n)(ni)0(n)(i,i), (1.3) 
n=l,8 

and the operators 0^n\i,j) include central (n = 1,4),(1, <?i • <TJ, n • fj, ai • BjTi • fj), 
isoscalar and isovector tensor (n = 5,6) and spin-orbit (n = 7,8) components. The usual 
Jastrow factor is recovered if only the n = 1 component is retained. The functions pn'(r) 
are variationaUy determined by minimizing the ground state expectation value of the ha- 
miltonian, (H), generally by using the Fermi HyperNetted Chain/Single Operator Chain 
(FHNC/SOC) cluster summation method [8,9]. In this work, the realistic Urbana V14+TNI 
model [10] of NN interaction has been used and the spin-orbit (n = 7,8) components of 
the correlation have not been considered. 

2. THE RESPONSES 



In NM, the isoscalar and isovector dynamical spin responses (ISSR and IVSR, respec- 
tively) S^'^qju;), are given by: 

si(q>") = ^£l<o|^(q)|n)l2%-<>, (2-1) 
n 

where the sum goes over the intermediate excited states |n), with excitation energy 
u>n. The responses are driven by the fluctuation operators: 

pr°(q)= £(^-q)e,q-r,> (2.2) 
1=1,-4 

/»TT-(q) = 4 E (^ x ^)-eK|'n' (2-3) V2 t=l,A 

and 

/>£=1(q) = E(^-q)e,q"r,T^ <2-4) 
*=1,A 

PrTiCq) = 7f E <*<x q)^^- <2-5) 

The non energy weighted sums of the responses give the spin static structure functions, 

SI(q): 

S:(q)=  r S:(q,w)dw, (2.6) 
JO 

which can also be computed as expectation values on the ground state: 

5*(q)=i—W)—* ( 

In CBF theory, the intermediate states appearing in eq.(2.1) belong to the correlated 
basis constructed with the Correlated States (CS) of eq.(l.l). These CS can be then 
perturbatively corrected within the same correlated basis. The responses evaluated at the 
first step of the above procedure will be denoted as vaxiationaJ, whereas we will talk of 
perturbaiive corrections to the response in the second case. 

CS are, in general not orthogonal. They have been orthogonalized by following the 
two-step procedure described in ref.[ll]. CS with m hole-n particle (mh-np) excitations 
are first Schmidt orthogonalized to CS with a lower number of excitations; then they are 
Lowdin orthogonalized among themselves. These states are called Ortogonal Correlated 
States (OCS). 

The first contribution to the variational responses comes from (lhlp) OCS. These are 
the only states contributing in the Fermi Gas (FG) model, where the spin responses are 
given by the usual Lindhard function, showing no difference at all among the channels. The 
main effect of using lhlp OCS instead of FG states is to quench the peak of the responses 



and, if the correlation operator includes tensor components, to separate the longitudinal 
from the transverse case. 

The explicit expression of the lhlp response reads: 

S:,ph(^) = 7 E \C(^ph)\2S(u - uvO, (2.8) 

with 

Ct(l,ph) = (0\pT
z(q)\ph), (2.9) 

2h2p and intermediate states with more excitations do not contribute to the FG 
responses, but they do contribute if a correlated basis is used. Their influence has not 
been evaluated in this work. 

The leading perturbative corrections originate on account of 2h2p OCS admixtures in 
the variational ground and lhlp states. They can be expressed in terms of the correlation 
and polarization parts of the microscopic self-energy: 

E">(»<M>e>)^E,x   (01g|kh,p.P,)|' {2W) V '      2^> E + e{h2) - e{pi) - e{p2) - fq 

and 

B">(» < kF,E < «,) = W _ x ^'aT^f,      ■ <2-n> v '     2 *-» E + e(pi) - e(hi) -e(h2)-iv 

kF is the NM Fermi momentum (kF — 1.33/m-1 in this paper), e(x) are the single 
particle energies and ep is the NM chemical potential. Similar expressions hold for the 
other momentum and energy regions. The self-energy has been evaluated in CBF, using 
the same Urbana potential and the effects on the NM longitudinal response and the one- 
body Green functions have been studied [6,7]. 

3. THE MATRIX ELEMENTS 

This section will be devoted to a brief discussion of the matrix elements &(ci,ph) of 

eq.(2.9). 
The correlated matrix element is expanded in Mayer-like cluster diagrams, containing 

statistical and dynamical correlations. The first ones are associated with exchange Fermi 
lines, whereas the other ones represent two-body correlations, either of the Jastrow type 
([/(i)]2 _ i) or operatorial (/(?>1). The FHNC/SOC method allows for summing the 
leading, infinite classes of diagrams, when one is dealing with the expectation value of 
one- and two-body operators on the ground state, as in the case of the evaluation of the 
energy per particle, the momentum distribution and the static structure functions. The 
calculation of (l(q,ph) cannot be performed at the same level of accuracy. However, again 



infinite classes of diagrams can be summed up and the convergence can be studied along 
the inclusion of higher and higher order terms. An extensive discussion of the calculation 
of £ in the case of the charge fluctuation operator is given in ref.[6]. Here, we will limit 
ourselves to outline the main features of the matrix elements for the spin responses. 

If the correlation is switched off, then the matrix elements are simply given by 5- 

functions: 

and the r = 1 cases are obtained by multiplying the above expressions by 5T(h)T(p). 
Here we have assumed q lying along the z-axis. 

After the introduction of Jastrow correlations, only exchange diagrams contribute. 
An infinite set of them can be simply summed by dividing the uncorrelated expressions by 
D1l2{h)D1'2{p), where 

D(x) = 1 - t j dr(gdd(r) - l)L(r)e^r. (3.3) 

p is the NM density, g<id(r) is the direct-direct radial distribution function and X(r) 
is a generalized statistical correlation (see ref.[6] for more details). 

It is clear from the above equations that the introduction of Jastrow correlations, even 
if strongly modifies the shape of the free FG responses, does not introduce any distinction 
between longitudinal and transverse channels. This behavior is still present even if spin 
and isospin correlations are introduced. It is only the presence of tensor correlations that 
allows for such a distinction. 

This effect is clearly visible if we write down the explicit, not exchanged lowest order 
contribution, in the operatorial correlation: 

*o    /    U\ -  *(q-p + h) f 

p j dre^r2[F^{r) + F^(r)(Zco32(q • r) - 1)], (3.4) 

and 

.o ,       M        1 5(q-p + h)    c 

Cr,a,<i»rlq.P/i; - ^£a^z £f1/2(h)D1/2(p) a>(;i)<T'(p) 

p ! dre^r2[F^\r) - iF(2)(r)(3co*2(q • f) - 1)], (3.5) 

where ^^ =/(1V(2) + /(2)/(2)-/(5)/(5),-P,(2) = /(1)/(5)-/(2)/(5) + /(5)/(5) and we 
recall that /(5) is the tensor correlation. In the above expressions, we have not included 
the isospin components. 



It is clear, from eqs.(3.4-5), that if F^2' = 0, and so the correlation does not have any 
tensor part, the L and T responses are identical. When F^ ^ 0, then the responses in 
the two channels are moved to opposite directions respect to the purely central case. 

The £ matrix elements, with operatorial components, have been computed following 
the analogous calculation of ref.[6] for the longitudinal electromagnetic response. Besi- 
des the two-body, lowest order diagrams, Single Operator Chain (SOC) and separable 
diagrams (up to linear terms in the vertex corrections) have been included. 

4. THE SUM RULES 

Let us briefly discuss the results obtained for the sum rules (2.6-7) with only lhlp 
intermediate OCS. The fluctuation operators (2.2-5) commute with F when Jastrow cor- 
relations are used. In this case, the sum rules are completely exhausted by the lhlp OCS 
[11], in the sense that the w-mtegrals of the lhlp responses coincide with the estimates of 
5£(q), given by eq.(2.7), if the variational ground state is used. If operatorial correlations, 
containing spin, isospin and tensor components are introduced, then [/J^F] ^ 0, and the 
sum rules are no longer exhausted by lhlp states. 

In table I we report the nuclear matter static structure functions for a few g-values, 
at the empirical saturation density PNM = 0.16 fm~3. The isoscalar transverse and 
the isovector longitudinal sum rules appear to be enhanced by the inclusion of tensor 
correlations respect to the simple Jastrow estimates , while the isoscalar longitudinal and 
the isovector transverse ones axe depleted. This is in agreement with recent results in light 
nuclei [12]. 

In the table, SRI refers to the results for the static structure functions of eq.(2.6), 
whereas SR2 shows the g.s. expectaction values of eq.(2.7). The two SRI lines give the 
sum rules before and after the Lowdin orthogonalization of the lhlp CS. Finally, the last 
column gives the sum rules for the Jastrow model. 

After orthogonalizing the states, the Jastrow wave function essentially satisfies the 
sum rule, as expected. This is no longer true for the full operatorial case, because of the 
mentioned non commutativity of the correlation with the fluctuation operators. Another 
source for the differences in the sum rules could be the different cluster expansions employed 
in the two estimates. However, several checks on their convergence appear to rule out such 
an explanation. 

Particularly badly violated are the sum rules in the isoscalar, r = 0, channels. This 
can be understood by explicitely looking into the cluster contributions. In fact, the most 
important corrections come from the OPEP induced correlations (spin-isospin and tensor- 
isospin). In the r = 0 channels, the leading two-body correction is quadratic in p4' and 
/(6). It can be seen that the contribution from this term to SRI is —3 times that to 
SR2. In the T = 1 channels, the leading term is linear in the OPEP correlations, and it 
gives the same contribution to both SRI and SR2. These differences may point to possible 
inadequacies of the variational calculation of ground state expectation values for some 
operators. 



q(fm-*) CT = 0 cr=0 cr=l 
OITI Sj 

SRI 1.0 0.45 0.53 0.64 0.49 0.57 
0.43 0.52 0.60 0.51 0.55 

SR2 0.59 0.64 0.61 0.53 0.54 

SRI 1.5 0.65 0.79 1.03 0.67 0.82 
0.62 0.77 0.90 0.71 0.78 

SR2 0.75 0.84 0.90 0.71 0.78 

SRI 2.0 0.80 0.99 1.32 0.84 1.01 
0.78 0.97 1.11 0.87 0.95 

SR2 0.87 0.99 1.09 0.86 0.95 

SRI 2.5 0.89 1.08 1.38 0.98 1.10 
0.88 1.05 1.18 0.96 1.03 

SR2 0.95 1.06 1.15 0.96 1.03 

SRI 3.0 0.93 1.06 1.26 0.98 1.06 
0.91 1.04 1.12 0.96 1.04 

SR2 0.96 1.04 1.10 0.96 1.04 

Table 1.   lhlp static structure functions 5£(q) of nuclear matter at saturation density 
for the Urbana potential. 

5. THE RESULTS 

This section will be devoted to the results obtained for the spin responses within 
the CBF theory. The results obtained at. the two-body cluster level for the operatorial 
contributions have already been given in ref.[13]. Here, we will use the full SOC treatment 
for the matrix elements £. 

The ISSR and IVSR, with only 1/ilp intermediate OCS, without self-energy insertions, 
are shown in fig.(l) at q = 2.0/m-1. In the figure, the FG and the Jastrow estimates are 
also given. 

As already stated, tensor correlations have opposite effects in the L and T channels. 
In the isoscalar channels, the correlations quench the response respect to the FG, pushing 
strength to higher energies. The effect of the tensor correlations appears sizeable in the 
longitudinal response, further depleting it. In the isovector case, the situation is reversed: 
the tensor correlations enhance the longitudinal response and deplete the transverse one. 
The responses with central correlations, beside the simple Jastrow choice, and no tensor, 
are very close to the Jastrow ones. These results do" not differ appreciably from those of 
ref.[13], giving confidence in the accuracy of the cluster expansion. 

Self energy insertions on top of the hole or particle lines, due to admixtures with 2/ilp 
or 2plh CS, have been estimated by means of the optical model of ref.[ll], that appears 
to be quite accurate for the momentum transfers we have considered [6]. The responses, 
with self energy insertions, are shown in fig.(2). The sum rules remain unchanged, as we 



have adopted the optical model. So, the main effect consists in adding a large-'a; tail, still 
preserving the total strengths. 

Sph(q,u) (1/MeV) q = 2.0 frcT1 

0.010 

0.000 

0.006 

0.004 

0.002 

0.000 

i ; i i i i i i i i i i i ii 

■ i i i i i i i i i ' ' ' i ' '' ' ■ ' ' ' ' ' 

0.010 

0.008 

0.006    — 

0.004    — 

0.002    -77 

0 50       100      150     200     250 
u (MeV) 

Fig.(l) lAlp spin responses in NM. 

0.000 
0   50  100  150  200  250 

CJ (MeV) 

0.010 

0.008 

0.006 

0.004 

0.002 

I   I   I   I   I   I   I   I   I   I   I  1   I   I   I   I   I   I   I   I   I   I   I  I   I   I   I   I  I 

— T = 0 

0.000 

S(q,u) (1/MeV) q=2.0 fm~l 

0.010 

0.008 

0.006 

0.004 

0.002 

0  50  100 150 200 250 300 
CJ (MeV) 

0.000 

I  I M |  i II I  I  I  I  II  I  II  I  I  I  I  I  I  I I  I  I  M 

S(q.cj) (1/MeV) 

-T=l 

i 'i i i I i i i  i  I i i i i I  i t i ' ' ' i  ' ' 

0      50   '100    150   200   250   300 
CJ (MeV) 

Fig.(2) Spin responses in NM in the optical model. 

Finally, fig.(3) compares the CBF spin responses with some of the available «pen- 



mental data. The plotted quantity is the ratio i2(q,u>), defined as: 

Ä(q,"0 = 
2.15 3.62 S£=1(q,w) + S£ T=0i 

q>«) 
4.62 1.15 5^=1(q>w) + '?T=0(q'Ci;)' 

(5.1) 

i2(q, w) has been computed at q = 1.75 /m *, and it is compared with experimental 
data for i0Ca from ref.[14], and for 20SPb from refs.[15,16]. The volume RPA estimate of 
ref.[2] is also given. The CBF ratio appears to be much closer to the experiments than the 
RPA one. It must ne said that the RPA calculation includes explicit A-hole excitations, 
which increase the RPA value. This effect is absent in the CBF case and it would be really 
interesting to evaluate it within this approach. The inclusion of surface effects in the RPA 
ratio lowers it of only ~ 0.2. The CBF results do not show a sensible w-dependence, 
in contrast with the relativistic RPA calculation of ref.[4]. R(q,u;) has been computed 
also at half of the nuclear matter density, p = /?ATM/2, as in N-nucleus scattering one is 
mostly probing the nuclear surface. No meaningful density dependence has been found, 
and R(p = PNM/%) differs from R(PNM) by only a few percent. 
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Fig.(3) Ratio of longitudinal and transverse spin responses in NM. 

Hadron scattering is strongly distorted. This effect has been evaluated by Ichimura 
et cd. [3], and shown to produce a further reduction-of the ratio respect to the continuum 
RPA estimate. Again, a CBF evaluation of distortion would be welcome. 

6. THE TRANSVERSE ELECTROMAGNETIC RESPONSE 
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The double differential cross section for inclusive electron scattering, in the laboratory 
system, is written as 

**   =<rM{(^YRL(<i,u) + {h%-\ + tan^9-)}RT(q,u,)}, (6.1) 
AWtf"   "lV "*v'-/     i2y ' v2' 

where c/ and 9 axe the outgoing electron energy and scattering angle, Q = (w,q) is 
the 4-momentum trasferred to the nucleus, crM is the Mott cross section and RL and ÄT 

are the longitudinal and transverse e.m. responses, respectively. 
The longitudinal response, both in NM and finite nuclei, has been object of many 

investigations. In particular, CBF has shown to be able to reproduce its main feature, i.e. 
a large depletion of the quasielastic peak respect to any mean field prediction, in fairly 
good agreement with the experimental data in heavy nuclei [6]. 

The transverse response can be writen in terms of the transverse structure function 

ST(q,w): 

ÄT(q,w) = G2(q,u;)5T(q,u;), (6.2) 

G(q,w) being the fNN form factor. 

«"•-J-P + ife^-'- (6'3) 

ST{<\,U) is, in turn, given by: 

Sr(q,«) = ^£KnIJ(q)|o)la%-<**), (6-4) 
n 

and J(q) is the electromagnetic current operator, which is a sum of several terms 

J(q) = Jconv{<\) + J.P*n(q) + JAfFo(q)- (6-5) 

The small convection term is usually neglected. Two-body contributions come on 
account of the Meson Exchange Current (MEC) part of the operator, describing the cou- 
pling of the virtual photons directly with the virtual mesons, or with the nucleon via the 
exchange of a virtual meson. There is a large body of literature about the MEC effects 
on the transverse response, but we want here to concentrate on the one-body spin term of 
the current operator, J,Pm(q)- 

JsPin{<l) is written as 

6    i=l,A 

[^p5>(q) + /x-/=>T7a1(q)], (6-6) 
t^o 

eV2 

where /i0 is the Bohr magneton, /xp(n) is the proton (neutron) magnetic moment (in 

terms of po) and /*+(-) = /■*? + (—)/*«• 

10 



If we use the above expression for the current operator, the transverse e.m. structure 
function can be expressed in terms of the transverse spin responses: 

5T(q,«) * ST,JPi„(q.<") = (^)V+SF°(^) + /x!s?=1(q,")]. (6.6) 

In fig.(4), the one-body spin NM e.m. transverse response is compared with data 
from 40Ca, at q = 3Z0MeV/c [17]. 

The NM response underestimates the full response by ~ 30%, in agreement with other 
non relativistic many-body approaches. This result is confirmed also at other q-values in 
i0Ca, and by a recent analysis of the world data in inclusive e-scattering from 56Fe [18]. 
MEC are generally thought to be responsible for the missing contribution. 
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Fig.(4) NM e.m. spin transverse response and experimental data from     Ca. 

7. THE CONCLUSIONS 

CBF theory has been adopted to evaluate the spin responses in nuclear matter. It 
satisfactory describes the currently available experimental results for the ratio between the 
longitudinal and transverse responses in heavy nuclei. Experimental data for the separated 
responses will tell us, in the near future, whether the agreement is fortuitous or due to the 
ability of CBF to correctly describe the effects of the strong NN correlations in the nuclear 
systems, as it appears from the results obtained within this approach in other nuclear 

physics problems. 
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1. INTRODUCTION 

During the last decade the method of correlated basis functions has proven 
successful in microscopic prediction of the ground-state properties and elementary 
excitations of spatially inhomogeneous systems of liquid 4He [1,2]. The bulk of the 
work has been done at the Hartree-Jastrow variational level, at which only one- 
body and two-body correlations are taken into account. At this level, the optimal 
correlations are to be determined from Euler-Lagrange equations derived by variation 
of the corresponding energy expectation value with respect to the one-body and two- 
body correlation functions. A more recent investigation [3] also includes three-body 
correlations in the trial ground state. In most of the published work, the elementary 
excitations have been treated within a Feynman description [4] of the wave functions 
of excited states. Invoking the generality of correlated basis functions (CBF) theory, 
systematic improvements on the microscopic treatment of excitations that transcend 
the Feynman picture have recently become available [5]. 

Nonuniform systems that have received attention within the variational-CBF 
scheme include liquid 4He films [2,6-8] with or without an adsorbing substrate, 4He 
clusters [9], and the surface of liquid 4He in a half-space geometry [1,10-12]. The 
Euler-Lagrange equations, which must be solved numerically, yield the one-body 



density describing the spatial inhomogeneity of the system under consideration, the 
anisotropic two-body distribution function, and, in the form of an eigenvalue equa- 
tion, the wave functions and energies of elementary excitations. The solutions of the 
optimization problem also provide input for microscopic evaluation of macroscopi- 
cally observable quantities, such as the surface tension or chemical potential. Some 
analytic results may be obtained for the long-range behavior of the two-body cor- 
relations and for the spatial shape and dispersion relation of low-lying excitations 
through expansions in the regime of small excitation energies [13-15]. 

In view of these past achievements, as well as ongoing theoretical advances, it is 
timely to attempt an extension of the correlated basis functions theory to spatially 
inhomogeneous Bose fluids at nonzero temperatures. The necessary framework for 
realizing this aim is furnished by the correlated density matrix theory that has been 
developed for and quantitatively applied to spatially uniform Bose fluids in Refs. 
16 and 17. Here, we will adapt this approach to spatially inhomogeneous systems. 
In fact, such an extension of inhomogeneous variational theory has already been 
put to use in recent extensive studies of the 4He vapor-liquid interface [18-20]. The 
theory itself is elaborated for the first time in this contribution. Rather than focusing 
on numerical implementation of the generalized Feynman eigenvalue equation and 
the physical nature of its solutions, we shall present an explicit derivation of the 
Euler-Lagrange equations for the one-body density and two-body correlations and 
report further details of the entire variational approach. Currently, the temperature 
dependence of a variety of quantities and phenomena, such as surface broadening 
with temperature in 4He films, is being explored within the theorv discussed here 

[21]. 
We begin our account with a sketch of the basic concepts of the variational 

correlated density matrix theory of spatially inhomogeneous Bose fluids. 
At a given temperature T. the true canonical density operator ptrue of a system 

of N bosons characterized by a Hamiltonian H is given by />true = exp(3H). The 
dimensionless inverse temperature ß is defined as 3 = (fcßT)-1, where fcß is the 
Boltzmann constant. Correlated density matrix theory rests on the Gibbs-Delbrück- 
Moliere minimum principle [22], which states that in thermodynamic equilibrium the 
Helmholtz free energy 

F = E-ß~lS (1) 

assumes its minimum value for the true density matrix /?true- The first term on the 
right side of Eq. (1) represents the internal energy, while the second is the entropy 
contribution to the total free energy. It follows that the free energy corresponding to a 
density operator p that departs from the true one provides a rigorous upper bound on 
the true Helmholtz free energy. This variational property of the free energy functional 
F[p] may be exploited to find the optimal density matrix within a restricted class of 
trial density matrices. 

The first task is then to pose a suitable trial form for the statistical operator 
p. such that the essential dynamical and thermal physics is incorporated, yet the 
resulting free energy functional remains tractable. Variation of this functional with 
respect to the freedom present in the ansatz for p leads to Euler-Lagrange equations 
determining the optimal p of the chosen class. This optimal p may be used to estimate 
an upper bound for the true free energy and to calculate approximations to other 
thermodynamic quantities of interest as functions of temperature T, such as the 



surface tension of liquid 4He [20]. 

In constructing a trial form for p adapted to spatially inhomogeneous Bose sys- 
tems we follow the lead of the correlated density matrix treatment of uniform Bose 
systems [16,17]. Accordingly, we employ a trial density operator that contains one- 
body factors describing the spatial inhomogeneity of the system and two-body factors 
describing the strong interparticle correlations. The chosen trial operator takes into 
account the presence of thermal excitations in Feynman approximation. The resulting 
Euler-Lagrange equations may be cast in the form of a Feynman eigenvalue equation 
for the spatial shape and energy of the thermal excitations [18-20], a Hartree equa- 
tion for the square root of the one-body density, and a Schrödinger-like equation for 
the square root of the two-body distribution function. Self-consistently determined 
effective one-body and two-body potentials appear as essential ingredients in the cou- 
pled set of Euler-Lagrange equations. These optimization equations systematically 
generalize the corresponding T = 0 theory [1,2] of nonuniform Bose liquids to finite 
temperatures. 

In Sec. 2 we introduce the trial form for the statistical operator and calculate 
the Helmholtz free energy associated with this ansatz. The optimization equations 
for the elementary excitations, for the one-body density, and for the two-body corre- 
lations are presented in Sec. 3. Our findings are summarized in Sec. 4, where we also 
consider avenues for future research in the field of nonuniform Bose fluids at finite 
temperatures. 

2. DENSITY MATRIX AND FREE ENERGY 

The program sketched in the preceding section is most conveniently carried 
through by adopting a coordinate space representation for all operators involved. 
As argued in Ref. 16, the coordinate space matrix elements p(R',R) = (R'|p|R) of 
a density operator p takes the general form 

/o(R,.R) = *(R/)g(R',R)*(R). (2) 

Here, the notation R = (ri, r?. • • •, rN) is used to denote the 3N spatial coordinates 
of the system of N bosons. Likewise, we have R' = (r^.r^, • • ■ ,r'v). For the form 
(2) to represent a statistical operator of a Bose system, the function \& and the inco- 
herence factor Q have to be positive definite. The latter quantity does not contain 
any factors that depend on only primed or unprimed coordinates alone. At vanish- 
ing temperature, the incoherence factor Q becomes unity and the matrix elements 
p(R',R) = <]/(R')\I>(R) describe the density operator associated with the state *, 
which at T = 0 is the ground-state wave function. In general, the factors # and Q 
in Eq. (2) depend on temperature. To simplify the notation, the argument T will be 
suppressed in writing these and any other quantities that do not carry an explicit 
dependence on temperature. 

Without loss of generality, the function ^ in Eq. (2) may be expressed as a 
product of one-body, two-body. ..., JV-body factors, i.e., it has the form of a Feenberg 
wave function [23]. Truncating the general form at the two-body level, we arrive at 



the Hartree-Jastrow ansatz 

1 /     N N \ 
*(R) = -exp   I^t(r,) + i   J2  ufo'ri)    • (3) 

\    1=1 «<j=i / 

The normalization integral 

Z=  /V(R)Q(R,R)dR = [$2(R)dR (4) 

ensures the unit-norm condition Tr(p) = 1. For the reasons given below, we may 
assume the diagonal matrix elements Q(R, R) of the incoherence factor Q to be 
unity, justifying the simplification made in Eq. (4). The convention Q(R, R) = 1 will 
facilitate the succeeding calculations significantly. 

Adopting the two-body level also for the incoherence factor, we may assume the 
trial form 

g(R',R)=exp( f>(r:,r,)-i £ [«;(*,r,) + wtf.rj)] j . (5) 

This expression follows from first making an ansatz for Q(R',R) of the form (5), 
but without the second sum in the exponent. In a subsequent step, this term is 
subtracted in the exponent of the original ansatz for Q(R', R), yielding the form (5). 

As a consequence of this operation, the sums Yli=i u,(ri'rj)/2 + X]i<7=i tJ(r"rj) anc^ 

Si=i ^'(r'r r;)/2 + X^<7=i w(riirj) must be added to the exponents in the Hartree- 
Jastrow expressions for 'P(R) and 'I'(R'). respectively. As can be easily seen, the 
latter operation is tantamount to replacing the quantities t and u in Eq. (3) by the 
functions t+uj and u + 2u.\ The form (3) for \&(R) is then retrieved by a simple change 
of notation, namely the redefinition of the quantities t+ui and u + 2u> as the one-body 
and two-body functions t and u entering Eq. (3). Both the Jastrow function u and 
the incoherence function ui heal to zero for large distances and are symmetric under 
interchange of coordinates. The latter property ensures that the matrix elements 
p(R'.R) are symmetric under particle interchange, a property required for the trial 
form p to describe a system of identical bosons. At zero temperature, the incoherence 
function ui vanishes and the operator (2) reduces to the statistical operator of the 
ground-state wave function. 

In order to calculate the internal energy E = Tv(pH) corresponding to the trial 
density operator p introduced above, we need to express the Hamiltonian 

H = — (h2 /2m) Yli=i ^1 + X^<j=i u(r«' rj) m terms of its matrix elements H(R, R') 
= (R\H\R') in coordinate space. The result reads [16,17] 

tf(RR')= f-^f;(ViV/-Vi
2)+  £  V(r,,rA(R-R'). (6) 

The first sum in Eq. (6) represents the operator of the non-relativistic kinetic energy 
of a system of N bosons of mass /n, while the second represents the operator of the 



total potential energy, made up of bare two-body interactions given by the potential 
v. The identity (6) together with equations (3)-(5) enable us to form the trace of 
the operator pH in coordinate space. The resulting internal energy E may be split 
into two contributions, yielding 

E = Tv{pH) = I P(R',R)H(R,R')dRdR' = E* + Eu. (7) 

The contribution Ey has the form of an expectation value of the Hamiltonian H with 
respect to a normalized Hartree-Jastrow state <P and therefore may be evaluated using 
the same techniques as in the T = 0 case [1,2,7], where $ assumes the role of the 
ground-state wave function. We thus obtain 

. ? 

E* = (tf|#|#) = ^- / [v^CrT]   dr + -  / g(r1)g(r2)g(rur2)v*{rur2)dr1dr2. 

The first term on the right side of Eq. (8) arises from the spatial inhomogeneity of 
the one-body density 

o(ri) = -i [r-(R)dr2---dr„. (9) 

It vanishes in case of a uniform system, characterized by o(r) = const. Like the 
one-body density (9). the two-body spatial distribution function g, appearing in the 
correlation energy term of Eq. (S), may also be written solely in terms of \&, leading 
to 

2 g(r1)g(r2)gf(r1,r2)=  Arr^ f $2(R) dr3 ■ ■ ■ drN . (10) 

The effective potential v* is given by 

ü*(r1,r2) = 6'(r1,r2) + i[D(l) + £>(2)]W(r1,r2), (11) 

the operators D(l) and D{2) being defined by 

D{i) = ~£-Q-1(ri)Vie(ri)Vi (12) 

with i = 1,2. 
Further exploiting the T = 0 theory of spatially inhomogeneous Bose fluids, the 

bare two-body correlation function u may be eliminated from the energy functional 
(S) by making use of the hypernetted chain (HNC) equations [24]. In the set of HNC 
equations, the two-body spatial distribution function g is related to the Jastrow 
correlation function u via the hypernet equation 

<jf(ri.r2) = l+A'(r1.r2) + AT(r1,r2)=exp[u(ri,r2) + Ar(ri,r2) + £;(r1.r2)] , (13) 

where functions N, A", and E represent the sum of nodal, non-nodal, and elementary 
or bridge diagrams, respectively.   The relationship between the nodal function N 



and the direct correlation function X is established by the Ornstein-Zernike or chain 
relation 

N(ru r2) = j e(r3) [-Y(n, r3) + N(ru r3)].Y(r3, r2) dr3 , (14) 

completing the set of HNC equations. Formally regarding the quantities N(ri, r2) = 

\/g{rx)g(r2) N(rx,r2) and A'(r1,r2) = ^o(ri)Q{r2)X{ri,v2) as entries of matrices 
characterized by continuous indices ri and r2, the chain equation (14) may be cast 

in the convenient form of the matrix equation N = (X + N)X. 
Supplemented with a prescription for determining the sum of elementary dia- 

grams, .E(ri,r2), the HNC equations (13) and (14) form a closed set of equations 
for a given one-body density g(r). To be specific, we will resort to the widely used 
HNC/0 approximation, which has been applied in the majority of works on spatially 
inhomogeneous Bose fluids carried out within the general scheme described here (see, 
for example. Refs. 1,2. and 7). In this approximation, the elementary diagrams are 
neglected, i.e.. £l(ri,r2) = 0. Exploiting the hypernet equation (13) in HNC/0 ap- 
proximation, the energy functional Ey may be expressed solely in terms of "'dressed" 
spatial distribution functions, to arrive at the result [1,7] 

E\\i = —— 

+ T— / o{ri)g 
4m J 

1*9 

16m 

dr + Ö I e(ri)e(F2)9{rur2)v(rur2) dri dr2 

V2v
/^(r17r2" 

*iN(rur2 Q{r\)Q{r2)< W\g[rl.r2) 

+ dri dr2 

^29{rur2) V27V(ri,r2^ dri dr2 .        (15) 

which form will expedite the variational procedure to be outlined in the next section. 
The energy Ey has the same functional form as the Hartree-Jastrow ground-state 
energy at the HNC/0 level. However, the distribution functions g, g, and N must 
now be taken at temperature T. 

In coordinate space, the second energy term in Eq. (7), denoted Ew, may be 
written as 

; = -j— / £>(ri) V^^r^rO -2 / £(n - r2)V{Lü(n,r2)dr2 dri ■ (16) 

The energy functional (16) may be further simplified by expanding the function 

17(ri,r2) = \Jg(ri)g(r2) w(ri,r?) as a series in the biorthogonal system of (real) 
eigenfunctions 0c of the eigenvalue equation 

/ 
Q{ri,r2)H0{2)i>((r2)dr2 = A*^(ri 

The operator 

Ho 
im s/g{ 

:V^gir~)V 
VeO 

(17) 

(18) 



is the operator of the kinetic energy of a single particle of mass m moving in the 
inhomogeneous background formed by the density profile g(r). The symbol I denotes 
a complete set of quantum numbers characterizing an eigenstate ij>e and the associated 
eigenvalue A^. As we shall see later, an eigenfunction ^7 describes the spatial shape 
of an elementary excitation of the Bose system corresponding to quantum number L 
It is easily shown that the eigenvalues Ac are real and that the orthogonality relations 

(H\HO\£) = 0       for        K±1 (19) 

hold. Not only the operator Ho, but also the function Q possesses a diagonal repre- 
sentation in the system of eigenfunctions of the eigenvalue equation (17). Specifically, 
we have 

which, inserted in Eq. (16), leads to the simple expression 

If we wished only to cast the energy component Ew as a series of purely diag- 
onal terms, it would have been sufficient merely to assume that fi has a diagonal 
representation of the form ft(ri,r2) = £^ftc Vv(ri)t/v(r2), without appealing to the 
particular eigenvalue equation (17). However, as we shall see in the next section, 
variation of the free energy with respect to the normal modes iftg yields an eigenvalue 
equation for these states, from which the orthogonality relations (19) immediately 
follow. For this reason, we have chosen already at this point to introduce, through 
Eq. (17), a system of normal modes in which the operator Ho and the function 0, 
are simultaneously diagonal. The primary purpose of establishing a spectral decom- 
position of Q, of the type (20) is that it will be needed to calculate the entropy. We 
stress that the conditions (19) need not be imposed as constraints when varying the 
free energy with respect to the eigenfunctions ipt- They follow automatically from 
the resulting eigenvalue equation. 

In comparison with the internal energy E, finding a useful expression for the 
entropy 5 is a task of a somewhat more demanding nature. Here, we will sketch only 
the merest of essentials. Employing the replica technique we first obtain 

S = -kBTv(plnp) = -kB — ln[Tr(^) (22) 

€=1 

For integral values of the parameter £, the trace in the logarithm in the right side of 
Eq. (22) may be written as 

Tr(^) = /n[(R>|R7+i)c/R7] = /n[*2(R-y)Q(R7,R-y+i^Rj 
J 7=1 J 7=1 

=  f Yl^iR^dR^HexJ-^ £ Pl(Ra)MabPl(Rb)\ ,       (23) 
J   7=1 t ^       "   a,6=l ' 



where we have made use of 

Q(R',R) = exp{-i^ A,[^(R') -p,(R)]2} , (24) 
i 

the density fluctuation operators p( being defined as 

,,(R) = f -^== 4^= ■ (25) 

The entries Ma\, of the if x £ matrix M in the exponent in expression (23) are given 
by 

Mab = 2Sab - 6a + l,b - $a,b+l (26) 

with a.b = 1, • • •,£. When it occurs, an index £ + 1 is to be replaced by unity. To 
proceed, in Eq. (23) we replace the expectation value of the product [If'-' w^^ 

respect to the state \[l,= l • • • by the product of the expectation values with respect 
to this state. This approximation is known as the separability assumption [16,23.25]. 
Physically, interactions between excitations are neglected. Each expectation value 
in the latter product has the form of a normalization integral of a generalized wave 
function describing a mixture of bosons of £ different sorts, and may be evaluated 
with the help of techniques similar to those applied in the case of spatially uniform 
Bose mixtures [26]. The final result reads 

r * r   v   s 

TV)«n / n[*2(R^R-?]expi ~y n pe(Ra)MabPc(Rb) 
(    J    7=1 ^        "    a,6=1 

= JJ det 1+AtiäkkM (27) 

w diere 
D(e) = (e\i + G\c). (28) 

In coordinate space, the kernel of the integral operator G in Eq. (28) is given by 

G(ri,r2) = Vö(ri)ß(r2) [g(ri.r2) - l] • (29) 

Assuming the eigenfunctions d>( to be unit-normalized, the quantity D(C) is the gener- 
alization of the static liquid structure factor to spatially inhomogeneous systems. The 
determinants under the product in the right side of Eq. (27) may now be expressed 
as polynomials in [17] 

n'-)/i+A'Ä-3- (30) 

leading to 



Next, the expression (31) is analytically continued to non-integral values of £. In- 
serting the result (31) into Eq. (22) and taking the derivative with respect to f yields 
the formula. 

S = kB J2{ [1 + nt] ln[l + ne] - nt ln[n(] } (32) 
t 

for the entropy. We thus arrive at an entropy functional that is formally equivalent 
to the entropy of a non-interacting gas of excitations obeying Bose statistics. This 
finding is in concert with the separability approximation, in which it is assumed that 
excitations do not interact with each other. The result (32) suggests that we interpret 
the quantities nt defined in Eq. (30) as the occupation numbers of thermal excitations 
characterized by quantum numbers £, and introduce the associated excitation energies 
e( via the usual formula 

ne =      * (33) 
exp(Jef) - 1 

for the occupation numbers of a free gas of Bose excitations. 

3. EULER-LAGRANGE EQUATIONS 

In this section we derive the optimization equations for the density profile g(r) 
of Eq. (9). for the two-body spatial distribution function (7(1*1, ro) of Eq. (10), and 
for the set of eigenfunctions C'c(r) of Eq. (17) and the associated excitation energies 
€(. The optimization equations follow by varying the free energy functional F, as 
given by Eq. (1) together with Eqs. (7), (15), (21), and (32), with respect to g, g 
(or optionally w.r.t ^/g~ and ^/g), ifre, and A( respectively, while keeping the respec- 
tive other quantities fixed. In conjunction with the HNC equations (13) and (14) 
in HNC/0 approximation, the Euler-Lagrange equations constitute a closed set of 
equations, determining the basic microscopic ingredients in our theory. The results 
for 0, g, and the set of eigenfunctions and excitation energies furnish the raw material 
for calculating, numerically or analytically, macroscopic thermodynamic quantities 
as functions of temperature. 

We start by varying the Helmholtz free energy with respect to an eigenfunction 
ty, while keeping all other eigenfunctions, all eigenvalues At, g, g, and thus also the 
nodal function N fixed. The functional derivative of the occupation probability nt 
with respect <iy may be obtained using Eqs. (28) and (30). In terms of the notation 
introduced in the context of the chain relation (14), the resulting Euler-Lagrange 
equation is equivalent to the eigenvalue equation [18-20] 

(1 - X)H0\e) = Ee\£), (34) 

where the one-body kinetic energy operator HQ is given by Eq. (18). The eigenvalue 
Er satisfies 

Ef = 
Wo\e)_,_ u,0e< —Kf) = r^k- <»> D(6) 12/      1 + 

The equality of the second and third members of relation (35) is already the Euler- 
Lagrange equation that follows from variation of the free energy with respect to A^, 



while keeping all other eigenvalues, all eigenfunctions ipg, g, g, and N fixed. The 
third equality in (35) is a trivial consequence of the identification made in (33). The 
orthogonality relations (19) are easily deduced from Eq. (34) - for this reason we 
did not need to impose them as constraints in the variation. Equation (34) may 
be viewed as a nonlocal Schrödinger equation for collective excitations characterized 
by quantum numbers I. It generalizes the Feynman eigenvalue equation to finite 
temperatures and therefore stands as a key result of. our formal development. The 
nonlocal integro-differential operator XKQ incorporates the effects of the strong in- 
terparticle correlations, endowing the excited states with their collective nature. At 
vanishing temperature, the eigenvalue Eg becomes the excitation energy ee itself and 
the well-established T = 0 Feynman eigenvalue equation [4] is then retrieved from 
Eq. (34). 

Exploiting the generalized Feynman eigenvalue equation (34), we readily obtain 
the series expansion 

-* = 1-Ejjl0«l. (36) 

for the operator A' corresponding to the matrix of elements A(ri,r2), where we have 
introduced the notation 

e0(£) = (£\H0\C).    ■ (37) 

For a spatially inhomogeneous system, the energy eo(^) represents the analog of 
the kinetic energy h |k|2/2m of a free particle moving with momentum hk in a 
spatially uniform background. In coordinate space representation, the unit operator 
in the expansion (36) becomes a $—function. Employing the identity 1 + G = (1 — 
A")-1, which holds by virtue of the Ornstein-Zernike relation (14), we may form the 
resolution 

Ho\()(e\H0 c = E Ee€0(£) 
1 (38) 

of the operator G defined, in coordinate space, by Eq. (29). 
The optimization equation for the two-body spatial distribution function g is 

found by varying the Helmholtz free energy with respect to-y/g(ri, r2), while keeping 
the quantities i>(, A(, and g fixed. The functional derivative of the nodal function N 
with respect to g, needed in this procedure, is obtained by exploiting Eqs. (13) and 
(14) [1]. The Euler-Lagrange equation for ^/g may be written as 

[D(l) + D(2)]^g(r1,r2) + [v(ru r2) + w(ru r2) + 0(ru r2)] ^(n, r2) =0.   (39) 

where the potential r represents the bare two-body interaction and the operators 
D(l) and £>(2) are given by Eq. (12). Let us adopt the notation $(ri.r2) = 
\Zg(ri)g(r2) 0(ri,r2). The potential $ is then defined by the series 

$=-2E^TWI+^I^I- (4°) 
In the now-familiar matrix/operator notation, the quantity W(i"i, r2) = y Q{T\ )ff(r2) 
x w[ ri, r2) becomes 

W = -\(H0N + NHo) - ^XHoX . (41) 



Among the terms contributing to the total effective pair potential v + w + <fr in the 
Schrödinger-like equation (39), only the potential <$> carries an explicit temperature 
dependence. While vanishing at T = 0, for finite T it provides for the coupling of the 
thermal excitations to the two-body distribution function g, and thereby to all other 
pair functions. With some algebra, the optimization equation (39) may be stated in 
the equivalent form 

■H0X - XHo + XHQX = 2{Vph + $), (42) 

where V'ph(ri,r2) = ^ö(ri)£>(r2) t>ph(ri,r2), the particle-hole interaction uph being 
given by 

uPh(ri,r2) = [g(r1,r2)- l] [u>(ri,r2) + <f>{ri,r2)]+g(rur2)v(rur2} 

h2 ' 

2m 

 -i2 r   

ViV^(r!,r2)     +   V2^g(rur2 

l2 
(43) 

Variation of the free energy with respect to \/Q{T) , while keeping all the ibg, all 

the Ac- and g fixed, yields a Hartree-like equation for \/Q{Y} . Again equations (13) 
and (14) are employed to determine the functional derivative of the nodal function N 
with respect to g [1]. The constraint to be imposed in the variation of F with respect 
to yfg is particle number conservation, J o(r) dr = const., which brings the chemical 
potential ß into the optimization equation for \/g{r) as a Lagrange multiplier. The 
final result reads 

im 
-V2 + iüH(r)+0H(r)    vW)=™. (44) 

where 

■«■'H(ri; h r2)F(ri, r2)c/r ,-i/a r2)N(rur2)D(2)X(rur2) dr2 

with 

(45) 

F(ri,r2) =5r(ri,r2)i'(r1,r2) + — {   Vl\fg(rl,r2)     +   V2y/g(rur2) 
cm 

|l|[V1^(r1,r2)]-[V1.V(r1,r2)] 

+ [V2^(r1,r2)]-[V2iV(r1,r2)] (46) 

In the full self-consistent Hartree potential iuH+<f>H appearing in the optimization 
equation (44), only the term 

<P «(r) = E 
nt[l + ne] 

{Etd(r)-2*t(r)Dw(r) + ^[V<pe(rj\*}        (47 



depends explicitly on temperature. The one-body functions kp( are defined as <f((r) — 
>i>e(r)/y/°(r) ■ The potential (47) describes the effects of the gas of thermal excita- 
tions on the density profile g and accordingly vanishes at T = 0. The operator D in 
the second term of Eq. (47) is given by Eq. (12) with r,- and V,- replaced by r and V. 
In deriving equation (47), we have made use of the generalized Feynman eigenvalue 
equation (34). 

Finally, inserting the series (36) and (40) into the optimization equation (42), 
we arrive at the series expansion 

for the particle-hole potential 1 pi,, wherefrom the Bogoliubov-like eigenvalue equation 

(ffo + 2Vph)ffoW = e?IO (49) 

readily follows. 
As has already been indicated, the Euler-Lagrange equations (34), (39), and (44) 

reduce to the corresponding T = 0 formulas, derived in Refs. 1 and 2, in the limit 
of vanishing temperature. Similarly, the optimization equations for spatially uniform 
Bose systems at finite temperatures, reported in Refs. 16 and 17, are retrieved from 
Eqs. (34), (39), and (44) by setting g(r) = const. 

4. SUMMARY 

In this paper, we have extended the variational Hartree-Jastrow theory of the 
ground state of spatially inhomogeneous Bose systems to finite temperatures. The 
theory presented here is a generalization also in the sense that it extends the cor- 
related density matrix approach, formulated previously for uniform Bose fluids, to 
systems with nonuniform density profiles. The method provides a framework in 
which the effects of thermal excitations on the spatial structure of a Bose fluid, as 
represented by the density profile and the two-body distribution function, may be 
discussed on the basis of an ab initio microscopic description of the system. Thermal 
excitations make their appearance through self-consistently determined one-body and 
two-body potentials which enter the nonlinear, coupled Euler-Lagrange equations for 
the one-body density and for the pair distribution function. Since we neglect back- 
flow correlations, the excitations are described by a Feynman eigenvalue equation, 
suitably generalized to nonzero temperatures. The only external quantities entering 
the correlated density matrix theory elaborated here are the bare two-body interac- 
tion potential and, in actual applications, the boundary conditions to be imposed on 
the one-body density. 

The natural next step within a correlated density matrix approach to spatially 
inhomogeneous Bose fluids is the incorporation of backflow effects and three-body 
correlations. This step will be guided by recent progress in the inclusion of such 
effects in the homogeneous case [27]. More ambitiously, one might envision, as in 
Ref. 20, the development of a theory that allows phase transitions to take place 
in regions of inhomogeneous density.   Of particular interest is a 4He liquid-vapor 



system in which a relatively dense homogeneous phase consisting of superfluid 4He 
is separated from a relatively dilute homogeneous phase consisting of normal-fluid 
4He vapor by an interface regime with planar geometry. The chosen density operator 
must have the flexibility to provide for the occurrence of a transition in this spatially 
inhomogeneous interface. Again, valuable guidance is expected from studies of the 
homogeneous case, for which a theory of the normal-superfluid phase transition is 
currently under intense development [28-30]. 
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1. INTRODUCTION 

The purpose of this paper is to summarize our present knowledge of the 
many-body physics of electron crystallization in zero magnetic field following 
Wigner([l], [2]) and then to treat the influence of strong magnetic fields on electron 
crystallization (Durkan, Elliott and March [3]). 

The outline of the paper is as follows. In section 2, the basic physical ideas 
underlying the prediction of Wigner of the transition in the ground state from an 
electron liquid at high density in the jellium model to an electron crystal at low 
density will be summarized. What was not known reliably until 1980 was the density 
at which such a metal-insulator transition would occur. This matter was dealt with 
in the quantum Monte Carlo computer study of Ceperley and Alder [4] and their 
work will be briefly discussed also in section 2. Then in section 3 the melting curve 
of the Wigner electron crystal will be considered. 

Section 4 is concerned with the main topic of the paper : namely the study of 
magnetically induced Wigner solids (MIWS). Starting with the proposals of Durkan, 
Elliott and March [3], which were motivated by the Hall measurements of Putley [5] 
on n-type InSb in a magnetic field (see also Somerford [6]; Care and March [7], [8], 
and later theoretical studies), a key experiment was performed by Andrei et al [9] in 
which a GaAs/AlGaAs heterojunction was studied in a strong magnetic field applied 
perpendicular to the plane of the two-dimensional electron assembly. Evidence was 
presented for the formation of a MIWS at a critical magnetic field, based on the idea 
that an electron solid can support low-frequency shear while an electron liquid 
cannot. Strong support for the conclusions of Andrei et al [9] came from the later 
luminescence experiments of Buhmann et al [10], and from a theoretical study of the 
melting curves of a three-dimensional Wigner crystal by Lea and March [11], using 
the earlier work of Kleppmann and Elliott [12]. Then in section 4.1, the proposed 
melting curve of the MIWS by Buhmann et al [10] is subjected to analysis based 
largely on thermodynamics (Lea, March and Sung [13]). This exposes remarkable 
changes in magnetic behaviour taking place as one crosses the melting curve of the 
MIWS. In section 5, a preliminary interpretation of this behaviour is given using the 
anyon model to describe the electron liquid in equilibrium with the electron solid 
(MIWS). Section 5.1 is concerned with progress on the statistical and momentum 
distribution function of the anyon model. In section 6, the possible relation between 
this model and the composite Fermion model of Jain [14] is briefly summarized. 
Section 7 constitutes a summary, together with some suggestions for future study. 



2. WIGNER ELECTRON CRYSTALLIZATION IN ZERO MAGNETIC FIELD 

Wigner [1, 2] was interested in the correlation energy of electrons in metals. As 
the simplest model of a metal, he considered jellium, in which electrons interacting 
via the Coulomb repulsion energy e2/rij between electrons i and j separated by a 
distance ry move in a non-responsive uniform background of neutralizing positive 
charge. The ground-state energy per electron, E/N, of this model, in the high 
density limit n -> CD , where 

n = 3/47nrs
3, (2.1) 

with rs the mean interelectronic spacing, is given by the Hartree-Fock energy 

E _ 2.21    0.916 
N-7?"      rs 

(2.2) 

Eqn (2.2) corresponds to the energy obtained from a total wave function which is a 
single Slater determinant of plane waves exp (i k.r), where | k| < kp, the magnitude 

of the wave vector k at the Fermi surface. In eqn (2.2), E/N is in Rydbergs if rs is 
inserted in units of the Bohr radius a0 = Ji2/me2. 

What is apparent from eqn. (2.2) is that, as rs increases from the high density 
limit (rs -» 0) the potential (exchange) energy term in eqn (2.2) becomes eventually 
important compared with the kinetic energy term (a rs"

2) and then one must refine 
the single Slater determinantal wave function set out above. This motivated Wigner 
[1,2] to examine the extreme low density limit rs -»oo. He stressed that, in this limit 
(compare eqn (2.2)) the potential energy will eventually dominate the kinetic energy. 
He clearly recognized that, in the jellium model, the potential energy would be 
minimized by electrons avoiding each other maximally and that this would be 
achieved by localization on the sites of a lattice. One must then minimize the 
Madelung energy and this turns out to lead to the body-centred-cubic lattice as the 
low density ground state - the so-called quantal Wigner electron crystal. It is this 
quantal crystal that is our dominant concern in the present work, though it will be 
helpful in the ensuing discussion to also invoke known results from the classical limit 
of the jellium model, the so-called one-component plasma (OCP : see for example 
the book by March and Tosi [15]). Returning to the Madelung energy, one can write 
instead of eqn (2.2), which is valid as rs -♦ 0, the low density ground-state energy as 
rs-t oo : 

which is twice as low as eqn (2.2] would yield. In conventional terms, comparison of 
eqns (2.2) and (2.3) shows that the exchange energy -0.9/rs is approximately equal to 
the correlation energy as rs-* oo. 

2.1 Value to critical density for transition to Wigner electron crystal ground-state 

When electron crystallization was reviewed by Care and March [8], there was 
still a very wide spread of values of the critical value rs, say rc, at which the electron 
liquid would give way to the Wigner electron crystal as the density is lowered. This 
difficulty was resolved by Ceperley and Alder [4] who reported quantum Monte Carlo 
calculations for paramagnetic and ferromagnetic liquid phases as a function of rs, to 
compare with the Wigner electron crystal phase. Their important conclusion (see 
Figure 1) was that the critical interelectronic separation rc at which the ground-state 
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Figure 1 Shows energies of different phases of jellium as a function of mean 
interelectronic distance rs defined in eqn (2.1), as calculated by quantal 
computer simulation. Paramagnetic and ferromagnetic electron liquid 
phases are compared with the Wigner electron crystal. (Redrawn from 
Ceperley and Alder [4]). 

changed from electron liquid to an electron crystal phase was given by 

rc = (100 ± 20) a0. (2.4) 

In the body-centred cubic phase, for rs > rc in eqn (2.4), the picture of two 
interpenetrating simple cubic lattices, with electron spins pointing upwards on one 
lattice and downwards on the other (i.e. a Neel antiferromagnetic electron crystal) is 
believed to represent correctly the magnetic configuration, but the ferromagnetic 
state is very close in energy. However, the work of Herman and March [16] strongly 
suggests that the ferromagnetic state is never stabilized in jellium. These workers 
also pointed out that the low density energy calculations of Ceperley and Alder [4] 
are well represented by the results which generalize eqn (2.3) away from the extreme 
low density limit rs-» oo, namely 

E 1.8 , 2.66 
'•IF + (2.5) 

_3 h The term in eqn (2.5) proportional to rs 
/2 is to be thought of as representing 

electrons performing harmonic oscillations about the body-centred cubic lattice sites. 
The coefficient 2.66 then arises from a 'phonon' treatment. Wigner initially used an 
independent harmonic oscillator (Einstein) model, with wave function 

ip = exp (-or2): (2.6) 



—3/ where the exponent a is proportional to rs   
/2.   Eqn (2.6) would lead to a coefficient 

of 3 in the x^l2 term in eqn (2.5), instead of the refined value 2.66 given there. 
However, one merit of the approximate form (2.6) is the immediate recognition that 
in the insulating Wigner crystal phase for rs > rc the momentum distribution n(p) is 
Gaussian. Plainly therefore, the discontinuity in n(p) at the Fermi momentum 
p   = Mc   in the electron liquid phase for rs < rc has completely disappeared in the 

F F . 
insulting Wigner phase. However, it is relevant to note here that in the 
one-dimensional Wigner electron crystal, the work of Holas and March [17] has 
shown that while there is no discontinuity in n(p), some remnants of the Fermi 
surface persist in the insulating phase through non-analytic character of n(p) at 
p = p     This point, as well as the magnetism, remains in need of further study in the 

quanta! Wigner electron crystal. 

However, from the point of view of observing this quantal electron crystal in 
laboratory experiments, it is essential to have knowledge of the melting curve. This 
is the problem therefore to which we turn next in section 3 immediately below. 

3   MELTING CURVE OF QUANTAL WIGNER ELECTRON CRYSTAL 
IN ZERO MAGNETIC FIELD 

Parrinello and March [18] set out the thermodynamics of Wigner electron 
crystallization in zero magnetic field. One of their most important conclusions can 
best be made clear by reference to Figure 2 There the melting temperature Tm is 

T/T* 

Figure 2 Schematic form of melting curve of Wigner electron crystal in zero 
magnetic field as a function of reduced density n/nc, where nc is the 
critical density for the liquid-crystal transition in the ground state 
(T=0). Redrawn from Ferraz et al [20,21]. 



plotted versus the density n, the critical density nc = 3/47rrc
3 being marked on the 

(schematic) Fig.2. The low-density limit n -» 0 is characterized by the absence of 
quantum-mechanical tunnelling. Hence in this limit one can use the known result for 
the classical OCP referred to above. This OCP model exhibits freezing when the 
customary dimensionless coupling strength V, now involving in this classical regime 
the ratio of Coulombic potential energy to thermal energy, namely 

r = (e2As)/kBT, (3.1) 

reaches a critical value Tc ~ 170. Such a transition was known to Brush, Sahlin and 
Teller [19] in their early computer simulation study and this was subsequently refined 
by Hansen and coworkers (see, for example, the book by March and Tosi [15]). Eqn 
(3.1) then translates into a low density asymptote of the melting curve 

Tm = const n1/3 (3.2) 

and the constant is determined by Tc ~ 170. This result (3.2) is sketched in Fig.2. 

Ferraz, March and Suzuki [20,21] (see also [22]) next interpolated between the 
asymptote (3.2) and the zero temperature critical density nc as determined by 
Ceperley and Alder [4]. They did so by approximate integration of the 
Clausius-Clapeyron equation for the (assumed) first-order liquid-crystal phase 
transition. Their main conclusion was that He temperatures would be needed to 
detect the quantal Wigner electron crystal in laboratory experiments. 

4. MAGNETICALLY INDUCED ELECTRON SOLID 

The localization of electrons in impure semiconductors was discussed by 
Durkan et al [3] in relation to measured transport properties (Putley [5]) of highly 
compensated n-type InSb in an applied magnetic field. In this work, the proposal 
was made that Wigner electron crystallization could be aided by localization due to 

strong applied magnetic fields, the magnetic (cyclotron) radius lc = (Tic/eH)2 

providing an important new localization scale. This phenomenon of a magnetically 
induced Wigner solid (MIWS) has subsequently been observed by Andrei et al [9] in 
a GaAs/AlGaAs heterojunction. Their findings have been confirmed and extended 
by the luminescence study of Buhmann et al [10]. 

Motivated by these experiments, and in particular with the aim of 
understanding the melting curve of the magnetically induced Wigner solid (MIWS), 
Lea et al [13] have given the thermodynamics of such melting in a magnetic field. 
Their results will be utilized immediately below to treat the equilibrium between the 
electron liquid (compare Laughlin [23]) and the Wigner solid. Remarkable magnetic 
properties of the electron liquid can then be deduced, following Lea et al [13], by 
combining the thermodynamic treatment with the 'experimental' phase diagram of 
Buhmann et al [10]. 

4.1    Thermodynamics of first-order transition between electron solid and electron 
liquid 

The analogue of the Clausius-Clapeyron equation for melting in a magnetic 
field was given by Lea et al [13] as 



(fflu/dv) = (H/i/)AM/AS (4.1) 

where Tm is the melting temperature.  It is to be noted that in the magnetic field H, 
in the geometry here of an electron assembly in the plane of a heterojunction and in a 
perpendicular magnetic field, each single-particle state is already confined by the 
Lorentz force to an area 2irtJ and has the discrete energies (u+i)1iWc where 

it 
Hu;c = ?i2/ray = ?ieH/mc is the cyclotron energy.   Each of v = 2(^/^)2 electrons 

where rs is now defined in terms of the areal density n by 7rrs
2 = 1/n. Increasing the 

field decreases this Landau filling factor v. 

v — nhc/eH. (4.2) 

Finally in eqn(4.1) AM = M   - M  is the change of magnetization on melting while 

AS = ST - S- is the corresponding entropy change. 

From the schematic phase diagram proposed by Buhmann et al [10] and shown 
in Figure 3, Lea et al [13] used eqn (4.1) to deduce the magnetization change along 
the melting curve, as shown schematically in Figure 4. These workers noted that this 
field dependence of AM is very reminiscent of the de Haas - van Alphen effect 
occurring in metals at larger v values, suggesting that the magnetism of the electron 
liquid phase is initimately connected with the exotic variation of AM shown m 
Figure 4. The relation of their proposal to the anyon model will now be briefly 
summarized [24]. 

Figure 3 Schematic phase diagram showing magnetically induced Wigner electron 
solids versus Landau level filling factor u defined in eqn (4.2). Note the 
stability of the (Laughlin) electron liquid at u = 1/9, 1/7 and 1/5. 
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Figure 4 Schematic form of the magnetization of the electron liquid, as a function 
of Landau level filling factor u, along the melting curve (after Lea et al 
[13]). 

5. ANYON MAGNETISM AND MELTING CURVE OF FIGURE 3 

We use the anyon model only in the classical limit below. We shall see that it 
can give further insight into the microscopic origin (Lea et al [24]) of the phase 
diagram of Figure 3. In the anyon model, one has fractional statistics (Wilczek [25V), 
characterized by a parameter 7, which has the value zero for Fermions and is ± 1/2 
for Bosons. 

Using the second virial coefficient of non-interacting two-dimensional anyons 
(mass m) in a magnetic field (Johnson and Canright [26]; Dowker and Chang [27]), 
the magnetism AM of an anyon gas versus fractional statistics parameter 7 is shown 
in Figure 5. To relate this Figure to a field-dependent magnetization, it is necessary 
to connect the statistics parameter 7 to the Landau filling factor 7. Lea et al [24] 
give arguments for the approximate relation 

7 = 1/21/ - j (5.1) 

where the integer j is chosen in such a way that 7 varies in the range from —£ to +i 
as v decreases. The magnetization of this non-interacting ayon gas has many of the 
features required to explain qualitatively the phase diagram of the two-dimensional 
electron solid sketched in Figure 3. 
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Figure 5 Depicts magnetization AM of an anyon gas versus fractional statistics 
parameter. Different curves (a-d) correspond to different parameters in 
anyon model. (After Lea et al [24]). 

5.1 Statistical and momentum distribution function for anyons 

March et al [28]; see also March [29] have treated the statistical distribution 
function f(e) for anyons and the closely related momentum distribution function n(k). 
They start from the treatment of collisions in a gas of Fermions following, for 
example, Ma [30]. Ma then obtains 

f(e)/l-f(6) = exp(-a-/36). (5.2) 

and for Bosons the factor l-f(e) becomes l+f(e).   For anyons, March et al [28] show 
that 

f(e)/l-a(7)f(e) = exp(-a-/?£). (5.3) 

Approximate treatments of a(7) as a function of the fractional statistics parameter 7 
now exist (March et al, [28]; March [29]) which, at least, correctly interpolate 
between the Fermion and Boson limits. The relation to the momentum distribution 
n(k) is also set out in the above references and further details will therefore be 
omitted here. 



6   POSSIBLE RELATION BETWEEN ANYON MODEL AND COMPOSITE 
FERMION MODEL OF JAIN 

6.1 Composite Fermions 

The above treatment (Lea et al, [24]) has utilized as an important ingredient 
the idea of a new kind of Fermionic particle, the composite Fermion (CF). This was 
proposed by Jain [14,31] to explain the fractional quantum Hall effect (FQHE). Jain 
argued that in the system treated above, namely a two-dimensional electron system 
subjected to an intense magnetic field normal to the plane of the electrons, these 
particles would condense into composite Fermions. Such a composite is an electron 
carrying an even integer number (2p say) of the vortices of the many-particle wave 
function, and often can be thought of as an electron binding 2p magnetic flux quanta 
$0 (= h/e).    These composite particles are formed as a result of the Coulomb 

interaction between the (2d) electrons, and the liquid of strongly interacting electrons 
is equivalent to a gas of weak interacting composite Fermions. Since these CF's do 
not experience the flux bound to them, they see an effective magnetic field (Goldman 
et al [32]) + 

B   =B = 2pn$0 (6.1) 

where n is the electron (and CF) density. In the above equation, the - (+) sign 
corresponds to the flux binding in the same (opposite) direction as the external field 

B. The effective Landau level filling factor of composite Fermions, v = n$0/B is 

then related to the electron filling factor u = n$0/B by 

v = v*/(2pv* ±1). (6.2) 

One of the merits of the CF idea is the straightforward explanation of FQHE of 
electrons as the integer QHE for composite Fermions.   An integer number of filled 

Landau levels of CF's (u =i) corresponds to the electron filling factor v = i/(2pi±l), 
which are precisely the sequences of fractions exposed by experiment (Jain [31]; Jain 
and Goldman, [33]).    Transitions from one FQHE state to the next within the 

sequence are expected to occur when v = i + \, according to the 'law of 
corresponding states' (Jain et al [34]) : this is likewise in agreement with experiment 
(Goldman et al [35]). 

Subsequently, Goldman et al [32] have reported transverse magnetic focusing 
experiments in the vicinity of the Landau level filling factor v = 1/2. They observe 
quasiperiodic magnetic focusing peaks for v < 1/2 and no periodic structure for v > 
1/2 in several double-constriction GaAs heterojunction samples. The quasiperiod 
and the direction of focusing in all of their samples were found to be in quantitative 
agreement with that expected from semiclassical transport by composite Fermions of 
charge - | e|. 

Wu and Jain [36] have investigated the spectrum of interacting electrons at 
arbitrary filling actors in the limit of vanishing Zeeman splitting. These workers 
argue that the CF treatment can explain the low-energy spectrum, provided a hard 
core condition is imposed on the composite Fermions. 



7.  SUMMARY PLUS SOME SUGGESTIONS FOR FUTURE STUDY 

Electron crystallization, proposed some sixty years ago by Wigner [1], has 
proved difficult to observe in the laboratory. However, Wigner's original ideas for 
the jellium model have been amply confirmed by quantal computer simulation [4] as 
discussed in section 2.1. 

For magnetically induced electron solids, proposed by Durkan et al [3] to 
explain data of Putley [5] on highly compensated n-type InSb, the recent 
experiments of Andrei et al [9] and Buhmann et al [10] on GaAs/A^GaAs 
heterojunctions observe the electron solid and allow the salient features of its melting 
curve to be sketched. Lea et al [13,24] expose remarkable magnetization of the 
electron liquid in equilibrium with the MIWS, which can be interpreted, at least 
qualitatively, using the anyon model. 

7.1 Anyon model with two-body interactions 

The anyon model was employed above in the interpretation of the exotic 
magnetic behaviour of the Laughlin electron liquid. While the relation with the 
composite Fermion picture discussed above remains still to be fully clarified, it is of 
some interest to note that Gidopoulus and Theophilou [37] have recently included 
two-body interactions in the anyon model. They have demonstrated, in particular, 
that the non-analytic behaviour of the second virial coefficient, found by Arovas et al 
[38], is still retained in the presence of such interactions and independent of the 
particular form of the interaction. Furthermore, they calculate the second virial 
coefficient explicitly in the case of a short-range interaction. 

We conclude by mentioning a further relevant area in which future work should 
be fruitful. 

7.2 Quantum dots in strong magnetic fields 

Advances in nanofabrication technology have allowed the manufacture of 
'quantum dots' in which electrons are confined to a small area within a 
two-dimensional electron assembly (see, eg Kastner [39]). Yang et al [40] have very 
recently considered the magnetic field dependence ot the chemical potential for 
parabolically confined quantum dots in a strong magnetic field. They demonstrate 
that approximate expressions, based on the idea that the size of a dot is determined 
by a competition between confinement and interaction energies, are consistent with 
exact diagonalization studies for small quantum dots. These workers show that fine 
structure is present in the magnetic field dependence which requires for its 
explanation a full many-body treatment and is associated with ground-state level 
crossings as a function of confinement strength or Zeeman interaction strength. Some 
of this fine structure is associated by Yang et al [40] with precursors of the bulk 
incompressible states responsible for the FQHE. 
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1. INTRODUCTION 

It is one of the basic aims of theoretical nuclear physics to develop an approxi- 
mation scheme for the solution of the nuclear many-body problem, which determines 
the basic properties of directly from a realistic nucleon-nucleon (NN) interaction. 
Here we use the description realistic NN interaction for models like the One-Boson- 
Exchange (OBE) model [1], in which the parameters have been adjusted to obtain 
a detailed fit of the two-nucleon data, i.e. the NN scattering phase shifts and the 
properties of the deuteron. 

These attempts are confronted with two major obstacles. The first one is the 
necessity to consider the effects of NN correlations which are due to the strong short- 
range and tensor components in a realistic NN interaction. The importance of the 
NN correlations is made obvious by the fact that no binding energy of nuclear sys- 
tems is obtained if these correlations are ignored: A Hartree-Fock (HF) calculation 
employing e.g. a realistic OBE potential [1] would predict unbound nuclei. Various 
methods have been developed to include the effects of two-nucleon correlations. One 
possibility is the so-called Brueckner-Hartree-Fock (BHF) approximation. In this 
approach one considers a Slater-determinant, which should be an appropriate model 
wave-function for the nuclear system to be investigated. Solving the Bethe-Goldstone 
equation yields an effective interaction, the G-matrix, which depends on the bare NN 
interaction and the model wave-function considered. The self-consistency condition 
of BHF now requires that the model-wave function, which is needed to set up the 
Bethe-Goldstone equation, is made identical to the solution of the HF equations using 
the G-matrix as a kind of effective interaction. 

The second obstacle is of a relativistic nature: the strong scalar-meson (a) ex- 
change part required in realistic meson-exchange potentials [1], gives rise to a sig- 
nificant modification of the Dirac structure of nucleons in the nuclear medium [2]. 



Therefore relativistic features should be included in the many-body theory of nuclear 
systems, in order to account for this effect. This modification of the Dirac spinors 
in the nuclear medium leads to a self-consistency problem beyond the BHF problem 
outlined above, which includes even the calculation of the matrix elements for the NN 
interaction, as the evaluation of the matrix elements for an OBE interaction requires 
the knowledge of the structure of these Dirac spinors. On the other hand the Dirac 
spinors are determined from the solution of the Dirac equation with a self-energy for 
the nucleons, which is calculated in terms of the G-matrix evaluated for the OBE 

interaction. 
These self-consistency problems are simplified for nuclear matter since the trans- 

lational symmetry of this infinite system requires plane waves for the single-particle 
wave functions to built up the Slater-determinant. Such Dirac BHF (DBHF) calcu- 
lations have been performed for nuclear matter by, e. g., Shakin and collaborators 
[3], Brockmann and Machleidt [4], and ter Haar and Malfliet [5]. The basic aspects 
of this approach have been thoroughly investigated by Horowitz and Serot [6]. Due 
to the scalar field, the nucleon mass is reduced enhancing the ratio between small 
and large components of the Dirac spinors. This change in the Dirac spinors yields a 
reduction of the scalar density, which implies that the attraction due to the exchange 
of the a meson in OBE potentials is reduced. At small densities of nuclear matter 
this loss of attraction is counterbalanced by a reduction of the kinetic energy, which 
is also caused by the medium dependence of the Dirac spinors. At larger densities the 
loss of attraction in the NN interaction overwhelms the loss of repulsion in the kinetic 
energy and for those densities the energy calculated in the DBHF approximation is 
less attractive than the corresponding energy calculated in the BHF approximation 
ignoring these relativistic effects. 

Consequently the saturation points calculated for nuclear matter in DBHF ap- 
proximation are shifted to smaller densities as compared to the BHF result. Brock- 
mann and Machleidt succeeded in constructing a realistic OBE potential which fits 
NN scattering data and also yields DBHF results for nuclear matter in satisfying 
agreement with the empirical data [4]. The same feature is also observed for the po- 
tential "A", defined in table A.2 of ref.[l], which we will consider also in our present 
investigation. 

This success of the DBHF approximation in nuclear matter gives rise to the 
hope that the same DBHF approximation may also be successful to reproduce the 
binding energies and radii of finite nuclei. From the discussion above, it is obvious, 
however, that a complete self-consistent calculation for finite nuclei is rather involved. 
Therefore we are going to investigate two approximations, in which either the effects 
of correlations or the relativistic effects are taken from studies of nuclear matter, while 
the respective other components of the calculation are treated in a self-consistent way 
directly for the finite nuclei. Some details of these methods and results of such studies 
[7,8] will be discussed in section 2. 

In section 3 we will try to explore other "fingerprints" for the modifications 
of the Dirac spinors in the nuclear medium as predicted by the DBHF approach. 
As examples we will consider the relativistic effects on the spin-orbit splitting in 
the single-particle energies [9] and the energy-dependence of the central part of the 
optical potential for nucleon nucleus scattering [10]. 

In order to investigate the discrepancy remaining between the predictions of 
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Figure 1. Results on binding energy per nucleon and radius of the charge dis- 
tribution obtained from various approaches (see text) using OBE potentials A and 
C. 

the DBHF and the experimental data on the groundstate properties of finite nuclei, 
we consider correlation effects beyond the lowest order Brueckner theory. Within 
the framework of the self-consistent Green function approach [11] an approximation 
scheme is presented in section 4, which describes the Green function in terms of a 
specified number of characteristic poles [12]. A short summary is given in the final 
section. 

2. TWO WAYS TOWARDS DBHF FOR FINITE NUCLEI 

For the first of the two approaches we are going to treat the effects of correlations 
directly for finite nuclei and approximate the Dirac effects from those of nuclear 
matter in terms of a local density approximation. For that purpose we determine the 
structure of the Dirac spinors, i.e. the ratio of small to large component in nuclear 
matter at various densities. Using these Dirac spinors we can evaluate for each density 
matrix elements of the OBE potential, leading to a density-dependent potential V(p). 
For the various potentials at various densities one can solve the Bethe-Goldstone 
equation and the BHF problem for finite nuclei using conventional techniques [13,14]. 
The densities to be used in the calculation of the potential V(p) are finally related to 



the expectation values for the baryon densities in the different single-particle orbits 
Pi by requesting that for each pair of interacting nucleons, the density p is identical 
to the geometrical average of the densities for the interacting nucleons in orbits i and 

j- 
Results of such DBHF calculations in this approximation "1" (DBHF(l)) on the 

binding energy and radius of the charge distribution of 160 are displayed in figure 1. 
These results can be compared with those of a conventional BHF calculation using 
the same OBE potentials but ignoring the modifications of the Dirac spinors in the 
medium, i.e. using V(p - 0). The BHF results for the 2 potentials A and C are 
similar to BHF results obtained with other realistic potentials, which means that the 
results are within the "Coester" band for 160 [15]. Inclusion of the Dirac effects in 
DBHF(l) results in an increase of the calculated radius and a larger binding energy. 
This means that the results are significantly closer to the empirical data point. The 
original discrepancy between BHF and experiment is reduced by approximately a 

factor of 1/2. 
In a second approximation to a self-consistent DBHF calculation for finite nuclei 

(DBHF(2)), we treat the relativistic effects directly for the finite system and account 
for correlation effects in a kind of local density approximation. For that purpose we 
define an effective meson exchange model for nuclear matter. The coupling constants 
for the effective a and u> meson exchange are assumed to be density dependent and 
adjusted in such a way, that at each density the microscopic DBHF results for the 
binding energy and the self-energy in nuclear matter are reproduced in a Dirac- 
Hartree-Fock calculation of nuclear matter using this effective meson-exchange model. 
The density-dependence of the effective meson-coupling constants reflects the density- 
dependence of the correlation effects in the Brueckner G-matrix. For this effective 
meson-exchange model we then solve the Dirac-Hartree-Fock equation directly for 
the finite nucleus. The density parameter in the coupling constants is again related 
to the local densities determined from the final wave-functions. 

Results for this DBHF(2) approximation are also included in figure 1. One 
finds that the results of DBHF(2) are very close to the corresponding results for 
the DBHF(l) approximation. As we have used two very different approximation 
schemes, we can argue that both approximations seem to be very reliable and should 
yield results very close to a complete DBHF calculation. These DBHF results form a 
new "Coester" band, which is much closer to the experimental point. Our result that 
Dirac effects reduce the discrepancy to the experimental point by roughly a factor 
1/2, is supported by recent studies of Boersma and Malfliet [16], which are similar 

to our DBHF(2) calculations. 

3. FINGERPRINTS OF RELATVISTIC EFFECTS 

The discussion in the previous section demonstrated that the inclusion of rela- 
tivistic effects in the sense, that Dirac spinors in the nuclear medium might be mod- 
ified, tends to improve the results on binding energies and radii of nuclei. The next 
question is: Are there other indications in nuclear structure physics at low energies, 
which give further evidence to the importance of these relativistic effects. In order to 
discuss such features we assume that the relativistic self-energy for the nucleon can 



be written as a sum of a scalar component and a timelike vector component 

£(r) = Xs(r)+~f0Z\r) (1) 

In order to simplify the discussion we ignore the component, which transforms like a 
spacelike component of a vector, and assume that the components are local. The in- 
dividual terms are large and of the order of a few hundred MeV, the scalar component 
Ss is attractive while the vector component S° is repulsive, leading to a cancellation 
in the sense that the combined effect for solutions of the Dirac equation of positive 
energy is slightly attractive, in agreement with the weak single-particle potential of 
nucleon in nuclei. Using an ansatz for the Dirac spinors in finite nuclei of the form 
[8] 

*^=U^(rV-^y--'m-(ß)=Ua(0 
the Dirac equation for a nucleon accounting for the self-energy of eq.(l) can be written 
in terms of two coupled first order differential equation for the large (ga) and small 
component (/Q) 

-ft ,4 [m + S3(r) + S°(r)] ga{f) + <?-V/a(r) = Eaga(r) 

S-Vga{r) + [-m - Ss(0 + S°(r)] Uif) = Eafa(r) (3) 

By eliminating the small component fa these two coupled equations can be rewritten 
in a differential equation of second order for the large component [17], which has the 
form of a Schroedinger equation 

■—& + Ue(f) + l-aUu 
2m 

ga(f) = (Ea - m)ga{r) . (4) 

This Schroedinger equation, equivalent to the Dirac equation (3) exhibits two impor- 
tant features: 
— It contains a spin orbit term Ui3. An inspection of this spin orbit term yields 

Uh 
1 

m(m + T,3) 
(5) 

The potential in eq.(4) also contains a central component, which depends on the 
relativistic energy E of the nucleon to be considered, and can be written 

E   „          (£s(r))2 - (E°(r))   + 07v,rw:n(r) 
Uc(r) = S*(r) + -£°(r) + ^-^ K—^ DarwinV } (6) 

with 

U- Darwin (r) 
1    dD(r) 

D(r)     dr 

1     dD(r) d2D(r) 
rD(r)     dr 2D(r)    dr2 

D{r) =m + E + Ss(r) - E°(r) (7) 
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Figure 2. Density distribution and optical potential for 160. The density distri- 
bution displayed in the upper part of the figure has been obtained from the Dirac 
Hartree calculation of Ref. [8]. For this distribution the local equivalent optical po- 
tential of nucleon scattering have been calculated for energies of 5 MeV and 100 
MeV, using the Dirac Hartree (solid line) and the non-relativistic folding potential 
calculated for the M3Y potential (dashed curve) 

We will first discuss some features of the spin-orbit term for the example of 
the spin-orbit splitting of the p3/2 and pi/2 hole states in 160 and compare it to 
the splitting of the d5/2 and d3/2 particle states. Inspecting the experimental data, 
it is remarkable that the splitting of the d-states is smaller (5.09 MeV) than the 
splitting of the p orbits (6.18 MeV). Simple spin-orbit terms tend to yield larger 
values proportional to the orbital angular momentum, i.e. larger splittings for / = 2 
than for I = 1. Also BHF calculations and non-relativistic calculations with inclusion 
of correction terms in the single-particle potentials predict a larger spin-orbit splitting 
for the d-shell than for the p-shell [9]. The experimental result can be reproduced 
only after inclusion of the relativistic effects. The result can be easily understood in 
terms of the analysis made above. From eq.(5) one can see that the spin orbit term 



r 

is large if the effective mass (m* = m + Es) is small. This is the case inside the 
nucleus, where S3 is very attractive and reflected in a large spin-orbit splitting for 
the p-orbits. On the other hand, the local density for the d-orbits is smaller, which 
leads to a weaker Ss and to a weaker spin-orbit term. 

It is worth noting that the relativistic effects not only yield a correct description 
of the spin orbit splitting for the d-shell as compared to the p-shell. If correlation 
effects are taken into account (2particle-lhole and 3particle-2hole contributions to 
the self-energy) one obtains also a quantitative description of the spin-orbit term. 
Also within a non-relativistic many-body calculation one can reproduce the spin- 
orbit splitting of the p-shell, if the effects of a 3-body force are taken into account 
[18]. It is not clear, however, whether this 3-body force will also lead to a proper 
result for the splitting in the d-shell. 

In figure 2 we display the baryon density resulting from a Dirac-Hartree cal- 
culation for 160. The coupling constants for the mesons have been determined as 
described above for DBHF(2), however, restricting the analysis in nuclear matter 
and also the calculation in finite nuclei to the Dirac-Hartree approximation. The 
lower part of figure 2 exhibits the local equivalent potential Uc(r) of eq.(7)) for the 
scattering of nucleons with incident energies of 5 and 100 MeV. According to eq.(5) 
the contribution of the repulsive vector component S° is enhanced at the higher en- 
ergy as compared to the lower energy, leading to a less attractive Uc at 100 MeV. 
This energy dependence of the real part in the optical potential is needed to repro- 
duce the empirical data of elastic nucleon-nucleus scattering data. This can be seen 
from the upper part of figure 3, which compares the scattering phase shifts for I = 0 
nucleons derived from the Dirac equation or the corresponding Schroedinger equiv- 
alent potential with empirical phase shifts [19]. To visualize the importance of the 
energy-dependence we also show results, which are obtained using the Schroedinger 
equivalent potential for nucleons at 5 MeV for all energies. 

Also for the case of nucleon-nucleus scattering one can find mechanisms within 
a non-relativistic description of nuclear systems, which yield a local potential for 
nucleon-nucleus scattering, which exhibits the energy-dependence required from ex- 
periment. As an example we mention the non-relativistic parameterization of the 
G-matrix provided by the M3Y approach [20]. It should be mentioned, however, 
that other non-relativistic parameterizations [21] show similar features. As we want 
to explore the differences between a relativistic and non-relativistic evaluation of 
the mean-field contribution to the optical potential, independent on the underly- 
ing baryon density, we use the same density distribution as in the Dirac-Hartree 
approach. For these densities we determine the scattering potential, including the 
exchange term in a local form with the Slater approximation for the mixed density 

p(r,r') [10]. 
The resulting local potentials are also displayed in figure 2 (dashed curves) again 

for nucleons with energies of 5 and 100 MeV. The shapes of the M3Y potentials de- 
viate from those obtained in the Dirac-Hartree approach in a distinct manner. The 
M3Y potentials tend to be less attractive at the surface and more attractive close to 
the center. The energy dependence of these local potentials, however, seems to be 
quite similar to the one obtained in the Dirac-Hartree approach. This can also be seen 
from the lower half of figure 3, where the phase shifts evaluated with the M3Y folding 
potential are compared again with empirical data. Fixing the energy-dependence of 
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Figure 3. Phase shifts for / = 0 scattering on 160 at various energies of the scattered 
nucleon. Results of the Dirac Hartree calculation are displayed in the upper part 
while those obtained from the non-relativistic M3Y potential are given in the lower 
part of the figure. Beside the results of the consistent calculations (solid lines) also 
phase-shifts obtained for the equivalent local potential at a fixed energy of 5 MeV 
(dashed line) are presented. For comparison also the phase-shifts obtained from the 
empirical fit of Ref.[19] are displayed as "experimental" data. 

the local potential equivalent to the Fock exchange term again to the one of nucleons 
at 5 MeV, the dashed curve is obtained. 

Within the non-relativistic description, the energy or momentum dependence is 
due to the strong Fock exchange term in the M3Y parameterization. If one calcu- 
lates the binding of nuclear matter with this effective interaction, one finds that the 
dominating contribution to the potential energy arises from the Fock exchange terms. 
One finds that the Hartree term only yields about 25 percent of the total attraction. 
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4. BAGEL APPROXIMATION FOR THE GREEN FUNCTION 

In the discussion so far we have restricted the discussion of correlation effects to 
the short-range correlations as they are taken into account in the BHF approximation. 
In this section we would like to discuss a technique, which allows a systematic exten- 
sion of this BHF treatment in terms a self-consistent Green function approach. For a 
first application of this method we consider correlations within a model space, taking 
into account configurations in an oscillator basis up to and including the 0hlf2p shell. 
Short-range correlations outside the model space are taken into account by perform- 
ing all calculations in terms of an appropriate model-space hamiltonian, which is 
derived from the G-matrix assuming an appropriate Pauli operator for that model 
space [22]. The contributions to the irreducible self-energy, which are of second order 
in this residual model space interaction can be written into the form 

(2),   ,     1    y^    < ah\G\piP2 >< PiP2\G\ßh > 
aß\u)-2   2.^1 io - e(pi,p2,h) + ir] 

Pl,P2,h 

1   y>   < ap\G\hih2 >< hih2\G\ßp > ,g, 

2. V uj-e(hi,h2,p)-iri 

where we have introduced the abbreviation e(a,ß,~f) = e%F + e^F - e^F, and the 

e%F are the HF single-particle energies. In eq. (8)) the summations on particle labels 
like pi, p2 and p are restricted to those single-particle states within the model space, 
which are above the Fermi level, whereas the labels hi,h2 and h refer to hole states. 
It is evident that the first term on the right hand side of eq. (8) refers to the 2 
particle - 1 hole contribution to the self-energy, which is already accounted for in the 
BHF approach, while the second term defines 2 hole - 1 particle contribution. This 
self-energy can now be inserted into a Dyson equation for the Green function Qaß(w) 

taking into account the correlation effects contained in E^2) 

gaß(iü) = 6aßgQ(Lü) + J2 9*(u)Yla.1{u)giß(u) (9) 
7 

<^|aa|^+1X^+1|aJ|*o> 
^ to - LO£ +irj 

n 

+ E   (10) 
W — LOm — IT] 

The second line (eq.(10)) exhibits the Lehmann representation of the single-particle 
Green function in terms of the spectroscopic amplitudes < #^|aa|#£+1 > and 
< *^+1|a^|*o >, where aQ (o^) stands for the single-particle annihilation (creation) 

operator in the HF basis. The state *^ refers to the ground-state of the A-particle 
system, while *^+1 (^^T1) stands for the states of the A+1-particle (A-l) system 
as obtained in the present approach. Also the energy variables w+ = E£+l - E0 

and u>~ = E$ - E*~l are defined in terms of energies obtained for the states of the 
nuclei with A, A + 1 and A-l nucleons. The substantial ingredients of the Lehmann 
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representation of eq. (10) can be obtained from a solution of an eigenvalue problem 
[23] 
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In writing this equation, we assume that for a given set of conserved quantum numbers 
(parity, isospin, angular momentum) we have in our model space two HF single- 
particle states (a, ß) and K 2plh configurations with energies e; and connecting 
matrix elements a; =< ah\G\pxP2 >■ Corresponding for the 2hlp energies Ej and 
matrix elements bj. The central point of the BAGEL approximation is to determine 
the energy and the spectroscopic amplitude of a few "characteristic" states of the 
A ± 1 system. For that purpose we start from the single-particle states and generate 
a few more basic 2plh and 2hlp configurations by applying the corresponding part 
of the matrix in (11) to the single-particle state. In this way we generate a basis of 
2plh and 2hlp configurations like in the Lanczos scheme for matrix diagonalization 
(BAGEL = BAsis GEnerated by Lanczos method). It turns out that it is sufficient 
for many purposes to consider a BAGEL basis with a few basis states only (lets say 
M 2plh states and N 2hlp states). The eigenvalues and spectroscopic amplitudes 
determined from such a BAGEL(M,N) approximation define a single-particle Green 
function according to eq. (10), which is a very accurate approximation in many 

investigations. 
This approximate Green function contains only a few pole terms. Therefore it 

may be used to replace the HF approximation of the single-particle Green function 
in calculating the self-energy (eq.8). This allows a self-consistent treatment of the 
self-energy and the solution of the Dyson equation [12], which is required to obtain a 
number conserving approximation for the Green function [11]. Rather stable results 
(stable with respect to an increase of the BAGEL parameters M and N) are also 
obtain for the spectral function [23]. A "smoothed" spectral function may be defined 

by 

sQM = ^[E^-t^\<^+1^> 

+ Eexp_ (^-^)2 

r2 <^-i|aal*o> (12) 

In this equation the summation over n is restricted to the poles w+ above the Fermi 
energy EF and the summation over m to those below the Fermi energy. Results for 
the spectral function at energies below the Fermi energy for 40Ca are displayed in 
figure 4 and compared to experimental data derived from (e, e')p experiments [24]. 
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Figure 4. Spectral functions obtained for the nucleus 40Ca for the various orbital 
angular momenta / in an energy interval [-50 MeV, -10 MeV]. The experimental data 
are from ref. [24]. Note the different scales for the spectral function in the various 

parts of the figure 

The BAGEL approximation to the single-particle Green function can also be 
used to evaluate occupation probabilities and expectation values for the radius and 
the binding energy. Within the model space considered, the inclusion of hole-hole 
terms yields an extra binding energy (beyond BHF) of around 0.5 MeV per nucleon 
and an increase of the radius of 0.1 fm for nuclei like 160 and 40Ca [22]. The effect 
of the hole-hole terms is not very large, it could be sufficient, however, to explain the 
discrepancy remaining between DBHF and the experimental data. 



AZ 

5.  CONCLUSIONS 

From the results of our calculations we conclude that the relativistic effects con- 
tained in the DBHF approach are very useful to improve our understanding of nuclear 
structure at low energies. The Dirac effects improve the microscopic description of 
ground-state properties of finite nuclei considerably. It is quite possible that an ex- 
tension of the DBHF approach, which accounts also for hole-hole scattering terms 
[5,22,25] will yield results, which are in good agreement with the experimental data. 
The Dirac effects provide a very simple explanation for the features of the spin-orbit 
terms and the energy-dependence of the optical potential. These phenomena may 
also be described within a non-relativistic approach employing 3-body forces and 
strong Fock-exchange contributions to the mean field. Therefore it remains a chal- 
lenge to look for further fingerprints of relativistic effects in nuclear structure physics 
at low energy. Finally we consider a very powerful approximation scheme for the 
self-consistent Green function method. This scheme could be used in non-relativistic 
as well as in relativistic studies of many-body systems. 

The work I have been presenting has been done mainly in collaboration with 
R. Fritz and M. Kleinmann, PhD students of the "Graduiertenkolleg Struktur und 
Wechselwirkung von Hadronen und Kernen" in Tübingen, and L.D. Skouras from 
N.R.C.P.S. Demokritos (Greece). I would like to acknowledge the collaboration and 
the financial support by the DFG (Mu 705/3) and the BMFT. 
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1. INTRODUCTION 

An advanced many-body theory such as the correlated ba«s fanctionB (CBF) 
approach [1-31 may provide a unified and adequate formal basis for analyzing and 
cakulaüng th fundamental structures and properties of quantum fluids, Coulomb 
SÄStice gauge models, spin-systems and other correlated systems with many 
rlpoTPPs of freedom, at zero temperature [4-9]. 

S CBF theo^ may be suitably generalized to the regime of nonzero temperature 
T = (LVr1 (correlated density matrix theory [10]) thus permitting a qualitative 
Structural description of the equilibrium properties of correlated many-body systems 
and their inherent phase transitions. Steps in this direction have.been^ taken m Refs^ 
[11-141 and Ref. [15], respectively, on the Bose-condensed and the normal phase ot 
quid 4e or other boson fluids.  In the present contribution we outline a unified 
Tmalism for dealing with both phases on an equal level that, for example, allows - 
nTratoe analysis    a microscopic numerical study of the Bose-Emstem transition 

In CBF theory one seeks an understanding of certain iV-body states (ground 
states and elementary excited states) generated by a Hamiltonian 

N h2 N 

n = r + v = -E^ + E^)' (1) 
j i<j 

for N particles confined to a box of volume Q in terms of an appropriate set of 
optimized trial wave functions. The optimization procedure is based on ^ minimum 
principle for the ground state energy and t"atl0Yf^ 
thermodynamic limit (N/Q = p = constant; N,Q - oo) [2]. At T > 0, instead ot 



working with correlated wave functions, one works with trial iV-body density matrices 
which include the most important correlation effects. 

The correlated density matrix approach rests on the Gibbs-Delbrück-Moliere 
minimum principle [10] for the Helmholtz free energy, FQ < F[W], with a trial N- 
body density matrix W. For utilizing this theorem we need an explicit construction of 
the internal energy functional E[W] = Tr{WH} in coordinate space representation, 

E = JdRjdK'6(R - R'){E£(V; • V, - A3) + f>(^-)}^(R,R')    (2) 
3 i<3 

and of the entropy of the system. The configuration of particles i = 1,2, ...,iV is 
specified by the vector R = (ri,r2, ...,TN) and W(R,R') is a matrix element of W 
in coordinate space. 

A structural analysis of the multidimensional integral (2) on which we will con- 
centrate in the present study (leaving a study of the entropy to the future) necessitates 
an explicit evaluation of the radial distribution function, 

P29(\ri - r2|) = N(N - 1) JdR^W(R,R) (3) 

and its differing components (Section 3). The expression (2) further involves a certain 
functional derivative Gcc(r), i.e., the cyclic distribution function [15]. 

In addition to the diagonal matrix elements (3) of the reduced two-body density 
matrix we are also interested in the matrix elements of the reduced one-body density 
matrix, 

pp1(\Tl-v,
1\) = NJdR^W(TUR^]T'11R^). (4) 

The integrations in Eqs. (3) and (4) extend over the coordinates R(1'2) = (r3,..., rN) 
and R^ = (r2,...,rjv), respectively. 

If matrix (4) is known we may calculate the momentum distribution of the 
thermodynamic state by taking the Fourier transform [16], 

n(k) = n0N6k0 + pfdi[Pl(r) - Pi(oo)]eik-r. (5) 

In the Bose-condensed phase the function pi(r) possesses long-range order, pi(oo) > 
0, that gives rise to a nonzero value no > 0 for the condensate fraction. 

In Sections 2 to 4 we develop a microscopic analysis of the reduced matrix 
elements (3), (4), and present an explicit expression for the internal energy functional 
(2) that is susceptible for quantitative enumerations. Section 5 summarizes the major 
results. References [17-19] give a more elaborate report on the present status and 
future prospects of correlated density matrix theory. 



2. REDUCED DENSITY MATRICES 

The analysis of the reduced density matrices (3), (4), and related quantities such 
as the internal energy (2) of interest here may be based on the factor decomposition 
of the TV-body density matrix W in coordinate space representation [10], 

W(R,R')=1-1$(R)Q(R,R')${R'), (6) 

where W is unit-normalized, JdRW(R, R) = 1. 
For an adequate description of the correlations induced by the two-body potential 

v(r) at a given temperature we propose that the wave function <P(R) is of Jastrow 
type [10, 15], 

1 N 

$(R) = exp-^uin,) (7) 

or, more accurately, is a Feenberg wave function [20]. For the incoherence factor Q 
we adopt - in an initial step - the projected ansatz [17] 

Q(R,R') = JL flieV'PamirQTi - rj|) + Bz). (8) 

The integration in Eq. (8) is to be performed in a mathematically positive direction 
along a closed path around the origin in the complex 2-plane. The function r(r) is of 
short range. Nonzero values of the parameter B (0 < B < 1) permit the appearance 
of off-diagonal long-range order in the density matrix p\{r). This phenomenon is a 
distinctive signature of a Bose-condensed phase. The normal phase is characterized 
by B = 0. To include effects of phonon excitations one may enlarge the class of 
functions Q(R,R') by a factor [21, 10, 15] 

AT 

gp,(R,R') = exp^7([r,-r;.|) (9) 

containing a function 7(f) that vanishes asymptotically. 
Here we ignore the factor (9) and focus our attention on ansatz (8) in conjunction 

with Eq. (7). We note that this prescription reduces correctly to the exact density ma- 
trix describing the ideal Bose gas [22] by setting u(r) = 0 and r(r) = exp[-7r(r/A)2] 

where A = (2-Kßh2/m)2 is the thermal wave length. 
For an explicit construction of the internal energy functional and the distribution 

functions involved we begin our study with the normalization integral 

l[u,r,B] = /dR$2(R)Q(R,R) (10) 

and its functional derivatives [15] 

9(r) = Nl^-y <u> 



&cc  {r}- NSr(r)' [    ] 

In terms of the radial distribution function (11) and the cyclic distribution function 
(12) the energy (2) reads 

| = l-pjdxv*{r)g{r) + p^J dv{-Ar(r) + [Vxr(r)] • v[r)}G<f (r),   (13) 

with the Jackson-Feenberg effective potential [2] v*(r) = v(r) - (h2/Am)Au(r) and 
the operator V^ acting as specified in Ref. [15]. When operating on a term consist- 

(r) ing of a Dirac delta function with a constant strength factor, V^    acts as an ordinary 
gradient with respect to the coordinate ri. On the other hand, when operating on a 
continuous function of ri2, it replaces the statistical bond r involving coordinate ri 
by its derivative, if such a bond is present in the function, and otherwise yields zero. 
These are the only possibilities that arise. 

To evaluate the reduced one-body density matrix (4) we introduce the general- 
ized normalization integral [18, 19] 

l2,N-i[uab,rab,Ba} = Jdr[ y<M2(ri,R)Q(ri,R;ri,R) (14) 

with a = 1 or 2 and (ab) = (11), (12), (21), or (22). The expression (14) is the 
standard normalization integral for a two-component mixture of Ni =2 bosons of 
type 1 with coordinates ri and T[ and iV2 = N - 1 bosons of type 2 with coordinates 
RC1) = (r2,..., rjv). The dynamical and statistical functions corresponding to the two 
types of bosons in this fictitious mixture are of the special forms un(r) = 0, «12 (r) = 
«2i(r) = %u(r),U22(r) = u(r) and A2(r) = T2i(r) = T22(r) = T(r), respectively. 
Finally, the parameter B2 takes the value B. The one-body density matrix (4) is 
then constructed [18, 19] from the integrals (10) and (14), 

,   x 1    ^2,JV-l S\nl2,N-l 
Pi(r) = öP r   1     sru(r) 

(15) 

The explicit calculation of the logarithms of the quantities (10) and (14) can be per- 
formed by employing standard cluster developments [3, 15, 23] in terms of generalized 
Ursell-Mayer diagrams [24]. 

3. SPATIAL DISTRIBUTION FUNCTIONS 

The spatial distribution functions (11) and (12) may be evaluated in the thermo- 
dynamic limit by constructing an associated generating functional A defined in terms 
of the normalization integral (10) through the relation l[u, T, B] = ,f?iVexpiV7l['U, T, B] 
where N —► 00. This generator A may be systematically evaluated and analysed in 
terms of standard cluster expansion procedures [2, 3, 15, 17].  Given an expression 



for this functional we may thereupon evaluate the functions (11) and (12) in the 
thermodynamic limit by taking the variational derivatives 

, .     JA[u,r,B] 

G,f)(r)=£^ (i7) 

Inspecting the results of this cluster development [15, 17] we may decompose the 
generator into reducible (factorizable) and irreducible components, 

A[u, r, B] = AiTV[u, r, B] + Aved{u, r, B]. (18) 

This result enables us to perform massive resummations of the original expansions 
yielding compact expressions in terms of irreducible cluster contributions for functions 
(16) and (17), 

9(r) = 26A--^B-\ (19) 

r{r)G[B
c\r) = rcc(r){p-H(r) + SJ^£^M) , (20) 

>. olcc{r)        ) 

In Eqs. (19) and (20) the bare statistical function T(r) and parameter B appearing 
in the irreducible generator AilT are replaced by properly dressed quantities rcc(r) = 
cr(r) and Bcc = b2cB. Explicit expressions for the positive renormalization constants 
c and b are constructed in Ref. [17]. 

Defining the function Gcc(r) = 6A-iTI[u,rcc,Bcc}/6rcc(r) we may employ Eqs. 
(19), (20) to recast the expression (13) for the internal energy into the compact form 

E 

N 
-.2 

= l-pjdxv*{r)g{r) - JdvS(v)^Arcc(r) 

+ P\\i Jdx{~Ar^r) + (VxIUr)) • vir)}Gcc(r). (21) 

The irreducible forms (19) and (20) are now susceptible to a standard hypernetted- 
chain (HNC) analysis [3, 15, 17].   In a crucial first step one decomposes functions 
g(r) and Gcc{r) into differing components according to the topology of the statistical 
bonds rcc(r) in the diagrammatic representations of these distribution functions. A 
thorough classification of the set of graphic contributions leads to the decomposition 

g(r) = 1 + Gdd(r) + 2Gde(r) + Gee{r) 

+ 2Bcc{2Gdc(r) + 2Gec(r) + G£>(r) + 2BccG^{r)} (22) 



for the radial distribution function (19). The partial distribution functions Gdd(r), 
Gde(r), and Gee(r) completely characterize the spatial correlations in the normal 
phase [15]. The partial distribution functions Gdc(r), Gec(r), G(

c
0

c\r) and Gc
lc(r) 

only contribute if the system is condensed (Bcc > 0) [17]. Note that Gde = Ged, 
Gdc = Gcdi and Gec = Gce- 

The analogous decomposition of the cyclic distribution function Gcc(r) reads 

Gcc{r) = G<?(r) + Bcc{l + Gdd(r) + 2Gdc(r) + G£>(r)} ■ (23) 

We may separate the various (G) components of functions (22) and (23) into nodal 
(N) and nonnodal (X) contributions (G = X + N) except the circular component 
that contains also the statistical function rcc(r), Gc°c\r) = rcc(r) + X^)(r) + iVc°)(r)- 
The differing N and X portions are related by a set of HNC equations [17]. Seven 
hypernet equations provide algebraic expressions for the X components in terms of 
nodal and elementary (E) functions, 

Xdd(r) = eu+Ndd+Edd -1-Ndd, 

Xde{r) = [1 + Gdd][Nde + Ede + Bcc(Ndc + Edc)
2} - Nde, 

Xee(r) = [1 + Gdd}[Nee + Eee + \{rcc + ivi0) + E(
C
0J)2 

+ ±(rcc + N(
c
2

c
)+E£))2 

+ (Nde + Ede + Bcc(Ndc + Edc?? 

+4Bcc(Ndc + Edc){Nec + Eec) 

+ %Bcc(rcc + Ai2) + EiV^Ndc + Edc?\-Nee, (24) 

x£\r) = [i + Gdd][ivi0) + EC°J + rcc] - ivL0) - rcc, 

and 

Xdc(r) = [1 + Gdd}[Ndc + Edc] - Nde, 

Xec(r) = [1 + Gdd}[Nec + Eec + (Nde + Ede)(Ndc + Edc) 

+ (rcc + Nc? + EiV^Ndc + Edc) + Bcc(Ndc + Edc?} 

-Nec, (25) 

Xcl](r) = [1 + GddiNJ» + E&] + (Ndc + Ede)2} - N™ , 

where Gc
2c(r) is denned by. the (redundant) superposition GcV(r) = Gc°c (r) + 

2BccGc1c)(r). For Bcc = 0 the Eqs. (25) do not enter and Eqs. (24) reduce correctly 
to the set of hypernet equations that characterizes the normal phase [15]. The asso- 
ciated set of chain equations is conveniently written in momentum space employing 
the Fourier transforms S(k), X(k) and N(k) of the G, X, and N components, respec- 
tively. Forming 3x3 matrices S(fc), X(fc), and N(fc) from these elements, 

(Sdd Sde 2BccSdc 

Sed See        2BCCS^ 1 (26) 
2BccScd   2Bcc&ce   2BccoCt 



and analogous expressions for X(fc) and N(fe) we may cast the set of chain equations 
into the form [15, 19] 

N(k) = S(fc)McX(fc), (27) 

N{
c
0

c\k) = s£\k){rcc(k) + X{
c°c

)(k)}, 

with the constant matrix 

Mr = f 1    0 0        ) (28) 
1    0    (2B. cc) 

Ignoring the elementary (E) contributions in Eqs. (24) and (25) the HNC equa- 
tions form a closed set of relations that may be used for computation of the G, X, N 
components which determine the spatial distribution functions (22) and (23). 

4. ONE-BODY DENSITY MATRIX 

The structural analysis of the reduced one-body density matrix (4) may be per- 
formed in close analogy to the procedure outlined in Section 3 for the radial distn- 
bution function. ,    u 

In the thermodynamic limit we may replace the relation (15) oy 

1 mr    r,„    Dl,<^(1)KAi,r,Bi,B] ,        (29) 
B1=B.rlx=r 

where the generators A™ and A™ may be systematically evaluated employing stan- 
dard cluster expansion techniques. The results in terms of diagrams are given in 
Refs. [18, 19]. The functionals A^\ i = 1,2, may be separated into reducible and 
irreducible portions, 

A«> = A-J* + ATJ
i] (3°) 

thus giving way for a compact reformulation of expression (29) in terms of irreducible 
functions. Earlier CBF results on the one-body density matrix associated with the 
ground state [23, 25] suggest the resulting irreducible representation 

Pl(r) = nciVo(r)exp{-Q(r)} (31) 

with the strength factor nc = expQ(r = 0). Indeed, a detailed inspection of the 
explicit results on A™ and the variational derivative of generator A< > with^respect 
to function rn(r) in terms of the renormalized (dressed) function Lcc[r) - el {r), 
and dressed parameters Bcc = #cB, Bcc = aWcBlt confirms the structural result 
(31) in terms of irreducible functions N0(r) and Q(r). They are composed of nodal 
(JV) portions and elementary (E) pieces, explicitly, 

JVo(r) = rcc(r) + N{
Q%c(r) + E^Jr) 

+ Bcc[a + NQQdc{r) + EQQdc{r)}2, (32) 



-Q{r) = NQQdd(r) + EQQdd{r). (33) 

Results (32) and (33) reduce correctly to the familiar expressions for the dressed 
statistical factor No(r) and the correlation function Q(r) at zero temperature with 
Bcc = a = 1, reported in Refs. [23, 25]. 

The nodal quantities appearing in Eqs. (32), (33) may be constructed from 
certain spatial distribution functions GQaß(r), aß = (dd),(de),(dc),(cd),(ce), from 
cyclic distribution functions GQCC(T), i = 0,1,2, and their nodal and nonnodal com- 
ponents. These functions are related by a corresponding set of HNCQ equations in 
analogy to the functions Gaß(r) and GcJ(r) that are the building blocks for the ra- 
dial distribution function (22) and (23). The explicit form of the HNCQ equations 
for the Q-quantities reads [18, 19] 

GQdd(r) = exp[|u(r) + NQdd(r) + EQdd(r)} - 1, 

GQde(r) = [1 + GQdd}[NQde + EQde + Bcc(NQdc + EQdc)
2}, 

GQdc(r) = [1 + GQdd\[NQdc + EQdc], 

GQcd(r) = [1 + GQdd)[NQcd + EQcd], 

G^cc{r) = [1 + GQdd][rcc + N{
Q
0)

CC + E$l], 

CQCC(0 = [1 + GQdd][rcc + N%1 + JSgL + 2Bcc(NQdc + EQdc)(NQcd + EQcd)}, 

GQce(r) = [1 + GQdd][NQce + EQce + (rcc + jvgc + E%l){NQdc + EQdc) 

+ (NQcd + EQcd)(NQde + EQde) 

+ Bcc(NQdc + EQdc)
2(NQcd + EQcd)} , (34) 

The chain equations are analogues of Eqs. (27), 

NQ(A;) = SQ(fc)Mc(fc)X(A:), (35) 

N{Z(k) = s$i(k)ircc(k) + x£)(k)}. 
Neglecting the elementary ingredients we may solve this set of HNCQ equations for 
GQaß(r) and GQCC{T) and their nonnodal and nodal components (HNC/0 approxi- 
mation). 

The resulting solutions may be employed to compute the nodal functions that 
enter the expressions (32) and (33) for functions N0(r) and Q(r). In k-space we 
obtain for the Fourier transforms the relations 

NQQdd(k) = SQdd(XQdd + XQde + 2BccXQdc) + SQdeXQdd 

+ 2BccSQdc(XQdd + XQdc), (36) 

NQQdc(k) = SQdd(XQcd + XQCC + rcc + XQcc) + SQdeXqcd 

+ SQdc(2BccXQcd + rcc + X{*1), (37) 



NQQccik) — BccSQCd(XQcd + XQCS + rcc + XQCC) + BccSqceXQcd 

+ l^Ur^ + X{
Q°l) + \s{£c{2BccXQcd + rcc + X%i).        (38) 

We complete the structural analysis of the irreducible functions (32) and (33) by 
an explicit evaluation of the renormalization constant a. A cluster development of 
this quantity through four-body cluster order and selected higher-order contributions 
[19] reveals that the expansion can be written in the closed form, 

a = 1 + p Jdvrcc{r){GQdd{r) + GQdc(r) - Gdd(r) - Gdc(r)} . (39) 

Since the functions T(r) and u(r) and therewith the nodal and elementary 
components of expressions (32) and (33) vanish as r —>■ oo the one-body density 
matrix (31) has the asymptotic property pi(oo) = ncBcca

2. At T — 0 where 
Bcc = a — 1 the condensate fraction no is correctly described by the familiar result 
[23] no = Pi(oo) = nc. Close to the Bose-Einstein transition, T ~ T\, this fraction 
depends linearly on the parameter Bcc, n0 = aBcc, with a = nca

2\T=Tx- The rela- 
tion provides a microscopic realization of Landau's phenomenological description of 
continuous phase transitions. 

Let us finally address an important consequence of the analysis presented. Equa- 
tions (31) and (32) specialize at r = 0 to 

Pi(0) = JVb(O) = Tcc(0) + N{
Q%CC(0) + £gU°) + B<* ■ (4°) 

Since pi(0) is unity by construction (4), Eq. (40) implies 

Ac(O) + A©cc(0) + E^Qcc(0) + BCC = 1. (41) 

In Fourier space this condition takes the form of a particle sum rule, 

i£{rcc(fc) + N^Jk) + E^Qcc(k)} + Bcc = ^n(fc) = 1, (42) 
k k 

wherein n(k) is the momentum distribution (5). References [17-19] show that Eq. 
(42) is equivalent to the condition 

pJdvrcc{r){p-l8{r) + G^{r)} 

+ Bcc{\ + pjdvrcc(r)[Gdc(r) + G&\r)]} = 1. (43) 

For Bcc = 0 Eq. (43) reduces to the established rule enforcing the conservation of 
the total number N of bosons in the normal phase [15]. Result (43) may be also 
interpreted as a condition that determines the renormalization constant c [17]. 



5. SUMMARY 

We have developed some major elements of a correlated density matrix theory 
for an ab-initio semi-analytic description of strongly correlated boson fluids at finite 
temperatures in the normal and the Bose-condensed phase. The method suitably 
generalizes the CBF theory of the ground and excited states of quantum many- 
body systems. The set of trial density matrices employed here takes account oi the 
correlations in a reasonable first approximation. This ansatz may be systematically 
improved at later stages of the development or may be adapted to a treatment of 
inhomogeneous Bose systems [14] or other bosonic phases [8]. We may incorporate 
backflow or current effects by employing triplet functions w(ri,r2,r3) in addition to 
the pair pseudopotentials tt(r1;r2) or by working with shadow wave functions, etc. 
[15]. 

However, the central problem in the further development is the construction 
of an explicit expression for the entropy of the Bose system in order to apply the 
minimum principle for the Helmholtz free energy. 
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ABSTRACT. 

The problem of the bound and scattering states of three and four nucleons has 
been investigated using a variational procedure based on the expansion of the wave 
function of the system in terms of correlated Hyperspherical Harmonic bases. The 
accuracy of the results so obtained is very satisfactory even in the case of realistic 
NN interactions. As a consequence, the proposed method can be an alternative to 
the Faddeev techniques which have been largely investigated in the recent years. An 
important advantage of the method is that the presence of the coulomb repulsion does 
not cause any additional difficulty. 

1. INTRODUCTION. 

The problem of calculating accurate wave functions for systems of strongly inte- 
racting particles presents severe difficulties. One way to face the problem is the use of 
appropriate variational wave functions. In systems such as quantum fluids or nuclei, 
the strong repulsion at small interparticle distances requires a careful determination 
of the structure of the system in correspondence to these configurations. To this aim, 
the use of correlation factors has revealed itself to be a powerfull tool. The variational 
method based on correlated functions containing a number of trial parameters, has 
been successfull both for quantum fluids [1], as well as for nuclear matter [2,3] and 
nuclei [4]. One possibility to further improve the variational approach is to expand 
the w.f. over a complete set of correlated functions. A straightforward way to deter- 
mine a basis of this type is to multiply the elements of a standard complete basis by 
conveniently chosen correlation factors. The correlated Harmonic Oscillator [5] and 



correlated Hyperspherical Harmonic bases [6] have been investigated by the authors 
for the study of nuclear systems. The conclusion is that the latter appears to be more 
apt to rapidly set up all the important details of the structure. Therefore, through 
this paper, correlated Hyperspherical Harmonic bases will be considered. 

In order to calculate the bound state w.f. of a system the Ritz variational princi- 
ple will be used. A variational approach can be also applied to the study of scattering 
states and in this paper the Kohn variational principle will be chosen. The Hypersphe- 
rical Harmonic (HH) coordinates are introduced in section 2, where the construction 
of the bound state w.f. is also discussed. The calculation of the bound states of 
A = 3,4 systems, in the case of realistic potentials, is the subject of section 3. Scat- 
tering states of three and four nucleons are considered in section 4. The merits of 
the method and its possible extensions to investigate the break-up reaction or larger 
systems are discussed in the Anal section. 

2. EXPANSION OF THE W.F. IN THE HARMONIC HYPERSPHERI- 
CAL BASIS 

Let us firstly introduce the following set of N = A - 1 Jacobi coordinates 

(XI,...,XN) defined as 

XN = *2 - *i , 
(2.1) 

xtr-i+i = y^(ri+i - Ki) ,    (i = l,...,JV), 

where n is the position of the i-th particle and 

R<=*S>, (2.2) 
'ft 

is the relative center of mass coordinate.  The first two particles denning the vector 
xjf will be called as the reference particles. 

In the second step, the 3JV HH coordinates are introduced. 

1/2 

(2.3) 
=(£-')■ 

is the hyperradius and the N - 1 hyperangles (<£2,..., (f>y) are given by the relations 

(<t>x = 0) 

XN = pC08<j>jf 

(2.4) 

r» = /»sin<f>ff ■ • -sin fa+icos<f>k        (fc = 1,..., JV — 1) . 

The remaining coordinates are the angular coordinates u, of the i-th Jacobi vectors 
Xj, t = 1,..., N. The set of all the angular and hyperangular coordinates determines 
the hyperangle fl. 



When expressed in teims of the hyperangular coordinates, the Laplace operator 
has the form 

The HH functions y[£](fl) are eigenfunctions of the grand angular operator £2(0) 
and their explicit expression is reported in ref.[6]. [L] denotes all the quantum numbers 
necessary to specify a given HH function. 

The w.f. of a state with angular momentum J, J, and total isospin T, Tx can be 
written as a sum of amplitudes 

* = 5^(xlF,...,xjr,), (2.6) 
v 

where Xip ...,xnp are the Jacobi coordinates corresponding to the particles ordered 
according to the permutation p of the set 1,2,..., JV. In eq.(2.6) the sum runs over 
the even permutations p since j>(xip, • • ->xNp) is taken to be antisymmetric under 
a permutation of the particles (lp, 2p) . Each amplitude has the correct values of 
the total angular momentum and isospin and it can be expanded in channels. In the 
LS coupling, a generic channel a is specified by the values lia,^2a,... of the angu- 
lar momenta associated to the Jacobi coordinates, and the couplings of the angular 
momenta and particle spins and isospins to produce J, Jt and T, Tz. One important 
parameter is the number Ne of channels necessary for an accurate description of the 
state of the system. Due to the centrifugal barrier, as the values £ia,^2a, • • • incre- 
ase, the importance of the corresponding channel is reduced. As a consequence, the 
convergence properties of the expansion can be studied by starting with the lowest 
allowed angular momenta values and subsequently adding higher order channels. In 
conclusion, the amplitude ij> in eq.(2.6) is written as 

i/>(xip,..., xNp) = 53 FaP*ap(zip, • • •, xNp)yap(L, S, J, T) , (2.7) 
a=l 

where yap is the angular-spin-isospin function of the channel, $aj> depends on the 
moduli of the Jacobi coordinates and Fap is a correlation factor. It is worthwhile 
noticing that in an explicit calculation the expansion basis must be truncated; for this 
reason it might be convenient to use correlated functions constructed with different 
sets of Jacobi coordinate. More explicitely, certain system configurations can be more 
efficiently described in one coordinate set than in another one; as an example, it can 
be mentioned the d-d cluster configuration in the a-particle. More details can be 
found in ref.[7]. The radial function *ap(*ip, • • •, XNp) can be expanded in terms of 
the HH functions in the following way: 

*c(*i„...,**,) = Exi»"xä"-YmVhWx]{p) • (2-8) 
[K] 

The functions u?KAp) are the quantities to be determined by means of a variational 
procedure. 



As regards the correlation factor Fap the following two possible choices are inte- 
resting: 

&) Pair Correlated HH functions (PHH approach). The correlation factor is taken 
to depend only on the reference particle coordinates, namely 

Fap = fa(\rlp-r2p\). (2.9) 

The function fai^ij) should describe the relative motion of the pair i,j in the angular- 
spin-isospin state a and it is chosen as the solution of a Schroedinger-type equation 
of the form 

a'    ^ 

where Vaai(r) =< a'|V(i, j)\a > (V(i,j) is the interparticle potential). The two- 
particle state a can be a single state or it can be coupled to other ones. The additional 
term Aaa/(r) in eq.(2.10) is such that |Aaa/(r)| << iVaa'MI f°r small r values; its 
role is to make it possible to satisfy the healing condition /a(r) = 1 for large r values. 
To this end, a satisfactory choice is Aaa<(r) = Aaeip(—jr), with Aa chosen so as to 
satisfy the healing condition. The precise value of 7 is unimportant and it can be 
taken I/7 = 2.0 fm. 

With the PHH choice, the dependence of the w.f. on the reference particles is 
largely given by the correlation function whilst the one on the remaining particles 
is obtained through the HH expansion and the sum over all the permutations (see 
eq.(2.6)). 

b) Product (Jastrow) Correlated HH functions (CHH approach). The correlation 
is taken as a product of correlation functions depending only on the interparticle 
distances. In principle, these functions could be calculated variationally; more easily, 
they can be chosen as the solution of equations similar to the (2.10). It must be 
noticed that in a given channel the angle-spin-isospin state of the reference particles 
is determined, so that the potential to be used in eq. (2.10) is known. For the 
remaining pair of particles, the situation is in general different and the potential is 
chosen as an average value of the pair potential on the state of the particles. As an 
example, in the case of a three—particle system, the correlation factor has the form 

Fap = /a(ri>)ff«(r«)ffa(rifc) , (2.11) 

and the function ga(r) can be taken [6] as the solution of eq.(2.10) with V(i,j) = 
[Vi(i,j)+Vt(i,j)]/2, where V, and Vt are the central potentials in the singet and triplet 
spin states, respectively. More details on the choice of the correlation functions can 
be found in ref.[6,7]. 

3. CALCULATION OP THE BOUND STATES OP A = 3,4 NUCLEI 

A significative example of the merits of the CHH method is given by the calcu- 
lation of the triton bound state in the case of the Hamada-Johnston (HJ) potential. 
This potential is a realistic one, and it contains a hard-core repulsion with radius 



Method B(MeV) T(MeV) Ps>(%) PD(%) PP(%) 

CHH 7.06 72.95 1.46 10.18 0.09 
Eulei[5] 6.87 72.19 1.50 9.95 0.07 

ref.[9] 6.5±0.2 9.0 

ATMS[10] 6.00 65.9 8.6 

Table 1. Triton binding energy B, average kinetic energy T and S'-, D- and P-wave 
percentages for the Hamada-Johnston potential with Ne = 10. 

rc = 0.845 fm. The results obtained for the triton ground state are presented in table 
1 and correspond to a number of channels Ne = 10. The improvement of the CHH 
method with respect to the preceeding variational approaches is sizeable. 

It has to be noticed that the presence of a hard-core repulsion requires the w.f. 
to be zero when any interparticle distance is smaller than rc. Such a condition can 
be easily satisfied when using a Jastrow correlation factor. On the contrary, in this 
case the PHH method is unuseful; similarly, a straightforward generalization of the 
uncorrelated HH expansion can produce wrong results. Such a situation is verified in 
the paper of ref.[ 8] where the w.f. used is different from zero when ry = rc. As a 
consequence, the binding energy for the considered problem is misleading: the value 
Ba= 4.30 ± 0.03 MeV given in ref.[8] must be compared with our CHH estimate Bs= 
2.112 MeV. 

The other NN potential considered here is the AV14 model interaction [11]. The 
expansion basis is the PHH and the results of the various quantities of interest for the 
triton and sHe ground states are presented in table 2. For the sake of comparison, 
also the corresponding estimates from ref.[12] are included. The experimental binding 
energy of 8.48 MeV ( 7.72 MeV) for the triton ( sHe) is not reproduced by using the 
AV14 potential nor by using any local NN potential. Therefore, we must include Three 
Nucleon Interaction (TNI) terms in the Hamiltonian. The convergence properties of 
the PHH expansion is not modified by the presence of TNI terms and the experimental 
binding can be reproduced when the proper intensity of the TNI is fixed. Among the 
various TNI existing in the literature, we have studied the Melbourne (MB) [13], 
Brazil (BR) [14] and Urbana (UR) [15] potentials [16]. 

An accurate calculation of the four-nucleon bound state is a difficult task due 
to the large number of channeb which must be included. One reason is that for 
the system there are three Jacobi coordinates and a given value of the total angular 
momentum can be in general obtained in many different ways; moreover, the radial 
dependence of each channel involves the hyperradius and two hyperangles. Another 
motivation is that both the p+8H (n+8He) and the d-d cluster configurations are 
important to produce the structure of the system. In ref.[7] the alpha particle ground 
state has been studied by using the AV14 potential with or without the inclusion of 
TNI terms, by taking into account up to 22 channels. The obtained results, together 
with the extrapolated value of the binding energy, are reported in table 3 and com- 



3H 

Ne B(MeV) T(MeV) Ps-(%) PD(%) PP(%) 

8 
12 
18 

rrf.[12] 

7.660 
7.678 
7.683 

7.684 

45.551 
45.645 
45.671 

45.677 

1.128 
1.127 
1.126 

1.126 

8.926 
8.962 
8.967 

8.968 

0.066 
0.076 
0.076 

0.076 

3He 

Ne B(MeV) T(MeV) Ps>{%) PD(%) Pp(%) 

8 
12 
18 

ief.[12] 

7.010 
7.027 
7.032 

7.033 

44.687 
44.780 
44.797 

44.812 

1.318 
1.315 
1.314 

1.314 

8.890 
8.926 
8.931 

8.932 

0.065 
0.075 
0.075 

0.075 

Table 2. Binding energy (B), kinetic energy mean value (T) and S'-, P and £>-wave 
percentages for 3H and 3He in terms of the number of channels Nc. The 26-channels 
results of ref.[12] are reported in the last row for each case. 

pared with the corresponding ones from other methods. It can be noticed that there 
is an overall agreement between the results from different techniques; however rather 
small differences do still exist which require more exhaustive calculations. 

4. ELASTIC SCATTERING PROCESSES 

The method presented in sections 2 and 3 for the study of the bound states of 
nuclei with A = 3,4 can be extended in a rather straigthforward way to calculate also 
scattering processes. The w.f. for these states can be written in the form 

* = *c + *x (4.1) 

The term *c goes to »ero for large interparticle distances; its role is to describe the 
"core" structure, namely those configurations where all the particles are close to each 
other. As a consequence, ¥c is written as a sum of Faddeev amplitudes, each one be- 
ing expanded in the correlated HH basis, as in the case of the bound state calculation 
discussed in the preceeding sections. The second term VA. in eq.(4.1) must repro- 
duce the asymptotic configurations of the system, corresponding to large separations 
among the two clusters. ¥x can also be written as a sum of Faddeev amplitudes. Each 
amplitude is taken as a product of the two cluster wave functions times a function of 
their relative distance. This function is chosen equal to the regular or irregular solu- 
tion of the two-cluster Schroedinger equation without nuclear interaction. Moreover, 
the angular-spin and isospin momenta are coupled to produce the considered total 
quantum numbers. The superposition of the two ¥4 correponding to the regular and 



AV14 

method B(MeV) T(MeV) iV(%) PD(%) PP(%) 

CHH 
exti. 

FY[17] 

GFMC[18] 

23.93 
24.02 
23.87 

24.2(2) 

94.75 0.35 14.20 0.35 

AV14 + UR 

method B(MeV) T(MeV) Ps>(%) PD(%) PP(%) 

CHH 
exti. 

VMC[15] 

GFMC[18] 

27.48 
27.85 
27.2(2) 

28.3(2) 

107.20 

106.6(8) 

113.3(20) 

0.24 16.24 

15.5(1) 

16.6(2) 

0.64 

Table 3. Binding eneigy (B), kinetic eneigy mean value (T) and S'-, P and D- 
wave peicentages foi the alpha-particle ground state, calculated with the AV14 and 
AV14+UR potential models. In the second row foi each potential, extt. means 
oui extrapolated estimate. The Faddeev Yakubovsky (FY), Gieen-Function Monte 
Carlo (GFMC) and Variational Monte Carlo (VMC) results are given for the sake of 
comparison. 

irregular solution, together with the cluster term *c is then determined by means of 
the Kohn principle [16,19]. Here we limit ourselves to report a few of the results ob- 
tained for the p-d and p-8He elastic scattering. In table 4 the phase shifts and mixing 
parameters for the p-d scattering, as calculated for the lowest channels and using the 
AV14+BR potential are reported for the incident proton energy Ep= 1.0, 2.0 and 3.0 
MeV. The corresponding values shown in the table have been calculated by using a 
more extended Hubert space than in reference [16]. The agreement between theory 
and experiment is reasonable; the minor existing differences are an interesting task 
for further investigations since they should be related to the quantitative role of TNI 
terms. 

5. CONCLUSIONS 

The method discussed in this paper allows for an accurate study of few nucleon 
systems. Detailed calculations have been performed for A = 3,4. In the first case, the 
results obtained foi the bound state and the N-d elastic scattering below the deute- 
ion threshold are very satisfactory. As an example, the calculated elastic scattering 
parameters for the n-d process are in a very nice agreement with those obtained by 
means of the Faddeev approach [20]. The study of the N-d reaction over the breakup 
threshold is in progress. As regards the bound state of the alpha particle with realistic 
interactions, the accuracy of the results is appreciable, but not at the same level as 



Ep(MeV) 1.0 2.0 3.0 

2s1/3 -9.54 -19.8 -27.2 

*D1/2 -0.78 -2.28 -3.61 

*?l/2 1.85 1.73 1.67 

4 S3/2 -37.4 -53.5 -63.7 

2A>/2 0.45 1.36 2.20 

*Da/2 -0.84 -2.46 -3.91 

^3/2 0.83 0.79 0.84 

Cs/2 0.53 0.98 1.39 

»73/2 -0.09 -0.20 -0.32 

2Pl/2 -3.61 -6.83 -8.85 

4A/2 9.30 17.5 22.0 

^1/2 2.51 3.48 4.46 

2P3/2 -3.58 -6.76 -8.72 

4P3/2 10.9 20.0 24.5 

^3/2 -0.86 -1.25 -1.67 

Table 4. Phase shifts and mixing parameters in degrees, for elastic p-d scattering. 
Three energy values of the incident proton are considered. The results reported 
correspond to the AV14 + BR potential. 

for the three-nucleon system. We expect that the use of the PHH expansion for the 
alpha particle will allow for an improvement of the accuracy. Four-nucleon scatterig 
states have been studied at energies under the breakup of the involved clusters; up 
to now, only semiiealistic central NN interactions have been considered but more 
extended anlyses of such processes are in progress. Finally, the next step we intend to 
make is the application of the method to the p-shell nuclei; for the moment only very 
preliminary results are available. By inspection of the various results so far obtained 
it can be concluded that the use of a variational approach with suitably correlated 
wave functions is a powerful tool for the investigation of the few-nucleon systems 
structure. For systems with A= 3 or 4 the obtained accuracy compares well with the 
one from the Faddeev and GFMC techniques. As a particular remark, we stress once 
again that the presence of the Coulomb repulsion does not cause any trouble also in 
the study of scattering states. 
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1. INTRODUCTION 

The layered structure of superfluid 4He films [1-4] has inspired increasing interest 
in two-dimensional 4He superfluid [5-7]. 4He films can be adsorbed on various smooth 
substrates like graphite, solid hydrogen and alkali metals to mention only a few 
interesting ones. The number of 4He atoms in such films can be controlled quite 
accurately which makes it possible to map the growth of atomic monolayers. Knowing 
the properties of the two-dimensional superfluid 4He is important for understanding 
this growth process. On the other hand thin films offer an excellent opportunity to 
study the almost ideal, two-dimensional 4He at varying density. Of course, the major 
requirement is that the substrate surface is smooth. We have examined these aspects 
theoretically by carrying out careful many-body calculations of the superfluid in two, 
three and 1+2 dimensions [8-12]. 

Several phase transitions can occur in the growth of two-dimensional super- 
fluid 4He films: The superfluidity of films is destroyed at the critical temperature 
by the BerezinskiT-Kosterlitz-Thouless phase transition [13,14] at which macroscopic 
amounts of unpaired vortices are created. The mechanism responsible for that tran- 
sition is that the logarithmic holding potential keeping the vortex-antivortex pair 
bound in a two-dimensional fluid is screened by other pairs which are created with 
increasing temperature until vortices become free and destroy the superfluid order. 
Two other phase transitions are encountered by varying the superfluid density at zero 
temperature. At small densities the fluid becomes unstable against density fluctua- 
tions, called the spinodal instability, and at high densities it solidifies. Quite recently 
a new kind of phase transition has been suggested [5,6]. At low densities it becomes 



energetically favorable to create spontaneously vortex-antivortex pairs which possi- 
bly arrange themselves into a crystal order. Experimental evidence of that transition 
is found in third sound measurements by Chen, Roesler and Mochel [15]. 

In this paper, we use the variational many-body theory to provide an accu- 
rate description of the ground state of two-dimensional superfluid 4He and of 4He 
films. We study "how two-dimensional" the layers in the film are. We then give a 
microscopic description of vortex-antivortex pair excitations, calculate their disper- 
sion relation at different densities and compare with the two- and three-dimensional 
phonon-roton spectra. These excitations could be seen in very accurate neutron s- 
cattering experiments by Lauter et al. [16,12]. At the two-dimensional superfluid 
densities lower than 0.045 Ä-2 the vortex-antivortex pair excitation is below the 
roton minimum and thus reduces the critical superfluid velocity. The spontaneous 
creation of vortex-antivortex pairs becomes possible at densities below 0.037 Ä-2. 

The theory for the homogeneous superfluid starts with the variational Jastrow- 
Feenberg ans atz for the ground-state wave function of the form, 

*fl(ri,...,rjv) = exP2 
i<j i<j<k 

(1) 

and the hypernetted chain (HNC) hierarchy of approximations [17]. Pair and triplet 
correlations are sufficient for a very accurate description of 4He in two- and three- 
dimensions as well as for 3He-4He mixtures [8]. The input to the theory is the 
microscopic Hamiltonian, 

*»--5^: E*? + E "«*-'>!). W 

where mg is the 4He mass and V(|rj - r,-|) is the 4He-4He interaction which we take 
to be the Aziz potential [18]. An important part of the variational approach is the 
optimization of the many-body correlations by solving the coupled Euler equations 

SEB 6EB =0 (3) 
8U

BB
(T1,T2)      6uB BB(rur2,r3) 

where EB is the energy expectation value of the Hamiltonian (2) with respect to 
the wave function (1). A property of immediate relevance for the problem of phase 
transitions is that the Euler equations (3) have no solution if the assumed geometry is 
unstable against infinitesimal density fluctuations. Specifically, the Euler equations 
(3) have no liquid solution when the speed of sound becomes zero (the spinodal 
instability) or when the oscillations of the pair distribution function extend over the 
whole fluid (the solidification instability). 

The external substrate potential breaks the symmetry of the homogeneous fluid. 
Thus the wave function of the film also contains a one-particle correlation function, 

1 Ws(ri,...,rN) = exp- 
» «<j «<><ik 

(4) 
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Figure 1. A comparison of 
the substrate potentials defin- 
ing the graphite/solid heli- 
um model (solid line), and 
the Mg (long-dashed line), Li 
(short-dashed line) and Na 
(dotted line) substrates. The 
parametrization of the alkali 
metal potentials is taken from 
Ref. [19]. 

The optimization of the energy expectation value leads to three coupled Euler equa- 
tions for single, pair and triplet correlations. The external potential by itself is not 
sufficient to cause a strongly layered structure of the film. An important additional 
ingredient is the behavior of the two-dimensional fluid. It is a liquid bound by roughly 
1 K. Its saturation density is 0.043 Ä-2 and it solidifies at about 0.068 Ä-2 [20]. This 
is a fairly low density when compared with the three-dimensional superfiuid. The 
same distance between particles as at the saturation density of the three-dimensional 
4He liquid would give a density of 0.078 Ä-2 for the two-dimensional fluid. We will 
also show results from the non-local density functional theory (NLDFT) of Ref. [21] 
which gives a quite incorrect two-dimensional equation of state. 

A single vortex in our many-body approach is a topological, singular excitation 
which can be described by inserting a quantized phase to the wave function, 

*„(r(;,r1,...,r^) = e^r=l^
(r«^)V.v(r„,r1,...,r^). (5) 

The coordinate r„ refers to the position of the vortex and ipv contains the response of 
the superfiuid medium. We assume that the vortex is not localized [22], but more like 
a mobile quasiparticle carrying mass [23-25,7]. The mass is set equal to the mass of 
the helium fluid expelled from the vortex core [23]. Its value depends on the vorticity, 
superfiuid density and correlations between the superfiuid particles. We determine 
this vortex mass by a self-consistent many-body calculation. 

The creation of a single vortex requires angular momentum and, furthermore, 
its energy diverges logarithmically with the radius of the sample. In the homoge- 
neous, non-rotating superfiuid it is therefore energetically favorable to create pairs 
of vortices with opposite circulation. The many-body wave function describing these 
vortex-antivortex pairs contains a phase factor with two centers of circulation of op- 
posite sign. Starting from that phase factor we derive the pairing interaction which 
diverges logarithmically at large separation. At small distances the coupling to ex- 
citations of the superfiuid medium causes an important additional attraction. This 
attraction can drive a phase transition into a new state where macroscopic numbers 
of vortex-antivortex pairs are spontaneously created. In the long wavelength limit 
this interaction reproduces the phonon induced attraction by Bardeen, Baym and 
Pines [26]. 

The motion of the bound vortex-antivortex pair is best described by letting the 
center of mass move with a given momentum. We find that the separation between 



Figure 2. The surface pro- 
files of 4He films adsorbed on 
graphite/solid helium substrate 
[10] for different values of cov- 
erages are plotted. The pro- 
files correspond to stable sur- 
face coverages of 0.033, 0.035, 
0.040, ..., 0.065 and 0.068 Ä~2 

for the monolayer, 0.10, 0.105, 
..., 0.135, 0.136 Ä"2 for the dou- 
ble layer, and 0.165, 0.170, ..., 
0.200 Ä"2 for the triple layer. 

vortices, as well as the probability of the alignment of vortices perpendicular to 
the direction of motion, increases with increasing momentum. These results are in 
qualitative agreement with the behavior of classical vortices [27]. The calculated 
excitation spectrum shows a quadratic dispersion which is weak at low densities and 
becomes more pronounced at higher densities. We also calculate the dispersion of 
the higher lying excited states of the pair. 

The remainder of the paper is organized as follows: In the next chapter we 
present results for thin 4He films and discuss their layered structure. In chapter 3 we 
briefly describe a single vortex and show the key results. The chapter 4 is devoted to 
the vortex-antivortex pair and its motion. The last chapter summarizes our work. 

2. LAYERED STRUCTURE OF THIN 4HE FILMS 

We have studied extensively layered liquid helium in external potentials [10,11]. 
We assume translational invariance in the x - y-plane, ». e. the substrate potential 
is a function of the ^-coordinate only. The potentials shown in Fig. 1 provide 
models for graphite covered with two inert solid layers of helium, and Mg, Li and Na 
substrates. These potentials cover a representative sample of strengths and ranges; 
the basic distinction being that Mg, Li and Na potentials are longer range than the 
graphite/solid helium potential, with Mg being the strongest, and Na the weakest 
[19]. Our studies provided criteria for when it is allowed to approximate layers in 
thin 4He films by a rigorously two-dimensional superfluid. 

A typical family of density profiles on the graphite substrate is shown in Fig. 
2. One of the most striking features of the calculation is that stable, translationally 
invariant films are not found for all coverages. During the growth of a liquid film 
layers are rigid enough to support two-dimensional "clusters" before 4He "wets" 
completely the surface. That cluster geometry is not allowed by our wave function 
and that is why no solution is found at those densities. 

The non-uniform growth of these films is the basis of our model for the non-linear 
increase of the superfluid density seen in the torsional oscillator measurements by 
Crowell and Reppy [2]. In the transition regions between two uniform configurations, 
the two-dimensional clusters on top of the "highest" uniform layer are disconnected 
from the superfluid and can couple, for example through hydrodynamic backflow, 
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Figure 3. The torsional os- 
cillator periodicity AP, tak- 
en from Fig. 4 of Ref. [2] 
(diamonds and left scale) and 
the connected superfluid sur- 
face density from our theory 
(solid line and right scale) as 
a function of the total surface 
density, including the two sol- 
id 4He layers. 

to the substrate. These clusters behave very similar to single impurity atoms like 
3He, whose effective mass can also be determined by torsional oscillator experiments 
[28]. The numbers obtained above for the range of the uniform phase(s) determine 
our theoretical estimate of the connected superfluid density as a function of the total 
surface coverage. It is apparent from Fig. 3 that there is reasonable quantitative 
agreement between our results and those of Crowell and Reppy. It is known that 
there is a small surface density dependence in the relation between AP and the 
superfluid density. We believe that this accounts for the slight bending downwards 
of the experimental curve. 

The question to what extent an adsorbed film can be considered as being two- 
dimensional can be answered by studying the energetics of the film. For that purpose, 
it is convenient to write the ground-state energy/particle of the film in the form 

0 i *? 

Es = ^J*r |Vy/^)    + J d3rUexi(r)pB(r) + Ee (6) 

where pB(r) is the density profile, Uext(r) the external potential and Ec the corre- 
lation energy. In the limit of vanishingly small particle number, the first two terms 
are equal to the binding energy of a single atom in the substrate potential; the cor- 
relation energy is equal to the ground-state energy of the two-dimensional system 
when the film thickness becomes infinitesimal. A similar argument can be made for 
the chemical potential: // the two-dimensional model is a reasonable approximation, 
then the chemical potential should, as a function of coverage, roughly behave as 

p(n) = e0 + A*2D(n) (7) 

where e0 is the binding energy of a single atom to the substrate, and /X2D(U) is the 
chemical potential of a homogeneous, two-dimensional fluid. The estimates of the 
film energy and chemical potential are exact in the two-dimensional limit, but how 
close an atomic monolayer comes to this depends on the details of the interaction 
and the substrate potential. 

The energetics of the two-dimensional fluid is also relevant for the "wetting" 
behavior of the liquid.   A rough condition for wetting or non-wetting is that one 
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Figure 4. The energy/particle of 
the two-dimensional 4He as a func- 
tion of density. The long dashed line 
is the result of this work. The dia- 
monds with error bars are the Monte 
Carlo results [20] and the dotted line 
is the result of the NLDFT. For com- 
parison we show the monolayer cor- 
relation energies for the solid H2 sub- 
strate (upper solid curve) and the 

0.07 0.08 graphite/solid helium potential (low- 
er solid curve). 

should expect a quantum liquid to wet at zero temperature when the binding energy 
of a single atom added to the energy/particle of the two-dimensional fluid of about 
1 K is larger than the chemical potential of an atom in the bulk liquid. The alkali 
metal, Na, K, Rb and Cs, substrates with single 4He atom binding energies of 4.8, 2.4, 
1.8, and 1.5 K, respectively, are examples for substrates where one atomic monolayer 
will not wet the surface. In the case of sodium we find that a film with two atomic 
layers can be formed. That is three layers less than predicted in Ref. [19]. We trace 
the difference back to the different two-dimensional equations of state. 

The results for the energy/particle of the two-dimensional 4He are show in Fig. 
4. Our results are in excellent agreement with the Monte Carlo data [20] for the 
whole range of liquid densities. The correlation energies from Eq. (6) of a monolayer 
on graphite/solid helium and solid hydrogen substrates axe also plotted in the same 
figure. They lie slightly lower than the purely two-dimensional energies and differ 
increasingly with coverage. This gives one measure of the freedom particles have in 
z-direction. For comparison we show the two-dimensional energy/particle using the 
NLDFT of Ref. [21]. That gives the binding energy of -0.06 K at the saturation 
density of 0.02 Ä-2. 

Figure 5 shows the coverage dependence of the chemical potential in the film 
obtained from both our approach and the NLDFT. Again for the monolayer, the 
chemical potential follows quite closely the estimate of Eq. (7). The comparison with 
the NLDFT shows basically the same picture. The behavior of the film, however, 
deviates much earlier from the two-dimensional behavior, which is also plausible since 
in NLDFT that geometry appears to be energetically unfavorable to the particles. 
The results for the sound velocities as a function of coverage are also shown in Fig. 5. 
The increase of the sound velocity with increasing coverage is consistent with the two- 
dimensional equation of state, but its drop is related to a "ripplon" excitation. That 
is a surface wave which becomes soft at the density when atoms are pushed from one 
layer to the next one at the layer completion [12]. In the NLDFT, two-dimensional 
structures are energetically less favorable. Particles are pushed out of the layers at a 
lower coverage, and the coverage dependence of the sound velocity becomes smoother 
[11]. The magnitude of the sound velocity is a very sensitive function of the strength 
of the substrate potential [10]. A change of the attractive portion by 10 percent can 
change the sound velocity by almost a factor of two. We can not claim that the 
accuracy of the substrate potential models is that high. 
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Figure 5. The left figure shows the chemical potential y. of 4He adsorbed to the 
graphite/solid helium substrate as a function of coverage as obtained in the present 
work (lower fragmented solid lines) and in NLDFT ( upper solid line). Also shown 
are the estimates of Eq. (7) from the present work (lower dashed line) and NLDFT 
(upper dashed line) for the monolayer. The right figure shows the incompressibility, 
mc\ (left scale) and the speed of sound c$ (right scale) as a function of coverage from 
the present work (solid line) and NLDFT (dashed line) for the same substrate. 

3. QUANTUM VORTEX IN TWO-DIMENSIONAL SUPERFLUID 4HE 

A quantum vortex is described by a quantized phase in the many-body wave 
function of Eq. (5). The gradient of the phase which we will call the vector potential 
is proportional to the superfluid velocity field, 

A(rv,TJ) = Vj[<l>(rv,rj)] = ^v8(r„,r>). (8) 

The wave function is required to be single valued which gives the familiar quantization 
condition of the phase § A(r„,r) • dr = 2irq. The integer q is the vorticity quantum 
number of the circulation. The phase transforms into an interaction term in the 
Hamiltonian. By assuming that the vortex has a finite mass and thus can have 
kinetic energy we derive the effective Hamiltonian of the mobile vortex quasiparticle, 

Hv = H B — 
1mv 

v! + 
N      %2 

|A(r„,r,-)| (9) 

The value of the vortex mass mv is a parameter in our approach. We set it equal to 
mass of the expelled material equivalent with the hollow core model [23] and calculate 
it self-consistently. Recently Niu, Ao and Thouless also came to the conclusion that 
the vortex mass must be finite [7]. 

The vortex singularity polarizes the real part of the many-body wave function. 
In the Jastrow approach the response of the superfluid is expressed in terms of the 
vortex-background correlation functions, 

*.(r.,„,..,rw) = «»Ei •■*<-">+£x."•"<-"""W.,...,rN). (10) 
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Figure 6. The vortex-4He pair dis- 
tribution functions, g"s(r), (solid 
lines) and the 4He - 4He pair distri- 
bution functions, gBB(v), (dashed 
lines) in the two-dimensional liq- 
uid 4He are plotted for densities 
0.037,..., 0.065 A"2 listed in Ta- 
ble I. The curves with the lowest 
first peak correspond to the density 
0.037 A-2 and those with the high- 
est peak to the density 0.065 Ä-2. 

These correlation functions are determined by minimizing the energy of the vortex 
excitation, 

(r!>v\Hv\xßv)      (*B\HB\*B) 

tyv\l/>v) <*B|*B)     ' 
fj.v = Ev — EB = (11) 

The first term is the energy of the superfiuid with the vortex quasiparticle and the 
second one is the superfiuid in its ground state. The variational ansatz leads to the 
set of coupled Euler equations, 

Sfiv 8nv 

6wB(rv,ri)      6u»BB(rv,ri,r2) 
= 0, (12) 

analogous to the problem of a single impurity in the 4He superfiuid [29]. The role of 
the vortex-background interaction is played by the two-dimensional vector potential, 

|A(r„,rj-)|2 = 
r„ -r,|2 (13) 

The quantity of main interest which we obtain from the Euler equations is the 
vortex-background pair distribution function, 

Q2    r 
9«B(rv,r1) = jrJ dr2...drN\*(rv,...,rN)f (14) 

with the normalization, Af0 = / drv...drN\<&(rv,..., TN)\
2
, and the integration volume 

Q. It gives the probability of finding a helium particle at the given distance |r„ - ri | 
away from the center of the vortex. 

The results for the pair distribution functions are shown in Fig. 6 for densities 
0.037,..., 0.065 Ä-2 listed in Table I. The pair distribution function starts from 
zero quadratically and approaches unity monotonically at the lowest densities. With 
increasing density, gvB{r) develops a pronounced peak at about 2 Ä. This suggests 
that at high densities only the nearest 4He atoms to the vortex core participate to 
the circular motion. For comparison we have plotted the pure 4He pair distribution 



density ^(K) /ic(K) m„ (amu) 

0.037 4.63 1.27 24.3 

0.040 5.58 1.32 14.2 

0.045 6.90 1.43 8.18 

0.050 8.17 1.58 5.61 

0.055 9.43 1.77 4.21 

0.060 10.7 1.99 3.24 

0.065 12.0 2.24 2.73 

Table I. The vortex chemical 
potential, core energy and mass 
as a function of density. 

functions into the same figure.  It gives the probability of rinding a helium particle 
when another helium is at the origin. The nearest neighbor peak is at 3.8 Ä. 

Substituting the interaction (13) into the expression for the chemical potential 
one recovers the familiar logarithmic divergence with the radius, R, of the system. 
For further discussion we divide the chemical potential into two pieces, 

M" = 
h2q2pB 

IrriB 
Jd2r\A(r)\*g«B(r) + Hc (15) 

The first part with the vector potential contains the logarithmic singularity and the 
second part, \ic is the non-divergent core energy. In Table I we give the full chemical 
potential, core energy and the vortex mass as a function of density. We have used 
the radius R=36 A. Near the saturation density 0.042 Ä-2 of the two-dimensional 
4 He the vortex mass is roughly twice the helium mass and becomes "lighter" than 
helium near the solidification density. In the small density region the vortex mass 
increases strongly and becomes infinite at the spinodal density 0.032 Ä-2 where the 
system becomes unstable against density fluctuation. 

4. VORTEX-ANTIVORTEX PAIRS AND PHASE TRANSITIONS 

The microscopic model of the vortex-antivortex pair wave function contains two 
phase factors corresponding to the two centers of circulation, 

*„.(r., r. rw) = Ä W'»*>>-«*-"\\*"<™)jn(rv, ,„,..., r„).    (i6) 

Vortices are correlated by the factor uva; the real function tpva depends only on 
the vortex-helium and helium-helium correlation functions modified by the presence 
of the other vortex. As in the previous chapter we introduce the vector potential 
A(r„,ra,rj) = Vj [^(r^r,) — <j>(ra,Tj)} and transform it into an interaction in the 
effective Hamiltonian. 

The vortex-antivortex pair is a bound pair.  The simplest way to describe its 
motion is to let the center of mass, R = |(r„ + r„), move by inserting a plane wave 



factor into the wave function, 

*k(rv,ra,n,...,rN) = eik''R^va(rv,ra,TU...,TN;k). (17) 

All the correlation function in l„„ become momentum dependent. 
The plane wave factor modifies the effective Hamiltonian and brings in two 

momentum dependent terms, 

H" =HB~&; IV» + V«l + &B t IA(r.,r.,r,)|»| 

+ tf 

4m „ 

N 

fc2-2^k-A(r„,ra,ri) (18) 

Using this Hamiltonian we calculate the chemical potential of the vortex- 
antivortex pair at a given momentum k, 

Hva{k) = Eva-EB = 
^va{k)\Hva\^va{k))     1^B\HB\^B) 

ftM*)l<M*)> (*B\*B) 
(19) 

The HNC-equations relate the pair correlation function uva(rv, r„) to the pair distri- 
bution function giving the following expression for fiva(k), 

^'(k) = 5-^ +2^c + fp
vpad2rvd

2 

4m„ J 

2mv 
(Vvy/g™(rv,ra))

2 + (S7a^g»*(rv,ra))
2} + gva(rv,ra)w%i(rv,ra) 

J pBd2r1g
vaB(rv,rair1) 

h2 h2 

-—k • A(r„,ra,ri) + |A(r„,ra,ri)|2 >.  (20) 

Here we have ignored the momentum coordinate from the distribution functions. 
We divide the square of the vector potential into three parts, 

lACr.^.r,-)!2 = |A(r„,r;)|2 - |A(ra,r>)|
2 - 2q2^a " Tj]2 

(r" ~ '■>,        (21) 
\ra -Tj\*\rv — Tjr 

and use the superposition approximation for gvaB. The two first terms then cancel 
and the last term defines the direct part of vortex-antivortex interaction, 

•W  [ * »,B(ri)j-fl(|r,-r|) 
mB    J r\ ri-r 

(22) 

This interaction behaves logarithmically at large intervortex distances. The attrac- 
tive induced potential u>iV

n°d(r«,,ra) is a function of the 4He and 4He-vortex structure 
functions only, its explicit expression is given in Ref. [30]. The third component of 
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Figure 7. In the left figure three components of the vortex-antivortex interaction 
are shown at the density 0.045 A-2. The coupling term is calculated at k=l Ä-1. In 
the right figure we plot the eigenvalues of the coupled Schrödinger like equations as 
a function of momentum at densities listed in Table I. The lowest curve is calculated 
at the density 0.037 Ä-2 and the highest one at 0.065 Ä-2. 

the interaction is the k • A term. It does not have circular symmetry and gives no 
contribution if the angle dependence of the y/gva(r) is ignored. Therefore we expand 
^/gva(r) in terms of trigonometric functions, 

VVa(r) =    Y,   U(r)cos(m8)+  ]T £m(r)sin(m0), 
even m odd m 

(23) 

where r = r„ — ra, r = |r|, and 9 is the angle between r and k. We use the normal- 
ization f d?rpv J2m £m(r) = 1- The k • A term couples odd and even m-values. We 
have included here only the two first terms in the sum (23). Minimizing nva(k) with 
these approximations with respect to £m(r) results in a set of coupled Schrödinger-like 
equations, with £m(r) playing the role of radial wave functions. 

In Fig. 7 we plot the above three components of the interaction. We also 
show the eigenvalues of the Euler equations as a function of momentum at densities 
ranging from 0.037 Ä-2 to 0.065 Ä-2. The eigenvalues increase with the density, but 
decrease with increasing momentum since the attraction of the coupling potential is 
proportional to the momentum. 

Figure 8 shows the chemical potential required to create a vortex-antivortex pair 
as a function of momentum and density, and the experimental three-dimensional 
phonon-roton spectrum. Two important features can be seen: At densities below 
0.037 A-2, we find that the chemical potential becomes negative at low momenta. 
This means that vortex-antivortex pairs can be created spontaneously. The second re- 
sult is that the dispersion relation near the saturation density of the two-dimensional 
fluid is quite flat and below the roton minimum. This offers an explanation of the 
scattering strength seen below the phonon-roton and ripplon bands in the neutron 
scattering experiments [16]. In the same figure the three lowest excited states are 
plotted at the density 0.045 Ä"2. The states are classified by their radial quantum 
number. The wave function of the lowest state has no nodes. In the second state the 
wave function £m=o(r) has one node and in the third state £m=1(r) has one node. 
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Figure 8. The vortex-antivortex excitation spectrum as a function of momentum 
at densities listed in Table I (left figure). For comparison we show the experimen- 
tal phonon-roton spectrum of three-dimensional 4He (dashed line). The right figure 
shows the three lowest excited states at the density 0.045 A-2 together with the ex- 
perimental three-dimensional phonon-roton spectrum (dashed line) and the Feynman 
approximation of the two-dimensional phonon-roton spectrum (dashed-dotted line). 

0.03 

Figure 9. The root mean square radius of the vortex-antivortex separation as a 
function of momentum at the same densities as in Table I. The radius increases with 
density (left figure). The right figure shows the distribution function g™{r) in the 
direction perpendicular to the motion as a function of the separation distance and 
the momentum. The density is 0.045 Ä~2. 

The strength of the coupling potential increases with momentum, mixing in more 
of the m=l state and thus moving vortices further apart. In Fig. 9 we plot the root 
mean square radius of the separation which increases both as a function of density 
and momentum. We also plot #™(r) in the direction perpendicular to the center of 
mass motion. This gives the probability of finding the pair at the separation distance 
r. The peak of the probability is moved from the origin at zero momentum to about 
2 A at fc=4Ä_1. 

Figure 10 shows the two components of the wave function as a function of radius 
at different momenta. The increasing momentum decreases the m = 0 and increases 
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Figure 10. The two components of the vortex-antivortex "wave function" for mo- 
menta ranging from 0 A-1 to 5 Ä-1. The m=0 component decreases and m=l 
increases with increasing momentum (left figure). In the right figure we show the 
gva(x,y)&t fc=2 Ä"1. 

the m = 1 component. We also show gva(x,y) at |fc|=2 Ä-1, k pointing to the 
direction of the negative z-coordinate. One vortex is located at the origin and the 
surface plot gives the probability of rinding the other vortex. The highest probability 
is clearly in the direction perpendicular to the motion. 

5. SUMMARY 

We have shown that the properties of the two-dimensional equation of state are 
important for understanding the growth processes of thin 4He films. This observation 
makes it highly interesting to study excitation mechanisms in purely two-dimensional 
superfluid. We have shown that the spinodal and the surface wave instabilities are 
important in the third sound and torsional oscillator experiments on smooth surfaces. 

The vortex^antivortex excitation is a low lying elementary excitation in the two- 
dimensional quantum fluid. We have derived its dispersion relation and given exper- 
imental evidence to support its existence. These are the neutron scattering strength 
found below the ripplon and roton contributions in Ref. 16 and the second branch in 
the third sound measurements in Ref. 15. The vortex-antivortex excitation gives a 
new upper bound for the critical superfluid velocity which we will study in the future. 
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THEORY OF VALENCE-BOND LATTICE ON SPIN LATTICES 

Y. Xian* 
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Abstract. Quantum spin-lattice systems in low dimensions exhibit a vari- 
ety of interesting zero-temperature phases, some of which show non-classical 
(i.e., non-magnetic) long-range orders, such as dimer or trimer valence-bond 
order. These symmetry-breaking systems with localized valence bonds are 
referred to as valence-bond lattices (VBL) in this article. A review of our sys- 
tematic microscopic formalism based on a proper set of composite operators 
for the ground and excited states of the VBL systems is given. The one- 
dimensional (ID) spin-1 frustrated model is investigated in detail. Several 
possible VBL systems on the ID spin-1 chains, the 2D square and kagome 
lattices are also discussed. That our microscopic theory guarantees the ro- 
tational symmetry of the VBL systems is emphasized. 

1. INTRODUCTION 

Spontaneous symmetry breaking (SSB) (the symmetries of a many-body Hamil- 
tonian not being preserved by its ground state) has always been a fascinating phe- 
nomenon in physics. Spin-lattice systems provide ample evidence for such SSB. Per- 
haps the most well-known example is the ferromagnetic (FM) Heisenberg models 
which have the classical ground state with all spins pointing in the same direction, 
say, along the z-axis, thereby breaking the rotational symmetry of its Hamiltonian. 

* Email: xian@lanczos.ma.umist.ac.uk 



The antiferromagnetic (AFM) counterparts, however, prove much more compli- 
cated in quantum mechanics. This is well demonstrated by the fact that even on 
a bipartite lattice the classical Neel state consisting of two alternating spin-up and 
spin-down sublattices is no longer the eigenstate of the Hamiltonian. Despite that, 
a number of AFM systems show a nonzero, albeit reduced, Neel-like order. For ex- 
ample, the 2D spin-1 AFM Heisenberg model on the square lattice, which has been 
under intensive study since the discovery of high-temperature superconductors, is now 
widely believed to possess in its ground state a Neel-like order which is reduced to 
about two-thirds of the classical value by quantum correlations [1,2]. 

In addition to the FM phase and Neel-like AFM phase, quantum spin models 
also exhibit SSB of non-classical (i.e., non-magnetic) types in their ground states, 
such as the dimerization in a spin chain with two adjacent atoms forming a spin- 
singlet valence-bond (VB), thereby breaking the chain lattice symmetry. Since the 
total spin vector of an isotropic spin system is also a good quantum number, those 
ground states with zero total spin vector certainly have no classical counterparts. Any 
long-range order in such a many-body ground state must be quantum mechanical in 
origin and the corresponding broken symmetry is likely to be the lattice symmetry 
because the rotational symmetry is preserved by such a ground state. 

Working in the sector of zero total spin vector has a long history. In fact, the 
seminal Bethe ansatz, which provides exact solutions for the spin-| Heisenberg chain, 
was first proved by Hulthen [3] through finite-size calculations within the frame- 
work of resonant valence-bonds (RVB), although the term "RVB" was not used then. 
Anderson extended this concept of RVB (originally due to Pauline) to frustrated 
spin-lattice systems [4], and later to the high-temperature superconductor materials 
[5]. More relevant to the present purposes, Majumdar and Ghosh [6] found that the 
perfect dimer VB configuration which breaks the lattice translational symmetry is 
the exact ground state of the important ID spin-| Heisenberg chain at a particular 
ratio of nearest-neighbour and next-nearest-neighbour coupling constants. In the last 
six years or so, the VB basis of low-dimensional quantum spin-lattice systems has 
attracted a lot of theoretical interest [7,8]. In particular, Affleck et al. [7] discov- 
ered that a homogeneous VB configuration is the exact ground state of a particular 
spin-1 Heisenberg-biquadratic chain. This finding sheds considerable light on the 
well-known Haldane conjecture [9] on the nonzero gap in the spin-1 Heisenberg chain. 
(The term "valence-bond solid" was then used for such a VB state, although it has 
no conventional symmetry breaking [10].) 

An important rigorous result of quantum long-range orders is provided by a series 
of spin-s SU{n) (n = 2s + 1) chains (or the SU(2) spin-s chains with Hamiltonians 
which project out singlet states). This series of Hamiltonians has been solved by a 
mapping to the spin-| XX Z chain which is integrable by Bethe ansatz [11]. By the 
same mapping, it has been shown that the ground state of the SU{n) model for any 
n > 2 breaks the lattice symmetry with a double degeneracy [12]. The exact values 
of the corresponding dimerization order parameter have been obtained. In particular, 
the dimerization order parameters for the SU(3) and SU(A) models are reduced to 
about 42% and 68% respectively [12]. 

Although there are no exactly-known examples, it seems possible that sponta- 
neous trimerization, which is characterised by a sequence of spin-singlet states formed 
from three adjacent spins, may occur for some systems with integer spin quantum 



numbers since the trimer state is also a rather stable configuration. Recently this 
possibility has been discussed for the spin-1 Heisenberg-biquadratic chains over an 
extended region of the coupling constants [13]. Furthermore, the spontaneous dimer- 
ization or trimerization may also occur in higher-order dimensionalities. For example, 
it has been proposed that the 2D spin-| frustrated Heisenberg model on the square 
lattice may show a column dimer VB order over a small but nonzero region of the 
coupling constants [14]. A more complicated dimerization picture was suggested for 
the spin-| Heisenberg model on the kagome lattice [15]. The trimerization of spin-1 
models on the kagome lattice is also a subject to be discussed in this article. 

For convenience, the term "valence-bond lattice" (VBL) is used in this article to 
represent collectively all those quantum spin-lattice systems in which the simple VB 
configurations (i.e., dimer or trimer, etc.) are localized with the broken lattice symme- 
try. One defines a perfect VBL as a regular array of isolated simple VB configurations 
on a lattice. In general, one expects that the perfect VBL is not the ground state of a 
given quantum spin-lattice Hamiltonian under consideration. But if the system pos- 
sesses a VBL long-range order in its ground state, the perfect VBL should be a good 
starting point. The quantum correlations can then be analysed on the basis of the 
perfect VBL. This same strategy was employed in 1952 by Anderson [1] in his AFM 
spin-wave theory, in which the quantum fluctuations from the classical Neel state are 
described by collective motions of two sets of bosons. The VBL systems are not unlike 
the quantum Neel-like systems, despite the complication of their ground states being 
in the sector of zero total spin vector rather than of zero total spin along the z-axis. 
Similar to the Neel-like systems, where the quantum fluctuations are described by 
the spin-flip operators (i.e., spin raising and lowering operators) with respect to the 
Neel model state, I use a proper set of composite operators developed by Parkinson in 
1979 [16] to describe the quantum correlations with respect to the perfect VBL model 
state. A similar spin-wave theory can then be made by a bosonization scheme for 
those composite operators. But a more systematic approach is provided by a power- 
ful microscopic quantum many-body theory, namely the coupled-cluster method [17], 
based on those composite operators themselves. The restriction in the sector of zero 
total spin vector is guaranteed by a very useful and important theorem of the COM. 

Recently, Bishop, Parkinson and Xian [18] have successfully applied the CCM to 
a number of quantum spin systems, including the spin-| AFM Heisenberg model on 
the square lattice. In their analysis, the Neel state was taken as a model state for 
the anisotropic-Heisenberg AFM systems. Upon the Neel model state the many-spin 
correlations are incorporated via a so-called correlation operator consisting of the 
spin raising and lowering operators with respect to the model state. Within a well- 
defined systematic approximation scheme amenable to computer-algebraic techniques, 
they have obtained excellent results for the ground-state energy, excitation spectra, 
and staggered magnetization as functions of the anisotropy parameter. Their CCM 
analysis not only produces the numerical results which are among the best estimates 
available today, but also enables them to study the quantum phase transition of the 
anisotropic-Heisenberg systems in an extremely systematic fashion [19]. From these 
experiences, one expects that the CCM analysis should yield similar good quantitative 
results for the VBL systems. 

Because of its simplicity, our microscopic analysis for the spin-| frustrated chains 
is first given. Then the same analysis is extended to other systems, including some spin 



models on the 2D square and kagome lattices. The outline of this article is as follows. 
Sec. 2 considers the few-body systems and introduces the corresponding composite 
operators and their boson transformations. Sec. 3 is devoted to the study of the ID 
spin-1 frustrated model, firstly by the spin-wave approximation via a bosonization 
of those composite operators, secondly by the more systematic CCM analysis based 
on the composite operators themselves. Extension of the same analysis to the other 
systems, including the spin-1 Heisenberg-biquadratic chains and the some 2D models 
on the square lattice and the kagome lattice is discussed in Sec. 4. A general discussion 
is given in Sec. V. A brief proof of the important symmetry theorem of the CCM is 
given in the Appendix. 

2. FEW-ATOM SYSTEMS AND VALENCE-BONDS 

As outlined in Sec. 1, our microscopic theory for a VBL system is based on a 
set of composite operators which are defined according to the Hubert space of the 
corresponding few-atom system. Our discussion here is restricted to the two-atom 
and three-atom systems. The boson transformation of those composite operators and 
the spin VB notations are also given. 

2.1 Two-Atom Systems 

A two-atom system, each with spin |, has four states, a singlet and triplet states. 
The singlet state can be written, in the obvious notation, as 

|0} = ^(IU)-|U»; (2.1) 

and the triplet states are, respectively 

|i) = |T,T),   |2> = ^(|T,i) + |l,T»,   13} = 11,1). (2.2) 

In a matrix representation, one denotes each of these four states by a column matrix 
with a single nonzero element. Any operator in this Hubert space can then be written 
as a 4 x 4 matrix. Following Parkinson [16], operator Amn is introduced as having 
only a single non-zero element in a (4 x 4) matrix, namely (m'\Amn\n') = 8mmi&nni. 
All single spin operators can now be written in terms of these sixteen, namely 

1 1 
*i = ^A°2 + ^2° + Al1 ~ A™)<       s2 = 2^~A°2 ~ Ä2° + Al1 ~ A3^' (2,3°) 

81 = -T=(A30 - A01 + A21 + A32),   si = -7={Aoi ~ A30 + A2i + A32), (2.36) 

.+ - -^(A03 - A10 + Au + A23),   4 = -7?{Aio - A03 + AX2 + A23). (2.3c) 

The inverse transformations are clearly nonlinear. Therefore Amn has been re- 
ferred to as a composite operator [13]. In particular, AQO corresponds to the spin- 
singlet projection operator, namely AQO = 1/4 — si ■ S2. 



We notice that AIQ (A30) is an operator which increases (decreases) Sjotal (= 
s{ + Sj) by one unit, while A20 leaves s*otal unchanged; their Hermitian conjugates 
(i.e., transpose matrices) have the opposite effects. Since any of the triplet states can 
be generated by letting An0 (n = 1, 2, 3) operate on the singlet state |0), An0 play the 
role of creation operators with respect to |0); their transpose matrices correspond to 
the destruction operators. Using the following algebra 

AmnAkl = AmiSnk, (2.4) 

which follows by definition, it is easy to see that any Amn can be expressed by a 
product of AmQ and Aon- 

For a two-atom system each with spin 1, the dimension of the Hubert space is 
nine. The total number of composite operators Amn (m, n — 0,1, 2,..., 8) is eighty- 
one. Among them are eight pairs of creation and destruction operators with respect 
to the singlet state. As in the spin-| case, if one chooses the the singlet state 

|0) = -^(|1,-1> + |-1,1)-|0,0», (2.5) 

the eight pairs of the creation and destruction operators with respect to |0) are then 
denoted as Ano and Aon (n = 1, 2,..., 8) respectively. 

2.2 A Three-Atom System 

Similar to the two-atom systems discussed above, in order to construct the com- 
posite operators of a three-atom system, one should list all of its states. Consider the 
spin-1 case. There are 33 = 27 states. Ref. [13] lists all of them in detail. Again, the 
singlet state 

|0) = ^=(|0,1,-1) + |1,-1,0) + |-1,0,1}-|0,-1,1)-|-1,1,0)-|1,0,-1}), (2.6) 

is the first state, and the nine states of Stotai = 1 (stotai = si + S2 + S3) follow, and so 
on, until the last state with all three down spins. 

As before, Aoo for the present case is also the spin singlet projection operator by 
definition, and can be is written as 

A00 = jzSi23(6 + Si23-Sf23),      S123 = si-S2 + S2-S3 + s3-si;        (2.7) 

the creation and destruction operators with respect to the singlet state |0) of Eq. (2.6) 
are similarly given by AHQ and Aon (" = 112,..., 26). In Ref. 13, an approximation 
is made by truncating the Hubert space from twenty-seven states to the first ten (i.e., 
restricting to the subspace of stotai = 0 and 1). In this subspace, there are only nine 
pairs of creation and destruction operators which can be easily managed. 

2.3 Bosonization of Composite Operators 

A bosonization scheme for a set of operators usually starts from a reference. The 
reference of the bosonization scheme (e.g., Holstein-Primakoff transformation) in the 



conventional spin-wave theory [1] is either the spin-up state or spin-down state. The 
reference for our present purpose is clearly the singlet state |0) of the correspond- 
ing few-spin system. Therefore, the similarities between operators sz and Aoo and 
between s+ (s~) and Ano (Aon) can be clearly seen. 

While sz and s± obey the usual SU(2) angular momentum algebras, from 
Eq. (2.4), it is easy to see that Amn obey the following pseudo-spin algebra, 

[Amn,   Akl] = A-ml&nk — A).n6lm. (2.8) 

Therefore, Amn has also been referred to as a pseudo-spin operator. From Eq. (2.8) 
one can make the following Dyson-Maleev-like transformation, 

d-l 

-Aoo = 1 - 2_j &tan\   ÄnQ - a^A00, A0n — an;   Amn = a+a„, (2.9) 
n = l 

where m, n = 1, 2,..., d — 1 with d the Hilbert space dimensionality of the few-atom 
system, and where an, a+ are (d— 1) sets of boson operators, obeying the usual boson 
commutation, [am, a„] = Smn. 

By definition, the singlet state |0) is the vacuum state of the bosons, namely, 
an\0) = 0, n = 1, 2,.. .d — 1. The physical states correspond to the vacuum state 
|0) and the (d — 1) states with only one boson excited. Furthermore, as the matrix 
elements between the physical and unphysical subspaces are equal to zero, the trans- 
formation given by Eqs. (2.9) is exact at zero temperature just as in the case of the 
conventional spin-wave theory [1]. 

2.4 Valence Bonds 

In the above analysis, the singlet state is always taken as the reference with 
respect to which creation and destruction operators are defined. This is the essence 
of our microscopic theory for the VBL systems. 

As is well known, spin singlet states can be conveniently represented in terms 
of VB which in turn can be expressed by Schwinger bosons [7,8]. Schwinger boson 
represention is given by the following transformation, 

s+ = a+b,   s-=a6+,   sz = }-(a+a - 6+6), (2.10) 

where a, a+ and 6, 6+ obey the usual boson commutations. It should be emphasized 
that Schwinger bosons are used here purely for the notational purpose. They should 
not be confused with the bosonization scheme of Eq. (2.9). A spin-s state with 
sz = m (—5 < m < s) is written in the Schwinger reprsentation as 

■---   (a+)S+m    {h+y-m ,\V), (2.11) 
y/(s + m)\ y/{s - m)\ 

where \V) is the vacuum state of the bosons.  A spin VB between atoms i and j is 
defined by a number of the so-called VB operators [8] 

C±=atbf-afbt, (2.12) 



(a) 

(b) 

(c) 
Fig. 1. Three VB configurations: (a) spin-| dimer, (b) spin-1 dimer and (c) 
spin-1 trimer. A single bond is defined by C£ of Eq. (2.12). 

acting on the vacuum state \V). Using Eq. (2.11), it is easy to see that the spin-singlet 
states of Eqs. (2.1), (2.5) and (2.6) can be conveniently written respectively, apart 
from the trivial normalization factors, as one-bond CfyV), two-bond (C7^)21V), and 
three-bond C^C^C^lV) configurations. 

A general VB configuration can be easily drawn for a spin-s many-spin system. 
In Fig. 1, two dimer and one trimer configurations are shown. A many-spin ground 
state with zero total spin vector [stotai (= J2i s«) = 0] 's 'n general given by a linear 
summation of all independent VB configurations in which each atom is linked by 
2s VBs [7,8]. In general, different many-spin VB states are not orthogonal to one 
another. This makes working in the VB basis very difficult. But the ground state of 
some interesting quantum systems is dominated by a particular VB state consisting of 
an array of independent simple VBs such as those shown in Fig. 1. These are the VBL 
systems defined in Sec. 1. In the following sections, a systematic microscopic theory 
is developed by taking these perfect VBLs as the reference state and by employing 
the creation and destruction operators Ana and Aon with respect to this reference. 

3. THE SPIN-1 FRUSTRATED CHAINS 

3.1 Spin-Wave Theory 

The ID spin-1 frunstrated model is perhaps the simplest model with spontaneous 
dimerization. The model consists of N atoms each with spin | on a chain with nearest- 
neighbour and next-nearest-neighbour interactions. The Hamiltonian is simply 

H = ^(SJ • Si+i + Jsi ■ si+2), (3.1) 

where J is the coupling constant, the usual periodic boundary condition is assumed, 
and even N and a unit lattice spacing are also chosen for convenience. At J = 0, H 
is the well-known Heisenberg model which was solved exactly by Bethe ansatz [3]; its 
ground state is gapless and has no long-range order. At J = |, the ground state is 
given by the dimer VB configuration as shown in Fig. 1 (a) with a double degeneracy 



[6], 
N/2 

|£> = ni°>2r-l,2r, (3-2) 
r = l 

where the notation |0)j ,■ represents the singlet state of the pair given by Eq. (2.1). 
Let r denote each dimer in Fig. 1 (a), and si(r) and s2(r) the two spins of the dimer, 
Eq. (3.1) becomes 

N/2 

H = J2 [Sl(r) ■ s2(r) + s2(r) • sx{r + 1) + JSl{r) ■ Sl(r + 1) + Js2(r) • s2(r + 1)]. (3.3) 
r = l 

One can then express H in terms of the composite operators Amn by Eqs. (2.3). 
As discussed in Sec. 2, since the flutuations with respect to |D) can be described 

by operators Ar
nQ and Ar

0n (n = 1,2,3), one can derive the equations of motion for 
all of these three sets of pairs. By employing the usual decoupling approximations 
and taking Aoo ss 1, it is easy to derive the spin-wave spectra (i.e., eigen modes). 
Parkinson [16] employed this method to obtain the triplet spectrum of the Heisenberg 
model (J = 0). 

Application of bosonization scheme not only provides a more systematic means to 
obtain the excitation spectra, but also allows one to study the ground-state properties 
as well. By Eqs. (2.9), one can further express H in terms of the three sets of bosons 
(a polynomial up to sixth order). Diagonalization of the quadratic parts of if by the 
usual Bogoliubov transformations, one can easily obtain the ground-state energy Eo 
and excitation spectra wq within the spin-wave approximation. They are given by 
respectively 

f = |jTJ[>/l-(l-2J)co.2,-l]-|l (3.4) 

wj = v/l-(l-2J)cos29. (3.5) 

Eq. (3.5) agrees with that of Parkinson at J = 0 [16]. A dicussion of these results is 
left to the end of this section. 

3.2 The Coupled-Cluster Method 

The CCM has been successfully applied to a wide range of quantum many-body 
problems in both physics and quantum chemistry [17]. The interested reader is re- 
ferred to Ref. [17] for the general formalism of the CCM and to Ref. [18] for its 
particular application to the spin systems with the Neel-like order. Here its extension 
to the VBL systems is considered. 

(a).  The Ground State 

The CCM ansatz for the ground ket state is |*s) = e5|$), where |<3>) is the 
so-called model state which is usually chosen as an uncorrelated many-body wave- 
function, and where 5 is the many-body correlation operator consisting purely of the 
creation operators with respect to |$).   For the VBL problem under consideration, 



it is quite natural to choose the perfect VBL state as the model state. The creation 
operators with respect to this model state are clearly given by any combination of 
those operators A^Q with n = 1,2,.. .,d — 1 where d is the dimensionality of the 
corresponding few-spin system and r denotes its vector position in the VBL. Their 
Hermitian conjugates Ar

0n are the corresponding destruction operators. 
The Schrödinger equation of the ground state, after a simple manipulation, can 

then be written as 
e-sFes|$) = £,|$), (3.6) 

where Eg is the ground-state energy, and where the similarity-transformed Hamilto- 
nian can be expressed as a series of nested commutators, namely 

e-s Hes = H + {H,S]+ ±[[H,S\,S\ + •••, (3.7) 

which usually terminates at the fourth-order for most Hamiltonians with pair- 
interaction potentials [17,18]. So does the present case if the Hamiltonian contains a 
finite-order polynomial of the destruction operators. 

Now let us focus on the spin-| dimerization. The model state |$) = \D). There 
are three creation operators, namely Aio,A2o and AZQ. If one restricts to the sector 

of zero Sjotal (= £V  s"), the correlation operator S = Y^J=\ $n, with 

JV/2 N/2 

Si = 2__,iSrj420,     "32 = 2_j     "r,r'^10^30 — 0I *-V,r' -"-20-"-2 
r = l 

JV/2 

1_ 
r,r'-n-10-'130 — r>l <-V,r' -rL20-fl20 

(3.8) 

*=£ cC1) AT     AT1    AT" _c(2) AT     AT'   AT" 
°r,r',r"AlOJ±30A20        o| °r,r',r" ^i20yl20"ft20 

etc. In Eq. (3.8) the primes on the summations imply exclusion of the terms with any 
pair of indices being equal. 

The  ground-state  energy  is  obtained  by  taking  the  inner  product   of the 
Schrödinger equation (3.6) with the model state \D) itself, namely 

Eg = {D\e-sHes\D}; (3.9) 

and the correlation coefficients {iSr,r',...} 
m Eqs. (3.8) are determined by the coupled 

set of equations obtained by taking inner products of Eq. (3.6) with states constructed 
from the corresponding destruction operators, namely 

(D\AT
02e-sHes\D) = 0,      Vr, (3.10) 

for the one-body equation; and 

(D\Al1A&e-sHes\D)=0,   (D\Ar
02A

r^'SHes\D) = 0,   Vr,r'&r)        (3.11) 

for the two-body equations. The three-body equations and higher-order many-body 
equations are obtained in a similar fashion. 



The exact energy equation (3.9) can be straightforwardly derived as 

^ = i[(l-2J)(2fc(1
1) + ^-a)-3], (3.12) 

where the lattice symmetry is used to set accordingly Sr = a, <5;[>3 = <SrP,n = 

br  , with Z = 1, 2 and r = r2 — ri. 
The exact one-body equation (3.10) can also be easily derived. It couples only to 

the two-body coefficients. Similarly, the two-body equations (3.11) couple only to the 
one-body and the three-body coefficients, and so on. One clearly needs to employ an 
approximation scheme for a practical calculation. The most common approximation 
of the CCM is the SUBn scheme which retains up to n-body correlation operators. 
Here the SUB2 scheme is considered, namely S —> SsuB2 = ^l + ^2 and Sn = 0 for 
n > 3. The one-body equation (3.10) yields an interesting solution, a = 0, implying 
no one-body correlations for the dimerization problem. Furthermore, the two-body 
equations (3.11) provide a solution in which the two sets of two-body coefficients are 
identical, namely 

bW = bW = br. (3.13) 

We notice that the model state |D) is in the sector of Stotal = 0, and the one-body 
correlation operator Si will take the state out of this sector. We also notice that the 
two-body correlation operator S2 commmutes with Stotal if and only if Eq. (3.13) is 
satified. All these imply that the ground state in our SUB2 approximation remains in 
the sector of stotai = 0 despite the fact that we started with operators in the sector of 
stotai = 0- *n fact> this nice property also holds at higher-order approximations in the 
above CCM analysis. Appendix provides a brief proof for a general theorem which 
states that the CCM coupled equations [e.g., Eqs. (3.10) and (3.11)] at any level of 
approximations always provide at least a solution which guarantees the symmetry of 
the model state if this symmetry is one of those belonging to the model Hamiltonian. 
This is certainly a big advantage because it is much more difficult to work in the 
sector of stotai = 0 than of s'otaX = 0. 

The energy equation is now reduced to 

^=|[(1-2J)61-1], (3.14) 

and, after simplification, the two equivalent two-body equations are given by 

i J2 (Kstrp + K2br - 2Kxbr+p + KXJ2 Mr+,-,0 - 0,      r ^ 0 (3.15) 
A>=±1 r'^0 

with #1 = 1-2/, K2 =4(l-2.Fs:i6i), and #3 = Ä"i(l + 46?)-2(l + 2J)fei. A simpler 
approximation can be made from Eq. (3.15), namely the SUB2-2 scheme which retains 
only the single coefficient, 61. Eq. (3.15) then reduces to 

1 - 2.7 + 2(3 - 2J)6i - 9(1 - 2J)b\ = 0, (3.16) 

which is easily solved. The full SUB2 equation (3.15) can also be solved analytically 
by a Fourier transformation method in a similar fashion as described in Ref. 18. Here 
only the final result is given by the following self-consistency equation for 61, 

1      / TC    \      /¥7r  \ 
" — /     dq \J 1 — fci cos 1q + k2 cos2 2q    , (3-17) 

l7r  J-K ) 

10 
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where the constants kx and h^ are defined by 

h = ^(4M2 + Stffr - AK'X),   k2 = *Kl{K^;Kz\ (3.18) 

and where X = J2T=i Kbr+i, which can be calculated self-consistently as 61 of 
Eq. (3.17). After 61 is determined as a function of J, the ground-state energy is 
obtained by Eq. (3.14). Again the discussion of these results is left to the end. 

(b).  The Excited States 

The CCM ansatz for the excited state is |\Pe} = X\Vg) = Xes|$), where |*s) 
is the ground state as determined above and X is the excitation correlation operator 
consisting only of the creation operators as 5 does. Using the Schrödinger equations 
for the ground and excited states, one obtains 

e-5[if,X]e5|$) = eX|$),   e = Es-Eg. (3.19) 

In the so-called SUB(2,1) scheme, one retains up to two'-body correlations in S 
and one-body correlations in X, namely, S —► SsuB2 = Si+ S2 and X —+ X\. There- 
fore one writes,Xi = J2r %rAr

10. The other two one-body excitation operators are 
given by replacing Aio by A20 and A30 respectively. The coefficient XT is determined 
by the inner product of Eq. (3.19) with state j4j[0|$). A Fourier transformation readily 
yields the following excitation spectrum with a lattice momentum q, 

K2   1  
eq = —— v 1 — &2 cos 2g + k? cos2 2q, (3.20) 

where the constants K2, &i and fcg are as defined before. The other two excited states 
with operator A20 and ^30 produce the same spectrum. Therefore eq is a triplet 
spectrum as expected. 

3.3 Discussion 

Fig. 2 shows the results of the ground-state energy per atom as a function of J 
from the spin-wave approximation, and from the SUB2-2 and full SUB2 schemes of the 
CCM. The numerical results [20] of Tonegawa and Harada, obtained by extrapolating 
the finite-size calculations for J < 1/2, and the exact results by Parkinson of the 
N — 20 system for J > 1/2, are also included for comparison. At J = 1/2 (i.e., the 
Majumdar-Ghosh point) both spin-wave theory and the CCM approximations give the 
exact result of —3/8. This is not surprising because both take the dimer state \D) as 
their model state. At J — 0 (the Heisenberg point), spin-wave theory yields —0.4498, 
while the SUB2-2 and full SUB2 schemes yield -0.4268, -0.4298 respectively. They 
all agree with the exact result of —0.4432 by the Bethe ansatz [3]. But we notice that 
at J = 0 spin-wave theory produces divergent results for other physical quantities 
such as the dimerization parameter discussed later. Furthermore, as can be seen 
from Fig. 2, the energy curve of spin-wave theory is symmetric about J = 1/2, while 
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Fig. 2. Ground-state energy per atom as a function of /. Shown are 
the results from the spin-wave theory (dotted), the SUB2-2 scheme (short- 
dashed), and the full SUB2 scheme (long-dashed). The terminating points 
are indicated. The numerical results of Ref. [20] are also included (solid). 

the extremely simple SUB2 scheme gives much better results for a wide range of the 
coupling constant J when compared with the numerical results of Ref. [20]. 

We notice that both spin-wave theory and the SUB2 scheme have two terminat- 
ing points Jc (i),(2) (1) beyond which, namely for J < Jc    and J > Jc   , there is not real r(2) 

solution. For spin-wave theory, the two points are given by Jc = 0 and Jc = 1, 
while Jc

(1) = -0.4443 and Jc
(2) = 1.591 from the SUB2 scheme. The corresponding 

energy values of the SUB2 scheme are —0.5172 and —0.6977 respectively. In the past 
we had identified the SUB2 terminating points as the phase transition critical points 
of the anisotropic-Heisenberg models [18]. This is strongly supported by the calcu- 
lations of the spin correlation functions and order parameters within the same CCM 
analysis. The following discussion of the triplet spectra of the spin-wave excitations 
also supports that the two terminating points J = J, (i),(2) of the present dimeriza- 
tion case may again correspond to the quantum phase transitions of the frustrated 
systems. 

The triplet spectra of Eq. (3.5) and Eq. (3.20) have the same qualitative be- 
haviour. Fig. 3 shows the schematical plot of the spectrum from the SUB(2,1) scheme 
of the CCM at several values of J. The spectrum clearly shows a nonzero gap between 
the two terminating points and the gap collapses at both the terminating points. In 
particular, the triplet spectrum is flat with a gap value of 1 at J = 1/2. This flatness 
implies no coupling between pairs of spins (dimers) at J = 1/2 within the approx- 
imations. Since the simple dimer state \D) is the exact ground state at this point, 
the two-body correlation can be easily included in the excitation operator X and 
the corresponding two-body coefficients can be determined by a simple variational 
procedure similar to the well-known Feynman theory for the excitation spectrum of 
the 4He superfiuid [21]. Hence the excitaion operator with a lattice momentum q is 
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Fig. 3. Schematic plots of the triplet excitaions spectrum in the SUB(2,1) 
scheme at several values of J. 

written as, 

Xq = 5>",r4[0 + £/,(r,r')4[X0. (3.21) 

Taking fg(r, r') as the variational parameter to optimise the expectation value of the 
Hamiltonian, it is found that the gap in the spectrum is reduced by half at q = 0 
and 7T, but remains at 1 at q = ir/2 [22]. (The preliminary calculations of the similar 
SUB(2,2) scheme not only yield similar results at J — 1/2 but the whole spectrum 
as a function of J.) These results of the triplet spectrum from such a low-order 
approximation seem to agree with a more substantial calculation at J = 1/2 by 
Shastry and Sutherland [23]. They obtained the spectrum of a soliton-like excitation 
with a minimum gap of 0.25 at q = 0 and IT and a maximum gap of about 1 at 
q — 7r/2. Tonegawa and Harada's numerical calculations [20] confirmed the nonzero 
gap at J = 1/2 and in the nearby region. They predicted that the gap collapses at 
Jo « 0.3, while Haldane [24], who used a fermion representation, predicted this value 
to be about 1/6. Recently, Jo has been estimated by the conformal field theory to be 
about 0.2411 [25]. In any case, this gapless point may correspond to a phase transition 
from the dimerized phase to a critical phase similar to the Heisenberg model at J = 0. 

A more intriguing situation occurs for J > 1/2, where the triplet spectrum of 
both spin-wave theory and the SUB(2,1) scheme has a minimum at q = TT/2. This 
certainly reminds us of the magneto-roton excitations in the fractional quantum Hall 
effects [26]. As J increases, the minimum (spin-roton gap) decreases and finaly at 
J = Jl \ it collapses at q = 7r/2. Whether or not this suggests a phase change in the 
spatial periodicity of the system from double to four-fold, for example, is still unclear. 
The numerical calculations of the spin-spin correlation function [20] certainly show a 
more complicated feature for J > 1/2. In particular, the short-range four-fold Neel 
order (TT1ITTU • • •) is observed for J > 1/2, contrast to the case of J < 1/2 where 
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the ordinary short-range two-fold Neel order (T1T1 • ■ •) is observed [27]. As we know, 
at J = oo, the model Hamiltonian of Eq. (3.1) becomes two uncoupled Heisenberg 
chain with a double lattice spacing showing a four-fold spatial periodicity. Clearly, 
higher-order calculations are needed to obtain a clearer picture. 

To conclude this section, it should be pointed out that the dimerization order 
parameter, defined by D = (s;_i • SJ) — (s; ■ Sj+i), can be easily obtained within spin- 
wave theory and the SUB2 scheme of the CCM. In spin-wave theory, for example, D is 
found to be nonzero in the region of 0 < J < 1 and gradually diminish when J moves 
toward the two terminating points; but at the two terminating points (J — 0,1), D 
diverges to —oo, implying a breakdown of spin-wave theory. The SUB2 scheme of 
the CCM, however, yields converging results even at the two terminating points, as 
it is the case in our previous CCM analysis for the ID anisotopic-Heisenberg model 
[18]. Since it also involves the ground bra state which is not manifestly the Hermitian 
conjugate of the ground ket state in the CCM, our CCM analysis for the dimerization 
order parameter and correlation functions will appear elsewhere. 

4. OTHER SYSTEMS 

4.1 The Spin-1 Chains 

Recently, the ID Heisenberg-biquadratic spin-1 chain has attracted much at- 
tention because it provides very rich and interesting quantum phases. The model 
Hamiltonian is given by 

H = cos 0^ Sj • Sj+i +sin#^(s; -Sj+i)2,   s = 1 (4.1) 
i i 

where the coupling between spins is parametrized by 9. The FM phase is restricted 
to the region of 7r/2 < 9 < 57r/4, and the rest is non-FM. 

There are a number of exact results available at several values of 9. In particular, 
at 9 = — 7r/2, the system is exactly known to be dimerized with a nonzero gap and 
the corresponding order parameter is about 42% of the perfect dimer state [11,12]. 
At tanö = 1/3, the ground state is given by a homogeneous VB configuation with 
a nonzero energy gap but with no lattice symmetry breaking [7]. At 9 = 7r/4, the 
model is again integrable, the ground state clearly shows a triple spatial periodicity 
and the excitation spectrum becomes gapless at the lattice momentum q — 0 and 
2-7T/3 [28]. Based on these exact results, one tends to conclude that the system may 
show different phases representing by the following three VB states, the dimer state 
as shown in Fig. 1 (b), the trimer state in Fig. 1 (c) and the homogeneous VB 
state [7]. The expectation values of the Hamiltonian with respect to these three trial 
wavefunctions can be straightforwardly obtained as 

p ( — | cos# + 2sin#,      homogeneous; 
0       ' -cos0 + fsin0,        dimer; (4.2) 

N — § cos0 + ^sin#,    trimer. 

These values are shown in Fig. 4 as a function of 9, together with the numerical 
results from finite-size exact calculations [18].   One sees that the dimer state has 
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Fig. 4. Expectation values of the ID spin-1 Hamiltonian as a function of 
8 with respect to the three simple VB states: homogeneous (dotted), dimer 
(short dashed), and trimer (long dash). Also shown are the results from 
finite-size exact calculations (solid). 

lower energy than that of the homogeneous VB state for 9 < tan_1(—1/2) « —26.6°; 
for larger 9, however, the homogeneous VB state has lower energy. In particular, 
the homogeneous VB state is the exact ground state at tan# = 1/3 [7]. At even 
larger 9, it is interesting to see that the trimer state has the lowest energy. This 
occurs when 8 > tan-1(3/4) « 36.9°. The lower envelope of the three curves is in 
general quite close to the 'exact' results over the entire non-FM region. This crude 
approximation certainly seems to give a clear picture for the three-phase diagram of 
the spin-1 system, so far as the ground-state energy is concerned. Of course, the 
precise locations of the boundaries between these phases given here are not to be 
trusted because of the gross simplification. 

From the above analysis, it is clear that one can extend our previous calculations 
to the study the dimerization around the region of 8 — —ir/2 and possible trimeriza- 
tion about 8 > ir/4.. Chubukov [29] applied a dimerized spin-wave theory using the 
Holstein-Primakoff bosonization to the Hamiltonian of Eq. (4.1) and indeed he found 
that over an extended region, the dimerized spin-wave excitations are stable. One cer- 
tainly desires to obtain also other physical quantities, such as the ground-state energy, 
dimerization order parameter and the corresponding four-spin correlation functions, 
etc. The CCM analysis described in Sec. 3 for the spin-| model can certainly provide 
a systematic means to obtain these physical quantities. 

The possible trimerization of the spin-1 chain was discussed in Ref. [13] where 
the equations of motion were derived for the creation and destruction operators Ar

n0 

and Ar
0n (n = 1,2,..., 26) with r denoting each of the trimers in Fig. 1 (c). After a 

truncation in the Hubert space, namely restricting to n = 1,2,.. .,9, the trimerized 
spin-wave spectra were obtained. The lowest mode shows a nonzero gap associated 
with the trimerization, and this gap collapses at precisely 9 = 7r/4 and 9 = x/2. In 
particular, at 8 = ir/4, the spectrum becomes gapless at lattice momentum q — 0 and 
27I-/3 with a spin-wave velocity of 3/\/5 « 1.342. This spectrum compares well with 
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Fig. 5.  A column dimer VB state for the 2D frustrated Heisenberg model 
on the square lattice. 

the exact result of Sutherland [28], which has a spin-wave velocity of-\/2 7r/3 ~ 1.481. 
At 9 = TT/2, where the system is known to become FM, a constant zero spectrum was 
obtained. Again, the CCM analysis using AT

n0 and Aon (n = 1,2,..., 26) with the 
trimer model state should provide more systematic and reliable results. 

4.2 The Spin-| Frustrated Model on the Square Lattice 

The 2D spin-1 frustrated Heisenberg model on the square lattice is described by 
the following Hamiltonian 

H = -Y^Si-si+p+ -J^Si-Si+p', (4.3) 
i,p i,p' 

where i runs over all lattice sites, and p and p' over all nearest-neighbour and next- 
nearest-neighbour (diagonal) sites respectively. Because its possible relevance to the 
high-temperature superconductors, a variety of techniques has been applied to this 
model [14]. One now generally believes that the system shows the classical Neel-like 
order [ordering wavevector Q = (iv, 7r)] for small J and the collinear magnetic order 
[Q = (0,7r)] for J « 0.65 or larger. Between these two phases, i.e., 0.35 < J < 0.6, no 
Neel-like nor collinear order is observed. Although there is no clear consensus on the 
zero-temperature structure for this nonmagnetic region, the column dimerized phase 
shown in Fig. 5 has been proposed [14]. In particular, Chubukov again applied his 
dimerized spin-wave theory to the Hamiltonian of Eq. (4.3). His results seem to agree 
with the numerical calculations which suggest that the column dimer VB state may 
be stable around J = 1/2. But it is fair to say that a more systematic approach is 
needed before one can reach the definite conclusion on the dimerization of the 2D 
square lattice. It is quite straightforward to extend our CCM analysis for the ID 
spin-1 frustrated chain described in Sec. 3 to the present 2D case. We will report 
these results soon. 

4.3 The Spin-1 Models on the Kagome Lattice 

Spin models on the kagome lattice are another group of frustrated systems be- 
cause the ground state of the classical Ising model on the kagome lattice has infinite 
degeneracy. In addition to their intrinsic theoretical interest, some spin models on 
the kagome lattice may have been realized in experiments. For example, in a layered 
compound Sr-Cr-Ga-O, the s = 3/2 Cr3+ ions form a stack of dense kagome lattices 
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Fig. 6. The spin-1 kagome lattice. 

separated by more dilute triangular lattices [30]. And the spin-| Heisenberg model on 
the kagome lattice has been proposed to explain the interesting phenomena observed 
in the experiments with 3He atoms deposited on the graphite substrate [15]. 

Here the case of the spin-1 models on the kagome lattice is considered. It is useful 
to study the following trimerized Hamiltonian, 

H(J)= (£+J£U-s;'   «=1. (4-4) 

where, as shown in Fig. 6, (ij) denote the solid bonds and (ij) the dashed bond. The 
symmetric model is given by J = 1. At J = 0, the perfect trimer VB configuration 
(i.e., solid bonds in Fig. 6) is the exact ground state. Therefore one expects that 
the trimerized spin-wave theory discussed in Sec. 4.1 for the spin-1 chain should be 
a good approximation for at least small J. I have applied the method of equation- 
of-motion for the operators AT

nQ and Ar
0n with n = 1,2,...,9, restricting the Hubert 

space of each trimer (denoted by the new lattice vector r) to the first ten states. The 
trimerized spin-wave spectra have been obtained as functions of J. Unfortunately, 
the spectra are found to be stable only when J < 1/2, and the symmetric point J — 1 
seems to be beyond this simple spin-wave approximation. 

However, similar to the ID spin-1 case discussed earlier, one can in general con- 
sider the spin-1 Heisenberg-biquadratic model on the kagome lattice. This model is 
given by adding a quadratic term to Eq. (4.4), 

ffW£>.si+p)2, (4.5) 

where, as before, p denotes nearest-neighbour sites on the kagome lattice. From the 
experience of the ID spin-1 chain, one expects that the quadratic term of of Eq. (4.5) 
may stabilize the trimer VB state over an extended region of J1 and even at the 
symmetric point of J = 1. This work is in progress. 

5. CONCLUSION 

In this article, I have described our microscopic approach to the quantum spin 
systems with an anticipated VBL long-range order.  The perfect VBL consisting of 
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independent simple VBs is taken as the model state and the corresponding composite 
operators first developed by Parkinson are employed. Two approximation schemes are 
developed, firstly a spin-wave theory via bosonization transformation and secondly the 
more systematic analysis within the framework of the CCM. The general formalism 
for the quantum correlations in the ground and excited states of the VBL systems are 
given. In particular, the simple ID spin-| frustrated model have been investigated in 
detail as a demonstration. The extensions of our approach to the spin-1 Heisenberg- 
biquadratic chain and to the 2D frustrated models on the square lattice and kagome 
lattice are also discussed. The preliminary results presented in this article are quite 
promising indeed. There is much more work to do. I wish to report our new results 
in the near future. 
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APPENDIX 
SYMMETRY THEOREM OF THE COUPLED-CLUSTER METHOD 

In Sec. 3.2, the SUB2 scheme of the CCM provides a solution which preserves 
the rotational symmetry (i.e., stotai = 0) of the model state \D), although one started 
with the operators in the sector of SjotaI = 0. This is true in any general application 
of the CCM. A brief proof of the following theorem is given in this Appendix: the 
CCM equations at any level of approximations always provide at least a solution 
which guarantees the symmetry of the model state if this symmetry is one of those 
belonging to the Hamiltonian. 

Let A be a symmetry operator, associated with which the model state |$) has 
an eigenvalue Ao, namely A|$) = A0|$). Let Hamiltonian H commutes with A, 
[A, H] = 0. Therefore, one has 

Aff|$) = \0H\$). (Al) 

(I). Eigen operator representation. Let Cf and Cf be the multi-configurational 
creation operators with respect to |<3>), with the set-indices I and J respectively label- 
ing the general multi-particle cluster configurations. The corresponding destruction 
operators are denoted as Ci and Cj respectively. Assuming that Cf commutes with 
A, 

[A,C+] = 0,     VI, (A2) 

but Cj does not. Instead, Cj has the following commutations, 

[A,C+] = A'1(I)C+,     Ai(J)^0,     VJ. (A3) 
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Therefore one has for any positive integer n 

A(C+r|$) = A0(C+)n|*),     VI, (A4) 

and 
AC+|$) = A1(J)C+|$),     Ai(J) = Ao + Ai(J). (.4.5) 

The CCM correlation operator 5 is defined as 

S = J2'sIC+ + '£SjC+, (A6) 
i J 

where the prime implies that the identity term, CQ = 1, is excluded. The correlation 
coefficients {SI,SJ} of Eq. (A.6) are determined by the following sets of the coupled 
equations, 

($|Cje-5#e5|$) = 0,     VI (/ 0), (A.7a) 

{$\Cje-sHes\$) = 0,     VJ, {A.7b) 

where the expansion of the similarity-transformed Hamiltonian 

e~sH es = H + [H,S}+ ±[[H, S], 5] + ■ ■ ■, (A8) 

will terminate at a finite order if H contains a finite number of destruction operators. 
We notice that the states H|$), [H, C/]|<S), [[H, Cf], C£]|$),..., all have the 

eigen value Ao for A by Eqs. (A.l) and (A.4). However, the state Cj"|$) has a different 
eigenvalue, Ai(J) (^ Ao). Therefore they must be orthogonal to one another, namely 

(<£|Cj#|$) = 0,      VJ (A9a) 

(*\Cj[H,Ct]\*) = 0,     VJI (A96) 

($|Cj[[/f,C+],(7+]|$) = 0,     VJ,I,I' (A.9c) 

etc. Using Eq. (A.8), one immediately concludes that Eqs. (A.7) have at least a 
solution given by Sj — 0 for all J. If this solution is taken, the correlation operator 
S of Eq. (A.6) preserves the symmetry of |$). 

(II). Non-eigen operator representation, let Cf = (Cj"(0), C/(l),..., Cj"(nj — 1)) 
be the multi-configurational creation operators with respect to |$), with ni the di- 
mension of the symmetry A within a set I. Assuming C/(ra) do not have the com- 
mutations as in Eq. (A.2) or Eq. (A.3). Let the corresponding correlation coefficients 
be Sj = (5J(0),5J(1), ...,81(71! - 1)). The CCM correlation operator is then written 
as 

S = £VC+ = X)V'(0)CJ
+(0)+S/(l)CI

+(l)+-. .+sI(nI-l)Cf(nI-l)}, (A.10) 
i i 

where the primes again imply exclusion of the identity term, 1 = 0. 
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As before, the correlation coefficients {Si(i),i = 0, 1, ■■.,ni — 1} are determined 
by the following set of the coupled equations 

($|Ci(;)e-s#es|$} = 0,   i = 0,1, •••,"/-1 and VI (^0). (All) 

Let Bj [= (5/(0), 5/(1),..., S/(nj - 1))] = Tr • C+, where Tt is a c-number 
(n x n) matrix and is chosen such that S/(0) commutes with the symmetry operator 
A, namely 

[A, 5/(0)] =0,     VI, (A12) 

but 

[A,B/(j)] = A;.(I)S/(j),   A;.(7)^0,      i^,...,^-land VI. (A13) 

Multiplying Eq. (A.11) by the corresponding elements of the c-number Hermitian 
matrix of Ti, and after a simple summation, one derives the following equivalent 
equations 

($|57(i)e-sHe5|$) = 0,     j = 0,1, ...,n7 - 1 and VI & 0), (A 14) 

where 5 can be equivalently written as 

S = Si-Bf,     Si^Si-Tf1. (A15) 

According to (I), there is at least a solution to Eq. (A.14) hence to Eq. (A.11) in 
which Sj(j) = 0 for all j ^ 0. If this solution is chosen, the symmetry of the model 
state is preserved. Q.E.D. 
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1. INTRODUCTION 

In many areas of modern numerical studies one is faced with the problem of 
diagonalising large matrices. Since in typical diagonalization algorithms required 
storage scales with the dimension N of the matrix as 0(N2) and cpu time as 0(N3), 
the limiting matrix dimensions is a few times 104. In the case where the matrices 
are very sparse, algorithms that make use of the sparsity of the matrix can be used. 
These algorithms, like the Lanczos method, the conjugate gradient method and the 
vector iteration, use only matrix vector multiplications (MVMs) to extract a few, 
isolated eigenvalues. All programming effort can be concentrated on fast and efficient 
MVMs. The Lanczos method, especially, has been used succesfully in many studies of 
ground state properties of strongly interacting fermions and quantum mechanical spin 
systems. If one is interested in thermodynamic properties, one needs more than just 
ground state information. To generate a complete set of eigenvalues using Lanczos 
diagonalization, or related methods, may require a number of MVMs far exceeding 
N. Invoking such procedures which exactly calculate all individual eigenenergies can 
be both irrelevant and impractical for statistical mechanics. Precise information on 
integrated numbers of states can be far more important than good energy resolution. 
Approximate methods may be adequate to meet the goals of the calculation, and 
they may be preferred if the computational expense is dramatically reduced. 

In this spirit, we propose a new statistical method [1], scaling as 0{N) for 
sparse Hamiltonians, for estimating the density of states (DOS) and thermodynamic 
functions.   The mefhorl  mav also lip annli cable <v> tnanv other areas of «ifipiin1 anrl 



engineering where statistical estimates of properties of huge matrices may suffice. 
We presume the matrix is sufficiently large that the only practical operation is re- 
peated MVM. Input to our procedure should be an efficient algorithm to multiply 
the Hamiltonian matrix onto any initial vector. This is the same as required by the 
Lanczos method. For a small number of MVMs and when only low energy resolution 
is required, a variety of methods exist to estimate DOS from a small number of power 
moments [2]. But when higher energy resolution is needed, determination of DOS 
from pure power moments has been shown to be ill-conditioned [3]. 

Our approach begins by putting lower and upper bounds on energies in the DOS. 
If these are not known in advance, they can be calculated efficiently by Lanczos diag- 
onalization. These bounds define an interval for an orthogonal polynomial (modified 
moment) expansion of the DOS. Such expansions are known to be well-conditioned 
[3]. A stochastic method to estimate polynomial moments of the DOS uses MVM 
on Gaussian random vectors and polynomial recurrence relations. The DOS esti- 
mate is taken to be a modified kernel polynomial [4] constructed from polynomial 
moments. The modification is chosen to damp the Gibbs phenomenon which occurs 
for abrupt truncation of series expansions. We term the output of this procedure a 
kernel estimate. 

A kernel estimate is a controlled approximation to the DOS and quantities formed 
from it. It equals the exact DOS 'convolved' with a known kernel (resolution func- 
tion) plus additive noise with known covariance properties. In this sense, kernel 
estimates are similar to experimental data taken by a spectrometer, with resolution 
and statistical accuracy at the discretion of the experimenter. Energy resolution is 
inversely proportional to the number of MVM's, M. Noise covariance is inversely 
proportional to the number of random vectors, .7, and it is calculable from the DOS. 
For purposes of discussion, let us assume the Hamiltonian is sparse so each MVM re- 
quires an operation count proportional to N. Cpu time to calculate a kernel estimate 
to a given statistical accuracy and fractional energy resolution scales at least as fast 
as 0(N x J x M). Memory scales as 0(3 x N + M). However, for thermodynamic 
and other integrated properties of DOS, the required number of random vectors can 
decrease as N increases because of a statistical averaging effect, resulting in sub- 
linear scaling with N. Indeed, for extremely large N we usually find one random 
vector to be sufficient to determine thermodynamic functions except at the lowest 
temperatures. 

Section 2 develops the kernel polynomial representation of densities of states, 
thermodynamic functions, and operator expectation values in the canonical ensemble. 
And it discusses damping of the Gibbs phenomenon. Section 3 presents a stochastic 
method to calculated polynomial moments of a DOS, and estimate statistical errors 
on kernel estimates. Section 4 illustrates the method for the DOS and thermodynamic 
functions of the Heisenberg antiferromagnet. Section 5 concludes. 

2. KERNEL POLYNOMIAL ESTIMATES OF DOS 

Our goal is to calculate DOS of an iV x N Hamiltonian H, defined as 



where en are eigenenergies. From this, we wish to calculate thermodynamic functions. 
The first step is to put lower, £;, and upper, eu, bounds on energies in DOS. If 

these are not known a priori, they can be determined by Lanczos diagonalization [5] 
using the same MVM routine required for calculating kernel estimates. Sufficient ac- 
curacy is typically obtained with less than 30 MVM's. A scaled Hamiltonian matrix, 
X, is defined by H = cX + d where c = (e„ - e;)/2 and d = (eu + e/)/2. Eigenvalues 
of X satisfy — 1 < xn < +1. 

We assume the scaled DOS can be represented by an orthogonal polynomial 
expansion, 

,      N oo 

D(x) = — ^2^(x -x„) = w(x) ^ amTm{x)   . (2) 
n=l m=0 

In principle, any orthogonal polynomials defined over this interval could be used. 
But manipulations of Chebyshev polynomial expansions are particularly simple be- 
cause they are isomorphic to Fourier series. The Tm(x) are taken to be Chebyshev 
polynomials of the first kind defined by recurrence relations, 

T0{x) = l   ■    T1(x) = x   ;    Tm+1(x) = 2xTm(x)-Tm-1(x).   . (3) 

Their weight function is w(x) - l/\/l - x2. They are orthogonal satisfying 

/■i 7T 

/    w(x)Tm(x)Tn(x)dx = -Smtn   {m,n>l}    ;    TT    {m = n = 0}. (4) 

Defining 9 = arccos(x), Tm may be expressed in terms of trigonometric functions 

Tm(x) = cos(mö-)    . (5) 

Equation (2) is analogous to a Fourier series 

1 oo 
D(X)=^~r^ y^ Q™ c°s(mö) • (ß) sm(p) z—' v   ;  m=0 

A kernel ■polynomial of degree M [4] is defined by 

I    KM{x,x0)D(x0)dx0 = 22 amTm(x)   . (7) 
m=0 

for arbitrary am. It generates truncated series expansions of D(x). However, abrupt 
truncation of a Fourier series will result in lack of uniform convergence ('ringing') 
at jump discontinuities in a DOS. This is known as the Gibbs phenomenon [6]. We 
prefer to use modified kernel polynomials defined by 

.1    _ M 

/    K(x,x0)D(x0)dx0 = w(x)^2am9(m,M)Tm(x)   . (8) 



The g(m,M) are Gibbs damping factors, which are positive smoothly decreasing 
functions satisfying g(0,M) = 1 and g(M,M) = 0. They may also implicitly depend 
on M. Eq. (8) is satisfied by 

2w(x)A 
M 

K{x,x0) = ^-^-l- + T g(m,M)Tm(x)Tm(x0)}    . (9) 
77- ) £. / 7T        l2 

m=l 

We consider only g(z) which produce the limit, 

lim    /    K(x,x0)D(x0)dx0 = D(x)    , (10) 
M-oo</_1 

corresponding to the completeness property of orthogonal polynomials. At finite M, 
K(x, x0) is peaked at x — x0 with a full-width-half-maximum (FWHM) proportional 

to 1/M. Normalization is preserved, J_1 K(x,x0)dx = 1. 
We now consider approximations to DOS constructed by identifying am in Eq. 

(2) with polynomial moments of the true DOS, 

1 2 f1 

ao = -    ;     {m>l}   am = -g(z)fj,m      /Jm =   /    Tm{x)D{x)dx    .        (11) 
7T 7T J_l 

This corresponds to a kernel estimate of DOS constructed from M moments, 

DK(x)=  I   K{x,x0)D(x0)dx0    . (12) 

K is the effective resolution function for this kernel polynomial "spectrometer'. 
Eq.(12) is a Fredholm integral equation of the 1st kind preserving normalization. 

The usefulness of a kernel estimate depends on the height of the peak at x ~ 
x0 and rapidity of its fall at large \x — x0\. This property is controlled by the 
choice of Gibbs damping factor, g(z). A variety of Gibbs damping factors have been 
proposed in the literature, designed to suppress Gibbs phenomena at the expense 
of the rate of convergence of series. For our problem, this translates to suppressing 
Gibbs oscillations in K(x,x0) at large \x — x0\ at the expense of the FWHM of the 
central peak at x w x0. As M becomes large, the central peak in A"(x,.r0) narrows, 
and DK will uniformly converge to D(x), provided g(z) are appropriately chosen. 
Fortunately an optimal Gibbs damping functions can be found in the mathematics 
literature [7]. Optimal means that the half width of the central peak is minimized 
under the constraint that the DOS remains positive everywhere. This leads to the 
following form of the Gibbs damping factors: 

M-m \'l 

g(m,M) =   ^2   CkCk+m     ;     cm = C0Um(\)    ,     A = cos( ^ )    .      ^ c?n = 1. 

(13) 
where Um are Chebyehew polynomials of the second kind. 
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Kernel estimates yield simple moment expansions of thermodynamic functions. 
Using the relation 

oo 

e-ucos(e)=J0(U) + 2j](-l)n/„(U)cos(nö)    , (14) 
n=l 

an exact expansion of the partition function is 

Z = N I' " e'ß^e,)D{e)de = Ne~ßc 

J ei 

I0(ßc)^0 + 2J2(-I)mlm(ßc)iir 
771=1 

•  (15) 

The Im are modified Bessel functions and ß = 1/T. (Note, the Legendre polynomial 
variant of kernel estimators yields expansions in half-integer modified Bessel func- 
tions.) In practice, this series may be truncated without significant systematic error 
because the Im fall off rapidly with increasing m. Machine precision provides a limit 
on the number of moments possible in practice. 

Matrix operators may be defined which are analogous to the functions discussed 
in this section. For a scaled Hamiltonian matrix X, Tm(X) is the corresponding poly- 
nomial operator, and K(x, X) is the corresponding kernel operator. Thus, polynomial 
moments are 

^m = ±Tr{Tm(X)}   . (16) 

The kernel estimate for a DOS may be written 

DK(x) = ^Tr{K(x,X)}.    . (17) 

We shall use these definitions in the next section. 
Kernel estimates may be extended to operator expectation values. For example, 

consider a matrix operator O. A kernel estimate for its thermodynamic expectation 
value, 

O^in^ 1   , (18) 

is given by 

ÖK = ^-\   e-ßicx+d)Tr{OK(x,X)}dx   . (19) 
ZK J-i 

And, similar to the partition function, expansions can be derived for such operator 
expectation values in terms of modified Bessel functions and moments of the form 
fim(0) = Tr{OTm(X)}/N. 

3. STOCHASTIC EVALUATION 

Use of Gaussian random vectors for the stochastic calculation of polynomial mo- 
ments has been discussed previously [8] in the context of maximum entropy methods 
for estimating DOS. Here, we consider application of Gaussian random vectors to 
ralrnloto Ir^rri^l wtnnafp« nf DOS 



<*$; 

We propose a statistical estimator for DK-, 

1    J 

DK(x) = ±Yä<G(J)\k{x,X)\G(J)>    . (20) 

The \G(j) > are Gaussian independent random vectors of unit variance, defined by 

N 

'N \G(J)>= -7^1>0")i*> (21) 
fe=i 

where \k > are convenient basis states for the Hamiltonian. The ak are components 
of an N dimensional random vector, a, i.i.d. (independently and identically drawn) 
from a Gaussian distribution of unit variance. Its probability is 

The statistical expectation value for any function 0(a) is 

E{0}=  /iaP[a]0(a)   . (23) 

For example, E[ak(j)\ = 0, E[ak(j)at(j')} = fa,i6j,j>, etc. Therefore, 

E[DK(x)] = DK(x)   , (24) 

so DK(X) may be termed an unbiased estimator for DK(X). 

An efficient procedure to calculate DOS begins with an unbiased estimator for 
moments, 

1    J 

ßm = 7j^2<G(j)\Trn(X)\G(j)>     • (25) 

The recurrence relation for 1st kind Chebyshev polynomials is applied to each inde- 
pendent Gaussian random vector, \G(j) >, 

T0(X)\G(j) >= \G(j) >     T!(X)|G(;) >= X|G(;) > 

Tm+1(X)\G(j) >= 2Xrm(X)|G(j) > -Tm^WlGij) >    . (26) 

Moments are constructed using 

T2m(x)=2Tm(x)Tm(x)-l     T2m_1(z) = 2Tm(x)Tm_1(x)-x   . (27) 

Thus, unbiased estimators are 

£2m = 7^(2 < G(j)\Tm(X)Tm(X)\GU) >-< G(j)\G(j) >)    ,       (28) 



and similarly for ^m-i- First kind Chebyshev polynomials are especially convenient 
because calculation of M moments requires M/2 MVM's per random vector. The 
memory required for this recurrence procedure is for two vectors, which is 2N. 

The success of this procedure should be judged on how efficiently it achieves the 
scientific goals of the calculation. Are the systematic and statistical errors acceptable 
in exchange for the significant reduction in computational effort? Systematic errors 
are easily evaluated by studying convergence with increasing numbers of moments, as 
discussed in the previous section. Calculation of statistical errors begins by expanding 
a random vector \G(j) > in eigenstates \n > of X, 

1      N 

* n=l 

Define a random variable 8DK{X) = DK(X) — DK(X), such that 

N J 

^•(,)E-^%xn)7^(62
n0-)-l)   . (30) 

The b(j) are related to a(j) by the orthonormal transformation which diagonalizes 
X. Hence, sampling a(j) from a Gaussian distribution of unit variance is equivalent 
to sampling b(j) in the same way. The b(j) have analogous expectation values to 
those for a(j). In particular E[6^(j)] = 1, so ~E[8DK(X)] = 0. The most important 
relation for calculating statistical errors is 

E[(62
n(j) - l)(62

n,(j') - 1)] = 28n,n,Siti,   . (31) 

Then, 

N 

JN~ 

This may be approximated by 

Cov(x,x') = E[SDK(x)6DK(x')} = -^ £ K(x,xn)K(x',xn)   . (32) 
n=0 

2     f1   ~ 
Cov(x,x') « ——  /    K(x,x0)K(x',x0)DK{x0)dx0 (33) 

Most often we are interested in an integrated function of the DOS, say I = 

f-i I(x)D{x)dx. This would be approximated by a kernel estimate, i.e. I ss IK = 

j_   I(X)DK(X)CIX. Statistical errors are given by the square root of the variance, 

Ep/A-)2]=  f I(x)I(x')Cov(x,x')dxdx'   . (34) 

Systematic errors are usually assumed to be independent of statistical errors. If so, 
then K(x,x0) may be interchanged legitimately with 8{x — x0) as needed in these 
expressions. The resulting final estimate for the fractional statistical error is 

t  _ E[(8I)2} _   2j^P(x)DK(x)dx 

I JN fl_lI(x)DK(x)dx 
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Figure 1. DOS for the Sz = 0 sector of the 10 site Heisenberg antiferromagnet. 
There are 252 states and 54 distinct energies. The vertical lines are at energies of 
eigenstates and their height equals their degeneracy. 'Exact' corresponds to the pre- 
dicted kernel estimate in the absence of noise. 'Data' is the kernel estimate obtained 
using 50 random vectors. 

Note, two integrated functions of DOS estimated from the same data would be sta- 
tistically covariant and not independent. 

Equation (35) makes explicit the dependence of statistical errors on the number 
of random vectors, matrix dimension, and integrated function desired. These param- 
eters control rates of convergence for this method. To improve accuracy in practical 
calculations at a fixed JV, we should compare the relative magnitude of systematic 
and statistical errors. If systematic errors are larger, the number of moments should 
be increased. If statistical errors are larger, the number of random vectors should be 
increased. 

Provided D(x) and I(x) do not vary rapidly with N, // decreases with both the 
number of random vectors, J, and the dimension of the Hamiltonian, TV. Thus, there 
can be a statistical averaging effect as N increases requiring fewer random vectors 
to achieve a desired //. In this case, sub-linear scaling of cpu time with N may be 
obtained for sparse Hamiltonians. Indeed, for thermodynamic functions of extremely 
large Hamiltonians, we find one random vector to be sufficient except at the lowest 
temperatures. Also, // decreases with the support of I(x). A smaller number of 
Gaussian random variables, bn(j), contribute, and so statistical errors are larger. At 
one extreme, where I(x) = 6(x - x0) corresponding to an individual point in the 
DOS. D(xn). fr is infinite. At another extreme, where I{x) - 1 corresponding to 
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Figure 2. Thermodynamic functions of the 16 site Heisenberg antiferromagnet as 
obtained by kernel estimates (solid curve) with statistical error bars (short dashed 
curve) and by exact diagonalization (long dashed curve) [9]. Shown are the entropy, 
S, and specific heat at constant volume, Cv, per electron plotted against temperature, 
T 

the normalization, // = yJ'2/JN and is negligible. For thermodynamic quantities 
where I{x) ex exp(—ßcx), fi increases as temperature decreases. The // on DK(X0), 

which is an integrated quantity with I(x) = K(x,x0), increases with the number of 
moments, M, because the kernel narrows. 

4. APPLICATION TO THE HEISENBERG ANTIFERROMAGNET 

We illustrate the performance of the kernel method by applying it to DOS and 
thermodynamic functions of the two-dimensional Heisenberg antiferromagnet on a 
square lattice. This model consists of a spin one-half electron on each site interacting 
via a nearest neighbor spin-spin coupling. Periodic boundary conditions are imposed. 
If the unit cell has Ns sites, the number of states is N = 2 

Figure 1 demonstrates the performance of kernel estimates in a simple case 
involving only a few states. Shown are results for the Sz — 0 sector for 10 sites and 
N = 252. This can easily be diagonalized exactly using standard 0(N3) routines. 
The number of distinct energies is 54. Vertical lines are positioned at the energy 
of each eigenstate and their height equals the degeneracy. The solid curve shows 
the kernel estimate predicted using 200 exact polynomial moments and higher order 
Gibbs damping. This corresponds to a simple convolution of the exact DOS with the 
;nnivn    1,-orno i (, -.lnH fnni-tinn^     Nntp fhp «linrn vpcnliifirui for t;fntp«  fir  prlo-p« of 
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Figure 3. Kernel estimates of the DOS for the 26 site Heisenberg antiferromagnet 
having 67,108, 864 states obtained with 600 moments and 1 random vector 

the spectrum which were initially determined by Lanczos diagonalization. The dashed 
curve shows the kernel estimate obtained by stochastic evaluation of moments using 
50 random vectors. The small disagreement between the two curves is statistical 
noise due to use of a stochastic method. In general, statistical errors will affect only 
the number of states in features of the DOS and not their energies. Thus, if the goals 
of the calculation are only energies of isolated peaks or features in DOS such as band 
edges, a single random vector may suffice. Energy resolution may be improved by 
increasing the number of moments. Statistical noise may be reduced by increasing 
the number of random vectors. 

Exact diagonalization results are available [9] for all of the eigenvalues of the 
16 site Heisenberg antiferromagnet which has N — 65536. Exact diagonalization 
proceeds optimally by first reducing the Hamiltonian to block diagonal form as much 
as possible using symmetries. Cpu time scales as 0(N$) for each block, where Nb 
is the block dimension, and memory scales as 0(N$). For example, by invoking 
spin conservation the largest block of the 16 site Hamiltonian corresponds to S- = 0 
having 12870 states. By invoking translational invariance the largest block can be 
further reduced to approximately 12870/16 ~ 805 states. Exact diagonalization can 
readily be performed with such block sizes. But this becomes impractical for larger 
numbers of sites with larger block sizes. The MVM's used in Lanczos and kernel 
estimates are also most efficiently performed by invoking symmetries to reduce the 
T-Tamiltonuin  to hlorl r\ 1 :-i o'on il  form     Rut  tr\r> MVNf routine rrpatp«  trip Haimlt0111:111 



for each multiply without storing it, so the maximum memory requirement for kernel 
estimates is a few times Nb and the cpu time scales as 0(Nb x J x M) for each 
block. Detailed comparisons of exact diagonalization and MVM techniques depend 
on the advantage taken of symmetry properties of the Hamiltonian as well as the 
goals of the calculation. But, in general, memory requirements and cpu time can 
be orders of magnitude smaller for kernel estimates compared to exact and Lanczos 
diagonalization, if the quantity desired involves DOS. 

In addition to the partition function, Eq. (14), thermodynamic functions include 
the entropy 

S = log(Z)+ße   , (36) 

and specific heat 

Cv = ß2(^-e2)    . (37) 

These quantities are related by 

C=T£     „=I   . (38) 

Such thermodynamic quantities are estimated using a kernel estimate for each quan- 
tity, such as e2 as s2 K, entering these expressions. 

Statistical errors may also be estimated for the entropy 

E[(6S)2} -j§r j dee-2ß£DK(e) [1 - ße + ßeK] 

and specific heat 

E[(6Cv)
2}^'f^-jdee^DK(e 

(39) 

e2 -2eKe-e2
K+,2eK

2 (40) 

The errors again scale approximately as 1/viV, since ZR- OC N. Statistical errors on 
these integrated quantities are not independent at different temperatures. Full error 
properties should be described by a covariance matrix. 

Figure 2 compares kernel estimates of thermodynamic functions to exact re- 
sults. The solid lines are kernel estimates of the the entropy per electron and specific 
heat per electron for the 16 site model obtained with 250 moments and 50 random 
vectors. The number of moments is well beyond the point where systematic errors 
become negligible compared to statistical errors. The plots use the same units as 
[9]. Short dashed curves indicate one standard deviation statistical errors on the ker- 
nel estimates. Long dashed curves are the exact results [9]. Kernel estimates agree 
with exact results within statistical errors. Fractional statistical error increases as 
temperature is decreased. 

Figure 3 demonstrates that kernel estimates do work for truly mega-dimensional 
Hamiltonians. A kernel estimate is shown of the DOS for the 26 site Heisenberg 
antiferromagnet having N = 67,108,864. This DOS was obtained using 600 moments 
and 1 random vector. Note the remarkable smoothness of the DOS. The lack of 
statistical fluctuations in comparison with the 16 site DOS is due to the three orders 
of magnitude larger number of states. Fluctuations in coefficients of individual states 
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Figure 4. Static structure factor for the spin half Heisenberg model on a square 
lattice. The data for AT = 10 have been obtained by exact diagonalization, for 
N = 16..26 we show results from the Kernel Polynomial approximation. 

(including the Gaussian distribution of bn) average out in the DOS estimate. The 
insert shows the low energy portion of the DOS using a vertical scale magnified by 
4 x 103. Structure due to individual states is observable on such a fine vertical scale. 
The height of peaks for isolated states will have large error bars because only one 
random vector was used. But large features in DOS where many states contribute 
will have small statistical errors. 

Figure 4 compares the static structure factor for various finite lattices with the 
result of high temperature series calculation [10]. The static structure factor is defined 
as: 

S(q = (*,*)) 
1 

N 
iq(R,- - Rj))SjSj 

For high enough temperatures, where the finite size effects are small and the high tem- 
perature expansion is valid, we obtain excellent agreement. At smaller temperatures 
the high temperature expansion deviates due to an unphysical pole, but our results 
still behave sensibly. Below T = 0.5 drastic finite size effects cause the interpretation 
to be very difficult. 

5. CONCLUSION 

w. e>   harp  nrnnnwrl 1  a   np\v   hprvpl mrf.h.nd  t~o p^timatp  rlpncitipc; of stafp«  /FlO'-I'l 



and statistical mechanical properties of huge Hamiltonian matrices. The method 
uses only matrix vector multiplications on random vectors, the same algorithm re- 
quired for Lanczos diagonalization. Therefore, kernel estimates are economical in cpu 
time and memory, scaling as 0(N) for large sparse Hamiltonians. They achieve excel- 
lent accuracy and efficiency for integrated functions of DOS such as thermodynamic 
functions and operator expectation values in the canonical ensemble. This is accom- 
plished by relaxing the energy resolution for individual states. Canonical ensemble 
expectation values are expressed as an orthogonal polynomial moment expansion us- 
ing modified Bessel functions. The method also provides estimates of statistical error, 
and systematic errors may be reduced by increasing the number of moments. Kernel 
estimates have a linear data-independent relation to the true DOS. They are based 
on well-developed concepts in analysis and statistics. We believe the comparative 
simplicity and efficiency of kernel estimates will make them an important addition 
to the arsenal of methods for attacking huge matrix problems. 
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1. INTRODUCTION 

Carbon 12 is among the 4N nuclei which are mainly studied by using the 
Bloch-Brink a-cluster model 1 and its variations. A common characteristic of 
many of these a-cluster models is that the a-particles involved in a specific 
nucleus are considered proformed and thus this nucleus appears in the frame- 
work of these models as an aggregate of a-particles subunits. Despite the 
apparent successes of these models, however, the wealth of nuclear reactions 
does not support this a-particle composition of nuclei even for the 4N nuclei. 
This serious handicap of these models has been overcome by considering that 
the alpha-particles involved may dissolve into nucleons since, for cluster sepa- 
rations reaching zero, antisymmetrization forces the cluster wave fuction into 
some shell model limit. Thus, the geometries in these improved a-cluster mod- 
els arise through the long-range effects of antisymmetrization and the mean 
field combined with a preference for simple underlying structures 1-2. Such 
structures in the literature range from three-dimensional3-4 high symmetry 
shapes to two-dimensional1 configurations and even to completely linear1,5-6 

arrangements. 

In the present study an alternative approach is considered where in- 
deed nucleons and not a-particles compose the nuclei and thus possible a- 
particles and their spatial distributions in nuclei are derived. Specifically, the 
semiclassical7 part of the Isomorphic Shell Model is employed. The semiclassi- 
cal instead of the quantum mechanical part8 of the model is utilized since this 
part is closer to the a-cluster models and thus a comparison between them is 
easier and more comprehensive. An outline of the model is given in the next 



section.   Here, only a very brief comparison is attempted for the geometry 
involved in this model and that in the a-cluster models1'3. 

In the a-cluster models, several geometries are chosen for a particular 
nucleus based on symmetry arguments for the a particles involved and then 
the binding energy is used for the final selection of geometry. In the isomorphic 
shell model,however, a common geometry for all nuclei is derived by packing 
the nuclear shells7 (whose average forms result from the independent particle 
assumption) after taking the nucleon finite size into account. The part of this 
geometry utilized by the nucleons of a specific nucleus results from the search 
for the maximum binding energy, which defines the average form and size of 
the cluster structure representing the specific nucleus. 

The well studied a-cluster models1 of the nucleus and the isomorphic 
shell model 7'8 appear, at first glance, as two completely independent ap- 
proaches of studying the atomic nucleus. However, there is a fundamental 
common feature that brings these two approaches very close to each other. 
This feature is the very fact that both models are based on the mean positions 
of their constituent particles (i.e.,of a-particles and of nucleons, respectively.) 
Thus, in a broader sense the isomorphic shell model may be thought that it 
provides the required dissolution of the a-particles into their nucleons which 
is common for all nuclei 7'8 and precisely consistent with the Pauli principle 
9-12. After this important remark the two models may be viewed as two 
similar approaches converging into one. 

Demonstration of the above is successfully obtained here by taking throu-| 
ghout this paper 12C as an example. The good results obtained in the present 
paper point to many other applications in the future refering to light, medium, 
and even heavy nuclei. 

2. THE ISOMORPHIC SHELL MODEL 

The isomorphic shell model is a microscopic nuclear-structure model that in- 
corporates into a hybrid model the prominent features of single-particle and 
collective approaches in conjunction with the nucleon finite size.7,8 

The single-particle component of the model is along the lines of the con- 
ventional shell model with the only difference that in the model the nucleons 
creating the central potential are the nucleons of each particular nuclear shell 
alone, instead of all nucleons in the nucleus as assumed in the conventional 
shell model.8 That is, our Hamiltonian is analyzed into partial state-dependent 
Hamiltonians for neutrons (N) and for protons (Z) as follows, where crossing 
terms between partial Hamiltonians of different shells, have been omitted. 

H = MH + zH 

= NHIS + NH\P + NHU2S + ■ ■ ■ (1) 



+ zH\s + zH\p + zH\ds + • ■ • 

While a finite square-well or Woods-Saxon potential would be a more 
realistic choice of the potential, for reasons of simplicity, we take the harmonic 
oscillator (HO) potential without spin-orbit coupling, where the expressions of 
the mean square radius and of the energy eigenvalues, necessary in demonstrat- 
ing the model, are exceptionally simple and have closed mathematical forms. 
In addition, the appearance of the finite negative constants —NV{ and — zVi in 
the neutron and the proton harmonic oscillator potentials below, reduces the 
boggling impression given when an infinite potential is used for determining 
total-binding energies. 

Thus, for each partial neutron or proton Hamiltonian we take 

NH, = NVi + NTi = -NVt + -m{Nu?)r2 + NT{ (2) 

zHi = zVi + zTi = -zVi + \m{z^}y + ZT, (3) 

That is, each harmonic oscillator potential has its own state-dependent 
frequency w. These w are not taken as adjustable parameters, but all are 
determined from the harmonic oscillator relation13 

H^)H)- (4) 

where n is the harmonic oscillator quantum number and < r2 y1!2 is the av- 
erage radius of the relevant high fluximal shell determined by the semiclassical 
part of the model specified below. 

The solution of the Schrodinger equation with Hamiltonian (1), in spher- 
ical coordinates, is 

Vnlm{r,e,<l>) = Rnl(r)Yr{e,<l>), (5) 

where Yjm(0, <j>) are the familiar spherical harmonics and the expressions for the 
Rni{r) are given in several books of quantum mechanics and nuclear physics, 
for example see Table 4-1 of Ref. 13. 

The only difference between our wave functions and those in these books 
is the different w's as stated in (2) - (3) above. Those of our wave functions, 
however, which have equal / value, because of the different hu, are not or- 
thogonal, since in these cases the orthogonality of Legendre polynomials does 
not suffice. Orthogonality, of course, can be obtained by applying established 
procedures, e.g., the Gram-Schmidt process. 



According to Hamiltonian (1), the binding energy of a nucleus with A 
nucleons in the case of orthogonal wave functions takes the simple form given 
by (6) 

BE = l/2(V.A) - 3/4 
A 

^T hu>i(n + 3/2) 
i=l 

(6) 

where V is the average potential depth8. The coefficients 1/2 and 3/4 take care 
of the double counting of nucleon pairs in determining the potential energy. 

Applications and details of the quantum mechanical part of the model 
are given in Ref. 8. Here an application of the semiclassical part (see Refs. 
7 and 14-19) in the place of the quantum mechanical part of the model is 
considered in the spirit of Ehrenfest's theorem,20 which for the observables of 
position (R) and momentum (P) takes the form 

— < R > = — < P >     and (7) 
at m 

j < P > = - < W(R) > (8) 

The quantity < R > represents a set of three time-dependent numbers 
{< X >,< Y >,< Z >} and the point < R > (t) is the centre of the wave 
function at the instant t. The set of those points which correspond to the 
various values of t constitutes the trajectory followed by the centre of the 
wave function. 

From (7) and (8) we get 

m^R=-<VF(R)> (9) 

Furthermore, it is known that, for the special case of the harmonic oscil- 
lator potential assumed by the isomorphic shell model in (3), the following 
relationship is valid 

< VV(R) >= [W(r)]r=<R>,    where (10) 

[-W(r)]r=<R>=F (11) 

That is, for this potential the average of the force over the whole wave function 
is rigorously equal to the classical force F at the point where the centre of the 
wave function is situated. Thus, for the special case (harmonic oscillator) 
considered, the motion of the centre of the wave function precisely obeys the 
laws of classical mechanics. Any difference between the quantum and the 
classical description of the nucleon motion exclusively depends on the degree 
the wave function may be approximated by its centre.   Such differences will 



contribute to the magnitude of deviations between the experimental data and 
the predictions of the semiclassical part of the model employed here. 

Now, in the semiclassical treatment7 the nuclear problem is reduced 
to that of studying the centres of the wave functions presenting the con- 
stituent nucleons or, in other words, of studying the average positions of these 
nucleons7. For this study the following two assumptions are employed by the 
isomorphic shell model7. 

i) The neutrons (protons) of a closed neutron (proton) shell, considered at 
their average positions, are in dynamic equilibrium on the sphere 
presenting the average size of that shell. 

ii) The average sizes of the shells are determined by the close-packing 
of the shells themselves, provided that a neutron and a proton are rep- 
resented by hard spheres of definite sizes (i.e., rn = 0.974 fm and 
rp = 0.860 fm). 

It is apparent that assumption (i) is along the lines of the conventional 
shell model, while assumption (ii) is along the lines of the liquid-drop model. 

The model employs a specific equilibrium of nucleons, considered at their 
average positions on concentric spherical cells, which is valid whatever the law 
of nuclear force may be21: assumption (i). This equilibrium leads uniquely to 
Leech21 (equilibrium) polyhedra as average forms of nuclear shells. All such 
nested polyhedra are closed-packed, thus taking their minirnum size: assump- 
tion (ii). The cumulative number of vertices of these polyhedra, counted suc- 
cessively from the innermost to the outermost, reproduce the magic numbers 
each time a polyhedral shell is completed7 (see the numbers in the brackets in 
Fig. 1 there and in this paper). 

For one to conceptualize the isomorphic shell model, he should first relate 
this model to the conventional shell model. Specifically, the main assumption 
of the simple shell model, i.e. that each nucleon in a nucleus moves (in an 
average potential due to all nucleons) independently of the motion of the 
other nucleons, maybe understood here in terms of a dynamic equilibrium 
in the following sense.7 Each nucleon in a nucleus is on average in a dynamic 
equilibrium with the other nucleons and, as a consequence, its motion may 
be described independently of the motions of the other nucleons. 

From this one realizes that dynamic equilibrium and independent parti- 
cle motion are consistent concepts in the framework of the isomorphic shell 
model. 

In other words, the model implies that at some instant in time (reached 
periodically) all nucleons could be thought of as residing at their individual 
average positions, which coincide with the vertices of an equilibrium poly- 
hedron for each shell. This system of particles evolves in time according to 
each independent particle motion. This is possible, since axes standing for the 
angular-momenta quantization of directions are identically described by the 
rotational symmetries of the polyhedra employed.9-12 For example, see Ref. 



11, where one can find a complete interpretation of the independent parti- 

cle model in relation to the symmetries of these polyhedra. Such vectors are 
shown in Fig. 1 for the orbital angular-momentum quantization of directions 
involved in all nuclei up to N = 20 and Z = 20. 

Figure 1. The isomorphic shell model for the nuclei up to N = 20 and Z = 20. 
The high-symmetry polyhedra in row 1 (i.e. the zerohedron, the octahedron and the 
icosahedron) stand for the average forms for neutrons of (a) the Is, (c) the \p and 

(e) the ld2s shells, while the high-symmetry polyhedra in row 2 (i.e. the zerohedron, 

the hexahedron (cube) and the dodecahedron) stand for the average forms of (b) the 
Is, (d) the lp and (f) the ls2s shells for protons. The vertices of polyhedra stand 

for the average positions of nucleons in definite quantum states (T,n,l,m,s). The 
letters h stand for the empty vertices (holes). The z axis is common for all polyhedra 

when these are superimposed with a common centre and with relative orientations 
as shown. At the bottom of each block the radius R of the sphere exscribed to 
the relevant polyhedron and the radius p of the relevant classical orbit, equal to 
the maximum distance of the vertex-state (T, n, I, m, s) from the axis n#[™ precisely 
representing the orbital angular momentum axis with definite n,l and m values, are 

given. Curved arrows shown help the reader to visualise for each nucleon round 
what axis is rotated, where close (open) arrows show rotations directed up (down) 

the plane of the paper. All polyhedra vertices are numbered as shown. The backside 
(hidden) vertices of the poluhedra and the related numbers are not shown in the 
figure. 



Since the radial and angular parts of the polyhedral shells in Fig. 1 are 
well denned, the coordinates of the polyhedral vertices (nucleon average posi- 
tions) can be easily computed. These coordinates up to N — Z = 20, needed 
here for the application of the model on 12C (see next section), are already 
published in footnote 14 of Ref. 14, and in footnote 15 of Ref. 15. These 
coordinates correspond to the relevant R values of the exscribed polyhedral 
spheres given in Fig. 1 (see bottom line at each block). 

According to the isomorphic shell model7, the nucleon average positions 
of a nucleus are distributed at the vertices of the polyhedral shells as shown, for 
example, in Fig. 1. The specific vertices occupied, for a given (closed- or open- 
shell) nucleus at the ground state, form a vertex configuration (corresponding 
to a state configuration) that possesses a maximum binding energy (BE) in 
relation to any other possible vertex configuration. This maximum BE vertex 
configuration defines the average form and structure of the ground state of this 
nucleus. All bulk (static) ground-state properties of this nucleus (e.g. BE, 
rms radii, etc.) are derived as properties of this structure, as has been fully 
explained in Ref. 7 and will become apparent below. 

The quantities estimated by the model in the framework of its semiclas- 
sical part 7>14'16 (see next section) are potential energy Vij, Coulomb energy 
(Ec)ij\ average kinetic energy < T >„;„,; odd-even energy Es; binding energy 
EBE\ collective rotational energy Erot; rms charge, mass and effective radii 
< r2 >ll2; and electric quadrupole moment using (12)-(22). 

e-(31.8538)rlV -(1.3538)r0- 

Vij = 1.7(1017) 187 , (12) 
Tij V{j 

where the internucleon distances r;j are estimated following Fig.   1 or (the 
same) the corresponding coordinates of polyhedral vertices.14-15 

(Ec),j = f, (13) 
Tij 

where distances Tij are computed as explained above. 

h2 

<T>nlm=2M 
1     +'(I + 1) 

7?2 o2 
■"-max Hnlm 

(14) 

where J?max is the outermost polyhedral radius (R) plus the relevant nucleon 
radius (i.e., rn = 0.974 fm or rp = 0.860 fm), i.e., the radius of the nuclear 
volume in which the nucleons are confined, M is the nucleon mass, pnim is the 
distance of the vertex (n,l,m) from the axis „Ö™ (see Fig. 1 and Ref. 16). 

EBB = -    J2    V>i ~    S    ~ ~      £      <T >nlm ~Es + Etot> (15) 
1   nucleon all   proto 
pairs pairs 
           rii   all   nucleon all   proton «' allniicleons 



where distances r^ are estimated as above and Eg is a correction "odd-even" 
term familiar from the liquid drop model. Here Eg value is equal to zero for 
even-Z even-N nuclei for which the potential in (12) is exclusively derived14 

and thus no correction is needed, while for odd-A nuclei its value is taken 
equal13 to 80/A MeV, i.e. 

ES=
84 (16) 

EI0t — 
h2i(l+i) 

23       ' 
(17) 

where J is the moment of inertia of the rotating part of the nucleus given by 
(18) 

Wrot NIot 

J =^2 mP2i   ~ m X/ p2>   ~ mN™t  < ^ >r°t' (18) 

where iVrot is the number of nucleons participating in the collective rotation 
and 
< r2 >rot is the rms radius of these nuclei. 

The term ETOt in (15) is meaningful for the ground state only for the 
cases where the angular speed w due to independent particle motion is compa- 
rable (about equal) to that due to collective motion in such a way that these 
two motions are coupled even at the ground state, i.e., for these cases the 
adiabatic approximation is not valid. 

<r2 >^2 = 
,N 

Ef=i R2 + E;=I ä? + z(osy + ^(o.9i)2 

Z + N 

1/2 

(19) 

>T- Ef=1 Ä? + (0.8)2-(0.116) 
N 

1/2 

(20) 

where the subscripts ch and m refer to charge and mass, Ri is the radius of 
the ith proton or neutron average position from Fig. 1, Z and N are the 
proton and the neutron numbers of the nucleus, 0.8 and 0.91 fm are the rms 
radii of a proton and of a neutron, and -0.116 fm2 is the ms charge radius of 
a neutron.22 The 0.91 fm value for a neutron is taken from the 0.8 fm value 
for a proton by considering proportionality according to the sizes of their bags 
0.974 and 0.860 fm, respectively, i.e. 0.91 = 0.8(0.974/0.860). 

< r' >l(?= [< r> >m + <r2 >rot] 
1/2 (21) 

eQL, = £ eQ\: = e £ £2(3 cos2 6, - 1), (22) 



where Q' stands for the intrinsic quadrupole moment, R{ is the radius of the 
ith proton average position, and 0; is the corresponding azimuthal angle with 
respect to the quantisation axis. 

3. CALCULATIONS AND DISCUSSION 

In the a-cluster model of the nucleus referring to a-chain states, 12C (N=3) 
is the key nucleus since an a-chain structure for Be8 (N=2) is apparent and 
since the appearance of such structure for heavier nuclei (N > 4) could be 
associated to 12C structure particularly if the a-chain states of these heavier 
nuclei could be thought of as forming molecular structures of the type 12C 
+(N - 3)a, either 12C + 8Be or 12C + 12C. Thus in the following we will 
concentrate on 12C. 

The average structure of 12C, in the framework of the isomorphic shell 
model, comes from Fig.l by considering the states (Is and IP3/2) involved in 
this nucleus. Specifically, from Fig.l the average nucleon positions numbered 
1-2 (for Is neutrons), 3-4 (for Is protons), 5-8 (for IP3/2 neutrons), and 11- 
14 (for IP3/2 protons) are depicted as shown in Fig.2(a) by employing the 
same numbers. Thus, Fig.2(a) contains part of Fig.l and so, as mentioned, all 
coordinates of the average nucleon positions involved are known.14'15 Further, 
Fig.2(b) is almost identical to Fig.2(a) and only slightly differs with respect to 
the average positions of the two Is protons (nos. 3-4). Specifically, due to the 
absence of lpi/2 neutrons in 12C (nos. 9-10) whose average positions together 
with those of lp3/2 neutrons (nos.5-8) determine the symmetry of the average 
positions for the Is protons, these two latter positions can relax getting closer 
to the average positions for the IP3/2 neutrons (nos. 5-8) in such a way that 
their corresponding nucleon bags come in contact.This relaxation of the two 
proton average positions leads to larger binding energy for 12C. 

Further in the model, each set of the following four nucleon average 
positions numbered (1-4), (5, 7, 11, 13) and (6, 8, 12, 14) consists of two 
protons and two neutrons with the same n and / quantum numbers which 
are close together for the instant depicted by Fig.2(a) and (b). Thus, in the 
model each of these three sets can be considered as an a-particle. Considering 
now the center of gravity for each of these a-particles, Fig.2(c) results, where 
indeed these three a-like particles are in a row forming a linear chain. For 
later moments, of course, each of the four nucleons composing any one of the 
above three a-particle like structures will evolve by following its independent 
particle motion. That is, each nucleon will rotate in an orbital round its own 
axis of orbital angular momentum vector as schematically shown by arrows in 
Fig.l. 

In the framework of the isomorphic shell model now the observables 
of rms charge radius and of binding energy can be estimated.   Specifically, 



from Eq.(20) since all R{ involved in Fig.2(a) and (b) are known7 (namely, 

-Ris-protons = 1-554 fm, and -Rip_protons = 2.541 fm; see Figs.l(b) and (d)), 
the charge rms radius is computed equal to 2.37 fm for each of the Figs.2(a) 

and (b) (< r2 >*^exp = 2.37 fm). Also, from Eqs.(12)-(15) since all co- 

ordinates of the nucleon average positions14-15 and the radial distances in- 

volved in Figs.2(a) and (b) (namely in fm, -Rmax = 2.511 + 0.974, /3ip-proton = 
2.075, ^ip_neutron = 2.511, also Erot = 0; see Figs.1(c) and (d) are known14-15, 
the binding energy for Figs.2(a) and (b) are computed equal to 86.0 MeV and 
94.2 MeV, respectively. 

Figure 2. Average forms for 12C, according to the isomorphic shell model, com- 
posed of the average positions of the constituent nucleons. Part (a) stands for the 
first 0+ excited state at 7.65 MeV and part (b) for the ground state. Average nucleon 
positions are numbered as shown by using for the same position the same number 
as in Fig.1.Thus, one can observe that for the positions shown in Fig.l(a)-(d) those 
numbered (9)-(10) for neutrons and (15)-(16) for protons are the only not present 
in Fig.2. Fig.2(c) comes from either Fig.1(a) or Fig.1(b) when each of the three sets 

of four close-by nucleons (two neutrons and two protons) of same n and / numbered 
(1-4), (5, 7, 11, 13) and (6, 8, 12, 14) are assumed forming a sort of an a particle. 
Axes labelled 1, 2 and 3 stand for C2 symmetry axes and those labelled R0+ and 

R0+ for rotational axes referring to the first (0*) and to the second (O2 ) 0+ levels. 

Fig.2(a) and (b) have been found to be the two average-nucleon-position 

configurations with the largest binding energies with respect to any other 
possible configuration for 12C involving s and p or even d states and coming 
from Figs.1(a) - (f). Thus, Fig.2(b) is associated with the ground state and 
Fig.2(a) with the 7.653 ± 0.3, J*" = 0^" excited state23 of 12C possessing 
92.2 MeV and 84.55 MeV experimental binding energies,24 respectively. The 
inbetween excited state23 at 4.4392 ± 0.3, J*" = 2+, will be discussed shortly. 

Center-of-mass corrections are not included. 



Table 1. Theoretical predictions and experimental values for the ground state 
(Of) and first 0+ excited state (Of) of 12C. 

rms Intrinsic 
Approach Energy 

(MeV) 

charge 
radius 
(fm) 

quadrupole 
moment 

(fm)2 

of 92.2b 2.40±0.25c ±21d 

Experiment 0+ 7.65 

Isomorphic of 94.2 2.37 21 

shell model of 8.2 2.37 21 

a-particle of (triangle) VI     72.7 
model" V2     64.3 
with forces Bl     62.0 2.62 -43^ 
VI, V2, Bl Of (chain) VI 

V2 
Bl 

15.0 
8.7 
6.1 

3.27e 

a See Ref. 
6 See Ref. 
c See Ref. 
d See Ref. 
e See Ref. 

3 
23 
25 
27 
30 

/ See text (Section 3) for other calculated values (e.g.-21.6 fm2) 

It is satisfying that the present predictions are close to the experimental 
values for the binding energies but also for the radii25. The comparison is 
even more to our favour if we consider the corresponding a-model predictions3 

given in Table 1. However, a more detailed comparison with a-cluster models 
is going to be made later. 

As seen from Figs.2(a) and (b), the deformation of the average shapes 
for the ground state and the Of excited state of 12C is apparent. In these 
figures the axes of symmetry and the corresponding axes of rotation are also 
shown. Specifically, the axis of rotation labelled R0+ is perpendicular to both 
axes of symmetry labelled 2 and 3, while the axis of rotation labelled R0+ is 
defined from the proton average positions nos. 3 and 4 and is perpendicular 
to the axis of symmetry labelled 1. 

Since all coordinates involved in Figs.2(a) and (b) are known14-15, by 
applying Eq.(18) the relevant moments of inertia are estimated. Namely, 



Ja=42.6 M.fm2 and 
Jb=28.03 M.fm2 , 

where M stands for the nucleon mass and the contribution to the moment of 
inertia coming from the finite nucleon size has been empirically incorporated 
equal to 0.165 M.fm2 for each nucleon participating in the collective rotation. 

By assuming no variation of the moment of inertia with angular momen- 
tum and by applying Eq.(17) the bands corresponding to the rotational axes 
labelled R0+ and Ä0+ are those given in Table 2. 

Table 2. Rotational ground state and 0^" excited bands of 12C. 

Isomorphic 
Experiment3 sheU a-particle 

Band r r Energy model models6 

(MeV) (MeV) (MeV) 

2+ 2+ 4.44 4.28 2.76c 

of 4+ (4+) 14.08 14.28 
6+ 28.9 29.98 

0+ 0+ 7.65 7.65 7.65 
0+ 2+ (0+) 10.3 10.4 8.90 

4+ 16.9 12.1 

a See Ref. 23 
6 See Ref. 31 
c See Ref. 30 

3 The second band is what is usually considered by the a-cluster models 
as corresponding to the linear a-chain states for 12C. Of course, the existence of 
such a band is not clearly supported by the experimental data.23 Its existence 
exclusively depends on whether in the future the J* for the state 10.3 ±3 MeV 
will be found to be 2+ in place of the present tentative23 assignment (0+). 

What is really different between the present approach and the a-cluster 
models is the nature of the first band, i.e. of the ground-state band in Ta- 
ble 2. In these models a-particles are arranged at the corners of an equi- 
lateral triangle3 for the ground state of 12C. Such triangular configuration 
of a-particles round the nuclear center is based on the assumption that the 
a-particle is a fundamental constituent of 12C nucleus. In such a case by con- 
sidering any reasonable a — a interaction, the most compact structure (and 
thus with maximum binding energy) is that of an equilateral triangle and 
should be assigned to the ground state of 12C. In the framework of the present 



model, however, nucleons and not a-particles are the constituents of any nu- 
cleus and it is the Pauli principle together with the maximum binding energy 
which determine what average nucleon positions are occupied and eventually 
what is the average shape of a specific nucleus. The good agreements between 
the experimental data and the predictions of the present model concerning 
the member states of the ground state band23 lend support to the present 
approach,where a linear instead of a triangular average shape for the ground 
state of 12 C is employed. 

Finally, an estimation of the electric quadrupole moment of 12C is made 
which constitutes a very sensitive test of the angular distribution of the av- 
erage structure for any nucleus. Dealing with average values, the intrinsic 
quadrupole moment is given13 by (22) where, for Fig.2(b) representing the 
ground state of 12C each Ä; has been specified7 above (see R values in Fig.l) 
and the corresponding 0; is the azimuthal angle for the proton average position 
i with respect to the axis 1 (see Fig.2), which is the quantization axis for all 
vectors presenting quantization of direction9-12 for orbital angular momenta 
shown in Fig.l (namely,26 93A = 90° and 0n_14 = 35° 15'52"). It is satisfying 
that the resulting value eQ;ntr = 21.0 fm2 is identical to the measured27 abso- 
lute value of the intrinsic quadrupole moment. The corresponding value com- 
ing from the a-cluster model3 used for the construction of Table 1 is —43 fm2, 
while more recent calculations28 give -21.6 fm2 and41 -21.7fm2. Hence, the 
difference between the present model and the Bloch- Brink model concerning 
the electric quadrupole moment essentially lies in the sign of the Q'intr- 

4. CONCLUSIONS 

In the present study of12 C the isomorphic shell model7'8 has been employed as 
a cluster approach to atomic nuclei, where consideration of the nucleon finite 
size7 constitutes one of the main features of the model. This feature allows the 
packing and clusterization in a nucleus.7 What are really packed in the model 
are the shells themselves7 taken as entities. Thus, only nucleons necessary for 
the shell packing are in contact. That is, the model does not support general 
packing of nucleons which should lead to much higher density. It is satisfying 
that this packing of shells reproduces a magic number7 each time a saturated 
shell is added into the packing. The close reproduction of binding energies 
and sizes in many nuclei by both the quantum8 and semiclassical7 parts of the 
model lends support to the present approach and makes its results reliable. 

A prolate average shape with a sizable positive intrinsic quadrupole mo- 
ment is predicted for 12C which can be considered as a linear chain of three 
a-particles, when each two close-by pairs of neutrons and protons with the 
same n and / quantum numbers (sort of a-particle) are presented by their 
center of gravity.   Such a linear a-chain has already been predicted by a- 



cluster models.3 However, here the a-chain stands for both the excited Of 
state23 at 7.65 MeV (as in these models) and the ground state (instead of an 
equilateral triangle in these models3). The good agreements with experimental 
values for all observables examined, superior to those from a-cluster models, 
support the credibility of the present approach. Of course, the difference in 
the sign of the deformation cannot be ignored. However, despite much effort 
the quantitative experimental evidence is inconclusive28. Most of it derives 
from model-dependent analysis of electron scattering and hadron scattering 
data. Some of these analyses are inherently insensitive to the sign of the de- 
formation and there are indications that the values obtained are projectile 
dependent and also that the findings strongly depend on the assumption that 
the nuclear charge distribution is spheroidal.28.Besides the sign the most re- 
cent estimation28-29 of \QQ\ range from 21.6 to 24.0 fm2 which are in good 
agreement with our prediction of 21.0 fm2. 

The above conclusions are further strengthened by the fact that the iso- 
morphic shell model used here employs no adjustable parameters. It uses, of 
course, two numerical parameters for the sizes of neutron and proton bags7'16 

and four parameters for the two-body potential14 employed, but these totally 
six parameters are universal parameters of the model constant for all prop- 
erties in all nuclei. In the present approach no ad hoc assumption has been 
made and all predictions are based on the isomorphic shell model, all of whose 
numerals necessary for its implementation have been published independently 
a long time ago. 
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